WorldWideScience

Sample records for relative newton method

  1. Continuation Newton methods

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Sysala, Stanislav

    2015-01-01

    Roč. 70, č. 11 (2015), s. 2621-2637 ISSN 0898-1221 R&D Projects: GA ČR GA13-18652S Institutional support: RVO:68145535 Keywords : system of nonlinear equations * Newton method * load increment method * elastoplasticity Subject RIV: IN - Informatics, Computer Science Impact factor: 1.398, year: 2015 http://www.sciencedirect.com/science/article/pii/S0898122115003818

  2. Sometimes "Newton's Method" Always "Cycles"

    Science.gov (United States)

    Latulippe, Joe; Switkes, Jennifer

    2012-01-01

    Are there functions for which Newton's method cycles for all non-trivial initial guesses? We construct and solve a differential equation whose solution is a real-valued function that two-cycles under Newton iteration. Higher-order cycles of Newton's method iterates are explored in the complex plane using complex powers of "x." We find a class of…

  3. Decentralized Quasi-Newton Methods

    Science.gov (United States)

    Eisen, Mark; Mokhtari, Aryan; Ribeiro, Alejandro

    2017-05-01

    We introduce the decentralized Broyden-Fletcher-Goldfarb-Shanno (D-BFGS) method as a variation of the BFGS quasi-Newton method for solving decentralized optimization problems. The D-BFGS method is of interest in problems that are not well conditioned, making first order decentralized methods ineffective, and in which second order information is not readily available, making second order decentralized methods impossible. D-BFGS is a fully distributed algorithm in which nodes approximate curvature information of themselves and their neighbors through the satisfaction of a secant condition. We additionally provide a formulation of the algorithm in asynchronous settings. Convergence of D-BFGS is established formally in both the synchronous and asynchronous settings and strong performance advantages relative to first order methods are shown numerically.

  4. Fractal aspects and convergence of Newton`s method

    Energy Technology Data Exchange (ETDEWEB)

    Drexler, M. [Oxford Univ. Computing Lab. (United Kingdom)

    1996-12-31

    Newton`s Method is a widely established iterative algorithm for solving non-linear systems. Its appeal lies in its great simplicity, easy generalization to multiple dimensions and a quadratic local convergence rate. Despite these features, little is known about its global behavior. In this paper, we will explain a seemingly random global convergence pattern using fractal concepts and show that the behavior of the residual is entirely explicable. We will also establish quantitative results for the convergence rates. Knowing the mechanism of fractal generation, we present a stabilization to the orthodox Newton method that remedies the fractal behavior and improves convergence.

  5. [Isaac Newton's Anguli Contactus method].

    Science.gov (United States)

    Wawrzycki, Jarosław

    2014-01-01

    In this paper we discuss the geometrical method for calculating the curvature of a class of curves from the third Book of Isaac Newton's Principia. The method involves any curve which is generated from an elementary curve (actually from any curve whose curvature we known of) by means of transformation increasing the polar angular coordinate in a constant ratio, but unchanging the polar radial angular coordinate.

  6. Randomized Block Cubic Newton Method

    KAUST Repository

    Doikov, Nikita; Richtarik, Peter

    2018-01-01

    We study the problem of minimizing the sum of three convex functions: a differentiable, twice-differentiable and a non-smooth term in a high dimensional setting. To this effect we propose and analyze a randomized block cubic Newton (RBCN) method, which in each iteration builds a model of the objective function formed as the sum of the natural models of its three components: a linear model with a quadratic regularizer for the differentiable term, a quadratic model with a cubic regularizer for the twice differentiable term, and perfect (proximal) model for the nonsmooth term. Our method in each iteration minimizes the model over a random subset of blocks of the search variable. RBCN is the first algorithm with these properties, generalizing several existing methods, matching the best known bounds in all special cases. We establish ${\\cal O}(1/\\epsilon)$, ${\\cal O}(1/\\sqrt{\\epsilon})$ and ${\\cal O}(\\log (1/\\epsilon))$ rates under different assumptions on the component functions. Lastly, we show numerically that our method outperforms the state-of-the-art on a variety of machine learning problems, including cubically regularized least-squares, logistic regression with constraints, and Poisson regression.

  7. Randomized Block Cubic Newton Method

    KAUST Repository

    Doikov, Nikita

    2018-02-12

    We study the problem of minimizing the sum of three convex functions: a differentiable, twice-differentiable and a non-smooth term in a high dimensional setting. To this effect we propose and analyze a randomized block cubic Newton (RBCN) method, which in each iteration builds a model of the objective function formed as the sum of the natural models of its three components: a linear model with a quadratic regularizer for the differentiable term, a quadratic model with a cubic regularizer for the twice differentiable term, and perfect (proximal) model for the nonsmooth term. Our method in each iteration minimizes the model over a random subset of blocks of the search variable. RBCN is the first algorithm with these properties, generalizing several existing methods, matching the best known bounds in all special cases. We establish ${\\\\cal O}(1/\\\\epsilon)$, ${\\\\cal O}(1/\\\\sqrt{\\\\epsilon})$ and ${\\\\cal O}(\\\\log (1/\\\\epsilon))$ rates under different assumptions on the component functions. Lastly, we show numerically that our method outperforms the state-of-the-art on a variety of machine learning problems, including cubically regularized least-squares, logistic regression with constraints, and Poisson regression.

  8. Truncated Newton-Raphson Methods for Quasicontinuum Simulations

    National Research Council Canada - National Science Library

    Liang, Yu; Kanapady, Ramdev; Chung, Peter W

    2006-01-01

    .... In this research, we report the effectiveness of the truncated Newton-Raphson method and quasi-Newton method with low-rank Hessian update strategy that are evaluated against the full Newton-Raphson...

  9. Subsampled Hessian Newton Methods for Supervised Learning.

    Science.gov (United States)

    Wang, Chien-Chih; Huang, Chun-Heng; Lin, Chih-Jen

    2015-08-01

    Newton methods can be applied in many supervised learning approaches. However, for large-scale data, the use of the whole Hessian matrix can be time-consuming. Recently, subsampled Newton methods have been proposed to reduce the computational time by using only a subset of data for calculating an approximation of the Hessian matrix. Unfortunately, we find that in some situations, the running speed is worse than the standard Newton method because cheaper but less accurate search directions are used. In this work, we propose some novel techniques to improve the existing subsampled Hessian Newton method. The main idea is to solve a two-dimensional subproblem per iteration to adjust the search direction to better minimize the second-order approximation of the function value. We prove the theoretical convergence of the proposed method. Experiments on logistic regression, linear SVM, maximum entropy, and deep networks indicate that our techniques significantly reduce the running time of the subsampled Hessian Newton method. The resulting algorithm becomes a compelling alternative to the standard Newton method for large-scale data classification.

  10. Newton-type methods for optimization and variational problems

    CERN Document Server

    Izmailov, Alexey F

    2014-01-01

    This book presents comprehensive state-of-the-art theoretical analysis of the fundamental Newtonian and Newtonian-related approaches to solving optimization and variational problems. A central focus is the relationship between the basic Newton scheme for a given problem and algorithms that also enjoy fast local convergence. The authors develop general perturbed Newtonian frameworks that preserve fast convergence and consider specific algorithms as particular cases within those frameworks, i.e., as perturbations of the associated basic Newton iterations. This approach yields a set of tools for the unified treatment of various algorithms, including some not of the Newton type per se. Among the new subjects addressed is the class of degenerate problems. In particular, the phenomenon of attraction of Newton iterates to critical Lagrange multipliers and its consequences as well as stabilized Newton methods for variational problems and stabilized sequential quadratic programming for optimization. This volume will b...

  11. A combined modification of Newton`s method for systems of nonlinear equations

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, M.T.; Fernandes, E.M.G.P. [Universidade do Minho, Braga (Portugal)

    1996-12-31

    To improve the performance of Newton`s method for the solution of systems of nonlinear equations a modification to the Newton iteration is implemented. The modified step is taken as a linear combination of Newton step and steepest descent directions. In the paper we describe how the coefficients of the combination can be generated to make effective use of the two component steps. Numerical results that show the usefulness of the combined modification are presented.

  12. Newton-Krylov-Schwarz methods in unstructured grid Euler flow

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, D.E. [Old Dominion Univ., Norfolk, VA (United States)

    1996-12-31

    Newton-Krylov methods and Krylov-Schwarz (domain decomposition) methods have begun to become established in computational fluid dynamics (CFD) over the past decade. The former employ a Krylov method inside of Newton`s method in a Jacobian-free manner, through directional differencing. The latter employ an overlapping Schwarz domain decomposition to derive a preconditioner for the Krylov accelerator that relies primarily on local information, for data-parallel concurrency. They may be composed as Newton-Krylov-Schwarz (NKS) methods, which seem particularly well suited for solving nonlinear elliptic systems in high-latency, distributed-memory environments. We give a brief description of this family of algorithms, with an emphasis on domain decomposition iterative aspects. We then describe numerical simulations with Newton-Krylov-Schwarz methods on an aerodynamic application emphasizing comparisons with a standard defect-correction approach and subdomain preconditioner consistency.

  13. Special relativity, electrodynamics, and general relativity from Newton to Einstein

    CERN Document Server

    Kogut, John B

    2018-01-01

    Special Relativity, Electrodynamics and General Relativity: From Newton to Einstein, Second Edition, is intended to teach (astro)physics, astronomy, and cosmology students how to think about special and general relativity in a fundamental, but accessible, way. Designed to render any reader a "master of relativity," everything on the subject is comprehensible and derivable from first principles. The book emphasizes problem solving, contains abundant problem sets, and is conveniently organized to meet the needs of both student and instructor. Fully revised, updated and expanded second edition Includes new chapters on magnetism as a consequence of relativity and electromagnetism Contains many improved and more engaging figures Uses less algebra resulting in more efficient derivations Enlarged discussion of dynamics and the relativistic version of Newton's second law

  14. Various Newton-type iterative methods for solving nonlinear equations

    Directory of Open Access Journals (Sweden)

    Manoj Kumar

    2013-10-01

    Full Text Available The aim of the present paper is to introduce and investigate new ninth and seventh order convergent Newton-type iterative methods for solving nonlinear equations. The ninth order convergent Newton-type iterative method is made derivative free to obtain seventh-order convergent Newton-type iterative method. These new with and without derivative methods have efficiency indices 1.5518 and 1.6266, respectively. The error equations are used to establish the order of convergence of these proposed iterative methods. Finally, various numerical comparisons are implemented by MATLAB to demonstrate the performance of the developed methods.

  15. Low-rank Quasi-Newton updates for Robust Jacobian lagging in Newton methods

    International Nuclear Information System (INIS)

    Brown, J.; Brune, P.

    2013-01-01

    Newton-Krylov methods are standard tools for solving nonlinear problems. A common approach is to 'lag' the Jacobian when assembly or preconditioner setup is computationally expensive, in exchange for some degradation in the convergence rate and robustness. We show that this degradation may be partially mitigated by using the lagged Jacobian as an initial operator in a quasi-Newton method, which applies unassembled low-rank updates to the Jacobian until the next full reassembly. We demonstrate the effectiveness of this technique on problems in glaciology and elasticity. (authors)

  16. Coupling of partitioned physics codes with quasi-Newton methods

    CSIR Research Space (South Africa)

    Haelterman, R

    2017-03-01

    Full Text Available , A class of methods for solving nonlinear simultaneous equations. Math. Comp. 19, pp. 577–593 (1965) [3] C.G. Broyden, Quasi-Newton methods and their applications to function minimization. Math. Comp. 21, pp. 368–381 (1967) [4] J.E. Dennis, J.J. More...´, Quasi-Newton methods: motivation and theory. SIAM Rev. 19, pp. 46–89 (1977) [5] J.E. Dennis, R.B. Schnabel, Least Change Secant Updates for quasi- Newton methods. SIAM Rev. 21, pp. 443–459 (1979) [6] G. Dhondt, CalculiX CrunchiX USER’S MANUAL Version 2...

  17. Choosing the forcing terms in an inexact Newton method

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstat, S.C. [Yale Univ., New Haven, CT (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States)

    1994-12-31

    An inexact Newton method is a generalization of Newton`s method for solving F(x) = 0, F: {Re}{sup n} {r_arrow} {Re}{sup n}, in which each step reduces the norm of the local linear model of F. At the kth iteration, the norm reduction is usefully expressed by the inexact Newton condition where x{sub k} is the current approximate solution and s{sub k} is the step. In many applications, an {eta}{sub k} is first specified, and then an S{sub k} is found for which the inexact Newton condition holds. Thus {eta}{sub k} is often called a {open_quotes}forcing term{close_quotes}. In practice, the choice of the forcing terms is usually critical to the efficiency of the method and can affect robustness as well. Here, the authors outline several promising choices, discuss theoretical support for them, and compare their performance in a Newton iterative (truncated Newton) method applied to several large-scale problems.

  18. Local Convergence and Radius of Convergence for Modified Newton Method

    Directory of Open Access Journals (Sweden)

    Măruşter Ştefan

    2017-12-01

    Full Text Available We investigate the local convergence of modified Newton method, i.e., the classical Newton method in which the derivative is periodically re-evaluated. Based on the convergence properties of Picard iteration for demicontractive mappings, we give an algorithm to estimate the local radius of convergence for considered method. Numerical experiments show that the proposed algorithm gives estimated radii which are very close to or even equal with the best ones.

  19. Newton-Krylov methods applied to nonequilibrium radiation diffusion

    International Nuclear Information System (INIS)

    Knoll, D.A.; Rider, W.J.; Olsen, G.L.

    1998-01-01

    The authors present results of applying a matrix-free Newton-Krylov method to a nonequilibrium radiation diffusion problem. Here, there is no use of operator splitting, and Newton's method is used to convert the nonlinearities within a time step. Since the nonlinear residual is formed, it is used to monitor convergence. It is demonstrated that a simple Picard-based linearization produces a sufficient preconditioning matrix for the Krylov method, thus elevating the need to form or store a Jacobian matrix for Newton's method. They discuss the possibility that the Newton-Krylov approach may allow larger time steps, without loss of accuracy, as compared to an operator split approach where nonlinearities are not converged within a time step

  20. A Non-smooth Newton Method for Multibody Dynamics

    International Nuclear Information System (INIS)

    Erleben, K.; Ortiz, R.

    2008-01-01

    In this paper we deal with the simulation of rigid bodies. Rigid body dynamics have become very important for simulating rigid body motion in interactive applications, such as computer games or virtual reality. We present a novel way of computing contact forces using a Newton method. The contact problem is reformulated as a system of non-linear and non-smooth equations, and we solve this system using a non-smooth version of Newton's method. One of the main contribution of this paper is the reformulation of the complementarity problems, used to model impacts, as a system of equations that can be solved using traditional methods.

  1. Designing stellarator coils by a modified Newton method using FOCUS

    Science.gov (United States)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi

    2018-06-01

    To find the optimal coils for stellarators, nonlinear optimization algorithms are applied in existing coil design codes. However, none of these codes have used the information from the second-order derivatives. In this paper, we present a modified Newton method in the recently developed code FOCUS. The Hessian matrix is calculated with analytically derived equations. Its inverse is approximated by a modified Cholesky factorization and applied in the iterative scheme of a classical Newton method. Using this method, FOCUS is able to recover the W7-X modular coils starting from a simple initial guess. Results demonstrate significant advantages.

  2. The continuous, desingularized Newton method for meromorphic functions

    NARCIS (Netherlands)

    Jongen, H.Th.; Jonker, P.; Twilt, F.

    For any (nonconstant) meromorphic function, we present a real analytic dynamical system, which may be interpreted as an infinitesimal version of Newton's method for finding its zeros. A fairly complete description of the local and global features of the phase portrait of such a system is obtained

  3. Derivation of special relativity from Maxwell and Newton.

    Science.gov (United States)

    Dunstan, D J

    2008-05-28

    Special relativity derives directly from the principle of relativity and from Newton's laws of motion with a single undetermined parameter, which is found from Faraday's and Ampère's experimental work and from Maxwell's own introduction of the displacement current to be the -c(-2) term in the Lorentz transformations. The axiom of the constancy of the speed of light is quite unnecessary. The behaviour and the mechanism of the propagation of light are not at the foundations of special relativity.

  4. Modified Block Newton method for the lambda modes problem

    Energy Technology Data Exchange (ETDEWEB)

    González-Pintor, S., E-mail: segonpin@isirym.upv.es [Departamento de Ingeniería Química y Nuclear, Universidad Politécnica de Valencia, Camino de Vera 14, 46022 Valencia (Spain); Ginestar, D., E-mail: dginestar@mat.upv.es [Instituto de Matemática Multidisciplinar, Universidad Politécnica de Valencia, Camino de Vera 14, 46022 Valencia (Spain); Verdú, G., E-mail: gverdu@iqn.upv.es [Departamento de Ingeniería Química y Nuclear, Universidad Politécnica de Valencia, Camino de Vera 14, 46022 Valencia (Spain)

    2013-06-15

    Highlights: ► The Modal Method is based on expanding the solution in a set of dominant modes. ► Updating the set of dominant modes improve its performance. ► A Modified Block Newton Method, which use previous calculated modes, is proposed. ► The method exhibits a very good local convergence with few iterations. ► Good performance results are also obtained for heavy perturbations. -- Abstract: To study the behaviour of nuclear power reactors it is necessary to solve the time dependent neutron diffusion equation using either a rectangular mesh for PWR and BWR reactors or a hexagonal mesh for VVER reactors. This problem can be solved by means of a modal method, which uses a set of dominant modes to expand the neutron flux. For the transient calculations using the modal method with a moderate number of modes, these modes must be updated each time step to maintain the accuracy of the solution. The updating modes process is also interesting to study perturbed configurations of a reactor. A Modified Block Newton method is studied to update the modes. The performance of the Newton method has been tested for a steady state perturbation analysis of two 2D hexagonal reactors, a perturbed configuration of the IAEA PWR 3D reactor and two configurations associated with a boron dilution transient in a BWR reactor.

  5. Inexact proximal Newton methods for self-concordant functions

    DEFF Research Database (Denmark)

    Li, Jinchao; Andersen, Martin Skovgaard; Vandenberghe, Lieven

    2016-01-01

    with an application to L1-regularized covariance selection, in which prior constraints on the sparsity pattern of the inverse covariance matrix are imposed. In the numerical experiments the proximal Newton steps are computed by an accelerated proximal gradient method, and multifrontal algorithms for positive definite...... matrices with chordal sparsity patterns are used to evaluate gradients and matrix-vector products with the Hessian of the smooth component of the objective....

  6. Expanding Newton Mechanics with Neutrosophy and Quadstage Method ──New Newton Mechanics Taking Law of Conservation of Energy as Unique Source Law

    Directory of Open Access Journals (Sweden)

    Fu Yuhua

    2014-06-01

    Full Text Available Neutrosophy is a new branch of philosophy, and "Quad-stage" (Four stages is the expansion of Hegel’s triad thesis, antithesis, synthesis of development. Applying Neutrosophy and "Quad-stage" method, the purposes of this paper are expanding Newton Mechanics and making it become New Newton Mechanics (NNW taking law of conservation of energy as unique source law. In this paper the examples show that in some cases other laws may be contradicted with the law of conservation of energy. The original Newton's three laws and the law of gravity, in principle can be derived by the law of conservation of energy. Through the example of free falling body, this paper derives the original Newton's second law by using the law of conservation of energy, and proves that there is not the contradiction between the original law of gravity and the law of conservation of energy; and through the example of a small ball rolls along the inclined plane (belonging to the problem cannot be solved by general relativity that a body is forced to move in flat space, derives improved Newton's second law and improved law of gravity by using law of conservation of energy. Whether or not other conservation laws (such as the law of conservation of momentum and the law of conservation of angular momentum can be utilized, should be tested by law of conservation of energy. When the original Newton's second law is not correct, then the laws of conservation of momentum and angular momentum are no longer correct; therefore the general forms of improved law of conservation of momentum and improved law of conservation of angular momentum are presented. In the cases that law of conservation of energy cannot be used effectively, New Newton Mechanics will not exclude that according to other theories or accurate experiments to derive the laws or formulas to solve some specific problems. For example, with the help of the result of general relativity, the improved Newton's formula of universal

  7. Newton-like methods for Navier-Stokes solution

    Science.gov (United States)

    Qin, N.; Xu, X.; Richards, B. E.

    1992-12-01

    The paper reports on Newton-like methods called SFDN-alpha-GMRES and SQN-alpha-GMRES methods that have been devised and proven as powerful schemes for large nonlinear problems typical of viscous compressible Navier-Stokes solutions. They can be applied using a partially converged solution from a conventional explicit or approximate implicit method. Developments have included the efficient parallelization of the schemes on a distributed memory parallel computer. The methods are illustrated using a RISC workstation and a transputer parallel system respectively to solve a hypersonic vortical flow.

  8. Nonsmooth Newton method for Fischer function reformulation of contact force problems for interactive rigid body simulation

    DEFF Research Database (Denmark)

    Silcowitz, Morten; Niebe, Sarah Maria; Erleben, Kenny

    2009-01-01

    contact response. In this paper, we present a new approach to contact force determination. We reformulate the contact force problem as a nonlinear root search problem, using a Fischer function. We solve this problem using a generalized Newton method. Our new Fischer - Newton method shows improved...... qualities for specific configurations where the most widespread alternative, the Projected Gauss-Seidel method, fails. Experiments show superior convergence properties of the exact Fischer - Newton method....

  9. A Framework for Generalising the Newton Method and Other Iterative Methods from Euclidean Space to Manifolds

    OpenAIRE

    Manton, Jonathan H.

    2012-01-01

    The Newton iteration is a popular method for minimising a cost function on Euclidean space. Various generalisations to cost functions defined on manifolds appear in the literature. In each case, the convergence rate of the generalised Newton iteration needed establishing from first principles. The present paper presents a framework for generalising iterative methods from Euclidean space to manifolds that ensures local convergence rates are preserved. It applies to any (memoryless) iterative m...

  10. A new method for testing Newton's gravitational law

    International Nuclear Information System (INIS)

    Schurr, J.; Klein, N.; Meyer, H.; Piel, H.; Walesch, H.

    1991-01-01

    A new experimental method is reported for determining the gravitational force of a laboratory test mass on a Fabry-Perot microwave resonator. The resonator consists of two Fabry-Perot mirrors suspended as pendulums. Changes of 2·10 -11 m in the pendulum separation can be resolved as a shift of the resonance frequency of the resonator. This limit corresponds to an acceleration of 7·10 -11 m s -2 of one mirror with respect to the other. In a first experiment, the gravitational acceleration generated by a 125 kg test mass was measured as a function of distance in the range of 10 to 15 cm and tested Newton's gravitational law with an accuracy of 1%. No deviation is found. Furthermore, the gravitational constant G is determined with similar precision. (author) 5 refs., 2 figs

  11. A Damped Gauss-Newton Method for the Second-Order Cone Complementarity Problem

    International Nuclear Information System (INIS)

    Pan Shaohua; Chen, J.-S.

    2009-01-01

    We investigate some properties related to the generalized Newton method for the Fischer-Burmeister (FB) function over second-order cones, which allows us to reformulate the second-order cone complementarity problem (SOCCP) as a semismooth system of equations. Specifically, we characterize the B-subdifferential of the FB function at a general point and study the condition for every element of the B-subdifferential at a solution being nonsingular. In addition, for the induced FB merit function, we establish its coerciveness and provide a weaker condition than Chen and Tseng (Math. Program. 104:293-327, 2005) for each stationary point to be a solution, under suitable Cartesian P-properties of the involved mapping. By this, a damped Gauss-Newton method is proposed, and the global and superlinear convergence results are obtained. Numerical results are reported for the second-order cone programs from the DIMACS library, which verify the good theoretical properties of the method

  12. Quasi-Newton methods for implicit black-box FSI coupling

    CSIR Research Space (South Africa)

    Bogaers, Alfred EJ

    2014-09-01

    Full Text Available In this paper we introduce a new multi-vector update quasi-Newton (MVQN) method for implicit coupling of partitioned, transient FSI solvers. The new quasi-Newton method facilitates the use of 'black-box' field solvers and under certain circumstances...

  13. A preconditioned inexact newton method for nonlinear sparse electromagnetic imaging

    KAUST Repository

    Desmal, Abdulla

    2015-03-01

    A nonlinear inversion scheme for the electromagnetic microwave imaging of domains with sparse content is proposed. Scattering equations are constructed using a contrast-source (CS) formulation. The proposed method uses an inexact Newton (IN) scheme to tackle the nonlinearity of these equations. At every IN iteration, a system of equations, which involves the Frechet derivative (FD) matrix of the CS operator, is solved for the IN step. A sparsity constraint is enforced on the solution via thresholded Landweber iterations, and the convergence is significantly increased using a preconditioner that levels the FD matrix\\'s singular values associated with contrast and equivalent currents. To increase the accuracy, the weight of the regularization\\'s penalty term is reduced during the IN iterations consistently with the scheme\\'s quadratic convergence. At the end of each IN iteration, an additional thresholding, which removes small \\'ripples\\' that are produced by the IN step, is applied to maintain the solution\\'s sparsity. Numerical results demonstrate the applicability of the proposed method in recovering sparse and discontinuous dielectric profiles with high contrast values.

  14. Sparse contrast-source inversion using linear-shrinkage-enhanced inexact Newton method

    KAUST Repository

    Desmal, Abdulla

    2014-07-01

    A contrast-source inversion scheme is proposed for microwave imaging of domains with sparse content. The scheme uses inexact Newton and linear shrinkage methods to account for the nonlinearity and ill-posedness of the electromagnetic inverse scattering problem, respectively. Thresholded shrinkage iterations are accelerated using a preconditioning technique. Additionally, during Newton iterations, the weight of the penalty term is reduced consistently with the quadratic convergence of the Newton method to increase accuracy and efficiency. Numerical results demonstrate the applicability of the proposed method.

  15. Sparse contrast-source inversion using linear-shrinkage-enhanced inexact Newton method

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2014-01-01

    A contrast-source inversion scheme is proposed for microwave imaging of domains with sparse content. The scheme uses inexact Newton and linear shrinkage methods to account for the nonlinearity and ill-posedness of the electromagnetic inverse scattering problem, respectively. Thresholded shrinkage iterations are accelerated using a preconditioning technique. Additionally, during Newton iterations, the weight of the penalty term is reduced consistently with the quadratic convergence of the Newton method to increase accuracy and efficiency. Numerical results demonstrate the applicability of the proposed method.

  16. A comparison of different quasi-newton acceleration methods for partitioned multi-physics codes

    CSIR Research Space (South Africa)

    Haelterman, R

    2018-02-01

    Full Text Available & structures, 88/7, pp. 446–457 (2010) 8. J.E. Dennis, J.J. More´, Quasi-Newton methods: motivation and theory. SIAM Rev. 19, pp. 46–89 (1977) A Comparison of Quasi-Newton Acceleration Methods 15 9. J.E. Dennis, R.B. Schnabel, Least Change Secant Updates... Dois Metodos de Broyden. Mat. Apl. Comput. 1/2, pp. 135– 143 (1982) 25. J.M. Martinez, A quasi-Newton method with modification of one column per iteration. Com- puting 33, pp. 353–362 (1984) 26. J.M. Martinez, M.C. Zambaldi, An Inverse Column...

  17. A Gauss-Newton method for the integration of spatial normal fields in shape Space

    KAUST Repository

    Balzer, Jonathan

    2011-01-01

    to solving a nonlinear least-squares problem in shape space. Previously, the corresponding minimization has been performed by gradient descent, which suffers from slow convergence and susceptibility to local minima. Newton-type methods, although significantly

  18. Isaac Newton's scientific method turning data into evidence about gravity and cosmology

    CERN Document Server

    Harper, William L.

    2014-01-01

    Isaac Newton's Scientific Method examines Newton's argument for universal gravity and his application of it to resolve the problem of deciding between geocentric and heliocentric world systems by measuring masses of the sun and planets. William L. Harper suggests that Newton's inferences from phenomena realize an ideal of empirical success that is richer than prediction. Any theory that can achieve this rich sort of empirical success must not only be able to predict the phenomena it purports to explain, but also have those phenomena accurately measure the parameters which explain them. Harper explores the ways in which Newton's method aims to turn theoretical questions into ones which can be answered empirically by measurement from phenomena, and to establish that propositions inferred from phenomena are provisionally accepted as guides to further research. This methodology, guided by its rich ideal of empirical success, supports a conception of scientific progress that does not require construing it as progr...

  19. Quasi-Newton methods for the acceleration of multi-physics codes

    CSIR Research Space (South Africa)

    Haelterman, R

    2017-08-01

    Full Text Available .E. Dennis, J.J. More´, Quasi-Newton methods: motivation and theory. SIAM Rev. 19, pp. 46–89 (1977) [11] J.E. Dennis, R.B. Schnabel, Least Change Secant Updates for quasi- Newton methods. SIAM Rev. 21, pp. 443–459 (1979) [12] G. Dhondt, CalculiX CrunchiX USER...) [25] J.M. Martinez, M.C. Zambaldi, An Inverse Column-Updating Method for solving large-scale nonlinear systems of equations. Optim. Methods Softw. 1, pp. 129–140 (1992) [26] J.M. Martinez, On the convergence of the column-updating method. Comp. Appl...

  20. Improved Quasi-Newton method via PSB update for solving systems of nonlinear equations

    Science.gov (United States)

    Mamat, Mustafa; Dauda, M. K.; Waziri, M. Y.; Ahmad, Fadhilah; Mohamad, Fatma Susilawati

    2016-10-01

    The Newton method has some shortcomings which includes computation of the Jacobian matrix which may be difficult or even impossible to compute and solving the Newton system in every iteration. Also, the common setback with some quasi-Newton methods is that they need to compute and store an n × n matrix at each iteration, this is computationally costly for large scale problems. To overcome such drawbacks, an improved Method for solving systems of nonlinear equations via PSB (Powell-Symmetric-Broyden) update is proposed. In the proposed method, the approximate Jacobian inverse Hk of PSB is updated and its efficiency has improved thereby require low memory storage, hence the main aim of this paper. The preliminary numerical results show that the proposed method is practically efficient when applied on some benchmark problems.

  1. Application of Quasi-Newton methods to the analysis of axisymmetric pressure vessels

    International Nuclear Information System (INIS)

    Parisi, D.A.C.

    1987-01-01

    This work studies the application of Quasi-Newton techniques to material nonlinear analysis of axisymmetrical pressure vessels by the finite element method. In the formulation the material bahavior is described by an isotropic elastoplastic model with strain hardening. The continum is discretized through triangular finite elements of axisymmetrical solids with linear interpolation of the displacement field. The incremental governing equations are derived by the virtual work. The solution of the system of simultaneous nonlinear equations is solved iteratively by the Quasi-Newton method employing the BFGS update. The numerical performance of the proposed method is compared with the Newton-Raphson method and some of its variants through some selected examples. (author) [pt

  2. A convergence analysis of the iteratively regularized Gauss–Newton method under the Lipschitz condition

    International Nuclear Information System (INIS)

    Jin Qinian

    2008-01-01

    In this paper we consider the iteratively regularized Gauss–Newton method for solving nonlinear ill-posed inverse problems. Under merely the Lipschitz condition, we prove that this method together with an a posteriori stopping rule defines an order optimal regularization method if the solution is regular in some suitable sense

  3. Q-Step methods for Newton-Jacobi operator equation | Uwasmusi ...

    African Journals Online (AJOL)

    The paper considers the Newton-Jacobi operator equation for the solution of nonlinear systems of equations. Special attention is paid to the computational part of this method with particular reference to the q-step methods. Journal of the Nigerian Association of Mathematical Physics Vol. 8 2004: pp. 237-241 ...

  4. Indefinitely preconditioned inexact Newton method for large sparse equality constrained non-linear programming problems

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Vlček, Jan

    1998-01-01

    Roč. 5, č. 3 (1998), s. 219-247 ISSN 1070-5325 R&D Projects: GA ČR GA201/96/0918 Keywords : nonlinear programming * sparse problems * equality constraints * truncated Newton method * augmented Lagrangian function * indefinite systems * indefinite preconditioners * conjugate gradient method * residual smoothing Subject RIV: BA - General Mathematics Impact factor: 0.741, year: 1998

  5. Newton Power Flow Methods for Unbalanced Three-Phase Distribution Networks

    NARCIS (Netherlands)

    Sereeter, B.; Vuik, C.; Witteveen, C.

    2017-01-01

    Two mismatch functions (power or current) and three coordinates (polar, Cartesian andcomplex form) result in six versions of the Newton–Raphson method for the solution of powerflow problems. In this paper, five new versions of the Newton power flow method developed forsingle-phase problems in our

  6. A Smooth Newton Method for Nonlinear Programming Problems with Inequality Constraints

    Directory of Open Access Journals (Sweden)

    Vasile Moraru

    2012-02-01

    Full Text Available The paper presents a reformulation of the Karush-Kuhn-Tucker (KKT system associated nonlinear programming problem into an equivalent system of smooth equations. Classical Newton method is applied to solve the system of equations. The superlinear convergence of the primal sequence, generated by proposed method, is proved. The preliminary numerical results with a problems test set are presented.

  7. Harmonic Issues Assessment on PWM VSC-Based Controlled Microgrids using Newton Methods

    DEFF Research Database (Denmark)

    Agundis-Tinajero, Gibran; Segundo-Ramirez, Juan; Peña-Gallardo, Rafael

    2018-01-01

    This paper presents the application of Newton-based methods in the time-domain for the computation of the periodic steady state solutions of microgrids with multiple distributed generation units, harmonic stability and power quality analysis. Explicit representation of the commutation process...... of the power electronic converters and closed-loop power management strategies are fully considered. Case studies under different operating scenarios are presented: grid-connected mode, islanded mode, variations in the Thevenin equivalent of the grid and the loads. Besides, the close relation between...... the harmonic distortion, steady state performance of the control systems, asymptotic stability and power quality is analyzed in order to evaluate the importance and necessity of using full models in stressed and harmonic distorted scenarios....

  8. Physics-based preconditioning and the Newton-Krylov method for non-equilibrium radiation diffusion

    International Nuclear Information System (INIS)

    Mousseau, V.A.; Knoll, D.A.; Rider, W.J.

    2000-01-01

    An algorithm is presented for the solution of the time dependent reaction-diffusion systems which arise in non-equilibrium radiation diffusion applications. This system of nonlinear equations is solved by coupling three numerical methods, Jacobian-free Newton-Krylov, operator splitting, and multigrid linear solvers. An inexact Newton's method is used to solve the system of nonlinear equations. Since building the Jacobian matrix for problems of interest can be challenging, the authors employ a Jacobian-free implementation of Newton's method, where the action of the Jacobian matrix on a vector is approximated by a first order Taylor series expansion. Preconditioned generalized minimal residual (PGMRES) is the Krylov method used to solve the linear systems that come from the iterations of Newton's method. The preconditioner in this solution method is constructed using a physics-based divide and conquer approach, often referred to as operator splitting. This solution procedure inverts the scalar elliptic systems that make up the preconditioner using simple multigrid methods. The preconditioner also addresses the strong coupling between equations with local 2 x 2 block solves. The intra-cell coupling is applied after the inter-cell coupling has already been addressed by the elliptic solves. Results are presented using this solution procedure that demonstrate its efficiency while incurring minimal memory requirements

  9. Waveform control for magnetic testers using a quasi-Newton method

    International Nuclear Information System (INIS)

    Yamamoto, Ken-ichi; Hanba, Shigeru

    2008-01-01

    A nonlinear iterative learning algorithm is proposed to make a voltage waveform in the secondary coil sinusoidal in this paper. The algorithm employs a globally convergent Jacobian-free quasi-Newton type solver that has a BFGS-like structure. This method functions well, and it is demonstrated using typical soft magnetic materials

  10. Newton-sor iterative method for solving the two-dimensional porous ...

    African Journals Online (AJOL)

    In this paper, we consider the application of the Newton-SOR iterative method in obtaining the approximate solution of the two-dimensional porous medium equation (2D PME). The nonlinear finite difference approximation equation to the 2D PME is derived by using the implicit finite difference scheme. The developed ...

  11. A multigrid Newton-Krylov method for flux-limited radiation diffusion

    International Nuclear Information System (INIS)

    Rider, W.J.; Knoll, D.A.; Olson, G.L.

    1998-01-01

    The authors focus on the integration of radiation diffusion including flux-limited diffusion coefficients. The nonlinear integration is accomplished with a Newton-Krylov method preconditioned with a multigrid Picard linearization of the governing equations. They investigate the efficiency of the linear and nonlinear iterative techniques

  12. From Newton's laws to Einstein's theory of relativity

    National Research Council Canada - National Science Library

    Fang, Li-chih; Chʻu, Yao-chʻüan; Fang, Li Zhi; Fang, L. Z; Li, Zhi Fang; Fang, Lizhi

    1987-01-01

    ...-Morley Experiment Constant New Velocity of Light Speed The of COMPOSITION OF SPEED OF LIGHT The Law of CHAPTER Salviati's Theory of W h o IV TO ship Two Relativity Shot First? CHAPTER V A ROD Space and * T h e Lifetime Moving Lorentz F R O M GALILEO'S PRINCIPLE OF RELATIVITY THE S P E C I A L T H E O R Y OF RELATIVITY principles of th...

  13. A Newton method for a simultaneous reconstruction of an interface and a buried obstacle from far-field data

    International Nuclear Information System (INIS)

    Zhang, Haiwen; Zhang, Bo

    2013-01-01

    This paper is concerned with the inverse problem of scattering of time-harmonic acoustic waves from a penetrable and a buried obstacle. By introducing a related transmission scattering problem, a Newton iteration method is proposed to simultaneously reconstruct both the penetrable interface and the buried obstacle inside from far-field data. The main feature of our method is that we do not need to know the type of boundary conditions on the buried obstacle. In particular, the boundary condition on the buried obstacle can also be determined simultaneously by the method. Finally, numerical examples using multi-frequency data are carried out to illustrate the effectiveness of our method. (paper)

  14. 3D CSEM data inversion using Newton and Halley class methods

    Science.gov (United States)

    Amaya, M.; Hansen, K. R.; Morten, J. P.

    2016-05-01

    For the first time in 3D controlled source electromagnetic data inversion, we explore the use of the Newton and the Halley optimization methods, which may show their potential when the cost function has a complex topology. The inversion is formulated as a constrained nonlinear least-squares problem which is solved by iterative optimization. These methods require the derivatives up to second order of the residuals with respect to model parameters. We show how Green's functions determine the high-order derivatives, and develop a diagrammatical representation of the residual derivatives. The Green's functions are efficiently calculated on-the-fly, making use of a finite-difference frequency-domain forward modelling code based on a multi-frontal sparse direct solver. This allow us to build the second-order derivatives of the residuals keeping the memory cost in the same order as in a Gauss-Newton (GN) scheme. Model updates are computed with a trust-region based conjugate-gradient solver which does not require the computation of a stabilizer. We present inversion results for a synthetic survey and compare the GN, Newton, and super-Halley optimization schemes, and consider two different approaches to set the initial trust-region radius. Our analysis shows that the Newton and super-Halley schemes, using the same regularization configuration, add significant information to the inversion so that the convergence is reached by different paths. In our simple resistivity model examples, the convergence speed of the Newton and the super-Halley schemes are either similar or slightly superior with respect to the convergence speed of the GN scheme, close to the minimum of the cost function. Due to the current noise levels and other measurement inaccuracies in geophysical investigations, this advantageous behaviour is at present of low consequence, but may, with the further improvement of geophysical data acquisition, be an argument for more accurate higher-order methods like those

  15. New Quasi-Newton Method for Solving Systems of Nonlinear Equations

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Vlček, Jan

    2017-01-01

    Roč. 62, č. 2 (2017), s. 121-134 ISSN 0862-7940 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : nonlinear equations * systems of equations * trust-region methods * quasi-Newton methods * adjoint Broyden methods * numerical algorithms * numerical experiments Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.618, year: 2016 http://hdl.handle.net/10338.dmlcz/146699

  16. Newton flows for elliptic functions: A pilot study

    NARCIS (Netherlands)

    Twilt, F.; Helminck, G.F.; Snuverink, M.; van den Brug, L.

    2008-01-01

    Elliptic Newton flows are generated by a continuous, desingularized Newton method for doubly periodic meromorphic functions on the complex plane. In the special case, where the functions underlying these elliptic Newton flows are of second-order, we introduce various, closely related, concepts of

  17. On Newton-Kantorovich Method for Solving the Nonlinear Operator Equation

    Directory of Open Access Journals (Sweden)

    Hameed Husam Hameed

    2015-01-01

    Full Text Available We develop the Newton-Kantorovich method to solve the system of 2×2 nonlinear Volterra integral equations where the unknown function is in logarithmic form. A new majorant function is introduced which leads to the increment of the convergence interval. The existence and uniqueness of approximate solution are proved and a numerical example is provided to show the validation of the method.

  18. Application of a modified semismooth Newton method to some elasto-plastic problems

    Czech Academy of Sciences Publication Activity Database

    Sysala, Stanislav

    2012-01-01

    Roč. 82, č. 10 (2012), s. 2004-2021 ISSN 0378-4754 R&D Projects: GA ČR GA105/09/1830 Institutional support: RVO:68145535 Keywords : elasto-plasticity * hardening * Incremental finite element method * Semismooth Newton method * damping Subject RIV: BA - General Mathematics Impact factor: 0.836, year: 2012 http://www.sciencedirect.com/science/article/pii/S0378475412001292

  19. Efficient Tridiagonal Preconditioner for the Matrix-Free Truncated Newton Method

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Vlček, Jan

    2014-01-01

    Roč. 235, 25 May (2014), s. 394-407 ISSN 0096-3003 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : unconstrained optimization * large scale optimization * matrix-free truncated Newton method * preconditioned conjugate gradient method * preconditioners obtained by the directional differentiation * numerical algorithms Subject RIV: BA - General Mathematics Impact factor: 1.551, year: 2014

  20. Application of a primitive variable Newton's method for the calculation of an axisymmetric laminar diffusion flame

    International Nuclear Information System (INIS)

    Xu, Yuenong; Smooke, M.D.

    1993-01-01

    In this paper we present a primitive variable Newton-based solution method with a block-line linear equation solver for the calculation of reacting flows. The present approach is compared with the stream function-vorticity Newton's method and the SIMPLER algorithm on the calculation of a system of fully elliptic equations governing an axisymmetric methane-air laminar diffusion flame. The chemical reaction is modeled by the flame sheet approximation. The numerical solution agrees well with experimental data in the major chemical species. The comparison of three sets of numerical results indicates that the stream function-vorticity solution using the approximate boundary conditions reported in the previous calculations predicts a longer flame length and a broader flame shape. With a new set of modified vorticity boundary conditions, we obtain agreement between the primitive variable and stream function-vorticity solutions. The primitive variable Newton's method converges much faster than the other two methods. Because of much less computer memory required for the block-line tridiagonal solver compared to a direct solver, the present approach makes it possible to calculate multidimensional flames with detailed reaction mechanisms. The SIMPLER algorithm shows a slow convergence rate compared to the other two methods in the present calculation

  1. Comparing three methods for teaching Newton's third law

    Science.gov (United States)

    Smith, Trevor I.; Wittmann, Michael C.

    2007-12-01

    Although guided-inquiry methods for teaching introductory physics have been individually shown to be more effective at improving conceptual understanding than traditional lecture-style instruction, researchers in physics education have not studied differences among reform-based curricula in much detail. Several researchers have developed University of Washington style tutorial materials, but the different curricula have not been compared against each other. Our study examines three tutorials designed to improve student understanding of Newton’s third law: the University of Washington’s Tutorials in Introductory Physics (TIP), the University of Maryland’s Activity-Based Tutorials (ABT), and the Open Source Tutorials (OST) also developed at the University of Maryland. Each tutorial was designed with different goals and agendas, and each employs different methods to help students understand the physics. We analyzed pretest and post-test data, including course examinations and data from the Force and Motion Conceptual Evaluation (FMCE). Using both FMCE and course data, we find that students using the OST version of the tutorial perform better than students using either of the other two.

  2. Newton's method for solving a quadratic matrix equation with special coefficient matrices

    International Nuclear Information System (INIS)

    Seo, Sang-Hyup; Seo, Jong Hyun; Kim, Hyun-Min

    2014-01-01

    We consider the iterative method for solving a quadratic matrix equation with special coefficient matrices which arises in the quasi-birth-death problem. In this paper, we show that the elementwise minimal positive solvents to quadratic matrix equations can be obtained using Newton's method. We also prove that the convergence rate of the Newton iteration is quadratic if the Fréchet derivative at the elementwise minimal positive solvent is nonsingular. However, if the Fréchet derivative is singular, the convergence rate is at least linear. Numerical experiments of the convergence rate are given.(This is summarized a paper which is to appear in Honam Mathematical Journal.)

  3. Semi-Smooth Newton Method for Solving 2D Contact Problems with Tresca and Coulomb Friction

    Directory of Open Access Journals (Sweden)

    Kristina Motyckova

    2013-01-01

    Full Text Available The contribution deals with contact problems for two elastic bodies with friction. After the description of the problem we present its discretization based on linear or bilinear finite elements. The semi--smooth Newton method is used to find the solution, from which we derive active sets algorithms. Finally, we arrive at the globally convergent dual implementation of the algorithms in terms of the Langrange multipliers for the Tresca problem. Numerical experiments conclude the paper.

  4. Newton-Raphson based modified Laplace Adomian decomposition method for solving quadratic Riccati differential equations

    Directory of Open Access Journals (Sweden)

    Mishra Vinod

    2016-01-01

    Full Text Available Numerical Laplace transform method is applied to approximate the solution of nonlinear (quadratic Riccati differential equations mingled with Adomian decomposition method. A new technique is proposed in this work by reintroducing the unknown function in Adomian polynomial with that of well known Newton-Raphson formula. The solutions obtained by the iterative algorithm are exhibited in an infinite series. The simplicity and efficacy of method is manifested with some examples in which comparisons are made among the exact solutions, ADM (Adomian decomposition method, HPM (Homotopy perturbation method, Taylor series method and the proposed scheme.

  5. Modified Newton-Raphson GRAPE methods for optimal control of spin systems

    International Nuclear Information System (INIS)

    Goodwin, D. L.; Kuprov, Ilya

    2016-01-01

    Quadratic convergence throughout the active space is achieved for the gradient ascent pulse engineering (GRAPE) family of quantum optimal control algorithms. We demonstrate in this communication that the Hessian of the GRAPE fidelity functional is unusually cheap, having the same asymptotic complexity scaling as the functional itself. This leads to the possibility of using very efficient numerical optimization techniques. In particular, the Newton-Raphson method with a rational function optimization (RFO) regularized Hessian is shown in this work to require fewer system trajectory evaluations than any other algorithm in the GRAPE family. This communication describes algebraic and numerical implementation aspects (matrix exponential recycling, Hessian regularization, etc.) for the RFO Newton-Raphson version of GRAPE and reports benchmarks for common spin state control problems in magnetic resonance spectroscopy.

  6. Modified Newton-Raphson GRAPE methods for optimal control of spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, D. L.; Kuprov, Ilya, E-mail: i.kuprov@soton.ac.uk [School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ (United Kingdom)

    2016-05-28

    Quadratic convergence throughout the active space is achieved for the gradient ascent pulse engineering (GRAPE) family of quantum optimal control algorithms. We demonstrate in this communication that the Hessian of the GRAPE fidelity functional is unusually cheap, having the same asymptotic complexity scaling as the functional itself. This leads to the possibility of using very efficient numerical optimization techniques. In particular, the Newton-Raphson method with a rational function optimization (RFO) regularized Hessian is shown in this work to require fewer system trajectory evaluations than any other algorithm in the GRAPE family. This communication describes algebraic and numerical implementation aspects (matrix exponential recycling, Hessian regularization, etc.) for the RFO Newton-Raphson version of GRAPE and reports benchmarks for common spin state control problems in magnetic resonance spectroscopy.

