WorldWideScience

Sample records for relative navigation approaches

  1. Observability during planetary approach navigation

    Science.gov (United States)

    Bishop, Robert H.; Burkhart, P. Daniel; Thurman, Sam W.

    1993-01-01

    The objective of the research is to develop an analytic technique to predict the relative navigation capability of different Earth-based radio navigation measurements. In particular, the problem is to determine the relative ability of geocentric range and Doppler measurements to detect the effects of the target planet gravitational attraction on the spacecraft during the planetary approach and near-encounter mission phases. A complete solution to the two-dimensional problem has been developed. Relatively simple analytic formulas are obtained for range and Doppler measurements which describe the observability content of the measurement data along the approach trajectories. An observability measure is defined which is based on the observability matrix for nonlinear systems. The results show good agreement between the analytic observability analysis and the computational batch processing method.

  2. Improved GPS-based Satellite Relative Navigation Using Femtosecond Laser Relative Distance Measurements

    Directory of Open Access Journals (Sweden)

    Hyungjik Oh

    2016-03-01

    Full Text Available This study developed an approach for improving Carrier-phase Differential Global Positioning System (CDGPS based realtime satellite relative navigation by applying laser baseline measurement data. The robustness against the space operational environment was considered, and a Synthetic Wavelength Interferometer (SWI algorithm based on a femtosecond laser measurement model was developed. The phase differences between two laser wavelengths were combined to measure precise distance. Generated laser data were used to improve estimation accuracy for the float ambiguity of CDGPS data. Relative navigation simulations in real-time were performed using the extended Kalman filter algorithm. The GPS and laser-combined relative navigation accuracy was compared with GPS-only relative navigation solutions to determine the impact of laser data on relative navigation. In numerical simulations, the success rate of integer ambiguity resolution increased when laser data was added to GPS data. The relative navigational errors also improved five-fold and two-fold, relative to the GPS-only error, for 250 m and 5 km initial relative distances, respectively. The methodology developed in this study is suitable for application to future satellite formation-flying missions.

  3. SLS Navigation Model-Based Design Approach

    Science.gov (United States)

    Oliver, T. Emerson; Anzalone, Evan; Geohagan, Kevin; Bernard, Bill; Park, Thomas

    2018-01-01

    The SLS Program chose to implement a Model-based Design and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team has been responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for the navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1-B design, the additional GPS Receiver hardware is managed as a DMM at the vehicle design level. This paper provides a discussion of the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the Navigation components. These include composing system requirements, requirements verification, model development, model verification and validation, and modeling and analysis approaches. The Model-based Design and Requirements approach does not reduce the effort associated with the design process versus previous processes used at Marshall Space Flight Center. Instead, the approach takes advantage of overlap between the requirements development and management process, and the design and analysis process by efficiently combining the control (i.e. the requirement) and the design mechanisms. The design mechanism is the representation of the component behavior and performance in design and analysis tools. The focus in the early design process shifts from the development and

  4. Laser-based Relative Navigation Using GPS Measurements for Spacecraft Formation Flying

    Science.gov (United States)

    Lee, Kwangwon; Oh, Hyungjik; Park, Han-Earl; Park, Sang-Young; Park, Chandeok

    2015-12-01

    This study presents a precise relative navigation algorithm using both laser and Global Positioning System (GPS) measurements in real time. The measurement model of the navigation algorithm between two spacecraft is comprised of relative distances measured by laser instruments and single differences of GPS pseudo-range measurements in spherical coordinates. Based on the measurement model, the Extended Kalman Filter (EKF) is applied to smooth the pseudo-range measurements and to obtain the relative navigation solution. While the navigation algorithm using only laser measurements might become inaccurate because of the limited accuracy of spacecraft attitude estimation when the distance between spacecraft is rather large, the proposed approach is able to provide an accurate solution even in such cases by employing the smoothed GPS pseudo-range measurements. Numerical simulations demonstrate that the errors of the proposed algorithm are reduced by more than about 12% compared to those of an algorithm using only laser measurements, as the accuracy of angular measurements is greater than 0.001° at relative distances greater than 30 km.

  5. Multi-Sensor SLAM Approach for Robot Navigation

    Directory of Open Access Journals (Sweden)

    Sid Ahmed BERRABAH

    2010-12-01

    Full Text Available o be able to operate and act successfully, the robot needs to know at any time where it is. This means the robot has to find out its location relative to the environment. This contribution introduces the increase of accuracy of mobile robot positioning in large outdoor environments based on data fusion from different sensors: camera, GPS, inertial navigation system (INS, and wheel encoders. The fusion is done in a Simultaneous Localization and Mapping (SLAM approach. The paper gives an overview on the proposed algorithm and discusses the obtained results.

  6. A Qualitative Approach to Mobile Robot Navigation Using RFID

    International Nuclear Information System (INIS)

    Hossain, M; Rashid, M M; Bhuiyan, M M I; Ahmed, S; Akhtaruzzaman, M

    2013-01-01

    Radio Frequency Identification (RFID) system allows automatic identification of items with RFID tags using radio-waves. As the RFID tag has its unique identification number, it is also possible to detect a specific region where the RFID tag lies in. Recently it is widely been used in mobile robot navigation, localization, and mapping both in indoor and outdoor environment. This paper represents a navigation strategy for autonomous mobile robot using passive RFID system. Conventional approaches, such as landmark or dead-reckoning with excessive number of sensors, have complexities in establishing the navigation and localization process. The proposed method satisfies less complexity in navigation strategy as well as estimation of not only the position but also the orientation of the autonomous robot. In this research, polar coordinate system is adopted on the navigation surface where RFID tags are places in a grid with constant displacements. This paper also presents the performance comparisons among various grid architectures through simulation to establish a better solution of the navigation system. In addition, some stationary obstacles are introduced in the navigation environment to satisfy the viability of the navigation process of the autonomous mobile robot

  7. Formal safety assessment based on relative risks model in ship navigation

    Energy Technology Data Exchange (ETDEWEB)

    Hu Shenping [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: sphu@mmc.shmtu.edu.cn; Fang Quangen [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: qgfang@mmc.shmtu.edu.cn; Xia Haibo [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: hbxia@mmc.shmtu.edu.cn; Xi Yongtao [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: xiyt@mmc.shmtu.edu.cn

    2007-03-15

    Formal safety assessment (FSA) is a structured and systematic methodology aiming at enhancing maritime safety. It has been gradually and broadly used in the shipping industry nowadays around the world. On the basis of analysis and conclusion of FSA approach, this paper discusses quantitative risk assessment and generic risk model in FSA, especially frequency and severity criteria in ship navigation. Then it puts forward a new model based on relative risk assessment (MRRA). The model presents a risk-assessment approach based on fuzzy functions and takes five factors into account, including detailed information about accident characteristics. It has already been used for the assessment of pilotage safety in Shanghai harbor, China. Consequently, it can be proved that MRRA is a useful method to solve the problems in the risk assessment of ship navigation safety in practice.

  8. Formal safety assessment based on relative risks model in ship navigation

    International Nuclear Information System (INIS)

    Hu Shenping; Fang Quangen; Xia Haibo; Xi Yongtao

    2007-01-01

    Formal safety assessment (FSA) is a structured and systematic methodology aiming at enhancing maritime safety. It has been gradually and broadly used in the shipping industry nowadays around the world. On the basis of analysis and conclusion of FSA approach, this paper discusses quantitative risk assessment and generic risk model in FSA, especially frequency and severity criteria in ship navigation. Then it puts forward a new model based on relative risk assessment (MRRA). The model presents a risk-assessment approach based on fuzzy functions and takes five factors into account, including detailed information about accident characteristics. It has already been used for the assessment of pilotage safety in Shanghai harbor, China. Consequently, it can be proved that MRRA is a useful method to solve the problems in the risk assessment of ship navigation safety in practice

  9. A novel biased proportional navigation guidance law for close approach phase

    Directory of Open Access Journals (Sweden)

    Su Wenshan

    2016-02-01

    Full Text Available A novel biased proportional navigation guidance (BPNG law is proposed for the close approach phase, which aims to make the spacecraft rendezvous with the target in specific relative range and direction. Firstly, in order to describe the special guidance requirements, the concept of zero effort miss vector is proposed and the dangerous area where there exists collision risk for safety consideration is defined. Secondly, the BPNG, which decouples the range control and direction control, is designed in the line-of-sight (LOS rotation coordinate system. The theoretical analysis proves that BPNG meets guidance requirements quite well. Thirdly, for the consideration of fuel consumption, the optimal biased proportional navigation guidance (OBPNG law is derived by solving the Schwartz inequality. Finally, simulation results show that BPNG is effective for the close approach with the ability of evading the dangerous area and OBPNG consumes less fuel compared with BPNG.

  10. The Relation between Navigation Strategy and Associative Memory: An Individual Differences Approach

    Science.gov (United States)

    Ngo, Chi T.; Weisberg, Steven M.; Newcombe, Nora S.; Olson, Ingrid R.

    2016-01-01

    Although the hippocampus is implicated in both spatial navigation and associative memory, very little is known about whether individual differences in the 2 domains covary. People who prefer to navigate using a hippocampal-dependent place strategy may show better performance on associative memory tasks than those who prefer a caudate-dependent…

  11. Relative navigation and attitude determination using a GPS/INS integrated system near the International Space Station

    Science.gov (United States)

    Um, Jaeyong

    2001-08-01

    The Space Integrated GPS/INS (SIGI) sensor is the primary navigation and attitude determination source for the International Space Station (ISS). The SIGI was successfully demonstrated on-orbit for the first time in the SIGI Orbital Attitude Readiness (SOAR) demonstration on the Space Shuttle Atlantis in May 2000. Numerous proximity operations near the ISS have been and will be performed over the lifetime of the Station. The development of an autonomous relative navigation system is needed to improve the safety and efficiency of vehicle operations near the ISS. A hardware simulation study was performed for the GPS-based relative navigation using the state vector difference approach and the interferometric approach in the absence of multipath. The interferometric approach, where the relative states are estimated directly, showed comparable results for a 1 km baseline. One of the most pressing current technical issues is the design of an autonomous relative navigation system in the proximity of the ISS, where GPS signals are blocked and maneuvers happen frequently. An integrated GPS/INS system is investigated for the possibility of a fully autonomous relative navigation system. Another application of GPS measurements is determination of the vehicle's orientation in space. This study used the SOAR experiment data to characterize the SICI's on-orbit performance for attitude determination. A cold start initialization algorithm was developed for integer ambiguity resolution in any initial orientation. The original algorithm that was used in the SIGI had an operational limitation in the integer ambiguity resolution, which was developed for terrestrial applications, and limited its effectiveness in space. The new algorithm was tested using the SOAR data and has been incorporated in the current SIGI flight software. The attitude estimation performance was examined using two different GPS/INS integration algorithms. The GPS/INS attitude solution using the SOAR data was as

  12. Autonomous optical navigation using nanosatellite-class instruments: a Mars approach case study

    Science.gov (United States)

    Enright, John; Jovanovic, Ilija; Kazemi, Laila; Zhang, Harry; Dzamba, Tom

    2018-02-01

    This paper examines the effectiveness of small star trackers for orbital estimation. Autonomous optical navigation has been used for some time to provide local estimates of orbital parameters during close approach to celestial bodies. These techniques have been used extensively on spacecraft dating back to the Voyager missions, but often rely on long exposures and large instrument apertures. Using a hyperbolic Mars approach as a reference mission, we present an EKF-based navigation filter suitable for nanosatellite missions. Observations of Mars and its moons allow the estimator to correct initial errors in both position and velocity. Our results show that nanosatellite-class star trackers can produce good quality navigation solutions with low position (<300 {m}) and velocity (<0.15 {m/s}) errors as the spacecraft approaches periapse.

  13. An Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database.

    Science.gov (United States)

    Li, Yan; Hu, Qingwu; Wu, Meng; Gao, Yang

    2016-01-28

    In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in environments with poor GPS. First, the framework of GRID-aided vision navigation is developed with sequence images from land-based mobile mapping systems that integrate multiple sensors. Second, a highly efficient GRID storage management model is established based on the linear index of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is presented to search and match a real-time image with the GRID. Subsequently, the image matched with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor platforms. Experimental results show that the proposed approach retrieves images efficiently and has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within 1500 m.

  14. Volunteer navigation partnerships: Piloting a compassionate community approach to early palliative care.

    Science.gov (United States)

    Pesut, Barbara; Duggleby, Wendy; Warner, Grace; Fassbender, Konrad; Antifeau, Elisabeth; Hooper, Brenda; Greig, Madeleine; Sullivan, Kelli

    2017-07-03

    A compassionate community approach to palliative care provides important rationale for building community-based hospice volunteer capacity. In this project, we piloted one such capacity-building model in which volunteers and a nurse partnered to provide navigation support beginning in the early palliative phase for adults living in community. The goal was to improve quality of life by developing independence, engagement, and community connections. Volunteers received navigation training through a three-day workshop and then conducted in-home visits with clients living with advanced chronic illness over one year. A nurse navigator provided education and mentorship. Mixed method evaluation data was collected from clients, volunteer navigators, the nurse navigator, and other stakeholders. Seven volunteers were partnered with 18 clients. Over the one-year pilot, the volunteer navigators conducted visits in home or by phone every two to three weeks. Volunteers were skilled and resourceful in building connections and facilitating engagement. Although it took time to learn the navigator role, volunteers felt well-prepared and found the role satisfying and meaningful. Clients and family rated the service as highly important to their care because of how the volunteer helped to make the difficult experiences of aging and advanced chronic illness more livable. Significant benefits cited by clients were making good decisions for both now and in the future; having a surrogate social safety net; supporting engagement with life; and ultimately, transforming the experience of living with illness. Overall the program was perceived to be well-designed by stakeholders and meeting an important need in the community. Sustainability, however, was a concern expressed by both clients and volunteers. Volunteers providing supportive navigation services during the early phase of palliative care is a feasible way to foster a compassionate community approach to care for an aging population

  15. ULTOR(Registered TradeMark) Passive Pose and Position Engine For Spacecraft Relative Navigation

    Science.gov (United States)

    Hannah, S. Joel

    2008-01-01

    The ULTOR(Registered TradeMark) Passive Pose and Position Engine (P3E) technology, developed by Advanced Optical Systems, Inc (AOS), uses real-time image correlation to provide relative position and pose data for spacecraft guidance, navigation, and control. Potential data sources include a wide variety of sensors, including visible and infrared cameras. ULTOR(Registered TradeMark) P3E has been demonstrated on a number of host processing platforms. NASA is integrating ULTOR(Registerd TradeMark) P3E into its Relative Navigation System (RNS), which is being developed for the upcoming Hubble Space Telescope (HST) Servicing Mission 4 (SM4). During SM4 ULTOR(Registered TradeMark) P3E will perform realtime pose and position measurements during both the approach and departure phases of the mission. This paper describes the RNS implementation of ULTOR(Registered TradeMark) P3E, and presents results from NASA's hardware-in-the-loop simulation testing against the HST mockup.

  16. An Integrated Approach to Electronic Navigation

    National Research Council Canada - National Science Library

    Shaw, Peter; Pettus, Bill

    2001-01-01

    While the Global Positioning System (GPS) is and will continue to be an excellent navigation system, it is neither flawless nor is it the only system employed in the navigation of today's seagoing warfighters...

  17. Time and Motion Study of a Community Patient Navigator

    Directory of Open Access Journals (Sweden)

    Sara S. Phillips

    2014-04-01

    Full Text Available Research on patient navigation has focused on validating the utility of navigators by defining their roles and analyzing their effects on patient outcomes, patient satisfaction, and cost effectiveness. Patient navigators are increasingly used outside the research context, and their roles without research responsibilities may look very different. This pilot study captured the activities of a community patient navigator for uninsured women with a positive screening test for breast cancer, using a time and motion approach over a period of three days. We followed the actions of this navigator minute by minute to assess the relative ratios of actions performed and to identify areas for time efficiency improvement to increase direct time with patients. This novel approach depicts the duties of a community patient navigator no longer fettered by navigation logs, research team meetings, surveys, and the consent process. We found that the community patient navigator was able to spend more time with patients in the clinical context relative to performing paperwork or logging communication with patients as a result of her lack of research responsibilities. By illuminating how community patient navigation functions as separate from the research setting, our results will inform future hiring and training of community patient navigators, system design and operations for improving the efficiency and efficacy of navigators, and our understanding of what community patient navigators do in the absence of research responsibilities.

  18. Towards Safe Navigation by Formalizing Navigation Rules

    Directory of Open Access Journals (Sweden)

    Arne Kreutzmann

    2013-06-01

    Full Text Available One crucial aspect of safe navigation is to obey all navigation regulations applicable, in particular the collision regulations issued by the International Maritime Organization (IMO Colregs. Therefore, decision support systems for navigation need to respect Colregs and this feature should be verifiably correct. We tackle compliancy of navigation regulations from a perspective of software verification. One common approach is to use formal logic, but it requires to bridge a wide gap between navigation concepts and simple logic. We introduce a novel domain specification language based on a spatio-temporal logic that allows us to overcome this gap. We are able to capture complex navigation concepts in an easily comprehensible representation that can direcly be utilized by various bridge systems and that allows for software verification.

  19. Ultra-Wideband Tracking System Design for Relative Navigation

    Science.gov (United States)

    Ni, Jianjun David; Arndt, Dickey; Bgo, Phong; Dekome, Kent; Dusl, John

    2011-01-01

    This presentation briefly discusses a design effort for a prototype ultra-wideband (UWB) time-difference-of-arrival (TDOA) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being designed for use in localization and navigation of a rover in a GPS deprived environment for surface missions. In one application enabled by the UWB tracking, a robotic vehicle carrying equipments can autonomously follow a crewed rover from work site to work site such that resources can be carried from one landing mission to the next thereby saving up-mass. The UWB Systems Group at JSC has developed a UWB TDOA High Resolution Proximity Tracking System which can achieve sub-inch tracking accuracy of a target within the radius of the tracking baseline [1]. By extending the tracking capability beyond the radius of the tracking baseline, a tracking system is being designed to enable relative navigation between two vehicles for surface missions. A prototype UWB TDOA tracking system has been designed, implemented, tested, and proven feasible for relative navigation of robotic vehicles. Future work includes testing the system with the application code to increase the tracking update rate and evaluating the linear tracking baseline to improve the flexibility of antenna mounting on the following vehicle.

  20. 77 FR 16860 - Certain GPS Navigation Products, Components Thereof, and Related Software; Termination of...

    Science.gov (United States)

    2012-03-22

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-783] Certain GPS Navigation Products, Components Thereof, and Related Software; Termination of Investigation on the Basis of Settlement AGENCY: U.S... GPS navigation products, components thereof, and related software, by reason of the infringement of...

  1. Multitarget Approaches to Robust Navigation

    Data.gov (United States)

    National Aeronautics and Space Administration — The performance, stability, and statistical consistency of a vehicle's navigation algorithm are vitally important to the success and safety of its mission....

  2. A novel approach for monitoring writing interferences during navigated transcranial magnetic stimulation mappings of writing related cortical areas.

    Science.gov (United States)

    Rogić Vidaković, Maja; Gabelica, Dragan; Vujović, Igor; Šoda, Joško; Batarelo, Nikolina; Džimbeg, Andrija; Zmajević Schönwald, Marina; Rotim, Krešimir; Đogaš, Zoran

    2015-11-30

    It has recently been shown that navigated repetitive transcranial magnetic stimulation (nTMS) is useful in preoperative neurosurgical mapping of motor and language brain areas. In TMS mapping of motor cortices the evoked responses can be quantitatively monitored by electromyographic (EMG) recordings. No such setup exists for monitoring of writing during nTMS mappings of writing related cortical areas. We present a novel approach for monitoring writing during nTMS mappings of motor writing related cortical areas. To our best knowledge, this is the first demonstration of quantitative monitoring of motor evoked responses from hand by EMG, and of pen related activity during writing with our custom made pen, together with the application of chronometric TMS design and patterned protocol of rTMS. The method was applied in four healthy subjects participating in writing during nTMS mapping of the premotor cortical area corresponding to BA 6 and close to the superior frontal sulcus. The results showed that stimulation impaired writing in all subjects. The corresponding spectra of measured signal related to writing movements was observed in the frequency band 0-20 Hz. Magnetic stimulation affected writing by suppressing normal writing frequency band. The proposed setup for monitoring of writing provides additional quantitative data for monitoring and the analysis of rTMS induced writing response modifications. The setup can be useful for investigation of neurophysiologic mechanisms of writing, for therapeutic effects of nTMS, and in preoperative mapping of language cortical areas in patients undergoing brain surgery. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Multi-Flight-Phase GPS Navigation Filter Applications to Terrestrial Vehicle Navigation and Positioning

    Science.gov (United States)

    Park, Young W.; Montez, Moises N.

    1994-01-01

    A candidate onboard space navigation filter demonstrated excellent performance (less than 8 meter level RMS semi-major axis accuracy) in performing orbit determination of a low-Earth orbit Explorer satellite using single-frequency real GPS data. This performance is significantly better than predicted by other simulation studies using dual-frequency GPS data. The study results revealed the significance of two new modeling approaches evaluated in the work. One approach introduces a single-frequency ionospheric correction through pseudo-range and phase range averaging implementation. The other approach demonstrates a precise axis-dependent characterization of dynamic sample space uncertainty to compute a more accurate Kalman filter gain. Additionally, this navigation filter demonstrates a flexibility to accommodate both perturbational dynamic and observational biases required for multi-flight phase and inhomogeneous application environments. This paper reviews the potential application of these methods and the filter structure to terrestrial vehicle and positioning applications. Both the single-frequency ionospheric correction method and the axis-dependent state noise modeling approach offer valuable contributions in cost and accuracy improvements for terrestrial GPS receivers. With a modular design approach to either 'plug-in' or 'unplug' various force models, this multi-flight phase navigation filter design structure also provides a versatile GPS navigation software engine for both atmospheric and exo-atmospheric navigation or positioning use, thereby streamlining the flight phase or application-dependent software requirements. Thus, a standardized GPS navigation software engine that can reduce the development and maintenance cost of commercial GPS receivers is now possible.

