WorldWideScience

Sample records for relative o2 pulse

  1. Zn-vacancy related defects in ZnO grown by pulsed laser deposition

    Science.gov (United States)

    Ling, F. C. C.; Luo, C. Q.; Wang, Z. L.; Anwand, W.; Wagner, A.

    2017-02-01

    Undoped and Ga-doped ZnO (002) films were grown c-sapphire using the pulsed laser deposition (PLD) method. Znvacancy related defects in the films were studied by different positron annihilation spectroscopy (PAS). These included Doppler broadening spectroscopy (DBS) employing a continuous monenergetic positron beam, and positron lifetime spectroscopy using a pulsed monoenergetic positron beam attached to an electron linear accelerator. Two kinds of Znvacancy related defects namely a monovacancy and a divacancy were identified in the films. In as-grown undoped samples grown with relatively low oxygen pressure P(O2)≤1.3 Pa, monovacancy is the dominant Zn-vacancy related defect. Annealing these samples at 900 oC induced Zn out-diffusion into the substrate and converted the monovacancy to divacancy. For the undoped samples grown with high P(O2)=5 Pa irrespective of the annealing temperature and the as-grown degenerate Ga-doped sample (n=1020 cm-3), divacancy is the dominant Zn-vacancy related defect. The clustering of vacancy will be discussed.

  2. Reactions of H2O3 in the pulse-irradiated Fe(II)-O2 system

    DEFF Research Database (Denmark)

    Sehested, Knud; Bjergbakke, Erling; Lang Rasmussen, O.

    1969-01-01

    G(Fe(III)] is measured in pulse-irradiated O2-saturated solutions of 20 to 160 μMFe(II), at the p H's 0.46, 1.51, and 2.74 H2SO4 and HClO4 and with dose rates between 1 and 8 krad/1 μsec pulse. Based on homogeneous kinetics, the results are interpreted by a system of 18 reactions. The formation...

  3. Investigation of damage threshold to TiO2 coatings at different laser wavelength and pulse duration

    International Nuclear Information System (INIS)

    Yao Jianke; Fan Zhengxiu; Jin Yunxia; Zhao Yuanan; He Hongbo; Shao Jianda

    2008-01-01

    Laser-induced damages to TiO 2 single layers and TiO 2 /SiO 2 high reflectors at laser wavelength of 1064 nm, 800 nm, 532 nm, and pulse width of 12 ns, 220 ps, 50 fs, 8 ns are investigated. All films are prepared by electron beam evaporation. The relations among microstructure, chemical composition, optical properties and laser-induced damage threshold (LIDT), have been researched. The dependence of damage mechanism on laser wavelength and pulse width is discussed. It is found that from 1064 nm to 532 nm, LIDT is mainly absorption related, which is determined by film's extinction coefficient and stoichiometric defects. The rapid decrease of LIDT at 800 nm is due to the pulse width factor. TiO 2 coatings are mainly thermally by damaged at long pulse (τ ≥ 220 ps). The damage shows ablation feature at 50 fs

  4. Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers

    International Nuclear Information System (INIS)

    Wang Bin; Zhang Hongchao; Qin Yuan; Wang Xi; Ni Xiaowu; Shen Zhonghua; Lu Jian

    2011-01-01

    To study the differences between the damaging of thin film components induced by long-pulse and short-pulse lasers, a model of single layer TiO 2 film components with platinum high-absorptance inclusions was established. The temperature rises of TiO 2 films with inclusions of different sizes and different depths induced by a 1 ms long-pulse and a 10 ns short-pulse lasers were analyzed based on temperature field theory. The results show that there is a radius range of inclusions that corresponds to high temperature rises. Short-pulse lasers are more sensitive to high-absorptance inclusions and long-pulse lasers are more easily damage the substrate. The first-damage decision method is drawn from calculations.

  5. Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers.

    Science.gov (United States)

    Wang, Bin; Zhang, Hongchao; Qin, Yuan; Wang, Xi; Ni, Xiaowu; Shen, Zhonghua; Lu, Jian

    2011-07-10

    To study the differences between the damaging of thin film components induced by long-pulse and short-pulse lasers, a model of single layer TiO(2) film components with platinum high-absorptance inclusions was established. The temperature rises of TiO(2) films with inclusions of different sizes and different depths induced by a 1 ms long-pulse and a 10 ns short-pulse lasers were analyzed based on temperature field theory. The results show that there is a radius range of inclusions that corresponds to high temperature rises. Short-pulse lasers are more sensitive to high-absorptance inclusions and long-pulse lasers are more easily damage the substrate. The first-damage decision method is drawn from calculations. © 2011 Optical Society of America

  6. Nanosecond pulsed discharges in N2 and N2/H2O mixtures

    NARCIS (Netherlands)

    Joosten, R.M.; Verreycken, T.; Veldhuizen, van E.M.; Bruggeman, P.J.

    2011-01-01

    Nanosecond pulsed discharges in N2 and N2/H2O at atmospheric pressure between two pin-shaped electrodes are studied. The evolution of the discharge is investigated with time-resolved imaging and optical emission spectroscopy. The discharge consists of three phases, the ignition (mainly molecular

  7. Multiple diagnosis based on photoplethysmography: hematocrit, SpO2, pulse, and respiration

    Science.gov (United States)

    Yoon, Gilwon; Lee, Jong Y.; Jeon, Kye Jin; Park, Kun-Kook; Yeo, Hyung S.; Hwang, Hyun T.; Kim, Hong S.; Hwang, In-Duk

    2002-09-01

    Photo-plethysmography measures pulsatile blood flow in real-time and non-invasively. One of widely known applications of PPG is the measurement of saturated oxygen in arterial blood(SpO2). In our work, using several wavelengths more than those used in a pulse oximeter, an algorithm and instrument have been developed to measure hematocrit, saturated oxygen, pulse and respiratory rates simultaneously. To predict hematocrit, a dedicated algorithm is developed based on scattering of RBC and a protocol for detecting outlier signals is used to increase accuracy and reliability. Digital filtering techniques are used to extract respiratory rate signals. Utilization of wavelengths under 1000nm and a multi-wavelength LED array chip and digital-oriented electronics enable us to make a compact device. Our preliminary clinical trials show that the achieved percent errors are +/-8.2% for hematocrit when tested with 594 persons, R2 for SpO2 fitting is 0.99985 when tested with a Bi-Tek pulse oximeter simulator and the SpO2 error for in vivo test is +/-2.5% over the range of 75~100%. The error of pulse rates is less than +/-5%. We obtained a positive predictive value of 96% for respiratory rates in qualitative analysis.

  8. Effect of High Frequency Pulsing on the Interfacial Structure of Anodised Aluminium-TiO2

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Bordo, Kirill

    2015-01-01

    High frequency anodizing of friction stir processed Al-TiO2 surface composites was investigated. The effect of anodizing parameters on the structure and morphology of the anodic layer including the incorporation of the TiO2 particles into the anodic layer is studied. Anodizing process was carried...... out using a high frequency pulse and pulse reverse pulse technique at a fixed frequency in a sulfuric acid bath. The structure of the composites and the anodized layer was studied using scanning and transmission electron microscopy. The pulse reverse pulse anodizing technique, using a negative...

  9. Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition

    Science.gov (United States)

    Leedy, Kevin D.; Chabak, Kelson D.; Vasilyev, Vladimir; Look, David C.; Boeckl, John J.; Brown, Jeff L.; Tetlak, Stephen E.; Green, Andrew J.; Moser, Neil A.; Crespo, Antonio; Thomson, Darren B.; Fitch, Robert C.; McCandless, Jonathan P.; Jessen, Gregg H.

    2017-07-01

    Si-doped Ga2O3 thin films were fabricated by pulsed laser deposition on semi-insulating (010) β-Ga2O3 and (0001) Al2O3 substrates. Films deposited on β-Ga2O3 showed single crystal, homoepitaxial growth as determined by high resolution transmission electron microscopy and x-ray diffraction. Corresponding films deposited on Al2O3 were mostly single phase, polycrystalline β-Ga2O3 with a preferred (20 1 ¯ ) orientation. An average conductivity of 732 S cm-1 with a mobility of 26.5 cm2 V-1 s-1 and a carrier concentration of 1.74 × 1020 cm-3 was achieved for films deposited at 550 °C on β-Ga2O3 substrates as determined by Hall-Effect measurements. Two orders of magnitude improvement in conductivity were measured using native substrates versus Al2O3. A high activation efficiency was obtained in the as-deposited condition. The high carrier concentration Ga2O3 thin films achieved by pulsed laser deposition enable application as a low resistance ohmic contact layer in β-Ga2O3 devices.

  10. Characterisation of an optimised high current MgO/Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8.21} composite conductor using pulsed transport currents with pulsed magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A; Gilewski, A; Rogacki, K; Kursumovic, A; Evetts, J E; Jones, H; Henson, R; Tsukamoto, O

    2003-01-15

    High temperature superconducting conductors are already used in hybrid magnets to produce fields that enhance the performance of conventional magnets made from A-15 type low temperature superconducting wires. For such applications it is vital that the interdependence of the critical parameters such as critical current versus magnetic field can be mapped under high field and high current conditions. However these superconductors have high critical currents even at fields over 20 T, making accurate measurements difficult due to the thermal and mechanical problems. In this paper, we compare measurements on the fully optimised Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8.21} flat rigid conductors using an innovative pulsed high transport current and pulsed high field technique. We show how analysis of the voltage signal from Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8.21} tape in pulsed conditions may be used to extract the critical current under quasi-stationary conditions.

  11. Annealing of SnO2 thin films by ultra-short laser pulses

    NARCIS (Netherlands)

    Scorticati, D.; Illiberi, A.; Bor, T.; Eijt, S.W.H.; Schut, H.; Römer, G.R.B.E.; Lange, D.F. de; Huis In't Veld, A.J.

    2014-01-01

    Post-deposition annealing by ultra-short laser pulses can modify the optical properties of SnO2 thin films by means of thermal processing. Industrial grade SnO2 films exhibited improved optical properties after picosecond laser irradiation, at the expense of a slightly increased sheet resistance

  12. Evolution of local structure in Ag2O-TeO2 glasses with addition of Ag2O analyzed by pulsed neutron diffraction and Raman spectroscopy

    International Nuclear Information System (INIS)

    Iwadate, Yasuhiko; Suzuki, Mineta; Hattori, Takeo; Fukushima, Kazuko; Nishiyama, Shin; Misawa, Masakatsu; Fukunaga, Toshiharu; Itoh, Keiji

    2005-01-01

    The local structure of Ag 2 O-TeO 2 glasses was studied by time-of-flight pulsed neutron diffraction (TOF-PND) and Raman spectroscopy. The results of Raman spectroscopy indicated that TeO 4 trigonal bipyramidal units (tbp) were converted to TeO 3 trigonal pyramidal units (tp) by addition of Ag 2 O to TeO 2 . Furthermore in PND, the structural parameters for each atomic pair were optimized in the Q-space, and the distances of the near neighbor Te-O correlations forming tbp units and tp units in the network were estimated with some accuracy

  13. Synthesis of ZnTe nanowires onto TiO2 nanotubular arrays by pulse-reverse electrodeposition

    International Nuclear Information System (INIS)

    Gandhi, T.; Raja, K.S.; Misra, M.

    2009-01-01

    Growth of ZnTe nanowires using a pulse-reverse electrodeposition technique from a non-aqueous solution is reported. ZnTe nanowires were grown on to an ordered nanotubular TiO 2 template in a propylene carbonate solution at 130 o C inside a controlled atmosphere glove box. The pulse-reverse electro deposition process consisted of a cathodic pulse at - 0.62 V and an anodic pulse at 0.75 V Vs Zn 2+ /Zn. Stoichiometry growth of crystalline ZnTe nanowires was observed in the as-deposited condition. The anodic pulse cycle of the pulse-reverse electrodeposition process presumably introduced zinc vacancies as deep level acceptors at an energy level of E v + 0.47 eV. The resultant ZnTe nanowires showed p-type semiconductivity with a resistivity of 7.8 x 10 4 Ω cm and a charge carrier density of 1.67 x 10 14 cm -3 . Annihilation of the defects occurred upon thermal annealing that resulted in marginal decrease in the defect density.

  14. Damage performance of TiO2/SiO2 thin film components induced by a long-pulsed laser

    International Nuclear Information System (INIS)

    Wang Bin; Dai Gang; Zhang Hongchao; Ni Xiaowu; Shen Zhonghua; Lu Jian

    2011-01-01

    In order to study the long-pulsed laser induced damage performance of optical thin films, damage experiments of TiO 2 /SiO 2 films irradiated by a laser with 1 ms pulse duration and 1064 nm wavelength are performed. In the experiments, the damage threshold of the thin films is measured. The damages are observed to occur in isolated spots, which enlighten the inducement of the defects and impurities originated in the films. The threshold goes down when the laser spot size decreases. But there exists a minimum threshold, which cannot be further reduced by decreasing the laser spot size. Optical microscopy reveals a cone-shaped cavity in the film substrate. Changes of the damaged sizes in film components with laser fluence are also investigated. The results show that the damage efficiency increases with the laser fluence before the shielding effects start to act.

  15. A photocatalytic approach in micro arc oxidation of WO3-TiO2 nano porous semiconductors under pulse current

    International Nuclear Information System (INIS)

    Bayati, M.R.; Golestani-Fard, F.; Moshfegh, A.Z.; Molaei, R.

    2011-01-01

    Graphical abstract: WO3-TiO2 layers were fabricated via microarc oxidation process and effect of the electrical current type on their photocatalytic performance under UV and visible illuminations was investigated. Highlights: → WO3-TiO2 layers were grown by MAO under pulse current for the first time. → Effect of the frequency and duty cycle on properties of the layers was studied. → A correlation between catalytic performance and growth conditions was proposed. - Abstract: Since ultraviolet (UV) irradiation cannot be applied for a long time in practical applications, it is necessary to develop a narrow band gap photocatalyst to decompose environmental pollutants under visible irradiation. In this research, (WO 3 ) x -(TiO 2 ) 1-x nano-porous layers were fabricated by micro arc oxidation (MAO) and influence of the electrical current type on their physical and chemical properties was investigated. Morphological studies, performed by SEM technique, revealed that pore size and roughness decreased with the frequency and increased with the duty cycle. The pulse-grown layers had a finer structure when compared to those fabricated under direct current. XRD and XPS results showed that the layers consisted of anatase, rutile, and tungsten oxide phases. Applying pulse current resulted in higher anatase relative contents. Band gap energies of the MAO-grown TiO 2 and WO 3 -TiO 2 layers were respectively measured as 3.14 and 2.96 eV. The layers fabricated under pulse current exhibited higher photoactivity under ultraviolet and visible illuminations as compared to the layers grown under direct current. Methylene blue (MB) was used as a model material to examine photocatalytic performance of the layers. Maximum MB-photodegradation reaction rate constants over the pulse-synthesized WO 3 -TiO 2 layers were measured as 0.0269 and 0.0129 min -1 for ultraviolet and visible irradiations. For layers grown under direct current, the rate constants were lower, i.e. 0.0228 and 0

  16. Upconversion Properties of the Er-Doped Y2O3, Bi2O3 and Sb2O3 Nanoparticles Fabricated by Pulsed Laser Ablation in Liquid Media

    International Nuclear Information System (INIS)

    Zamiri Reza; Bahari-Poor Hamid-Reza; Zakaria Azmi; Jorfi Raheleh; Zamiri Golnoush; Rebelo Avito; Omar Akrajas Ali

    2013-01-01

    Er-doped Y 2 O 3 , Bi 2 O 3 and Sb 2 O 3 nanoparticles are synthesized using pulsed laser ablation in a liquid. Ceramic targets of Y 2 O 3 :Er 3+ , Bi 2 O 3 :Er 3+ and Sb 2 O 3 :Er 3+ for ablation process are prepared by standard solid-state reaction technique and ablation is carried out in 5-ml distilled water using nanosecond Q-switched Nd:YAG laser. The morphology and size of the fabricated nanoparticles are evaluated by transmission electron microscopy and the luminescence emission properties of the prepared samples are investigated under different excitation wavelengths

  17. Purification of water by bipolar pulsed discharge plasma combined with TiO2 catalysis

    International Nuclear Information System (INIS)

    Zhang, Yongrui; Ma, Wenchang; Zhang, Xian; Wang, Liming; Zhang, Ruobing; Guan, Zhicheng

    2013-01-01

    In the process of water treatment by bipolar pulsed discharge plasma, there are not only the chemical effects such as the cold plasma, but also the physical effects such as the optical radiation. The energy of the optical radiation can be used by photocatalyst. Therefore, the effect of the photocatalyst to the degradation of the organic pollutant was investigated using a packed bed reactor by bipolar pulsed discharge in the air-liquid-solid mixture. The nanoparticle TiO 2 photocatalyst was obtained using the sol-gel method and the typical dye solution Indigo Carmine was chosen as the degradation target to test the catalytic effect of the nanoparticle TiO 2 photocatalyst. Experiment results proved that the degradation efficiency of the Indigo Carmine solution was increased by a certain extent with the TiO 2 photocatalyst. It was totally decolorized within 3 minutes by bipolar pulsed discharge in the condition that the peak voltage was 30 kV and the air flow was 1.0 m 3 h −1 .

  18. Annealing characteristics of SiO2-Si structures after incoherent light pulse processing

    International Nuclear Information System (INIS)

    Sieber, N.; Klabes, R.; Voelskow, M.; Fenske, F.

    1982-01-01

    The behaviour of oxide charges and interface charges in boron implanted and non-implanted SiO 2 -Si structures as well as the electrical activation of the dopants by the action of incoherent light pulses was studied. Depth profiles of electrically active boron ions are presented for different annealing conditions as measured by the pulsed C-V method. It can be concluded that exposure of MOS structures to intense radiation of flash lamps does not increase the fixed charge and the fast state density at the SiO 2 -Si interface if optimal annealing conditions (energy densities) are employed. Low dose boron implanted silicon can be electrically activated without diffusion or segregation of dopants

  19. SrZnO nanostructures grown on templated Al2O3 substrates by pulsed laser deposition

    Science.gov (United States)

    Labis, Joselito P.; Alanazi, Anwar Q.; Albrithen, Hamad A.; El-Toni, Ahmed Mohamed; Hezam, Mahmoud; Elafifi, Hussein Elsayed; Abaza, Osama M.

    2017-09-01

    The parameters of pulsed laser deposition (PLD) have been optimized to design different nanostructures of Strontium-alloyed zinc oxide (SrZnO). In this work, SrZnO nanostructures are grown on Al2O3 substrates via two-step templating/seeding approach. In the temperature range between 300 - 750 oC and O2 background pressures between 0.01 and 10 Torr, the growth conditions have been tailored to grow unique pointed leaf-like- and pitted olive-like nanostructures. Prior to the growth of the nanostructures, a thin SrZnO layer that serves as seed layer/template is first deposited on the Al2O3 substrates at ˜300oC and background oxygen pressure of 10 mTorr. The optical properties of the nanostructures were examined by UV/Vis spectroscopy and photoluminescence (PL), while the structures/morphologies were examined by SEM, TEM, and XRD. The alloyed SrZnO nanostructures, grown by ablating ZnO targets with 5, 10, 25% SrO contents, have in common a single-crystal hexagonal nanostructure with (0002) preferential orientation and have shown remarkable changes in the morphological and optical properties of the materials. To date, this is the only reported work on optimization of laser ablation parameters to design novel SrZnO nanostructures in the 5-25% alloying range, as most related Sr-doped ZnO studies were done below 7% doping. Although the physical properties of ZnO are modified via Sr doping, the mechanism remains unclear. The PLD-grown SrZnO nanostructures were directly grown onto the Al2O3 substrates; thus making these nanomaterials very promising for potential applications in biosensors, love-wave filters, solar cells, and ultrasonic oscillators.

  20. SrZnO nanostructures grown on templated Al2O3 substrates by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Joselito P. Labis

    2017-09-01

    Full Text Available The parameters of pulsed laser deposition (PLD have been optimized to design different nanostructures of Strontium-alloyed zinc oxide (SrZnO. In this work, SrZnO nanostructures are grown on Al2O3 substrates via two-step templating/seeding approach. In the temperature range between 300 - 750 oC and O2 background pressures between 0.01 and 10 Torr, the growth conditions have been tailored to grow unique pointed leaf-like- and pitted olive-like nanostructures. Prior to the growth of the nanostructures, a thin SrZnO layer that serves as seed layer/template is first deposited on the Al2O3 substrates at ∼300oC and background oxygen pressure of 10 mTorr. The optical properties of the nanostructures were examined by UV/Vis spectroscopy and photoluminescence (PL, while the structures/morphologies were examined by SEM, TEM, and XRD. The alloyed SrZnO nanostructures, grown by ablating ZnO targets with 5, 10, 25% SrO contents, have in common a single-crystal hexagonal nanostructure with (0002 preferential orientation and have shown remarkable changes in the morphological and optical properties of the materials. To date, this is the only reported work on optimization of laser ablation parameters to design novel SrZnO nanostructures in the 5-25% alloying range, as most related Sr-doped ZnO studies were done below 7% doping. Although the physical properties of ZnO are modified via Sr doping, the mechanism remains unclear. The PLD-grown SrZnO nanostructures were directly grown onto the Al2O3 substrates; thus making these nanomaterials very promising for potential applications in biosensors, love-wave filters, solar cells, and ultrasonic oscillators.

  1. Band alignment studies of Al2O3/CuGaO2 and ZnO/CuGaO2 hetero-structures grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Ajimsha, R.S.; Das, Amit K.; Joshi, M.P.; Kukreja, L.M.

    2014-01-01

    Highlights: • Band offset studies at the interface of Al 2 O 3 /CuGaO 2 and ZnO/CuGaO 2 hetero-structures were performed using X-ray photoelectron spectroscopy. • Valance band offsets (VBO) of these hetero-structures were obtained from respective XPS peak positions and VB spectra using Kraut's equation. • Al 2 O 3 /CuGaO 2 interface exhibited a type I band alignment with valance band offset (VBO) of 4.05 eV whereas type II band alignment was observed in ZnO/CuGaO 2 hetero-structure with a VBO of 2.32 eV. • Schematic band alignment diagram for the interface of these hetero-structures has been constructed. • Band offset and alignment studies of these heterojunctions are important for gaining insight to the design of various optoelectronic devices based on such hetero-structures. - Abstract: We have studied the band offset and alignment of pulsed laser deposited Al 2 O 3 /CuGaO 2 and ZnO/CuGaO 2 hetero-structures using photoelectron spectroscopy. Al 2 O 3 /CuGaO 2 interface exhibited a type I band alignment with valance band offset (VBO) of 4.05 eV whereas type II band alignment was observed in ZnO/CuGaO 2 hetero-structure with a VBO of 2.32 eV. Schematic band alignment diagram for the interface of these hetero-structures has been constructed. Band offset and alignment studies of these heterojunctions are important for gaining insight to the design of various optoelectronic devices based on such hetero-structures

  2. Sb-related defects in Sb-doped ZnO thin film grown by pulsed laser deposition

    Science.gov (United States)

    Luo, Caiqin; Ho, Lok-Ping; Azad, Fahad; Anwand, Wolfgang; Butterling, Maik; Wagner, Andreas; Kuznetsov, Andrej; Zhu, Hai; Su, Shichen; Ling, Francis Chi-Chung

    2018-04-01

    Sb-doped ZnO films were fabricated on c-plane sapphire using the pulsed laser deposition method and characterized by Hall effect measurement, X-ray photoelectron spectroscopy, X-ray diffraction, photoluminescence, and positron annihilation spectroscopy. Systematic studies on the growth conditions with different Sb composition, oxygen pressure, and post-growth annealing were conducted. If the Sb doping concentration is lower than the threshold ˜8 × 1020 cm-3, the as-grown films grown with an appropriate oxygen pressure could be n˜4 × 1020 cm-3. The shallow donor was attributed to the SbZn related defect. Annealing these samples led to the formation of the SbZn-2VZn shallow acceptor which subsequently compensated for the free carrier. For samples with Sb concentration exceeding the threshold, the yielded as-grown samples were highly resistive. X-ray diffraction results showed that the Sb dopant occupied the O site rather than the Zn site as the Sb doping exceeded the threshold, whereas the SbO related deep acceptor was responsible for the high resistivity of the samples.

  3. Photocatalytic activity of bipolar pulsed magnetron sputter deposited TiO{sub 2}/TiWO{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Ko-Wei; Hu, Chung-Hsuan; Hua, Li-Yu; Lee, Chin-Tan [Department of Electronic Engineering, National Quemoy University, 1 Daxue Road, Jinning Township, Kinmen 89250, Taiwan, ROC (China); Zhao, Yu-Xiang [Department of Computer Science and Information Engineering, National Quemoy University, Taiwan, ROC (China); Chang, Julian; Yang, Shu-Yi [Department of Applied English, National Quemoy University, Taiwan, ROC (China); Han, Sheng, E-mail: shenghan@nutc.edu.tw [Center for General Education, National Taichung University of Science and Technology, 129 San-min Road, Section 3, Taichung 40401, Taiwan, ROC (China)

    2016-08-15

    Highlights: • TiO{sub 2}/TiWO{sub x} films were fabricated by a bipolar pulsed magnetron sputtering apparatus. • Titanium oxide being sputtered tungsten enhanced the highly oriented of TiO{sub 2} (1 0 1) plane of the specimen assemblies. • The mechanism WO{sub 3}(h{sup +}, e{sup −})/TiO{sub 2}(h{sup +}, e{sup −}) → WO{sub 3}(e{sup −})/TiO{sub 2}(h{sup +}) shows the higher hydrophilicity and lower contact angle. - Abstract: Titanium oxide films were formed by sputtering and then TiWO{sub x} films were deposited by bipolar pulsed magnetron sputtering with pure titanium and tungsten metal targets. The sputtering of titanium oxide with tungsten enhanced the orientation of the TiO{sub 2} (1 0 1) plane of the specimen assemblies. The main varying parameter was the tungsten pulse power. Titanium oxide sputtered with tungsten using a pulsing power of 50 W exhibited a superior hydrophilic property, and a contact angle of 13.1°. This fabrication conditions maximized the photocatalytic decomposition of methylene blue solution. The mechanism by which the titanium oxide was sputtered with tungsten involves the photogeneration of holes and electron traps, inhibiting the hole–electron recombination, enhancing hydrophilicity and reducing the contact angle.

  4. Preparation of Gd2O3 Ultrafine Nanoparticles by Pulse Electrodeposition Followed by Heat-treatment Method

    Directory of Open Access Journals (Sweden)

    Mustafa Aghazadeh

    2016-12-01

    Full Text Available Gd2O3 nanoparticles were prepared by a two–step process; cathodic electrodeposition followed by heat-treatment method. First, Gd(OH3 nanoparticles was galvanostatically deposited from nitrate bath on the steel substrate by pulse current (PC mode. The deposition experiments was conducted at a typical on-time and off-time (ton=1ms and toff=1ms for 60 min. The electrodeposited precursor was then heat-treated at 600 oC for 3h to obtain oxide product (i.e. Gd2O3. The morphological and structural analyses confirmed that the gadolinium hydroxynitrate nanoparticles with composition of [Gd(OH2.5(NO30.5 yH2O] and uniform size about 10 nm have been prepared during pulse cathodic electrodeposition process. Furthermore, mechanism of the gadolinium hydroxynitrate nanoparticles was explained based on the base (OH– electrogeneration process on the cathode surface. The morphological observations by SEM and TEM, and structural analyses via XRD and FT-IR revealed that the oxide product is composed of well-dispersed Gd2O3 nanoparticles with pure cubic crystalline structure. It was observed that the calcination process has no effect on the morphology of the Gd2O3 nanoparticles. Mechanism of oxide formation during heat-treatment step was investigated by DSC-TG analysis and discussed in detail. The results of this work showed that pulse current deposition followed by heat–treatment can be recognized as an easy and facile method for preparation of the Gd2O3 fine nanoparticles.

  5. Positron annihilation in SiO 2-Si studied by a pulsed slow positron beam

    Science.gov (United States)

    Suzuki, R.; Ohdaira, T.; Uedono, A.; Kobayashi, Y.

    2002-06-01

    Positron and positronium (Ps) behavior in SiO 2-Si have been studied by means of positron annihilation lifetime spectroscopy (PALS) and age-momentum correlation (AMOC) spectroscopy with a pulsed slow positron beam. The PALS study of SiO 2-Si samples, which were prepared by a dry-oxygen thermal process, revealed that the positrons implanted in the Si substrate and diffused back to the interface do not contribute to the ortho-Ps long-lived component, and the lifetime spectrum of the interface has at least two components. From the AMOC study, the momentum distribution of the ortho-Ps pick-off annihilation in SiO 2, which shows broader momentum distribution than that of crystalline Si, was found to be almost the same as that of free positron annihilation in SiO 2. A varied interface model was proposed to interpret the results of the metal-oxide-semiconductor (MOS) experiments. The narrow momentum distribution found in the n-type MOS with a negative gate bias voltage could be attributed to Ps formation and rapid spin exchange in the SiO 2-Si interface. We have developed a two-dimensional positron lifetime technique, which measures annihilation time and pulse height of the scintillation gamma-ray detector for each event. Using this technique, the positronium behavior in a porous SiO 2 film, grown by a sputtering method, has been studied.

  6. A comparative study on the activity of TiO2 in pulsed plasma under different discharge conditions

    Science.gov (United States)

    Lijuan, DUAN; Nan, JIANG; Na, LU; Kefeng, SHANG; Jie, LI; Yan, WU

    2018-05-01

    In the present study, a combination of pulsed discharge plasma and TiO2 (plasma/TiO2) has been developed in order to study the activity of TiO2 by varying the discharge conditions of pulsed voltage, discharge mode, air flow rate and solution conductivity. Phenol was used as the chemical probe to characterize the activity of TiO2 in a pulsed discharge system. The experimental results showed that the phenol removal efficiency could be improved by about 10% by increasing the applied voltage. The phenol removal efficiency for three discharge modes in the plasma-discharge-alone system was found to be highest in the spark mode, followed by the spark–streamer mode and finally the streamer mode. In the plasma/TiO2 system, the highest catalytic effect of TiO2 was observed in the spark–streamer discharge mode, which may be attributed to the favorable chemical and physical effects from the spark–streamer discharge mode, such as ultraviolet light, O3, H2O2, pyrolysis, shockwaves and high-energy electrons. Meanwhile, the optimal flow rate and conductivity were 0.05 m3 l‑1 and 10 μS cm‑1, respectively. The main phenolic intermediates were hydroquinone, catechol, and p-benzoquinone during the discharge treatment process. A different phenol degradation pathway was observed in the plasma/TiO2 system as compared to plasma alone. Analysis of the reaction intermediates demonstrated that p-benzoquinone reduction was selectively catalyzed on the TiO2 surface. The effective decomposition of phenol constant (D e) increased from 74.11% to 79.16% when TiO2 was added, indicating that higher phenol mineralization was achieved in the plasma/TiO2 system.

  7. Nondegenerate parametric generation of 2.2-mJ, few-cycle 2.05-μm pulses using a mixed phase matching scheme

    International Nuclear Information System (INIS)

    Xu, Guibao; Wandel, Scott F.; Jovanovic, Igor

    2014-01-01

    We describe the production of 2.2-mJ, ∼6 optical-cycle-long mid-infrared laser pulses with a carrier wavelength of 2.05 μm in a two-stage β-BaB 2 O 4 nondegenerate optical parametric amplifier design with a mixed phase matching scheme, which is pumped by a standard Ti:sapphire chirped-pulse amplification system. It is demonstrated that relatively high pulse energies, short pulse durations, high stability, and excellent beam profiles can be obtained using this simple approach, even without the use of optical parametric chirped-pulse amplification

  8. Structure and properties of (Sr, Ca)CuO2-BaCuO2 superlattices grown by pulsed laser interval deposition

    NARCIS (Netherlands)

    Koster, Gertjan; Verbist, Karen; Rijnders, Augustinus J.H.M.; Rogalla, Horst; van Tendeloo, Gustaav; Blank, David H.A.

    2001-01-01

    We report on the preparation of CuBa2(SrxCa1¿x)nCun¿1Oy compounds by fabrication of (Ba,Sr,Ca)CuO2 superlattices with pulsed laser deposition (PLD). A technique called interval deposition is used to suppress multi-level or island growth resulting in high-quality superlattice structures. Both, the

  9. Particle growth mechanisms in Ag-ZrO2 and Au-ZrO2 granular films obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Konstantinovic, Zorica; Muro, Montserrat Garcia del; Varela, Manuel; Batlle, Xavier; Labarta, AmIlcar

    2006-01-01

    Thin films consisting of Ag and Au nanoparticles embedded in amorphous ZrO 2 matrix were grown by pulsed laser deposition in a wide range of metal volume concentrations in the dielectric regime (0.08 Ag Au c (Ag)∼0.28 and x c (Au)∼0.52)

  10. Simultaneous spatial and temporal walk-off compensation in frequency-doubling femtosecond pulses in β -BaB2O4

    International Nuclear Information System (INIS)

    Gehr, R.J.; Kimmel, M.W.; Smith, A.V.

    1998-01-01

    We experimentally demonstrate the benefits of simultaneous compensation of spatial and temporal walk-off in frequency doubling of 800-nm 250-fs pulses, using three active and two compensating β-BaB 2 O 4 crystals. The compensating crystals reverse both birefringent and group-velocity walk-off, resulting in a factor-of-4.5 improvement in doubling efficiency relative to one of the active crystals while maintaining the short pulse duration and the symmetric spatial profile that are characteristic of the single crystal. copyright 1998 Optical Society of America

  11. The effect of O2 partial pressure on the photoluminescence of ZnO thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Lu, Y.M.; Li, X.P.; Su, S.C.; Cao, P.J.; Jia, F.; Han, S.; Zeng, Y.X.; Liu, W.J.; Zhu, D.L.

    2014-01-01

    In this paper, photoluminescence (PL) of ZnO thin films prepared on c-Al 2 O 3 substrates by the pulsed laser deposition (PLD) method at different O 2 partial pressures is investigated. For all samples, a narrow ultraviolet (UV) emission and a broad visible emission can be observed at room-temperature (RT). With increasing O 2 partial pressures from 0.2 to 5 Pa, the intensity ratio of the UV to visible emissions increases, and the energy positions of the UV emission band shift to the high energy side. It is noted that the visible part includes two emission bands of green luminescence (GL) and yellow luminescence (YL), in which the GL emission is strong at low oxygen pressure and the YL emission becomes dominant at high O 2 partial pressures. The temperature-dependent PL spectra show that the UV emission is composed of two bands labeled FX and FA. The dependences and possible assignments of these PL bands are briefly discussed. - Highlights: • We confirmed that the RT UV emission band is due to two transitions of the FX and FA. • The intensity of the FX and FA emission bands strongly depends on oxygen partial pressures. • We deduced that the acceptor-like defects located in the grain boundaries are responsible for the FA emission. • The visible emission includes the GL related to V O and the YL related to V Zn or O i . • The GL emission strongly affects the UV emission

  12. Smooth YBa2Cu3O7-x thin films prepared by pulsed laser deposition in O2/Ar atmosphere

    DEFF Research Database (Denmark)

    Kyhle, Anders; Skov, Johannes; Hjorth, Søren

    1994-01-01

    We report on pulsed laser deposition of YBa2Cu3O7-x in a diluted O2/Ar gas resulting in thin epitaxial films which are almost outgrowth-free. Films were deposited on SrTiO3 or MgO substrates around 800-degrees-C at a total chamber pressure of 1.0 mbar, varying the argon partial pressure from 0 to 0.......6 mbar. The density of boulders and outgrowths usual for laser deposited films varies strongly with Ar pressure: the outgrowth density is reduced from 1.4 x 10(7) to 4.5 x 10(5) cm-2 with increasing Ar partial pressure, maintaining a critical temperature T(c,zero) almost-equal-to 90 K and a transport...... critical current density J(c)(77 K) greater-than-or-equal-to 10(6) A/cm2 by extended oxygenation time during cool down....

  13. One-Pot Hybrid SnO2 /Poly(methyl methacrylate) Nanocomposite Formation through Pulsed Laser Irradiation.

    Science.gov (United States)

    Caputo, Gianvito; Scarpellini, Alice; Palazon, Francisco; Athanassiou, Athanassia; Fragouli, Despina

    2017-06-20

    The localized in situ formation of tin dioxide (SnO 2 ) nanoparticles embedded in poly(methyl methacrylate) (PMMA) films is presented. This is achieved by the photoinduced conversion of the tin acetate precursor included in polymeric films, through controlled UV or visible pulsed laser irradiation at λ=355 and 532 nm, respectively. The evolution of the formation of nanoparticles is followed by UV/Vis spectroscopy and shows that their growth is affected in different ways by the laser pulses at the two applied wavelengths. This, in combination with electron microscopy analysis, reveals that, depending on the irradiation wavelength, the size of the nanoparticles in the final nanocomposites differs. This difference is attributed to distinct mechanistic pathways that lead to the synthesis of small nanoparticles (from 1.5 to 4.5 nm) at λ=355 nm, whereas bigger ones (from 5 to 16 nm) are formed at λ=532 nm. At the same time, structural studies with both X-ray and electron diffraction measurements demonstrate the crystallinity of SnO 2 nanoparticles in both cases, whereas XPS analysis confirms the light-induced oxidation of tin acetate into SnO 2 . Taken all together, it is demonstrated that the pulsed laser irradiation at λ=355 and 532 nm leads to the formation of SnO 2 nanoparticles with defined features highly dispersed in PMMA solid matrices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Interpretation of photovoltaic pulses in normal YBa2Cu3O7

    International Nuclear Information System (INIS)

    Scott, J.F.

    1990-01-01

    200 mV photovoltaic voltage pulses reported [C. L. Chang, A. Kleinhammes, W. G. Moulton, and L. R. Testardi Phys. Rev. B (in press)] for YBa 2 Cu 3 O 7 illuminated with 2--30 mJ/cm 2 at 532 nm are interpreted in terms of the complete theory of photovoltaic responses, including off-diagonal terms not recognized in the original theory. The resulting predictions are in reasonable quantitative agreement with experiment

  15. Short-Pulse-Width Repetitively Q-Switched ~2.7-μm Er:Y2O3 Ceramic Laser

    Directory of Open Access Journals (Sweden)

    Xiaojing Ren

    2017-11-01

    Full Text Available A short-pulse-width repetitively Q-switched 2.7-μm Er:Y2O3 ceramic laser is demonstrated using a specially designed mechanical switch, a metal plate carved with slits of both slit-width and duty-cycle optimized. With a 20% transmission output coupler, stable pulse trains with durations (full-width at half-maximum, FWHM of 27–38 ns were generated with a repetition rate within the range of 0.26–4 kHz. The peak power at a 0.26 kHz repetition rate was ~3 kW.

  16. Epitaxial structure and electronic property of β-Ga2O3 films grown on MgO (100) substrates by pulsed-laser deposition

    Science.gov (United States)

    Wakabayashi, Ryo; Yoshimatsu, Kohei; Hattori, Mai; Ohtomo, Akira

    2017-10-01

    We investigated heteroepitaxial growth of Si-doped Ga2O3 films on MgO (100) substrates by pulsed-laser deposition as a function of growth temperature (Tg) to find a strong correlation between the structural and electronic properties. The films were found to contain cubic γ-phase and monoclinic β-phase, the latter of which indicated rotational twin domains when grown at higher Tg. The formation of the metastable γ-phase and twin-domain structure in the stable β-phase are discussed in terms of the in-plane epitaxial relationships with a square MgO lattice, while crystallinity of the β-phase degraded monotonically with decreasing Tg. The room-temperature conductivity indicated a maximum at the middle of Tg, where the β-Ga2O3 layer was relatively highly crystalline and free from the twin-domain structure. Moreover, both crystallinity and conductivity of β-Ga2O3 films on the MgO substrates were found superior to those on α-Al2O3 (0001) substrates. A ratio of the conductivity, attained to the highest quantity on each substrate, was almost three orders of magnitude.

  17. Relation between crystallinity and chemical nature of surface on wettability: A study on pulsed laser deposited TiO2 thin films

    International Nuclear Information System (INIS)

    Shirolkar, Mandar M.; Phase, Deodatta; Sathe, Vasant; Choudhary, Ram Janay; Rodriguez-Carvajal, J.; Kulkarni, Sulabha K.

    2011-01-01

    Pure titania (TiO 2 ) polycrystalline thin films in rutile, anatase and mixed phase have been grown on amorphous glass substrates by pulsed laser deposition method at various oxygen gas pressure. Wettability investigations have been carried out on these films. Consistent with our previous report [J. Phys. D: Appl. Phys. 41, 155308 (2008)] it has been observed that for nearly same surface roughness large contact angle or superhydrophobicity is present when sample has a pure single phase and lower contact angle or hydrophobicity when mixed phases were present. Structural characterizations suggest that in addition to roughness, pure phase film surface associated with hydrophobic sites and mixed phase film surface show association of both hydrophobic and hydrophilic sites, which might be inducing specific wetting character. UV treatment induces superhydrophilicity in the films. It was observed that UV irradiation causes nonequilibrium state on the TiO 2 surface, leading to changes in the electron density, which in turn produces decrement in the crystallinity and lattice expansion. Reversible changes in the wetting state on the pure phase surfaces were observed to be faster than those on the mixed phase surfaces. We tried to establish the possible relation between crystalline phases, chemical nature of surface on reversible wettability besides the main governing parameter viz. surface roughness.

  18. F-doped SnO2 thin films grown on flexible substrates at low temperatures by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kim, H.; Auyeung, R.C.Y.; Pique, A.

    2011-01-01

    Fluorine-doped tin oxide (SnO 2 :F) films were deposited on polyethersulfone plastic substrates by pulsed laser deposition. The electrical and optical properties of the SnO 2 :F films were investigated as a function of deposition conditions such as substrate temperature and oxygen partial pressure during deposition. High quality SnO 2 :F films were achieved under an optimum oxygen pressure range (7.4-8 Pa) at relatively low growth temperatures (25-150 deg. C). As-deposited films exhibited low electrical resistivities of 1-7 mΩ-cm, high optical transmittance of 80-90% in the visible range, and optical band-gap energies of 3.87-3.96 eV. Atomic force microscopy measurements revealed a reduced root mean square surface roughness of the SnO 2 :F films compared to that of the bare substrates indicating planarization of the underlying substrate.

  19. Effects of cathode pulse at high frequency on structure and composition of Al2TiO5 ceramic coatings on Ti alloy by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Yao Zhongping; Liu Yunfu; Xu Yongjun; Jiang Zhaohua; Wang Fuping

    2011-01-01

    Research highlights: → Al 2 TiO 5 in the coating on Ti alloy by PEO treatment changes with the increase of the cathode pulse, regardless of the amount and the grain size. → The cathode pulse brings about the decrease of γ-Al 2 O 3 and the increase of rutile TiO 2 in the coating. → The appropriate cathode pulse during PEO process is beneficial to reduce residual discharging channels and improve the density of the coating. - Abstract: The aim of this work is to investigate the effects of cathode pulse under high working frequency on structure and composition of ceramic coatings on Ti-6Al-4V alloys by plasma electrolytic oxidation (PEO). Ceramic coatings were prepared on Ti alloy by pulsed bi-polar plasma electrolytic oxidation in NaAlO 2 solution. The phase composition, morphology and element distribution in the coating were investigated by X-ray diffractometry, scanning electron microscopy and energy distribution spectroscopy, respectively. The coating was mainly composed of a large amount of Al 2 TiO 5 . As the cathode pulse was increased, the amount and grain size of Al 2 TiO 5 were first increased, and then decreased. γ-Al 2 O 3 in the coating was gradually decreased to nothing with the increase in the cathode pulse whereas rutile TiO 2 began to form in the coating. As opposed to the single-polar anode pulse mode, the cathode pulse reduced the thickness of the coatings. However, as the cathode pulse intensity continued to increase, the coating then became thicker regardless of cathode current density or pulse width. In addition, the residual discharging channels were reduced and the density of the coating was increased with the appropriate increase of the cathode pulse.

  20. Investigation of the pulsed electrochemical deposition of ZnO

    International Nuclear Information System (INIS)

    Dunkel, Christian; Lüttich, Franziska; Graaf, Harald; Oekermann, Torsten; Wark, Michael

    2012-01-01

    The influence of pulse parameters on the morphology of ZnO prepared by pulsed cathodic electrodeposition from oxygen-saturated aqueous ZnCl 2 solution on ITO (indium tin oxide)/glass substrates was investigated. It was found that the ratio between the pulse and the pause duration has a crucial influence on the crystal growth, reaching the highest density of the films with pause/pulse-ratios between 0.25 and 1. Longer pauses cause an Ostwald-like ripening of the ZnO crystals and therewith a strong change in the crystal morphology from roundly shaped to hexagonal. Also the hydrophilicity of the substrate resulting from pre-treatment has a crucial influence on the deposited films, leading to films only consisting of few large and separately grown ZnO crystals for highly hydrophilic substrates and an increasing fraction of small densely grown ZnO crystals with increasing hydrophobicity.

  1. Electrochemical preparation of MnO2 nanobelts through pulse base-electrogeneration and evaluation of their electrochemical performance

    Science.gov (United States)

    Aghazadeh, Mustafa; Maragheh, Mohammad Ghannadi; Ganjali, Mohammad Reza; Norouzi, Parviz; Faridbod, Farnoush

    2016-02-01

    Cathodic electrodeposition of MnO2 from a nitrate solution, via pulsed base (OH-) electrogeneration was performed for the first time. The deposition experiments were performed in a pulse current mode in typical on-times and off-times (i.e. ton = 1 s and toff = 1 s) with a peak current density of 2 mA cm-2 (Ia = 2 mA cm-2). The structural characterizations conducted by XRD and FTIR techniques revealed that the prepared MnO2 is composed of both α and γ phases. Morphological observation by SEM and TEM showed that the prepared MnO2 is made up of nanobelts with uniform shapes (an average diameter and length of 50 nm and 1 μm, respectively). Further electrochemical measurements by cyclic voltammetry and charge-discharge techniques revealed that the prepared MnO2 nanostructures have excellent capacitive behaviors, like a specific capacitance of 235.5 F g-1 and capacity retention of 91.3% after 1000 cycling at the scan rate of 25 mV s-1.

  2. Time resolved emission spectroscopy investigations of pulsed laser ablated plasmas of ZrO2 and Al2O3

    International Nuclear Information System (INIS)

    Hadoko, A D; Lee, P S; Lee, P; Mohanty, S R; Rawat, R S

    2006-01-01

    With the rising trend of synthesizing ultra thin films and/or quantum-confined materials using laser ablation, optimization of deposition parameters plays an essential role in obtaining desired film characteristics. This paper presents the initial step of plasma optimization study by examining temporal distribution of the plasma formation by pulsed laser ablation of materials. The emitted spectra of ZrO 2 and Al 2 O 3 are obtained ∼3mm above the ablated target to derive the ablated plasma characteristics. The plasma temperature is estimated to be at around 2.35 eV, with electron density of 1.14 x 10 16 (cm -3 ). Emission spectra with different gate delay time (40-270 ns) are captured to study the time resolved plume characteristics. Transitory elemental species are identified

  3. Predicting gas decomposition in an industrialized pulsed CO2 laser

    CSIR Research Space (South Africa)

    Forbes, A

    2005-03-01

    Full Text Available to be stable at O2 levels in excess of 2%, whereas previously reported values suggest stable operation at values of less than 1%. This is thought to be related to the unusually high starting CO2 concentration of the gas mix, and the short time pulse...

  4. Synthesis of MnO2-graphene composites with enhanced supercapacitive performance via pulse electrodeposition under supergravity field

    International Nuclear Information System (INIS)

    Liu, Tingting; Shao, Guangjie; Ji, Mingtong; Wang, Guiling

    2014-01-01

    A method of pulse electrodeposition under supergravity field was proposed to synthesize MnO 2 -graphene composites. Supergravity is very efficient for promoting mass transfer and decreasing concentration polarization during the electrodeposition process. The synthesis was conducted on our homemade supergravity equipment. The strength of supergravity field depended on the rotating speed of the ring electrode. 3D flower like MnO 2 spheres composed of nanoflakes were acquired when the rotating speed was 3000 rpm. Graphene nanosheets play as a role of conductive substrates for MnO 2 growing. The composites are evaluated as electrode materials for supercapacitors. Electrochemical results show that the maximum specific capacitance of the MnO 2 -graphene composite is 595.7 F g −1 at a current density of 0.5 A g −1 . In addition, the composite exhibits excellent cycle stability with no capacitance attenuation after 1000 cycles. The approach provides new ideas for developing supercapacitor electrode materials with high performance. - Graphical abstract: 3D flower like MnO 2 spheres composed of nanoflakes were acquired at 3000 rpm. - Highlights: • MnO 2 -graphene composites were prepared by pulse electrodeposition under supergravity. • 3D flower like MnO 2 spheres are anchored on the graphene nanosheets. • The MnO 2 -graphene electrode exhibits a specific capacitance of 595.7 F g −1

  5. Preparation of TiO sub 2 nanoparticles by pulsed laser ablation: Ambient pressure dependence of crystallization

    CERN Document Server

    Matsubara, M; Yamaki, T; Itoh, H; Abe, H

    2003-01-01

    Pulsed laser ablation (PLA) with a KrF excimer laser was used to prepare fine particles of titanium dioxide (TiO sub 2). The ablation in an atmosphere of Ar and O sub 2 (5:5) at total pressures of >= 1 Torr led to the formation of TiO sub 2 nanoparticles composed of anatase and rutile structures without any suboxides. The weight fraction of the rutile/anatase crystalline phases was dependent on the pressure of the Ar/O sub 2 gas. The TiO sub 2 nanoparticles had a spherical shape and their size, ranging from 10 and 14 nm, also appeared to be dependent on the ambient pressure. (author)

  6. Pulse-driven micro gas sensor fitted with clustered Pd/SnO2 nanoparticles.

    Science.gov (United States)

    Suematsu, Koichi; Shin, Yuka; Ma, Nan; Oyama, Tokiharu; Sasaki, Miyuki; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo

    2015-08-18

    Real-time monitoring of specific gas concentrations with a compact and portable gas sensing device is required to sense potential health risk and danger from toxic gases. For such purposes, we developed an ultrasmall gas sensor device, where a micro sensing film was deposited on a micro heater integrated with electrodes fabricated by the microelectromechanical system (MEMS) technology. The developed device was operated in a pulse-heating mode to significantly reduce the heater power consumption and make the device battery-driven and portable. Using clustered Pd/SnO2 nanoparticles, we succeeded in introducing mesopores ranging from 10 to 30 nm in the micro gas sensing film (area: ϕ 150 μm) to detect large volatile organic compounds (VOCs). The micro sensor showed quick, stable, and high sensor responses to toluene at ppm (parts per million) concentrations at 300 °C even by operating the micro heater in a pulse-heating mode where switch-on and -off cycles were repeated at one-second intervals. The high performance of the micro sensor should result from the creation of efficient diffusion paths decorated with Pd sensitizers by using the clustered Pd/SnO2 nanoparticles. Hence we demonstrate that our pulse-driven micro sensor using nanostructured oxide materials holds promise as a battery-operable, portable gas sensing device.

  7. Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO2/Ti Electrode as Catalyst

    Science.gov (United States)

    Gong, Jianying; Zhang, Xingwang; Wang, Xiaoping; Lei, Lecheng

    2013-12-01

    Oxidation of S(IV) to S(VI) in the effluent of a flue gas desulfurization(FGD) system is very critical for industrial applications of seawater FGD. This paper reports a pulsed corona discharge oxidation process combined with a TiO2 photocatalyst to convert S(IV) to S(VI) in artificial seawater. Experimental results show that the oxidation of S(IV) in artificial seawater is enhanced in the pulsed discharge plasma process through the application of TiO2 coating electrodes. The oxidation rate of S(IV) using Ti metal as a ground electrode is about 2.0×10-4 mol · L-1 · min-1, the oxidation rate using TiO2/Ti electrode prepared by annealing at 500°C in air is 4.5×10-4 mol · L-1 · min-1, an increase with a factor 2.25. The annealing temperature for preparing TiO2/Ti electrode has a strong effect on the oxidation of S(IV) in artificial seawater. The results of in-situ emission spectroscopic analysis show that chemically active species (i.e. hydroxyl radicals and oxygen radicals) are produced in the pulsed discharge plasma process. Compared with the traditional air oxidation process and the sole plasma-induced oxidation process, the combined application of TiO2 photocatalysts and a pulsed high-voltage electrical discharge process is useful in enhancing the energy and conversion efficiency of S(IV) for the seawater FGD system.

  8. Structural, morphological and local electric properties of TiO2 thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Gyoergy, E; Pino, A Perez del; Sauthier, G; Figueras, A; Alsina, F; Pascual, J

    2007-01-01

    Titanium dioxide (TiO 2 ) thin films were synthesized on (1 0 0) Si substrates by reactive pulsed laser deposition (PLD) technique. A frequency quadrupled Nd : YAG (λ = 266 nm, τ FWHM ≅ 5 ns, ν = 10 Hz) laser source was used for the irradiations of metallic Ti targets. The experiments were performed in controlled oxygen atmosphere. Crystallinity, surface morphology and local electric properties of the obtained oxide thin films were investigated by x-ray diffractometry, micro-Raman spectroscopy and current sensing atomic force microscopy. An inter-relation was found between the surface morphology, the crystalline structure and the nano-scale electric properties which open the possibility of synthesizing by the PLD technique TiO 2 thin films with tunable functional properties for future applications such as photocatalysts, gas sensors or solar energy converters

  9. Preparation of supported heterogeneous catalysts by pulse impregnation: Application to Ru[sub 3](CO)[sub 12]/2,2[prime]-bipyridine/SiO[sub 2] catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Haukka, M.; Pakkanen, T.A. (Univ. of Joensuu (Finland))

    1994-07-01

    In this paper, the authors introduce pulse impregnation, a method for preparing supported heterogeneous catalysts by successive impregnation cycles. Pulse impregnation is a method for preparing supported heterogeneous catalysts from the liquid phase. In the pulse-impregnation technique the catalyst surface is grown gradually in consecutive cycles, with each cycle consisting of separate deposition and activation steps. During the deposition step, the catalyst precursor or precursors are deposited onto the support from a suitable solvent. The actual chemically bonded catalyst phase is formed during the activation step (e.g., thermal activation). Pulse impregnation was tested in the separate deposition of 2,2[prime]-bipyridine and Ru[sub 3](CO)[sub 12] onto a silica support, and in the preparation of Ru[sub 3](CO)[sub 12]/2,2[prime]-bipyridine/SiO[sub 2] catalyst, in a column-type reactor system. Macroscopically uniform deposition was achieved with both 2,2[prime]-bipyridine and Ru[sub 3](CO)[sub 12]. Various solvent systems were used to control the amount of solute adsorbed during deposition. In the preparation of the Ru[sub 3](CO)[sub 12]/2,2[prime]-bipyridine/SiO[sub 2] catalyst, the ruthenium content increased nearly linearly with the number of preparation cycles. The effects of the preparation method on the catalyst activity was also tested in 1-hexane hydroformylation. 31 refs., 7 figs., 1 tab.

  10. Improving pulse oximetry accuracy by removing motion artifacts from photoplethysmograms using relative sensor motion: a preliminary study

    NARCIS (Netherlands)

    Wijshoff, R.W.C.G.R.; Mischi, M.; Woerlee, P.H.; Aarts, R.M.; Van Huffel, S.; Naelaers, G.; Caicedo, A.; Bruley, D.F.; Harrison, D.K.

    2013-01-01

    To expand applicability of pulse oximetry in low-acuity ambulatory settings, the impact of motion on extracted parameters as saturation (SpO2) and pulse rate (PR) needs to be reduced. We hypothesized that sensor motion relative to the skin can be used as an artifact reference in a correlation

  11. In-vitro model for evaluation of pulse oximetry

    Science.gov (United States)

    Vegfors, Magnus; Lindberg, Lars-Goeran; Lennmarken, Claes; Oberg, P. Ake

    1991-06-01

    An in vitro model with blood circulating in a silicon tubing system and including an artificial arterial bed is an important tool for evaluation of the pulse oximetry technique. The oxygen saturation was measured on an artificial finger using a pulse oximeter (SpO2) and on blood samples using a hemoximeter (SaO2). Measurements were performed at different blood flows and at different blood hematocrits. An increase in steady as well as in pulsatile blood flow was followed by an increase in pulse oximeter readings and a better agreement between SpO2 and SaO2 readings. After diluting the blood with normal saline (decreased hematocrit) the agreement was further improved. These results indicate that the pulse oximeter signal is related to blood hematocrit and the velocity of blood. The flow-related dependance of SpO2 was also evaluated in a human model. These results provided evidence that the pulse oximeter signal is dependent on vascular changes.

  12. Multivariate regulation of soil CO2 and N2 O pulse emissions from agricultural soils.

    Science.gov (United States)

    Liang, Liyin L; Grantz, David A; Jenerette, G Darrel

    2016-03-01

    Climate and land-use models project increasing occurrence of high temperature and water deficit in both agricultural production systems and terrestrial ecosystems. Episodic soil wetting and subsequent drying may increase the occurrence and magnitude of pulsed biogeochemical activity, affecting carbon (C) and nitrogen (N) cycles and influencing greenhouse gas (GHG) emissions. In this study, we provide the first data to explore the responses of carbon dioxide (CO2 ) and nitrous oxide (N2 O) fluxes to (i) temperature, (ii) soil water content as percent water holding capacity (%WHC), (iii) substrate availability throughout, and (iv) multiple soil drying and rewetting (DW) events. Each of these factors and their interactions exerted effects on GHG emissions over a range of four (CO2 ) and six (N2 O) orders of magnitude. Maximal CO2 and N2 O fluxes were observed in environments combining intermediate %WHC, elevated temperature, and sufficient substrate availability. Amendments of C and N and their interactions significantly affected CO2 and N2 O fluxes and altered their temperature sensitivities (Q10 ) over successive DW cycles. C amendments significantly enhanced CO2 flux, reduced N2 O flux, and decreased the Q10 of both. N amendments had no effect on CO2 flux and increased N2 O flux, while significantly depressing the Q10 for CO2 , and having no effect on the Q10 for N2 O. The dynamics across DW cycles could be attributed to changes in soil microbial communities as the different responses to wetting events in specific group of microorganisms, to the altered substrate availabilities, or to both. The complex interactions among parameters influencing trace gas fluxes should be incorporated into next generation earth system models to improve estimation of GHG emissions. © 2015 John Wiley & Sons Ltd.

  13. In-pile test of Li 2TiO 3 pebble bed with neutron pulse operation

    Science.gov (United States)

    Tsuchiya, K.; Nakamichi, M.; Kikukawa, A.; Nagao, Y.; Enoeda, M.; Osaki, T.; Ioki, K.; Kawamura, H.

    2002-12-01

    Lithium titanate (Li 2TiO 3) is one of the candidate materials as tritium breeder in the breeding blanket of fusion reactors, and it is necessary to show the tritium release behavior of Li 2TiO 3 pebble beds. Therefore, a blanket in-pile mockup was developed and in situ tritium release experiments with the Li 2TiO 3 pebble bed were carried out in the Japan Materials Testing Reactor. In this study, the relationship between tritium release behavior from Li 2TiO 3 pebble beds and effects of various parameters were evaluated. The ( R/ G) ratio of tritium release ( R) and tritium generation ( G) was saturated when the temperature at the outside edge of the Li 2TiO 3 pebble bed became 300 °C. The tritium release amount increased cycle by cycle and saturated after about 20 pulse operations.

  14. Synthesis of Fe2O3/TiO2 nanorod-nanotube arrays by filling TiO2 nanotubes with Fe

    International Nuclear Information System (INIS)

    Mohapatra, Susanta K; Banerjee, Subarna; Misra, Mano

    2008-01-01

    Synthesis of hematite (α-Fe 2 O 3 ) nanostructures on a titania (TiO 2 ) nanotubular template is carried out using a pulsed electrodeposition technique. The TiO 2 nanotubes are prepared by the sonoelectrochemical anodization method and are filled with iron (Fe) by pulsed electrodeposition. The Fe/TiO 2 composite is then annealed in an O 2 atmosphere to convert it to Fe 2 O 3 /TiO 2 nanorod-nanotube arrays. The length of the Fe 2 O 3 inside the TiO 2 nanotubes can be tuned from 50 to 550 nm by changing the deposition time. The composite material is characterized by scanning electron microscopy, transmission electron microscopy and diffuse reflectance ultraviolet-visible studies to confirm the formation of one-dimensional Fe 2 O 3 /TiO 2 nanorod-nanotube arrays. The present approach can be used for designing variable one-dimensional metal oxide heterostructures

  15. Tailored TiO2(110) surfaces and their reactivity

    International Nuclear Information System (INIS)

    Pang, C L; Bikondoa, O; Humphrey, D S; Papageorgiou, A C; Cabailh, G; Ithnin, R; Chen, Q; Muryn, C A; Onishi, H; Thornton, G

    2006-01-01

    Electron bombardment from a filament as well as voltage pulses from a scanning tunnelling microscope tip have been employed to modify the surface of TiO 2 (110). Individual H atoms are selectively desorbed with electrical pulses of +3 V from the scanning tunnelling microscope tip, whilst leaving the oxygen vacancies intact. This allows us to distinguish between oxygen vacancies and hydroxyl groups, which have a similar appearance in scanning tunnelling microscopy images. This then allows the oxygen vacancy-promoted dissociation of water and O 2 to be followed with the microscope. Electrical pulses between +5 and +10 V induce local TiO 2 (110)1 x 2 reconstructions centred around the pulse. As for electron bombardment of the surface, relatively low fluxes increase the density of oxygen vacancies whilst higher fluxes lead to the 1 x 2 and other 1 x n reconstructions

  16. Yield of H2O2 in Gas-Liquid Phase with Pulsed DBD

    Science.gov (United States)

    Jiang, Song; Wen, Yiyong; Liu, Kefu

    2014-01-01

    Electric discharge in water can generate a large number of oxidants such as ozone, hydrogen peroxide and hydroxyl radicals. In this paper, a non-thermal plasma processing system was established by means of pulsed dielectric barrier discharge in gas-liquid phase. The electrodes of discharge reactor were staggered. The yield of H2O2 was enhanced after discharge. The effects of discharge time, discharge voltage, frequency, initial pH value, and feed gas were investigated. The concentration of hydrogen peroxide and ozone was measured after discharge. The experimental results were fully analyzed. The chemical reaction equations in water were given as much as possible. At last, the water containing Rhodamine B was tested in this system. The degradation rate came to 94.22% in 30 min.

  17. Ozone generation in a kHz-pulsed He-O2 capillary dielectric barrier discharge operated in ambient air

    Science.gov (United States)

    Sands, Brian L.; Ganguly, Biswa N.

    2013-12-01

    The generation of reactive oxygen species using nonequilibrium atmospheric pressure plasma jet devices has been a subject of recent interest due to their ability to generate localized concentrations from a compact source. To date, such studies with plasma jet devices have primarily utilized radio-frequency excitation. In this work, we characterize ozone generation in a kHz-pulsed capillary dielectric barrier discharge configuration comprised of an active discharge plasma jet operating in ambient air that is externally grounded. The plasma jet flow gas was composed of helium with an admixture of up to 5% oxygen. A unipolar voltage pulse train with a 20 ns pulse risetime was used to drive the discharge at repetition rates between 2-25 kHz. Using UVLED absorption spectroscopy centered at 255 nm near the Hartley-band absorption peak, ozone was detected over 1 cm from the capillary axis. We observed roughly linear scaling of ozone production with increasing pulse repetition rate up to a "turnover frequency," beyond which ozone production steadily dropped and discharge current and 777 nm O(5P→5S°) emission sharply increased. The turnover in ozone production occurred at higher pulse frequencies with increasing flow rate and decreasing applied voltage with a common energy density of 55 mJ/cm3 supplied to the discharge. The limiting energy density and peak ozone production both increased with increasing O2 admixture. The power dissipated in the discharge was obtained from circuit current and voltage measurements using a modified parallel plate dielectric barrier discharge circuit model and the volume-averaged ozone concentration was derived from a 2D ozone absorption measurement. From these measurements, the volume-averaged efficiency of ozone production was calculated to be 23 g/kWh at conditions for peak ozone production of 41 mg/h at 11 kV applied voltage, 3% O2, 2 l/min flow rate, and 13 kHz pulse repetition rate, with 1.79 W dissipated in the discharge.

  18. Response of YBa2Cu3O7-δ grain-boundary junctions to short light pulses

    International Nuclear Information System (INIS)

    Kaplan, S.B.; Chi, C.C.; Chaudhari, P.; Dimos, D.; Gross, R.; Gupta, A.; Koren, G.

    1991-01-01

    The electrical response of a single YBa 2 Cu 3 O 7-δ grain-boundary junction to visible light pulses was measured. Using an autocorrelation technique with picosecond laser pulses, no fast voltage transients were observed with the junction biased just above its critical current. Apparently, there are no relaxation times in the range of 7 ps to 14 ns. Using direct time-domain measurement with nanosecond pulses, three types of junction response were recorded: a nonexponential decay of 11 μs (90 to 10 % time) at temperatures near T c ; an inverse-time dependence of the order of 0.3 μs (100 to 50 % time) in the temperature range of 4.2 to 15 K; and an exponential decay time of 0.15 μs with the sample immersed in superfluid helium

  19. Plume-induced stress in pulsed-laser deposited CeO2 films

    International Nuclear Information System (INIS)

    Norton, D.P.; Park, C.; Budai, J.D.; Pennycook, S.J.; Prouteau, C.

    1999-01-01

    Residual compressive stress due to plume-induced energetic particle bombardment in CeO 2 films deposited by pulsed-laser deposition is reported. For laser ablation film growth in low pressures, stresses as high as 2 GPa were observed as determined by substrate curvature and four-circle x-ray diffraction. The amount of stress in the films could be manipulated by controlling the kinetic energies of the ablated species in the plume through gas-phase collisions with an inert background gas. The film stress decreased to near zero for argon background pressures greater than 50 mTorr. At these higher background pressures, the formation of nanoparticles in the deposited film was observed. copyright 1999 American Institute of Physics

  20. Removal Enhancement of Basic Blue 41 BY RGO-TiO2 Nanocomposite Synthesized Using Pulsed Laser

    Science.gov (United States)

    Ghasemi, Fatemeh; Kimiagar, Salimeh; Shahbazi, Mozhgan; Vojoudi, Hossein

    Graphene oxide (GO) and GO-TiO2 nanocomposite was produced then reduced under pulse laser irradiation (RGO-TiO2). Basic blue 41 (bb41) dye was removed from aqueous solutions by using RGO-TiO2 nanocomposites. The UV-Vis absorption and FTIR analysis were utilized to confirm the reduction of GO-TiO2 to RGO-TiO2. The results showed complete reduction of GO. X-ray diffraction (XRD), Raman spectra and scanning electron microscopy (SEM) analysis were applied to approve the RGO-TiO2 nanocomposite structure. The effect of pH on the bb41 removal by RGO-TiO2 was studied varying the pH from 1 to 11. The optimum pH and adsorbent dosage were found to be 9 and 0.2g/L with 98% efficiency, respectively. The calculated coefficients demonstrated that the Langmuir model was fixed to the experimental data. The results indicated that RGO-TiO2 could be engaged as an exceptional sorbent to remove bb41 dye which is in aqueous solution.

  1. Pulsed ion-beam induced nucleation and growth of Ge nanocrystals on SiO2

    International Nuclear Information System (INIS)

    Stepina, N. P.; Dvurechenskii, A. V.; Armbrister, V. A.; Kesler, V. G.; Novikov, P. L.; Gutakovskii, A. K.; Kirienko, V. V.; Smagina, Zh. V.; Groetzschel, R.

    2007-01-01

    Pulsed low-energy (200 eV) ion-beam induced nucleation during Ge deposition on thin SiO 2 film was used to form dense homogeneous arrays of Ge nanocrystals. The ion-beam action is shown to stimulate the nucleation of Ge nanocrystals when being applied after thin Ge layer deposition. Temperature and flux variation was used to optimize the nanocrystal size and array density required for memory device. Kinetic Monte Carlo simulation shows that ion impacts open an additional channel of atom displacement from a nanocrystal onto SiO 2 surface. This results both in a decrease in the average nanocrystal size and in an increase in nanocrystal density

  2. Films of brookite TiO2 nanorods/nanoparticles deposited by matrix-assisted pulsed laser evaporation as NO2 gas-sensing layers

    Science.gov (United States)

    Caricato, A. P.; Buonsanti, R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Taurino, A.; Rella, R.

    2011-09-01

    Titanium dioxide (TiO2) nanorods in the brookite phase, with average dimensions of 3-4 nm × 20-50 nm, were synthesized by a wet-chemical aminolysis route and used as precursors for thin films that were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. A nanorod solution in toluene (0.016 wt% TiO2) was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser at a fluence of 350 mJ/cm2 and repetition rate of 10 Hz. Single-crystal Si wafers, silica slides, carbon-coated Cu grids and alumina interdigitated slabs were used as substrates to allow performing different characterizations. Films fabricated with 6000 laser pulses had an average thickness of ˜150 nm, and a complete coverage of the selected substrate as achieved. High-resolution scanning and transmission electron microscopy investigations evidenced the formation of quite rough films incorporating individually distinguishable TiO2 nanorods and crystalline spherical nanoparticles with an average diameter of ˜13 nm. Spectrophotometric analysis showed high transparency through the UV-Vis spectral range. Promising resistive sensing responses to 1 ppm of NO2 mixed in dry air were obtained.

  3. TiO2 nanoparticle thin film deposition by matrix assisted pulsed laser evaporation for sensing applications

    International Nuclear Information System (INIS)

    Caricato, A.P.; Capone, S.; Ciccarella, G.; Martino, M.; Rella, R.; Romano, F.; Spadavecchia, J.; Taurino, A.; Tunno, T.; Valerini, D.

    2007-01-01

    The MAPLE technique has been used for the deposition of nanostructured titania (TiO 2 ) nanoparticles thin films to be used for gas sensors applications. An aqueous solution of TiO 2 nanoparticles, synthesised by a novel chemical route, was frozen at liquid nitrogen temperature and irradiated with a pulsed ArF excimer laser in a vacuum chamber. A uniform distribution of TiO 2 nanoparticles with an average size of about 10 nm was deposited on Si and interdigitated Al 2 O 3 substrates as demonstrated by high resolution scanning electron microscopy-field emission gun inspection (SEM-FEG). Energy dispersive X-ray (EDX) analysis revealed the presence of only the titanium and oxygen signals and FTIR (Fourier transform infra-red) revealed the TiO 2 characteristic composition and bond. A comparison with a spin coated thin film obtained from the same solution of TiO 2 nanoparticles is reported. The sensing properties of the films deposited on interdigitated substrates were investigated, too

  4. Epitaxial growth of Sc{sub 2}O{sub 3} films on Gd{sub 2}O{sub 3}-buffered Si substrates by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Paulraj, Joseph; Wang, Rongping; Sellars, Matthew; Luther-Davies, Barry [Australian National University, Laser Physics Centre, Research School of Physics and Engineering, Acton, Canberra, ACT (Australia)

    2016-04-15

    We investigated the optimal conditions to prepare high-quality Sc{sub 2}O{sub 3} films on Gd{sub 2}O{sub 3}-buffered Si wafers using pulsed laser deposition technique with an aim at developing waveguide devices that can transform the performance of the gradient echo quantum memory based on bulk crystals. Under the optimal conditions, only oxide and Si (2 2 2) peaks appeared in the X-ray diffraction pattern. The Sc{sub 2}O{sub 3} (2 2 2) diffraction peak was located at 2θ=31.5 with a full width at half maxima (FWHM) of 0.16 , and its rocking curve had a FWHM of 0.10 . In-plane epitaxial relationship was confirmed by X-ray pole figure where Sc{sub 2}O{sub 3} (1 1 1) was parallel to Si (1 1 1). High-resolution TEM images indicated clear interfaces and perfect lattice images with sharp electron diffraction dots. All these results confirm that the oxide films on Si were single crystalline with high quality. (orig.)

  5. Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition

    International Nuclear Information System (INIS)

    Xie Kunpeng; Sun Lan; Wang Chenglin; Lai Yuekun; Wang Mengye; Chen Hongbo; Lin Changjian

    2010-01-01

    A pulse current deposition technique was adopted to construct highly dispersed Ag nanoparticles on TiO 2 nanotube arrays which were prepared by the electrochemical anodization. The morphology, crystallinity, elemental composition, and UV-vis absorption of Ag/TiO 2 nanotube arrays were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and diffuse reflectance spectra (DRS). In particular, the photoelectrochemical properties and photoelectrocatalytic activity under UV light irradiation and the photocatalytic activity under visible light irradiation for newly synthesized Ag/TiO 2 nanotube arrays were investigated. The maximum incident photon to charge carrier efficiency (IPCE) value of Ag/TiO 2 nanotube arrays was 51%, much higher than that of pure TiO 2 nanotube arrays. Ag/TiO 2 nanotube arrays exhibited higher photocatalytic activities than the pure TiO 2 nanotube arrays under both UV and visible light irradiation. The photoelectrocatalytic activity of Ag/TiO 2 nanotube arrays under UV light irradiation was 1.6-fold enhancement compared with pure TiO 2 nanotube arrays. This approach can be used in synthesizing various metal-loaded nanotube arrays materials.

  6. Uniform thin films of TiO2 nanoparticles deposited by matrix-assisted pulsed laser evaporation

    International Nuclear Information System (INIS)

    Caricato, A.P.; Manera, M.G.; Martino, M.; Rella, R.; Romano, F.; Spadavecchia, J.; Tunno, T.; Valerini, D.

    2007-01-01

    We report morphological and optical properties of a colloidal TiO 2 nanoparticle film, deposited on a quartz substrate by using the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. Atomic Force Microscopy demonstrated that a good uniformity of the deposition can be obtained. The presence of agglomerates with dimensions of about 1 μm in size was noticed. Form UV-vis transmission spectra, recorded in the 200-800 nm range, the optical constants and the energy gap were determined besides the film thickness. The optical constants resulted in agreement with the values reported in literature for TiO 2 nanoparticle thin films

  7. Enhanced ozone production in a pulsed dielectric barrier discharge plasma jet with addition of argon to a He-O2 flow gas

    Science.gov (United States)

    Sands, Brian; Ganguly, Biswa; Scofield, James

    2013-09-01

    Ozone production in a plasma jet DBD driven with a 20-ns risetime unipolar pulsed voltage can be significantly enhanced using helium as the primary flow gas with an O2 coflow. The overvolted discharge can be sustained with up to a 5% O2 coflow at pulse repetition frequency at 13 kV applied voltage. Ozone production scales with the pulse repetition frequency up to a ``turnover frequency'' that depends on the O2 concentration, total gas flow rate, and applied voltage. For example, peak ozone densities >1016 cm-3 were measured with 3% O2 admixture and discharge current and 777 nm O(5 P) emission, but decreased ozone production and is followed by a transition to a filamentary discharge mode. The addition of argon at concentrations >=5% reduces the channel conductivity and shifts the turnover frequency to higher frequencies. This results in increased ozone production for a given applied voltage and gas flow rate. Time-resolved Ar(1s5) and He(23S1) metastable densities were acquired along with discharge current and ozone density measurements to gain insight into the mechanisms of optimum ozone production.

  8. Rate constant for the H˙ + H2O → ˙OH + H2 reaction at elevated temperatures measured by pulse radiolysis.

    Science.gov (United States)

    Muroya, Y; Yamashita, S; Lertnaisat, P; Sanguanmith, S; Meesungnoen, J; Jay-Gerin, J-P; Katsumura, Y

    2017-11-22

    Maintaining the structural integrity of materials in nuclear power plants is an essential issue associated with safe operation. Hydrogen (H 2 ) addition or injection to coolants is a powerful technique that has been widely applied such that the reducing conditions in the coolant water avoid corrosion and stress corrosion cracking (SCC). Because the radiation-induced reaction of ˙OH + H 2 → H˙ + H 2 O plays a crucial role in these systems, the rate constant has been measured at operation temperatures of the reactors (285-300 °C) by pulse radiolysis, generating sufficient data for analysis. The reverse reaction H˙ + H 2 O → ˙OH + H 2 is negligibly slow at ambient temperature; however, it accelerates considerably quickly at elevated temperatures. Although the reverse reaction reduces the effectiveness of H 2 addition, reliable rate constants have not yet been measured. In this study, the rate constants have been determined in a temperature range of 250-350 °C by pulse radiolysis in an aqueous I - solution.

  9. Pulsed-laser-deposited, single-crystalline Cu2O films with low resistivity achieved through manipulating the oxygen pressure

    Science.gov (United States)

    Liu, Xiaohui; Xu, Meng; Zhang, Xijian; Wang, Weiguang; Feng, Xianjin; Song, Aimin

    2018-03-01

    Low-resistivity, single-crystalline Cu2O films were realized on MgO (110) substrates through manipulating the oxygen pressure (PO2) of pulsed-laser deposition. X-ray diffraction and high resolution transmission electron microscopy measurements revealed that the films deposited at PO2 of 0.06 and 0.09 Pa were single phase Cu2O and the 0.09-Pa-deposited film exhibited the best crystallinity with an epitaxial relationship of Cu2O (110)∥MgO (110) with Cu2O (001)∥MgO (001). The pure phase Cu2O films exhibited higher transmittances and larger band gaps with an optical band gap of 2.56 eV obtained for the 0.09 Pa-deposited film. Hall-effect measurements demonstrated that the Cu2O film deposited at 0.09 Pa had the lowest resistivity of 6.67 Ω cm and highest Hall mobility of 23.75 cm2 v-1 s-1.

  10. Phase relations in the SiC-Al2O3-Pr2O3 system

    International Nuclear Information System (INIS)

    Pan, W.; Wu, L.; Jiang, Y.; Huang, Z.