  7. Newton's Method

    Indian Academy of Sciences (India)

    Vivek S Borkar1. School of Technology and Computer Science Tata Institute of Fundamental Research Homi Bhabha Road Mumbai 400 005, India. Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 3. Current Issue Volume 23 | Issue 3. March 2018. Home · Volumes & Issues · Categories · Special ...

  8. Solving Eigenvalue response matrix equations with Jacobian-Free Newton-Krylov methods

    International Nuclear Information System (INIS)

    Roberts, Jeremy A.; Forget, Benoit

    2011-01-01

    The response matrix method for reactor eigenvalue problems is motivated as a technique for solving coarse mesh transport equations, and the classical approach of power iteration (PI) for solution is described. The method is then reformulated as a nonlinear system of equations, and the associated Jacobian is derived. A Jacobian-Free Newton-Krylov (JFNK) method is employed to solve the system, using an approximate Jacobian coupled with incomplete factorization as a preconditioner. The unpreconditioned JFNK slightly outperforms PI, and preconditioned JFNK outperforms both PI and Steffensen-accelerated PI significantly. (author)

  9. Scalable parallel elastic-plastic finite element analysis using a quasi-Newton method with a balancing domain decomposition preconditioner

    Science.gov (United States)

    Yusa, Yasunori; Okada, Hiroshi; Yamada, Tomonori; Yoshimura, Shinobu

    2018-04-01

    A domain decomposition method for large-scale elastic-plastic problems is proposed. The proposed method is based on a quasi-Newton method in conjunction with a balancing domain decomposition preconditioner. The use of a quasi-Newton method overcomes two problems associated with the conventional domain decomposition method based on the Newton-Raphson method: (1) avoidance of a double-loop iteration algorithm, which generally has large computational complexity, and (2) consideration of the local concentration of nonlinear deformation, which is observed in elastic-plastic problems with stress concentration. Moreover, the application of a balancing domain decomposition preconditioner ensures scalability. Using the conventional and proposed domain decomposition methods, several numerical tests, including weak scaling tests, were performed. The convergence performance of the proposed method is comparable to that of the conventional method. In particular, in elastic-plastic analysis, the proposed method exhibits better convergence performance than the conventional method.

  10. Newton-Hooke Limit of Beltrami-de Sitter Spacetime, Principles of Galilei-Hooke's Relativity and Postulate on Newton-Hooke Universal Time

    OpenAIRE

    Huang, Chao-Guang; Guo, Han-Ying; Tian, Yu; Xu, Zhan; Zhou, Bin

    2004-01-01

    Based on the Beltrami-de Sitter spacetime, we present the Newton-Hooke model under the Newton-Hooke contraction of the $BdS$ spacetime with respect to the transformation group, algebra and geometry. It is shown that in Newton-Hooke space-time, there are inertial-type coordinate systems and inertial-type observers, which move along straight lines with uniform velocity. And they are invariant under the Newton-Hooke group. In order to determine uniquely the Newton-Hooke limit, we propose the Gal...

  11. Fully implicit two-phase reservoir simulation with the additive schwarz preconditioned inexact newton method

    KAUST Repository

    Liu, Lulu

    2013-01-01

    The fully implicit approach is attractive in reservoir simulation for reasons of numerical stability and the avoidance of splitting errors when solving multiphase flow problems, but a large nonlinear system must be solved at each time step, so efficient and robust numerical methods are required to treat the nonlinearity. The Additive Schwarz Preconditioned Inexact Newton (ASPIN) framework, as an option for the outermost solver, successfully handles strong nonlinearities in computational fluid dynamics, but is barely explored for the highly nonlinear models of complex multiphase flow with capillarity, heterogeneity, and complex geometry. In this paper, the fully implicit ASPIN method is demonstrated for a finite volume discretization based on incompressible two-phase reservoir simulators in the presence of capillary forces and gravity. Numerical experiments show that the number of global nonlinear iterations is not only scalable with respect to the number of processors, but also significantly reduced compared with the standard inexact Newton method with a backtracking technique. Moreover, the ASPIN method, in contrast with the IMPES method, saves overall execution time because of the savings in timestep size.

  12. Decentralized Gauss-Newton method for nonlinear least squares on wide area network

    Science.gov (United States)

    Liu, Lanchao; Ling, Qing; Han, Zhu

    2014-10-01

    This paper presents a decentralized approach of Gauss-Newton (GN) method for nonlinear least squares (NLLS) on wide area network (WAN). In a multi-agent system, a centralized GN for NLLS requires the global GN Hessian matrix available at a central computing unit, which may incur large communication overhead. In the proposed decentralized alternative, each agent only needs local GN Hessian matrix to update iterates with the cooperation of neighbors. The detail formulation of decentralized NLLS on WAN is given, and the iteration at each agent is defined. The convergence property of the decentralized approach is analyzed, and numerical results validate the effectiveness of the proposed algorithm.

  13. Analysis of the iteratively regularized Gauss-Newton method under a heuristic rule

    Science.gov (United States)

    Jin, Qinian; Wang, Wei

    2018-03-01

    The iteratively regularized Gauss-Newton method is one of the most prominent regularization methods for solving nonlinear ill-posed inverse problems when the data is corrupted by noise. In order to produce a useful approximate solution, this iterative method should be terminated properly. The existing a priori and a posteriori stopping rules require accurate information on the noise level, which may not be available or reliable in practical applications. In this paper we propose a heuristic selection rule for this regularization method, which requires no information on the noise level. By imposing certain conditions on the noise, we derive a posteriori error estimates on the approximate solutions under various source conditions. Furthermore, we establish a convergence result without using any source condition. Numerical results are presented to illustrate the performance of our heuristic selection rule.

  14. An inexact Newton method for fully-coupled solution of the Navier-Stokes equations with heat and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics

    1997-02-01

    The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.

  15. A Semismooth Newton Method for Nonlinear Parameter Identification Problems with Impulsive Noise

    KAUST Repository

    Clason, Christian

    2012-01-01

    This work is concerned with nonlinear parameter identification in partial differential equations subject to impulsive noise. To cope with the non-Gaussian nature of the noise, we consider a model with L 1 fitting. However, the nonsmoothness of the problem makes its efficient numerical solution challenging. By approximating this problem using a family of smoothed functionals, a semismooth Newton method becomes applicable. In particular, its superlinear convergence is proved under a second-order condition. The convergence of the solution to the approximating problem as the smoothing parameter goes to zero is shown. A strategy for adaptively selecting the regularization parameter based on a balancing principle is suggested. The efficiency of the method is illustrated on several benchmark inverse problems of recovering coefficients in elliptic differential equations, for which one- and two-dimensional numerical examples are presented. © by SIAM.

  16. Phase reconstruction by a multilevel iteratively regularized Gauss–Newton method

    International Nuclear Information System (INIS)

    Langemann, Dirk; Tasche, Manfred

    2008-01-01

    In this paper we consider the numerical solution of a phase retrieval problem for a compactly supported, linear spline f : R → C with the Fourier transform f-circumflex, where values of |f| and |f-circumflex| at finitely many equispaced nodes are given. The unknown phases of complex spline coefficients fulfil a well-structured system of nonlinear equations. Thus the phase reconstruction leads to a nonlinear inverse problem, which is solved by a multilevel strategy and iterative Tikhonov regularization. The multilevel strategy concentrates the main effort of the solution of the phase retrieval problem in the coarse, less expensive levels and provides convenient initial guesses at the next finer level. On each level, the corresponding nonlinear system is solved by an iteratively regularized Gauss–Newton method. The multilevel strategy is motivated by convergence results of IRGN. This method is applicable to a wide range of examples as shown in several numerical tests for noiseless and noisy data

  17. From Newton to Einstein.

    Science.gov (United States)

    Ryder, L. H.

    1987-01-01

    Discusses the history of scientific thought in terms of the theories of inertia and absolute space, relativity and gravitation. Describes how Sir Isaac Newton used the work of earlier scholars in his theories and how Albert Einstein used Newton's theories in his. (CW)

  18. Improved Full-Newton Step O(nL) Infeasible Interior-Point Method for Linear Optimization

    NARCIS (Netherlands)

    Gu, G.; Mansouri, H.; Zangiabadi, M.; Bai, Y.Q.; Roos, C.

    2009-01-01

    We present several improvements of the full-Newton step infeasible interior-point method for linear optimization introduced by Roos (SIAM J. Optim. 16(4):1110–1136, 2006). Each main step of the method consists of a feasibility step and several centering steps. We use a more natural feasibility step,

  19. Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods

    KAUST Repository

    Loizou, Nicolas

    2017-12-27

    In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all of the above methods are equivalent. We prove global nonassymptotic linear convergence rates for all methods and various measures of success, including primal function values, primal iterates (in L2 sense), and dual function values. We also show that the primal iterates converge at an accelerated linear rate in the L1 sense. This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method with momentum). Under somewhat weaker conditions, we establish a sublinear convergence rate for Cesaro averages of primal iterates. Moreover, we propose a novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We prove linear convergence of several stochastic methods with stochastic momentum, and show that in some sparse data regimes and for sufficiently small momentum parameters, these methods enjoy better overall complexity than methods with deterministic momentum. Finally, we perform extensive numerical testing on artificial and real datasets, including data coming from average consensus problems.

  20. Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods

    KAUST Repository

    Loizou, Nicolas; Richtarik, Peter

    2017-01-01

    In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all of the above methods are equivalent. We prove global nonassymptotic linear convergence rates for all methods and various measures of success, including primal function values, primal iterates (in L2 sense), and dual function values. We also show that the primal iterates converge at an accelerated linear rate in the L1 sense. This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method with momentum). Under somewhat weaker conditions, we establish a sublinear convergence rate for Cesaro averages of primal iterates. Moreover, we propose a novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We prove linear convergence of several stochastic methods with stochastic momentum, and show that in some sparse data regimes and for sufficiently small momentum parameters, these methods enjoy better overall complexity than methods with deterministic momentum. Finally, we perform extensive numerical testing on artificial and real datasets, including data coming from average consensus problems.

  1. An approximate block Newton method for coupled iterations of nonlinear solvers: Theory and conjugate heat transfer applications

    Science.gov (United States)

    Yeckel, Andrew; Lun, Lisa; Derby, Jeffrey J.

    2009-12-01

    A new, approximate block Newton (ABN) method is derived and tested for the coupled solution of nonlinear models, each of which is treated as a modular, black box. Such an approach is motivated by a desire to maintain software flexibility without sacrificing solution efficiency or robustness. Though block Newton methods of similar type have been proposed and studied, we present a unique derivation and use it to sort out some of the more confusing points in the literature. In particular, we show that our ABN method behaves like a Newton iteration preconditioned by an inexact Newton solver derived from subproblem Jacobians. The method is demonstrated on several conjugate heat transfer problems modeled after melt crystal growth processes. These problems are represented by partitioned spatial regions, each modeled by independent heat transfer codes and linked by temperature and flux matching conditions at the boundaries common to the partitions. Whereas a typical block Gauss-Seidel iteration fails about half the time for the model problem, quadratic convergence is achieved by the ABN method under all conditions studied here. Additional performance advantages over existing methods are demonstrated and discussed.

  2. On the classification of plane graphs representing structurally stable rational Newton flows

    NARCIS (Netherlands)

    Jongen, H.Th.; Jonker, P.; Twilt, F.

    1991-01-01

    We study certain plane graphs, called Newton graphs, representing a special class of dynamical systems which are closely related to Newton's iteration method for finding zeros of (rational) functions defined on the complex plane. These Newton graphs are defined in terms of nonvanishing angles

  3. General Relativity Exactly Described by Use of Newton's Laws within a Curved Geometry

    Science.gov (United States)

    Savickas, David

    2014-03-01

    The connection between general relativity and Newtonian mechanics is shown to be much closer than generally recognized. When Newton's second law is written in a curved geometry by using the physical components of a vector as defined in tensor calculus, and by replacing distance within the momentum's velocity by the vector metric ds in a curved geometry, the second law can then be easily shown to be exactly identical to the geodesic equation of motion occurring in general relativity. By using a time whose vector direction is constant, as similarly occurs in Newtonian mechanics, this equation can be separated into two equations one of which is a curved three-dimensional equation of motion and the other is an equation for energy. For the gravitational field of an isolated particle, they yield the Schwarzschild equations. They can be used to describe gravitation for any array of masses for which the Newtonian gravitational potential is known, and is applied here to describe motion in the gravitational field of a thin mass-rod.

  4. Employing a Monte Carlo algorithm in Newton-type methods for restricted maximum likelihood estimation of genetic parameters.

    Directory of Open Access Journals (Sweden)

    Kaarina Matilainen

    Full Text Available Estimation of variance components by Monte Carlo (MC expectation maximization (EM restricted maximum likelihood (REML is computationally efficient for large data sets and complex linear mixed effects models. However, efficiency may be lost due to the need for a large number of iterations of the EM algorithm. To decrease the computing time we explored the use of faster converging Newton-type algorithms within MC REML implementations. The implemented algorithms were: MC Newton-Raphson (NR, where the information matrix was generated via sampling; MC average information(AI, where the information was computed as an average of observed and expected information; and MC Broyden's method, where the zero of the gradient was searched using a quasi-Newton-type algorithm. Performance of these algorithms was evaluated using simulated data. The final estimates were in good agreement with corresponding analytical ones. MC NR REML and MC AI REML enhanced convergence compared to MC EM REML and gave standard errors for the estimates as a by-product. MC NR REML required a larger number of MC samples, while each MC AI REML iteration demanded extra solving of mixed model equations by the number of parameters to be estimated. MC Broyden's method required the largest number of MC samples with our small data and did not give standard errors for the parameters directly. We studied the performance of three different convergence criteria for the MC AI REML algorithm. Our results indicate the importance of defining a suitable convergence criterion and critical value in order to obtain an efficient Newton-type method utilizing a MC algorithm. Overall, use of a MC algorithm with Newton-type methods proved feasible and the results encourage testing of these methods with different kinds of large-scale problem settings.

  5. A smooth generalized Newton method for a class of non-smooth equations

    International Nuclear Information System (INIS)

    Uko, L. U.

    1995-10-01

    This paper presents a Newton-type iterative scheme for finding the zero of the sum of a differentiable function and a multivalued maximal monotone function. Local and semi-local convergence results are proved for the Newton scheme, and an analogue of the Kantorovich theorem is proved for the associated modified scheme that uses only one Jacobian evaluation for the entire iteration. Applications in variational inequalities are discussed, and an illustrative numerical example is given. (author). 24 refs

  6. Data and performance profiles applying an adaptive truncation criterion, within linesearch-based truncated Newton methods, in large scale nonconvex optimization

    Directory of Open Access Journals (Sweden)

    Andrea Caliciotti

    2018-04-01

    Full Text Available In this paper, we report data and experiments related to the research article entitled “An adaptive truncation criterion, for linesearch-based truncated Newton methods in large scale nonconvex optimization” by Caliciotti et al. [1]. In particular, in Caliciotti et al. [1], large scale unconstrained optimization problems are considered by applying linesearch-based truncated Newton methods. In this framework, a key point is the reduction of the number of inner iterations needed, at each outer iteration, to approximately solving the Newton equation. A novel adaptive truncation criterion is introduced in Caliciotti et al. [1] to this aim. Here, we report the details concerning numerical experiences over a commonly used test set, namely CUTEst (Gould et al., 2015 [2]. Moreover, comparisons are reported in terms of performance profiles (Dolan and Moré, 2002 [3], adopting different parameters settings. Finally, our linesearch-based scheme is compared with a renowned trust region method, namely TRON (Lin and Moré, 1999 [4].

  7. "To Improve upon Hints of Things": Illustrating Isaac Newton.

    Science.gov (United States)

    Schilt, Cornelis J

    2016-01-01

    When Isaac Newton died in 1727 he left a rich legacy in terms of draft manuscripts, encompassing a variety of topics: natural philosophy, mathematics, alchemy, theology, and chronology, as well as papers relating to his career at the Mint. One thing that immediately strikes us is the textuality of Newton's legacy: images are sparse. Regarding his scholarly endeavours we witness the same practice. Newton's extensive drafts on theology and chronology do not contain a single illustration or map. Today we have all of Newton's draft manuscripts as witnesses of his working methods, as well as access to a significant number of books from his own library. Drawing parallels between Newton's reading practices and his natural philosophical and scholarly work, this paper seeks to understand Newton's recondite writing and publishing politics.

  8. A Gauss-Newton method for the integration of spatial normal fields in shape Space

    KAUST Repository

    Balzer, Jonathan

    2011-08-09

    We address the task of adjusting a surface to a vector field of desired surface normals in space. The described method is entirely geometric in the sense, that it does not depend on a particular parametrization of the surface in question. It amounts to solving a nonlinear least-squares problem in shape space. Previously, the corresponding minimization has been performed by gradient descent, which suffers from slow convergence and susceptibility to local minima. Newton-type methods, although significantly more robust and efficient, have not been attempted as they require second-order Hadamard differentials. These are difficult to compute for the problem of interest and in general fail to be positive-definite symmetric. We propose a novel approximation of the shape Hessian, which is not only rigorously justified but also leads to excellent numerical performance of the actual optimization. Moreover, a remarkable connection to Sobolev flows is exposed. Three other established algorithms from image and geometry processing turn out to be special cases of ours. Our numerical implementation founds on a fast finite-elements formulation on the minimizing sequence of triangulated shapes. A series of examples from a wide range of different applications is discussed to underline flexibility and efficiency of the approach. © 2011 Springer Science+Business Media, LLC.

  9. Newton's Apple

    Science.gov (United States)

    Hendry, Archibald W.

    2007-01-01

    Isaac Newton may have seen an apple fall, but it was Robert Hooke who had a better idea of where it would land. No one really knows whether or not Isaac Newton actually saw an apple fall in his garden. Supposedly it took place in 1666, but it was a tale he told in his old age more than 60 years later, a time when his memory was failing and his…

  10. Quantum Mechanics from Newton's Second Law and the Canonical Commutation Relation [X,P]=i

    OpenAIRE

    Palenik, Mark C.

    2014-01-01

    Despite the fact that it has been known since the time of Heisenberg that quantum operators obey a quantum version of Newton's laws, students are often told that derivations of quantum mechanics must necessarily follow from the Hamiltonian or Lagrangian formulations of mechanics. Here, we first derive the existing Heisenberg equations of motion from Newton's laws and the uncertainty principle using only the equations $F=\\frac{dP}{dt}$, $P=m\\frac{dV}{dt}$, and $\\left[X,P\\right]=i$. Then, a new...

  11. A Newton-Based Extremum Seeking MPPT Method for Photovoltaic Systems with Stochastic Perturbations

    Directory of Open Access Journals (Sweden)

    Heng Li

    2014-01-01

    Full Text Available Microcontroller based maximum power point tracking (MPPT has been the most popular MPPT approach in photovoltaic systems due to its high flexibility and efficiency in different photovoltaic systems. It is well known that PV systems typically operate under a range of uncertain environmental parameters and disturbances, which implies that MPPT controllers generally suffer from some unknown stochastic perturbations. To address this issue, a novel Newton-based stochastic extremum seeking MPPT method is proposed. Treating stochastic perturbations as excitation signals, the proposed MPPT controller has a good tolerance of stochastic perturbations in nature. Different from conventional gradient-based extremum seeking MPPT algorithm, the convergence rate of the proposed controller can be totally user-assignable rather than determined by unknown power map. The stability and convergence of the proposed controller are rigorously proved. We further discuss the effects of partial shading and PV module ageing on the proposed controller. Numerical simulations and experiments are conducted to show the effectiveness of the proposed MPPT algorithm.

  12. Gompertz: A Scilab Program for Estimating Gompertz Curve Using Gauss-Newton Method of Least Squares

    Directory of Open Access Journals (Sweden)

    Surajit Ghosh Dastidar

    2006-04-01

    Full Text Available A computer program for estimating Gompertz curve using Gauss-Newton method of least squares is described in detail. It is based on the estimation technique proposed in Reddy (1985. The program is developed using Scilab (version 3.1.1, a freely available scientific software package that can be downloaded from http://www.scilab.org/. Data is to be fed into the program from an external disk file which should be in Microsoft Excel format. The output will contain sample size, tolerance limit, a list of initial as well as the final estimate of the parameters, standard errors, value of Gauss-Normal equations namely GN1 GN2 and GN3 , No. of iterations, variance(σ2 , Durbin-Watson statistic, goodness of fit measures such as R2 , D value, covariance matrix and residuals. It also displays a graphical output of the estimated curve vis a vis the observed curve. It is an improved version of the program proposed in Dastidar (2005.

  13. Gompertz: A Scilab Program for Estimating Gompertz Curve Using Gauss-Newton Method of Least Squares

    Directory of Open Access Journals (Sweden)

    Surajit Ghosh Dastidar

    2006-04-01

    Full Text Available A computer program for estimating Gompertz curve using Gauss-Newton method of least squares is described in detail. It is based on the estimation technique proposed in Reddy (1985. The program is developed using Scilab (version 3.1.1, a freely available scientific software package that can be downloaded from http://www.scilab.org/. Data is to be fed into the program from an external disk file which should be in Microsoft Excel format. The output will contain sample size, tolerance limit, a list of initial as well as the final estimate of the parameters, standard errors, value of Gauss-Normal equations namely GN1 GN2 and GN3, No. of iterations, variance(σ2, Durbin-Watson statistic, goodness of fit measures such as R2, D value, covariance matrix and residuals. It also displays a graphical output of the estimated curve vis a vis the observed curve. It is an improved version of the program proposed in Dastidar (2005.

  14. A fully implicit Newton-Krylov-Schwarz method for tokamak magnetohydrodynamics: Jacobian construction and preconditioner formulation

    KAUST Repository

    Reynolds, Daniel R.

    2012-01-01

    Single-fluid resistive magnetohydrodynamics (MHD) is a fluid description of fusion plasmas which is often used to investigate macroscopic instabilities in tokamaks. In MHD modeling of tokamaks, it is often desirable to compute MHD phenomena to resistive time scales or a combination of resistive-Alfvén time scales, which can render explicit time stepping schemes computationally expensive. We present recent advancements in the development of preconditioners for fully nonlinearly implicit simulations of single-fluid resistive tokamak MHD. Our work focuses on simulations using a structured mesh mapped into a toroidal geometry with a shaped poloidal cross-section, and a finite-volume spatial discretization of the partial differential equation model. We discretize the temporal dimension using a fully implicit or the backwards differentiation formula method, and solve the resulting nonlinear algebraic system using a standard inexact Newton-Krylov approach, provided by the sundials library. The focus of this paper is on the construction and performance of various preconditioning approaches for accelerating the convergence of the iterative solver algorithms. Effective preconditioners require information about the Jacobian entries; however, analytical formulae for these Jacobian entries may be prohibitive to derive/implement without error. We therefore compute these entries using automatic differentiation with OpenAD. We then investigate a variety of preconditioning formulations inspired by standard solution approaches in modern MHD codes, in order to investigate their utility in a preconditioning context. We first describe the code modifications necessary for the use of the OpenAD tool and sundials solver library. We conclude with numerical results for each of our preconditioning approaches in the context of pellet-injection fueling of tokamak plasmas. Of these, our optimal approach results in a speedup of a factor of 3 compared with non-preconditioned implicit tests, with

  15. Quantum mechanics from Newton's second law and the canonical commutation relation [X, P] = i

    International Nuclear Information System (INIS)

    Palenik, Mark C

    2014-01-01

    Despite the fact that it has been known since the time of Heisenberg that quantum operators obey a quantum version of Newton's laws, students are often told that derivations of quantum mechanics must necessarily follow from the Hamiltonian or Lagrangian formulations of mechanics. Here, we first derive the existing Heisenberg equations of motion from Newton's laws and the uncertainty principle using only the equations F=((dP)/(dt)), P=m((dV)/(dt)), and [X, P] = i. Then, a new expression for the propagator is derived that makes a connection between time evolution in quantum mechanics and the motion of a classical particle under Newton's laws. The propagator is solved for three cases where an exact solution is possible: (1) the free particle; (2) the harmonic oscillator; and (3) a constant force, or linear potential in the standard interpretation. We then show that for a general for a general force F(X), by Taylor expanding X(t) in time, we can use this methodology to reproduce the Feynman path integral formula for the propagator. Such a picture may be useful for students as they make the transition from classical to quantum mechanics and help solidify the equivalence of the Hamiltonian, Lagrangian, and Newtonian pictures of physics in their minds. (paper)

  16. A unified, multifidelity quasi-newton optimization method with application to aero-structural designa

    Science.gov (United States)

    Bryson, Dean Edward

    of low-fidelity evaluations required. This narrowing of the search domain also alleviates the burden on the surrogate model corrections between the low- and high-fidelity data. Rather than requiring the surrogate to be accurate in a hyper-volume bounded by the trust region, the model needs only to be accurate along the forward-looking search direction. Maintaining the approximate inverse Hessian also allows the multifidelity algorithm to revert to high-fidelity optimization at any time. In contrast, the standard approach has no memory of the previously-computed high-fidelity data. The primary disadvantage of the proposed algorithm is that it may require modifications to the optimization software, whereas standard optimizers may be used as black-box drivers in the typical trust region method. A multifidelity, multidisciplinary simulation of aeroelastic vehicle performance is developed to demonstrate the optimization method. The numerical physics models include body-fitted Euler computational fluid dynamics; linear, panel aerodynamics; linear, finite-element computational structural mechanics; and reduced, modal structural bases. A central element of the multifidelity, multidisciplinary framework is a shared parametric, attributed geometric representation that ensures the analysis inputs are consistent between disciplines and fidelities. The attributed geometry also enables the transfer of data between disciplines. The new optimization algorithm, a standard trust region approach, and a single-fidelity quasi-Newton method are compared for a series of analytic test functions, using both polynomial chaos expansions and kriging to correct discrepancies between fidelity levels of data. In the aggregate, the new method requires fewer high-fidelity evaluations than the trust region approach in 51% of cases, and the same number of evaluations in 18%. The new approach also requires fewer low-fidelity evaluations, by up to an order of magnitude, in almost all cases. The efficacy

  17. Quasi-Newton methods for parameter estimation in functional differential equations

    Science.gov (United States)

    Brewer, Dennis W.

    1988-01-01

    A state-space approach to parameter estimation in linear functional differential equations is developed using the theory of linear evolution equations. A locally convergent quasi-Newton type algorithm is applied to distributed systems with particular emphasis on parameters that induce unbounded perturbations of the state. The algorithm is computationally implemented on several functional differential equations, including coefficient and delay estimation in linear delay-differential equations.

  18. Improved Full-Newton Step O(nL) Infeasible Interior-Point Method for Linear Optimization

    OpenAIRE

    Gu, G.; Mansouri, H.; Zangiabadi, M.; Bai, Y.Q.; Roos, C.

    2009-01-01

    We present several improvements of the full-Newton step infeasible interior-point method for linear optimization introduced by Roos (SIAM J. Optim. 16(4):1110–1136, 2006). Each main step of the method consists of a feasibility step and several centering steps. We use a more natural feasibility step, which targets the ?+-center of the next pair of perturbed problems. As for the centering steps, we apply a sharper quadratic convergence result, which leads to a slightly wider neighborhood for th...

  19. Overlapping Schwarz for Nonlinear Problems. An Element Agglomeration Nonlinear Additive Schwarz Preconditioned Newton Method for Unstructured Finite Element Problems

    Energy Technology Data Exchange (ETDEWEB)

    Cai, X C; Marcinkowski, L; Vassilevski, P S

    2005-02-10

    This paper extends previous results on nonlinear Schwarz preconditioning ([4]) to unstructured finite element elliptic problems exploiting now nonlocal (but small) subspaces. The non-local finite element subspaces are associated with subdomains obtained from a non-overlapping element partitioning of the original set of elements and are coarse outside the prescribed element subdomain. The coarsening is based on a modification of the agglomeration based AMGe method proposed in [8]. Then, the algebraic construction from [9] of the corresponding non-linear finite element subproblems is applied to generate the subspace based nonlinear preconditioner. The overall nonlinearly preconditioned problem is solved by an inexact Newton method. Numerical illustration is also provided.

  20. How College Students' Conceptions of Newton's Second and Third Laws Change Through Watching Interactive Video Vignettes: A Mixed Methods Study

    Science.gov (United States)

    Engelman, Jonathan

    Changing student conceptions in physics is a difficult process and has been a topic of research for many years. The purpose of this study was to understand what prompted students to change or not change their incorrect conceptions of Newtons Second or Third Laws in response to an intervention, Interactive Video Vignettes (IVVs), designed to overcome them. This study is based on prior research reported in the literature which has found that a curricular framework of elicit, confront, resolve, and reflect (ECRR) is important for changing student conceptions (McDermott, 2001). This framework includes four essential parts such that during an instructional event student conceptions should be elicited, incorrect conceptions confronted, these conflicts resolved, and then students should be prompted to reflect on their learning. Twenty-two undergraduate student participants who completed either or both IVVs were studied to determine whether or not they experienced components of the ECRR framework at multiple points within the IVVs. A fully integrated, mixed methods design was used to address the study purpose. Both quantitative and qualitative data were collected iteratively for each participant. Successive data collections were informed by previous data collections. All data were analyzed concurrently. The quantitative strand included a pre/post test that participants took before and after completing a given IVV and was used to measure the effect of each IVV on learning. The qualitative strand included video of each participant completing the IVV as well as an audio-recorded video elicitation interview after the post-test. The qualitative data collection was designed to describe student experiences with each IVV as well as to observe how the ECRR framework was experienced. Collecting and analyzing data using this mixed methods approach helped develop a more complete understanding of how student conceptions of Newtons Second and Third Laws changed through completion of

  1. Newton flows for elliptic functions

    NARCIS (Netherlands)

    Helminck, G.F.; Twilt, F.

    2015-01-01

    Newton flows are dynamical systems generated by a continuous, desingularized Newton method for mappings from a Euclidean space to itself. We focus on the special case of meromorphic functions on the complex plane. Inspired by the analogy between the rational (complex) and the elliptic (i.e., doubly

  2. Newton-Cartan gravity revisited

    NARCIS (Netherlands)

    Andringa, Roel

    2016-01-01

    In this research Newton's old theory of gravity is rederived using an algebraic approach known as the gauging procedure. The resulting theory is Newton's theory in the mathematical language of Einstein's General Relativity theory, in which gravity is spacetime curvature. The gauging procedure sheds

  3. Nonlinearly preconditioned semismooth Newton methods for variational inequality solution of two-phase flow in porous media

    KAUST Repository

    Yang, Haijian

    2016-12-10

    Most existing methods for solving two-phase flow problems in porous media do not take the physically feasible saturation fractions between 0 and 1 into account, which often destroys the numerical accuracy and physical interpretability of the simulation. To calculate the solution without the loss of this basic requirement, we introduce a variational inequality formulation of the saturation equilibrium with a box inequality constraint, and use a conservative finite element method for the spatial discretization and a backward differentiation formula with adaptive time stepping for the temporal integration. The resulting variational inequality system at each time step is solved by using a semismooth Newton algorithm. To accelerate the Newton convergence and improve the robustness, we employ a family of adaptive nonlinear elimination methods as a nonlinear preconditioner. Some numerical results are presented to demonstrate the robustness and efficiency of the proposed algorithm. A comparison is also included to show the superiority of the proposed fully implicit approach over the classical IMplicit Pressure-Explicit Saturation (IMPES) method in terms of the time step size and the total execution time measured on a parallel computer.

  4. Nonlinearly preconditioned semismooth Newton methods for variational inequality solution of two-phase flow in porous media

    KAUST Repository

    Yang, Haijian; Sun, Shuyu; Yang, Chao

    2016-01-01

    Most existing methods for solving two-phase flow problems in porous media do not take the physically feasible saturation fractions between 0 and 1 into account, which often destroys the numerical accuracy and physical interpretability of the simulation. To calculate the solution without the loss of this basic requirement, we introduce a variational inequality formulation of the saturation equilibrium with a box inequality constraint, and use a conservative finite element method for the spatial discretization and a backward differentiation formula with adaptive time stepping for the temporal integration. The resulting variational inequality system at each time step is solved by using a semismooth Newton algorithm. To accelerate the Newton convergence and improve the robustness, we employ a family of adaptive nonlinear elimination methods as a nonlinear preconditioner. Some numerical results are presented to demonstrate the robustness and efficiency of the proposed algorithm. A comparison is also included to show the superiority of the proposed fully implicit approach over the classical IMplicit Pressure-Explicit Saturation (IMPES) method in terms of the time step size and the total execution time measured on a parallel computer.

  5. Parallel Jacobian-free Newton Krylov solution of the discrete ordinates method with flux limiters for 3D radiative transfer

    International Nuclear Information System (INIS)

    Godoy, William F.; Liu Xu

    2012-01-01

    The present study introduces a parallel Jacobian-free Newton Krylov (JFNK) general minimal residual (GMRES) solution for the discretized radiative transfer equation (RTE) in 3D, absorbing, emitting and scattering media. For the angular and spatial discretization of the RTE, the discrete ordinates method (DOM) and the finite volume method (FVM) including flux limiters are employed, respectively. Instead of forming and storing a large Jacobian matrix, JFNK methods allow for large memory savings as the required Jacobian-vector products are rather approximated by semiexact and numerical formulations, for which convergence and computational times are presented. Parallelization of the GMRES solution is introduced in a combined memory-shared/memory-distributed formulation that takes advantage of the fact that only large vector arrays remain in the JFNK process. Results are presented for 3D test cases including a simple homogeneous, isotropic medium and a more complex non-homogeneous, non-isothermal, absorbing–emitting and anisotropic scattering medium with collimated intensities. Additionally, convergence and stability of Gram–Schmidt and Householder orthogonalizations for the Arnoldi process in the parallel GMRES algorithms are discussed and analyzed. Overall, the introduction of JFNK methods results in a parallel, yet scalable to the tested 2048 processors, and memory affordable solution to 3D radiative transfer problems without compromising the accuracy and convergence of a Newton-like solution.

  6. Entransy analysis of irreversible heat pump using Newton and Dulong–Petit heat transfer laws and relations with its performance

    International Nuclear Information System (INIS)

    Açıkkalp, Emin

    2014-01-01

    Highlights: • Entransy analysis was made for irreversible heat pump. • Newton and Dulong–Petit heat transfer laws were used. • Entransy dissipations were defined and determined. • Relations between entransy and other thermodynamic parameters were determined. - Abstract: An irreversible heat pump was investigated via entransy analysis and performance criteria. In the analyses, two different convective heat transfer laws were applied to the considered system: the Newton and Dulong–Petit heat transfer laws. The irreversibilities in the system are the result of a finite heat transfer rate, a heat leak and internal irreversibilities, including friction, turbulence etc. In this study, a thermodynamic analysis was performed in detail, and the numerical solutions were used for the conducted analysis. The maximum entransy dissipation (critical points) ranges from 18436.7 kW K to 18855.3 kW K according to y for Newton’s law; however, there is no maximum point for the Dulon–Petit law. It can be concluded from this study that entransy should be used among the basic thermodynamic criteria

  7. Isaac Newton Olympics.

    Science.gov (United States)

    Cox, Carol

    2001-01-01

    Presents the Isaac Newton Olympics in which students complete a hands-on activity at seven stations and evaluate what they have learned in the activity and how it is related to real life. Includes both student and teacher instructions for three of the activities. (YDS)

  8. A multi-solver quasi-Newton method for the partitioned simulation of fluid-structure interaction

    International Nuclear Information System (INIS)

    Degroote, J; Annerel, S; Vierendeels, J

    2010-01-01

    In partitioned fluid-structure interaction simulations, the flow equations and the structural equations are solved separately. Consequently, the stresses and displacements on both sides of the fluid-structure interface are not automatically in equilibrium. Coupling techniques like Aitken relaxation and the Interface Block Quasi-Newton method with approximate Jacobians from Least-Squares models (IBQN-LS) enforce this equilibrium, even with black-box solvers. However, all existing coupling techniques use only one flow solver and one structural solver. To benefit from the large number of multi-core processors in modern clusters, a new Multi-Solver Interface Block Quasi-Newton (MS-IBQN-LS) algorithm has been developed. This algorithm uses more than one flow solver and structural solver, each running in parallel on a number of cores. One-dimensional and three-dimensional numerical experiments demonstrate that the run time of a simulation decreases as the number of solvers increases, albeit at a slower pace. Hence, the presented multi-solver algorithm accelerates fluid-structure interaction calculations by increasing the number of solvers, especially when the run time does not decrease further if more cores are used per solver.

  9. Numerical solution of newton´s cooling differential equation by the methods of euler and runge-kutta

    Directory of Open Access Journals (Sweden)

    Andresa Pescador

    2016-04-01

    Full Text Available This article presents the first-order differential equations, which are a very important branch of mathematics as they have a wide applicability, in mathematics, as in physics, biology and economy. The objective of this study was to analyze the resolution of the equation that defines the cooling Newton's law. Verify its behavior using some applications that can be used in the classroom as an auxiliary instrument to the teacher in addressing these contents bringing answers to the questions of the students and motivating them to build their knowledge. It attempted to its resolution through two numerical methods, Euler method and Runge -Kutta method. Finally, there was a comparison of the approach of the solution given by the numerical solution with the analytical resolution whose solution is accurate.

  10. The Enigma of Newton

    Science.gov (United States)

    Nunan, E.

    1973-01-01

    Presents a brief biography of Sir Isaac Newton, lists contemporary scientists and scientific developments and discusses Newton's optical research and conceptual position concerning the nature of light. (JR)

  11. A Newton-Krylov method with approximate Jacobian for implicit solution of Navier-Stokes on staggered overset-curvilinear grids with immersed boundaries

    Science.gov (United States)

    Asgharzadeh, Hafez; Borazjani, Iman

    2014-11-01

    Time step-size restrictions and low convergence rates are major bottle necks for implicit solution of the Navier-Stokes in simulations involving complex geometries with moving boundaries. Newton-Krylov method (NKM) is a combination of a Newton-type method for super-linearly convergent solution of nonlinear equations and Krylov subspace methods for solving the Newton correction equations, which can theoretically address both bottle necks. The efficiency of this method vastly depends on the Jacobian forming scheme e.g. automatic differentiation is very expensive and Jacobian-free methods slow down as the mesh is refined. A novel, computationally efficient analytical Jacobian for NKM was developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered curvilinear grids with immersed boundaries. The NKM was validated and verified against Taylor-Green vortex and pulsatile flow in a 90 degree bend and efficiently handles complex geometries such as an intracranial aneurysm with multiple overset grids, pulsatile inlet flow and immersed boundaries. The NKM method is shown to be more efficient than the semi-implicit Runge-Kutta methods and Jabobian-free Newton-Krylov methods. We believe NKM can be applied to many CFD techniques to decrease the computational cost. This work was supported partly by the NIH Grant R03EB014860, and the computational resources were partly provided by Center for Computational Research (CCR) at University at Buffalo.

  12. Integrating Scientific Methods and Knowledge into the Teaching of Newton's Theory of Gravitation: An Instructional Sequence for Teachers' and Students' Nature of Science Education

    Science.gov (United States)

    Develaki, Maria

    2012-01-01

    The availability of teaching units on the nature of science (NOS) can reinforce classroom instruction in the subject, taking into account the related deficiencies in textbook material and teacher training. We give a sequence of teaching units in which the teaching of Newton's gravitational theory is used as a basis for reflecting on the…

  13. A numerical method to solve the 1D and the 2D reaction diffusion equation based on Bessel functions and Jacobian free Newton-Krylov subspace methods

    Science.gov (United States)

    Parand, K.; Nikarya, M.

    2017-11-01

    In this paper a novel method will be introduced to solve a nonlinear partial differential equation (PDE). In the proposed method, we use the spectral collocation method based on Bessel functions of the first kind and the Jacobian free Newton-generalized minimum residual (JFNGMRes) method with adaptive preconditioner. In this work a nonlinear PDE has been converted to a nonlinear system of algebraic equations using the collocation method based on Bessel functions without any linearization, discretization or getting the help of any other methods. Finally, by using JFNGMRes, the solution of the nonlinear algebraic system is achieved. To illustrate the reliability and efficiency of the proposed method, we solve some examples of the famous Fisher equation. We compare our results with other methods.

  14. A Newton method for solving continuous multiple material minimum compliance problems

    DEFF Research Database (Denmark)

    Stolpe, M; Stegmann, Jan

    method, one or two linear saddle point systems are solved. These systems involve the Hessian of the objective function, which is both expensive to compute and completely dense. Therefore, the linear algebra is arranged such that the Hessian is not explicitly formed. The main concern is to solve...

  15. A Newton method for solving continuous multiple material minimum compliance problems

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Stegmann, Jan

    2007-01-01

    method, one or two linear saddle point systems are solved. These systems involve the Hessian of the objective function, which is both expensive to compute and completely dense. Therefore, the linear algebra is arranged such that the Hessian is not explicitly formed. The main concern is to solve...

  16. Continuous analog of Newton's method for determination of quasistationary solutions of the Schroedinger equation

    International Nuclear Information System (INIS)

    Ponomarev, L.I.; Puzynin, I.V.; Puzynina, T.P.

    1975-01-01

    The paper is a part of further development of investigations in which a numerical solution method of the Schroedinger equation for the case of a discrete spectrum has been developed and applied. The suggested algorithm (CAMEN scheme) is generalized and applied to quasistationary solutions of the Schroedinger equation system. Some specific features of the CAMEN scheme realization (such as establishing boundary conditions are observed while calculating quasistationary levels of hydrogen mesic molecules. The calculations have been carried out for energies and wave functions of quasistationary states of hydrogen mesic molecules. The choice of the initial approximation, the accuracy of calculations and characteristics of the convergence of the method have been investigated. The CAMEN algorithm has been realized in the form of the FORTRAN program packet. The CAMEN scheme can be also used for solving scatering problems

  17. A Newton--Galerkin Method for Fluid Flow Exhibiting Uncertain Periodic Dynamics

    KAUST Repository

    Schick, M.; Heuveline, V.; Le Ma, O. P.

    2014-01-01

    The determination of stable limit-cycles plays an important role in quantifying the characteristics of dynamical systems. In practice, exact knowledge of model parameters is rarely available leading to parameter uncertainties, which can be modeled as an input of random variables. This has the effect that the limit-cycles become stochastic themselves, resulting in almost surely time-periodic solutions with a stochastic period. In this paper we introduce a novel numerical method for the computation of stable stochastic limit-cycles based on the spectral stochastic finite element method using polynomial chaos (PC). We are able to overcome the difficulties of PC regarding its well-known convergence breakdown for long term integration. To this end, we introduce a stochastic time scaling which treats the stochastic period as an additional random variable and controls the phase-drift of the stochastic trajectories, keeping the necessary PC order low. Based on the rescaled governing equations, we aim at determining an initial condition and a period such that the trajectories close after completion of one stochastic cycle. Furthermore, we verify the numerical method by computation of a vortex shedding of a flow around a circular domain with stochastic inflow boundary conditions as a benchmark problem. The results are verified by comparison to purely deterministic reference problems and demonstrate high accuracy up to machine precision in capturing the stochastic variations of the limit-cycle.

  18. A Novel Geometric Modification to the Newton-Secant Method to Achieve Convergence of Order 1+2 and Its Dynamics

    Directory of Open Access Journals (Sweden)

    Gustavo Fernández-Torres

    2015-01-01

    Full Text Available A geometric modification to the Newton-Secant method to obtain the root of a nonlinear equation is described and analyzed. With the same number of evaluations, the modified method converges faster than Newton’s method and the convergence order of the new method is 1+2≈2.4142. The numerical examples and the dynamical analysis show that the new method is robust and converges to the root in many cases where Newton’s method and other recently published methods fail.

  19. Programming for the Newton software development with NewtonScript

    CERN Document Server

    McKeehan, Julie

    1994-01-01

    Programming for the Newton: Software Development with NewtonScript focuses on the processes, approaches, operations, and principles involved in software development with NewtonScript.The publication first elaborates on Newton application design, views on the Newton, and protos. Discussions focus on system protos, creating and using user protos, linking and naming templates, creating the views of WaiterHelper, Newton application designs, and life cycle of an application. The text then elaborates on the fundamentals of NewtonScript, inheritance in NewtonScript, and view system and messages. Topi

  20. Isaac Newton pocket giants

    CERN Document Server

    May, Andrew

    2015-01-01

    Isaac Newton had an extraordinary idea. He believed the physical universe and everything in it could be described in exact detail using mathematical relationships. He formulated a law of gravity that explained why objects fall downwards, how the moon causes the tides, and why planets and comets orbit the sun. While Newton's work has been added to over the years, his basic approach remains at the heart of the scientific worldview. Yet Newton's own had little in common with that of a modern scientist. He believed the universe was created to a precise and rational design - a design that was fully

  1. Newton's Contributions to Optics

    Indian Academy of Sciences (India)

    creativity is apparent, even in ideas and models in optics that were ... Around Newton's time, a number of leading figures in science ..... successive circles increased as integers, i.e. d increases by inte- ... of easy reflections and transmission".

  2. From Galileo to Newton

    CERN Document Server

    Hall, Alfred Rupert

    1982-01-01

    The near century (1630–1720) that separates the important astronomical findings of Galileo Galilei (1564–1642) and the vastly influential mathematical work of Sir Isaac Newton (1642–1727) represents a pivotal stage of transition in the history of science. Tracing the revolution in physics initiated by Galileo and culminating in Newton's achievements, this book surveys the work of Huygens, Leeuwenhoek, Boyle, Descartes, and others. 35 illustrations.

  3. Methods of numerical relativity

    International Nuclear Information System (INIS)

    Piran, T.

    1983-01-01

    Numerical Relativity is an alternative to analytical methods for obtaining solutions for Einstein equations. Numerical methods are particularly useful for studying generation of gravitational radiation by potential strong sources. The author reviews the analytical background, the numerical analysis aspects and techniques and some of the difficulties involved in numerical relativity. (Auth.)

  4. Newton and scholastic philosophy.

    Science.gov (United States)

    Levitin, Dmitri

    2016-03-01

    This article examines Isaac Newton's engagement with scholastic natural philosophy. In doing so, it makes two major historiographical interventions. First of all, the recent claim that Newton's use of the concepts of analysis and synthesis was derived from the Aristotelian regressus tradition is challenged on the basis of bibliographical, palaeographical and intellectual evidence. Consequently, a new, contextual explanation is offered for Newton's use of these concepts. Second, it will be shown that some of Newton's most famous pronouncements - from the General Scholium appended to the second edition of the Principia (1713) and from elsewhere - are simply incomprehensible without an understanding of specific scholastic terminology and its later reception, and that this impacts in quite significant ways on how we understand Newton's natural philosophy more generally. Contrary to the recent historiographical near-consensus, Newton did not hold an elaborate metaphysics, and his seemingly 'metaphysical' statements were in fact anti-scholastic polemical salvoes. The whole investigation will permit us a brief reconsideration of the relationship between the self-proclaimed 'new' natural philosophy and its scholastic predecessors.

  5. A Newton-Krylov method with an approximate analytical Jacobian for implicit solution of Navier-Stokes equations on staggered overset-curvilinear grids with immersed boundaries.

    Science.gov (United States)

    Asgharzadeh, Hafez; Borazjani, Iman

    2017-02-15

    The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for nonlinear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the

  6. Solution of free-boundary problems using finite-element/Newton methods and locally refined grids - Application to analysis of solidification microstructure

    Science.gov (United States)

    Tsiveriotis, K.; Brown, R. A.