  4. A novel approach for navigational guidance of ships using onboard monitoring systems

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Jensen, Jørgen Juncher

    2011-01-01

    A novel approach and conceptual ideas are outlined for risk-based navigational guidance of ships using decision support systems in combination with onboard, in-service monitoring systems. The guidance has as the main objective to advise on speed and/or course changes; in particular with focus...

  5. Improving Canada's Marine Navigation System through e-Navigation

    Directory of Open Access Journals (Sweden)

    Daniel Breton

    2016-06-01

    The conclusion proposed is that on-going work with key partners and stakeholders can be used as the primary mechanism to identify e-Navigation related innovation and needs, and to prioritize next steps. Moving forward in Canada, implementation of new e-navigation services will continue to be stakeholder driven, and used to drive improvements to Canada's marine navigation system.

  6. Navigation and flight director guidance for the NASA/FAA helicopter MLS curved approach flight test program

    Science.gov (United States)

    Phatak, A. V.; Lee, M. G.

    1985-01-01

    The navigation and flight director guidance systems implemented in the NASA/FAA helicopter microwave landing system (MLS) curved approach flight test program is described. Flight test were conducted at the U.S. Navy's Crows Landing facility, using the NASA Ames UH-lH helicopter equipped with the V/STOLAND avionics system. The purpose of these tests was to investigate the feasibility of flying complex, curved and descending approaches to a landing using MLS flight director guidance. A description of the navigation aids used, the avionics system, cockpit instrumentation and on-board navigation equipment used for the flight test is provided. Three generic reference flight paths were developed and flown during the test. They were as follows: U-Turn, S-turn and Straight-In flight profiles. These profiles and their geometries are described in detail. A 3-cue flight director was implemented on the helicopter. A description of the formulation and implementation of the flight director laws is also presented. Performance data and analysis is presented for one pilot conducting the flight director approaches.

  7. Examining care navigation: librarian participation in a teambased approach?

    Directory of Open Access Journals (Sweden)

    A. Tyler Nix, MSLS

    2016-11-01

    Full Text Available Objective: This study investigated responsibilities, skill sets, degrees, and certifications required of health care navigators in order to identify areas of potential overlap with health sciences librarianship. Method: The authors conducted a content analysis of health care navigator position announcements and developed and assigned forty-eight category terms to represent the sample’s responsibilities and skill sets. Results: Coordination of patient care and a bachelor’s degree were the most common responsibility and degree requirements, respectively. Results also suggest that managing and providing health information resources is an area of overlap between health care navigators and health sciences librarians, and that librarians are well suited to serve on navigation teams. Conclusion: Such overlap may provide an avenue for collaboration between navigators and health sciences librarians.

  8. Intelligent personal navigator supported by knowledge-based systems for estimating dead reckoning navigation parameters

    Science.gov (United States)

    Moafipoor, Shahram

    Personal navigators (PN) have been studied for about a decade in different fields and applications, such as safety and rescue operations, security and emergency services, and police and military applications. The common goal of all these applications is to provide precise and reliable position, velocity, and heading information of each individual in various environments. In the PN system developed in this dissertation, the underlying assumption is that the system does not require pre-existing infrastructure to enable pedestrian navigation. To facilitate this capability, a multisensor system concept, based on the Global Positioning System (GPS), inertial navigation, barometer, magnetometer, and a human pedometry model has been developed. An important aspect of this design is to use the human body as navigation sensor to facilitate Dead Reckoning (DR) navigation in GPS-challenged environments. The system is designed predominantly for outdoor environments, where occasional loss of GPS lock may happen; however, testing and performance demonstration have been extended to indoor environments. DR navigation is based on a relative-measurement approach, with the key idea of integrating the incremental motion information in the form of step direction (SD) and step length (SL) over time. The foundation of the intelligent navigation system concept proposed here rests in exploiting the human locomotion pattern, as well as change of locomotion in varying environments. In this context, the term intelligent navigation represents the transition from the conventional point-to-point DR to dynamic navigation using the knowledge about the mechanism of the moving person. This approach increasingly relies on integrating knowledge-based systems (KBS) and artificial intelligence (AI) methodologies, including artificial neural networks (ANN) and fuzzy logic (FL). In addition, a general framework of the quality control for the real-time validation of the DR processing is proposed, based on a

  9. Autonomous Vehicles Navigation with Visual Target Tracking: Technical Approaches

    Directory of Open Access Journals (Sweden)

    Zhen Jia

    2008-12-01

    Full Text Available This paper surveys the developments of last 10 years in the area of vision based target tracking for autonomous vehicles navigation. First, the motivations and applications of using vision based target tracking for autonomous vehicles navigation are presented in the introduction section. It can be concluded that it is very necessary to develop robust visual target tracking based navigation algorithms for the broad applications of autonomous vehicles. Then this paper reviews the recent techniques in three different categories: vision based target tracking for the applications of land, underwater and aerial vehicles navigation. Next, the increasing trends of using data fusion for visual target tracking based autonomous vehicles navigation are discussed. Through data fusion the tracking performance is improved and becomes more robust. Based on the review, the remaining research challenges are summarized and future research directions are investigated.

  10. Implementation of a socio-ecological system navigation approach to human development in Sub-Saharan African communities

    Directory of Open Access Journals (Sweden)

    Gianni Gilioli

    2014-04-01

    Full Text Available This paper presents a framework for the development of socio-eco- logical systems towards enhanced sustainability. Emphasis is given to the dynamic properties of complex, adaptive social-ecological systems, their structure and to the fundamental role of agriculture. The tangible components that meet the needs of specific projects executed in Kenya and Ethiopia encompass project objectives, innovation, facilitation, continuous recording and analyses of monitoring data, that allow adaptive management and system navigation. Two case studies deal with system navigation through the mitigation of key constraints; they aim to improve human health thanks to anopheline malaria vectors control in Nyabondo (Kenya, and to improve cattle health through tsetse control and antitrypanosomal drug administration to cattle in Luke (Ethiopia. The second case deals with a socio-ecological navigation system to enhance sustainability, establishing a periurban diversified enterprise in Addis Ababa (Ethiopia and developing a rural sustainable social-ecological system in Luke (Ethiopia. The project procedures are briefly described here and their outcomes are analysed in relation to the stated objectives. The methodology for human and cattle disease vector control were easier to implement than the navigation of social-ecological systems towards sustainability enhancement. The achievements considerably differed between key constraints removal and sustainability enhancement projects. Some recommendations are made to rationalise human and cattle health improvement efforts and to smoothen the road towards enhanced sustainability: i technology system implementation should be carried out through an innovation system; ii transparent monitoring information should be continuously acquired and evaluated for assessing the state of the system in relation to stated objectives for (a improving the insight into the systems behaviour and (b rationalizing decision support; iii the

  11. Introducing navigation during melanoma-related sentinel lymph node procedures in the head-and-neck region.

    Science.gov (United States)

    KleinJan, Gijs H; Karakullukçu, Baris; Klop, W Martin C; Engelen, Thijs; van den Berg, Nynke S; van Leeuwen, Fijs W B

    2017-08-17

    Intraoperative sentinel node (SN) identification in patients with head-and-neck malignancies can be challenging due to unexpected drainage patterns and anatomical complexity. Here, intraoperative navigation-based guidance technologies may provide outcome. In this study, gamma camera-based freehandSPECT was evaluated in combination with the hybrid tracer ICG- 99m Tc-nanocolloid. Eight patients with melanoma located in the head-and-neck area were included. Indocyanine green (ICG)- 99m Tc-nanocolloid was injected preoperatively, whereafter lymphoscintigraphy and SPECT/CT imaging were performed in order to define the location of the SN(s). FreehandSPECT scans were generated in the operation room using a portable gamma camera. For lesion localization during surgery, freehandSPECT scans were projected in an augmented reality video-view that was used to spatially position a gamma-ray detection probe. Intraoperative fluorescence imaging was used to confirm the accuracy of the navigation-based approach and identify the exact location of the SNs. Preoperatively, 15 SNs were identified, of which 14 were identified using freehandSPECT. Navigation towards these nodes using the freehandSPECT approach was successful in 13 nodes. Fluorescence imaging provided optical confirmation of the navigation accuracy in all patients. In addition, fluorescence imaging allowed for the identification of (clustered) SNs that could not be identified based on navigation alone. The use of gamma camera-based freehandSPECT aids intraoperative lesion identification and, with that, supports the transition from pre- to intraoperative imaging via augmented reality display and directional guidance.

  12. Camera navigation and tissue manipulation : Are these laparoscopic skills related?

    NARCIS (Netherlands)

    Buzink, S.N.; Botden, S.M.B.I.; Heemskerk, J.; Goossens, R.H.M.; De Ridder, H.; Jakimowicz, J.J.

    2009-01-01

    Background: It is a tacit assumption that clinically based expertise in laparoscopic tissue manipulation entails skilfulness in angled laparoscope navigation. The main objective of this study was to investigate the relation between these skills. To this end, face and construct validity had to be

  13. Relative expressive power of navigational querying on graphs using transitive closure

    OpenAIRE

    Surinx, Dimitri; Fletcher, George H. L.; Gyssens, Marc; Leinders, Dirk; Van den Bussche, Jan; Van Gucht, Dirk; Vansummeren, Stijn; Wu, Yuqing

    2015-01-01

    Motivated by both established and new applications, we study navigational query languages for graphs (binary relations). The simplest language has only the two operators union and composition, together with the identity relation. We make more powerful languages by adding any of the following operators: intersection; set difference; projection; coprojection; converse; transitive closure; and the diversity relation. All these operators map binary relations to binary relations. We compare the ex...

  14. Examining care navigation: librarian participation in a team-based approach?

    Science.gov (United States)

    Nix, A Tyler; Huber, Jeffrey T; Shapiro, Robert M; Pfeifle, Andrea

    2016-04-01

    This study investigated responsibilities, skill sets, degrees, and certifications required of health care navigators in order to identify areas of potential overlap with health sciences librarianship. The authors conducted a content analysis of health care navigator position announcements and developed and assigned forty-eight category terms to represent the sample's responsibilities and skill sets. Coordination of patient care and a bachelor's degree were the most common responsibility and degree requirements, respectively. Results also suggest that managing and providing health information resources is an area of overlap between health care navigators and health sciences librarians, and that librarians are well suited to serve on navigation teams. Such overlap may provide an avenue for collaboration between navigators and health sciences librarians.

  15. Target relative navigation results from hardware-in-the-loop tests using the sinplex navigation system

    NARCIS (Netherlands)

    Steffes, S.; Dumke, M.; Heise, D.; Sagliano, M.; Samaan, M.; Theil, S.; Boslooper, E.C.; Oosterling, J.A.J.; Schulte, J.; Skaborn, D.; Söderholm, S.; Conticello, S.; Esposito, M.; Yanson, Y.; Monna, B.; Stelwagen, F.; Visee, R.

    2014-01-01

    The goal of the SINPLEX project is to develop an innovative solution to significantly reduce the mass of the navigation subsystem for exploration missions which include landing and/or rendezvous and capture phases. The system mass is reduced while still maintaining good navigation performance as

  16. Indoor Semantic Modelling for Routing: The Two-Level Routing Approach for Indoor Navigation

    Directory of Open Access Journals (Sweden)

    Liu Liu

    2017-11-01

    Full Text Available Humans perform many activities indoors and they show a growing need for indoor navigation, especially in unfamiliar buildings such as airports, museums and hospitals. Complexity of such buildings poses many challenges for building managers and visitors. Indoor navigation services play an important role in supporting these indoor activities. Indoor navigation covers extensive topics such as: 1 indoor positioning and localization; 2 indoor space representation for navigation model generation; 3 indoor routing computation; 4 human wayfinding behaviours; and 5 indoor guidance (e.g., textual directories. So far, a large number of studies of pedestrian indoor navigation have presented diverse navigation models and routing algorithms/methods. However, the major challenge is rarely referred to: how to represent the complex indoor environment for pedestrians and conduct routing according to the different roles and sizes of users. Such complex buildings contain irregular shapes, large open spaces, complicated obstacles and different types of passages. A navigation model can be very complicated if the indoors are accurately represented. Although most research demonstrates feasible indoor navigation models and related routing methods in regular buildings, the focus is still on a general navigation model for pedestrians who are simplified as circles. In fact, pedestrians represent different sizes, motion abilities and preferences (e.g., described in user profiles, which should be reflected in navigation models and be considered for indoor routing (e.g., relevant Spaces of Interest and Points of Interest. In order to address this challenge, this thesis proposes an innovative indoor modelling and routing approach – two-level routing. It specially targets the case of routing in complex buildings for distinct users. The conceptual (first level uses general free indoor spaces: this is represented by the logical network whose nodes represent the spaces and edges

  17. Image Dependent Relative Formation Navigation for Autonomous Aerial Refueling

    Science.gov (United States)

    2011-03-01

    and local variations of the Earth’s surface make a mathematical model difficult to create and use. The definition of an equipotential surface ...controlled with flight control surfaces attached to it. To refuel using this method, the receiver pilot flies the aircraft to within a defined refueling...I-frame would unnecessarily complicate aircraft navigation that, by definition, is limited to altitudes relatively close to the surface of the Earth

  18. Guidance and navigation for rendezvous with an uncooperative target

    Science.gov (United States)

    Telaar, J.; Schlaile, C.; Sommer, J.

    2018-06-01

    This paper presents a guidance strategy for a rendezvous with an uncooperative target. In the applied design reference mission, a spiral approach is commanded ensuring a collision-free relative orbit due to e/i-vector separation. The dimensions of the relative orbit are successively reduced by Δv commands which at the same time improve the observability of the relative state. The navigation is based on line-of-sight measurements. The relative state is estimated by an extended Kalman filter (EKF). The performance of this guidance and navigation strategy is demonstrated by extensive Monte Carlo simulations taking into account all major uncertainties like measurement errors, Δv execution errors, and differential drag.

  19. Flight evaluations of approach/landing navigation sensor systems. MLS to kohokei hiko jikken. ; 1990 nendo no jikken gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    Flight test results of such navigation sensor systems as MLS (microwave landing system), GPS(global positioning system) and INS (inertial navigation system) on the Dornier-228 research aircraft in 1990 were reported, which tests have being promoted by National Aerospace Laboratory (NAL), Japan to develop unmanned approach/landing (A/L) navigation sensor systems for the future spaceplane HOPE. The measured data corresponding to a WGS84 (world geodetic system 1984) navigation coordinate system were evaluated, and the reference orbit was also prepared by laser tracker analysis. The navigation sensor systems such as MLS were evaluated on the basis of CMN (control motion noise) or PFE (path following error), and preliminary calculation was also conducted for a GPS-INS hybrid system. As experimental results, several data were gathered for each sensor system resulting in possible data comparison between the sensor systems, and the feasibility of the GPS-INS hybrid system was also confirmed. 35 refs., 49 figs., 22 tabs.

  20. Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths

    Directory of Open Access Journals (Sweden)

    Liv de Vries

    2017-09-01

    Full Text Available Brain structure and function are tightly correlated across all animals. While these relations are ultimately manifestations of differently wired neurons, many changes in neural circuit architecture lead to larger-scale alterations visible already at the level of brain regions. Locating such differences has served as a beacon for identifying brain areas that are strongly associated with the ecological needs of a species—thus guiding the way towards more detailed investigations of how brains underlie species-specific behaviors. Particularly in relation to sensory requirements, volume-differences in neural tissue between closely related species reflect evolutionary investments that correspond to sensory abilities. Likewise, memory-demands imposed by lifestyle have revealed similar adaptations in regions associated with learning. Whether this is also the case for species that differ in their navigational strategy is currently unknown. While the brain regions associated with navigational control in insects have been identified (central complex (CX, lateral complex (LX and anterior optic tubercles (AOTU, it remains unknown in what way evolutionary investments have been made to accommodate particularly demanding navigational strategies. We have thus generated average-shape atlases of navigation-related brain regions of a migratory and a non-migratory noctuid moth and used volumetric analysis to identify differences. We further compared the results to identical data from Monarch butterflies. Whereas we found differences in the size of the nodular unit of the AOTU, the LX and the protocerebral bridge (PB between the two moths, these did not unambiguously reflect migratory behavior across all three species. We conclude that navigational strategy, at least in the case of long-distance migration in lepidopteran insects, is not easily deductible from overall neuropil anatomy. This suggests that the adaptations needed to ensure successful migratory behavior

  1. Simulating Navigation with Virtual 3d Geovisualizations - a Focus on Memory Related Factors

    Science.gov (United States)

    Lokka, I.; Çöltekin, A.

    2016-06-01

    The use of virtual environments (VE) for navigation-related studies, such as spatial cognition and path retrieval has been widely adopted in cognitive psychology and related fields. What motivates the use of VEs for such studies is that, as opposed to real-world, we can control for the confounding variables in simulated VEs. When simulating a geographic environment as a virtual world with the intention to train navigational memory in humans, an effective and efficient visual design is important to facilitate the amount of recall. However, it is not yet clear what amount of information should be included in such visual designs intended to facilitate remembering: there can be too little or too much of it. Besides the amount of information or level of detail, the types of visual features (`elements' in a visual scene) that should be included in the representations to create memorable scenes and paths must be defined. We analyzed the literature in cognitive psychology, geovisualization and information visualization, and identified the key factors for studying and evaluating geovisualization designs for their function to support and strengthen human navigational memory. The key factors we identified are: i) the individual abilities and age of the users, ii) the level of realism (LOR) included in the representations and iii) the context in which the navigation is performed, thus specific tasks within a case scenario. Here we present a concise literature review and our conceptual development for follow-up experiments.

  2. A Feedforward Control Approach to the Local Navigation Problem for Autonomous Vehicles

    Science.gov (United States)

    1994-05-02

    AD-A282 787 " A Feedforward Control Approach to the Local Navigation Problem for Autonomous Vehicles Alonzo Kelly CMU-RI-TR-94-17 The Robotics...follow, or a direction to prefer, it cannot generate its own strategic goals. Therefore, it solves the local planning problem for autonomous vehicles . The... autonomous vehicles . It is intelligent because it uses range images that are generated from either a laser rangefinder or a stereo triangulation

  3. Vision Based Autonomous Robot Navigation Algorithms and Implementations

    CERN Document Server

    Chatterjee, Amitava; Nirmal Singh, N

    2013-01-01

    This book is devoted to the theory and development of autonomous navigation of mobile robots using computer vision based sensing mechanism. The conventional robot navigation systems, utilizing traditional sensors like ultrasonic, IR, GPS, laser sensors etc., suffer several drawbacks related to either the physical limitations of the sensor or incur high cost. Vision sensing has emerged as a popular alternative where cameras can be used to reduce the overall cost, maintaining high degree of intelligence, flexibility and robustness. This book includes a detailed description of several new approaches for real life vision based autonomous navigation algorithms and SLAM. It presents the concept of how subgoal based goal-driven navigation can be carried out using vision sensing. The development concept of vision based robots for path/line tracking using fuzzy logic is presented, as well as how a low-cost robot can be indigenously developed in the laboratory with microcontroller based sensor systems. The book descri...

  4. Inertial navigation without accelerometers

    Science.gov (United States)

    Boehm, M.

    The Kennedy-Thorndike (1932) experiment points to the feasibility of fiber-optic inertial velocimeters, to which state-of-the-art technology could furnish substantial sensitivity and accuracy improvements. Velocimeters of this type would obviate the use of both gyros and accelerometers, and allow inertial navigation to be conducted together with vehicle attitude control, through the derivation of rotation rates from the ratios of the three possible velocimeter pairs. An inertial navigator and reference system based on this approach would probably have both fewer components and simpler algorithms, due to the obviation of the first level of integration in classic inertial navigators.

  5. Unified Approach of Unmanned Surface Vehicle Navigation in Presence of Waves

    Directory of Open Access Journals (Sweden)

    Oren Gal

    2011-01-01

    Full Text Available Most of the present work for unmanned surface vehicle (USV navigation does not take into account environmental disturbances such as ocean waves, winds, and currents. In some scenarios, waves should be treated as special case of dynamic obstacle and can be critical to USV’s safety. For the first time, this paper presents unique concept facing this challenge by combining ocean waves' formulation with the probabilistic velocity obstacle (PVO method for autonomous navigation. A simple navigation algorithm is presented in order to apply the method of USV’s navigation in presence of waves. A planner simulation dealing with waves and obstacles avoidance is introduced.

  6. Spatial navigation by congenitally blind individuals.

    Science.gov (United States)

    Schinazi, Victor R; Thrash, Tyler; Chebat, Daniel-Robert

    2016-01-01

    Spatial navigation in the absence of vision has been investigated from a variety of perspectives and disciplines. These different approaches have progressed our understanding of spatial knowledge acquisition by blind individuals, including their abilities, strategies, and corresponding mental representations. In this review, we propose a framework for investigating differences in spatial knowledge acquisition by blind and sighted people consisting of three longitudinal models (i.e., convergent, cumulative, and persistent). Recent advances in neuroscience and technological devices have provided novel insights into the different neural mechanisms underlying spatial navigation by blind and sighted people and the potential for functional reorganization. Despite these advances, there is still a lack of consensus regarding the extent to which locomotion and wayfinding depend on amodal spatial representations. This challenge largely stems from methodological limitations such as heterogeneity in the blind population and terminological ambiguity related to the concept of cognitive maps. Coupled with an over-reliance on potential technological solutions, the field has diffused into theoretical and applied branches that do not always communicate. Here, we review research on navigation by congenitally blind individuals with an emphasis on behavioral and neuroscientific evidence, as well as the potential of technological assistance. Throughout the article, we emphasize the need to disentangle strategy choice and performance when discussing the navigation abilities of the blind population. For further resources related to this article, please visit the WIREs website. © 2015 The Authors. WIREs Cognitive Science published by Wiley Periodicals, Inc.