    2016-01-01

    Phase relations in the Si-Al-Pr-O-C system, including the SiC-Al 2 O 3 -Pr 2 O 3 , the Al 2 O 3 -Pr 2 O 3 -SiO 2 and the SiC-Al 2 O 3 -Pr 2 O 3 -SiO 2 subsystems, were determined by means of XRD phase analysis of solid-state-reacted samples fabricated by using SiC, Al 2 O 3 , Pr 2 O 3 and SiO 2 powders as the starting materials. Subsolidus phase diagrams of the systems were presented. Two Pr-aluminates, namely PrAlO 3 (PrAP) and PrAl 11 O 18 (β(Pr) β-Al 2 O 3 type) were formed in the SiC-Al 2 O 3 -Pr 2 O 3 system. SiC was compatible with both of them. Pr-silicates of Pr 2 SiO 5 , Pr 2 Si 2 O 7 and Pr 9.33 Si 6 O 26 (H(Pr) apatite type) were formed owing to presence of SiO 2 impurity in the SiC powder. The presence of the SiO 2 extended the ternary system of SiC-Al 2 O 3 -Pr 2 O 3 into a quaternary system of SiC-Al 2 O 3 -SiO 2 -Pr 2 O 3 (Si-Al-Pr-O-C). SiC was compatible with Al 2 O 3 , Pr 2 O 3 and the Pr-silicates. The effect of SiO 2 on the phase relations and liquid phase sintering of SiC ceramics was discussed.

  11. Subsolidus phase relations of Bi2O3-Nd2O3-CuO

    International Nuclear Information System (INIS)

    Sun Yezhou

    1997-01-01

    The subsolidus phase relations of the Bi 2 O 3 -Nd 2 O 3 -CuO ternary system and its binary systems along with crystallographic parameters of the compounds were investigated by X-ray powder diffraction and differential thermal analysis. The room temperature section of the phase diagram of the Bi 2 O 3 -Nd 2 O 3 -CuO system can be divided into two diphase regions and six triphase regions. No ternary compound was found. There exist two solid solutions (α, β) and a compound Bi 0.55 Nd 0.45 O 1.5 in the (Bi 2 O 2 ) 1-x (Nd 2 O 3 ) x system. Both solid solution α (0.05≤x≤0.30) and β (0.53≤x≤0.73) belong to the rhombohedral system (R3m). The lattice parameters represented by a hexagonal cell are a=3.9832(4), c=27.536(5) A for Bi 0.8 Nd 0.2 O 1.5 (α phase) and a=3.8826(3), c=9.727(1) A for Bi 0.4 Nd 0.8 O 1.5 (β phase). The Bi 0.55 Nd 0.45 O 1.5 compound crystallizes in a face-centered cubic (f.c.c.) lattice with a=5.5480(2) A. (orig.)

  12. Pulsed current activated synthesis and rapid consolidation of a nanostructured Mg2Al4Si5O18 and its mechanical properties

    Science.gov (United States)

    Shon, In-Jin; Kang, Hyun-Su; Doh, Jung-Mann; Yoon, Jin-Kook

    2015-03-01

    Nanocrystalline materials have received much attention as advanced engineering materials, with improved mechanical properties. Attention has been directed to the application of nanomaterials, as they possess excellent mechanical properties (high strength, high hardness, excellent ductility and toughness). A singlestep synthesis and consolidation of nanostructured Mg2Al4Si5O18 was achieved by pulsed current heating, using the stoichiometric mixture of MgO, Al2O3 and SiO2 powders. Before sintering, the powder mixture was high-energy ball milled for 10 h. From the milled powder mixture, a highly dense nanostructured Mg2Al4Si5O18 compound could be obtained within one minute, under the simultaneous application of 80 MPa pressure, and a pulsed current. The advantage of this process is that it allows an instant densification to the near theoretical density, while sustaining the nanosized microstructure of raw powders. The sintering behavior, microstructure and mechanical properties of Mg2Al4Si5O18 were evaluated. The fracture toughness of a nanostructured Mg2Al4Si5O18 compound was higher than that of sub-micron Mg2Al4Si5O18 compound.

  13. Continuous Synthesis of Ag/TiO2 Nanoparticles with Enhanced Photocatalytic Activity by Pulsed Laser Ablation

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    2017-01-01

    Full Text Available A facile and environmental friendly synthesis strategy based on pulsed laser ablation has been developed for potential mass production of Ag-loaded TiO2 (Ag/TiO2 nanoparticles. By sequentially irradiating titanium and silver target substrates, respectively, with the same 1064 nm 100 ns fiber laser, Ag/TiO2 particles can be fabricated. A postannealing process leads to the crystallization of TiO2 to anatase phase with high photocatalytic activity. The phase composition, microstructure, and surface state of the elaborated Ag/TiO2 are characterized by X-ray diffraction (XRD, energy dispersive X-ray (EDX, field emission scanning electron microscope (FESEM, transmission electron microscope (TEM, and X-ray photoelectron spectroscopy (XPS techniques. The results suggest that the presence of silver clusters deposited on the surface of TiO2 nanoparticles. The nanostructure is formed through laser interaction with materials. Photocatalytic activity evaluation shows that silver clusters could significantly enhance the photocatalytic activity of TiO2 in degradation of methylene blue (MB under UV light irradiation, which is attributed to the efficient electron traps by Ag clusters. Our developed Ag/TiO2 nanoparticles synthesized via a straightforward, continuous, and green pathway could have great potential applications in photocatalysis.

  14. Pulsed reactivity measurements of large 235U--Al castings in H2O

    International Nuclear Information System (INIS)

    Pellarin, D.J.; Jarriel, J.L.

    1977-01-01

    The safe storage and handling of large 235 U-Al castings at the Savannah River Plant are assured by limiting the number of fuel pieces and their spacing such that the k/sub eff/ calculated by KENO-IV with Hansen-Roach cross sections does not exceed some conservative limit with complete, accidental water immersion. For economic reasons, the conservative limit on the calculated k/sub eff/ is generally chosen as high as possible consistent with an accurate knowledge of the margin of error in the k/sub eff/ calculation. The margin of error for arrays of large, hollow cylinders of highly enriched 235 U-Al alloy fuel in H 2 O is presented. The subcritical reactivities were derived from pulsed neutron measurements. The measurements are extended to castings with 17.39 kg 235 U/m, the pulsed experiments are more accurately analyzed by the αv -1 method, and measurements for both 7-assembly hexagonal and 2 x 3 square pitch lattices are compared with KENO-IV calculations

  15. Resistive switching effects in CeO2/La0.7(Sr0.1Ca0.9)0.3MnO3/Pt heterostructures prepared by pulse laser deposition method

    International Nuclear Information System (INIS)

    Chen, X.G.; Fu, J.B.; Li, L.Z.; Yun, C.; Zhao, H.; Zhang, X.F.; Wang, C.S.; Yang, Y.C.; Yang, J.B.

    2014-01-01

    The heterostructural junctions of CeO 2 /La 0.7 (Sr 0.1 Ca 0.9 ) 0.3 MnO 3 /Pt (CeO 2 /LSCMO/Pt) were prepared using pulse laser deposition technique. Their resistive switching (RS) behavior was investigated. As compared to the metal/manganite/Pt junction, the CeO 2 /LSCMO/Pt device displayed an improved switching characteristic. The RS effects with characteristics of bipolar, threshold, and complementary were realized by adjusting the thicknesses of the CeO 2 layer in the CeO 2 /LSCMO/Pt junctions. Under a higher external bias voltage, the threshold and complementary switching modes of the junctions could turn into bipolar switching mode. The switching behavior shows strong dependence on the O 2 partial pressure during the fabrication, indicating that the amount and behavior of the oxygen at the interface play an important role in the determination of the RS behavior. The observed switching behavior is related to the modification of the accumulation/depletion layers as well as the interfacial potential barrier due to the migration of the oxygen vacancies. - Highlights: • Heterostructure of CeO 2 /LSMO/Pt displayed an improved resistance switching characteristic. • Resistance switching with characteristics of bipolar, threshold and complementary was found. • Threshold and complementary switching mode could turn into bipolar switching mode. • Switching behavior is related to the modification of the accumulation/depletion layers. • Interfacial potential barrier due to the migration of oxygen vacancies was proposed

  16. Fabrication of TiNb{sub 2}O{sub 7} thin film electrodes for Li-ion micro-batteries by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Daramalla, V. [Materials Research Centre, Indian Institute of Science, Bengalore 560012 (India); Penki, Tirupathi Rao; Munichandraiah, N. [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengalore 560012 (India); Krupanidhi, S.B., E-mail: sbk@mrc.iisc.ernet.in [Materials Research Centre, Indian Institute of Science, Bengalore 560012 (India)

    2016-11-15

    Graphical abstract: The TiNb{sub 2}O{sub 7} thin film electrodes as anode material in Li-ion rechargeable micro-batteries are successfully demonstrated. The pulsed laser deposited TiNb{sub 2}O{sub 7} thin film electrode delivers high discharge specific capacity of 143 μAh μm{sup −1} cm{sup −2} at 50 μA cm{sup −2} current density, with 92% coulombic efficiency. The thin films are very stable in crystal structure, with good fast reversible reaction at average Li-insertion voltage 1.65 V. - Highlights: • TiNb{sub 2}O{sub 7} thin films fabricated by pulsed laser deposition. • TiNb{sub 2}O{sub 7} as anode thin films demonstrated successfully. • High discharge specific capacity with 92% coulombic efficiency. • Excellent crystal stability and good reversible reaction. - Abstract: Pulsed laser deposited TiNb{sub 2}O{sub 7} thin films are demonstrated as anode materials in rechargeable Li-ion micro-batteries. The monoclinic and chemically pure TiNb{sub 2}O{sub 7} films in different morphologies were successfully deposited at 750 °C. The single phase formation was confirmed by grazing incident X-ray diffraction, micro-Raman spectroscopy, high resolution transmission electron microscopy, field emission scanning electron microscopy and X-ray photoelectron spectroscopy. The oxygen partial pressure during the deposition significantly influenced the properties of TiNb{sub 2}O{sub 7} films. The TiNb{sub 2}O{sub 7} thin films exhibited excellent stability with fast kinetics reversible reaction. The TiNb{sub 2}O{sub 7} films showed initial discharge specific capacity of 176, 143 μAh μm{sup −1} cm{sup −2} at 30, 50 μA cm{sup −2} current densities respectively with 92% coulombic efficiency in a non-aqueous electrolyte consisting of Li{sup +} ions. The high discharge specific capacity of TiNb{sub 2}O{sub 7} thin films may be attributed to nanometer grain size with high roughness which offers high surface area for Li-diffusion during charge and discharge

  17. Factors controlling the microstructure of Ce0.9Gd0.1O2-δ films in pulsed laser deposition process

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Heiroth, S.; Döbeli, M.

    2010-01-01

    Films of Ce0.9Gd0.1O2-delta (CGO10) are prepared at a range of conditions by pulsed laser deposition (PLD) on a single crystal Si (100) and MgO (100), and on a polycrystalline Pt/MgO (100) substrate. The relationship between the film microstructure, crystallography, chemical composition and PLD p...

  18. Transient responses of SFG spectra of D 2O ice/CO/Pt(1 1 1) interface with irradiation of ultra-short NIR pump pulses

    Science.gov (United States)

    Kubota, Jun; Wada, Akihide; Domen, Kazunari; Kano, Satoru S.

    2002-08-01

    The behavior of D 2O ice on CO/Pt(1 1 1) and Pt(1 1 1) under the irradiation of near-IR pulses (NIR) was studied by sum-frequency generation (SFG) spectroscopy. The peaks assigned to the O-D stretching modes of ice were obtained for the first 30 molecular layers on Pt(1 1 1). When the D2O/ CO/ Pt(1 1 1) was irradiated, the signal of D 2O was weakened after 500 ps, but that of CO was weakened immediately after the pumping. A similar time response was observed for the D 2O peak in D2O/ Pt(1 1 1) . The weakening of SFG is attributed to the broadening of bands due to thermal excitation. This indicates that the energy of the pump pulse is deposited on the Pt(1 1 1) surface and diffused into the layers of D 2O ice in the 500 ps timescale.

  19. Saturação de oxigênio fetal medida pela oximetria de pulso durante o trabalho de parto: relações com o ph da artéria umbilical Fetal oxygen saturation measured by pulse oximetry during labor: relation to umbilical artery pH

    Directory of Open Access Journals (Sweden)

    Edson Nunes de Morais

    1999-04-01

    Full Text Available Objetivos: estudar os níveis de saturação de oxigênio fetal (SpO2 durante o trabalho de parto pela técnica da oximetria de pulso e sua relação com o pH da artéria umbilical (AU. Pacientes e Métodos: a SpO2 fetal foi medida durante o parto por meio da técnica da oximetria de pulso em 50 casos. Comparou-se a média dos valores de SpO2 entre os dois períodos do trabalho de parto, sendo o primeiro subdividido em fases, segundo a dilatação cervical ( ou = 7,20 e ou = 30,0%. Resultados: as médias da SpO2 fetal no primeiro período do parto foram de 53,0 ± 7,3% e 44,2 ± 6,8%, e no segundo 46,8 ± 7,7% e 38,4 ± 7,1% (pH da AU > ou = 7,20 e ou = 7,20 foram de 55,1 ± 5,1% (Purpose: to study fetal oxygen saturation (SpO2 levels during labor by continuous pulse oximetry tecnique, and its relation to umbilical artery (UA pH. Patients and Methods: fetal SpO2 levels were measured during labor by the pulse oximetry technique in 50 subjects. Average values of SpO2 were compared between the first and second stage of labor, with the first stage further subdivided into phases, according to cervical dilatation of ( or = 7.20 and or = 30.0% was considered normal. Results: fetal SpO2 averages during the first stage were 53.0 ± 7.3% and 44.2 ± 6.8% (UA pH > or = 7.20 and or = 7.20 were 55.1 ± 5.1% (<=4 cm, 52.3 ± 4.6% (5-7 cm and 51.5 ± 7.2% (8-9 cm; for UA pH <7.20, the fetal SpO2 averages were 46.3 ± 5.1% (<=4 cm, 43.6 ± 6.7% (5-7 cm and 42.8 ± 5.8% (8-9 cm. Considering the UA pH, these differences were statistically significant (p<0.01. Conclusion: a significant decrease of oxygen saturation values was observed during labor when fetal pulse oximetry was used.

  20. Interfacial electron-transfer equilibria and flat-band potentials of α-Fe2O3 and TiO2 colloids studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Dimitrijevic, N.M.; Savic, D.; Micic, O.I.; Nozik, A.J.

    1984-01-01

    The kinetics and equilibria of electron transfer between methylviologen cation radicals and α-Fe 2 O 3 or TiO 2 colloidal particles were studied with the pulse-radiolysis technique. The rates of electron transfer to both colloids are lower than those predicted for a diffusion-controlled reaction. For higher pHs (TiO 2 , pH > 2; α-Fe 2 O 3 , pH > 9) the established equilibrium MV + in equilibrium MV 2+ + (e - )/sub coll/ is strongly influenced by the MV 2+ concentration and pH. The MV + equilibrium concentration can be exploited to derive the flat-band potential of the semiconductor colloids. The method for determining the flat-band potential of the particles is independent of whether the injected electrons are free or trapped, and whether the electrons raise the bulk Fermi level toward the conduction band or just produce a space charge. The flat-band potentials for both colloids appear to be somewhat more negative (-0.1 to -0.2 V) than the corresponding single-crystal electrodes. Also, the flat-band potentials become slightly more negative with increasing radiation dose (initial MV + concentration). The effect of absorbed radiation dose is explained by the corresponding changes in the ratio of oxidized to reduced forms of the redox couple, which in turn changes the adsorbed ionic charge on the semiconductor surface. For colloidal particles of TiO 2 stabilized by poly(vinyl alcohol) (PVA), the flat-band potentials were almost the same as those for PVA-free TiO 2 sols. The decrease of particle diameter from 800 to 70 A does not affect the value of the flat-band potentials for TiO 2 and α-Fe 2 O 3 colloids. 28 references, 9 figures

  1. In-pile test of Li{sub 2}TiO{sub 3} pebble bed with neutron pulse operation

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K. E-mail: tsuchiya@oarai.jaeri.go.jp; Nakamichi, M.; Kikukawa, A.; Nagao, Y.; Enoeda, M.; Osaki, T.; Ioki, K.; Kawamura, H

    2002-12-01

    Lithium titanate (Li{sub 2}TiO{sub 3}) is one of the candidate materials as tritium breeder in the breeding blanket of fusion reactors, and it is necessary to show the tritium release behavior of Li{sub 2}TiO{sub 3} pebble beds. Therefore, a blanket in-pile mockup was developed and in situ tritium release experiments with the Li{sub 2}TiO{sub 3} pebble bed were carried out in the Japan Materials Testing Reactor. In this study, the relationship between tritium release behavior from Li{sub 2}TiO{sub 3} pebble beds and effects of various parameters were evaluated. The (R/G) ratio of tritium release (R) and tritium generation (G) was saturated when the temperature at the outside edge of the Li{sub 2}TiO{sub 3} pebble bed became 300 deg. C. The tritium release amount increased cycle by cycle and saturated after about 20 pulse operations.

  2. Suppression of suprathermal ions from a colloidal microjet target containing SnO2 nanoparticles by using double laser pulses

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Kaku, Masanori; Katto, Masahito; Kubodera, Shoichi

    2007-01-01

    We have demonstrated suppression of suprathermal ions from a colloidal microjet target plasma containing tin-dioxide (SnO 2 ) nanoparticles irradiated by double laser pulses. We observed a significant decrease of the tin and oxygen ion signals in the charged-state-separated energy spectra when double laser pulses were irradiated. The peak energy of the singly ionized tin ions decreased from 9 to 3 keV when a preplasma was produced. The decrease in the ion energy, considered as debris suppression, is attributed to the interaction between an expanding low-density preplasma and a main laser pulse

  3. Suppression of suprathermal ions from a colloidal microjet target containing SnO2 nanoparticles by using double laser pulses

    Science.gov (United States)

    Higashiguchi, Takeshi; Kaku, Masanori; Katto, Masahito; Kubodera, Shoichi

    2007-10-01

    We have demonstrated suppression of suprathermal ions from a colloidal microjet target plasma containing tin-dioxide (SnO2) nanoparticles irradiated by double laser pulses. We observed a significant decrease of the tin and oxygen ion signals in the charged-state-separated energy spectra when double laser pulses were irradiated. The peak energy of the singly ionized tin ions decreased from 9to3keV when a preplasma was produced. The decrease in the ion energy, considered as debris suppression, is attributed to the interaction between an expanding low-density preplasma and a main laser pulse.

  4. Phase transitions in LiCoO2 thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Huang Rong; Hitosugi, Taro; Fisher, Craig A.J.; Ikuhara, Yumi H.; Moriwake, Hiroki; Oki, Hideki; Ikuhara, Yuichi

    2012-01-01

    Highlights: ► Epitaxial LiCoO 2 thin films were formed on the Al 2 O 3 (0 0 0 1) substrate by PLD at room temperature and annealed at 600 °C in air. ► The orientation relationship between film and substrate is revealed. ► Crystalline phases in the RT deposited and annealed thin films are clearly identified. ► Atomic level interface structure indicates an interface reaction during annealing. ► A phase transition mechanism from fully disordered LiCoO 2 to fully ordered LiCoO 2 is proposed. - Abstract: Microstructures of epitaxial LiCoO 2 thin films formed on the (0 0 0 1) surface of sapphire (α-Al 2 O 3 ) substrates by pulsed laser deposition at room temperature and annealed at 600 °C in air were investigated by a combination of selected-area electron diffraction, high-resolution transmission electron microscopy, spherical-aberration-corrected high-angle annular dark-field scanning transmission electron microscopy, and electron energy-loss spectroscopy. As-deposited LiCoO 2 thin films consisted of epitaxial grains of the fully cation-disordered phase (γ) with a cubic rock-salt structure. During annealing, this cubic-structured phase transformed into the fully ordered trigonal (α) phase oriented with its basal plane parallel to the surface of the sapphire substrate. Although overall the film appeared to be a single crystal, a small number of Co 3 O 4 grains were also observed in annealed thin films, indicating that some Li and O had been lost during processing. The atomically sharp interface between the film and substrate also became rougher during annealing, with step defects being formed, suggesting that a localized reaction occurred at the interface.

  5. Solid Phase Equilibrium Relations in the CaO-SiO2-Nb2O5-La2O3 System at 1273 K

    Science.gov (United States)

    Qiu, Jiyu; Liu, Chengjun

    2018-02-01

    Silicate slag system with additions Nb and RE formed in the utilization of REE-Nb-Fe ore deposit resources in China has industrial uses as a metallurgical slag system. The lack of a phase diagram, theoretical, and thermodynamic information for the multi-component system restrict the comprehensive utilization process. In the current work, solid phase equilibrium relations in the CaO-SiO2-Nb2O5-La2O3 quaternary system at 1273 K (1000 °C) were investigated experimentally by the high-temperature equilibrium experiment followed by X-ray diffraction, scanning electron microscope, and energy dispersive spectrometer. Six spatial independent tetrahedron fields in the CaO-SiO2-Nb2O5-La2O3 system phase diagram were determined by the Gibbs Phase Rule. The current work combines the mass fraction of equilibrium phase and corresponding geometric relation. A determinant method was deduced to calculate the mass fraction of equilibrium phase in quaternary system according to the Mass Conservation Law, the Gibbs Phase Rule, the Lever's Rule, and the Cramer Law.

  6. Films of brookite TiO{sub 2} nanorods/nanoparticles deposited by matrix-assisted pulsed laser evaporation as NO{sub 2} gas-sensing layers

    Energy Technology Data Exchange (ETDEWEB)

    Caricato, A.P.; Cesaria, M.; Luches, A.; Martino, M. [University of Salento, Department of Physics, Lecce (Italy); Buonsanti, R. [Istituto di Nanoscienze del CNR, National Nanotechnology Laboratory (NNL), Lecce (Italy); Catalano, M.; Manera, M.G.; Taurino, A.; Rella, R. [IMM-CNR, Institute for Microelectronics and Microsystems, Lecce (Italy); Cozzoli, P.D. [Istituto di Nanoscienze del CNR, National Nanotechnology Laboratory (NNL), Lecce (Italy); University of Salento, Department of Innovation Engineering, Lecce (Italy)

    2011-09-15

    Titanium dioxide (TiO{sub 2}) nanorods in the brookite phase, with average dimensions of 3-4 nm x 20-50 nm, were synthesized by a wet-chemical aminolysis route and used as precursors for thin films that were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. A nanorod solution in toluene (0.016 wt% TiO{sub 2}) was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser at a fluence of 350 mJ/cm{sup 2} and repetition rate of 10 Hz. Single-crystal Si wafers, silica slides, carbon-coated Cu grids and alumina interdigitated slabs were used as substrates to allow performing different characterizations. Films fabricated with 6000 laser pulses had an average thickness of {proportional_to}150 nm, and a complete coverage of the selected substrate as achieved. High-resolution scanning and transmission electron microscopy investigations evidenced the formation of quite rough films incorporating individually distinguishable TiO{sub 2} nanorods and crystalline spherical nanoparticles with an average diameter of {proportional_to}13 nm. Spectrophotometric analysis showed high transparency through the UV-Vis spectral range. Promising resistive sensing responses to 1 ppm of NO{sub 2} mixed in dry air were obtained. (orig.)

  7. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    Science.gov (United States)

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  8. Enhanced dielectric properties of ZrO2 thin films prepared in nitrogen ambient by pulsed laser deposition

    International Nuclear Information System (INIS)

    Zhu, J; Li, T L; Pan, B; Zhou, L; Liu, Z G

    2003-01-01

    ZrO 2 thin films were fabricated in O 2 ambient and in N 2 ambient by pulsed laser deposition (PLD), respectively. X-ray diffraction revealed that films prepared at 400 deg. C remained amorphous. The dielectric properties of amorphous ZrO 2 films were investigated by measuring the capacitance-frequency characteristics of Pt/ZrO 2 /Pt capacitor structures. The dielectric constant of the films deposited in N 2 ambient was larger than that of the films deposited in O 2 ambient. The dielectric loss was lower for films prepared in N 2 ambient. Atom force microscopy investigation indicated that films deposited in N 2 ambient had smoother surface than films deposited in O 2 ambient. Capacitance-voltage and current-voltage characteristics were studied. The equivalent oxide thickness (EOT) of films with 6.6 nm physical thickness deposited in N 2 ambient is lower than that of films deposited in O 2 ambient. An EOT of 1.38 nm for the film deposited in N 2 ambient was obtained, while the leakage current density was 94.6 mA cm -2 . Therefore, ZrO 2 thins deposited in N 2 ambient have enhanced dielectric properties due to the incorporation of nitrogen which leads to the formation of Zr-doped nitride interfacial layer, and is suggested to be a potential material for alternative high-k (high dielectric constant) gate dielectric applications

  9. Manipulation of stored charge in anodic aluminium oxide/SiO2 dielectric stacks by the use of pulsed anodisation

    International Nuclear Information System (INIS)

    Lu, Zhong; Ouyang, Zi; Grant, Nicholas; Wan, Yimao; Yan, Di; Lennon, Alison

    2016-01-01

    Graphical abstract: - Highlights: • Pulse anodisation was used to grow AAO layers with controllable stored charge. • Stored charge density ranging from −5.2 × 10 11 to 2.5 × 10 12 q/cm 2 was demonstrated. • Enhancement in surface passivation was demonstrated with charge management. • Annealing significantly reduces the positive stored charge and the interface defect. - Abstract: A method of fabricating anodic aluminium oxide (AAO) with the capability of manipulating its stored charge is reported. This method involves the use of a pulsed current source to anodise aluminium layers instead of the typically used constant current/voltage source, with the test structures experiencing positive and negative cycles periodically. By tuning the positive cycle percentage, it is demonstrated that the effective stored charge density can be manipulated in a range from −5.2 × 10 11 to 2.5 × 10 12 q/cm 2 when the AAO is formed over a 12 nm SiO 2 layer. An investigation of the stored charge distribution in the dielectric stacks indicates a positive fixed charge at the SiO 2 /Si interface, a negative fixed charge at the AAO/SiO 2 interface and a positive bulk charge within the AAO layer. The effective stored charge density and interface states were found to be affected by annealing conditions and it is suggested that oxygen annealing can reduce the bulk positive charge while post-metallisation anneal is most effective in reducing silicon interface defects. Charge manipulation using pulsed anodisation is shown to reduce carrier recombination on boron-diffused silicon surfaces highlighting the potential of the process to be used to tune the electrical properties of dielectric layers so that they can reduce surface recombination on silicon surfaces having different dopant polarity and concentrations.

  10. Pulsed laser deposition of YBCO coated conductor using Y2O3 as the seed and cap layer

    International Nuclear Information System (INIS)

    Barnes, P N; Nekkanti, R M; Haugan, T J; Campbell, T A; Yust, N A; Evans, J M

    2004-01-01

    Although a variety of buffer layers have been routinely reported, a standard architecture commonly used for the Y Ba 2 Cu 3 O 7-x (YBCO) coated conductor is Y BCO/CeO 2 /Y SZ/CeO 2 /substrate or Y BCO/CeO 2 /Y SZ/Y 2 O 3 /substrate where ceria is typically the cap layer. CeO 2 is generally used as only a seed (or cap layer) since cracking within the film occurs in thicker CeO 2 layers due to the stress of lattice mismatching. Y 2 O 3 has been proposed as a seed and as a cap layer but usually not for both in a given architecture, especially with all layers deposited in situ. Yttrium oxide films grown on nickel by electron beam evaporation processes were found to be dense and crack free with good epitaxy. In this report, pulsed laser deposition (PLD) of Y 2 O 3 is given where Y 2 O 3 serves as both the seed and cap layer in the YBCO architecture. A comparison to PLD CeO 2 is provided. Deposited layers of the YBCO coated conductor are also grown by laser ablation. Initial deposition resulted in specimens on textured Ni substrates with current densities of more than 1 MA cm -2 at 77 K, self-field

  11. Characteristics of ionization chambers for intense pulsed x-rays and Co-60 #betta#-rays, (2)

    International Nuclear Information System (INIS)

    Kanazawa, Tamotsu; Okabe, Shigeru; Fukuda, Kyue; Furuta, Junichiro; Fujino, Takahiro

    1981-01-01

    Mean ionization currents and pulse figures of parallel plate ionization chambers enclosed with various gases were measured when they were exposed to intense pulsed X-rays and continuous #betta#-rays. Relation between the measured ionization current and the intensity of X-rays was obtained at the applied voltage of 1000 V. In the case of intense pulsed X-rays, ionization current was smaller in comparison with the case of continuous #betta#-rays, under the X-rays of equal intensity. Pulse figures were observed with chambers which were filled with the gases of air and O 2 and they are considered to be caused by the free electrons of these gases. In these cases, polarity effects of the electric field on the pulse figures were not recognized. Various figures and their changes were also observed from chambers filled with He, Ne, N 2 , Ar, kr, and Xe, respectively. Polarity effects were recognized on those pulse figures. (author)

  12. Positive magnetoresistance in ferromagnetic Nd-doped In2O3 thin films grown by pulse laser deposition

    KAUST Repository

    Xing, G. Z.

    2014-05-23

    We report the magnetic and magnetotransport properties of (In 0.985Nd0.015)2O2.89 thin films grown by pulse laser deposition. The clear magnetization hysteresis loops with the complementary magnetic domain structure reveal the intrinsic room temperature ferromagnetism in the as-prepared films. The strong sp-f exchange interaction as a result of the rare earth doping is discussed as the origin of the magnetotransport behaviours. A positive magnetoresistance (∼29.2%) was observed at 5 K and ascribed to the strong ferromagnetic sp-f exchange interaction in (In0.985Nd0.015)2O 2.89 thin films due to a large Zeeman splitting in an external magnetic field of 50 KOe. © 2014 AIP Publishing LLC.

  13. Low operating voltage InGaZnO thin-film transistors based on Al2O3 high-k dielectrics fabricated using pulsed laser deposition

    International Nuclear Information System (INIS)

    Geng, G. Z.; Liu, G. X.; Zhang, Q.; Shan, F. K.; Lee, W. J.; Shin, B. C.; Cho, C. R.

    2014-01-01

    Low-voltage-driven amorphous indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) with an Al 2 O 3 dielectric were fabricated on a Si substrate by using pulsed laser deposition. Both Al 2 O 3 and IGZO thin films are amorphous, and the thin films have very smooth surfaces. The Al 2 O 3 gate dielectric exhibits a very low leakage current density of 1.3 x 10 -8 A/cm 2 at 5 V and a high capacitance density of 60.9 nF/cm 2 . The IGZO TFT with a structure of Ni/IGZO/Al 2 O 3 /Si exhibits high performance with a low threshold voltage of 1.18 V, a high field effect mobility of 20.25 cm 2 V -1 s -1 , an ultra small subthreshold swing of 87 mV/decade, and a high on/off current ratio of 3 x 10 7 .

  14. Effects of pressure and temperature on sintering of Cr-doped Al2O3 by pulsed electric current sintering process

    Science.gov (United States)

    Dang, K. Q.; Nanko, M.

    2011-03-01

    The aluminium oxide crystal, Al2O3, which contains a small amount of chromium, Cr, is called ruby. Pulsed electric current sintering (PECS) was applied to sinter ruby polycrystals. Cr2O3-Al2O3 powder mixture prepared by drying an aqueous slurry containing amounts of Al2O3 and Cr(NO3)3 was consolidated by PECS process. The PECS process was performed in vacuum at sintering temperature raging from 1100 to 1300°C with heating rate of 2 K/min under applied uniaxial pressure varied from 40 to 100 MPa. This study found that highly densified and transparent Cr-doped Al2O3 can be obtained by the PECS process with the high applied pressure at sintering temperature of 1200°C.

  15. Collisional Removal of OH (X (sup 2)Pi, nu=7) by O2, N2, CO2, and N2O

    Science.gov (United States)

    Knutsen, Karen; Dyer, Mark J.; Copeland, Richard A.

    1996-01-01

    Collisional removal rate constants for the OH (X 2PI, nu = 7) radical are measured for the colliders O2, CO2, and N2O, and an upper limit is established for N2. OH(nu = 4) molecules, generated in a microwave discharge flow cell by the reaction of hydrogen atoms with ozone, are excited to v = 7 by the output of a pulsed infrared laser via direct vibrational overtone excitation. The temporal evolution of the P = 7 population is probed as a function of the collider gas partial pressure by a time-delayed pulsed ultraviolet laser. Fluorescence from the B 21 + state is detected in the visible spectral region.

  16. Surface modification of LiNbO3 and KTa1-xNbxO3 crystals irradiated by intense pulsed ion beam

    Science.gov (United States)

    Cui, Xiaojun; Shen, Jie; Zhong, Haowen; Zhang, Jie; Yu, Xiao; Liang, Guoying; Qu, Miao; Yan, Sha; Zhang, Xiaofu; Le, Xiaoyun

    2017-10-01

    In this work, we studied the surface modification of LiNbO3 and KTa1-xNbxO3 irradiated by intense pulsed ion beam, which was mainly composed of H+ (70%) and Cn+ (30%) at an acceleration voltage of about 450 kV. The surface morphologies, microstructural evolution and elemental analysis of the sample surfaces after IPIB irradiation have been analyzed by scanning electron microscope, atomic force microscope, X-ray diffraction and energy dispersive spectrometer techniques, respectively. The results show that the surface morphologies have significant difference impacted by the irradiation effect. Regular gully damages range from 200 to 400 nm in depth appeared in LiNbO3 under 2 J/cm2 energy density for 1 pulse, block cracking appeared in KTa1-xNbxO3 at the same condition. Surface of the crystals have melted and were darkened with the increasing number up to 5 pulses. Crystal lattice arrangement is believed to be the dominant reason for the different experimental results irradiated by intense pulsed ion beam.

  17. Characteristics of multilevel storage and switching dynamics in resistive switching cell of Al2O3/HfO2/Al2O3 sandwich structure

    Science.gov (United States)

    Liu, Jian; Yang, Huafeng; Ma, Zhongyuan; Chen, Kunji; Zhang, Xinxin; Huang, Xinfan; Oda, Shunri

    2018-01-01

    We reported an Al2O3/HfO2/Al2O3 sandwich structure resistive switching device with significant improvement of multilevel cell (MLC) operation capability, which exhibited that four stable and distinct resistance states (one low resistance state and three high resistance states) can be achieved by controlling the Reset stop voltages (V Reset-stop) during the Reset operation. The improved MLC operation capability can be attributed to the R HRS/R LRS ratio enhancement resulting from increasing of the series resistance and decreasing of leakage current by inserting two Al2O3 layers. For the high-speed switching applications, we studied the initial switching dynamics by using the measurements of the pulse width and amplitude dependence of Set and Reset switching characteristics. The results showed that under the same pulse amplitude conditions, the initial Set progress is faster than the initial Reset progress, which can be explained by thermal-assisted electric field induced rupture model in the oxygen vacancies conductive filament. Thus, proper combination of varying pulse amplitude and width can help us to optimize the device operation parameters. Moreover, the device demonstrated ultrafast program/erase speed (10 ns) and good pulse switching endurance (105 cycles) characteristics, which are suitable for high-density and fast-speed nonvolatile memory applications.

  18. Electrical and optical characteristics of ITO films by pulsed laser deposition using a 10 wt.% SnO2-doped In2O3 ceramic target

    International Nuclear Information System (INIS)

    Kim, Sang Hyeob; Park, Nae-Man; Kim, TaeYoub; Sung, GunYong

    2005-01-01

    We have investigated the effect of the oxygen pressure and the deposition temperature on the electrical and optical properties of the Sn-doped indium oxide (ITO) films on quartz glass substrate by pulsed laser deposition (PLD) using a 10 wt.% SnO 2 -doped In 2 O 3 target. The resistivity and the carrier concentration of the films were decreased due to the decrease of the oxygen vacancy while increasing the oxygen pressure. With increasing deposition temperature, the resistivity of the films was decreased and the carrier concentration was increased due to the grain growth and the enhancement of the Sn diffusion. We have optimized the PLD process to deposit a highly conductive and transparent ITO film, which shows the optical transmittance of 88% and the resistivity of 2.49x10 -4 Ω cm for the film thickness of 180 nm

  19. Pulsed Laser deposition of Al2O3 thin film on silicon

    International Nuclear Information System (INIS)

    Lamagna, A.; Duhalde, S.; Correra, L.; Nicoletti, S.

    1998-01-01

    Al 2 O 3 thin films were fabricated by pulsed laser deposition (PLD) on Si 3 N 4 /Si, to improve the thermal and electrical isolation of gas sensing devices. The microstructure of the films is analysed as a function of the deposition conditions (laser fluence, oxygen pressure, target-substrate distance and substrate temperature). X-ray analysis shows that only a sharp peak that coincides with the corundum (116) reflection can be observed in all the films. But, when they are annealed at temperatures above 1,200 degree centigrade, a change in the crystalline structure of some films occurs. The stoichiometry and morphology of the films with and without thermal treatment are compared using environmental scanning electron microscopy (SEM) and EDAX analysis. (Author) 14 refs

  20. Synthesis and characterization of amorphous SiO{sub 2} nanowires via pulsed laser deposition accompanied by N{sub 2} annealing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui; Guan, Leilei; Xu, Zhuoqi; Zhao, Yu; Sun, Jian; Wu, Jiada; Xu, Ning, E-mail: ningxu@fudan.edu.cn

    2016-12-15

    Highlights: • The SiO{sub 2} nanowires were synthesized by PLD accompanied by N{sub 2} annealing. • The as-grown SiO{sub 2} nanowires were analyzed by HRTEM, SAED and EDS. • The grown SiO{sub 2} nanowire films are transparent in the range of 350–800 nm. • The SiO{sub 2} nanowire films can emit stable ultraviolet emission. - Abstract: Amorphous SiO{sub 2} nanowires are successfully fabricated on fused silica substrates covered by nickel/carbon catalyst bilayers via a method of pulsed laser deposition accompanied by annealing in ambient N{sub 2}. The field emission scanning electron microscopy images show that the optimum annealing temperature for the growth of SiO{sub 2} nanowires is about 1200 °C and the grown SiO{sub 2} nanowires become denser, longer and more uniform with the increment of annealing duration. The results of transmission electron microscopy and high-resolution transmission electron microscopy show that the grown nanowires are amorphous and have dark spheres on their tops. The analyses of energy dispersive X-ray spectroscopy reveal that the nanowires are composed of SiO{sub 2} and the dark spheres on their tops contain little nickel. It is inferred that nickel, carbon and CO are the key elements to promote the SiO{sub 2} nanowire growth in the solid-liquid-solid mode. Transmission spectra demonstrate that the as-grown nanowire thin films can have about 94% average transmittance in the range of 350–800 nm, meanwhile the photoluminescence spectra of the as-grown SiO{sub 2} nanowire samples show stable ultraviolet emission centered at about 363 nm with a shoulder at about 393 nm.

  1. Production of simplex RNS and ROS by nanosecond pulse N2/O2 plasma jets with homogeneous shielding gas for inducing myeloma cell apoptosis

    Science.gov (United States)

    Liu, Zhijie; Xu, Dehui; Liu, Dingxin; Cui, Qingjie; Cai, Haifeng; Li, Qiaosong; Chen, Hailan; Kong, Michael G.

    2017-05-01

    In this paper, atmospheric pressure N2/O2 plasma jets with homogeneous shielding gas excited by nanosecond pulse are obtained to generate simplex reactive nitrogen species (RNS) and reactive oxygen species (ROS), respectively, for the purpose of studying the simplex RNS and ROS to induce the myeloma cell apoptosis with the same discharge power. The results reveal that the cell death rate by the N2 plasma jet with N2 shielding gas is about two times that of the O2 plasma jet with O2 shielding gas for the equivalent treatment time. By diagnosing the reactive species of ONOO-, H2O2, OH and \\text{O}2- in medium, our findings suggest the cell death rate after plasma jets treatment has a positive correlation with the concentration of ONOO-. Therefore, the ONOO- in medium is thought to play an important role in the process of inducing myeloma cell apoptosis.

  2. Crystalline phase control and growth selectivity of β-MnO{sub 2} thin films by remote plasma assisted pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Abi-Akl, M.; Tabbal, M., E-mail: malek.tabbal@aub.edu.lb; Kassem, W.

    2016-08-01

    In this paper, we exploit the effect of coupling an oxygen remote plasma source to Pulsed Laser Deposition (PLD) for the growth of pure and well crystallized β-MnO{sub 2} films. Films were grown on Si substrates by laser ablation of a MnO target in oxygen ambient and remote plasma. X-Ray Diffraction, Fourier Transform Infra-Red spectroscopy and Raman scattering were used to determine the crystalline structure and bonding in the grown layers, whereas Atomic Force Microscopy was used to study their morphology and surface roughness. Deposition at 500 °C and high oxygen pressure (33.3–66.6 Pa) resulted in the formation of films with roughness of 12 nm consisting of nsutite γ-MnO{sub 2}, a structure characterized by the intergrowth of the pyrolusite β-MnO{sub 2} in a ramsdellite R-MnO{sub 2} matrix. Deposition at the same temperature but low pressure (1.33–3.33 Pa) in oxygen ambient lead to the formation of Mn{sub 2}O{sub 3} whereas plasma activation within the same pressure range induced the growth of single phase highly crystalline β-MnO{sub 2} having smooth surfaces with a roughness value of 0.6 nm. Such results underline the capability of remote plasma assisted PLD in selecting and controlling the crystalline phase of manganese oxide layers. - Highlights: • MnO{sub 2} films were grown by Remote Plasma Assisted Pulsed Laser Deposition. • Crystalline MnO{sub 2} is formed at a substrate temperature of 500 °C. • Smooth crystalline single phase β-MnO{sub 2} films were obtained at 1.33–3.33 Pa. • Deposition at 1.33–3.33 Pa without plasma activation lead to the growth of Mn{sub 2}O{sub 3}. • Without plasma, mixed phases of MnO{sub 2} polymorphs are obtained at 33.3 Pa and above.

  3. Manipulation of stored charge in anodic aluminium oxide/SiO{sub 2} dielectric stacks by the use of pulsed anodisation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhong, E-mail: z.lu@unsw.edu.au [School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney, NSW 2052 (Australia); Ouyang, Zi [School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney, NSW 2052 (Australia); Grant, Nicholas; Wan, Yimao; Yan, Di [Centre for Sustainable Energy Systems, Faculty of Engineering and Information Technology, The Australian National University, Canberra, ACT 0200 (Australia); Lennon, Alison [School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney, NSW 2052 (Australia)

    2016-02-15

    Graphical abstract: - Highlights: • Pulse anodisation was used to grow AAO layers with controllable stored charge. • Stored charge density ranging from −5.2 × 10{sup 11} to 2.5 × 10{sup 12} q/cm{sup 2} was demonstrated. • Enhancement in surface passivation was demonstrated with charge management. • Annealing significantly reduces the positive stored charge and the interface defect. - Abstract: A method of fabricating anodic aluminium oxide (AAO) with the capability of manipulating its stored charge is reported. This method involves the use of a pulsed current source to anodise aluminium layers instead of the typically used constant current/voltage source, with the test structures experiencing positive and negative cycles periodically. By tuning the positive cycle percentage, it is demonstrated that the effective stored charge density can be manipulated in a range from −5.2 × 10{sup 11} to 2.5 × 10{sup 12} q/cm{sup 2} when the AAO is formed over a 12 nm SiO{sub 2} layer. An investigation of the stored charge distribution in the dielectric stacks indicates a positive fixed charge at the SiO{sub 2}/Si interface, a negative fixed charge at the AAO/SiO{sub 2} interface and a positive bulk charge within the AAO layer. The effective stored charge density and interface states were found to be affected by annealing conditions and it is suggested that oxygen annealing can reduce the bulk positive charge while post-metallisation anneal is most effective in reducing silicon interface defects. Charge manipulation using pulsed anodisation is shown to reduce carrier recombination on boron-diffused silicon surfaces highlighting the potential of the process to be used to tune the electrical properties of dielectric layers so that they can reduce surface recombination on silicon surfaces having different dopant polarity and concentrations.

  4. High speed pulsed laser cutting of LiCoO2 Li-ion battery electrodes

    Science.gov (United States)

    Lutey, Adrian H. A.; Fortunato, Alessandro; Carmignato, Simone; Fiorini, Maurizio

    2017-09-01

    Laser cutting of Li-ion battery electrodes represents an alternative to mechanical blanking that avoids complications associated with tool wear and allows assembly of different cell geometries with a single device. In this study, laser cutting of LiCoO2 Li-ion battery electrodes is performed at up to 5m /s with a 1064nm wavelength nanosecond pulsed fiber laser with a maximum average power of 500W and a repetition rate of up to 2MHz . Minimum average cutting power for cathode and anode multi-layer films is established for 12 parameter groups with velocities over the range 1 - 5m /s , varying laser pulse fluence and overlap. Within the tested parameter range, minimum energy per unit cut length is found to decrease with increasing repetition rate and velocity. SEM analysis of the resulting cut edges reveals visible clearance widths in the range 20 - 50 μm , with cut quality found to improve with velocity due to a reduction in lateral heat conduction losses. Raman line map spectra reveal changes in the cathode at 60 μm from the cut edge, where bands at 486cm-1 and 595cm-1 , corresponding to the Eg and A1g modes of LiCoO2 , are replaced with a single wide band centered at 544cm-1 , and evidence of carbon black is no longer present. No changes in Raman spectra are observed in the anode. The obtained results suggest that further improvements in cutting efficiency and quality could be achieved by increasing the repetition rate above 2MHz , thereby improving ablation efficiency of the metallic conductor layers. The laser source utilized in the present study nonetheless represents an immediately available solution for repeatability and throughput that are superior to mechanical blanking.

  5. Subsolidus Phase Relations of the SrO-In2O3-CuO System in Air

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Thydén, Karl Tor Sune

    2013-01-01

    The subsolidus phase relations of the SrO-In2O3-CuO system were investigated at 900 °C in air. Under these conditions, five binary oxide phases are stable: Sr2CuO3, SrCuO2, Sr14Cu24O41, In2Cu2O5 and SrIn2O4. The pseudo-ternary section is characterised by six three-phase regions and is dominated...

  6. Pulsed laser deposition of HfO{sub 2} thin films on indium zinc oxide: Band offsets measurements

    Energy Technology Data Exchange (ETDEWEB)

    Craciun, D.; Craciun, V., E-mail: valentin.craciun@inflpr.ro

    2017-04-01

    Highlights: • High quality amorphous IZO and HfO{sub 2} films were obtained by PLD technique. • XPS measurements were used to obtain the valence band alignment in HfO{sub 2}/IZO heterostructure. • A valence band offset (ΔE{sub V}) of 1.75 eV was obtained for the HfO{sub 2}/IZO heterostructure. • A conduction band offset (ΔE{sub C}) of 0.65 eV was estimated for the HfO{sub 2}/IZO heterostructure. - Abstract: One of the most used dielectric films for amorphous indium zinc oxide (IZO) based thin films transistor is HfO{sub 2}. The estimation of the valence band discontinuity (ΔE{sub V}) of HfO{sub 2}/IZO heterostructure grown using the pulsed laser deposition technique, with In/(In + Zn) = 0.79, was obtained from X-ray photoelectron spectroscopy (XPS) measurements. The binding energies of Hf 4d5, Zn 2p3 and In 3d5 core levels and valence band maxima were measured for thick pure films and for a very thin HfO{sub 2} film deposited on a thick IZO film. A value of ΔE{sub V} = 1.75 ± 0.05 eV was estimated for the heterostructure. Taking into account the measured HfO{sub 2} and IZO optical bandgap values of 5.50 eV and 3.10 eV, respectively, a conduction band offset ΔE{sub C} = 0.65 ± 0.05 eV in HfO{sub 2}/IZO heterostructure was then obtained.

  7. Magnetic and optical properties of MgAl2O4-(Ni0.5Zn0.5Fe2O4 thin films prepared by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Takeshi Misu, Naonori Sakamoto, Kazuo Shinozaki, Nobuyasu Adachi, Hisao Suzuki and Naoki Wakiya

    2011-01-01

    Full Text Available Thin films composed of MgAl2O4 and (Ni0.5Zn0.5Fe2O4 ([MA(100-x-NZFx] films were grown on fused SiO2 substrates by pulsed laser deposition. X-ray diffraction measurements revealed that the films were polycrystalline, and that their lattice constant varied linearly with composition, indicating the formation of a solid solution. The film with x=60 was paramagnetic and those with x ≥ 70 were ferromagnetic. The films had a transparency above 75% in the visible range, but the transparency decreased with the x value. The optical band gaps were 2.95, 2.55, 2.30 and 1.89 eV for x=20, 40, 60, 80 and 100, respectively. The Faraday rotation angle increased with x in the visible range, and the film with x=70 exhibited a value of 2000 degrees cm-1 at 570 nm, which is comparable to the rotation angle of Y3Fe5O12. Owing to their high transparency, which extends into the visible range, the [MA(100-x-NZFx] films can be used in novel magneto-optical devices.

  8. Structural and magnetic properties of epitaxial delafossite CuFeO{sub 2} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Toyanath; Senty, Tess R.; Trappen, Robbyn; Zhou, Jinling; Borisov, Pavel; Holcomb, Mikel B.; Bristow, Alan D.; Lederman, David [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Chen, Song; Song, Xueyan [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506-6070 (United States); Ferrari, Piero; Cabrera, Alejandro L. [Pontificia Universidad Catolica, Instituto de Física, Santiago (Chile)

    2015-01-07

    Growth of pure phase delafossite CuFeO{sub 2} thin films on Al{sub 2}O{sub 3} (00.1) substrates by pulsed laser deposition was systematically investigated as a function of growth temperature and oxygen pressure. X-ray diffraction, transmission electron microscopy, Raman scattering, and x-ray absorption spectroscopy confirmed the existence of the delafossite phase. Infrared reflectivity spectra determined a band edge at 1.15 eV, in agreement with the bulk delafossite data. Magnetization measurements on CuFeO{sub 2} films demonstrated a phase transition at T{sub C} ≈ 15 ± 1 K, which agrees with the first antiferromagnetic transition at 14 K in the bulk CuFeO{sub 2}. Low temperature magnetic phase is best described by commensurate, weak ferromagnetic spin ordering along the c-axis.

  9. Synthesis of green TiO{sub 2}/ZnO/CdS hybrid nano-catalyst for efficient light harvesting using an elegant pulsed laser ablation in liquids method

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Ilyas, A.M.; Fasasi, T.A.; Dastageer, M.A. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Seddigi, Z.S. [Department of Environmental Health, Faculty of Public Health and Health Informatics, Umm Al-Qura University, 21955 Makkah (Saudi Arabia); Qahtan, T.F.; Faiz, M.; Khattak, G.D. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2015-12-01

    Graphical abstract: - Highlights: • Facile strategy for synthesis of green catalyst (TiO{sub 2}/ZnO/CdS) was developed. • Clean synthesis of green catalyst was done using pulsed laser ablation in liquids. • Synthesized composite size ranges between 10 and 40 nm confirmed by HRTEM studies. • Enhanced improvement was noticed in the carriers transport in the visible region. • Visible region absorption opens door to many applications for solar energy harvesting. - Abstract: The main limitation on the applications of TiO{sub 2} as a photocatalyst is its large band gap (3.2 eV) which limits its absorption only to the ultraviolet region of the solar spectrum. To overcome this problem, a facile strategy for clean synthesis of a nanocomposite green catalyst of zinc oxide (ZnO), titanium dioxide (TiO{sub 2}) and cadmium sulphide (CdS) was developed using pulsed laser ablation in liquids (PLAL) technique for the first time to the best of our knowledge. The main aim of addition of ZnO is to reduce the electron–hole recombination in the TiO{sub 2} while CdS is used to increase the light harvesting efficiency of TiO{sub 2} in the visible spectral region. The absorption spectrum of the TiO{sub 2}/ZnO/CdS composite obtained from the UV–vis spectrophotometer exhibits strong absorption in the visible region as compared to the pure TiO{sub 2} whose absorption band lies around 380 nm which is in the UV-region. The morphology of the composite quantum dots was also investigated using high resolution TEM technique which shows that the synthesized composite size ranges between 10 and 40 nm. These nanocomposites have demosntarted noticible improvement in the carriers transport in the visible region which could enhance its efficiency for many applications in the visible region especially for energy harvesting using solar radiations.

  10. Epitaxial thin-film growth of Ruddlesden-Popper-type Ba3Zr2O7 from a BaZrO3 target by pulsed laser deposition

    International Nuclear Information System (INIS)

    Butt, Shariqa Hassan; Rafique, M.S.; Siraj, K.; Latif, A.; Afzal, Amina; Awan, M.S.; Bashir, Shazia; Iqbal, Nida

    2016-01-01

    Ruddlesden-Popper Ba 3 Zr 2 O 7 thin films have been synthesized via pulsed laser deposition (PLD) technique. The optimization of deposition parameters in PLD enables the formation of thin film of metastable Ba 3 Zr 2 O 7 phase from BaZrO 3 target. In order to see the post-annealing effects on the structural and optical properties, the deposited Ba 3 Zr 2 O 7 thin films were annealed at 500, 600 and 800 C. X-ray diffraction (XRD) reveals the formation of Ba 3 Zr 2 O 7 phase with tetragonal structure. The changes in the surface of the deposited films were analysed by FE-SEM and AFM. The thin film post-annealed at 500 C exhibited the best structural, optical and surface properties. Furthermore, the chemical states and chemical composition of the films were determined by X-ray photoelectron spectroscopy (XPS) near the surface. The XPS results show that Ba, Zr and O exist mainly in the form of Ba 3 Zr 2 O 7 Ruddlesden-Popper-type perovskite structure. (orig.)

  11. Evidence of the semiconductor-metal transition in V{sub 2}O{sub 5} thin films by the pulsed laser photoacoustic method

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Pacheco, A.; Acosta-Najarro, D. R.; Cruz-Manjarrez, H.; Rodriguez-Fernandez, L.; Pineda-Santamaria, J. C; Aguilar-Franco, M. [Instituto de Fisica-Universidad Nacional Autonoma de Mexico, Mexico DF (Mexico); Castaneda-Guzman, R. [Laboratorio de Fotofisica y Peliculas Delgadas, CCADET-UNAM, Mexico DF (Mexico)

    2013-05-14

    In this work, the pulsed photoacoustic technique was used to investigate the semiconductor-metal transition of thin vanadium pentoxide films (V{sub 2}O{sub 5}) under increasing temperature. The V{sub 2}O{sub 5} thin films were simultaneously deposited by RF magnetron sputtering at room temperature, on corning glass and SnO{sub 2}:F/glass substrates, in order to compare the photoacoustic response. The elemental and structural analysis of the V{sub 2}O{sub 5} films was performed by Rutherford backscattering spectroscopy and X-ray diffraction. The optical transmission and band gap were determined using UV-Vis spectroscopy. The electrical properties were measured using four-point probe measurements with the Van der Pauw geometry.

  12. Photoelectrocatalytic decomposition of ethylene using TiO2/activated carbon fiber electrode with applied pulsed direct current square-wave potential

    International Nuclear Information System (INIS)

    Ye, Sheng-ying; Zheng, Sen-hong; Song, Xian-liang; Luo, Shu-can

    2015-01-01

    Highlights: • Ethylene was decomposed by a photoelectrocatalytic (PEC) process. • A pulsed direct current square-wave (PDCSW) potential was applied to the PEC cell. • An electrode of TiO 2 or modified TiO 2 and activated carbon fiber (ACF) was used. • TiO 2 /ACF photocatalyst electrodes were modified by gamma radiolysis. • Efficiencies of the PEC process were higher than those of the process using DC. - Abstract: Removing ethylene (C 2 H 4 ) from the atmosphere of storage facilities for fruits and vegetable is one of the main challenges in their postharvest handling for maximizing their freshness, quality, and shelf life. In this study, we investigated the photoelectrocatalytic (PEC) degradation of ethylene gas by applying a pulsed direct current DC square-wave (PDCSW) potential and by using a Nafion-based PEC cell. The cell utilized a titanium dioxide (TiO 2 ) photocatalyst or γ-irradiated TiO 2 (TiO 2 * ) loaded on activated carbon fiber (ACF) as a photoelectrode. The apparent rate constant of a pseudo-first-order reaction (K) was used to describe the PEC degradation of ethylene. Parameters of the potential applied to the PEC cell in a reactor that affect the degradation efficiency in terms of the K value were studied. These parameters were frequency, duty cycle, and voltage. Ethylene degradation by application of a constant PDCSW potential to the PEC electrode of either TiO 2 /ACF cell or TiO 2 * /ACF cell enhanced the efficiency of photocatalytic degradation and PEC degradation. Gamma irradiation of TiO 2 in the electrode and the applied PDCSW potential synergistically increased the K value. Independent variables (frequency, duty cycle, and voltage) of the PEC cell fabricated from TiO 2 subjected 20 kGy γ radiation were optimized to maximize the K value by using response surface methodology with quadratic rotation–orthogonal composite experimental design. Optimized conditions were as follows: 358.36 Hz frequency, 55.79% duty cycle, and 64.65 V

  13. Study of Pt–Rh/CeO2–ZrO2–MxOy (M = Y, La)/Al2O3 three-way catalysts

    International Nuclear Information System (INIS)

    Jiaxiu, Guo; Zhonghua, Shi; Dongdong, Wu; Huaqiang, Yin; Maochu, Gong; Yaoqiang, Chen

    2013-01-01

    CeO 2 –ZrO 2 –M x O y (M = Y; La) mixed oxides, prepared by co-precipitation method and characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Raman spectra (RM) and oxygen pulse reaction, were comparatively investigated to elucidate the combinational effects of Y and/or La oxide promoters on the catalytic activity and anti-aging performance of monolithic cordierite honeycomb catalysts with low Pt and Rh content. The catalytic activities, water-gas shift (WGS) and steam reforming reaction (SR) were studied under a simulated gas mixture. The catalysts were also characterized by H 2 -temperature-programmed reduction (H 2 -TPR) and O 2 -temperature-programmed desorption (O 2 -TPD). The results showed that the prepared CeO 2 –ZrO 2 –M x O y oxides have a face-centered cubic fluorite structure and are nanosize. La 3+ ions can significantly improve thermal stability and efficiently retard CeO 2 –ZrO 2 crystal sintering and growth. Doped CeO 2 –ZrO 2 with Y 3+ and La 3+ has 105 and 60 m 2 /g surface area and 460 and 390 μmol/g OSC before and after aging. The T 50 of fresh Pt–Rh/CZYL/LA is 170 °C for CO, 222 °C for C 3 H 8 and 189 °C for NO, and shift to 205, 262 and 228 °C after hydrothermal aging, which are better than those of Pt–Rh/CZY/LA or Pt–Rh/CZL/LA. WGS and SR are relate to the OSC of oxygen storage materials and absorbed oxygen species on the catalyst surface and affect the three-way catalytic activities of catalysts. The reductive property of noble metals and the dissociatively adsorbed O 2 on the surface of catalysts are closely related to the catalytic activities.

  14. Effects of introduction of argon on structural and transparent conducting properties of ZnO-In2O3 thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Moriga, Toshihiro; Mikawa, Michio; Sakakibara, Yuji; Misaki, Yukinori; Murai, Kei-ichiro; Nakabayashi, Ichiro; Tominaga, Kikuo; Metson, James B.

    2005-01-01

    Indium-zinc oxide thin films were deposited on a glass substrate from a ZnO and In 2 O 3 mixed target by a pulsed laser deposition technique. The effects on surface texture, structure and transparent conducting properties of the introduction of argon into the chamber during the depositions of amorphous and homologous ZnO-In 2 O 3 thin films were examined. The compositional range where amorphous films formed was widened by the introduction of argon. Resistivity in the region where the amorphous phase appeared increased slightly, with an increase of zinc content, due to the counteractions of decreased Hall mobility and increased carrier concentration. Introduction of argon improved surface roughness of the films and reduced and regulated particle and/or crystallite sizes of the films

  15. Role of N2 molecules in pulse discharge production of I atoms for a pulsed chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Kochetov, I V; Napartovich, A P; Vagin, N P; Yuryshev, N N

    2011-01-01

    A pulsed electric discharge is the most effective means to turn chemical oxygen-iodine laser (COIL) operation into the pulse mode by fast production of iodine atoms. Experimental studies and numerical simulations are performed on a pulsed COIL initiated by an electric discharge in a mixture CF 3 I : N 2 : O 2 ( 3 X) : O 2 (a 1 Δ g ) flowing out of a chemical singlet oxygen generator. A transverse pulsed discharge is realized at various iodide pressures. The model comprises a system of kinetic equations for neutral and charged species, the electric circuit equation, the gas thermal balance equation and the photon balance equation. Reaction rate coefficients for processes involving electrons are repeatedly re-calculated by the electron Boltzmann equation solver when the plasma parameters are changed. The processes accounted for in the Boltzmann equation include direct and stepwise excitation and ionization of atoms and molecules, dissociation of molecules, electron attachment processes, electron-ion recombination, electron-electron collisions and second-kind collisions. The last processes are particularly important because of a high singlet oxygen concentration in gas flow from the singlet oxygen chemical generator. A conclusion is drawn about satisfactory agreement between the theory and the experiment.

  16. Phase relations in crystalline ceramic nuclear waste forms the system UO/sub 2 + x/-CeO2-ZrO2-ThO2 at 12000C in air

    International Nuclear Information System (INIS)

    Pepin, J.G.; McCarthy, G.J.

    1981-01-01

    Steady-state phase relations in the system UO/sub 2 + x/-CeO 2 -ZrO 2 -ThO 2 were determined for application to phase relations in the high-level crystalline ceramic nuclear waste form Supercalcine-Ceramics. Samples were treated at 1200 0 C at an oxygen partial pressure of 0.21 atm and a total pressure of 1 atm. Phase assemblages were found to be composed of cubic solid solutions of the flourite structure type, solid solutions based on ZrO 2 , and orthorhombic solid solutions based on U 3 O 8

  17. Growth of LiMn{sub 2}O{sub 4} thin films by pulsed-laser deposition and their electrochemical properties in lithium microbatteries

    Energy Technology Data Exchange (ETDEWEB)

    Julien, C. [Univ. Pierre et Marie Curie, Paris (France). LMDH; Haro-Poniatowski, E. [Laboratorio de Optica Cuantica, Universidad Autonoma Metropolitana Iztapalapa, Apdo. Postal 55-534, Mexico (Mexico); Camacho-Lopez, M.A. [LMDH, UMR 7603, Universite Pierre et Marie Curie, 4 place Jussieu, 75252, Paris (France); Escobar-Alarcon, L. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico (Mexico); Jimenez-Jarquin, J. [Laboratorio de Optica Cuantica, Universidad Autonoma Metropolitana Iztapalapa, Apdo. Postal 55-534, Mexico (Mexico)

    2000-03-01

    Films of LiMn{sub 2}O{sub 4} were grown by pulsed-laser deposition (PLD) onto silicon wafers using sintered targets which consisted in the mixture of LiMn{sub 2}O{sub 4} and Li{sub 2}O powders. The film formation has been studied as a function of the preparation conditions, i.e. composition of the target, substrate temperature, and oxygen partial pressure in the deposition chamber. Composition, morphology and structural properties of PLD films have been investigated using Rutherford backscattering spectroscopy, scanning electron microscopy, X-ray diffraction and Raman scattering spectroscopy. The films deposited from target LiMn{sub 2}O{sub 4}+15% Li{sub 2}O have an excellent crystallinity when deposited onto silicon substrate maintained at 300 C in an oxygen partial pressure of 100 mTorr. It is found that such a film crystallizes in the spinel structure (Fd3m symmetry) as evidenced by X-ray diffraction. Well-textured polycrystalline films exhibit crystallite size of 300 nm. Pulsed-laser deposited LiMn{sub 2}O{sub 4} thin films obtained with a polycrystalline morphology were successfully used as cathode materials in lithium microbatteries. The Li//LiMn{sub 2}O{sub 4} thin film cells have been tested by cyclic voltammetry and galvanostatic charge-discharge techniques in the potential range 3.0-4.2 V. Specific capacity as high as 120 mC/cm{sup 2} {mu}m was measured on polycrystalline films. The chemical diffusion coefficients for the Li{sub x}Mn{sub 2}O{sub 4} thin films appear to be in the range of 10{sup -11}-10{sup -12} cm{sup 2}/s. Electrochemical measurements show a good cycleability of PLD films when cells are charged-discharged at current densities of 5-25 {mu}A/cm{sup 2}. (orig.)

  18. Formation of tin-tin oxide core–shell nanoparticles in the composite SnO{sub 2−x}/nitrogen-doped carbon nanotubes by pulsed ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Korusenko, P.M., E-mail: korusenko@obisp.oscsbras.ru [Omsk Scientific Center, Siberian Branch of the Russian Academy of Sciences, Karl Marx avenue 15, 644040 Omsk (Russian Federation); Nesov, S.N.; Bolotov, V.V.; Povoroznyuk, S.N. [Omsk Scientific Center, Siberian Branch of the Russian Academy of Sciences, Karl Marx avenue 15, 644040 Omsk (Russian Federation); Pushkarev, A.I. [National Research Tomsk Polytechnic University, Lenin Ave. 2a, 634028 Tomsk (Russian Federation); Ivlev, K.E. [Omsk Scientific Center, Siberian Branch of the Russian Academy of Sciences, Karl Marx avenue 15, 644040 Omsk (Russian Federation); Smirnov, D.A. [St. Petersburg State University, Lieutenant Shmidt Emb. 11, 198504 St. Petersburg (Russian Federation); Institute of Solid State Physics, Dresden University of Technology, D-01069 Dresden (Germany)

    2017-03-01

    Highlights: • Original method the formation of core–shell structures by pulsed ion beam is proposed. • The composite SnO{sub 2−x}/N-MWCNTs was irradiated by pulsed ion beam. • Morphology and electronic structure of the irradiated composite were characterized. • The formation of Sn−SnO{sub x} core–shell nanoparticles after irradiation was observed. - Abstract: The complex methods of transmission electron microscopy, energy dispersive X-ray analysis, and X-ray photoelectron spectroscopy were used to investigate the changes in the morphology, phase composition, and electronic structure of the composite SnO{sub 2−x}/nitrogen-doped multiwalled carbon nanotubes (SnO{sub 2−x}/N-MWCNTs) irradiated with the pulsed ion beam of nanosecond duration. The irradiation of the composite SnO{sub 2−x}/N-MWCNTs leads to the formation of nanoparticles with the core–shell structure on the surface of CNTs with a sharp interfacial boundary. It has been established that the “core” is a metal tin (Sn{sup 0}) with a typical size of 5–35 nm, and the “shell” is a thin amorphous layer (2–6 nm) consisting of nonstoichiometric tin oxide with a low oxygen content. The “core–shell” structure Sn−SnO{sub x} is formed due to the process of heating and evaporation of SnO{sub 2−x} under the effect of the ion beam, followed by vapor deposition on the surface of carbon nanotubes.

  19. Fabrication of highly conductive Ta-doped SnO2 polycrystalline films on glass using seed-layer technique by pulse laser deposition

    International Nuclear Information System (INIS)

    Nakao, Shoichiro; Yamada, Naoomi; Hitosugi, Taro; Hirose, Yasushi; Shimada, Toshihiro; Hasegawa, Tetsuya

    2010-01-01

    We discuss the fabrication of highly conductive Ta-doped SnO 2 (Sn 1-x Ta x O 2 ; TTO) thin films on glass by pulse laser deposition. On the basis of the comparison of X-ray diffraction patterns and resistivity (ρ) values between epitaxial films and polycrystalline films deposited on bare glass, we proposed the use of seed-layers for improving the conductivity of the TTO polycrystalline films. We investigated the use of rutile TiO 2 and NbO 2 as seed-layers; these are isostructural materials of SnO 2, which are expected to promote epitaxial-like growth of the TTO films. The films prepared on the 10-nm-thick seed-layers exhibited preferential growth of the TTO (110) plane. The TTO film with x = 0.05 on rutile TiO 2 exhibited ρ = 3.5 x 10 -4 Ω cm, which is similar to those of the epitaxial films grown on Al 2 O 3 (0001).

  20. Rapid fabrication of mesoporous TiO2 thin films by pulsed fibre laser for dye sensitized solar cells

    Science.gov (United States)

    Hadi, Aseel; Alhabradi, Mansour; Chen, Qian; Liu, Hong; Guo, Wei; Curioni, Michele; Cernik, Robert; Liu, Zhu

    2018-01-01

    In this paper we demonstrate for the first time that a fibre laser with a wavelength of 1070 nm and a pulse width of milliseconds can be applied to generate mesoporous nanocrystalline (nc) TiO2 thin films on ITO coated glass in ambient atmosphere, by complete vaporisation of organic binder and inter-connection of TiO2 nanoparticles, without thermally damaging the ITO layer and the glass substrate. The fabrication of the mesoporous TiO2 thin films was achieved by stationary laser beam irradiation of 1 min. The dye sensitized solar cell (DSSC) with the laser-sintered TiO2 photoanode reached higher power conversion efficiency (PCE) of 3.20% for the TiO2 film thickness of 6 μm compared with 2.99% for the furnace-sintered. Electrochemical impedance spectroscopy studies revealed that the laser sintering under the optimised condition effectively decreased charge transfer resistance and increased electron lifetime of the TiO2 thin films. The use of the fibre laser with over 40% wall-plug efficiency offers an economically-feasible, industrial viable solution to the major challenge of rapid fabrication of large scale, mass production of mesoporous metal oxide thin film based solar energy systems, potentially for perovskite and monolithic tandem solar cells, in the future.

  1. Relative Humidity Sensing Properties Of Cu2O Doped ZnO Nanocomposite

    International Nuclear Information System (INIS)

    Pandey, N. K.; Tiwari, K.; Tripathi, A.; Roy, A.; Rai, A.; Awasthi, P.

    2009-01-01

    In this paper we report application of Cu 2 O doped ZnO composite prepared by solid state reaction route as humidity sensor. Pellet samples of ZnO-Cu 2 O nanocrystalline powders with 2, 5 and 10 weight% of Cu 2 O in ZnO have been prepared. Pellets have been annealed at temperatures of 200-500 deg. C and exposed to humidity. It is observed that as relative humidity increases, resistance of the pellet decreases for the humidity from 10% to 90%. Sample with 5% of Cu 2 O doped in ZnO and annealed at 500 deg. C shows best results with sensitivity of 1.50 MΩ/%RH. In this case the hysteresis is low and the reproducibility high, making it the suitable candidate for humidity sensing.

  2. Growth and characterization of nitrogen-doped TiO2 thin films prepared by reactive pulsed laser deposition

    International Nuclear Information System (INIS)

    Sauthier, G.; Ferrer, F.J.; Figueras, A.; Gyoergy, E.

    2010-01-01

    Nitrogen-doped titanium dioxide (TiO 2 ) thin films were grown on (001) SiO 2 substrates by reactive pulsed laser deposition. A KrF* excimer laser source (λ = 248 nm, τ FWHM ≅ 10 ns, ν = 10 Hz) was used for the irradiations of pressed powder targets composed by both anatase and rutile phase TiO 2 . The experiments were performed in a controlled reactive atmosphere consisting of oxygen or mixtures of oxygen and nitrogen gases. The obtained thin film crystal structure was investigated by X-ray diffraction, while their chemical composition as well as chemical bonding states between the elements were studied by X-ray photoelectron spectroscopy. An interrelation was found between nitrogen concentration, crystalline structure, bonding states between the elements, and the formation of titanium oxinitride compounds. Moreover, as a result of the nitrogen incorporation in the films a continuous red-shift of the optical absorption edge accompanied by absorption in the visible spectral range between 400 and 500 nm wavelength was observed.

  3. Epitaxial single-crystal thin films of MnxTi1-xO2-δ grown on (rutile)TiO2 substrates with pulsed laser deposition: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Ilton, Eugene S.; Droubay, Timothy C.; Chaka, Anne M.; Kovarik, Libor; Varga, Tamas; Arey, Bruce W.; Kerisit, Sebastien N.

    2015-02-01

    Epitaxial rutile-structured single-crystal MnxTi1-xO2-δ films were synthesized on rutile- (110) and -(001) substrates using pulsed laser deposition. The films were characterized by reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and aberration-corrected transmission electron microscopy (ACTEM). Under the present conditions, 400oC and PO2 = 20 mTorr, single crystal epitaxial thin films were grown for x = 0.13, where x is the nominal average mole fraction of Mn. In fact, arbitrarily thick films could be grown with near invariant Mn/Ti concentration profiles from the substrate/film interface to the film surface. In contrast, at x = 0.25, Mn became enriched towards the surface and a secondary nano-scale phase formed which appeared to maintain the basic rutile structure but with enhanced z-contrast in the tunnels, or tetrahedral interstitial sites. Ab initio thermodynamic calculations provided quantitative estimates for the destabilizing effect of expanding the β-MnO2 lattice parameters to those of TiO2-rutile, the stabilizing effect of diluting Mn with increasing Ti concentration, and competing reaction pathways.

  4. Tyrphostin AG-related compounds attenuate H2O2-induced TRPM2-dependent and -independent cellular responses.

    Science.gov (United States)

    Yamamoto, Shinichiro; Toda, Takahiro; Yonezawa, Ryo; Negoro, Takaharu; Shimizu, Shunichi

    2017-05-01

    TRPM2 is a Ca 2+ -permeable channel that is activated by H 2 O 2 . TRPM2-mediated Ca 2+ signaling has been implicated in the aggravation of inflammatory diseases. Therefore, the development of TRPM2 inhibitors to prevent the aggravation of these diseases is expected. We recently reported that some Tyrphostin AG-related compounds inhibited the H 2 O 2 -induced activation of TRPM2 by scavenging the intracellular hydroxyl radical. In the present study, we examined the effects of AG-related compounds on H 2 O 2 -induced cellular responses in human monocytic U937 cells, which functionally express TRPM2. The effects of AG-related compounds on H 2 O 2 -induced changes in intracellular Ca 2+ concentrations, extracellular signal-regulated kinase (ERK) activation, and CXCL8 secretion were assessed using U937 cells. Ca 2+ influxes via TRPM2 in response to H 2 O 2 were blocked by AG-related compounds. AG-related compounds also inhibited the H 2 O 2 -induced activation of ERK, and subsequent secretion of CXCL8 mediated by TRPM2-dependent and -independent mechanisms. Our results show that AG-related compounds inhibit H 2 O 2 -induced CXCL8 secretion following ERK activation, which is mediated by TRPM2-dependent and -independent mechanisms in U937 cells. We previously reported that AG-related compounds blocked H 2 O 2 -induced TRPM2 activation by scavenging the hydroxyl radical. The inhibitory effects of AG-related compounds on TRPM2-independent responses may be due to scavenging of the hydroxyl radical. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  5. Tuning piezoelectric properties through epitaxy of La2Ti2O7 and related thin films.

    Science.gov (United States)

    Kaspar, Tiffany C; Hong, Seungbum; Bowden, Mark E; Varga, Tamas; Yan, Pengfei; Wang, Chongmin; Spurgeon, Steven R; Comes, Ryan B; Ramuhalli, Pradeep; Henager, Charles H

    2018-02-14

    Current piezoelectric sensors and actuators are limited to operating temperatures less than ~200 °C due to the low Curie temperature of the piezoelectric material. Strengthening the piezoelectric coupling of high-temperature piezoelectric materials, such as La 2 Ti 2 O 7 (LTO), would allow sensors to operate across a broad temperature range. The crystalline orientation and piezoelectric coupling direction of LTO thin films can be controlled by epitaxial matching to SrTiO 3 (001), SrTiO 3 (110), and rutile TiO 2 (110) substrates via pulsed laser deposition. The structure and phase purity of the films are investigated by x-ray diffraction and scanning transmission electron microscopy. Piezoresponse force microscopy is used to measure the in-plane and out-of-plane piezoelectric coupling in the films. The strength of the out-of-plane piezoelectric coupling can be increased when the piezoelectric direction is rotated partially out-of-plane via epitaxy. The strongest out-of-plane coupling is observed for LTO/STO(001). Deposition on TiO 2 (110) results in epitaxial La 2/3 TiO 3 , an orthorhombic perovskite of interest as a microwave dielectric material and an ion conductor. La 2/3 TiO 3 can be difficult to stabilize in bulk form, and epitaxial stabilization on TiO 2 (110) is a promising route to realize La 2/3 TiO 3 for both fundamental studies and device applications. Overall, these results confirm that control of the crystalline orientation of epitaxial LTO-based materials can govern the resulting functional properties.

  6. Atomic Layer Deposition of Al2O3-Ga2O3 Alloy Coatings for Li[Ni0.5Mn0.3Co0.2]O2 Cathode to Improve Rate Performance in Li-Ion Battery.

    Science.gov (United States)

    Laskar, Masihhur R; Jackson, David H K; Guan, Yingxin; Xu, Shenzhen; Fang, Shuyu; Dreibelbis, Mark; Mahanthappa, Mahesh K; Morgan, Dane; Hamers, Robert J; Kuech, Thomas F

    2016-04-27

    Metal oxide coatings can improve the electrochemical stability of cathodes and hence, their cycle-life in rechargeable batteries. However, such coatings often impose an additional electrical and ionic transport resistance to cathode surfaces leading to poor charge-discharge capacity at high C-rates. Here, a mixed oxide (Al2O3)1-x(Ga2O3)x alloy coating, prepared via atomic layer deposition (ALD), on Li[Ni0.5Mn0.3Co0.2]O2 (NMC) cathodes is developed that has increased electron conductivity and demonstrated an improved rate performance in comparison to uncoated NMC. A "co-pulsing" ALD technique was used which allows intimate and controlled ternary mixing of deposited film to obtain nanometer-thick mixed oxide coatings. Co-pulsing allows for independent control over film composition and thickness in contrast to separate sequential pulsing of the metal sources. (Al2O3)1-x(Ga2O3)x alloy coatings were demonstrated to improve the cycle life of the battery. Cycle tests show that increasing Al-content in alloy coatings increases capacity retention; whereas a mixture of compositions near (Al2O3)0.5(Ga2O3)0.5 was found to produce the optimal rate performance.