    1993-01-01

    A new method is presented for the solution of free-boundary problems using Lagrangian finite element approximations defined on locally refined grids. The formulation allows for direct transition from coarse to fine grids without introducing non-conforming basis functions. The calculation of elemental stiffness matrices and residual vectors are unaffected by changes in the refinement level, which are accounted for in the loading of elemental data to the global stiffness matrix and residual vector. This technique for local mesh refinement is combined with recently developed mapping methods and Newton's method to form an efficient algorithm for the solution of free-boundary problems, as demonstrated here by sample calculations of cellular interfacial microstructure during directional solidification of a binary alloy.

  7. Conformal mechanics in Newton-Hooke spacetime

    International Nuclear Information System (INIS)

    Galajinsky, Anton

    2010-01-01

    Conformal many-body mechanics in Newton-Hooke spacetime is studied within the framework of the Lagrangian formalism. Global symmetries and Noether charges are given in a form convenient for analyzing the flat space limit. N=2 superconformal extension is built and a new class on N=2 models related to simple Lie algebras is presented. A decoupling similarity transformation on N=2 quantum mechanics in Newton-Hooke spacetime is discussed.

  8. Mechanics and Newton-Cartan-like gravity on the Newton-Hooke space-time

    International Nuclear Information System (INIS)

    Tian Yu; Guo Hanying; Huang Chaoguang; Xu Zhan; Zhou Bin

    2005-01-01

    We focus on the dynamical aspects on Newton-Hooke space-time NH + mainly from the viewpoint of geometric contraction of the de Sitter spacetime with Beltrami metric. (The term spacetime is used to denote a space with non-degenerate metric, while the term space-time is used to denote a space with degenerate metric.) We first discuss the Newton-Hooke classical mechanics, especially the continuous medium mechanics, in this framework. Then, we establish a consistent theory of gravity on the Newton-Hooke space-time as a kind of Newton-Cartan-like theory, parallel to the Newton's gravity in the Galilei space-time. Finally, we give the Newton-Hooke invariant Schroedinger equation from the geometric contraction, where we can relate the conservative probability in some sense to the mass density in the Newton-Hooke continuous medium mechanics. Similar consideration may apply to the Newton-Hooke space-time NH - contracted from anti-de Sitter spacetime

  9. Thermo-mechanical nonlinear vibration analysis of fluid-conveying structures subjected to different boundary conditions using Galerkin-Newton-Harmonic balancing method

    Directory of Open Access Journals (Sweden)

    Gbeminiyi Sobamowo

    2017-04-01

    Full Text Available The development of mathematical models for describing the dynamic behaviours of fluid conveying pipes, micro-pipes and nanotubes under the influence of some thermo-mechanical parameters results into nonlinear equations that are very difficult to solve analytically. In cases where the exact analytical solutions are presented either in implicit or explicit forms, high skills and rigorous mathematical analyses were employed. It is noted that such solutions do not provide general exact solutions. Inevitably, comparatively simple, flexible yet accurate and practicable solutions are required for the analyses of these structures. Therefore, in this study, approximate analytical solutions are provided to the nonlinear equations arising in flow-induced vibration of pipes, micro-pipes and nanotubes using Galerkin-Newton-Harmonic Method (GNHM. The developed approximate analytical solutions are shown to be valid for both small and large amplitude oscillations. The accuracies and explicitness of these solutions were examined in limiting cases to establish the suitability of the method.

  10. NITSOL: A Newton iterative solver for nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Pernice, M. [Univ. of Utah, Salt Lake City, UT (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States)

    1996-12-31

    Newton iterative methods, also known as truncated Newton methods, are implementations of Newton`s method in which the linear systems that characterize Newton steps are solved approximately using iterative linear algebra methods. Here, we outline a well-developed Newton iterative algorithm together with a Fortran implementation called NITSOL. The basic algorithm is an inexact Newton method globalized by backtracking, in which each initial trial step is determined by applying an iterative linear solver until an inexact Newton criterion is satisfied. In the implementation, the user can specify inexact Newton criteria in several ways and select an iterative linear solver from among several popular {open_quotes}transpose-free{close_quotes} Krylov subspace methods. Jacobian-vector products used by the Krylov solver can be either evaluated analytically with a user-supplied routine or approximated using finite differences of function values. A flexible interface permits a wide variety of preconditioning strategies and allows the user to define a preconditioner and optionally update it periodically. We give details of these and other features and demonstrate the performance of the implementation on a representative set of test problems.

  11. Turning around Newton's Second Law

    Science.gov (United States)

    Goff, John Eric

    2004-01-01

    Conceptual and quantitative difficulties surrounding Newton's second law often arise among introductory physics students. Simply turning around how one expresses Newton's second law may assist students in their understanding of a deceptively simple-looking equation.

  12. Efficient combination of a 3D Quasi-Newton inversion algorithm and a vector dual-primal finite element tearing and interconnecting method

    International Nuclear Information System (INIS)

    Voznyuk, I; Litman, A; Tortel, H

    2015-01-01

    A Quasi-Newton method for reconstructing the constitutive parameters of three-dimensional (3D) penetrable scatterers from scattered field measurements is presented. This method is adapted for handling large-scale electromagnetic problems while keeping the memory requirement and the time flexibility as low as possible. The forward scattering problem is solved by applying the finite-element tearing and interconnecting full-dual-primal (FETI-FDP2) method which shares the same spirit as the domain decomposition methods for finite element methods. The idea is to split the computational domain into smaller non-overlapping sub-domains in order to simultaneously solve local sub-problems. Various strategies are proposed in order to efficiently couple the inversion algorithm with the FETI-FDP2 method: a separation into permanent and non-permanent subdomains is performed, iterative solvers are favorized for resolving the interface problem and a marching-on-in-anything initial guess selection further accelerates the process. The computational burden is also reduced by applying the adjoint state vector methodology. Finally, the inversion algorithm is confronted to measurements extracted from the 3D Fresnel database. (paper)

  13. Lewis, Prof. Gilbert Newton

    Indian Academy of Sciences (India)

    Home; Fellowship. Fellow Profile. Elected: 1935 Honorary. Lewis, Prof. Gilbert Newton. Date of birth: 25 October 1875. Date of death: 24 March 1946. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. 29th Mid-year meeting. Posted on 19 January 2018. The 29th Mid-year meeting of the Academy will be held ...

  14. Newton's Contributions to Optics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 12. Newton's Contributions to Optics. Arvind Kumar. General Article Volume 11 Issue 12 December 2006 pp 10-20. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/011/12/0010-0020. Keywords.

  15. Newtons law of funding

    CERN Multimedia

    2008-01-01

    Isaac Newton, besides being the founder of modern physics, was also master of Britain's mint. That is a precedent which many British physicists must surely wish had become traditional. At the moment, money for physics is in short supply in Britain.

  16. Voltaire-Newton... Renversant!

    CERN Multimedia

    2004-01-01

    The encounter, even improbable, between François Marie Arouet, said Voltaire, and Isaac Newton could occur only in Pays de Gex, near his city... It's indeed right above of the accelerator, in Saint-Genis, that the meeting between this two "monsters" of the 18e century took place

  17. Lojasiewicz exponents and Newton polyhedra

    International Nuclear Information System (INIS)

    Pham Tien Son

    2006-07-01

    In this paper we obtain the exact value of the Lojasiewicz exponent at the origin of analytic map germs on K n (K = R or C under the Newton non-degeneracy condition, using information from their Newton polyhedra. We also give some conclusions on Newton non-degenerate analytic map germs. As a consequence, we obtain a link between Newton non-degenerate ideals and their integral closures, thus leading to a simple proof of a result of Saia. Similar results are also considered to polynomial maps which are Newton non-degenerate at infinity. (author)

  18. Dielectric constant extraction of graphene nanostructured on SiC substrates from spectroscopy ellipsometry measurement using Gauss–Newton inversion method

    Energy Technology Data Exchange (ETDEWEB)

    Maulina, Hervin; Santoso, Iman, E-mail: iman.santoso@ugm.ac.id; Subama, Emmistasega; Nurwantoro, Pekik; Abraha, Kamsul [DepartmenFisika, Universitas Gadjah Mada, Sekip Utara BLS 21 Yogyakarta (Indonesia); Rusydi, Andrivo [Physics Department, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore)

    2016-04-19

    The extraction of the dielectric constant of nanostructured graphene on SiC substrates from spectroscopy ellipsometry measurement using the Gauss-Newton inversion (GNI) method has been done. This study aims to calculate the dielectric constant and refractive index of graphene by extracting the value of ψ and Δ from the spectroscopy ellipsometry measurement using GNI method and comparing them with previous result which was extracted using Drude-Lorentz (DL) model. The results show that GNI method can be used to calculate the dielectric constant and refractive index of nanostructured graphene on SiC substratesmore faster as compared to DL model. Moreover, the imaginary part of the dielectric constant values and coefficient of extinction drastically increases at 4.5 eV similar to that of extracted using known DL fitting. The increase is known due to the process of interband transition and the interaction between the electrons and electron-hole at M-points in the Brillouin zone of graphene.

  19. SLIPM - a MAPLE package for numerical solution of Sturm-Liouville partial problems based on a continuous analog of Newton's method. II. Program realization

    International Nuclear Information System (INIS)

    Puzynin, I.V.; Puzynina, T.P.; Tkhak, V.Ch.

    2010-01-01

    SLIPM (Sturm-LIouville Problem in MAPLE) is a program complex written in the language of the computer algebras system MAPLE. It consists of the main program SLIPM.mw and of some procedures. It is intended for a numerical solution with the help of the continuous analog of Newton's method (CANM) of Sturm-Liouville partial problems, i.e. for calculating some eigenvalue of linear second-order differential operator and a corresponding eigenfunction satisfying homogeneous boundary conditions of the general type. SLIPM is the development of the program complexes SLIP1 and SLIPH4 written in the Fortran language. It is added by two new ways of calculating the initial value of iterative parameter τ 0 , by a procedure for calculating a higher precision solution (eigenvalue and corresponding eigenfunction) with the help of Richardson's extrapolation method, by graphical visualization procedures of intermediate and final results of the iterative process and by saving of the results on a disk file. The descriptions of the procedures purposes and their parameters are given

  20. La malle de Newton

    CERN Document Server

    Verlet, Loup

    1993-01-01

    En 1936, une vente publique ramena au jour le contenu d'une malle où Newton avait enfermé ses manuscrits. Ô surprise, les travaux du savant y voisinaient avec les spéculations de l'exégète et de l'alchimiste. Ce n'est pas seulement la face cachée d'un exceptionnel génie scientifique qui nous était ainsi révélée, mais, au-delà du mystère d'un homme, le secret partage qui gouverne notre univers, comme le montre cette lecture originale de la naissance de la physique moderne.Dans quel monde suis-je tombé ? Pourquoi les choses sont-elles ainsi ? Comment faire avec ? Questions lancinantes de l'enfant quand la mère fait défaut, du chercheur face à la nature qui se dérobe. La réponse, Newton sait où la trouver : Dieu le Père, à jamais insaisissable, est présent «partout et toujours», Il se révèle par la bouche des prophètes, se devine dans les arcanes de l'alchimie, se manifeste par les lois admirables qui règlent le cours ordinaire des choses. Ses écrits de l'ombre l'attestent, Newton ...

  1. Some Elementary Examples from Newton's Principia -R-ES ...

    Indian Academy of Sciences (India)

    ing both differential and integral calculus. Newton used many geometrical methods extensively to derive the re- sults in spite of his having discovered calculus. Geome- try, judiciously used with limiting procedures, was one principal strategy used by Newton in the Principia. The Principia presents an enormous range of ...

  2. Isaac Newton and the astronomical refraction.

    Science.gov (United States)

    Lehn, Waldemar H

    2008-12-01

    In a short interval toward the end of 1694, Isaac Newton developed two mathematical models for the theory of the astronomical refraction and calculated two refraction tables, but did not publish his theory. Much effort has been expended, starting with Biot in 1836, in the attempt to identify the methods and equations that Newton used. In contrast to previous work, a closed form solution is identified for the refraction integral that reproduces the table for his first model (in which density decays linearly with elevation). The parameters of his second model, which includes the exponential variation of pressure in an isothermal atmosphere, have also been identified by reproducing his results. The implication is clear that in each case Newton had derived exactly the correct equations for the astronomical refraction; furthermore, he was the first to do so.

  3. Newton-Cartan gravity and torsion

    Science.gov (United States)

    Bergshoeff, Eric; Chatzistavrakidis, Athanasios; Romano, Luca; Rosseel, Jan

    2017-10-01

    We compare the gauging of the Bargmann algebra, for the case of arbitrary torsion, with the result that one obtains from a null-reduction of General Relativity. Whereas the two procedures lead to the same result for Newton-Cartan geometry with arbitrary torsion, the null-reduction of the Einstein equations necessarily leads to Newton-Cartan gravity with zero torsion. We show, for three space-time dimensions, how Newton-Cartan gravity with arbitrary torsion can be obtained by starting from a Schrödinger field theory with dynamical exponent z = 2 for a complex compensating scalar and next coupling this field theory to a z = 2 Schrödinger geometry with arbitrary torsion. The latter theory can be obtained from either a gauging of the Schrödinger algebra, for arbitrary torsion, or from a null-reduction of conformal gravity.

  4. Eigenvalue Decomposition-Based Modified Newton Algorithm

    Directory of Open Access Journals (Sweden)

    Wen-jun Wang

    2013-01-01

    Full Text Available When the Hessian matrix is not positive, the Newton direction may not be the descending direction. A new method named eigenvalue decomposition-based modified Newton algorithm is presented, which first takes the eigenvalue decomposition of the Hessian matrix, then replaces the negative eigenvalues with their absolute values, and finally reconstructs the Hessian matrix and modifies the searching direction. The new searching direction is always the descending direction. The convergence of the algorithm is proven and the conclusion on convergence rate is presented qualitatively. Finally, a numerical experiment is given for comparing the convergence domains of the modified algorithm and the classical algorithm.

  5. Newton's Law: Not so Simple after All

    Science.gov (United States)

    Robertson, William C.; Gallagher, Jeremiah; Miller, William

    2004-01-01

    One of the most basic concepts related to force and motion is Newton's first law, which essentially states, "An object at rest tends to remain at rest unless acted on by an unbalanced force. An object in motion in a straight line tends to remain in motion in a straight line unless acted upon by an unbalanced force." Judging by the time and space…

  6. Newton 1642-1727

    CERN Document Server

    Westfall, Richard S

    1994-01-01

    Le plus célèbre des savants, Isaac Newton, est aussi celui qui a le plus de biographes. Avant même sa mort, en 1727, l'un d'eux publiait un récit de la vie du grand homme. Richard Westfall, universitaire américain, est aujourd'hui le meilleur connaisseur d'un personnage en tout point extraordinaire, dont Aldous Huxley disait : « En tant qu'homme, c'est un fiasco ; en tant que monstre, il est superbe ! » Découvrant à 24 ans la loi de la gravitation universelle, établissant peu après les lois de l'optique tout en poursuivant des études alchimiques et théologiques, cet homme capable de rester des jours entiers sans manger ni dormir, absorbé par les énigmes du savoir, connaît une grave dépression dont il réchappe de justesse... pour se consacrer à l'économie de son pays : il devient directeur de la Monnaie de Londres, organisant une impitoyable chasse aux faux-monnayeurs ! L'image d'Épinal de Newton regardant une pomme tomber sort enrichie et complexifiée de ce livre fruit d'une vie de reche...

  7. How College Students' Conceptions of Newton's Second and Third Laws Change through Watching Interactive Video Vignettes: A Mixed Methods Study

    Science.gov (United States)

    Engelman, Jonathan

    2016-01-01

    Changing student conceptions in physics is a difficult process and has been a topic of research for many years. The purpose of this study was to understand what prompted students to change or not change their incorrect conceptions of Newtons Second or Third Laws in response to an intervention, Interactive Video Vignettes (IVVs), designed to…

  8. Newton's Cradle in Physics Education

    Science.gov (United States)

    Gauld, Colin F.

    2006-01-01

    Newton's Cradle is a series of bifilar pendulums used in physics classrooms to demonstrate the role of the principles of conservation of momentum and kinetic energy in elastic collisions. The paper reviews the way in which textbooks use Newton's Cradle and points out the unsatisfactory nature of these treatments in almost all cases. The literature…

  9. Isaac Newton: Man, Myth, and Mathematics.

    Science.gov (United States)

    Rickey, V. Frederick

    1987-01-01

    This article was written in part to celebrate the anniversaries of landmark mathematical works by Newton and Descartes. It's other purpose is to dispel some myths about Sir Isaac Newton and to encourage readers to read Newton's works. (PK)

  10. Newtonian cosmology Newton would understand

    International Nuclear Information System (INIS)

    Lemons, D.S.

    1988-01-01

    Isaac Newton envisioned a static, infinite, and initially uniform, zero field universe that was gravitationally unstable to local condensations of matter. By postulating the existence of such a universe and using it as a boundary condition on Newtonian gravity, a new field equation for gravity is derived, which differs from the classical one by a time-dependent cosmological term proportional to the average mass density of the universe. The new field equation not only makes Jeans' analysis of the gravitational instability of a Newtonian universe consistent, but also gives rise to a family of Newtonian evolutionary cosmologies parametrized by a time-invariant expansion velocity. This Newtonian cosmology contrasts with both 19th-century ones and with post general relativity Newtonian cosmology

  11. Sir Isaac Newton

    Directory of Open Access Journals (Sweden)

    E. A. Venter

    1964-03-01

    Full Text Available Die geweldige oplewing van die Christelike wetenskaps- gedagte in ons geeslose tyd, is ongetwyfeld ’n haas onverklaar- bare verskynsel. Dwarsdeur die eeue het Christene ook wetenskap beoefen saam met ongelowiges, maar dit was eers in ons leeftyd dat die principia van die Christelike religie ook vrugbaar gemaak is vir die wetenskapsbeoefening. In hierdie verband sal die name van Dooyeweerd, Vollenhoven, Stoker e.a. steeds met eer vermeld word. Natuurlik het belydende Christene ook voorheen wel deeglik saamgewerk aan die gebou van die wetenskap. Die intieme verband tussen religie, wysbegeerte en wetenskaps­ beoefening is toe egter nog nie suiwer ingesien nie. Uit hier­ die tydperk dateer die arbeid van sir Isaac Newton.

  12. Field-Split Preconditioned Inexact Newton Algorithms

    KAUST Repository

    Liu, Lulu

    2015-06-02

    The multiplicative Schwarz preconditioned inexact Newton (MSPIN) algorithm is presented as a complement to additive Schwarz preconditioned inexact Newton (ASPIN). At an algebraic level, ASPIN and MSPIN are variants of the same strategy to improve the convergence of systems with unbalanced nonlinearities; however, they have natural complementarity in practice. MSPIN is naturally based on partitioning of degrees of freedom in a nonlinear PDE system by field type rather than by subdomain, where a modest factor of concurrency can be sacrificed for physically motivated convergence robustness. ASPIN, originally introduced for decompositions into subdomains, is natural for high concurrency and reduction of global synchronization. We consider both types of inexact Newton algorithms in the field-split context, and we augment the classical convergence theory of ASPIN for the multiplicative case. Numerical experiments show that MSPIN can be significantly more robust than Newton methods based on global linearizations, and that MSPIN can be more robust than ASPIN and maintain fast convergence even for challenging problems, such as high Reynolds number Navier--Stokes equations.

  13. Field-Split Preconditioned Inexact Newton Algorithms

    KAUST Repository

    Liu, Lulu; Keyes, David E.

    2015-01-01

    The multiplicative Schwarz preconditioned inexact Newton (MSPIN) algorithm is presented as a complement to additive Schwarz preconditioned inexact Newton (ASPIN). At an algebraic level, ASPIN and MSPIN are variants of the same strategy to improve the convergence of systems with unbalanced nonlinearities; however, they have natural complementarity in practice. MSPIN is naturally based on partitioning of degrees of freedom in a nonlinear PDE system by field type rather than by subdomain, where a modest factor of concurrency can be sacrificed for physically motivated convergence robustness. ASPIN, originally introduced for decompositions into subdomains, is natural for high concurrency and reduction of global synchronization. We consider both types of inexact Newton algorithms in the field-split context, and we augment the classical convergence theory of ASPIN for the multiplicative case. Numerical experiments show that MSPIN can be significantly more robust than Newton methods based on global linearizations, and that MSPIN can be more robust than ASPIN and maintain fast convergence even for challenging problems, such as high Reynolds number Navier--Stokes equations.

  14. NEWTON'S SECOND LAW OF MOTION, F=MA; EULER'S OR NEWTON'S?

    OpenAIRE

    Ajay Sharma

    2017-01-01

    Objective: F =ma is taught as Newton’s second law of motion all over the world. But it was given by Euler in 1775, forty-eight years after the death of Newton. It is debated here with scientific logic. Methods/Statistical analysis: The discussion partially deals with history of science so various aspects are quoted from original references. Newton did not give any equation in the Principia for second, third laws motion and law of gravitation. Conceptually, in Newton’s time, neither accele...

  15. Introducing Newton and classical physics

    CERN Document Server

    Rankin, William

    2002-01-01

    The rainbow, the moon, a spinning top, a comet, the ebb and flood of the oceans ...a falling apple. There is only one universe and it fell to Isaac Newton to discover its secrets. Newton was arguably the greatest scientific genius of all time, and yet he remains a mysterious figure. Written and illustrated by William Rankin, "Introducting Newton and Classical Physics" explains the extraordinary ideas of a man who sifted through the accumulated knowledge of centuries, tossed out mistaken beliefs, and single-handedly made enormous advances in mathematics, mechanics and optics. By the age of 25, entirely self-taught, he had sketched out a system of the world. Einstein's theories are unthinkable without Newton's founding system. He was also a secret heretic, a mystic and an alchemist, the man of whom Edmund Halley said "Nearer to the gods may no man approach!". This is an ideal companion volume to "Introducing Einstein".

  16. The Celestial Mechanics of Newton

    Indian Academy of Sciences (India)

    hannes Kepler had announced his first two laws of plan- etary motion (AD 1609), ... "Mathematical Principles of Natural Philosophy" .... He provided two different sets of proofs .... the Sun. Newton then formulated a theory of tides based on the.

  17. Alquimia: Isaac Newton revisitado Alchemy: Isaac Newton Revisited

    Directory of Open Access Journals (Sweden)

    Reginaldo Carmello Corrêa de Moraes

    1997-01-01

    Full Text Available Nota sobre publicações recentes que revelam aspectos pouco conhecidos da biblioteca de Newton - os numerosos textos religiosos, místicos e herméticos. Os biógrafos de Newton resistiram muito até admitir que os escritos esotéricos fossem genuíno interesse do sábio e que tivessem importância para entender sua trajetória intelectual. As publicações aqui indicadas afirmam o contrário, seguindo trilha aberta por ensaio pioneiro de J. M. Keynes (1946.A note on recent books about an unexplored side of Newton’s library: religious, mystical and hermetic texts. Newton's biographers had resisted so much to believe that esoteric writings were in Newton’s field of interest. Even if they recognized that, they didn't believe those strange works were important elements to understand his intellectual trajectory. The studies we mention here are saying just the opposite thing, exploring the way opened by the pioneer essay of J. M. Keynes (1946.

  18. Newton solution of inviscid and viscous problems

    International Nuclear Information System (INIS)

    Venkatakrishnan, V.

    1988-01-01

    The application of Newton iteration to inviscid and viscous airfoil calculations is examined. Spatial discretization is performed using upwind differences with split fluxes. The system of linear equations which arises as a result of linearization in time is solved directly using either a banded matrix solver or a sparse matrix solver. In the latter case, the solver is used in conjunction with the nested dissection strategy, whose implementation for airfoil calculations is discussed. The boundary conditions are also implemented in a fully implicit manner, thus yielding quadratic convergence. Complexities such as the ordering of cell nodes and the use of a far field vortex to correct freestream for a lifting airfoil are addressed. Various methods to accelerate convergence and improve computational efficiency while using Newton iteration are discussed. Results are presented for inviscid, transonic nonlifting and lifting airfoils and also for laminar viscous cases. 17 references

  19. Space and motion in nature and Scripture: Galileo, Descartes, Newton.

    Science.gov (United States)

    Janiak, Andrew

    2015-06-01

    In the Scholium to the Definitions in Principia mathematica, Newton departs from his main task of discussing space, time and motion by suddenly mentioning the proper method for interpreting Scripture. This is surprising, and it has long been ignored by scholars. In this paper, I argue that the Scripture passage in the Scholium is actually far from incidental: it reflects Newton's substantive concern, one evident in correspondence and manuscripts from the 1680s, that any general understanding of space, time and motion must enable readers to recognize the veracity of Biblical claims about natural phenomena, including the motion of the earth. This substantive concern sheds new light on an aspect of Newton's project in the Scholium. It also underscores Newton's originality in dealing with the famous problem of reconciling theological and philosophical conceptions of nature in the seventeenth century. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A direct Newton-Raphson economic dispatch

    International Nuclear Information System (INIS)

    Lin, C.E.; Chen, S.T.; Huang, C.L.

    1992-01-01

    This paper presents a new method to solve the real-time economic dispatch problem using an alternative Jacobian matrix considering system constraints. The transition loss is approximately expressed in terms of generating powers and the generalized generation shift distribution factor. Based on this expression, a set of simultaneous equations of Jacobian matrix is formulated and solved by the Newton-Raphson method. The proposed method eliminates the penalty factor calculation, and solves the economic dispatch directly. The proposed method obtains very fast solution speed and maintains good accuracy from test examples. It is good approach to solve the economic dispatch problem

  1. Numerical evaluation of general n-dimensional integrals by the repeated use of Newton-Cotes formulas

    International Nuclear Information System (INIS)

    Nihira, Takeshi; Iwata, Tadao.

    1992-07-01

    The composites Simpson's rule is extended to n-dimensional integrals with variable limits. This extension is illustrated by means of the recursion relation of n-fold series. The structure of calculation by the Newton-Cotes formulas for n-dimensional integrals is clarified with this method. A quadrature formula corresponding to the Newton-Cotes formulas can be readily constructed. The results computed for some examples are given, and the error estimates for two or three dimensional integrals are described using the error term. (author)

  2. PERBANDINGAN KEEFISIENAN METODE NEWTON-RAPHSON, METODE SECANT, DAN METODE BISECTION DALAM MENGESTIMASI IMPLIED VOLATILITIES SAHAM

    Directory of Open Access Journals (Sweden)

    IDA AYU EGA RAHAYUNI

    2016-01-01

    Full Text Available Black-Scholes model suggests that volatility is constant or fixed during the life time of the option certainly known. However, this does not fit with what happen in the real market. Therefore, the volatility has to be estimated. Implied Volatility is the etimated volatility from a market mechanism that is considered as a reasonable way to assess the volatility's value. This study was aimed to compare the Newton-Raphson, Secant, and Bisection method, in estimating the stock volatility value of PT Telkom Indonesia Tbk (TLK. It found that the three methods have the same Implied Volatilities, where Newton-Raphson method gained roots more rapidly than the two others, and it has the smallest relative error greater than Secant and Bisection methods.

  3. Newton's apple Isaac Newton and the English scientific renaissance

    CERN Document Server

    Aughton, Peter

    2003-01-01

    In the aftermath of the English Civil War, the Restoration overturned England's medieval outlook and a new way of looking at the world allowed the genius of Isaac Newton (b. 1642) and his contemporaries to flourish. Newton had a long and eventful life apart from his scentific discoveries. He was born at the beginnings of the Civil War, his studies were disrupted by the twin disasters of the Great Plague and the Fire of London; a brilliant and enigmatic genius, Newton dabbled in alchemy, wrote over a million words on the Bible, quarrelled with his contemporaries and spent his last years as Master of the Royal Mint as well as President of the Royal Society. This book sets Newton's life and work against this dramatic intellectual rebirth; among his friends and contemporaries were Samuel Pepys, the colourful diarist, John Evelyn, the eccentric antiquarian, the astronomers Edmund Halley and John Flamsteed, and Christopher Wren, the greatest architect of his age. They were all instrumental in the founding of the Ro...

  4. POEMS in Newton's Aerodynamic Frustum

    Science.gov (United States)

    Sampedro, Jaime Cruz; Tetlalmatzi-Montiel, Margarita

    2010-01-01

    The golden mean is often naively seen as a sign of optimal beauty but rarely does it arise as the solution of a true optimization problem. In this article we present such a problem, demonstrating a close relationship between the golden mean and a special case of Newton's aerodynamical problem for the frustum of a cone. Then, we exhibit a parallel…

  5. Newton's Law of Cooling Revisited

    Science.gov (United States)

    Vollmer, M.

    2009-01-01

    The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer…

  6. Entropic corrections to Newton's law

    International Nuclear Information System (INIS)

    Setare, M R; Momeni, D; Myrzakulov, R

    2012-01-01

    In this short paper, we calculate separately the generalized uncertainty principle (GUP) and self-gravitational corrections to Newton's gravitational formula. We show that for a complete description of the GUP and self-gravity effects, both the temperature and entropy must be modified. (paper)

  7. Dynamic Newton-Puiseux Theorem

    DEFF Research Database (Denmark)

    Mannaa, Bassel; Coquand, Thierry

    2013-01-01

    A constructive version of Newton-Puiseux theorem for computing the Puiseux expansions of algebraic curves is presented. The proof is based on a classical proof by Abhyankar. Algebraic numbers are evaluated dynamically; hence the base field need not be algebraically closed and a factorization...

  8. Three lectures on Newton's laws

    OpenAIRE

    Kokarev, Sergey S.

    2009-01-01

    Three small lectures are devoted to three Newton's laws, lying in the foundation of classical mechanics. These laws are analyzed from the viewpoint of our contemporary knowledge about space, time and physical interactions. The lectures were delivered for students of YarGU in RSEC "Logos".

  9. Black Hole Results from XMM-Newton

    Directory of Open Access Journals (Sweden)

    Norbert Schartel

    2014-12-01

    Full Text Available XMM-Newton is one of the most successful science missions of the  European Space Agency. Since 2003 every year about 300 articles are published in refereed journals making directly use of XMM-Newton data. All XMM-Newton calls for observing proposals are highly oversubscribed by factors of six and more. In the following some scientic highlights of XMM-Newton observations of black holes are summarized.

  10. NEWTPOIS- NEWTON POISSON DISTRIBUTION PROGRAM

    Science.gov (United States)

    Bowerman, P. N.

    1994-01-01

    The cumulative poisson distribution program, NEWTPOIS, is one of two programs which make calculations involving cumulative poisson distributions. Both programs, NEWTPOIS (NPO-17715) and CUMPOIS (NPO-17714), can be used independently of one another. NEWTPOIS determines percentiles for gamma distributions with integer shape parameters and calculates percentiles for chi-square distributions with even degrees of freedom. It can be used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. NEWTPOIS determines the Poisson parameter (lambda), that is; the mean (or expected) number of events occurring in a given unit of time, area, or space. Given that the user already knows the cumulative probability for a specific number of occurrences (n) it is usually a simple matter of substitution into the Poisson distribution summation to arrive at lambda. However, direct calculation of the Poisson parameter becomes difficult for small positive values of n and unmanageable for large values. NEWTPOIS uses Newton's iteration method to extract lambda from the initial value condition of the Poisson distribution where n=0, taking successive estimations until some user specified error term (epsilon) is reached. The NEWTPOIS program is written in C. It was developed on an IBM AT with a numeric co-processor using Microsoft C 5.0. Because the source code is written using standard C structures and functions, it should compile correctly on most C compilers. The program format is interactive, accepting epsilon, n, and the cumulative probability of the occurrence of n as inputs. It has been implemented under DOS 3.2 and has a memory requirement of 30K. NEWTPOIS was developed in 1988.

  11. A Fast Newton-Shamanskii Iteration for a Matrix Equation Arising from M/G/1-Type Markov Chains

    Directory of Open Access Journals (Sweden)

    Pei-Chang Guo

    2017-01-01

    Full Text Available For the nonlinear matrix equations arising in the analysis of M/G/1-type and GI/M/1-type Markov chains, the minimal nonnegative solution G or R can be found by Newton-like methods. We prove monotone convergence results for the Newton-Shamanskii iteration for this class of equations. Starting with zero initial guess or some other suitable initial guess, the Newton-Shamanskii iteration provides a monotonically increasing sequence of nonnegative matrices converging to the minimal nonnegative solution. A Schur decomposition method is used to accelerate the Newton-Shamanskii iteration. Numerical examples illustrate the effectiveness of the Newton-Shamanskii iteration.

  12. Accelerating Inexact Newton Schemes for Large Systems of Nonlinear Equations

    NARCIS (Netherlands)

    Fokkema, D.R.; Sleijpen, G.L.G.; Vorst, H.A. van der

    Classical iteration methods for linear systems, such as Jacobi iteration, can be accelerated considerably by Krylov subspace methods like GMRES. In this paper, we describe how inexact Newton methods for nonlinear problems can be accelerated in a similar way and how this leads to a general

  13. Transcending Newton's legacy

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1987-11-01

    Science was transformed during the twentieth century by three revolutionary developments: the special theory of relativity, the general theory of relativity, and quantum theory. These developments altered not only scientific practice, but also our ideas about the nature of science and the nature of the world itself. The author discusses these three developments with regard to both their essential differences from classical Newtonian science, and their potential impact upon the human condition

  14. Newton's Principia: Myth and Reality

    Science.gov (United States)

    Smith, George

    2016-03-01

    Myths about Newton's Principia abound. Some of them, such as the myth that the whole book was initially developed using the calculus and then transformed into a geometric mathematics, stem from remarks he made during the priority controversy with Leibniz over the calculus. Some of the most persistent, and misleading, arose from failures to read the book with care. Among the latter are the myth that he devised his theory of gravity in order to explain the already established ``laws'' of Kepler, and that in doing so he took himself to be establishing that Keplerian motion is ``absolute,'' if not with respect to ``absolute space,'' then at least with respect to the fixed stars taken as what came later to be known as an inertial frame. The talk will replace these two myths with the reality of what Newton took himself to have established.

  15. The problem of Newton dynamics

    International Nuclear Information System (INIS)

    Roman Roldan, R.

    1998-01-01

    The problem of the teaching of Newton's principles of dynamics at High School level is addressed. Some usages, reasoning and wording, are pointed as the responsible for the deficient results which are revealed in the background of the first year University students in Physics. A methodology based on simplifying the common vocabulary is proposed in order to provide to the students with a clearer view of the dynamic problems. Some typical examples are shown which illustrate the proposal. (Author)

  16. Classical mechanics from Newton to Einstein : a modern introduction

    CERN Document Server

    McCall, Martin

    2011-01-01

    This new edition of Classical Mechanics, aimed at undergraduate physics and engineering students, presents in a user-friendly style an authoritative approach to the complementary subjects of classical mechanics and relativity.   The text starts with a careful look at Newton's Laws, before applying them in one dimension to oscillations and collisions. More advanced applications - including gravitational orbits and rigid body dynamics - are discussed after the limitations of Newton's inertial frames have been highlighted through an exposition of Einstein's Special Relativity. Examples gi

  17. Newton's law of cooling revisited

    International Nuclear Information System (INIS)

    Vollmer, M

    2009-01-01

    The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer from any object to its surrounding is not only due to conduction and convection but also due to radiation. The latter does not vary linearly with temperature difference, which leads to deviations from Newton's law. This paper presents a theoretical analysis of the cooling of objects with a small Biot number. It is shown that Newton's law of cooling, i.e. simple exponential behaviour, is mostly valid if temperature differences are below a certain threshold which depends on the experimental conditions. For any larger temperature differences appreciable deviations occur which need the complete nonlinear treatment. This is demonstrated by results of some laboratory experiments which use IR imaging to measure surface temperatures of solid cooling objects with temperature differences of up to 300 K.

  18. The Use of Kruskal-Newton Diagrams for Differential Equations

    International Nuclear Information System (INIS)

    Fishaleck, T.; White, R.B.

    2008-01-01

    The method of Kruskal-Newton diagrams for the solution of differential equations with boundary layers is shown to provide rapid intuitive understanding of layer scaling and can result in the conceptual simplification of some problems. The method is illustrated using equations arising in the theory of pattern formation and in plasma physics.

  19. Newton force from wave function collapse: speculation and test

    International Nuclear Information System (INIS)

    Diósi, Lajos

    2014-01-01

    The Diosi-Penrose model of quantum-classical boundary postulates gravity-related spontaneous wave function collapse of massive degrees of freedom. The decoherence effects of the collapses are in principle detectable if not masked by the overwhelming environmental decoherence. But the DP (or any other, like GRW, CSL) spontaneous collapses are not detectable themselves, they are merely the redundant formalism of spontaneous decoherence. To let DP collapses become testable physics, recently we extended the DP model and proposed that DP collapses are responsible for the emergence of the Newton gravitational force between massive objects. We identified the collapse rate, possibly of the order of 1/ms, with the rate of emergence of the Newton force. A simple heuristic emergence (delay) time was added to the Newton law of gravity. This non-relativistic delay is in peaceful coexistence with Einstein's relativistic theory of gravitation, at least no experimental evidence has so far surfaced against it. We derive new predictions of such a 'lazy' Newton law that will enable decisive laboratory tests with available technologies. The simple equation of 'lazy' Newton law deserves theoretical and experimental studies in itself, independently of the underlying quantum foundational considerations.

  20. Conformal methods in general relativity

    CERN Document Server

    Valiente Kroon, Juan A

    2016-01-01

    This book offers a systematic exposition of conformal methods and how they can be used to study the global properties of solutions to the equations of Einstein's theory of gravity. It shows that combining these ideas with differential geometry can elucidate the existence and stability of the basic solutions of the theory. Introducing the differential geometric, spinorial and PDE background required to gain a deep understanding of conformal methods, this text provides an accessible account of key results in mathematical relativity over the last thirty years, including the stability of de Sitter and Minkowski spacetimes. For graduate students and researchers, this self-contained account includes useful visual models to help the reader grasp abstract concepts and a list of further reading, making this the perfect reference companion on the topic.

  1. Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2014-01-01

    Newton-type algorithms have been extensively studied in nonlinear microwave imaging due to their quadratic convergence rate and ability to recover images with high contrast values. In the past, Newton methods have been implemented in conjunction with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm is formulated and implemented in conjunction with a linear sparse optimization scheme. A novel preconditioning technique is proposed to increase the convergence rate of the optimization problem. Numerical results demonstrate that the proposed framework produces sharper and more accurate images when applied in sparse/sparsified domains.

  2. Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging

    KAUST Repository

    Desmal, Abdulla

    2014-05-04

    Newton-type algorithms have been extensively studied in nonlinear microwave imaging due to their quadratic convergence rate and ability to recover images with high contrast values. In the past, Newton methods have been implemented in conjunction with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm is formulated and implemented in conjunction with a linear sparse optimization scheme. A novel preconditioning technique is proposed to increase the convergence rate of the optimization problem. Numerical results demonstrate that the proposed framework produces sharper and more accurate images when applied in sparse/sparsified domains.

  3. Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging

    KAUST Repository

    Desmal, Abdulla

    2014-01-06

    Newton-type algorithms have been extensively studied in nonlinear microwave imaging due to their quadratic convergence rate and ability to recover images with high contrast values. In the past, Newton methods have been implemented in conjunction with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm is formulated and implemented in conjunction with a linear sparse optimization scheme. A novel preconditioning technique is proposed to increase the convergence rate of the optimization problem. Numerical results demonstrate that the proposed framework produces sharper and more accurate images when applied in sparse/sparsified domains.

  4. Bubble dynamics equations in Newton fluid

    International Nuclear Information System (INIS)

    Xiao, J

    2008-01-01

    For the high-speed flow of Newton fluid, bubble is produced and expanded when it moves toward the surface of fluid. Bubble dynamics is a very important research field to understand the intrinsic feature of bubble production and motion. This research formulates the bubble expansion by expansion-local rotation transformation, which can be calculated by the measured velocity field. Then, the related dynamic equations are established to describe the interaction between the fluid and the bubble. The research shows that the bubble production condition can be expressed by critical vortex value and fluid pressure; and the bubble expansion rate can be obtained by solving the non-linear dynamic equation of bubble motion. The results may help the related research as it shows a special kind of fluid motion in theoretic sense. As an application example, the nanofiber radium-voltage relation and threshold voltage-surface tension relation in electrospinning process are discussed

  5. Variational nature, integration, and properties of Newton reaction path.

    Science.gov (United States)

    Bofill, Josep Maria; Quapp, Wolfgang

    2011-02-21

    The distinguished coordinate path and the reduced gradient following path or its equivalent formulation, the Newton trajectory, are analyzed and unified using the theory of calculus of variations. It is shown that their minimum character is related to the fact that the curve is located in a valley region. In this case, we say that the Newton trajectory is a reaction path with the category of minimum energy path. In addition to these findings a Runge-Kutta-Fehlberg algorithm to integrate these curves is also proposed.

  6. Variational nature, integration, and properties of Newton reaction path

    Science.gov (United States)

    Bofill, Josep Maria; Quapp, Wolfgang

    2011-02-01

    The distinguished coordinate path and the reduced gradient following path or its equivalent formulation, the Newton trajectory, are analyzed and unified using the theory of calculus of variations. It is shown that their minimum character is related to the fact that the curve is located in a valley region. In this case, we say that the Newton trajectory is a reaction path with the category of minimum energy path. In addition to these findings a Runge-Kutta-Fehlberg algorithm to integrate these curves is also proposed.

  7. Newton's constant from a minimal length: additional models

    International Nuclear Information System (INIS)

    Sahlmann, Hanno

    2011-01-01

    We follow arguments of Verlinde (2010 arXiv:1001.0785 [hep-th]) and Klinkhamer (2010 arXiv:1006.2094 [hep-th]), and construct two models of the microscopic theory of a holographic screen that allow for the thermodynamical derivation of Newton's law, with Newton's constant expressed in terms of a minimal length scale l contained in the area spectrum of the microscopic theory. One of the models is loosely related to the quantum structure of surfaces and isolated horizons in loop quantum gravity. Our investigation shows that the conclusions reached by Klinkhamer regarding the new length scale l seem to be generic in all their qualitative aspects.

  8. Isaac Newton: Eighteenth-century Perspectives

    Science.gov (United States)

    Hall, A. Rupert

    1999-05-01

    This new product of the ever-flourishing Newton industry seems a bit far-fetched at first sight: who but a few specialists would be interested in the historiography of Newton biography in the eighteenth century? On closer inspection, this book by one of the most important Newton scholars of our day turns out to be of interest to a wider audience as well. It contains several biographical sketches of Newton, written in the decades after his death. The two most important ones are the Eloge by the French mathematician Bernard de Fontenelle and the Italian scholar Paolo Frisi's Elogio. The latter piece was hitherto unavailable in English translation. Both articles are well-written, interesting and sometimes even entertaining. They give us new insights into the way Newton was revered throughout Europe and how not even the slightest blemish on his personality or work could be tolerated. An example is the way in which Newton's famous controversy with Leibniz is treated: Newton is without hesitation presented as the wronged party. Hall has provided very useful historical introductions to the memoirs as well as footnotes where needed. Among the other articles discussed is a well-known memoir by John Conduitt, who was married to Newton's niece. This memoir, substantial parts of which are included in this volume, has been a major source of personal information for Newton biographers up to this day. In a concluding chapter, Hall gives a very interesting overview of the later history of Newton biography, in which he describes the gradual change from adoration to a more critical approach in Newton's various biographers. In short, this is a very useful addition to the existing biographical literature on Newton. A J Kox

  9. The flight of Newton's cannonball

    Science.gov (United States)

    Pesnell, W. Dean

    2018-05-01

    Newton's Cannon is a thought experiment used to motivate orbital motion. Cannonballs were fired from a high mountain at increasing muzzle velocity until they orbit the Earth. We will use the trajectories of these cannonballs to describe the shape of orbital tunnels that allow a cannonball fired from a high mountain to pass through the Earth. A sphere of constant density is used as the model of the Earth to take advantage of the analytic solutions for the interior trajectories that exist for that model. For the example shown, the cannonball trajectories that pass through the Earth intersect near the antipodal point of the cannon.

  10. A Newton-type neural network learning algorithm

    International Nuclear Information System (INIS)

    Ivanov, V.V.; Puzynin, I.V.; Purehvdorzh, B.

    1993-01-01

    First- and second-order learning methods for feed-forward multilayer networks are considered. A Newton-type algorithm is proposed and compared with the common back-propagation algorithm. It is shown that the proposed algorithm provides better learning quality. Some recommendations for their usage are given. 11 refs.; 1 fig.; 1 tab

  11. Demonstrating Kinematics and Newton's Laws in a Jump

    Science.gov (United States)

    Kamela, Martin

    2007-01-01

    When students begin the study of Newton's laws they are generally comfortable with static equilibrium type problems, but dynamic examples where forces are not constant are more challenging. The class exercise presented here helps students to develop an intuitive grasp of both the position-velocity-acceleration relation and the force-acceleration…

  12. HIGH-RESOLUTION XMM-NEWTON SPECTROSCOPY OF THE COOLING FLOW CLUSTER A3112

    Energy Technology Data Exchange (ETDEWEB)

    Bulbul, G. Esra; Smith, Randall K.; Foster, Adam [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cottam, Jean; Loewenstein, Michael; Mushotzky, Richard; Shafer, Richard, E-mail: ebulbul@cfa.harvard.edu [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2012-03-01

    We examine high signal-to-noise XMM-Newton European Photon Imaging Camera (EPIC) and Reflection Grating Spectrometer (RGS) observations to determine the physical characteristics of the gas in the cool core and outskirts of the nearby rich cluster A3112. The XMM-Newton Extended Source Analysis Software data reduction and background modeling methods were used to analyze the XMM-Newton EPIC data. From the EPIC data, we find that the iron and silicon abundance gradients show significant increase toward the center of the cluster while the oxygen abundance profile is centrally peaked but has a shallower distribution than that of iron. The X-ray mass modeling is based on the temperature and deprojected density distributions of the intracluster medium determined from EPIC observations. The total mass of A3112 obeys the M-T scaling relations found using XMM-Newton and Chandra observations of massive clusters at r{sub 500}. The gas mass fraction f{sub gas} = 0.149{sup +0.036}{sub -0.032} at r{sub 500} is consistent with the seven-year Wilkinson Microwave Anisotropy Probe results. The comparisons of line fluxes and flux limits on the Fe XVII and Fe XVIII lines obtained from high-resolution RGS spectra indicate that there is no spectral evidence for cooler gas associated with the cluster with temperature below 1.0 keV in the central <38'' ({approx}52 kpc) region of A3112. High-resolution RGS spectra also yield an upper limit to the turbulent motions in the compact core of A3112 (206 km s{sup -1}). We find that the contribution of turbulence to total energy is less than 6%. This upper limit is consistent with the energy contribution measured in recent high-resolution simulations of relaxed galaxy clusters.

  13. 3, 2, 1 ... Discovering Newton's Laws

    Science.gov (United States)

    Lutz, Joe; Sylvester, Kevin; Oliver, Keith; Herrington, Deborah

    2017-01-01

    "For every action there is an equal and opposite reaction." "Except when a bug hits your car window, the car must exert more force on the bug because Newton's laws only apply in the physics classroom, right?" Students in our classrooms were able to pick out definitions as well as examples of Newton's three laws; they could…

  14. Newton's law in de Sitter brane

    International Nuclear Information System (INIS)

    Ghoroku, Kazuo; Nakamura, Akihiro; Yahiro, Masanobu

    2003-01-01

    Newton potential has been evaluated for the case of dS brane embedded in Minkowski, dS 5 and AdS 5 bulks. We point out that only the AdS 5 bulk might be consistent with the Newton's law from the brane-world viewpoint when we respect a small cosmological constant observed at present universe

  15. Microfluidic device, and related methods

    Science.gov (United States)

    Wong, Eric W. (Inventor)

    2010-01-01

    A method of making a microfluidic device is provided. The method features patterning a permeable wall on a substrate, and surrounding the permeable wall with a solid, non-permeable boundary structure to establish a microfluidic channel having a cross-sectional dimension less than 5,000 microns and a cross-sectional area at least partially filled with the permeable wall so that fluid flowing through the microfluidic channel at least partially passes through the permeable wall.