  7. SLS Model Based Design: A Navigation Perspective

    Science.gov (United States)

    Oliver, T. Emerson; Anzalone, Evan; Park, Thomas; Geohagan, Kevin

    2018-01-01

    The SLS Program has implemented a Model-based Design (MBD) and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team is responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1B design, the additional GPS Receiver hardware model is managed as a DMM at the vehicle design level. This paper describes the models, and discusses the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the navigation components.

  8. Integrated navigation method of a marine strapdown inertial navigation system using a star sensor

    International Nuclear Information System (INIS)

    Wang, Qiuying; Diao, Ming; Gao, Wei; Zhu, Minghong; Xiao, Shu

    2015-01-01

    This paper presents an integrated navigation method of the strapdown inertial navigation system (SINS) using a star sensor. According to the principle of SINS, its own navigation information contains an error that increases with time. Hence, the inertial attitude matrix from the star sensor is introduced as the reference information to correct the SINS increases error. For the integrated navigation method, the vehicle’s attitude can be obtained in two ways: one is calculated from SINS; the other, which we have called star sensor attitude, is obtained as the product between the SINS position and the inertial attitude matrix from the star sensor. Therefore, the SINS position error is introduced in the star sensor attitude error. Based on the characteristics of star sensor attitude error and the mathematical derivation, the SINS navigation errors can be obtained by the coupling calculation between the SINS attitude and the star sensor attitude. Unlike several current techniques, the navigation process of this method is non-radiating and invulnerable to jamming. The effectiveness of this approach was demonstrated by simulation and experimental study. The results show that this integrated navigation method can estimate the attitude error and the position error of SINS. Therefore, the SINS navigation accuracy is improved. (paper)

  9. Client-server Approach in the Navigation System for the Blind

    Directory of Open Access Journals (Sweden)

    Lukasz Markiewicz

    2013-09-01

    Full Text Available The article presents the client-server approach in the navigation system for the blind - “Voice Maps”. The authors were among the main creators of the prototype and currently the commercialization phase is being finished. In the implemented prototype only exemplary, limited spatial data were used, therefore they could be stored and analyzed (for pathfinding process in the mobile device’s memory without any difficulties. The resulting increase of spatial data scale and complexity required a modification of the data storage and operation. Consequently, the decision was made to maintain a central spatial database, which is accessed remotely. After that modification, the mobile application fetches the required batch of spatial data (with the pathfinding and search results from the central server through the mobile internet connection, which has also become necessary for other purposes (e.g. voice recognition. The authors present the advantages and disadvantages of this new approach along with the results of the server operational tests.

  10. The attack navigator

    DEFF Research Database (Denmark)

    Probst, Christian W.; Willemson, Jan; Pieters, Wolter

    2016-01-01

    The need to assess security and take protection decisions is at least as old as our civilisation. However, the complexity and development speed of our interconnected technical systems have surpassed our capacity to imagine and evaluate risk scenarios. This holds in particular for risks...... that are caused by the strategic behaviour of adversaries. Therefore, technology-supported methods are needed to help us identify and manage these risks. In this paper, we describe the attack navigator: a graph-based approach to security risk assessment inspired by navigation systems. Based on maps of a socio...

  11. Model-base visual navigation of a mobile robot

    International Nuclear Information System (INIS)

    Roening, J.

    1992-08-01

    The thesis considers the problems of visual guidance of a mobile robot. A visual navigation system is formalized consisting of four basic components: world modelling, navigation sensing, navigation and action. According to this formalization an experimental system is designed and realized enabling real-world navigation experiments. A priori knowledge of the world is used for global path finding, aiding scene analysis and providing feedback information to the close the control loop between planned and actual movements. Two world models were developed. The first approach was a map-based model especially designed for low-level description of indoor environments. The other was a higher level and more symbolic representation of the surroundings utilizing the spatial graph concept. Two passive vision approaches were developed to extract navigation information. With passive three- camera stereovision a sparse depth map of the scene was produced. Another approach employed a fish-eye lens to map the entire scene of the surroundings without camera scanning. The local path planning of the system is supported by three-dimensional scene interpreter providing a partial understanding of scene contents. The interpreter consists of data-driven low-level stages and a model-driven high-level stage. Experiments were carried out in a simulator and test vehicle constructed in the laboratory. The test vehicle successfully navigated indoors

  12. Image navigation as a means to expand the boundaries of fluorescence-guided surgery.

    Science.gov (United States)

    Brouwer, Oscar R; Buckle, Tessa; Bunschoten, Anton; Kuil, Joeri; Vahrmeijer, Alexander L; Wendler, Thomas; Valdés-Olmos, Renato A; van der Poel, Henk G; van Leeuwen, Fijs W B

    2012-05-21

    Hybrid tracers that are both radioactive and fluorescent help extend the use of fluorescence-guided surgery to deeper structures. Such hybrid tracers facilitate preoperative surgical planning using (3D) scintigraphic images and enable synchronous intraoperative radio- and fluorescence guidance. Nevertheless, we previously found that improved orientation during laparoscopic surgery remains desirable. Here we illustrate how intraoperative navigation based on optical tracking of a fluorescence endoscope may help further improve the accuracy of hybrid surgical guidance. After feeding SPECT/CT images with an optical fiducial as a reference target to the navigation system, optical tracking could be used to position the tip of the fluorescence endoscope relative to the preoperative 3D imaging data. This hybrid navigation approach allowed us to accurately identify marker seeds in a phantom setup. The multispectral nature of the fluorescence endoscope enabled stepwise visualization of the two clinically approved fluorescent dyes, fluorescein and indocyanine green. In addition, the approach was used to navigate toward the prostate in a patient undergoing robot-assisted prostatectomy. Navigation of the tracked fluorescence endoscope toward the target identified on SPECT/CT resulted in real-time gradual visualization of the fluorescent signal in the prostate, thus providing an intraoperative confirmation of the navigation accuracy.

  13. Optical surgical navigation system causes pulse oximeter malfunction.

    Science.gov (United States)

    Satoh, Masaaki; Hara, Tetsuhito; Tamai, Kenji; Shiba, Juntaro; Hotta, Kunihisa; Takeuchi, Mamoru; Watanabe, Eiju

    2015-01-01

    An optical surgical navigation system is used as a navigator to facilitate surgical approaches, and pulse oximeters provide valuable information for anesthetic management. However, saw-tooth waves on the monitor of a pulse oximeter and the inability of the pulse oximeter to accurately record the saturation of a percutaneous artery were observed when a surgeon started an optical navigation system. The current case is thought to be the first report of this navigation system interfering with pulse oximetry. The causes of pulse jamming and how to manage an optical navigation system are discussed.

  14. Computer-assisted surgery: virtual- and augmented-reality displays for navigation during urological interventions.

    Science.gov (United States)

    van Oosterom, Matthias N; van der Poel, Henk G; Navab, Nassir; van de Velde, Cornelis J H; van Leeuwen, Fijs W B

    2018-03-01

    To provide an overview of the developments made for virtual- and augmented-reality navigation procedures in urological interventions/surgery. Navigation efforts have demonstrated potential in the field of urology by supporting guidance for various disorders. The navigation approaches differ between the individual indications, but seem interchangeable to a certain extent. An increasing number of pre- and intra-operative imaging modalities has been used to create detailed surgical roadmaps, namely: (cone-beam) computed tomography, MRI, ultrasound, and single-photon emission computed tomography. Registration of these surgical roadmaps with the real-life surgical view has occurred in different forms (e.g. electromagnetic, mechanical, vision, or near-infrared optical-based), whereby the combination of approaches was suggested to provide superior outcome. Soft-tissue deformations demand the use of confirmatory interventional (imaging) modalities. This has resulted in the introduction of new intraoperative modalities such as drop-in US, transurethral US, (drop-in) gamma probes and fluorescence cameras. These noninvasive modalities provide an alternative to invasive technologies that expose the patients to X-ray doses. Whereas some reports have indicated navigation setups provide equal or better results than conventional approaches, most trials have been performed in relatively small patient groups and clear follow-up data are missing. The reported computer-assisted surgery research concepts provide a glimpse in to the future application of navigation technologies in the field of urology.

  15. Surface navigation on Mars with a Navigation Satellite

    Science.gov (United States)

    Vijayaraghavan, A.; Thurman, Sam W.; Kahn, Robert D.; Hastrup, Rolf C.

    Radiometric navigation data from the Deep Space Network (DSN) stations on the earth to transponders and other surface elements such as rovers and landers on Mars, can determine their positions to only within a kilometer in inertial space. The positional error is mostly in the z-component of the surface element parallel to the Martian spin-axis. However, with Doppler and differenced-Doppler data from a Navigation Satellite in orbit around Mars to two or more of such transponders on the planetary surface, their positions can be determined to within 15 meters (or 20 meters for one-way Doppler beacons on Mars) in inertial space. In this case, the transponders (or other vehicles) on Mars need not even be capable of directly communicating to the earth. When the Navigation Satellite data is complemented by radiometric observations from the DSN stations also, directly to the surface elements on Mars, their positions can be determined to within 3 meters in inertial space. The relative positions of such surface elements on Mars (relative to one another) in Mars-fixed coordinates, however, can be determined to within 5 meters from simply range and Doppler data from the DSN stations to the surface elements. These results are obtained from covariance studies assuming X-band data noise levels and data-arcs not exceeding 10 days. They are significant in the planning and deployment of a Mars-based navigation network necessary to support real-time operations during critical phases of manned exploration of Mars.

  16. Usability Testing of Two Ambulatory EHR Navigators.

    Science.gov (United States)

    Hultman, Gretchen; Marquard, Jenna; Arsoniadis, Elliot; Mink, Pamela; Rizvi, Rubina; Ramer, Tim; Khairat, Saif; Fickau, Keri; Melton, Genevieve B

    2016-01-01

    Despite widespread electronic health record (EHR) adoption, poor EHR system usability continues to be a significant barrier to effective system use for end users. One key to addressing usability problems is to employ user testing and user-centered design. To understand if redesigning an EHR-based navigation tool with clinician input improved user performance and satisfaction. A usability evaluation was conducted to compare two versions of a redesigned ambulatory navigator. Participants completed tasks for five patient cases using the navigators, while employing a think-aloud protocol. The tasks were based on Meaningful Use (MU) requirements. The version of navigator did not affect perceived workload, and time to complete tasks was longer in the redesigned navigator. A relatively small portion of navigator content was used to complete the MU-related tasks, though navigation patterns were highly variable across participants for both navigators. Preferences for EHR navigation structures appeared to be individualized. This study demonstrates the importance of EHR usability assessments to evaluate group and individual performance of different interfaces and preferences for each design.

  17. Satellite Imagery Assisted Road-Based Visual Navigation System

    Science.gov (United States)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  18. Conceptual Grounds of Navigation Safety

    Directory of Open Access Journals (Sweden)

    Vladimir Torskiy

    2016-04-01

    Full Text Available The most important global problem being solved by the whole world community nowadays is to provide sustainable mankind development. Recent research in the field of sustainable development states that civilization safety is impossible without transfer sustainable development. At the same time, sustainable development (i.e. preservation of human culture and biosphere is impossible as a system that serves to meet economical, cultural, scientific, recreational and other human needs without safety. Safety plays an important role in sustainable development goals achievement. An essential condition of effective navigation functioning is to provide its safety. The “prescriptive” approach to the navigation safety, which is currently used in the world maritime field, is based on long-term experience and ship accidents investigation results. Thus this approach acted as an the great fact in reduction of number of accidents at sea. Having adopted the International Safety Management Code all the activities connected with navigation safety problems solution were transferred to the higher qualitative level. Search and development of new approaches and methods of ship accidents prevention during their operation have obtained greater importance. However, the maritime safety concept (i.e. the different points on ways, means and methods that should be used to achieve this goal hasn't been formed and described yet. The article contains a brief review of the main provisions of Navigation Safety Conceptions, which contribute to the number of accidents and incidents at sea reduction.

  19. A Rule-Based Spatial Reasoning Approach for OpenStreetMap Data Quality Enrichment; Case Study of Routing and Navigation

    Science.gov (United States)

    2017-01-01

    Finding relevant geospatial information is increasingly critical because of the growing volume of geospatial data available within the emerging “Big Data” era. Users are expecting that the availability of massive datasets will create more opportunities to uncover hidden information and answer more complex queries. This is especially the case with routing and navigation services where the ability to retrieve points of interest and landmarks make the routing service personalized, precise, and relevant. In this paper, we propose a new geospatial information approach that enables the retrieval of implicit information, i.e., geospatial entities that do not exist explicitly in the available source. We present an information broker that uses a rule-based spatial reasoning algorithm to detect topological relations. The information broker is embedded into a framework where annotations and mappings between OpenStreetMap data attributes and external resources, such as taxonomies, support the enrichment of queries to improve the ability of the system to retrieve information. Our method is tested with two case studies that leads to enriching the completeness of OpenStreetMap data with footway crossing points-of-interests as well as building entrances for routing and navigation purposes. It is concluded that the proposed approach can uncover implicit entities and contribute to extract required information from the existing datasets. PMID:29088125

  20. A Rule-Based Spatial Reasoning Approach for OpenStreetMap Data Quality Enrichment; Case Study of Routing and Navigation

    Directory of Open Access Journals (Sweden)

    Amin Mobasheri

    2017-10-01

    Full Text Available Finding relevant geospatial information is increasingly critical because of the growing volume of geospatial data available within the emerging “Big Data” era. Users are expecting that the availability of massive datasets will create more opportunities to uncover hidden information and answer more complex queries. This is especially the case with routing and navigation services where the ability to retrieve points of interest and landmarks make the routing service personalized, precise, and relevant. In this paper, we propose a new geospatial information approach that enables the retrieval of implicit information, i.e., geospatial entities that do not exist explicitly in the available source. We present an information broker that uses a rule-based spatial reasoning algorithm to detect topological relations. The information broker is embedded into a framework where annotations and mappings between OpenStreetMap data attributes and external resources, such as taxonomies, support the enrichment of queries to improve the ability of the system to retrieve information. Our method is tested with two case studies that leads to enriching the completeness of OpenStreetMap data with footway crossing points-of-interests as well as building entrances for routing and navigation purposes. It is concluded that the proposed approach can uncover implicit entities and contribute to extract required information from the existing datasets.

  1. Navigating beyond ‘here & now’ affordances - on sensorimotor maturation and ‘false belief’ performance

    Directory of Open Access Journals (Sweden)

    Maria eBrincker

    2014-12-01

    Full Text Available How and when do we learn to understand other people’s perspectives and possibly divergent beliefs? This question has elicited much theoretical and empirical research. A puzzling finding has been that toddlers perform well on so-called implicit false belief (FB tasks but do not show such capacities on traditional explicit FB tasks. I propose a navigational approach, which offers a hitherto ignored way of making sense of the seemingly contradictory results. The proposal involves a distinction between how we navigate FBs as they relate to 1 our current affordances (here & now navigation as opposed to 2 presently non-actual relations, where we need to leave our concrete embodied/situated viewpoint (counterfactual navigation. It is proposed that whereas toddlers seem able to understand FBs in their current affordance space, they do not yet possess the resources to navigate in abstraction from such concrete affordances, which explicit FB tests seem to require. It is hypothesized that counterfactual navigation depends on the development of ‘sensorimotor priors’, i.e. statistical expectations of own kinestetic re-afference, which evidence now suggests matures around age four, consistent with core findings of explicit FB performance.

  2. Ultrasound-based tumor movement compensation during navigated laparoscopic liver interventions.

    Science.gov (United States)

    Shahin, Osama; Beširević, Armin; Kleemann, Markus; Schlaefer, Alexander

    2014-05-01

    Image-guided navigation aims to provide better orientation and accuracy in laparoscopic interventions. However, the ability of the navigation system to reflect anatomical changes and maintain high accuracy during the procedure is crucial. This is particularly challenging in soft organs such as the liver, where surgical manipulation causes significant tumor movements. We propose a fast approach to obtain an accurate estimation of the tumor position throughout the procedure. Initially, a three-dimensional (3D) ultrasound image is reconstructed and the tumor is segmented. During surgery, the position of the tumor is updated based on newly acquired tracked ultrasound images. The initial segmentation of the tumor is used to automatically detect the tumor and update its position in the navigation system. Two experiments were conducted. First, a controlled phantom motion using a robot was performed to validate the tracking accuracy. Second, a needle navigation scenario based on pseudotumors injected into ex vivo porcine liver was studied. In the robot-based evaluation, the approach estimated the target location with an accuracy of 0.4 ± 0.3 mm. The mean navigation error in the needle experiment was 1.2 ± 0.6 mm, and the algorithm compensated for tumor shifts up to 38 mm in an average time of 1 s. We demonstrated a navigation approach based on tracked laparoscopic ultrasound (LUS), and focused on the neighborhood of the tumor. Our experimental results indicate that this approach can be used to quickly and accurately compensate for tumor movements caused by surgical manipulation during laparoscopic interventions. The proposed approach has the advantage of being based on the routinely used LUS; however, it upgrades its functionality to estimate the tumor position in 3D. Hence, the approach is repeatable throughout surgery, and enables high navigation accuracy to be maintained.

  3. Accelerating navigation in the VecGeom geometry modeller

    Science.gov (United States)

    Wenzel, Sandro; Zhang, Yang; pre="for the"> VecGeom Developers,

    2017-10-01

    The VecGeom geometry library is a relatively recent effort aiming to provide a modern and high performance geometry service for particle detector simulation in hierarchical detector geometries common to HEP experiments. One of its principal targets is the efficient use of vector SIMD hardware instructions to accelerate geometry calculations for single track as well as multi-track queries. Previously, excellent performance improvements compared to Geant4/ROOT could be reported for elementary geometry algorithms at the level of single shape queries. In this contribution, we will focus on the higher level navigation algorithms in VecGeom, which are the most important components as seen from the simulation engines. We will first report on our R&D effort and developments to implement SIMD enhanced data structures to speed up the well-known “voxelised” navigation algorithms, ubiquitously used for particle tracing in complex detector modules consisting of many daughter parts. Second, we will discuss complementary new approaches to improve navigation algorithms in HEP. These ideas are based on a systematic exploitation of static properties of the detector layout as well as automatic code generation and specialisation of the C++ navigator classes. Such specialisations reduce the overhead of generic- or virtual function based algorithms and enhance the effectiveness of the SIMD vector units. These novel approaches go well beyond the existing solutions available in Geant4 or TGeo/ROOT, achieve a significantly superior performance, and might be of interest for a wide range of simulation backends (GeantV, Geant4). We exemplify this with concrete benchmarks for the CMS and ALICE detectors.

  4. Spoofing Detection Using GNSS/INS/Odometer Coupling for Vehicular Navigation.

    Science.gov (United States)

    Broumandan, Ali; Lachapelle, Gérard

    2018-04-24

    Location information is one of the most vital information required to achieve intelligent and context-aware capability for various applications such as driverless cars. However, related security and privacy threats are a major holdback. With increasing focus on using Global Navigation Satellite Systems (GNSS) for autonomous navigation and related applications, it is important to provide robust navigation solutions, yet signal spoofing for illegal or covert transportation and misleading receiver timing is increasing and now frequent. Hence, detection and mitigation of spoofing attacks has become an important topic. Several contributions on spoofing detection have been made, focusing on different layers of a GNSS receiver. This paper focuses on spoofing detection utilizing self-contained sensors, namely inertial measurement units (IMUs) and vehicle odometer outputs. A spoofing detection approach based on a consistency check between GNSS and IMU/odometer mechanization is proposed. To detect a spoofing attack, the method analyses GNSS and IMU/odometer measurements independently during a pre-selected observation window and cross checks the solutions provided by GNSS and inertial navigation solution (INS)/odometer mechanization. The performance of the proposed method is verified in real vehicular environments. Mean spoofing detection time and detection performance in terms of receiver operation characteristics (ROC) in sub-urban and dense urban environments are evaluated.

  5. Spoofing Detection Using GNSS/INS/Odometer Coupling for Vehicular Navigation

    Directory of Open Access Journals (Sweden)

    Ali Broumandan

    2018-04-01

    Full Text Available Location information is one of the most vital information required to achieve intelligent and context-aware capability for various applications such as driverless cars. However, related security and privacy threats are a major holdback. With increasing focus on using Global Navigation Satellite Systems (GNSS for autonomous navigation and related applications, it is important to provide robust navigation solutions, yet signal spoofing for illegal or covert transportation and misleading receiver timing is increasing and now frequent. Hence, detection and mitigation of spoofing attacks has become an important topic. Several contributions on spoofing detection have been made, focusing on different layers of a GNSS receiver. This paper focuses on spoofing detection utilizing self-contained sensors, namely inertial measurement units (IMUs and vehicle odometer outputs. A spoofing detection approach based on a consistency check between GNSS and IMU/odometer mechanization is proposed. To detect a spoofing attack, the method analyses GNSS and IMU/odometer measurements independently during a pre-selected observation window and cross checks the solutions provided by GNSS and inertial navigation solution (INS/odometer mechanization. The performance of the proposed method is verified in real vehicular environments. Mean spoofing detection time and detection performance in terms of receiver operation characteristics (ROC in sub-urban and dense urban environments are evaluated.