  7. Light emissions from LiNbO sub 3 /SiO sub 2 /Si structures

    CERN Document Server

    Wu, X L; Tang, N; Deng, S S; Bao, X M

    2003-01-01

    LiNbO sub 3 (LN) films with a high degree of (006) texture were deposited on Si-based dense SiO sub 2 layers by pulsed laser deposition. After annealing, the LN/SiO sub 2 /Si structures were revealed to have ultraviolet-, green-, and red-emitting properties related to self-trapped excitons and E' defect pairs in the SiO sub 2 surface, which are induced by the photorefractive effect of the LN films. The emission wavelength can be tuned by introducing different dopants into the LN films. Waveguiding properties of the structures were demonstrated. The results obtained indicate that the LN/SiO sub 2 /Si structures could be expected to have important applications in modern optoelectronic integration. (letter to the editor)

  8. Single-pulse and multi-pulse femtosecond laser damage of optical single films

    International Nuclear Information System (INIS)

    Yuan Lei; Zhao Yuan'an; He Hongbo; Shao Jianda; Fan Zhengxiu

    2006-01-01

    Laser-induced damage of a single 500 nm HfO 2 film and a single 500 nm ZrO 2 film were studied with single- and multi-pulse femtosecond laser. The laser-induced damage thresholds (LIDT) of both samples by the 1-on-1 method and the 1000-on-1 method were reported. It was discovered that the LIDT of the HfO 2 single film was higher than that of the ZrO 2 single film by both test methods, which was explained by simple Keldysh's multiphoton ionization theory. The LIDT of multi-pulse was lower than that of single-pulse for both samples as a result of accumulative effect. (authors)

  9. Epitaxial YBa2Cu3O7-δ/Sr2RuO4 heterostructures

    International Nuclear Information System (INIS)

    Schlom, D.G.; Merritt, B.A.; Madhavan, S.

    1997-01-01

    The anisotropic oxide superconductors YBa 2 Cu 3 O 7-δ and Sr 2 RuO 4 have been epitaxially combined in various ways (c-axis on c-axis, c-axis on a-axis, and a-axis on a-axis) though the use of appropriate substrates. Phase-pure a-axis oriented or c-axis oriented epitaxial Sr 2 RuO 4 films were grown by pulsed laser deposition. YBa 2 Cu 3 O 7-δ films were then grown on both orientations of Sr 2 RuO 4 films and the resulting epitaxy was characterized

  10. Photoluminescence properties of powder and pulsed laser-deposited PbS nanoparticles in SiO2

    International Nuclear Information System (INIS)

    Dhlamini, M.S.; Terblans, J.J.; Ntwaeaborwa, O.M.; Ngaruiya, J.M.; Hillie, K.T.; Botha, J.R.; Swart, H.C.

    2008-01-01

    Thin films of lead sulfide (PbS) nanoparticles embedded in an amorphous silica (SiO 2 ) host were grown on Si(1 0 0) substrates at different temperatures by the pulsed laser deposition (PLD) technique. Surface morphology and photoluminescence (PL) properties of samples were analyzed with scanning electron microscopy (SEM) and a 458 nm Ar + laser, respectively. The PL data show a blue-shift from the normal emission at ∼3200 nm in PbS bulk to ∼560-700 nm in nanoparticulate PbS powders and thin films. Furthermore, the PL emission of the films was red-shifted from that of the powders at ∼560 to ∼660 nm. The blue-shifting of the emission wavelengths from 3200 to ∼560-700 nm is attributed to quantum confinement of charge carriers in the restricted volume of nanoparticles, while the red-shift between powders and thin-film PbS nanoparticles is speculated to be due to an increase in the defect concentration. The red-shift increased slightly with an increase in deposition temperature, which suggests that there has been a relative growth in particle sizes during the PLD of the films at higher temperatures. Generally, the PL emission of the powders was more intense than that of the films, although the intensity of some of the films was improved marginally by post-deposition annealing at 400 deg. C. This paper compares the PL properties of powder and pulsed laser-deposited thin films of PbS nanoparticles and the effects of deposition temperatures

  11. Pulsed Field Waveforms for Magnetization of HTS Gd-Ba-Cu-O Bulk Magnets

    International Nuclear Information System (INIS)

    Ida, T; Matsuzaki, H; Morita, E; Sakashita, H; Harada, T; Ogata, H; Kimura, Y; Miki, M; Kitano, M; Izumi, M

    2006-01-01

    Progress in pulse magnetization technique for high-temperature superconductor bulks of melt-textured RE-Ba-Cu-O with large diameter is important for the realization of power applications. We studied the pulsed power source and pulsed field waveforms to enhance to improve the magnetization properties for Gd-Ba-Cu-O bulk. The risetime and duration of pulse waveform effectively varied distribution of magnetic flux

  12. Multifractal spectra of scanning electron microscope images of SnO2 thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Chen, Z.W.; Lai, J.K.L.; Shek, C.H.

    2005-01-01

    The concept of fractal geometry has proved useful in describing structures and processes in experimental systems. In this Letter, the surface topographies of SnO 2 thin films prepared by pulsed laser deposition for various substrate temperatures were measured by scanning electron microscope (SEM). Multifractal spectra f(α) show that the higher the substrate temperature, the wider the spectrum, and the larger the Δf(Δf=f(α min )-f(α max )). It is apparent that the nonuniformity of the height distribution increases with the increasing substrate temperature, and the liquid droplets of SnO 2 thin films are formed on previous thin films. These results show that the SEM images can be characterized by the multifractal spectra

  13. TiO{sub 2} nanoparticles obtained by laser ablation in water: Influence of pulse energy and duration on the crystalline phase

    Energy Technology Data Exchange (ETDEWEB)

    Giorgetti, E., E-mail: emilia.giorgetti@fi.isc.cnr.it [Istituto dei Sistemi Complessi (ISC) CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Muniz Miranda, M.; Caporali, S. [Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Canton, P. [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari, Via Torino, 30170 Venezia-Mestre (Italy); Marsili, P. [Istituto dei Sistemi Complessi (ISC) CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa (Italy); Vergari, C.; Giammanco, F. [Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa (Italy)

    2015-09-15

    Highlights: • Laser ablation of Ti in water at 1064 nm and comparison of ns and ps temporal regimes. • Structural and spectroscopic characterization of the colloids: TiO{sub 2} is the predominant phase. • Determination of an energy window where ps ablation produces more anatase than rutile. • Modelling of the experimental dependence of anatase/rutile yield on pulse length and energy. - Abstract: We fabricated Ti oxide nanoparticles by laser ablation of a Ti target in doubly deionized water with ps or ns pulses at a laser wavelength of 1064 nm. Electron microscopy, Raman, X-ray diffraction and X-ray photoelectron spectroscopy showed that, while with ns pulses the dominant oxide phase is rutile, with ps pulses anatase is the most abundant form in an intermediate energy window centered around 25 mJ per pulse. This experimental behavior can be described by a theoretical model which calculates the pressure and temperature evolution of the ablated material and, from this, the rutile and anatase yield.

  14. Low operating voltage InGaZnO thin-film transistors based on Al{sub 2}O{sub 3} high-k dielectrics fabricated using pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Geng, G. Z.; Liu, G. X.; Zhang, Q.; Shan, F. K. [Qingdao University, Qingdao (China); DongEui University, Busan (Korea, Republic of); Lee, W. J.; Shin, B. C. [DongEui University, Busan (Korea, Republic of); Cho, C. R. [Pusan National University, Busan (Korea, Republic of)

    2014-05-15

    Low-voltage-driven amorphous indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) with an Al{sub 2}O{sub 3} dielectric were fabricated on a Si substrate by using pulsed laser deposition. Both Al{sub 2}O{sub 3} and IGZO thin films are amorphous, and the thin films have very smooth surfaces. The Al{sub 2}O{sub 3} gate dielectric exhibits a very low leakage current density of 1.3 x 10{sup -8} A/cm{sup 2} at 5 V and a high capacitance density of 60.9 nF/cm{sup 2}. The IGZO TFT with a structure of Ni/IGZO/Al{sub 2}O{sub 3}/Si exhibits high performance with a low threshold voltage of 1.18 V, a high field effect mobility of 20.25 cm{sup 2}V{sup -1}s{sup -1}, an ultra small subthreshold swing of 87 mV/decade, and a high on/off current ratio of 3 x 10{sup 7}.

  15. Measurement of the C2H2 destruction kinetics by infrared laser absorption spectroscopy in a pulsed low pressure dc discharge

    International Nuclear Information System (INIS)

    Rousseau, A; Guaitella, O; Gatilova, L; Hannemann, M; Roepcke, J

    2007-01-01

    The kinetics of destruction of C 2 H 2 is investigated in a low pressure pulsed dc discharge in dry air. Tuneable diode laser absorption spectroscopy in the mid-infrared region (1350 cm -1 ) has been used to measure the influence of (i) the pulse duration (ii) the pulse repetition rate and (iii) the pulse current on the C 2 H 2 concentration in situ the discharge tube. First, it is shown that in the plasma region under flow conditions the time averaged concentration of C 2 H 2 depends only on the time averaged discharge current. Second, time resolved measurements have been performed in a closed reactor, i.e. under static conditions. A simple kinetic modelling of the pulsed discharge leads to a good agreement with the experimental results and shows that the oxidation rate of C 2 H 2 is mainly controlled by the time averaged concentration of O atoms. Finally, the influence of porous TiO 2 photocatalyst on the C 2 H 2 oxidation rate is reported

  16. Independent component analysis applied to pulse oximetry in the estimation of the arterial oxygen saturation (SpO2) - a comparative study

    DEFF Research Database (Denmark)

    Jensen, Thomas; Duun, Sune Bro; Larsen, Jan

    2009-01-01

    We examine various independent component analysis (ICA) digital signal processing algorithms for estimating the arterial oxygen saturation (SpO2) as measured by a reflective pulse oximeter. The ICA algorithms examined are FastICA, Maximum Likelihood ICA (ICAML), Molgedey and Schuster ICA (ICAMS......), and Mean Field ICA (ICAMF). The signal processing includes pre-processing bandpass filtering to eliminate noise, and post-processing by calculating the SpO2. The algorithms are compared to the commercial state-of-the-art algorithm Discrete Saturation Transform (DST) by Masimo Corporation...

  17. PLD prepared nanostructured Pt-CeO{sub 2} thin films containing ionic platinum

    Energy Technology Data Exchange (ETDEWEB)

    Vorokhta, M., E-mail: vorohtam@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague 8 (Czech Republic); Khalakhan, I.; Matolínová, I.; Nováková, J.; Haviar, S. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague 8 (Czech Republic); Lančok, J.; Novotný, M. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague, Czhech Republic (Czech Republic); Yoshikawa, H. [National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Matolín, V. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague 8 (Czech Republic)

    2017-02-28

    Highlights: • Nanostructured Pt-CeO{sub 2} thin catalyst films were grown on plasma etched and non-etched carbon substrates by pulsed laser deposition. • The surface composition of the nanostructured Pt-CeO{sub 2} films was investigated by surface analysis techniques. • The effect of film roughening was separated from the effect of platinum-ceria atomic interactions. - Abstract: The composition of nanostructured Pt-CeO{sub 2} films on graphite substrates prepared by pulsed laser deposition has been investigated by means of hard X-ray photoelectron spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy, and atomic force microscopy. The influence of morphology of the graphite substrates was investigated with respect to the relative concentrations of ionic and metallic Pt species in the films. It was found that the degree of Pt{sup 2+} enrichment is directly related to the surface morphology of graphite substrates. In particular, the deposition of Pt-CeO{sub 2} films on rough graphite substrate etched in oxygen plasma yielded nanostructured Pt-CeO{sub 2} catalyst films with high surface area and high Pt{sup 2+}/Pt{sup 0} ratio. The presented results demonstrate that PLD is a suitable method for the preparation of thin Pt-CeO{sub 2} catalyst films for fuel cell applications.

  18. Structural and optical properties of pulse laser deposited Ag2O thin films

    Science.gov (United States)

    Agasti, Souvik; Dewasi, Avijit; Mitra, Anirban

    2018-05-01

    We deposited Ag2O films in PLD system on glass substrate for a fixed partial oxygen gas pressure (70 mili Torr) and, with a variation of laser energy from 75 to 215 mJ/Pulse. The XRD patterns confirm that the films have well crystallinity and deposited as hexagonal lattice. The FESEM images show that the particle size of the films increased from 34.84 nm to 65.83 nm. The composition of the films is analyzed from EDX spectra which show that the percentage of oxygen increased by the increment of laser energy. From the optical characterization, it is observed that the optical band gap appears in the visible optical range in an increasing order from 0.87 to 0.98 eV with the increment of laser energy.

  19. ZnO sublimation using a polyenergetic pulsed electron beam source: numerical simulation and validation

    Energy Technology Data Exchange (ETDEWEB)

    Tricot, S; Semmar, N; Lebbah, L; Boulmer-Leborgne, C, E-mail: sylvain.tricot@univ-orleans.f [GREMI, UMR 6606-CNRS/Universite d' Orleans, 14 rue d' Issoudun, BP 6744, 45067 Orleans cedex 2 (France)

    2010-02-17

    This paper details the electro-thermal study of the sublimation phase on a zinc oxide surface. This thermodynamic process occurs when a ZnO target is bombarded by a pulsed electron beam source composed of polyenergetic electrons. The source delivers short pulses of 180 ns of electrons with energies up to 16 keV. The beam total current reaches 800 A and is focused onto a spot area 2 mm in diameter. The Monte Carlo CASINO program is used to study the first stage of the interaction and to define the heat source space distribution inside the ZnO target. Simulation of the second stage of interaction is developed in a COMSOL multiphysics project. The simulated thermal field induced by space and time heat conduction is presented. Typically for a pulsed electron beam 2 mm in diameter of electrons having energies up to 16 keV, the surface temperature reaches a maximum of 7000 K. The calculations are supported by SEM pictures of the target irradiated by various beam energies and numbers of pulses.

  20. ZnO sublimation using a polyenergetic pulsed electron beam source: numerical simulation and validation

    International Nuclear Information System (INIS)

    Tricot, S; Semmar, N; Lebbah, L; Boulmer-Leborgne, C

    2010-01-01

    This paper details the electro-thermal study of the sublimation phase on a zinc oxide surface. This thermodynamic process occurs when a ZnO target is bombarded by a pulsed electron beam source composed of polyenergetic electrons. The source delivers short pulses of 180 ns of electrons with energies up to 16 keV. The beam total current reaches 800 A and is focused onto a spot area 2 mm in diameter. The Monte Carlo CASINO program is used to study the first stage of the interaction and to define the heat source space distribution inside the ZnO target. Simulation of the second stage of interaction is developed in a COMSOL multiphysics project. The simulated thermal field induced by space and time heat conduction is presented. Typically for a pulsed electron beam 2 mm in diameter of electrons having energies up to 16 keV, the surface temperature reaches a maximum of 7000 K. The calculations are supported by SEM pictures of the target irradiated by various beam energies and numbers of pulses.

  1. Higgs Mode in the d -Wave Superconductor Bi2Sr2CaCu2O8 +x Driven by an Intense Terahertz Pulse

    Science.gov (United States)

    Katsumi, Kota; Tsuji, Naoto; Hamada, Yuki I.; Matsunaga, Ryusuke; Schneeloch, John; Zhong, Ruidan D.; Gu, Genda D.; Aoki, Hideo; Gallais, Yann; Shimano, Ryo

    2018-03-01

    We investigate the terahertz (THz)-pulse-driven nonlinear response in the d -wave cuprate superconductor Bi2Sr2CaCu2O8 +x (Bi2212) using a THz pump near-infrared probe scheme in the time domain. We observe an oscillatory behavior of the optical reflectivity that follows the THz electric field squared and is markedly enhanced below Tc . The corresponding third-order nonlinear effect exhibits both A1 g and B1 g symmetry components, which are decomposed from polarization-resolved measurements. A comparison with a BCS calculation of the nonlinear susceptibility indicates that the A1 g component is associated with the Higgs mode of the d -wave order parameter.

  2. Influence of O2 Flux on Compositions and Properties of ITO Films Deposited at Room Temperature by Direct-Current Pulse Magnetron Sputtering

    International Nuclear Information System (INIS)

    Wang Hua-Lin; Ding Wan-Yu; Liu Chao-Qian; Chai Wei-Ping

    2010-01-01

    Indium tin oxide (ITO) films were deposited on glass substrates at room temperature by dc pulse magnetron sputtering. Varying O 2 flux, ITO films with different properties are obtained. Both x-ray diffractometer and x-ray photoelectron spectrometer are used to study the change of crystalline structures and bonding structures of ITO films, respectively. Electrical properties are measured by four-point probe measurements. The results indicate that the chemical structures and compositions of ITO films strongly depend on the O 2 flux. With increasing O 2 flux, ITO films display better crystallization, which could decrease the resistivity of films. On the contrary, ITO films contain less O vacancies with increasing O 2 flux, which could worsen the conductive properties of films. Without any heat treatment onto the samples, the resistivity of the ITO film could reach 6.0 × 10 −4 Ω ·cm, with the optimal deposition parameter of 0.2 sccm O 2 flux. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Pulse oximetry: fundamentals and technology update

    Directory of Open Access Journals (Sweden)

    Nitzan M

    2014-07-01

    Full Text Available Meir Nitzan,1 Ayal Romem,2 Robert Koppel31Department of Physics/Electro-Optics, Jerusalem College of Technology, Jerusalem, Israel; 2Pulmonary Institute, Shaare Zedek Medical Center, Jerusalem, Israel; 3Neonatal/Perinatal Medicine, Cohen Children's Medical Center of New York/North Shore-LIJ Health System, New Hyde Park, NY, United StatesAbstract: Oxygen saturation in the arterial blood (SaO2 provides information on the adequacy of respiratory function. SaO2 can be assessed noninvasively by pulse oximetry, which is based on photoplethysmographic pulses in two wavelengths, generally in the red and infrared regions. The calibration of the measured photoplethysmographic signals is performed empirically for each type of commercial pulse-oximeter sensor, utilizing in vitro measurement of SaO2 in extracted arterial blood by means of co-oximetry. Due to the discrepancy between the measurement of SaO2 by pulse oximetry and the invasive technique, the former is denoted as SpO2. Manufacturers of pulse oximeters generally claim an accuracy of 2%, evaluated by the standard deviation (SD of the differences between SpO2 and SaO2, measured simultaneously in healthy subjects. However, an SD of 2% reflects an expected error of 4% (two SDs or more in 5% of the examinations, which is in accordance with an error of 3%–4%, reported in clinical studies. This level of accuracy is sufficient for the detection of a significant decline in respiratory function in patients, and pulse oximetry has been accepted as a reliable technique for that purpose. The accuracy of SpO2 measurement is insufficient in several situations, such as critically ill patients receiving supplemental oxygen, and can be hazardous if it leads to elevated values of oxygen partial pressure in blood. In particular, preterm newborns are vulnerable to retinopathy of prematurity induced by high oxygen concentration in the blood. The low accuracy of SpO2 measurement in critically ill patients and newborns

  4. Effects of Different Surfactants on Structural, Tribological and Electrical Properties of Pulsed Electro-Codeposited Cu-ZrO2 Composite Coatings

    Science.gov (United States)

    Maharana, H. S.; Basu, A.

    2018-03-01

    Cu-ZrO2 composite coating was synthesized by pulse electrodeposition from an acidic sulfate electrolyte dispersed with nano-sized ZrO2 particles. Effects of different surfactants in different amounts on the codeposition and distribution of ZrO2 particles in the copper matrix, surface-mechanical (hardness and wear) and electrical (conductivity) properties of developed composite coatings have been thoroughly investigated. Sodium dodecyl sulfate (SDS), poly acrylic acid (PAA) and glucose have been added in the electrolyte in different concentrations as anionic, polymeric and nonionic surfactants. Obtained experimental results confirmed that addition of SDS up to 1 g/L improves the amount of codeposited ZrO2 particles in the copper matrix and surface-mechanical properties of the nanocomposite coatings. But, in case of PAA- and glucose-assisted coatings, highest amount of ZrO2 codeposition was observed in 0.5 g/L PAA and 20 g/L glucose-assisted coatings, which in turn affected the mechanical properties. Surface-mechanical properties were found to be affected by coating matrix morphology and crystallographic orientation along with embedded ZrO2 particle content. Electrical conductivity of all the deposits not only depends upon the codeposition of ZrO2 particles in the matrix but also on the microstructure and crystallographic orientation.

  5. Sr{sub 2}MgMoO{sub 6−δ} thin films fabricated using pulsed-laser deposition with high concentrations of oxygen vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Shigematsu, K. [Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Chikamatsu, A., E-mail: chikamatsu@chem.s.u-tokyo.ac.jp; Fukumura, T. [Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); JST-CREST, Bunkyo-ku, Tokyo 113-0033 (Japan); Toyoda, S. [Department of Materials Science and Engineering, Kyoto University, Yoshida-honmachi, Kyoto 606-8501 (Japan); Ikenaga, E. [JASRI/SPring-8, Mikazuki-cho, Hyogo 679-5198 (Japan); Hasegawa, T. [Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); JST-CREST, Bunkyo-ku, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki, Kanagawa 213-0012 (Japan)

    2014-06-30

    We fabricated epitaxial thin films of oxygen-vacant Sr{sub 2}MgMoO{sub 6−δ} using pulsed laser deposition. The films showed low resistivity of the order of 10{sup −2} Ω cm at 300 K. X-ray diffraction analyses revealed that Mg and Mo ions in the Sr{sub 2}MgMoO{sub 6−δ} films were considerably disordered, compared to those in bulk Sr{sub 2}MgMoO{sub 6−δ}. The proportion of oxygen vacancies estimated through hard x-ray photoemission measurements was as large as 0.37, and correlated well with the Mg/Mo ordering.

  6. Fabrication of highly conductive Ta-doped SnO{sub 2} polycrystalline films on glass using seed-layer technique by pulse laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Shoichiro, E-mail: tg-s-nakao@newkast.or.j [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Yamada, Naoomi [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Hitosugi, Taro [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Hirose, Yasushi; Shimada, Toshihiro; Hasegawa, Tetsuya [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan)

    2010-03-31

    We discuss the fabrication of highly conductive Ta-doped SnO{sub 2} (Sn{sub 1-x}Ta{sub x}O{sub 2}; TTO) thin films on glass by pulse laser deposition. On the basis of the comparison of X-ray diffraction patterns and resistivity ({rho}) values between epitaxial films and polycrystalline films deposited on bare glass, we proposed the use of seed-layers for improving the conductivity of the TTO polycrystalline films. We investigated the use of rutile TiO{sub 2} and NbO{sub 2} as seed-layers; these are isostructural materials of SnO{sub 2,} which are expected to promote epitaxial-like growth of the TTO films. The films prepared on the 10-nm-thick seed-layers exhibited preferential growth of the TTO (110) plane. The TTO film with x = 0.05 on rutile TiO{sub 2} exhibited {rho} = 3.5 x 10{sup -4} {Omega} cm, which is similar to those of the epitaxial films grown on Al{sub 2}O{sub 3} (0001).

  7. Phosphorus acceptor doped ZnO nanowires prepared by pulsed-laser deposition

    International Nuclear Information System (INIS)

    Cao, B Q; Lorenz, M; Rahm, A; Wenckstern, H von; Czekalla, C; Lenzner, J; Benndorf, G; Grundmann, M

    2007-01-01

    Phosphorus-doped ZnO (ZnO:P) nanowires were successfully prepared by a novel high-pressure pulsed-laser deposition process using phosphorus pentoxide as the dopant source. Detailed cathodoluminescence studies of single ZnO:P nanowires revealed characteristic phosphorus acceptor-related peaks: neutral acceptor-bound exciton emission (A 0 , X, 3.356 eV), free-to-neutral-acceptor emission (e, A 0 , 3.314 eV), and donor-to-acceptor pair emission (DAP, ∼3.24 and ∼3.04 eV). This means that stable acceptor levels with a binding energy of about 122 meV have been induced in the nanowires by phosphorus doping. Moreover, the induced acceptors are distributed homogeneously along the doped nanowires

  8. Tuning piezoelectric properties through epitaxy of La2Ti2O7 and related thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kaspar, Tiffany C.; Hong, Seungbum; Bowden, Mark E.; Varga, Tamas; Yan, Pengfei; Wang, Chongmin; Spurgeon, Steven R.; Comes, Ryan B.; Ramuhalli, Pradeep; Henager, Charles H.

    2018-02-14

    Current piezoelectric sensors and actuators are limited to operating temperatures less than ~200°C due to the low Curie temperature of the piezoelectric material. High temperature piezoelectric materials such as La2Ti2O7 (LTO) would facilitate the development of high-temperature sensors if the piezoelectric coupling coefficient could be maximized. We have deposited epitaxial LTO films on SrTiO3(001), SrTiO3(110), and rutile TiO2(110) substrates by pulsed laser deposition, and show that the crystalline orientation of the LTO film, and thus its piezoelectric coupling direction, can be controlled by epitaxial matching to the substrate. The structure and phase purity of the films were investigated by x-ray diffraction and scanning transmission electron microscopy. To characterize the piezoelectric properties, piezoresponse force microscopy was used to measure the in-plane and out-of-plane piezoelectric coupling in the films. We find that the strength of the out-of-plane piezoelectric coupling can be increased when the piezoelectric crystalline direction is rotated partially out-of-plane via epitaxy. The strongest out-of-plane coupling is observed for LTO/STO(001). Deposition on TiO2(110) results in epitaxial La2/3TiO3, an orthorhombic perovskite of interest as a microwave dielectric material. La2/3TiO3 can be difficult to stabilize in bulk form, and epitaxial deposition has not been previously reported. These results confirm that control of the crystalline orientation of LTO-based materials can increase the out-of-plane strength of its piezoelectric coupling, which can be exploited in piezoelectric devices.

  9. Improving tribological properties of (Zn–Ni)/nano Al{sub 2}O{sub 3} composite coatings produced by ultrasonic assisted pulse plating

    Energy Technology Data Exchange (ETDEWEB)

    Ataie, Sayed Alireza, E-mail: ataie_s_alireza@metaleng.iust.ac.ir; Zakeri, Alireza

    2016-07-25

    In this study pulse electroplating was used to deposit the composite coating of (Zn–Ni) strengthened by Al{sub 2}O{sub 3} nanoparticles on mild steel plate. The effect of Al{sub 2}O{sub 3} fraction and ultrasonic irradiation on the properties of the composite coating was also investigated. Scanning electron microscopy and energy dispersive spectroscopy techniques were employed to characterize the morphology and composition of the coating. Topography and surface roughness were investigated by atomic force microscopy. Also in order to evaluate the mechanical properties of the coating micro hardness and wear tests were conducted. It was found that coating hardness was increased from 538 HV to 750 HV and friction coefficient was decreased from 0.588 to 0.392. Results revealed that tribological properties of coating could be improved significantly by using suitable ultrasonic intensity simultaneously with pulse plating. - Highlights: • SEM indicated on the elimination of cracks and pores when ultrasounds were used. • XRD result showed nano sized grains of Zn–Ni matrix was developed in this research. • Simultaneous pulse plating and ultrasonic conditions improved the properties of the coating. • A (Zn–Ni)/nano alumina uniform composite coating for especial applications was developed. • Micro hardness and wear behavior of the coating was modified by intensifying the ultrasound.

  10. Measurement of the C{sub 2}H{sub 2} destruction kinetics by infrared laser absorption spectroscopy in a pulsed low pressure dc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, A [LPTP, Ecole Polytechnique, CNRS, Route de Saclay, 91 128 Palaiseau Cedex (France); Guaitella, O [LPTP, Ecole Polytechnique, CNRS, Route de Saclay, 91 128 Palaiseau Cedex (France); Gatilova, L [LPTP, Ecole Polytechnique, CNRS, Route de Saclay, 91 128 Palaiseau Cedex (France); Hannemann, M [INP-Greifswald, Friedrich-Ludwig-Jahn-Str. 19, 17489 Greifswald (Germany); Roepcke, J [INP-Greifswald, Friedrich-Ludwig-Jahn-Str. 19, 17489 Greifswald (Germany)

    2007-04-07

    The kinetics of destruction of C{sub 2}H{sub 2} is investigated in a low pressure pulsed dc discharge in dry air. Tuneable diode laser absorption spectroscopy in the mid-infrared region (1350 cm{sup -1}) has been used to measure the influence of (i) the pulse duration (ii) the pulse repetition rate and (iii) the pulse current on the C{sub 2}H{sub 2} concentration in situ the discharge tube. First, it is shown that in the plasma region under flow conditions the time averaged concentration of C{sub 2}H{sub 2} depends only on the time averaged discharge current. Second, time resolved measurements have been performed in a closed reactor, i.e. under static conditions. A simple kinetic modelling of the pulsed discharge leads to a good agreement with the experimental results and shows that the oxidation rate of C{sub 2}H{sub 2} is mainly controlled by the time averaged concentration of O atoms. Finally, the influence of porous TiO{sub 2} photocatalyst on the C{sub 2}H{sub 2} oxidation rate is reported.

  11. Structural, morphological and electronic properties of pulsed laser grown Eu2O3 thin films

    Science.gov (United States)

    Kumar, Sandeep; Prakash, Ram; Choudhary, R. J.; Phase, D. M.

    2018-05-01

    Herein, we report the growth, structural, morphological and electronic properties of Europium sesquioxide (Eu2O3) thin films on Si [1 0 0] substrate using pulsed laser deposition technique. The films were deposited at ˜750 °C substrate temperature while the oxygen partial pressure (OPP) was varied (vacuum,˜1 mTorr, ˜10 mTorr and ˜300 mTorr). X-ray diffraction results confirm the single phase cubic structure of the film grown at ˜300 mTorr. The XRD results are also supported by the Raman's spectroscopy results. Eu-3d XPS core level spectra confirms the dominant contributions from the "3+" states of Eu in the film.

  12. Characterization of homoepitaxial and heteroepitaxial ZnO films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.Q. [Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)]. E-mail: chenzq@taka.jaeri.go.jp; Yamamoto, S. [Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Kawasuso, A. [Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Xu, Y. [Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Sekiguchi, T. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2005-05-15

    Homo- and heteroepitaxial ZnO films were grown on ZnO (0001) and Al{sub 2}O{sub 3} (1-bar 1-bar 2-bar -bar 0) substrates by using pulsed laser deposition. The X-ray diffraction and Raman measurements for these films show good correspondence with the bulk ZnO substrate, which confirms successful growth of c-axis oriented ZnO layer. Strong UV emission was also observed in these films, indicating good optical quality. However, the surface roughness differs very much for the homo- and heteroepitaxial film, that is, much less for the homoepitaxial layer. Positron annihilation measurements reveal a higher vacancy concentration in the homoepitaxial layer.

  13. Influence of ion bombardment on structural and electrical properties of SiO2 thin films deposited from O2/HMDSO inductively coupled plasmas under continuous wave and pulsed modes

    International Nuclear Information System (INIS)

    Bousquet, A.; Goullet, A.; Leteinturier, C.; Granier, A.; Coulon, N.

    2008-01-01

    Low pressure Plasma Enhanced Chemical Vapour Deposition is commonly used to deposit insulators on temperature sensitive substrates. In these processes, the ion bombardment experienced by films during its growth is known to have benefits but also some disadvantages on material properties. In the present paper, we investigate the influence of this bombardment on the structure and the electrical properties of SiO 2 -like film deposited from oxygen/hexa-methyl-di-siloxane radiofrequency plasma in continuous and pulsed modes. First, we studied the ion kinetics thanks to time-resolved measurements by Langmuir probe. After, we showed the ion bombardment in such plasma controls the OH bond content in deposited films. Finally, we highlight the impressive reduction of fixed charge and interface state densities in films obtained in pulsed mode due to a lower ion bombardment. (authors)

  14. Four-wave-mixing and nonlinear cavity dumping of 280 picosecond 2nd Stokes pulse at 1.3 μm from Nd:SrMoO4 self-Raman laser

    International Nuclear Information System (INIS)

    Smetanin, S N; Ivleva, L I; Jelínek, M Jr; Kubeček, V; Jelínková, H; Shurygin, A S

    2016-01-01

    The 280 picosecond 2nd Stokes Raman pulses at 1.3 μm were generated directly from the miniature diode-pumped Nd:SrMoO 4 self-Raman laser. Using the 90° phase matching insensitive to the angular mismatch, the self-Raman laser allowed for the achievement of the four-wave-mixing generation of the 2nd Stokes Raman pulse directly in the active Nd:SrMoO 4 crystal at stimulated Raman scattering (SRS) self-conversion of the laser radiation. The passive Cr:YAG Q-switching and nonlinear cavity dumping was used without any phase locking device. (letter)

  15. Preparation and Characterization of PbO-SrO-Na2O-Nb2O5-SiO2 Glass Ceramics Thin Film for High-Energy Storage Application

    Science.gov (United States)

    Tan, Feihu; Zhang, Qingmeng; Zhao, Hongbin; Wei, Feng; Du, Jun

    2018-03-01

    PbO-SrO-Na2O-Nb2O5-SiO2 (PSNNS) glass ceramic thin films were prepared by pulsed laser deposition technology on heavily doped silicon substrates. The influence of annealing temperatures on microstructures, dielectric properties and energy storage performances of the as-prepared films were investigated in detail. X-ray diffraction studies indicate that Pb2Nb2O7 crystallizes at 800°C and disappears at 900°C, while NaNbO3 and PbNb2O6 are formed at the higher temperature of 900°C. The dielectric properties of the glass ceramics thin films have a strong dependence on the phase assemblages that are developed during heat treatment. The maximum dielectric constant value of 171 was obtained for the film annealed at 800°C, owing to the high electric breakdown field strength, The energy storage densities of the PSNNS films annealed at 800°C were as large as 36.9 J/cm3, These results suggest that PSNNS thin films are promising for energy storage applications.

  16. Target swapping in PLD: An efficient approach for CdS/SiO2 and CdS:Ag(1%)/SiO2 nanocomposite thin films with enhanced luminescent properties

    International Nuclear Information System (INIS)

    Saxena, Nupur; Kumar, Pragati; Gupta, Vinay

    2017-01-01

    A novel synthesis method for luminescent and by-products (like CdO) free CdS/SiO 2 and CdS:Ag(1%)/SiO 2 (i.e. 1%Ag doped CdS/SiO 2 ) nanocomposite thin films at room temperature by pulsed laser deposition is reported. Targets of CdS, CdS:Ag(1%) and SiO 2 are used to deposit CdS/SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposite thin films by swapping them at a frequency ratio of 2:8 laser pulses/sec. X-ray photoelectron spectroscopy analysis ensures the ratio of CdS to SiO 2 in nanocomposite as 21:79 which is nearly same as the ratio of incident pulses/sec (i.e. 2:8) on the two targets. Transmission electron micrographs visualize the formation of CdS/ CdS:Ag(1%) nanocrystals in nanocomposite systems after annealing at 500 °C. Highly intense and broad red emission is achieved from CdS/SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposites. The efficiencies of emission from pristine CdS:SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposites are found to be enhanced by approximately two times as compared to sole nanocrystalline CdS and CdS:Ag(1%) thin films respectively and further enhanced upto 7 times on annealing the nanocomposite systems at 500 °C. - Graphical abstract: A modified synthesis method for luminescent and by-products (like CdO) free undoped &1% Ag doped CdS/SiO 2 (deposit CdS/SiO 2 and CdS:Ag(1%)/SiO 2 ) nanocomposite thin films at room temperature by pulsed laser deposition is reported. Targets of CdS or CdS:Ag(1%) and SiO 2 are used to deposit CdS/SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposite thin films by swapping them at a frequency of 2:8 pulses/sec. X-ray photoelectron spectroscopy analysis ensures the ratio of CdS to SiO 2 in nanocomposite as 21:79 which is nearly same as the ratio of incident pulses/sec (2:8) on the two targets. Transmission electron micrographs visualize the formation of CdS nanocrystals in nanocomposite systems after annealing at 500 °C. Intense and broad red emission is achieved from deposit CdS/SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposites. The efficiency of

  17. Strength-toughness relations in sintered and isostatically hot-pressed ZrO2-toughened Al2O3

    International Nuclear Information System (INIS)

    Hori, S.; Yoshimura, M.; Somiya, S.

    1986-01-01

    The fracture toughness of fine-grained undoped ZrO 2 -toughened Al 2 O 3 (ZTA) was essentially unchanged by post-sintering hot isostatic pressing and increased monotonically with ZrO 2 additions up to 25 wt%. The strength of ZTA with 5 to 15 wt% tetragonal ZrO 2 , which depended monotonically on the amount of ZrO 2 present before hot isostatic pressing, was increased by pressing but became almost constant between 5 and 15 wt% ZrO 2 addition. The strength appeared to be controlled by pores before pressing and by surface flaws after pressing; the size of flaws after pressing increased with ZrO 2 content. The strength of ZTA containing mostly monoclinic ZrO 2 (20 to 25 wt%) remained almost constant despite the noticeable density increase upon hot isostatic pressing because the strength was controlled by preexisting microcracks whose extent did not change on postsintering pressing. These strength-toughness relations in sintered and isostatically hot-pressed ZTA are explained on the basis of R-curve behavior. The importance of the contribution of microcracks to the toughness of ZTA is emphasized

  18. Pulsed laser deposited MnCo{sub 2}O{sub 4} protective layer on SS430 for solid oxide fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, Anshu, E-mail: gauranshu20@gmail.com, E-mail: ahamed.vza@gmail.com; Mohiddon, Md. Ahamad, E-mail: gauranshu20@gmail.com, E-mail: ahamed.vza@gmail.com [National Institute of Technology Andhra Pradesh, Tadepalliguem 534101 (India); Prasad, Muvva D. [UGC Networking Centre, School of Chemistry, University of Hyderabad, Hyderabad 500046, India. Phone:+91-40-23134382, Fax:+91-40-23010227 (India)

    2016-05-23

    The growth and oxidation study of pulsed laser deposited MnCo{sub 2}O{sub 4} protective layer on SS430 substrate for solid oxide fuel cell application is demonstrated. MnCo{sub 2}O{sub 4} has been achieved in three different ways including, deposition at higher substrate temperature (700°C), and deposition at room temperature on pre-oxidized and untreated SS430 substrate followed by annealing at 700°C for 2 hrs. X-ray diffraction and Raman spectroscopy has been applied to demonstrate the kind of phases developed in each case. These three samples were subjected to heat treatment at 750°C for 5 hr. The extent of undesired Fe{sub 2}O{sub 3} phase formation in the post deposition heat treated samples is discussed based on Raman spectroscopic results.

  19. Yttrium-enriched YBa2Cu3Ox thin films for coated conductors fabricated by pulsed laser deposition

    DEFF Research Database (Denmark)

    Khoryushin, Alexey V.; Mozhaev, Peter B.; Mozhaeva, Julia E.

    2013-01-01

    The effects of excess yttria on the structural and electrical properties of the YBa2Cu3Ox (YBCO) thin films are studied. The films were deposited on (LaAlO3)0.3–(Sr2AlTaO8)0.7 substrates by pulsed laser ablation from targets with different elemental composition. An increase of yttrium content of ...

  20. Piezoelectrically-induced stress-luminescence phenomenon in CaAl2O4:Eu2+

    International Nuclear Information System (INIS)

    Wei, Yongbin; Wu, Zheng; Jia, Yanmin; Liu, Yongsheng

    2015-01-01

    Piezoelectrically-induced stress-luminescence in the CaAl 2 O 4 :Eu 2+ was investigated. Blue light that was visible to the naked eye could be observed in the dark when a pulse force of ∼7.7 kN was applied to the sample. The intensity of the stress-luminescence strongly depended on the magnitude of the applied force during a pulse cycle. The intensity decreased with repetitive application of pulse stress and was completely recovered after irradiation with ultraviolet light. It is suggested that the stress-luminescence effect in CaAl 2 O 4 :Eu 2+ arises from the piezoelectrically-induced de-trapping of the charge carriers. A CaAl 2 O 4 :Eu 2+ ceramic that exhibits a stress-luminescence effect has potential applications in smart stress optically-sensing devices. - Highlights: • The strong induced stress-luminescence in CaAl 2 O 4 :Eu 2+ was observed. • The stress-luminescent intensity strongly depends on the magnitude of force. • The stress-luminescence could be completely recovered after the UV irradiation. • The strong stress-luminescent effect is potential in stress-light sensors

  1. Facile preparation of MnO2 nanorods and evaluation of their supercapacitive characteristics

    Science.gov (United States)

    Aghazadeh, Mustafa; Asadi, Maryam; Maragheh, Mohammad Ghannadi; Ganjali, Mohammad Reza; Norouzi, Parviz; Faridbod, Farnoush

    2016-02-01

    The first time pulsed base (OH-) electrogeneration to the cathodic electrodeposition of MnO2 in nitrate bath was applied and MnO2 nanorods were obtained. The deposition experiments were performed under a pulse current mode with typical on-times and off-times (ton = 10 ms and toff = 50 ms) and a peak current density of 2 mA cm-2 (Ia = 2 mA cm-2). The structural characterization with XRD and FTIR revealed that the prepared MnO2 is composed of both α and γ phases. Morphological evaluations through SEM and TEM revealed that the prepared MnO2 contains nanorods of relative uniform structures (with an average diameter of 50 nm). The electrochemical measurements through cyclic voltammetry and charge-discharge techniques revealed that the prepared MnO2 nanostructures reveal an excellent capacitive behavior with specific capacitance values of 242, 167 and 98 F g-1 under the applied current densities of 2, 5 and 10 A g-1, respectively. Also, excellent long-term cycling stabilities of 94.8%, 89.1%, and 76.5% were observed after 1000 charge-discharge cycles at the current densities of 2, 5 and 10 A g-1.

  2. Structural, electrical and magnetic studies of Co:SnO{sub 2} and (Co,Mo):SnO{sub 2} films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dalui, S., E-mail: ssdalui@fc.ul.pt [University of Lisbon, Physics Dept. and ICEMS, 1749-016 Lisboa (Portugal); Instituto Superior de Engenharia de Lisboa and ICEMS, 1959-007 Lisboa (Portugal); Rout, S. [University of Lisbon, Physics Dept. and ICEMS, 1749-016 Lisboa (Portugal); Silvestre, A.J. [Instituto Superior de Engenharia de Lisboa and ICEMS, 1959-007 Lisboa (Portugal); Lavareda, G. [New University of Lisbon, Mater. Sci. Dept. and CTS, 2829-516 Caparica (Portugal); Pereira, L.C.J. [Instituto Superior Técnico, ITN and CFMCUL, 2686-953 Sacavém (Portugal); Brogueira, P. [Instituto Superior Técnico, Physics Dept. and ICEMS, 1049-001 Lisboa (Portugal); Conde, O. [University of Lisbon, Physics Dept. and ICEMS, 1749-016 Lisboa (Portugal)

    2013-08-01

    Here we report on the structural, optical, electrical and magnetic properties of Co-doped and (Co,Mo)-codoped SnO{sub 2} thin films deposited on r-cut sapphire substrates by pulsed laser deposition. Substrate temperature during deposition was kept at 500 °C. X-ray diffraction analysis showed that the undoped and doped films are crystalline with predominant orientation along the [1 0 1] direction regardless of the doping concentration and doping element. Optical studies revealed that the presence of Mo reverts the blue shift trend observed for the Co-doped films. For the Co and Mo doping concentrations studied, the incorporation of Mo did not contribute to increase the conductivity of the films or to enhance the ferromagnetic order of the Co-doped films.

  3. Evaluation of material dispersion using a nanosecond optical pulse radiator.

    Science.gov (United States)

    Horiguchi, M; Ohmori, Y; Miya, T

    1979-07-01

    To study the material dispersion effects on graded-index fibers, a method for measuring the material dispersion in optical glass fibers has been developed. Nanosecond pulses in the 0.5-1.7-microm region are generated by a nanosecond optical pulse radiator and grating monochromator. These pulses are injected into a GeO(2)-P(2)0(5)-doped silica graded-index fiber. Relative time delay changes between different wavelengths are used to determine material dispersion, core glass refractive index, material group index, and optimum profile parameter of the graded-index fiber. From the measured data, the optimum profile parameter on the GeO(2)-P(2)O(5)-doped silica graded-index fiber could be estimated to be 1.88 at 1.27 microm of the material dispersion free wavelength region and 1.82 at 1.55 microm of the lowest-loss wavelength region in silica-based optical fiber waveguides.

  4. Propan-1-ol Oxidation Reaction on Au/TiO 2 Catalysts | Nuhu ...

    African Journals Online (AJOL)

    This was further investigated using Pulse Flow reactor, TPFRP, TPD, and XRD,. The adsorption of propan-1-ol over TiO2 (P25) indicated a full monolayer with much of it in a dissociated state, forming propoxy group on the cationic site and hydroxyl group at anions. The propoxy is relatively stable until about 250oC, at which ...

  5. Pulsed ion-beam assisted deposition of Ge nanocrystals on SiO2 for non-volatile memory device

    International Nuclear Information System (INIS)

    Stepina, N.P.; Dvurechenskii, A.V.; Armbrister, V.A.; Kirienko, V.V.; Novikov, P.L.; Kesler, V.G.; Gutakovskii, A.K.; Smagina, Z.V.; Spesivtzev, E.V.

    2008-01-01

    A floating gate memory structure, utilizing Ge nanocrystals (NCs) deposited on tunnel SiO 2 , have been fabricated using pulsed low energy ion-beam induced molecular-beam deposition (MBD) in ultra-high vacuum. The ion-beam action is shown to stimulate the nucleation of Ge NCs when being applied after thin Ge layer deposition. Growth conditions for independent change of NCs size and array density were established allowing to optimize the structure parameters required for memory device. Activation energy E = 0.25 eV was determined from the temperature dependence of NCs array density. Monte Carlo simulation has shown that the process, determining NCs array density, is the surface diffusion. Embedding of the crystalline Ge dots into silicon oxide was carried out by selective oxidation of Si(100)/SiO 2 /Ge(NCs)/poly-Si structure. MOS-capacitor obtained after oxidation showed a hysteresis in its C-V curves attributed to charge retention in the Ge dots

  6. Influence of annealing temperature on structural and magnetic properties of pulsed laser-deposited YIG films on SiO2 substrate

    Science.gov (United States)

    Nag, Jadupati; Ray, Nirat

    2018-05-01

    Yttrium Iron Garnet (Y3Fe5O12) was synthesized by solid state/ceramic process. Thin films of YIG were deposited on SiO2 substrate at room temperature(RT) and at substrate temperature (Ts) 700 °C using pulsed laser deposition (PLD) technique. RT deposited thin films are amorphous in nature and non-magnetic. After annealing at temperature 800 ° RT deposited thin films showed X-ray peaks as well as the magnetic order. Magnetic ordering is enhanced by annealing temperature(Ta ≥ 750 °C) and resulted good quality of films with high magnetization value.

  7. Polarized spectral properties of Yb3+ : Li2Gd4(MoO4)7 crystal: a candidate for tunable and ultrashort pulse lasers

    International Nuclear Information System (INIS)

    Zhu Haomiao; Chen Yujin; Lin Yanfu; Gong Xinghong; Liao Jinsheng; Chen Xueyuan; Luo Zundu; Huang Yidong

    2007-01-01

    Detailed polarized spectral properties of a 3.2 at.% Yb 3+ : Li 2 Gd 4 (MoO 4 ) 7 crystal, including absorption cross-section, emission cross-section, up-conversion spectrum and intrinsic fluorescence lifetime, were investigated. The laser potentiality was also evaluated and the results show that this crystal is a good candidate for tunable and ultrashort pulse lasers

  8. Pulsed laser deposition of SrRuO3 thin-films: The role of the pulse repetition rate

    Directory of Open Access Journals (Sweden)

    H. Schraknepper

    2016-12-01

    Full Text Available SrRuO3 thin-films were deposited with different pulse repetition rates, fdep, epitaxially on vicinal SrTiO3 substrates by means of pulsed laser deposition. The measurement of several physical properties (e.g., composition by means of X-ray photoelectron spectroscopy, the out-of-plane lattice parameter, the electric conductivity, and the Curie temperature consistently reveals that an increase in laser repetition rate results in an increase in ruthenium deficiency in the films. By the same token, it is shown that when using low repetition rates, approaching a nearly stoichiometric cation ratio in SrRuO3 becomes feasible. Based on these results, we propose a mechanism to explain the widely observed Ru deficiency of SrRuO3 thin-films. Our findings demand these theoretical considerations to be based on kinetic rather than widely employed thermodynamic arguments.

  9. Synthesis of Cu/Cu2O nanoparticles by laser ablation in deionized water and their annealing transformation into CuO nanoparticles

    KAUST Repository

    Gondal, M. A.; Qahtan, Talal F.; Dastageer, Mohamed Abdulkader; Maganda, Yasin W.; Anjum, Dalaver H.

    2013-01-01

    Nano-structured Cupric Oxide (CuO) has been synthesized using pulsed laser ablation of pure copper in water using Q-switched pulsed laser beam of 532 nm wavelength and, 5 nanosecond pulse duration and laser pulse energy of 100 mJ/pulse. In the initial unannealed colloidal suspension, the nanoparticles of Copper (Cu) and Cuprious oxide (Cu2O) were identified. Further the suspension was dried and annealed at different temperatures and we noticed the product (Cu/Cu2O) was converted predominantly into CuO at annealing temperature of 300 'C for 3 hours. As the annealing temperature was raised from 300 to 900 'C, the grain sizes of CuO reduced to the range of 9 to 26 nm. The structure and the morphology of the prepared samples were investigated using X-ray diffraction and Transmission Electron Microscope. Photoluminescence and UV absorption spectrometrystudies revealed that the band gap and other optical properties of nano-structured CuO were changed due to post annealing. Fourier transform spectrometry also confirmed the transformation of Cu/Cu2O into CuO. Copyright © 2013 American Scientific Publishers All rights reserved.

  10. Synthesis of Cu/Cu2O nanoparticles by laser ablation in deionized water and their annealing transformation into CuO nanoparticles

    KAUST Repository

    Gondal, M. A.

    2013-08-01

    Nano-structured Cupric Oxide (CuO) has been synthesized using pulsed laser ablation of pure copper in water using Q-switched pulsed laser beam of 532 nm wavelength and, 5 nanosecond pulse duration and laser pulse energy of 100 mJ/pulse. In the initial unannealed colloidal suspension, the nanoparticles of Copper (Cu) and Cuprious oxide (Cu2O) were identified. Further the suspension was dried and annealed at different temperatures and we noticed the product (Cu/Cu2O) was converted predominantly into CuO at annealing temperature of 300 \\'C for 3 hours. As the annealing temperature was raised from 300 to 900 \\'C, the grain sizes of CuO reduced to the range of 9 to 26 nm. The structure and the morphology of the prepared samples were investigated using X-ray diffraction and Transmission Electron Microscope. Photoluminescence and UV absorption spectrometrystudies revealed that the band gap and other optical properties of nano-structured CuO were changed due to post annealing. Fourier transform spectrometry also confirmed the transformation of Cu/Cu2O into CuO. Copyright © 2013 American Scientific Publishers All rights reserved.

  11. Atmospheric chemistry of CF3C(O)O2 radicals. Kinetics of their reaction with NO2 and kinetics of the thermal decomposition of the product CF3C(O)O2NO2

    DEFF Research Database (Denmark)

    Wallington, T.J.; Sehested, J.; Nielsen, O.J.

    1994-01-01

    A pulse radiolysis technique has been used to measure a rate constant of (6.6 +/- 1.3) x 10(-12) cm3 molecule-1 s-1 for the association reaction between CF3C(O)O2 radicals and NO2 at 295 K and one atmosphere total pressure of SF6 diluent. A FTIR/smog chamber system was used to study the thermal...... decomposition CF3C(O)O2NO2. The rate of decomposition of CF3C(O)O2NO2 was independent of the total pressure of N2 diluent over the range 100-700 Torr and was fit by the expression k-1 = (1.9(-1.5)+7.6) x 10(16) exp[(-14000 +/- 480)/T] s-1. Implications for the atmospheric chemistry of CFC replacements...

  12. Processing and properties of Pb(Mg(1/3)Nb(2/3))O3--PbTiO3 thin films by pulsed laser deposition

    Science.gov (United States)

    Tantigate, C.; Lee, J.; Safari, A.

    1995-03-01

    The objectives of this study were to prepare in situ Pb(Mg(1/3)Nb(2/3))O3 (PMN) and PMN-PT thin films by pulsed laser deposition and to investigate the electrical features of thin films for possible dynamic random access memory (DRAM) and microactuator applications. The impact of processing parameters such compositions, substrate temperature, and oxygen pressure on perovskite phase formation and dielectric characteristics were reported. It was found that the highest dielectric constant, measured at room temperature and 10 kHz, was attained from the PMN with 99% perovskite.

  13. Pulsed laser deposition of Tl-Ca-Ba-Cu-O films

    International Nuclear Information System (INIS)

    Ianno, N.J.; Liou, S.H.; Woollam, J.A.; Thompson, D.; Johs, B.

    1990-01-01

    Pulsed laser deposition is a technique commonly used to deposit high quality thin films of high temperature superconductors. This paper discusses the results obtained when this technique is applied to the deposition of Tl-Ca-Ba-Cu-O thin films using a frequency doubled Nd:YAG laser operating at 532 nm and an excimer laser operating at 248 nm. Films with onset temperatures of 125 K and zero resistance temperatures of 110 K deposited on (100) oriented MgO from a composite Tl2Ca2Ba2Cu3Ox target were obtained at both wavelengths upon appropriate post deposition annealing. Films deposited at 532 nm exhibit a rough surface, while those deposited at 248 nm are smooth and homogeneous. Upon annealing, films deposited at both wavelengths are single phase Tl2Ca2Ba2Cu3Ox. 12 refs

  14. Pulsed laser deposition of {CeO_2} and {Ce_{1-x}M_xO_2} (M = La, Zr): Application to insulating barrier in cuprate heterostructures

    Science.gov (United States)

    Berger, S.; Contour, J.-P.; Drouet, M.; Durand, O.; Khodan, A.; Michel, D.; Régi, F.-X.

    1998-03-01

    SrTiO_3 had been often tentatively used as an insulating barrier for HT superconductor/insulator heterostructures. Unfortunately, the deposition of SrTiO_3 on the YBa_2Cu_3O_7 inverse interface results in a poor epitaxial regrowth producing a high roughness dislocated titanate layer. Taking into account the good matching with YBa_2Cu_3O_7 and LaAlO_3, CeO_2 and Ce_{1-x}M_xO_2 (M = La, Zr), epitaxial layers were grown by pulsed laser deposition on LaAlO_3 substrates and introduced into YBa_2Cu_3O_7 based heterostructures as insulating barrier. After adjusting the growth parameters from RHEED oscillations, epitaxial growth is achieved, the oxide crystal axes being rotated by 45^circ from those of the substrate. The surface roughness of 250 nm thick films is very low with a rms value lower than 0.5 nm over 1;μ m^2. The YBa_2Cu_3O_7 layers of a YBa_2Cu_3O_7/CeO_2 /YBa_2Cu_3O_7 heterostructures grown using these optimized parameters show an independent resistive transition, when the thickness is larger than 25 nm, respectively at T_c_1 = 89.6;K and T_c_2 = 91.4;{K}. SrTiO3 est souvent utilisé comme barrière isolante dans des hétérostructures SIS de cuprates supraconducteurs, cependant les défauts générés lors de la croissance de ce titanate sur l'interface inverse de YBa2Cu3O7 conduisent à un matériau dont la qualité cristalline et les propriétés physiques sont médiocres. L'oxyde de cérium CeO2 est également une barrière isolante potentielle intéressante pour ces structures SIS basées sur YBa2Cu3O7 car cet oxyde cubique (a = 0,5411 nm, asqrt{2}/2 = 0,3825 nm) qui est peu désaccordé par rapport au plan ab du cuprate (Δ a/a = - 0,18 %, Δ b/a = 1,6 %) présente de plus un coefficient de dilatation thermique (10,6 × 10^{-6 circ}C^{-1}) très voisin de celui de YBa2Cu3O7 (13 × 10^{-6 circ}C^{-1}). Nous avons donc étudié l'épitaxie de CeO2 et des oxydes de type Ce{1-x}MxO2 (M = La, Zr) en ablation laser pulsée afin de définir des conditions de

  15. W-1% La2O3 Submitted to a Single Laser Pulse: Effect of Particles on Heat Transfer and Surface Morphology

    Directory of Open Access Journals (Sweden)

    Pasquale Gaudio

    2018-05-01

    Full Text Available W-1% La2O3 has been irradiated by a single laser pulse (λ = 1064 nm, pulse duration τ ≈ 15 ns, pulse energy Ep ≈ 4 J, spot size Φ = 200 μm, surface power density I = 8.5 × 1011 W·cm−2 to simulate the effects of transient thermal loads of high energy occurring in a tokamak under operative conditions. The samples have been then examined by scanning electron microscope (SEM observations to investigate erosion effects and surface morphological features. A surface depression forms in the spot central area surrounded by a ridge due to the movement of molten metal. Owing to the burst of gas bubbles, hemispherical cavities of about 10 μm and deposited droplets are observed in the ridge while the zones surrounding the ridge thermal stresses arising from fast heating and successive cooling produce an extended network of micro-cracks that often follow grain boundaries. The results are discussed and compared to those obtained in a previous work on pure bulk W.

  16. Deposition of Au/TiO2 film by pulsed laser

    International Nuclear Information System (INIS)

    Zhao Chongjun; Zhao Quanzhong; Zhao Qitao; Qiu Jianrong; Zhu Congshan

    2006-01-01

    Au nanoparticles, which were photoreduced by a Nd:YAG laser in HAuCl 4 solution containing TiO 2 colloid and accompanied by the TiO 2 particles, were deposited on the substrate surface. The film consisting of Au/TiO 2 particles was characterized by the absorption spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The adhesion between the film and substrate was evaluated by using adhesive tape test. It was found that the presence of TiO 2 dramatically enhanced the adhesion strength between the film and the substrate, as well as the deposition rate of film. The mechanism for the deposition of Au/TiO 2 film was also discussed

  17. Spectral and ion emission features of laser-produced Sn and SnO2 plasmas

    Science.gov (United States)

    Hui, Lan; Xin-Bing, Wang; Du-Luo, Zuo

    2016-03-01

    We have made a detailed comparison of the atomic and ionic debris, as well as the emission features of Sn and SnO2 plasmas under identical experimental conditions. Planar slabs of pure metal Sn and ceramic SnO2 are irradiated with 1.06 μm, 8 ns Nd:YAG laser pulses. Fast photography employing an intensified charge coupled device (ICCD), optical emission spectroscopy (OES), and optical time of flight emission spectroscopy are used as diagnostic tools. Our results show that the Sn plasma provides a higher extreme ultraviolet (EUV) conversion efficiency (CE) than the SnO2 plasma. However, the kinetic energies of Sn ions are relatively low compared with those of SnO2. OES studies show that the Sn plasma parameters (electron temperature and density) are lower compared to those of the SnO2 plasma. Furthermore, we also give the effects of the vacuum degree and the laser pulse energy on the plasma parameters. Project supported by the National Natural Science Foundation of China (Grant No. 11304235) and the Director Fund of WNLO, China.

  18. Epitaxial thin-film growth of Ruddlesden-Popper-type Ba{sub 3}Zr{sub 2}O{sub 7} from a BaZrO{sub 3} target by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Shariqa Hassan; Rafique, M.S.; Siraj, K.; Latif, A.; Afzal, Amina [University of Engineering and Technology, Laser and Optronics Centre, Department of Physics, Lahore (Pakistan); Awan, M.S. [Ibn-e-Sina Institute of Science and Technology (ISIT), Islamabad (Pakistan); Bashir, Shazia [Government College University, Centre for Advanced Studies in Physics, Lahore (Pakistan); Iqbal, Nida [Universiti Teknologi Malaysia, Medical Devices and Technology Group (MEDITEG), Faculty of Biosciences and Medical Engineering, Johor Bahru, Johor (Malaysia)

    2016-07-15

    Ruddlesden-Popper Ba{sub 3}Zr{sub 2}O{sub 7} thin films have been synthesized via pulsed laser deposition (PLD) technique. The optimization of deposition parameters in PLD enables the formation of thin film of metastable Ba{sub 3}Zr{sub 2}O{sub 7} phase from BaZrO{sub 3} target. In order to see the post-annealing effects on the structural and optical properties, the deposited Ba{sub 3}Zr{sub 2}O{sub 7} thin films were annealed at 500, 600 and 800 C. X-ray diffraction (XRD) reveals the formation of Ba{sub 3}Zr{sub 2}O{sub 7} phase with tetragonal structure. The changes in the surface of the deposited films were analysed by FE-SEM and AFM. The thin film post-annealed at 500 C exhibited the best structural, optical and surface properties. Furthermore, the chemical states and chemical composition of the films were determined by X-ray photoelectron spectroscopy (XPS) near the surface. The XPS results show that Ba, Zr and O exist mainly in the form of Ba{sub 3}Zr{sub 2}O{sub 7} Ruddlesden-Popper-type perovskite structure. (orig.)

  19. Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition

    DEFF Research Database (Denmark)

    Bodea, M. A.; Sbarcea, G.; Naik, G. V.

    2013-01-01

    Aluminum and gallium doped zinc oxide thin films with negative dielectric permittivity in the near infrared spectral range are grown by pulsed laser deposition. Composite ceramics comprising ZnO and secondary phase Al2O3 or Ga2O3 are employed as targets for laser ablation. Films deposited on glass...

  20. On red-shift of UV photoluminescence with decreasing size of silicon nanoparticles embedded in SiO2 matrix grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Chaturvedi, Amita; Joshi, M.P.; Rani, Ekta; Ingale, Alka; Srivastava, A.K.; Kukreja, L.M.

    2014-01-01

    Ensembles of silicon nanoparticles (Si-nps) embedded in SiO 2 matrix were grown by alternate ablation of Si and SiO 2 targets using KrF excimer laser based pulsed laser deposition (PLD). The sizes of Si-nps (mean size ranging from 1–5 nm) were controlled by varying the ablation time of silicon target. Transmission electron microscopy (TEM) along with selected area electron diffraction (SAED) and Raman spectroscopy were used to confirm the growth of silicon nanoparticles, its size variation with growth time and the crystalline quality of the grown nanoparticles. TEM analysis showed that mean size and size distribution of Si-nps increased with increase in the ablation time of Si target. Intense peaks ∼521 cm −1 in Raman analysis showed reasonably good crystalline quality of grown Si-nps. We observed asymmetric broadening of phonon line shapes which also redshift with decreasing size of Si-nps. Photoluminescence (PL) from these samples, obtained at room temperature, was broad band and consisted of three bands in UV and visible range. The intensity of PL band in UV spectral range (peak ∼3.2 eV) was strong compared to visible range bands (peaks ∼2.95 eV and ∼2.55 eV). We observed a small red-shift (∼0.07 eV) of peak position of UV range PL with the decrease in the mean sizes of Si-nps, while there was no appreciable size dependent shift of PL peak positions for other bands in the visible range. The width of UV PL band was also found to increase with decrease of Si-nps mean sizes. Based on the above observations of size dependent redshift of UV range PL band together with the PL lifetimes and PL excitation spectroscopy, the origin of UV PL band is attributed to the direct band transition at the Γ point of Si band structure. Visible range bands were ascribed as defect related transitions. The weak intensities of PL bands ∼2.95 eV and ∼2.55 eV suggested that Si nanoparticles grown by PLD were efficiently capped or passivated by SiO 2 with low density of

  1. Corrosion resistance and mechanical properties of pulse electrodeposited Ni-TiO{sub 2} composite coating for sintered NdFeB magnet

    Energy Technology Data Exchange (ETDEWEB)

    Li Qing, E-mail: liqingd@swu.edu.c [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yang Xiaokui [School of Materials Science and Engineering, Southwest University, Chongqing 400715 (China); Zhang Liang; Wang Juping; Chen Bo [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2009-08-12

    Ni-TiO{sub 2} composite coating which was prepared under pulse current conditions was successfully performed on sintered NdFeB magnet. As a comparison, pure nickel coating was also prepared. The phase structure, the surface morphology, the chemical composition, the anti-corrosion performance of the coatings for magnets, the microhardness and the wearing resistance performance of the coatings were studied using X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), electrochemical technique, Vickers hardness tester and ball-on-disc tribometer, respectively. The results revealed that Ni-TiO{sub 2} composite coating provided excellent anti-corrosion performance for the magnets, and showed higher microhardness and better anti-wear performance.

  2. Two-pulse and stimulated nuclear-quadrupole-resonance echoes in YAlO3:Pr3+

    International Nuclear Information System (INIS)

    Erickson, L.E.

    1991-01-01

    The dephasing of trivalent praseodymium dilute in yttrium aluminum oxide (YAlO 3 ) in the ground electronic state 3 H 4 state is evaluated using an optically detected method, to measure two-rf-pulse- and three-rf-pulse-stimulated nuclear quadrupole echoes. The magnitude of the echo is obtained by detecting the weak Raman optical field generated by the interaction of the magnetic moment of the echo and a light beam resonant with the 3 H 4 (0 cm 1 ) to 1 D 2 (16 374 cm -1 ) optical transition. This same light beam is used as an optical pump (37-ms duration) prior the rf-pulse sequence to increase the population difference of the hyperfine energy levels, thereby improving the echo signal. The light is turned off 9 ms before the rf-pulse sequence and remains off until the echo to avoid optical-pumping effects on the measured nuclear-quadrupole-resonance (NQR) echo lifetime. The dephasing time T 2 from two-pulse nuclear-quadrupole-echo measurement is found to be 366±29 μs

  3. Flux motion in Y-Ba-Cu-O bulk superconductors during pulse field magnetization

    International Nuclear Information System (INIS)

    Yoshizawa, K; Nariki, S; Sakai, N; Murakami, M; Hirabayasi, I; Takizawa, T

    2004-01-01

    We have studied the relationship between the magnetization and temperature change in Y-Ba-Cu-O bulk superconductor during pulse field magnetization (PFM). The flux motion was monitored using both Hall sensors and pick-up coils that are placed on a surface of a Y-Ba-Cu-O disc having dimensions of 15 mm in diameter and 0.95 mm in thickness. The peak value of the field was varied from 0.2 to 0.8 T. The effect of the static bias field was also studied in the range of 0-3 T. The temperature of the sample surface was measured using a resistance temperature sensor. The temperature increased with the magnitude of the applied pulsed magnetic field, and the amount of temperature rise decreased with increasing static bias field

  4. The growth of large-area superconducting YBa2Cu3O7-x thin films by pulsed laser ablation

    International Nuclear Information System (INIS)

    Lai, H.C.; Chang, C.M.; Lin, R.J.; Liu, R.S.

    1996-01-01

    In-situ growth of 2-in. diameter superconducting YBa 2 Cu 3 O 7-x (YBCO) thin films using an excimer KrF pulsed laser has been studied. Films with critical transition temperature (T c,0 ) of 89±1 K and critical current density (J c,77K ) in excess of 1 x 10 6 A cm -2 have been prepared routinely. Uniformity in film thickness of below ±15% and film composition of ±5% have been measured. The effects of gas nozzle geometry and target evolution during ablation on the superconducting properties and surface morphology of YBCO thin films have also been investigated. (orig.)

  5. MgxZn1-xO(0≤x<0.2) nanowire arrays on sapphire grown by high-pressure pulsed-laser deposition

    International Nuclear Information System (INIS)

    Lorenz, M.; Kaidashev, E.M.; Rahm, A.; Nobis, Th.; Lenzner, J.; Wagner, G.; Spemann, D.; Hochmuth, H.; Grundmann, M.

    2005-01-01

    Mg x Zn 1-x O nanowires with Mg-content x from 0 to 0.2 have been grown by high-pressure pulsed-laser deposition (PLD) on gold-covered sapphire single crystals. The PLD process allows for a unique wide-range control of morphology, diameter, and composition of the Mg x Zn 1-x O nanowires. The diameter of single ZnO wires could be varied between about 50 and 3000 nm, and the Mg content x of Mg x Zn 1-x O wire arrays was controlled via the PLD gas pressure. The microscopic homogeneity of Mg content is displayed by cathodoluminescence (CL) imaging of the excitonic peak energy. The fluctuation of CL peak energy between individual wires is about an order of magnitude smaller than the alloy broadening

  6. OH Production Enhancement in Bubbling Pulsed Discharges

    Science.gov (United States)

    Lungu, Cristian P.; Porosnicu, Corneliu; Jepu, Ionut; Chiru, Petrica; Zaroschi, Valentin; Lungu, Ana M.; Saito, Nagahiro; Bratescu, Maria; Takai, Osamu; Velea, Theodor; Predica, Vasile

    2010-10-01

    The generation of active species, such as H2O2, O*, OH*, HO2*, O3, N2*, etc, produced in aqueous solutions by HV pulsed discharges was studied in order to find the most efficient way in waste water treatment taking into account that these species are almost stronger oxidizers than ozone. Plasma was generated inside gas bubbles formed by the argon, air and oxygen gas flow between the special designed electrodes. The pulse width and pulse frequency influence was studied in order to increase the efficiency of the OH active species formation. The produced active species were investigated by optical emission spectroscopy and correlated with electrical parameters of the discharges (frequency, pulse width, amplitude, and rise and decay time).

  7. OH Production Enhancement in Bubbling Pulsed Discharges

    International Nuclear Information System (INIS)

    Lungu, Cristian P.; Porosnicu, Corneliu; Jepu, Ionut; Chiru, Petrica; Zaroschi, Valentin; Lungu, Ana M.; Saito, Nagahiro; Bratescu, Maria; Takai, Osamu; Velea, Theodor; Predica, Vasile

    2010-01-01

    The generation of active species, such as H 2 O 2 , O * , OH*, HO 2 *, O 3 , N 2 * , etc, produced in aqueous solutions by HV pulsed discharges was studied in order to find the most efficient way in waste water treatment taking into account that these species are almost stronger oxidizers than ozone. Plasma was generated inside gas bubbles formed by the argon, air and oxygen gas flow between the special designed electrodes. The pulse width and pulse frequency influence was studied in order to increase the efficiency of the OH active species formation. The produced active species were investigated by optical emission spectroscopy and correlated with electrical parameters of the discharges (frequency, pulse width, amplitude, and rise and decay time).

  8. Target swapping in PLD: An efficient approach for CdS/SiO{sub 2} and CdS:Ag(1%)/SiO{sub 2} nanocomposite thin films with enhanced luminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Nupur, E-mail: n1saxena@gmail.com [Department of Physics & Astrophysics, University of Delhi, Delhi 110007 (India); Kumar, Pragati, E-mail: pkumar.phy@gmail.com [Department of Physics & Astrophysics, University of Delhi, Delhi 110007 (India); Department of Nano Sciences and Materials, Central University of Jammu, Rahya-Suchani (Bagla), Samba, 181143 Jammu, J& K (India); Gupta, Vinay [Department of Physics & Astrophysics, University of Delhi, Delhi 110007 (India)

    2017-06-15

    A novel synthesis method for luminescent and by-products (like CdO) free CdS/SiO{sub 2} and CdS:Ag(1%)/SiO{sub 2} (i.e. 1%Ag doped CdS/SiO{sub 2}) nanocomposite thin films at room temperature by pulsed laser deposition is reported. Targets of CdS, CdS:Ag(1%) and SiO{sub 2} are used to deposit CdS/SiO{sub 2} and CdS:Ag(1%)/SiO{sub 2} nanocomposite thin films by swapping them at a frequency ratio of 2:8 laser pulses/sec. X-ray photoelectron spectroscopy analysis ensures the ratio of CdS to SiO{sub 2} in nanocomposite as 21:79 which is nearly same as the ratio of incident pulses/sec (i.e. 2:8) on the two targets. Transmission electron micrographs visualize the formation of CdS/ CdS:Ag(1%) nanocrystals in nanocomposite systems after annealing at 500 °C. Highly intense and broad red emission is achieved from CdS/SiO{sub 2} and CdS:Ag(1%)/SiO{sub 2} nanocomposites. The efficiencies of emission from pristine CdS:SiO{sub 2} and CdS:Ag(1%)/SiO{sub 2} nanocomposites are found to be enhanced by approximately two times as compared to sole nanocrystalline CdS and CdS:Ag(1%) thin films respectively and further enhanced upto 7 times on annealing the nanocomposite systems at 500 °C. - Graphical abstract: A modified synthesis method for luminescent and by-products (like CdO) free undoped &1% Ag doped CdS/SiO{sub 2} (deposit CdS/SiO{sub 2} and CdS:Ag(1%)/SiO{sub 2}) nanocomposite thin films at room temperature by pulsed laser deposition is reported. Targets of CdS or CdS:Ag(1%) and SiO{sub 2} are used to deposit CdS/SiO{sub 2} and CdS:Ag(1%)/SiO{sub 2} nanocomposite thin films by swapping them at a frequency of 2:8 pulses/sec. X-ray photoelectron spectroscopy analysis ensures the ratio of CdS to SiO{sub 2} in nanocomposite as 21:79 which is nearly same as the ratio of incident pulses/sec (2:8) on the two targets. Transmission electron micrographs visualize the formation of CdS nanocrystals in nanocomposite systems after annealing at 500 °C. Intense and broad red emission is

  9. Pulsed ion-beam assisted deposition of Ge nanocrystals on SiO{sub 2} for non-volatile memory device

    Energy Technology Data Exchange (ETDEWEB)

    Stepina, N.P. [Institute of Semiconductor Physics, Lavrenteva 13, 630090 Novosibirsk (Russian Federation)], E-mail: nstepina@mail.ru; Dvurechenskii, A.V.; Armbrister, V.A.; Kirienko, V.V.; Novikov, P.L.; Kesler, V.G.; Gutakovskii, A.K.; Smagina, Z.V.; Spesivtzev, E.V. [Institute of Semiconductor Physics, Lavrenteva 13, 630090 Novosibirsk (Russian Federation)

    2008-11-03

    A floating gate memory structure, utilizing Ge nanocrystals (NCs) deposited on tunnel SiO{sub 2}, have been fabricated using pulsed low energy ion-beam induced molecular-beam deposition (MBD) in ultra-high vacuum. The ion-beam action is shown to stimulate the nucleation of Ge NCs when being applied after thin Ge layer deposition. Growth conditions for independent change of NCs size and array density were established allowing to optimize the structure parameters required for memory device. Activation energy E = 0.25 eV was determined from the temperature dependence of NCs array density. Monte Carlo simulation has shown that the process, determining NCs array density, is the surface diffusion. Embedding of the crystalline Ge dots into silicon oxide was carried out by selective oxidation of Si(100)/SiO{sub 2} /Ge(NCs)/poly-Si structure. MOS-capacitor obtained after oxidation showed a hysteresis in its C-V curves attributed to charge retention in the Ge dots.

  10. Breakdown in ZnO Varistors by High Power Electrical Pulses; TOPICAL

    International Nuclear Information System (INIS)

    PIKE, GORDON E.

    2001-01-01

    This report documents an investigation of irreversible electrical breakdown in ZnO varistors due to short pulses of high electric field and current density. For those varistors that suffer breakdown, there is a monotonic, pulse-by-pulse degradation in the switching electric field. The electrical and structural characteristics of varistors during and after breakdown are described qualitatively and quantitatively. Once breakdown is nucleated, the degradation typically follows a well-defined relationship between the number of post-initiation pulses and the degraded switching voltage. In some cases the degraded varistor has a remnant 20(micro)m diameter hollow track showing strong evidence of once-molten ZnO. A model is developed for both electrical and thermal effects during high energy pulsing. The breakdown is assumed to start at one electrode and advance towards the other electrode as a thin filament of conductive material that grows incrementally with each successive pulse. The model is partially validated by experiments in which the varistor rod is cut at several different lengths from the electrode. Invariably one section of the cut varistor has a switching field that is not degraded while the other section(s) are heavily degraded. Based on the experiments and models of behavior during breakdown, some speculations about the nature of the nucleating mechanism are offered in the last section

  11. Pulse radiolysis of gases

    International Nuclear Information System (INIS)

    Nielsen, O.J.

    1984-04-01

    The pulse radiolysis equipment and technique are described and its relevance to atmospheric chemistry is discussed. Pulse radiolysis of a number of different chemical systems have been used to check the validity of the proposed mechanisms: 1) The hydrogen atom yield in the pulse radiolysis of H 2 was measured by four independent calibration techniques, using reactions of H with O 2 , C1NO, and HI. The H atom yield was compared with O 2 yields in pure O 2 and in O 2 /SF 6 mixtures which lead to a value G(H) = 17.6. The rate constants at room temperature of several reactions were determined. 2) OH radical reactions with tetraalkyllead at room temperature and with ethane, methane, and a series of C1- and F-substituted methanes at 300-400 K were studied. Arrhenius parameters, A and Esub(a), were determined for several reactions. The lifetime of Pb(CH 3 ) 4 and Pb(C 2 H 5 ) 4 in ambient air is estimated. CF 2 C1 2 was found to be a very efficient third body, M, in the reaction OH + OH + M arrow H 2 O 2 + M. 3) In the H 2 S systems the HS extinction coefficient at 3242 AA was determined to 9.5 x 10 2 cm -1 mol -1 . Four rate constants at room temperature were determined. (author)

  12. Pulsed-laser deposited ZnO for device applications

    NARCIS (Netherlands)

    King, S.L.; Gardeniers, Johannes G.E.; Boyd, I.W.

    1996-01-01

    The study investigates the growth by pulsed-laser deposition (PLD) of ZnO thin films for the eventual incorporation into piezo-electric actuators and other sensors being developed at the University of Twente. All films are purely c-axis oriented, and results are presented which suggest the

  13. ZnO homoepitaxy on the O polar face of hydrothermal and melt-grown substrates by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, D.J. [Nanovation SARL, Orsay (France); Technical Univ. of Troyes (France); CNRS, Troyes (France); Hosseini Teherani, F. [Nanovation SARL, Orsay (France); Largeteau, A.; Demazeau, G. [ICMCB-CNRS, Bordeaux 1 University (Science and Technology), Pessac (France); Moisson, C.; Turover, D. [Novasic, Savoie Technolac, Arche Bat. 4, BP 267, Le Bourget du Lac (France); Nause, J. [Cermet Inc., Atlanta, GA (United States); Garry, G. [Thales Research, Domaine de Corbeville, Orsay (France); Kling, R.; Gruber, T. [Ulm University, Department of Semiconductor Physics, Ulm (Germany); Waag, A. [Braunschweig Technical University, Institute of Semiconductor Technology, Braunschweig (Germany); Jomard, F.; Galtier, P.; Lusson, A. [LPSC-CNRS, Meudon (France); Monteiro, T.; Soares, M.J.; Neves, A.; Carmo, M.C.; Peres, M. [University of Aveiro, Physics Department, Aveiro (Portugal); Lerondel, G.; Hubert, C. [Technical University of Troyes-CNRS (FRE2671), 12 rue Marie Curie, BP 2060, Troyes (France)

    2007-07-15

    2 cm diameter hydrothermal ZnO crystals were grown and then made into substrates using both mechanical and chemical-mechanical polishing (CMP). CMP polishing showed superior results with an (0002) {omega} scan full width half maximum (FWHM) of 67 arcsec and an root mean square (RMS) roughness of 2 Aa. In comparison, commercial melt-grown substrates exhibited broader X-ray diffraction (XRD) linewidths with evidence of sub-surface crystal damage due to polishing, including a downward shift of c-lattice parameter. Secondary ion mass spectroscopy revealed strong Li, Fe, Co, Al and Si contamination in the hydrothermal crystals as opposed to the melt-grown substrates, for which glow discharge mass spectroscopy studies had reported high levels of Pb, Fe, Cd and Si. Low temperature photoluminescence (PL) studies indicated that the hydrothermal crystal had high defect and/or impurity concentrations compared with the melt-grown substrate. The dominant bound exciton for the melt-grown substrate was indexed to Al. ZnO films were grown using pulsed laser deposition. The melt-grown substrates gave superior results with XRD (0002) {omega} and 2{theta}/{omega} WHM of 124 and 34 arcsec, respectively. Atomic force microscope measurements indicated a low RMS roughness (1.9 nm) as confirmed by fringes in the XRD 2{theta}/{omega} scan. It was suggested that the improvement in XRD response relative to the substrate might be due to ''healing'' of sub-surface polishing damage due to the elevated T{sub s} used for the growth. Indeed the c-lattice parameter for the homoepitaxial layer on the melt-grown substrate had become that which would be expected for strain-free ZnO. Furthermore, the stability of the PL peak positions relative to bulk ZnO, confirmed that the films appear practically strain free. (orig.)