  16. Newton to Einstein the trail of light: an excursion to the wave-particle duality and the special theory of relativity

    International Nuclear Information System (INIS)

    Borcherds, Peter

    2002-01-01

    This book developed from a well received course given by the author to first year students at Wesleyan University, Connecticut. The book starts with a discussion of reflection, refraction and rainbows, goes on to general properties of waves, interference and diffraction, and then on to special relativity, the twin effect and the Lorentz transformation, with a digression on radioactivity. There are numerous excellent diagrams, and the mathematics (all pre-calculus) is presented very clearly. The following are a few quotations from the book intended to give some idea of its coverage. In the preface 'Demonstrations are a vital part of my teaching, and that is one reason why I so often teach about light: the demonstrations work (for there is no friction), and they are often beautiful. When I ask my students for advice about the course, one of the questions has been this: If there has been a topic or demonstration that you particularly enjoyed, tell me that, too. [One] student had this to say in response: 'Mostly, the demonstrations are a GREAT way of seeing what you say - without them, I don't know how I'd learn any of it, or believe you.' I agree, and I wouldn't know how to give a lecture without some props. Beyond that, all of us enjoy the demonstrations and they provide something to look forward to when the alarm clock goes off for an early morning class.' There appears to be a regrettable recent tendency to move away from real demonstrations towards computer simulations. If this book achieves nothing other than encouraging the use of demonstrations, it will have made a valuable contribution. And for a do-it-yourself demonstration, the author points out that 'You do not need any special apparatus to see single-slit interference. A street light or even a car headlight at 100 meters can serve as a light source. Your index and middle fingers...form the slit...'. If you need more details see the book. Another do-it-yourself demonstration of interference is to observe

  17. Illustrating Newton's Second Law with the Automobile Coast-Down Test.

    Science.gov (United States)

    Bryan, Ronald A.; And Others

    1988-01-01

    Describes a run test of automobiles for applying Newton's second law of motion and the concept of power. Explains some automobile thought-experiments and provides the method and data of an actual coast-down test. (YP)

  18. Dissipative structures and related methods

    Science.gov (United States)

    Langhorst, Benjamin R; Chu, Henry S

    2013-11-05

    Dissipative structures include at least one panel and a cell structure disposed adjacent to the at least one panel having interconnected cells. A deformable material, which may comprise at least one hydrogel, is disposed within at least one interconnected cell proximate to the at least one panel. Dissipative structures may also include a cell structure having interconnected cells formed by wall elements. The wall elements may include a mesh formed by overlapping fibers having apertures formed therebetween. The apertures may form passageways between the interconnected cells. Methods of dissipating a force include disposing at least one hydrogel in a cell structure proximate to at least one panel, applying a force to the at least one panel, and forcing at least a portion of the at least one hydrogel through apertures formed in the cell structure.

  19. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    International Nuclear Information System (INIS)

    Schaefer, Bastian; Goedecker, Stefan; Alireza Ghasemi, S.; Roy, Shantanu

    2015-01-01

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods

  20. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Bastian; Goedecker, Stefan, E-mail: stefan.goedecker@unibas.ch [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Alireza Ghasemi, S. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, IR-Zanjan (Iran, Islamic Republic of); Roy, Shantanu [Computational and Systems Biology, Biozentrum, University of Basel, CH-4056 Basel (Switzerland)

    2015-01-21

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods.

  1. A Line Search Multilevel Truncated Newton Algorithm for Computing the Optical Flow

    Directory of Open Access Journals (Sweden)

    Lluís Garrido

    2015-06-01

    Full Text Available We describe the implementation details and give the experimental results of three optimization algorithms for dense optical flow computation. In particular, using a line search strategy, we evaluate the performance of the unilevel truncated Newton method (LSTN, a multiresolution truncated Newton (MR/LSTN and a full multigrid truncated Newton (FMG/LSTN. We use three image sequences and four models of optical flow for performance evaluation. The FMG/LSTN algorithm is shown to lead to better optical flow estimation with less computational work than both the LSTN and MR/LSTN algorithms.

  2. Discovery Science: Newton All around You.

    Science.gov (United States)

    Prigo, Robert; Humphrey, Gregg

    1993-01-01

    Presents activities for helping elementary students learn about Newton's third law of motion. Several activity cards demonstrate the concept of the law of action and reaction. The activities require only inexpensive materials that can be found around the house. (SM)

  3. On Time-II: Newton's Time.

    Science.gov (United States)

    Raju, C. K.

    1991-01-01

    A study of time in Newtonian physics is presented. Newton's laws of motion, falsifiability and physical theories, laws of motion and law of gravitation, and Laplace's demon are discussed. Short bibliographic sketches of Laplace and Karl Popper are included. (KR)

  4. Newton Binomial Formulas in Schubert Calculus

    OpenAIRE

    Cordovez, Jorge; Gatto, Letterio; Santiago, Taise

    2008-01-01

    We prove Newton's binomial formulas for Schubert Calculus to determine numbers of base point free linear series on the projective line with prescribed ramification divisor supported at given distinct points.

  5. Does the Newton's world model revive

    International Nuclear Information System (INIS)

    Meszaros, A.

    1984-03-01

    Newton's world model may have a physical meaning if the gravitation has small non-zero mass and if the observable part of the universe is the interior of a giant finite body. Both possibilities are allowed theoretically. (author)

  6. A Newton Algorithm for Multivariate Total Least Squares Problems

    Directory of Open Access Journals (Sweden)

    WANG Leyang

    2016-04-01

    Full Text Available In order to improve calculation efficiency of parameter estimation, an algorithm for multivariate weighted total least squares adjustment based on Newton method is derived. The relationship between the solution of this algorithm and that of multivariate weighted total least squares adjustment based on Lagrange multipliers method is analyzed. According to propagation of cofactor, 16 computational formulae of cofactor matrices of multivariate total least squares adjustment are also listed. The new algorithm could solve adjustment problems containing correlation between observation matrix and coefficient matrix. And it can also deal with their stochastic elements and deterministic elements with only one cofactor matrix. The results illustrate that the Newton algorithm for multivariate total least squares problems could be practiced and have higher convergence rate.

  7. On Newton-Cartan trace anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Auzzi, Roberto [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); INFN Sezione di Perugia,Via A. Pascoli, 06123 Perugia (Italy); Baiguera, Stefano [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); Nardelli, Giuseppe [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); TIFPA - INFN, c/o Dipartimento di Fisica, Università di Trento,38123 Povo (Italy)

    2016-02-01

    We classify the trace anomaly for parity-invariant non-relativistic Schrödinger theories in 2+1 dimensions coupled to background Newton-Cartan gravity. The general anomaly structure looks very different from the one in the z=2 Lifshitz theories. The type A content of the anomaly is remarkably identical to that of the relativistic 3+1 dimensional case, suggesting the conjecture that an a-theorem should exist also in the Newton-Cartan context.

  8. On Newton-Cartan trace anomalies

    International Nuclear Information System (INIS)

    Auzzi, Roberto; Baiguera, Stefano; Nardelli, Giuseppe

    2016-01-01

    We classify the trace anomaly for parity-invariant non-relativistic Schrödinger theories in 2+1 dimensions coupled to background Newton-Cartan gravity. The general anomaly structure looks very different from the one in the z=2 Lifshitz theories. The type A content of the anomaly is remarkably identical to that of the relativistic 3+1 dimensional case, suggesting the conjecture that an a-theorem should exist also in the Newton-Cartan context.

  9. State space Newton's method for topology optimization

    DEFF Research Database (Denmark)

    Evgrafov, Anton

    2014-01-01

    /10/1-type constraints on the design field through penalties in many topology optimization approaches. We test the algorithm on the benchmark problems of dissipated power minimization for Stokes flows, and in all cases the algorithm outperforms the traditional first order reduced space/nested approaches...

  10. The WiggleZ Dark Energy Survey: constraining the evolution of Newton's constant using the growth rate of structure

    International Nuclear Information System (INIS)

    Nesseris, Savvas; Blake, Chris; Davis, Tamara; Parkinson, David

    2011-01-01

    We constrain the evolution of Newton's constant using the growth rate of large-scale structure measured by the WiggleZ Dark Energy Survey in the redshift range 0.1 m (assuming General Relativity), and use this to construct a diagnostic to detect the presence of an evolving Newton's constant. Secondly we directly measure the evolution of Newton's constant, G eff , that appears in Modified Gravity theories, without assuming General Relativity to be true. The novelty of these approaches are that, contrary to other methods, they do not require knowledge of the expansion history of the Universe, H(z), making them model independent tests. Our constraints for the second derivative of Newton's constant at the present day, assuming it is slowly evolving as suggested by Big Bang Nucleosynthesis constraints, using the WiggleZ data is G double-dot eff (t 0 ) = −1.19 ± 0.95·10 −20 h 2 yr −2 , where h is defined via H 0 = 100 h km s −1 Mpc −1 , while using both the WiggleZ and the Sloan Digital Sky Survey Luminous Red Galaxy (SDSS LRG) data is G double-dot eff (t 0 ) = −3.6 ± 6.8·10 −21 h 2 yr −2 , both being consistent with General Relativity. Finally, our constraint for the rms mass fluctuation σ 8 using the WiggleZ data is σ 8 = 0.75 ± 0.08, while using both the WiggleZ and the SDSS LRG data σ 8 = 0.77 ± 0.07, both in good agreement with the latest measurements from the Cosmic Microwave Background radiation

  11. Newton's Investigation of the Resistance to Moving Bodies in Continuous Fluids and the Nature of "Frontier Science"

    Science.gov (United States)

    Gauld, Colin F.

    2010-01-01

    Newton's experiments into the resistance which fluids offer to moving bodies provide some insight into the way he related theory and experiment. His theory demonstrates a way of thought typical of 17th century physics and his experiments are simple enough to be replicated by present day students. Newton's investigations using pendulums were…

  12. From Schawlow to Newton: An educational return

    Science.gov (United States)

    Sathe, D.

    Newton's laws of motion and his theory of gravitation are known for over 300 years. However, investigations of educators, from various countries and carried out in the last quarter of the 20t h century, show that the Aristotelian ideas keep persisting among students - in spite of learning thes e topics in schools and colleges. In the traditional examinations students do give answers in accordance with Newton's laws but in questionnaires of educators they ignore Newtonian laws unknowingly, and quite naturally give answers along the Aristotelian line of thought. Why do they give such contrasting answers? Should we take for granted that their understanding of Newtonian laws is satisfactory because of their correct answers in traditional exams, though not in questionnaires? Can these contrasting views affect their interest in physics? These are some questions that warrant our attention earnestly, as we gear up for the research and teaching in 21s t century. The author felt the need of focusing attention on the logical aspects of the subject, due to the global character of said problem. His decision was strengthened greatly, in late1970s, by the philosophy of Dennis Sciama and hence author's dedication of a letter to the editor to his memory, in the COSPAR Info. Bulletin /1/. Being a trained biochemist, author started looking for points, missed by the earlier educators - that means author started following the advice of Arthur Schawlow /2/ in late 1970s, though unknowingly. Sadly, author came to know of it after dedicating a lecture to the memory of Abdus Salam in a symposium in Samarkand, Uzbekistan. Therefore he is dedicating this presentation to the memory of Arthur Schawlow. According to the present author, the persistence of Aristotelian ideas and consequent contrasting performances of students are due to the logical conflicts between the basic concepts of physics itself. For example, the conflict between the treatment of uniform circular motion and the concept of

  13. Newton's gift how Sir Isaac Newton unlocked the system of the world

    CERN Document Server

    Berlinski, David

    2000-01-01

    Sir Isaac Newton, creator of the first and perhaps most important scientific theory, is a giant of the scientific era. Despite this, he has remained inaccessible to most modern readers, indisputably great but undeniably remote. In this witty, engaging, and often moving examination of Newton's life, David Berlinski recovers the man behind the mathematical breakthroughs. The story carries the reader from Newton's unremarkable childhood to his awkward undergraduate days at Cambridge through the astonishing year in which, working alone, he laid the foundation for his system of the world, his Principia Mathematica, and to the subsequent monumental feuds that poisoned his soul and wearied his supporters. An edifying appreciation of Newton's greatest accomplishment, Newton's Gift is also a touching celebration of a transcendent man.

  14. Deviations from Newton's law in supersymmetric large extra dimensions

    International Nuclear Information System (INIS)

    Callin, P.; Burgess, C.P.

    2006-01-01

    Deviations from Newton's inverse-squared law at the micron length scale are smoking-gun signals for models containing supersymmetric large extra dimensions (SLEDs), which have been proposed as approaches for resolving the cosmological constant problem. Just like their non-supersymmetric counterparts, SLED models predict gravity to deviate from the inverse-square law because of the advent of new dimensions at sub-millimeter scales. However SLED models differ from their non-supersymmetric counterparts in three important ways: (i) the size of the extra dimensions is fixed by the observed value of the dark energy density, making it impossible to shorten the range over which new deviations from Newton's law must be seen; (ii) supersymmetry predicts there to be more fields in the extra dimensions than just gravity, implying different types of couplings to matter and the possibility of repulsive as well as attractive interactions; and (iii) the same mechanism which is purported to keep the cosmological constant naturally small also keeps the extra-dimensional moduli effectively massless, leading to deviations from general relativity in the far infrared of the scalar-tensor form. We here explore the deviations from Newton's law which are predicted over micron distances, and show the ways in which they differ and resemble those in the non-supersymmetric case

  15. Newton and the origin of civilization

    CERN Document Server

    Buchwald, Jed Z

    2012-01-01

    Isaac Newton's Chronology of Ancient Kingdoms Amended, published in 1728, one year after the great man's death, unleashed a storm of controversy. And for good reason. The book presents a drastically revised timeline for ancient civilizations, contracting Greek history by five hundred years and Egypt's by a millennium. Newton and the Origin of Civilization tells the story of how one of the most celebrated figures in the history of mathematics, optics, and mechanics came to apply his unique ways of thinking to problems of history, theology, and mythology, and of how his radical ideas produced an uproar that reverberated in Europe's learned circles throughout the eighteenth century and beyond. Jed Buchwald and Mordechai Feingold reveal the manner in which Newton strove for nearly half a century to rectify universal history by reading ancient texts through the lens of astronomy, and to create a tight theoretical system for interpreting the evolution of civilization on the basis of population dynamics. It was duri...

  16. Bargmann structures and Newton-Cartan theory

    International Nuclear Information System (INIS)

    Duval, C.; Burdet, G.; Kuenzle, H.P.; Perrin, M.

    1985-01-01

    It is shown that Newton-Cartan theory of gravitation can best be formulated on a five-dimensional extended space-time carrying a Lorentz metric together with a null parallel vector field. The corresponding geometry associated with the Bargmann group (nontrivially extended Galilei group) viewed as a subgroup of the affine de Sitter group AO(4,1) is thoroughly investigated. This new global formalism allows one to recast classical particle dynamics and the Schroedinger equation into a purely covariant form. The Newton-Cartan field equations are readily derived from Einstein's Lagrangian on the space-time extension

  17. Disformal transformation in Newton-Cartan geometry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Peng [Zhejiang Chinese Medical University, Department of Information, Hangzhou (China); Sun Yat-Sen University, School of Physics and Astronomy, Guangzhou (China); Yuan, Fang-Fang [Nankai University, School of Physics, Tianjin (China)

    2016-08-15

    Newton-Cartan geometry has played a central role in recent discussions of the non-relativistic holography and condensed matter systems. Although the conformal transformation in non-relativistic holography can easily be rephrased in terms of Newton-Cartan geometry, we show that it requires a nontrivial procedure to arrive at the consistent form of anisotropic disformal transformation in this geometry. Furthermore, as an application of the newly obtained transformation, we use it to induce a geometric structure which may be seen as a particular non-relativistic version of the Weyl integrable geometry. (orig.)

  18. Newton's First Law: A Learning Cycle Approach

    Science.gov (United States)

    McCarthy, Deborah

    2005-01-01

    To demonstrate how Newton's first law of motion applies to students' everyday lives, the author developed a learning cycle series of activities on inertia. The discrepant event at the heart of these activities is sure to elicit wide-eyed stares and puzzled looks from students, but also promote critical thinking and help bring an abstract concept…

  19. Magnetic Levitation and Newton's Third Law

    Science.gov (United States)

    Aguilar, Horacio Munguia

    2007-01-01

    Newton's third law is often misunderstood by students and even their professors, as has already been pointed out in the literature. Application of the law in the context of electromagnetism can be especially problematic, because the idea that the forces of "action" and "reaction" are equal and opposite independent of the medium through which they…

  20. Isaac Newton and the Royal Mint

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 12. Isaac Newton and the Royal Mint. Biman Nath. Article-in-a-Box Volume 11 Issue 12 December 2006 pp 6-7. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/011/12/0006-0007 ...

  1. British physics Newton's law of funding

    CERN Multimedia

    2007-01-01

    In Britain, fundamental physics is in a pickle ISAAC NEWTON, besides being the founder of modern physics, was also master of Britain's mint. That is a precedent which many British physicists must surely wish had become traditional. At the moment, money for physics is in short supply in Britain.

  2. Newton's Metaphysics of Space as God's Emanative Effect

    Science.gov (United States)

    Jacquette, Dale

    2014-09-01

    In several of his writings, Isaac Newton proposed that physical space is God's "emanative effect" or "sensorium," revealing something interesting about the metaphysics underlying his mathematical physics. Newton's conjectures depart from Plato and Aristotle's metaphysics of space and from classical and Cambridge Neoplatonism. Present-day philosophical concepts of supervenience clarify Newton's ideas about space and offer a portrait of Newton not only as a mathematical physicist but an independent-minded rationalist philosopher.

  3. From the Landgrave in Kassel to Isaac Newton

    Science.gov (United States)

    Høg, E.

    2018-01-01

    Landgrave Wilhelm IV established in 1560 the first permanent astronomical observatory in Europe. When he met the young Tycho Brahe in 1575 he recognized the genius and recommended him warmly to the Danish king Frederik II. Wilhelm and Tycho must share the credit for renewing astronomy with very accurate observations of positions of stars by new instrumentation and new methods. Tycho's observations of planets during 20 years enabled Johannes Kepler to derive the laws of planetary motion. These laws set Isaac Newton in a position to publish the laws of physical motion and universal gravitation in 1687 - the basis for the technical revolution.

  4. The G_Newton --> 0 Limit of Euclidean Quantum Gravity

    OpenAIRE

    Smolin, Lee

    1992-01-01

    Using the Ashtekar formulation, it is shown that the G_{Newton} --> 0 limit of Euclidean or complexified general relativity is not a free field theory, but is a theory that describes a linearized self-dual connection propagating on an arbitrary anti-self-dual background. This theory is quantized in the loop representation and, as in the full theory, an infinite dimnensional space of exact solutions to the constraint is found. An inner product is also proposed. The path integral is constructed...

  5. Rippled cosmological dark matter from a damped oscillating Newton constant

    International Nuclear Information System (INIS)

    Davidson, Aharon

    2005-01-01

    Let the reciprocal Newton 'constant' be an apparently non-dynamical Brans-Dicke scalar field damped oscillating towards its general relativistic VEV. We show, without introducing additional matter fields or dust, that the corresponding cosmological evolution averagely resembles, in the Jordan frame, the familiar dark radiation → dark matter → dark energy domination sequence. The fingerprints of our theory are fine ripples, hopefully testable, in the FRW scale factor; they die away at the general relativity limit. The possibility that the Brans-Dicke scalar also serves as the inflaton is favourably examined

  6. Some Peculiarities of Newton-Hooke Space-Times

    OpenAIRE

    Tian, Yu

    2011-01-01

    Newton-Hooke space-times are the non-relativistic limit of (anti-)de Sitter space-times. We investigate some peculiar facts about the Newton-Hooke space-times, among which the "extraordinary Newton-Hooke quantum mechanics" and the "anomalous Newton-Hooke space-times" are discussed in detail. Analysis on the Lagrangian/action formalism is performed in the discussion of the Newton-Hooke quantum mechanics, where the path integral point of view plays an important role, and the physically measurab...

  7. On the characterization of single-event related brain activity from functional Magnetic Resonance Imaging (fMRI) measurements

    KAUST Repository

    Khoram, Nafiseh; Zayane, Chadia; Laleg-Kirati, Taous-Meriem; Djellouli, Rabia

    2014-01-01

    We propose an efficient numerical technique for calibrating the mathematical model that describes the singleevent related brain response when fMRI measurements are given. This method employs a regularized Newton technique in conjunction with a

  8. Fast Newton active appearance models

    NARCIS (Netherlands)

    Kossaifi, Jean; Tzimiropoulos, Georgios; Pantic, Maja

    2014-01-01

    Active Appearance Models (AAMs) are statistical models of shape and appearance widely used in computer vision to detect landmarks on objects like faces. Fitting an AAM to a new image can be formulated as a non-linear least-squares problem which is typically solved using iterative methods. Owing to

  9. Convergence and Applications of a Gossip-Based Gauss-Newton Algorithm

    Science.gov (United States)

    Li, Xiao; Scaglione, Anna

    2013-11-01

    The Gauss-Newton algorithm is a popular and efficient centralized method for solving non-linear least squares problems. In this paper, we propose a multi-agent distributed version of this algorithm, named Gossip-based Gauss-Newton (GGN) algorithm, which can be applied in general problems with non-convex objectives. Furthermore, we analyze and present sufficient conditions for its convergence and show numerically that the GGN algorithm achieves performance comparable to the centralized algorithm, with graceful degradation in case of network failures. More importantly, the GGN algorithm provides significant performance gains compared to other distributed first order methods.

  10. Study on the algorithm for Newton-Rapson iteration interpolation of NURBS curve and simulation

    Science.gov (United States)

    Zhang, Wanjun; Gao, Shanping; Cheng, Xiyan; Zhang, Feng

    2017-04-01

    In order to solve the problems of Newton-Rapson iteration interpolation method of NURBS Curve, Such as interpolation time bigger, calculation more complicated, and NURBS curve step error are not easy changed and so on. This paper proposed a study on the algorithm for Newton-Rapson iteration interpolation method of NURBS curve and simulation. We can use Newton-Rapson iterative that calculate (xi, yi, zi). Simulation results show that the proposed NURBS curve interpolator meet the high-speed and high-accuracy interpolation requirements of CNC systems. The interpolation of NURBS curve should be finished. The simulation results show that the algorithm is correct; it is consistent with a NURBS curve interpolation requirements.

  11. Life after Newton: an ecological metaphysic.

    Science.gov (United States)

    Ulanowicz, R E

    1999-05-01

    Ecology may indeed be 'deep', as some have maintained, but perhaps much of the mystery surrounding it owes more simply to the dissonance between ecological notions and the fundamentals of the modern synthesis. Comparison of the axioms supporting the Newtonian world view with those underlying the organicist and stochastic metaphors that motivate much of ecosystems science reveals strong disagreements--especially regarding the nature of the causes of events and the scalar domains over which these causes can operate. The late Karl Popper held that the causal closure forced by our mechanical perspective on nature frustrates our attempts to achieve an 'evolutionary theory of knowledge.' He suggested that the Newtonian concept of 'force' must be generalized to encompass the contingencies that arise in evolutionary processes. His reformulation of force as 'propensity' leads quite naturally to a generalization of Newton's laws for ecology. The revised tenets appear, however, to exhibit more scope and allow for change to arise from within a system. Although Newton's laws survive (albeit in altered form) within a coalescing ecological metaphysic, the axioms that Enlightenment thinkers appended to Newton's work seem ill-suited for ecology and perhaps should yield to a new and coherent set of assumptions on how to view the processes of nature.

  12. Investigating the origin of X-ray variability through XMM-Newton and WISE data

    Science.gov (United States)

    Zaino, A.; Vignali, C.; Severgnini, P.; Della Ceca, R.; Ballo, L.

    2017-10-01

    An efficient diagnostic method to find local (zmaster thesis work, in which I tested the stability of the method outlined above using the latest 3XMM and WISE data, and I investigated its potentialities in finding interesting spectrally variable (including changing-look) XMM-Newton sources.

  13. Gravitation: Field theory par excellence Newton, Einstein, and beyond

    International Nuclear Information System (INIS)

    Yilmaz, H.

    1984-01-01

    Newtonian gravity satifies the two principles of equivalence m/sub i/ = m/sub p/ (the passive principle) and m/sub a/ = m/sub p/ (the active principle). A relativistic gauge field concept in D = s+1 dimensional curved-space will, in general, violate these two principles as in m/sub p/ = αm/sub i/, m/sub a/ = lambdam/sub p/ where α = D: 3 and lambda measures the presence of the field stress-energy t/sup ν//sub μ/ in the field equations. It is shown that α = 1, lambda = 0 corresponds to general relativity and α = 1, lambda = 1 to the theory of the author. It is noted that the correspondence limit of general relativity is not Newton's theory but a theory suggested by Robert Hooke a few years before Newton published his in Principia. The gauge is independent of the two principles but had to do with local special relativistic correspondence and compatibility with quantum mechanics. It is shown that unless α = 1, lambda = 1 the generalized theory cannot predict correctly many observables effects, including the 532'' per century Newtonian part in Mercury's perihelion advance

  14. Newton’s method an updated approach of Kantorovich’s theory

    CERN Document Server

    Ezquerro Fernández, José Antonio

    2017-01-01

    This book shows the importance of studying semilocal convergence in iterative methods through Newton's method and addresses the most important aspects of the Kantorovich's theory including implicated studies. Kantorovich's theory for Newton's method used techniques of functional analysis to prove the semilocal convergence of the method by means of the well-known majorant principle. To gain a deeper understanding of these techniques the authors return to the beginning and present a deep-detailed approach of Kantorovich's theory for Newton's method, where they include old results, for a historical perspective and for comparisons with new results, refine old results, and prove their most relevant results, where alternative approaches leading to new sufficient semilocal convergence criteria for Newton's method are given. The book contains many numerical examples involving nonlinear integral equations, two boundary value problems and systems of nonlinear equations related to numerous physical phenomena. The book i...

  15. Has ESA's XMM-Newton cast doubt over dark energy?

    Science.gov (United States)

    2003-12-01

    Galaxy cluster RXJ0847 hi-res Size hi-res: 100k Galaxy cluster RXJ0847 The fuzzy object at the centre of the frame is one of the galaxy clusters observed by XMM-Newton in its investigation of the distant Universe. The cluster, designated RXJ0847.2+3449, is about 7 000 million light years away, so we see it here as it was 7 000 million years ago, when the Universe was only about half of its present age. This cluster is made up of several dozen galaxies. Observations of eight distant clusters of galaxies, the furthest of which is around 10 thousand million light years away, were studied by an international group of astronomers led by David Lumb of ESA's Space Research and Technology Centre (ESTEC) in the Netherlands. They compared these clusters to those found in the nearby Universe. This study was conducted as part of the larger XMM-Newton Omega Project, which investigates the density of matter in the Universe under the lead of Jim Bartlett of the College de France. Clusters of galaxies are prodigious emitters of X-rays because they contain a large quantity of high-temperature gas. This gas surrounds galaxies in the same way as steam surrounds people in a sauna. By measuring the quantity and energy of X-rays from a cluster, astronomers can work out both the temperature of the cluster gas and also the mass of the cluster. Theoretically, in a Universe where the density of matter is high, clusters of galaxies would continue to grow with time and so, on average, should contain more mass now than in the past. Most astronomers believe that we live in a low-density Universe in which a mysterious substance known as 'dark energy' accounts for 70% of the content of the cosmos and, therefore, pervades everything. In this scenario, clusters of galaxies should stop growing early in the history of the Universe and look virtually indistinguishable from those of today. In a paper soon to be published by the European journal Astronomy and Astrophysics, astronomers from the XMM-Newton

  16. Supporting the learning of Newton's laws with graphical data

    Science.gov (United States)

    Piggott, David

    Teaching physics provides the opportunity for a very unique interaction between students and instructor that is not found in chemistry or biology. Physics has a heavy emphasis on trying to alter students' misconceptions about how things work in the real word. In chemistry and microbiology this is not an issue because the topics of discussion in those classes are a new experience for the students. In the case of physics the students have everyday experience with the different concepts discussed. This causes the students to build incorrect mental models explaining how different things work. In order to correct these mental models physics teachers must first get the students to vocalize these misconceptions. Then the teacher must confront the students with an example that exposes the false nature of their model. Finally, the teacher must help the student resolve these discrepancies and form the correct model. This study attempts to resolve these discrepancies by giving the students concrete evidence via graphs of Newton's laws. The results reported here indicate that this method of eliciting the misconception, confronting the misconception, and resolving the misconception is successful with Newton's third law, but only marginally successful for first and second laws.

  17. Extending Newton's law from nonlocal-in-time kinetic energy

    International Nuclear Information System (INIS)

    Suykens, J.A.K.

    2009-01-01

    We study a new equation of motion derived from a context of classical Newtonian mechanics by replacing the kinetic energy with a form of nonlocal-in-time kinetic energy. It leads to a hypothetical extension of Newton's second law of motion. In a first stage the obtainable solution form is studied by considering an unknown value for the nonlocality time extent. This is done in relation to higher-order Euler-Lagrange equations and a Hamiltonian framework. In a second stage the free particle case and harmonic oscillator case are studied and compared with quantum mechanical results. For a free particle it is shown that the solution form is a superposition of the classical straight line motion and a Fourier series. We discuss the link with quanta interpretations made in Pais-Uhlenbeck oscillators. The discrete nature emerges from the continuous time setting through application of the least action principle. The harmonic oscillator case leads to energy levels that approximately correspond to the quantum harmonic oscillator levels. The solution to the extended Newton equation also admits a quantization of the nonlocality time extent, which is determined by the classical oscillator frequency. The extended equation suggests a new possible way for understanding the relationship between classical and quantum mechanics

  18. Newton's law in braneworlds with an infinite extra dimension

    OpenAIRE

    Ito, Masato

    2001-01-01

    We study the behavior of the four$-$dimensional Newton's law in warped braneworlds. The setup considered here is a $(3+n)$-brane embedded in $(5+n)$ dimensions, where $n$ extra dimensions are compactified and a dimension is infinite. We show that the wave function of gravity is described in terms of the Bessel functions of $(2+n/2)$-order and that estimate the correction to Newton's law. In particular, the Newton's law for $n=1$ can be exactly obtained.

  19. Hukum Newton Tentang Gerak Dalam Ruang Fase Tak Komutatif

    OpenAIRE

    Purwanto, Joko

    2014-01-01

    In this paper, the Newton's law of motions in a noncomutative phase space has been investigated. Its show that correction to the Newton's first and second law appear if we assume that the phase space has symplectic structure consistent with the rules of comutation of the noncomutative quantum mechanics. In the free particle and harmonic oscillator case the equations of motion are derived on basis of the modified Newton's second law in a noncomutative phase space.

  20. On the topology of the Newton boundary at infinity

    International Nuclear Information System (INIS)

    Pham Tien Son

    2007-07-01

    We will be interested in a global version of Le-Ramanujam μ -constant theorem from the Newton polyhedron point of view. More precisely, we prove a stability theorem which says that the global monodromy fibration of a polynomial with Newton non-degenerate is uniquely determined by its Newton boundary at infinity. Besides, the continuity of atypical values for a family of complex polynomial functions also is considered. (author)

  1. Newton's laws through a science adventure

    OpenAIRE

    Šuštar, Sara

    2013-01-01

    The main purpose of my diploma thesis is to create a scientific adventure based on the Newton's laws. My aim has been to introduce this topic to the kids in elementary school as well as the general public. That is why the adventure will take place in the House of Experiments. The first part is dedicated to theory and various experiments, which lead to deeper understanding of the laws. I implemented experiments on rollerblades, such as free movement, movement with the help of springs which wer...

  2. Development and Application of a Rubric for Evaluating Students' Performance on Newton's Laws of Motion

    Science.gov (United States)

    Kocakulah, Mustafa Sabri

    2010-01-01

    This study aims to develop and apply a rubric to evaluate the solutions of pre-service primary science teachers to questions about Newton's Laws of Motion. Two groups were taught the topic using the same teaching methods and administered four questions before and after teaching. Furthermore, 76 students in the experiment group were instructed…

  3. The Effect of Group Work on Misconceptions of 9th Grade Students about Newton's Laws

    Science.gov (United States)

    Ergin, Serap

    2016-01-01

    In this study, the effect of group work and traditional method on 9th grade students' misconceptions about Newton Laws was investigated. The study was conducted in three classes in an Anatolian Vocational High School in Ankara/Turkey in the second term of the 2014-2015 academic year. Two of these classes were chosen as the experimental group and…

  4. Initial conditions and robust Newton-Raphson for harmonic balance analysis of free-running oscillators

    NARCIS (Netherlands)

    Virtanen, J.E.; Maten, ter E.J.W.; Beelen, T.G.J.; Honkala, M.; Hulkkonen, M.

    2011-01-01

    Poor initial conditions for Harmonic Balance (HB) analysis of freerunning oscillators may lead to divergence of the direct Newton-Raphson method or may prevent to find the solution within an optimization approach. We exploit time integration to obtain estimates for the oscillation frequency and for

  5. Initial conditions and robust Newton-Raphson for harmonic balance analysis of free-running oscillators

    NARCIS (Netherlands)

    Virtanen, J.E.; Maten, ter E.J.W.; Honkala, M.; Hulkkonen, M.; Günther, M.; Bartel, A.; Brunk, M.; Schoeps, S.; Striebel, M.

    2012-01-01

    Poor initial conditions for Harmonic Balance (HB) analysis of free-running oscillators may lead to divergence of the direct Newton-Raphson method or may prevent to find the solution within an optimization approach. We exploit time integration to obtain estimates for the oscillation frequency and for

  6. Scalable Newton-Krylov solver for very large power flow problems

    NARCIS (Netherlands)

    Idema, R.; Lahaye, D.J.P.; Vuik, C.; Van der Sluis, L.

    2010-01-01

    The power flow problem is generally solved by the Newton-Raphson method with a sparse direct solver for the linear system of equations in each iteration. While this works fine for small power flow problems, we will show that for very large problems the direct solver is very slow and we present

  7. Solving the Flood Propagation Problem with Newton Algorithm on Parallel Systems

    Directory of Open Access Journals (Sweden)

    Chefi Triki

    2012-04-01

    Full Text Available In this paper we propose a parallel implementation for the flood propagation method Flo2DH. The model is built on a finite element spatial approximation combined with a Newton algorithm that uses a direct LU linear solver. The parallel implementation has been developed by using the standard MPI protocol and has been tested on a set of real world problems.

  8. Newton's Telescope in Print: the Role of Images in the Reception of Newton's Instrument

    NARCIS (Netherlands)

    Dupré, Sven

    2008-01-01

    While Newton tried to make his telescope into a proof of the supremacy of his theory of colours over older theories, his instrument was welcomed as a way to shorten telescopes, not as a way to solve the problem of chromatic aberration. This paper argues that the image published together with the

  9. The Newton papers the strange and true odyssey of Isaac Newton's manuscripts

    CERN Document Server

    Dry, Sarah

    2014-01-01

    When Isaac Newton died at 85 without a will on March 20, 1727, he left a mass of disorganized papers-upwards of 8 million words-that presented an immediate challenge to his heirs. Most of these writings, on subjects ranging from secret alchemical formulas to impassioned rejections of the Holy Trinity to notes and calculations on his core discoveries in calculus, universal gravitation, and optics, were summarily dismissed by his heirs as "not fit to be printed." Rabidly heretical, alchemically obsessed, and possibly even mad, the Newton presented in these papers threatened to undermine not just his personal reputation but the status of science itself. As a result, the private papers of the world's greatest scientist remained hidden to all but a select few for over two hundred years. In The Newton Papers, Sarah Dry divulges the story of how this secret archive finally came to light-and the complex and contradictory man it revealed. Covering a broad swath of history, Dry explores who controlled Newton's legacy, ...

  10. Newton\\'s equation of motion in the gravitational field of an oblate ...

    African Journals Online (AJOL)

    In this paper, we derived Newton's equation of motion for a satellite in the gravitational scalar field of a uniformly rotating, oblate spheriodal Earth using spheriodal coordinates. The resulting equation is solved for the corresponding precession and the result compared with similar ones. JONAMP Vol. 11 2007: pp. 279-286 ...

  11. Experimentally Building a Qualitative Understanding of Newton's Second Law

    Science.gov (United States)

    Gates, Joshua

    2014-01-01

    Newton's second law is one of the cornerstones of the introductory physics curriculum, but it can still trouble a large number of students well after its introduction, hobbling their ability to apply the concept to problem solving and to related concepts, such as momentum, circular motion, and orbits. While there are several possibilities for…

  12. Student Teachers' Levels of Understanding and Model of Understanding about Newton's Laws of Motion

    Science.gov (United States)

    Saglam-Arslan, Aysegul; Devecioglu, Yasemin

    2010-01-01

    This study was conducted to determine the level of student teachers' understandings of Newton's laws of motion and relating these levels to identify student teachers' models of understanding. An achievement test composed of two parts comprising 12 open ended questions was constructed and given to 45 pre-service classroom teachers. The first part…

  13. Eye-openers from XMM-Newton

    Science.gov (United States)

    2000-02-01

    many years of work. They are all that we hoped they would be. In the LMC we can see the elements, which go to make up new stars and planets, being released in giant stellar explosions. We can even see the creation of new stars going on, using elements scattered through space by previous stellar explosions. This is what we built the EPIC cameras for and they are really fulfilling their promise" Multiwavelength views of Hickson Group 16 The HCG-16 viewed by EPIC and by the Optical Monitor in the visible and ultraviolet wavelengths is one of approximately a hundred compact galaxy clusters listed by Canadian astronomer Paul Hickson in the 1980s. The criteria for the Hickson cluster groups included their compactness, their isolation from other galaxies and a limited magnitude range between their members. Most Hicksons are very faint, but a few can be observed with modest aperture telescopes. Galaxies in Hickson groups have a high probability of interacting. Their study has shed light on the question of galactic evolution and the effects of interaction. Investigation into their gravitational behaviour has also significantly contributed to our understanding of "dark matter", the mysterious matter that most astronomers feel comprises well over 90% of our universe. Observation of celestial objects from space over a range of X-ray, ultraviolet and visible wavelengths, is a unique feature of the XMM-Newton mission. The EPIC-PN view of the Hickson 16 group shows a handful of bright X-sources and in the background more than a hundred faint X-ray sources that XMM-Newton is revealing for the first time. Juxtaposing the X-ray view of HCG 16 with that of the Optical Monitor reveals one of the great strengths of XMM-Newton in being able to routinely compare the optical, ultraviolet and X-ray properties of objects. Many of the X-ray sources are revealed as elongated "fuzzy blobs" coincident with some of the optical galaxies. Routine access to ultraviolet images is a first for the mission

  14. On topological modifications of Newton's law

    International Nuclear Information System (INIS)

    Floratos, E.G.; Leontaris, G.K.

    2012-01-01

    Recent cosmological data for very large distances challenge the validity of the standard cosmological model. Motivated by the observed spatial flatness the accelerating expansion and the various anisotropies with preferred axes in the universe we examine the consequences of the simple hypothesis that the three-dimensional space has a global R 2 × S 1 topology. We take the radius of the compactification to be the observed cosmological scale beyond which the accelerated expansion starts. We derive the induced corrections to the Newton's gravitational potential and we find that for distances smaller than the S 1 radius the leading 1/r-term is corrected by convergent power series of multipole form in the polar angle making explicit the induced anisotropy by the compactified third dimension. On the other hand, for distances larger than the compactification scale the asymptotic behavior of the potential exhibits a logarithmic dependence with exponentially small corrections. The change of Newton's force from 1/r 2 to 1/r behavior implies a weakening of the deceleration for the expanding universe. Such topologies can also be created locally by standard Newtonian axially symmetric mass distributions with periodicity along the symmetry axis. In such cases we can use our results to obtain measurable modifications of Newtonian orbits for small distances and flat rotation spectra, for large distances at the galactic level

  15. The dark side of the Scientific Revolution. The Biblical interpretation in Galileo Galilei and Isaac Newton

    Directory of Open Access Journals (Sweden)

    Francesco Fiorentino

    2015-11-01

    Full Text Available This contribution investigates a hidden and surely singular – but far from marginal – aspect of the Scientific Revolution of the 17th century, in other words the interpretation of the Holy Scriptures. First of all, this work analyzes the situation immediately before the advent of the fathers of the 17th Century Scientific Revolution like Galileo Galilei and Isaac Newton, starting from the Council of Trent. This reconstruction aims to throw light on the particular way that Galileo and Newton intended to approach the interpretation of the Holy Scriptures with respect to the main tendencies of the Catholic Reformation of biblical hermeneutics. Their way is important both in itself and in relation to the Scientific Revolution. In itself because Galileo and Newton elaborate original theories that are not entirely in agreement with the predominant views and that are decidedly no less interesting than their pure scientific theories. In relation to the Scientific Revolution because the interpretation of the Holy Scriptures is addressed in an original fashion by both Galileo and Newton, also with the intent of facilitating the spread and approval of their own scientific theories in their respective socio-cultural environments. The primacy of nature is not manifested only in contrast to and outside the book of Scriptures, but conditions the Book of Scriptures, locating it within a precise cultural perspective and religious sense that are by no means contrary to Galileo and Newton’s views.

  16. Newton's Path to Universal Gravitation: The Role of the Pendulum

    Science.gov (United States)

    Boulos, Pierre J.

    2006-01-01

    Much attention has been given to Newton's argument for Universal Gravitation in Book III of the "Principia". Newton brings an impressive array of phenomena, along with the three laws of motion, and his rules for reasoning to deduce Universal Gravitation. At the centre of this argument is the famous "moon test". Here it is the empirical evidence…

  17. Can Newton's Third Law Be "Derived" from the Second?

    Science.gov (United States)

    Gangopadhyaya, Asim; Harrington, James

    2017-01-01

    Newton's laws have engendered much discussion over several centuries. Today, the internet is awash with a plethora of information on this topic. We find many references to Newton's laws, often discussions of various types of misunderstandings and ways to explain them. Here we present an intriguing example that shows an assumption hidden in…

  18. On the Shoulders of Sir Isaac Newton and Arthur Storer

    Science.gov (United States)

    Martin, Helen E.; Evans-Gondo, Bonita

    2013-01-01

    Helen E. Martin, the author of this article, is a retired National Board Certified Teacher who has been researching Sir Isaac Newton's unpublished manuscripts for over three decades. While researching the work of Newton, a teacher she was mentoring asked for some hands-on activities to study planetary motion. The description of the activity…

  19. Newton algorithm for Hamiltonian characterization in quantum control

    International Nuclear Information System (INIS)

    Ndong, M; Sugny, D; Salomon, J

    2014-01-01

    We propose a Newton algorithm to characterize the Hamiltonian of a quantum system interacting with a given laser field. The algorithm is based on the assumption that the evolution operator of the system is perfectly known at a fixed time. The computational scheme uses the Crank–Nicholson approximation to explicitly determine the derivatives of the propagator with respect to the Hamiltonians of the system. In order to globalize this algorithm, we use a continuation method that improves its convergence properties. This technique is applied to a two-level quantum system and to a molecular one with a double-well potential. The numerical tests show that accurate estimates of the unknown parameters are obtained in some cases. We discuss the numerical limits of the algorithm in terms of the basin of convergence and the non-uniqueness of the solution. (paper)

  20. A geophysical experiment on Newton's inverse-square law

    International Nuclear Information System (INIS)

    Achilli, V.; Errani, M.; Focardi, S.; Palmonari, F.; Pedrielli, F.

    1997-01-01

    A geophysical experiment consisting of measurement of the gravitational effect produced by a large water mass was performed in order to verify Newton's law. The use of a superconducting gravimeter lead to a precision of about 0.1 % in the final result. the ratio between the measured and the expected gravitational effect differs from 1 by more than 9 standard deviations. This may be explained by adding to the Newtonian potential a Yukawa repulsive term. The experimental result leads to constraints for the relationship between the relative magnitude (α) of the new term and the range (λ) of the interaction. In the region 20 m < λ < 500 m, α ranges from 2.6 % to 1.3 %

  1. From Newton's bucket to rotating polygons

    DEFF Research Database (Denmark)

    Bach, B.; Linnartz, E. C.; Vested, Malene Louise Hovgaard

    2014-01-01

    We present an experimental study of 'polygons' forming on the free surface of a swirling water flow in a partially filled cylindrical container. In our set-up, we rotate the bottom plate and the cylinder wall with separate motors. We thereby vary rotation rate and shear strength independently...... and move from a rigidly rotating 'Newton's bucket' flow to one where bottom and cylinder wall are rotating oppositely and the surface is strongly turbulent but flat on average. Between those two extremes, we find polygonal states for which the rotational symmetry is spontaneously broken. We investigate...... the phase diagram spanned by the two rotational frequencies at a given water filling height and find polygons in a regime, where the two frequencies are sufficiently different and, predominantly, when they have opposite signs. In addition to the extension of the family of polygons found with the stationary...

  2. Newton`s iteration for inversion of Cauchy-like and other structured matrices

    Energy Technology Data Exchange (ETDEWEB)

    Pan, V.Y. [Lehman College, Bronx, NY (United States); Zheng, Ailong; Huang, Xiaohan; Dias, O. [CUNY, New York, NY (United States)

    1996-12-31

    We specify some initial assumptions that guarantee rapid refinement of a rough initial approximation to the inverse of a Cauchy-like matrix, by mean of our new modification of Newton`s iteration, where the input, output, and all the auxiliary matrices are represented with their short generators defined by the associated scaling operators. The computations are performed fast since they are confined to operations with short generators of the given and computed matrices. Because of the known correlations among various structured matrices, the algorithm is immediately extended to rapid refinement of rough initial approximations to the inverses of Vandermonde-like, Chebyshev-Vandermonde-like and Toeplitz-like matrices, where again, the computations are confined to operations with short generators of the involved matrices.

  3. Goethe's Exposure of Newton's theory a polemic on Newton's theory of light and colour

    CERN Document Server

    Goethe, Johann Wolfgang von

    2016-01-01

    Johann Wolfgang von Goethe, although best known for his literary work, was also a keen and outspoken natural scientist. In the second polemic part of Zur Farbenlehre (Theory of Colours), for example, Goethe attacked Isaac Newton's ground-breaking revelation that light is heterogeneous and not immutable, as was previously thought.This polemic was unanimously rejected by the physicists of the day, and has often been omitted from compendia of Goethe's works. Indeed, although Goethe repeated all of Newton's key experiments, he was never able to achieve the same results. Many reasons have been proposed for this, ranging from the psychological — such as a blind hatred of Newtonism, self-deceit and paranoid psychosis — to accusations of incapability — Goethe simply did not understand the experiments. Yet Goethe was never to be dissuaded from this passionate conviction.This translation of Goethe's second polemic, published for the first time in English, makes it clear that Goethe did understand the thrust of Ne...

  4. The importance of being equivalent: Newton's two models of one-body motion

    Science.gov (United States)

    Pourciau, Bruce

    2004-05-01

    related to Leibniz's "polygonal model" of one-body motion; then to repair Newton's argument for the Area Property in Proposition 1; and finally to clarify and resolve questions related to the transition from impulsive to continuous forces in "De motu" and the Principia.

  5. Plants with useful traits and related methods

    Science.gov (United States)

    Mackenzie, Sally Ann; De la Rosa Santamaria, Roberto

    2016-10-25

    The present invention provides methods for obtaining plants that exhibit useful traits by transient suppression of the MSH1 gene of the plants. Methods for identifying genetic loci that provide for useful traits in plants and plants produced with those loci are also provided. In addition, plants that exhibit the useful traits, parts of the plants including seeds, and products of the plants are provided as well as methods of using the plants.