  6. Using neuromorphic optical sensors for spacecraft absolute and relative navigation

    Science.gov (United States)

    Shake, Christopher M.

    We develop a novel attitude determination system (ADS) for use on nano spacecraft using neuromorphic optical sensors. The ADS intends to support nano-satellite operations by providing low-cost, low-mass, low-volume, low-power, and redundant attitude determination capabilities with quick and straightforward onboard programmability for real time spacecraft operations. The ADS is experimentally validated with commercial-off-the-shelf optical devices that perform sensing and image processing on the same circuit board and are biologically inspired by insects' vision systems, which measure optical flow while navigating in the environment. The firmware on the devices is modified to both perform the additional biologically inspired task of tracking objects and communicate with a PC/104 form-factor embedded computer running Real Time Application Interface Linux used on a spacecraft simulator. Algorithms are developed for operations using optical flow, point tracking, and hybrid modes with the sensors, and the performance of the system in all three modes is assessed using a spacecraft simulator in the Advanced Autonomous Multiple Spacecraft (ADAMUS) laboratory at Rensselaer. An existing relative state determination method is identified to be combined with the novel ADS to create a self-contained navigation system for nano spacecraft. The performance of the method is assessed in simulation and found not to match the results from its authors using only conditions and equations already published. An improved target inertia tensor method is proposed as an update to the existing relative state method, but found not to perform as expected, but is presented for others to build upon.

  7. A Semantic Navigation Model for Video Games

    Science.gov (United States)

    van Driel, Leonard; Bidarra, Rafael

    Navigational performance of artificial intelligence (AI) characters in computer games is gaining an increasingly important role in the perception of their behavior. While recent games successfully solve some complex navigation problems, there is little known or documented on the underlying approaches, often resembling a primitive conglomerate of ad-hoc algorithms for specific situations.

  8. Encoding and retrieval of landmark-related spatial cues during navigation: An fMRI study

    NARCIS (Netherlands)

    Wegman, J.B.T.; Tyborowska, A.B.; Janzen, G.

    2014-01-01

    To successfully navigate, humans can use different cues from their surroundings. Learning locations in an environment can be supported by parallel subsystems in the hippocampus and the striatum. We used fMRI to look at differences in the use of object-related spatial cues while 47 participants

  9. Vision Based Navigation for Autonomous Cooperative Docking of CubeSats

    Science.gov (United States)

    Pirat, Camille; Ankersen, Finn; Walker, Roger; Gass, Volker

    2018-05-01

    A realistic rendezvous and docking navigation solution applicable to CubeSats is investigated. The scalability analysis of the ESA Autonomous Transfer Vehicle Guidance, Navigation & Control (GNC) performances and the Russian docking system, shows that the docking of two CubeSats would require a lateral control performance of the order of 1 cm. Line of sight constraints and multipath effects affecting Global Navigation Satellite System (GNSS) measurements in close proximity prevent the use of this sensor for the final approach. This consideration and the high control accuracy requirement led to the use of vision sensors for the final 10 m of the rendezvous and docking sequence. A single monocular camera on the chaser satellite and various sets of Light-Emitting Diodes (LEDs) on the target vehicle ensure the observability of the system throughout the approach trajectory. The simple and novel formulation of the measurement equations allows differentiating unambiguously rotations from translations between the target and chaser docking port and allows a navigation performance better than 1 mm at docking. Furthermore, the non-linear measurement equations can be solved in order to provide an analytic navigation solution. This solution can be used to monitor the navigation filter solution and ensure its stability, adding an extra layer of robustness for autonomous rendezvous and docking. The navigation filter initialization is addressed in detail. The proposed method is able to differentiate LEDs signals from Sun reflections as demonstrated by experimental data. The navigation filter uses a comprehensive linearised coupled rotation/translation dynamics, describing the chaser to target docking port motion. The handover, between GNSS and vision sensor measurements, is assessed. The performances of the navigation function along the approach trajectory is discussed.

  10. Navigation integrity monitoring and obstacle detection for enhanced-vision systems

    Science.gov (United States)

    Korn, Bernd; Doehler, Hans-Ullrich; Hecker, Peter

    2001-08-01

    Typically, Enhanced Vision (EV) systems consist of two main parts, sensor vision and synthetic vision. Synthetic vision usually generates a virtual out-the-window view using databases and accurate navigation data, e. g. provided by differential GPS (DGPS). The reliability of the synthetic vision highly depends on both, the accuracy of the used database and the integrity of the navigation data. But especially in GPS based systems, the integrity of the navigation can't be guaranteed. Furthermore, only objects that are stored in the database can be displayed to the pilot. Consequently, unexpected obstacles are invisible and this might cause severe problems. Therefore, additional information has to be extracted from sensor data to overcome these problems. In particular, the sensor data analysis has to identify obstacles and has to monitor the integrity of databases and navigation. Furthermore, if a lack of integrity arises, navigation data, e.g. the relative position of runway and aircraft, has to be extracted directly from the sensor data. The main contribution of this paper is about the realization of these three sensor data analysis tasks within our EV system, which uses the HiVision 35 GHz MMW radar of EADS, Ulm as the primary EV sensor. For the integrity monitoring, objects extracted from radar images are registered with both database objects and objects (e. g. other aircrafts) transmitted via data link. This results in a classification into known and unknown radar image objects and consequently, in a validation of the integrity of database and navigation. Furthermore, special runway structures are searched for in the radar image where they should appear. The outcome of this runway check contributes to the integrity analysis, too. Concurrent to this investigation a radar image based navigation is performed without using neither precision navigation nor detailed database information to determine the aircraft's position relative to the runway. The performance of our

  11. "Why are you pregnant? What were you thinking?": How women navigate experiences of HIV-related stigma in medical settings during pregnancy and birth.

    Science.gov (United States)

    Greene, Saara; Ion, Allyson; Kwaramba, Gladys; Smith, Stephanie; Loutfy, Mona R

    2016-01-01

    Having children is a growing reality for women living with HIV in Canada. It is imperative to understand and respond to women's unique experiences and psychosocial challenges during pregnancy and as mothers including HIV-related stigma. This qualitative study used a narrative methodological approach to understand women's experiences of HIV-related stigma as they navigate health services in pregnancy (n = 66) and early postpartum (n = 64). Narratives of women living with HIV expose the spaces where stigmatizing practices emerge as women seek perinatal care and support, as well as highlight the relationship between HIV-related stigma and disclosure, and the impact this has on women's pregnancy and birthing experiences.

  12. Sexual Orientation-Related Differences in Virtual Spatial Navigation and Spatial Search Strategies.

    Science.gov (United States)

    Rahman, Qazi; Sharp, Jonathan; McVeigh, Meadhbh; Ho, Man-Ling

    2017-07-01

    Spatial abilities are generally hypothesized to differ between men and women, and people with different sexual orientations. According to the cross-sex shift hypothesis, gay men are hypothesized to perform in the direction of heterosexual women and lesbian women in the direction of heterosexual men on cognitive tests. This study investigated sexual orientation differences in spatial navigation and strategy during a virtual Morris water maze task (VMWM). Forty-four heterosexual men, 43 heterosexual women, 39 gay men, and 34 lesbian/bisexual women (aged 18-54 years) navigated a desktop VMWM and completed measures of intelligence, handedness, and childhood gender nonconformity (CGN). We quantified spatial learning (hidden platform trials), probe trial performance, and cued navigation (visible platform trials). Spatial strategies during hidden and probe trials were classified into visual scanning, landmark use, thigmotaxis/circling, and enfilading. In general, heterosexual men scored better than women and gay men on some spatial learning and probe trial measures and used more visual scan strategies. However, some differences disappeared after controlling for age and estimated IQ (e.g., in visual scanning heterosexual men differed from women but not gay men). Heterosexual women did not differ from lesbian/bisexual women. For both sexes, visual scanning predicted probe trial performance. More feminine CGN scores were associated with lower performance among men and greater performance among women on specific spatial learning or probe trial measures. These results provide mixed evidence for the cross-sex shift hypothesis of sexual orientation-related differences in spatial cognition.

  13. Mobile Robot Navigation Based on Q-Learning Technique

    Directory of Open Access Journals (Sweden)

    Lazhar Khriji

    2011-03-01

    Full Text Available This paper shows how Q-learning approach can be used in a successful way to deal with the problem of mobile robot navigation. In real situations where a large number of obstacles are involved, normal Q-learning approach would encounter two major problems due to excessively large state space. First, learning the Q-values in tabular form may be infeasible because of the excessive amount of memory needed to store the table. Second, rewards in the state space may be so sparse that with random exploration they will only be discovered extremely slowly. In this paper, we propose a navigation approach for mobile robot, in which the prior knowledge is used within Q-learning. We address the issue of individual behavior design using fuzzy logic. The strategy of behaviors based navigation reduces the complexity of the navigation problem by dividing them in small actions easier for design and implementation. The Q-Learning algorithm is applied to coordinate between these behaviors, which make a great reduction in learning convergence times. Simulation and experimental results confirm the convergence to the desired results in terms of saved time and computational resources.

  14. Visual navigation using edge curve matching for pinpoint planetary landing

    Science.gov (United States)

    Cui, Pingyuan; Gao, Xizhen; Zhu, Shengying; Shao, Wei

    2018-05-01

    Pinpoint landing is challenging for future Mars and asteroid exploration missions. Vision-based navigation scheme based on feature detection and matching is practical and can achieve the required precision. However, existing algorithms are computationally prohibitive and utilize poor-performance measurements, which pose great challenges for the application of visual navigation. This paper proposes an innovative visual navigation scheme using crater edge curves during descent and landing phase. In the algorithm, the edge curves of the craters tracked from two sequential images are utilized to determine the relative attitude and position of the lander through a normalized method. Then, considering error accumulation of relative navigation, a method is developed. That is to integrate the crater-based relative navigation method with crater-based absolute navigation method that identifies craters using a georeferenced database for continuous estimation of absolute states. In addition, expressions of the relative state estimate bias are derived. Novel necessary and sufficient observability criteria based on error analysis are provided to improve the navigation performance, which hold true for similar navigation systems. Simulation results demonstrate the effectiveness and high accuracy of the proposed navigation method.

  15. Parsimonious Ways to Use Vision for Navigation

    Directory of Open Access Journals (Sweden)

    Paul Graham

    2012-05-01

    Full Text Available The use of visual information for navigation appears to be a universal strategy for sighted animals, amongst which, one particular group of expert navigators are the ants. The broad interest in studies of ant navigation is in part due to their small brains, thus biomimetic engineers expect to be impressed by elegant control solutions, and psychologists might hope for a description of the minimal cognitive requirements for complex spatial behaviours. In this spirit, we have been taking an interdisciplinary approach to the visual guided navigation of ants in their natural habitat. Behavioural experiments and natural image statistics show that visual navigation need not depend on the remembering or recognition of objects. Further modelling work suggests how simple behavioural routines might enable navigation using familiarity detection rather than explicit recall, and we present a proof of concept that visual navigation using familiarity can be achieved without specifying when or what to learn, nor separating routes into sequences of waypoints. We suggest that our current model represents the only detailed and complete model of insect route guidance to date. What's more, we believe the suggested mechanisms represent useful parsimonious hypotheses for the visually guided navigation in larger-brain animals.

  16. Patterns of task and network actions performed by navigators to facilitate cancer care.

    Science.gov (United States)

    Clark, Jack A; Parker, Victoria A; Battaglia, Tracy A; Freund, Karen M

    2014-01-01

    Patient navigation is a widely implemented intervention to facilitate access to care and reduce disparities in cancer care, but the activities of navigators are not well characterized. The aim of this study is to describe what patient navigators actually do and explore patterns of activity that clarify the roles they perform in facilitating cancer care. We conducted field observations of nine patient navigation programs operating in diverse health settings of the national patient navigation research program, including 34 patient navigators, each observed an average of four times. Trained observers used a structured observation protocol to code as they recorded navigator actions and write qualitative field notes capturing all activities in 15-minute intervals during observations ranging from 2 to 7 hours; yielding a total of 133 observations. Rates of coded activity were analyzed using numerical cluster analysis of identified patterns, informed by qualitative analysis of field notes. Six distinct patterns of navigator activity were identified, which differed most relative to how much time navigators spent directly interacting with patients and how much time they spent dealing with medical records and documentation tasks. Navigator actions reveal a complex set of roles in which navigators both provide the direct help to patients denoted by their title and also carry out a variety of actions that function to keep the health system operating smoothly. Working to navigate patients through complex health services entails working to repair the persistent challenges of health services that can render them inhospitable to patients. The organizations that deploy navigators might learn from navigators' efforts and explore alternative approaches, structures, or systems of care in addressing both the barriers patients face and the complex solutions navigators create in helping patients.

  17. Implementation of a socio-ecological system navigation approach to human development in sub-saharan african communities.

    Science.gov (United States)

    Gilioli, Gianni; Caroli, Anna Maria; Tikubet, Getachew; Herren, Hans R; Baumgärtner, Johann

    2014-03-26

    This paper presents a framework for the development of socio-ecological systems towards enhanced sustainability. Emphasis is given to the dynamic properties of complex, adaptive social-ecological systems, their structure and to the fundamental role of agriculture. The tangible components that meet the needs of specific projects executed in Kenya and Ethiopia encompass project objectives, innovation, facilitation, continuous recording and analyses of monitoring data, that allow adaptive management and system navigation. Two case studies deal with system navigation through the mitigation of key constraints; they aim to improve human health thanks to anopheline malaria vectors control in Nyabondo (Kenya), and to improve cattle health through tsetse control and antitrypanosomal drug administration to cattle in Luke (Ethiopia). The second case deals with a socio-ecological navigation system to enhance sustainability, establishing a periurban diversified enterprise in Addis Ababa (Ethiopia) and developing a rural sustainable social-ecological system in Luke (Ethiopia). The project procedures are briefly described here and their outcomes are analysed in relation to the stated objectives. The methodology for human and cattle disease vector control were easier to implement than the navigation of social-ecological systems towards sustainability enhancement. The achievements considerably differed between key constraints removal and sustainability enhancement projects. Some recommendations are made to rationalise human and cattle health improvement efforts and to smoothen the road towards enhanced sustainability: i) technology system implementation should be carried out through an innovation system; ii) transparent monitoring information should be continuously acquired and evaluated for assessing the state of the system in relation to stated objectives for (a) improving the insight into the systems behaviour and (b) rationalizing decision support; iii) the different views of

  18. Implementation of a Socio-Ecological System Navigation Approach to Human Development in Sub-Saharan African Communities

    Science.gov (United States)

    Gilioli, Gianni; Caroli, Anna Maria; Tikubet, Getachew; Herren, Hans R.; Baumgärtner, Johann

    2014-01-01

    This paper presents a framework for the development of socio-ecological systems towards enhanced sustainability. Emphasis is given to the dynamic properties of complex, adaptive social-ecological systems, their structure and to the fundamental role of agriculture. The tangible components that meet the needs of specific projects executed in Kenya and Ethiopia encompass project objectives, innovation, facilitation, continuous recording and analyses of monitoring data, that allow adaptive management and system navigation. Two case studies deal with system navigation through the mitigation of key constraints; they aim to improve human health thanks to anopheline malaria vectors control in Nyabondo (Kenya), and to improve cattle health through tsetse control and antitrypanosomal drug administration to cattle in Luke (Ethiopia). The second case deals with a socio-ecological navigation system to enhance sustainability, establishing a periurban diversified enterprise in Addis Ababa (Ethiopia) and developing a rural sustainable social-ecological system in Luke (Ethiopia). The project procedures are briefly described here and their outcomes are analysed in relation to the stated objectives. The methodology for human and cattle disease vector control were easier to implement than the navigation of social-ecological systems towards sustainability enhancement. The achievements considerably differed between key constraints removal and sustainability enhancement projects. Some recommendations are made to rationalise human and cattle health improvement efforts and to smoothen the road towards enhanced sustainability: i) technology system implementation should be carried out through an innovation system; ii) transparent monitoring information should be continuously acquired and evaluated for assessing the state of the system in relation to stated objectives for (a) improving the insight into the systems behaviour and (b) rationalizing decision support; iii) the different views of

  19. Navigational Traffic Conflict Technique: A Proactive Approach to Quantitative Measurement of Collision Risks in Port Waters

    Science.gov (United States)

    Debnath, Ashim Kumar; Chin, Hoong Chor

    Navigational safety analysis relying on collision statistics is often hampered because of the low number of observations. A promising alternative approach that overcomes this problem is proposed in this paper. By analyzing critical vessel interactions this approach proactively measures collision risk in port waters. The proposed method is illustrated for quantitative measurement of collision risks in Singapore port fairways, and validated by examining correlations between the measured risks with those perceived by pilots. This method is an ethically appealing alternative to the collision-based analysis for fast, reliable and effective safety assessment, thus possessing great potential for managing collision risks in port waters.

  20. Towards a Sign-Based Indoor Navigation System for People with Visual Impairments.

    Science.gov (United States)

    Rituerto, Alejandro; Fusco, Giovanni; Coughlan, James M

    2016-10-01

    Navigation is a challenging task for many travelers with visual impairments. While a variety of GPS-enabled tools can provide wayfinding assistance in outdoor settings, GPS provides no useful localization information indoors. A variety of indoor navigation tools are being developed, but most of them require potentially costly physical infrastructure to be installed and maintained, or else the creation of detailed visual models of the environment. We report development of a new smartphone-based navigation aid, which combines inertial sensing, computer vision and floor plan information to estimate the user's location with no additional physical infrastructure and requiring only the locations of signs relative to the floor plan. A formative study was conducted with three blind volunteer participants demonstrating the feasibility of the approach and highlighting the areas needing improvement.

  1. Challenges of pin-point landing for planetary landing: the LION absolute vision-based navigation approach and experimental results

    OpenAIRE

    Voirin, Thomas; Delaune, Jeff; Le Besnerais, Guy; Farges, Jean Loup; Bourdarias, Clément; Krüger, Hans

    2013-01-01

    After ExoMars in 2016 and 2018, future ESA missions to Mars, the Moon, or asteroids will require safe and pinpoint precision landing capabilities, with for example a specified accuracy of typically 100 m at touchdown for a Moon landing. The safe landing requirement can be met thanks to state-of-the-art Terrain-Relative Navigation (TRN) sensors such as Wide-Field-of-View vision-based navigation cameras (VBNC), with appropriate hazard detection and avoidance algorithms. To reach the pinpoint pr...

  2. Navigating across Cultures: Narrative Constructions of Lived Experience

    Science.gov (United States)

    Pufall-Jones, Elizabeth; Mistry, Jayanthi

    2010-01-01

    In this study, we investigated how individuals from diverse backgrounds learn to navigate the many worlds in which they live and explore how variations in life experiences are associated with aspects of navigating across cultures. We conducted the study using a phenomenological approach based on retrospective personal narratives from 19 young…

  3. Interaction of Harsh Weather Operation and Collision Avoidance in Autonomous Navigation

    Directory of Open Access Journals (Sweden)

    Hans-Christoph Burmeister

    2015-03-01

    Full Text Available Taking into account the autonomous navigation system design and today’s state of the art navigation with regards to weather and collision avoidance this paper presents the architecture of the integrated approach, its links to existing rules and regulations and the test scenarios. These demonstrate how safe and efficient navigation of autonomous vessels can be achieved by showing the module's interaction and validating the feasibility of the approach. These analyses will be based on historical traffic data sets as well as simulation results.

  4. EXTRACTING TOPOLOGICAL RELATIONS BETWEEN INDOOR SPACES FROM POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    H. Tran

    2017-09-01

    Full Text Available 3D models of indoor environments are essential for many application domains such as navigation guidance, emergency management and a range of indoor location-based services. The principal components defined in different BIM standards contain not only building elements, such as floors, walls and doors, but also navigable spaces and their topological relations, which are essential for path planning and navigation. We present an approach to automatically reconstruct topological relations between navigable spaces from point clouds. Three types of topological relations, namely containment, adjacency and connectivity of the spaces are modelled. The results of initial experiments demonstrate the potential of the method in supporting indoor navigation.

  5. Characterizing the Processes for Navigating Internet Health Information Using Real-Time Observations: A Mixed-Methods Approach.

    Science.gov (United States)

    Perez, Susan L; Paterniti, Debora A; Wilson, Machelle; Bell, Robert A; Chan, Man Shan; Villareal, Chloe C; Nguyen, Hien Huy; Kravitz, Richard L

    2015-07-20

    Little is known about the processes people use to find health-related information on the Internet or the individual characteristics that shape selection of information-seeking approaches. Our aim was to describe the processes by which users navigate the Internet for information about a hypothetical acute illness and to identify individual characteristics predictive of their information-seeking strategies. Study participants were recruited from public settings and agencies. Interested individuals were screened for eligibility using an online questionnaire. Participants listened to one of two clinical scenarios—consistent with influenza or bacterial meningitis—and then conducted an Internet search. Screen-capture video software captured Internet search mouse clicks and keystrokes. Each step of the search was coded as hypothesis testing (etiology), evidence gathering (symptoms), or action/treatment seeking (behavior). The coded steps were used to form a step-by-step pattern of each participant's information-seeking process. A total of 78 Internet health information seekers ranging from 21-35 years of age and who experienced barriers to accessing health care services participated. We identified 27 unique patterns of information seeking, which were grouped into four overarching classifications based on the number of steps taken during the search, whether a pattern consisted of developing a hypothesis and exploring symptoms before ending the search or searching an action/treatment, and whether a pattern ended with action/treatment seeking. Applying dual-processing theory, we categorized the four overarching pattern classifications as either System 1 (41%, 32/78), unconscious, rapid, automatic, and high capacity processing; or System 2 (59%, 46/78), conscious, slow, and deliberative processing. Using multivariate regression, we found that System 2 processing was associated with higher education and younger age. We identified and classified two approaches to processing

  6. Orion Exploration Flight Test-1 Post-Flight Navigation Performance Assessment Relative to the Best Estimated Trajectory

    Science.gov (United States)

    Gay, Robert S.; Holt, Greg N.; Zanetti, Renato

    2016-01-01

    This paper details the post-flight navigation performance assessment of the Orion Exploration Flight Test-1 (EFT-1). Results of each flight phase are presented: Ground Align, Ascent, Orbit, and Entry Descent and Landing. This study examines the on-board Kalman Filter uncertainty along with state deviations relative to the Best Estimated Trajectory (BET). Overall the results show that the Orion Navigation System performed as well or better than expected. Specifically, the Global Positioning System (GPS) measurement availability was significantly better than anticipated at high altitudes. In addition, attitude estimation via processing GPS measurements along with Inertial Measurement Unit (IMU) data performed very well and maintained good attitude throughout the mission.