  14. Influence of pulse width and target density on pulsed laser deposition of thin YBaCuO film

    International Nuclear Information System (INIS)

    Vikram, S.

    1999-01-01

    We have studied the effects of temporal pulse width and target density on the deposition of thin films of YBaCuO. A 248nm excimer laser and an 825nm Ti-sapphire laser were used to conduct the experiments with pulse widths of 27 ns, 16 ns, and 150 fs, and target densities of 80% and 90%. Scanning electron microscope photomicrographs and profilometer traces show a striking difference between nanosecond and femtosecond laser irradiation. Shortening the pulse width reduced particulate formation, provided stoichiometry, and improved the film properties. Decreasing the target density raised the ablation rate, produced thicker but nonuniform films, and reduced particulate formation

  15. Influence of pulse width and target density on pulsed laser deposition of thin YBaCuO film.

    Energy Technology Data Exchange (ETDEWEB)

    Vikram, S.

    1999-01-20

    We have studied the effects of temporal pulse width and target density on the deposition of thin films of YBaCuO. A 248nm excimer laser and an 825nm Ti-sapphire laser were used to conduct the experiments with pulse widths of 27 ns, 16 ns, and 150 fs, and target densities of 80% and 90%. Scanning electron microscope photomicrographs and profilometer traces show a striking difference between nanosecond and femtosecond laser irradiation. Shortening the pulse width reduced particulate formation, provided stoichiometry, and improved the film properties. Decreasing the target density raised the ablation rate, produced thicker but nonuniform films, and reduced particulate formation.

  16. ZnO thin films on single carbon fibres fabricated by Pulsed Laser Deposition (PLD)

    Energy Technology Data Exchange (ETDEWEB)

    Krämer, André; Engel, Sebastian [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Sangiorgi, Nicola [Institute of Science and Technology for Ceramics – National Research Council of Italy (CNR-ISTEC), via Granarolo 64, 48018 Faenza, RA (Italy); Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica, 00133 Rome (Italy); Sanson, Alessandra [Institute of Science and Technology for Ceramics – National Research Council of Italy (CNR-ISTEC), via Granarolo 64, 48018 Faenza, RA (Italy); Bartolomé, Jose F. [Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain); Gräf, Stephan, E-mail: stephan.graef@uni-jena.de [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Müller, Frank A. [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena (Germany)

    2017-03-31

    Highlights: • Carbon fibres were entirely coated with thin films consisting of aligned ZnO crystals. • A Q-switched CO2 laser was utilised as radiation source. • Suitability of ZnO thin films on carbon fibres as photo anodes for DSSC was studied. - Abstract: Single carbon fibres were 360° coated with zinc oxide (ZnO) thin films by pulsed laser deposition using a Q-switched CO{sub 2} laser with a pulse duration τ ≈ 300 ns, a wavelength λ = 10.59 μm, a repetition frequency f{sub rep} = 800 Hz and a peak power P{sub peak} = 15 kW in combination with a 3-step-deposition technique. In a first set of experiments, the deposition process was optimised by investigating the crystallinity of ZnO films on silicon and polished stainless steel substrates. Here, the influence of the substrate temperature and of the oxygen partial pressure of the background gas were characterised by scanning electron microscopy and X-ray diffraction analyses. ZnO coated carbon fibres and conductive glass sheets were used to prepare photo anodes for dye-sensitised solar cells in order to investigate their suitability for energy conversion devices. To obtain a deeper insight of the electronic behaviour at the interface between ZnO and substrate I–V measurements were performed.

  17. Comparison of precursors for pulsed metal-organic chemical vapor deposition of HfO2 high-K dielectric thin films

    International Nuclear Information System (INIS)

    Teren, Andrew R.; Thomas, Reji; He, Jiaqing; Ehrhart, Peter

    2005-01-01

    Hafnium oxide films were deposited on Si(100) substrates using pulsed metal-organic chemical vapor deposition (CVD) and evaluated for high-K dielectric applications. Three types of precursors were tested: two oxygenated ones, Hf butoxide-dmae and Hf butoxide-mmp, and an oxygen-free one, Hf diethyl-amide. Depositions were carried out in the temperature range of 350-650 deg. C, yielding different microstructures ranging from amorphous to crystalline, monoclinic, films. The films were compared on the basis of growth rate, phase development, density, interface characteristics, and electrical properties. Some specific features of the pulsed injection technique are considered. For low deposition temperatures the growth rate for the amide precursor was significantly higher than for the mixed butoxide precursors. A thickness-dependent amorphous to crystalline phase transition temperature was found for all precursors. There is an increase of the film density along with the deposition temperature from values as low as 5 g/cm 3 at 350 deg. C to values close to the bulk value of 9.7 g/cm 3 at 550 deg. C. Crystallization is observed in the same temperature range for films of typically 10-20 nm thickness. However, annealing studies show that this density increase is not simply related to the crystallization of the films. Similar electrical properties could be observed for all precursors and the dielectric constant of the films reaches values similar to the best values reported for bulk crystalline HfO 2

  18. Quenching of I(2P1/2) by O3 and O(3P).

    Science.gov (United States)

    Azyazov, Valeriy N; Antonov, Ivan O; Heaven, Michael C

    2007-04-26

    Oxygen-iodine lasers that utilize electrical or microwave discharges to produce singlet oxygen are currently being developed. The discharge generators differ from conventional chemical singlet oxygen generators in that they produce significant amounts of atomic oxygen. Post-discharge chemistry includes channels that lead to the formation of ozone. Consequently, removal of I(2P1/2) by O atoms and O3 may impact the efficiency of discharge driven iodine lasers. In the present study, we have measured the rate constants for quenching of I(2P1/2) by O(3P) atoms and O3 using pulsed laser photolysis techniques. The rate constant for quenching by O3, (1.8 +/- 0.4) x 10(-12) cm3 s-1, was found to be a factor of 5 smaller than the literature value. The rate constant for quenching by O(3P) was (1.2 +/- 0.2) x 10(-11) cm3 s-1.

  19. Direct observation of ozone formation on SiO2 surfaces in O2 discharges

    Science.gov (United States)

    Marinov, D.; Guaitella, O.; Booth, J. P.; Rousseau, A.

    2013-01-01

    Ozone production is studied in a pulsed O2 discharge at pressures in the range 1.3-6.7 mbar. Time-resolved absolute concentrations of O3 and O are measured in the post-discharge using UV absorption spectroscopy and two-photon absorption laser-induced fluorescence. In a bare silica discharge tube ozone is formed mainly by three-body gas-phase recombination. When the tube surface is covered by a high specific surface silica catalyst heterogeneous formation becomes the main source of ozone. The efficiency of this surface process increases with O2 pressure and is favoured by the presence of OH groups and adsorbed H2O on the surface. At p = 6.7 mbar ozone production accounts for up to 25% of the atomic oxygen losses on the surface.

  20. Direct observation of ozone formation on SiO2 surfaces in O2 discharges

    International Nuclear Information System (INIS)

    Marinov, D; Guaitella, O; Booth, J P; Rousseau, A

    2013-01-01

    Ozone production is studied in a pulsed O 2 discharge at pressures in the range 1.3-6.7 mbar. Time-resolved absolute concentrations of O 3 and O are measured in the post-discharge using UV absorption spectroscopy and two-photon absorption laser-induced fluorescence. In a bare silica discharge tube ozone is formed mainly by three-body gas-phase recombination. When the tube surface is covered by a high specific surface silica catalyst heterogeneous formation becomes the main source of ozone. The efficiency of this surface process increases with O 2 pressure and is favoured by the presence of OH groups and adsorbed H 2 O on the surface. At p = 6.7 mbar ozone production accounts for up to 25% of the atomic oxygen losses on the surface.

  1. Growth and properties of SrBi2TaNbO9 ferroelectric thin films using pulsed laser deposition

    International Nuclear Information System (INIS)

    Yang Pingxiong; Deng Hongmei; Shi Meirong; Tong Ziyang; Qin Sumei

    2007-01-01

    High quality SrBi 2 TaNbO 9 (SBTN) ferroelectric thin films were fabricated on platinized silicon by pulsed laser deposition. Microstructure and ferroelectric properties of the films were characterized. Optical fatigue (light/bias) for the thin films was studied and the average remanent polarization dropped by nearly 55% due to the bias/illumination treatment. Optical properties of the thin films were studied by spectroscopic ellipsometry (SE) from the ultraviolet to the infrared region. Optical constants, n ∼ 0.16 in the infrared region and n ∼ 2.12 in the visible spectral region, were determined through refractive index functions. The band gap energy is estimated to be 3.93 eV

  2. 2-micron lasing in Tm:Lu2O3 ceramic: initial operation

    Science.gov (United States)

    Vetrovec, John; Filgas, David M.; Smith, Carey A.; Copeland, Drew A.; Litt, Amardeep S.; Briscoe, Eldridge; Schirmer, Ernestina

    2018-03-01

    We report on initial lasing of Tm:Lu2O3 ceramic laser with tunable output in the vicinity of 2 μm. Tm:Lu2O3 ceramic gain materials offer a much lower saturation fluence than the traditionally used Tm:YLF and Tm:YAG materials. The gain element is pumped by 796 nm diodes via a "2-for-1" crossrelaxation energy transfer mechanism, which enables high efficiency. The high thermal conductivity of the Lu2O3 host ( 18% higher than YAG) in combination with low quantum defect of 20% supports operation at high-average power. Konoshima's ceramic fabrication process overcomes the scalability limits of single crystal sesquioxides. Tm:Lu2O3 offers wide-bandwidth amplification of ultrashort pulses in a chirped-pulse amplification (CPA) system. A laser oscillator was continuously tuned over a 230 nm range from 1890 to 2120 nm while delivering up to 43W QCW output with up to 37% efficiency. This device is intended for initial testing and later seeding of a multi-pass edge-pumped disk amplifier now being developed by Aqwest which uses composite Tm:Lu2O3 disk gain elements.

  3. Formation of qualified BaHfO3 doped Y0.5Gd0.5Ba2Cu3O7-δ film on CeO2 buffered IBAD-MgO tape by self-seeding pulsed laser deposition

    Science.gov (United States)

    Liu, Linfei; Wang, Wei; Yao, Yanjie; Wu, Xiang; Lu, Saidan; Li, Yijie

    2018-05-01

    Improvement in the in-filed transport properties of REBa2Cu3O7-δ (RE = rare earth elements, REBCO) coated conductor is needed to meet the performance requirements for various practical applications, which can be accomplished by introducing artificial pinning centers (APCs), such as second phase dopant. However, with increasing dopant level the critical current density Jc at 77 K in zero applied magnetic field decreases. In this paper, in order to improve Jc we propose a seed layer technique. 5 mol% BaHfO3 (BHO) doped Y0.5Gd0.5Ba2Cu3O7-δ (YGBCO) epilayer with an inserted seed layer was grown on CeO2 buffered ion beam assisted deposition MgO (IBAD-MgO) tape by pulsed laser deposition. The effect of the conditions employed to prepare the seed layer, including tape moving speed and chemical composition, on the quality of 5 mol% BHO doped YGBCO epilayer was systematically investigated by X-ray diffraction (XRD) measurements and scanning electron microscopy (SEM) observations. It was found that all the samples with seed layer have higher Jc (77 K, self-field) than the 5 mol% BHO doped YGBCO film without seed layer. The seed layer could inhibit deterioration of the Jc at 77 K and self-filed. Especially, the self-seed layer (5 mol% BHO doped YGBCO seed layer) was more effective in improving the crystal quality, surface morphology and superconducting performance. At 4.2 K, the 5 mol% BHO doped YGBCO film with 4 nm thick self-seed layer had a very high flux pinning force density Fp of 860 GN/m3 for B//c under a 9 T field, and more importantly, the peak of the Fp curve was not observed.

  4. Epitaxial growth and control of the sodium content in Na{sub x}CoO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Sandra; Komissinskiy, Philipp [Institute for Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Major, Marton [Institute for Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); WIGNER RCP, RMKI, H-1525 Budapest, P.O.B. 49 (Hungary); Donner, Wolfgang [Institute for Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Alff, Lambert, E-mail: alff@oxide.tu-darmstadt.de [Institute for Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany)

    2013-10-31

    Single-phase c-axis oriented Na{sub x}CoO{sub 2} thin films were grown on (001) SrTiO{sub 3} single-crystal substrates, using pulsed laser deposition. X-ray diffraction analysis indicates the epitaxial growth of Na{sub x}CoO{sub 2} thin films in two domains, rotated in-plane by 15 and 45 degrees relative to [100] SrTiO{sub 3}. The sodium stoichiometry x of the films can be controlled in a range of 0.38 < x < 0.84 by in-situ post-deposition annealing the Na{sub x}CoO{sub 2} films at 720 – 760 °C in oxygen for 10 – 30 min. γ - Na{sub x}CoO{sub 2} films are obtained with a full width at half maximum of the (002) Na{sub x}CoO{sub 2} rocking curve below 0.2 degrees. The post-deposition annealing can substitute commonly used chemical deintercalation of Na which is typically associated with a loss in crystallinity. - Highlights: • Single phase Na{sub x}CoO{sub 2} thin films grown by pulsed laser deposition • Epitaxial relations of Na{sub x}CoO{sub 2} thin films on (001) SrTiO{sub 3} substrates • Multi-domain thin films • Control of sodium content by in-situ annealing of Na{sub x}CoO{sub 2} thin films.

  5. Effect of composition on properties of In2O3-Ga2O3 thin films

    Science.gov (United States)

    Demin, I. E.; Kozlov, A. G.

    2017-06-01

    The In2O3-Ga2O3 mixed oxide polycrystalline thin films with various ratios of components were obtained by pulsed laser deposition. The effect of films composition on surface morphology, electrophysical and gas sensing properties and energies of adsorption and desorption of combustible gases was studied. The films with50%In2O3-50%Ga2O3 composition showed maximum gas response (˜25 times) combined with minimum optimal working temperature (˜530 °C) as compared with the other films. The optical transmittance of the films in visible range was investigated. For 50%In2O3-50%Ga2O3 films, the transmittance is higher in comparison with the other films. The explanation of the dependency of films behaviors on their composition was presented.The In2O3-Ga2O3 films were assumed to have perspectives as gas sensing material for semiconducting gas sensors.

  6. Magnetotransport properties of c-axis oriented La0.7Sr0.3MnO3 thin films on MgO-buffered SiO2/Si substrates

    International Nuclear Information System (INIS)

    Kang, Young-Min; Ulyanov, Alexander N.; Shin, Geo-Myung; Lee, Sung-Yun; Yoo, Dae-Gil; Yoo, Sang-Im

    2009-01-01

    c-axis oriented La 0.7 Sr 0.3 MnO 3 (LSMO) films on MgO-buffered SiO 2 /Si substrates were prepared, and their texture, microstructure, and magnetotransport properties were studied and compared to epitaxial LSMO/MgO (001) and polycrystalline LSMO/SiO 2 /Si films. c-axis oriented MgO buffer layers were obtained on amorphous SiO 2 layer through rf sputter deposition at low substrate temperature and consequent postannealing processes. In situ pulsed laser deposition-grown LSMO films, deposited on the MgO layer, show strong c-axis texture, but no in-plane texture. The c-axis oriented LSMO films which are magnetically softer than LSMO/SiO 2 /Si films exhibit relatively large low field magnetoresistance (LFMR) and sharper MR drop at lower field. The large LFMR is attributed to a spin-dependent scattering of transport current at the grain boundaries

  7. Dynamics of Al/Fe{sub 2}O{sub 3} MIC combustion from short single-pulse photothermal initiation and time-resolved spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stiegman, Albert E.; Park, Chi-Dong; Mileham, Melissa; Van de Burgt, Lambertus J. [Department of Chemistry and Biochemistry, Florida State University Tallahassee, FL (United States); Kramer, Michael P. [AFRL/MNME Eglin AFB, FL (United States)

    2009-08-15

    Time-resolved spectroscopy was used to study the dynamics of the photothermal ignition of Al/Fe{sub 2}O{sub 3} metastable intermolecular composites after single short-pulse laser initiation. The dynamics were recorded in several time domains from nanosecond to microsecond to quantify the dynamics from initial laser excitation to combustion. Time-averaged spectral data were also collected for the overall emission occurring during combustion. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  8. Structural, morphological and optical properties of pulsed laser deposited ZnSe/ZnSeO3 thin films

    Science.gov (United States)

    Hassan, Syed Ali; Bashir, Shazia; Zehra, Khushboo; Salman Ahmed, Qazi

    2018-04-01

    The effect of varying laser pulses on structural, morphological and optical behavior of Pulsed Laser Deposited (PLD) ZnSe/ZnSeO3 thin films has been investigated. The films were grown by employing Excimer laser (100 mJ, 248 nm, 18 ns, 30 Hz) at various number of laser pulses i.e. 3000, 4000, 5000 and 6000 with elevated substrate temperature of 300 °C. One film was grown at Room Temperature (RT) by employing 3000 number of laser pulses. In order to investigate the structural analysis of deposited films, XRD analysis was performed. It was observed that the room temperature is not favorable for the growth of crystalline film. However, elevated substrate temperature to 300°C, two phases with preferred orientation of ZnSeO3 (2 1 2) and ZnSe (3 3 1) were identified. AFM and SEM analysis were performed to explore the surface morphology of grown films. Morphological analysis also confirmed the non-uniform film growth at room temperature. At elevated substrate temperature (300 °C), the growth of dendritic rods and cubical crystalline structures are observed for lower number of laser pulses i.e. 3000 and 4000 respectively. With increased number of pulses i.e. 5000 and 6000, the films surface morphology becomes smooth which is confirmed by measurement of surface RMS roughness. Number of grains, skewness, kurtosis and other parameters have been evaluated by statistical analysis. In order to investigate the thickness, and optical properties of deposited films, ellipsometery and UV–Vis spectroscopy techniques were employed. The estimated band gap energy is 2.67 eV for the film grown at RT, whereas band gap values varies from 2.80 eV to 3.01 eV for the films grown at 300 °C with increasing number of laser pulses.

  9. Comparison between the water activation effects by pulsed and sinusoidal helium plasma jets

    Science.gov (United States)

    Xu, Han; Liu, Dingxin; Xia, Wenjie; Chen, Chen; Wang, Weitao; Liu, Zhijie; Wang, Xiaohua; Kong, Michael G.

    2018-01-01

    Comparisons between pulsed and sinusoidal plasma jets have been extensively reported for the discharge characteristics and gaseous reactive species, but rarely for the aqueous reactive species in water solutions treated by the two types of plasma jets. This motivates us to compare the concentrations of aqueous reactive species induced by a pulsed and a sinusoidal plasma jet, since it is widely reported that these aqueous reactive species play a crucial role in various plasma biomedical applications. Experimental results show that the aqueous H2O2, OH/O2-, and O2-/ONOO- induced by the pulsed plasma jet have higher concentrations, and the proportional difference increases with the discharge power. However, the emission intensities of OH(A) and O(3p5P) are higher for the sinusoidal plasma jet, which may be attributed to its higher gas temperature since more water vapor could participate in the plasma. In addition, the efficiency of bacterial inactivation induced by the pulsed plasma jet is higher than that for the sinusoidal plasma jet, in accordance with the concentration relation of aqueous reactive species for the two types of plasma jets.

  10. Laser induced fluorescence in nanosecond repetitively pulsed discharges for CO2 conversion

    Science.gov (United States)

    Martini, L. M.; Gatti, N.; Dilecce, G.; Scotoni, M.; Tosi, P.

    2018-01-01

    A CO2 nanosecond repetitively pulsed discharge (NRP) is a harsh environment for laser induced fluorescence (LIF) diagnostics. The difficulties arise from it being a strongly collisional system in which the gas composition, pressure and temperature, have quick and strong variations. The relevant diagnostic problems are described and illustrated through the application of LIF to the measurement of the OH radical in three different discharge configurations, with gas mixtures containing CO2 + H2O. These range from a dielectric barrier NRP with He buffer gas, a less hostile case in which absolute OH density measurement is possible, to an NRP in CO2+H2O, where the full set of drawbacks is at work. In the last case, the OH density measurement is not possible with laser pulses and detector time resolution in the ns time scale. Nevertheless, it is shown that with a proper knowledge of the collisional rate constants involved in the LIF process, a collisional energy transfer-LIF methodology is still applicable to deduce the gas composition from the analysis of LIF spectra.

  11. Piezoelectrically-induced stress-luminescence phenomenon in CaAl{sub 2}O{sub 4}:Eu{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yongbin [Department of Physics, Zhejiang Normal University, Jinhua 321004 (China); Wu, Zheng, E-mail: wuzheng@zjnu.cn [College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 (China); Jia, Yanmin, E-mail: ymjia@zjnu.edu.cn [Department of Physics, Zhejiang Normal University, Jinhua 321004 (China); Liu, Yongsheng [Department of Physics, Shanghai University of Electric Power, Shanghai 200090 (China)

    2015-10-15

    Piezoelectrically-induced stress-luminescence in the CaAl{sub 2}O{sub 4}:Eu{sup 2+} was investigated. Blue light that was visible to the naked eye could be observed in the dark when a pulse force of ∼7.7 kN was applied to the sample. The intensity of the stress-luminescence strongly depended on the magnitude of the applied force during a pulse cycle. The intensity decreased with repetitive application of pulse stress and was completely recovered after irradiation with ultraviolet light. It is suggested that the stress-luminescence effect in CaAl{sub 2}O{sub 4}:Eu{sup 2+} arises from the piezoelectrically-induced de-trapping of the charge carriers. A CaAl{sub 2}O{sub 4}:Eu{sup 2+} ceramic that exhibits a stress-luminescence effect has potential applications in smart stress optically-sensing devices. - Highlights: • The strong induced stress-luminescence in CaAl{sub 2}O{sub 4}:Eu{sup 2+} was observed. • The stress-luminescent intensity strongly depends on the magnitude of force. • The stress-luminescence could be completely recovered after the UV irradiation. • The strong stress-luminescent effect is potential in stress-light sensors.

  12. Lung deflation and oxygen pulse in COPD: results from the NETT randomized trial.

    Science.gov (United States)

    Come, Carolyn E; Divo, Miguel J; San José Estépar, Raúl; Sciurba, Frank C; Criner, Gerard J; Marchetti, Nathaniel; Scharf, Steven M; Mosenifar, Zab; Make, Barry J; Keller, Cesar A; Minai, Omar A; Martinez, Fernando J; Han, MeiLan K; Reilly, John J; Celli, Bartolome R; Washko, George R

    2012-01-01

    In COPD patients, hyperinflation impairs cardiac function. We examined whether lung deflation improves oxygen pulse, a surrogate marker of stroke volume. In 129 NETT patients with cardiopulmonary exercise testing (CPET) and arterial blood gases (ABG substudy), hyperinflation was assessed with residual volume to total lung capacity ratio (RV/TLC), and cardiac function with oxygen pulse (O(2) pulse=VO(2)/HR) at baseline and 6 months. Medical and surgical patients were divided into "deflators" and "non-deflators" based on change in RV/TLC from baseline (∆RV/TLC). We defined deflation as the ∆RV/TLC experienced by 75% of surgical patients. We examined changes in O(2) pulse at peak and similar (iso-work) exercise. Findings were validated in 718 patients who underwent CPET without ABGs. In the ABG substudy, surgical and medical deflators improved their RV/TLC and peak O(2) pulse (median ∆RV/TLC -18.0% vs. -9.3%, p=0.0003; median ∆O(2) pulse 13.6% vs. 1.8%, p=0.12). Surgical deflators also improved iso-work O(2) pulse (0.53 mL/beat, p=0.04 at 20 W). In the validation cohort, surgical deflators experienced a greater improvement in peak O(2) pulse than medical deflators (mean 18.9% vs. 1.1%). In surgical deflators improvements in O(2) pulse at rest and during unloaded pedaling (0.32 mL/beat, pdeflators were 88% more likely than non-deflators to have an improvement in O(2) pulse (OR 1.88, 95% CI 1.30-2.72, p=0.0008). In COPD, decreased hyperinflation through lung volume reduction is associated with improved O(2) pulse. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Enhanced 77 K vortex-pinning in Y Ba2Cu3O7−x films with Ba2Y TaO6 and mixed Ba2Y TaO6 + Ba2Y NbO6 nano-columnar inclusions with irreversibility field to 11 T

    Directory of Open Access Journals (Sweden)

    F. Rizzo

    2016-06-01

    Full Text Available Pulsed laser deposited thin Y Ba2Cu3O7−x (YBCO films with pinning additions of 5 at. % Ba2Y TaO6 (BYTO were compared to films with 2.5 at. % Ba2Y TaO6 + 2.5 at. % Ba2Y NbO6 (BYNTO additions. Excellent magnetic flux-pinning at 77 K was obtained with remarkably high irreversibility fields greater than 10 T (YBCO-BYTO and 11 T (YBCO-BYNTO, representing the highest ever achieved values in YBCO films.

  14. Space-Based CO2 Active Optical Remote Sensing using 2-μm Triple-Pulse IPDA Lidar

    Science.gov (United States)

    Singh, Upendra; Refaat, Tamer; Ismail, Syed; Petros, Mulugeta

    2017-04-01

    , current efforts are focused on developing an aircraft-based 2-μm triple-pulse IPDA lidar for independent and simultaneous monitoring of CO2 and water vapor (H2O). Triple-pulse IPDA design, development and integration is based on the knowledge gathered from the successful demonstration of the airborne CO2 2-μm double-pulse IPDA lidar. IPDA transmitter enhancements include generating high-energy (80 mJ) and high repetition rate (50Hz) three successive pulses using a single pump pulse. IPDA receiver enhancement include an advanced, low noise (1 fW/Hz1/2) MCT e-APD detection system for improved measurement sensitivity. In place of H2O sensing, the triple-pulse IPDA can be tuned to measure CO2 with two different weighting functions using two on-lines and a common off-line. Modeling of a space-based high-energy 2-µm triple-pulse IPDA lidar was conducted to demonstrate CO2 measurement capability and to evaluate random and systematic errors. Projected performance shows reference surface using US Standard atmospheric model. In addition, measurements can be optimized by tuning on-lines based upon ground target scenarios, environment and science objectives. With 10 MHz detection bandwidth, surface ranging with an uncertainty of <3 m can be achieved as demonstrated from earlier airborne flights.

  15. Interface engineered HfO2-based 3D vertical ReRAM

    International Nuclear Information System (INIS)

    Hudec, Boris; Wang, I-Ting; Lai, Wei-Li; Chang, Che-Chia; Hou, Tuo-Hung; Jančovič, Peter; Fröhlich, Karol; Mičušík, Matej; Omastová, Mária

    2016-01-01

    We demonstrate a double-layer 3D vertical resistive random access memory (ReRAM) stack implementing a Pt/HfO 2 /TiN memory cell. The HfO 2 switching layer is grown by atomic layer deposition on the sidewall of a SiO 2 /TiN/SiO 2 /TiN/SiO 2 multilayer pillar. A steep vertical profile was achieved using CMOS-compatible TiN dry etching. We employ in situ TiN bottom interface engineering by ozone, which results in (a) significant forming voltage reduction which allows for forming-free operation in AC pulsed mode, and (b) non-linearity tuning of low resistance state by current compliance during Set operation. The vertical ReRAM shows excellent read and write disturb immunity between vertically stacked cells, retention over 10 4 s and excellent switching stability at 400 K. Endurance of 10 7 write cycles was achieved using 100 ns wide AC pulses while fast switching speed using pulses of only 10 ns width is also demonstrated. The active switching region was evaluated to be located closer to the bottom interface which allows for the observed high endurance. (paper)

  16. Subsolidus phase relations of the SrO-Ta2O5-CuO system at 900 °C in air

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2009-01-01

    The subsolidus phase relations of the SrO–Ta2O5–CuO system were investigated in air. The samples were equilibrated at 900 °C. The ternary oxide Sr3Ta2CuO9 compound is stable under these conditions. This phase presents a solid solution range, its actual composition being Sr3Ta2−xCu1+xO9+δ with 0.......0 ≤ x ≤ 0.2. Up to about 5 at.% Cu can be incorporated in the Sr3−xTa1+xO5.5+δ phase. Similarities with the SrO–Nb2O5–CuO system are discussed....

  17. Rotationally resolved pulsed-field ionization photoelectron bands for O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=0-12) in the energy range of 17.0-18.2 eV

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y. [Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Evans, M. [Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Ng, C. Y. [Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Hsu, C.-W. [Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Jarvis, G. K. [Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2000-01-15

    We have obtained rotationally resolved pulsed-field ionization photoelectron (PFI-PE) spectra for O{sub 2} in the energy range of 17.05-18.13 eV, covering the ionization transitions O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=0-12,N{sup +})(<-)O{sub 2}(X {sup 3}{sigma}{sub g}{sup -},v{sup ''}=0,N{sup ''}). Although these O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}) PFI-PE bands have significant overlaps with vibrational bands for O{sub 2}{sup +}(a {sup 4}{pi}{sub u}) and O{sub 2}{sup +}(X {sup 2}{pi}{sub g}), we have identified all the O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=0-12) bands by simulation of spectra obtained using supersonically cooled O{sub 2} samples with rotational temperatures {approx_equal}20 and 220 K. While these v{sup +}=0-12 PFI-PE bands represent the first rotationally resolved photoelectron data for O{sub 2}{sup +}(A {sup 2}{pi}{sub u}), the PFI-PE bands for O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=9 and 10) are the first rotationally resolved spectroscopic data for these levels. The simulation also allows the determination of accurate ionization energies, vibrational constants, and rotational constants for O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=0-12). The analysis of the PFI-PE spectra supports the conclusion of the previous emission study that the O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=9 and 10) states are strongly perturbed by a nearby electronic state. (c) 2000 American Institute of Physics.

  18. Innovations in electrophoretic deposition: Alternating current and pulsed direct current methods

    International Nuclear Information System (INIS)

    Chávez-Valdez, Alejandra; Boccaccini, Aldo R.

    2012-01-01

    This review summarizes emerging developments in the field of alternating current (AC) and pulsed direct current (DC) electrophoretic deposition (EPD) in aqueous or organic media. Numerous applications of AC-EPD are discussed including two major groups of investigations: (i) AC-EPD to suppress water hydrolysis at high voltages in inorganic (ceramic) coatings and (ii) AC-EPD for deposition of biological entities. The deposition, purification and manipulation of carbon nanotubes and nanoparticles by AC-EPD to form specific arrays, for development of sensors and other electronic devices and the application of AC-EPD as method for separation of particles according to their shape or size are also presented. Other applications reviewed relate to the fabrication by AC-EPD of toxic gas sensors from oxides and superconducting layers. The main materials being examined by AC-EPD are inorganic, including carbon nanotubes, TiO 2 nanoparticles, Al 2 O 3 , Si, SnO 2 , ZnO and WO 3 and biological entities, e.g. bacteria cells. For pulsed EPD, the applications reviewed are divided in pulsed current and pulsed voltage EPD. Among the applications of pulsed EPD, the formation of thick films from aqueous suspensions without water decomposition, the fabrication of multilayer and composite materials and the size-selective deposition of ceramic nanoparticles are the most important investigated to date, based on the quality of the coatings and deposits obtained and their relevance for applications.

  19. Effect of oxygen vacancy induced by pulsed magnetic field on the room-temperature ferromagnetic Ni-doped ZnO synthesized by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Min [Shanghai University, Laboratory for Microstructures, School of Materials Science and Engineering, 149 Yanchang Road, 200072 Shanghai (China); Li, Ying, E-mail: liying62@shu.edu.cn [Shanghai University, Laboratory for Microstructures, School of Materials Science and Engineering, 149 Yanchang Road, 200072 Shanghai (China); Tariq, Muhammad; Hu, Yemin; Li, Wenxian; Zhu, Mingyuan; Jin, Hongmin [Shanghai University, Laboratory for Microstructures, School of Materials Science and Engineering, 149 Yanchang Road, 200072 Shanghai (China); Li, Yibing [School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 (Australia)

    2016-08-05

    Room temperature ferromagnetic 2% Ni doped ZnO rods were synthesized by high pulsed magnetic field-assisted hydrothermal method. A detailed study on the effect of high pulsed magnetic field on morphology, structural and magnetic properties of the ZnO rods has been carried out systematically by varying the intensity of field from 0 to 4 T. X-ray diffraction, Energy-dispersive spectroscopy measurements, and Raman spectra analysis suggest that all the samples have hexagonal wurtzite structure without detectable impurity. Field emission scanning electron microscopy images indicate that the particle size of samples decrease with increasing intensity of field. High resolution transmission electron microscopy observation ensures that the Ni ions addition do not change the wurtzite host matrix. X-ray photoelectron spectroscopy confirms the incorporation of Ni elements as divalent state and the dominant presence of oxygen vacancies in samples fabricated under 4 T pulsed magnetic field. Hysteresis loops demonstrate that the saturation magnetization increased regularly with the mounting magnetic field. On the framework of bound magnetic polaron model, the rising content of oxygen vacancies, as donor defect, lead to the stronger ferromagnetism in samples with pulsed magnetic field. Our findings provide a new insight for tuning the defect density by precisely controlling the intensity of field in order to get the desired magnetic behavior at room temperature. - Graphical abstract: This figure shows the magnetization versus magnetic field curves for 2%Ni doped ZnO as prepared with 0, 1, 2, 3 and 4 T pulsed magnetic field at 290 K. For 0 T sample, no ferromagnetic response is observed. But all the samples synthesized with field were well-defined hysteresis loops. The saturation magnetization estimated from the hysteresis loop come out to be ∼0.0024, 0.0023, 0.0036 and 0.0061 emu/g for 1 T, 2 T, 3 T and 4 T samples, respectively. As shown in the curves, the room

  20. Properties of Al2O3 nano-particle reinforced copper matrix composite coatings prepared by pulse and direct current electroplating

    International Nuclear Information System (INIS)

    Allahkaram, Saeed Reza; Golroh, Setareh; Mohammadalipour, Morteza

    2011-01-01

    Highlights: → The influence of Al 2 O 3 is studied on morphologies of the DC and PC applied coatings. → The influence of Al 2 O 3 is studied on the DC and PC coating thicknesses. → The influence of Al 2 O 3 is studied on wear resistance. → The effect of Al 2 O 3 is studied on the porosity and corrosion resistance. -- Abstract: Cu-Al 2 O 3 nano-composite coatings have high potential for use in applications in which high mechanical properties together with high corrosion resistance are required. In the present study it is intended to produce copper nano-alumina composite coatings with various nano-alumina contents in order to investigate the effect of alumina reinforcement particles on corrosion resistance and mechanical properties such as hardness and wear resistance. The composite coatings were deposited using direct current (DC) and pulse current (PC) plating. The microstructures of the coatings produced from both methods were examined via scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The wear behaviors, micro hardness, coating thickness, corrosion rate and coating porosity were examined using appropriate methods. Compared to DC deposition, PC plating facilitated higher amounts of particle incorporation with more uniform distribution. The results indicated that the mechanical properties of the applied coatings with incorporated nano-alumina reinforcement were far more superior as compared to its own matrix as well as non-composite copper coatings. It was also found out that increasing the amount of nano-alumina content in the coating, led to enhanced general properties of the coatings.

  1. Effect of the thin Ga2O3 layer in n+-ZnO/n-Ga2O3/p-Cu2O heterojunction solar cells

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2013-01-01

    The influence of inserting a Ga 2 O 3 thin film as an n-type semiconductor layer on the obtainable photovoltaic properties in Cu 2 O-based heterojunction solar cells was investigated with a transparent conductive Al-doped ZnO (AZO) thin film/n-Ga 2 O 3 thin film/p-Cu 2 O sheet structure. It was found that this Ga 2 O 3 thin film can greatly improve the performance of Cu 2 O-based heterojunction solar cells fabricated using polycrystalline Cu 2 O sheets that had been prepared by a thermal oxidization of copper sheets. The obtained photovoltaic properties in the AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells were strongly dependent on the deposition conditions of the Ga 2 O 3 films. The external quantum efficiency obtained in AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells was found to be greater at wavelengths below approximately 500 nm than that obtained in AZO/Cu 2 O heterojunction solar cells (i.e., prepared without a Ga 2 O 3 layer) at equivalent wavelengths. This improvement of photovoltaic properties is mainly attributed to a decrease in the level of defects at the interface between the Ga 2 O 3 thin film and the Cu 2 O sheet. Conversion efficiencies over 5% were obtained in AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells fabricated using an n-Ga 2 O 3 thin-film layer prepared with a thickness of 40–80 nm at an O 2 gas pressure of approximately 1.7 Pa by a pulsed laser deposition. - Highlights: • We demonstrate high-efficiency Cu 2 O-based p-n heterojunction solar cells. • A non-doped Ga 2 O 3 thin film was used as an n-type semiconductor layer. • The Ga 2 O 3 thin film was prepared at a low temperature by a low damage deposition. • p-type Cu 2 O sheets prepared by thermal oxidization of copper sheets were used. • Conversion efficiencies over 5% were obtained in AZO/n-Ga 2 O 3 /p-Cu 2 O solar cells

  2. Determination of the absolute second-order rate constant for the reaction Na + O3 → NaO + O2

    International Nuclear Information System (INIS)

    Husain, David; Marshall, Paul; Plane, J.M.C.

    1985-01-01

    The absolute second-order rate constant for the reaction Na + O 3 -> NaO + O 2 (k 1 ) has been determined by time-resolved atomic resonance absorption spectroscopy at lambda = 589 nm [Na(3 2 Psub(j)) 2 Ssub(1/2))] following pulsed irradiation, coupled with monitoring of O 3 by light absorption in the ultra-violet; this yields k 1 (500 K) = 4(+4,-2) x 10 -10 cm 3 molecule -1 s -1 , resolving large differences for various estimates of this important quantity used in modelling the sodium layer in the mesosphere. (author)

  3. Phase relations in the ZrO2-Nd2O3-Y2O3 system. Experimental study and CALPHAD assessment

    International Nuclear Information System (INIS)

    Fabrichnaya, Olga; Savinykh, Galina; Schreiber, Gerhard; Seifert, Hans J.

    2010-01-01

    The thermodynamic parameters of the Nd 2 O 3 Y 2 O 3 system were re-assessed for better reproduction of experimental data. The thermodynamic parameters were combined from binary descriptions to calculate phase diagrams for the ternary system ZrO 2 -Nd 2 O 3 Y 2 O 3 . The calculated phase diagrams were used to select compositions for the experimental studies at 1250, 1400 and 1600 C. The samples were synthesised by co-precipitation and heat treated at 1250-1600 C, investigated by X-ray diffraction and scanning electron microscopy combined with energy dispersive X-ray spectroscopy. It was found that solubility of the Y 2 O 3 in the pyrochlore phase exceeds 10 mol.%. The experimental data obtained for phase equilibria were used to derive thermodynamic parameters for fluorite, Y 2 O 3 cubic phase C, monoclinic B and Nd 2 O 3 hexagonal A phases by CALPHAD method. The isothermal sections and liquidus surface were calculated for the ZrO 2 -Nd 2 O 3 Y 2 O 3 system. (orig.)

  4. The influence of oxygen partial pressure on material properties of Eu{sup 3+}-doped Y{sub 2}O{sub 2}S thin film deposited by Pulsed Laser Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A.G., E-mail: aliag@qwa.ufs.ac.za [Department of Physics, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Dejene, B.F. [Department of Physics, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Swart, H.C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa)

    2016-01-01

    Eu{sup 3+}-doping has been of interest to improve the luminescent characteristics of thin-film phosphors. Y{sub 2}O{sub 2}S:Eu{sup 3+} films have been grown on Si (100) substrates by using a Pulsed Laser Deposition technique. The thin films grown under different oxygen deposition pressure conditions have been characterized using structural and luminescent measurements. The X-ray diffraction patterns showed mixed phases of cubic and hexagonal crystal structures. As the oxygen partial pressure increased, the crystallinity of the films improved. Further increase of the O{sub 2} pressure to 140 mtorr reduced the crystallinity of the film. Similarly, both scanning electron microscopy and Atomic Force Microscopy confirmed that an increase in O{sub 2} pressure affected the morphology of the films. The average band gap of the films calculated from diffuse reflectance spectra using the Kubelka–Munk function was about 4.75 eV. The photoluminescence measurements indicated red emission of Y{sub 2}O{sub 2}S:Eu{sup 3+} thin films with the most intense peak appearing at 619 nm, which is assigned to the {sup 5}D{sub 0}–{sup 7}F{sub 2} transition of Eu{sup 3+}. This most intense peak was totally quenched at higher O{sub 2} pressures. This phosphor may be a promising material for applications in the flat panel displays.

  5. Electrochemistry and safety of Li 4Ti 5O 12 and graphite anodes paired with LiMn 2O 4 for hybrid electric vehicle Li-ion battery applications

    Science.gov (United States)

    Belharouak, Ilias; Koenig, Gary M.; Amine, K.

    A promising anode material for hybrid electric vehicles (HEVs) is Li 4Ti 5O 12 (LTO). LTO intercalates lithium at a voltage of ∼1.5 V relative to lithium metal, and thus this material has a lower energy compared to a graphite anode for a given cathode material. However, LTO has promising safety and cycle life characteristics relative to graphite anodes. Herein, we describe electrochemical and safety characterizations of LTO and graphite anodes paired with LiMn 2O 4 cathodes in pouch cells. The LTO anode outperformed graphite with regards to capacity retention on extended cycling, pulsing impedance, and calendar life and was found to be more stable to thermal abuse from analysis of gases generated at elevated temperatures and calorimetric data. The safety, calendar life, and pulsing performance of LTO make it an attractive alternative to graphite for high power automotive applications, in particular when paired with LiMn 2O 4 cathode materials.

  6. Heat pulse analysis in JET and relation to local energy transport models

    International Nuclear Information System (INIS)

    Haas, J.C.M. de; Lopes Cardozo, N.J.; Han, W.; Sack, C.; Taroni, A.

    1989-01-01

    The evolution of a perturbation T e of the electron temperature depends on the linearised expression of the heat flux q e and may be not simply related to the local value of the electron heat conductivity χ e . It is possible that local heat transport models predicting similar temperature profiles and global energy confinement properties, imply a different propagation of heat pulses. We investigate here this possibility for the case of two models developed at JET. We also present results obtained at JET on a set of discharges covering the range of currents from 2 to 5 MA. Only L-modes, limiter discharges are considered here. Experimental results on the scaling of χ HP , the value of χ e related to heat pulse propagation, are compared with those of χ HP derived from the models. (author) 7 refs., 2 figs., 2 tabs

  7. Investigations of p-type signal for ZnO thin films grown on (100)GaAs substrates by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, D.J. [Nanovation SARL, Orsay (France); Univ. de Technologie de Troyes, Troyes (France); Hosseini Teherani, F. [Nanovation SARL, Orsay (France); Monteiro, T.; Soares, M.; Neves, A.; Carmo, M.; Correia, M.R. [Physics Dept., Univ. of Aveiro (Portugal); Pereira, S. [Physics Dept., Univ. of Aveiro (Portugal); Inst. Tecnologico e Nuclear, Sacavem (Portugal); Lusson, A. [Inst. d' Electronique Fondamentale, Orsay Univ. (France); LPSC - CNRS, Meudon (France); Alves, E.; Barradas, N.P. [Inst. Tecnologico e Nuclear, Sacavem (Portugal); Morrod, J.K.; Prior, K.A. [Physics Dept., Heriot Watt Univ., Edinburgh Scotland (United Kingdom); Kung, P.; Yasan, A.; Razeghi, M. [Center for Quantum Devices, Dept. of Electrical and Computer Engineering, Northwestern Univ., Evanston, IL (United States)

    2006-03-15

    In this work we investigated ZnO films grown on semi-insulating (100)GaAs substrates by pulsed laser deposition. Samples were studied using techniques including X-ray diffraction (XRD), scanning electron microscopy, atomic force microscopy, Raman spectroscopy, temperature dependent photoluminescence, C-V profiling and temperature dependent Hall measurements. The Hall measurements showed a clear p-type response with a relatively high mobility ({proportional_to}260 cm{sup 2}/Vs) and a carrier concentration of {proportional_to}1.8 x 10{sup 19} cm{sup -3}. C-V profiling confirmed a p-type response. XRD and Raman spectroscopy indicated the presence of (0002) oriented wurtzite ZnO plus secondary phase(s) including (101) oriented Zn{sub 2}As{sub 2}O{sub 7}. The results suggest that significant atomic mixing was occurring at the film/substrate interface for films grown at substrate temperatures of 450 C (without post-annealing). (orig.)

  8. Kinetics of the reaction of CH3O2 radicals with NO2

    DEFF Research Database (Denmark)

    Wallington, T.J.; Nielsen, O.J.; Sehested, K.

    1999-01-01

    The kinetics of the gas-phase reaction of CH3O2 radicals with NO2 were studied at 295 K in 0.5-14 arm of SF6 diluent using pulse radiolysis combined with time-resolved UV-VIS spectroscopy. Rate data were obtained by following the loss of CH3O2 using a monitoring wavelength of 260 nm. The results...

  9. Raman spectroscopy of ZnMnO thin films grown by pulsed laser deposition

    Science.gov (United States)

    Orozco, S.; Riascos, H.; Duque, S.

    2016-02-01

    ZnMnO thin films were grown by Pulsed Laser Deposition (PLD) technique onto Silicon (100) substrates at different growth conditions. Thin films were deposited varying Mn concentration, substrate temperature and oxygen pressure. ZnMnO samples were analysed by using Raman Spectroscopy that shows a red shift for all vibration modes. Raman spectra revealed that nanostructure of thin films was the same of ZnO bulk, wurzite hexagonal structure. The structural disorder was manifested in the line width and shape variations of E2(high) and E2(low) modes located in 99 and 434cm-1 respectively, which may be due to the incorporation of Mn ions inside the ZnO crystal lattice. Around 570cm-1 was found a peak associated to E1(LO) vibration mode of ZnO. 272cm-1 suggest intrinsic host lattice defects. Additional mode centred at about 520cm-1 can be overlap of Si and Mn modes.

  10. Optimization of Maghemite (γ-Fe2O3) Nano-Powder Mixed micro-EDM of CoCrMo with Multiple Responses Using Gray Relational Analysis (GRA)

    Science.gov (United States)

    Mejid Elsiti, Nagwa; Noordin, M. Y.; Idris, Ani; Saed Majeed, Faraj

    2017-10-01

    This paper presents an optimization of process parameters of Micro-Electrical Discharge Machining (EDM) process with (γ-Fe2O3) nano-powder mixed dielectric using multi-response optimization Grey Relational Analysis (GRA) method instead of single response optimization. These parameters were optimized based on 2-Level factorial design combined with Grey Relational Analysis. The machining parameters such as peak current, gap voltage, and pulse on time were chosen for experimentation. The performance characteristics chosen for this study are material removal rate (MRR), tool wear rate (TWR), Taper and Overcut. Experiments were conducted using electrolyte copper as the tool and CoCrMo as the workpiece. Experimental results have been improved through this approach.

  11. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    OpenAIRE

    Meilkhova, O.; Čížek, J.; Lukáč,, F.; Vlček, M.; Novotný, M.; Bulíř, J.; Lančok, J.; Anwand, W.; Brauer, G.; Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P.

    2013-01-01

    ZnO films with thickness of ~80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects...

  12. Re-evaluation of the reactivity of hydroxylamine with O2-/HO2

    International Nuclear Information System (INIS)

    Bielski, B.H.J.; Arudi, R.L.; Cabelli, D.E.; Bors, W.

    1984-01-01

    The reactivity of hydroxylamine with HO 2 /O 2 - radicals was studied by pulse radiolysis and stopped-flow photolysis over a pH range of 1.1-10.5. Upper limits for the rate of reaction indicate that hydroxylamine, if it reacts at all, reacts at a very slow rate. Its use as an indicator for O 2 - and an assay for superoxide dismutase is, therefore, inappropriate. 20 references, 1 table

  13. [The source and factors that influence tracheal pulse oximetry signal].

    Science.gov (United States)

    Fan, Xiao-hua; Wei, Wei; Wang, Jian; Mu, Ling; Wang, Li

    2010-03-01

    To investigate the source and factors that influence tracheal pulse oximetry signal. The adult mongrel dog was intubated after anesthesia. The tracheal tube was modified by attaching a disposable pediatric pulse oximeter to the cuff. The chest of the dog was cut open and a red light from the tracheal oximeter was aligned with the deeper artery. The changes in tracheal pulse oxygen saturation (SptO2) signal were observed after the deeper artery was blocked temporarily. The photoplethysmography (PPG) and readings were recorded at different intracuff pressures. The influence of mechanical ventilation on the signal was also tested and compared with pulse oxygen saturation (SpO2). The SptO2 signal disappeared after deeper artery was blocked. The SptO2 signal changed with different intracuff pressures (P signal appeared under 20-60 cm H2O of intracuff pressure than under 0-10 cm H2O of intracuff pressure(P signal under a condition with mechanical ventilation differed from that without mechanical ventilation (P signal is primarily derived from deeper arteries around the trachea, not from the tracheal wall. Both intracuff pressures and mechanical ventilation can influence SptO2 signal. The SptO2 signal under 20-60 cm H2O of intracuff pressure is stronger than that under 0-10 em H2O of intracuff pressure. Mechanical ventilation mainly changes PPG.

  14. TiO2/Cu2O composite based on TiO2 NTPC photoanode for photoelectrochemical (PEC) water splitting under visible light

    KAUST Repository

    Shi, Le

    2015-05-01

    Water splitting through photoelectrochemical reaction is widely regarded as a major method to generate H2 , a promising source of renewable energy to deal with the energy crisis faced up to human being. Efficient exploitation of visible light in practice of water splitting with pure TiO2 material, one of the most popular semiconductor material used for photoelectrochemical water splitting, is still challenging. One dimensional TiO2 nanotubes is highly desired with its less recombination with the short distance for charge carrier diffusion and light-scattering properties. This work is based on TiO2 NTPC electrode by the optimized two-step anodization method from our group. A highly crystalized p-type Cu2O layer was deposited by optimized pulse potentiostatic electrochemical deposition onto TiO2 nanotubes to enhance the visible light absorption of a pure p-type TiO2 substrate and to build a p-n junction at the interface to improve the PEC performance. However, because of the real photocurrent of Cu2O is far away from its theoretical limit and also poor stability in the aqueous environment, a design of rGO medium layer was added between TiO2 nanotube and Cu2O layer to enhance the photogenerated electrons and holes separation, extend charge carrier diffusion length (in comparison with those of conventional pure TiO2 or Cu2O materials) which could significantly increase photocurrent to 0.65 mA/cm2 under visible light illumination (>420 nm) and also largely improve the stability of Cu2O layer, finally lead to an enhancement of water splitting performance.

  15. Phase relations, crystal structure, and phase transformation of In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) in In_2O_3–Nb_2O_5–TiO_2 system

    International Nuclear Information System (INIS)

    Su, Liumei; Fan, Xing; Cai, Gemei; Liu, Huashan; Jin, Zhanpeng

    2015-01-01

    Phase relations, crystal structures, and phase transformation of In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) in In_2O_3–Nb_2O_5–TiO_2 ternary system were investigated for the first time. A number of samples with different compositions were prepared by a solid-state reaction method, and phase assembles were analyzed by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe micro-analysis (EPMA). Five three-phase regions, ten two-phase regions, and six single-phase solid solutions were determined in this system. The solid solution of In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) is composed of both ordered monoclinic wolframite-type structure (0 ≤ x < 0.35) and disordered orthorhombic α-PbO_2 type structure (0.35 < x < 0.45). Driving force for composition-driven phase transformation in In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) stems from the ordering of cations. The ever reported compound InNbTiO_6 with an orthorhombic α-PbO_2 type structure was amended to be a monoclinic wolframite-type structure. Present investigations will be useful for the whole ceramic community working with In_2O_3–Nb_2O_5–TiO_2 ternary system as well as for the development of functional materials. - Highlights: • Phase relations of In_2O_3–Nb_2O_5–TiO_2 ternary system were constructed. • Crystal structures of a novel solid solution In_1_−_xNb_1_−_xTi_2_xO_4 were determined. • Crystal structure of InNbTiO_6 was amended to be a wolframite-type structure. • Composition-driven phase transformation of In_1_−_xNb_1_−_xTi_2_xO_4 was investigated.

  16. YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} coated conductor deposited onto non-magnetic ternary alloy NiCrW RABiTS tape by in situ pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tomov, R I; Kursumovic, A; Majoros, M; Glowacki, B A; Evetts, J E; Tuissi, A; Villa, E; Zamboni, M; Sun, Y; Toenies, S; Weber, H W

    2003-01-01

    Pulsed laser deposition of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO)/buffer (Y{sub 2}O{sub 3}, YSZ, CeO{sub 2}) heterostructures have been performed in situ onto recently developed non-magnetic oxygenation resistant NiCrW tape. The influence of the critical processing parameters on texture development are investigated and the issues involved in NiO formation and relation to the substrate surface quality are discussed. The roles of Ni poisoning YBCO as well as local cation disorder are considered as possible current limiting factors. X-ray diffraction has been used for macro-texture evaluation. Both buffers and YBCO layers show good biaxial alignment with {omega} and {phi} scans having best YBCO FWHM values of 4.0 deg. and 6.5 deg. respectively. A comparison is made with results achieved on industrial Ni{sub 50}Fe{sub 50} tape. The film morphology has been characterized using atomic force microscopy and scanning electron microscopy. The cation disorder has been studied by Raman spectroscopy. Critical temperatures of 90 K ({delta}T{sub c}=5 K) have been measured. Direct transport as well as magnetic measurements shows the critical current density J{sub c} is 0.2 MA/cm{sup 2} in self-field at liquid nitrogen temperatures.

  17. Deposition and characterization of pulsed direct current magnetron sputtered Al{sub 95.5}Cr{sub 2.5}Si{sub 2} (N{sub 1-x}O{sub x}) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, H., E-mail: hossein.najafi@epfl.c [Institut de Physique de la Matiere Condensee (IPMC), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne (Switzerland); Shetty, A.; Karimi, A. [Institut de Physique de la Matiere Condensee (IPMC), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne (Switzerland); Morstein, M. [Platit AG, Advanced Coating Systems, CH-2545 Selzach (Switzerland)

    2010-10-29

    Aluminum rich oxynitride thin films were prepared using pulsed direct current (DC) magnetron sputtering from an Al{sub 95.5}Cr{sub 2.5}Si{sub 2} (at.%) target. Two series of films were deposited at 400 {sup o}C and 650 {sup o}C by changing the O{sub 2}/(O{sub 2} + N{sub 2}) ratio in the reactive gas from 0% (pure nitrides) to 100% (pure oxides). The films were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and nanoindentation. The results showed the existence of three different regions of microstructure and properties with respect to the oxygen concentration. For the samples deposited at 650 {sup o}C in the nitrogen rich region (O{sub 2}/(O{sub 2} + N{sub 2}) {<=} 0.08), the formation of the h-AlN (002) and Al-N bond were confirmed by XRD and XPS measurements. The hardness of the films was around 30 GPa. In the intermediate region (0.08 {<=} O{sub 2}/(O{sub 2} + N{sub 2}) {<=} 0.24), the presence of an amorphous structure and the shifting of the binding energies to lower values corresponding to non-stoichiometric compounds were observed and the hardness decreased to 12 GPa. The lowering of mechanical properties was attributed to the transition of the clean target to the reacted target under non-steady state deposition conditions. In the oxygen rich region (0.24 {<=} (O{sub 2}/(O{sub 2} + N{sub 2}) {<=} 1), the existence of {alpha}-Al{sub 2}O{sub 3}-(113), {alpha}-Al{sub 2}O{sub 3}-(116) and Al-O bonds confirmed the domination of this phase in this region of deposition and the hardness increased again to 30-35 GPa. Films deposited at 400 {sup o}C showed the same behavior except in the oxygen rich region, where hardness remains low at about 12-14 GPa.

  18. Structural and luminescence properties of SrAl{sub 2}O{sub 4}:Eu{sup 2+},Dy{sup 3+},Nd{sup 3+} phosphor thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wako, A.H., E-mail: wakoah@ufs.ac.za [Department of Physics, University of the Free State, QwaQwa Campus, Private Bag X13, Phuthaditjhaba 9866 (South Africa); Dejene, F.B. [Department of Physics, University of the Free State, QwaQwa Campus, Private Bag X13, Phuthaditjhaba 9866 (South Africa); Swart, H.C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA-9300 (South Africa)

    2016-01-01

    Thin films of Eu{sup 2+} doped and Dy{sup 3+},Nd{sup 3+} co-doped Strontium Aluminate (SrAl{sub 2}O{sub 4}:Eu{sup 2+},Dy{sup 3+},Nd{sup 3+}) phosphors were grown on Si(100) substrates by a pulsed laser deposition (PLD) technique using a 266 nm Nd:YAG pulsed laser under varying substrate temperature and the working atmosphere during the film deposition process. The effect of substrate temperatures and argon partial pressure on the structure and luminescence properties of the as-deposited SrAl{sub 2}O{sub 4}:Eu{sup 2+},Dy{sup 3+},Nd{sup 3+} phosphor thin films were analysed. XRD patterns showed that with increasing substrate temperature and argon partial pressure the peaks in the direction (220) shifted to the lower 2-theta angles. Photoluminescence (PL) data collected in air at room temperature revealed a slight shift in the peak wavelength of the PL spectra observed from the thin films when compared to the PL spectra of the phosphor in powder form, which is probably due to a change in the crystal field. The PL intensity of the samples was highest for 100 °C substrate temperature and 20 mTorr argon partial pressure. Due to this, the effect of argon partial pressure was studied at a constant substrate temperature of 100 °C while the effect of Substrate temperatures recorded at 20 mTorr argon pressure respectively.

  19. Cooper pair formation dynamics in Bi2Sr2CaCu2O8+δ

    International Nuclear Information System (INIS)

    Kaindl, R.A.; Carnahan, M.A.; Orenstein, J.; Chemla, D.S.; Oh, S.; Eckstein, J.N.

    2003-01-01

    We utilize ultrafast terahertz pulses to monitor the carrier dynamics in the high-TC superconductor Bi2Sr2CaCu2O8+delta. The temperature, density and time dependence distinctly exposes a bimolecular recombination process of quasiparticles which underlies formation of Cooper pairs

  20. Laser e luz pulsada de alta energia: indução e tratamento de reações alérgicas relacionadas a tatuagens Laser and intense pulsed light: induction and treatment of allergic reactions related to tattoos

    Directory of Open Access Journals (Sweden)

    Tatiana Sacks

    2004-12-01

    Full Text Available Os autores apresentam dois casos de reações alérgicas relacionadas a tatuagens, em que o laser e a luz pulsada de alta energia tiveram papel fundamental na indução e no tratamento dessas reações. No primeiro, houve surgimento de lesão eczematosa no local do pigmento vermelho utilizado na tatuagem. Após várias tentativas terapêuticas, a luz pulsada de alta energia foi utilizada com sucesso na remoção do pigmento e desaparecimento dos sintomas. No segundo, os autores demonstram um caso de reação anafilática induzida pelo laser Nd:YAG de pulso longo.The authors describe two cases of allergic reactions related to tattoos, in which laser and intense pulsed light had an important role in inducing and treating these allergic reactions. In the first case, the patient developed eczematous lesions at the site of the red pigment used in tattooing. After several unsuccessful therapeutic attempts, intense pulsed light was used. It successfully removed the red pigment and treated the allergy symptoms. In the second case, the authors describe a case of anaphylactic reaction precipitated by the long pulse Nd:YAD laser.

  1. Modification of Screen Printed Carbon Electrode (SPCE with Polypyrrole (Ppy-SiO2 for Phenol Determination

    Directory of Open Access Journals (Sweden)

    Ani Mulyasuryani

    2018-01-01

    Full Text Available Electrode modification on screen printed carbon electrode (SPCE with polypyrrole (Ppy-SiO2 was done by electropolymerization. Polypyrrole (Ppy-SiO2 was used for phenol determination. The analysis of this material was done by using Scanning Electron Microscopy (SEM, cyclic voltammetry method and differential pulse voltammetry. In a cyclic voltammetry analysis, we used potential range of -1 to 1 V with Ag/AgCl comparator electrode at scan rate of 100 mV/sec, while in differential pulse voltammetry method the potential range was 0 to 1 V toward Ag/AgCl, the scan rate of 50 mV/sec, the pulse rate is 0,2 V and the pulse width is 50 ms. From the analysis result with SEM, cyclic voltammetry and differential pulse voltammetry method, Polypyrrole (Ppy -SiO2 is the best material and can be used as phenol measurement.

  2. Phonon dispersion relations in PrBa2Cu3O6+x (x≅0.2)

    International Nuclear Information System (INIS)

    Gardiner, C.H.; Boothroyd, A.T.; Larsen, B.H.; Reichardt, W.; Zhokhov, A.A.; Andersen, N.H.; Lister, S.J.S.; Wildes, A.R.

    2004-01-01

    We report measurements of the phonon dispersion relations in nonsuperconducting, oxygen-deficient PrBa 2 Cu 3 O 6+x (x≅0.2) by inelastic neutron scattering. The data are compared with a model of the lattice dynamics based on a common interatomic potential. Good agreement is achieved for all but two phonon branches, which are significantly softer than predicted. These modes are found to arise predominantly from motion of the oxygen ions in the CuO 2 planes. Analogous modes in YBa 2 Cu 3 O 6 are well described by the common interatomic potential model

  3. Epitaxial growth of mixed conducting layered Ruddlesden–Popper Lan+1NinO3n+1 (n = 1, 2 and 3) phases by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wu, Kuan-Ting; Soh, Yeong-Ah; Skinner, Stephen J.

    2013-01-01

    Graphical abstract: - Highlights: • High quality epitaxial thin films of layered Ruddlesden–Popper nickelates were prepared. • For the first time this has been achieved by the PLD process. • n = 1, 2 and 3 films were successfully deposited on SrTiO 3 and NdGaO 3 substrates. • c-Axis oriented films were confirmed by XRD analysis. • In-plane and out-of-plane strain effects on lattice are discussed. - Abstract: Layered Ruddlesden–Popper phases of composition La n+1 Ni n O 3n+1 (n = 1, 2 and 3) have been epitaxially grown on SrTiO 3 (0 0 1) or NdGaO 3 (1 1 0) single crystal substrates using the pulsed laser deposition technique. X-ray diffraction analyses (θ/2θ, rocking curves, and φ-scans) and atomic force microscopy confirms the high-quality growth of the series of films with low surface roughness values (less than 1 nm). In particular, epitaxial growth of the higher order phases (n = 2 and 3) of lanthanum nickelate have been demonstrated for the first time

  4. Tuning the Phase and Microstructural Properties of TiO2 Films Through Pulsed Laser Deposition and Exploring Their Role as Buffer Layers for Conductive Films

    Science.gov (United States)

    Agarwal, S.; Haseman, M. S.; Leedy, K. D.; Winarski, D. J.; Saadatkia, P.; Doyle, E.; Zhang, L.; Dang, T.; Vasilyev, V. S.; Selim, F. A.

    2018-04-01

    Titanium oxide (TiO2) is a semiconducting oxide of increasing interest due to its chemical and thermal stability and broad applicability. In this study, thin films of TiO2 were deposited by pulsed laser deposition on sapphire and silicon substrates under various growth conditions, and characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), optical absorption spectroscopy and Hall-effect measurements. XRD patterns revealed that a sapphire substrate is more suitable for the formation of the rutile phase in TiO2, while a silicon substrate yields a pure anatase phase, even at high-temperature growth. AFM images showed that the rutile TiO2 films grown at 805°C on a sapphire substrate have a smoother surface than anatase films grown at 620°C. Optical absorption spectra confirmed the band gap energy of 3.08 eV for the rutile phase and 3.29 eV for the anatase phase. All the deposited films exhibited the usual high resistivity of TiO2; however, when employed as a buffer layer, anatase TiO2 deposited on sapphire significantly improves the conductivity of indium gallium zinc oxide thin films. The study illustrates how to control the formation of TiO2 phases and reveals another interesting application for TiO2 as a buffer layer for transparent conducting oxides.

  5. Direct observation of the order-disorder transformation of the oxygen sublattice of Ba2YCu3O7-δ

    International Nuclear Information System (INIS)

    Tendeloo, G. van; Amelinckx, S.

    1987-01-01

    Detailed evidence for the order-disorder transformation in the superconducting compound Ba 2 YCu 3 O 7-δ is presented by studying heating experiments in the vacuum of the electron microscope using heat pulses from the electron beam. The reappearance of the twin interface and of the related orthorhombic spot splitting in heat-pulse produced tetragonal phase demonstrates clearly the high mobility of oxygen in this material. A new model for the superstructure is proposed related to a deficiency in oxygen

  6. Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells

    International Nuclear Information System (INIS)

    Wong, L. M.; Chiam, S. Y.; Wang, S. J.; Pan, J. S.; Huang, J. Q.; Chim, W. K.

    2010-01-01

    Cu 2 O thin films are deposited by direct current reactive magnetron sputtering on borofloat glass and indium tin oxide (ITO) coated glass at room temperature. The effect of oxygen partial pressure on the structures and properties of Cu 2 O thin films are investigated. We show that oxygen partial pressure is a crucial parameter in achieving pure phases of CuO and Cu 2 O. Based on this finding, we fabricate heterojunctions of p-type Cu 2 O with n-type gallium doped ZnO (GZO) on ITO coated glass substrates by pulsed laser deposition for GZO thin films. The energy band alignment for thin films of Cu 2 O/GZO on ITO glass is characterized using high-resolution x-ray photoelectron spectroscopy. The energy band alignment for the Cu 2 O/GZO heterojunctions is determined to be type II with a valence band offset of 2.82 eV and shows negligible effects of variation with gallium doping. The higher conduction band of the Cu 2 O relative to that of GZO in the obtained band alignment shows that the heterojunctions are suitable for solar cell application based on energy levels consideration.

  7. Thermal and Mechanical Properties of UO2 and PuO2

    International Nuclear Information System (INIS)

    Kato, M.; Matsumoto, T.

    2015-01-01

    It is important to evaluate basic properties of UO 2 and PuO 2 as fundamental aspects of MA-bearing MOX fuel development. In this work, mechanical properties of UO 2 and PuO 2 were investigated by an ultrasound pulse-echo method. Longitudinal and transversal wave velocities were measured in UO 2 and PuO 2 pellets, and Young's modulus and shear modulus were evaluated, which were 219 MPa and 89 MPa for PuO 2 , and 249 MPa and 95 MPa for UO 2 , respectively. Poisson's ratio was 0.32 in both materials. The relationship between mechanical and thermal properties was described by using thermal expansion data which had been reported previously, and the heat capacity and thermal conductivity were analysed. (authors)

  8. 20  kHz CH2O and OH PLIF with stereo PIV.

    Science.gov (United States)

    Hammack, Stephen D; Carter, Campbell D; Skiba, Aaron W; Fugger, Christopher A; Felver, Josef J; Miller, Joseph D; Gord, James R; Lee, Tonghun

    2018-03-01

    Planar laser-induced fluorescence (PLIF) of hydroxyl (OH) and formaldehyde (CH 2 O) radicals was performed alongside stereo particle image velocimetry (PIV) at a 20 kHz repetition rate in a highly turbulent Bunsen flame. A dual-pulse burst-mode laser generated envelopes of 532 nm pulse pairs for PIV as well as a pair of 355 nm pulses, the first of which was used for CH 2 O PLIF. A diode-pumped solid-state Nd:YAG/dye laser system produced the excitation beam for the OH PLIF. The combined diagnostics produced simultaneous, temporally resolved two-dimensional fields of OH and CH 2 O and two-dimensional, three-component velocity fields, facilitating the observation of the interaction of fluid dynamics with flame fronts and preheat layers. The high-fidelity data acquired surpass the previous state of the art and demonstrate dual-pulse burst-mode laser technology with the ability to provide pulse pairs at both 532 and 355 nm with sufficient energy for scattering and fluorescence measurement at 20 kHz.

  9. Detection of movement artifact in recorded pulse oximeter saturation.

    Science.gov (United States)

    Poets, C F; Stebbens, V A

    1997-10-01

    Movement artifact (MA) must be detected when analysing recordings of pulse oximeter saturation (SpO2). Visual analysis of individual pulse waveforms is the safest, but also the most tedious, method for this purpose. We wanted to test the reliability of a computer algorithm (Edentec Motion Annotation System), based on a comparison between pulse and heart rate, for MA detection. Ten 12-h recordings of SpO2, pulse waveforms and heart rate from ten preterm infants were analysed for the presence of MA on the pulse waveform signal. These data were used to determine the sensitivity and specificity of the computer algorithm, and of the oximeter itself, in detecting MA. Recordings were divided into segments of 2.5 s duration to compare the movement identification methods. Of the segments 31% +/- 6% (mean +/- SD) contained MA. The computer algorithm identified 95% +/- 3% of these segments, the pulse oximeter only 18% +/- 11%. Specificity was 85% +/- 4% and 99% +/- 0%, respectively. SpO2 was signal showed MA during this time, leaving a significant potential for erroneous identification of hypoxaemia. Recordings of SpO2 do not allow a reliable identification of MA. Without additional information about movement artifact, a significant proportion of recording time of pulse oximeter signal may be regarded as demonstrating hypoxaemia which, in fact, simply reflects poor measurement conditions. The computer algorithm used in this study identified periods of movement artifact reliably.

  10. Subsurface watering resulted in reduced soil N2O and CO2 emissions and their global warming potentials than surface watering

    Science.gov (United States)

    Wei, Qi; Xu, Junzeng; Yang, Shihong; Liao, Linxian; Jin, Guangqiu; Li, Yawei; Hameed, Fazli

    2018-01-01

    Water management is an important practice with significant effect on greenhouse gases (GHG) emission from soils. Nitrous oxide (N2O) and carbon dioxide (CO2) emissions and their global warming potentials (GWPs) from subsurface watering soil (SUW) were investigated, with surface watering (SW) as a control. Results indicated that the N2O and CO2 emissions from SUW soils were somewhat different to those from SW soil, with the peak N2O and CO2 fluxes from SUW soil reduced by 28.9% and 19.4%, and appeared 72 h and 168 h later compared with SW. The fluxes of N2O and CO2 from SUW soils were lower than those from SW soil in both pulse and post-pulse periods, and the reduction was significantly (p0.1) lower that from SW soil. Moreover, N2O and CO2 fluxes from both watering treatments increased exponentially with increase of soil water-filled pore space (WFPS) and temperature. Our results suggest that watering soil from subsurface could significantly reduce the integrative greenhouse effect caused by N2O and CO2 and is a promising strategy for soil greenhouse gases (GHGs) mitigation. And the pulse period, contributed most to the reduction in emissions of N2O and CO2 from soils between SW and SUW, should be a key period for mitigating GHGs emissions. Response of N2O and CO2 emissions to soil WFPS and temperature illustrated that moisture was the dominant parameters that triggering GHG pulse emissions (especially for N2O), and temperature had a greater effect on the soil microorganism activity than moisture in drier soil. Avoiding moisture and temperature are appropriate for GHG emission at the same time is essential for GHGs mitigation, because peak N2O and CO2 emission were observed only when moisture and temperature are both appropriate.

  11. Synthesis of Nanoscale CaO-Al2O3-SiO2-H2O and Na2O-Al2O3-SiO2-H2O Using the Hydrothermal Method and Their Characterization

    Directory of Open Access Journals (Sweden)

    Jingbin Yang

    2017-06-01

    Full Text Available C-A-S-H (CaO-Al2O3-SiO2-H2O and N-A-S-H (Na2O-Al2O3-SiO2-H2O have a wide range of chemical compositions and structures and are difficult to separate from alkali-activated materials. Therefore, it is difficult to analyze their microscopic properties directly. This paper reports research on the synthesis of C-A-S-H and N-A-S-H particles with an average particle size smaller than 300 nm by applying the hydrothermal method. The composition and microstructure of the products with different CaO(Na2O/SiO2 ratios and curing conditions were characterized using XRD, the RIR method, FTIR, SEM, TEM, and laser particle size analysis. The results showed that the C-A-S-H system products with a low CaO/SiO2 ratio were mainly amorphous C-A-S-H gels. With an increase in the CaO/SiO2 ratio, an excess of Ca(OH2 was observed at room temperature, while in a high-temperature reaction system, katoite, C4AcH11, and other crystallized products were observed. The katoite content was related to the curing temperature and the content of Ca(OH2 and it tended to form at a high-temperature and high-calcium environment, and an increase in the temperature renders the C-A-S-H gels more compact. The main products of the N-A-S-H system at room temperature were amorphous N-A-S-H gels and a small amount of sodalite. An increase in the curing temperature promoted the formation of the crystalline products faujasite and zeolite-P. The crystallization products consisted of only zeolite-P in the high-temperature N-A-S-H system and its content were stable above 70%. An increase in the Na2O/SiO2 ratio resulted in more non-bridging oxygen and the TO4 was more isolated in the N-A-S-H structure. The composition and microstructure of the C-A-S-H and N-A-S-H system products synthesized by the hydrothermal method were closely related to the ratio of the raw materials and the curing conditions. The results of this study increase our understanding of the hydration products of alkali

  12. Luminescence and origin of lead-related centers in single crystalline films of Y2SiO5 and Lu2SiO5

    International Nuclear Information System (INIS)

    Babin, V.; Gorbenko, V.; Krasnikov, A.; Mihokova, E.; Nikl, M.; Zazubovich, S.; Zorenko, Yu.

    2013-01-01

    In the temperature range 4.2–350 K, the steady-state and time-resolved emission and excitation spectra and luminescence decay kinetics are studied for the undoped Y 2 SiO 5 and Lu 2 SiO 5 single crystalline films grown by liquid phase epitaxy method from the PbO-based flux and, owing to that, containing lead ions substituting for Y 3+ or Lu 3+ ions. Luminescence characteristics of Pb-related centers of different types are identified. On the basis of the results obtained, we suggest that the ultraviolet emission of Pb-related centers arises from the Pb 2+ ions substituting for Y 3+ or Lu 3+ ions in the Y1 and Lu1 lattice sites of the X 2 structure. Possible hypotheses on the origin of the intense complex lead-related blue emission are discussed. We propose phenomenological models describing the excited-state dynamics of the studied luminescence centers. We also determine characteristic parameters of the corresponding relaxed excited states, in particular, the energy separations between the excited states and the rates of the radiative and non-radiative transitions from these states. -- Highlights: •Emission of lead centers in Y 2 SiO 5 and Lu 2 SiO 5 single crystalline films is studied. •The ultraviolet emission arises from Pb 2+ ions located in Y1 or Lu1 lattice sites. •Possible hypotheses on the origin of the blue emission are proposed and discussed. •The relaxed excited states parameters of various Pb-related centers are determined

  13. Visible light activity of pulsed layer deposited BiVO{sub 4}/MnO{sub 2} films decorated with gold nanoparticles: The evidence for hydroxyl radicals formation

    Energy Technology Data Exchange (ETDEWEB)

    Trzciński, Konrad, E-mail: trzcinskikonrad@gmail.com [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Szkoda, Mariusz [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Sawczak, Mirosław [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid Flow Machinery, Fiszera 14, 80-231 Gdansk (Poland); Karczewski, Jakub [Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Lisowska-Oleksiak, Anna [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland)

    2016-11-01

    Highlights: • The BiVO{sub 4} + MnO{sub 2} photoactive layers were prepared by pulsed laser deposition method. • Prepared layers can act as photoanodes for water splitting. • The thin BiVO{sub 4} + MnO{sub 2} film can be used as photocatalyst for methylene blue degradation. • The formation of hydroxyl radicals during photocatalys illumination has been proved. • The dropcasted GNP improved significantly photocatalytic properties of tested layers. - Abstract: Thin films containing BiVO{sub 4} and MnO{sub 2} deposited on FTO and modified by Au nanoparticles were studied towards their photoelectrochemical and photocatalytical activities in an aqueous electrolyte. Electrodes were prepared by the pulsed laser deposition (PLD) method. The surfactant-free ablation process was used for preparation of the gold nanoparticles (GNP) water suspension. Obtained layers of varied thicknesses (27–115 nm) were characterized using Raman spectroscopy, UV–vis spectroscopy and scanning electron microscopy. Electrochemical methods such as electrochemical impedance spectroscopy, linear voltammetry and chronoamperometry under visible light illumination and in the dark were applied to characterize layers as photoanodes. Simple modification of the BiVO{sub 4} + MnO{sub 2} layer by drop-casting of small amount of colloidal gold (1.5 × 10{sup −14} mol of GNP on 1 cm{sup 2}) leads to enhancement of the generated photocurrent recorded at E = 0.5 V vs. Ag/AgCl (0.1 M KCl) from 63 μA/cm{sup 2} to 280 μA/cm{sup 2}. Photocatalytical studies were also exploited towards decomposition of methylene blue (MB). A possible mechanism of MB photodegradation was proposed. The formation of hydroxyl radicals was detected by photoluminescence spectra using terephthalic acid as the probe molecule.

  14. Melting relations of model lherzolite in the system CaO-MgO-Al2O3-SiO2 at 2.4-3.4 GPa and the generation of komatiites

    Science.gov (United States)

    Gudfinnsson, Gudmundur H.; Presnall, Dean C.