  6. Method-related estimates of sperm vitality.

    Science.gov (United States)

    Cooper, Trevor G; Hellenkemper, Barbara

    2009-01-01

    Comparison of methods that estimate viability of human spermatozoa by monitoring head membrane permeability revealed that wet preparations (whether using positive or negative phase-contrast microscopy) generated significantly higher percentages of nonviable cells than did air-dried eosin-nigrosin smears. Only with the latter method did the sum of motile (presumed live) and stained (presumed dead) preparations never exceed 100%, making this the method of choice for sperm viability estimates.

  7. Relating Actor Analysis Methods to Policy Problems

    NARCIS (Netherlands)

    Van der Lei, T.E.

    2009-01-01

    For a policy analyst the policy problem is the starting point for the policy analysis process. During this process the policy analyst structures the policy problem and makes a choice for an appropriate set of methods or techniques to analyze the problem (Goeller 1984). The methods of the policy

  8. Fast and exact Newton and Bidirectional fitting of Active Appearance Models.

    Science.gov (United States)

    Kossaifi, Jean; Tzimiropoulos, Yorgos; Pantic, Maja

    2016-12-21

    Active Appearance Models (AAMs) are generative models of shape and appearance that have proven very attractive for their ability to handle wide changes in illumination, pose and occlusion when trained in the wild, while not requiring large training dataset like regression-based or deep learning methods. The problem of fitting an AAM is usually formulated as a non-linear least squares one and the main way of solving it is a standard Gauss-Newton algorithm. In this paper we extend Active Appearance Models in two ways: we first extend the Gauss-Newton framework by formulating a bidirectional fitting method that deforms both the image and the template to fit a new instance. We then formulate a second order method by deriving an efficient Newton method for AAMs fitting. We derive both methods in a unified framework for two types of Active Appearance Models, holistic and part-based, and additionally show how to exploit the structure in the problem to derive fast yet exact solutions. We perform a thorough evaluation of all algorithms on three challenging and recently annotated inthe- wild datasets, and investigate fitting accuracy, convergence properties and the influence of noise in the initialisation. We compare our proposed methods to other algorithms and show that they yield state-of-the-art results, out-performing other methods while having superior convergence properties.

  9. INVESTIGATION OF THE MISCONCEPTION IN NEWTON II LAW

    Directory of Open Access Journals (Sweden)

    Yudi Kurniawan

    2018-04-01

    Full Text Available This study aims to provide a comprehensive description of the level of the number of students who have misconceptions about Newton's II Law. This research is located at one State Junior High School in Kab. Pandeglang. The purposive sampling was considering used in this study because it is important to distinguish students who do not know the concept of students who experience misconception. Data were collected using a three tier-test diagnostic test and analyzed descriptively quantitatively. The results showed that the level of misconception was in the two categories of high and medium levels. It needs an innovative teaching technique for subsequent research to treat Newton's Newton misconception.

  10. Catch a falling apple: Isaac Newton and myths of genius.

    Science.gov (United States)

    Fara, P

    1999-01-01

    Newton has become a legendary figure belonging to the distant past rather than a historical person who lived at a specific time. Historians and scientists have constantly reinterpreted many anecdotal tales describing Newton's achievements and behaviour, but the most famous concerns the falling apple in his country garden. Newton's apple conjures up multiple allegorical resonances, and examining its historical accuracy is less important than uncovering the mythical truths embedded within this symbol. Because interest groups fashion different collective versions of the past, analysing mythical tales can reveal fundamental yet conflicting attitudes towards science and its practices.

  11. Application of Four-Point Newton-EGSOR iteration for the numerical solution of 2D Porous Medium Equations

    Science.gov (United States)

    Chew, J. V. L.; Sulaiman, J.

    2017-09-01

    Partial differential equations that are used in describing the nonlinear heat and mass transfer phenomena are difficult to be solved. For the case where the exact solution is difficult to be obtained, it is necessary to use a numerical procedure such as the finite difference method to solve a particular partial differential equation. In term of numerical procedure, a particular method can be considered as an efficient method if the method can give an approximate solution within the specified error with the least computational complexity. Throughout this paper, the two-dimensional Porous Medium Equation (2D PME) is discretized by using the implicit finite difference scheme to construct the corresponding approximation equation. Then this approximation equation yields a large-sized and sparse nonlinear system. By using the Newton method to linearize the nonlinear system, this paper deals with the application of the Four-Point Newton-EGSOR (4NEGSOR) iterative method for solving the 2D PMEs. In addition to that, the efficiency of the 4NEGSOR iterative method is studied by solving three examples of the problems. Based on the comparative analysis, the Newton-Gauss-Seidel (NGS) and the Newton-SOR (NSOR) iterative methods are also considered. The numerical findings show that the 4NEGSOR method is superior to the NGS and the NSOR methods in terms of the number of iterations to get the converged solutions, the time of computation and the maximum absolute errors produced by the methods.

  12. Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation

    Science.gov (United States)

    Cai, Xiao-Chuan; Gropp, William D.; Keyes, David E.; Melvin, Robin G.; Young, David P.

    1996-01-01

    We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite element problems, in particular, for the full potential equation of aerodynamics discretized in two dimensions with bilinear elements. The overall algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact finite-difference Newton method and a Krylov space iterative method, with a two-level overlapping Schwarz method as a preconditioner. We demonstrate that NKS, combined with a density upwinding continuation strategy for problems with weak shocks, is robust and, economical for this class of mixed elliptic-hyperbolic nonlinear partial differential equations, with proper specification of several parameters. We study upwinding parameters, inner convergence tolerance, coarse grid density, subdomain overlap, and the level of fill-in in the incomplete factorization, and report their effect on numerical convergence rate, overall execution time, and parallel efficiency on a distributed-memory parallel computer.

  13. Newton-Krylov-Schwarz algorithms for the 2D full potential equation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Xiao-Chuan [Univ. of Colorado, Boulder, CO (United States); Gropp, W.D. [Argonne National Lab., IL (United States); Keyes, D.E. [Old Dominion Univ. Norfolk, VA (United States)] [and others

    1996-12-31

    We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite element problems, in particular, for the full potential equation of aerodynamics discretized in two dimensions with bilinear elements. The main algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact finite-difference Newton method and a Krylov space iterative method, with a two-level overlapping Schwarz method as a preconditioner. We demonstrate that NKS, combined with a density upwinding continuation strategy for problems with weak shocks, can be made robust for this class of mixed elliptic-hyperbolic nonlinear partial differential equations, with proper specification of several parameters. We study upwinding parameters, inner convergence tolerance, coarse grid density, subdomain overlap, and the level of fill-in in the incomplete factorization, and report favorable choices for numerical convergence rate and overall execution time on a distributed-memory parallel computer.

  14. Water Rockets. Get Funny With Newton's Laws

    Directory of Open Access Journals (Sweden)

    Manuel Roca Vicent

    2017-01-01

    Full Text Available The study of the movement of the rocket has been used for decades to encourage students in the study of physics. This system has an undeniable interest to introduce concepts such as properties of gases, laws of Newton,  exchange  between  different  types  of  energy  and  its  conservation  or fluid  mechanics.  Our  works has  been  to  build  and  launch  these  rockets  in  different  educational  levels  and  in  each  of  these  ones  have introduced  the  part  of  Physics  more  suited  to  the  knowledge  of  our  students.  The  aim  of  the  learning experience  is  to  launch  the  rocket  as  far  as  possible  and  learn  to  predict  the  travelled  distance,  using Newton's  laws  and fluid  mechanics.  After  experimentation  we  demonstrated  to  be  able  to  control  the parameters that improve the performance of our rocket, such as the  fill factor, the volume and mass of the empty  bottle,  liquid  density,  launch  angle,  pressure  prior  air  release.  In addition, it is a fun experience can be attached to all levels of education in primary and high school.

  15. Insect Flight: From Newton's Law to Neurons

    Science.gov (United States)

    Wang, Z. Jane

    2016-03-01

    Why do animals move the way they do? Bacteria, insects, birds, and fish share with us the necessity to move so as to live. Although each organism follows its own evolutionary course, it also obeys a set of common laws. At the very least, the movement of animals, like that of planets, is governed by Newton's law: All things fall. On Earth, most things fall in air or water, and their motions are thus subject to the laws of hydrodynamics. Through trial and error, animals have found ways to interact with fluid so they can float, drift, swim, sail, glide, soar, and fly. This elementary struggle to escape the fate of falling shapes the development of motors, sensors, and mind. Perhaps we can deduce parts of their neural computations by understanding what animals must do so as not to fall. Here I discuss recent developments along this line of inquiry in the case of insect flight. Asking how often a fly must sense its orientation in order to balance in air has shed new light on the role of motor neurons and steering muscles responsible for flight stability.

  16. The 'Falling Box' method in general relativity

    International Nuclear Information System (INIS)

    Gladush, V.D.

    1998-01-01

    The problems of justification, generalization, and applicability of the 'falling box' method to obtained some exact solutions of the vacuum Einstein equations are investigated. The 'physical' inference of the Reissner-Nordstrom-de Sitter and Kerr metrics is shown. Explanation is given for the well-known relativistic phenomenon which consists in that gravity is created by the double density of the electrical field energy

  17. Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2014-01-01

    with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm

  18. Newton Decatur AL water sample polyfluor compound discovery

    Data.gov (United States)

    U.S. Environmental Protection Agency — All the pertinent information for recreation of the published (hopefully) tables and figures. This dataset is associated with the following publication: Newton, S.,...

  19. Emilie du Châtelet between Leibniz and Newton

    CERN Document Server

    Hagengruber, Ruth

    2012-01-01

    This book describes Emilie du Chatelet known as "Emilia Newtonmania", and her innovative and outstanding position within the controversy between Newton and Leibniz, one of the fundamental scientific discourses of her time.

  20. What are the Hidden Quantum Processes Behind Newton's Laws?

    OpenAIRE

    Ostoma, Tom; Trushyk, Mike

    1999-01-01

    We investigate the hidden quantum processes that are responsible for Newton's laws of motion and Newton's universal law of gravity. We apply Electro-Magnetic Quantum Gravity or EMQG to investigate Newtonian classical physics. EQMG is a quantum gravity theory that is manifestly compatible with Cellular Automata (CA) theory, a new paradigm for physical reality. EMQG is also based on a theory of inertia proposed by R. Haisch, A. Rueda, and H. Puthoff, which we modified and called Quantum Inertia...

  1. Laboratory Test of Newton's Second Law for Small Accelerations

    International Nuclear Information System (INIS)

    Gundlach, J. H.; Schlamminger, S.; Spitzer, C. D.; Choi, K.-Y.; Woodahl, B. A.; Coy, J. J.; Fischbach, E.

    2007-01-01

    We have tested the proportionality of force and acceleration in Newton's second law, F=ma, in the limit of small forces and accelerations. Our tests reach well below the acceleration scales relevant to understanding several current astrophysical puzzles such as the flatness of galactic rotation curves, the Pioneer anomaly, and the Hubble acceleration. We find good agreement with Newton's second law at accelerations as small as 5x10 -14 m/s 2

  2. Microwave Imaging of Three-Dimensional Targets by Means of an Inexact-Newton-Based Inversion Algorithm

    Directory of Open Access Journals (Sweden)

    Claudio Estatico

    2013-01-01

    Full Text Available A microwave imaging method previously developed for tomographic inspection of dielectric targets is extended to three-dimensional objects. The approach is based on the full vector equations of the electromagnetic inverse scattering problem. The ill-posedness of the problem is faced by the application of an inexact-Newton method. Preliminary reconstruction results are reported.

  3. Capacitor assembly and related method of forming

    Science.gov (United States)

    Zhang, Lili; Tan, Daniel Qi; Sullivan, Jeffrey S.

    2017-12-19

    A capacitor assembly is disclosed. The capacitor assembly includes a housing. The capacitor assembly further includes a plurality of capacitors disposed within the housing. Furthermore, the capacitor assembly includes a thermally conductive article disposed about at least a portion of a capacitor body of the capacitors, and in thermal contact with the capacitor body. Moreover, the capacitor assembly also includes a heat sink disposed within the housing and in thermal contact with at least a portion of the housing and the thermally conductive article such that the heat sink is configured to remove heat from the capacitor in a radial direction of the capacitor assembly. Further, a method of forming the capacitor assembly is also presented.

  4. Flexible energetic materials and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Heaps, Ronald J.

    2018-03-06

    Energetic compositions and methods of forming components from the compositions are provided. In one embodiment, a composition includes aluminum, molybdenum trioxide, potassium perchlorate, and a binder. In one embodiment, the binder may include a silicone material. The materials may be mixed with a solvent, such as xylene, de-aired, shaped and cured to provide a self-supporting structure. In one embodiment, one or more reinforcement members may be added to provide additional strength to the structure. For example, a weave or mat of carbon fiber material may be added to the mixture prior to curing. In one embodiment, blade casting techniques may be used to form a structure. In another embodiment, a structure may be formed using 3-dimensional printing techniques.

  5. Quasi-Newton Exploration of Implicitly Constrained Manifolds

    KAUST Repository

    Tang, Chengcheng

    2011-08-01

    A family of methods for the efficient update of second order approximations of a constraint manifold is proposed in this thesis. The concept of such a constraint manifold corresponds to an abstract space prescribed by implicit nonlinear constraints, which can be a set of objects satisfying certain desired properties. This concept has a variety of applications, and it has been successfully introduced to fabrication-aware architectural design as a shape space consisting of all the implementable designs. The local approximation of such a manifold can be first order, in the tangent space, or second order, in the osculating surface, with higher precision. For a nonlinearly constrained manifold with rather high dimension and codimension, the computation of second order approximants (osculants) is time consuming. In this thesis, a type of so-called quasi-Newton manifold exploration methods which approximate the new osculants by updating the ones of a neighbor point by 1st-order information is introduced. The procedures are discussed in detail and the examples implemented to visually verify the methods are illustrated.

  6. Dynamic verification of newton's law and the principal limits in measuring intermediate-range forces

    International Nuclear Information System (INIS)

    Kolosnitsyn, N.I.; Luo Jun; Melnikov, V.N.

    1992-01-01

    According to the controversial results of recent experiments for fifth force, a classification of all possible types of theories leading to non-Newtonian forces is presented. The theoretical analysis shows that if the interaction potential differs from the Newton's law the interactions of macro-and micro-bodies are in general distinguishable. The calculation also shows that Long's result can be improved by several orders if the new method proposed is used

  7. A nanonewton force facility to test Newton's law of gravity at micro- and submicrometer distances

    International Nuclear Information System (INIS)

    Nesterov, Vladimir; Buetefisch, Sebastian; Koenders, Ludger

    2013-01-01

    An experiment to test Newton's law of gravity at micro- and submicrometer distances using a nanonewton force facility at PTB and modern microtechnologies is proposed. It is anticipated that the proposed method can advance the search for non-Newtonian gravity forces via an enhanced sensitivity of 10 3 to 10 4 in comparison to current experiments at the micrometer length scale. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Planck intermediate results I. Further validation of new Planck clusters with XMM-Newton

    DEFF Research Database (Denmark)

    Aghanim, N.; Collaboration, Planck; Arnaud, M.

    2012-01-01

    of candidates previously confirmed with XMM-Newton. The X-ray and optical redshifts for a total of 20 clusters are found to be in excellent agreement. We also show that useful lower limits can be put on cluster redshifts using X-ray data only via the use of the Y-X vs. Y-SZ and X-ray flux F-X vs. Y-SZ relations....

  9. Guidelines for Interactive Reliability-Based Structural Optimization using Quasi-Newton Algorithms

    DEFF Research Database (Denmark)

    Pedersen, C.; Thoft-Christensen, Palle

    increase of the condition number and preserve positive definiteness without discarding previously obtained information. All proposed modifications are also valid for non-interactive optimization problems. Heuristic rules from various optimization problems concerning when and how to impose interactions......Guidelines for interactive reliability-based structural optimization problems are outlined in terms of modifications of standard quasi-Newton algorithms. The proposed modifications minimize the condition number of the approximate Hessian matrix in each iteration, restrict the relative and absolute...

  10. The RNA Newton polytope and learnability of energy parameters.

    Science.gov (United States)

    Forouzmand, Elmirasadat; Chitsaz, Hamidreza

    2013-07-01

    Computational RNA structure prediction is a mature important problem that has received a new wave of attention with the discovery of regulatory non-coding RNAs and the advent of high-throughput transcriptome sequencing. Despite nearly two score years of research on RNA secondary structure and RNA-RNA interaction prediction, the accuracy of the state-of-the-art algorithms are still far from satisfactory. So far, researchers have proposed increasingly complex energy models and improved parameter estimation methods, experimental and/or computational, in anticipation of endowing their methods with enough power to solve the problem. The output has disappointingly been only modest improvements, not matching the expectations. Even recent massively featured machine learning approaches were not able to break the barrier. Why is that? The first step toward high-accuracy structure prediction is to pick an energy model that is inherently capable of predicting each and every one of known structures to date. In this article, we introduce the notion of learnability of the parameters of an energy model as a measure of such an inherent capability. We say that the parameters of an energy model are learnable iff there exists at least one set of such parameters that renders every known RNA structure to date the minimum free energy structure. We derive a necessary condition for the learnability and give a dynamic programming algorithm to assess it. Our algorithm computes the convex hull of the feature vectors of all feasible structures in the ensemble of a given input sequence. Interestingly, that convex hull coincides with the Newton polytope of the partition function as a polynomial in energy parameters. To the best of our knowledge, this is the first approach toward computing the RNA Newton polytope and a systematic assessment of the inherent capabilities of an energy model. The worst case complexity of our algorithm is exponential in the number of features. However, dimensionality

  11. method

    Directory of Open Access Journals (Sweden)

    L. M. Kimball

    2002-01-01

    Full Text Available This paper presents an interior point algorithm to solve the multiperiod hydrothermal economic dispatch (HTED. The multiperiod HTED is a large scale nonlinear programming problem. Various optimization methods have been applied to the multiperiod HTED, but most neglect important network characteristics or require decomposition into thermal and hydro subproblems. The algorithm described here exploits the special bordered block diagonal structure and sparsity of the Newton system for the first order necessary conditions to result in a fast efficient algorithm that can account for all network aspects. Applying this new algorithm challenges a conventional method for the use of available hydro resources known as the peak shaving heuristic.

  12. Geometrical determination of the constant of motion in General Relativity

    International Nuclear Information System (INIS)

    Catoni, F.; Cannata, R.; Zampetti, P.

    2009-01-01

    In recent time a theorem, due to E. Beltrami, through which the integration of the geodesic equations of a curved manifold is obtained by means of a merely geometric method, has been revisited. This way of dealing with the problem is well in accordance with the geometric spirit of the Theory of General Relativity. In this paper we show another relevant consequence of this method. Actually, the constants of the motion, introduced in this geometrical way that is completely independent of Newton theory, are related to the conservation laws for test particles in the Einstein theory. These conservation laws may be compared with the conservation laws of Newton. In particular, by the conservation of energy (E) and the L z component of angular momentum, the equivalence of the conservation laws for the Schwarzschild field is verified and the difference between Newton and Einstein theories for the rotating bodies (Kerr metric) is obtained in a straightforward way.

  13. Using Newton's law and geophysical bounds on mass density contrast to ensure consistency between gravity and height data

    DEFF Research Database (Denmark)

    Strykowski, Gabriel; Larsen, Jacob Norby

    2000-01-01

    In this paper we advocate the use of Newton's law of gravitational attraction to ensure perfect consistency between gravity and height data. Starting with the absolute gravity on the topography we decompose this signal into a number of quantities associated with physics of the system. To model...... gravitational attraction from topography we use DTM and Newton's law of gravitational attraction. A residual part of the gravity signal is interpreted as inconsistency between gravity and heights. In the paper we discuss a method by which such inconsistency (at least in principle) can be decomposed...

  14. Metrical connection in space-time, Newton's and Hubble's laws

    International Nuclear Information System (INIS)

    Maeder, A.

    1978-01-01

    The theory of gravitation in general relativity is not scale invariant. Here, we follow Dirac's proposition of a scale invariant theory of gravitation (i.e. a theory in which the equations keep their form when a transformation of scale is made). We examine some concepts of Weyl's geometry, like the metrical connection, the scale transformations and invariance, and we discuss their consequences for the equation of the geodetic motion and for its Newtonian limit. Under general conditions, we show that the only non-vanishing component of the coefficient of metrical connection may be identified with Hubble's constant. In this framework, the equivalent to the Newtonian approximation for the equation of motion contains an additional acceleration term Hdr vector /dt, which produces an expansion of gravitational systems. The velocity of this expansion is shown to increase linearly with the distance between interacting objects. The relative importance of this new expansion term to the Newtonian one varies like (2rhosub(c)/rho)sup(1/2), where rhosub(c) is the critical density of the Einsteinde Sitter model and rho is the mean density of the considered gravitational configuration. Thus, this 'generalized expansion' is important essentially for systems of mean density not too much above the critical density. Finally, our main conclusion is that in the integrable Weyl geometry, Hubble's law - like Newton's law - would appear as an intrinsic property of gravitation, being only the most visible manifestation of a general effect characterizing the gravitational interaction. (orig.) [de

  15. Dark Matter Search Using XMM-Newton Observations of Willman 1

    Science.gov (United States)

    Lowenstein, Michael; Kusenko, Alexander

    2012-01-01

    We report the results of a search for an emission line from radiatively decaying dark matter in the ultra-faint dwarf spheroidal galaxy Willman 1 based on analysis of spectra extracted from XMM-Newton X-ray Observatory data. The observation follows up our analysis of Chandra data of Willman 1that resulted in line flux upper limits over the Chandra bandpass and evidence of a 2.5 keY feature at a significance below the 99% confidence threshold used to define the limits. The higher effective area of the XMM-Newton detectors, combined with application of recently developing methods for extended-source analysis, allow us to derive improved constraints on the combination of mass and mixing angle of the sterile neutrino dark matter candidate. We do not confirm the Chandra evidence for a 2.5 keV emission line.

  16. The Newton constant and gravitational waves in some vector field adjusting mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Santillán, Osvaldo P. [IMAS (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428 (Argentina); Scornavacche, Marina, E-mail: firenzecita@hotmail.com, E-mail: marina.scorna@hotmail.com [Departamento de Física, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428 (Argentina)

    2017-10-01

    At the present, there exist some Lorentz breaking scenarios which explain the smallness of the cosmological constant at the present era [1]–[2]. An important aspect to analyze is the propagation of gravitational waves and the screening or enhancement of the Newton constant G {sub N} in these models. The problem is that the Lorentz symmetry breaking terms may induce an unacceptable value of the Newton constant G {sub N} or introduce longitudinal modes in the gravitational wave propagation. Furthermore this breaking may spoil the standard dispersion relation ω= ck . In [3] the authors have presented a model suggesting that the behavior of the gravitational constant is correct for asymptotic times. In the present work, an explicit checking is made and we finally agree with these claims. Furthermore, it is suggested that the gravitational waves are also well behaved for large times. In the process, some new models with the same behavior are obtained, thus enlarging the list of possible adjustment mechanisms.

  17. How to manage a revolution: Isaac Newton in the early twentieth century

    Science.gov (United States)

    Clarke, Imogen

    2014-01-01

    In the first half of the twentieth century, dramatic developments in physics came to be viewed as revolutionary, apparently requiring a complete overthrow of previous theories. British physicists were keen to promote quantum physics and relativity theory as exciting and new, but the rhetoric of revolution threatened science's claim to stability and its prestigious connections with Isaac Newton. This was particularly problematic in the first decades of the twentieth century, within the broader context of political turmoil, world war, and the emergence of modernist art and literature. This article examines how physicists responded to their cultural and political environment and worked to maintain disciplinary connections with Isaac Newton, emphasizing the importance of both the old and the new. In doing so they attempted to make the physics ‘revolution’ more palatable to a British public seeking a sense of permanence in a rapidly changing world.

  18. What can numerical computation do for the history of science? (a study of an orbit drawn by Newton in a letter to Hooke)

    International Nuclear Information System (INIS)

    Dias, Penha Maria Cardozo; Stuchi, T J

    2013-01-01

    In a letter to Robert Hooke, Isaac Newton drew the orbit of a mass moving under a constant attracting central force. The drawing of the orbit may indicate how and when Newton developed dynamic categories. Some historians claim that Newton used a method contrived by Hooke; others that he used some method of curvature. We prove that Hooke’s method is a second-order symplectic area-preserving algorithm, and the method of curvature is a first-order algorithm without special features; then we integrate the Hamiltonian equations. Integration by the method of curvature can also be done, exploring the geometric properties of curves. We compare three methods: Hooke’s method, the method of curvature and a first-order method. A fourth-order algorithm sets a standard of comparison. We analyze which of these methods best explains Newton’s drawing. (paper)

  19. What can numerical computation do for the history of science? (a study of an orbit drawn by Newton in a letter to Hooke)

    Science.gov (United States)

    Cardozo Dias, Penha Maria; Stuchi, T. J.

    2013-11-01

    In a letter to Robert Hooke, Isaac Newton drew the orbit of a mass moving under a constant attracting central force. The drawing of the orbit may indicate how and when Newton developed dynamic categories. Some historians claim that Newton used a method contrived by Hooke; others that he used some method of curvature. We prove that Hooke’s method is a second-order symplectic area-preserving algorithm, and the method of curvature is a first-order algorithm without special features; then we integrate the Hamiltonian equations. Integration by the method of curvature can also be done, exploring the geometric properties of curves. We compare three methods: Hooke’s method, the method of curvature and a first-order method. A fourth-order algorithm sets a standard of comparison. We analyze which of these methods best explains Newton’s drawing.

  20. Social network extraction based on Web: 1. Related superficial methods

    Science.gov (United States)

    Khairuddin Matyuso Nasution, Mahyuddin

    2018-01-01

    Often the nature of something affects methods to resolve the related issues about it. Likewise, methods to extract social networks from the Web, but involve the structured data types differently. This paper reveals several methods of social network extraction from the same sources that is Web: the basic superficial method, the underlying superficial method, the description superficial method, and the related superficial methods. In complexity we derive the inequalities between methods and so are their computations. In this case, we find that different results from the same tools make the difference from the more complex to the simpler: Extraction of social network by involving co-occurrence is more complex than using occurrences.

  1. Newton-Krylov-BDDC solvers for nonlinear cardiac mechanics

    KAUST Repository

    Pavarino, L.F.; Scacchi, S.; Zampini, Stefano

    2015-01-01

    The aim of this work is to design and study a Balancing Domain Decomposition by Constraints (BDDC) solver for the nonlinear elasticity system modeling the mechanical deformation of cardiac tissue. The contraction–relaxation process in the myocardium is induced by the generation and spread of the bioelectrical excitation throughout the tissue and it is mathematically described by the coupling of cardiac electro-mechanical models consisting of systems of partial and ordinary differential equations. In this study, the discretization of the electro-mechanical models is performed by Q1 finite elements in space and semi-implicit finite difference schemes in time, leading to the solution of a large-scale linear system for the bioelectrical potentials and a nonlinear system for the mechanical deformation at each time step of the simulation. The parallel mechanical solver proposed in this paper consists in solving the nonlinear system with a Newton-Krylov-BDDC method, based on the parallel solution of local mechanical problems and a coarse problem for the so-called primal unknowns. Three-dimensional parallel numerical tests on different machines show that the proposed parallel solver is scalable in the number of subdomains, quasi-optimal in the ratio of subdomain to mesh sizes, and robust with respect to tissue anisotropy.

  2. Newton-Krylov-BDDC solvers for nonlinear cardiac mechanics

    KAUST Repository

    Pavarino, L.F.

    2015-07-18

    The aim of this work is to design and study a Balancing Domain Decomposition by Constraints (BDDC) solver for the nonlinear elasticity system modeling the mechanical deformation of cardiac tissue. The contraction–relaxation process in the myocardium is induced by the generation and spread of the bioelectrical excitation throughout the tissue and it is mathematically described by the coupling of cardiac electro-mechanical models consisting of systems of partial and ordinary differential equations. In this study, the discretization of the electro-mechanical models is performed by Q1 finite elements in space and semi-implicit finite difference schemes in time, leading to the solution of a large-scale linear system for the bioelectrical potentials and a nonlinear system for the mechanical deformation at each time step of the simulation. The parallel mechanical solver proposed in this paper consists in solving the nonlinear system with a Newton-Krylov-BDDC method, based on the parallel solution of local mechanical problems and a coarse problem for the so-called primal unknowns. Three-dimensional parallel numerical tests on different machines show that the proposed parallel solver is scalable in the number of subdomains, quasi-optimal in the ratio of subdomain to mesh sizes, and robust with respect to tissue anisotropy.

  3. Self-assembling membranes and related methods thereof

    Science.gov (United States)

    Capito, Ramille M; Azevedo, Helena S; Stupp, Samuel L

    2013-08-20

    The present invention relates to self-assembling membranes. In particular, the present invention provides self-assembling membranes configured for securing and/or delivering bioactive agents. In some embodiments, the self-assembling membranes are used in the treatment of diseases, and related methods (e.g., diagnostic methods, research methods, drug screening).

  4. Students’ misconceptions about Newton's second law in outer space

    International Nuclear Information System (INIS)

    Temiz, B K; Yavuz, A

    2014-01-01

    Students’ misconceptions about Newton's second law in frictionless outer space were investigated. The research was formed according to an epistemic game theoretical framework. The term ‘epistemic’ refers to students’ participation in problem-solving activities as a means of constructing new knowledge. The term ‘game’ refers to a coherent activity that consists of moves and rules. A set of questions in which students are asked to solve two similar Newton's second law problems, one of which is on the Earth and the other in outer space, was administered to 116 undergraduate students. The findings indicate that there is a significant difference between students’ epistemic game preferences and race-type (outer space or frictional surface) question. So students who used Newton's second law on the ground did not apply this law and used primitive reasoning when it came to space. Among these students, voluntary interviews were conducted with 18 students. Analysis of interview transcripts showed that: (1) the term ‘space’ causes spontaneity among students that prevents the use of the law; (2) students hesitate to apply Newton's second law in space due to the lack of a condition—the friction; (3) students feel that Newton's second law is not valid in space for a variety of reasons, but mostly for the fact that the body in space is not in contact with a surface. (paper)

  5. NuSTAR and XMM-Newton observations of NGC 1365: Extreme absorption variability and a constant inner accretion disk

    DEFF Research Database (Denmark)

    Walton, D. J.; Risaliti, G.; Harrison, F. A.

    2014-01-01

    We present a spectral analysis of four coordinated NuSTAR+XMM-Newton observations of the Seyfert galaxy NGC 1365. These exhibit an extreme level of spectral variability, which is primarily due to variable line-of-sight absorption, revealing relatively unobscured states in this source for the first...

  6. An adaptation of Krylov subspace methods to path following

    Energy Technology Data Exchange (ETDEWEB)

    Walker, H.F. [Utah State Univ., Logan, UT (United States)

    1996-12-31

    Krylov subspace methods at present constitute a very well known and highly developed class of iterative linear algebra methods. These have been effectively applied to nonlinear system solving through Newton-Krylov methods, in which Krylov subspace methods are used to solve the linear systems that characterize steps of Newton`s method (the Newton equations). Here, we will discuss the application of Krylov subspace methods to path following problems, in which the object is to track a solution curve as a parameter varies. Path following methods are typically of predictor-corrector form, in which a point near the solution curve is {open_quotes}predicted{close_quotes} by some easy but relatively inaccurate means, and then a series of Newton-like corrector iterations is used to return approximately to the curve. The analogue of the Newton equation is underdetermined, and an additional linear condition must be specified to determine corrector steps uniquely. This is typically done by requiring that the steps be orthogonal to an approximate tangent direction. Augmenting the under-determined system with this orthogonality condition in a straightforward way typically works well if direct linear algebra methods are used, but Krylov subspace methods are often ineffective with this approach. We will discuss recent work in which this orthogonality condition is imposed directly as a constraint on the corrector steps in a certain way. The means of doing this preserves problem conditioning, allows the use of preconditioners constructed for the fixed-parameter case, and has certain other advantages. Experiments on standard PDE continuation test problems indicate that this approach is effective.

  7. Hořava-Lifshitz gravity from dynamical Newton-Cartan geometry

    International Nuclear Information System (INIS)

    Hartong, Jelle; Obers, Niels A.

    2015-01-01

    Recently it has been established that torsional Newton-Cartan (TNC) geometry is the appropriate geometrical framework to which non-relativistic field theories couple. We show that when these geometries are made dynamical they give rise to Hořava-Lifshitz (HL) gravity. Projectable HL gravity corresponds to dynamical Newton-Cartan (NC) geometry without torsion and non-projectable HL gravity corresponds to dynamical NC geometry with twistless torsion (hypersurface orthogonal foliation). We build a precise dictionary relating all fields (including the scalar khronon), their transformations and other properties in both HL gravity and dynamical TNC geometry. We use TNC invariance to construct the effective action for dynamical twistless torsional Newton-Cartan geometries in 2+1 dimensions for dynamical exponent 1

  8. Hořava-Lifshitz gravity from dynamical Newton-Cartan geometry

    Energy Technology Data Exchange (ETDEWEB)

    Hartong, Jelle [Physique Théorique et Mathématique and International Solvay Institutes, Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Obers, Niels A. [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark)

    2015-07-29

    Recently it has been established that torsional Newton-Cartan (TNC) geometry is the appropriate geometrical framework to which non-relativistic field theories couple. We show that when these geometries are made dynamical they give rise to Hořava-Lifshitz (HL) gravity. Projectable HL gravity corresponds to dynamical Newton-Cartan (NC) geometry without torsion and non-projectable HL gravity corresponds to dynamical NC geometry with twistless torsion (hypersurface orthogonal foliation). We build a precise dictionary relating all fields (including the scalar khronon), their transformations and other properties in both HL gravity and dynamical TNC geometry. We use TNC invariance to construct the effective action for dynamical twistless torsional Newton-Cartan geometries in 2+1 dimensions for dynamical exponent 1

  9. Self-adaptive Newton-based iteration strategy for the LES of turbulent multi-scale flows

    International Nuclear Information System (INIS)

    Daude, F.; Mary, I.; Comte, P.

    2014-01-01

    An improvement of the efficiency of implicit schemes based on Newton-like methods for the simulation of turbulent flows by compressible LES or DNS is proposed. It hinges on a zonal Self-Adaptive Newton method (hereafter denoted SAN), capable of taking advantage of Newton convergence rate heterogeneities in multi-scale flow configurations due to a strong spatial variation of the mesh resolution, such as transitional or turbulent flows controlled by small actuators or passive devices. Thanks to a predictor of the local Newton convergence rate, SAN provides computational savings by allocating resources in regions where they are most needed. The consistency with explicit time integration and the efficiency of the method are checked in three test cases: - The standard test-case of 2-D linear advection of a vortex, on three different two-block grids. - Transition to 3-D turbulence on the lee-side of an airfoil at high angle of attack, which features a challenging laminar separation bubble with a turbulent reattachment. - A passively-controlled turbulent transonic cavity flow, for which the CPU time is reduced by a factor of 10 with respect to the baseline algorithm, illustrates the interest of the proposed algorithm. (authors)

  10. Non-Relativistic Twistor Theory and Newton-Cartan Geometry

    Science.gov (United States)

    Dunajski, Maciej; Gundry, James

    2016-03-01

    We develop a non-relativistic twistor theory, in which Newton-Cartan structures of Newtonian gravity correspond to complex three-manifolds with a four-parameter family of rational curves with normal bundle O oplus O(2)}. We show that the Newton-Cartan space-times are unstable under the general Kodaira deformation of the twistor complex structure. The Newton-Cartan connections can nevertheless be reconstructed from Merkulov's generalisation of the Kodaira map augmented by a choice of a holomorphic line bundle over the twistor space trivial on twistor lines. The Coriolis force may be incorporated by holomorphic vector bundles, which in general are non-trivial on twistor lines. The resulting geometries agree with non-relativistic limits of anti-self-dual gravitational instantons.

  11. Newton slopes for Artin-Schreier-Witt towers

    DEFF Research Database (Denmark)

    Davis, Christopher; Wan, Daqing; Xiao, Liang

    2016-01-01

    We fix a monic polynomial f(x)∈Fq[x] over a finite field and consider the Artin-Schreier-Witt tower defined by f(x); this is a tower of curves ⋯→Cm→Cm−1→⋯→C0=A1, with total Galois group Zp. We study the Newton slopes of zeta functions of this tower of curves. This reduces to the study of the Newton...... slopes of L-functions associated to characters of the Galois group of this tower. We prove that, when the conductor of the character is large enough, the Newton slopes of the L-function form arithmetic progressions which are independent of the conductor of the character. As a corollary, we obtain...

  12. Bohlin transformation: the hidden symmetry that connects Hooke to Newton

    International Nuclear Information System (INIS)

    Saggio, Maria Luisa

    2013-01-01

    Hooke's name is familiar to students of mechanics thanks to the law of force that bears his name. Less well-known is the influence his findings had on the founder of mechanics, Isaac Newton. In a lecture given some twenty years ago, W Arnol'd pointed out the outstanding contribution to science made by Hooke, and also noted the controversial issue of the attribution of important discoveries to Newton that were actually inspired by Hooke. It therefore seems ironic that the two most famous force laws, named after Hooke and Newton, are two geometrical aspects of the same law. This relationship, together with other illuminating aspects of Newtonian mechanics, is described in Arnol'd's book and is worth remembering in standard physics courses. In this didactical paper the duality of the two forces is expounded and an account of the more recent contributions to the subject is given. (paper)

  13. Newton da Costa and the school of Curitiba

    Directory of Open Access Journals (Sweden)

    Artibano Micali

    2011-06-01

    Full Text Available This paper intends to report on the beginning of the publications of Newton da Costa outside Brazil. Two mathematicians played an important role in this beginning: Marcel Guillaume from the University of Clermont-Ferrand and Paul Dedecker from the Universities of Lille and Liège. At the same time we recall the role played by Newton da Costa and Jayme Machado Cardoso in the development of what we call here the School of Curitiba [Escola de Curitiba]. Paraconsistent logic was initiated in this school under the influence of Newton da Costa. As another contribution of this school we mention the development of the theory of quasigroups; Jayme Machado Cardoso's name has been given, by Sade, to some particular objects which are now called Cardoso quasigroups.

  14. DE NEWTON A EINSTEIN: A DEBATE EL DESTINO DEL UNIVERSO

    Directory of Open Access Journals (Sweden)

    ROGELIO PARREIRA

    2010-01-01

    Full Text Available En este artículo se describe la historia del pensamiento científico en términos de las teorías de la inercia, el espacio absoluto, la relatividad y la gravitación; de cómo Newton utilizó el trabajo de los primeros investigadores en sus teorías, y Einstein las teorías de Newton en la suya, para tratar de explicar el destino del universo. Es la descripción de un proceso revolucionario del conocimiento científico, y sus aportes al desarrollo de muchos otros campos del saber

  15. De las Leyes de Newton a la Guerra de Troya

    OpenAIRE

    Plastino, Ángel Ricardo

    2014-01-01

    La publicación en 1687 del libro Philosophia Naturalis Principia Mathematica por Issac Newton marcó un importante hito en la historia del pensamiento humano. Sobre la base de tres sencillos principios de movimiento y de la ley de gravitación universal, y mediante razonamientos matemáticos, Newton logró explicar y unificar dentro de un esquema conceptual coherente una gran cantidad de fenómenos naturales: el movimiento de los planetas, las mareas, la forma de la Tierra, entre otros. Más aún, N...

  16. A variational principle for Newton-Cartan theory

    International Nuclear Information System (INIS)

    Goenner, H.F.M.

    1984-01-01

    In the framework of a space-time theory of gravitation a variational principle is set up for the gravitational field equations and the equations of motion of matter. The general framework leads to Newton's equations of motion with an unspecified force term and, for irrotational motion, to a restriction on the propagation of the shear tensor along the streamlines of matter. The field equations obtained from the variation are weaker than the standard field equations of Newton-Cartan theory. An application to fluids with shear and bulk viscosity is given. (author)

  17. The architecture of Newton, a general-purpose dynamics simulator

    Science.gov (United States)

    Cremer, James F.; Stewart, A. James

    1989-01-01

    The architecture for Newton, a general-purpose system for simulating the dynamics of complex physical objects, is described. The system automatically formulates and analyzes equations of motion, and performs automatic modification of this system equations when necessitated by changes in kinematic relationships between objects. Impact and temporary contact are handled, although only using simple models. User-directed influence of simulations is achieved using Newton's module, which can be used to experiment with the control of many-degree-of-freedom articulated objects.

  18. Newton shows the light: a commentary on Newton (1672) 'A letter … containing his new theory about light and colours…'.

    Science.gov (United States)

    Fara, Patricia

    2015-04-13

    Isaac Newton's reputation was initially established by his 1672 paper on the refraction of light through a prism; this is now seen as a ground-breaking account and the foundation of modern optics. In it, he claimed to refute Cartesian ideas of light modification by definitively demonstrating that the refrangibility of a ray is linked to its colour, hence arguing that colour is an intrinsic property of light and does not arise from passing through a medium. Newton's later significance as a world-famous scientific genius and the apparent confirmation of his experimental results have tended to obscure the realities of his reception at the time. This paper explores the rhetorical strategies Newton deployed to convince his audience that his conclusions were certain and unchallengeable. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  19. There is grandeur in this view of Newton: Charles Darwin, Isaac Newton and Victorian conceptions of scientific virtue.

    Science.gov (United States)

    Bellon, Richard

    2014-01-01

    For Victorian men of science, the scientific revolution of the seventeenth century represented a moral awakening. Great theoretical triumphs of inductive science flowed directly from a philosophical spirit that embraced the virtues of self-discipline, courage, patience and humility. Isaac Newton exemplified this union of moral and intellectual excellence. This, at least, was the story crafted by scientific leaders like David Brewster, Thomas Chalmers, John Herschel, Adam Sedgwick and William Whewell. Not everyone accepted this reading of history. Evangelicals who decried the 'materialism' of mainstream science assigned a different meaning to Newton's legacy on behalf of their 'scriptural' alternative. High-church critics of science like John Henry Newman, on the other hand, denied that Newton's secular achievements carried any moral significance at all. These debates over Newtonian standards of philosophical behavior had a decisive influence on Charles Darwin as he developed his theory of evolution by natural selection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Communication: Newton homotopies for sampling stationary points of potential energy landscapes

    International Nuclear Information System (INIS)

    Mehta, Dhagash; Chen, Tianran; Hauenstein, Jonathan D.; Wales, David J.

    2014-01-01

    One of the most challenging and frequently arising problems in many areas of science is to find solutions of a system of multivariate nonlinear equations. There are several numerical methods that can find many (or all if the system is small enough) solutions but they all exhibit characteristic problems. Moreover, traditional methods can break down if the system contains singular solutions. Here, we propose an efficient implementation of Newton homotopies, which can sample a large number of the stationary points of complicated many-body potentials. We demonstrate how the procedure works by applying it to the nearest-neighbor ϕ 4 model and atomic clusters

  1. Communication: Newton homotopies for sampling stationary points of potential energy landscapes

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Dhagash, E-mail: dmehta@nd.edu [Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana 46556 (United States); University Chemical Laboratory, The University of Cambridge, Cambridge CB2 1EW (United Kingdom); Chen, Tianran, E-mail: chentia1@msu.edu [Department of Mathematics, Michigan State University, East Lansing, Michigan 48823 (United States); Hauenstein, Jonathan D., E-mail: hauenstein@nd.edu [Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Wales, David J., E-mail: dw34@cam.ac.uk [University Chemical Laboratory, The University of Cambridge, Cambridge CB2 1EW (United Kingdom)

    2014-09-28

    One of the most challenging and frequently arising problems in many areas of science is to find solutions of a system of multivariate nonlinear equations. There are several numerical methods that can find many (or all if the system is small enough) solutions but they all exhibit characteristic problems. Moreover, traditional methods can break down if the system contains singular solutions. Here, we propose an efficient implementation of Newton homotopies, which can sample a large number of the stationary points of complicated many-body potentials. We demonstrate how the procedure works by applying it to the nearest-neighbor ϕ{sup 4} model and atomic clusters.

  2. (1 + 1) Newton-Hooke group for the simple and damped harmonic oscillator

    Science.gov (United States)

    Brzykcy, Przemysław

    2018-03-01

    It is demonstrated that, in the framework of the orbit method, a simple and damped harmonic oscillator is indistinguishable at the level of an abstract Lie algebra. This opens a possibility for treating the dissipative systems within the orbit method. An in-depth analysis of the coadjoint orbits of the (1 + 1) dimensional Newton-Hooke group is presented. Furthermore, it is argued that the physical interpretation is carried by a specific realisation of the Lie algebra of smooth functions on a phase space rather than by an abstract Lie algebra.

  3. Moving grids for magnetic reconnection via Newton-Krylov methods

    KAUST Repository

    Yuan, Xuefei; Jardin, Stephen C.; Keyes, David E.

    2011-01-01

    This paper presents a set of computationally efficient, adaptive grids for magnetic reconnection phenomenon where the current density can develop large gradients in the reconnection region. Four-field extended MagnetoHydroDynamics (MHD) equations

  4. Newton Methods for Large Scale Problems in Machine Learning

    Science.gov (United States)

    Hansen, Samantha Leigh

    2014-01-01

    The focus of this thesis is on practical ways of designing optimization algorithms for minimizing large-scale nonlinear functions with applications in machine learning. Chapter 1 introduces the overarching ideas in the thesis. Chapters 2 and 3 are geared towards supervised machine learning applications that involve minimizing a sum of loss…

  5. Newton-Krylov Methods in Power Flow and Contingency Analysis

    NARCIS (Netherlands)

    Idema, R.

    2012-01-01

    A power system is a system that provides for the generation, transmission, and distribution of electrical energy. Power systems are considered to be the largest and most complex man-made systems. As electrical energy is vital to our society, power systems have to satisfy the highest security and

  6. Truncated Newton-Raphson Methods for Quasicontinuum Simulations

    National Research Council Canada - National Science Library

    Liang, Yu; Kanapady, Ramdev; Chung, Peter W

    2006-01-01

    ... and preconditioned nonlinear conjugate gradient implementation. Results of illustrative examples mainly focus on the number of minimization iterations to converge and CPU time for the two-dimensional nanoindentation and shearing grain boundary problems.

  7. Moving grids for magnetic reconnection via Newton-Krylov methods

    KAUST Repository

    Yuan, Xuefei

    2011-01-01

    This paper presents a set of computationally efficient, adaptive grids for magnetic reconnection phenomenon where the current density can develop large gradients in the reconnection region. Four-field extended MagnetoHydroDynamics (MHD) equations with hyperviscosity terms are transformed so that the curvilinear coordinates replace the Cartesian coordinates as the independent variables, and moving grids\\' velocities are also considered in this transformed system as a part of interpolating the physical solutions from the old grid to the new grid as time advances. The curvilinear coordinates derived from the current density through the Monge-Kantorovich (MK) optimization approach help to reduce the resolution requirements during the computation. © 2010 Elsevier B.V. All rights reserved.

  8. A preconditioned inexact newton method for nonlinear sparse electromagnetic imaging

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2015-01-01

    to tackle the nonlinearity of these equations. At every IN iteration, a system of equations, which involves the Frechet derivative (FD) matrix of the CS operator, is solved for the IN step. A sparsity constraint is enforced on the solution via thresholded

  9. Heat kernel for Newton-Cartan trace anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Auzzi, Roberto [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via Musei 41, Brescia, 25121 (Italy); INFN Sezione di Perugia, Via A. Pascoli, Perugia, 06123 (Italy); Nardelli, Giuseppe [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via Musei 41, Brescia, 25121 (Italy); TIFPA - INFN, Università di Trento,c/o Dipartimento di Fisica, Povo, TN, 38123 (Italy)

    2016-07-11

    We compute the leading part of the trace anomaly for a free non-relativistic scalar in 2+1 dimensions coupled to a background Newton-Cartan metric. The anomaly is proportional to 1/m, where m is the mass of the scalar. We comment on the implications of a conjectured a-theorem for non-relativistic theories with boost invariance.