  7. Cancer Patient Navigator Tasks across the Cancer Care Continuum

    Science.gov (United States)

    Braun, Kathryn L.; Kagawa-Singer, Marjorie; Holden, Alan E. C.; Burhansstipanov, Linda; Tran, Jacqueline H.; Seals, Brenda F.; Corbie-Smith, Giselle; Tsark, JoAnn U.; Harjo, Lisa; Foo, Mary Anne; Ramirez, Amelie G.

    2011-01-01

    Cancer patient navigation (PN) programs have been shown to increase access to and utilization of cancer care for poor and underserved individuals. Despite mounting evidence of its value, cancer patient navigation is not universally understood or provided. We describe five PN programs and the range of tasks their navigators provide across the cancer care continuum (education and outreach, screening, diagnosis and staging, treatment, survivorship, and end-of-life). Tasks are organized by their potential to make cancer services understandable, available, accessible, affordable, appropriate, and accountable. Although navigators perform similar tasks across the five programs, their specific approaches reflect differences in community culture, context, program setting, and funding. Task lists can inform the development of programs, job descriptions, training, and evaluation. They also may be useful in the move to certify navigators and establish mechanisms for reimbursement for navigation services. PMID:22423178

  8. Instrument-mounted displays for reducing cognitive load during surgical navigation.

    Science.gov (United States)

    Herrlich, Marc; Tavakol, Parnian; Black, David; Wenig, Dirk; Rieder, Christian; Malaka, Rainer; Kikinis, Ron

    2017-09-01

    Surgical navigation systems rely on a monitor placed in the operating room to relay information. Optimal monitor placement can be challenging in crowded rooms, and it is often not possible to place the monitor directly beside the situs. The operator must split attention between the navigation system and the situs. We present an approach for needle-based interventions to provide navigational feedback directly on the instrument and close to the situs by mounting a small display onto the needle. By mounting a small and lightweight smartwatch display directly onto the instrument, we are able to provide navigational guidance close to the situs and directly in the operator's field of view, thereby reducing the need to switch the focus of view between the situs and the navigation system. We devise a specific variant of the established crosshair metaphor suitable for the very limited screen space. We conduct an empirical user study comparing our approach to using a monitor and a combination of both. Results from the empirical user study show significant benefits for cognitive load, user preference, and general usability for the instrument-mounted display, while achieving the same level of performance in terms of time and accuracy compared to using a monitor. We successfully demonstrate the feasibility of our approach and potential benefits. With ongoing technological advancements, instrument-mounted displays might complement standard monitor setups for surgical navigation in order to lower cognitive demands and for improved usability of such systems.

  9. Navigation Strategies for Primitive Solar System Body Rendezvous and Proximity Operations

    Science.gov (United States)

    Getzandanner, Kenneth M.

    2011-01-01

    A wealth of scientific knowledge regarding the composition and evolution of the solar system can be gained through reconnaissance missions to primitive solar system bodies. This paper presents analysis of a baseline navigation strategy designed to address the unique challenges of primitive body navigation. Linear covariance and Monte Carlo error analysis was performed on a baseline navigation strategy using simulated data from a· design reference mission (DRM). The objective of the DRM is to approach, rendezvous, and maintain a stable orbit about the near-Earth asteroid 4660 Nereus. The outlined navigation strategy and resulting analyses, however, are not necessarily limited to this specific target asteroid as they may he applicable to a diverse range of mission scenarios. The baseline navigation strategy included simulated data from Deep Space Network (DSN) radiometric tracking and optical image processing (OpNav). Results from the linear covariance and Monte Carlo analyses suggest the DRM navigation strategy is sufficient to approach and perform proximity operations in the vicinity of the target asteroid with meter-level accuracy.

  10. INS integrated motion analysis for autonomous vehicle navigation

    Science.gov (United States)

    Roberts, Barry; Bazakos, Mike

    1991-01-01

    The use of inertial navigation system (INS) measurements to enhance the quality and robustness of motion analysis techniques used for obstacle detection is discussed with particular reference to autonomous vehicle navigation. The approach to obstacle detection used here employs motion analysis of imagery generated by a passive sensor. Motion analysis of imagery obtained during vehicle travel is used to generate range measurements to points within the field of view of the sensor, which can then be used to provide obstacle detection. Results obtained with an INS integrated motion analysis approach are reviewed.

  11. An on-line monitoring system for navigation equipment

    Science.gov (United States)

    Wang, Bo; Yang, Ping; Liu, Jing; Yang, Zhengbo; Liang, Fei

    2017-10-01

    Civil air navigation equipment is the most important infrastructure of Civil Aviation, which is closely related to flight safety. In addition to regular flight inspection, navigation equipment's patrol measuring, maintenance measuring, running measuring under special weather conditions are the important means of ensuring aviation flight safety. According to the safety maintenance requirements of Civil Aviation Air Traffic Control navigation equipment, this paper developed one on-line monitoring system with independent intellectual property rights for navigation equipment, the system breakthroughs the key technologies of measuring navigation equipment on-line including Instrument Landing System (ILS) and VHF Omni-directional Range (VOR), which also meets the requirements of navigation equipment ground measurement set by the ICAO DOC 8071, it provides technical means of the ground on-line measurement for navigation equipment, improves the safety of navigation equipment operation, and reduces the impact of measuring navigation equipment on airport operation.

  12. The serious game HearHere for elderly with age-related vision loss : effectively training the skill to use auditory information for navigation

    NARCIS (Netherlands)

    Hartendorp, Mijk; Braad, Eelco; Van Sloten, Janke; Steyvers, Frank; Pinkster, Christiaan

    2017-01-01

    More and more people suffer from age-related eye conditions, e.g. Macular Degeneration. One of the problems experienced by these people is navigation. A strategy shown by many juvenile visually impaired persons (VIPs) is using auditory information for navigation. Therefore, it is important to train

  13. Navigating ‘riskscapes’

    DEFF Research Database (Denmark)

    Gee, Stephanie; Skovdal, Morten

    2017-01-01

    This paper draws on interview data to examine how international health care workers navigated risk during the unprecedented Ebola outbreak in West Africa. It identifies the importance of place in risk perception, including how different spatial localities give rise to different feelings of threat...... or safety, some from the construction of physical boundaries, and others mediated through aspects of social relations, such as trust, communication and team dynamics. Referring to these spatial localities as ‘riskscapes’, the paper calls for greater recognition of the role of place in understanding risk...... perception, and how people navigate risk....

  14. Integrated software health management for aerospace guidance, navigation, and control systems: A probabilistic reasoning approach

    Science.gov (United States)

    Mbaya, Timmy

    Embedded Aerospace Systems have to perform safety and mission critical operations in a real-time environment where timing and functional correctness are extremely important. Guidance, Navigation, and Control (GN&C) systems substantially rely on complex software interfacing with hardware in real-time; any faults in software or hardware, or their interaction could result in fatal consequences. Integrated Software Health Management (ISWHM) provides an approach for detection and diagnosis of software failures while the software is in operation. The ISWHM approach is based on probabilistic modeling of software and hardware sensors using a Bayesian network. To meet memory and timing constraints of real-time embedded execution, the Bayesian network is compiled into an Arithmetic Circuit, which is used for on-line monitoring. This type of system monitoring, using an ISWHM, provides automated reasoning capabilities that compute diagnoses in a timely manner when failures occur. This reasoning capability enables time-critical mitigating decisions and relieves the human agent from the time-consuming and arduous task of foraging through a multitude of isolated---and often contradictory---diagnosis data. For the purpose of demonstrating the relevance of ISWHM, modeling and reasoning is performed on a simple simulated aerospace system running on a real-time operating system emulator, the OSEK/Trampoline platform. Models for a small satellite and an F-16 fighter jet GN&C (Guidance, Navigation, and Control) system have been implemented. Analysis of the ISWHM is then performed by injecting faults and analyzing the ISWHM's diagnoses.

  15. Sex differences in navigation strategy and efficiency.

    Science.gov (United States)

    Boone, Alexander P; Gong, Xinyi; Hegarty, Mary

    2018-05-22

    Research on human navigation has indicated that males and females differ in self-reported navigation strategy as well as objective measures of navigation efficiency. In two experiments, we investigated sex differences in navigation strategy and efficiency using an objective measure of strategy, the dual-solution paradigm (DSP; Marchette, Bakker, & Shelton, 2011). Although navigation by shortcuts and learned routes were the primary strategies used in both experiments, as in previous research on the DSP, individuals also utilized route reversals and sometimes found the goal location as a result of wandering. Importantly, sex differences were found in measures of both route selection and navigation efficiency. In particular, males were more likely to take shortcuts and reached their goal location faster than females, while females were more likely to follow learned routes and wander. Self-report measures of strategy were only weakly correlated with objective measures of strategy, casting doubt on their usefulness. This research indicates that the sex difference in navigation efficiency is large, and only partially related to an individual's navigation strategy as measured by the dual-solution paradigm.

  16. Requirements for e-Navigation Architectures

    Directory of Open Access Journals (Sweden)

    Axel Hahn

    2016-12-01

    Full Text Available Technology is changing the way of navigation. New technologies for communication and navigation can be found on virtually every vessel. System architectures define structure and cooperation of components and subsystems. IMO, IALA, costal authorities, technology provider and many more actually propose new architectures for e-Navigation. This paper looks at other transportation domains and technical as normative requirements for e-Navigation architectures. With the aim of identifying possible synergies in the research, development, certification and standardization, this paper sets out to compare requirements and approaches of these two domains with respect to safety and security aspects. Since from an autonomy perspective, the automotive domain has started earlier and therefore has achieved a higher degree of technical progress, we will start with an overview of the developments in this domain. After that, the paper discusses the requirements on automation and assistance systems in the maritime domain and gives an overview of the developments into this direction within the maritime domain. This then allows us to compare developments in both domains and to derive recommendations for further developments in the maritime domain at the end of this paper.

  17. Integrated INS/GPS Navigation from a Popular Perspective

    Science.gov (United States)

    Omerbashich, Mensur

    2002-01-01

    Inertial navigation, blended with other navigation aids, Global Positioning System (GPS) in particular, has gained significance due to enhanced navigation and inertial reference performance and dissimilarity for fault tolerance and anti-jamming. Relatively new concepts based upon using Differential GPS (DGPS) blended with Inertial (and visual) Navigation Sensors (INS) offer the possibility of low cost, autonomous aircraft landing. The FAA has decided to implement the system in a sophisticated form as a new standard navigation tool during this decade. There have been a number of new inertial sensor concepts in the recent past that emphasize increased accuracy of INS/GPS versus INS and reliability of navigation, as well as lower size and weight, and higher power, fault tolerance, and long life. The principles of GPS are not discussed; rather the attention is directed towards general concepts and comparative advantages. A short introduction to the problems faced in kinematics is presented. The intention is to relate the basic principles of kinematics to probably the most used navigation method in the future-INS/GPS. An example of the airborne INS is presented, with emphasis on how it works. The discussion of the error types and sources in navigation, and of the role of filters in optimal estimation of the errors then follows. The main question this paper is trying to answer is 'What are the benefits of the integration of INS and GPS and how is this, navigation concept of the future achieved in reality?' The main goal is to communicate the idea about what stands behind a modern navigation method.

  18. A Sensor Based Navigation Algorithm for a Mobile Robot using the DVFF Approach

    Directory of Open Access Journals (Sweden)

    A. OUALID DJEKOUNE

    2009-06-01

    Full Text Available Often autonomous mobile robots operate in environment for which prior maps are incomplete or inaccurate. They require the safe execution for a collision free motion to a goal position. This paper addresses a complete navigation method for a mobile robot that moves in unknown environment. Thus, a novel method called DVFF combining the Virtual Force Field (VFF obstacle avoidance approach and global path planning based on D* algorithm is proposed. While D* generates global path information towards a goal position, the VFF local controller generates the admissible trajectories that ensure safe robot motion. Results and analysis from a battery of experiments with this new method implemented on a ATRV2 mobile robot are shown.

  19. Metrics for evaluating patient navigation during cancer diagnosis and treatment: crafting a policy-relevant research agenda for patient navigation in cancer care.

    Science.gov (United States)

    Guadagnolo, B Ashleigh; Dohan, Daniel; Raich, Peter

    2011-08-01

    Racial and ethnic minorities as well as other vulnerable populations experience disparate cancer-related health outcomes. Patient navigation is an emerging health care delivery innovation that offers promise in improving quality of cancer care delivery to these patients who experience unique health-access barriers. Metrics are needed to evaluate whether patient navigation can improve quality of care delivery, health outcomes, and overall value in health care during diagnosis and treatment of cancer. Information regarding the current state of the science examining patient navigation interventions was gathered via search of the published scientific literature. A focus group of providers, patient navigators, and health-policy experts was convened as part of the Patient Navigation Leadership Summit sponsored by the American Cancer Society. Key metrics were identified for assessing the efficacy of patient navigation in cancer diagnosis and treatment. Patient navigation data exist for all stages of cancer care; however, the literature is more robust for its implementation during prevention, screening, and early diagnostic workup of cancer. Relatively fewer data are reported for outcomes and efficacy of patient navigation during cancer treatment. Metrics are proposed for a policy-relevant research agenda to evaluate the efficacy of patient navigation in cancer diagnosis and treatment. Patient navigation is understudied with respect to its use in cancer diagnosis and treatment. Core metrics are defined to evaluate its efficacy in improving outcomes and mitigating health-access barriers. Copyright © 2011 American Cancer Society.

  20. Navigation in space by X-ray pulsars

    CERN Document Server

    Emadzadeh, Amir Abbas

    2011-01-01

    This book covers modeling of X-ray pulsar signals and explains how X-ray pulsar signals can be used to solve the relative navigation problem. It formulates the problem, proposes a recursive solution and analyzes different aspects of the navigation system.

  1. X-Ray Detection and Processing Models for Spacecraft Navigation and Timing

    Science.gov (United States)

    Sheikh, Suneel; Hanson, John

    2013-01-01

    The current primary method of deepspace navigation is the NASA Deep Space Network (DSN). High-performance navigation is achieved using Delta Differential One-Way Range techniques that utilize simultaneous observations from multiple DSN sites, and incorporate observations of quasars near the line-of-sight to a spacecraft in order to improve the range and angle measurement accuracies. Over the past four decades, x-ray astronomers have identified a number of xray pulsars with pulsed emissions having stabilities comparable to atomic clocks. The x-ray pulsar-based navigation and time determination (XNAV) system uses phase measurements from these sources to establish autonomously the position of the detector, and thus the spacecraft, relative to a known reference frame, much as the Global Positioning System (GPS) uses phase measurements from radio signals from several satellites to establish the position of the user relative to an Earth-centered fixed frame of reference. While a GPS receiver uses an antenna to detect the radio signals, XNAV uses a detector array to capture the individual xray photons from the x-ray pulsars. The navigation solution relies on detailed xray source models, signal processing, navigation and timing algorithms, and analytical tools that form the basis of an autonomous XNAV system. Through previous XNAV development efforts, some techniques have been established to utilize a pulsar pulse time-of-arrival (TOA) measurement to correct a position estimate. One well-studied approach, based upon Kalman filter methods, optimally adjusts a dynamic orbit propagation solution based upon the offset in measured and predicted pulse TOA. In this delta position estimator scheme, previously estimated values of spacecraft position and velocity are utilized from an onboard orbit propagator. Using these estimated values, the detected arrival times at the spacecraft of pulses from a pulsar are compared to the predicted arrival times defined by the pulsar s pulse

  2. Encoding and retrieval of landmark-related spatial cues during navigation: an fMRI study.

    Science.gov (United States)

    Wegman, Joost; Tyborowska, Anna; Janzen, Gabriele

    2014-07-01

    To successfully navigate, humans can use different cues from their surroundings. Learning locations in an environment can be supported by parallel subsystems in the hippocampus and the striatum. We used fMRI to look at differences in the use of object-related spatial cues while 47 participants actively navigated in an open-field virtual environment. In each trial, participants navigated toward a target object. During encoding, three positional cues (columns) with directional cues (shadows) were available. During retrieval, the removed target had to be replaced while either two objects without shadows (objects trial) or one object with a shadow (shadow trial) were available. Participants were informed in blocks about which type of retrieval trial was most likely to occur, thereby modulating expectations of having to rely on a single landmark or on a configuration of landmarks. How the spatial learning systems in the hippocampus and caudate nucleus were involved in these landmark-based encoding and retrieval processes were investigated. Landmark configurations can create a geometry similar to boundaries in an environment. It was found that the hippocampus was involved in encoding when relying on configurations of landmarks, whereas the caudate nucleus was involved in encoding when relying on single landmarks. This might suggest that the observed hippocampal activation for configurations of objects is linked to a spatial representation observed with environmental boundaries. Retrieval based on configurations of landmarks activated regions associated with the spatial updation of object locations for reorientation. When only a single landmark was available during retrieval, regions associated with updating the location of oneself were activated. There was also evidence that good between-participant performance was predicted by right hippocampal activation. This study therefore sheds light on how the brain deals with changing demands on spatial processing related purely

  3. Microsurgical and Endoscopic Anatomy for Intradural Temporal Bone Drilling and Applications of the Electromagnetic Navigation System: Various Extensions of the Retrosigmoid Approach.

    Science.gov (United States)

    Matsushima, Ken; Komune, Noritaka; Matsuo, Satoshi; Kohno, Michihiro

    2017-07-01

    The use of the retrosigmoid approach has recently been expanded by several modifications, including the suprameatal, transmeatal, suprajugular, and inframeatal extensions. Intradural temporal bone drilling without damaging vital structures inside or beside the bone, such as the internal carotid artery and jugular bulb, is a key step for these extensions. This study aimed to examine the microsurgical and endoscopic anatomy of the extensions of the retrosigmoid approach and to evaluate the clinical feasibility of an electromagnetic navigation system during intradural temporal bone drilling. Five temporal bones and 8 cadaveric cerebellopontine angles were examined to clarify the anatomy of retrosigmoid intradural temporal bone drilling. Twenty additional cerebellopontine angles were dissected in a clinical setting with an electromagnetic navigation system while measuring the target registration errors at 8 surgical landmarks on and inside the temporal bone. Retrosigmoid intradural temporal bone drilling expanded the surgical exposure to allow access to the petroclival and parasellar regions (suprameatal), internal acoustic meatus (transmeatal), upper jugular foramen (suprajugular), and petrous apex (inframeatal). The electromagnetic navigation continuously guided the drilling without line of sight limitation, and its small devices were easily manipulated in the deep and narrow surgical field in the posterior fossa. Mean target registration error was less than 0.50 mm during these procedures. The combination of endoscopic and microsurgical techniques aids in achieving optimal exposure for retrosigmoid intradural temporal bone drilling. The electromagnetic navigation system had clear advantages with acceptable accuracy including the usability of small devices without line of sight limitation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Navigation errors encountered using weather-mapping radar for helicopter IFR guidance to oil rigs

    Science.gov (United States)

    Phillips, J. D.; Bull, J. S.; Hegarty, D. M.; Dugan, D. C.

    1980-01-01

    In 1978 a joint NASA-FAA helicopter flight test was conducted to examine the use of weather-mapping radar for IFR guidance during landing approaches to oil rig helipads. The following navigation errors were measured: total system error, radar-range error, radar-bearing error, and flight technical error. Three problem areas were identified: (1) operational problems leading to pilot blunders, (2) poor navigation to the downwind final approach point, and (3) pure homing on final approach. Analysis of these problem areas suggests improvement in the radar equipment, approach procedure, and pilot training, and gives valuable insight into the development of future navigation aids to serve the off-shore oil industry.

  5. Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Jamal Atman

    2016-09-01

    Full Text Available Micro Air Vehicles (MAVs equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS. In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV’s navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results.

  6. Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles.

    Science.gov (United States)

    Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F

    2016-09-16

    Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV's navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results.

  7. Navigating on handheld displays: Dynamic versus Static Keyhole Navigation

    NARCIS (Netherlands)

    Mehra, S.; Werkhoven, P.; Worring, M.

    2006-01-01

    Handheld displays leave little space for the visualization and navigation of spatial layouts representing rich information spaces. The most common navigation method for handheld displays is static peephole navigation: The peephole is static and we move the spatial layout behind it (scrolling). A

  8. A voxelization approach to navigate through nested geometries

    CERN Document Server

    Harrison, Brent Andrew

    2016-01-01

    High energy physics experiment software typically implements a detailed description of the geometry of the relevant detector. As modern detectors increase in complexity, modelling them becomes more challenging. Typically such models are built as a nested hierarchy of O(10000) volumes reaching a depth of 10 - 20. It is desirable to develop data structures and algorithms which allow fast and efficient navigation though a given detector geometry model. We investigate the feasibility of voxelisation techniques to this end.