    1996-12-01

    Isobarically invariant phase relations in the CaO-MgO-Al2O3-SiO2 system (CMAS) involving the lherzolite phase assemblage in equilibrium with liquid have been determined at 2.4-3.4 GPa. These phase relations form the solidus of model lherzolite in the CMAS system. Our data, which include determinations of all phase compositions, are in excellent agreement with the 3.0 and 4.0 GPa points of Milholland and Presnall [1991] and Davis and Schairer [1965], respectively. The invariant transition on the P-T solidus curve from spinel- to garnet-lherzolite at 3.0 GPa, 1575°C [Milholland and Presnall, 1991], is confirmed, but we observe that the theoretically required temperature depression on the solidus curve at this point is not experimentally detectable. Composition trends along the solidus take a sharp turn at the transition. In the spinel-lherzolite stability field, melt compositions become increasingly Fo-normative and less En-normative with increasing pressure, but become less Fo-normative and more pyroxenitic as pressure increases in the garnet-lherzolite stability field. Calculated melting reactions indicate that forsterite is in reaction relationship with the melt up to 3.0 GPa. Orthopyroxene is also in reaction relationship at pressures higher than just over 2.8 GPa and is the only phase in reaction relationship with the melt in the garnet-lherzolite stability field. Comparison of the normative compositions and the CaO/Al2O3 values of the komatiites of Gorgona Island and of the Reliance Formation in Zimbabwe with the compositions of liquids along the solidus of model lherzolite in the CMAS system indicates that the former komatiites were generated at pressures close to 3.7 GPa and the latter at close to 4.5 GPa, assuming that the melt generation occurred in the presence of the complete garnet-lherzolite assemblage.

  15. Growth of anatase and rutile phase TiO{sub 2} nanoparticles using pulsed laser ablation in liquid: Influence of surfactant addition and ablation time variation

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Amita, E-mail: amita-chaturvedi@rrcat.gov.in [Laser Material Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, MP (India); Joshi, M.P. [Laser Material Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, MP (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai – 400094 (India); Mondal, P.; Sinha, A.K.; Srivastava, A.K. [Indus Synchrotron Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, MP (India)

    2017-02-28

    Highlights: • Ablations of Ti metal target were carried out in DI water and in 0.001 M SDS solution for different times using PLAL process. • Different characterization studies have been carried out to confirm the growth of TiO{sub 2} nanoparticles in both the liquid mediums. • Anatase phase TiO{sub 2} nanoparticles were obtained in DI water and rutile phase in 0.001 M SDS aqueous solution. • In surfactant solution, longer time ablation leads depletion of SDS molecules causes growth of anatase phase for 90 min. • Our studies confirmed the role of liquid ambience conditions variation over the different phase formations of nanoparticles. - Abstract: Titanium dioxide (TiO{sub 2}) nanoparticles were grown using nanosecond pulsed laser ablation of Ti target in DI water and in 0.001 M sodium dodecyl sulfate (SDS) surfactant aqueous solution. Growth was carried out with varying ablation times i. e. 30 min, 60 min and 90 min. The objective of our study was to investigate the influence of variations in liquid ambience conditions on the growth of the nanoparticles in a pulsed laser ablation in liquid (PLAL) process. Size, composition and optical properties of the grown TiO{sub 2} nanoparticles were investigated using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), optical absorption, photoluminescence (PL) spectroscopy and X-ray diffraction (XRD) studies. The obtained nanoparticles of TiO{sub 2} were found almost spherical in shape and polycrystalline in nature in both the liquid mediums i.e. DI water and aqueous solution of surfactant. Nanoparticles number density was also found to increase with increasing ablation time in both the liquid mediums. However crystalline phase of the grown TiO{sub 2} nanoparticles differs with the change in liquid ambience conditions. Selected area electron diffraction (SAED), PL and XRD studies suggest that DI water ambience is favorable for the growth of anatase phase TiO{sub 2} nanoparticles for all

  16. ZnO nanoparticles obtained by pulsed laser ablation and their composite with cotton fabric: Preparation and study of antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Svetlichnyi, Valery; Shabalina, Anastasiia, E-mail: shabalinaav@gmail.com; Lapin, Ivan; Goncharova, Daria; Nemoykina, Anna

    2016-05-30

    Highlights: • ZnO nanoparticles obtained by pulsed laser ablation exhibit antibacterial activity. • H{sub 2}O{sub 2} and Zn{sup 2+} are not responsible for antibacterial activity of obtained zinc oxide. • Nano-ZnO/cotton fabric composite is a promising material for antibacterial bandage. - Abstract: A simple deposition method was used to prepare a ZnO/cotton fabric composite from water and ethanol dispersions of ZnO nanoparticles obtained by the pulsed laser ablation method. The structure and composition of the nanoparticles from dispersions and as-prepared composites were studied using electron microscopy, X-ray diffraction, and spectroscopy. The nanoparticles and composite obtained exhibited antibacterial activity to three different pathogenic microorganisms—Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. An attempt to understand a mechanism of bactericidal effect of ZnO nanoparticles was made. It was shown that zinc ions and hydrogen peroxide were not responsible for antibacterial activity of the particles and the composite, and surface properties of nanoparticles played an important role in antibacterial activity of zinc oxide. The proposed composite is a promising material for use as an antibacterial bandage.

  17. Photo- and radio-excited luminescence properties of Eu-doped La2O3–Al2O3 based eutectics

    International Nuclear Information System (INIS)

    Fujimoto, Yutaka; Kamada, Kei; Yanagida, Takayuki; Wakahara, Shingo; Suzuki, Shotaro; Kurosawa, Shunsuke; Yoshikawa, Akira

    2013-01-01

    Eutectic crystal of 0.5% Eu-doped 30LaAlO 3 –70Al 2 O 3 (vol %) was prepared by micro-pulling down (μ-PD) technique under nitrogen atmosphere. Being excited at a wavelength of 320 nm, the crystal exhibited intense emission band with a maximum at 450 nm which is corresponding to 4f 6 5d-4f 7 ( 8 S 7/2 ) transitions of Eu 2+ . The decay time and fluorescence quantum efficiency (QE) were determined to be about 475 ns and 60%, respectively. When alpha-ray excited the crystal, both Eu 2+ 4f 6 5d-4f 7 ( 8 S 7/2 ) and Eu 3+ 4f 6 -4f 6 ( 5 D 0 - 7 F 1,2 ) emission peaks were observed at 435 nm and 600 nm. By the pulse height spectra, the relative scintillation light yield of the crystal was about 4% compared with that of BGO commercial scintillator. -- Highlights: •0.5% Eu-doped 30LaAlO 3 –70Al 2 O 3 eutectic crystal was grown by μ-PD technique. •The crystal showed intense Eu 2+ 5d-4f emission at 450 nm under excited at 320 nm. •The fluorescence quantum efficiency was calculated to be about 60%. •The scintillation light yield was about 4% compared with that of BGO scintillator

  18. Photoproduction of One-Electron Reducing Intermediates by Chromophoric Dissolved Organic Matter (CDOM): Relation to O2- and H2O2 Photoproduction and CDOM Photooxidation.

    Science.gov (United States)

    Zhang, Yi; Blough, Neil V

    2016-10-06

    A molecular probe, 3-amino-2,2,5,5,-tetramethy-1-pyrrolydinyloxy (3ap), was employed to determine the formation rates of one-electron reducing intermediates generated photochemically from both untreated and borohydride-reduced Suwanee River fulvic and humic acids (SRFA and SRHA, respectively). This stable nitroxyl radical reacts rapidly with reducing radicals and other one-electron reductants to produce a relatively stable product, the hydroxylamine, which can be derivatized with fluorescamine, separated by HPLC and quantified fluorimetrically. We provide evidence that O 2 and 3ap compete for the same pool(s) of photoproduced reducing intermediates, and that under appropriate experimental conditions, the initial rate of hydroxylamine formation (R H ) can provide an estimate of the initial rate of superoxide (O 2 - ) formation. However, comparison of the initial rates of H 2 O 2 formation (R H2O2 ) to that of R H show far larger ratios of R H /R H2O2 (∼6-13) than be accounted for by simple O 2 - dismutation (R H /R H2O2 = 2), implying a significant oxidative sink of O 2 - (∼67-85%). Because of their high reactivity with O 2 - and their likely importance in the photochemistry of CDOM, we suggest that coproduced phenoxy radicals could represent a viable oxidative sink. Because O 2 - /phenoxy radical reactions can lead to more highly oxidized products, O 2 - could be playing a far more significant role in the photooxidation of CDOM than has been previously recognized.

  19. Phase relations in the M2MoO4 - Ag2MoO4 - Hf(MoO4)2 (M=Li, Na) systems

    International Nuclear Information System (INIS)

    Bazarova, Zh.G.; Bazarov, B.G.; Balsanova, L.V.

    2002-01-01

    The M 2 MoO 4 - Ag 2 MoO 4 - Hf(MoO 4 ) 2 (M=Li, Na) systems were studied by X-ray diffraction and differential thermal analyses in the subsolidus area (450 - 500 Deg C) for the first time. The formation of the binary compound with the variable composition Li 4-x Hf 1+0.2x (MoO 4 ) 4 (0 ≤ x ≤ 0.6) in the Li 2 MoO 4 - Hf(MoO 4 ) 2 system and the ternary molybdates Li 4 Ag 2 Hf(MoO 4 ) 5 (S 1 ) and Na 2 Ag 2 Hf(MoO 4 ) 4 (S 2 ) was established and the thermal characteristics of the prepared compounds were examined. The new binary molybdate Ag 2 Hf(MoO 4 ) 3 was prepared by the reaction between Ag 2 MoO 4 and Hf(MoO 4 ) 2 [ru

  20. Diagnostic study of low-pressure Ar-O2 remote plasma generated in HCD-L 300 system: Relative density of O atom

    International Nuclear Information System (INIS)

    Saloum, S.; Naddaf, M.

    2007-01-01

    The relative density of O atom of Ar-O 2 remote plasma excited in a low pressure 13.56 HMz hollow cathode discharge system has been investigated. The measurements were carried out at a total pressure of 0.05 mbar, radiofrequency (RF) power of 200 W and at three different axial distances in the plasma chamber below the outlet of the discharge source. Using optical emission spectroscopy (OES), the relative density of O ground state was determined from intensity ratio of O(844.6 nm) and Ar(750.4 nm) lines. The electron temperature and O 2 + densities have been measured using double langmuir probe measurements. The kinetic study of Ar-O 2 plasma, combined with both spectroscopy and langmuir probe measurements, revealed that the main production mechanism of the excited O(3p 3 P) is direct excitation by electron impact. A maximum of O ground state relative density and correspondingly a minimum of O 2 + density are obtained for the ratio O 2 /Ar: 60/40. The maximum O density in the remote zone is found to be 4.5 times higher than at the outlet of source. (author)

  1. Pulsed microwave discharge at atmospheric pressure for NOx decomposition

    International Nuclear Information System (INIS)

    Baeva, M; Gier, H; Pott, A; Uhlenbusch, J; Hoeschele, J; Steinwandel, J

    2002-01-01

    A 3.0 GHz pulsed microwave source operated at atmospheric pressure with a pulse power of 1.4 MW, a maximum repetition rate of 40 Hz, and a pulse length of 3.5 μs is experimentally studied with respect to the ability to remove NO x from synthetic exhaust gases. Experiments in gas mixtures containing N 2 /O 2 /NO with typically 500 ppm NO are carried out. The discharge is embedded in a high-Q microwave resonator, which provides a reliable plasma ignition. Vortex flow is applied to the exhaust gas to improve gas treatment. Concentration measurements by Fourier transform infrared spectroscopy confirm an NO x reduction of more than 90% in the case of N 2 /NO mixtures. The admixture of oxygen lowers the reductive potential of the reactor, but NO x reduction can still be observed up to 9% O 2 concentration. Coherent anti-Stokes Raman scattering technique is applied to measure the vibrational and rotational temperature of N 2 . Gas temperatures of about 400 K are found, whilst the vibrational temperature is 3000-3500 K in pure N 2 . The vibrational temperature drops to 1500 K when O 2 and/or NO are present. The randomly distributed relative frequency of occurrence of selected breakdown field intensities is measured by a calibrated, short linear-antenna. The breakdown field strength in pure N 2 amounts to 2.2x10 6 V m -1 , a value that is reproducible within 2%. In the case of O 2 and/or NO admixture, the frequency distribution of the breakdown field strength scatters more and extends over a range from 3 to 8x10 6 V m -1

  2. Role of yttria-stabilized zirconia produced by ion-beam-assisted deposition on the properties of RuO2 on SiO2/Si

    International Nuclear Information System (INIS)

    Jia, Q.X.; Arendt, P.; Groves, J.R.; Fan, Y.; Roper, J.M.; Foltyn, S.R.

    1998-01-01

    Highly conductive biaxially textured RuO 2 thin films were deposited on technically important SiO 2 /Si substrates by pulsed laser deposition, where yttria-stabilized zirconia (YSZ) produced by ion-beam-assisted-deposition (IBAD) was used as a template to enhance the biaxial texture of RuO 2 on SiO 2 /Si. The biaxially oriented RuO 2 had a room-temperature resistivity of 37 μΩ-cm and residual resistivity ratio above 2. We then deposited Ba 0.5 Sr 0.5 TiO 3 thin films on RuO 2 /IBAD-YSZ/SiO 2 /Si. The Ba 0.5 Sr 0.5 TiO 3 had a pure (111) orientation normal to the substrate surface and a dielectric constant above 360 at 100 kHz. copyright 1998 Materials Research Society

  3. Structure and properties of nanostructured ZnO arrays and ZnO/Ag nanocomposites fabricated by pulsed electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Kopach, V. R.; Klepikova, K. S.; Klochko, N. P., E-mail: klochko-np@mail.ru; Khrypunov, G. S.; Korsun, V. E.; Lyubov, V. M.; Kirichenko, M. V.; Kopach, A. V. [National Technical University “Kharkiv Polytechnic Institute” (Ukraine)

    2017-03-15

    We investigate the structure, surface morphology, and optical properties of nanostructured ZnO arrays fabricated by pulsed electrodeposition, Ag nanoparticles precipitated from colloidal solutions, and a ZnO/Ag nanocomposite based on them. The electronic and electrical parameters of the ZnO arrays and ZnO/Ag nanocomposites are analyzed by studying the I–V and C–V characteristics. Optimal modes for fabricating the ZnO/Ag heterostructures with the high stability and sensitivity to ultraviolet radiation as promising materials for use in photodetectors, gas sensors, and photocatalysts are determined.

  4. Ion beam modification of structural and optical properties of GeO2 thin films deposited at various substrate temperatures using pulsed laser deposition

    Science.gov (United States)

    Rathore, Mahendra Singh; Vinod, Arun; Angalakurthi, Rambabu; Pathak, A. P.; Singh, Fouran; Thatikonda, Santhosh Kumar; Nelamarri, Srinivasa Rao

    2017-11-01

    High energy heavy ion irradiation-induced modification of high quality crystalline GeO2 thin films grown at different substrate temperatures ranging from 100 to 500 °C using pulsed laser deposition has been investigated. The pristine films were irradiated with 100 MeV Ag7+ ions at fixed fluence of 1 × 1013 ions/cm2. These pristine and irradiated films have been characterized using X-ray diffraction, atomic force microscopy, Raman spectroscopy, Fourier transform infrared and photoluminescence spectroscopy. The XRD and Raman results of pristine films confirm the formation of hexagonal structure of GeO2 films, whereas the irradiation eliminates all the peaks except major GeO2 peak of (101) plane. It is evident from the XRD results that crystallite size changes with substrate temperature and SHI irradiation. The surface morphology of films was studied by AFM. The functional group of pristine and irradiated films was investigated by IR transmission spectra. Pristine films exhibited strong photoluminescence around 342 and 470 nm due to oxygen defects and a red shift in the PL bands is observed after irradiation. Possible mechanism of tuning structural and optical properties of pristine as well as irradiated GeO2 films with substrate temperature and ion beam irradiation has been reported in detail.

  5. Carbon dioxide reforming of methane by atmospheric pressure pulsed glow discharge: The effect of pulse compression

    International Nuclear Information System (INIS)

    Ghorbanzadeh, A.; Modarresi, H.

    2006-01-01

    Methane reforming by carbon dioxide in atmospheric pressure pulsed glow discharge was examined. The pulse duration of plasma was compressed to ∼50 ns or lower. This compression allowed working at higher frequencies, more than 3 k Hz, without glow to arc transition. The main outlet gases were synthetic gases (H 2 , CO) and C 2 (ethylene, ethane, and acetylene) products. At equal reactants proportion CO 2 /CH 4 =1, about 42 p ercent o f plasma energy went to chemical dissociation while reactant conversions were relatively high, i.e. near 55 p ercent % (CH 4 ) and 42 p ercent ( CO 2 ). At this point, the energy expenditure was less than 3.8 eV per each converted molecule. The reactor energy performance even gets better at higher CO 2 /CH 4 proportions. At CO 2 /CH 4 =5, The conversions of about 65 p ercent a nd 45 p ercent w ere obtained for methane and carbon dioxide respectively, while energy efficiency reached near 45 p ercent . It is discussed that high nonequilibrium state of vibrational energy at short pulses, especially in carbon dioxide, leads to this improvement.

  6. Absolute rate constants for the reaction of CF3O2 and CF3O radicals with NO at 295 K

    DEFF Research Database (Denmark)

    Sehested, J.; Nielsen, O.J.

    1993-01-01

    Using a pulse radiolysis UV absorption technique and subsequent simulations of experimental NO2 and FNO absorption transients, rate constants for reaction between CF3O and CF3O2 radicals with NO were determined, CF3O2+NO-->CF3O+NO2 (3), CF3O+NO-->CF2O+FNO (5). k3 was derived to be (1.68+/-0.26)x10...

  7. Catalytic recombination of dissociation products with Pt/SnO2 for rare and common isotope long-life, closed-cycle CO2 lasers

    Science.gov (United States)

    Brown, Kenneth G.; Sidney, B. D.; Schryer, D. R.; Upchurch, B. T.; Miller, I. M.

    1986-01-01

    This paper reports results on recombination of pulsed CO2 laser dissociation products with Pt/SnO2 catalysts, and supporting studies in a surrogate laboratory catalyst reactor. The closed-cycle, pulsed CO2 laser has been continuously operated for one million pulses with an overall power degradation of less than 5 percent by flowing the laser gas mixture through a 2-percent Pt/SnO2 catalyst bed. In the surrogate laboratory reactor, experiments have been conducted to determine isotopic exchange with the catalyst when using rare-isotope gases. The effects of catalyst pretreatment, sample weight, composition, and temperature on catalyst efficiency have also been determined.

  8. Growth of Sr2CrReO6 epitaxial thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Orna, J.; Morellon, L.; Algarabel, P.A.; Pardo, J.A.; Magen, C.; Varela, M.; Pennycook, S.J.; De Teresa, J.M.; Ibarra, M.R.

    2010-01-01

    We report the growth, structural, magnetic, and electrical transport properties of epitaxial Sr 2 CrReO 6 thin films. We have succeeded in depositing films with a high crystallinity and a relatively large cationic order in a narrow window of growth parameters. The epitaxy relationship is Sr 2 CrReO 6 (SCRO) (0 0 1) [1 0 0]-parallel SrTiO 3 (STO) (0 0 1) [1 1 0] as determined by high-resolution X-ray diffraction and scanning transmission electron microscopy (STEM). Typical values of saturation magnetization of M S (300 K)=1 μ B /f.u. and ρ (300 K)=2.8 mΩ cm have been obtained in good agreement with previous published results in sputtered epitaxial thin films. We estimate that the antisite defects concentration in our thin films is of the order of 14%, and the measured Curie temperature is T C =481(2) K. We believe these materials be of interest as electrodes in spintronic devices.

  9. Effects of cathode pulse at low frequency on the structure and composition of plasma electrolytic oxidation ceramic coatings

    International Nuclear Information System (INIS)

    Yao Zhongping; Xu Yongjun; Jiang Zhaohua; Wang Fuping

    2009-01-01

    The aim of this work is to investigate the effects of the cathode pulse under the low working frequency on the structure and the composition of the ceramic coatings on Ti-6Al-4V alloys by plasma electrolytic oxidation (PEO). Ceramic coatings were prepared on Ti alloy by pulsed bi-polar plasma electrolytic oxidation in NaAlO 2 solution. The phase composition, morphology, and element distribution in the coating were investigated by X-ray diffractometry, scanning electron microscopy, and energy distribution spectroscopy. The coating was mainly composed of a large amount of Al 2 TiO 5 and a little α-Al 2 O 3 and rutile TiO 2 . Increasing the cathode pulse, the amount of rutile TiO 2 was increased while the amount of Al 2 O 3 was decreased; and decreasing the cathode pulse, the amount of Al 2 O 3 was increased while the amount of rutile TiO 2 was decreased. The thickness of the coatings was increased and then decreased with the increase of the cathode pulse. The grain sizes of Al 2 TiO 5 were increased with the cathode current densities, but changed little with the cathode pulse width. The grain size of α-Al 2 O 3 was decreased with the decrease of the cathode pulse, while the grain size of TiO 2 was increased with the increase of the cathode pulse. The proper cathode pulse was helpful to reduce the roughness and to increase the density of the coatings.

  10. The effect of different gas atmospheres on luminescent properties of pulsed laser ablated SrAl{sub 2}O{sub 4}:Eu{sup 2+},Dy{sup 3+} thinfilms

    Energy Technology Data Exchange (ETDEWEB)

    Nsimama, P.D. [Physics Department, University of the Free State, P. O. Box 9300, Bloemfontein (South Africa); Department of Laboratory Technology, Dar Es Salaam Institute of Technology, P. O. Box 2958, Dar Es Salaam, Tanzania (Tanzania, United Republic of); Ntwaeaborwa, O.M. [Physics Department, University of the Free State, P. O. Box 9300, Bloemfontein (South Africa); Swart, H.C., E-mail: swarthc@ufs.ac.z [Physics Department, University of the Free State, P. O. Box 9300, Bloemfontein (South Africa)

    2011-01-15

    SrAl{sub 2}O{sub 4}:Eu{sup 2+},Dy{sup 3+} thin films were grown on Si (1 0 0) substrates using the pulsed laser deposition (PLD) technique to investigate the effect of vacuum, oxygen (O{sub 2}) and argon (Ar) deposition atmospheres on the structural, morphological, photoluminescence (PL) and cathodoluminescence (CL) properties of the films. The films were ablated using a 248 nm KrF excimer laser. Atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and fluorescence spectrophotometry were used to characterize the thin films. Auger electron spectroscopy (AES) combined with CL spectroscopy were employed for the surface characterization and electron-beam induced degradation of the films. Better PL intensities were obtained from the unannealed films prepared in Ar and O{sub 2} atmospheres with respect to those prepared in vacuum. A stable green emission peak at 515 nm, attributed to 4f{sup 6}5d{sup 1{yields}}4f{sup 7} Eu{sup 2+} transitions were obtained with less intense peaks at 619 nm, which were attributed to transitions in Eu{sup 3+}. After annealing the films prepared in vacuum at 800 {sup o}C for 2 h, the intensity of the green emission (520 nm) of the thin film increased considerably. The amorphous thin film was crystalline after the annealing process. The CL intensity increased under prolonged electron bombardment during the removal of C due to electron stimulated surface chemical reactions (ESSCRs) on the surface of the SrAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+} thin films. The CL stabilized and stayed constant thereafter.

  11. Pulsed laser deposition of nanostructured Co-B-O thin films as efficient catalyst for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Jadhav, H., E-mail: jadhav.hs2013@gmail.com [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Singh, A.K. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Patel, N.; Fernandes, R.; Gupta, S.; Kothari, D.C. [Department of Physics and National Centre for Nanosciences & Nanotechnology, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai 400098 (India); Miotello, A. [Dipartimento di Fisica, Università degli Studi di Trento, I-38123 Povo, Trento (Italy); Sinha, S. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2016-11-30

    Highlights: • Pulsed laser deposition was used to deposit Co-B-O film nanocatalyst. • Co-B-O NPs are well separated, stable and immobilized on film surface. • Catalytic H{sub 2} production was studied by hydrolysis of Sodium Borohydride. • Four times higher H{sub 2} production rate was recorded for Co-B-O film than Co-B-O powder. • High particle density, polycrystalline nature and good stability against agglomeration of Co NPs. - Abstract: Nanoparticles assembled Co-B-O thin film catalysts were synthesized by pulsed laser deposition (PLD) technique for hydrolysis of Sodium Borohydride (SBH). Surface morphology of the deposited films was investigated using SEM and TEM, while compositional analysis was studied using XPS. Structural properties of Co-B-O films were examined using XRD and HRTEM. Laser process is able to produce well separated and immobilized Co-B-O NPs on the film surface which act as active centers leading to superior catalytic activity producing hydrogen at a significantly higher rate as compared to bulk powder. Co-B-O thin film catalyst produces hydrogen at a maximum rate of ∼4400 ml min{sup −1} g{sup −1} of catalyst, which is four times higher than powder catalyst. PLD parameters such as laser fluence and substrate-target distance were varied during deposition in order to understand the role of size and density of the immobilized Co-B-O NPs in the catalytic process. Films deposited at 3–5 cm substrate-target distance showed better performance than that deposited at 6 cm, mainly on account of the higher density of active Co-B-O NPs on the films surface. Features such as high particle density, polycrystalline nature of Co NPs and good stability against agglomeration mainly contribute towards the superior catalytic activity of Co-B-O films deposited by PLD.

  12. Infrared response of YBa2Cu3O7-δ films to pulsed, broadband synchrotron radiation

    International Nuclear Information System (INIS)

    Carr, G.L.; Quijada, M.; Tanner, D.B.; Etemad, S.; DeRosa, F.; Venkatesan, T.; Dutta, B.; Hemmick, D.; Xi, X.

    1990-01-01

    We report studies of a thin high T c film operating as a fast bolometric detector of infrared radiation. The film has a response of infrared radiation. The film has a response of several mV when exposed to a 1 W, 1 ns duration broadband infrared pulse. The decay after the pulse was about 4 ns. The temperature dependence of the response accurately tracked dR/dT. A thermal model, in which the film's temperature varies relative to the substrate, provides a good description of the response. We find no evidence for other (non-bolometric) response mechanisms for temperatures near or well below T c . 13 refs., 4 figs

  13. Defects in zinc oxide grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Francis C.C., E-mail: ccling@hku.hk [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Wang, Zilan; Ping Ho, Lok; Younas, M. [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Anwand, W.; Wagner, A. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Su, S.C. [Institute of Optoelectronic Material and Technology, South China Normal University, Guangzhou 510631 (China); Shan, C.X. [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2016-01-01

    ZnO films are grown on c-plane sapphire using the pulsed laser deposition method. Systematic studies on the effects of annealing are performed to understand the thermal evolutions of the defects in the films. Particular attention is paid to the discussions of the ZnO/sapphire interface thermal stability, the Zn-vacancy related defects having different microstructures, the origins of the green luminescence (∼2.4–2.5 eV) and the near band edge (NBE) emission at 3.23 eV.

  14. The new insight into the structure-activity relation of Pd/CeO2-ZrO2-Nd2O3 catalysts by Raman, in situ DRIFTS and XRD Rietveld analysis.

    Science.gov (United States)

    Yang, X; Yang, L; Lin, J; Zhou, R

    2016-01-28

    Pd/CeO2-ZrO2-Nd2O3 (CZN) catalysts with different CeO2/ZrO2 molar ratios were synthesized and have been characterized by multiple techniques, e.g. XRD in combination with Rietveld refinement, UV-Raman, XPS and in situ DRIFTS. The XRD pattern of CZN with CeO2/ZrO2 molar ratios ≥1/2 can be indexed satisfactorily to the fluorite structure with a space group Fm3̄m, while the XRD patterns of CZ12 only display diffraction peaks of the tetragonal phase (S.G. P42/nmc). Nd addition can effectively stabilize the cubic structure of the CZN support and increase the enrichment of defect sites on the surface, which may be related to the better catalytic activity of Pd/CZN12 catalysts compared with Pd/CZ12. The presence of moderate ZrO2 can increase the concentration of O* active species, leading to accelerate the formation of nitrate species and thus enhance the catalytic activity of NOx and HC elimination. The Pd-dispersion decreases with the increasing Zr content, leading to the decreased CO catalytic activity, especially for the aged catalysts. The change regularity of the OSC value is almost the same with the in situ dynamic operational window, demonstrating that the in situ dynamic operational window is basically affected by the OSC value.

  15. Optical Properties and Photoactivity of The Pigmentary TiO2 Doped with P2O5, K2O, Al2O3 and Sb2O3

    International Nuclear Information System (INIS)

    Glen, M; Grzmil, B

    2011-01-01

    The influence of the increasing content of antimony calculated to Sb 2 O 3 (0.08-0.57 mol%) with the constant amount of the other additives (calculated to P 2 O 5 , K 2 O, Al 2 O 3 ) on the optical properties and photostability of doped rutile has been investigated. The properties of the obtained TiO 2 -PKAlSb samples were compared to the commercial TiO 2 -PKAl composition. The starting material was the concentrated suspension of technical-grade hydrated titanium dioxide (HTD). The dopant agents' solutions were introduced to HTD. Prepared samples were calcined with gradually increasing process temperature. The XRD analysis was used to determine the rutile content in the TiO 2 samples. Optical properties of modified titanium dioxide have been determined spectrophotometrically by measuring the colour in the white (brightness, white tone) and grey system (relative lightening power, grey tone). Photostability was characterized by the white lead-glycerin test with UV-Vis light. It was observed that with the increasing content of antimony in rutile TiO 2 , doped with phosphates, potassium and aluminium, the brightness and grey tone were increasing but white tone decreased. The changes of the relative lightening power values were insignificant. Comparing the samples of TiO 2 -PKAlSb with the TiO 2 -PKAl composition it was observed that titanium dioxide doped with antimony had better white and grey tone. The increasing Sb 2 O 3 content in the TiO 2 caused the improvement of the photostability.

  16. A ZnO nanowire-based photo-inverter with pulse-induced fast recovery.

    Science.gov (United States)

    Raza, Syed Raza Ali; Lee, Young Tack; Hosseini Shokouh, Seyed Hossein; Ha, Ryong; Choi, Heon-Jin; Im, Seongil

    2013-11-21

    We demonstrate a fast response photo-inverter comprised of one transparent gated ZnO nanowire field-effect transistor (FET) and one opaque FET respectively as the driver and load. Under ultraviolet (UV) light the transfer curve of the transparent gate FET shifts to the negative side and so does the voltage transfer curve (VTC) of the inverter. After termination of UV exposure the recovery of photo-induced current takes a long time in general. This persistent photoconductivity (PPC) is due to hole trapping on the surface of ZnO NWs. Here, we used a positive voltage short pulse after UV exposure, for the first time resolving the PPC issue in nanowire-based photo-detectors by accumulating electrons at the ZnO/dielectric interface. We found that a pulse duration as small as 200 ns was sufficient to reach a full recovery to the dark state from the UV induced state, realizing a fast UV detector with a voltage output.

  17. Electrical and structural properties of La0.8Sr0.2Mn0.5Co0.5O3±δ films produced by pulsed laser deposition

    DEFF Research Database (Denmark)

    Pryds, Nini; Christensen, Bo Toftmann; Schou, Jørgen

    2005-01-01

    La0.8Sr0.2Mn0.5Co0.5O3 (LSMCO) films for the use as contact layers or protective coatings in solid oxide fuel cells (SOFC) have been deposited on glass substrates by pulsed laser deposition (PLD). PLD is an obvious technique for thin film production of complex oxides, because of the ability...

  18. High-Pressure Phase Relations and Crystal Structures of Postspinel Phases in MgV2O4, FeV2O4, and MnCr2O4: Crystal Chemistry of AB2O4 Postspinel Compounds.

    Science.gov (United States)

    Ishii, Takayuki; Sakai, Tsubasa; Kojitani, Hiroshi; Mori, Daisuke; Inaguma, Yoshiyuki; Matsushita, Yoshitaka; Yamaura, Kazunari; Akaogi, Masaki

    2018-06-04

    We have investigated high-pressure, high-temperature phase transitions of spinel (Sp)-type MgV 2 O 4 , FeV 2 O 4 , and MnCr 2 O 4 . At 1200-1800 °C, MgV 2 O 4 Sp decomposes at 4-7 GPa into a phase assemblage of MgO periclase + corundum (Cor)-type V 2 O 3 , and they react at 10-15 GPa to form a phase with a calcium titanite (CT)-type structure. FeV 2 O 4 Sp transforms to CT-type FeV 2 O 4 at 12 GPa via decomposition phases of FeO wüstite + Cor-type V 2 O 3 . MnCr 2 O 4 Sp directly transforms to the calcium ferrite (CF)-structured phase at 10 GPa and 1000-1400 °C. Rietveld refinements of CT-type MgV 2 O 4 and FeV 2 O 4 and CF-type MnCr 2 O 4 confirm that both the CT- and CF-type structures have frameworks formed by double chains of edge-shared B 3+ O 6 octahedra (B 3+ = V 3+ and Cr 3+ ) running parallel to one of orthorhombic cell axes. A relatively large A 2+ cation (A 2+ = Mg 2+ , Fe 2+ , and Mn 2+ ) occupies a tunnel-shaped space formed by corner-sharing of four double chains. Effective coordination numbers calculated from eight neighboring oxygen-A 2+ cation distances of CT-type MgV 2 O 4 and FeV 2 O 4 and CF-type MnCr 2 O 4 are 5.50, 5.16, and 7.52, respectively. This implies that the CT- and CF-type structures practically have trigonal prism (six-coordinated) and bicapped trigonal prism (eight-coordinated) sites for the A 2+ cations, respectively. A relationship between cation sizes of VIII A 2+ and VI B 3+ and crystal structures (CF- and CT-types) of A 2+ B 2 3+ O 4 is discussed using the above new data and available previous data of the postspinel phases. We found that CF-type A 2+ B 2 3+ O 4 crystallize in wide ionic radius ranges of 0.9-1.4 Å for VIII A 2+ and 0.55-1.1 Å for VI B 3+ , whereas CT-type phases crystallize in very narrow ionic radius ranges of ∼0.9 Å for VIII A 2+ and 0.6-0.65 Å for VI B 3+ . This would be attributed to the fact that the tunnel space of CT-type structure is geometrically less flexible due to the smaller coordination

  19. Yttrium-enriched YBa{sub 2}Cu{sub 3}O{sub x} thin films for coated conductors fabricated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Khoryushin, Alexey V., E-mail: khoryushin@ya.ru [Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Mozhaev, Peter B.; Mozhaeva, Julia E.; Andersen, Niels H. [Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Grivel, Jean-Claude [Department of Energy Conversion and Storage, Technical University of Denmark, DK-4000 Roskilde (Denmark); Hansen, Jørn Bindslev; Jacobsen, Claus S. [Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2013-02-14

    Highlights: ► YBCO films were fabricated by PLD from targets of various elemental compositions. ► The Y-enriched films contain yttria nanoparticles which provide efficient pinning. ► The best film has 5.5× higher j{sub c}(5 T,50 K) = 2.6MA/cm{sup 2} comparing with a reference film. ► The Y-enriched films remain c-oriented up to 500 nm. ► Films demonstrate no j{sub c} suppression with thickness and remarkable stability with time. -- Abstract: The effects of excess yttria on the structural and electrical properties of the YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) thin films are studied. The films were deposited on (LaAlO{sub 3}){sub 0.3}–(Sr{sub 2}AlTaO{sub 8}){sub 0.7} substrates by pulsed laser ablation from targets with different elemental composition. An increase of yttrium content of the target leads to formation of porous films with significantly improved current-carrying capabilities. Structural studies of these films reveal presence of yttria nanoparticles embedded into the YBCO matrix. The highest obtained critical current density in an external magnetic field of 5 T was 2.6 MA/cm{sup 2} at 50 K and 9.4 MA/cm{sup 2} at 20 K. The fabricated Y-enriched YBCO films remain c-oriented at least up to 600 nm thickness with no significant suppression of the critical current density.

  20. Synthesis of Cu2O, CuCl, and Cu2OCl2 nanoparticles by ultrafast ...

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... 800 nm and ∼2 ps laser pulses. Cu2O NPs exhibited two-photon absorption at lower peak intensities while three-photon absorption was observed at higher peak intensities. Other samples exhibited two-photon absorption at all peak intensities. Keywords. Picosecond; laser ablation; copper complex; ...

  1. High Frequency Anodising of Aluminium-TiO2 Surface Composites

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Bordo, Kirill; Jensen, Flemming

    2015-01-01

    was also measured as a function of various anodising parameters. Anodic film growth, hardness, and total reflectance of the surface were found to be highly dependent on the anodising frequency and the anodic cycle potential. Longer exposure times to the anodising electrolyte at lower growth rates resulted......High frequency anodising of Al–TiO2 surface composites using pulse reverse pulse technique was investigated with an aim to understand the effect of the anodising parameters on the optical appearance, microstructure, hardness and growth rate of the anodic layer. Friction stir processing was employed...... to prepare the Al–TiO2 surface composites, which were anodised in a 20 wt.% sulphuric acid bath at 10 °C as a function of pulse frequency, pulse duty cycle, and anodic cycle voltage amplitudes. The optical appearance of the films was characterized and quantified using an integrating sphere-spectrometer setup...

  2. O2(a1Δ) vibrational kinetics in oxygen-iodine laser

    Science.gov (United States)

    Torbin, A. P.; Pershin, A. A.; Heaven, M. C.; Azyazov, V. N.; Mebel, A. M.

    2018-04-01

    Kinetics of vibrationally-excited singlet oxygen O2(a1Δ,ν) in gas mixture O3/N2/CO2 was studied using a pulse laser technique. Molecules O2(a1Δ,ν) were produced by laser photolysis of ozone at 266 nm. The O3 molecules number density was followed using time-resolved absorption spectroscopy. It was found that an upper bound for the rate constant of chemical reaction O2(a1Δ,ν)+ O3 is about 10-15 cm3/s. The rate constants of O2(a1Δ,ν= 1, 2 and 3) quenching by CO2 are presented.

  3. Continuous processing of polymers in repetitively pulsed atmospheric pressure discharges with moving surfaces and gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Bhoj, Ananth N [Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801 (United States); Kushner, Mark J [Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 (United States)

    2007-11-21

    Atmospheric pressure corona discharges are industrially employed to treat large areas of commodity polymer sheets by creating new surface functional groups. The most common processes use oxygen containing discharges to affix oxygen to hydrocarbon polymers, thereby increasing their surface energy and wettability. The process is typically continuous and is carried out in a web configuration with film speeds of tens to hundreds of cm s{sup -1}. The densities and relative abundances of functional groups depend on the gas composition, gas flow rate and residence time of the polymer in the discharge zone which ultimately determine the magnitude and mole fractions of reactive fluxes to the surface. In this paper, results are discussed from a two-dimensional computational investigation of the atmospheric pressure plasma functionalization of a moving polypropylene sheet in repetitively pulsed He/O{sub 2}/H{sub 2}O discharges. O and OH typically initiate surface processing by hydrogen abstraction. These species are regenerated during every plasma pulse but are also largely consumed during the inter-pulse period. Longer-lived species such as O{sub 3} accumulate over many pulses and convect downstream with the gas flow. Optimizing the interplay between local rapid reactions, such as H abstraction which occurs dominantly in the discharge zone, and non-local slower processes, such as surface-surface reactions, may enable the customization of the relative abundance of surface functional groups.

  4. Continuous processing of polymers in repetitively pulsed atmospheric pressure discharges with moving surfaces and gas flow

    International Nuclear Information System (INIS)

    Bhoj, Ananth N; Kushner, Mark J

    2007-01-01

    Atmospheric pressure corona discharges are industrially employed to treat large areas of commodity polymer sheets by creating new surface functional groups. The most common processes use oxygen containing discharges to affix oxygen to hydrocarbon polymers, thereby increasing their surface energy and wettability. The process is typically continuous and is carried out in a web configuration with film speeds of tens to hundreds of cm s -1 . The densities and relative abundances of functional groups depend on the gas composition, gas flow rate and residence time of the polymer in the discharge zone which ultimately determine the magnitude and mole fractions of reactive fluxes to the surface. In this paper, results are discussed from a two-dimensional computational investigation of the atmospheric pressure plasma functionalization of a moving polypropylene sheet in repetitively pulsed He/O 2 /H 2 O discharges. O and OH typically initiate surface processing by hydrogen abstraction. These species are regenerated during every plasma pulse but are also largely consumed during the inter-pulse period. Longer-lived species such as O 3 accumulate over many pulses and convect downstream with the gas flow. Optimizing the interplay between local rapid reactions, such as H abstraction which occurs dominantly in the discharge zone, and non-local slower processes, such as surface-surface reactions, may enable the customization of the relative abundance of surface functional groups

  5. Substrate temperature effects on the structure and properties of ZnMnO films prepared by pulsed laser deposition

    Science.gov (United States)

    Riascos, H.; Duque, J. S.; Orozco, S.

    2017-01-01

    ZnMnO thin films were grown on silicon substrates by pulsed laser deposition (PLD). Pulsed Nd:YAG laser was operated at a wavelength of 1064 nm and 100 mJ. ZnMnO thin films were deposited at the vacuum pressure of 10-5 Torr and with substrate temperature from room temperature to 600 °C. The effects of substrate temperature on the structural and Optical properties of ZnMnO thin films have been investigated by X-ray diffraction (XRD), Raman spectroscopy and Uv-vis spectroscopy. From XRD data of the samples, it can be showed that temperature substrate does not change the orientation of ZnMnO thin films. All the films prepared have a hexagonal wurtzite structure, with a dominant (002) peak around 2θ=34.44° and grow mainly along the c-axis orientation. The substrate temperature improved the crystallinity of the deposited films. Uv-vis analysis showed that, the thin films exhibit high transmittance and low absorbance in the visible region. It was found that the energy band to 300 ° C is 3.2 eV, whereas for other temperatures the values were lower. Raman reveals the crystal quality of ZnMnO thin films.

  6. Deposition and characterization of ZnO thin films by modified pulsed-spray pyrolysis

    International Nuclear Information System (INIS)

    Thilakan, Periyasamy; Radheep, D Mohan; Saravanakumar, K; Sasikala, G

    2009-01-01

    Zinc oxide (ZnO) thin films were deposited using modified pulsed-spray pyrolysis on glass substrates. Depositions were carried out using N 2 as the carrier gas and analysed with respect to the rate of deposition. X-ray analysis revealed the presence of mixed crystallization with a nanocrystalline structure of about 6.9 nm dispersed in the amorphous matrix. A negative trend between the bandgap and resistivity was observed with the decrease in the deposition rate. A lowest bandgap of 3.1 eV with a resistivity value of 1.6 × 10 −2 Ω cm was achieved at a lowest deposition rate of 1.3 nm min −1 . Hot-probe measurement revealed the p-type conductivity for the film deposited at a lowest deposition rate of 1.3 nm min −1 . Details about the influence of pulsed-spray deposition for the achievement of this negative trend between bandgap and resistivity will be discussed in this paper

  7. A feasibility study on age-related factors of wrist pulse using principal component analysis.

    Science.gov (United States)

    Jang-Han Bae; Young Ju Jeon; Sanghun Lee; Jaeuk U Kim

    2016-08-01

    Various analysis methods for examining wrist pulse characteristics are needed for accurate pulse diagnosis. In this feasibility study, principal component analysis (PCA) was performed to observe age-related factors of wrist pulse from various analysis parameters. Forty subjects in the age group of 20s and 40s were participated, and their wrist pulse signal and respiration signal were acquired with the pulse tonometric device. After pre-processing of the signals, twenty analysis parameters which have been regarded as values reflecting pulse characteristics were calculated and PCA was performed. As a results, we could reduce complex parameters to lower dimension and age-related factors of wrist pulse were observed by combining-new analysis parameter derived from PCA. These results demonstrate that PCA can be useful tool for analyzing wrist pulse signal.

  8. D2O laser pumped by an injection-locked CO2 laser for ion-temperature measurements

    International Nuclear Information System (INIS)

    Okada, Tatsuo; Ohga, Tetsuaki; Yokoo, Masakazu; Muraoka, Katsunori; Akazaki, Masanori.

    1986-01-01

    The cooperative Thomson scattering method is one of the various new techniques proposed for measuring the temperature of ions in nuclear fusion critical plasma, for which a high-performance FIR laser pumped by an injection-locked CO 2 laser is required. This report deals with D 2 O laser with a wavelength of 385 μm which is pumped by injection-locked single-mole TEA CO 2 laser composed of a driver laser and an output-stage laser. A small-sized automatic pre-ionization type laser is employed for the driver. The resonator of the driver laser consists of a plane grating of littrow arrangement and ZnSe plane output mirrors with reflection factor of 50 %. An aperture and ZnSe etalon are inserted in the resonator to produce single transverse- and longitudinal-mode oscillation, respectively. The output-stage laser is also of the automatic pre-ionization type. Theoretically, an injection power of 0.1 pW/mm 3 is required for a CO 2 laser. Single-mode oscillation of several hundred nW/mm 3 can be produced by the CO 2 laser used in this study. Tuning of the output-stage laser is easily controlled by the driver laser. High stability of the injection-locked operation is demonstrated. CO 2 laser beam is introduced into the D 2 O laser through a KCl window to excite D 2 O laser beam in the axial direction. Input and output characteristics of the D 2 O laser are shown. Also presented are typical pulse shapes from the D 2 O laser pumped by a free-running CO 2 laser pulse or by an injection-locked single-mode CO 2 laser pulse. (Nogami, K.)

  9. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnO_x–Al_2O_3 thin film structure

    International Nuclear Information System (INIS)

    Li, H. K.; Chen, T. P.; Liu, P.; Zhang, Q.; Hu, S. G.; Liu, Y.; Lee, P. S.

    2016-01-01

    In this work, a synaptic transistor based on the indium gallium zinc oxide (IGZO)–aluminum oxide (Al_2O_3) thin film structure, which uses ultraviolet (UV) light pulses as the pre-synaptic stimulus, has been demonstrated. The synaptic transistor exhibits the behavior of synaptic plasticity like the paired-pulse facilitation. In addition, it also shows the brain's memory behaviors including the transition from short-term memory to long-term memory and the Ebbinghaus forgetting curve. The synapse-like behavior and memory behaviors of the transistor are due to the trapping and detrapping processes of the holes, which are generated by the UV pulses, at the IGZO/Al_2O_3 interface and/or in the Al_2O_3 layer.

  10. Highly efficient repetitively pulsed electric-discharge industrial CO2 laser

    International Nuclear Information System (INIS)

    Osipov, V V; Ivanov, M G; Lisenkov, V V; Platonov, V V

    2002-01-01

    The results of investigations aimed at the development of a repetitively pulsed CO 2 laser with an active medium volume of 1000 cm 3 pumped by a combined discharge are generalised. It is shown that, at pump pulse durations of 200-500 μs the optimal characteristics are achieved at active-medium pressures of 60-100 Torr. In this case, the laser efficiency at the initial stage of its operation can reach 22% and; if the energy dissipated in the region of the cathode potential drop is neglected, the efficiency is 28%. After emission of 3x10 5 pulses, the laser efficiency falls to 12%. It has been found that adding CO with a relative concentration [CO]/[CO 2 ] ∼0.75 increases the input and output power by almost 50%. The lasing efficiency is then 10%-12%, and the service life of the laser is by more than 10 6 pulses with a power decrease of no more than 10%. Adding hydrogen up to a concentration [H 2 ]/[CO 2 ] ∼10 leads to an increase in the energy supplied to the gas due to a decrease in the rate of ionisation processes. However, the optimal ratio is [H 2 ]/[CO 2 ] ∼ 1, at which the output power increases by 15%. In a long-term operating mode, the laser power is 1 kW at a peak power of 10 kW and an efficiency of 12%. (lasers)

  11. A Structural Molar Volume Model for Oxide Melts Part I: Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 Melts—Binary Systems

    Science.gov (United States)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    A structural molar volume model was developed to accurately reproduce the molar volume of molten oxides. As the non-linearity of molar volume is related to the change in structure of molten oxides, the silicate tetrahedral Q-species, calculated from the modified quasichemical model with an optimized thermodynamic database, were used as basic structural units in the present model. Experimental molar volume data for unary and binary melts in the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 system were critically evaluated. The molar volumes of unary oxide components and binary Q-species, which are model parameters of the present structural model, were determined to accurately reproduce the experimental data across the entire binary composition in a wide range of temperatures. The non-linear behavior of molar volume and thermal expansivity of binary melt depending on SiO2 content are well reproduced by the present model.

  12. Diaqua-2κ2O-bis(μ-1-oxido-2-naphthoato-1:2κ3O1,O2:O2′;2:3κ3O2:O1,O2′-bis(1-oxido-2-naphthoato-1κ1O2,O2;3κ2O1,O2-hexapyridine-1κ2N,2κ2N,3κ2N-trimanganese(II/III pyridine disolvate dihydrate

    Directory of Open Access Journals (Sweden)

    Daqi Wang

    2008-12-01

    Full Text Available The title complex, [Mn3(C11H6O34(C5H5N6(H2O22H22C5H5N, is a trinuclear mixed oxidation state complex of overline1 symmetry. The three Mn atoms are six-coordinated in the shape of distorted octahedra, each coordinated with an O4N2 set of donor atoms, where the ligands exhibit mono- and bidentate modes. However, the coordination of the MnII ion located on the inversion centre involves water molecules at two coordination sites, whereas that of the two symmetry-related MnIII ions involves an O4N2 set of donor atoms orginating from the organic ligands. Intramolecular C—H...π interactions between neighbouring pyridine ligands stabilize this arrangement. A two-dimensional network parallel to (001 is formed by intermolecular O—H...O hydrogen bonds.

  13. Transmission of reactive pulsed laser deposited VO{sub 2} films in the THz domain

    Energy Technology Data Exchange (ETDEWEB)

    Émond, Nicolas; Hendaoui, Ali; Ibrahim, Akram; Al-Naib, Ibraheem; Ozaki, Tsuneyuki; Chaker, Mohamed, E-mail: chaker@emt.inrs.ca

    2016-08-30

    Highlights: • Synthesis of vanadium dioxide (VO{sub 2}) thin films as a function of oxygen pressure (2–25 mTorr) using Reactive Pulsed Laser Deposition (RPLD). • Characterization of RPLD-grown VO{sub 2} thin films in the THz frequency range. • THz switches and/or sensors require VO{sub 2} films deposited at low oxygen pressure (i.e. low transition temperature, large amplitude contrast of THz transmission, narrow hysteresis width). • THz optical memory applications require VO{sub 2} films deposited at high oxygen pressure (broad hysteresis width). - Abstract: This work reports on the characteristics of the insulator-to-metal transition (IMT) of reactive pulsed laser deposited vanadium dioxide (VO{sub 2}) films in the terahertz (THz) frequency range, namely the transition temperature T{sub IMT}, the amplitude contrast of the THz transmission over the IMT ΔA, the transition sharpness ΔT and the hysteresis width ΔH. XRD analysis shows the sole formation of VO{sub 2} monoclinic structure with an enhancement of (011) preferential orientation when varying the O{sub 2} pressure (P{sub O2}) during the deposition process from 2 to 25 mTorr. THz transmission measurements as a function of temperature reveal that VO{sub 2} films obtained at low P{sub O2} exhibit low T{sub IMT}, large ΔA, and narrow ΔH. Increasing P{sub O2} results in VO{sub 2} films with higher T{sub IMT}, smaller ΔA, broader ΔH and asymmetric hysteresis loop. The good control of the VO{sub 2} IMT features in the THz domain could be further exploited for the development of advanced smart devices, such as ultrafast switches, modulators, memories and sensors.

  14. Synthesis of Cu 2 O, CuCl, and Cu2OCl 2 nanoparticles by ultrafast ...

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... We have also performed nonlinear optical studies of colloidal nanoparticles using Z-scan technique at 800 nm and ∼2 ps laser pulses. Cu2O NPs exhibited two-photon absorption at lower peak intensities while three-photon absorption was observed at higher peak intensities. Other samples exhibited ...

  15. Physico-chemical properties of (U,Ce)O2

    International Nuclear Information System (INIS)

    Yamada, K.; Yamanaka, S.; Katsura, M.

    1998-01-01

    The high-temperature X-ray diffraction analysis of (U,Ce)O 2 with CeO 2 contents ranging from 0 to 20 mol.% CeO 2 was performed to obtain the variation of the linear thermal expansion coefficient with the CeO 2 content. Ultrasonic pulse-echo measurements were also carried out from room temperature to 673 K to estimate the change in the mechanical properties of (U,Ce)O 2 with the CeO 2 content. The variation in the linear thermal expansion coefficient at the low CeO 2 content region is more steep than that expected from the linear thermal expansion coefficient of UO 2 and CeO 2 . The Young's and shear moduli of all (U,Ce)O 2 were found to decrease with rising temperature. This was due to the increase of the bond length accompanied by the thermal expansion. Although the lattice parameter decreased with CeO 2 content, the moduli of (U,Ce)O 2 were found to decrease with increasing CeO 2 content at room temperature. These results show that in the range from 0 to 20 mol.% of CeO 2 , as CeO 2 content increases, the bottom of the potential energy in (U,Ce)O 2 is shallower and broader. (orig.)

  16. Investigation of the magnetoresistance behavior in high pulsed magnetic fields up to 351 in thick films YBa2Cu3Ox and YBa2Cu3Ox (5% Ag-doped) near by superconductivity transition

    International Nuclear Information System (INIS)

    Broide, E.; Yakunin, M.

    1998-01-01

    The influence of pulsed magnetic fields up to 35T on samples YBa 2 Cu 3 O x and YBa 2 Cu 3 O x (5% Ag-doped ) thick films produced after electromagnetic separation HTSC1-2-3 powders was investigated. The field was generated in the multiturned copper wire coil with a semisinusoidal pulse duration of about 10 ms.To measure the magneto resistivity the sample voltage under the constant current regime was made to an accuracy of 0.5*10 -6 V and minimal time interval of 100 ns. To extract the true signal from the spurious background voltage generated by the pulsed magnetic field ,the previously recorded signals for zero current were subtracted with high precision from the nonzero current signals. After a series of pulses the zero field resistivities as a function of temperature were compared with the initial date to reveal the irreversible changes in samples. We discovered a non linear behavior in the magnetoresistance of YBa 2 Cu 3 O x after measurements with current greater than 1A/cm 2 at the temperature 67.4K. However in the specimens with 5% Ag+YBa 2 Cu 3 O x we observed a linear plot of magneto resistivity and magnetic field at currents less than 20 A/cm 2 at the 77K. In our view the difference in behavior of the two types of samples is a function of the resistivity of granular contacts in polycrystal thick films YBa 2 Cu 3 O x and YBa 2 Cu 3 O x (5% Ag doped)

  17. Stability Criteria of Fullerene-like Nanoparticles: Comparing V2O5 to Layered Metal Dichalcogenides and Dihalides

    Directory of Open Access Journals (Sweden)

    Yehiam Prior

    2010-08-01

    Full Text Available Numerous examples of closed-cage nanostructures, such as nested fullerene-like nanoparticles and nanotubes, formed by the folding of materials with layered structure are known. These compounds include WS2, NiCl2, CdCl2, Cs2O, and recently V2O5. Layered materials, whose chemical bonds are highly ionic in character, possess relatively stiff layers, which cannot be evenly folded. Thus, stress-relief generally results in faceted nanostructures seamed by edge-defects. V2O5, is a metal oxide compound with a layered structure. The study of the seams in nearly perfect inorganic "fullerene-like" hollow V2O5 nanoparticles (NIF-V2O5 synthesized by pulsed laser ablation (PLA, is discussed in the present work. The relation between the formation mechanism and the seams between facets is examined. The formation mechanism of the NIF-V2O5 is discussed in comparison to fullerene-like structures of other layered materials, like IF structures of MoS2, CdCl2, and Cs2O. The criteria for the perfect seaming of such hollow closed structures are highlighted.

  18. Optical and electrical properties of In-doped CdO thin films fabricated by pulse laser deposition

    International Nuclear Information System (INIS)

    Zheng, B.J.; Lian, J.S.; Zhao, L.; Jiang, Q.

    2010-01-01

    Transparent indium-doped cadmium oxide (In-CdO) thin films were deposited on quartz glass substrates by pulse laser deposition (PLD) from ablating Cd-In metallic target at a fixed pressure 10 Pa and a fixed substrate temperature 300 deg. C. The influences of indium concentrations in target on the microstructure, optical and electrical performances were studied. When the indium concentration reaches to 3.9 wt%, the as-deposited In-CdO film shows high optical transmission in visible light region, obviously enhanced direct band gap energy (2.97 eV), higher carrier concentration and lower electric resistivity compared with the undoped CdO film, while a further increase of indium concentration to 5.6 wt% induces the formation of In 2 O 3 , which reverse the variation of these parameters and performance.

  19. Pulsed TRIGA reactor as substitute for long pulse spallation neutron source

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1999-01-01

    those from the LPSS but at a considerably lower cost. Using the well proven and developed TRIGA reactor technology for this application would avoid the many complexities associated with either increasing the power of spallation sources or increasing the pulse length for the LPSS. An increasing problem with the spallation target is the thermal fatigue in the LPSS, a problem avoided in the pulsed TRIGA reactor. A properly designed cold source installed in a D 2 O reflector of the multiple pulsed TRIGA reactor can provide pulsed cold neutrons for neutron guides used in many neutron scattering applications. (author)

  20. Pulsed laser deposited Al-doped ZnO thin films for optical applications

    Directory of Open Access Journals (Sweden)

    Gurpreet Kaur

    2015-02-01

    Full Text Available Highly transparent and conducting Al-doped ZnO (Al:ZnO thin films were grown on glass substrates using pulsed laser deposition technique. The profound effect of film thickness on the structural, optical and electrical properties of Al:ZnO thin films was observed. The X-ray diffraction depicts c-axis, plane (002 oriented thin films with hexagonal wurtzite crystal structure. Al-doping in ZnO introduces a compressive stress in the films which increase with the film thickness. AFM images reveal the columnar grain formation with low surface roughness. The versatile optical properties of Al:ZnO thin films are important for applications such as transparent electromagnetic interference (EMI shielding materials and solar cells. The obtained optical band gap (3.2–3.08 eV was found to be less than pure ZnO (3.37 eV films. The lowering in the band gap in Al:ZnO thin films could be attributed to band edge bending phenomena. The photoluminescence spectra gives sharp visible emission peaks, enables Al:ZnO thin films for light emitting devices (LEDs applications. The current–voltage (I–V measurements show the ohmic behavior of the films with resistivity (ρ~10−3 Ω cm.

  1. Diffusion Parameters of BeO by the Pulsed Neutron Method

    International Nuclear Information System (INIS)

    Joshi, B.V.; Nargundkar, V.R.; Subbarao, K.

    1965-01-01

    The use of the pulsed neutron method for the precise determination of the diffusion parameters of moderators is described. The diffusion parameters of BeO have been obtained by this method. The neutron bursts were produced from a cascade accelerator by pulsing the ion source and using the Be (d, n) reaction. The detector was an enriched boron trifluoride proportional counter. It is shown that by a proper choice of the counter position arid length, and the source position, most of the space harmonics can be eliminated. Any constant background can be accounted for in the calculation of the decay constant. Very large bucklings were not used to avoid time harmonics. Any remaining harmonic content was rendered ineffective by the use of adequate time delay. The decay constant of the fundamental mode of the thermal neutron population was determined for several bucklings. Conditions to be satisfied for an accurate determination of the diffusion cooling constant C are discussed. The following values are obtained for BeO: λ 0 = absorption constant = 156.02 ± 4.37 s -1 D = diffusion coefficient = (1.3334 ± 0.0128) x 10 5 cm 2 /s C = diffusion cooling constant = (-4.8758 ± 0.5846) x 10 5 cm 4 /s. The effect of neglecting the contribution of the B 6 term on the determination of the diffusion parameters was estimated and is shown to be considerable. The reason for the longstanding discrepancy between the values of C obtained for the same moderator by different workers is attributed to this. (author) [fr

  2. Pulsed irradiation of enriched UO{sub 2} in the Annular Core Pulse Reactor (ACPR)

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, T R; Lucoff, D M; Reil, K O; Croucher, D W [Sandia Laboratories (United States)

    1974-07-01

    A series of experiments have been conducted in the Annular Core Pulse Reactor (ACPR) to determine the energy deposition and behavior of enriched UO{sub 2} under pulse conditions. In the experiment single unirradiated pellets with enrichments up to 25 percent were pulse heated to melt temperatures. Temperature and fission product inventory measurements were made and compared with neutron transport calculations. (author)

  3. Hybrid Pulsed Nd:YAG Laser

    Science.gov (United States)

    Miller, Sawyer; Trujillo, Skyler; Fort Lewis College Laser Group Team

    This work concerns the novel design of an inexpensive pulsed Nd:YAG laser, consisting of a hybrid Kerr Mode Lock (KLM) and Q-switch pulse. The two pulse generation systems work independently, non simultaneously of each other, thus generating the ability for the user to easily switch between ultra-short pulse widths or large energy density pulses. Traditionally, SF57 glass has been used as the Kerr medium. In this work, novel Kerr mode-locking mediums are being investigated including: tellurite compound glass (TeO2), carbon disulfide (CS2), and chalcogenide glass. These materials have a nonlinear index of refraction orders of magnitude,(n2), larger than SF57 glass. The Q-switched pulse will utilize a Pockels cell. As the two pulse generation systems cannot be operated simultaneously, the Pockels cell and Kerr medium are attached to kinematic mounts, allowing for quick interchange between systems. Pulse widths and repetition rates will vary between the two systems. A goal of 100 picosecond pulse widths are desired for the mode-locked system. A goal of 10 nanosecond pulse widths are desired for the Q-switch system, with a desired repetition rate of 50 Hz. As designed, the laser will be useful in imaging applications.

  4. Properties of pulsed electrodeposited CdIn2S4 thin film

    International Nuclear Information System (INIS)

    Hankare, P.P.; Kokate, A.V.; Asabe, M.R.; Delekar, S.D.; Chougule, B.K.

    2006-01-01

    CdIn 2 S 4 thin films are prepared by pulsed electrodeposition technique over F:SnO 2 glass and stainless steel substrates in galvanostatic mode from an aqueous acidic bath containing CdSO 4 , InCl 3 and Na 2 S 2 O 3 . The growth kinetics of the film was studied and the deposition parameters such as electrolyte bath concentration, bath temperature, time of deposition, deposition current, and pH of the electrolyte bath are optimized. X-ray diffraction (XRD) analysis of the as deposited and annealed films showed the presence of polycrystalline nature. Energy dispersive analysis (EDAX) spectrum of the surface composition confirms the nearly stoichiometric CdIn 2 S 4 nature of the film. Surface morphology studies by scanning electron microscope (SEM) shows that, the deposited films are well adherent and grains are uniformly distributed over the surface of substrate. The optical transmission spectra show a direct band gap value of 2.16 eV

  5. Superconductivity in Na{sub 1-x}CoO{sub 2}.yH{sub 2}O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Sandra; Komissinkiy, Philipp; Alff, Lambert [Institute for Materials Science, TU Darmstadt (Germany); Fritsch, Ingo; Habermeier, Hanns-Ulrich [Max-Planck-Institute for Solid State Research, Stuttgart (Germany); Lemmens, Peter [Institute for Condensed Matter Physics, TU Braunschweig (Germany)

    2010-07-01

    Sodium cobaltate (Na{sub 1-x}CoO{sub 2}) is a novel material with thermoelectric behavior, charge and spin ordered states dependent on the sodium content in the composition. A superconducting phase was found in water intercalated sodium cobaltate (Na{sub 1-x}CoO{sub 2}.yH{sub 2}O) with x=0.65-0.7 and y=0.9-1.3. The pairing state is still under debate, but there are some indications for a spin-triplet or p-wave superconducting pairing state. First films of Na{sub 1-x}CoO{sub 2}.yH{sub 2}O with a superconducting transition temperature near 5 K have been successfully grown. Here we report on thin films of Na{sub 1-x}CoO{sub 2} grown by pulsed laser deposition technique. The deposition parameters, sodium deintercalation and water intercalation conditions are tuned in order to obtain the superconducting phase. The instability of this phase might be an indication for triplet superconductivity, which is known to be affected strongly by impurities and defects.This observation is in agreement with the fact that so far also no superconducting thin films of the most famous triplet superconductor Sr{sub 2}RuO{sub 4} have been reported.

  6. Synthesis, structural, thermal and optical properties of TeO2-Bi2O3-GeO2-Li2O glasses

    Science.gov (United States)

    Dimowa, Louiza; Piroeva, Iskra; Atanasova-Vladimirova, S.; Petrova, Nadia; Ganev, Valentin; Titorenkova, Rositsa; Yankov, Georgi; Petrov, Todor; Shivachev, Boris L.

    2016-10-01

    In this study, synthesis and characterization of novel quaternary tellurite glass system TeO2-Bi2O3-GeO2-Li2O is presented. The compositions include TeO2 and GeO2 as glass formers while different proportion of Bi2O3 and Li2O act as network modifiers. Differential thermal analysis, X-ray diffraction, scanning electron microscopy energy dispersive X-ray spectroscopy, laser ablation inductively coupled plasma mass spectrometry, UV-Vis and Raman spectroscopy are applied to study the structural, thermal and optical properties of the studied glasses. Obtained glasses possess a relatively low glass transition temperature (around 300 °C) if compared to other tellurite glasses, show good thermal transparency in the visible and near infra-red (from 2.4 to 0.4 μm) and can double the frequency of laser light from its original wavelength of 1064 nm to its second-harmonic at 532 nm (i.e. second harmonic generation).

  7. Attosecond control of dissociative ionization of O{sub 2} molecules

    Energy Technology Data Exchange (ETDEWEB)

    Siu, W.; Kelkensberg, F.; Gademann, G. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Rouzee, A.; Vrakking, M. J. J. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Max-Born-Institut, Max-Born Strasse 2A, D-12489 Berlin (Germany); Johnsson, P. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Department of Physics, Lund University, Post Office Box 118, SE-221 00 Lund (Sweden); Dowek, D. [Laboratoire des Collisions Atomiques et Moleculaires (UMR Universite Paris-Sud et CNRS, 8625), Batiment 351, Universite Paris-Sud, F-91405 Orsay Cedex (France); Lucchini, M.; Calegari, F. [Department of Physics, Politecnico di Milano, Istituto di Fotonica e Nanotecnologie CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); De Giovannini, U.; Rubio, A. [Nano-bio Spectroscopy Group, ETSF Scientific Development Centre, Universidad del Pais Vasco, Avenida Tolosa 72, E-20018 San Sebastian (Spain); Lucchese, R. R. [Department of Chemistry, Texas A and M University, Post Office Box 30012, College Station, Texas 77842-3012 (United States); Kono, H. [Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan); Lepine, F. [Universite Lyon 1/CNRS/LASIM, UMR 5579, 43 Boulevard Du 11 Novembre 1918, F-69622 Villeurbane (France)

    2011-12-15

    We demonstrate that dissociative ionization of O{sub 2} can be controlled by the relative delay between an attosecond pulse train (APT) and a copropagating infrared (IR) field. Our experiments reveal a dependence of both the branching ratios between a range of electronic states and the fragment angular distributions on the extreme ultraviolet (XUV) to IR time delay. The observations go beyond adiabatic propagation of dissociative wave packets on IR-induced quasistatic potential energy curves and are understood in terms of an IR-induced coupling between electronic states in the molecular ion.

  8. Growth and annealing effect of SrTiO{sub 3} thin films grown by pulsed laser deposition using fourth harmonic Nd:YAG pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Takamura, Koji; Fujiwara, Takumi; Yokota, Akinobu; Nakamura, Motonori; Yoshimoto, Ken' ichi [National Institute of Technology, Asahikawa College, 2-2-1-6 Shunkodai, Asahikawa 071-8142 (Japan)

    2017-06-15

    SrTiO{sub 3} homoepitaxial films were grown by pulsed laser deposition (PLD) using a fourth harmonic Nd:YAG pulsed laser. The substrate temperature was kept constant at 600, 700, or 800 C. The laser energy was set at 9-25 mJ on the polycrystal SrTiO{sub 3} target. Post-procedure annealing was performed in the air for 24 h. The X-ray diffraction measurement results showed that the lattice constant of the film was only 0.010 Aa larger than that of the substrate and was not dependent on the annealing temperature. We demonstrated the possibility of growing near-stoichiometric SrTiO{sub 3} film by PLD using an Nd:YAG laser. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Electrode contacts on ferroelectric Pb(Zr x Ti1−x )O3 and SrBi2Ta2O9 thin films and their influence on fatigue properties

    OpenAIRE

    Lee, J. J.; Thio, C. L.; Desu, Seshu B.

    1995-01-01

    The degradation (fatigue) of dielectric properties of ferroelectric Pb(ZrxTi1-x)O-3 (PZT) and SrBi2Ta2O9 thin films during cycling was investigated. PZT and SrBi2Ta2O9 thin films were fabricated by metalorganic decomposition and pulsed laser deposition, respectively. Samples with electrodes of platinum (Pt) and ruthenium oxide (RuO2) were studied. The interfacial capacitance (if any) at the Pt/PZT, RuO2/PZT, and Pt/SrBi2Ta2O9 interfaces was determined from the thickness dependence of low-fiel...

  10. Microstructural dependence on relevant physical-mechanical properties on SiO2-Na2O-CaO-P2O5 biological glasses.

    Science.gov (United States)

    Rajendran, V; Begum, A Nishara; Azooz, M A; el Batal, F H

    2002-11-01

    Bioactive glasses of the system SiO2-Na2O-CaO-P2O5 have been prepared by the normal melting and annealing technique. The elastic moduli, attenuation, Vickers hardness, fracture toughness and fracture surface energy have been obtained using the known method at room temperature. The temperature dependence of elastic moduli and attenuation measurements have been extended over a wide range of temperature from 150 to 500 K. The SiO2 content dependence of velocities, attenuation, elastic moduli, and other parameters show an interesting observation at 45 wt% of SiO2 by exhibiting an anomalous behaviour. A linear relation is developed for Tg, which explores the influence of Na2O on SiO2-Na2O-CaO-P2O5 bioactive glasses. The measured hardness, fracture toughness and fracture surface energy show a linear relation with Young's modulus. It is also interesting to note that the observed results are functions of polymerisation and the number of non-bridging oxygens (NBO) prevailing in the network with change in SiO2 content. The temperature dependence of velocities, attenuation and elastic moduli show the existence of softening in the glass network structure as temperature increases.

  11. Pd/Nb2O5/SiO2 catalyst for the direct hydrodeoxygenation of biomass-related compounds to liquid alkanes under mild conditions.

    Science.gov (United States)

    Shao, Yi; Xia, Qineng; Liu, Xiaohui; Lu, Guanzhong; Wang, Yanqin

    2015-05-22

    A simple Pd-loaded Nb2 O5 /SiO2 catalyst was prepared for the hydrodeoxygenation of biomass-related compounds to alkanes under mild conditions. Niobium oxide dispersed in silica (Nb2 O5 /SiO2 ) as the support was prepared by the sol-gel method and characterized by various techniques, including N2 adsorption, XRD, NH3 temperature-programmed desorption (TPD), TEM, and energy-dispersive X-ray spectroscopy (EDAX) atomic mapping. The characterization results showed that the niobium oxide species were amorphous and well dispersed in silica. Compared to commercial Nb2 O5 , Nb2 O5 /SiO2 has significantly more active niobium oxide species exposed on the surface. Under mild conditions (170 °C, 2.5 MPa), Pd/10 %Nb2 O5 /SiO2 was effective for the hydrodeoxygenation reactions of 4-(2-furyl)-3-buten-2-one (aldol adduct of furfural with acetone), palmitic acid, tristearin, and diphenyl ether (model compounds of microalgae oils, vegetable oils, and lignin), which gave high yields (>94 %) of alkanes with little CC bond cleavage. More importantly, owing to the significant promotion effect of NbOx species on CO bond cleavage and the mild reaction conditions, the CC cleavage was considerably restrained, and the catalyst showed an excellent activity and stability for the hydrodeoxygenation of palmitic acid with almost no decrease in hexadecane yield (94-95 %) in a 150 h time-on-stream test. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Structural and magnetic properties in Mn-doped ZnO films prepared by pulsed-laser deposition

    International Nuclear Information System (INIS)

    Li, Qiang; Wang, Yuyin; Liu, Jiandang; Kong, Wei; Ye, Bangjiao

    2014-01-01

    We investigated the structural and magnetic properties of Zn 0.95 Mn 0.05 O films prepared on sapphire substrates by pulsed-laser deposition. Only low temperature ferromagnetism (Curie temperature lower than 50 K) was observed in Mn-doped samples, while pure ZnO film shows a typical paramagnetic behavior. Structural analyses indicate that the substitutional Mn 2+ ions play a significant role for the low temperature ferromagnetism. Lattice defects such as V O and V Zn were not proven to be effective factors for the origin of ferromagnetism in the films. The low temperature ferromagnetism might be interpreted as p–d hybridization from indirect coupling of Mn ions (Mn–O–Mn).

  13. Modulation of the electroluminescence emission from ZnO/Si NCs/p-Si light-emitting devices via pulsed excitation

    Science.gov (United States)

    López-Vidrier, J.; Gutsch, S.; Blázquez, O.; Hiller, D.; Laube, J.; Kaur, R.; Hernández, S.; Garrido, B.; Zacharias, M.

    2017-05-01

    In this work, the electroluminescence (EL) emission of zinc oxide (ZnO)/Si nanocrystals (NCs)-based light-emitting devices was studied under pulsed electrical excitation. Both Si NCs and deep-level ZnO defects were found to contribute to the observed EL. Symmetric square voltage pulses (50-μs period) were found to notably enhance EL emission by about one order of magnitude. In addition, the control of the pulse parameters (accumulation and inversion times) was found to modify the emission lineshape, long inversion times (i.e., short accumulation times) suppressing ZnO defects contribution. The EL results were discussed in terms of the recombination dynamics taking place within the ZnO/Si NCs heterostructure, suggesting the excitation mechanism of the luminescent centers via a combination of electron impact, bipolar injection, and sequential carrier injection within their respective conduction regimes.

  14. N2O, NO, N2 and CO2 emissions from tropical savanna and grassland of northern Australia: an incubation experiment with intact soil cores

    Science.gov (United States)

    Werner, C.; Reiser, K.; Dannenmann, M.; Hutley, L. B.; Jacobeit, J.; Butterbach-Bahl, K.

    2014-11-01

    Strong seasonal variability of hygric and thermal soil conditions are a defining environmental feature in northern Australia. However, how such changes affect the soil-atmosphere exchange of nitrous oxide (N2O), nitric oxide (NO) and dinitrogen (N2) is still not well explored. By incubating intact soil cores from four sites (three savanna, one pasture) under controlled soil temperatures (ST) and soil moisture (SM) we investigated the release of the trace gas fluxes of N2O, NO and carbon dioxide (CO2). Furthermore, the release of N2 due to denitrification was measured using the helium gas flow soil core technique. Under dry pre-incubation conditions NO and N2O emissions were very low (soil uptake was observed. Substantial NO (max: 306.5 μg N m-2 h-1) and relatively small N2O pulse emissions (max: 5.8 ± 5.0 μg N m-2 h-1) were recorded following soil wetting, but these pulses were short lived, lasting only up to 3 days. The total atmospheric loss of nitrogen was generally dominated by N2 emissions (82.4-99.3% of total N lost), although NO emissions contributed almost 43.2% to the total atmospheric nitrogen loss at 50% SM and 30 °C ST incubation settings (the contribution of N2 at these soil conditions was only 53.2%). N2O emissions were systematically higher for 3 of 12 sample locations, which indicates substantial spatial variability at site level, but on average soils acted as weak N2O sources or even sinks. By using a conservative upscale approach we estimate total annual emissions from savanna soils to average 0.12 kg N ha-1 yr-1 (N2O), 0.68 kg N ha-1 yr-1 (NO) and 6.65 kg N ha-1 yr-1 (N2). The analysis of long-term SM and ST records makes it clear that extreme soil saturation that can lead to high N2O and N2 emissions only occurs a few days per year and thus has little impact on the annual total. The potential contribution of nitrogen released due to pulse events compared to the total annual emissions was found to be of importance for NO emissions

  15. Properties of water surface discharge at different pulse repetition rates

    International Nuclear Information System (INIS)

    Ruma,; Yoshihara, K.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-01-01

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H 2 O 2 ) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H 2 O 2 and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  16. Sensitive detection of chlorine in iron oxide by single pulse and dual pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Pedarnig, J. D.; Haslinger, M. J.; Bodea, M. A.; Huber, N.; Wolfmeir, H.; Heitz, J.

    2014-11-01

    The halogen chlorine is hard to detect in laser-induced breakdown spectroscopy (LIBS) mainly due to its high excited state energies of 9.2 and 10.4 eV for the most intense emission lines at 134.72 nm and 837.59 nm, respectively. We report on sensitive detection of Cl in industrial iron oxide Fe2O3 powder by single-pulse (SP) and dual-pulse (DP) LIBS measurements in the near infrared range in air. In compacted powder measured by SP excitation (Nd:YAG laser, 532 nm) Cl was detected with limit of detection LOD = 440 ppm and limit of quantitation LOQ = 720 ppm. Orthogonal DP LIBS was studied on pressed Fe2O3 pellets and Fe3O4 ceramics. The transmission of laser-induced plasma for orthogonal Nd:YAG 1064 nm and ArF 193 nm laser pulses showed a significant dependence on interpulse delay time (ipd) and laser wavelength (λL). The UV pulses (λL = 193 nm) were moderately absorbed in the plasma and the Cl I emission line intensity was enhanced while IR pulses (λL = 1064 nm) were not absorbed and Cl signals were not enhanced at ipd = 3 μs. The UV laser enhancement of Cl signals is attributed to the much higher signal/background ratio for orthogonal DP excitation compared to SP excitation and to the increased plasma temperature and electron number density. This enabled measurement at a very short delay time of td ≥ 0.1 μs with respect to the re-excitation pulse and detection of the very rapidly decaying Cl emission with higher efficiency.