  10. Dramatic (and Simple!) Demonstration of Newton's Third Law

    Science.gov (United States)

    Feldman, Gerald

    2011-01-01

    An operational understanding of Newton's third law is often elusive for students. Typical examples of this concept are given for contact forces that are closer to the students' everyday experience. While this is a good thing in general, the reaction force can sometimes be taken for granted, and the students can miss the opportunity to really think…

  11. Newton's 'Principia Mathematica Philosophia' and Planck's elementary constants

    International Nuclear Information System (INIS)

    Rompe, R.; Treder, H.J.

    1987-01-01

    Together with Planck's elementary constants Newton's principles prove a guaranteed basis of physics and 'exact' sciences of all directions. The conceptions in physics are competent at all physical problems as well as technology too. Classical physics was founded in such a way to reach far beyond the physics of macroscopic bodies. (author)

  12. Newton's Laws, Euler's Laws and the Speed of Light

    Science.gov (United States)

    Whitaker, Stephen

    2009-01-01

    Chemical engineering students begin their studies of mechanics in a department of physics where they are introduced to the mechanics of Newton. The approach presented by physicists differs in both perspective and substance from that encountered in chemical engineering courses where Euler's laws provide the foundation for studies of fluid and solid…

  13. Gamow on Newton: Another Look at Centripetal Acceleration

    Science.gov (United States)

    Corrao, Christian

    2012-01-01

    Presented here is an adaptation of George Gamow's derivation of the centripetal acceleration formula as it applies to Earth's orbiting Moon. The derivation appears in Gamows short but engaging book "Gravity", first published in 1962, and is essentially a distillation of Newton's work. While "TPT" contributors have offered several insightful…

  14. Newton's second law in a non-commutative space

    International Nuclear Information System (INIS)

    Romero, Juan M.; Santiago, J.A.; Vergara, J. David

    2003-01-01

    In this Letter we show that corrections to Newton's second law appear if we assume a symplectic structure consistent with the commutation rules of the non-commutative quantum mechanics. For central field we find that the correction term breaks the rotational symmetry. For the Kepler problem, this term is similar to a Coriolis force

  15. A Magnetic Set-Up to Help Teach Newton's Laws

    Science.gov (United States)

    Panijpan, Bhinyo; Sujarittham, Thanida; Arayathanitkul, Kwan; Tanamatayarat, Jintawat; Nopparatjamjomras, Suchai

    2009-01-01

    A set-up comprising a magnetic disc, a solenoid and a mechanical balance was used to teach first-year physics students Newton's third law with the help of a free body diagram. The image of a floating magnet immobilized by the solenoid's repulsive force should help dispel a common misconception of students as regards the first law: that stationary…

  16. Listening in the Silences for Fred Newton Scott

    Science.gov (United States)

    Mastrangelo, Lisa

    2009-01-01

    As part of her recent sabbatical, the author proposed going to the University of Michigan Bentley Archives to do research on Fred Newton Scott, founder and chair of the Department of Rhetoric and teacher from 1889 to 1926 at the University of Michigan. Scott ran the only graduate program in rhetoric and composition in the country between those…

  17. Newton-Cartan supergravity with torsion and Schrodinger supergravity

    NARCIS (Netherlands)

    Bergshoeff, Eric; Rosseel, Jan; Zojer, Thomas

    2015-01-01

    We derive a torsionfull version of three-dimensional N - 2 Newton-Cartan supergravity using a non-relativistic notion of the superconformal tensor calculus. The "superconformal" theory that we start with is Schrodinger supergravity which we obtain by gauging the Schrodinger superalgebra. We present

  18. Torsional Newton-Cartan geometry and the Schrodinger algebra

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hartong, Jelle; Rosseel, Jan

    2015-01-01

    We show that by gauging the Schrodinger algebra with critical exponent z and imposing suitable curvature constraints, that make diffeomorphisms equivalent to time and space translations, one obtains a geometric structure known as (twistless) torsional Newton-Cartan geometry (TTNC). This is a version

  19. Twisted Acceleration-Enlarged Newton-Hooke Hopf Algebras

    International Nuclear Information System (INIS)

    Daszkiewicz, M.

    2010-01-01

    Ten Abelian twist deformations of acceleration-enlarged Newton-Hooke Hopf algebra are considered. The corresponding quantum space-times are derived as well. It is demonstrated that their contraction limit τ → ∞ leads to the new twisted acceleration-enlarged Galilei spaces. (author)

  20. Medium-resolution isaac newton telescope library of empirical spectra

    NARCIS (Netherlands)

    Sanchez-Blazquez, P.; Peletier, R. F.; Jimenez-Vicente, J.; Cardiel, N.; Cenarro, A. J.; Falcon-Barroso, J.; Gorgas, J.; Selam, S.; Vazdekis, A.

    2006-01-01

    A new stellar library developed for stellar population synthesis modelling is presented. The library consists of 985 stars spanning a large range in atmospheric parameters. The spectra were obtained at the 2.5-m Isaac Newton Telescope and cover the range lambda lambda 3525-7500 angstrom at 2.3

  1. Proving Newton Right or Wrong with Blur Photography

    Science.gov (United States)

    Davidhazy, Andrew

    2012-01-01

    Sir Isaac Newton determined that the acceleration constant for gravity was 32 ft./per/sec/sec. This is a fact that most students become familiar with over time and through various means. This article describes how this can be demonstrated in a technology classroom using simple photographic equipment. (Contains 5 figures.)

  2. Extension of Newton's Dynamical Spectral Shift for Photons in ...

    African Journals Online (AJOL)

    Extension of Newton's Dynamical Spectral Shift for Photons in Gravitational Fields of Static Homogeneous Spherical Massive Bodies. ... is perfectly in agreement with the physical fact that gravitational scalar potential is negative and increase in recession leads to decrease in kinetic energy and hence decrease in frequency.

  3. Balancing related methods for minimal realization of periodic systems

    OpenAIRE

    Varga, A.

    1999-01-01

    We propose balancing related numerically reliable methods to compute minimal realizations of linear periodic systems with time-varying dimensions. The first method belongs to the family of square-root methods with guaranteed enhanced computational accuracy and can be used to compute balanced minimal order realizations. An alternative balancing-free square-root method has the advantage of a potentially better numerical accuracy in case of poorly scaled original systems. The key numerical co...

  4. A Newton-based Jacobian-free approach for neutronic-Monte Carlo/thermal-hydraulic static coupled analysis

    International Nuclear Information System (INIS)

    Mylonakis, Antonios G.; Varvayanni, M.; Catsaros, N.

    2017-01-01

    Highlights: •A Newton-based Jacobian-free Monte Carlo/thermal-hydraulic coupling approach is introduced. •OpenMC is coupled with COBRA-EN with a Newton-based approach. •The introduced coupling approach is tested in numerical experiments. •The performance of the new approach is compared with the traditional “serial” coupling approach. -- Abstract: In the field of nuclear reactor analysis, multi-physics calculations that account for the bonded nature of the neutronic and thermal-hydraulic phenomena are of major importance for both reactor safety and design. So far in the context of Monte-Carlo neutronic analysis a kind of “serial” algorithm has been mainly used for coupling with thermal-hydraulics. The main motivation of this work is the interest for an algorithm that could maintain the distinct treatment of the involved fields within a tight coupling context that could be translated into higher convergence rates and more stable behaviour. This work investigates the possibility of replacing the usually used “serial” iteration with an approximate Newton algorithm. The selected algorithm, called Approximate Block Newton, is actually a version of the Jacobian-free Newton Krylov method suitably modified for coupling mono-disciplinary solvers. Within this Newton scheme the linearised system is solved with a Krylov solver in order to avoid the creation of the Jacobian matrix. A coupling algorithm between Monte-Carlo neutronics and thermal-hydraulics based on the above-mentioned methodology is developed and its performance is analysed. More specifically, OpenMC, a Monte-Carlo neutronics code and COBRA-EN, a thermal-hydraulics code for sub-channel and core analysis, are merged in a coupling scheme using the Approximate Block Newton method aiming to examine the performance of this scheme and compare with that of the “traditional” serial iterative scheme. First results show a clear improvement of the convergence especially in problems where significant

  5. The Cooling Law and the Search for a Good Temperature Scale, from Newton to Dalton

    Science.gov (United States)

    Besson, Ugo

    2011-01-01

    The research on the cooling law began with an article by Newton published in 1701. Later, many studies were performed by other scientists confirming or confuting Newton's law. This paper presents a description and an interpretation of Newton's article, provides a short overview of the research conducted on the topic during the 18th century, and…

  6. Problem in Two Unknowns: Robert Hooke and a Worm in Newton's Apple.

    Science.gov (United States)

    Weinstock, Robert

    1992-01-01

    Discusses the place that Robert Hooke has in science history versus the scientific contributions he made. Examines the relationship between Hooke and his contemporary, Isaac Newton, and Hooke's claims that Newton built on his ideas without receiving Newton's recognition. (26 references) (MDH)

  7. How Two Differing Portraits of Newton Can Teach Us about the Cultural Context of Science

    Science.gov (United States)

    Tucci, Pasquale

    2015-01-01

    Like several scientists, Isaac Newton has been represented many times over many different periods, and portraits of Newton were often commissioned by the scientist himself. These portraits tell us a lot about the scientist, the artist and the cultural context. This article examines two very different portraits of Newton that were realized more…

  8. A multigrid method for variational inequalities

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, S.; Stewart, D.E.; Wu, W.

    1996-12-31

    Multigrid methods have been used with great success for solving elliptic partial differential equations. Penalty methods have been successful in solving finite-dimensional quadratic programs. In this paper these two techniques are combined to give a fast method for solving obstacle problems. A nonlinear penalized problem is solved using Newton`s method for large values of a penalty parameter. Multigrid methods are used to solve the linear systems in Newton`s method. The overall numerical method developed is based on an exterior penalty function, and numerical results showing the performance of the method have been obtained.

  9. Newton's laws of motion in the form of a Riccati equation

    International Nuclear Information System (INIS)

    Nowakowski, Marek; Rosu, Haret C.

    2002-01-01

    We discuss two applications of a Riccati equation to Newton's laws of motion. The first one is the motion of a particle under the influence of a power law central potential V(r)=kr ε . For zero total energy we show that the equation of motion can be cast in the Riccati form. We briefly show here an analogy to barotropic Friedmann-Robertson-Lemaitre cosmology where the expansion of the universe can be also shown to obey a Riccati equation. A second application in classical mechanics, where again the Riccati equation appears naturally, are problems involving quadratic friction. We use methods reminiscent to nonrelativistic supersymmetry to generalize and solve such problems

  10. Newton's laws of motion in the form of a Riccati equation.

    Science.gov (United States)

    Nowakowski, Marek; Rosu, Haret C

    2002-04-01

    We discuss two applications of a Riccati equation to Newton's laws of motion. The first one is the motion of a particle under the influence of a power law central potential V(r)=kr(epsilon). For zero total energy we show that the equation of motion can be cast in the Riccati form. We briefly show here an analogy to barotropic Friedmann-Robertson-Lemaitre cosmology where the expansion of the universe can be also shown to obey a Riccati equation. A second application in classical mechanics, where again the Riccati equation appears naturally, are problems involving quadratic friction. We use methods reminiscent to nonrelativistic supersymmetry to generalize and solve such problems.

  11. Special features of Newton-type fringe formation in a diffraction interferometer

    Science.gov (United States)

    Koronkevich, Voldemar P.; Lenkova, Galina A.; Matochkin, Aleksey E.

    2006-01-01

    An interferometer with a Fresnel zone plate located in the center of curvature of a concave mirror was studied. Attention was paid to the unique features of the interference field, which has a special point at which the path difference is equal to zero, thereby allowing for the observation of Newton-type fringes in white and quasi-monochromatic light. The conditions necessary for reducing the instrumental error to values less than lambda/20 were determined. Methods for suppressing noise and destructive interference patterns were also found. Metrological tests were carried out, and they proved the possibility of using this interferometer for industrial testing of spherical and parabolic mirrors.

  12. On one method of realization of commutation relation algebra

    International Nuclear Information System (INIS)

    Sveshnikov, K.A.

    1983-01-01

    Method for constructing the commulation relation representations based on the purely algebraic construction of joined algebraic representation with specially selected composition law has been suggested9 Purely combinatorial construction realizing commulation relations representation has been obtained proceeding from formal equivalence of operatopr action on vector and adding a simbol to a sequences of symbols. The above method practically has the structure of calculating algorithm, which assigns some rule of ''word'' formation of an initial set of ''letters''. In other words, a computer language with definite relations between words (an analogy between quantum mechanics and computer linguistics has been applied)

  13. Globalized Newton-Krylov-Schwarz Algorithms and Software for Parallel Implicit CFD

    Science.gov (United States)

    Gropp, W. D.; Keyes, D. E.; McInnes, L. C.; Tidriri, M. D.

    1998-01-01

    Implicit solution methods are important in applications modeled by PDEs with disparate temporal and spatial scales. Because such applications require high resolution with reasonable turnaround, "routine" parallelization is essential. The pseudo-transient matrix-free Newton-Krylov-Schwarz (Psi-NKS) algorithmic framework is presented as an answer. We show that, for the classical problem of three-dimensional transonic Euler flow about an M6 wing, Psi-NKS can simultaneously deliver: globalized, asymptotically rapid convergence through adaptive pseudo- transient continuation and Newton's method-, reasonable parallelizability for an implicit method through deferred synchronization and favorable communication-to-computation scaling in the Krylov linear solver; and high per- processor performance through attention to distributed memory and cache locality, especially through the Schwarz preconditioner. Two discouraging features of Psi-NKS methods are their sensitivity to the coding of the underlying PDE discretization and the large number of parameters that must be selected to govern convergence. We therefore distill several recommendations from our experience and from our reading of the literature on various algorithmic components of Psi-NKS, and we describe a freely available, MPI-based portable parallel software implementation of the solver employed here.

  14. Newton gauge cosmological perturbations for static spherically symmetric modifications of the de Sitter metric

    Science.gov (United States)

    Santa Vélez, Camilo; Enea Romano, Antonio

    2018-05-01

    Static coordinates can be convenient to solve the vacuum Einstein's equations in presence of spherical symmetry, but for cosmological applications comoving coordinates are more suitable to describe an expanding Universe, especially in the framework of cosmological perturbation theory (CPT). Using CPT we develop a method to transform static spherically symmetric (SSS) modifications of the de Sitter solution from static coordinates to the Newton gauge. We test the method with the Schwarzschild de Sitter (SDS) metric and then derive general expressions for the Bardeen's potentials for a class of SSS metrics obtained by adding to the de Sitter metric a term linear in the mass and proportional to a general function of the radius. Using the gauge invariance of the Bardeen's potentials we then obtain a gauge invariant definition of the turn around radius. We apply the method to an SSS solution of the Brans-Dicke theory, confirming the results obtained independently by solving the perturbation equations in the Newton gauge. The Bardeen's potentials are then derived for new SSS metrics involving logarithmic, power law and exponential modifications of the de Sitter metric. We also apply the method to SSS metrics which give flat rotation curves, computing the radial energy density profile in comoving coordinates in presence of a cosmological constant.

  15. A Modified Conjugacy Condition and Related Nonlinear Conjugate Gradient Method

    Directory of Open Access Journals (Sweden)

    Shengwei Yao

    2014-01-01

    Full Text Available The conjugate gradient (CG method has played a special role in solving large-scale nonlinear optimization problems due to the simplicity of their very low memory requirements. In this paper, we propose a new conjugacy condition which is similar to Dai-Liao (2001. Based on this condition, the related nonlinear conjugate gradient method is given. With some mild conditions, the given method is globally convergent under the strong Wolfe-Powell line search for general functions. The numerical experiments show that the proposed method is very robust and efficient.

  16. Fundamentos kantianos dos axiomas do movimento de Newton

    OpenAIRE

    Vieira Coutinho Abreu Gomes, Írio

    2006-01-01

    Esse trabalho se insere na perspectiva fundacionista kantiana, particularmente no que diz respeito às três leis de Newton. Em sua obra de 1786, Princípios Metafísicos da Ciência da Natureza, Kant empreende a tarefa de fundamentar a física mecânica através de princípios metafísicos. Nosso objetivo nessa dissertação foi abordar essa obra especificamente em seu terceiro capítulo onde Kant trata dos axiomas do movimento de Newton. Nessa dissertação elucidamos a argumentação kantiana na fundamenta...

  17. Non-relativistic conformal symmetries and Newton-Cartan structures

    International Nuclear Information System (INIS)

    Duval, C; Horvathy, P A

    2009-01-01

    This paper provides us with a unifying classification of the conformal infinitesimal symmetries of non-relativistic Newton-Cartan spacetime. The Lie algebras of non-relativistic conformal transformations are introduced via the Galilei structure. They form a family of infinite-dimensional Lie algebras labeled by a rational 'dynamical exponent', z. The Schroedinger-Virasoro algebra of Henkel et al corresponds to z = 2. Viewed as projective Newton-Cartan symmetries, they yield, for timelike geodesics, the usual Schroedinger Lie algebra, for which z = 2. For lightlike geodesics, they yield, in turn, the Conformal Galilean Algebra (CGA) of Lukierski, Stichel and Zakrzewski (alias 'alt' of Henkel), with z = 1. Physical systems realizing these symmetries include, e.g. classical systems of massive and massless non-relativistic particles, and also hydrodynamics, as well as Galilean electromagnetism.

  18. Conference | From Newton to Hawking and beyond | 28 May

    CERN Multimedia

    2013-01-01

    From Newton to Hawking and beyond: Why disability equality is relevant to the world of particle physics, Dr Tom Shakespeare.    Tuesday, 28 May 2013 - 11.30 am - 1 pm Main Auditorium – Room 500-1-001 Conference organised by the CERN Diversity Programme English with French interpretation According to the recent world report on disability, 15% of the world’s population is disabled.  Among that group could be numbered famous physicists such as Isaac Newton and Paul Dirac, neither of whom could be classed as “neuro-typical”, and Stephen Hawking.  This presentation will provide some basic data about global disability, and the socially imposed barriers which disabled people face.  It will also include some stories about high achieving people with disabilities.  Finally, some practical suggestions will be offered on how to respect and include people with disabilities in the workplace. Tom Shakespeare is a social sci...

  19. On Newton's third law and its symmetry-breaking effects

    International Nuclear Information System (INIS)

    Pinheiro, Mario J

    2011-01-01

    The law of action-reaction, considered by Ernst Mach as the cornerstone of physics, is thoroughly used to derive the conservation laws of linear and angular momentum. However, the conflict between momentum conservation law and Newton's third law, on experimental and theoretical grounds, calls for more attention. We give a background survey of several questions raised by the action-reaction law and, in particular, the role of the physical vacuum is shown to provide an appropriate framework for clarifying the occurrence of possible violations of the action-reaction law. Then, in the framework of statistical mechanics, using a maximizing entropy procedure, we obtain an expression for the general linear momentum of a body particle. The new approach presented here shows that Newton's third law is not verified in systems out of equilibrium due to an additional entropic gradient term present in the particle's momentum.

  20. Female body as a fetish in Helmut Newton's photography

    Directory of Open Access Journals (Sweden)

    Pantović Katarina

    2017-01-01

    Full Text Available The paper illuminates some of the principles by which Helmut Newton's photographic poetics functions. It is examined from the perspectives of recent art history, feminist critique and psychoanalytic theory. His photographs came to a standstill not far from pornography, yet they stayed within the jet-set community, reflecting at the same time the sexual revolution in the 60s and 70s of the twentieth century and the rising of the fashion and film industries and other Western emancipatory movements. Newton's obscure photojournalism provoked conventions, presenting the female body as a fetish and object of erotic pleasure, affirming, nonetheless, a new feminine self-consciousness and freedom. Thus, he constituted modern eroticism by connecting fetishism, voyeurism and sadomasochism, creating a provocative hybrid photography that embraced fashion, eroticism and portrait, hence documenting, in highly stylistic manner, the decadency and eccentricity of the lifestyle of the rich.

  1. Implementing WebQuest Based Instruction on Newton's Second Law

    Science.gov (United States)

    Gokalp, Muhammed Sait; Sharma, Manjula; Johnston, Ian; Sharma, Mia

    2013-01-01

    The purpose of this study was to investigate how WebQuests can be used in physics classes for teaching specific concepts. The study had three stages. The first stage was to develop a WebQuest on Newton's second law. The second stage involved developing a lesson plan to implement the WebQuest in class. In the final stage, the WebQuest was…

  2. Newton's second law and the multiplication of distributions

    Science.gov (United States)

    Sarrico, C. O. R.; Paiva, A.

    2018-01-01

    Newton's second law is applied to study the motion of a particle subjected to a time dependent impulsive force containing a Dirac delta distribution. Within this setting, we prove that this problem can be rigorously solved neither by limit processes nor by using the theory of distributions (limited to the classical Schwartz products). However, using a distributional multiplication, not defined by a limit process, a rigorous solution emerges.

  3. Generalized uncertainty principles, effective Newton constant and regular black holes

    OpenAIRE

    Li, Xiang; Ling, Yi; Shen, You-Gen; Liu, Cheng-Zhou; He, Hong-Sheng; Xu, Lan-Fang

    2016-01-01

    In this paper, we explore the quantum spacetimes that are potentially connected with the generalized uncertainty principles. By analyzing the gravity-induced quantum interference pattern and the Gedanken for weighting photon, we find that the generalized uncertainty principles inspire the effective Newton constant as same as our previous proposal. A characteristic momentum associated with the tidal effect is suggested, which incorporates the quantum effect with the geometric nature of gravity...

  4. Convergence Analysis for the Multiplicative Schwarz Preconditioned Inexact Newton Algorithm

    KAUST Repository

    Liu, Lulu

    2016-10-26

    The multiplicative Schwarz preconditioned inexact Newton (MSPIN) algorithm, based on decomposition by field type rather than by subdomain, was recently introduced to improve the convergence of systems with unbalanced nonlinearities. This paper provides a convergence analysis of the MSPIN algorithm. Under reasonable assumptions, it is shown that MSPIN is locally convergent, and desired superlinear or even quadratic convergence can be obtained when the forcing terms are picked suitably.

  5. When Newton's cooling law doesn't hold

    International Nuclear Information System (INIS)

    Tarnow, E.

    1994-01-01

    What is the fastest way to cool something? If the object is macroscopic it is to lower the surrounding temperature as much as possible and let Newton's cooling law take effect. If we enter the microscopic world where quantum mechanics rules, this procedure may no longer be the best. This is shown in a simple example where we calculate the optimum cooling rate for an asymmetric two-state system

  6. Convergence Analysis for the Multiplicative Schwarz Preconditioned Inexact Newton Algorithm

    KAUST Repository

    Liu, Lulu; Keyes, David E.

    2016-01-01

    The multiplicative Schwarz preconditioned inexact Newton (MSPIN) algorithm, based on decomposition by field type rather than by subdomain, was recently introduced to improve the convergence of systems with unbalanced nonlinearities. This paper provides a convergence analysis of the MSPIN algorithm. Under reasonable assumptions, it is shown that MSPIN is locally convergent, and desired superlinear or even quadratic convergence can be obtained when the forcing terms are picked suitably.

  7. Newton's Cradle and Entanglement Transport in a Flexible Rydberg Chain

    International Nuclear Information System (INIS)

    Wuester, S.; Ates, C.; Eisfeld, A.; Rost, J. M.

    2010-01-01

    In a regular, flexible chain of Rydberg atoms, a single electronic excitation localizes on two atoms that are in closer mutual proximity than all others. We show how the interplay between excitonic and atomic motion causes electronic excitation and diatomic proximity to propagate through the Rydberg chain as a combined pulse. In this manner entanglement is transferred adiabatically along the chain, reminiscent of momentum transfer in Newton's cradle.

  8. Kohn's theorem, Larmor's equivalence principle and the Newton-Hooke group

    International Nuclear Information System (INIS)

    Gibbons, G.W.; Pope, C.N.

    2011-01-01

    Highlights: → We show that non-relativistic electrons moving in a magnetic field with trapping potential admits as relativity group the Newton-Hooke group. → We use this fact to give a group theoretic interpretation of Kohn's theorem and to obtain the spectrum. → We obtain the lightlike lift of the system exhibiting showing it coincides with the Nappi-Witten spacetime. - Abstract: We consider non-relativistic electrons, each of the same charge to mass ratio, moving in an external magnetic field with an interaction potential depending only on the mutual separations, possibly confined by a harmonic trapping potential. We show that the system admits a 'relativity group' which is a one-parameter family of deformations of the standard Galilei group to the Newton-Hooke group which is a Wigner-Inoenue contraction of the de Sitter group. This allows a group-theoretic interpretation of Kohn's theorem and related results. Larmor's theorem is used to show that the one-parameter family of deformations are all isomorphic. We study the 'Eisenhart' or 'lightlike' lift of the system, exhibiting it as a pp-wave. In the planar case, the Eisenhart lift is the Brdicka-Eardley-Nappi-Witten pp-wave solution of Einstein-Maxwell theory, which may also be regarded as a bi-invariant metric on the Cangemi-Jackiw group.

  9. Running Newton constant, improved gravitational actions, and galaxy rotation curves

    International Nuclear Information System (INIS)

    Reuter, M.; Weyer, H.

    2004-01-01

    A renormalization group (RG) improvement of the Einstein-Hilbert action is performed which promotes Newton's constant and the cosmological constant to scalar functions on spacetime. They arise from solutions of an exact RG equation by means of a 'cutoff identification' which associates RG scales to the points of spacetime. The resulting modified Einstein equations for spherically symmetric, static spacetimes are derived and analyzed in detail. The modifications of the Newtonian limit due to the RG evolution are obtained for the general case. As an application, the viability of a scenario is investigated where strong quantum effects in the infrared cause Newton's constant to grow at large (astrophysical) distances. For two specific RG trajectories exact vacuum spacetimes modifying the Schwarzschild metric are obtained by means of a solution-generating Weyl transformation. Their possible relevance to the problem of the observed approximately flat galaxy rotation curves is discussed. It is found that a power law running of Newton's constant with a small exponent of the order 10 -6 would account for their non-Keplerian behavior without having to postulate the presence of any dark matter in the galactic halo

  10. Judaism in the theology of Sir Isaac Newton

    CERN Document Server

    Goldish, Matt

    1998-01-01

    This book is based on my doctoral dissertation from the Hebrew University of Jerusalem (1996) of the same title. As a master's student, working on an entirely different project, I was well aware that many of Newton's theological manuscripts were located in our own Jewish National and University Library, but I was under the mistaken assumption that scores of highly qualified scholars must be assiduously scouring them and publishing their results. It never occurred to me to look at them at all until, having fmished my master's, I spoke to Professor David Katz at Tel-Aviv University about an idea I had for doctoral research. Professor Katz informed me that the project I had suggested was one which he himself had just fmished, but that I might be interested in working on the famous Newton manuscripts in the context of a project being organized by him, Richard Popkin, James Force, and the late Betty Jo Teeter Dobbs, to study and publish Newton's theological material. I asked him whether he was not sending me into ...

  11. XMM-Newton operations beyond the design lifetime

    Science.gov (United States)

    Parmar, Arvind N.; Kirsch, Marcus G. F.; Muñoz, J. Ramon; Santos-Lleo, Maria; Schartel, Norbert

    2012-09-01

    After more than twelve years in orbit and two years beyond the design lifetime, XMM-Newton continues its near faultless operations providing the worldwide astronomical community with an unprecedented combination of imaging and spectroscopic X-ray capabilities together with simultaneous optical and ultra-violet monitoring. The interest from the scientific community in observing with XMM-Newton remains extremely high with the last annual Announcement of Observing Opportunity (AO-11) attracting proposals requesting 6.7 times more observing time than was available. Following recovery from a communications problem in 2008, all elements of the mission are stable and largely trouble free. The operational lifetime if currently limited by the amount of available hydrazine fuel. XMM-Newton normally uses reaction wheels for attitude control and fuel is only used when offsetting reaction wheel speed away from limiting values and for emergency Sun acquisition following an anomaly. Currently, the hydrazine is predicted to last until around 2020. However, ESA is investigating the possibility of making changes to the operations concept and the onboard software that would enable lower fuel consumption. This could allow operations to well beyond 2026.

  12. One hundred years of pressure hydrostatics from Stevin to Newton

    CERN Document Server

    Chalmers, Alan F

    2017-01-01

    This monograph investigates the development of hydrostatics as a science. In the process, it sheds new light on the nature of science and its origins in the Scientific Revolution. Readers will come to see that the history of hydrostatics reveals subtle ways in which the science of the seventeenth century differed from previous periods. The key, the author argues, is the new insights into the concept of pressure that emerged during the Scientific Revolution. This came about due to contributions from such figures as Simon Stevin, Pascal, Boyle and Newton. The author compares their work with Galileo and Descartes, neither of whom grasped the need for a new conception of pressure. As a result, their contributions to hydrostatics were unproductive. The story ends with Newton insofar as his version of hydrostatics set the subject on its modern course. He articulated a technical notion of pressure that was up to the task. Newton compared the mathematical way in hydrostatics and the experimental way, and sided with t...

  13. The Schrödinger–Newton equation and its foundations

    International Nuclear Information System (INIS)

    Bahrami, Mohammad; Großardt, André; Donadi, Sandro; Bassi, Angelo

    2014-01-01

    The necessity of quantising the gravitational field is still subject to an open debate. In this paper we compare the approach of quantum gravity, with that of a fundamentally semi-classical theory of gravity, in the weak-field non-relativistic limit. We show that, while in the former case the Schrödinger equation stays linear, in the latter case one ends up with the so-called Schrödinger–Newton equation, which involves a nonlinear, non-local gravitational contribution. We further discuss that the Schrödinger–Newton equation does not describe the collapse of the wave-function, although it was initially proposed for exactly this purpose. Together with the standard collapse postulate, fundamentally semi-classical gravity gives rise to superluminal signalling. A consistent fundamentally semi-classical theory of gravity can therefore only be achieved together with a suitable prescription of the wave-function collapse. We further discuss, how collapse models avoid such superluminal signalling and compare the nonlinearities appearing in these models with those in the Schrödinger–Newton equation. (paper)

  14. A typology of health marketing research methods--combining public relations methods with organizational concern.

    Science.gov (United States)

    Rotarius, Timothy; Wan, Thomas T H; Liberman, Aaron

    2007-01-01

    Research plays a critical role throughout virtually every conduit of the health services industry. The key terms of research, public relations, and organizational interests are discussed. Combining public relations as a strategic methodology with the organizational concern as a factor, a typology of four different research methods emerges. These four health marketing research methods are: investigative, strategic, informative, and verification. The implications of these distinct and contrasting research methods are examined.

  15. Relative valuation of alternative methods of tax avoidance

    OpenAIRE

    Inger, Kerry Katharine

    2012-01-01

    This paper examines the relative valuation of alternative methods of tax avoidance. Prior studies find that firm value is positively associated with overall measures of tax avoidance; I extend this research by providing evidence that investors distinguish between methods of tax reduction in their valuation of tax avoidance. The impact of tax avoidance on firm value is a function of tax risk, permanence of tax savings, tax planning costs, implicit taxes and contrasts in disclosures of tax re...

  16. A method for high accuracy determination of equilibrium relative humidity

    DEFF Research Database (Denmark)

    Jensen, O.M.

    2012-01-01

    This paper treats a new method for measuring equilibrium relative humidity and equilibrium dew-point temperature of a material sample. The developed measuring device is described – a Dew-point Meter – which by means of so-called Dynamic Dew-point Analysis permits quick and very accurate...

  17. Integrating Expressive Methods in a Relational-Psychotherapy

    Directory of Open Access Journals (Sweden)

    Richard G. Erskine

    2011-06-01

    Full Text Available Therapeutic Involvement is an integral part of all effective psychotherapy.This article is written to illustrate the concept of Therapeutic Involvement in working within a therapeutic relationship – within the transference -- and with active expressive and experiential methods to resolve traumatic experiences, relational disturbances and life shaping decisions.

  18. Tangent modulus in numerical integration of constitutive relations and its influence on convergence of N-R method

    Directory of Open Access Journals (Sweden)

    Poruba Z.

    2009-06-01

    Full Text Available For the numerical solution of elasto-plastic problems with use of Newton-Raphson method in global equilibrium equation it is necessary to determine the tangent modulus in each integration point. To reach the parabolic convergence of Newton-Raphson method it is convenient to use so called algorithmic tangent modulus which is consistent with used integration scheme. For more simple models for example Chaboche combined hardening model it is possible to determine it in analytical way. In case of more robust macroscopic models it is in many cases necessary to use the approximation approach. This possibility is presented in this contribution for radial return method on Chaboche model. An example solved in software Ansys corresponds to line contact problem with assumption of Coulomb's friction. The study shows at the end that the number of iteration of N-R method is higher in case of continuum tangent modulus and many times higher with use of modified N-R method, initial stiffness method.

  19. Methods and systems relating to an augmented virtuality environment

    Science.gov (United States)

    Nielsen, Curtis W; Anderson, Matthew O; McKay, Mark D; Wadsworth, Derek C; Boyce, Jodie R; Hruska, Ryan C; Koudelka, John A; Whetten, Jonathan; Bruemmer, David J

    2014-05-20

    Systems and methods relating to an augmented virtuality system are disclosed. A method of operating an augmented virtuality system may comprise displaying imagery of a real-world environment in an operating picture. The method may further include displaying a plurality of virtual icons in the operating picture representing at least some assets of a plurality of assets positioned in the real-world environment. Additionally, the method may include displaying at least one virtual item in the operating picture representing data sensed by one or more of the assets of the plurality of assets and remotely controlling at least one asset of the plurality of assets by interacting with a virtual icon associated with the at least one asset.

  20. Galerkin projection methods for solving multiple related linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Chan, T.F.; Ng, M.; Wan, W.L.

    1996-12-31

    We consider using Galerkin projection methods for solving multiple related linear systems A{sup (i)}x{sup (i)} = b{sup (i)} for 1 {le} i {le} s, where A{sup (i)} and b{sup (i)} are different in general. We start with the special case where A{sup (i)} = A and A is symmetric positive definite. The method generates a Krylov subspace from a set of direction vectors obtained by solving one of the systems, called the seed system, by the CG method and then projects the residuals of other systems orthogonally onto the generated Krylov subspace to get the approximate solutions. The whole process is repeated with another unsolved system as a seed until all the systems are solved. We observe in practice a super-convergence behaviour of the CG process of the seed system when compared with the usual CG process. We also observe that only a small number of restarts is required to solve all the systems if the right-hand sides are close to each other. These two features together make the method particularly effective. In this talk, we give theoretical proof to justify these observations. Furthermore, we combine the advantages of this method and the block CG method and propose a block extension of this single seed method. The above procedure can actually be modified for solving multiple linear systems A{sup (i)}x{sup (i)} = b{sup (i)}, where A{sup (i)} are now different. We can also extend the previous analytical results to this more general case. Applications of this method to multiple related linear systems arising from image restoration and recursive least squares computations are considered as examples.

  1. Proposal for an experiment to search for Randall-Sundrum-type corrections to Newton's law of gravitation

    International Nuclear Information System (INIS)

    Azam, Mofazzal; Sami, M.; Unnikrishnan, C. S.; Shiromizu, T.

    2008-01-01

    String theory, as well as the string inspired brane-world models such as the Randall-Sundrum (RS) one, suggest a modification of Newton's law of gravitation at small distance scales. Search for modifications of standard gravity is an active field of research in this context. It is well known that short range corrections to gravity would violate the Newton-Birkhoff theorem. Based on calculations of RS-type non-Newtonian forces for finite size spherical bodies, we propose a torsion balance based experiment to search for the effects of violation of this theorem valid in Newtonian gravity as well as in the general theory of relativity. We explain the main principle behind the experiment and provide detailed calculations suggesting optimum values of the parameters of the experiment. The projected sensitivity is sufficient to probe the RS parameter up to 10 microns

  2. PENGGUNAAN ALGORITMA NEWTON – RAPHSON UNTUK MEMBUAT SOFTWARE PENENTUAN DOSIS OBAT

    Directory of Open Access Journals (Sweden)

    Ibnu Gunawan

    2009-01-01

    Full Text Available USCPACK Software from University of Carolina is one of the pioneers of computerized drug dosage system. This software uses Bayesian method. The algorithm that used in this software is known as NPEM (Non Parametric Expectation Maximization. After knowing how USCPACK work, then we made new software that has the same use like USCPACK but with new algorithm that different from NPEM. These paper will describe the how to make the software based on NPAG algorithm. Abstract in Bahasa Indonesia: Software USCPACK buatan University of Carolina merupakan salah satu pelopor dimungkinkannya penentuan dosis obat persatuan waktu tertentu untuk pasien secara umum menggunakan komputer. Software ini bekerja dengan menggunakan metode dasar Bayesian. Algoritma yang digunakan oleh software ini adalah NPEM (Non Parametric Expectation Maximization. Setelah mengetahui cara kerja dari USCPACK maka dibuatlah sebuah software pendosisan obat menggunakan algoritma non parametrik lain selain NPEM. Paper ini akan membahas pembuatan software pendosisan obat menggunakan algoritma newton – raphson dalam penentuan dosis obat terkomputerisasi. Kata kunci: Pendosisan terkomputerisasi, optimasi, Bayesian, NPEM, Newton Raphson,USCPACK

  3. Teaching Newton's Laws with the iPod Touch in Conceptual Physics

    Science.gov (United States)

    Kelly, Angela M.

    2011-04-01

    One of the greatest challenges in teaching physics is helping students achieve a conceptual understanding of Newton's laws. I find that students fresh from middle school can sometimes recite the laws verbatim ("An object in motion stays in motion…" and "For every action…"), but they rarely demonstrate a working knowledge of how to apply them to observable phenomena. As a firm believer in inquiry-based teaching methods, I like to develop activities where students can experiment and construct understandings based on relevant personal experiences. Consequently, I am always looking for exciting new technologies that can readily demonstrate how physics affects everyday things. In a conceptual physics class designed for ninth-graders, I created a structured activity where students applied Newton's laws to a series of free applications downloaded on iPod Touches. The laws had been introduced during the prior class session with textual descriptions and graphical representations. The course is offered as part of the Enlace Latino Collegiate Society, a weekend enrichment program for middle and high school students in the Bronx. The majority of students had limited or no prior exposure to physics concepts, and many attended high schools where physics was not offered at all.

  4. Mathematic modeling of the method of measurement relative dielectric permeability

    Science.gov (United States)

    Plotnikova, I. V.; Chicherina, N. V.; Stepanov, A. B.

    2018-05-01

    The method of measuring relative permittivity’s and the position of the interface between layers of a liquid medium is considered in the article. An electric capacitor is a system consisting of two conductors that are separated by a dielectric layer. It is mathematically proven that at any given time it is possible to obtain the values of the relative permittivity in the layers of the liquid medium and to determine the level of the interface between the layers of the two-layer liquid. The estimation of measurement errors is made.

  5. A cluster in a crowded environment: XMM-Newton and Chandra observations of A3558

    Science.gov (United States)

    Rossetti, M.; Ghizzardi, S.; Molendi, S.; Finoguenov, A.

    2007-03-01

    Combining XMM-Newton and Chandra data, we have performed a detailed study of Abell 3558. Our analysis shows that its dynamical history is more complicated than previously thought. We have found some traits typical of cool core clusters (surface brightness peaked at the center, peaked metal abundance profile) and others that are more common in merging clusters, like deviations from spherical symmetry in the thermodynamic quantities of the ICM. This last result has been achieved with a new technique for deriving temperature maps from images. We have also detected a cold front and, with the combined use of XMM-Newton and Chandra, we have characterized its properties, such as the speed and the metal abundance profile across the edge. This cold front is probably due to the sloshing of the core, induced by the perturbation of the gravitational potential associated with a past merger. The hydrodynamic processes related to this perturbation have presumably produced a tail of lower entropy, higher pressure and metal rich ICM, which extends behind the cold front for~500 kpc. The unique characteristics of A3558 are probably due to the very peculiar environment in which it is located: the core of the Shapley supercluster. Appendices A and B are only available in electronic form at http://www.aanda.org

  6. Coupled convective and conductive heat transfer by up-wind finite element method

    International Nuclear Information System (INIS)

    Kushwaha, H.S.

    1981-01-01

    Some of concepts relating to finite element formulation of the Navier-Stoke's equations using mixed formulation and Penality formulation have been discussed. The two different approaches for solution of nonlinear differential equations for two different types of formulation have been described. Incremental Newton Raphson method can also be applied to mixed formulation. (author)

  7. What can Numerical Computation do for the History of Science? (Study of an Orbit Drawn by Newton on a Letter to Hooke)

    Science.gov (United States)

    Stuchi, Teresa; Cardozo Dias, P.

    2013-05-01

    Abstract (2,250 Maximum Characters): On a letter to Robert Hooke, Isaac Newton drew the orbit of a mass moving under a constant attracting central force. How he drew the orbit may indicate how and when he developed dynamic categories. Some historians claim that Newton used a method contrived by Hooke; others that he used some method of curvature. We prove geometrically: Hooke’s method is a second order symplectic area preserving algorithm, and the method of curvature is a first order algorithm without special features; then we integrate the hamiltonian equations. Integration by the method of curvature can also be done exploring geometric properties of curves. We compare three methods: Hooke’s method, the method of curvature and a first order method. A fourth order algorithm sets a standard of comparison. We analyze which of these methods best explains Newton’s drawing.

  8. Energy storage cell impedance measuring apparatus, methods and related systems

    Science.gov (United States)

    Morrison, John L.; Morrison, William H.; Christophersen, Jon P.

    2017-12-26

    Energy storage cell impedance testing devices, circuits, and related methods are disclosed. An energy storage cell impedance measuring device includes a sum of sinusoids (SOS) current excitation circuit including differential current sources configured to isolate a ground terminal of the differential current sources from a positive terminal and a negative terminal of an energy storage cell. A method includes applying an SOS signal comprising a sum of sinusoidal current signals to the energy storage cell with the SOS current excitation circuit, each of the sinusoidal current signals oscillating at a different one of a plurality of different frequencies. The method also includes measuring an electrical signal at a positive terminal and a negative terminal of the energy storage cell, and computing an impedance of the energy storage cell at each of the plurality of different frequencies using the measured electrical signal.

  9. Methods for Dissecting Motivation and Related Psychological Processes in Rodents.

    Science.gov (United States)

    Ward, Ryan D

    2016-01-01

    Motivational impairments are increasingly recognized as being critical to functional deficits and decreased quality of life in patients diagnosed with psychiatric disease. Accordingly, much preclinical research has focused on identifying psychological and neurobiological processes which underlie motivation . Inferring motivation from changes in overt behavioural responding in animal models, however, is complicated, and care must be taken to ensure that the observed change is accurately characterized as a change in motivation , and not due to some other, task-related process. This chapter discusses current methods for assessing motivation and related psychological processes in rodents. Using an example from work characterizing the motivational impairments in an animal model of the negative symptoms of schizophrenia, we highlight the importance of careful and rigorous experimental dissection of motivation and the related psychological processes when characterizing motivational deficits in rodent models . We suggest that such work is critical to the successful translation of preclinical findings to therapeutic benefits for patients.

  10. Newton's laws of motion in form of Riccati equation

    OpenAIRE

    Nowakowski, M.; Rosu, H. C.

    2001-01-01

    We discuss two applications of Riccati equation to Newton's laws of motion. The first one is the motion of a particle under the influence of a power law central potential $V(r)=k r^{\\epsilon}$. For zero total energy we show that the equation of motion can be cast in the Riccati form. We briefly show here an analogy to barotropic Friedmann-Robertson-Lemaitre cosmology where the expansion of the universe can be also shown to obey a Riccati equation. A second application in classical mechanics, ...

  11. Milgrom's revision of Newton's laws: Dynamical and cosmological consequences

    International Nuclear Information System (INIS)

    Felten, J.E.; and University of Maryland, College Park)

    1984-01-01

    Milgrom's recent revision of Newtonian dynamics was introduced to eliminate the inference that large quantities of invisible mass exist in galaxies. I show by simple examples that a Milgrom acceleration, in the form presented so far, implies other far-reaching changes in dynamics. The momentum of an isolated system is not conserved, and the usual theorem for center-of-mass motion of any system does not hold. Naive applications require extreme caution. The model fails to provide a complete description of particle dynamics and should be thought of as a revision of Kepler's laws rather than Newton's

  12. Charge quantization of wormholes and the finiteness of Newton's constant

    International Nuclear Information System (INIS)

    Grinstein, B.

    1989-01-01

    We derive, from first principles, the equations of Lee which exhibit wormhole solutions. The interpretation of such solutions becomes more transparent: they are local extrema of the action which contribute to transition amplitudes between states of definite charge. Hence the charge carried by the wormhole is quantized. We briefly review Coleman's mechanism for the vanishing of the cosmological constant, with emphasis on the problem of the vanishing of Newton's constant G. A mechanism is proposed that could naturally make 1/G a bounded function of the wormhole parameters. (orig.)

  13. The calculus gallery masterpieces from Newton to Lebesgue

    CERN Document Server

    Dunham, William

    2008-01-01

    More than three centuries after its creation, calculus remains a dazzling intellectual achievement and the gateway into higher mathematics. This book charts its growth and development by sampling from the work of some of its foremost practitioners, beginning with Isaac Newton and Gottfried Wilhelm Leibniz in the late seventeenth century and continuing to Henri Lebesgue at the dawn of the twentieth--mathematicians whose achievements are comparable to those of Bach in music or Shakespeare in literature. William Dunham lucidly presents the definitions, theorems, and proofs. ""Students of literat

  14. Nine Years of XMM-Newton Pipeline: Experience and Feedback

    Science.gov (United States)

    Michel, Laurent; Motch, Christian

    2009-05-01

    The Strasbourg Astronomical Observatory is member of the Survey Science Centre (SSC) of the XMM-Newton satellite. Among other responsibilities, we provide a database access to the 2XMMi catalogue and run the part of the data processing pipeline performing the cross-correlation of EPIC sources with archival catalogs. These tasks were all developed in Strasbourg. Pipeline processing is flawlessly in operation since 1999. We describe here the work load and infrastructure setup in Strasbourg to support SSC activities. Our nine year long SSC experience could be used in the framework of the Simbol-X ground segment.

  15. Nine Years of XMM-Newton Pipeline: Experience and Feedback

    International Nuclear Information System (INIS)

    Michel, Laurent; Motch, Christian

    2009-01-01

    The Strasbourg Astronomical Observatory is member of the Survey Science Centre (SSC) of the XMM-Newton satellite. Among other responsibilities, we provide a database access to the 2XMMi catalogue and run the part of the data processing pipeline performing the cross-correlation of EPIC sources with archival catalogs. These tasks were all developed in Strasbourg. Pipeline processing is flawlessly in operation since 1999. We describe here the work load and infrastructure setup in Strasbourg to support SSC activities. Our nine year long SSC experience could be used in the framework of the Simbol-X ground segment.

  16. Distant Supervision for Relation Extraction with Ranking-Based Methods

    Directory of Open Access Journals (Sweden)

    Yang Xiang

    2016-05-01

    Full Text Available Relation extraction has benefited from distant supervision in recent years with the development of natural language processing techniques and data explosion. However, distant supervision is still greatly limited by the quality of training data, due to its natural motivation for greatly reducing the heavy cost of data annotation. In this paper, we construct an architecture called MIML-sort (Multi-instance Multi-label Learning with Sorting Strategies, which is built on the famous MIML framework. Based on MIML-sort, we propose three ranking-based methods for sample selection with which we identify relation extractors from a subset of the training data. Experiments are set up on the KBP (Knowledge Base Propagation corpus, one of the benchmark datasets for distant supervision, which is large and noisy. Compared with previous work, the proposed methods produce considerably better results. Furthermore, the three methods together achieve the best F1 on the official testing set, with an optimal enhancement of F1 from 27.3% to 29.98%.