  9. 22 CFR 401.25 - Government brief regarding navigable waters.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Government brief regarding navigable waters. 401... PROCEDURE Applications § 401.25 Government brief regarding navigable waters. When in the opinion of the Commission it is desirable that a decision should be rendered which affects navigable waters in a manner or...

  10. Wavefront Propagation and Fuzzy Based Autonomous Navigation

    Directory of Open Access Journals (Sweden)

    Adel Al-Jumaily

    2005-06-01

    Full Text Available Path planning and obstacle avoidance are the two major issues in any navigation system. Wavefront propagation algorithm, as a good path planner, can be used to determine an optimal path. Obstacle avoidance can be achieved using possibility theory. Combining these two functions enable a robot to autonomously navigate to its destination. This paper presents the approach and results in implementing an autonomous navigation system for an indoor mobile robot. The system developed is based on a laser sensor used to retrieve data to update a two dimensional world model of therobot environment. Waypoints in the path are incorporated into the obstacle avoidance. Features such as ageing of objects and smooth motion planning are implemented to enhance efficiency and also to cater for dynamic environments.

  11. PRIVATE GRAPHS – ACCESS RIGHTS ON GRAPHS FOR SEAMLESS NAVIGATION

    Directory of Open Access Journals (Sweden)

    W. Dorner

    2016-06-01

    Full Text Available After the success of GNSS (Global Navigational Satellite Systems and navigation services for public streets, indoor seems to be the next big development in navigational services, relying on RTLS – Real Time Locating Services (e.g. WIFI and allowing seamless navigation. In contrast to navigation and routing services on public streets, seamless navigation will cause an additional challenge: how to make routing data accessible to defined users or restrict access rights for defined areas or only to parts of the graph to a defined user group? The paper will present case studies and data from literature, where seamless and especially indoor navigation solutions are presented (hospitals, industrial complexes, building sites, but the problem of restricted access rights was only touched from a real world, but not a technical perspective. The analysis of case studies will show, that the objective of navigation and the different target groups for navigation solutions will demand well defined access rights and require solutions, how to make only parts of a graph to a user or application available to solve a navigational task. The paper will therefore introduce the concept of private graphs, which is defined as a graph for navigational purposes covering the street, road or floor network of an area behind a public street and suggest different approaches how to make graph data for navigational purposes available considering access rights and data protection, privacy and security issues as well.

  12. Are the deficits in navigational abilities present in the Williams syndrome related to deficits in the backward inhibition?

    Directory of Open Access Journals (Sweden)

    Francesca eFoti

    2015-03-01

    Full Text Available Williams syndrome (WS is associated with a distinct profile of relatively proficient skills within the verbal domain compared to the severe impairment of visuo-spatial processing. Abnormalities in executive functions and deficits in planning ability and spatial working memory have been described. However, to date little is known about the influence of executive function deficits on navigational abilities in WS. This study aimed at analyzing in WS individuals a specific executive function, the backward inhibition (BI that allows individuals to flexibly adapt to continuously changing environments. A group of WS individuals and a mental age- and gender-matched group of typically developing (TD children were subjected to three task-switching experiments requiring visuospatial or verbal material to be processed. Results showed that WS individuals exhibited clear BI deficits during visuospatial task-switching paradigms and normal BI effect during verbal task-switching paradigm. Overall, the present results suggest that the BI involvement in updating environment representations during navigation may influence WS navigational abilities.

  13. Theoretical Limits of Lunar Vision Aided Navigation with Inertial Navigation System

    Science.gov (United States)

    2015-03-26

    THEORETICAL LIMITS OF LUNAR VISION AIDED NAVIGATION WITH INERTIAL NAVIGATION SYSTEM THESIS David W. Jones, Capt, USAF AFIT-ENG-MS-15-M-020 DEPARTMENT...Government and is not subject to copyright protection in the United States. AFIT-ENG-MS-15-M-020 THEORETICAL LIMITS OF LUNAR VISION AIDED NAVIGATION WITH...DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-M-020 THEORETICAL LIMITS OF LUNAR VISION AIDED NAVIGATION WITH INERTIAL NAVIGATION SYSTEM THESIS David W. Jones

  14. Lucy: Navigating a Jupiter Trojan Tour

    Science.gov (United States)

    Stanbridge, Dale; Williams, Ken; Williams, Bobby; Jackman, Coralie; Weaver, Hal; Berry, Kevin; Sutter, Brian; Englander, Jacob

    2017-01-01

    In January 2017, NASA selected the Lucy mission to explore six Jupiter Trojan asteroids. These six bodies, remnants of the primordial material that formed the outer planets, were captured in the Sun-Jupiter L4 and L5 Lagrangian regions early in the solar system formation. These particular bodies were chosen because of their diverse spectral properties and the chance to observe up close for the first time two orbiting approximately equal mass binaries, Patroclus and Menoetius. KinetX, Inc. is the primary navigation supplier for the Lucy mission. This paper describes preliminary navigation analyses of the approach phase for each Trojan encounter.

  15. Ethical Navigation in Leadership Training

    Directory of Open Access Journals (Sweden)

    Øyvind Kvalnes

    2012-05-01

    Full Text Available Business leaders frequently face dilemmas, circumstances where whatever course of action they choose, something of important value will be offended. How can an organisation prepare its decision makers for such situations? This article presents a pedagogical approach to dilemma training for business leaders and managers. It has evolved through ten years of experience with human resource development, where ethics has been an integral part of programs designed to help individuals to become excellent in their professional roles. The core element in our approach is The Navigation Wheel, a figure used to keep track of relevant decision factors. Feedback from participants indicates that dilemma training has helped them to recognise the ethical dimension of leadership. They respond that the tools and concepts are highly relevant in relation to the challenges that occur in the working environment they return to after leadership training.http://dx.doi.org/10.5324/eip.v6i1.1778

  16. Mars rover local navigation and hazard avoidance

    Science.gov (United States)

    Wilcox, B. H.; Gennery, D. B.; Mishkin, A. H.

    1989-01-01

    A Mars rover sample return mission has been proposed for the late 1990's. Due to the long speed-of-light delays between earth and Mars, some autonomy on the rover is highly desirable. JPL has been conducting research in two possible modes of rover operation, Computer-Aided Remote Driving and Semiautonomous Navigation. A recently-completed research program used a half-scale testbed vehicle to explore several of the concepts in semiautonomous navigation. A new, full-scale vehicle with all computational and power resources on-board will be used in the coming year to demonstrate relatively fast semiautonomous navigation. The computational and power requirements for Mars rover local navigation and hazard avoidance are discussed.

  17. A novel low-cost approach for navigated transcranial magnetic stimulation.

    Science.gov (United States)

    Rodseth, Jakob; Washabaugh, Edward P; Krishnan, Chandramouli

    2017-01-01

    Transcranial magnetic stimulation (TMS) is commonly used for assessing or modulating brain excitability. However, the credibility of TMS outcomes depends on accurate and reliable coil placement during stimulation. Navigated TMS systems can address this issue, but these systems are expensive for routine use in clinical and research environments. The purpose of this study was to provide a high-quality open source framework for navigated TMS and test its reliability and accuracy using standard TMS procedures. A navigated TMS system was created using a low-cost 3D camera system (OptiTrack Trio), which communicates with our free and open source software environment programmed using the Unity 3D gaming engine. The environment is user friendly and has functions to allow for a variety of stimulation procedures (e.g., head and coil co-registration, multiple hotspot/grid tracking, intuitive matching, and data logging). The system was then validated using a static mockup of a TMS session. The clinical utility was also evaluated by assessing the repeatability and operator accuracy when collecting motor evoked potential (MEP) data from human subjects. The system was highly reliable and improved coil placement accuracy (position error = 1.2 mm and orientation error = 0.3°) as well as the quality and consistency (ICC >0.95) of MEPs recorded during TMS. These results indicate that the proposed system is a viable tool for reliable coil placement during TMS procedures, and can improve accuracy in locating the coil over a desired hotspot both within and between sessions.

  18. Performance-related increases in hippocampal N-acetylaspartate (NAA) induced by spatial navigation training are restricted to BDNF Val homozygotes.

    Science.gov (United States)

    Lövdén, Martin; Schaefer, Sabine; Noack, Hannes; Kanowski, Martin; Kaufmann, Jörn; Tempelmann, Claus; Bodammer, Nils Christian; Kühn, Simone; Heinze, Hans-Jochen; Lindenberger, Ulman; Düzel, Emrah; Bäckman, Lars

    2011-06-01

    Recent evidence indicates experience-dependent brain volume changes in humans, but the functional and histological nature of such changes is unknown. Here, we report that adult men performing a cognitively demanding spatial navigation task every other day over 4 months display increases in hippocampal N-acetylaspartate (NAA) as measured with magnetic resonance spectroscopy. Unlike measures of brain volume, changes in NAA are sensitive to metabolic and functional aspects of neural and glia tissue and unlikely to reflect changes in microvasculature. Training-induced changes in NAA were, however, absent in carriers of the Met substitution in the brain-derived neurotrophic factor (BDNF) gene, which is known to reduce activity-dependent secretion of BDNF. Among BDNF Val homozygotes, increases in NAA were strongly related to the degree of practice-related improvement in navigation performance and normalized to pretraining levels 4 months after the last training session. We conclude that changes in demands on spatial navigation can alter hippocampal NAA concentrations, confirming epidemiological studies suggesting that mental experience may have direct effects on neural integrity and cognitive performance. BDNF genotype moderates these plastic changes, in line with the contention that gene-context interactions shape the ontogeny of complex phenotypes.

  19. [Efficacy of Sacroiliac Joint Anterior Approach with Double Reconstruction Plate and Computer Assisted Navigation Percutaneous Sacroiliac Screw for Treating Tile C1 Pelvic Fractures].

    Science.gov (United States)

    Tan, Zhen; Fang, Yue; Zhang, Hui; Liu, Lei; Xiang, Zhou; Zhong, Gang; Huang, Fu-Guo; Wang, Guang-Lin

    2017-09-01

    To compare the efficacy of sacroiliac joint anterior approach with double reconstruction plate and computer assisted navigation percutaneous sacroiliac screw for treating Tile C1 pelvic fractures. Fifty patients with pelvic Tile C1 fractures were randomly divided into two groups ( n =25 for each) in the orthopedic department of West China Hospital of Sichuan University from December 2012 to November 2014. Patients in group A were treated by sacroiliac joint dislocation with anterior plate fixation. Patients in group B were treated with computerized navigation for percutaneous sacroiliac screw. The operation duration,intraoperative blood loss,incision length,and postoperative complications (nausea,vomiting,pulmonary infection,wound complications,etc.) were compared between the two groups. The postoperative fracture healing time,postoperative patient satisfaction,and postoperative fractures MATTA scores (to evaluate fracture reduction),postoperative MAJEED function scores,and SF36 scores of the patients were also recorded and compared. No significant differences in baseline characteristics were found between the two groups of patients. All of the patients in both groups had their operations successfully completed. Patients in group B had significantly shorter operations and lower intraoperative blood loss,incision length and postoperative complications than those in group A ( P 0.05). Sacroiliac joint anterior approach with double reconstruction plate and computer assisted navigation percutaneous sacroiliac screws are both effective for treating Tile C1type pelvic fractures,with similar longterm efficacies. However,computer assisted navigation percutaneous sacroiliac screw has the advantages of less trauma,less bleeding,and quicker.

  20. GPS navigation algorithms for Autonomous Airborne Refueling of Unmanned Air Vehicles

    Science.gov (United States)

    Khanafseh, Samer Mahmoud

    Unmanned Air Vehicles (UAVs) have recently generated great interest because of their potential to perform hazardous missions without risking loss of life. If autonomous airborne refueling is possible for UAVs, mission range and endurance will be greatly enhanced. However, concerns about UAV-tanker proximity, dynamic mobility and safety demand that the relative navigation system meets stringent requirements on accuracy, integrity, and continuity. In response, this research focuses on developing high-performance GPS-based navigation architectures for Autonomous Airborne Refueling (AAR) of UAVs. The AAR mission is unique because of the potentially severe sky blockage introduced by the tanker. To address this issue, a high-fidelity dynamic sky blockage model was developed and experimentally validated. In addition, robust carrier phase differential GPS navigation algorithms were derived, including a new method for high-integrity reacquisition of carrier cycle ambiguities for recently-blocked satellites. In order to evaluate navigation performance, world-wide global availability and sensitivity covariance analyses were conducted. The new navigation algorithms were shown to be sufficient for turn-free scenarios, but improvement in performance was necessary to meet the difficult requirements for a general refueling mission with banked turns. Therefore, several innovative methods were pursued to enhance navigation performance. First, a new theoretical approach was developed to quantify the position-domain integrity risk in cycle ambiguity resolution problems. A mechanism to implement this method with partially-fixed cycle ambiguity vectors was derived, and it was used to define tight upper bounds on AAR navigation integrity risk. A second method, where a new algorithm for optimal fusion of measurements from multiple antennas was developed, was used to improve satellite coverage in poor visibility environments such as in AAR. Finally, methods for using data-link extracted

  1. Enabling Persistent Autonomy for Underwater Gliders with Ocean Model Predictions and Terrain Based Navigation

    Directory of Open Access Journals (Sweden)

    Andrew eStuntz

    2016-04-01

    Full Text Available Effective study of ocean processes requires sampling over the duration of long (weeks to months oscillation patterns. Such sampling requires persistent, autonomous underwater vehicles, that have a similarly long deployment duration. The spatiotemporal dynamics of the ocean environment, coupled with limited communication capabilities, make navigation and localization difficult, especially in coastal regions where the majority of interesting phenomena occur. In this paper, we consider the combination of two methods for reducing navigation and localization error; a predictive approach based on ocean model predictions and a prior information approach derived from terrain-based navigation. The motivation for this work is not only for real-time state estimation, but also for accurately reconstructing the actual path that the vehicle traversed to contextualize the gathered data, with respect to the science question at hand. We present an application for the practical use of priors and predictions for large-scale ocean sampling. This combined approach builds upon previous works by the authors, and accurately localizes the traversed path of an underwater glider over long-duration, ocean deployments. The proposed method takes advantage of the reliable, short-term predictions of an ocean model, and the utility of priors used in terrain-based navigation over areas of significant bathymetric relief to bound uncertainty error in dead-reckoning navigation. This method improves upon our previously published works by 1 demonstrating the utility of our terrain-based navigation method with multiple field trials, and 2 presenting a hybrid algorithm that combines both approaches to bound navigational error and uncertainty for long-term deployments of underwater vehicles. We demonstrate the approach by examining data from actual field trials with autonomous underwater gliders, and demonstrate an ability to estimate geographical location of an underwater glider to 2

  2. Ballistic Aspects of Feasibility for Prospective Satellite Navigation Technologies

    Directory of Open Access Journals (Sweden)

    L. N. Lysenko

    2015-01-01

    Full Text Available When modeling the operating processes of ballistics and navigation support it is expedient to make decomposition of the general problem of coordinate-time and navigation support into the typical options of its engineering implementation.As the satellite navigation technologies the paper considers inter-satellite measurement and autonomous navigation mode of differential correction. It also assesses the possibility of their application to improve the accuracy of navigation determinations.Technologies using inter-satellite measurement tools such as GLONASS / GPS equipment, equipment of inter-satellite radio link, astro-optical space based devices are an independent class of navigation technologies.However, each of these options has both advantages and disadvantages that affect the eva luation of the appropriateness and feasibility of their use.The paper separately considers the problem of increasing survivability of space systems and conservation of ground control complex due to introduction of requirements to ensure the independent functioning of spacecraft and application of technologies of ballistics and navigation support, supposing to involve minimum means of automated ground control complex for these purposes.Currently, there is a completely developed theory of autonomous navigation based on astronomical positional gauges, which are used as onboard optical sensors of orientation and stabilization systems.To date, the differential navigation mode is, virtually, the only approach that can allow the olution of tasks in terms of increased accuracy, but with some restrictions.The implementation of differential mode of treatment is carried out through the creation of differential subsystems of the satellite navigation systems. These subsystems are usually divided into wide-range, regional and local ones.Analysis of ballistic aspects to implement discussed navigation technologies allowed us to identify constraints for improving accuracy to define

  3. Computer Navigation-aided Resection of Sacral Chordomas

    Directory of Open Access Journals (Sweden)

    Yong-Kun Yang

    2016-01-01

    Full Text Available Background: Resection of sacral chordomas is challenging. The anatomy is complex, and there are often no bony landmarks to guide the resection. Achieving adequate surgical margins is, therefore, difficult, and the recurrence rate is high. Use of computer navigation may allow optimal preoperative planning and improve precision in tumor resection. The purpose of this study was to evaluate the safety and feasibility of computer navigation-aided resection of sacral chordomas. Methods: Between 2007 and 2013, a total of 26 patients with sacral chordoma underwent computer navigation-aided surgery were included and followed for a minimum of 18 months. There were 21 primary cases and 5 recurrent cases, with a mean age of 55.8 years old (range: 35-84 years old. Tumors were located above the level of the S3 neural foramen in 23 patients and below the level of the S3 neural foramen in 3 patients. Three-dimensional images were reconstructed with a computed tomography-based navigation system combined with the magnetic resonance images using the navigation software. Tumors were resected via a posterior approach assisted by the computer navigation. Mean follow-up was 38.6 months (range: 18-84 months. Results: Mean operative time was 307 min. Mean intraoperative blood loss was 3065 ml. For computer navigation, the mean registration deviation during surgery was 1.7 mm. There were 18 wide resections, 4 marginal resections, and 4 intralesional resections. All patients were alive at the final follow-up, with 2 (7.7% exhibiting tumor recurrence. The other 24 patients were tumor-free. The mean Musculoskeletal Tumor Society Score was 27.3 (range: 19-30. Conclusions: Computer-assisted navigation can be safely applied to the resection of the sacral chordomas, allowing execution of preoperative plans, and achieving good oncological outcomes. Nevertheless, this needs to be accomplished by surgeons with adequate experience and skill.

  4. Clinical applications of virtual navigation bronchial intervention.

    Science.gov (United States)

    Kajiwara, Naohiro; Maehara, Sachio; Maeda, Junichi; Hagiwara, Masaru; Okano, Tetsuya; Kakihana, Masatoshi; Ohira, Tatsuo; Kawate, Norihiko; Ikeda, Norihiko

    2018-01-01

    In patients with bronchial tumors, we frequently consider endoscopic treatment as the first treatment of choice. All computed tomography (CT) must satisfy several conditions necessary to analyze images by Synapse Vincent. To select safer and more precise approaches for patients with bronchial tumors, we determined the indications and efficacy of virtual navigation intervention for the treatment of bronchial tumors. We examined the efficacy of virtual navigation bronchial intervention for the treatment of bronchial tumors located at a variety of sites in the tracheobronchial tree using a high-speed 3-dimensional (3D) image analysis system, Synapse Vincent. Constructed images can be utilized to decide on the simulation and interventional strategy as well as for navigation during interventional manipulation in two cases. Synapse Vincent was used to determine the optimal planning of virtual navigation bronchial intervention. Moreover, this system can detect tumor location and alsodepict surrounding tissues, quickly, accurately, and safely. The feasibility and safety of Synapse Vincent in performing useful preoperative simulation and navigation of surgical procedures can lead to safer, more precise, and less invasion for the patient, and makes it easy to construct an image, depending on the purpose, in 5-10 minutes using Synapse Vincent. Moreover, if the lesion is in the parenchyma or sub-bronchial lumen, it helps to perform simulation with virtual skeletal subtraction to estimate potential lesion movement. By using virtual navigation system for simulation, bronchial intervention was performed with no complications safely and precisely. Preoperative simulation using virtual navigation bronchial intervention reduces the surgeon's stress levels, particularly when highly skilled techniques are needed to operate on lesions. This task, including both preoperative simulation and intraoperative navigation, leads to greater safety and precision. These technological instruments

  5. Geomagnetic Navigation of Autonomous Underwater Vehicle Based on Multi-objective Evolutionary Algorithm.

    Science.gov (United States)

    Li, Hong; Liu, Mingyong; Zhang, Feihu

    2017-01-01

    This paper presents a multi-objective evolutionary algorithm of bio-inspired geomagnetic navigation for Autonomous Underwater Vehicle (AUV). Inspired by the biological navigation behavior, the solution was proposed without using a priori information, simply by magnetotaxis searching. However, the existence of the geomagnetic anomalies has significant influence on the geomagnetic navigation system, which often disrupts the distribution of the geomagnetic field. An extreme value region may easily appear in abnormal regions, which makes AUV lost in the navigation phase. This paper proposes an improved bio-inspired algorithm with behavior constraints, for sake of making AUV escape from the abnormal region. First, the navigation problem is considered as the optimization problem. Second, the environmental monitoring operator is introduced, to determine whether the algorithm falls into the geomagnetic anomaly region. Then, the behavior constraint operator is employed to get out of the abnormal region. Finally, the termination condition is triggered. Compared to the state-of- the-art, the proposed approach effectively overcomes the disturbance of the geomagnetic abnormal. The simulation result demonstrates the reliability and feasibility of the proposed approach in complex environments.

  6. An optimized field coverage planning approach for navigation of agricultural robots in fields involving obstacle areas

    DEFF Research Database (Denmark)

    Hameed, Ibahim; Bochtis, D.; Sørensen, C.A.