  17. N2O, NO, N2 and CO2 emissions from tropical savanna and grassland of northern Australia: an incubation experiment with intact soil cores

    Directory of Open Access Journals (Sweden)

    C. Werner

    2014-11-01

    Full Text Available Strong seasonal variability of hygric and thermal soil conditions are a defining environmental feature in northern Australia. However, how such changes affect the soil–atmosphere exchange of nitrous oxide (N2O, nitric oxide (NO and dinitrogen (N2 is still not well explored. By incubating intact soil cores from four sites (three savanna, one pasture under controlled soil temperatures (ST and soil moisture (SM we investigated the release of the trace gas fluxes of N2O, NO and carbon dioxide (CO2. Furthermore, the release of N2 due to denitrification was measured using the helium gas flow soil core technique. Under dry pre-incubation conditions NO and N2O emissions were very low (−2 h−1; 2O-N m−2 h−1 or in the case of N2O, even a net soil uptake was observed. Substantial NO (max: 306.5 μg N m−2 h−1 and relatively small N2O pulse emissions (max: 5.8 ± 5.0 μg N m−2 h−1 were recorded following soil wetting, but these pulses were short lived, lasting only up to 3 days. The total atmospheric loss of nitrogen was generally dominated by N2 emissions (82.4–99.3% of total N lost, although NO emissions contributed almost 43.2% to the total atmospheric nitrogen loss at 50% SM and 30 °C ST incubation settings (the contribution of N2 at these soil conditions was only 53.2%. N2O emissions were systematically higher for 3 of 12 sample locations, which indicates substantial spatial variability at site level, but on average soils acted as weak N2O sources or even sinks. By using a conservative upscale approach we estimate total annual emissions from savanna soils to average 0.12 kg N ha−1 yr−1 (N2O, 0.68 kg N ha−1 yr−1 (NO and 6.65 kg N ha−1 yr−1 (N2. The analysis of long-term SM and ST records makes it clear that extreme soil saturation that can lead to high N2O and N2 emissions only occurs a few days per year and thus has little impact on the annual total. The potential contribution of nitrogen released due to pulse events

  18. Atmospheric chemistry of dimethyl sulfide. Kinetics of the CH3SCH2O2 + NO2 reaction in the gas phase at 296 K

    DEFF Research Database (Denmark)

    Nielsen, O.J.; Sehested, J.; Wallington, T.J.

    1995-01-01

    The pulse radiolysis of SF6/CH3SCH3/O-2/NO2 gas mixtures was used to generate CH3SCH2O2 radicals in the presence of NO2. By monitoring the rate of NO2 decay using its absorption at 400 nm, rate constants for the reaction of CH3SCH2O2 radicals with NO2 were measured to be (9.2 +/- 0.9) x 10...

  19. Crystallization behavior of Li2O-SiO2, Na2O-SiO2 and Na2O-CaO-SiO2 glasses; Li2O-SiO2, Na2O-SiO2, Na2O-CaO-SiO2 kei glass no kessho sekishutsu kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, K.; Otake, J.; Nagasaka, T.; Hino, M. [Tohoku University, Sendai (Japan)

    1998-06-01

    It has been known that crystallization of mold powder is effective on the disturbance of heat transfer between mold and solidified shell in production of middle carbon steel slabs in continuous casting process. But it has not yet been made clear which composition of mold powder is the most suitable for crystallization. The crystallization behavior of Li2O-SiO2, Na2O-SiO2 and Na2O-CaO-SiO2 glasses was observed by differential thermal analysis (DTA) and hot-thermocouple methods with DTA in the present work. As a result, addition of alkaline metal and alkaline earth metal oxides to SiO2 increased the critical cooling rate for glass formation in binary system of Li2O-SiO2 and Na2O-SiO2 and Li2O-SiO2 system crystallized easier than Na2O-SiO2 system. In ternary system of Na2O-CaO-SiO2, addition of Na2O hurried the critical cooling rate at CaO/SiO2=0.93 mass ratio, but the rate was almost constant in the composition range of more than 15 mass% Na2O. The slag of CaO/SiO2=0.93 made the rate faster than the slag of CaO/SiO2=0.47 at constant content of 10mass% Na2O. 17 refs., 10 figs., 3 tabs.

  20. Fast detoxication of 2-chloro ethyl ethyl sulfide by p-type Ag_2O semiconductor nanoparticle-loaded Al_2O_3-based supports

    International Nuclear Information System (INIS)

    Ma, Meng-Wei; Kuo, Dong-Hau

    2016-01-01

    Highlights: • Detoxication of CWA surrogate of 2-chloro ethyl ethyl sulfide is investigated. • A small amount of Ag_2O on Al_2O_3-base support is sufficient to degrade 2-CEES. • Detoxication conversion >82% in 15 min is achieved for >2.5% Ag_2O/Na_2SiO_3/Al_2O_3. • Na_2SiO_3 modified Al_2O_3 to have the valley-like line pattern for depositing Ag_2O. • 2-CEES oxidation is initiated from the dominant electronic holes in p-type Ag_2O. - Abstract: p-type Ag_2O semiconductor nanoparticle-loaded Al_2O_3 or Na_2SiO_3/Al_2O_3 powders used for detoxicating the surrogate of sulfur mustard of 2-chloro ethyl ethyl sulfide (C_2H_5SCH_2CH_2Cl, 2-CEES) were investigated. Different amounts of Ag_2O and Na_2SiO_3 on catalyst supports were evaluated. Gas chromatography with a pulsed flame photometric detector (GC–PFPD) and gas chromatography coupled with a mass spectroscopy (GC–MS) were used to monitor and identify the catalytic reactions, together with reaction products analysis. The GC analyses showed that the decontamination of 2-CEES in isopropanol solvent for 15 min was above 82% efficiency for the 0.5% Na_2SiO_3/Al_2O_3 support deposited with a Ag_2O content above 2.5%. 2-(ethylthio)ethanol and 2-(ethylthio)ethanoic acid were identified as the major products after catalytic reactions. The electronic holes dominating in p-type Ag_2O is proposed to provide the key component and to initiate the catalytic reactions. The electronic hole-based detoxication mechanism is proposed.

  1. MAPLE deposition and characterization of SnO2 colloidal nanoparticle thin films

    International Nuclear Information System (INIS)

    Caricato, A P; Martino, M; Romano, F; Tunno, T; Valerini, D; Epifani, M; Rella, R; Taurino, A

    2009-01-01

    In this paper we report on the deposition and characterization of tin oxide (SnO 2 ) nanoparticle thin films. The films were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. SnO 2 colloidal nanoparticles with a trioctylphosphine capping layer were diluted in toluene with a concentration of 0.2 wt% and frozen at liquid nitrogen temperature. The frozen target was irradiated with a KrF (248 nm, τ = 20 ns) excimer laser (6000 pulses at 10 Hz). The nanoparticles were deposited on silica (SiO 2 ) and (1 0 0) Si substrates and submitted to morphological (high resolution scanning electron microscopy (SEM)), structural Fourier transform infrared spectroscopy (FTIR) and optical (UV-Vis transmission) characterizations. SEM and FTIR analyses showed that trioctylphosphine was the main component in the as-deposited films. The trioctylphosphine was removed after an annealing in vacuum at 400 0 C, thus allowing to get uniform SnO 2 nanoparticle films in which the starting nanoparticle dimensions were preserved. The energy gap value, determined by optical characterizations, was 4.2 eV, higher than the bulk SnO 2 energy gap (3.6 eV), due to quantum confinement effects.

  2. Pulse-based electron spin transient nutation measurement of BaTiO3 fine particle: Identification of controversial signal around g = 2.00

    Science.gov (United States)

    Sawai, Takatoshi; Yamaguchi, Yoji; Kitamura, Noriko; Date, Tomotsugu; Konishi, Shinya; Taga, Kazuya; Tanaka, Katsuhisa

    2018-05-01

    Two dimensional pulse-based electron spin transient nutation (2D-ESTN) spectroscopy is a powerful tool for determining the spin quantum number and has been applied to BaTiO3 fine powder in order to identify the origin of the continuous wave electron spin resonance (CW-ESR) signal around g = 2.00. The signal is frequently observed in BaTiO3 ceramics, and the correlation between the signal intensity and positive temperature coefficient of resistivity (PTCR) properties has been reported to date. The CW-ESR spectrum of BaTiO3 fine particles synthesized by the sol-gel method shows a typical asymmetric signal at g = 2.004. The 2D-ESTN measurements of the sample clearly reveal that the signal belongs to the S = 5/2 high spin state, indicating that the signal is not due to a point defect as suggested by a number of researchers but rather to a transition metal ion. Our elemental analysis, as well as previous studies, indicates that the origin of the g = 2.004 signal is due to the presence of an Fe3+ impurity. The D value (second-order fine structure parameter) reveals that the origin of the signal is an Fe3+ center with distant charge compensation. In addition, we show a peculiar temperature dependence of the CW-ESR spectrum, suggesting that the phase transition behavior of a BaTiO3 fine particle is quite different from that of a bulk single crystal. Our identification does not contradict a vacancy-mediated mechanism for PTCR. However, it is incorrect to use the signal at g = 2.00 as evidence to support the vacancy-mediated mechanism.

  3. Fabrication and electrical properties of metal-oxide semiconductor capacitors based on polycrystalline p-Cu{sub x}O and HfO{sub 2}/SiO{sub 2} high-{kappa} stack gate dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Zou Xiao [Department of Electronic Science and Technology, School of Physical Science and Technology, Wuhan University, Wuhan, 430074 (China); Department of Electromachine Engineering, Jianghan University, Wuhan, 430056 (China); Fang Guojia, E-mail: gjfang@whu.edu.c [Department of Electronic Science and Technology, School of Physical Science and Technology, Wuhan University, Wuhan, 430074 (China); Yuan Longyan; Liu Nishuang; Long Hao; Zhao Xingzhong [Department of Electronic Science and Technology, School of Physical Science and Technology, Wuhan University, Wuhan, 430074 (China)

    2010-05-31

    Polycrystalline p-type Cu{sub x}O films were deposited after the growth of HfO{sub 2} dielectric on Si substrate by pulsed laser deposition, and Cu{sub x}O metal-oxide-semiconductor (MOS) capacitors with HfO{sub 2}/SiO{sub 2} stack gate dielectric were primarily fabricated and investigated. X-ray diffraction and X-ray photoelectron spectroscopy were applied to analyze crystalline structure and Cu{sup +}/Cu{sup 2+} ratios of Cu{sub x}O films respectively. SiO{sub 2} interlayer formed between the high-{kappa} dielectric and substrate was estimated by the transmission electron microscope. Results of electrical characteristic measurement indicate that the permittivity of HfO{sub 2} is about 22, and the gate leakage current density of MOS capacitor with 11.3 nm HfO{sub 2}/SiO{sub 2} stack dielectrics is {approx} 10{sup -4} A/cm{sup 2}. Results also show that the annealing in N{sub 2} can improve the quality of Cu{sub x}O/HfO{sub 2} interface and thus reduce the gate leakage density.

  4. Effects of Partially Ionised Medical Oxygen, Especially with O2•−, in Vibration White Finger Patients

    Directory of Open Access Journals (Sweden)

    Slavomír Perečinský

    2014-05-01

    Full Text Available A major symptom of hand-arm vibration syndrome is a secondary Raynaud’s phenomenon—vibration white finger (VWF—which results from a vasospasm of the digital arteries caused by work with vibration devices leading to occupational disease. Pharmacotherapy of VWF is often ineffective or has adverse effects. The aim of this work was to verify the influence of inhalation of partially ionized oxygen (O2•− on peripheral blood vessels in the hands of patients with VWF. Ninety one (91patients with VWF underwent four-finger adsorption plethysmography, and the pulse wave amplitude was recorded expressed in numeric parameters—called the native record. Next, a cold water test was conducted following with second plethysmography. The patients were divided in to the three groups. First and second inhaled 20-min of ionized oxygen O2•− or oxygen O2 respectively. Thirth group was control without treatment. All three groups a follow-up third plethysmography—the post-therapy record. Changes in the pulse wave amplitudes were evaluated. Inpatients group inhaling O2•− a modest increase of pulse wave amplitude was observed compared to the native record; patients inhaling medical oxygen O2 and the control showed a undesirable decline of pulse wave amplitude in VWF fingers. Strong vasodilatation were more frequent in the group inhaling O2•− compare to O2 (p < 0.05. Peripheral vasodilatation achieved by inhalation of O2•− could be used for VWF treatment without undesirable side effect in hospital as well as at home environment.

  5. Repetitively pulsed, double discharge TEA CO/sub 2/ laser

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, D C; James, D J; Ramsden, S A

    1975-10-01

    The design and operation of a repetitively pulsed TEA CO/sub 2/ laser is described. Average powers of up to 400 W at a repetition frequency of 200 pulses/s have been obtained. The system has also been used to provide long pulses (over 20 ..mu..s) and tunable single axial mode pulses.

  6. Investigation of signal processing algorithms for an embedded microcontroller-based wearable pulse oximeter.

    Science.gov (United States)

    Johnston, W S; Mendelson, Y

    2006-01-01

    Despite steady progress in the miniaturization of pulse oximeters over the years, significant challenges remain since advanced signal processing must be implemented efficiently in real-time by a relatively small size wearable device. The goal of this study was to investigate several potential digital signal processing algorithms for computing arterial oxygen saturation (SpO(2)) and heart rate (HR) in a battery-operated wearable reflectance pulse oximeter that is being developed in our laboratory for use by medics and first responders in the field. We found that a differential measurement approach, combined with a low-pass filter (LPF), yielded the most suitable signal processing technique for estimating SpO(2), while a signal derivative approach produced the most accurate HR measurements.

  7. Pulsed Power Production of Ozone in 02/N2 iin a Coaxial Reactor without Dielectric Layer

    OpenAIRE

    Samaranayake, W. J. M.; Miyahara, Y.; Namihira, T.; Katsuki, S.; Hackam, R.; Akiyama, H.; ミヤハラ, Y.; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 浪平, 隆男; 勝木, 淳; 秋山, 秀典

    2001-01-01

    Very short duration pulsed streamer discharges have been used to produce ozone in a gas mixture of nitrogen and oxygen at atmospheric pressure. The ratio of nitrogen to oxygen in the mixture was varied in the range from 2.5/0.5 to 0.5/2.5, while maintaining a total flow rate of 3 l/min. The production of ozone was found to be higher for a specific mixture ratio of N2/O2 than that in oxygen or in dry air. The production of ozone in O2 was higher than that in dry air. The production yield of oz...

  8. Rapid, controllable, one-pot and room-temperature aqueous synthesis of ZnO:Cu nanoparticles by pulsed UV laser and its application for photocatalytic degradation of methyl orange.

    Science.gov (United States)

    Arabi, Mozhgan; Baizaee, Seyyed Mahdy; Bahador, Alireza; Otaqsara, Seyed Mohammad Taheri

    2018-05-01

    Zinc oxide (ZnO) and ZnO:Cu nanoparticles (NPs) were synthesized using a rapid, controllable, one-pot and room-temperature pulsed UV-laser assisted method. UV-laser irradiation was used as an effective energy source in order to gain better control over the NPs size and morphology in aqueous media. Parameters effective in laser assisted synthesis of NPs such as irradiation time and laser shot repetition rate were optimized. Photoluminescence (PL) spectra of ZnO NPs showed a broad emission with two trap state peaks located at 442 and 485 nm related to electronic transition from zinc interstitial level (I Zn ) to zinc vacancy level (V Zn ) and electronic transition from conduction band to the oxygen vacancy level (V O ), respectively. For ZnO:Cu NPs, trap state emissions disappeared completely and a copper (Cu)-related emission appeared. PL intensity of Cu-related emission increased with the increase in concentration of Cu 2+ , so that for molar ratio of Cu:Zn 2%, optimal value of PL intensity was obtained. The photocatalytic activity of Cu-doped ZnO revealed 50 and 100% increasement than that of undoped NPs under UV and visible irradiation, respectively. The enhanced photocatalytic activity could be attributed to smaller crystal size, as well as creation of impurity acceptor levels (T 2 ) inside the ZnO energy band gap. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Pulsed electric field improves the bioprotective capacity of purées for different coloured carrot cultivars against H2O2-induced oxidative damage.

    Science.gov (United States)

    Leong, Sze Ying; Oey, Indrawati; Burritt, David John

    2016-04-01

    This research aimed to study the effect of pulsed electric field (PEF) processing on the bioprotective capacity of carrot purée for White Belgian, Yellow Solar, Nantes, Nutri Red and Purple Haze cultivars against H2O2-induced oxidative damage. The bioprotective capacity was determined using cell viability, membrane integrity and nitric oxide (NO) production in a human Caco-2 cell culture assay. Total carotenoids, total anthocyanins, total vitamin C and total phenolics were also evaluated. Compared to the untreated purée, Purple Haze and Nutri Red processed at 303 kJ/kg completely increased Caco-2 cells resistance towards oxidative damage by recovering the cell viability and inhibiting NO production. For cultivar with low carotenoid levels, i.e. Yellow Solar, the application of 0.8 kV/cm resulted in a higher total carotenoid content in the purée than its untreated counterpart, leading to an improved bioprotective effect. This study clearly shows that PEF could add value to carrots by maximising bioprotective effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Na-ion dynamics in Quasi-1D compound NaV2O4

    International Nuclear Information System (INIS)

    Månsson, M; Umegaki, I; Nozaki, H; Higuchi, Y; Sugiyama, J; Kawasaki, I; Watanabe, I; Sakurai, H

    2014-01-01

    We have used the pulsed muon source at ISIS to study high-temperature Na-ion dynamics in the quasi-one-dimensional (Q1D) metallic antiferromagnet NaV 2 O 4 . By performing systematic zero-field and longitudinal-field measurements as a function of temperature we clearly distinguish that the hopping rate increases exponentially above T diff ≈ 250 K. The data is well fitted to an Arrhenius type equation typical for a diffusion process, showing that the Na-ions starts to be mobile above T diff . Such results make this compound very interesting for the tuning of Q1D magnetism using atomic-scale ion-texturing through the periodic potential from ordered Na-vacancies. Further, it also opens the door to possible use of NaV 2 O 4 and related compounds in energy related applications

  11. Stabilization of stoichiometric LaTiO{sub 3} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Matthias; Scheiderer, Philipp; Goessmann, Alex; Sing, Michael; Claessen, Ralph [Universitaet Wuerzburg, Physikalisches Institut and Roentgen Center for Complex Material Systems (RCCM), 97074 Wuerzburg (Germany)

    2016-07-01

    Like in the famous oxide heterostructure LaAlO{sub 3}/SrTiO{sub 3} (LAO/STO) a two dimensional electron system is found at the interface between the strongly correlated Mott insulator LaTi{sup 3+}O{sub 3} and the band insulator STO. In contrast to LAO, the stabilization of LaTi{sup 3+}O{sub 3} requires strong reducing growth conditions since the thermodynamically stable bulk phase is the oxygen-rich La{sub 2}Ti{sup 4+}{sub 2}O{sub 7}. Therefore, we have systematically studied the impact of oxidizing and reducing background atmospheres and the influence of the substrate on LaTi{sup 3+}O{sub 3} thin film growth by pulsed laser deposition. In situ x-ray photoelectron spectroscopy of the films prepared on STO exhibit overoxidation probably due to oxygen out-diffusion from the STO substrate, which is reduced for growth on DyScO{sub 3} due to the lower oxygen mobility. In addition, we found that a LAO capping layer of a few unit cells thickness acting like a diffusion barrier for oxygen prevents the LTO film from overoxidation during storage in air.

  12. Thermomechanical and Photophysical Properties of Crystal-Violet-Dye/H2O Based Dissolutions via the Pulsed Laser Photoacoustic Technique

    Directory of Open Access Journals (Sweden)

    Vicente Torres-Zúñiga

    2014-01-01

    Full Text Available Different thermoelastic parameters, for example, the acoustic attenuation and the speed of sound, are fundamental for instrumental calibration and quantitative characterization of organic-based dissolutions. In this work, these parameters as functions of the concentration of an organic dye (crystal-violet: CV in distillated water (H2O based dissolutions are investigated. The speed of sound was measured by the pulsed-laser photoacoustic technique (PLPA, which consists in the generation of acoustic-waves by the optical absorption of pulsed light in a given material (in this case a liquid sample. The thermally generated sound-waves traveling through a fluid are detected with two piezoelectric sensors separated by a known distance. An appropriate processing of the photoacoustic signals allows an adequate data analysis of the generated waves within the system, providing an accurate determination of the speed of sound as function of the dye-concentration. The acoustic attenuation was calculated based on the distance of the two PZT-microphones to an acoustic-source point and performing linear-fitting of the experimental data (RMS-amplitudes as function of the dye-concentration. An important advantage of the PLPA-method is that it can be implemented with poor or null optical transmitting materials permitting the characterization of the mechanical and concentration/aggregate properties of dissolved organic compounds.

  13. Effects of oxygen partial pressure on the ferroelectric properties of pulsed laser deposited Ba0.8Sr0.2TiO3 thin films

    Science.gov (United States)

    Silva, J. P. B.; Sekhar, K. C.; Almeida, A.; Agostinho Moreira, J.; Pereira, M.; Gomes, M. J. M.

    2013-11-01

    The Ba0.8Sr0.2TiO3 thin films were grown on the Pt-Si substrate at 700 °C by using a pulsed laser deposition technique at different oxygen partial pressure (PO2) in the range of 1-20 Pa and their properties were investigated. It is observed that the PO2 during the deposition plays an important role on the tetragonal distortion ratio, surface morphology, dielectric permittivity, ferroelectric polarization, switching response, and leakage currents of the films. With an increase in PO2, the in-plane strain for the BST films changes from tensile to compressive. The films grown at 7.5 Pa show the optimum dielectric and ferroelectric properties and also exhibit the good polarization stability. It is assumed that a reasonable compressive strain, increasing the ionic displacement, and thus promotes the in-plane polarization in the field direction, could improve the dielectric permittivity. The butterfly features of the capacitance-voltage ( C- V) characteristics and the bell shape curve in polarization current were attributed to the domain reversal process. The effect of pulse amplitude on the polarization reversal behavior of the BST films grown at PO2 of 7.5 Pa was studied. The peak value of the polarization current shows exponential dependence on the electric field.

  14. Al{sub 2}O{sub 3} reinforced nanoparticle ZrO{sub 2} (3at%?Y{sub 2}O{sub 3}); Al{sub 2}O{sub 3} reforcado com nanoparticulas de ZrO{sub 2}(3%mol Y{sub 2}O{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Cossu, C.M.F.A.; Alves, M.F.R.P.; Campos, L.Q.B.; Magnago, R.O.; Santos, C., E-mail: caio.cossu@usp.br [Universidade do Estado do Rio de Janeiro (UERJ), Resende, RJ (Brazil). Faculdade de Tecnologia; Simba, B.G. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil). Faculdade de Engenharia

    2016-07-01

    This work developed a composite Al{sub 2}O{sub 3}-based reinforced with nanoparticles of ZrO{sub 2} (Y{sub 2}O{sub 3}), to evaluate the effect of the content of ZrO{sub 2} nanoparticles (Y{sub 2}O{sub 3}) on the mechanical properties. Mixtures containing a matrix of Al{sub 2}O{sub 3} with fractions in weight of 3%, 5%, 10% and 15%, ZrO{sub 2} (Y{sub 2}O{sub 3}), and were mixed in mortar mill. Mixtures received 5% polymeric binder (PVA); and after adding the binder, the material was pressed uniaxially to 50MPa, and then sintered at a temperature of 1600 ° C - 2h. The sintered products were characterized by X-ray diffraction, scanning electron microscopy (SEM), relative density, hardness and fracture toughness. The results of X-ray diffraction showed that Al{sub 2}O{sub 3} and tetragonal ZrO{sub 2} as crystal phases found after sintering. Furthermore, the relative green density of 55% was predominant in the compact; and after sintering, varied depending on the ZrO{sub 2} content, reaching 97% in sintered compositions with 3% ZrO{sub 2} nanoparticles (Y{sub 2O}3). The hardness of the samples showed values of 1670HV and the maximum toughness of 3.2 MPa × m{sup 1/2}, directly influenced by the presence of nanoparticles ZrO{sub 2} uniformly dispersed in the matrix Al{sub 2}O{sub 3}, which results in at least two main mechanisms tenacifiers: transformation of tetragonal-monoclinic phase of zirconia, and compressive residual strain between the two phases present, Al{sub 2}O{sub 3} and tetragonal ZrO{sub 2}. (author)

  15. Stress relaxation of La1/2Sr1/2MnO3 and La2/3Ca1/3MnO3 at solid oxide fuel cell interfaces

    International Nuclear Information System (INIS)

    Lussier, A.; Dvorak, J.; Stadler, S.; Holroyd, J.; Liberati, M.; Arenholz, E.; Ogale, S.B.; Wu, T.; Venkatesan, T.; Idzerda, Y.U.

    2008-01-01

    Interfacial stress is thought to have significant effects on electrical and oxygen transport properties in thin films of importance in solid oxide fuel cell applications. We investigate how in-plane biaxial stress modifies the electronic structure of La 2/3 Ca 1/3 MnO 3 and La 1/2 Sr 1/2 MnO 3 thin films prepared by pulsed laser deposition on three different substrates to vary the in-plane stress from tensile to compressive. The electronic structure was probed by X-ray absorption spectroscopy of the Mn L 2,3 -edge to characterize the interfacial disruption in this region in an element-specific, site-specific manner. The compressive or tensile interfacial strain modifies the relative concentrations of La and Sr in the interfacial region in order to achieve a better lattice match to the contact material. This atomic migration generates an interfacial region dominated by a compound with a single valency for the transition metal ion, resulting in a severe barrier to oxygen and electron transport through this region

  16. A Novel Triple-Pulsed 2-micrometer Lidar for Simultaneous and Independent CO2 and H2O Column Measurement

    Science.gov (United States)

    Yu, Jirong; Singh, Upendra; Petros, Mulugeta; Refaat, Tamer

    2015-01-01

    The study of global warming needs precisely and accurately measuring greenhouse gases concentrations in the atmosphere. CO2 and H2O are important greenhouse gases that significantly contribute to the carbon cycle and global radiation budget on Earth. NRC Decadal Survey recommends a mission for Active Sensing of Carbon Dioxide (CO2) over Nights, Days and Seasons (ASCENDS). 2 micron laser is a viable IPDA transmitter to measure CO2 and H2O column density from space. The objective is to demonstrate a first airborne direct detection 2 micron IPDA lidar for CO2 and H2O measurements.

  17. A pulse radiolysis based singlet oxygen luminescence facility

    International Nuclear Information System (INIS)

    Gorman, A.A.; Hamblett, I.; Land, E.J.

    1989-01-01

    In this paper the authors report the first successful time-resolved detection of singlet oxygen, O 2 ( 1 Δ g ), luminescence using the pulse radiolysis technique. The use of this technique (a) to produce high concentrations of solute (S) triplet states in aerated benzene (B) via a combination of channels 1-4 and (b) to subsequently form O 2 ( 1 Δ g ) via channel 5 has already been described. The method complements direct pulsed laser excitation of S in that formation of 3 S*, and therefore of O 2 ( 1 Δ g ), is still efficient in those instances where intersystem crossing (channel 4) is unimportant. In the latter situation a laser-based experiment would require an additional light-absorbing sensitizer which could subsequently transfer triplet energy to high concentrations of S. Such experiments, certainly of a quantitative nature, are usually doomed to failure because of competitive light absorption problems. No such problems exist with pulse radiolysis, and the high available triplet energy of 3 B* (84 kcal mol -1 ) ensures that virtually any solute of interest, in the O 2 ( 1 Δ g ) context, will be efficiently promoted to its triplet state

  18. Accuracy of carboxyhemoglobin detection by pulse CO-oximetry during hypoxemia.

    Science.gov (United States)

    Feiner, John R; Rollins, Mark D; Sall, Jeffrey W; Eilers, Helge; Au, Paul; Bickler, Philip E

    2013-10-01

    Carbon monoxide poisoning is a significant problem in most countries, and a reliable method of quick diagnosis would greatly improve patient care. Until the recent introduction of a multiwavelength "pulse CO-oximeter" (Masimo Rainbow SET(®) Radical-7), obtaining carboxyhemoglobin (COHb) levels in blood required blood sampling and laboratory analysis. In this study, we sought to determine whether hypoxemia, which can accompany carbon monoxide poisoning, interferes with the accurate detection of COHb. Twelve healthy, nonsmoking, adult volunteers were fitted with 2 standard pulse-oximeter finger probes and 2 Rainbow probes for COHb detection. A radial arterial catheter was placed for blood sampling during 3 interventions: (1) increasing hypoxemia in incremental steps with arterial oxygen saturations (SaO2) of 100% to 80%; (2) normoxia with incremental increases in %COHb to 12%; and (3) elevated COHb combined with hypoxemia with SaO2 of 100% to 80%. Pulse-oximeter (SpCO) readings were compared with simultaneous arterial blood values at the various increments of hypoxemia and carboxyhemoglobinemia (≈25 samples per subject). Pulse CO-oximeter performance was analyzed by calculating the mean bias (SpCO - %COHb), standard deviation of the bias (precision), and the root-mean-square error (A(rms)). The Radical-7 accurately detected hypoxemia with both normal and elevated levels of COHb (bias mean ± SD: 0.44% ± 1.69% at %COHb <4%, and -0.29% ± 1.64% at %COHb ≥4%, P < 0.0001, and A(rms) 1.74% vs 1.67%). COHb was accurately detected during normoxia and moderate hypoxia (bias mean ± SD: -0.98 ± 2.6 at SaO2 ≥95%, and -0.7 ± 4.0 at SaO2 <95%, P = 0.60, and A(rms) 2.8% vs 4.0%), but when SaO2 decreased below approximately 85%, the pulse CO-oximeter always gave low signal quality errors and did not report SpCO values. In healthy volunteers, the Radical-7 pulse CO-oximeter accurately detects hypoxemia with both low and elevated COHb levels, and accurately detects COHb

  19. Refractories in the Al2O3-ZrO2-SiO2 system

    International Nuclear Information System (INIS)

    Banerjee, S.P.; Bhadra, A.K.; Sircar, N.R.

    1978-01-01

    The effect of addition of ZrO 2 in different proportions in the refractories of the Al 2 O 3 -SiO 2 system was studied. The investigation was confined to two broad ranges of compositions incorporating zirconia (15-30 percent and 80-85 percent) in the Al 2 O 3 -ZrO 2 -SiO 2 system. The overall attainment of properties is dependent upon the mode of fabrication and firing, and bears a relationship with the phase assemblages and the relative proportion thereof. Of the different characteristics, the trend of dissociation of zircon has been found to be specially significant vis-a-vis the temperature of firing and thermal shock resistance. Reassociation of the dissociated products has been ascribed to bring forth improved resistance to thermal spalling. The different products developed during this investigation are considered to be very promising which find useful applications in view of the properties attained by them. (auth.)

  20. Electromagnetically induced transparency and retrieval of light pulses in a Λ-type and a V-type level scheme in Pr3+:Y2SiO5

    International Nuclear Information System (INIS)

    Beil, Fabian; Klein, Jens; Halfmann, Thomas; Nikoghosyan, Gor

    2008-01-01

    We examine electromagnetically induced transparency (EIT), the optical preparation of persistent nuclear spin coherences and the retrieval of light pulses both in a Λ-type and a V-type coupling scheme in a Pr 3+ :Y 2 SiO 5 crystal, cooled to cryogenic temperatures. The medium is prepared by optical pumping and spectral hole burning, creating a spectrally isolated Λ-type and a V-type system within the inhomogeneous bandwidth of the 3 H 4 ↔ 1 D 2 transition of the Pr 3+ ions. By EIT, in the Λ-type scheme we drive a nuclear spin coherence between the ground-state hyperfine levels, while in the V-type scheme we drive a coherence between the excited-state hyperfine levels. We observe the cancellation of absorption due to EIT and the retrieval of light pulses in both level schemes. This also permits the determination of dephasing times of the nuclear spin coherence, either in the ground state or the optically excited state

  1. Synthesis of Zr2WP2O12/ZrO2 Composites with Adjustable Thermal Expansion

    Directory of Open Access Journals (Sweden)

    Zhiping Zhang

    2017-11-01

    Full Text Available Zr2WP2O12/ZrO2 composites were fabricated by solid state reaction with the goal of tailoring the thermal expansion coefficient. XRD, SEM and TMA were used to investigate the composition, microstructure, and thermal expansion behavior of Zr2WP2O12/ZrO2 composites with different mass ratio. Relative densities of all the resulting Zr2WP2O12/ZrO2 samples were also tested by Archimedes' methods. The obtained Zr2WP2O12/ZrO2 composites were comprised of orthorhombic Zr2WP2O12 and monoclinic ZrO2. As the increase of the Zr2WP2O12, the relative densities of Zr2WP2O12/ZrO2 ceramic composites increased gradually. The coefficient of thermal expansion of the Zr2WP2O12/ZrO2 composites can be tailored from 4.1 × 10−6 K−1 to −3.3 × 10−6 K−1 by changing the content of Zr2WP2O12. The 2:1 Zr2WP2O12/ZrO2 specimen shows close to zero thermal expansion from 25 to 700°C with an average linear thermal expansion coefficient of −0.09 × 10−6 K−1. These adjustable and near zero expansion ceramic composites will have great potential application in many fields.

  2. Synthesis of Zr2WP2O12/ZrO2 Composites with Adjustable Thermal Expansion.

    Science.gov (United States)

    Zhang, Zhiping; Sun, Weikang; Liu, Hongfei; Xie, Guanhua; Chen, Xiaobing; Zeng, Xianghua

    2017-01-01

    Zr 2 WP 2 O 12 /ZrO 2 composites were fabricated by solid state reaction with the goal of tailoring the thermal expansion coefficient. XRD, SEM and TMA were used to investigate the composition, microstructure, and thermal expansion behavior of Zr 2 WP 2 O 12 /ZrO 2 composites with different mass ratio. Relative densities of all the resulting Zr 2 WP 2 O 12 /ZrO 2 samples were also tested by Archimedes' methods. The obtained Zr 2 WP 2 O 12 /ZrO 2 composites were comprised of orthorhombic Zr 2 WP 2 O 12 and monoclinic ZrO 2 . As the increase of the Zr 2 WP 2 O 12 , the relative densities of Zr 2 WP 2 O 12 /ZrO 2 ceramic composites increased gradually. The coefficient of thermal expansion of the Zr 2 WP 2 O 12 /ZrO 2 composites can be tailored from 4.1 × 10 -6 K -1 to -3.3 × 10 -6 K -1 by changing the content of Zr 2 WP 2 O 12 . The 2:1 Zr 2 WP 2 O 12 /ZrO 2 specimen shows close to zero thermal expansion from 25 to 700°C with an average linear thermal expansion coefficient of -0.09 × 10 -6 K -1 . These adjustable and near zero expansion ceramic composites will have great potential application in many fields.

  3. State-of-the-art flux pinning in YBa2Cu3O7-δ by the creation of highly linear, segmented nanorods of Ba2(Y /Gd)(Nb/Ta)O6 together with nanoparticles of (Y /Gd)2O3 and (Y /Gd)Ba2Cu4O8

    International Nuclear Information System (INIS)

    Ercolano, G; Bianchetti, M; Wimbush, S C; Harrington, S A; MacManus-Driscoll, J L; Wang, H; Lee, J H

    2011-01-01

    Self-assembled, segmented nanorods of c-axis-aligned Ba 2 (Y /Gd)(Nb/Ta)O 6 as well as randomly distributed nanoparticles of (Y /Gd) 2 O 3 and (Y /Gd)Ba 2 Cu 4 O 8 were grown into YBa 2 Cu 3 O 7-δ (YBCO) thin films by pulsed-laser deposition. The complex pinning landscape proves to be extremely effective, particularly at higher fields where the segmented vortices yield a plateau in critical current density (J c ) with field angle around 60 0 . In 0.3 μm thick films, the J c values are higher than 1 MA cm -2 at 2.5 T (H||c axis). Owing to the combined interactions of the vortices with the different pinning centres, interesting new features are observed at high fields in the angular dependence of J c .

  4. Phenol degradation by TiO2 photocatalysts combined with different pulsed discharge systems.

    Science.gov (United States)

    Zhang, Yi; Lu, Jiani; Wang, Xiaoping; Xin, Qing; Cong, Yanqing; Wang, Qi; Li, Chunjuan

    2013-11-01

    Films of TiO2 nanotubes distributed over the inner surface of a discharge reactor cylinder (CTD) or adhered to a stainless steel electrode surface (PTD) in a discharge reactor were compared with a single-discharge (SD) system to investigate their efficiencies in phenol degradation. Morphology studies indicated that the TiO2 film was destroyed in the PTD system, but that there was no change in the CTD system after discharge. X-ray diffraction results revealed that the anatase phase of the original sample was preserved in the CTD system, but that an anatase-to-rutile phase transformation occurred in the PTD system after discharge. The highest efficiencies of phenol degradation and total organic carbon (TOC) mineralization were observed in the CTD system, and there was no decrease in phenol degradation efficiency upon reuse of a TiO2 film, indicating high catalysis activity and stability of the TiO2 photocatalysts in the combined treatment. TiO2 photocatalysts favored the formation of hydrogen peroxide and disfavored the formation of ozone. A greater degree of oxidation of intermediates and higher energy efficiency in phenol oxidation were observed with the TiO2-plasma systems, especially in the CTD system, compared to those with the SD system. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Control of giant pulse duration in neodymium mini lasers with controllable cavity length and pulsed pumping

    International Nuclear Information System (INIS)

    Berenberg, Vladimir A.; Cervantes, Miguel A.; Terpugov, Vladimir S.

    2006-01-01

    In a solid-state laser incident on aLiNdP4O12 crystal, pumped by a short light pulse, giant pulse oscillation without the use of resonator Q switching is realized. Tuning of the oscillation pulse duration from 2 up to 20 ns is achieved by changing the cavity length from 24 to 3 mm, respectively. Our analysis of this mode of laser radiation is made on the basis of the rate equations. The factors influencing oscillation pulse duration a reinvestigated. It is shown that in a limiting case the minimal value of the pulse duration is limited by only the rate of excitation transfer from the pumping band to the metastable level

  6. Pulsed laser deposition of epitaxial YBa{sub 2}Cu{sub 3}O{sub 7-y}/oxide multilayers onto textured NiFe substrates for coated conductor applications

    Energy Technology Data Exchange (ETDEWEB)

    Tomov, R I [Department of Materials Science and IRC in Superconductivity, University of Cambridge, Cambridge (United Kingdom); Kursumovic, A; Kang, D -J; Glowacki, B A; Evetts, J E [Department of Materials Science and IRC in Superconductivity, University of Cambridge, Cambridge (United Kingdom); Majoros, M [IRC in Superconductivity, University of Cambridge, Cambridge (United Kingdom)

    2002-04-01

    Pulsed laser depositions of double-buffer and triple-buffer YBa{sub 2}Cu{sub 3}O{sub 7-y} (YBCO)/Y{sub 2}O{sub 3}(YSZ)/CeO{sub 2} heterostructures have been performed in situ onto commercially available biaxially textured NiFe 50%/50% tape. The deposition in the forming gas (4% H{sub 2}/Ar) from a CeO{sub 2} target and the deposition in vacuum from a CeO{sub 2}:Pd composite target have been explored as two possible routes for cube-on-cube growth of the first buffer layer. The influence of the critical processing parameters on the texture is investigated and some of the issues involved in the reduction of NiO (111) and the formation of cube-on-cube NiO (200) growth are discussed. X-ray diffraction has been used for texture evaluation of the substrate and subsequent deposited layers. The substrate-buffer interface region has been studied by focused ion beam cross section electron microscopy. Both the buffers and YBCO layers show biaxial alignment with {omega} and {phi} scans having optimum YBCO full width at half maximum (FWHM) values of 4.3 deg. and 8.8 deg., respectively. The morphology has been characterized using atomic force microscopy and scanning electron microscopy. The value of T{sub c} (onset) has been measured at 90 K ({delta}T{sub c}=10 K). The critical current density, J{sub c}, has been measured by transport measurements and magnetic measurements performed in a dc SQUID magnetometer. (author)

  7. Chirped pulse amplification: Present and future

    International Nuclear Information System (INIS)

    Maine, P.; Strickland, D.; Pessot, M.; Squier, J.; Bado, P.; Mourou, G.; Harter, D.

    1988-01-01

    Short pulses with ultrahigh peak powers have been generated in Nd: glass and Alexandrite using the Chirped Pulse Amplification (CPA) technique. This technique has been successful in producing picosecond terawatt pulses with a table-top laser system. In the near future, CPA will be applied to large laser systems such as NOVA to produce petawatt pulses (1 kJ in a 1 ps pulse) with focused intensities exceeding 10/sup /plus/21/ W/cm 2 . These pulses will be associated with electric fields in excess of 100 e/a/sub o/ 2 and blackbody energy densities equivalent to 3 /times/ 10 10 J/cm 3 . This petawatt source will have important applications in x-ray laser research and will lead to fundamentally new experiments in atomic, nuclear, solid-state, plasma, and high-energy density physics. A review of present and future designs are discussed. 17 refs., 5 figs

  8. IR emission and electrical conductivity of Nd/Nb-codoped TiO{sub x} (1.5 < x < 2) thin films grown by pulsed-laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tchiffo-Tameko, C.; Cachoncinlle, C. [GREMI, UMR 7344 CNRS-Université Orléans, 45067 Orléans Cedex 2 (France); Perriere, J. [Sorbonne Universités, UPMC Université Paris 06, UMR 7588, INSP, 75005 Paris (France); CNRS, UMR 7588, INSP, 75005 Paris (France); Nistor, M. [NILPRP, L 22 P.O. Box MG-36, 77125 Bucharest-Magurele (Romania); Petit, A.; Aubry, O. [GREMI, UMR 7344 CNRS-Université Orléans, 45067 Orléans Cedex 2 (France); Pérez Casero, R. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Millon, E., E-mail: eric.millon@univ-orleans.fr [GREMI, UMR 7344 CNRS-Université Orléans, 45067 Orléans Cedex 2 (France)

    2016-12-15

    Highlights: • Nd/Nb-codoped TiO{sub 2} PLD films are electrically insulating and transparent in the UV visible NIR spectral domain. • Nd/Nb-codoped oxygen deficient TiO{sub x} (x ≈ 1.5) films are conductive and absorbent. • IR emission of Nd{sup 3+} in codoped TiO{sub x} films is quenched due to oxygen deficiency. • High Nb-doping rate decreases the IR emission of Nd{sup 3+} in Nd/Nb-codoped TiO{sub 2} films. - Abstract: The effect of the co-doping with Nd and Nb on electrical and optical properties of TiO{sub x} films is reported. The role of oxygen vacancies on the physical properties is also evidenced. The films are grown by pulsed-laser deposition onto (001) sapphire and (100) silicon substrates. The substrate temperature was fixed at 700 °C. To obtain either stoichiometric (TiO{sub 2}) or highly oxygen deficient (TiO{sub x} with x < 1.6) thin films, the oxygen partial pressure was adjusted at 10{sup −1} and 10{sup −6} mbar, respectively. 1%Nd-1%Nb, 1%Nd-5%Nb and 5%Nd-1%Nb co-doped TiO{sub 2} were used as bulk ceramic target. Composition, structural and morphological properties of films determined by Rutherford backscattering spectroscopy, X-ray diffraction and scanning electron microscopy, are correlated to their optical (UV–vis transmission and photoluminescence) and electrical properties (resistivity at room temperature). The most intense Nd{sup 3+} emission in the IR domain is obtained for stoichiometric films. Codoping Nd-TiO{sub x} films by Nb{sup 5+} ions is found to decrease the photoluminescence efficiency. The oxygen pressure during the growth allows to tune the optical and electrical properties: insulating and highly transparent (80% in the visible range) Nd/Nb codoped TiO{sub 2} films are obtained at high oxygen pressure, while conductive and absorbent films are grown under low oxygen pressure (10{sup −6} mbar).

  9. Espumas vítreas do sistema Li2O-ZrO2-SiO2-Al2O 3 produzidas pelo processo gelcasting Li2O-ZrO2-SiO2 -Al2O3 glass-ceramic foams produced by the gelcasting process

    Directory of Open Access Journals (Sweden)

    E. de Sousa

    2009-06-01

    Full Text Available Espumas vítreas do sistema Li2O-ZrO2-SiO2-Al2O 3 (LZSA foram produzidas pelo processo gelcasting, associado à aeração de suspensões cerâmicas, sem controle atmosférico. Por meio da adição de diferentes concentrações de agente espumante (Fongraminox foi possível obter espumas vítreas com densidade relativa variando entre uma estreita faixa (0,10-0,15. As espumas vítreas apresentaram resistência à compressão de 2,5-3,7 MPa, que correspondem a porosidade entre 85 e 89% e macroestrutra com poros aproximadamente esféricos e interconectados. Tais características tornam esses materiais atraentes para as seguintes aplicações tecnológicas: filtros para metais fundidos e gases quentes e, suportes catalíticos.Vitreous foams in the Li2O-ZrO2-SiO2-Al2O 3 (LZSA system were produced by the gelcasting process with aeration of ceramic suspensions and without atmospheric control. By the addition of different concentrations of foaming agent (Fongraminox it was possible to attain glass-ceramic foams in a narrow range of relative density (0.10-0.15. The glass-ceramic foams showed compressive strength of 2.5-3.7 MPa, which corresponds to porosity between 85-89%, and macrostructure with pores nearly spherical and interconnected, these characteristics make these materials attractive for the following applications technology: filters of molten metals and hot gas, and catalytic support.

  10. Alleviation of drought stress by mycorrhizas is related to increased root H2O2 efflux in trifoliate orange.

    Science.gov (United States)

    Huang, Yong-Ming; Zou, Ying-Ning; Wu, Qiang-Sheng

    2017-02-08

    The Non-invasive Micro-test Technique (NMT) is used to measure dynamic changes of specific ions/molecules non-invasively, but information about hydrogen peroxide (H 2 O 2 ) fluxes in different classes of roots by mycorrhiza is scarce in terms of NMT. Effects of Funneliformis mosseae on plant growth, H 2 O 2 , superoxide radical (O 2 ·- ), malondialdehyde (MDA) concentrations, and H 2 O 2 fluxes in the taproot (TR) and lateral roots (LRs) of trifoliate orange seedlings under well-watered (WW) and drought stress (DS) conditions were studied. DS strongly inhibited mycorrhizal colonization in the TR and LRs, whereas mycorrhizal inoculation significantly promoted plant growth and biomass production. H 2 O 2 , O 2 ·- , and MDA concentrations in leaves and roots were dramatically lower in mycorrhizal seedlings than in non-mycorrhizal seedlings under DS. Compared with non-mycorrhizal seedlings, mycorrhizal seedlings had relatively higher net root H 2 O 2 effluxes in the TR and LRs especially under WW, as well as significantly higher total root H 2 O 2 effluxes in the TR and LRs under WW and DS. Total root H 2 O 2 effluxes were significantly positively correlated with root colonization but negatively with root H 2 O 2 and MDA concentrations. It suggested that mycorrhizas induces more H 2 O 2 effluxes of the TR and LRs, thus, alleviating oxidative damage of DS in the host plant.

  11. Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects

    International Nuclear Information System (INIS)

    Papernov, S.; Schmid, A.W.

    2005-01-01

    Atomic force microscopy was employed to investigate the morphology of ultraviolet nanosecond-pulsed-laser damage in SiO 2 thin films. Gold nanoparticles, 18.5-nm diameter, embedded in the film were used as calibrated absorbing defects. Damage-crater diameter, depth, and cross-sectional profiles were measured as a function of laser fluence and the lodging depth of gold nanoparticles. The results indicate that, at laser fluences close to the crater-formation threshold and for lodging depths of a few particle diameters, the dominating regime of the material removal is melting and evaporation. The morphology of craters initiated by deep absorbing defects, with a lodging depth larger than ∼10 particle diameters, clearly points to a two-stage material-removal mechanism. The process starts with the material melting within the narrow channel volume and, upon temperature and pressure buildup, film fracture takes place. Crater-diameter variation with lodging depth and laser fluence is compared with theoretical predictions

  12. Sims Characterisation of ZnO Layer Prepared By Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Andrej Vincze

    2005-01-01

    Full Text Available New material development requires new technologies to create and prepare basic material for semiconductor industry and device applications. Materials have given properties, which exhibit particulary small tolerances. One of the most important and promising material is recently ZnO. ZnO has specific properties for near UV emission and absorption optical devices. The pulsed laser deposition (PLD is one of the methods to prepare this type of material. The aim of this paper is to compare properties of ZnO layers deposited from pure Zn target in oxygen atmosphere and the analysis of their surface properties by secondary ion mass spectroscopy (SIMS, atomic force microscopy (AFM and scanning electron microscopy (SEM.

  13. Crystalline nanostructured Cu doped ZnO thin films grown at room temperature by pulsed laser deposition technique and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Drmosh, Qasem A. [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Rao, Saleem G.; Yamani, Zain H. [Laser Research Group, Department of Physics, Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gondal, Mohammed A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Department of Physics, Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2013-04-01

    We report structural and optical properties of Cu doped ZnO (ZnO:Cu) thin films deposited on glass substrate at room temperature by pulsed laser deposition (PLD) method without pre and post annealing contrary to all previous reports. For preparation of (ZnO:Cu) composites pure Zn and Cu targets in special geometrical arrangements were exposed to 248 nm radiations generated by KrF exciter laser. The laser energy was 200 mJ with 10 Hz frequency and 20 ns pulse width. The effect of Cu concentration on crystal structure, morphology, and optical properties were investigated by XRD, FESEM and photoluminescence spectrometer respectively. A systematic shift in ZnO (0 0 2) peak with Cu concentration observed in XRD spectra demonstrated that Cu ion has been incorporated in ZnO lattice. Uniform film with narrow size range grains were observed in FESEM images. The photoluminescence (PL) spectra measured at room temperature revealed a systematic red shift in ZnO emission peak and decrease in the band gap with the increase in Cu concentration. These results entail that PLD technique can be realized to deposit high quality crystalline ZnO and ZnO:Cu thin films without pre and post heat treatment which is normally practiced worldwide for such structures.

  14. PECVD SiO2 dielectric for niobium Josephson IC process

    International Nuclear Information System (INIS)

    Lee, S.Y.; Nandakumar, V.; Murdock, B.; Hebert, D.

    1991-01-01

    PECVD SiO 2 dielectric has been evaluated as an insulator for a Nb-based, all-refractory Josephson integrated circuit process. First, the properties of PECVD SiO 2 films were measured and compared with those of evaporated SiO films. Second, the PECVD SiO 2 dielectric film was used in our Nb-based Josephson integrated circuit process. The main problem was found to be the deterioration of the critical temperature of the superconducting niobium adjacent to the SiO 2 . The cause and a solution of the problem were investigated. Finally, a Josephson integrated sampler circuit was fabricated and tested. This paper shows acceptable junction I-V characteristics and a measured time resolution of a 4.9 ps pulse in liquid helium

  15. Design and Construction of a Microcontroller-Based Ventilator Synchronized with Pulse Oximeter.

    Science.gov (United States)

    Gölcük, Adem; Işık, Hakan; Güler, İnan

    2016-07-01

    This study aims to introduce a novel device with which mechanical ventilator and pulse oximeter work in synchronization. Serial communication technique was used to enable communication between the pulse oximeter and the ventilator. The SpO2 value and the pulse rate read on the pulse oximeter were transmitted to the mechanical ventilator through transmitter (Tx) and receiver (Rx) lines. The fuzzy-logic-based software developed for the mechanical ventilator interprets these values and calculates the percentage of oxygen (FiO2) and Positive End-Expiratory Pressure (PEEP) to be delivered to the patient. The fuzzy-logic-based software was developed to check the changing medical states of patients and to produce new results (FiO2 ve PEEP) according to each new state. FiO2 and PEEP values delivered from the ventilator to the patient can be calculated in this way without requiring any arterial blood gas analysis. Our experiments and the feedbacks from physicians show that this device makes it possible to obtain more successful results when compared to the current practices.

  16. Borate mineral assemblages in the system Na2OCaOMgOB2O3H2O

    Science.gov (United States)

    Christ, C.L.; Truesdell, A.H.; Erd, Richard C.

    1967-01-01

    he significant known hydrated borate mineral assemblages (principally of the western United States) in the system Na2OCaOz.sbnd;MgOB2O3H2O are expressible in three ternary composition diagrams. Phase rule interpretation of the diagrams is consistent with observation, if the activity of H2O is generally considered to be determined by the geologic environment. The absence of conflicting tie-lines on a diagram indicates that the several mineral assemblages of the diagram were formed under relatively narrow ranges of temperature and pressure. The known structural as well as empirical formulas for the minerals are listed, and the more recent (since 1960) crystal structure findings are discussed briefly. Schematic Gibbs free energy-composition diagrams based on known solubility-temperature relations in the systems Na2B4O7-H2O and Na2B4O7-NaCl-H2O, are highly useful in the interpretation and prediction of the stability relations in these systems; in particular these diagrams indicate clearly that tincalconite, although geologically important, is everywhere a metastable phase. Crystal-chemical considerations indicate that the same thermodynamic and kinetic behavior observed in the Na2B4O7-H2O system will hold in the Ca2B6O11-H2O system. This conclusion is confirmed by the petrologic evidence. The chemical relations among the mineral assemblages of a ternary diagram are expressed by a schematic "activity-activity" diagram. These activity-activity diagrams permit the tracing-out of the paragenetic sequences as a function of changing cation and H2O activities. ?? 1967.

  17. Lead-free (K0.5Na0.5)NbO3 thin films by pulsed laser deposition driving MEMS-based piezoelectric cantilevers

    NARCIS (Netherlands)

    Nguyen, Duc Minh; Dekkers, Jan M.; Houwman, Evert Pieter; Vu, H.T.; Vu, Hung N.; Rijnders, Augustinus J.H.M.

    2016-01-01

    Thin film capacitors of the lead-free (K0.5Na0.5)NbO3 (KNN) with (100) orientation were grown on Pt/Ti/SiO2/SOI (silicon-on-insulator) substrates by pulsed laser deposition. The films are pure phases and do not show other crystal orientations. The remnant polarization Pr, saturation polarization

  18. Dietary TiO2 particles modulate expression of hormone-related genes in Bombyx mori.

    Science.gov (United States)

    Shi, Guofang; Zhan, Pengfei; Jin, Weiming; Fei, JianMing; Zhao, Lihua

    2017-08-01

    Silkworm (Bombyx mori) is an economically beneficial insect. Its growth and development are regulated by endogenous hormones. In the present study, we found that feeding titanium dioxide nanoparticles (TiO 2 NP) caused a significant increase of body size. TiO 2 NP stimulated the transcription of several genes, including the insulin-related hormone bombyxin, PI3K/Akt/TOR (where PI3K is phosphatidylinositol 3-kinase and TOR is target of rapamycin), and the adenosine 5'-monophosphateactivated protein kinase (AMPK)/target of rapamycin (TOR) pathways. Differentially expressed gene (DEG) analysis documented 26 developmental hormone signaling related genes that were differentially expressed following dietary TiO 2 NP treatment. qPCR analysis confirmed the upregulation of insulin/ecdysteroid signaling genes, such as bombyxin B-1, bombyxin B-4, bombyxin B-7, MAPK, P70S6K, PI3k, eIF4E, E75, ecdysteroid receptor (EcR), and insulin-related peptide binding protein precursor 2 (IBP2). We infer from the upregulated expression of bombyxins and the signaling network that they act in bombyxin-stimulated ecdysteroidogenesis. © 2017 Wiley Periodicals, Inc.

  19. Pure and Sn-doped ZnO films produced by pulsed laser deposition

    DEFF Research Database (Denmark)

    Holmelund, E.; Schou, Jørgen; Tougaard, S.

    2002-01-01

    A new technique, metronome doping, has been used for doping of films during pulsed laser deposition (PLD). This technique makes it possible to dope continuously during film growth with different concentrations of a dopant in one deposition sequence. Films of pure and doped ZnO have been produced...

  20. Single-pass, efficient type-I phase-matched frequency doubling of high-power ultrashort-pulse Yb-fiber laser using LiB_3O_5

    Science.gov (United States)

    Shukla, Mukesh Kumar; Kumar, Samir; Das, Ritwick

    2016-05-01

    We report 48 % efficient single-pass second harmonic generation of high-power ultrashort-pulse ({≈ }250 fs) Yb-fiber laser by utilizing type-I phase matching in LiB_3O_5 (LBO) crystal. The choice of LBO among other borate crystals for high-power frequency doubling is essentially motivated by large thermal conductivity, low birefringence and weak group velocity dispersion. By optimally focussing the beam in a 4-mm-long LBO crystal, we have generated about 2.3 W of average power at 532 nm using 4.8 W of available pump power at 1064 nm. The ultrashort green pulses were found out to be near-transform limited sech^2 pulses with a pulse width of Δ τ ≈ 150 fs and being delivered at 78 MHz repetition rate. Due to appreciably low spatial walk-off angle for LBO ({≈ }0.4°), we obtain M^2beam which signifies marginal distortion in comparison with the pump beam (M^2<1.15). We also discuss the impact of third-order optical nonlinearity of the LBO crystal on the generated ultrashort SH pulses.

  1. Reliability of pulse oximetry during cardiopulmonary resuscitation in a piglet model of neonatal cardiac arrest.

    Science.gov (United States)

    Hassan, Mohammad Ahmad; Mendler, Marc; Maurer, Miriam; Waitz, Markus; Huang, Li; Hummler, Helmut D

    2015-01-01

    Pulse oximetry is widely used in intensive care and emergency conditions to monitor arterial oxygenation and to guide oxygen therapy. To study the reliability of pulse oximetry in comparison with CO-oximetry in newborn piglets during cardiopulmonary resuscitation (CPR). In a prospective cohort study in 30 healthy newborn piglets, cardiac arrest was induced, and thereafter each piglet received CPR for 20 min. Arterial oxygen saturation was monitored continuously by pulse oximetry (SpO2). Arterial blood was analyzed for functional oxygenation (SaO2) every 2 min. SpO2 was compared with coinciding SaO2 values and bias considered whenever the difference (SpO2 - SaO2) was beyond ±5%. Bias values were decreased at the baseline measurements (mean: 2.5 ± 4.6%) with higher precision and accuracy compared with values across the experiment. Two minutes after cardiac arrest, there was a marked decrease in precision and accuracy as well as an increase in bias up to 13 ± 34%, reaching a maximum of 45.6 ± 28.3% after 10 min over a mean SaO2 range of 29-58%. Pulse oximetry showed increased bias and decreased accuracy and precision during CPR in a model of neonatal cardiac arrest. We recommend further studies to clarify the exact mechanisms of these false readings to improve reliability of pulse oximetry during the marked desaturation and hypoperfusion found during CPR. © 2014 S. Karger AG, Basel.

  2. Piezoelectric ceramic material, containing PbNb2O6, K2Nb2O6

    International Nuclear Information System (INIS)

    Fesenko, E.G.; Filip'ev, V.S.; Razumovskaya, O.N.; Cherner, Ya.E.; Rudkovskaya, L.M.; Zav'yalov, V.P.; Molchanova, R.A.; Kryshtop, V.G.; Panich, A.E.; Servuli, V.A.

    1984-01-01

    A new piezoelectric ceramic material including PbNb 2 O 6 , K 2 Nb 2 O 6 is prepared. Above the new material contains Nb 2 O 5 . The invention relates to piezotechnique. The principal advantage of this material for acoustic converters is high anisotropy of piezoelectric properties as well as high Curie temperature (T C =539-553 deg C). The composition containing 93.96 mole% PbNb 2 O 6 ; 2.48 mole% K 2 Nb 2 O 6 and 3.56 mole% Nb 2 O 5 has optimum content of parameters

  3. Origin of room temperature ferromagnetism in SnO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Bai, Guohua; Jiang, Yinzhu [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Du, Youwei [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Wu, Chen, E-mail: chen_wu@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Yan, Mi, E-mail: mse_yanmi@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)

    2017-03-15

    SnO{sub 2} films exhibiting room temperature ferromagnetism (RTFM) have been prepared on Si (001) by pulsed laser deposition. The saturation magnetization (M{sub s}) of the films experiences a decreasing trend followed by increasing with the growth temperature increased from RT to 400 ℃. The growth temperature affects both the concentration and the location of the oxygen vacancies as the origin of the RTFM. With lower growth temperatures (<300 ℃), more oxygen vacancies exist in the inner film for the samples with less crystallinity, resulting in enhanced magnetism. Higher deposition temperature leads to less oxygen vacancies in the inner film but more oxygen defects at the film surface, which is also beneficial to achieve greater magnetism. Various oxygen pressures during growth and post-annealing have also been used to confirm the role of oxygen vacancies. The study demonstrates that the surface oxygen defects and the positively charged monovalent O vacancies (V{sub O}{sup +}) in the inner film are the origin of the magnetism in SnO{sub 2} films. - Highlights: • SnO{sub 2} films exhibiting room temperature ferromagnetism (RTFM) have been prepared on Si (001) by pulsed laser deposition. • Growth temperature, oxygen pressure and annealing affect the growth of SnO{sub 2} films. • Both the concentration and location of the oxygen vacancies play critical roles in the magnetization.

  4. Production of oxide-metal P/M composites using pulsed plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Blinkov, I.V.; Manukhin, A.V.; Ostapovich, A.O.; Pavlov, IU.A.

    1987-08-01

    The possibility of producing oxide-metal P/M composites using plasma generated by a pulsed discharge is investigated experimentally for the system Al/sup 2/O/sub 3/-Ni. It is found that Al/sup 2/O/sub 3/ metallization in plasma is accompanied by spheroidization; changes in the physicomechanical properties of the Al/sup 2/O/sub 3/-Ni composite during plasma treatment are examined. The characteristic features of the process associated with the effect of pulsed energy on the disperse flow of the oxide-metal mixture are discussed. 7 references.

  5. X-Ray Scattering Applications Using Pulsed X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1999-05-23

    Pulsed x-ray sources have been used in transient structural phenomena investigations for over fifty years; however, until the advent of synchrotrons sources and the development of table-top picosecond lasers, general access to ligh temporal resolution x-ray diffraction was relatively limited. Advances in diffraction techniques, sample excitation schemes, and detector systems, in addition to IncEased access to pulsed sources, have ld tO what is now a diverse and growing array of pulsed-source measurement applications. A survey of time-resolved investigations using pulsed x-ray sources is presented and research opportunities using both present and planned pulsed x-ray sources are discussed.

  6. Josephson effectss in bicrystalline Bi2Sr2CaCu2O8+δ thin films

    International Nuclear Information System (INIS)

    Amrein, T.

    1994-08-01

    A pulsed laser deposition process is developed for preparing high quality thin films of Bi 2 Sr 2 CaCu 2 O x on different substrates. Both microstructural and electrical properties of the superconducting films are well characterized, e.g. by SEM, TEM and AFM. The high reproducability of the thin film quality facilitated a detailed study of Josephson effects in bicrystalline grain boundary junctions (GBJs). Thin films are deposited on commercially available (001) SrTiO 3 bicrystalls and patterned by standard photolithography using wet-etching or Ar + -ion milling. The width of the micobridges ranges from 2 to 111 μm. The critical current densities across grain boundaries of thin film bicrystals have been measured as a function of the tilt angle Θ. For Θ=0 to 45 , the ratio of the grain boundary critical current density to the bulk critical current density decreases exponentially with increasing tilt angle. Microstructure investigations show a rough grain boundary of the superconductor (roughness 100 nm-1 μm) which is not determined by the roughness of the substrate grain boundary (1-3 nm) but by the island-plus-layer growth of the twin domains. The electrical properties are well described by the resistively shunted junction (RSJ) model. The I c R n -product reaches values of 2.2 mV at 4.2 K and 60 μV at 77 K. An optimized design for dc SQUIDs (Θ=24 ) is developed relating to the results of single GBJs. The values of the transfer function (∂V/∂Φ) run up to 74 μV/Φ o . The equivalent flux noise which is measured in a flux-locked loop mode amounts 4.5 to 25 μPhi o Hz in the white noise region for Φ≥25-50 Hz and 13 to 150 μΦ o Hz at 1 Hz. In conclusion, microstructural as well as electrical properties of bicrystalline Bi 2 Sr 2 CaCu 2 O x and YBa 2 Cu 3 O y GBJs are more or less equal. (orig.)

  7. Enhancement of critical current density of YBa2Cu3O7-δ thin films by nanoscale CeO2 pretreatment of substrate surfaces

    International Nuclear Information System (INIS)

    Cui, X.M.; Liu, G.Q.; Wang, J.; Huang, Z.C.; Zhao, Y.T.; Tao, B.W.; Li, Y.R.

    2007-01-01

    YBa 2 Cu 3 O 7-δ (YBCO) films were prepared on single-crystal SrTiO 3 substrates with metal-organic deposition using trifluoroacetates (TFA-MOD). Positive results have been acquired in controlled study to investigate the effects of substrate surface modification on the growth-induced flux-pinning nanostructures in YBCO films. Nanoscale CeO 2 particles were applied to single-crystal SrTiO 3 substrate surfaces using pulsed laser deposition before YBCO precursors coating. Superconducting properties of the YBCO films grown on the controlled CeO 2 -modified substrates have shown substantial improvement in the critical current densities (J c ) at 77 K over those grown on untreated substrates in almost all the field (78% increment at 1 T, 77 K). We think the reason is that the CeO 2 nanoparticles act as pinning centers

  8. The mechanical properties of a nanocrystalline Al2O3/a-Al2O3 composite coating measured by nanoindentation and Brillouin spectroscopy

    International Nuclear Information System (INIS)

    García Ferré, Francisco; Bertarelli, Emanuele; Chiodoni, Angelica; Carnelli, Davide; Gastaldi, Dario; Vena, Pasquale; Beghi, Marco G.; Di Fonzo, Fabio

    2013-01-01

    In this work, ellipsometry, Brillouin spectroscopy and nanoindentation are combined to assess the mechanical properties of a nanocrystalline Al 2 O 3 /a-Al 2 O 3 composite coating with high accuracy and precision. The nanocomposite is grown by pulsed laser deposition at either room temperature or 600 °C. The adhesive strength is evaluated by nanoscratch tests. In the room temperature process the coating attains an unusual combination of compactness, strong interfacial bonding, moderate stiffness (E = 195 ± 9 GPa and ν = 0.29 ± 0.02) and significant hardness (H = 10 ± 1 GPa), resulting in superior plastic behavior and a relatively high ratio of hardness to elastic modulus (H/E = 0.049). These features are correlated to the nanostructure of the coating, which comprises a regular dispersion of ultrafine crystalline Al 2 O 3 nanodomains (2–5 nm) in a dense and amorphous alumina matrix, as revealed by transmission electron microscopy. For the coating grown at 600 °C, strong adhesion is also observed, with an increase of stiffness and a significant enhancement of hardness (E = 277 ± 9 GPa, ν = 0.27 ± 0.02 and H = 25 ± 1 GPa), suggesting an outstanding resistance to wear (H/E = 0.091)

  9. Phase relations in the systems M2MoO4-Cr2(MoO4)3-Zr(MoO4)2 (M=Li, Na, or Rb)

    International Nuclear Information System (INIS)

    Bazarov, B.G.; Chimitova, O.D.; Bazarova, Ts.T.; Arkhincheeva, S.I.; Bazarova, Zh.G.

    2008-01-01

    Phase equilibria in the systems M 2 MoO 4 -Cr 2 (MoO 4 ) 3 -Zr(MoO 4 ) 2 (M=Li, Na, or Rb) were investigated by X-ray powder diffraction analysis, DTA, and IR spectroscopy. The subsolidus structure of the phase diagrams of the systems under study was established. Two phases are formed in the Rb 2 MoO 4 -Cr 2 (MoO 4 ) 3 -Zr(MoO 4 ) 2 system with the molar ratios of the starting components equal to 5:1:1 (S 2 ) and 1:1:1 (S 1 ). Proceeding from isostructural character of Rb 5 FeHf(MoO 4 ) 6 and S 2 , the unit cell parameters are determined for S 2 [ru

  10. Growth and microstructure of columnar Y-doped SrZrO{sub 3} films deposited on Pt-coated MgO by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Sijun, E-mail: sluo1@tulane.edu; Riggs, Brian C.; Shipman, Joshua T.; Adireddy, Shiva; Sklare, Samuel C.; Chrisey, Douglas B., E-mail: dchrisey@tulane.edu [Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118 (United States); Zhang, Xiaodong; Koplitz, Brent [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States)

    2015-07-21

    Direct integration of proton conductor films on Pt-coated substrates opens the way to film-based proton transport devices. Columnar SrZr{sub 0.95}Y{sub 0.05}O{sub 3−δ} (SZY) films with dense microstructure were deposited on Pt-coated MgO(100) substrates at 830 °C by pulsed laser deposition. The optimal window of ambient O{sub 2} pressure for good crystallinity of SZY films is from 400 to 600 mTorr. The ambient O{sub 2} compresses the plasma plume of SZY and increases the deposition rate. The 10 nm thick Ti adhesion layer on MgO(100) greatly affects the orientation of the sputtered Pt layers. Pt deposited directly on MgO shows a highly (111)-preferred orientation and leads to preferentially oriented SZY films while the addition of a Ti adhesion layer makes Pt show a less preferential orientation that leads to randomly oriented SZY films. The RMS surface roughness of preferentially oriented SZY films is larger than that of randomly oriented SZY films deposited under the same ambient O{sub 2} pressure. As the O{sub 2} pressure increased, the RMS surface roughness of preferentially oriented SZY films increased, reaching 45.7 nm (2.61% of film thickness) at 600 mTorr. This study revealed the ambient O{sub 2} pressure and orientation dependent surface roughness of SZY films grown on Pt-coated MgO substrates, which provides the potential to control the surface microstructure of SZY films for electrochemical applications in film-based hydrogen devices.

  11. Structural, electronic structure, and band alignment properties at epitaxial NiO/Al{sub 2}O{sub 3} heterojunction evaluated from synchrotron based X-ray techniques

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S. D., E-mail: devsh@rrcat.gov.in; Das, Arijeet; Ajimsha, R. S.; Upadhyay, Anuj; Kamparath, Rajiv; Mukherjee, C.; Misra, P.; Rai, S. K.; Sinha, A. K.; Ganguli, Tapas [Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Nand, Mangla; Jha, S. N. [Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085 (India); Shukla, D. K.; Phase, D. M. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore, Madhya Pradesh 452017 (India)

    2016-04-28

    The valence band offset value of 2.3 ± 0.2 eV at epitaxial NiO/Al{sub 2}O{sub 3} heterojunction is determined from photoelectron spectroscopy experiments. Pulsed laser deposited thin film of NiO on Al{sub 2}O{sub 3} substrate is epitaxially grown along [111] direction with two domain structures, which are in-plane rotated by 60° with respect to each other. Observation of Pendellosung oscillations around Bragg peak confirms high interfacial and crystalline quality of NiO layer deposited on Al{sub 2}O{sub 3} substrate. Surface related feature in Ni 2p{sub 3/2} core level spectra along with oxygen K-edge soft X-ray absorption spectroscopy results indicates that the initial growth of NiO on Al{sub 2}O{sub 3} substrate is in the form of islands, which merge to form NiO layer for the larger coverage. The value of conduction band offset is also evaluated from the measured values of band gaps of NiO and Al{sub 2}O{sub 3} layers. A type-I band alignment at NiO and Al{sub 2}O{sub 3} heterojunction is also obtained. The determined values of band offsets can be useful in heterojunction based light emitting devices.

  12. Viscosity and Structure of CaO-SiO2-P2O5-FetO System with Varying P2O5 and FeO Content

    Science.gov (United States)

    Diao, Jiang; Gu, Pan; Liu, De-Man; Jiang, Lu; Wang, Cong; Xie, Bing

    2017-10-01

    A rotary viscosimeter and Raman spectrum were employed to measure the viscosity and structural information of the CaO-SiO2-P2O5-FetO system at 1673 K. The experimental data have been compared with the calculated results using different viscosity models. It shows that the National Physical Laboratory (NPL) and Pal models fit the CaO-SiO2-P2O5-FeOt system better. With the P2O5 content increasing from 5% to 14%, the viscosity increases from 0.12 Pa s to 0.27 Pa s. With the FeO content increasing from 30% to 40%, the viscosity decreases from 0.21 Pa s to 0.12 Pa s. Increasing FeO content makes the complicated molten melts become simple, and increasing P2O5 content will complicate the molten melts. The linear relation between viscosity and structure parameter Q(Si + P) was obtained by regression analysis. The calculated viscosity by using the optimized NPL and Pal model are almost identical with the fitted values.

  13. Structural characterization of ZnO thin films grown on various substrates by pulsed laser deposition

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Čížek, J.; Kužel, R.; Bulíř, Jiří; Lančok, Ján; Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P.; Anwand, W.; Brauer, G.

    2012-01-01

    Roč. 45, č. 22 (2012), 1-12 ISSN 0022-3727 R&D Projects: GA ČR(CZ) GAP108/11/0958; GA ČR GP202/09/P324 Institutional research plan: CEZ:AV0Z10100522 Keywords : ZnO thin film * pulsed laser deposition * x-ray diffraction positron implantation spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.528, year: 2012 http://dx.doi.org/10.1088/0022-3727/45/22/225101

  14. The Accuracy of Pulse Spectroscopy for Detecting Hypoxemia and Coexisting Methemoglobin or Carboxyhemoglobin.

    Science.gov (United States)

    Kulcke, Axel; Feiner, John; Menn, Ingolf; Holmer, Amadeus; Hayoz, Josef; Bickler, Philip

    2016-06-01

    Pulse spectroscopy is a new noninvasive technology involving hundreds of wavelengths of visible and infrared light, enabling the simultaneous quantitation of multiple types of normal and dysfunctional hemoglobin. We evaluated the accuracy of a first-generation pulse spectroscopy system (V-Spec™ Monitoring System, Senspec, Germany) in measuring oxygen saturation (SpO2) and detecting carboxyhemoglobin (COHb) or methemoglobin (MetHb), alone or simultaneously, with hypoxemia. Nineteen volunteers were fitted with V-Spec probes on the forehead and fingers. A radial arterial catheter was placed for blood sampling during (1) hypoxemia with arterial oxygen saturations (SaO2) of 100% to 58.5%; (2) normoxia with MetHb and COHb increased to approximately 10%; (3) 10% COHb or MetHb combined with hypoxemia with SaO2 of 100% to 80%. Standard measures of pulse-oximetry performance were calculated: bias (pulse spectroscopy measured value - arterial measured value) mean ± SD and root-mean-square error (Arms). The SpO2 bias for SaO2 approximately 60% to 100% was 0.06% ± 1.30% and Arms of 1.30%. COHb bias was 0.45 ± 1.63, with an Arms of 1.69% overall, and did not degrade substantially during moderate hypoxemia. MetHb bias was 0.36 ± 0.80 overall and stayed small with hypoxemia. Arms was 0.88 and was 10%. Pulse spectroscopy accurately detects hypoxemia, MetHb, and COHb. The technology also accurately detects these dysfunctional hemoglobins during hypoxemia. Future releases of this device may have an improved SpO2 algorithm that is more robust with methemoglobinemia.

  15. An ideal scintillator – ZnO:Sc for sub-nanosecond pulsed radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kan, E-mail: zhangkan8414@163.com [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); Ouyang, Xiaoping [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); Xi’an Jiaotong University, Xi’an 710049 (China); Song, Zhaohui; Han, Hetong [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); Zuo, Yanbin [China Nonferrous Metal Guilin Research Institute of Geology for Mineral Resource, Guilin 541004 (China); Guan, Xingyin [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); Xi’an Jiaotong University, Xi’an 710049 (China); Tan, Xinjian; Zhang, Zichuan; Liu, Junhong [Northwest Institute of Nuclear Technology, Xi’an 710024 (China)

    2014-08-21

    ZnO-based scintillators are particularly well suited for use as ultrafast pulsed radiation detectors which have shown broad application prospects in various fields such as the inertial confinement fusion (ICF) diagnosis, the nuclear reaction mechanism, etc. Using the hydro-thermal method, a ZnO single-crystal doped with Scandium (ZnO:Sc) sample was prepared. As a new ZnO-based scintillator, the scintillation characteristics of ZnO:Sc have not been reported previously. In this paper, optical and scintillation characteristics of ZnO:Sc single-crystal were studied. Also a scintillation detector based on ZnO:Sc was designed. Excited by the alpha-particle, the rise time of ZnO:Sc detectors was from 162.5 to 170.7 ps, and the fall time was from 300.4 to 328.8 ps.

  16. An ideal scintillator – ZnO:Sc for sub-nanosecond pulsed radiation detection

    International Nuclear Information System (INIS)

    Zhang, Kan; Ouyang, Xiaoping; Song, Zhaohui; Han, Hetong; Zuo, Yanbin; Guan, Xingyin; Tan, Xinjian; Zhang, Zichuan; Liu, Junhong

    2014-01-01

    ZnO-based scintillators are particularly well suited for use as ultrafast pulsed radiation detectors which have shown broad application prospects in various fields such as the inertial confinement fusion (ICF) diagnosis, the nuclear reaction mechanism, etc. Using the hydro-thermal method, a ZnO single-crystal doped with Scandium (ZnO:Sc) sample was prepared. As a new ZnO-based scintillator, the scintillation characteristics of ZnO:Sc have not been reported previously. In this paper, optical and scintillation characteristics of ZnO:Sc single-crystal were studied. Also a scintillation detector based on ZnO:Sc was designed. Excited by the alpha-particle, the rise time of ZnO:Sc detectors was from 162.5 to 170.7 ps, and the fall time was from 300.4 to 328.8 ps

  17. Memory and pressure studies in NaxCoO2 cobaltites

    International Nuclear Information System (INIS)

    Garbarino, G; Bouvier, P; Crichton, W A; Mezouar, M; Regueiro, M Nunez; Lejay, P; Armand, M; Foo, M L; Cava, R J

    2009-01-01

    We present a detailed study on the memory effect results in Na 0.5 paragraph 5CoO 2 single crystals. We analyze the temperature dependence of the nonvolatile current-pulse-induced resistance memory state. These results allow us to have more insight in the mobility of Na + ions induced by current and their effect on the memory effect. We also developed X-ray diffraction studies under pressure at ambient temperature in the N a0.5 CoO 2 powder compound. An orthorhombic to hexagonal phase transition was observed at 9GPa. This transition can be explained taking into account the Na ions displacement between two allowed positions. These structural results allow us to confirm that the non-volatile resistive commutation can be interpreted by the displacement of the Na ions induced by the current pulses.

  18. A calorimetric and thermodynamic investigation of A2[(UO2)2(MoO4)O2] compounds with A = K and Rb and calculated phase relations in the system (K2MoO4 + UO3 + H2O)

    International Nuclear Information System (INIS)

    Lelet, Maxim I.; Suleimanov, Evgeny V.; Golubev, Aleksey V.; Geiger, Charles A.; Bosbach, Dirk; Alekseev, Evgeny V.