  17. A year after lift-off, XMM-Newton is impressing the X-ray astronomy community

    Science.gov (United States)

    2000-11-01

    XMM-Newton was launched from Kourou on 10 December 1999 on the first Ariane-5 commercial flight. After in-orbit commissioning of the spacecraft, and calibration and performance verification of its science instruments, the observatory entered its routine operations phase on 1 July. At the press conference, ESA's Director of Science Prof. Roger-Maurice Bonnet and XMM-Newton Project Scientist Fred Jansen will present some of the many scientific results from the first eight months of the mission. Also present will be two of Europe's foremost X-ray astronomers, Prof. Johan Bleeker of the Space Research Organisation of the Netherlands, and Prof. Guenther Hasinger of the Astrophysikalisches Institut Potsdam, Germany. Amongst the topics to be illustrated with some remarkably vivid "colour" images of the X-ray Universe, will be XMM-Newton's first examination of a cataclysmic binary star, its first insights into some enigmatic black hole systems, analysis of the morphology of a few supernovae remnants, and evidence it has collected to end the long-standing mystery over X-ray cosmic background emission... The press conference will also recap on the spacecraft's operations, the performance of its science instruments, the issue of radiation constraints and future aspects of the mission. Media representatives wishing to attend the press event are kindly invited to complete the attached reply form and fax it back to ESA Media Relations Office +33(0)1.53.69.7690. Note to editors XMM-Newton is ESA's second Cornerstone Mission of the Horizon 2000 programme. The spacecraft was built by a European consortium of companies led by Astrium (formerly Dornier Satellitensysteme), Friedrichshafen, Germany. Its X-ray imaging and spectrographic instruments (EPIC and RGS) and its optical telescope (OM) were provided by large consortia, whose principal investigators are from, respectively, the University of Leicester, UK, SRON University of Utrecht Netherlands, and the Mullard Space Science

  18. A nonlinear relaxation/quasi-Newton algorithm for the compressible Navier-Stokes equations

    Science.gov (United States)

    Edwards, Jack R.; Mcrae, D. S.

    1992-01-01

    A highly efficient implicit method for the computation of steady, two-dimensional compressible Navier-Stokes flowfields is presented. The discretization of the governing equations is hybrid in nature, with flux-vector splitting utilized in the streamwise direction and central differences with flux-limited artificial dissipation used for the transverse fluxes. Line Jacobi relaxation is used to provide a suitable initial guess for a new nonlinear iteration strategy based on line Gauss-Seidel sweeps. The applicability of quasi-Newton methods as convergence accelerators for this and other line relaxation algorithms is discussed, and efficient implementations of such techniques are presented. Convergence histories and comparisons with experimental data are presented for supersonic flow over a flat plate and for several high-speed compression corner interactions. Results indicate a marked improvement in computational efficiency over more conventional upwind relaxation strategies, particularly for flowfields containing large pockets of streamwise subsonic flow.

  19. A quasi-Newton algorithm for large-scale nonlinear equations

    Directory of Open Access Journals (Sweden)

    Linghua Huang

    2017-02-01

    Full Text Available Abstract In this paper, the algorithm for large-scale nonlinear equations is designed by the following steps: (i a conjugate gradient (CG algorithm is designed as a sub-algorithm to obtain the initial points of the main algorithm, where the sub-algorithm’s initial point does not have any restrictions; (ii a quasi-Newton algorithm with the initial points given by sub-algorithm is defined as main algorithm, where a new nonmonotone line search technique is presented to get the step length α k $\\alpha_{k}$ . The given nonmonotone line search technique can avoid computing the Jacobian matrix. The global convergence and the 1 + q $1+q$ -order convergent rate of the main algorithm are established under suitable conditions. Numerical results show that the proposed method is competitive with a similar method for large-scale problems.

  20. XMM-Newton Observations of MBM 12: More Constraints on the Solar Wind Charge Exchange and Local Bubble Emissions

    Science.gov (United States)

    Koutroumpa, Dimitra; Smith, Randall K.; Edgar, Richard J.; Kuntz, Kip D.; Plucinsky, Paul P.; Snowden, Steven L.

    2010-01-01

    We present the first analysis of an XMM-Newton observation of the nearby molecular cloud MBM 12. We find that in the direction of MBM 12 the total O VII (0.57 keV) triplet emission is 1.8(+0.5/-0.6) photons/sq cm/s/sr (or Line Units - LU) while for the O VIII (0.65 keV) line emission we find a 3(sigma) upper limit of by Solar Wind Charge-eXchange (SWCX) which we compare to the XMM-Newton observations. This comparison provides new constraints on the relative heliospheric and Local Bubble contributions to the local diffuse X-ray background. The heliospheric SWCX model predicts 0.82 LU for O VII, which accounts for approx. 46+/-15% of the observed value, and 0.33 LU for the O VIII line emission consistent with the XMM-Newton observed value. We discuss our results in combination with previous observations of the MBM 12 with CHANDRA and Suzaku.

  1. Device for collecting chemical compounds and related methods

    Science.gov (United States)

    Scott, Jill R.; Groenewold, Gary S.; Rae, Catherine

    2013-01-01

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from the fixed surfaces so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  2. Theoretical and applied aerodynamics and related numerical methods

    CERN Document Server

    Chattot, J J

    2015-01-01

    This book covers classical and modern aerodynamics, theories and related numerical methods, for senior and first-year graduate engineering students, including: -The classical potential (incompressible) flow theories for low speed aerodynamics of thin airfoils and high and low aspect ratio wings. - The linearized theories for compressible subsonic and supersonic aerodynamics. - The nonlinear transonic small disturbance potential flow theory, including supercritical wing sections, the extended transonic area rule with lift effect, transonic lifting line and swept or oblique wings to minimize wave drag. Unsteady flow is also briefly discussed. Numerical simulations based on relaxation mixed-finite difference methods are presented and explained. - Boundary layer theory for all Mach number regimes and viscous/inviscid interaction procedures used in practical aerodynamics calculations. There are also four chapters covering special topics, including wind turbines and propellers, airplane design, flow analogies and h...

  3. Notes about Newton's Law corrections in non-factorizable geometries

    International Nuclear Information System (INIS)

    Santos, Victor Pereira do Nascimento; Almeida, Carlos Alberto Santos de

    2011-01-01

    Full text: Consistency of String Theory demands the existence of additional dimensions. Since then it was argued that, in order to observe the usual four-dimensional gravity, such dimensions must be compactified in such a way that they can only observed at very short distances. Localized gravity is however an alternative to compactification of extra dimensions, since it requires only the dominance of the ground state of Kaluza-Klein(KK) decomposition of the metric fluctuations over the other modes, associated to the extra dimensions. These modes have an interesting consequence in our world, which is the violation of the four-dimensional Newton's law of gravitation: massive KK modes contributes positively to the potential, leading to corrections which (usually) decreases faster than the inverse of distance. Moreover, the spectrum may have a gap, which is associated to a naked singularity along the additional dimensions. Each extra dimension presents a different contribution to this mass spectrum, since it can be compactified or not. Most of the work presented in literature consists in consider these contributions simultaneously. Our proposal in this work is to study the corrections to Newton's law due to the extra dimension scenario, studying separately the influence of one compact dimension and a non-compact one on the mass spectrum of the graviton. (author)

  4. An insight into Newton's cooling law using fractional calculus

    Science.gov (United States)

    Mondol, Adreja; Gupta, Rivu; Das, Shantanu; Dutta, Tapati

    2018-02-01

    For small temperature differences between a heated body and its environment, Newton's law of cooling predicts that the instantaneous rate of change of temperature of any heated body with respect to time is proportional to the difference in temperature of the body with the ambient, time being measured in integer units. Our experiments on the cooling of different liquids (water, mustard oil, and mercury) did not fit the theoretical predictions of Newton's law of cooling in this form. The solution was done using both Caputo and Riemann-Liouville type fractional derivatives to check if natural phenomena showed any preference in mathematics. In both cases, we find that cooling of liquids has an identical value of the fractional derivative of time that increases with the viscosity of the liquid. On the other hand, the cooling studies on metal alloys could be fitted exactly by integer order time derivative equations. The proportionality constant between heat flux and temperature difference was examined with respect to variations in the depth of liquid and exposed surface area. A critical combination of these two parameters signals a change in the mode of heat transfer within liquids. The equivalence between the proportionality constants for the Caputo and Riemann-Liouville type derivatives is established.

  5. Newton da Costa e a Filosofia da Quase-Verdade

    Directory of Open Access Journals (Sweden)

    Décio Krause

    2009-08-01

    Full Text Available This paper intends to introduce the three issues of Principia which will appear in a sequel honoring Newton da Costa’s 80th birthday. Instead of presenting the papers one by one, as it is common in presentations such as this one, we have left the papers speak by themselves, and instead we have preferred to present to the Brazilian readers, specialty to our students, some aspects of Newton da Costa’s conception of science and of the scientific activity, grounded on the concept of quasi-truth, which he contributed to develop in a rigorous way. Da Costa is known as one of the founding fathers of paraconsistent logic, but his contributions go also to the foundations of physics, theoretical computation, model theory, algebraic logic, lattice theory, applications of non-classical logics to law and technology, etc. But perhaps his main contribution was to provide a basis for the birth of a school of logic in our country (Brazil, serving as teacher and inspiring new researchers for generations. It is a pleasure to have had so enthusiastic acceptation from the editors of Principia to organize these volumes. I would like to thank the contributors and the editors of Principia, specially Prof. Cezar Mortari for his help in organizing the issue.

  6. Uncertainties related to numerical methods for neutron spectra unfolding

    International Nuclear Information System (INIS)

    Glodic, S.; Ninkovic, M.; Adarougi, N.A.

    1987-10-01

    One of the often used techniques for neutron detection in radiation protection utilities is the Bonner multisphere spectrometer. Besides its advantages and universal applicability for evaluating integral parameters of neutron fields in health physics practices, the outstanding problems of the method are data analysis and the accuracy of the results. This paper briefly discusses some numerical problems related to neutron spectra unfolding, such as uncertainty of the response matrix as a source of error, and the possibility of real time data reduction using spectrometers. (author)

  7. A method for investigating relative timing information on phylogenetic trees.

    Science.gov (United States)

    Ford, Daniel; Matsen, Frederick A; Stadler, Tanja

    2009-04-01

    In this paper, we present a new way to describe the timing of branching events in phylogenetic trees. Our description is in terms of the relative timing of diversification events between sister clades; as such it is complementary to existing methods using lineages-through-time plots which consider diversification in aggregate. The method can be applied to look for evidence of diversification happening in lineage-specific "bursts", or the opposite, where diversification between 2 clades happens in an unusually regular fashion. In order to be able to distinguish interesting events from stochasticity, we discuss 2 classes of neutral models on trees with relative timing information and develop a statistical framework for testing these models. These model classes include both the coalescent with ancestral population size variation and global rate speciation-extinction models. We end the paper with 2 example applications: first, we show that the evolution of the hepatitis C virus deviates from the coalescent with arbitrary population size. Second, we analyze a large tree of ants, demonstrating that a period of elevated diversification rates does not appear to have occurred in a bursting manner.

  8. XMM-Newton detects X-ray 'solar cycle' in distant star

    Science.gov (United States)

    2004-05-01

    The Sun as observed by SOHO hi-res Size hi-res: 708 Kb The Sun as observed by SOHO The Sun as observed by the ESA/NASA SOHO observatory near the minimum of the solar cycle (left) and near its maximum (right). The signs of solar activity near the maximum are clearly seen. New XMM-Newton observations suggest that this behaviour may be typical of stars like the Sun, such as HD 81809 in the constellation Hydra. Solar flare - 4 November 2003 The huge flare produced on 4 November 2003 This image of the Sun, obtained by the ESA/NASA SOHO observatory, shows the powerful X-ray flare that took place on 4 November 2003. The associated coronal mass ejection, coming out of the Sun at a speed of 8.2 million kilometres per hour, hit the Earth several hours later and caused disruptions to telecommunication and power distribution lines. New XMM-Newton observations suggest that this behaviour may be typical of stars like the Sun, such as HD 81809 in the constellation Hydra. Since the time Galileo discovered sunspots, in 1610, astronomers have measured their number, size and location on the disc of the Sun. Sunspots are relatively cooler areas on the Sun that are observed as dark patches. Their number rises and falls with the level of activity of the Sun in a cycle of about 11 years. When the Sun is very active, large-scale phenomena take place, such as the flares and coronal mass ejections observed by the ESA/NASA solar observatory SOHO. These events release a large amount of energy and charged particles that hit the Earth and can cause powerful magnetic storms, affecting radio communications, power distribution lines and even our weather and climate. During the solar cycle, the X-ray emission from the Sun varies by a large amount (about a factor of 100) and is strongest when the cycle is at its peak and the surface of the Sun is covered by the largest number of spots. ESA's X-ray observatory, XMM-Newton, has now shown for the first time that this cyclic X-ray behaviour is common to

  9. A CD with the wishes for the 21st century from thousands of readers of the science magazine "Newton", was buried at the Atlas construction site on 16.03.2000 (handling the CD: Giorgio Riviecco, Editor of "Newton")

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    A CD with the wishes for the 21st century from thousands of readers of the science magazine "Newton", was buried at the Atlas construction site on 16.03.2000 (handling the CD: Giorgio Riviecco, Editor of "Newton")

  10. Teaching Newton's Third Law of Motion in the Presence of Student Preconception

    Science.gov (United States)

    Poon, C. H.

    2006-01-01

    The concept of interaction that underlies Newton's Laws of Motion is compared with the students' commonsense ideas of force and motion. An approach to teaching Newton's Third Law of Motion is suggested that focuses on refining the student's intuitive thinking on the nature of interaction.

  11. Weight, the Normal Force and Newton's Third Law: Dislodging a Deeply Embedded Misconception

    Science.gov (United States)

    Low, David; Wilson, Kate

    2017-01-01

    On entry to university, high-achieving physics students from all across Australia struggle to identify Newton's third law force pairs. In particular, less than one in ten can correctly identify the Newton's third law reaction pair to the weight of (gravitational force acting on) an object. Most students incorrectly identify the normal force on the…

  12. Disk-galaxy density distribution from orbital speeds using Newton's law

    OpenAIRE

    Nicholson, Kenneth F.

    2000-01-01

    Given the dimensions (including thickness) of an axisymmetric galaxy, Newton's law is used in integral form to find the density distributions required to match a wide range of orbital speed profiles. Newton's law is not modified and no dark matter halos are required. The speed distributiions can have extreme shapes if they are reasonably smooth. Several examples are given.

  13. Disk-galaxy density distribution from orbital speeds using Newton's law, version 1.1

    OpenAIRE

    Nicholson, Kenneth F.

    2000-01-01

    Given the dimensions(including thickness) of an axisymmetric galaxy, Newton's law is used in integral form to find the density distributions required to match a wide range of orbital speed profiles. Newton's law is not modified and no dark-matter halos are required. The speed distributions can have extreme shapes if they are reasonably smooth. Several examples are given.

  14. The frictional Schroedinger-Newton equation in models of wave function collapse

    Energy Technology Data Exchange (ETDEWEB)

    Diosi, Lajos [Research Institute for Particle and Nuclear Physics, H-1525 Budapest 114, PO Box 49 (Hungary)

    2007-05-15

    Replacing the Newtonian coupling G by -iG, the Schroedinger--Newton equation becomes {sup f}rictional{sup .} Instead of the reversible Schroedinger-Newton equation, we advocate its frictional version to generate the set of pointer states for macroscopic quantum bodies.

  15. N=2 superconformal Newton-Hooke algebra and many-body mechanics

    International Nuclear Information System (INIS)

    Galajinsky, Anton

    2009-01-01

    A representation of the conformal Newton-Hooke algebra on a phase space of n particles in arbitrary dimension which interact with one another via a generic conformal potential and experience a universal cosmological repulsion or attraction is constructed. The minimal N=2 superconformal extension of the Newton-Hooke algebra and its dynamical realization in many-body mechanics are studied.

  16. Isaac Newton Institute of Chile: The fifteenth anniversary of its "Yugoslavia" Branch

    Science.gov (United States)

    Dimitrijević, M. S.

    In 2002, the Isaac Newton Institute of Chile established in Belgrade its "Yugoslavia" Branch, one of 15 branches in nine countries in Eastern Europe and Eurasia. On the occasion of fifteen years since its foundation, the activities of "Yugoslavia" Branch of the Isaac Newton Institute of Chile are briefly reviewed.

  17. Genius Is Not Immune to Persistent Misconceptions: Conceptual Difficulties Impeding Isaac Newton and Contemporary Physics Students.

    Science.gov (United States)

    Steinberg, Melvin S.; And Others

    Recent research has shown that serious misconceptions frequently survive high school and university instruction in mechanics. It is interesting to inquire whether Newton himself encountered conceptual difficulties before he wrote the "Principia." This paper compares Newton's pre-"Principia" beliefs, based upon his writings,…

  18. CAIXA: a catalogue of AGN in the XMM-Newton archive. III. Excess variance analysis

    NARCIS (Netherlands)

    Ponti, G.; Papadakis, I.; Bianchi, S.; Guainazzi, M.; Matt, G.; Uttley, P.; Bonilla, N.F.

    2012-01-01

    Context. We report on the results of the first XMM-Newton systematic "excess variance" study of all the radio quiet, X-ray un-obscured AGN. The entire sample consist of 161 sources observed by XMM-Newton for more than 10 ks in pointed observations, which is the largest sample used so far to study

  19. Spatially resolved spectroscopy analysis of the XMM-Newton large program on SN1006

    Science.gov (United States)

    Li, Jiang-Tao; Decourchelle, Anne; Miceli, Marco; Vink, Jacco; Bocchino, Fabrizio

    2016-04-01

    We perform analysis of the XMM-Newton large program on SN1006 based on our newly developed methods of spatially resolved spectroscopy analysis. We extract spectra from low and high resolution meshes. The former (3596 meshes) is used to roughly decompose the thermal and non-thermal components and characterize the spatial distributions of different parameters, such as temperature, abundances of different elements, ionization age, and electron density of the thermal component, as well as photon index and cutoff frequency of the non-thermal component. On the other hand, the low resolution meshes (583 meshes) focus on the interior region dominated by the thermal emission and have enough counts to well characterize the Si lines. We fit the spectra from the low resolution meshes with different models, in order to decompose the multiple plasma components at different thermal and ionization states and compare their spatial distributions. In this poster, we will present the initial results of this project.

  20. Newton-Gauss Algorithm of Robust Weighted Total Least Squares Model

    Directory of Open Access Journals (Sweden)

    WANG Bin

    2015-06-01

    Full Text Available Based on the Newton-Gauss iterative algorithm of weighted total least squares (WTLS, a robust WTLS (RWTLS model is presented. The model utilizes the standardized residuals to construct the weight factor function and the square root of the variance component estimator with robustness is obtained by introducing the median method. Therefore, the robustness in both the observation and structure spaces can be simultaneously achieved. To obtain standardized residuals, the linearly approximate cofactor propagation law is employed to derive the expression of the cofactor matrix of WTLS residuals. The iterative calculation steps for RWTLS are also described. The experiment indicates that the model proposed in this paper exhibits satisfactory robustness for gross errors handling problem of WTLS, the obtained parameters have no significant difference with the results of WTLS without gross errors. Therefore, it is superior to the robust weighted total least squares model directly constructed with residuals.

  1. Student understanding of the application of Newton's second law to rotating rigid bodies

    Science.gov (United States)

    Close, Hunter G.; Gomez, Luanna S.; Heron, Paula R. L.

    2013-06-01

    We report on an investigation of student understanding of rigid body dynamics in which we asked students in introductory calculus-based physics to compare the translational motions of identical rigid bodies subject to forces that differed only in the point of contact at which they were applied. There was a widespread tendency to claim that forces that cause rotational motion have a diminished effect on translational motion. A series of related problems was developed to examine whether similar errors would be made in other contexts, and interviews were conducted to probe student thinking in greater depth. In this paper, we describe the results of our investigation and also describe a series of different interventions that culminated in the development of a tutorial that improves student ability to apply Newton's second law to rotating rigid bodies.

  2. ‘Bobo-Newton Syndrome’: An Unwanted Gift from Man’s Best Friend

    Directory of Open Access Journals (Sweden)

    Kristin Y Popiel

    2013-01-01

    Full Text Available Capnocytophaga canimorsus is a facultative Gram-negative bacillus that is typically a constituent of the oral flora of dogs and cats. It was first isolated by Bobo and Newton in 1976 from a man presenting with meningitis following a dog bite. Transmission to humans follows various animal-related injuries, which may be gross or subtle. C canimorsus can cause a spectrum of syndromes ranging from skin and soft tissue infection to invasive disease such as meningitis or endocarditis. The present article reports a case of C canimorsus meningitis in a patient with the classic risk factor of alcoholic liver cirrhosis. Clinical suspicion was confirmed by culture and genetic identification of the blood isolate. The present article reviews the Capnocytophaga genus, the clinical syndromes most commonly associated with this zoonotic organism, its laboratory identification and treatment.

  3. Optical analogues of the Newton-Schrödinger equation and boson star evolution.

    Science.gov (United States)

    Roger, Thomas; Maitland, Calum; Wilson, Kali; Westerberg, Niclas; Vocke, David; Wright, Ewan M; Faccio, Daniele

    2016-11-14

    Many gravitational phenomena that lie at the core of our understanding of the Universe have not yet been directly observed. An example in this sense is the boson star that has been proposed as an alternative to some compact objects currently interpreted as being black holes. In the weak field limit, these stars are governed by the Newton-Schrodinger equation. Here we present an optical system that, under appropriate conditions, identically reproduces such equation in two dimensions. A rotating boson star is experimentally and numerically modelled by an optical beam propagating through a medium with a positive thermal nonlinearity and is shown to oscillate in time while also stable up to relatively high densities. For higher densities, instabilities lead to an apparent breakup of the star, yet coherence across the whole structure is maintained. These results show that optical analogues can be used to shed new light on inaccessible gravitational objects.

  4. XMM-Newton X-ray Observatory Guest Observer program (AO-1) at CASA

    Science.gov (United States)

    Skinner, Stephen L.

    2003-01-01

    In this research program, we obtained and analyzed X-ray observations of the Wolf-Rayet (WR) star WR 110 (HD 165688) using the XMM-Newton space-based observatory. Radio observations were also obtained using the Very Large Array (VLA) radio telescope located in New Mexico and operated by the Natl. Radio Astronomy Observatory (NRAO). This star was targeted for observations primarily because it is believed to be a single WR star without a companion. Single WR stars are thought to emit X-rays from cool plasma in shocks distributed throughout their powerful stellar winds. However, there has been little observational work done to test this idea since single WR stars are relatively weak X-ray sources and have been difficult to detect with previous generation telescopes. The launch of XMM-Newton provides a new telescope that is much more sensitive than its predecessors, allowing single WR stars to be studied in detail for the first time. X-ray emission was clearly detected from WR 110. Analysis of its spectrum yields a surprising result. Its X-ray emitting plasma is distributed over a range of temperatures and is dominated by relatively cool plasma with a characteristic temperature T is approximately 6 million K. Such plasma can be explained by existing theoretical wind shock models. However, the spectrum also shows hotter plasma whose temperature is uncertain but is thought to be in excess of T approximately 30 million K. The origin of this hotter plasma is yet unknown, but possible mechanisms are identified

  5. CoRE: A context-aware relation extraction method for relation completion

    KAUST Repository

    Li, Zhixu; Sharaf, Mohamed Abdel Fattah; Sitbon, Laurianne; Du, Xiaoyong; Zhou, Xiaofang

    2014-01-01

    We identify relation completion (RC) as one recurring problem that is central to the success of novel big data applications such as Entity Reconstruction and Data Enrichment. Given a semantic relation {\\cal R}, RC attempts at linking entity pairs between two entity lists under the relation {\\cal R}. To accomplish the RC goals, we propose to formulate search queries for each query entity \\alpha based on some auxiliary information, so that to detect its target entity \\beta from the set of retrieved documents. For instance, a pattern-based method (PaRE) uses extracted patterns as the auxiliary information in formulating search queries. However, high-quality patterns may decrease the probability of finding suitable target entities. As an alternative, we propose CoRE method that uses context terms learned surrounding the expression of a relation as the auxiliary information in formulating queries. The experimental results based on several real-world web data collections demonstrate that CoRE reaches a much higher accuracy than PaRE for the purpose of RC. © 1989-2012 IEEE.

  6. CoRE: A context-aware relation extraction method for relation completion

    KAUST Repository

    Li, Zhixu

    2014-04-01

    We identify relation completion (RC) as one recurring problem that is central to the success of novel big data applications such as Entity Reconstruction and Data Enrichment. Given a semantic relation {\\\\cal R}, RC attempts at linking entity pairs between two entity lists under the relation {\\\\cal R}. To accomplish the RC goals, we propose to formulate search queries for each query entity \\\\alpha based on some auxiliary information, so that to detect its target entity \\\\beta from the set of retrieved documents. For instance, a pattern-based method (PaRE) uses extracted patterns as the auxiliary information in formulating search queries. However, high-quality patterns may decrease the probability of finding suitable target entities. As an alternative, we propose CoRE method that uses context terms learned surrounding the expression of a relation as the auxiliary information in formulating queries. The experimental results based on several real-world web data collections demonstrate that CoRE reaches a much higher accuracy than PaRE for the purpose of RC. © 1989-2012 IEEE.

  7. Nonrelativistic fluids on scale covariant Newton-Cartan backgrounds

    Science.gov (United States)

    Mitra, Arpita

    2017-12-01

    The nonrelativistic covariant framework for fields is extended to investigate fields and fluids on scale covariant curved backgrounds. The scale covariant Newton-Cartan background is constructed using the localization of space-time symmetries of nonrelativistic fields in flat space. Following this, we provide a Weyl covariant formalism which can be used to study scale invariant fluids. By considering ideal fluids as an example, we describe its thermodynamic and hydrodynamic properties and explicitly demonstrate that it satisfies the local second law of thermodynamics. As a further application, we consider the low energy description of Hall fluids. Specifically, we find that the gauge fields for scale transformations lead to corrections of the Wen-Zee and Berry phase terms contained in the effective action.

  8. The role of Newton's constant in Einstein's gravity

    International Nuclear Information System (INIS)

    de Alfaro, V.

    1983-01-01

    The role of the Newton constant in Einstein particle physics is discussed. The troubles paguing the quantum theory of gravity, including the abscence of an effective cosmological constant, are discussed. The Planck length is studied. The key point is that gravity theory is invariant under general coordinate transformations (GCT). The law of transformations of a tensor under GCT, with attention on dilatations, is determined. The results are compared to the case of a conformal invariant theory in a flat space. The fields in the flat limit are redefined under this rule: in the flat limit the kinetic term must be invariant under conformal transformations. The procedure exhibits clearly the fundamental scale invariance of the Einstein theory

  9. Preconditioner considerations for an aerodynamic Newton-Krylov solver

    International Nuclear Information System (INIS)

    Chisholm, T.; Zingg, D.W.

    2003-01-01

    A fast Newton-Krylov algorithm is presented for solving the compressible Navier-Stokes equations on structured multi-block grids with application to turbulent aerodynamic flows. The one-equation Spalart-Allmaras model is used to provide the turbulent viscosity. The optimization of the algorithm is discussed. ILU(4) is suggested for a preconditioner, operating on a modified Jacobian matrix. An RCM reordering is used, with a suggested root node in the wake. The advantages of a matrix-free technique for forming matrix-vector products are shown. Three test cases are used to demonstrate convergence rates. Single-element cases are solved in less than 60 seconds on a desktop computer, while the solution of a multi-element case can be found in about 10 minutes. (author)

  10. A geometric feature of the Newton law of gravitation

    Directory of Open Access Journals (Sweden)

    Zhang Meirong

    2017-06-01

    Full Text Available In the Newton law of gravitation, the most miraculous fact is that the gravity is reciprocally proportional to the square of the distance between particles. In this paper, by assuming that the gravity is along with the line passing through particles and is proportional to the product of masses of particles, we will show that the above fact is equivalent to the geometric requirement that the gravity between two homogeneous balls is equal to that between two particles of the same masses located at the centers of balls. In fact, this will lead to a second-order Euler equation whose physical solution is reciprocally proportional to the square of the distance.

  11. Applicability of Newton's law of cooling in monetary economics

    Science.gov (United States)

    Todorović, Jadranka Đurović; Tomić, Zoran; Denić, Nebojša; Petković, Dalibor; Kojić, Nenad; Petrović, Jelena; Petković, Biljana

    2018-03-01

    Inflation is a phenomenon which attracts the attention of many researchers. Inflation is not a recent date phenomenon, but it has existed ever since money emerged in world's first economies. With the development of economy and market, inflation developed as well. Today, even though there is a considerable number of research papers on inflation, there is still not enough knowledge about all factors which might cause inflation, and influence its evolution and dynamics. Regression analysis is a powerful statistical tool which might help analyse a vast amount of data on inflation, and provide an answer to the question about the factors of inflation, as well as the way those factors influence it. In this article Newton's Law of Cooling was applied to determine the long-term dynamics of monetary aggregates and inflation in Serbia and Croatia.

  12. The Service Programme of the Isaac Newton Group of Telescopes

    Science.gov (United States)

    Méndez, J.

    2013-05-01

    The Service Programme of the Isaac Newton Group of Telescopes (Roque de los Muchachos Observatory, La Palma, Spain) aims at providing astronomers with a rapid and flexible tool for obtaining small sets of observations on the William Herschel Telescope up to 8 hours. This can be used to try new ideas or complement a regular observing programme allocated on the ING telescopes, for instance. Proposals are accepted from principal investigators working in an institution located in the United Kingdom, the Netherlands or Spain, but also regardless the nationality of the host institution. A monthly deadline for application submission takes place at midnight on the last day of each month but urgent requests submitted at any time can also be accepted. Proposals are generally withdrawn from the scheme after a one year period. In this poster we provide an overview of the programme and some statistics. More information can be obtained at http://www.ing.iac.es/astronomy/service/.

  13. XMM-NEWTON OBSERVATION OF THE α PERSEI CLUSTER

    International Nuclear Information System (INIS)

    Pillitteri, Ignazio; Evans, Nancy Remage; Wolk, Scott J.; Bruck Syal, Megan

    2013-01-01

    We report on the analysis of an archival observation of part of the α Persei cluster obtained with XMM-Newton. We detected 102 X-ray sources in the band 0.3-8.0 keV, of which 39 of them are associated with the cluster as evidenced by appropriate magnitudes and colors from Two Micron All Sky Survey photometry. We extend the X-ray luminosity distribution (XLD) for M dwarfs, to add to the XLD found for hotter dwarfs from spatially extensive surveys of the whole cluster by ROSAT. Some of the hotter stars are identified as a background, possible slightly older group of stars at a distance of approximately 500 pc.

  14. Short distance modifications to Newton's law in SUSY braneworld scenarios

    International Nuclear Information System (INIS)

    Palma, G.A.

    2007-10-01

    In braneworld models coming from string theory one generally encounters massless scalar degrees of freedom -moduli- parameterizing the volume of small compact extra-dimensions. Here we discuss the effects of such moduli on Newton's law for a fairly general 5-D supersymmetric braneworld scenario with a bulk scalar field φ.We show that the Newtonian potential describing the gravitational interaction between two bodies localized on the visible brane picks up a non-trivial contribution at short distances that depends on the shape of the superpotential W(φ) of the theory. In particular, we compute this contribution for dilatonic braneworld scenarios W(φ) ∝ e αφ (where a is a constant) and discuss the particular case of 5-D Heterotic M-theory. (orig.)

  15. Separation methods for acyclovir and related antiviral compounds.

    Science.gov (United States)

    Loregian, A; Gatti, R; Palù, G; De Palo, E F

    2001-11-25

    Acyclovir (ACV) is an antiviral drug, which selectively inhibits replication of members of the herpes group of DNA viruses with low cell toxicity. Valaciclovir (VACV), a prodrug of ACV is usually preferred in the oral treatment of viral infections, mainly herpes simplex virus (HSV). Also other analogues such as ganciclovir and penciclovir are discussed here. The former acts against cytomegalovirus (CMV) in general and the latter against CMV retinitis. The action mechanism of these antiviral drugs is presented briefly here, mainly via phosphorylation and inhibition of the viral DNA polymerase. The therapeutic use and the pharmacokinetics are also outlined. The measurement of the concentration of acyclovir and related compounds in biological samples poses a particularly significant challenge because these drugs tend to be structurally similar to endogenous substances. The analysis requires the use of highly selective analytical techniques and chromatography methods are a first choice to determine drug content in pharmaceuticals and to measure them in body fluids. Chromatography can be considered the procedure of choice for the bio-analysis of this class of antiviral compounds, as this methodology is characterised by good specificity and accuracy and it is particularly useful when metabolites need to be monitored. Among chromatographic techniques, the reversed-phase (RP) HPLC is widely used for the analysis. C18 Silica columns from 7.5 to 30 cm in length are used, the separation is carried out mainly at room temperature and less than 10 min is sufficient for the analysis at 1.0-1.5 ml/min of flow-rate. The separation methods require an isocratic system, and various authors have proposed a variety of mobile phases. The detection requires absorbance or fluorescence measurements carried out at 250-254 nm and at lambdaex=260-285 nm, lambdaem=375-380 nm, respectively. The detection limit is about 0.3-10 ng/ml but the most important aspect is related to the sample treatment

  16. The Restless Universe - Understanding X-Ray Astronomy in the Age of Chandra and Newton

    Science.gov (United States)

    Schlegel, Eric M.

    2002-10-01

    Carl Sagan once noted that there is only one generation that gets to see things for the first time. We are in the midst of such a time right now, standing on the threshold of discovery in the young and remarkable field of X-ray astronomy. In The Restless Universe , astronomer Eric Schlegel offers readers an informative survey of this cutting-edge science. Two major space observatories launched in the last few years--NASA's Chandra and the European Newton --are now orbiting the Earth, sending back a gold mine of data on the X-ray universe. Schlegel, who has worked on the Chandra project for seven years, describes the building and launching of this space-based X-ray observatory. But the book goes far beyond the story of Chandra . What Schlegel provides here is the background a nonscientist would need to grasp the present and follow the future of X-ray astronomy. He looks at the relatively brief history of the field, the hardware used to detect X-rays, the satellites--past, present, and future--that have been or will be flown to collect the data, the way astronomers interpret this data, and, perhaps most important, the insights we have already learned as well as speculations about what we may soon discover. And throughout the book, Schlegel conveys the excitement of looking at the universe from the perspective brought by these new observatories and the sharper view they deliver. Drawing on observations obtained from Chandra, Newton , and previous X-ray observatories, The Restless Universe gives a first look at an exciting field which significantly enriches our understanding of the universe.

  17. Compositions comprising enhanced graphene oxide structures and related methods

    Science.gov (United States)

    Kumar, Priyank Vijaya; Bardhan, Neelkanth M.; Belcher, Angela; Grossman, Jeffrey

    2016-12-27

    Embodiments described herein generally relate to compositions comprising a graphene oxide species. In some embodiments, the compositions advantageously have relatively high oxygen content, even after annealing.

  18. Relative Contributions of Three Descriptive Methods: Implications for Behavioral Assessment

    Science.gov (United States)

    Pence, Sacha T.; Roscoe, Eileen M.; Bourret, Jason C.; Ahearn, William H.

    2009-01-01

    This study compared the outcomes of three descriptive analysis methods--the ABC method, the conditional probability method, and the conditional and background probability method--to each other and to the results obtained from functional analyses. Six individuals who had been diagnosed with developmental delays and exhibited problem behavior…

  19. New Conjugacy Conditions and Related Nonlinear Conjugate Gradient Methods

    International Nuclear Information System (INIS)

    Dai, Y.-H.; Liao, L.-Z.

    2001-01-01

    Conjugate gradient methods are a class of important methods for unconstrained optimization, especially when the dimension is large. This paper proposes a new conjugacy condition, which considers an inexact line search scheme but reduces to the old one if the line search is exact. Based on the new conjugacy condition, two nonlinear conjugate gradient methods are constructed. Convergence analysis for the two methods is provided. Our numerical results show that one of the methods is very efficient for the given test problems

  20. Newton law on the generalized singular brane with and without 4d induced gravity

    International Nuclear Information System (INIS)

    Jung, Eylee; Kim, Sung-Hoon; Park, D.K.

    2003-01-01

    Newton law arising due to the gravity localized on the general singular brane embedded in AdS 5 bulk is examined in the absence or presence of the 4d induced Einstein term. For the RS brane, apart from the subleading correction, Newton potential obeys 4d- and 5d-type gravitational law at long- and short-ranges if it were not for the induced Einstein term. The 4d induced Einstein term generates an intermediate range at short distance, in which the 5d Newton potential 1/r 2 emerges. For Neumann brane the long-range behavior of Newton potential is exponentially suppressed regardless of the existence of the induced Einstein term. For Dirichlet brane the expression of Newton potential is dependent on the renormalized coupling constant v ren . At particular value of v ren Newton potential on Dirichlet brane exhibits a similar behavior to that on RS brane. For other values the long-range behavior of Newton potential is exponentially suppressed as that in Neumann brane

  1. Parallel Quasi Newton Algorithms for Large Scale Non Linear Unconstrained Optimization

    International Nuclear Information System (INIS)

    Rahman, M. A.; Basarudin, T.

    1997-01-01

    This paper discusses about Quasi Newton (QN) method to solve non-linear unconstrained minimization problems. One of many important of QN method is choice of matrix Hk. to be positive definite and satisfies to QN method. Our interest here is the parallel QN methods which will suite for the solution of large-scale optimization problems. The QN methods became less attractive in large-scale problems because of the storage and computational requirements. How ever, it is often the case that the Hessian is space matrix. In this paper we include the mechanism of how to reduce the Hessian update and hold the Hessian properties.One major reason of our research is that the QN method may be good in solving certain type of minimization problems, but it is efficiency degenerate when is it applied to solve other category of problems. For this reason, we use an algorithm containing several direction strategies which are processed in parallel. We shall attempt to parallelized algorithm by exploring different search directions which are generated by various QN update during the minimization process. The different line search strategies will be employed simultaneously in the process of locating the minimum along each direction.The code of algorithm will be written in Occam language 2 which is run on the transputer machine

  2. The McMillan and Newton polygons of a feedback system and the construction of root loci

    Science.gov (United States)

    Byrnes, C. I.; Stevens, P. K.

    1982-01-01

    The local behaviour of root loci around zeros and poles is investigated. This is done by relating the Newton diagrams which arise in the local analysis to the McMillan structure of the open-loop system, by means of what we shall call the McMillan polygon. This geometric construct serves to clarify the precise relationship between the McMillan structure, the principal structure, and the branching patterns of the root loci. In addition, several rules are obtained which are useful in the construction of the root loci of multivariable control systems.

  3. A gravitação universal na filosofia da natureza de Isaac Newton

    OpenAIRE

    Garcia, Valdinei Gomes

    2010-01-01

    Resumo: Esta pesquisa apresenta um estudo sobre o conceito de força gravitacional na filosofia da natureza de Isaac Newton. O presente texto foi elaborado a partir dos argumentos desenvolvidos por Newton para defender esse conceito em sua obra mais importante, o Philosophiae Naturalis Principia Mathematica (1687). Será visto que, em tais argumentos, Newton restringe o conceito de força gravitacional a partir de um tratamento matemático, que ele próprio elaborou em sua obra. Por outro lado, Ne...

  4. XMM-Newton On-demand Reprocessing Using SaaS Technology

    Science.gov (United States)

    Ibarra, A.; Fajersztejn, N.; Loiseau, N.; Gabriel, C.

    2014-05-01

    We present here the architectural design of the new on-the-fly reprocessing capabilities that will be soon developed and implemented in the new XMM-Newton Science Operation Centre. The inclusion of processing capabilities into the archive, as we plan, will be possible thanks to the recent refurbishment of the XMM-Newton science archive, its alignment with the latest web technologies and the XMM-Newton Remote Interface for Science Analysis (RISA), a revolutionary idea of providing processing capabilities through internet services.

  5. On-the-fly XMM-Newton Spacecraft Data Reduction on the Grid

    Directory of Open Access Journals (Sweden)

    A. Ibarra

    2006-01-01

    Full Text Available We present the results of the first prototype of a XMM-Newton pipeline processing task, parallelized at a CCD level, which can be run in a Grid system. By using the Grid Way application and the XMM-Newton Science Archive system, the processing of the XMM-Newton data is distributed across the Virtual Organization (VO constituted by three different research centres: ESAC (European Space Astronomy Centre, ESTEC (the European Space research and TEchnology Centre and UCM (Complutense University of Madrid. The proposed application workflow adjusts well to the Grid environment, making use of the massive parallel resources in a flexible and adaptive fashion.

  6. Truncated Gauss-Newton Implementation for Multi-Parameter Full Waveform Inversion

    Science.gov (United States)

    Liu, Y.; Yang, J.; Dong, L.; Wang, Y.

    2014-12-01

    Full waveform inversion (FWI) is a numerical optimization method which aims at minimizing the difference between the synthetic and recorded seismic data to obtain high resolution subsurface images. A practical implementation for FWI is the adjoint-state method (AD), in which the data residuals at receiver locations are simultaneously back-propagated to form the gradient. Scattering-integral method (SI) is an alternative way which is based on the explicit building of the sensitivity kernel (Fréchet derivative matrix). Although it is more memory-consuming, SI is more efficient than AD when the number of the sources is larger than the number of the receivers. To improve the convergence of FWI, the information carried out by the inverse Hessian operator is crucial. Taking account accurately of the effect of this operator in FWI can correct illumination deficits, reserve the amplitude of the subsurface parameters, and remove artifacts generated by multiple reflections. In multi-parameter FWI, the off-diagonal blocks of the Hessian operator reflect the coupling between different parameter classes. Therefore, incorporating its inverse could help to mitigate the trade-off effects. In this study, we focus on the truncated Gauss-Newton implementation for multi-parameter FWI. The model update is computed through a matrix-free conjugate gradient solution of the Newton linear system. Both the gradient and the Hessian-vector product are calculated using the SI approach instead of the first- and second-order AD. However, the gradient expressed by kernel-vector product is calculated through the accumulation of the decomposed vector-scalar products. Thus, it's not necessary to store the huge sensitivity matrix beforehand. We call this method the matrix decomposition approach (MD). And the Hessian-vector product is replaced by two kernel-vector products which are then calculated by the above MD. By this way, we don't need to solve two additional wave propagation problems as in the

  7. Beyond Descartes and Newton: Recovering life and humanity.

    Science.gov (United States)

    Kauffman, Stuart A; Gare, Arran

    2015-12-01

    Attempts to 'naturalize' phenomenology challenge both traditional phenomenology and traditional approaches to cognitive science. They challenge Edmund Husserl's rejection of naturalism and his attempt to establish phenomenology as a foundational transcendental discipline, and they challenge efforts to explain cognition through mainstream science. While appearing to be a retreat from the bold claims made for phenomenology, it is really its triumph. Naturalized phenomenology is spearheading a successful challenge to the heritage of Cartesian dualism. This converges with the reaction against Cartesian thought within science itself. Descartes divided the universe between res cogitans, thinking substances, and res extensa, the mechanical world. The latter won with Newton and we have, in most of objective science since, literally lost our mind, hence our humanity. Despite Darwin, biologists remain children of Newton, and dream of a grand theory that is epistemologically complete and would allow lawful entailment of the evolution of the biosphere. This dream is no longer tenable. We now have to recognize that science and scientists are within and part of the world we are striving to comprehend, as proponents of endophysics have argued, and that physics, biology and mathematics have to be reconceived accordingly. Interpreting quantum mechanics from this perspective is shown to both illuminate conscious experience and reveal new paths for its further development. In biology we must now justify the use of the word "function". As we shall see, we cannot prestate the ever new biological functions that arise and constitute the very phase space of evolution. Hence, we cannot mathematize the detailed becoming of the biosphere, nor write differential equations for functional variables we do not know ahead of time, nor integrate those equations, so no laws "entail" evolution. The dream of a grand theory fails. In place of entailing laws, a post-entailing law explanatory framework

  8. Syngas conversion to a light alkene and related methods

    Science.gov (United States)

    Ginosar, Daniel M.; Petkovic, Lucia M.

    2017-11-14

    Methods of producing a light alkene. The method comprises contacting syngas and tungstated zirconia to produce a product stream comprising at least one light alkene. The product stream is recovered. Methods of converting syngas to a light alkene are also disclosed. The method comprises heating a precursor of tungstated zirconia to a temperature of between about 350.degree. C. and about 550.degree. C. to form tungstated zirconia. Syngas is flowed over the tungstated zirconia to produce a product stream comprising at least one light alkene and the product stream comprising the at least one light alkene is recovered.

  9. Newton shows the light: a commentary on Newton (1672) ‘A letter … containing his new theory about light and colours…’

    Science.gov (United States)

    Fara, Patricia

    2015-01-01

    Isaac Newton's reputation was initially established by his 1672 paper on the refraction of light through a prism; this is now seen as a ground-breaking account and the foundation of modern optics. In it, he claimed to refute Cartesian ideas of light modification by definitively demonstrating that the refrangibility of a ray is linked to its colour, hence arguing that colour is an intrinsic property of light and does not arise from passing through a medium. Newton's later significance as a world-famous scientific genius and the apparent confirmation of his experimental results have tended to obscure the realities of his reception at the time. This paper explores the rhetorical strategies Newton deployed to convince his audience that his conclusions were certain and unchallengeable. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750143

  10. The Five Star Method: A Relational Dream Work Methodology

    Science.gov (United States)

    Sparrow, Gregory Scott; Thurston, Mark

    2010-01-01

    This article presents a systematic method of dream work called the Five Star Method. Based on cocreative dream theory, which views the dream as the product of the interaction between dreamer and dream, this creative intervention shifts the principal focus in dream analysis from the interpretation of static imagery to the analysis of the dreamer's…

  11. Advanced nursing practice and Newton's three laws of motion.

    Science.gov (United States)

    Sturgeon, David

    This article considers the reasons for the development of advanced practice roles among nurses and other healthcare professions. It explores the implications of financial constraints, consumer preferences and the development of new healthcare services on the reorganization of professional boundaries. It makes use of Sir Isaac Newton's three laws of motion to demonstrate how professional development in nursing has taken place in response to a number of external influences and demands. It also considers the significance of skill mix for the nursing profession, in particular the development and likely expansion of the physician assistant role. The application of different professionals and grades within a healthcare team or organization is central to the Government's Agenda for Change proposals and nurses have successfully adopted a number of roles traditionally performed by doctors. Nurses have demonstrated that they are capable of providing high quality care and contributing directly to positive patient outcome. Advanced nursing roles should not only reflect the changing nature of healthcare work, they should also be actively engaged in reconstructing healthcare boundaries.

  12. Milgrom's revision of cosmic dynamics: Amending Newton's laws or Keplers

    International Nuclear Information System (INIS)

    Felten, J.E.

    1983-12-01

    Milgrom's recent revision of Newtonian dynamics was introduced to eliminate the inference that large quantities of invisible mass exist in galaxies. Simple examples show that a Milgrom acceleration, in the form presented so far, imply other far-reaching changes in dynamics. The momentum of an isolated system is not conserved, and the usual theorem for center-of-mass motion of any system does not hold. Naive applications require extreme caution. The model fails to provide a complete description of particle dynamics and should be thought of as a revision of Kepler's laws rather than Newton's. The Milgrom acceleration also implies fundamental changes in cosmology. A quasi-Newtonian calculation adapted from Newtonian cosmology suggests that a Milgrom universe will recollapse even if the classical closure parameter theta is less than 1. The solution, however, fails to satisfy the cosmological principle. Reasons for the breakdown of this calculation are examined. A theory of gravitation needed before the behavior of a Milgrom universe can be predicted

  13. Milgrom's revision of Newton's laws - Dynamical and cosmological consequences

    Science.gov (United States)

    Felten, J. E.