    2013-01-01

    -field obstacle areas, the headland paths generation for the field and each obstacle area, the implementation of a genetic algorithm to optimize the sequence that the field robot vehicle will follow to visit the blocks, and an algorithmically generation of the task sequences derived from the farmer practices......Technological advances combined with the demand of cost efficiency and environmental considerations lead farmers to review their practices towards the adoption of new managerial approaches including enhanced automation. The application of field robots is one of the most promising advances among....... This approach has proven that it is possible to capture the practices of farmers and embed these practices in an algorithmic description providing a complete field area coverage plan in a form prepared for execution by the navigation system of a field robot....

  7. Navigation through unknown and dynamic open spaces using topological notions

    Science.gov (United States)

    Miguel-Tomé, Sergio

    2018-04-01

    Until now, most algorithms used for navigation have had the purpose of directing system towards one point in space. However, humans communicate tasks by specifying spatial relations among elements or places. In addition, the environments in which humans develop their activities are extremely dynamic. The only option that allows for successful navigation in dynamic and unknown environments is making real-time decisions. Therefore, robots capable of collaborating closely with human beings must be able to make decisions based on the local information registered by the sensors and interpret and express spatial relations. Furthermore, when one person is asked to perform a task in an environment, this task is communicated given a category of goals so the person does not need to be supervised. Thus, two problems appear when one wants to create multifunctional robots: how to navigate in dynamic and unknown environments using spatial relations and how to accomplish this without supervision. In this article, a new architecture to address the two cited problems is presented, called the topological qualitative navigation architecture. In previous works, a qualitative heuristic called the heuristic of topological qualitative semantics (HTQS) has been developed to establish and identify spatial relations. However, that heuristic only allows for establishing one spatial relation with a specific object. In contrast, navigation requires a temporal sequence of goals with different objects. The new architecture attains continuous generation of goals and resolves them using HTQS. Thus, the new architecture achieves autonomous navigation in dynamic or unknown open environments.

  8. Approach to intraoperative electromagnetic navigation in orthognathic surgery: A phantom skull based trial.

    Science.gov (United States)

    Berger, Moritz; Kallus, Sebastian; Nova, Igor; Ristow, Oliver; Eisenmann, Urs; Dickhaus, Hartmut; Kuhle, Reinald; Hoffmann, Jürgen; Seeberger, Robin

    2015-11-01

    Intraoperative guidance using electromagnetic navigation is an upcoming method in maxillofacial surgery. However, due to their unwieldy structures, especially the line-of-sight problem, optical navigation devices are not used for daily orthognathic surgery. Therefore, orthognathic surgery was simulated on study phantom skulls, evaluating the accuracy and handling of a new electromagnetic tracking system. Le-Fort I osteotomies were performed on 10 plastic skulls. Orthognathic surgical planning was done in the conventional way using plaster models. Accuracy of the gold standard, splint-based model surgery versus an electromagnetic tracking system was evaluated by measuring the actual maxillary deviation using bimaxillary splints and preoperative and postoperative cone beam computer tomography imaging. The distance of five anatomical marker points were compared pre- and postoperatively. The electromagnetic tracking system was significantly more accurate in all measured parameters compared with the gold standard using bimaxillary splints (p orthognathic surgery to 0.3 mm on average. The data of this preliminary study shows a high level of accuracy in surgical orthognathic performance using electromagnetic navigation, and may offer greater precision than the conventional plaster model surgery with bimaxillary splints. This preliminary work shows great potential for the establishment of an intraoperative electromagnetic navigation system for maxillofacial surgery. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  9. 33 CFR 2.36 - Navigable waters of the United States, navigable waters, and territorial waters.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navigable waters of the United States, navigable waters, and territorial waters. 2.36 Section 2.36 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY GENERAL JURISDICTION Jurisdictional Terms § 2.36 Navigable waters...

  10. Cloud-Induced Uncertainty for Visual Navigation

    Science.gov (United States)

    2014-12-26

    can occur due to interference, jamming, or signal blockage in urban canyons. In GPS-denied environments, a GP- S/INS navigation system is forced to rely...physics-based approaches use equations that model fluid flow, thermodynamics, water condensation , and evapora- tion to generate clouds [4]. The drawback

  11. Ionosphere-related products for communication and navigation

    Science.gov (United States)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Carlson, H. C.; Gardner, L. C.; Scherliess, L.; Zhu, L.

    2011-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is developing and producing commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Ionosonde data from several dozen global stations is ingested every 15 minutes to improve the vertical profiles within GAIM. The global, CONUS, Europe, Asia, South America, and other regional sectors are run with a 15-minute cadence. These operational runs enable SWC to calculate and report the global radio high frequency (HF) signal strengths and near vertical incidence skywave (NVIS) maps used by amateur radio operators and emergency responders, especially during the Japan Great Earthquake and tsunami recovery period. SWC has established its first fully commercial enterprise called Q-up as a result of this activity. GPS uncertainty maps are produced by SWC to improve single-frequency GPS applications. SWC also provides the space weather smartphone app called SpaceWx for iPhone, iPad, iPod, and Android for professional users and public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example, as well as global NVIS maps. We describe upcoming improvements for moving space weather information through automated systems into final derivative products.

  12. Comparative advantage between traditional and smart navigation systems

    Science.gov (United States)

    Shin, Jeongkyu; Kim, Pan-Jun; Kim, Seunghwan

    2013-03-01

    The smart navigation system that refers to real-time traffic data is believed to be superior to traditional navigation systems. To verify this belief, we created an agent-based traffic model and examined the effect of changing market share of the traditional shortest-travel-time algorithm based navigation and the smart navigation system. We tested our model on the grid and actual metropolitan road network structures. The result reveals that the traditional navigation system have better performance than the smart one as the market share of the smart navigation system exceeds a critical value, which is contrary to conventional expectation. We suggest that the superiority inversion between agent groups is strongly related to the traffic weight function form, and is general. We also found that the relationship of market share, traffic flow density and travel time is determined by the combination of congestion avoidance behavior of the smartly navigated agents and the inefficiency of shortest-travel-time based navigated agents. Our results can be interpreted with the minority game and extended to the diverse topics of opinion dynamics. This work was supported by the Original Technology Research Program for Brain Science through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology(No. 2010-0018847).

  13. Accuracy evaluation of initialization-free registration for intraoperative 3D-navigation

    International Nuclear Information System (INIS)

    Diakov, Georgi; Freysinger, Wolfgang

    2007-01-01

    Purpose An initialization-free approach for perioperative registration in functional endoscopic sinus surgery (FESS) is sought. The quality of surgical navigation relies on registration accuracy of preoperative images to the patient. Although landmark-based registration is fast, it is prone to human operator errors. This study evaluates the accuracy of two well-known methods for segmentation of the occipital bone from CT-images for use in surgical 3D-navigation. Method The occipital bone was segmented for registration without pre-defined correspondences, with the iterative closest point algorithm (ICP). The thresholding plus marching cubes segmentation (TMCS), and the deformable model segmentation (DMS) were compared quantitatively by overlaying the areas of the segmentations in cross-sectional slices, and visually by displaying the pointwise distances between the segmentations in a three-dimensional distance map relative to an expert manual segmentation, taken as a ''ground truth''. Results Excellent correspondence between the two methods was achieved; the results showed, however, that the TMCS is closer to the ''ground truth''. This is due to the sub-voxel accuracy of the marching cubes algorithm by definition, and the sensitivity of the DMS method to the choice of parameters. The DMS approach, as a gradient-based method, is insensitive to the thresholding initialization. For noisy images and soft tissue delineation a gradient-based method, like the deformable model, performs better. Both methods correspond within minute differences less than 4%. Conclusion These results will allow further minimization of human interaction in the planning phase for intraoperative 3D-navigation, by allowing to automatically create surface patches for registration purposes, ultimately allowing to build an initialization-free, fully automatic registration procedure for navigated Ear-, Nose-, Throat- (ENT) surgery. (orig.)

  14. Aging specifically impairs switching to an allocentric navigational strategy.

    Science.gov (United States)

    Harris, Mathew A; Wiener, Jan M; Wolbers, Thomas

    2012-01-01

    Navigation abilities decline with age, partly due to deficits in numerous component processes. Impaired switching between these various processes (i.e., switching navigational strategies) is also likely to contribute to age-related navigational impairments. We tested young and old participants on a virtual plus maze task (VPM), expecting older participants to exhibit a specific strategy switching deficit, despite unimpaired learning of allocentric (place) and egocentric (response) strategies following reversals within each strategy. Our initial results suggested that older participants performed worse during place trial blocks but not response trial blocks, as well as in trial blocks following a strategy switch but not those following a reversal. However, we then separated trial blocks by both strategy and change type, revealing that these initial results were due to a more specific deficit in switching to the place strategy. Place reversals and switches to response, as well as response reversals, were unaffected. We argue that this specific "switch-to-place" deficit could account for apparent impairments in both navigational strategy switching and allocentric processing and contributes more generally to age-related decline in navigation.

  15. Intelligent navigation to improve obstetrical sonography.

    Science.gov (United States)

    Yeo, Lami; Romero, Roberto

    2016-04-01

    use of software to perform manual navigation of volume datasets. Diagnostic planes and VIS-Assistance videoclips can be transmitted by telemedicine so that expert consultants can evaluate the images to provide an opinion. The end result is a user-friendly, simple, fast and consistent method of obtaining sonographic images with decreased operator dependency. Intelligent navigation is one approach to improve obstetrical sonography. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  16. OSIRIS-REx Flight Dynamics and Navigation Design

    Science.gov (United States)

    Williams, B.; Antreasian, P.; Carranza, E.; Jackman, C.; Leonard, J.; Nelson, D.; Page, B.; Stanbridge, D.; Wibben, D.; Williams, K.; Moreau, M.; Berry, K.; Getzandanner, K.; Liounis, A.; Mashiku, A.; Highsmith, D.; Sutter, B.; Lauretta, D. S.

    2018-06-01

    OSIRIS-REx is the first NASA mission to return a sample of an asteroid to Earth. Navigation and flight dynamics for the mission to acquire and return a sample of asteroid 101955 Bennu establish many firsts for space exploration. These include relatively small orbital maneuvers that are precise to ˜1 mm/s, close-up operations in a captured orbit about an asteroid that is small in size and mass, and planning and orbit phasing to revisit the same spot on Bennu in similar lighting conditions. After preliminary surveys and close approach flyovers of Bennu, the sample site will be scientifically characterized and selected. A robotic shock-absorbing arm with an attached sample collection head mounted on the main spacecraft bus acquires the sample, requiring navigation to Bennu's surface. A touch-and-go sample acquisition maneuver will result in the retrieval of at least 60 grams of regolith, and up to several kilograms. The flight activity concludes with a return cruise to Earth and delivery of the sample return capsule (SRC) for landing and sample recovery at the Utah Test and Training Range (UTTR).

  17. A Novel Online Data-Driven Algorithm for Detecting UAV Navigation Sensor Faults

    OpenAIRE

    Rui Sun; Qi Cheng; Guanyu Wang; Washington Yotto Ochieng

    2017-01-01

    The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs’ flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in ...

  18. Design Issues for MEMS-Based Pedestrian Inertial Navigation Systems

    Directory of Open Access Journals (Sweden)

    P. S. Marinushkin

    2015-01-01

    Full Text Available The paper describes design issues for MEMS-based pedestrian inertial navigation systems. By now the algorithms to estimate navigation parameters for strap-down inertial navigation systems on the basis of plural observations have been already well developed. At the same time mathematical and software processing of information in the case of pedestrian inertial navigation systems has its specificity, due to the peculiarities of their functioning and exploitation. Therefore, there is an urgent task to enhance existing fusion algorithms for use in pedestrian navigation systems. For this purpose the article analyzes the characteristics of the hardware composition and configuration of existing systems of this class. The paper shows advantages of various technical solutions. Relying on their main features it justifies a choice of the navigation system architecture and hardware composition enabling improvement of the estimation accuracy of user position as compared to the systems using only inertial sensors. The next point concerns the development of algorithms for complex processing of heterogeneous information. To increase an accuracy of the free running pedestrian inertial navigation system we propose an adaptive algorithm for joint processing of heterogeneous information based on the fusion of inertial info rmation with magnetometer measurements using EKF approach. Modeling of the algorithm was carried out using a specially developed functional prototype of pedestrian inertial navigation system, implemented as a hardware/software complex in Matlab environment. The functional prototype tests of the developed system demonstrated an improvement of the navigation parameters estimation compared to the systems based on inertial sensors only. It enables to draw a conclusion that the synthesized algorithm provides satisfactory accuracy for calculating the trajectory of motion even when using low-grade inertial MEMS sensors. The developed algorithm can be

  19. 77 FR 42637 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments; Corrections

    Science.gov (United States)

    2012-07-20

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Parts 84 and 115 [Docket No. USCG-2012-0306] RIN 1625-AB86 Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments...), the Coast Guard published a final rule entitled ``Navigation and Navigable Waters; Technical...

  20. Multi-focal Vision and Gaze Control Improve Navigation Performance

    Directory of Open Access Journals (Sweden)

    Kolja Kuehnlenz

    2008-11-01

    Full Text Available Multi-focal vision systems comprise cameras with various fields of view and measurement accuracies. This article presents a multi-focal approach to localization and mapping of mobile robots with active vision. An implementation of the novel concept is done considering a humanoid robot navigation scenario where the robot is visually guided through a structured environment with several landmarks. Various embodiments of multi-focal vision systems are investigated and the impact on navigation performance is evaluated in comparison to a conventional mono-focal stereo set-up. The comparative studies clearly show the benefits of multi-focal vision for mobile robot navigation: flexibility to assign the different available sensors optimally in each situation, enhancement of the visible field, higher localization accuracy, and, thus, better task performance, i.e. path following behavior of the mobile robot. It is shown that multi-focal vision may strongly improve navigation performance.

  1. Benchmark Framework for Mobile Robots Navigation Algorithms

    Directory of Open Access Journals (Sweden)

    Nelson David Muñoz-Ceballos

    2014-01-01

    Full Text Available Despite the wide variety of studies and research on mobile robot systems, performance metrics are not often examined. This makes difficult to establish an objective comparison of achievements. In this paper, the navigation of an autonomous mobile robot is evaluated. Several metrics are described. These metrics, collectively, provide an indication of navigation quality, useful for comparing and analyzing navigation algorithms of mobile robots. This method is suggested as an educational tool, which allows the student to optimize the algorithms quality, relating to important aspectsof science, technology and engineering teaching, as energy consumption, optimization and design.

  2. Radar and electronic navigation

    CERN Document Server

    Sonnenberg, G J

    2013-01-01

    Radar and Electronic Navigation, Sixth Edition discusses radar in marine navigation, underwater navigational aids, direction finding, the Decca navigator system, and the Omega system. The book also describes the Loran system for position fixing, the navy navigation satellite system, and the global positioning system (GPS). It reviews the principles, operation, presentations, specifications, and uses of radar. It also describes GPS, a real time position-fixing system in three dimensions (longitude, latitude, altitude), plus velocity information with Universal Time Coordinated (UTC). It is accur

  3. Lunar Navigator - A Miniature, Fully Autonomous, Lunar Navigation, Surveyor, and Range Finder System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm will use existing hardware and software from related programs to create a prototype Lunar Navigation Sensor (LNS) early in Phase II, such that most of the...

  4. Automated Functional Testing based on the Navigation of Web Applications

    Directory of Open Access Journals (Sweden)

    Boni García

    2011-08-01

    Full Text Available Web applications are becoming more and more complex. Testing such applications is an intricate hard and time-consuming activity. Therefore, testing is often poorly performed or skipped by practitioners. Test automation can help to avoid this situation. Hence, this paper presents a novel approach to perform automated software testing for web applications based on its navigation. On the one hand, web navigation is the process of traversing a web application using a browser. On the other hand, functional requirements are actions that an application must do. Therefore, the evaluation of the correct navigation of web applications results in the assessment of the specified functional requirements. The proposed method to perform the automation is done in four levels: test case generation, test data derivation, test case execution, and test case reporting. This method is driven by three kinds of inputs: i UML models; ii Selenium scripts; iii XML files. We have implemented our approach in an open-source testing framework named Automatic Testing Platform. The validation of this work has been carried out by means of a case study, in which the target is a real invoice management system developed using a model-driven approach.

  5. Human Computer Interactions in Next-Generation of Aircraft Smart Navigation Management Systems: Task Analysis and Architecture under an Agent-Oriented Methodological Approach

    Science.gov (United States)

    Canino-Rodríguez, José M.; García-Herrero, Jesús; Besada-Portas, Juan; Ravelo-García, Antonio G.; Travieso-González, Carlos; Alonso-Hernández, Jesús B.

    2015-01-01

    The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS) that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI) for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers’ indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications. PMID:25746092

  6. Human computer interactions in next-generation of aircraft smart navigation management systems: task analysis and architecture under an agent-oriented methodological approach.

    Science.gov (United States)

    Canino-Rodríguez, José M; García-Herrero, Jesús; Besada-Portas, Juan; Ravelo-García, Antonio G; Travieso-González, Carlos; Alonso-Hernández, Jesús B

    2015-03-04

    The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS) that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI) for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers' indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications.

  7. Human Computer Interactions in Next-Generation of Aircraft Smart Navigation Management Systems: Task Analysis and Architecture under an Agent-Oriented Methodological Approach

    Directory of Open Access Journals (Sweden)

    José M. Canino-Rodríguez

    2015-03-01

    Full Text Available The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers’ indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications.

  8. A navigator-based rigid body motion correction for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ullisch, Marcus Goerge

    2012-01-01

    A novel three-dimensional navigator k-space trajectory for rigid body motion detection for Magnetic Resonance Imaging (MRI) - the Lissajous navigator - was developed and quantitatively compared to the existing spherical navigator trajectory [1]. The spherical navigator cannot sample the complete spherical surface due to slew rate limitations of the scanner hardware. By utilizing a two dimensional Lissajous figure which is projected onto the spherical surface, the Lissajous navigator overcomes this limitation. The complete sampling of the sphere consequently leads to rotation estimates with higher and more isotropic accuracy. Simulations and phantom measurements were performed for both navigators. Both simulations and measurements show a significantly higher overall accuracy of the Lissajous navigator and a higher isotropy of the rotation estimates. Measured under identical conditions with identical postprocessing, the measured mean absolute error of the rotation estimates for the Lissajous navigator was 38% lower (0.3 ) than for the spherical navigator (0.5 ). The maximum error of the Lissajous navigator was reduced by 48% relative to the spherical navigator. The Lissajous navigator delivers higher accuracy of rotation estimation and a higher degree of isotropy than the spherical navigator with no evident drawbacks; these are two decisive advantages, especially for high-resolution anatomical imaging.

  9. A navigator-based rigid body motion correction for magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ullisch, Marcus Goerge

    2012-01-24

    A novel three-dimensional navigator k-space trajectory for rigid body motion detection for Magnetic Resonance Imaging (MRI) - the Lissajous navigator - was developed and quantitatively compared to the existing spherical navigator trajectory [1]. The spherical navigator cannot sample the complete spherical surface due to slew rate limitations of the scanner hardware. By utilizing a two dimensional Lissajous figure which is projected onto the spherical surface, the Lissajous navigator overcomes this limitation. The complete sampling of the sphere consequently leads to rotation estimates with higher and more isotropic accuracy. Simulations and phantom measurements were performed for both navigators. Both simulations and measurements show a significantly higher overall accuracy of the Lissajous navigator and a higher isotropy of the rotation estimates. Measured under identical conditions with identical postprocessing, the measured mean absolute error of the rotation estimates for the Lissajous navigator was 38% lower (0.3 ) than for the spherical navigator (0.5 ). The maximum error of the Lissajous navigator was reduced by 48% relative to the spherical navigator. The Lissajous navigator delivers higher accuracy of rotation estimation and a higher degree of isotropy than the spherical navigator with no evident drawbacks; these are two decisive advantages, especially for high-resolution anatomical imaging.

  10. Airports and Navigation Aids Database System -

    Data.gov (United States)

    Department of Transportation — Airport and Navigation Aids Database System is the repository of aeronautical data related to airports, runways, lighting, NAVAID and their components, obstacles, no...

  11. Tom Bevill Upper Lock Approach, Tennessee-Tombigbee Waterway, Alabama: Hydraulic Navigation Investigation

    National Research Council Canada - National Science Library

    Winkler, Michael

    2003-01-01

    .... The lock is connected to the dam with a 150-ft abutment wall. A strong crosscurrent or outdraft existing in and around the upstream lock entrance causes difficulty for tow traffic navigating the lock...

  12. Unmanned Ground Vehicle Navigation and Coverage Hole Patching in Wireless Sensor Networks

    Science.gov (United States)

    Zhang, Guyu

    2013-01-01

    This dissertation presents a study of an Unmanned Ground Vehicle (UGV) navigation and coverage hole patching in coordinate-free and localization-free Wireless Sensor Networks (WSNs). Navigation and coverage maintenance are related problems since coverage hole patching requires effective navigation in the sensor network environment. A…

  13. A Survey of LIDAR Technology and Its Use in Spacecraft Relative Navigation

    Science.gov (United States)

    Christian, John A.; Cryan, Scott P.