    2015-01-01

    Highlights: • We determined the low temperature heat capacity of A 2 [(UO 2 ) 2 (MoO 4 )O 2 ] compounds with A = K and Rb. • We determined enthalpy of formation of K 2 [(UO 2 ) 2 (MoO 4 )O 2 ] by HF solution calorimetry. • We calculated Δ f G° (T = 298 K) of all phases from studied series. • Using obtained data we performed a thermodynamic modelling in the system (K 2 MoO 4 + UO 3 + H 2 O). - Abstract: A calorimetric and thermodynamic investigation of two alkali-metal uranyl molybdates with general composition A 2 [(UO 2 ) 2 (MoO 4 )O 2 ], where A = K and Rb, was performed. Both phases were synthesized by solid-state sintering of a mixture of potassium or rubidium nitrate, molybdenum (VI) oxide and gamma-uranium (VI) oxide at high temperatures. The synthetic products were characterised by X-ray powder diffraction and X-ray fluorescence methods. The enthalpy of formation of K 2 [(UO 2 ) 2 (MoO 4 )O 2 ] was determined using HF-solution calorimetry giving Δ f H° (T = 298 K, K 2 [(UO 2 ) 2 (MoO 4 )O 2 ], cr) = −(4018 ± 8) kJ · mol −1 . The low-temperature heat capacity, C p °, was measured using adiabatic calorimetry from T = (7 to 335) K for K 2 [(UO 2 ) 2 (MoO 4 )O 2 ] and from T = (7 to 326) K for Rb 2 [(UO 2 ) 2 (MoO 4 )O 2 ]. Using these C p ° values, the third law entropy at T = 298.15 K, S°, is calculated as (374 ± 1) J · K −1 · mol −1 for K 2 [(UO 2 ) 2 (MoO 4 )O 2 ] and (390 ± 1) J · K −1 · mol −1 for Rb 2 [(UO 2 ) 2 (MoO 4 )O 2 ]. These new experimental results, together with literature data, are used to calculate the Gibbs energy of formation, Δ f G°, for both phases giving: Δ f G° (T = 298 K, K 2 [(UO 2 ) 2 (MoO 4 )O 2 ], cr) = (−3747 ± 8) kJ · mol −1 and Δ f G° (T = 298 K, Rb 2 [(UO 2 ) 2 (MoO 4 )], cr) = −3736 ± 5 kJ · mol −1 . Smoothed C p °(T) values between 0 K and 320 K are presented, along with values for S° and the functions [H°(T) − H°(0)] and [G°(T) − H°(0)], for both phases. The

  19. Optical and morphological properties of ZnO- and TiO2-derived nanostructures synthesized via a microwave-assisted hydrothermal method

    CSIR Research Space (South Africa)

    Moloto, N

    2012-01-01

    Full Text Available Corporation International Journal of Photoenergy Volume 2012, Article ID 189069, 6 pages doi:10.1155/2012/189069 Research Article Optical and Morphological Properties of ZnO- and TiO2-Derived Nanostructures Synthesized via a Microwave... International Journal of Photoenergy the sol-gel, hydrothermal process, and pulse laser deposition [22?24]. Although the sol-gel method is widely accepted for the preparation of both ZnO and TiO2 nanostructures, the calcinations process is essential and can...

  20. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnO{sub x}–Al{sub 2}O{sub 3} thin film structure

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. K.; Chen, T. P., E-mail: echentp@ntu.edu.sg; Liu, P.; Zhang, Q. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hu, S. G. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Liu, Y. [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Lee, P. S. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2016-06-28

    In this work, a synaptic transistor based on the indium gallium zinc oxide (IGZO)–aluminum oxide (Al{sub 2}O{sub 3}) thin film structure, which uses ultraviolet (UV) light pulses as the pre-synaptic stimulus, has been demonstrated. The synaptic transistor exhibits the behavior of synaptic plasticity like the paired-pulse facilitation. In addition, it also shows the brain's memory behaviors including the transition from short-term memory to long-term memory and the Ebbinghaus forgetting curve. The synapse-like behavior and memory behaviors of the transistor are due to the trapping and detrapping processes of the holes, which are generated by the UV pulses, at the IGZO/Al{sub 2}O{sub 3} interface and/or in the Al{sub 2}O{sub 3} layer.

  1. Physical and electrical properties of bilayer CeO{sub 2}/TiO{sub 2} gate dielectric stack

    Energy Technology Data Exchange (ETDEWEB)

    Chong, M.M.V. [School of Materials Science and Engineering, Nanyang Technological University of Singapore, Block N 4.1Nanyang Avenue, Singapore 639798 (Singapore); GlobalFoundries Singapore Private Limited, 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore); Lee, P.S. [School of Materials Science and Engineering, Nanyang Technological University of Singapore, Block N 4.1Nanyang Avenue, Singapore 639798 (Singapore); Tok, A.I.Y., E-mail: MIYTOK@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University of Singapore, Block N 4.1Nanyang Avenue, Singapore 639798 (Singapore)

    2016-08-15

    Highlights: • A bilayer gate dielectric stack of CeO{sub 2}/TiO{sub 2} to study the dependency of film growth with varying annealing temperatures is proposed. • The study demonstrates CeO{sub 2}/TiO{sub 2} bilayer stack with comparable κ-value as that of HfO{sub 2} but with reduced leakage current density of 4 orders of magnitude. • Schottky emission is the dominant leakage conduction mechanism of annealed CeO{sub 2}/TiO{sub 2} stack due to thermionic effect of interface properties. - Abstract: This study demonstrates a bilayer gate oxide structure of cerium oxide deposited via pulsed laser deposition and titanium oxide using conventional atomic layer deposition. Samples were deposited on p-type Si (100) substrate and exhibit interesting physical and electrical properties such that 600 °C annealed CeO{sub 2}/TiO{sub 2} samples having κ-value of 18 whereas pure CeO{sub 2} deposited samples have dielectric constant of 17.1 with leakage current density of 8.94 × 10{sup −6} A/cm{sup 2} at 1 V applied voltage. The result shows promising usage of the synthesized rare earth oxides as gate dielectric where ideal κ-value and significant reduction of the leakage current by 5 orders of magnitude is achieved. Leakage current conduction mechanism for as-deposited sample is found to be dominated by Poole–Frenkel (PF) emission; the trap level is found to be at 1.29 eV whereas annealed samples (600 °C and 800 °C) exhibited Schottky emission with trap levels at 1.45 eV and 0.81 eV, respectively.

  2. Behaviour of Fe4O5-Mg2Fe2O5 solid solutions and their relation to coexisting Mg-Fe silicates and oxide phases

    Science.gov (United States)

    Uenver-Thiele, Laura; Woodland, Alan B.; Miyajima, Nobuyoshi; Ballaran, Tiziana Boffa; Frost, Daniel J.

    2018-03-01

    Experiments at high pressures and temperatures were carried out (1) to investigate the crystal-chemical behaviour of Fe4O5-Mg2Fe2O5 solid solutions and (2) to explore the phase relations involving (Mg,Fe)2Fe2O5 (denoted as O5-phase) and Mg-Fe silicates. Multi-anvil experiments were performed at 11-20 GPa and 1100-1600 °C using different starting compositions including two that were Si-bearing. In Si-free experiments the O5-phase coexists with Fe2O3, hp-(Mg,Fe)Fe2O4, (Mg,Fe)3Fe4O9 or an unquenchable phase of different stoichiometry. Si-bearing experiments yielded phase assemblages consisting of the O5-phase together with olivine, wadsleyite or ringwoodite, majoritic garnet or Fe3+-bearing phase B. However, (Mg,Fe)2Fe2O5 does not incorporate Si. Electron microprobe analyses revealed that phase B incorporates significant amounts of Fe2+ and Fe3+ (at least 1.0 cations Fe per formula unit). Fe-L2,3-edge energy-loss near-edge structure spectra confirm the presence of ferric iron [Fe3+/Fetot = 0.41(4)] and indicate substitution according to the following charge-balanced exchange: [4]Si4+ + [6]Mg2+ = 2Fe3+. The ability to accommodate Fe2+ and Fe3+ makes this potential "water-storing" mineral interesting since such substitutions should enlarge its stability field. The thermodynamic properties of Mg2Fe2O5 have been refined, yielding H°1bar,298 = - 1981.5 kJ mol- 1. Solid solution is complete across the Fe4O5-Mg2Fe2O5 binary. Molar volume decreases essentially linearly with increasing Mg content, consistent with ideal mixing behaviour. The partitioning of Mg and Fe2+ with silicates indicates that (Mg,Fe)2Fe2O5 has a strong preference for Fe2+. Modelling of partitioning with olivine is consistent with the O5-phase exhibiting ideal mixing behaviour. Mg-Fe2+ partitioning between (Mg,Fe)2Fe2O5 and ringwoodite or wadsleyite is influenced by the presence of Fe3+ and OH incorporation in the silicate phases.

  3. Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode

    Science.gov (United States)

    Ming, SUN; Zhan, TAO; Zhipeng, ZHU; Dong, WANG; Wenjun, PAN

    2018-05-01

    The plasma characteristics of a gas-liquid phase discharge reactor were investigated by optical and electrical methods. The nozzle-cylinder electrode in the discharge reactor was supplied with a negative nanosecond pulsed generator. The optical emission spectrum diagnosis revealed that OH (A2∑+ → X2Π, 306–309 nm), N2 (C3Π→B3Πg, 337 nm), O (3p5p→3s5s0, 777.2 nm) and O (3p3p→3s3s0, 844.6 nm) were produced in the discharge plasma channels. The electron temperature (T e) was calculated from the emission relative intensity ratio between the atomic O 777.2 nm and 844.6 nm, and it increased with the applied voltage and the pulsed frequency and fell within the range of 0.5–0.8 eV. The gas temperature (T g) that was measured by Lifbase was in a range from 400 K to 600 K.

  4. [Evaluation of circulatory state using pulse oximeter: 2. PI (perfusion index) x PVI (pleth variability index)].

    Science.gov (United States)

    Kaneda, Toru; Suzuki, Toshiyasu

    2009-07-01

    Pulse oximeter expressed by SpO2 is used for monitoring respiratory state during operation and in ICU. Perfusion index (PI) and pleth variability index (PVI) as new indexes are calculated from pulse oximeter (Masimo SET Radical-7, Masimo Corp., USA, 1998) waveforms. And these indices were used as parameters to evaluate the circulatory state. For PI calculation, the pulsatile infrared signal is indexed against the nonpulsatile infrared signal and expressed as a percentage. It might thus be of future value in assessment of perioperative changes in peripheral perfusion. PVI is a measure of a dynamic change in PI that occurs during complete respiratory cycle. It might be thought that PVI, an index automatically derived from the pulse oximeter waveform analysis, had potentially clinical applications for noninvasive hypovolemia detection and fluid responsiveness monitoring.

  5. Reactive-environment, hollow cathode sputtering: Basic characteristics and application to Al2O3, doped ZnO, and In2O3:Mo

    International Nuclear Information System (INIS)

    Delahoy, A.E.; Guo, S.Y.; Paduraru, C.; Belkind, A.

    2004-01-01

    A method for thin-film deposition has been studied. The method is based on metal sputtering in a hollow cathode configuration with supply of a reactive gas in the vicinity of the substrate. The working gas and entrained sputtered atoms exit the cathode through an elongated slot. The reactive gas is thereby largely prevented from reaching the target. The basic operation of the cathode was studied using a Cu target and pulsed power excitation. These studies included the dependence of deposition rate on power, pressure, and flow rate, film thickness profiles, and film resistivity as a function of substrate conditions. Modeling was conducted to calculate the gas velocity distribution and pressure inside the cavity. Al 2 O 3 films were prepared in a reactive environment of oxygen by sputtering an Al target. It was demonstrated that only a very small amount of oxygen passing through the cathode will oxidize (poison) the target, whereas large quantities of oxygen supplied externally to the cathode need not affect the target at all. A very stable discharge and ease of Al 2 O 3 formation were realized in this latter mode. The method was applied to the preparation of transparent, conductive films of ZnO doped with either Al or B. High deposition rates were achieved, and, at appropriate oxygen flow rates, low film resistivities. High-mobility In 2 O 3 :Mo transparent conductors were also prepared, with resistivities as low as 1.9x10 -4 Ω cm. Scaling relations for hollow cathodes, and deposition efficiency, and process comparisons between magnetron sputtering and linear, reactive-environment, hollow cathode sputtering are presented

  6. Time resolved Raman studies of laser induced damage in TiO2 optical coatings

    International Nuclear Information System (INIS)

    Exarhos, G.J.; Morse, P.L.

    1984-10-01

    Molecular information available from Raman scattering measurements of sputter deposited TiO 2 on silica substrates has been used to characterize crystalline phases, thickness, and surface homogeneity. A two laser technique is described for investigating transient molecular changes in both coating and substrate which result from pulsed 532 nm laser irradiation. Single layer and multilayer coatings of both anatase and rutile phases of TiO 2 have been probed by Raman spectroscopy immediately following the damage pulse (nanoseconds) and at longer times. Transient measurements are designed to follow surface transformation/relaxation phenomena; measurements at longer times characterize the equilibrium damage state

  7. Pulse radiolysis of 9,10-anthraquinone in methanol

    International Nuclear Information System (INIS)

    Mayer, J.; Krasiukianis, R.

    1990-01-01

    The reactions of anthraquinone with intermediates in methanol (e 2 - , . CH 2 O - , . CH 2 OH) were investigated using γ-radiolysis and pulse radiolysis method. The anthraquinone radical anions are reactive towards O 2 (ca 3 x 10 8 mol -1 dm 3 s -1 ) and can disproportionate giving corresponding dianion. (author)

  8. Evaluation of Masimo signal extraction technology pulse oximetry in anaesthetized pregnant sheep.

    Science.gov (United States)

    Quinn, Christopher T; Raisis, Anthea L; Musk, Gabrielle C

    2013-03-01

    Evaluation of the accuracy of Masimo signal extraction technology (SET) pulse oximetry in anaesthetized late gestational pregnant sheep. Prospective experimental study. Seventeen pregnant Merino ewes. Animals included in study were late gestation ewes undergoing general anaesthesia for Caesarean delivery or foetal surgery in a medical research laboratory. Masimo Radical-7 pulse oximetry (SpO(2) ) measurements were compared to co-oximetry (SaO(2) ) measurements from arterial blood gas analyses. The failure rate of the pulse oximeter was calculated. Accuracy was assessed by Bland & Altman's (2007) limits of agreement method. The effect of mean arterial blood pressure (MAP), perfusion index (PI) and haemoglobin (Hb) concentration on accuracy were assessed by regression analysis. Forty arterial blood samples paired with SpO(2) and blood pressure measurements were obtained. SpO(2) ranged from 42 to 99% and SaO(2) from 43.7 to 99.9%. MAP ranged from 24 to 82 mmHg, PI from 0.1 to 1.56 and Hb concentration from 71 to 114 g L(-1) . Masimo pulse oximetry measurements tended to underestimate oxyhaemoglobin saturation compared to co-oximetry with a bias (mean difference) of -2% and precision (standard deviation of the differences) of 6%. Accuracy appeared to decrease when SpO(2) was oximeter function during extreme hypotension and hypoxaemia. © 2012 The Authors. Veterinary Anaesthesia and Analgesia. © 2012 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.

  9. Pulsed Laser Deposition of BaTiO3 Thin Films on Different Substrates

    Directory of Open Access Journals (Sweden)

    Yaodong Yang

    2010-01-01

    Full Text Available We have studied the deposition of BaTiO3 (BTO thin films on various substrates. Three representative substrates were selected from different types of material systems: (i SrTiO3 single crystals as a typical oxide, (ii Si wafers as a semiconductor, and (iii Ni foils as a magnetostrictive metal. We have compared the ferroelectric properties of BTO thin films obtained by pulsed laser deposition on these diverse substrates.

  10. Optical and electrical properties of SnO2 thin films after ultra-short pulsed laser annealing

    NARCIS (Netherlands)

    Scorticati, D.; Illiberi, A.; Römer, G.R.B.E.; Bor, T.; Ogieglo, W.; Klein Gunnewiek, M.; Lenferink, A.; Otto, C.; Skolski, J.Z.P.; Grob, F.; Lange, D.F. de; Huis in 't Veld, A.J.

    2013-01-01

    Ultra-short pulsed laser sources, with pulse durations in the ps and fs regime, are commonly exploited for cold ablation. However, operating ultra-short pulsed laser sources at fluence levels well below the ablation threshold allows for fast and selective thermal processing. The latter is especially

  11. Electrically driven magnetic relaxation in multiferroic LuFe2O4

    International Nuclear Information System (INIS)

    Wang Fen; Li Changhui; Zou Tao; Liu Yi; Sun Young

    2010-01-01

    We report the electrical control of magnetization in multiferroic LuFe 2 O 4 by applying short current pulses. The magnitude of the induced magnetization change depends on the pulse width and current density. The voltage variation during the applied current pulses evidences an electric-field-induced breakdown of charge order and excludes the role of Joule heating. This current driven magnetization change can be interpreted with a three-temperature model in which the delocalized electrons accelerate spin relaxation through a strong spin-charge coupling inherent to multiferroicity. The electrically assisted magnetic relaxation provides a new approach for electrical control of magnetization.

  12. The influence of Fe2O3 in the humidity sensor performance of ZrO2:TiO2-based porous ceramics

    International Nuclear Information System (INIS)

    Cosentino, I.C.; Muccillo, E.N.S.; Muccillo, R.

    2007-01-01

    ZrO 2 :TiO 2 ceramics were prepared with different porosity values by two methods: (a) sintering at 1150, 1300 and 1500 deg. C, corresponding to the temperatures of the first, second and third sintering stages, according to dilatometry results; (b) adding Fe 2 O 3 (2.0 and 5.0 mol%) to ZrO 2 :TiO 2 powders before sintering. The ZrO 2 :TiO 2 specimens were characterized by X-ray diffraction, mercury porosimetry, scanning electron microscopy and impedance spectroscopy. The impedance spectroscopy analysis was carried out under different relative humidities. The bulk electrical resistivity in the low frequency region (10-100 Hz) decreases for increasing relative humidity. Increasing the sintering temperature from the first to the third sintering stage promoted grain growth, as expected, with consequent decrease of the intergranular porosity. The use of Fe 2 O 3 as sintering aid reduced the porosity of the specimens, but increased the electrical response under humid environments in comparison with specimens sintered without Fe 2 O 3

  13. Giant increase of optical transparency for Zn-rich CaxZn1-xO on Al2O3 (0 0 0 1) grown by pulsed laser deposition

    Science.gov (United States)

    Albrithen, H. A.; El-Naggar, A. M.; Ozga, K.; Alshahrani, H.; Alanazi, A.; Alfaifi, E.; Labis, J.; Alyamani, A.; Albadri, A.; Alkahtani, M. H.; Alahmed, Z. A.; Jedryka, J.; Fedorchuk, A. O.

    2016-02-01

    In this study, CaxZn1-xO high quality films with different Ca ratios (from 0% to 10%) were grown on Al2O3 (0 0 0 1) substrates by pulsed laser deposition for the first time. The optical properties for the grown films were studied over a wide spectral range from 200 to 3300 nm using the reflectance and transmittance spectrum. It was found that the calculated optical energy gap values increases from 3.275 to about 3.340 eV with increasing Ca concentrations from 0% to 10%. This opens a new stage in the study of the high quality optical films. The stoichiometry of the films was achieved using targets of the same intended film ratio. Two sample sets were grown at 650 °C, one set with argon gas background at 10 mTorr and the other one without any intentionally introduced gases. The structural properties for the grown films were studied using X-ray Diffraction. It was clear that by increasing Ca, the lattice parameter c is decreased and 2θ was shifted towards higher values from, while the FWHM was increased. These results indicated that the film crystallinity degrades as Ca content in the films increased.

  14. Study of O2(1Δ) production by nuclear pumping. Final report, 12 April 1982-30 June 1983

    International Nuclear Information System (INIS)

    Miley, G.H.

    1983-01-01

    Studies concerned with the possible use of nuclear pumping to produce O 2 ( 1 Δ) are described. The goal is to develop methods to produce adequate O 2 ( 1 Δ) to use in an O 2 -I 2 mixing-type laser. Although the O 2 ( 1 Δ) concentrations generated in the nuclear induced discharge are too small for the operation of an iodine laser, one of the most promising approaches identified involves the initial production of ozone by nuclear pumping of a high pressure (approx. 5 atm) O 2 -He mixture. The ozone mixture is then photodecomposed by use of a KrF nuclear pumped flashlamp. Based on a combination of experimental and theoretical data, it is estimated that O 2 ( 1 Δ)/O 2 ratios > 0.3 can be produced this way with approx. 7 Torr of O 2 ( 1 Δ) in a mixture initially containing 2 Torr of O 3 . This is well above the minimum requirements for operation of an iodine laser. Experimental results of nuclear pumping O 2 -noble gas mixtures in a pulsed TRIGA reactor are described and scaling relations developed

  15. The effect of excitation and preparation pulses on nonslice selective 2D UTE bicomponent analysis of bound and free water in cortical bone at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shihong [Department of Radiology, University of California, San Diego, California 92103-8226 (United States); Department of Radiology, Hua Dong Hospital, Fudan University, Shanghai 200040 (China); Yancheng Medical College, Jiangsu (China); The First People' s Hospital of Yancheng City, Jiangsu 224005 (China); Chang, Eric Y.; Chung, Christine B. [VA San Diego Healthcare System, San Diego, California 92161 and Department of Radiology, University of California, San Diego, California 92103-8226 (United States); Bae, Won C.; Du, Jiang, E-mail: jiangdu@ucsd.edu [Department of Radiology, University of California, San Diego, California 92103-8226 (United States); Hua, Yanqing [Department of Radiology, Hua Dong Hospital, Fudan University, Shanghai 200040 (China); Zhou, Yi [The First People' s Hospital of Yancheng City, Jiangsu 224005 (China)

    2014-02-15

    Purpose: The purpose of this study was to investigate the effect of excitation, fat saturation, long T2 saturation, and adiabatic inversion pulses on ultrashort echo time (UTE) imaging with bicomponent analysis of bound and free water in cortical bone for potential applications in osteoporosis. Methods: Six bovine cortical bones and six human tibial midshaft samples were harvested for this study. Each bone sample was imaged with eight sequences using 2D UTE imaging at 3T with half and hard excitation pulses, without and with fat saturation, long T2 saturation, and adiabatic inversion recovery (IR) preparation pulses. Single- and bicomponent signal models were utilized to calculate the T2{sup *}s and/or relative fractions of short and long T2{sup *}s. Results: For all bone samples UTE T2{sup *} signal decay showed bicomponent behavior. A higher short T2{sup *} fraction was observed on UTE images with hard pulse excitation compared with half pulse excitation (75.6% vs 68.8% in bovine bone, 79.9% vs 73.2% in human bone). Fat saturation pulses slightly reduced the short T2{sup *} fraction relative to regular UTE sequences (5.0% and 2.0% reduction, respectively, with half and hard excitation pulses for bovine bone, 6.3% and 8.2% reduction, respectively, with half and hard excitation pulses for human bone). Long T2 saturation pulses significantly reduced the long T2{sup *} fraction relative to regular UTE sequence (18.9% and 17.2% reduction, respectively, with half and hard excitation pulses for bovine bone, 26.4% and 27.7% reduction, respectively, with half and hard excitation pulses for human bone). With IR-UTE preparation the long T2{sup *} components were significantly reduced relative to regular UTE sequence (75.3% and 66.4% reduction, respectively, with half and hard excitation pulses for bovine bone, 87.7% and 90.3% reduction, respectively, with half and hard excitation pulses for human bone). Conclusions: Bound and free water T2{sup *}s and relative fractions can

  16. The effect of excitation and preparation pulses on nonslice selective 2D UTE bicomponent analysis of bound and free water in cortical bone at 3T

    International Nuclear Information System (INIS)

    Li, Shihong; Chang, Eric Y.; Chung, Christine B.; Bae, Won C.; Du, Jiang; Hua, Yanqing; Zhou, Yi

    2014-01-01

    Purpose: The purpose of this study was to investigate the effect of excitation, fat saturation, long T2 saturation, and adiabatic inversion pulses on ultrashort echo time (UTE) imaging with bicomponent analysis of bound and free water in cortical bone for potential applications in osteoporosis. Methods: Six bovine cortical bones and six human tibial midshaft samples were harvested for this study. Each bone sample was imaged with eight sequences using 2D UTE imaging at 3T with half and hard excitation pulses, without and with fat saturation, long T2 saturation, and adiabatic inversion recovery (IR) preparation pulses. Single- and bicomponent signal models were utilized to calculate the T2 * s and/or relative fractions of short and long T2 * s. Results: For all bone samples UTE T2 * signal decay showed bicomponent behavior. A higher short T2 * fraction was observed on UTE images with hard pulse excitation compared with half pulse excitation (75.6% vs 68.8% in bovine bone, 79.9% vs 73.2% in human bone). Fat saturation pulses slightly reduced the short T2 * fraction relative to regular UTE sequences (5.0% and 2.0% reduction, respectively, with half and hard excitation pulses for bovine bone, 6.3% and 8.2% reduction, respectively, with half and hard excitation pulses for human bone). Long T2 saturation pulses significantly reduced the long T2 * fraction relative to regular UTE sequence (18.9% and 17.2% reduction, respectively, with half and hard excitation pulses for bovine bone, 26.4% and 27.7% reduction, respectively, with half and hard excitation pulses for human bone). With IR-UTE preparation the long T2 * components were significantly reduced relative to regular UTE sequence (75.3% and 66.4% reduction, respectively, with half and hard excitation pulses for bovine bone, 87.7% and 90.3% reduction, respectively, with half and hard excitation pulses for human bone). Conclusions: Bound and free water T2 * s and relative fractions can be assessed using UTE bicomponent

  17. Cu{sub 2}O/TiO{sub 2} heterostructures on a DVD as easy&cheap photoelectrochemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Zanatta, Michele; Calvillo, Laura; Zheng, Jian; Rizzi, Gian Andrea, E-mail: gianandrea.rizzi@unipd.it; Durante, Christian; Giallongo, Giuseppe; Chirkov, Dymitrov; Colazzo, Luciano; Marega, Carla; Gennaro, Armando; Granozzi, Gaetano

    2016-03-31

    Cu{sub 2}O nanoparticles have been grown by pulse-electrochemical deposition on a Digital Versatile Disk (DVD) which acts as a nanostructured electrode. Prior to Cu{sub 2}O deposition, the silver-coated rectangular-shaped grooves of the disassembled DVD were coated with a TiO{sub 2} thin film by a modified sol–gel method, where oxalic acid is used in place of the usual mineral acids to peptize the precipitated hydrous titania formed from the hydrolysis of titanium iso-propoxide. This procedure leaves no inorganic residues after UV-curing, resulting in a high quality film, mainly composed of TiO{sub 2}-anatase. As demonstrated by Atomic Force Microscopy (AFM) measurements, the DVD grooves are filled by a 120–130 nm thick TiO{sub 2} film, while the thickness of the TiO{sub 2} deposit on the crests is only ca. 50 nm. This inhomogeneous thickness leads to an inhomogeneous electric field when the DVD is used as an electrode for depositing Cu{sub 2}O nanoparticles, which eventually leads to the growth of Cu{sub 2}O nanoparticles only on the DVD crests. A highly regular and reproducible Cu{sub 2}O/TiO{sub 2} stripe-like heterostructure is obtained where both semiconducting oxides are aside. This system has been characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray photoemission spectroscopy (XPS), Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy, Raman spectroscopy and photocurrent measurements. A possible use of this easy&cheap electrode as a visible light responsive sensor to water soluble organics in basic solution is suggested. - Highlights: • A commercial DVD is recycled to prepare cheap photo-electrochemical sensors. • The sensing elements are Cu{sub 2}O nanostripes grown on a nanostructured TiO{sub 2} thin film obtained at room temperature. • Water soluble organics can be detected by dissolved O{sub 2} activation with visible light.

  18. Optical Properties of Nitrogen-Substituted Strontium Titanate Thin Films Prepared by Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Alexander Wokaun

    2009-09-01

    Full Text Available Perovskite-type N-substituted SrTiO3 thin films with a preferential (001 orientation were grown by pulsed laser deposition on (001-oriented MgO and LaAlO3 substrates. Application of N2 or ammonia using a synchronized reactive gas pulse produces SrTiO3-x:Nx films with a nitrogen content of up to 4.1 at.% if prepared with the NH3 gas pulse at a substrate temperature of 720 °C. Incorporating nitrogen in SrTiO3 results in an optical absorption at 370-460 nm associated with localized N(2p orbitals. The estimated energy of these levels is ≈2.7 eV below the conduction band. In addition, the optical absorption increases gradually with increasing nitrogen content.

  19. Cu2O-based solar cells using oxide semiconductors

    Science.gov (United States)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2016-01-01

    We describe significant improvements of the photovoltaic properties that were achieved in Al-doped ZnO (AZO)/n-type oxide semiconductor/p-type Cu2O heterojunction solar cells fabricated using p-type Cu2O sheets prepared by thermally oxidizing Cu sheets. The multicomponent oxide thin film used as the n-type semiconductor layer was prepared with various chemical compositions on non-intentionally heated Cu2O sheets under various deposition conditions using a pulsed laser deposition method. In Cu2O-based heterojunction solar cells fabricated using various ternary compounds as the n-type oxide thin-film layer, the best photovoltaic performance was obtained with an n-ZnGa2O4 thin-film layer. In most of the Cu2O-based heterojunction solar cells using multicomponent oxides composed of combinations of various binary compounds, the obtained photovoltaic properties changed gradually as the chemical composition was varied. However, with the ZnO-MgO and Ga2O3-Al2O3 systems, higher conversion efficiencies (η) as well as a high open circuit voltage (Voc) were obtained by using a relatively small amount of MgO or Al2O3, e.g., (ZnO)0.91-(MgO)0.09 and (Ga2O3)0.975-(Al2O3)0.025, respectively. When Cu2O-based heterojunction solar cells were fabricated using Al2O3-Ga2O3-MgO-ZnO (AGMZO) multicomponent oxide thin films deposited with metal atomic ratios of 10, 60, 10 and 20 at.% for the Al, Ga, Mg and Zn, respectively, a high Voc of 0.98 V and an η of 4.82% were obtained. In addition, an enhanced η and an improved fill factor could be achieved in AZO/n-type multicomponent oxide/p-type Cu2O heterojunction solar cells fabricated using Na-doped Cu2O (Cu2O:Na) sheets that featured a resistivity controlled by optimizing the post-annealing temperature and duration. Consequently, an η of 6.25% and a Voc of 0.84 V were obtained in a MgF2/AZO/n-(Ga2O3-Al2O3)/p-Cu2O:Na heterojunction solar cell fabricated using a Cu2O:Na sheet with a resistivity of approximately 10 Ω·cm and a (Ga0.975Al0.025)2

  20. Pulse-electron paramagnetic resonance of Cr.sup.3+./sup. centers in SrTiO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Azamat, Dmitry; Dejneka, Alexandr; Lančok, Ján; Trepakov, Vladimír; Jastrabík, Lubomír; Badalyan, A. G.

    2013-01-01

    Roč. 113, č. 17 (2013), "174106-1"-"174106-6" ISSN 0021-8979 R&D Projects: GA MŠk(CZ) LM2011029; GA TA ČR TA01010517; GA ČR GAP108/12/1941 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : pulse-electron paramagnetic resonance * Cr3+ centers in SrTiO 3 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.185, year: 2013

  1. The Trichel pulse corona in N2 + CCl2F2 mixtures: the shape of pulses

    International Nuclear Information System (INIS)

    Vagnerova, L.; Dindosova, D.; Skalny, J.D.

    1998-01-01

    The formation of regular Trichel pulses in electronegative gaseous mixtures is studied experimentally, with emphasis on the consequences of different electron attachment mechanisms in the used gas mixtures on the behavior of the discharge. Negative ions are believed to be responsible for excitation of the Trichel pulses. The experimental data presented in the paper give evidence that the origin of the negative ions does not play any substantial role in the formation of the initial part of the Trichel pulses. (J.U.)

  2. A History of Mild Traumatic Brain Injury affects Peripheral Pulse Oximetry during Normobaric Hypoxia

    Directory of Open Access Journals (Sweden)

    Leonard Temme

    2016-09-01

    Full Text Available Introduction: Physiological and emotional stressors increase symptoms of concussion in recently injured individuals and both forms of stress induce symptoms in people recovering from mild traumatic brain injury (mTBI but who are asymptomatic when not stressed or are at rest. Methods: Healthy asymptomatic adults (25.0 ± 5.1 years with a history of mTBI (n = 36 and matched healthy controls (n = 36 with no mTBI history were exposed to three levels of normobaric hypoxic stress generated with the Reduced Oxygen Breathing Device (ROBD (Environics, Inc., Tollande, CT, which reduced the percent oxygen by mixing sea level air with nitrogen. The ROBD reduced the percent oxygen in the breathable air from the normal 21% to 15.5% O2, 14% O2, and 13% O2. Under these conditions: (a a standard pulse oximeter recorded peripheral oxygen saturation (SpO2 and pulse rate (beats per minute, and (b the FIT (PMI, Inc., Rockville, MD recorded saccadic velocity and pupillary response dynamics to a brief light flash. Results: For all three hypoxic stress conditions the mTBI group had significantly higher SpO2 during the final minute of exposure than did the controls F(2.17,151.8 = 5.29, p < .001, η2 = .852 and the rate of SpO2 change over time was significantly shallower for the mTBI than for the controls F(2.3,161.3 = 2.863, p < .001, η2 = .569, Greenhouse-Geisser corrected. Overall, mTBI had lower pulse rate but the difference was only significant for the 14% O2 condition. FIT oculomotor measures were not sensitive to group differences. When exposed to mild or moderate normobaric hypoxic stress (15% O2: (1 SpO2 differences emerged between the mTBI and matched healthy controls, (2 heart rate trended lower in the mTBI group, and (3 FIT measures were not sensitive to group differences. Conclusion: A relatively minor hypoxic challenge can reveal measurable differences in SpO2 and heart rate in otherwise asymptomatic individuals with a history of mTBI.

  3. Cu2O-based solar cells using oxide semiconductors

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2016-01-01

    We describe significant improvements of the photovoltaic properties that were achieved in Al-doped ZnO (AZO)/n-type oxide semiconductor/p-type Cu 2 O heterojunction solar cells fabricated using p-type Cu 2 O sheets prepared by thermally oxidizing Cu sheets. The multicomponent oxide thin film used as the n-type semiconductor layer was prepared with various chemical compositions on non-intentionally heated Cu 2 O sheets under various deposition conditions using a pulsed laser deposition method. In Cu 2 O-based heterojunction solar cells fabricated using various ternary compounds as the n-type oxide thin-film layer, the best photovoltaic performance was obtained with an n-ZnGa 2 O 4 thin-film layer. In most of the Cu 2 O-based heterojunction solar cells using multicomponent oxides composed of combinations of various binary compounds, the obtained photovoltaic properties changed gradually as the chemical composition was varied. However, with the ZnO-MgO and Ga 2 O 3 -Al 2 O 3 systems, higher conversion efficiencies (η) as well as a high open circuit voltage (V oc ) were obtained by using a relatively small amount of MgO or Al 2 O 3 , e.g., (ZnO) 0.91 –(MgO) 0.09 and (Ga 2 O 3 ) 0.975 –(Al 2 O 3 ) 0.025 , respectively. When Cu 2 O-based heterojunction solar cells were fabricated using Al 2 O 3 –Ga 2 O 3 –MgO–ZnO (AGMZO) multicomponent oxide thin films deposited with metal atomic ratios of 10, 60, 10 and 20 at.% for the Al, Ga, Mg and Zn, respectively, a high V oc of 0.98 V and an η of 4.82% were obtained. In addition, an enhanced η and an improved fill factor could be achieved in AZO/n-type multicomponent oxide/p-type Cu 2 O heterojunction solar cells fabricated using Na-doped Cu 2 O (Cu 2 O:Na) sheets that featured a resistivity controlled by optimizing the post-annealing temperature and duration. Consequently, an η of 6.25% and a V oc of 0.84 V were obtained in a MgF 2 /AZO/n-(Ga 2 O 3 –Al 2 O 3 )/p-Cu 2 O:Na heterojunction solar cell fabricated using

  4. Thermal conductivities of ThO{sub 2}, NpO{sub 2} and their related oxides: Molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Arima, Tatsumi, E-mail: arima@nucl.kyushu-u.ac.jp; Yoshida, Keita; Matsumoto, Taku; Inagaki, Yaohiro; Idemitsu, Kazuya

    2014-02-01

    The thermal conductivities of ThO{sub 2}, NpO{sub 2}, (Th, U)O{sub 2}, (Th, Pu)O{sub 2} and (U, Np)O{sub 2} have been investigated by molecular dynamics (MD) simulation up to 2000 K using the Busing–Ida potential function with partial ionic charges. In the present study, the thermal conductivity was calculated mainly by the Green–Kubo formula in the equilibrium MD scheme. The thermal conductivities of above actinide dioxides decreased with the increase of temperature due to the phonon–phonon interaction (Umklapp process). Concerning the composition of solid solutions, the decrease in thermal conductivity of (Th, Pu)O{sub 2} is great as compared to other ones. Various MD calculations elucidated that this result was caused by phonon scattering by lattice defects as additives rather than the phonon–phonon interaction, and that the lattice strain dominantly contributed to it.

  5. Development on UO3-K2O and MoO3-K2O binary systems and study of UO2MoO4-MoO3 domain within UO3-MoO3-K2O ternary system

    International Nuclear Information System (INIS)

    Dion, C.; Noel, A.

    1983-01-01

    This paper confirms the previous study on the MoO 3 -K 2 O system, and constitutes a clarity of the UO 3 -K 2 O system. Four distinct uranates VI with alkaline metal/uranium ratio's 2, 1, 0,5 and 0,285 exist. Preparation conditions and powder diffraction spectra of these compounds are given. Additional informations relative to K 2 MoO 4 allotropic transformations are provided. Study of UO 2 MoO 4 -K 2 MoO 4 diagram has brought three new phases into prominence: (B) K 6 UMo 4 O 18 incongruently melting point, (E) K 2 UMo 2 O 10 congruently melting and (F) K 2 U 3 Mo 4 O 22 incongruently melting point. Within MoO 3 -K 2 MoO 4 -UO 2 MoO 4 ternary system, no new phase is found. The general appearance of ternary liquidus and crystallization fields of several compounds are given. These three new compounds become identified with these of UO 2 MoO 4 -Na 2 MoO 4 binary system [fr

  6. Pulse oximetry recorded from the Phone Oximeter for detection of obstructive sleep apnea events with and without oxygen desaturation in children.

    Science.gov (United States)

    Garde, Ainara; Dehkordi, Parastoo; Wensley, David; Ansermino, J Mark; Dumont, Guy A

    2015-01-01

    Obstructive sleep apnea (OSA) disrupts normal ventilation during sleep and can lead to serious health problems in children if left untreated. Polysomnography, the gold standard for OSA diagnosis, is resource intensive and requires a specialized laboratory. Thus, we proposed to use the Phone Oximeter™, a portable device integrating pulse oximetry with a smartphone, to detect OSA events. As a proportion of OSA events occur without oxygen desaturation (defined as SpO2 decreases ≥ 3%), we suggest combining SpO2 and pulse rate variability (PRV) analysis to identify all OSA events and provide a more detailed sleep analysis. We recruited 160 children and recorded pulse oximetry consisting of SpO2 and plethysmography (PPG) using the Phone Oximeter™, alongside standard polysomnography. A sleep technician visually scored all OSA events with and without oxygen desaturation from polysomnography. We divided pulse oximetry signals into 1-min signal segments and extracted several features from SpO2 and PPG analysis in the time and frequency domain. Segments with OSA, especially the ones with oxygen desaturation, presented greater SpO2 variability and modulation reflected in the spectral domain than segments without OSA. Segments with OSA also showed higher heart rate and sympathetic activity through the PRV analysis relative to segments without OSA. PRV analysis was more sensitive than SpO2 analysis for identification of OSA events without oxygen desaturation. Combining SpO2 and PRV analysis enhanced OSA event detection through a multiple logistic regression model. The area under the ROC curve increased from 81% to 87%. Thus, the Phone Oximeter™ might be useful to monitor sleep and identify OSA events with and without oxygen desaturation at home.

  7. Laser stimulated third harmonic generation studies in ZnO-Ta2O5-B2O3 glass ceramics entrenched with Zn3Ta2O8 crystal phases

    Science.gov (United States)

    Siva Sesha Reddy, A.; Jedryka, J.; Ozga, K.; Ravi Kumar, V.; Purnachand, N.; Kityk, I. V.; Veeraiah, N.

    2018-02-01

    In this study zinc borate glasses doped with different concentrations Ta2O5 were synthesized and were crystallized by heat treatment for prolonged times. The samples were characterized by XRD, SEM, IR and Raman spectroscopy techniques. The SEM images of the crystallized samples have indicated that the samples contain randomly distributed crystal grains with size ∼1 μm entrenched in the residual amorphous phase. XRD studies have exhibited diffraction peaks identified as being due to the reflections from (1 1 1) planes of monoclinic Zn3Ta2O8 crystal phase that contains intertwined tetrahedral zinc and octahedral tantalate structural units. The concentration of such crystal phases in the bulk samples is observed to increase with increase of Ta2O5 up to 3.0 mol%. The IR and Raman spectroscopy studies have confirmed the presence of ZnO4 and TaO6 structural units in the glass network in addition to the conventional borate structural units. For measuring third harmonic generation (THG) in the samples, the samples were irradiated with 532 nm laser beam and the intensity of THG of probing beam (Nd:YAG λ = 1064 nm 20 ns pulsed laser (ω)) is measured as a function of fundamental beam power varying up to 200 J/m2. The intensity of THG is found to be increasing with increase of fundamental beam power and found to be the maximal for the glass crystallized with 3.0 mol% of Ta2O5. The intensity of THG of the ceramicized samples is found to be nearly 5 times higher with respect to that of pre-crystallized samples. The generation of 3ω is attributed to the perturbation/interaction between Zn3Ta2O8 anisotropic crystal grains and the incident probing beam.

  8. XUV pulse effect on signal modulations of harmonic spectra from H2+ and T2+

    Science.gov (United States)

    Feng, Liqiang; Liu, Hang; Kapteyn, Henry J.; Feng, April Y.

    2018-05-01

    The effects of signal modulations on the molecular high-order harmonic generations in H2^{+ } and T2+ have been theoretically investigated. It is found that with the introduction of the XUV pulse, due to the absorption of the extra XUV photons in the recombination process, multiplateaus on the harmonic spectra, separated by the XUV photon energy can be found. Moreover, this multiplateau structure is insensitive to the wavelength of the XUV pulse. In shorter pulse duration, the intensities of the multiplateaus from H2+ are higher than those from T2+; while in longer pulse duration, the opposite results can be found. Finally, by changing the delay time of the XUV pulse, the signal modulations (including the amplitude and the frequency modulations) of the multiplateaus can be controlled.

  9. Magnetic and structural study of Cu-doped TiO2 thin films

    International Nuclear Information System (INIS)

    Torres, C.E. Rodriguez; Golmar, F.; Cabrera, A.F.; Errico, L.; Navarro, A.M. Mudarra; Renteria, M.; Sanchez, F.H.; Duhalde, S.

    2007-01-01

    Transparent pure and Cu-doped (2.5, 5 and 10 at.%) anatase TiO 2 thin films were grown by pulsed laser deposition technique on LaAlO 3 substrates. The samples were structurally characterized by X-ray absorption spectroscopy and X-ray diffraction. The magnetic properties were measured using a SQUID. All films have a FM-like behaviour. In the case of the Cu-doped samples, the magnetic cycles are almost independent of the Cu concentration. Cu atoms are forming CuO and/or substituting Ti in TiO 2 . The thermal treatment in air promotes the CuO segregation. Since CuO is antiferromagnetic, the magnetic signals present in the films could be assigned to Cu substitutionally replacing cations in TiO 2

  10. Total scattering cross-sections for the systems nH2 + nH2, pH2 + pH2, nD2 + nD2, oD2 + oD2 and HD + HD for relative energies below ten milli-electron volts

    International Nuclear Information System (INIS)

    Johnson, D.L.

    1979-01-01

    Relative total scattering cross sections for nH 2 + nH 2 , pH 2 + pH 2 , nD 2 + nD 2 , oD 2 + oD 2 , and HD + HD were measured with inclined nozzle beams derived from nozzle sources and intersecting at 21 0 . Both nozzles could be varied in temperature from 4.2K to 300K to provide the velocity range for the cross sections. The use of a parahydrogen converter allowed the measurement of the pH 2 + pH 2 and oD 2 + oD 2 cross sections. Cross sections for the H 2 + H 2 were measured over a relative velocity range of 200 m/s to 1450 m/s. The nH 2 + nH 2 results show an undulation in the velocity range between 350 m/s and 400 m/s that corresponds to a l = 3 orbiting resonance. Analysis of the pH 2 + pH 2 cross section indicates a l = 4 orbiting resonance near 586 m/s. This resonance has a peak energy of 1.79 meV and a measured energy width of 1.05 meV, both which agree well with theoretical predictions. The D 2 + D 2 cross sections have been measured in the velocity range between 190 m/s and 1000 m/s. No orbiting resonances have been observed, but in the oD 2 + oD 2 cross section a deep minimum between the l = 4 and the l = 5 resonances at low velocities is clearly suggested. Initial measurements of the HD + HD cross section suggests the presence of the l = 4 orbiting resonance near a relative velocity of 300 m/s. The experimental results for each system were normalized to the total cross sections, which were convoluted to account for experimental velocity and angular dispersions. Three different potentials were considered, but a chi-square fit of the data indicates that the Schaefer and Meyer potential, which has been theoretically obtained from first principles, provides the best overall description of the hydrogen systems in the low collisional energy range

  11. Ferroelectric BaTiO3 thin films on Ti substrate fabricated using pulsed-laser deposition.

    Science.gov (United States)

    He, J; Jiang, J C; Liu, J; Collins, G; Chen, C L; Lin, B; Giurgiutiu, V; Guo, R Y; Bhalla, A; Meletis, E I

    2010-09-01

    We report on the fabrication of ferroelectric BaTiO3 thin films on titanium substrates using pulsed laser deposition and their microstructures and properties. Electron microscopy studies reveal that BaTiO3 films are composed of crystalline assemblage of nanopillars with average cross sections from 100 nm to 200 nm. The BaTiO3 films have good interface structures and strong adhesion with respect to Ti substrates by forming a rutile TiO2 intermediate layer with a gradient microstructure. The room temperature ferroelectric polarization measurements show that the as-deposited BTO films possess nearly the same spontaneous polarization as the bulk BTO ceramics indicating formation of ferroelectric domains in the films. Successful fabrication of such ferroelectric films on Ti has significant importance for the development of new applications such as structural health monitoring spanning from aerospace to civil infrastructure. The work can be extended to integrate other ferroelectric oxide films with various promising properties to monitor the structural health of materials.

  12. Determination of the UO2-ZrO2-BaO equilibrium diagram

    International Nuclear Information System (INIS)

    Paschoal, J.O.A.; Kleykanp, H.; Thuemmler, F.

    1984-01-01

    It is determined the equilibrium diagram of UO 2 - ZrO 2 - BaO to interpret and predict changes in the chemical properties of ceramic (oxide) nuclear fuels during irradiation. The isothermal section of the system at 1700 0 C was determined experimentally, utilizing the techniques of ceramography, X-ray diffraction analysis, microprobe analysis and differential thermal analysis. The solid solubility limits at 1700 0 C between UO 2 and ZrO 2 , UO 2 and BaO, ZrO 2 and BaO, ZrO 2 and BaO and BaUO 3 and BaZrO 3 is presented. The influence of oxygen potential in relation to the different phases is discussed and the phase diagram of the system presented. (M.C.K.) [pt

  13. RHEED study of titanium dioxide with pulsed laser deposition

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Pryds, Nini; Schou, Jørgen

    2009-01-01

    Reflection high-energy electron diffraction (RHEED) operated at high pressure has been used to monitor the growth of thin films of titanium dioxide (TiO2) on (1 0 0) magnesium oxide (MgO) substrates by pulsed laser deposition (PLD). The deposition is performed with a synthetic rutile TiO2 target...

  14. [The spectra of a laser-produced plasma source with CO2, O2 and CF4 liquid aerosol spray target].

    Science.gov (United States)

    Ni, Qi-Liang; Chen, Bo

    2008-11-01

    A laser-produced plasma (LPP) source with liquid aerosol spray target and nanosecond laser was developed, based on both soft X-ray radiation metrology and extreme ultraviolet projection lithography (EUVL). The LPP source is composed of a stainless steel solenoid valve whose temperature can be continuously controlled, a Nd : YAG laser with pulse width, working wavelength and pulse energy being 7 ns, 1.064 microm and 1J respectively, and a pulse generator which can synchronously control the valve and the laser. A standard General Valve Corporation series 99 stainless steel solenoid valve with copper gasket seals and a Kel-F poppet are used in order to minimize leakage and poppet deformation during high-pressure cryogenic operation. A close fitting copper cooling jacket surrounds the valve body. The jacket clamps a copper coolant carrying tube 3 mm in diameter, which is fed by an automatically pressurized liquid nitrogen-filled dewar. The valve temperature can be controlled between 77 and 473 K. For sufficiently high backing pressure and low temperature, the valve reservoir gas can undergo a gas-to-liquid phase transition. Upon valve pulsing, the liquid is ejected into a vacuum and breaks up into droplets, which is called liquid aerosol spray target. For the above-mentioned LPP source, firstly, by the use of Cowan program on the basis of non-relativistic quantum mechanics, the authors computed the radiative transition wavelengths and probabilities in soft X-ray region for O4+, O5+, O6+, O7+, F5+, F6+ and F7+ ions which were correspondingly produced from the interaction of the 10(11)-10(12) W x cm(-2) power laser with liquid O2, CO2 and CF4 aerosol spray targets. Secondly, the authors measured the spectra of liquid O2, CO2 and CF4 aerosol spray target LPP sources in the 6-20 nm band for the 8 x 10(11) W x cm(-2) laser irradiance. The measured results were compared with the Cowan calculated results ones, and the radiative transition wavelength and probability for the

  15. Electrically programmable-erasable In-Ga-Zn-O thin-film transistor memory with atomic-layer-deposited Al2O3/Pt nanocrystals/Al2O3 gate stack

    Directory of Open Access Journals (Sweden)

    Shi-Bing Qian

    2015-12-01

    Full Text Available Amorphous indium-gallium-zinc oxide (a-IGZO thin-film transistor (TFT memory is very promising for transparent and flexible system-on-panel displays; however, electrical erasability has always been a severe challenge for this memory. In this article, we demonstrated successfully an electrically programmable-erasable memory with atomic-layer-deposited Al2O3/Pt nanocrystals/Al2O3 gate stack under a maximal processing temperature of 300 oC. As the programming voltage was enhanced from 14 to 19 V for a constant pulse of 0.2 ms, the threshold voltage shift increased significantly from 0.89 to 4.67 V. When the programmed device was subjected to an appropriate pulse under negative gate bias, it could return to the original state with a superior erasing efficiency. The above phenomena could be attributed to Fowler-Nordheim tunnelling of electrons from the IGZO channel to the Pt nanocrystals during programming, and inverse tunnelling of the trapped electrons during erasing. In terms of 0.2-ms programming at 16 V and 350-ms erasing at −17 V, a large memory window of 3.03 V was achieved successfully. Furthermore, the memory exhibited stable repeated programming/erasing (P/E characteristics and good data retention, i.e., for 2-ms programming at 14 V and 250-ms erasing at −14 V, a memory window of 2.08 V was still maintained after 103 P/E cycles, and a memory window of 1.1 V was retained after 105 s retention time.

  16. Chemisorption studies of Pt/SnO2 catalysts

    Science.gov (United States)

    Brown, Kenneth G.; Ohorodnik, Susan K.; Vannorman, John D.; Schryer, Jacqueline; Upchurch, Billy T.; Schryer, David R.

    1990-01-01

    The low temperature CO oxidation catalysts that are being developed and tested at NASA-Langley are fairly unique in their ability to efficiently oxidize CO at low temperatures (approx. 303 K). The bulk of the reaction data that has been collected in the laboratory has been determined using plug flow reactors with a low mass of Pt/SnO2/SiO2 catalyst (approx. 0.1 g) and a modest flow rate (5 to 10 sc sm). The researchers have previously characterized the surface solely in terms of N2 BET surface areas. These surface areas have not been that indicative of reaction rate. Indeed, some of the formulations with high BET surface area have yielded lower reaction rates than those with lower BET surface areas. As a result researchers began a program of determining the chemisorption of the various species involved in the reaction; CO, O2 and CO2. Such a determination of will lead to a better understanding of the mechanism and overall kinetics of the reaction. The pulsed-reactor technique, initially described by Freel, is used to determine the amount of a particular molecule that is adsorbed on the catalyst. Since there is some reaction of CO with the surface to produce CO2, the pulsed reactor had to be coupled with a gas chromatograph in order to distinguish between the loss of CO that is due to adsorption by the surface and the loss that is due to reaction with the surface.

  17. Influence of oxygen pressure and aging on LaAlO3 films grown by pulsed laser deposition on SrTiO3 substrates

    KAUST Repository

    Park, Jihwey; Soh, Yeong-Ah; Aeppli, Gabriel; David, Adrian; Lin, Weinan; Wu, Tao

    2014-01-01

    The crystal structures of LaAlO3 films grown by pulsed laser deposition on SrTiO3 substrates at oxygen pressure of 10−3 millibars or 10−5 millibars, where kinetics of ablated species hardly depend on oxygen background pressure, are compared. Our

  18. (2-Formyl-6-methoxyphenolato-κ2O1,O2(perchlorato-κO(1,10-phenanthroline-κ2N,N′copper(II

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Wu

    2008-05-01

    Full Text Available In the title molecule, [Cu(C8H7O3(ClO4(C12H8N2], the CuII ion is five-coordinated by two N atoms [Cu—N = 1.995 (3 and 2.022 (3 Å] from a 1,10-phenanthroline ligand, two O atoms [Cu—O = 1.908 (2 and 1.927 (2 Å] from an o-vanillin ligand and one O atom [Cu—O = 2.510 (3 Å] from a perchlorate anion in a distorted square-pyramidal geometry. Three O atoms of the perchlorate anion are rotationally disordered between two orientations, with occupancies of 0.525 (13 and 0.475 (13. In the crystal structure, two molecules related by a centre of symmetry are paired in such a way that the phenolate O atom from one molecule completes the distorted octahedral Cu coordination in another molecule [Cu...O = 2.704 (2 Å].

  19. Process Performances of 2 ns Pulsed Discharge Plasma

    Science.gov (United States)

    Matsumoto, Takao; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori

    2011-08-01

    Pulsed discharge plasmas have been used to treat exhaust gases. Since pulse duration and the rise time of applied voltage to the discharge electrode has a strong influence on the energy efficiency of pollutant removal, the development of a short-pulse generator is of paramount importance for practical applications. In this work, it is demonstrated that the non thermal plasma produced by the 2 ns pulsed discharge has a higher energy efficiency than the 5 ns pulsed discharge plasma for NO removal and ozone generation. Typically, the NO removal efficiency was 1.0 mol kW-1 h-1 for 70% NO removal (initial NO concentration = 200 ppm, gas flow = 10 L/min). Meanwhile, the ozone yield was 500 g kW-1 h-1 for 20 g/m3 ozone concentration in the case of oxygen feeding. These energy efficiencies are the highest in the literature.

  20. Pulse distortion, energy extraction, and ASE in an HF amplifier with angular multiplexing

    International Nuclear Information System (INIS)

    McGuire, E.J.

    1976-09-01

    It has been proposed that 1 ns pulses can be efficiently extracted from the e-beam initiated HF laser by angular multiplexing, i.e., filling the amplifier with the 1 ns pulses, 1 ns apart in time, each pulse at a slightly different angle; each pulse has an input intensity of 1 W/cm 2 per line and almost fills the amplifier. We have treated this in a one dimensional model, neglecting transverse amplified spontaneous emission. We conclude that the scheme is efficient, and that most of the pulses are amplified but not distorted. The first few pulses are distorted by transient effects and the last pulse has an enhanced tail. The ratio of peak pulse intensity to forward ASE at the output is 10 4 . We then include transverse ASE and find a drastically different situation. ASE saturates the inversion after a short time depending on pulse intensity (4 ns at I/sub o/ = 1 W/cm 2 , 7 ns at I/sub o/ = 100 W/cm 2 ). The saturation time is only weakly dependent on the transverse reflection coefficient. Calculations were done on an amplifier system designed for 10 KJ output. At an incident peak pulse intensity of 10 4 W/cm 2 -line (.77 MW/cm 2 for 77 lines) 2.5 KJ was obtained in amplified pulse energy, i.e., only 6 pulses of the 24 pulse train were fully amplified. The calculations indicate that double passing the pulse train through the amplifier would enhance the energy extracted

  1. Development of all chemical solution derived Ce0.9La0.1O2 − y/Gd2Zr2O7 buffer layer stack for coated conductors: influence of the post-annealing process on surface crystallinity

    DEFF Research Database (Denmark)

    Yue, Zhao; Li, Xiaofen; Khoryushin, Alexey

    2012-01-01

    Preparation and characterization of a biaxially textured Gd2Zr2O7 and Ce0.9La0.1O2 − y (CLO, cap)/Gd2Zr2O7 (GZO, barrier) buffer layer stack by the metal–organic deposition route are reported. YBa2Cu3O7 − d (YBCO) superconductor films were deposited by the pulsed-laser deposition (PLD) technique ...

  2. Characterization of amorphous multilayered ZnO-SnO2 heterostructure thin films and their field effect electronic properties

    International Nuclear Information System (INIS)

    Lee, Su-Jae; Hwang, Chi-Sun; Pi, Jae-Eun; Yang, Jong-Heon; Oh, Himchan; Cho, Sung Haeng; Cho, Kyoung-Ik; Chu, Hye Yong

    2014-01-01

    Multilayered ZnO-SnO 2 heterostructure thin films were produced using pulsed laser ablation of pie-shaped ZnO-SnO 2 oxides target, and their structural and field effect electronic transport properties were investigated as a function of the thickness of the ZnO and SnO 2 layers. The films have an amorphous multilayered heterostructure composed of the periodic stacking of the ZnO and SnO 2 layers. The field effect electronic properties of amorphous multilayered ZnO-SnO 2 heterostructure thin film transistors (TFTs) are highly dependent on the thickness of the ZnO and SnO 2 layers. The highest electron mobility of 37 cm 2 /V s, a low subthreshold swing of a 0.19 V/decade, a threshold voltage of 0.13 V, and a high drain current on-to-off ratio of ∼10 10 obtained for the amorphous multilayered ZnO(1.5 nm)-SnO 2 (1.5 nm) heterostructure TFTs. These results are presumed to be due to the unique electronic structure of an amorphous multilayered ZnO-SnO 2 heterostructure film consisting of ZnO, SnO 2 , and ZnO-SnO 2 interface layers

  3. Pulsed laser deposition of epitaxial Sr(RuxSn1-x)O3 thin film electrodes and KNbO3/Sr(RuxSn1-x)O3 bilayers

    International Nuclear Information System (INIS)

    Christen, H.M.; Boatner, L.A.; English, L.Q.; Geea, L.A.; Marrero, P.J.; Norton, D.P.

    1995-01-01

    Sr(Ru x Sn 1-x ) 3 is proposed as a new conducting oxide for use in epitaxial multilayer structures. The Sr(Ru o 48 Sn 0.52 )0 3 composition exhibits an excellent lattice match with (100)-oriented KTaO 3 , and films of this composition grown by pulsed laser deposition on KTaO 3 , SrTiO 3 , and LaAlO 3 substrates have been analyzed by X-ray diffraction, Rutherford backscattering/ion channeling, and resistivity measurements. Epitaxial KNbO 3 /Sr(Ru 0.48 Sn 0.52 )O 3 bilayers have been successfully grown

  4. Interaction of Al with O2 exposed Mo2BC

    International Nuclear Information System (INIS)

    Bolvardi, Hamid; Music, Denis; Schneider, Jochen M.

    2015-01-01

    Highlights: • Al adheres to many surfaces. • Solid–solid interactions challenging for real (oxidized) surfaces. • Dissociative O 2 adsorption on Mo 2 BC(0 4 0). • Al nonamer is disrupted on oxidized Mo 2 BC(0 4 0). • Adhesion of a residual Al on the native oxide. - Abstract: A Mo 2 BC(0 4 0) surface was exposed to O 2 . The gas interaction was investigated using ab initio molecular dynamics and X-ray photoelectron spectroscopy (XPS) of air exposed surfaces. The calculations suggest that the most dominating physical mechanism is dissociative O 2 adsorption whereby Mo−O, O−Mo−O and Mo 2 −C−O bond formation is observed. To validate these results, Mo 2 BC thin films were synthesized utilizing high power pulsed magnetron sputtering and air exposed surfaces were probed by XPS. MoO 2 and MoO 3 bond formation is observed and is consistent with here obtained ab initio data. Additionally, the interfacial interactions of O 2 exposed Mo 2 BC(0 4 0) surface with an Al nonamer is studied with ab initio molecular dynamics to describe on the atomic scale the interaction between this surface and Al to mimic the interface present during cold forming processes of Al based alloys. The Al nonamer was disrupted and Al forms chemical bonds with oxygen contained in the O 2 exposed Mo 2 BC(0 4 0) surface. Based on the comparison of here calculated adsorption energy with literature data, Al−Al bonds are shown to be significantly weaker than the Al−O bonds formed across the interface. Hence, Al−Al bond rupture is expected for a mechanically loaded interface. Therefore the adhesion of a residual Al on the native oxide layer is predicted. This is consistent with experimental observations. The data presented here may also be relevant for other oxygen containing surfaces in a contact with Al or Al based alloys for example during forming operations

  5. InTaO4-based nanostructures synthesized by reactive pulsed laser ablation

    International Nuclear Information System (INIS)

    Yoshida, Takehito; Toyoyama, Hirokazu; Umezu, Ikurou; Sugimura, Akira

    2008-01-01

    Nanostructured Ni-doped indium-tantalum-oxides (InTaO 4 ) were synthesized by a reactive pulsed laser ablation process, aiming at the final goal of direct splitting of water under visible sunbeam irradiation. The third harmonics beam of a Nd:YAG laser was focused onto a sintered In 0.9 Ni 0.1 TaO 4-δ target in pure oxygen background gases (0.05-1.00 Torr). Increasing the oxygen gas pressure, via thin films having nanometer-sized strong morphologies, single-crystalline nanoparticles were synthesized in the reactive vapor phases. The nanostructured deposited materials have the monoclinic layered wolframite-type structure of bulk InTaO 4 , without oxygen deficiency. (orig.)

  6. 18O-tracer diffusion along nanoscaled Sc2O3/yttria stabilized zirconia (YSZ multilayers: on the influence of strain

    Directory of Open Access Journals (Sweden)

    Halit Aydin, Carsten Korte and Jürgen Janek

    2013-01-01

    Full Text Available The oxygen tracer diffusion coefficient describing transport along nano-/microscaled YSZ/Sc2O3 multilayers as a function of the thick­ness of the ion-conducting YSZ layers has been measured by isotope exchange depth profiling (IEDP, using secondary ion mass spec­trometry (SIMS. The multilayer samples were prepared by pulsed laser deposition (PLD on (0001 Al2O3 single crystalline substrates. The values for the oxygen tracer diffusion coefficient were analyzed as a combination of contributions from bulk and interface contributions and compared with results from YSZ/Y2O3-multilayers with similar microstructure. Using the Nernst–Einstein equation as the relation between diffusivity and electrical conductivity we find very good agreement between conductivity and diffusion data, and we exclude substantial electronic conductivity in the multilayers. The effect of hetero-interface transport can be well explained by a simple interface strain model. As the multilayer samples consist of columnar film crystallites with a defined inter­face structure and texture, we also discuss the influence of this particular microstructure on the interfacial strain.

  7. Topotactic phase transformation of the brownmillerite SrCoO2.5 to the perovskite SrCoO3- δ.

    Science.gov (United States)

    Jeen, H; Choi, W S; Freeland, J W; Ohta, H; Jung, C U; Lee, H N

    2013-07-19

    Pulsed laser epitaxy of brownmillerite SrCoO2.5 thin films and their phase transformation to the perovskite SrCoO3-δ are investigated. While the direct growth of the fully oxidized perovskite films is found to be an arduous task, filling some of oxygen vacancies into SrCoO2.5 by topotactic oxidation accompanies systematic evolution of electronic, magnetic, and thermoelectric properties, useful for many information and energy technologies. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Time-resolved pH/pO2 mapping with luminescent hybrid sensors.

    Science.gov (United States)

    Schröder, Claudia R; Polerecky, Lubos; Klimant, Ingo

    2007-01-01

    A method for simultaneous and referenced 2D mapping of pH and pO2 is described. The experimental setup combines a fast gateable CCD camera as detector, a LED as excitation light source and a single-layer sensor membrane as optical transducer. The planar optode comprises a lipophilic fluorescein derivative (lifetime approximately 5 ns) and platinum(II) mesotetrakis(pentafluorophenyl)porphyrin (approximately 70 micros in the absence of a quencher) immobilized in a hydrogel matrix. Depending on the fluorescent pH indicator, a pH transition in the physiological range (pH 6-pH 8) or in the near-basic region (pH 7-pH 9) can be achieved. The measuring scheme involves the time-resolved acquisition of images in three windows during a series of square-shaped excitation pulses. A method allowing the calculation of both parameters from these three images is presented. The pH/pO2 hybrid sensor incorporating the pH indicator 2',7'-dihexyl-5(6)-N-octadecyl-carboxamidofluorescein was characterized in detail. The pH and pO2 were determined with a maximum deviation of 0.03 pH unit and 6.5 hPa pO2, respectively, within the range of pH 7.6-pH 8.7 and 0-200 hPa pO2 in test measurements. The ionic strength (IS) cross-sensitivity was found to be relatively small (pH/IS pO2/IS pO2 images obtained in natural marine sediment are presented.

  9. Evaluation of the optoelectronic properties and corrosion behavior of Al2O3-doped ZnO films prepared by dc pulsed magnetron sputtering

    Science.gov (United States)

    Zubizarreta, C.; Berasategui, E. G.; Bayón, R.; Escobar Galindo, R.; Barros, R.; Gaspar, D.; Nunes, D.; Calmeiro, T.; Martins, R.; Fortunato, E.; Barriga, J.

    2014-12-01

    The main requirements for transparent conducting oxide (TCO) films acting as electrodes are a high transmission rate in the visible spectral region and low resistivity. However, in many cases, tolerance to temperature and humidity exposure is also an important requirement to be fulfilled by the TCOs to assure proper operation and durability. Besides improving current encapsulation methods, the corrosion resistance of the developed TCOs must also be enhanced to warrant the performance of optoelectronic devices. In this paper the performance of aluminum-doped zinc oxide (AZO) films deposited by pulsed dc magnetron sputtering has been studied. Structure, optical transmittance/reflectance, electrical properties (resistivity, carrier concentration and mobility) and corrosion resistance of the developed coatings have been analyzed as a function of the doping of the target and the coating thickness. Films grown from a 2.0 wt% Al2O3 target with a thickness of approximately 1 µm showed a very low resistivity of 6.54  ×  10-4 Ωcm and a high optical transmittance in the visible range of 84%. Corrosion studies of the developed samples have shown very low corrosion currents (nanoamperes), very high corrosion resistances (in the order of 107 Ω) and very high electrochemical stability, indicating no tendency for electrochemical corrosion degradation.

  10. Fabrication of cerium-doped β-Ga2O3 epitaxial thin films and deep ultraviolet photodetectors.

    Science.gov (United States)

    Li, Wenhao; Zhao, Xiaolong; Zhi, Yusong; Zhang, Xuhui; Chen, Zhengwei; Chu, Xulong; Yang, Hujiang; Wu, Zhenping; Tang, Weihua

    2018-01-20

    High-quality cerium-doped β-Ga 2 O 3 (Ga 2 O 3 :Ce) thin films could be achieved on (0001)α-Al 2 O 3 substrates using a pulsed-laser deposition method. The impact of dopant contents concentration on crystal structure, optical absorption, photoluminescence, and photoelectric properties has been intensively studied. X-ray diffraction analysis results have shown that Ga 2 O 3 :Ce films are highly (2¯01) oriented, and the lattice spacing of the (4¯02) planes is sensitive to the Ce doping level. The prepared Ga 2 O 3 :Ce films show a sharp absorption edge at about 250 nm, meaning a high transparency to deep ultraviolet (DUV) light. The photoluminescence results revealed that the emissions were in the violet-blue-green region, which are associated with the donor-acceptor transitions with the Ce 3+ and oxygen vacancies related defects. A simple DUV photodetector device with a metal-semiconductor-metal structure has also been fabricated based on Ga 2 O 3 :Ce thin film. A distinct DUV photoresponse was obtained, suggesting a potential application in DUV photodetector devices.

  11. Multiwavelength pulse oximetry in the measurement of hemoglobin fractions

    Science.gov (United States)

    Manzke, Bernd; Schwider, Johannes; Lutter, Norbert O.; Engelhardt, Kai; Stork, Wilhelm

    1996-04-01

    The two wavelength design of the majority of pulse oximeters assumes only two absorbing hemoglobin fractions, oxyhemoglobin (O2Hb), and reduced hemoglobin (HHb) irrespective of the presence of methemoglobin (MetHb) and carboxyhemoglobin (COHb). If MetHb or COHb is present, it contributes to the pulse-added absorbance signal and will be interpreted as either HHb or O2Hb or some combination of the two. In this paper we describe a noninvasive multi-wavelength pulse oximeter measuring O2Hb, HHb, MetHb, and COHb at a specified accuracy of 1.0%. The system was designed with respect to the results of numerical simulations. It consists of 9 laserdiodes (LDs) and 7 light emitting diodes (LEDs), a 16-bit analog-digital converter (ADC) and has a sampling rate of 16 kHz. The laser didoes and LEDs were coupled into multi-mode fibers and led with a liquid lightguide to the finger clip and then the photodiode. It also presents the results of a clinical study, including a setup with a quartz tungsten halogen lamp (with fiber output) and a diode array spectrometer, a standard pulse oximeter and two in-vitro oximeters (radiometer OSM3 and radiometer ABL 520) as references.

  12. Vibrational spectroscopy of shock-compressed fluid N2 and O2

    International Nuclear Information System (INIS)

    Schmidt, S.C.; Moore, D.S.; Shaw, M.S.; Johnson, J.D.

    1987-01-01

    Single-pulse multiplex coherent anti-Stokes Raman scattering (CARS) was used to observe the vibrational spectra of liquid N 2 shock-compressed to several pressures and temperatures up to 41 GPa and 5200 K and liquid O 2 shock-compressed to several pressures and temperatures up to 10 GPa and 1000 K. For N 2 , the experimental spectra were compared to synthetic spectra calculated using a semiclassical model for CARS intensities and estimated vibrational frequencies, peak Raman susceptibilities, and Raman line widths. The question of excited state populations in the shock-compressed state is addressed

  13. Tracing high-pressure metamorphism in marbles: Phase relations in high-grade aluminous calcite-dolomite marbles from the Greek Rhodope massif in the system CaO-MgO-Al 2O 3-SiO 2-CO 2 and indications of prior aragonite

    Science.gov (United States)

    Proyer, A.; Mposkos, E.; Baziotis, I.; Hoinkes, G.

    2008-08-01

    Four different types of parageneses of the minerals calcite, dolomite, diopside, forsterite, spinel, amphibole (pargasite), (Ti-)clinohumite and phlogopite were observed in calcite-dolomite marbles collected in the Kimi-Complex of the Rhodope Metamorphic Province (RMP). The presence of former aragonite can be inferred from carbonate inclusions, which, in combination with an analysis of phase relations in the simplified system CaO-MgO-Al 2O 3-SiO 2-CO 2 (CMAS-CO 2) show that the mineral assemblages preserved in these marbles most likely equilibrated at the aragonite-calcite transition, slightly below the coesite stability field, at ca. 720 °C, 25 kbar and aCO 2 ~ 0.01. The thermodynamic model predicts that no matter what activity of CO 2, garnet has to be present in aluminous calcite-dolomite-marble at UHP conditions.

  14. Kinetic model of vibrational relaxation in a humid-air pulsed corona discharge

    International Nuclear Information System (INIS)

    Komuro, Atsushi; Ono, Ryo; Oda, Tetsuji

    2010-01-01

    The effect of humidity on the vibrational relaxation of O 2 (v) and N 2 (v) in a humid-air pulsed corona discharge is studied using a kinetic model. We previously showed that humidity markedly increases the vibration-to-translation (V-T) rate of molecules in a humid-air pulsed corona discharge by measuring O 2 (v) density (Ono et al 2010 Plasma Sources Sci. Technol. 19 015009). In this paper, we numerically calculate the vibrational kinetics of O 2 , N 2 and H 2 O to study the reason behind the acceleration of V-T in the presence of humidity. The calculation closely reproduces the measured acceleration of V-T due to humidity, and shows that the increase in the V-T rate is caused by the fast vibration-to-vibration (V-V) processes of O 2 -H 2 O and N 2 -H 2 O and the subsequent rapid V-T process of H 2 O-H 2 O. In addition, it is shown that O atom density is also important in the vibrational kinetics owing to the rapid V-T process of O 2 -O.

  15. Calibration method of the pulsed X-ray relative sensitivity for ST401 plastic scintillators

    International Nuclear Information System (INIS)

    Xie Hongwei; Song Guzhou; Wang Kuilu

    2011-01-01

    The relative sensitivity calibration method of the pulsed X-ray in ST401 plastic scintillator is presented. Experimental relative sensitivity calibrations of the plastic scintillators of different thicknesses from 1 mm to 50 mm are accomplished on the 'Chenguang' pulsed X-ray source and a Co radioactive source, The uncertainty of the calibration data is evaluated, which can be treated as the experimental evidence for the relative sensitivity conversion of ST401 plastic scintillator. (authors)

  16. Epitaxial growth of mixed conducting layered Ruddlesden–Popper La{sub n+1}Ni{sub n}O{sub 3n+1} (n = 1, 2 and 3) phases by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kuan-Ting; Soh, Yeong-Ah; Skinner, Stephen J., E-mail: s.skinner@imperial.ac.uk

    2013-10-15

    Graphical abstract: - Highlights: • High quality epitaxial thin films of layered Ruddlesden–Popper nickelates were prepared. • For the first time this has been achieved by the PLD process. • n = 1, 2 and 3 films were successfully deposited on SrTiO{sub 3} and NdGaO{sub 3} substrates. • c-Axis oriented films were confirmed by XRD analysis. • In-plane and out-of-plane strain effects on lattice are discussed. - Abstract: Layered Ruddlesden–Popper phases of composition La{sub n+1}Ni{sub n}O{sub 3n+1} (n = 1, 2 and 3) have been epitaxially grown on SrTiO{sub 3} (0 0 1) or NdGaO{sub 3} (1 1 0) single crystal substrates using the pulsed laser deposition technique. X-ray diffraction analyses (θ/2θ, rocking curves, and φ-scans) and atomic force microscopy confirms the high-quality growth of the series of films with low surface roughness values (less than 1 nm). In particular, epitaxial growth of the higher order phases (n = 2 and 3) of lanthanum nickelate have been demonstrated for the first time.

  17. 256 fs, 2 nJ soliton pulse generation from MoS2 mode-locked fiber laser

    Science.gov (United States)

    Jiang, Zike; Chen, Hao; Li, Jiarong; Yin, Jinde; Wang, Jinzhang; Yan, Peiguang

    2017-12-01

    We demonstrate an Er-doped fiber laser (EDFL) mode-locked by a MoS2 saturable absorber (SA), delivering a 256 fs, 2 nJ soliton pulse at 1563.4 nm. The nonlinear property of the SA prepared by magnetron sputtering deposition (MSD) is measured with a modulation depth (MD) of ∼19.48% and a saturable intensity of 4.14 MW/cm2. To the best of our knowledge, the generated soliton pulse has the highest pulse energy of 2 nJ among the reported mode-locked EDFLs based on transition metal dichalcogenides (TMDs). Our results indicate that MSD-grown SAs could offer an exciting platform for high pulse energy and ultrashort pulse generation.

  18. Epitaxial growth of SrTiO3 (001) films on multilayer buffered GaN (0002) by pulsed laser deposition

    International Nuclear Information System (INIS)

    Luo, W B; Jing, J; Shuai, Y; Zhu, J; Zhang, W L; Zhou, S; Gemming, S; Du, N; Schmidt, H

    2013-01-01

    SrTiO 3 films were grown on CeO 2 /YSZ/TiO 2 multilayer buffered GaN/Al 2 O 3 (0001) substrates with and without the YBa 2 Cu 3 O 7-x (YBCO) bridge layer by pulsed laser deposition (PLD). The deposition process of the buffer layers was in situ monitored by reflection high-energy electron diffraction. The crystallographical orientation of the heterostructure was studied by x-ray diffraction (XRD). With the introduction of the YBCO (001) layer, the STO (001) film was epitaxially grown on the GaN substrate. There were three sets of inplane domains separated from each other by 30° in both STO and YBCO buffer layers. The epitaxial relationship was STO (002)[110]∥YBCO(001)[110]∥CeO 2 (002)[010]∥YSZ (002)[010]∥GaN(0001)[1 1 -2 0] according to XRD results. By comparing the orientation of STO grown on GaN with and without the YBCO top buffer layer, the surface chemical bonding was found to be a very important factor in determining the orientation relationship of STO.