    1984-01-01

    Milgrom's (1983) recent revision of Newtonian dynamics was introduced to eliminate the inference that large quantities of invisible mass exist in galaxies. It is shown by simple examples that a Milgrom acceleration, in the form presented so far, implies other far-reaching changes in dynamics. The momentum of an isolated system is not conserved, and the usual theorem for center-of-mass motion of any system does not hold. Naive applications require extreme caution. The model fails to provide a complete description of particle dynamics and should be thought of as a revision of Kepler's laws rather than Newton's. The Milgrom acceleration also implies fundamental changes in cosmology. A quasi-Newtonian calculation adapted from Newtonian cosmology suggests that a 'Milgrom universe' will recollapse even if the classical closure parameter Omega is much less than unity. The solution, however, fails to satisfy the cosmological principle. Reasons for the breakdown of this calculation are examined. A new theory of gravitation will be needed before the behavior of a Milgrom universe can be predicted.

  14. Milgrom's revision of cosmic dynamics: Amending Newton's laws or Keplers?

    Science.gov (United States)

    Felten, J. E.

    1983-01-01

    Milgrom's recent revision of Newtonian dynamics was introduced to eliminate the inference that large quantities of invisible mass exist in galaxies. Simple examples show that a Milgrom acceleration, in the form presented so far, imply other far-reaching changes in dynamics. The momentum of an isolated system is not conserved, and the usual theorem for center-of-mass motion of any system does not hold. Naive applications require extreme caution. The model fails to provide a complete description of particle dynamics and should be thought of as a revision of Kepler's laws rather than Newton's. The Milgrom acceleration also implies fundamental changes in cosmology. A quasi-Newtonian calculation adapted from Newtonian cosmology suggests that a Milgrom universe will recollapse even if the classical closure parameter theta is less than 1. The solution, however, fails to satisfy the cosmological principle. Reasons for the breakdown of this calculation are examined. A theory of gravitation needed before the behavior of a Milgrom universe can be predicted.

  15. HARPS3 for a roboticized Isaac Newton Telescope

    Science.gov (United States)

    Thompson, Samantha J.; Queloz, Didier; Baraffe, Isabelle; Brake, Martyn; Dolgopolov, Andrey; Fisher, Martin; Fleury, Michel; Geelhoed, Joost; Hall, Richard; González Hernández, Jonay I.; ter Horst, Rik; Kragt, Jan; Navarro, Ramón; Naylor, Tim; Pepe, Francesco; Piskunov, Nikolai; Rebolo, Rafael; Sander, Louis; Ségransan, Damien; Seneta, Eugene; Sing, David; Snellen, Ignas; Snik, Frans; Spronck, Julien; Stempels, Eric; Sun, Xiaowei; Santana Tschudi, Samuel; Young, John

    2016-08-01

    We present a description of a new instrument development, HARPS3, planned to be installed on an upgraded and roboticized Isaac Newton Telescope by end-2018. HARPS3 will be a high resolution (R≃115,000) echelle spectrograph with a wavelength range from 380-690 nm. It is being built as part of the Terra Hunting Experiment - a future 10- year radial velocity measurement programme to discover Earth-like exoplanets. The instrument design is based on the successful HARPS spectrograph on the 3.6m ESO telescope and HARPS-N on the TNG telescope. The main changes to the design in HARPS3 will be: a customised fibre adapter at the Cassegrain focus providing a stabilised beam feed and on-sky fibre diameter ≍1:4 arcsec, the implementation of a new continuous ow cryostat to keep the CCD temperature very stable, detailed characterisation of the HARPS3 CCD to map the effective pixel positions and thus provide an improved accuracy wavelength solution, an optimised integrated polarimeter and the instrument integrated into a robotic operation. The robotic operation will optimise our programme which requires our target stars to be measured on a nightly basis. We present an overview of the entire project, including a description of our anticipated robotic operation.

  16. Topological dynamics of gyroscopic and Floquet lattices from Newton's laws

    Science.gov (United States)

    Lee, Ching Hua; Li, Guangjie; Jin, Guliuxin; Liu, Yuhan; Zhang, Xiao

    2018-02-01

    Despite intense interest in realizing topological phases across a variety of electronic, photonic, and mechanical platforms, the detailed microscopic origin of topological behavior often remains elusive. To bridge this conceptual gap, we show how hallmarks of topological modes—boundary localization and chirality—emerge from Newton's laws in mechanical topological systems. We first construct a gyroscopic lattice with analytically solvable edge modes, and show how the Lorentz and spring restoring forces conspire to support very robust "dangling bond" boundary modes. The chirality and locality of these modes intuitively emerges from microscopic balancing of restoring forces and cyclotron tendencies. Next, we introduce the highlight of this work, an experimentally realistic mechanical nonequilibrium (Floquet) Chern lattice driven by ac electromagnets. Through appropriate synchronization of the ac driving protocol, the Floquet lattice is "pushed around" by a rotating potential analogous to an object washed ashore by water waves. Besides hosting "dangling bond" chiral modes analogous to the gyroscopic boundary modes, our Floquet Chern lattice also supports peculiar half-period chiral modes with no static analog, i.e., analogs of anomalous Floquet Chern insulators edge modes. With key parameters controlled electronically, our setup has the advantage of being dynamically tunable for applications involving arbitrary Floquet modulations. The physical intuition gleaned from our two prototypical topological systems is applicable not just to arbitrarily complicated mechanical systems, but also photonic and electrical topological setups.

  17. ESA's XMM-Newton sees matter speed-racing around a black hole

    Science.gov (United States)

    2005-01-01

    other characteristics that have long eluded them. Dr Jane Turner (NASA Goddard Space Flight Center, Greenbelt, USA and University of Maryland Baltimore County, USA) presents this result today at a press conference at the American Astronomical Society in San Diego together with Dr Lance Miller (University of Oxford, United Kingdom). "For years we have seen only the general commotion caused by massive black holes, that is, a terrific outpouring of light," said Turner. "We could not track the specifics. Now, with XMM-Newton, we can filter through all that light and find patterns that reveal information about black holes never seen before in such clarity." Miller noted that if this black hole were placed in our Solar System, it would appear like a dark abyss spread out nearly as wide as Mercury's orbit. And the three clumps of matter detected would be as far out as Jupiter. They orbit the black hole in a lightning-quick 27 hours (compared to the 12 years it takes Jupiter to orbit the Sun). Black holes are regions in space in which gravity prevents all matter and light from escaping. What scientists see is not the black hole itself but rather the light emitted close to it as matter falls towards the black hole and heats to extremely high temperatures. Turner's team observed a well-known galaxy named Markarian 766, located about 170 million light years away in the constellation Coma Berenices (Bernice's Hair). The black hole in Markarian 766 is relatively small although highly active. Its mass is a few million times that of the Sun; other central black hole systems are over 100 million solar masses. Matter funnels into this black hole like water swirling down a drain, forming what scientists call an accretion disc. Flares erupt on this disc most likely when magnetic field lines emanating from the central black hole interact with regions on the disc. To measure the speed of the flares and the black hole mass, scientists used a technique that involves measuring the Doppler

  18. Astronomical and Cosmological Symbolism in Art Dedicated to Newton and Einstein

    Science.gov (United States)

    Sinclair, R.

    2013-04-01

    Separated by two and a half centuries, Isaac Newton (1642-1727) and Albert Einstein (1879-1955) had profound impacts on our understanding of the universe. Newton established our understanding of universal gravitation, which was recast almost beyond recognition by Einstein. Both discovered basic patterns behind astronomical phenomena and became the best-known scientists of their respective periods. I will describe here how artists of the 18th and 20th centuries represented the achievements of Newton and Einstein. Representations of Newton express reverence, almost an apotheosis, portraying him as the creator of the universe. Einstein, in a different age, is represented often as a comic figure, and only rarely do we find art that hints at the profound view of the universe he developed.

  19. Isaac Newton learns Hebrew: Samuel Johnson's Nova cubi Hebræi tabella

    Science.gov (United States)

    Joalland, Michael; Mandelbrote, Scott

    2016-01-01

    This article concerns the earliest evidence for Isaac Newton's use of Hebrew: a manuscript copy by Newton of part of a work intended to provide a reader of the Hebrew alphabet with the ability to identify or memorize more than 1000 words and to begin to master the conjugations of the Hebrew verb. In describing the content of this unpublished manuscript and establishing its source and original author for the first time, we suggest how and when Newton may have initially become acquainted with the language. Finally, basing our discussion in part on an examination of the reading marks that Newton left in the surviving copies of Hebrew grammars and lexicons that he owned, we will argue that his interest in Hebrew was not intended to achieve linguistic proficiency but remained limited to particular theological queries of singular concern.

  20. You err, Einstein.. Newton, Einstein, Heisenberg, and Feynman discuss quantum physics

    International Nuclear Information System (INIS)

    Fritzsch, Harald

    2008-01-01

    Harald Fritzsch and his star physicists Einstein, Heisenberg, and Feynman explain the central concept of nowadays physics, quantum mechanics, without it nothing goes in modern world. And the great Isaac newton puts the questions, which all would put

  1. 2016 Newton County, Georgia ADS100 4-Band 8 Bit Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of 0.5-foot pixel resolution, natural color orthoimages covering Newton County, Georgia. An orthoimage is remotely sensed image data in which...

  2. Improvements in or relating to methods of producing superconductors

    International Nuclear Information System (INIS)

    McDougall, I.L.

    1975-01-01

    A method is described for manufacturing a superconductor comprised of a superconducting intermetallic compound of at least two elements. The method consists of producing a composite containing at least one filament of at least one of the elements, this filament being embedded in a matrix material comprising a support material and the remainder of the elements. This material is coated with a material having a low self diffusion coefficient and which is insoluble in the matrix material. The remainder of the elements are allowed to diffuse into the filament and react to form the intermetallic compound. Full details are given of the application of the method, and examples are given. (U.K.)

  3. Successive Over Relaxation Method Which Uses Matrix Norms for ...

    African Journals Online (AJOL)

    An algorithm for S.O.R functional iteration which uses matrix norms for the Jacobi iteration matrices rather than the usual Power method, feasible in Newton Operator for the solution of nonlinear system of equations is proposed. We modified the S.O.R. iterative method known as Multiphase S.O.R. method for Newton ...

  4. Relative Merits of Four Methods for Scoring Cloze Tests.

    Science.gov (United States)

    Brown, James Dean

    1980-01-01

    Describes study comparing merits of exact answer, acceptable answer, clozentropy and multiple choice methods for scoring tests. Results show differences among reliability, mean item facility, discrimination and usability, but not validity. (BK)

  5. Newton's Use of the Pendulum to Investigate Fluid Resistance: A Case Study and Some Implications for Teaching about the Nature of Science

    Science.gov (United States)

    Gauld, Colin F.

    2009-01-01

    Books I and III of Newton's "Principia" develop Newton's dynamical theory and show how it explains a number of celestial phenomena. Book II has received little attention from historians or educators because it does not play a major role in Newton's argument. However, it is in Book II that we see most clearly Newton both as a theoretician and an…

  6. ["Anything goes"?: the implicit dialogue between Paul Feyerabend and two Brazilian researchers, Maurício da Rocha e Silva and Newton Freire-Maia].

    Science.gov (United States)

    Bastos, Francisco Inácio

    2010-03-01

    The philosopher Paul Feyerabend and Brazilian scientists Maurício da Rocha e Silva and Newton Freire-Maia were contemporaries and lived surrounded by the fundamental dilemnas of science. The anarchist proposal of Feyerabend, then embryonic, was formulated in parallel by Rocha e Silva in his criticism of the scientific method. Two decades later, Feyerabend's ideas seemed implicitly to stimulate Newton Freire-Maia in his reflections on science. The web of interrelationships in the ideas of these three men - who never interacted - touches on central issues for Brazilian science from 1960 to 1980, a period in which the latter is consolidated in a dialogue with the nascent reflection on science and the scientific method in Brazil.

  7. On deviations from Newton's law and the proposal for a 'Fifth Force'

    International Nuclear Information System (INIS)

    Ferreira, L.A.; Malbouisson, A.P.C.

    1986-01-01

    The results of geophysical and laboratory measurements of Newton's constant of gravitation, seem to disagree by one percent. Attempts to explain this have led to the revival of the proposal for a fifth interaction in Nature. The experimental results on measurements of G and tests of Newton's inverse square law are reviewed. The recent reanalysis of the Eoetvoes experiment and proposals for new experiments are discussed. (Author) [pt

  8. Nuclear and nuclear related analytical methods applied in environmental research

    International Nuclear Information System (INIS)

    Popescu, Ion V.; Gheboianu, Anca; Bancuta, Iulian; Cimpoca, G. V; Stihi, Claudia; Radulescu, Cristiana; Oros Calin; Frontasyeva, Marina; Petre, Marian; Dulama, Ioana; Vlaicu, G.

    2010-01-01

    Nuclear Analytical Methods can be used for research activities on environmental studies like water quality assessment, pesticide residues, global climatic change (transboundary), pollution and remediation. Heavy metal pollution is a problem associated with areas of intensive industrial activity. In this work the moss bio monitoring technique was employed to study the atmospheric deposition in Dambovita County Romania. Also, there were used complementary nuclear and atomic analytical methods: Neutron Activation Analysis (NAA), Atomic Absorption Spectrometry (AAS) and Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). These high sensitivity analysis methods were used to determine the chemical composition of some samples of mosses placed in different areas with different pollution industrial sources. The concentrations of Cr, Fe, Mn, Ni and Zn were determined. The concentration of Fe from the same samples was determined using all these methods and we obtained a very good agreement, in statistical limits, which demonstrate the capability of these analytical methods to be applied on a large spectrum of environmental samples with the same results. (authors)

  9. Methods for recovering metals from electronic waste, and related systems

    Science.gov (United States)

    Lister, Tedd E; Parkman, Jacob A; Diaz Aldana, Luis A; Clark, Gemma; Dufek, Eric J; Keller, Philip

    2017-10-03

    A method of recovering metals from electronic waste comprises providing a powder comprising electronic waste in at least a first reactor and a second reactor and providing an electrolyte comprising at least ferric ions in an electrochemical cell in fluid communication with the first reactor and the second reactor. The method further includes contacting the powders within the first reactor and the second reactor with the electrolyte to dissolve at least one base metal from each reactor into the electrolyte and reduce at least some of the ferric ions to ferrous ions. The ferrous ions are oxidized at an anode of the electrochemical cell to regenerate the ferric ions. The powder within the second reactor comprises a higher weight percent of the at least one base metal than the powder in the first reactor. Additional methods of recovering metals from electronic waste are also described, as well as an apparatus of recovering metals from electronic waste.

  10. CREME96 and Related Error Rate Prediction Methods

    Science.gov (United States)

    Adams, James H., Jr.

    2012-01-01

    Predicting the rate of occurrence of single event effects (SEEs) in space requires knowledge of the radiation environment and the response of electronic devices to that environment. Several analytical models have been developed over the past 36 years to predict SEE rates. The first error rate calculations were performed by Binder, Smith and Holman. Bradford and Pickel and Blandford, in their CRIER (Cosmic-Ray-Induced-Error-Rate) analysis code introduced the basic Rectangular ParallelePiped (RPP) method for error rate calculations. For the radiation environment at the part, both made use of the Cosmic Ray LET (Linear Energy Transfer) spectra calculated by Heinrich for various absorber Depths. A more detailed model for the space radiation environment within spacecraft was developed by Adams and co-workers. This model, together with a reformulation of the RPP method published by Pickel and Blandford, was used to create the CR ME (Cosmic Ray Effects on Micro-Electronics) code. About the same time Shapiro wrote the CRUP (Cosmic Ray Upset Program) based on the RPP method published by Bradford. It was the first code to specifically take into account charge collection from outside the depletion region due to deformation of the electric field caused by the incident cosmic ray. Other early rate prediction methods and codes include the Single Event Figure of Merit, NOVICE, the Space Radiation code and the effective flux method of Binder which is the basis of the SEFA (Scott Effective Flux Approximation) model. By the early 1990s it was becoming clear that CREME and the other early models needed Revision. This revision, CREME96, was completed and released as a WWW-based tool, one of the first of its kind. The revisions in CREME96 included improved environmental models and improved models for calculating single event effects. The need for a revision of CREME also stimulated the development of the CHIME (CRRES/SPACERAD Heavy Ion Model of the Environment) and MACREE (Modeling and

  11. Functional methods underlying classical mechanics, relativity and quantum theory

    International Nuclear Information System (INIS)

    Kryukov, A

    2013-01-01

    The paper investigates the physical content of a recently proposed mathematical framework that unifies the standard formalisms of classical mechanics, relativity and quantum theory. In the framework states of a classical particle are identified with Dirac delta functions. The classical space is ''made'' of these functions and becomes a submanifold in a Hilbert space of states of the particle. The resulting embedding of the classical space into the space of states is highly non-trivial and accounts for numerous deep relations between classical and quantum physics and relativity. One of the most striking results is the proof that the normal probability distribution of position of a macroscopic particle (equivalently, position of the corresponding delta state within the classical space submanifold) yields the Born rule for transitions between arbitrary quantum states.

  12. Symbolic manipulation methods in general relativity and fluid mechanics

    International Nuclear Information System (INIS)

    Cohen, I.

    1976-03-01

    Algebraic manipulation by computer, or automatic symbol manipulation (ASM) has not been used much in theoretical physics, especially if one compares it with numerical methods. Three examples of the use of ASM as a tool in theoretical physics are discussed. (Auth.)

  13. Materials comprising polydienes and hydrophilic polymers and related methods

    Science.gov (United States)

    Mays, Jimmy W [Knoxville, TN; Deng, Suxiang [Knoxville, TN; Mauritz, Kenneth A [Hattiesburg, MS; Hassan, Mohammad K [Hattiesburg, MS; Gido, Samuel P [Hadley, MA

    2011-11-22

    Materials prepared from polydienes, such as poly(cyclohexadiene), and hydrophilic polymers, such as poly(alkylene oxide), are described. Methods of making the materials and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization are also provided. The materials can be crosslinked and sulfonated, and can include copolymers and polymer blends.

  14. The relative efficiency of three methods of estimating herbage mass ...

    African Journals Online (AJOL)

    The methods involved were randomly placed circular quadrats; randomly placed narrow strips; and disc meter sampling. Disc meter and quadrat sampling appear to be more efficient than strip sampling. In a subsequent small plot grazing trial the estimates of herbage mass, using the disc meter, had a consistent precision ...

  15. Method for Surface Scanning in Medical Imaging and Related Apparatus

    DEFF Research Database (Denmark)

    2015-01-01

    A method and apparatus for surface scanning in medical imaging is provided. The surface scanning apparatus comprises an image source, a first optical fiber bundle comprising first optical fibers having proximal ends and distal ends, and a first optical coupler for coupling an image from the image...

  16. Gravity in minesmdashAn investigation of Newton's law

    International Nuclear Information System (INIS)

    Holding, S.C.; Stacey, F.D.; Tuck, G.J.

    1986-01-01

    The evidence that the value of the Newtonian gravitational constant G inferred from measurements of gravity g in mines and boreholes is of order 1% higher than the laboratory value is hardened with new and improved data from two mines in northwest Queensland. Surface-gravity surveys and more than 14 000 bore-core density values have been used to establish density structures for the mines, permitting full three-dimensional inversion to obtain G. Further constraint is imposed by requiring that the density structure give the same value of G for several vertical profiles of g, separated by hundreds of meters. The only residual doubt arises from the possibility of bias by an anomalous regional gravity gradient. Neither measurements of gravity gradient above ground level (in tall chimneys) nor surface surveys are yet adequate to remove this doubt, but the coincidence of conclusions derived from mine data obtained in different parts of the world makes such an anomaly appear an improbable explanation. If Newton's law is modified by adding a Yukawa term to the gravitational potential of a point mass m at distance r, V = -(G/sub infinity/m/r)(1+αe/sup -r/lambda/), then the mine data provide a mutual constraint on the values of α and lambda, although they cannot be determined independently. Our results give αroughly-equal-0.0075 if lambda or =10 4 m, with intermediate values of α between these ranges, but values greater than α = -0.010, lambda = 800 m appear to be disallowed by a comparison of satellite and land-surface estimates of gravity

  17. Printable semiconductor structures and related methods of making and assembling

    Science.gov (United States)

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang; , Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao; Ko, Heung Cho; Mack, Shawn

    2013-03-12

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  18. Exact methods for time constrained routing and related scheduling problems

    DEFF Research Database (Denmark)

    Kohl, Niklas

    1995-01-01

    of customers. In the VRPTW customers must be serviced within a given time period - a so called time window. The objective can be to minimize operating costs (e.g. distance travelled), fixed costs (e.g. the number of vehicles needed) or a combination of these component costs. During the last decade optimization......This dissertation presents a number of optimization methods for the Vehicle Routing Problem with Time Windows (VRPTW). The VRPTW is a generalization of the well known capacity constrained Vehicle Routing Problem (VRP), where a fleet of vehicles based at a central depot must service a set...... of J?rnsten, Madsen and S?rensen (1986), which has been tested computationally by Halse (1992). Both methods decompose the problem into a series of time and capacity constrained shotest path problems. This yields a tight lower bound on the optimal objective, and the dual gap can often be closed...

  19. Consumable core for manufacture of composite articles and related method

    Science.gov (United States)

    Taxacher, Glenn Curtis; de Diego, Peter; Gray, Paul Edward; Monaghan, Philip Harold

    2017-09-05

    Systems, methods and devices adapted to ease manufacture of composite articles (e.g., ceramic composite articles), particularly composite articles which include a hollow feature are disclosed. In one embodiment, a system includes: a consumable core formed to be disposed within an inner portion of a composite precursor, the consumable core adapted to convert into an infiltrant during a manufacturing process and infiltrate the composite precursor.

  20. XMM-Newton 13H deep field - I. X-ray sources

    Science.gov (United States)

    Loaring, N. S.; Dwelly, T.; Page, M. J.; Mason, K.; McHardy, I.; Gunn, K.; Moss, D.; Seymour, N.; Newsam, A. M.; Takata, T.; Sekguchi, K.; Sasseen, T.; Cordova, F.

    2005-10-01

    We present the results of a deep X-ray survey conducted with XMM-Newton, centred on the UK ROSAT13H deep field area. This region covers 0.18 deg2, and is the first of the two areas covered with XMM-Newton as part of an extensive multiwavelength survey designed to study the nature and evolution of the faint X-ray source population. We have produced detailed Monte Carlo simulations to obtain a quantitative characterization of the source detection procedure and to assess the reliability of the resultant sourcelist. We use the simulations to establish a likelihood threshold, above which we expect less than seven (3 per cent) of our sources to be spurious. We present the final catalogue of 225 sources. Within the central 9 arcmin, 68 per cent of source positions are accurate to 2 arcsec, making optical follow-up relatively straightforward. We construct the N(>S) relation in four energy bands: 0.2-0.5, 0.5-2, 2-5 and 5-10 keV. In all but our highest energy band we find that the source counts can be represented by a double power law with a bright-end slope consistent with the Euclidean case and a break around 10-14yergcm-2s-1. Below this flux, the counts exhibit a flattening. Our source counts reach densities of 700, 1300, 900 and 300 deg-2 at fluxes of 4.1 × 10-16,4.5 × 10-16,1.1 × 10-15 and 5.3 × 10-15ergcm-2s-1 in the 0.2-0.5, 0.5-2, 2-5 and 5-10 keV energy bands, respectively. We have compared our source counts with those in the two Chandra deep fields and Lockman hole, and found our source counts to be amongst the highest of these fields in all energy bands. We resolve >51 per cent (>50 per cent) of the X-ray background emission in the 1-2 keV (2-5 keV) energy bands.

  1. Dirichlet and Related Distributions Theory, Methods and Applications

    CERN Document Server

    Ng, Kai Wang; Tang, Man-Lai

    2011-01-01

    The Dirichlet distribution appears in many areas of application, which include modelling of compositional data, Bayesian analysis, statistical genetics, and nonparametric inference. This book provides a comprehensive review of the Dirichlet distribution and two extended versions, the Grouped Dirichlet Distribution (GDD) and the Nested Dirichlet Distribution (NDD), arising from likelihood and Bayesian analysis of incomplete categorical data and survey data with non-response. The theoretical properties and applications are also reviewed in detail for other related distributions, such as the inve

  2. Defining Requirements and Related Methods for Designing Sensorized Garments

    Directory of Open Access Journals (Sweden)

    Giuseppe Andreoni

    2016-05-01

    Full Text Available Designing smart garments has strong interdisciplinary implications, specifically related to user and technical requirements, but also because of the very different applications they have: medicine, sport and fitness, lifestyle monitoring, workplace and job conditions analysis, etc. This paper aims to discuss some user, textile, and technical issues to be faced in sensorized clothes development. In relation to the user, the main requirements are anthropometric, gender-related, and aesthetical. In terms of these requirements, the user’s age, the target application, and fashion trends cannot be ignored, because they determine the compliance with the wearable system. Regarding textile requirements, functional factors—also influencing user comfort—are elasticity and washability, while more technical properties are the stability of the chemical agents’ effects for preserving the sensors’ efficacy and reliability, and assuring the proper duration of the product for the complete life cycle. From the technical side, the physiological issues are the most important: skin conductance, tolerance, irritation, and the effect of sweat and perspiration are key factors for reliable sensing. Other technical features such as battery size and duration, and the form factor of the sensor collector, should be considered, as they affect aesthetical requirements, which have proven to be crucial, as well as comfort and wearability.

  3. Energy-saving control strategy for lighting system based on multivariate extremum seeking with Newton algorithm

    International Nuclear Information System (INIS)

    Yin, Chun; Dadras, Sara; Huang, Xuegang; Mei, Jun; Malek, Hadi; Cheng, Yuhua

    2017-01-01

    Highlights: • An energy-saving control strategy is proposed for multi-group lighting sources. • The proposed controller is designed to minimize the light-energy consumption. • It is designed to speed up the convergence rate without increasing the oscillation. • The minimal energy usage is guaranteed, while keeping the desired lighting level. • Experimental results shows the superiorities of the energy-saving control strategy. - Abstract: In recent years, the energy problem has been a universal concern. In order to improve the lighting energy efficiency and reduce the electric energy consumption, this paper develops an energy-saving control strategy for the lighting system with multiple lighting sources. The control strategy presented in this paper includes two parts: a new multivariate extremum seeking control method with Newton algorithm is developed to minimize the light-energy consumption by separately manipulating the brightness of multiple lighting sources, and a proportion-integration-differentiation control approach is adopted to realize the desired lighting level. The proposed scheme can increase the convergence speed of the closed loop system toward the minimum light-energy consumption, meanwhile, the accuracy of the control strategy will be improved. Experimental results illustrate that the light-energy consumption via the proposed method can reach more rapidly to a smaller vicinity of the minimum energy point, so, the lighting energy efficiency is greatly increased accordingly.

  4. Initiation devices, initiation systems including initiation devices and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Michael A.; Condit, Reston A.; Rasmussen, Nikki; Wallace, Ronald S.

    2018-04-10

    Initiation devices may include at least one substrate, an initiation element positioned on a first side of the at least one substrate, and a spark gap electrically coupled to the initiation element and positioned on a second side of the at least one substrate. Initiation devices may include a plurality of substrates where at least one substrate of the plurality of substrates is electrically connected to at least one adjacent substrate of the plurality of substrates with at least one via extending through the at least one substrate. Initiation systems may include such initiation devices. Methods of igniting energetic materials include passing a current through a spark gap formed on at least one substrate of the initiation device, passing the current through at least one via formed through the at least one substrate, and passing the current through an explosive bridge wire of the initiation device.

  5. Comparative Analysis and Variability of the Jovian X-Ray Spectra Detected by the Chandra and XMM-Newton Observatories

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Yawei [ORNL; Schultz, David Robert [ORNL; Kharchenko, Vasili A [ORNL; Bhardwaj, Anil [Vikram Sarabhai Space Center, Trivandrum, India; Branduardi-Raymont, Graziella [University College, London; Stancil, Phillip C. [University of Georgia, Athens, GA; Cravens, Thomas E. E. [University of Kansas; Lisse, Carey M. [Johns Hopkins University; Dalgarno, A. [Harvard-Smithsonian Center for Astrophysics

    2010-01-01

    Expanding upon recent work, a more comprehensive spectral model based on charge exchange induced X-ray emission by ions precipitating into the Jovian atmosphere is used to provide new understanding of the polar auroras. In conjunction with the Xspec spectral fitting software, the model is applied to analyze observations from both Chandra and XMM-Newton by systematically varying the initial precipitating ion parameters to obtain the best fit model for the observed spectra. In addition to the oxygen and sulfur ions considered previously, carbon is included to discriminate between solar wind and Jovian magnetospheric ion origins, enabled by the use of extensive databases of both atomic collision cross sections and radiative transitions. On the basis of fits to all the Chandra observations, we find that carbon contributes negligibly to the observed polar X-ray emission suggesting that the highly accelerated precipitating ions are of magnetospheric origin. Most of the XMM-Newton fits also favor this conclusion with one exception that implies a possible carbon contribution. Comparison among all the spectra from these two observatories in light of the inferred initial energies and relative abundances of precipitating ions from the modeling show that they are significantly variable in time (observation date) and space (north and south polar X-ray auroras).

  6. XMM-NEWTON MEASUREMENT OF THE GALACTIC HALO X-RAY EMISSION USING A COMPACT SHADOWING CLOUD

    International Nuclear Information System (INIS)

    Henley, David B.; Shelton, Robin L.; Cumbee, Renata S.; Stancil, Phillip C.

    2015-01-01

    Observations of interstellar clouds that cast shadows in the soft X-ray background can be used to separate the background Galactic halo emission from the local emission due to solar wind charge exchange (SWCX) and/or the Local Bubble (LB). We present an XMM-Newton observation of a shadowing cloud, G225.60–66.40, that is sufficiently compact that the on- and off-shadow spectra can be extracted from a single field of view (unlike previous shadowing observations of the halo with CCD-resolution spectrometers, which consisted of separate on- and off-shadow pointings). We analyzed the spectra using a variety of foreground models: one representing LB emission, and two representing SWCX emission. We found that the resulting halo model parameters (temperature T h ≈ 2 × 10 6 K, emission measure E h ≈4×10 −3  cm −6  pc) were not sensitive to the foreground model used. This is likely due to the relative faintness of the foreground emission in this observation. However, the data do favor the existence of a foreground. The halo parameters derived from this observation are in good agreement with those from previous shadowing observations, and from an XMM-Newton survey of the Galactic halo emission. This supports the conclusion that the latter results are not subject to systematic errors, and can confidently be used to test models of the halo emission

  7. Method and apparatus for probing relative volume fractions

    Science.gov (United States)

    Jandrasits, Walter G.; Kikta, Thomas J.

    1998-01-01

    A relative volume fraction probe particularly for use in a multiphase fluid system includes two parallel conductive paths defining therebetween a sample zone within the system. A generating unit generates time varying electrical signals which are inserted into one of the two parallel conductive paths. A time domain reflectometer receives the time varying electrical signals returned by the second of the two parallel conductive paths and, responsive thereto, outputs a curve of impedance versus distance. An analysis unit then calculates the area under the curve, subtracts the calculated area from an area produced when the sample zone consists entirely of material of a first fluid phase, and divides this calculated difference by the difference between an area produced when the sample zone consists entirely of material of the first fluid phase and an area produced when the sample zone consists entirely of material of a second fluid phase. The result is the volume fraction.

  8. Mathematical methods for students of physics and related fields

    CERN Document Server

    Hassani, Sadri

    2000-01-01

    Intended to follow the usual introductory physics courses, this book has the unique feature of addressing the mathematical needs of sophomores and juniors in physics, engineering and other related fields Many original, lucid, and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts help guide the student through the material Beginning with reviews of vector algebra and differential and integral calculus, the book continues with infinite series, vector analysis, complex algebra and analysis, ordinary and partial differential equations Discussions of numerical analysis, nonlinear dynamics and chaos, and the Dirac delta function provide an introduction to modern topics in mathematical physics This new edition has been made more user-friendly through organization into convenient, shorter chapters Also, it includes an entirely new section on Probability and plenty of new material on tensors and integral transforms Some praise for the previous edi...

  9. Mathematical Methods For Students of Physics and Related Fields

    CERN Document Server

    Hassani, Sadri

    2009-01-01

    Intended to follow the usual introductory physics courses, this book has the unique feature of addressing the mathematical needs of sophomores and juniors in physics, engineering and other related fields. Many original, lucid, and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts help guide the student through the material. Beginning with reviews of vector algebra and differential and integral calculus, the book continues with infinite series, vector analysis, complex algebra and analysis, ordinary and partial differential equations. Discussions of numerical analysis, nonlinear dynamics and chaos, and the Dirac delta function provide an introduction to modern topics in mathematical physics. This new edition has been made more user-friendly through organization into convenient, shorter chapters. Also, it includes an entirely new section on Probability and plenty of new material on tensors and integral transforms. Some praise for the previo...

  10. An experimental test of Newton's law of gravitation for small accelerations

    International Nuclear Information System (INIS)

    Schubert, Sven

    2011-10-01

    The experiment presented in this thesis has been designed to test Newton's law of gravitation in the limit of small accelerations caused by weak gravitational forces. It is located at DESY, Hamburg, and is a modification of an experiment that was carried out in Wuppertal, Germany, until 2002 in order to measure the gravitational constant G. The idea of testing Newton's law in the case of small accelerations emerged from the question whether the flat rotation curves of spiral galaxies can be traced back to Dark Matter or to a law of gravitation that deviates from Newton on cosmic scales like e.g. MOND (Modified Newtonian Dynamics). The core of this experiment is a microwave resonator which is formed by two spherical concave mirrors that are suspended as pendulums. Masses between 1 and 9 kg symmetrically change their distance to the mirrors from far to near positions. Due to the increased gravitational force the mirrors are pulled apart and the length of the resonator increases. This causes a shift of the resonance frequency which can be translated into a shift of the mirror distance. The small masses are sources of weak gravitational forces and cause accelerations on the mirrors of about 10 -10 m/s 2 . These forces are comparable to those between stars on cosmic scales and the accelerations are in the vicinity of the characteristic acceleration of MOND a 0 ∼ 1.2.10 -10 m/s 2 , where deviations from Newton's law are expected. Thus Newton's law could be directly checked for correctness under these conditions. First measurements show that due to the sensitivity of this experiment many systematic influences have to be accounted for in order to get consistent results. Newton's law has been confirmed with an accuracy of 3%. MOND has also been checked. In order to be able to distinguish Newton from MOND with other interpolation functions the accuracy of the experiment has to be improved. (orig.)

  11. Methods for the integral assessment of energy-related problems

    International Nuclear Information System (INIS)

    Hirschberg, S.; Suter, P.

    1995-01-01

    The present paper presents a number of methods for a comprehensive assessment of energy systems, discusses their merits and limitations, and provides some result examples. The areas addressed include environmental impacts, risks and economic aspects. Three step Life Cycle Analysis (LCA) has been used to analyse environmental impacts. Transparent and consistent inventories were developed for electricity generation (nine fuel cycles) and for heating systems. The results, which include gaseous and liquid emissions as well as non-energetic resources such as land depreciation, cover average, currently operating systems in the UCPTE network and in Switzerland. Examples of comparisons of heating systems and electricity generation systems, with respect to their contributions to such impact classes as greenhouse effect, acidification and photosmog, are provided. Major gaps exist with respect to the assessment of the severe accidents potential within the different energy systems. When analysing the objective risks due to severe accidents two approaches are employed, i.e. direct use of past experience and applications of Probabilistic Safety Assessment (PSA). Progress with respect to extended knowledge about accidents that occurred in the past and in the context of uses of PSA for external costs calculations is reported. Limitations of historical data and modelling issues are discussed along with the role of risk aversion and current attempts to account for it. (author) 10 figs., 1 tab

  12. On the characterization of single-event related brain activity from functional Magnetic Resonance Imaging (fMRI) measurements

    KAUST Repository

    Khoram, Nafiseh

    2014-08-01

    We propose an efficient numerical technique for calibrating the mathematical model that describes the singleevent related brain response when fMRI measurements are given. This method employs a regularized Newton technique in conjunction with a Kalman filtering procedure. We have applied this method to estimate the biophysiological parameters of the Balloon model that describes the hemodynamic brain responses. Illustrative results obtained with both synthetic and real fMRI measurements are presented. © 2014 IEEE.

  13. DECISIONS, METHODS AND TECHNIQUES RELATED TO DECISION SUPPORT SYSTEMS (DSS

    Directory of Open Access Journals (Sweden)

    Boghean Florin

    2015-07-01

    Full Text Available Generalised uncertainty, a phenomenon that today’s managers are facing as part of their professional experience, makes it impossible to anticipate the way the business environment will evolve or what will be the consequences of the decisions they plan to implement. Any decision making process within the company entails the simultaneous presence of a number of economic, technical, juridical, human and managerial variables. The development and the approval of a decision is the result of decision making activities developed by the decision maker and sometimes by a decision support team or/and a decision support system (DSS. These aspects related to specific applications of decision support systems in risk management will be approached in this research paper. Decisions in general and management decisions in particular are associated with numerous risks, due to their complexity and increasing contextual orientation. In each business entity, there are concerns with the implementation of risk management in order to improve the likelihood of meeting objectives, the trust of the parties involved, increase the operational safety and security as well as the protection of the environment, minimise losses, improve organisational resilience in order to diminish the negative impact on the organisation and provide a solid foundation for decision making. Since any business entity is considered to be a wealth generator, the analysis of their performance should not be restricted to financial efficiency alone, but will also encompass their economic efficiency as well. The type of research developed in this paper entails different dimensions: conceptual, methodological, as well as empirical testing. Subsequently, the conducted research entails a methodological side, since the conducted activities have resulted in the presentation of a simulation model that is useful in decision making processes on the capital market. The research conducted in the present paper

  14. Non-IgE-related diagnostic methods (LST, patch test).

    Science.gov (United States)

    Matsumoto, Kenji

    2015-01-01

    Although most food allergy patients have immediate-type reactions, some have delayed-type reactions. Unlike for the detection of food-specific IgE antibody in immediate-type (IgE-mediated) food allergies, only a few tests are currently available to aid in the diagnosis of delayed-type (non-IgE-mediated) food allergies. This chapter summarizes our current understanding of one in vitro test and one in vivo test for non-IgE-mediated food allergies: the lymphocyte stimulation test (LST) and the atopy patch test (APT). Although the LST is not yet standardized, a food protein-specific LST might be a useful tool for diagnosing delayed-type food allergies, and especially those manifesting with gastrointestinal symptoms but not skin symptoms. Various remaining issues - including basophil contamination of the peripheral blood mononuclear cell fraction and lipopolysaccharide contamination of food antigen preparations - are also discussed. The APT uses an epicutaneous patch technique to occlusively apply food antigens to the skin to induce inflammatory reactions at the patch application site. Because the APT shows modest sensitivity and specificity, the clinical benefit of the APT in the diagnosis of food allergies in patients with atopic dermatitis is limited. A position paper on the APT issued by the European Academy of Allergy and Clinical Immunology/Global Allergy and Asthma European Network in 2006 is briefly summarized, and several recent APT-related topics, including APT use for the diagnosis of food protein-induced enterocolitis syndrome, are discussed. © 2015 S. Karger AG, Basel.

  15. Time-domain incomplete Gauss-Newton full-waveform inversion of Gulf of Mexico data

    KAUST Repository

    AlTheyab, Abdullah

    2013-09-22

    We apply the incomplete Gauss-Newton full-waveform inversion (TDIGN-FWI) to Gulf of Mexico (GOM) data in the space-time domain. In our application, iterative least-squares reverse-time migration (LSRTM) is used to estimate the model update at each non-linear iteration, and the number of LSRTM iterations is progressively increased after each non-linear iteration. With this method, model updating along deep reflection wavepaths are automatically enhanced, which in turn improves imaging below the reach of diving-waves. The forward and adjoint operators are implemented in the space-time domain to simultaneously invert the data over a range of frequencies. A multiscale approach is used where higher frequencies are down-weighted significantly at early iterations, and gradually included in the inversion. Synthetic data results demonstrate the effectiveness of reconstructing both the high- and low-wavenumber features in the model without relying on diving waves in the inversion. Results with Gulf of Mexico field data show a significantly improved migration image in both the shallow and deep sections.

  16. Upconverting Nanoparticles as Optical Sensors of Nano- to Micro-Newton Forces

    Energy Technology Data Exchange (ETDEWEB)

    Lay, Alice; Wang, Derek S.; Wisser, Michael D.; Mehlenbacher, Randy D.; Lin, Yu [Stanford; Goodman, Miriam B.; Mao, Wendy L.; Dionne, Jennifer A.

    2017-06-08

    Mechanical forces affect a myriad of processes, from bone growth to material fracture to touch-responsive robotics. While nano- to micro-Newton forces are prevalent at the microscopic scale, few methods have the nanoscopic size and signal stability to measure them in vivo or in situ. Here, we develop an optical force-sensing platform based on sub-25 nm NaYF4 nanoparticles (NPs) doped with Yb3+, Er3+, and Mn2+. The lanthanides Yb3+ and Er3+ enable both photoluminescence and upconversion, while the energetically coupled d-metal Mn2+ adds force tunability through its crystal field sensitivity. Using a diamond anvil cell to exert up to 3.5 GPa pressure or ~10 μN force per particle, we track stress-induced spectral responses. The red (660 nm) to green (520, 540 nm) emission ratio varies linearly with pressure, yielding an observed color change from orange to red for α-NaYF4 and from yellow–green to green for d-metal optimized β-NaYF4 when illuminated in the near infrared. Consistent readouts are recorded over multiple pressure cycles and hours of illumination. With the nanoscopic size, a dynamic range of 100 nN to 10 μN, and photostability, these nanoparticles lay the foundation for visualizing dynamic mechanical processes, such as stress propagation in materials and force signaling in organisms.

  17. Cooling out the radiation damage on the XMM-Newton EPIC MOS CCDs

    Energy Technology Data Exchange (ETDEWEB)

    Abbey, A.F. E-mail: afa@star.le.ac.uk; Bennie, P.J.; Turner, M.J.L.; Altieri, B.; Rives, S

    2003-11-01

    The X-ray astronomy satellite XMM-Newton has been in an orbit taking it through the trapped radiation belts and direct solar proton flux during the peak of the current solar cycle for over two and a half years. The MOS CCD detectors (E2 V CCD22's) have degraded in charge transfer efficiency (CTE) as a result of damage created by high energy protons. Corrections for CTE in ground software have managed to restore most of the energy loss generated by the trapping sites, but the detector energy resolution has widened due to imperfect correction methods and the statistical noise generated by charge trapping. The detectors have been at -100 deg. C since launch, and they are qualified to operate down to -130 deg. C. Similar CCDs have been irradiated on the ground with 10 MeV protons and it was believed that the devices in orbit, although irradiated by much lower fluxes for longer times should exhibit the same improved CTE at lower temperatures. There was also concern that contrary to test devices on the ground, the devices in orbit had been almost continually cold for over 2 years and many bright pixels had developed giving a signal even at -100 deg. C, due possibly to radiation and the impact of micro-meteoroids. Cooling the CCDs in XMM to -120 deg. C demonstrated the expected improvement, and we intend to run both MOS cameras at the new temperature later in the year.

  18. Upconverting Nanoparticles as Optical Sensors of Nano- to Micro-Newton Forces.

    Science.gov (United States)

    Lay, Alice; Wang, Derek S; Wisser, Michael D; Mehlenbacher, Randy D; Lin, Yu; Goodman, Miriam B; Mao, Wendy L; Dionne, Jennifer A

    2017-07-12

    Mechanical forces affect a myriad of processes, from bone growth to material fracture to touch-responsive robotics. While nano- to micro-Newton forces are prevalent at the microscopic scale, few methods have the nanoscopic size and signal stability to measure them in vivo or in situ. Here, we develop an optical force-sensing platform based on sub-25 nm NaYF 4 nanoparticles (NPs) doped with Yb 3+ , Er 3+ , and Mn 2+ . The lanthanides Yb 3+ and Er 3+ enable both photoluminescence and upconversion, while the energetically coupled d-metal Mn 2+ adds force tunability through its crystal field sensitivity. Using a diamond anvil cell to exert up to 3.5 GPa pressure or ∼10 μN force per particle, we track stress-induced spectral responses. The red (660 nm) to green (520, 540 nm) emission ratio varies linearly with pressure, yielding an observed color change from orange to red for α-NaYF 4 and from yellow-green to green for d-metal optimized β-NaYF 4 when illuminated in the near infrared. Consistent readouts are recorded over multiple pressure cycles and hours of illumination. With the nanoscopic size, a dynamic range of 100 nN to 10 μN, and photostability, these nanoparticles lay the foundation for visualizing dynamic mechanical processes, such as stress propagation in materials and force signaling in organisms.

  19. Gravitational mass and Newton's universal gravitational law under relativistic conditions

    International Nuclear Information System (INIS)

    Vayenas, Constantinos G; Grigoriou, Dimitrios; Fokas, Athanasios

    2015-01-01

    We discuss the predictions of Newton's universal gravitational law when using the gravitational, m g , rather than the rest masses, m o , of the attracting particles. According to the equivalence principle, the gravitational mass equals the inertial mass, m i , and the latter which can be directly computed from special relativity, is an increasing function of the Lorentz factor, γ, and thus of the particle velocity. We consider gravitationally bound rotating composite states, and we show that the ratio of the gravitational force for gravitationally bound rotational states to the force corresponding to low (γ ≈ 1) particle velocities is of the order of (m Pl /m o ) 2 where mpi is the Planck mass (ħc/G) 1/2 . We also obtain a similar result, within a factor of two, by employing the derivative of the effective potential of the Schwarzschild geodesics of GR. Finally, we show that for certain macroscopic systems, such as the perihelion precession of planets, the predictions of this relativistic Newtonian gravitational law differ again by only a factor of two from the predictions of GR. (paper)

  20. Suzaku and XMM-Newton observations of the North Polar Spur: Charge exchange or ISM absorption?

    Science.gov (United States)

    Gu, Liyi; Mao, Junjie; Costantini, Elisa; Kaastra, Jelle

    2016-10-01

    By revisiting the Suzaku and XMM-Newton data of the North Polar Spur, we discovered that the spectra are inconsistent with the traditional model consisting of pure thermal emission and neutral absorption. The most prominent discrepancies are the enhanced O vii and Ne ix forbidden-to-resonance ratios, and a high O viii Lyβ line relative to other Lyman series. A collisionally ionized absorption model can naturally explain both features, while a charge exchange component can only account for the former. By including the additional ionized absorption, the plasma in the North Polar Spur can be described by a single-phase collisional ionization equilibrium (CIE) component with a temperature of 0.25 keV, and nitrogen, oxygen, neon, magnesium, and iron abundances of 0.4-0.8 solar. The abundance pattern of the North Polar Spur is well in line with those of the Galactic halo stars. The high nitrogen-to-oxygen ratio reported in previous studies can be migrated to the large transmission of the O viii Lyα line. The ionized absorber is characterized by a balance temperature of 0.17-0.20 keV and a column density of 3-5 × 1019 cm-2. Based on the derived abundances and absorption, we speculate that the North Polar Spur is a structure in the Galactic halo, so that the emission is mostly absorbed by the Galactic interstellar medium in the line of sight.