  19. TiO{sub 2} nanotubes and mesosponges. Towards solar cells and related applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Doohun

    2010-07-06

    There has been a considerable interest in nano-oxide materials owing to their remarkable characteristics in electrical, optical and chemical properties which have led to various applications. Among the various oxides, titanium dioxide (TiO{sub 2}) is the most widely studied material, because of its promising applications in photocatalysts, biomedical devices and solar cells with its non-toxic nature, high chemical stability and relatively low production cost. However, photoinduced processes in TiO{sub 2} typically require UV light irradiation due to its comparably high bandgap energy. This does not allow an efficient use of solar energy, because only 2{proportional_to}5% of the solar spectrum are in the UV range. Therefore, considerable efforts have been made to engineer the bandgap by doping of TiO{sub 2} photoelectrode with suitable species or by sensitization with visible light absorbers to enhance the solar light conversion efficiency in the visible range. In many applications, TiO{sub 2} layers have been prepared by a variety of techniques such as sol-gel, e-beam evaporation, magnetron sputtering, anodization, etc. Especially, anodization is a simple and exquisite method for synthesizing TiO{sub 2} nanostructures, and thus anodization is a promising method that can be considered as a convenient and cost-effective process. Since the last decade, a significant body of work on anodization has been dedicated to form self-organized and highly ordered nanotube oxide layers. Their morphologies (e.g. nanotube length, diameter and geometrical modification) and crystallinities (e.g. amorphous, anatase and rutile) can be tuned and adjusted to their applications by tailoring the anodization and annealing conditions. In this work, the electrochemical single step anodization process in fluoride-containing electrolytes is employed to prepare vertically oriented TiO{sub 2} nanotubes. Furthermore, we introduce an entirely novel anodization approach to prepare a mesoporous TiO

  20. Nanocrystalline Sr2CeO4 thin films grown on silicon by laser ablation

    International Nuclear Information System (INIS)

    Perea, Nestor; Hirata, G.A.

    2006-01-01

    Blue-white luminescent Sr 2 CeO 4 thin films were deposited by using pulsed laser ablation (λ = 248 nm wavelength) on 500 deg. C silicon (111) substrates under an oxygen pressure of 55 mTorr. High-resolution electron transmission microscopy, electron diffraction and X-ray diffraction analysis revealed that the films were composed of nanocrystalline Sr 2 CeO 4 grains of the order of 20-30 nm with a preferential orientation in the (130) crystallographic direction. The excitation and photoluminescence spectra measured on the films maintained the characteristic emission of bulk Sr 2 CeO 4 however, the emission peak appeared narrower and blue-shifted as compared to the luminescence spectrum of the target. The blue-shift and a preferential crystallographic orientation during the growth formation of the film is related to the nanocrystalline nature of the grains due to the quantum confinement behavior and surface energy minimization in nanostructured systems

  1. Pulse on pulse: modulation and signification in Rafael Lozano-Hemmer's Pulse Room

    Directory of Open Access Journals (Sweden)

    Merete Carlson

    2012-06-01

    Full Text Available This article investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006 by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy of the visitor's beating heart to the flashing of a fragile light bulb, thereby transforming each light bulb into a register of individual life. But at the same time the flashing light bulbs together produce a chaotically flickering light environment composed by various layers of repetitive rhythms, a vibrant and pulsating “room”. Hence, the visitor in Pulse Room is invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic “rhythm of life” and instants of pure material processuality (flickering light bulbs; polyrhythmic layers. Taking our point of departure in a discussion of Gilles Deleuze's concepts of modulation and signaletic material in relation to electronic media, we examine how the complex orchestration of pulsation between signification and material modulation produces a multilayered sense of time and space that is central to the sensory experience of Pulse Room as a whole. Pulse Room is, at the very same time, a relational subject–object intimacy and an all-encompassing immersive environment modulating continuously in real space-time.

  2. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O

    Science.gov (United States)

    Moseman-Valtierra, Serena; Gonzalez, Rosalinda; Kroeger, Kevin D.; Tang, Jianwu; Chao, Wei Chun; Crusius, John; Bratton, John F.; Green, Adrian; Shelton, James

    2011-01-01

    Coastal salt marshes sequester carbon at high rates relative to other ecosystems and emit relatively little methane particularly compared to freshwater wetlands. However, fluxes of all major greenhouse gases (N2O, CH4, and CO2) need to be quantified for accurate assessment of the climatic roles of these ecosystems. Anthropogenic nitrogen inputs (via run-off, atmospheric deposition, and wastewater) impact coastal marshes. To test the hypothesis that a pulse of nitrogen loading may increase greenhouse gas emissions from salt marsh sediments, we compared N2O, CH4 and respiratory CO2fluxes from nitrate-enriched plots in a Spartina patens marsh (receiving single additions of NaNO3 equivalent to 1.4 g N m−2) to those from control plots (receiving only artificial seawater solutions) in three short-term experiments (July 2009, April 2010, and June 2010). In July 2009, we also compared N2O and CH4 fluxes in both opaque and transparent chambers to test the influence of light on gas flux measurements. Background fluxes of N2O in July 2009 averaged −33 μmol N2O m−2 day−1. However, within 1 h of nutrient additions, N2O fluxes were significantly greater in plots receiving nitrate additions relative to controls in July 2009. Respiratory rates and CH4 fluxes were not significantly affected. N2O fluxes were significantly higher in dark than in transparent chambers, averaging 108 and 42 μmol N2O m−2 day−1 respectively. After 2 days, when nutrient concentrations returned to background levels, none of the greenhouse gas fluxes differed from controls. In April 2010, N2O and CH4 fluxes were not significantly affected by nitrate, possibly due to higher nitrogen demands by growing S. patens plants, but in June 2010 trends of higher N2O fluxes were again found among nitrate-enriched plots, indicating that responses to nutrient pulses may be strongest during the summer. In terms of carbon equivalents, the highest average N2O and CH4 fluxes observed, exceeded half

  3. Electrochemical Behavior of TiO2 Nanoparticle Doped WO3 Thin Films

    Directory of Open Access Journals (Sweden)

    Suvarna R. Bathe

    2014-01-01

    Full Text Available Nanoparticle TiO2 doped WO3 thin films by pulsed spray pyrolysis technique have been studied on fluorine tin doped (FTO and glass substrate. XRD shows amorphous nature for undoped and anatase phase of TiO2 having (101 plane for nanoparticle TiO2 doped WO3 thin film. SEM shows microfibrous reticulated porous network for WO3 with 600 nm fiber diameter and nanocrystalline having size 40 nm for TiO2 nanoparticle doped WO3 thin film. TiO2 nanoparticle doped WO3 thin film shows ~95% reversibility due to may be attributed to nanocrystalline nature of the film, which helpful for charge insertion and deinsertion process. The diffusion coefficient for TiO2 nanoparticle doped WO3 film is less than undoped WO3.

  4. Pulse-radiolytic investigations of catechols and catecholamines

    International Nuclear Information System (INIS)

    Bors, W.; Saran, M.; Michel, C.; Lengfelder, E.; Fuchs, C.; Spoettl, R.

    1975-01-01

    Adrenaline (epinephrine), adrenochrome and C 4 -substituted catechol model compounds were pulse-irradiated in aqueous neutral and alkaline solutions. Transient spectra are reported after oxidizing adrenaline and reducing adrenochrome. All species appearing during the 20 msec interval after the pulse have been identified: the OH adduct with an absorption maximum at 300 to 310 nm, the semiquinone (at 245 nm), and adrenaline quinone (at 340 nm). The reaction of superoxide anions (O 2 - ) with adrenaline was less efficient, compared with OH radicals. A novel oxidation product, derived from the semiquinone and O 2 - , has been identified as the 4-hydroxy-3,6-dioxo derivate. The pulse-radiolytic reduction of adrenochrome by hydrated electrons (esub(aq) - ) yielded the semiquinone of adrenochrome (absorbing at 470 nm), which subsequently decayed by a second-order process. The dismutation products leucoadrenochrome (absorbing at 300 nm, pH 9.8) and the adrenochrome tautomer (absorbing at 375 nm) were unstable, forming a 5,6-dihydro-N-methyl indole and regenerating adrenochrome. (author)

  5. 53Cr NMR study of CuCrO2 multiferroic

    Science.gov (United States)

    Smol'nikov, A. G.; Ogloblichev, V. V.; Verkhovskii, S. V.; Mikhalev, K. N.; Yakubovskii, A. Yu.; Kumagai, K.; Furukawa, Y.; Sadykov, A. F.; Piskunov, Yu. V.; Gerashchenko, A. P.; Barilo, S. N.; Shiryaev, S. V.

    2015-11-01

    The magnetically ordered phase of the CuCrO2 single crystal has been studied by the nuclear magnetic resonance (NMR) method on 53Cr nuclei in the absence of an external magnetic field. The 53Cr NMR spectrum is observed in the frequency range νres = 61-66 MHz. The shape of the spectrum depends on the delay tdel between pulses in the pulse sequence τπ/2- t del-τπ- t del-echo. The spin-spin and spin-lattice relaxation times have been measured. Components of the electric field gradient, hyperfine fields, and the magnetic moment on chromium atoms have been estimated.

  6. Defect studies of thin ZnO films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Vlček, M; Čížek, J; Procházka, I; Novotný, M; Bulíř, J; Lančok, J; Anwand, W; Brauer, G; Mosnier, J-P

    2014-01-01

    Thin ZnO films were grown by pulsed laser deposition on four different substrates: sapphire (0 0 0 1), MgO (1 0 0), fused silica and nanocrystalline synthetic diamond. Defect studies by slow positron implantation spectroscopy (SPIS) revealed significantly higher concentration of defects in the studied films when compared to a bulk ZnO single crystal. The concentration of defects in the films deposited on single crystal sapphire and MgO substrates is higher than in the films deposited on amorphous fused silica substrate and nanocrystalline synthetic diamond. Furthermore, the effect of deposition temperature on film quality was investigated in ZnO films deposited on synthetic diamond substrates. Defect studies performed by SPIS revealed that the concentration of defects firstly decreases with increasing deposition temperature, but at too high deposition temperatures it increases again. The lowest concentration of defects was found in the film deposited at 450° C.

  7. Pulse frequency in pulsed brachytherapy based on tissue repair kinetics

    International Nuclear Information System (INIS)

    Sminia, Peter; Schneider, Christoph J.; Koedooder, Kees; Tienhoven, Geertjan van; Blank, Leo E.C.M.; Gonzalez Gonzalez, Dionisio

    1998-01-01

    Purpose: Investigation of normal tissue sparing in pulsed brachytherapy (PB) relative to continuous low-dose rate irradiation (CLDR) by adjusting pulse frequency based on tissue repair characteristics. Method: Using the linear quadratic model, the relative effectiveness (RE) of a 20 Gy boost was calculated for tissue with an α/β ratio ranging from 2 to 10 Gy and a half-time of sublethal damage repair between 0.1 and 3 h. The boost dose was considered to be delivered either in a number of pulses varying from 2 to 25, or continuously at a dose rate of 0.50, 0.80, or 1.20 Gy/h. Results: The RE of 20 Gy was found to be identical for PB in 25 pulses of 0.80 Gy each h and CLDR delivered at 0.80 Gy/h for any α/β value and for a repair half-time > 0.75 h. When normal tissue repair half-times are assumed to be longer than tumor repair half-times, normal tissue sparing can be obtained, within the restriction of a fixed overall treatment time, with higher dose per pulse and longer period time (time elapsed between start of pulse n and start of pulse n + 1). An optimum relative normal tissue sparing larger than 10% was found with 4 pulses of 5 Gy every 8 h. Hence, a therapeutic gain might be obtained when changing from CLDR to PB by adjusting the physical dose in such a way that the biological dose on the tumor is maintained. The normal tissue-sparing phenomenon can be explained by an increase in RE with longer period time for tissue with high α/β ratio and fast or intermediate repair half-time, and the RE for tissue with low α/β ratio and long repair half-time remains almost constant. Conclusion: Within the benchmark of the LQ model, advantage in normal tissue-sparing is expected when matching the pulse frequency to the repair kinetics of the normal tissue exposed. A period time longer than 1 h may lead to a reduction of late normal tissue complications. This theoretical advantage emphasizes the need for better knowledge of human tissue-repair kinetics

  8. Enhancing caries resistance with a short-pulsed CO2 9.3-μm laser: a laboratory study (Conference Presentation)

    Science.gov (United States)

    Rechmann, Peter; Rechmann, Beate M.; Groves, William H.; Le, Charles; Rapozo-Hilo, Marcia L.; Featherstone, John D. B.

    2016-02-01

    The objective of this laboratory study was to test whether irradiation with a new 9.3µm microsecond short-pulsed CO2-laser enhances enamel caries resistance with and without additional fluoride applications. 101 human enamel samples were divided into 7 groups. Each group was treated with different laser parameters (Carbon-dioxide laser, wavelength 9.3µm, 43Hz pulse-repetition rate, pulse duration between 3μs to 7μs (1.5mJ/pulse to 2.9mJ/pulse). Using a pH-cycling model and cross-sectional microhardness testing determined the mean relative mineral loss delta Z (∆Z) for each group. The pH-cycling was performed with or without additional fluoride. The CO2 9.3μm short-pulsed laser energy rendered enamel caries resistant with and without additional fluoride use.

  9. Phonon dispersion relations in PrBa2Cu3O6+x (x approximate to 0.2)

    DEFF Research Database (Denmark)

    Gardiner, C.H.; Boothroyd, A.T.; Larsen, B.H.

    2004-01-01

    We report measurements of the phonon dispersion relations in nonsuperconducting, oxygen-deficient PrBa2Cu3O6+x (xapproximate to0.2) by inelastic neutron scattering. The data are compared with a model of the lattice dynamics based on a common interatomic potential. Good agreement is achieved for all...

  10. Comparison of pulsed versus continuous oxygen delivery using realistic adult nasal airway replicas

    Directory of Open Access Journals (Sweden)

    Chen JZ

    2017-08-01

    Full Text Available John Z Chen,1 Ira M Katz,2 Marine Pichelin,2 Kaixian Zhu,3 Georges Caillibotte,2 Michelle L Noga,4 Warren H Finlay,1 Andrew R Martin1 1Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada; 2Medical R&D, Air Liquide Santé International, Centre de Recherche Paris-Saclay, Les Loges-en-Josas, 3Centre Explor!, Air Liquide Healthcare, Gentilly, France; 4Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada Background: Portable oxygen concentrators (POCs typically include pulse flow (PF modes to conserve oxygen. The primary aims of this study were to develop a predictive in vitro model for inhaled oxygen delivery using a set of realistic airway replicas, and to compare PF for a commercial POC with steady flow (SF from a compressed oxygen cylinder. Methods: Experiments were carried out using a stationary compressed oxygen cylinder, a POC, and 15 adult nasal airway replicas based on airway geometries derived from medical images. Oxygen delivery via nasal cannula was tested at PF settings of 2.0 and 6.0, and SF rates of 2.0 and 6.0 L/min. A test lung simulated three breathing patterns representative of a chronic obstructive pulmonary disease patient at rest, during exercise, and while asleep. Volume-averaged fraction of inhaled oxygen (FiO2 was calculated by analyzing oxygen concentrations sampled at the exit of each replica and inhalation flow rates over time. POC pulse volumes were also measured using a commercial O2 conserver test system to attempt to predict FiO2 for PF. Results: Relative volume-averaged FiO2 using PF ranged from 68% to 94% of SF values, increasing with breathing frequency and tidal volume. Three of 15 replicas failed to trigger the POC when used with the sleep breathing pattern at the 2.0 setting, and four of 15 replicas failed to trigger at the 6.0 setting. FiO2 values estimated from POC pulse characteristics followed similar trends but were lower than those derived from

  11. Evaluation of pulsed streamer corona experiments to determine the O* radical yield

    International Nuclear Information System (INIS)

    Van Heesch, E J M; Winands, G J J; Pemen, A J M

    2008-01-01

    The production of O* radicals in air by a pulsed streamer plasma is studied by integration of a large set of precise experimental data and the chemical kinetics of ozone production. The measured data comprise ozone production, plasma energy, streamer volume, streamer length, streamer velocity, humidity and gas-flow rate. Instead of entering input parameters into a kinetic model to calculate the end products the opposite strategy is followed. Since the amount of end-products (ozone) is known from the measurements the model had to be applied in the reverse direction to determine the input parameters, i.e. the O* radical concentration.

  12. Evaluation of pulsed streamer corona experiments to determine the O* radical yield

    Science.gov (United States)

    van Heesch, E. J. M.; Winands, G. J. J.; Pemen, A. J. M.

    2008-12-01

    The production of O* radicals in air by a pulsed streamer plasma is studied by integration of a large set of precise experimental data and the chemical kinetics of ozone production. The measured data comprise ozone production, plasma energy, streamer volume, streamer length, streamer velocity, humidity and gas-flow rate. Instead of entering input parameters into a kinetic model to calculate the end products the opposite strategy is followed. Since the amount of end-products (ozone) is known from the measurements the model had to be applied in the reverse direction to determine the input parameters, i.e. the O* radical concentration.

  13. Impact of ultra-thin Al2O3-y layers on TiO2-x ReRAM switching characteristics

    Science.gov (United States)

    Trapatseli, Maria; Cortese, Simone; Serb, Alexander; Khiat, Ali; Prodromakis, Themistoklis

    2017-05-01

    Transition metal-oxide resistive random access memory devices have demonstrated excellent performance in switching speed, versatility of switching and low-power operation. However, this technology still faces challenges like poor cycling endurance, degradation due to high electroforming (EF) switching voltages and low yields. Approaches such as engineering of the active layer by doping or addition of thin oxide buffer layers have been often adopted to tackle these problems. Here, we have followed a strategy that combines the two; we have used ultra-thin Al2O3-y buffer layers incorporated between TiO2-x thin films taking into account both 3+/4+ oxidation states of Al/Ti cations. Our devices were tested by DC and pulsed voltage sweeping and in both cases demonstrated improved switching voltages. We believe that the Al2O3-y layers act as reservoirs of oxygen vacancies which are injected during EF, facilitate a filamentary switching mechanism and provide enhanced filament stability, as shown by the cycling endurance measurements.

  14. Ni/TiO2 composite electrocoatings

    Directory of Open Access Journals (Sweden)

    Kollia, C.

    2005-12-01

    Full Text Available Nickel composite coatings have been studied in order to provide increased properties on engineering materials surfaces, such as higher electrical conductivity, wear and corrosion resistance and to decrease the end product manufacturing cost by plating on cheap materials. Adding TiO2 particles in the bath during the deposition process produced composite coatings. This was tried on electrodeposition from a Watts bath by conventional DC conditions and by pulse plating. The surfaces were studied by SEM, by profilometry and by Vickers microhardness, and its structure by X-ray diffraction. The incorporation percentage of TiO2 particles in the metallic matrix was estimated by EDS analysis. Corrosion measurements of the deposits were taken by Tafel curves. The results obtained show that particle incorporation percentage is higher for the Ni/TiO2 electrodeposits produced by pulse current and the microhardness is significantly increased compared to the electrodeposits produced by DC.

    Los electrodepósitos compuestos de níquel confieren mejores propiedades a la superficies de los materiales utilizados en ingeniería, tales como conductividad eléctrica, desgaste y resistencia a la corrosión, y disminuyen el costo del producto manufacturado al utilizarse como recubrimiento de acabado sobre materiales base más económicos. La adición de partículas de TiO2 al baño durante la electrodeposicion da lugar a la formación de recubrimientos compuestos. La electrodeposicion se llevó cabo en un baño Watts en condiciones convencionales de corriente continua y por electrodepósito pulsante. Las superficies fueron estudiadas por SEM y microanálisis EDS; se midió su microrrugosidad y microdureza Vickers; y su estructura se analizó mediante Difracción de Rayos X. Las medidas de corrosión de los depósitos se realizaron a partir del trazado de curvas de Tafel. Los resultados muestran que el porcentaje de

  15. Temporal evolution of electron density in a low pressure pulsed two-frequency (60 MHz/2 MHz) capacitively coupled plasma discharge

    International Nuclear Information System (INIS)

    Sirse, N; Ellingboe, A R; Jeon, M H; Yeom, G Y

    2014-01-01

    Time-resolved electron density, n e , is measured in a low pressure pulsed two-frequency capacitively coupled plasma discharge sustained in Ar and in Ar/CF 4 /O 2 (80 : 10 : 10) gas mixture using a floating resonance hairpin probe. The top electrode is powered by 60 MHz in pulse mode and the bottom electrode is powered by 2 MHz in continuous wave mode. The dependence of time-resolved n e on the low frequency (LF) and high frequency (HF) power levels, operating gas pressure, pulse repetition frequency (PRF) and duty cycle are investigated. It is found that the steady state n e in the long on-phase is greatly influenced by the HF power level and slightly affected by the LF power level in both Ar and Ar/CF 4 /O 2 plasma. The decay time of n e is slow (∼30–90 µs) in the case of Ar plasma and strongly depends on the LF power level, whereas in the case of Ar/CF 4 /O 2 gas mixture it is very fast (∼15 µs) and marginally dependent on LF power level. In Ar plasma the steady state n e is increasing with a rise in operating gas pressure, however, in Ar/CF 4 /O 2 plasma it first increases with gas pressure reaching to the maximum (at 20 mTorr) value and then decreases. The pressure dependence of decay time constant mimics the pressure variation of steady state n e . Furthermore, it is observed that the on-phase electron density is greatly affected by changing the PRF and duty cycle. This effect is more prominent in Ar/CF 4 /O 2 plasma when compared to Ar discharge. In addition, n e is observed to overshoot the steady state densities in the beginning of the on-phase in Ar/CF 4 /O 2 gas mixture, but this effect is either small or absent in the case of Ar plasma. (paper)

  16. Improved repetition rate mixed isotope CO{sub 2} TEA laser

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, D. B., E-mail: dbctechnology@earthlink.net [DBC Technology Corp., 4221 Mesa St, Torrance, California 90505 (United States)

    2014-09-15

    A compact CO{sub 2} TEA laser has been developed for remote chemical detection that operates at a repetition rate of 250 Hz. It emits 700 mJ/pulse at 10.6 μm in a multimode beam with the {sup 12}C{sup 16}O{sub 2} isotope. With mixed {sup 12}C{sup 16}O{sub 2} plus {sup 13}C{sup 16}O{sub 2} isotopes it emits multiple lines in both isotope manifolds to improve detection of a broad range of chemicals. In particular, output pulse energies are 110 mJ/pulse at 9.77 μm, 250 mJ/pulse at 10 μm, and 550 mJ/pulse at 11.15 μm, useful for detection of the chemical agents Sarin, Tabun, and VX. Related work shows capability for long term sealed operation with a catalyst and an agile tuner at a wavelength shift rate of 200 Hz.

  17. Flooding-related increases in CO2 and N2O emissions from a temperate coastal grassland ecosystem

    Science.gov (United States)

    Gebremichael, Amanuel W.; Osborne, Bruce; Orr, Patrick

    2017-05-01

    Given their increasing trend in Europe, an understanding of the role that flooding events play in carbon (C) and nitrogen (N) cycling and greenhouse gas (GHG) emissions will be important for improved assessments of local and regional GHG budgets. This study presents the results of an analysis of the CO2 and N2O fluxes from a coastal grassland ecosystem affected by episodic flooding that was of either a relatively short (SFS) or long (LFS) duration. Compared to the SFS, the annual CO2 and N2O emissions were 1.4 and 1.3 times higher at the LFS, respectively. Mean CO2 emissions during the period of standing water were 144 ± 18.18 and 111 ± 9.51 mg CO2-C m-2 h-1, respectively, for the LFS and SFS sites. During the growing season, when there was no standing water, the CO2 emissions were significantly larger from the LFS (244 ± 24.88 mg CO2-C m-2 h-1) than the SFS (183 ± 14.90 mg CO2-C m-2 h-1). Fluxes of N2O ranged from -0.37 to 0.65 mg N2O-N m-2 h-1 at the LFS and from -0.50 to 0.55 mg N2O-N m-2 h-1 at the SFS, with the larger emissions associated with the presence of standing water at the LFS but during the growing season at the SFS. Overall, soil temperature and moisture were identified as the main drivers of the seasonal changes in CO2 fluxes, but neither adequately explained the variations in N2O fluxes. Analysis of total C, N, microbial biomass and Q10 values indicated that the higher CO2 emissions from the LFS were linked to the flooding-associated influx of nutrients and alterations in soil microbial populations. These results demonstrate that annual CO2 and N2O emissions can be higher in longer-term flooded sites that receive significant amounts of nutrients, although this may depend on the restriction of diffusional limitations due to the presence of standing water to periods of the year when the potential for gaseous emissions are low.

  18. CO2 laser pulse shortening by laser ablation of a metal target

    International Nuclear Information System (INIS)

    Donnelly, T.; Mazoyer, M.; Lynch, A.; O'Sullivan, G.; O'Reilly, F.; Dunne, P.; Cummins, T.

    2012-01-01

    A repeatable and flexible technique for pulse shortening of laser pulses has been applied to transversely excited atmospheric (TEA) CO 2 laser pulses. The technique involves focusing the laser output onto a highly reflective metal target so that plasma is formed, which then operates as a shutter due to strong laser absorption and scattering. Precise control of the focused laser intensity allows for timing of the shutter so that different temporal portions of the pulse can be reflected from the target surface before plasma formation occurs. This type of shutter enables one to reduce the pulse duration down to ∼2 ns and to remove the low power, long duration tails that are present in TEA CO 2 pulses. The transmitted energy is reduced as the pulse duration is decreased but the reflected power is ∼10 MW for all pulse durations. A simple laser heating model verifies that the pulse shortening depends directly on the plasma formation time, which in turn is dependent on the applied laser intensity. It is envisaged that this plasma shutter will be used as a tool for pulse shaping in the search for laser pulse conditions to optimize conversion efficiency from laser energy to useable extreme ultraviolet (EUV) radiation for EUV source development.

  19. Omnidirectional photonic band gap in magnetron sputtered TiO{sub 2}/SiO{sub 2} one dimensional photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jena, S., E-mail: shuvendujena9@gmail.com [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Tokas, R.B.; Sarkar, P. [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Misal, J.S.; Maidul Haque, S.; Rao, K.D. [Photonics & Nanotechnology Section, BARC-Vizag, Autonagar, Atomic & Molecular Physics Division, Bhabha Atomic Research Centre facility, Visakhapatnam 530 012 (India); Thakur, S.; Sahoo, N.K. [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-01-29

    One dimensional photonic crystal (1DPC) of TiO{sub 2}/SiO{sub 2} multilayer has been fabricated by sequential asymmetric bipolar pulsed dc magnetron sputtering of TiO{sub 2} and radio frequency magnetron sputtering of SiO{sub 2} to achieve wide omnidirectional photonic band in the visible region. The microstructure and optical response of the TiO{sub 2}/SiO{sub 2} photonic crystal have been characterized by atomic force microscopy, scanning electron microscopy and spectrophotometry respectively. The surface of the photonic crystal is very smooth having surface roughness of 2.6 nm. Reflection and transmission spectra have been measured in the wavelength range 300 to 1000 nm for both transverse electric and transverse magnetic waves. Wide high reflection photonic band gap (∆ λ = 245 nm) in the visible and near infrared regions (592–837 nm) at normal incidence has been achieved. The measured photonic band gap (PBG) is found well matching with the calculated photonic band gap of an infinite 1DPC. The experimentally observed omnidirectional photonic band 592–668 nm (∆ λ = 76 nm) in the visible region with band to mid-band ratio ∆ λ/λ = 12% for reflectivity R > 99% over the incident angle range of 0°–70° is found almost matching with the calculated omnidirectional PBG. The omnidirectional reflection band is found much wider as compared to the values reported in literature so far in the visible region for TiO{sub 2}/SiO{sub 2} periodic photonic crystal. - Highlights: • TiO{sub 2}/SiO{sub 2} 1DPC has been fabricated using magnetron sputtering technique. • Experimental optical response is found good agreement with simulation results. • Wide omnidirectional photonic band in the visible spectrum has been achieved.

  20. Effects of swift heavy ion irradiation on La0.5Pr0.2Sr0.3MnO3 epitaxial thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Markna, J.H.; Parmar, R.N.; Rana, D.S.; Ravi Kumar; Misra, P.; Kukreja, L.M.; Kuberkar, D.G.; Malik, S.K.

    2007-01-01

    We report the observation of room temperature insulator to metal transition and magnetoresistance characteristics of Swift Heavy Ions (SHIs) irradiated La 0.5 Pr 0.2 Sr 0.3 MnO 3 (LPSMO) epitaxial thin films grown on single crystal (1 0 0) SrTiO 3 substrates using Pulsed Laser Deposition. The epitaxial nature and crystallanity of the films was confirmed from the structural and magnetoresistance characteristics. Irradiation with the 200 MeV Ag 15+ ions at a fluence of about 5 x 10 11 ions/cm 2 showed suppression in the resistivity by ∼68% and 31% for the films with 50 nm and 100 nm thickness respectively. The possible reasons for this suppression could be either release of strain in the films in the dead layer at the interface of film-substrate or Swift Heavy Ions induced annealing which in turn affects the Mn-O-Mn bond angle thereby favoring the Zener double exchange. Field Coefficient of Resistance (FCR) values for both films, determined from R-H data and magnetoresistance data, showed a marginal enhancement after irradiation

  1. Synthesis and electronic properties of Fe2TiO5 epitaxial thin films

    Science.gov (United States)

    Osada, Motoki; Nishio, Kazunori; Hwang, Harold Y.; Hikita, Yasuyuki

    2018-05-01

    We investigate the growth phase diagram of pseudobrookite Fe2TiO5 epitaxial thin films on LaAlO3 (001) substrates using pulsed laser deposition. Control of the oxygen partial pressure and temperature during deposition enabled selective stabilization of (100)- and (230)-oriented films. In this regime, we find an optical gap of 2.1 eV and room temperature resistivity in the range of 20-80 Ω cm, which are significantly lower than α-Fe2O3, making Fe2TiO5 potentially an ideal inexpensive visible-light harvesting semiconductor. These results provide a basis to incorporate Fe2TiO5 in oxide heterostructures for photocatalytic and photoelectrochemical applications.

  2. Pulsed dose rate brachytherapy (PDR): an analysis of the technique at 2 years

    Energy Technology Data Exchange (ETDEWEB)

    Thienpont, M [Ghent Rijksuniversiteit (Belgium). Kliniek voor Radiotherapie en Kerngeneeskunde; Van Eijkeren, M; Van Hecke, H; Boterberg, T; De Neve, W

    1995-12-01

    A total of 154 applications was analysed using a pulsed dose brachytherapy technique for 138 patients over a 2 year period with emphasis on technical aspects influencing the overall treatment time. Vaginal ovoids were used in 59 cases, plastic tubes in 52, a Fletcher-type in 18, vaginal cylinders in 14 and a perineal template in 11 cases. Pulses were given at hourly intervals with a median dose rate of 0.6 Gy per pulse (range 0.4 to 3 Gy). The number of pulses per application varied from 3 to 134 (median 32). The number of dwell positions varied from 1 to 542 over 1 to 18 catheters. Patient related problems were few. The room was entered almost every 77 minutes. We noted 561 status codes in 147 applications. Of the 25 different codes, the most frequent one was due to the door left open when a pulse had to be given (35%) or due to constriction of the plastic catheters at the transfer tube junction (26%). However, the median total treatment time was increased by only 5 minutes. With pulsed dose rate brachytherapy at hourly pulses we can treat our patients within the planned time despite frequent room entrance and occurrence of an appreciable number of status codes. This technique seems to fulfill its promise to replace low dose rate brachytherapy.

  3. Correlation between SnO{sub 2} nanocrystals and optical properties of Eu{sup 3+} ions in SiO{sub 2} matrix: Relation of crystallinity, composition, and photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Bui Quang [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No.1 Dai Co Viet, Hanoi (Viet Nam); Ha, Ngo Ngoc, E-mail: hann@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No.1 Dai Co Viet, Hanoi (Viet Nam); Khiem, Tran Ngoc, E-mail: khiem@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No.1 Dai Co Viet, Hanoi (Viet Nam); Chien, Nguyen Duc [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No.1 Dai Co Viet, Hanoi (Viet Nam); School of Engineering Physics (SEP), Hanoi University of Science and Technology (HUST), No.1 Dai Co Viet, Hanoi (Viet Nam)

    2015-07-15

    We report characteristics and optical properties of Eu{sup 3+}-doped SnO{sub 2} nanocrystals dispersed in SiO{sub 2} matrix. Samples are prepared by the sol–gel method. Crystallinity of SnO{sub 2} nanocrystals is examined by X-ray diffraction experiments. At annealing temperatures from 900 to 1200 °C, we observe the formation of single tetragonal rutile structure of SnO{sub 2} nanocrystals. Average sizes of SnO{sub 2} nanocrystals within 3–7 nm are estimated by Debye–Scherrer equation. Intense photoluminescent spectra of Eu{sup 3+} ions consist of a series of resolved emission bands within 570–645 nm, which are varied with different sample-preparation conditions. We show the efficient excitation process of Eu{sup 3+} ions through SnO{sub 2} nanocrystals in the materials. Microscopic structure of SnO{sub 2} nanoparticles and optical properties of Eu{sup 3+} ions are also presented and discussed. - Highlights: • Thin layers of Eu{sup 3+} doped SnO{sub 2} nanocrystals dispersed in SiO{sub 2} were prepared by sol-gel method and spin-coating process. • Formation of single-phase tetragonal rutile structure of SnO{sub 2} nanocrystals and highly efficient optical excitation of the Eu{sup 3+} dopants were exhibited. • Relations of the crystallinity and composition of SnO{sub 2} and optical properties of Eu{sup 3+} dopants were comprehensively investigated and presented. • Allocations of major optically-active Eu{sup 3+} ions in the materials were deduced from their emission bands.

  4. Polarized Raman study on the lattice structure of BiFeO3 films prepared by pulsed laser deposition

    KAUST Repository

    Yang, Yang; Yao, Yingbang; Zhang, Q.; Zhang, Xixiang

    2014-01-01

    Polarized Raman spectroscopy was used to study the lattice structure of BiFeO3 films on different substrates prepared by pulsed laser deposition. Interestingly, the Raman spectra of BiFeO3 films exhibit distinct polarization dependences

  5. NMR study of glasses in the PbO-B/sub 2/O/sub 3/-PbF/sub 2/-AlF/sub 3/ system

    Energy Technology Data Exchange (ETDEWEB)

    Vopilov, V.A.; Bogdanov, V.L.; Buznik, V.M.; Karapetyan, A.K.; Matsulev, A.N.

    1986-01-01

    The NMR method has been successfully used in the study of the structure of oxide glasses and in lithium glasses. Using steady-state and pulse methods of B-11 and F-19 NMR, the authors have studied borate glasses in the PbO-B/sub 2/O/sub 3/-PbF/sub 2/-AlF/sub 3/ system. Lead fluoride was added to the composition of the experimental glasses. A small amount of PbF2 has a weak effect on the electrical conductivity, and it is only in the specimen with the maximum values of the PbF/sub 2/ concentration that conductivity becomes significant. In glasses of the PbO X B/sub 2/O/sub 3/ X AlF/sub 3/ compositions, there is an exchange of the oxygen and fluoride modifier anions and as a result the F ions are incorporated into the first coordination sphere of the lead cations.

  6. Electrical and optical properties of TCO-Cu2O heterojunction devices

    International Nuclear Information System (INIS)

    Tanaka, Hideki; Shimakawa, Takahiro; Miyata, Toshihiro; Sato, Hirotoshi; Minami, Tadatsugu

    2004-01-01

    This report describes the electrical and photovoltaic properties in heterojunction devices consisting of a cuprous oxide (Cu 2 O) sheet and a transparent conducting oxide (TCO) thin film, such as In 2 O 3 , ZnO, In 2 O 3 :Sn (ITO), ZnO:Al (AZO) or AZO-ITO (AZITO) multicomponent oxide, prepared by pulsed laser deposition (PLD). Undoped In 2 O 3 -Cu 2 O heterojunctions prepared by PLD exhibited ohmic current-voltage (I-V) characteristics. The ZnO-Cu 2 O and AZO-Cu 2 O devices exhibited better rectifying I-V characteristics and photovoltaic properties than the ITO-Cu 2 O devices. It was found that the obtainable I-V characteristics and photovoltaic properties were considerably affected by the TCO film deposition conditions. An open-circuit voltage (V OC ) of 0.4 V, a short-circuit current density (J SC ) of 7.1 mA/cm 2 , a fill factor (F.F.) of 0.4 and an energy conversion efficiency (η) of 1.2% were obtained in an AZO-Cu 2 O device under AM2 solar illumination. The V OC , J SC , F.F. and η obtained in AZITO-Cu 2 O heterojunctions increased as the Zn/(Zn+In) atomic ratio was increased

  7. The role of magnetoelastic strain on orbital control and transport properties in an LaTiO(3)-CoFe(2)O(4) heterostructure.

    Science.gov (United States)

    Li, J; Chu, H F; Zhang, Y; Wang, J; Zheng, D N; Song, Q; Wang, P; Ma, Y G; Ong, C K; Wang, S J

    2009-07-08

    Epitaxial heterostructures of CoFe(2)O(4)/LaTiO(3)/LaAlO(3) have been successfully prepared by using the pulsed laser deposition technique. The magnetoresistance (MR) of the samples is negative and linear with field at H≥2 T, exhibiting no dependence on field directions. Nevertheless, when Hstrains on the bottom LaTiO(3) layer. Apparently the orbital status and the one-electron bandwidth in the LaTiO(3) layer are altered, which leads to a change in resistance.

  8. Periodically pulsed wet annealing approach for low-temperature processable amorphous InGaZnO thin film transistors with high electrical performance and ultrathin thickness.

    Science.gov (United States)

    Kim, Ye Kyun; Ahn, Cheol Hyoun; Yun, Myeong Gu; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun

    2016-05-20

    In this paper, a simple and controllable "wet pulse annealing" technique for the fabrication of flexible amorphous InGaZnO thin film transistors (a-IGZO TFTs) processed at low temperature (150 °C) by using scalable vacuum deposition is proposed. This method entailed the quick injection of water vapor for 0.1 s and purge treatment in dry ambient in one cycle; the supply content of water vapor was simply controlled by the number of pulse repetitions. The electrical transport characteristics revealed a remarkable performance of the a-IGZO TFTs prepared at the maximum process temperature of 150 °C (field-effect mobility of 13.3 cm(2) V(-1) s(-1); Ion/Ioff ratio ≈ 10(8); reduced I-V hysteresis), comparable to that of a-IGZO TFTs annealed at 350 °C in dry ambient. Upon analysis of the angle-resolved x-ray photoelectron spectroscopy, the good performance was attributed to the effective suppression of the formation of hydroxide and oxygen-related defects. Finally, by using the wet pulse annealing process, we fabricated, on a plastic substrate, an ultrathin flexible a-IGZO TFT with good electrical and bending performances.

  9. Optical and electrical properties of SnO2 thin films after ultra-short pulsed laser annealing

    OpenAIRE

    Scorticati, D.; Illiberi, A.; Römer, G.R.B.E.; Bor, T.; Ogieglo, W.; Klein Gunnewiek, M.; Lenferink, A.; Otto, C.; Skolski, J.Z.P.; Grob, F.; Lange, D.F. de; Huis in 't Veld, A.J.

    2013-01-01

    Ultra-short pulsed laser sources, with pulse durations in the ps and fs regime, are commonly exploited for cold ablation. However, operating ultra-short pulsed laser sources at fluence levels well below the ablation threshold allows for fast and selective thermal processing. The latter is especially advantageous for the processing of thin films. A precise control of the heat affected zone, as small as tens of nanometers, depending on the material and laser conditions, can be achieved. It enab...

  10. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Melikhova, O.; Čížek, J.; Lukáč, F.; Vlček, M.; Novotný, M.; Bulíř, J.; Lančok, J.; Anwand, W.; Brauer, G.; Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P.

    2013-01-01

    Highlights: ► Thin ZnO films and high quality ZnO crystal were electrochemically doped with hydrogen. ► Hydrogen absorbed in ZnO causes plastic deformation both in ZnO crystal and thin films. ► In ZnO crystal a sub-surface region with very high density of defects was formed. ► Moreover, plastic deformation causes specific surface modification of ZnO crystal. ► In ZnO films hydrogen-induced plastic deformation introduced defects in the whole film. -- Abstract: ZnO films with thickness of ∼80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects than the film deposited on amorphous FS substrate most probably due to a dense network of misfit dislocations. The ZnO films and the reference ZnO crystal were subsequently loaded with hydrogen by electrochemical cathodic charging. SPIS characterizations revealed that absorbed hydrogen introduces new defects into ZnO

  11. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Melikhova, O., E-mail: oksivmel@yahoo.com [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, CZ-180 00 Praha 8 (Czech Republic); Čížek, J.; Lukáč, F.; Vlček, M. [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, CZ-180 00 Praha 8 (Czech Republic); Novotný, M.; Bulíř, J.; Lančok, J. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague (Czech Republic); Anwand, W.; Brauer, G. [Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, PO Box 510 119, D-01314 Dresden (Germany); Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P. [National Centre for Plasma Science and Technology, School of Physical Sciences, Glasnevin, Dublin 9 (Ireland)

    2013-12-15

    Highlights: ► Thin ZnO films and high quality ZnO crystal were electrochemically doped with hydrogen. ► Hydrogen absorbed in ZnO causes plastic deformation both in ZnO crystal and thin films. ► In ZnO crystal a sub-surface region with very high density of defects was formed. ► Moreover, plastic deformation causes specific surface modification of ZnO crystal. ► In ZnO films hydrogen-induced plastic deformation introduced defects in the whole film. -- Abstract: ZnO films with thickness of ∼80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects than the film deposited on amorphous FS substrate most probably due to a dense network of misfit dislocations. The ZnO films and the reference ZnO crystal were subsequently loaded with hydrogen by electrochemical cathodic charging. SPIS characterizations revealed that absorbed hydrogen introduces new defects into ZnO.

  12. Phase relations in the pseudo ternary system In2O3-TiO2-BO (B: Zn, Co and Ni) at 1200 °C in air

    Science.gov (United States)

    Brown, Francisco; Jacobo-Herrera, Ivan Edmundo; Alvarez-Montaño, Victor Emmanuel; Kimizuka, Noboru; Hirano, Tomonosuke; Sekine, Ryotaro; Denholme, Saleem J.; Miyakawa, Nobuaki; Kudo, Akihiko; Iwase, Akihide; Michiue, Yuichi

    2018-02-01

    Phase relations in the pseudo ternary systems In2O3-TiO2-ZnO, In2O3-TiO2-CoO and In2O3-TiO2-NiO at 1200 °C in air were determined by means of a classic quenching method. In6Ti6BO22 (B: Zn, Co and Ni) which has the monoclinic In(Fe1/4Ti3/4)O27/8-type of structure with a 4-dimensional super space group exists in a stable form. There exist homologous phases In1+x(Ti1/2Zn1/2)1-xO3(ZnO)m (m: natural number, 0ternary system In2O3-TiO2-ZnO. All the ions are on the trigonal lattice points, the In(III) is in the octahedral coordination with the oxygen and the {Inx(Ti1/2Zn1/2)1-xZnm} is in the trigonalbipyramidal coordination with oxygen in the crystal structures of each homologous compound. They have R 3 bar m (No. 166) for m = odd or P63/mmc (No. 194) for m = even in space group. Lattice constants for each of the homologous compounds as a hexagonal setting and In6Ti6BO22 as the monoclinic system were determined by means of the powder X-ray diffraction method at room temperature. The temperature dependence of resistivity for In1+x(Ti1/2Zn1/2)1-x(ZnO)4 (0.15 ≤ x ≤ 1) showed semiconducting-like behavior for all samples examined at T(K) = 2-300. The resistivity increased systematically with decreasing x (0.7 ≤ x ≤ 1), and it was found that samples where x ≤ 0.7 became insulators. The optical band gap Eg (eV) of In1+x(Ti1/2Zn1/2)1-x(ZnO)4 has been estimated from the diffuse reflection spectra for the whole range of x (0.15 ≤ x ≤ 1). A minimum value of 2.0717 eV for x = 1 and a maximum one of 3.066 eV for x = 0.15 were observed. Dependence of the crystal structures of the InAO3(BO), In(Ti1/2B1/2)O3(B‧O) and stability of In6Ti6BO22 upon the constituent cations in the pseudo quaternary system In2O3-TiO2-A2O3-BO (A: Fe, Ga and Cr; B, B‧: Mg, Zn, Co, Ni, Ca and Sr) were discussed in terms of their ionic radii and site preference effects.

  13. Infrared spectroscopic and theoretical study of the HC2n+1O+ (n = 2-5) cations

    Science.gov (United States)

    Jin, Jiaye; Li, Wei; Liu, Yuhong; Wang, Guanjun; Zhou, Mingfei

    2017-06-01

    The carbon chain cations, HC2n+1O+ (n = 2-5), are produced via pulsed laser vaporization of a graphite target in supersonic expansions containing carbon monoxide and hydrogen. The infrared spectra are measured via mass-selected infrared photodissociation spectroscopy of the CO "tagged" [HC2n+1O.CO]+ cation complexes in the 1600-3500 cm-1 region. The geometries and electronic ground states of these cation complexes are determined by their infrared spectra compared to the predications of theoretical calculations. All of the HC2n+1O+ (n = 2-5) core cations are characterized to be linear carbon chain derivatives terminated by hydrogen and oxygen, which have the closed-shell singlet ground states with polyyne-like carbon chain structures.

  14. Wide bandgap engineering of (AlGa)2O3 films

    International Nuclear Information System (INIS)

    Zhang, Fabi; Saito, Katsuhiko; Tanaka, Tooru; Nishio, Mitsuhiro; Guo, Qixin; Arita, Makoto

    2014-01-01

    Bandgap tunable (AlGa) 2 O 3 films were deposited on sapphire substrates by pulsed laser deposition (PLD). The deposited films are of high transmittance as measured by spectrophotometer. The Al content in films is almost the same as that in targets. The measurement of bandgap energies by examining the onset of inelastic energy loss in core-level atomic spectra using X-ray photoelectron spectroscopy is proved to be valid for determining the bandgap of (AlGa) 2 O 3 films as it is in good agreement with the bandgap values from transmittance spectra. The measured bandgap of (AlGa) 2 O 3 films increases continuously with the Al content covering the whole Al content range from about 5 to 7 eV, indicating PLD is a promising growth technology for growing bandgap tunable (AlGa) 2 O 3 films.

  15. Dynamic hyporheic exchange at intermediate timescales: testing the relative importance of evapotranspiration and flood pulses

    Science.gov (United States)

    Larsen, Laurel G.; Harvey, Judson W.; Maglio, Morgan M.

    2014-01-01

    Hyporheic fluxes influence ecological processes across a continuum of timescales. However, few studies have been able to characterize hyporheic fluxes and residence time distributions (RTDs) over timescales of days to years, during which evapotranspiration (ET) and seasonal flood pulses create unsteady forcing. Here we present a data-driven, particle-tracking piston model that characterizes hyporheic fluxes and RTDs based on measured vertical head differences. We used the model to test the relative influence of ET and seasonal flood pulses in the Everglades (FL, USA), in a manner applicable to other low-energy floodplains or broad, shallow streams. We found that over the multiyear timescale, flood pulses that drive relatively deep (∼1 m) flow paths had the dominant influence on hyporheic fluxes and residence times but that ET effects were discernible at shorter timescales (weeks to months) as a break in RTDs. Cumulative RTDs on either side of the break were generally well represented by lognormal functions, except for when ET was strong and none of the standard distributions applied to the shorter timescale. At the monthly timescale, ET increased hyporheic fluxes by 1–2 orders of magnitude; it also decreased 6 year mean residence times by 53–87%. Long, slow flow paths driven by flood pulses increased 6 year hyporheic fluxes by another 1–2 orders of magnitude, to a level comparable to that induced over the short term by shear flow in streams. Results suggest that models of intermediate-timescale processes should include at least two-storage zones with different RTDs, and that supporting field data collection occur over 3–4 years.

  16. A short-breath-hold technique for lung pO2 mapping with 3He MRI.

    Science.gov (United States)

    Miller, G Wilson; Mugler, John P; Altes, Talissa A; Cai, Jing; Mata, Jaime F; de Lange, Eduard E; Tobias, William A; Cates, Gordon D; Brookeman, James R

    2010-01-01

    A pulse-sequence strategy was developed for generating regional maps of alveolar oxygen partial pressure (pO2) in a single 6-sec breath hold, for use in human subjects with impaired lung function. Like previously described methods, pO2 values are obtained by measuring the oxygen-induced T1 relaxation of inhaled hyperpolarized 3He. Unlike other methods, only two 3He images are acquired: one with reverse-centric and the other with centric phase-encoding order. This phase-encoding arrangement minimizes the effects of regional flip-angle variations, so that an accurate map of instantaneous pO2 can be calculated from two images acquired a few seconds apart. By combining this phase-encoding strategy with variable flip angles, the vast majority of the hyperpolarized magnetization goes directly into the T1 measurement, minimizing noise in the resulting pO2 map. The short-breath-hold pulse sequence was tested in phantoms containing known O2 concentrations. The mean difference between measured and prepared pO2 values was 1 mm Hg. The method was also tested in four healthy volunteers and three lung-transplant patients. Maps of healthy subjects were largely uniform, whereas focal regions of abnormal pO2 were observed in diseased subjects. Mean pO2 values varied with inhaled O2 concentration. Mean pO2 was consistent with normal steady-state values in subjects who inhaled 3He diluted only with room air. Copyright (c) 2009 Wiley-Liss, Inc.

  17. Electrical characterization of Ni/n-ZnO/p-Si/Al heterostructure fabricated by pulsed laser deposition technique

    International Nuclear Information System (INIS)

    Chand, Subhash; Kumar, Rajender

    2014-01-01

    Highlights: • The Ni/n-ZnO/p-Si/Al heterojunction diodes are fabricated by pulsed laser deposition. • The band gap of the deposit ZnO films was found to be 3.43 eV. • Forward I–V data of Ni/n-ZnO/p-Si/Al hetrojunction are interpreted in terms of thermionic emission–diffusion mechanism. • The C–V characteristics of the Ni/n-ZnO/p-Si/Al hetrojunction diode are measured in the temperature range 80–300 K. • The barrier height of Ni/n-ZnO/p-Si/Al hetrojunction diode is also calculated from C–V measurements. - Abstract: The ZnO thin films are grown on the p-Si for the heterojunction fabrication by pulsed laser deposition method. X-ray diffraction study showed that the texture of the film is hexagonal with a strong (0 0 2) plane as preferred direction. High purity vacuum evaporated nickel and aluminum metals were used to make contacts to the n-ZnO and p-Si, respectively. The current–voltage characteristics of Ni/n-ZnO/p-Si(1 0 0)/Al hetero structure measured over the temperature range 80–300 K have been studied on the basis of thermionic emission diffusion mechanism. The equivalent Schottky barrier height and diode ideality factor are determined by fitting of measured current–voltage data in to thermionic diffusion equation. It is observed that the barrier height decreases and the ideality factor increases with decrease of temperature and the activation energy plot exhibit non-linear behavior. These characteristics are attributed to the Gaussian distribution of barrier heights. The capacitance–voltage characteristics of Ni/n-ZnO/p-Si(1 0 0)/Al heterojunction diode are also studied over wide temperature range. From the measured capacitance–voltage data the built in voltage and impurity concentration in n-type ZnO is estimated

  18. Photodissociation of H2+ by intense chirped pulses - beyond the effect of pulse duration and peak power

    International Nuclear Information System (INIS)

    Lev, U; Prabhudesai, V; Natan, A; Bruner, B; Diner, A; Heber, O; Strasser, D; Schwalm, D; Silberberg, Y; Zajfman, D; Ben-Itzhak, I; Hua, J J; Esry, B D

    2009-01-01

    H 2 + photodissociation, induced by intense short laser pulses, was measured by a full 3D imaging system. We have conducted a series of experiments, in which we systematically changed the linear chirp, using a pulse shaper, and observed the kinetic energy release spectra(KER). Distinct differences in the KER spectra are observed both in peak positions and angular distribution for laser pulses with similar duration and intensity but opposite chirp sign.

  19. Topotactic Fluorine Insertion into the Channels of FeSb2O4-Related Materials.

    Science.gov (United States)

    de Laune, Benjamin P; Rees, Gregory J; Marco, José F; Hah, Hien-Yoong; Johnson, Charles E; Johnson, Jacqueline A; Berry, Frank J; Hanna, John V; Greaves, Colin

    2017-08-21

    This paper discusses the fluorination characteristics of phases related to FeSb 2 O 4 , by reporting the results of a detailed study of Mg 0.50 Fe 0.50 Sb 2 O 4 and Co 0.50 Fe 0.50 Sb 2 O 4 . Reaction with fluorine gas at low temperatures (typically 230 °C) results in topotactic insertion of fluorine into the channels, which are an inherent feature of the structure. Neutron powder diffraction and solid state NMR studies show that the interstitial fluoride ions are bonded to antimony within the channel walls to form Sb-F-Sb bridges. To date, these reactions have been observed only when Fe 2+ ions are present within the chains of edge-linked octahedra (FeO 6 in FeSb 2 O 4 ) that form the structural channels. Oxidation of Fe 2+ to Fe 3+ is primarily responsible for balancing the increased negative charge associated with the presence of the fluoride ions within the channels. For the two phases studied, the creation of Fe 3+ ions within the chains of octahedra modify the magnetic exchange interactions to change the ground-state magnetic symmetry to C-type magnetic order in contrast to the A-type order observed for the unfluorinated oxide parents.

  20. Biocompatibility assessment of graphene oxide-hydroxyapatite coating applied on TiO2 nanotubes by ultrasound-assisted pulse electrodeposition.

    Science.gov (United States)

    Fathyunes, Leila; Khalil-Allafi, Jafar; Sheykholeslami, Seyed Omid Reza; Moosavifar, Maryam

    2018-06-01

    In this study, the ultrasound-assisted pulse electrodeposition was introduced to fabricate the graphene oxide (GO)-hydroxyapatite (HA) coating on TiO 2 nanotubes. The results of the X-ray diffraction (XRD), Fourier Transform Infrared spectroscope (FTIR), Transmission Electron Microscope (TEM) and micro-Raman spectroscopy showed the successful synthesis of GO. The Scanning Electron Microscope (SEM) images revealed that in the presence of ultrasonic waves and GO sheets a more compact HA-based coating with refined microstructure could be formed on the pretreated titanium. The results of micro-Raman analysis confirmed the successful incorporation of the reinforcement filler of GO into the coating electrodeposited by the ultrasound-assisted method. The FTIR analysis showed that the GO-HA coating was consisted predominantly of the B-type carbonated HA (CHA) phase. The pretreatment of the substrate and incorporation of the GO sheets into the HA coating had a significant effect on improving the bonding strength at the coating-substrate interface. Moreover, the results of the fibroblast cell culture and 3‑(4,5‑dimethylthiazolyl‑2)‑2, 5‑diphenyltetrazolium bromide (MTT) assay after 2 days demonstrated a higher percentage of cell activity for the GO-HA coated sample. Finally, the 7-day exposure to simulated body fluid (SBF) showed a faster rate of apatite precipitation on the GO-HA coating, as compared to the HA coating and pretreated titanium. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Eletroxidação do etanol em eletrodos de Ti/IrO2 Electro-oxidation of ethanol in Ti/IrO2

    Directory of Open Access Journals (Sweden)

    Carlos H.V. Fidelis

    2001-02-01

    Full Text Available It has been carried out an investigation of ethanol electro-oxidation on Ti/IrO2 electrodes. The experimental results show a high selectivity towards acetaldehyde formation thus, offering potential advantages in cost and availability of raw material. It has been observed that the electrode is partially blocked by a film formed after the oxidation of the starting material which can be removed by pulse technique between RDO and RDH onset. The mechanism and the selectivity of the product formed is presented.

  2. Study on crystallization kinetics and phase evolution in Li2O-Al2O3-GeO2-P2O5 glass-ceramics system

    Science.gov (United States)

    Das, Anurup; Dixit, Anupam; Goswami, Madhumita; Mythili, R.; Hajra, R. N.

    2018-04-01

    To address the safety issues related to liquid electrolyte and improve the battery performance, Solid State Electrolytes (SSEs) are now in frontier area of research interest. We report here synthesis of Li-SSE based on Li2O-Al2O3-GeO2-P2O5 (LAGP) system with NASICON structure. Glass sample with nominal composition Li1.5Al0.5Ge1.5P2.5Si0.5O12 was prepared by melt-quenching technique. Non-isothermal crystallization kinetics was studied using DSC and activation energy of crystallisation was calculated to be ˜ 246 kJ/mol using Kissinger's equation. XRD of heat treated samples show the formation of required LiGe2(PO4)3 phase along with other minor phases. Compositional analysis using SEM-EDX confirms enrichment of Ge and Si along the grain boundaries.

  3. Theory of Al2O3 incorporation in SiO2

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2002-01-01

    Different possible forms of Al2O3 units in a SiO2 network are studied theoretically within the framework of density-functional theory. Total-energy differences between the various configurations are obtained, and simple thermodynamical arguments are used to provide an estimate of their relative...

  4. Highly conducting and transparent Ti-doped CdO films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Gupta, R.K.; Ghosh, K.; Patel, R.; Kahol, P.K.

    2009-01-01

    Titanium-doped cadmium oxide thin films were deposited on quartz substrate by pulsed laser deposition technique. The effect of substrate temperature on structural, optical and electrical properties was studied. The films grown at high temperature show (2 0 0) preferred orientation, while films grown at low temperature have both (1 1 1) and (2 0 0) orientation. These films are highly transparent (63-79%) in visible region, and transmittance of the films depends on growth temperature. The band gap of the films varies from 2.70 eV to 2.84 eV for various temperatures. It is observed that resistivity increases with growth temperature after attaining minimum at 150 deg. C, while carrier concentration continuously decreases with temperature. The low resistivity, high transmittance and wide band gap titanium-doped CdO films could be an excellent candidate for future optoelectronic and photovoltaic applications.

  5. Possibilities of a metal surface radioactive decontamination using a pulsed CO2 laser

    Science.gov (United States)

    Milijanic, Scepan S.; Stjepanovic, Natasa N.; Trtica, Milan S.

    2000-01-01

    There is a growing interest in the laser radioactive decontamination of metal surfaces. It offers advantages over conventional methods: improved safety, reduction of secondary waste, reduced waste volume, acceptable cost. A main mechanism of cleaning in by lasers is ablation. In this work a pulsed TEA CO2 laser was used for surface cleaning, primarily in order to demonstrate that the ablation from metal surfaces with this laser is possible even with relatively low pulse energies, and secondary, that it could be competitive with other lasers because of much higher energy efficiencies. The laser pulse contains two parts, one strong and shot peak at the beginning, followed with a tail. The beam was focused onto a contaminated surface with a KBr lens. The surface was contaminated with 137Cs. Three different metals were used: stainless steel, copper and aluminum. The evaporated material was pumped out in air atmosphere and transferred to a filter. Presence of the activity on the filter was proved by a germanium detector-multichannel analyzer. Activity levels were measured by a GM counter. Calculated decontamination factors as well as collection factors have shown that ablation takes place with relatively high efficiency of decontamination. This investigation suggests that decontamination using the CO2 laser should be seriously considered.

  6. Deposition of superconducting (Cu, C)-Ba-O films by pulsed laser deposition at moderate temperature

    International Nuclear Information System (INIS)

    Yamamoto, Tetsuro; Kikunaga, Kazuya; Obara, Kozo; Terada, Norio; Kikuchi, Naoto; Tanaka, Yasumoto; Tokiwa, Kazuyasu; Watanabe, Tsuneo; Sundaresan, Athinarayanan; Shipra

    2007-01-01

    Superconducting (Cu, C)-Ba-O thin films have been epitaxially grown on (100) SrTiO 3 at a low growth temperature of 500-600 deg. C by pulsed laser deposition. The dependences of their crystallinity and transport properties on preparation conditions have been investigated in order to clarify the dominant parameters for carbon incorporation and the emergence of superconductivity. It has been revealed that the CO 3 content in the films increases with increasing both the parameters of partial pressure of CO 2 during film growth and those of growth rate and enhancement of superconducting properties. The present study has also revealed that the structural and superconducting properties of the (Cu, C)-Ba-O films are seriously deteriorated by the irradiation of energetic particles during deposition. Suppression of the radiation damage is another key for a high and uniform superconducting transition. By these optimizations, a superconducting onset temperature above 50 K and a zero-resistance temperature above 40 K have been realized

  7. Experimental studies of effect of high current pulse electron and carbon ion beams on high temperature Y-Ba-Cu-O, Bi-Ca-Sr-Cu-O superconductors

    International Nuclear Information System (INIS)

    Korenev, S.A.; Sikolenko, V.V.; Chernakova, A.

    1989-01-01

    This work shows the results of the experiment on the effect of high current electron and carbon ion pulse beams irradiation on High-T c superconductors Y-Ba-Cu-O and Bi-Ca-Cu-O in vacuum (P∼5x10 -5 torr). The parameters of electron beam used in the experiment were: E∼100-300 keV, j e ∼10-1000 A/cm 2 , τ) p ∼300ns. The parameters of carbon ions used in the experiment were: E∼100-300keV j i ∼1-60A/cm, τ p ∼300ns. Experiments had shown the threshold electron beam power density for surface melting in adiabatic heat condition for Y-Ba-Cu-O ceramics up to P 0 >or approx. 10 7 W/cm 2 , and for Bi-Ca-Sr-Cu-O ceramics up to P 0 ∼4x10 6 W/cm 2 . Increasing of critical current in ∼2 times was observed in samples with a melting surface layer. The integral resistance of Y-Ba-Cu-O and Bi-Ca-Sr-Cu-O decreased in ∼2-2.5 times for electron beam irradiated samples and in ∼1.25-1.8 times for ion irradiated samples. Amorphization did not take place and stoichiometry remained after such irradiation. 6 refs.; 2 figs.; 1 tab

  8. Electron mass anisotropy of BaZrO3 doped YBCO thin films in pulsed magnetic fields up to 30 T

    International Nuclear Information System (INIS)

    Palonen, H; Huhtinen, H; Paturi, P; Shakhov, M A

    2013-01-01

    The high anisotropy of the critical current density in the high-temperature superconductor YBa 2 Cu 3 O 6+x can be compensated by changing the pinning landscape, for example, through doping with BaZrO 3 . We measure the change due to BaZrO 3 doping in the effective electron mass anisotropy, γ, by resistive measurements of the upper critical field in pulsed high magnetic fields. It is found that the angular dependence of the upper critical field follows the Blatter scaling up to 30 T but the irreversibility field does not. We also report a significant reduction in the effective electron mass anisotropy from 6.0 to 3.4 by BaZrO 3 doping. (paper)

  9. Preparation and characterization of pulsed laser deposited CdTe thin films at higher FTO substrate temperature and in Ar + O{sub 2} atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Chao; Ming, Zhenxun [College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan (China); Li, Bing, E-mail: libing70@126.com [College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan (China); Feng, Lianghuan [College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan (China); Wu, Judy [Department of Physics and Astronomy, Kansas University, Lawrence 66045 (United States)

    2013-06-20

    Highlights: • CdTe films were deposited by PLD at high substrate temperatures (400 °C, 550 °C). • CdTe films were achieved under the atmosphere (1.2 Torr) of Ar mixed with O{sub 2}. • Deposited CdTe films were cubic phase and had strong (1 0 0) preferred orientation. • Scanning electron microscope (SEM) showed an average grain size of 0.3–0.6 μm. • The ultra-thin film (CdS/PLD-CdTe) solar cell with efficiency of 6.68% was made. -- Abstract: Pulsed laser deposition (PLD) is one of the promising techniques for depositing cadmium telluride (CdTe) thin films. It has been reported that PLD CdTe thin films were almost deposited at the lower substrate temperatures (<300 °C) under vacuum conditions. However, the poor crystallinity of CdTe films prepared in this way renders them not conducive to the preparation of high-efficiency CdTe solar cells. To obtain high-efficiency solar cell devices, better crystallinity and more suitable grain size are needed, which requires the CdTe layer to be deposited by PLD at high substrate temperatures (>400 °C). In this paper, CdTe layers were deposited by PLD (KrF, λ = 248 nm, 10 Hz) at different higher substrate temperatures (T{sub s}). Excellent performance of CdTe films was achieved at higher substrate temperatures (400 °C, 550 °C) under an atmosphere of Ar mixed with O{sub 2} (1.2 Torr). X-ray diffraction analysis confirmed the formation of CdTe cubic phase with a strong (1 0 0) preferential orientation at all substrates temperatures on 60 mJ laser energy. The optical properties of CdTe were investigated, and the band gaps of CdTe films were 1.51 eV and 1.49 eV at substrate temperatures of 400 °C and 550 °C, respectively. Scanning electron microscopy (SEM) showed an average grain size of 0.3–0.6 μm. Thus, under these conditions of the atmosphere of Ar + O{sub 2} (15 Torr) and at the relatively high T{sub s} (500 °C), an thin-film (FTO/PLD-CdS (100 nm)/PLD-CdTe (∼1.5 μm)/HgTe: Cu/Ag) solar cell with an

  10. Evaluation of the optoelectronic properties and corrosion behavior of Al2O3-doped ZnO films prepared by dc pulsed magnetron sputtering

    International Nuclear Information System (INIS)

    Zubizarreta, C; Berasategui, E G; Bayón, R; Barriga, J; Escobar Galindo, R; Barros, R; Gaspar, D; Nunes, D; Calmeiro, T; Martins, R; Fortunato, E

    2014-01-01

    The main requirements for transparent conducting oxide (TCO) films acting as electrodes are a high transmission rate in the visible spectral region and low resistivity. However, in many cases, tolerance to temperature and humidity exposure is also an important requirement to be fulfilled by the TCOs to assure proper operation and durability. Besides improving current encapsulation methods, the corrosion resistance of the developed TCOs must also be enhanced to warrant the performance of optoelectronic devices. In this paper the performance of aluminum-doped zinc oxide (AZO) films deposited by pulsed dc magnetron sputtering has been studied. Structure, optical transmittance/reflectance, electrical properties (resistivity, carrier concentration and mobility) and corrosion resistance of the developed coatings have been analyzed as a function of the doping of the target and the coating thickness. Films grown from a 2.0 wt% Al 2 O 3 target with a thickness of approximately 1 µm showed a very low resistivity of 6.54  ×  10 –4  Ωcm and a high optical transmittance in the visible range of 84%. Corrosion studies of the developed samples have shown very low corrosion currents (nanoamperes), very high corrosion resistances (in the order of 10 7  Ω) and very high electrochemical stability, indicating no tendency for electrochemical corrosion degradation. (paper)

  11. Propagation of 1-THz bandwidth electrical pulses on high Tc superconducting transmission lines

    International Nuclear Information System (INIS)

    Nuss, M.C.; Mankiewich, P.M.; Howard, R.E.; Harvey, T.E.; Brandle, C.D.; Straugh, B.L.; Smith, P.R.

    1989-01-01

    The new high temperature superconductors have triggered enormous interest not only because of the unique physics involved but also because of their technical potentials, such as the promise for propagation of extremely short electrical pulses. Superconducting band caps of --20TH z are predicted assuming BCS theory for the superconductor, making lossless propagation of electrical pulses as short as 50 fs possible. Despite microwave measurements at low frequencies of several gigahertz first studies at higher frequencies by Dykaar et al have shown distortion-free propagation of 100-GHz electrical pulses on YBa 2 Cu 3 O 3 (YBCO) lines for --5-mm propagation distance. Results were also reported for aluminum coplanar lines and a YBCO ground plane. The authors report on the propagation of 1-ps electrical pulses (1-THz bandwidth) on YBCO coplanar transmission lines defined on lanthanum gallate (LaGaO 3 ) as a substrate. On LaGaO 3 , YBCO grows highly oriented as on SrTiO 3 . However, unlike SrTiO 3 , LaGaO 3 has a much lower dielectric constant and small losses in the terahertz frequency range. Electrical pulses of --750-fs duration are generated in a radiation-damaged silicon-on-sapphire photoconductive switch integrated into a 20-μm coplanar stripline with 10-μm spacing and excited with 100-fs optical pulses from a CPM laser. An μ1-THz bandwidth electrical contact is made to the YBCO coplanar stripline defined on LaGaO 3 using a flip-chip geometry. They find that electrical pulses broaden only from 750 fs to 1 ps with little loss in amplitude on traveling through their flip-chip input and propagated electrical pulses are probed by electooptic sampling in two small LiTaO 3 crystals separated by 3 mm

  12. Enhanced properties of nanostructured TiO2-graphene composites by rapid sintering

    Science.gov (United States)

    Shon, In-Jin; Yoon, Jin-Kook; Hong, Kyung-Tae

    2018-01-01

    Despite of many attractive properties of TiO2, the drawback of TiO2 ceramic is low fracture toughness for widely industrial application. The method to improve the fracture toughness and hardness has been reported by addition of reinforcing phase to fabricate a nanostructured composite. In this regard, graphene has been evaluated as an ideal second phase in ceramics. Nearly full density of nanostructured TiO2-graphene composite was achieved within one min using pulsed current activated sintering. The effect of graphene on microstructure, fracture toughness and hardness of TiO2-graphene composite was evaluated using Vickers hardness tester and field emission scanning electron microscopy. The grain size of TiO2 in the TiO2-x vol% (x = 0, 1, 3, and 5) graphene composite was greatly reduced with increase in addition of graphene. Both hardness and fracture toughness of TiO2-graphene composites simultaneously increased in the addition of graphene.

  13. Emission analysis of Tb3+ -and Sm3+ -ion-doped (Li2 O/Na2 O/K2 O) and (Li2 O + Na2 O/Li2 O + K2 O/K2 O + Na2 O)-modified borosilicate glasses.

    Science.gov (United States)

    Naveen Kumar Reddy, B; Sailaja, S; Thyagarajan, K; Jho, Young Dahl; Sudhakar Reddy, B

    2018-05-01

    Four series of borosilicate glasses modified by alkali oxides and doped with Tb 3+ and Sm 3+ ions were prepared using the conventional melt quenching technique, with the chemical composition 74.5B 2 O 3 + 10SiO 2 + 5MgO + R + 0.5(Tb 2 O 3 /Sm 2 O 3 ) [where R = 10(Li 2 O /Na 2 O/K 2 O) for series A and C, and R = 5(Li 2 O + Na 2 O/Li 2 O + K 2 O/K 2 O + Na 2 O) for series B and D]. The X-ray diffraction (XRD) patterns of all the prepared glasses indicate their amorphous nature. The spectroscopic properties of the prepared glasses were studied by optical absorption analysis, photoluminescence excitation (PLE) and photoluminescence (PL) analysis. A green emission corresponding to the 5 D 4 → 7 F 5 (543 nm) transition of the Tb 3+ ions was registered under excitation at 379 nm for series A and B glasses. The emission spectra of the Sm 3+ ions with the series C and D glasses showed strong reddish-orange emission at 600 nm ( 4 G 5/2 → 6 H 7/2 ) with an excitation wavelength λ exci = 404 nm ( 6 H 5/2 → 4 F 7/2 ). Furthermore, the change in the luminescence intensity with the addition of an alkali oxide and combinations of these alkali oxides to borosilicate glasses doped with Tb 3+ and Sm 3+ ions was studied to optimize the potential alkali-oxide-modified borosilicate glass. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Few-cycle Optical Parametric Chirped Pulse Amplification

    Science.gov (United States)

    2007-01-08

    silicon - 150mm suprasi1300 Figure 10. Stretcher-compressor unit: group delay 5 -45mm TeO2 (ordinary) (GD) of 30mm silicon, 150mm suprasil300, 45mm CL 0...cycle pulse characterization: 840 -Measured raw 2DSI 20 °OA- traces for pulse (a) before 02. -and (b) after dispersion D 0 by glass plate; (c) so...fused silica plateJ19] see Fig. 15(a), along with the extracted spectral group delays. The chirp introduced by the glass plate is reflected in the

  15. Dynamics of Li+ ions in Li2O-TeO2-P2O5 glasses

    Science.gov (United States)

    Chatterjee, A.; Ghosh, A.

    2018-04-01

    In the present work we have studied transport properties of lithium ions in 0.3Li2O-0.7[xTeO2-(1-x)P2O5] glasses, where x=0.5, 0.6, 0.7. We have measured acconductivity for a wide range offrequency and temperature. The real part of the conductivity spectra has been analyzed by the power law in Almond-West formalism. The dc conductivity has been obtained from the complex impedance plots. We have found that dc conductivity increases and activation energy decreases on increase of TeO2 for a particular Li2O content. We have also found that the dc conductivity and crossover frequency obey Arrhenius relation. The time temperature superposition has been verified using the scaling formalism of the conductivity spectra. We have found that the conductivity isotherms scaled to a single master curve with suitable scaling parameters for a particular composition at different temperatures. However the scaling to a single master curve fails for different compositions at a particular temperature.

  16. Synthesis, bioactivity and preliminary biocompatibility studies of glasses in the system CaO-MgO-SiO2-Na2O-P2O5-CaF2.

    Science.gov (United States)

    Tulyaganov, D U; Agathopoulos, S; Valerio, P; Balamurugan, A; Saranti, A; Karakassides, M A; Ferreira, J M F

    2011-02-01

    New compositions of bioactive glasses are proposed in the CaO-MgO-SiO(2)-Na(2)O-P(2)O(5)-CaF(2) system. Mineralization tests with immersion of the investigated glasses in simulated body fluid (SBF) at 37°C showed that the glasses favour the surface formation of hydroxyapatite (HA) from the early stages of the experiments. In the case of daily renewable SBF, monetite (CaHPO(4)) formation competed with the formation of HA. The influence of structural features of the glasses on their mineralization (bioactivity) performance is discussed. Preliminary in vitro experiments with osteoblasts' cell-cultures showed that the glasses are biocompatible and there is no evidence of toxicity. Sintering and devitrification studies of glass powder compacts were also performed. Glass-ceramics with attractive properties were obtained after heat treatment of the glasses at relatively low temperatures (up to 850°C).

  17. Crystallization of 21.25Gd2O3-63.75MoO3-15B2O3 glass induced by femtosecond laser at the repetition rate of 250 kHz

    International Nuclear Information System (INIS)

    Zhong, M.J.; Han, Y.M.; Liu, L.P.; Zhou, P.; Du, Y.Y.; Guo, Q.T.; Ma, H.L.; Dai, Y.

    2010-01-01

    We report the formation of β'-Gd 2 (MoO 4 ) 3 (GMO) crystal on the surface of the 21.25Gd 2 O 3 -63.75MoO 3 -15B 2 O 3 glass, induced by 250 kHz, 800 nm femtosecond laser irradiation. The morphology of the modified region in the glass was clearly examined by scanning electron microscopy (SEM). By micro-Raman spectra, the laser-induced crystals were confirmed to be GMO phases and it is found that these crystals have a strong dependence on the number and power of the femtosecond laser pulses. When the irradiation laser power was 900 mW, not only the Raman peaks of GMO crystals but also some new peaks at 214 cm -1 , 240 cm -1 , 466 cm -1 , 664 cm -1 and 994 cm -1 which belong to the MoO 3 crystals were observed. The possible mechanisms are proposed to explain these phenomena.

  18. Magnetic and structural study of Cu-doped TiO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Torres, C.E. Rodriguez [Dpto de Fisica-IFLP, Fac. Cs. Exactas, Universidad Nacional de La Plata-CONICET, CC 67, 1900 La Plata (Argentina)], E-mail: torres@fisica.unlp.edu.ar; Golmar, F. [Laboratorio de Ablacion Laser, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina); Cabrera, A.F.; Errico, L.; Navarro, A.M. Mudarra; Renteria, M.; Sanchez, F.H. [Dpto de Fisica-IFLP, Fac. Cs. Exactas, Universidad Nacional de La Plata-CONICET, CC 67, 1900 La Plata (Argentina); Duhalde, S. [Laboratorio de Ablacion Laser, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)

    2007-10-31

    Transparent pure and Cu-doped (2.5, 5 and 10 at.%) anatase TiO{sub 2} thin films were grown by pulsed laser deposition technique on LaAlO{sub 3} substrates. The samples were structurally characterized by X-ray absorption spectroscopy and X-ray diffraction. The magnetic properties were measured using a SQUID. All films have a FM-like behaviour. In the case of the Cu-doped samples, the magnetic cycles are almost independent of the Cu concentration. Cu atoms are forming CuO and/or substituting Ti in TiO{sub 2}. The thermal treatment in air promotes the CuO segregation. Since CuO is antiferromagnetic, the magnetic signals present in the films could be assigned to Cu substitutionally replacing cations in TiO{sub 2}.

  19. Raman spectroscopy, thermal and optical properties of TeO2-ZnO-Nb2O5-Nd2O3 glasses.

    Science.gov (United States)

    Kamalaker, V; Upender, G; Ramesh, Ch; Mouli, V Chandra

    2012-04-01

    The glasses with composition 75TeO2-10ZnO-(15-x)Nb2O5-xNd2O3 (0≤x≤9 mol%) were prepared using melt quenching method and their physical properties such as density (ρ), molar volume (VM), average crosslink density (nc¯), oxygen packing density (OPD) and number of bonds per unit volume (nb) were determined. Raman spectroscopic studies showed that the glass network consists of TeO4, TeO3+1, TeO3 and NbO6 units as basic structural units. The glass transition temperature (Tg), crystallization onset (To) and thermal stability (ΔT) were determined from DSC thermograms. The Raman and DSC results were found to be correlated with the physical properties. In the optical absorption spectra six absorption bands were observed with different relative intensities at around 464, 522, 576, 742, 801 and 871 nm which are assigned to the transition of electrons from (ground state) 4I9/2→G11/2; 4I9/22K3/2, 2G7/2; 4I9/2→4G5/2, 4G7/2; 4I9/2→4S3/2; 4F7/22H9/2, 4F5/2 and 4I9/22F3/2 respectively. From optical absorption data the energy band gap (Eopt) and Urbach energy (ΔE) were calculated. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Absorption Spectra of BaF2 Sm2O3, Sm, Gd, and Ho Plasmas

    Science.gov (United States)

    Martin, Michael; Bastiani-Ceccotti, Serena

    2009-11-01

    Knowledge of the opacities of high Z element plasmas is important in indirect drive ICF and the study of stellar evolution. There are few experimental measurements of this quantity, and its theoretical determination is difficult due to the number of possible bound electron configurations. This study aims to better the theoretical understanding of this parameter by looking at the 3d-4f transitions of BaF2, Sm2O3, Sm, Gd, and Ho plasmas at the LULI2000 facility. The plasmas are produced by radiative heating and are cold, 15 -- 40 eV, and relatively dense, ˜ .01gm/cm^3 A plasma is produced by a .5 ns laser pulse irradiating a gold hohlraum and then probed by an x-ray source created by a gold foil irradiated by a 10 ps laser pulse. The transmission is found with simultaneous source and absorption measurements by an x-ray spectrometer in the 8 - 20 å range We will compare the results with statistical atomic structure codes. From this experiment we will gain further insight into the spectral broadening of neighboring Z elements due to changing plasma temperature and into mixture thermodynamics. This is a first step towards an experimental study of astrophysical domains.