    2013-01-01

    This paper provides a survey of modern LIght Detection And Ranging (LIDAR) sensors from a perspective of how they can be used for spacecraft relative navigation. In addition to LIDAR technology commonly used in space applications today (e.g. scanning, flash), this paper reviews emerging LIDAR technologies gaining traction in other non-aerospace fields. The discussion will include an overview of sensor operating principles and specific pros/cons for each type of LIDAR. This paper provides a comprehensive review of LIDAR technology as applied specifically to spacecraft relative navigation. HE problem of orbital rendezvous and docking has been a consistent challenge for complex space missions since before the Gemini 8 spacecraft performed the first successful on-orbit docking of two spacecraft in 1966. Over the years, a great deal of effort has been devoted to advancing technology associated with all aspects of the rendezvous, proximity operations, and docking (RPOD) flight phase. After years of perfecting the art of crewed rendezvous with the Gemini, Apollo, and Space Shuttle programs, NASA began investigating the problem of autonomous rendezvous and docking (AR&D) to support a host of different mission applications. Some of these applications include autonomous resupply of the International Space Station (ISS), robotic servicing/refueling of existing orbital assets, and on-orbit assembly.1 The push towards a robust AR&D capability has led to an intensified interest in a number of different sensors capable of providing insight into the relative state of two spacecraft. The present work focuses on exploring the state-of-the-art in one of these sensors - LIght Detection And Ranging (LIDAR) sensors. It should be noted that the military community frequently uses the acronym LADAR (LAser Detection And Ranging) to refer to what this paper calls LIDARs. A LIDAR is an active remote sensing device that is typically used in space applications to obtain the range to one or more

  14. Indoor Navigation from Point Clouds: 3d Modelling and Obstacle Detection

    Science.gov (United States)

    Díaz-Vilariño, L.; Boguslawski, P.; Khoshelham, K.; Lorenzo, H.; Mahdjoubi, L.

    2016-06-01

    In the recent years, indoor modelling and navigation has become a research of interest because many stakeholders require navigation assistance in various application scenarios. The navigational assistance for blind or wheelchair people, building crisis management such as fire protection, augmented reality for gaming, tourism or training emergency assistance units are just some of the direct applications of indoor modelling and navigation. Navigational information is traditionally extracted from 2D drawings or layouts. Real state of indoors, including opening position and geometry for both windows and doors, and the presence of obstacles is commonly ignored. In this work, a real indoor-path planning methodology based on 3D point clouds is developed. The value and originality of the approach consist on considering point clouds not only for reconstructing semantically-rich 3D indoor models, but also for detecting potential obstacles in the route planning and using these for readapting the routes according to the real state of the indoor depictured by the laser scanner.

  15. INDOOR NAVIGATION FROM POINT CLOUDS: 3D MODELLING AND OBSTACLE DETECTION

    Directory of Open Access Journals (Sweden)

    L. Díaz-Vilariño

    2016-06-01

    Full Text Available In the recent years, indoor modelling and navigation has become a research of interest because many stakeholders require navigation assistance in various application scenarios. The navigational assistance for blind or wheelchair people, building crisis management such as fire protection, augmented reality for gaming, tourism or training emergency assistance units are just some of the direct applications of indoor modelling and navigation. Navigational information is traditionally extracted from 2D drawings or layouts. Real state of indoors, including opening position and geometry for both windows and doors, and the presence of obstacles is commonly ignored. In this work, a real indoor-path planning methodology based on 3D point clouds is developed. The value and originality of the approach consist on considering point clouds not only for reconstructing semantically-rich 3D indoor models, but also for detecting potential obstacles in the route planning and using these for readapting the routes according to the real state of the indoor depictured by the laser scanner.

  16. Conventional versus computer-navigated TKA: a prospective randomized study.

    Science.gov (United States)

    Todesca, Alessandro; Garro, Luca; Penna, Massimo; Bejui-Hugues, Jacques

    2017-06-01

    The purpose of this study was to assess the midterm results of total knee arthroplasty (TKA) implanted with a specific computer navigation system in a group of patients (NAV) and to assess the same prosthesis implanted with the conventional technique in another group (CON); we hypothesized that computer navigation surgery would improve implant alignment, functional scores and survival of the implant compared to the conventional technique. From 2008 to 2009, 225 patients were enrolled in the study and randomly assigned in CON and NAV groups; 240 consecutive mobile-bearing ultra-congruent score (Amplitude, Valence, France) TKAs were performed by a single surgeon, 117 using the conventional method and 123 using the computer-navigated approach. Clinical outcome assessment was based on the Knee Society Score (KSS), the Hospital for Special Surgery Knee Score and the Western Ontario Mac Master University Index score. Component survival was calculated by Kaplan-Meier analysis. Median follow-up was 6.4 years (range 6-7 years). Two patients were lost to follow-up. No differences were seen between the two groups in age, sex, BMI and side of implantation. Three patients of CON group referred feelings of instability during walking, but clinical tests were all negative. NAV group showed statistical significant better KSS Score and wider ROM and fewer outliers from neutral mechanical axis, lateral distal femoral angle, medial proximal tibial angle and tibial slope in post-operative radiographic assessment. There was one case of early post-operative superficial infection (caused by Staph. Aureus) successfully treated with antibiotics. No mechanical loosening, mobile-bearing dislocation or patellofemoral complication was seen. At 7 years of follow-up, component survival in relation to the risk of aseptic loosening or other complications was 100 %. There were no implant revisions. This study demonstrates superior accuracy in implant positioning and statistical significant

  17. Autonomous vision-based navigation for proximity operations around binary asteroids

    Science.gov (United States)

    Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo

    2018-06-01

    Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.

  18. 33 CFR 66.05-100 - Designation of navigable waters as State waters for private aids to navigation.

    Science.gov (United States)

    2010-07-01

    ... as State waters for private aids to navigation. 66.05-100 Section 66.05-100 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION State Aids to Navigation § 66.05-100 Designation of navigable waters as State waters for private aids to...

  19. Extraction of user's navigation commands from upper body force interaction in walker assisted gait.

    Science.gov (United States)

    Frizera Neto, Anselmo; Gallego, Juan A; Rocon, Eduardo; Pons, José L; Ceres, Ramón

    2010-08-05

    The advances in technology make possible the incorporation of sensors and actuators in rollators, building safer robots and extending the use of walkers to a more diverse population. This paper presents a new method for the extraction of navigation related components from upper-body force interaction data in walker assisted gait. A filtering architecture is designed to cancel: (i) the high-frequency noise caused by vibrations on the walker's structure due to irregularities on the terrain or walker's wheels and (ii) the cadence related force components caused by user's trunk oscillations during gait. As a result, a third component related to user's navigation commands is distinguished. For the cancelation of high-frequency noise, a Benedict-Bordner g-h filter was designed presenting very low values for Kinematic Tracking Error ((2.035 +/- 0.358).10(-2) kgf) and delay ((1.897 +/- 0.3697).10(1)ms). A Fourier Linear Combiner filtering architecture was implemented for the adaptive attenuation of about 80% of the cadence related components' energy from force data. This was done without compromising the information contained in the frequencies close to such notch filters. The presented methodology offers an effective cancelation of the undesired components from force data, allowing the system to extract in real-time voluntary user's navigation commands. Based on this real-time identification of voluntary user's commands, a classical approach to the control architecture of the robotic walker is being developed, in order to obtain stable and safe user assisted locomotion.

  20. Navigation Problems in Blind-to-Blind Pedestrians Tele-assistance Navigation

    OpenAIRE

    Balata , Jan; Mikovec , Zdenek; Maly , Ivo

    2015-01-01

    International audience; We raise a question whether it is possible to build a large-scale navigation system for blind pedestrians where a blind person navigates another blind person remotely by mobile phone. We have conducted an experiment, in which we observed blind people navigating each other in a city center in 19 sessions. We focused on problems in the navigator’s attempts to direct the traveler to the destination. We observed 96 problems in total, classified them on the basis of the typ...

  1. Neuro-fuzzy controller to navigate an unmanned vehicle.

    Science.gov (United States)

    Selma, Boumediene; Chouraqui, Samira

    2013-12-01

    A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).

  2. Vision/INS Integrated Navigation System for Poor Vision Navigation Environments

    Directory of Open Access Journals (Sweden)

    Youngsun Kim

    2016-10-01

    Full Text Available In order to improve the performance of an inertial navigation system, many aiding sensors can be used. Among these aiding sensors, a vision sensor is of particular note due to its benefits in terms of weight, cost, and power consumption. This paper proposes an inertial and vision integrated navigation method for poor vision navigation environments. The proposed method uses focal plane measurements of landmarks in order to provide position, velocity and attitude outputs even when the number of landmarks on the focal plane is not enough for navigation. In order to verify the proposed method, computer simulations and van tests are carried out. The results show that the proposed method gives accurate and reliable position, velocity and attitude outputs when the number of landmarks is insufficient.

  3. Evaluation of support groups for women with breast cancer: importance of the navigator role

    Directory of Open Access Journals (Sweden)

    Till James E

    2003-05-01

    Full Text Available Abstract Background At least some forms of breast cancer are increasingly being viewed as a chronic illness, where an emphasis is placed on meeting the various ongoing needs of people living with cancer, their families and other members of their social support networks. This commentary outlines some approaches to the evaluation of cancer-related support groups, with a particular emphasis on those designed to provide long-distance support, via the internet, for women with breast cancer. Discussion The literature on evaluations of community-based cancer support groups indicates that they offer a number of benefits, and that it is more reasonable to expect an impact of such interventions on psychosocial functioning and/or health-related quality of life than on survival. The literature on both face-to-face and online social support groups suggests that they offer many advantages, although evaluation of the latter delivery mechanism presents some ethical issues that need to be addressed. Many popular online support groups are peer-moderated, rather than professionally-moderated. In an evaluation of online support groups, different models of the role of the "navigator" need to be taken into account. Some conceptual models are outlined for the evaluation of the "navigator role" in meeting the informational, decisional and educational needs of women with breast cancer. The Breast-Cancer Mailing List, an example of an unmoderated internet-based peer-support group, is considered within the context of a Shared or Tacit Model of the navigator role. Conclusion Application of the concept of a "navigator role" to support groups in general, and to unmoderated online ones in particular, has received little or no attention in the research literature. The navigator role should be taken into account in research on this increasingly important aspect of cancer communication.

  4. Visual Navigation of Complex Information Spaces

    Directory of Open Access Journals (Sweden)

    Sarah North

    1995-11-01

    Full Text Available The authors lay the foundation for the introduction of visual navigation aid to assist computer users in direct manipulation of the complex information spaces. By exploring present research on scientific data visualisation and creating a case for improved information visualisation tools, they introduce the design of an improved information visualisation interface utilizing dynamic slider, called Visual-X, incorporating icons with bindable attributes (glyphs. Exploring the improvement that these data visualisations, make to a computing environment, the authors conduct an experiment to compare the performance of subjects who use traditional interfaces and Visual-X. Methodology is presented and conclusions reveal that the use of Visual-X appears to be a promising approach in providing users with a navigation tool that does not overload their cognitive processes.

  5. Vision-aided inertial navigation system for robotic mobile mapping

    Science.gov (United States)

    Bayoud, Fadi; Skaloud, Jan

    2008-04-01

    A mapping system by vision-aided inertial navigation was developed for areas where GNSS signals are unreachable. In this framework, a methodology on the integration of vision and inertial sensors is presented, analysed and tested. The system employs the method of “SLAM: Simultaneous Localisation And Mapping” where the only external input available to the system at the beginning of the mapping mission is a number of features with known coordinates. SLAM is a term used in the robotics community to describe the problem of mapping the environment and at the same time using this map to determine the location of the mapping device. Differing from the robotics approach, the presented development stems from the frameworks of photogrammetry and kinematic geodesy that are merged in two filters that run in parallel: the Least-Squares Adjustment (LSA) for features coordinates determination and the Kalman filter (KF) for navigation correction. To test this approach, a mapping system-prototype comprising two CCD cameras and one Inertial Measurement Unit (IMU) is introduced. Conceptually, the outputs of the LSA photogrammetric resection are used as the external measurements for the KF that corrects the inertial navigation. The filtered position and orientation are subsequently employed in the photogrammetric intersection to map the surrounding features that are used as control points for the resection in the next epoch. We confirm empirically the dependency of navigation performance on the quality of the images and the number of tracked features, as well as on the geometry of the stereo-pair. Due to its autonomous nature, the SLAM's performance is further affected by the quality of IMU initialisation and the a-priory assumptions on error distribution. Using the example of the presented system we show that centimetre accuracy can be achieved in both navigation and mapping when the image geometry is optimal.

  6. First experience using navigation-guided radiofrequency kyphoplasty for sacroplasty in sacral insufficiency fractures

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, J.H.; Kluge, P.; Sircar, R.; Kogias, E.; Scholz, C.; Krueger, M.T.; Scheiwe, C.; Hubbe, U. [Freiburg Univ. Medical Center, Freiburg (Germany). Dept. of Neurosurgery

    2013-08-15

    Purpose: To evaluate the efficacy and safety of navigation-guided radiofrequency kyphoplasty for sacroplasty in patients with sacral insufficiency fractures. Methods: In this single-center retrospective observational study, four consecutive patients with sacral insufficiency fractures were treated with navigation-guided radiofrequency kyphoplasty for sacroplasty between April 2010 and May 2012. Symptom characteristics, pain duration and pain intensity were recorded for each patient. Cement extravasation was evaluated in thin-sliced and triplanar reconstructed CT scans of the sacrum. Results: Four female patients with painful sacral insufficiency fractures and extensive osteopenic areas significantly improved from an average pre-treatment VAS score of 8.3 {+-} 0.5 to 2.3 {+-} 1.0 (p < 0.001) on the first postoperative day and to 1.3 {+-} 1.9 (p < 0.004) at follow-up (mean, 20.1 weeks). Slight cement extravasations were observed without evidence of being symptomatic. No major complications or procedure-related morbidity were noted. Conclusion: From the limited experience in four patients, navigation-guided radiofrequency kyphoplasty appears to be a safe and effective treatment option for sacral insufficiency fractures even though asymptomatic cement extravasation was noted. The use of navigation based on intraoperative 3 D images simplifies the positioning of the navigated bone needles via the long axis approach. The radiofrequency kyphoplasty system provides the possibility to administer a sufficient amount of bone cement with a well-defined viscosity over the entire period of the procedure leading to high security and low cement extravasation. Sacroplasty provides rapid and enduring pain relief and facilitates prompt mobilization. (orig.)

  7. Paediatric patient navigation models of care in Canada: An environmental scan.

    Science.gov (United States)

    Luke, Alison; Doucet, Shelley; Azar, Rima

    2018-05-01

    (1) To provide other organizations with useful information when implementing paediatric navigation programs and (2) to inform the implementation of a navigation care centre in New Brunswick for children with complex health conditions. This environmental scan consisted of a literature review of published and grey literature for paediatric patient navigation programs across Canada. Additional programs were found following discussions with program coordinators and navigators. Interviews were conducted with key staff from each program and included questions related to patient condition; target population and location; method delivery; navigator background; and navigator roles. Data analysis included analysis of interviews and identification of common themes across the different programs. We interviewed staff from 19 paediatric navigation programs across Canada. Programs varied across a number of different themes, including: condition and disease type, program location (e.g., hospital or clinic), navigator background (e.g., registered nurse or peer/lay navigator) and method of delivery (e.g., phone or face-to-face). Overall, navigator roles are similar across all programs, including advocacy, education, support and assistance in accessing resources from both within and outside the health care system. This scan offers a road map of Canadian paediatric navigation programs. Knowledge learned from this scan will inform stakeholders who are either involved in the delivery of paediatric patient navigation programs or planning to implement such a program. Specifically, our scan informed the development of a navigation centre for children with complex health conditions in New Brunswick.

  8. Indoor wayfinding and navigation

    CERN Document Server

    2015-01-01

    Due to the widespread use of navigation systems for wayfinding and navigation in the outdoors, researchers have devoted their efforts in recent years to designing navigation systems that can be used indoors. This book is a comprehensive guide to designing and building indoor wayfinding and navigation systems. It covers all types of feasible sensors (for example, Wi-Fi, A-GPS), discussing the level of accuracy, the types of map data needed, the data sources, and the techniques for providing routes and directions within structures.

  9. Control algorithms for autonomous robot navigation

    International Nuclear Information System (INIS)

    Jorgensen, C.C.

    1985-01-01

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced

  10. Navigating communication with families during withdrawal of life-sustaining treatment in intensive care: a qualitative descriptive study in Australia and New Zealand.

    Science.gov (United States)

    Bloomer, Melissa J; Endacott, Ruth; Ranse, Kristen; Coombs, Maureen A

    2017-03-01

    To explore how nurses navigate communication with families during withdrawal of life-sustaining treatment in intensive care. Death in the intensive care unit is seldom unexpected and often happens following the withdrawal of life-sustaining treatment. A family-centred approach to care relies on the development of a therapeutic relationship and understanding of what is happening to the patient. Whilst previous research has focused on the transition from cure to palliation and the nurse's role in supporting families, less is known about how nurses navigate communication with families during treatment withdrawal. A qualitative descriptive approach was used. Semi-structured focus groups were conducted with adult critical care nurses from four intensive care units, two in Australia and two in New Zealand. Twenty-one nurses participated in the study. Inductive content analysis revealed five key themes relating to how nurses navigate family communication: (1) establishing the WHO; (2) working out HOW; (3) judging WHEN; (4) assessing the WHAT; and (5) WHERE these skills were learnt. Navigating an approach to family communication during treatment withdrawal is a complex and multifaceted nursing activity that is known to contribute to family satisfaction with care. There is need for support and ongoing education opportunities that develop the art of communication in this frequently encountered aspect of end-of-life care. How nurses navigate communication with families during treatment withdrawal is just as important as what is communicated. Nurses need access to supports and education opportunities in order to be able to perform this vital role. © 2016 John Wiley & Sons Ltd.

  11. Monitoring of zebra mussels in the Shannon-Boyle navigation, other

    OpenAIRE

    Minchin, D.; Lucy, F.; Sullivan, M.

    2002-01-01

    The zebra mussel (Dreissena polymorpha) population has been closely monitored in Ireland following its discovery in 1997. The species has spread from lower Lough Derg, where it was first introduced, to most of the navigable areas of the Shannon and other interconnected navigable waters. This study took place in the summers of 2000 and 2001 and investigated the relative abundance and biomass of zebra mussels found in the main navigations of the Shannon and elsewhere in rivers, canals and lakes...

  12. A Leapfrog Navigation System

    Science.gov (United States)

    Opshaug, Guttorm Ringstad

    There are times and places where conventional navigation systems, such as the Global Positioning System (GPS), are unavailable due to anything from temporary signal occultations to lack of navigation system infrastructure altogether. The goal of the Leapfrog Navigation System (LNS) is to provide localized positioning services for such cases. The concept behind leapfrog navigation is to advance a group of navigation units teamwise into an area of interest. In a practical 2-D case, leapfrogging assumes known initial positions of at least two currently stationary navigation units. Two or more mobile units can then start to advance into the area of interest. The positions of the mobiles are constantly being calculated based on cross-range distance measurements to the stationary units, as well as cross-ranges among the mobiles themselves. At some point the mobile units stop, and the stationary units are released to move. This second team of units (now mobile) can then overtake the first team (now stationary) and travel even further towards the common goal of the group. Since there always is one stationary team, the position of any unit can be referenced back to the initial positions. Thus, LNS provides absolute positioning. I developed navigation algorithms needed to solve leapfrog positions based on cross-range measurements. I used statistical tools to predict how position errors would grow as a function of navigation unit geometry, cross-range measurement accuracy and previous position errors. Using this knowledge I predicted that a 4-unit Leapfrog Navigation System using 100 m baselines and 200 m leap distances could travel almost 15 km before accumulating absolute position errors of 10 m (1sigma). Finally, I built a prototype leapfrog navigation system using 4 GPS transceiver ranging units. I placed the 4 units in the vertices a 10m x 10m square, and leapfrogged the group 20 meters forwards, and then back again (40 m total travel). Average horizontal RMS position

  13. The use of x-ray pulsar-based navigation method for interplanetary flight

    Science.gov (United States)

    Yang, Bo; Guo, Xingcan; Yang, Yong

    2009-07-01

    As interplanetary missions are increasingly complex, the existing unique mature interplanetary navigation method mainly based on radiometric tracking techniques of Deep Space Network can not meet the rising demands of autonomous real-time navigation. This paper studied the applications for interplanetary flights of a new navigation technology under rapid development-the X-ray pulsar-based navigation for spacecraft (XPNAV), and valued its performance with a computer simulation. The XPNAV is an excellent autonomous real-time navigation method, and can provide comprehensive navigation information, including position, velocity, attitude, attitude rate and time. In the paper the fundamental principles and time transformation of the XPNAV were analyzed, and then the Delta-correction XPNAV blending the vehicles' trajectory dynamics with the pulse time-of-arrival differences at nominal and estimated spacecraft locations within an Unscented Kalman Filter (UKF) was discussed with a background mission of Mars Pathfinder during the heliocentric transferring orbit. The XPNAV has an intractable problem of integer pulse phase cycle ambiguities similar to the GPS carrier phase navigation. This article innovatively proposed the non-ambiguity assumption approach based on an analysis of the search space array method to resolve pulse phase cycle ambiguities between the nominal position and estimated position of the spacecraft. The simulation results show that the search space array method are computationally intensive and require long processing time when the position errors are large, and the non-ambiguity assumption method can solve ambiguity problem quickly and reliably. It is deemed that autonomous real-time integrated navigation system of the XPNAV blending with DSN, celestial navigation, inertial navigation and so on will be the development direction of interplanetary flight navigation system in the future.

  14. Extraction of user's navigation commands from upper body force interaction in walker assisted gait

    Directory of Open Access Journals (Sweden)

    Pons José L

    2010-08-01

    Full Text Available Abstract Background The advances in technology make possible the incorporation of sensors and actuators in rollators, building safer robots and extending the use of walkers to a more diverse population. This paper presents a new method for the extraction of navigation related components from upper-body force interaction data in walker assisted gait. A filtering architecture is designed to cancel: (i the high-frequency noise caused by vibrations on the walker's structure due to irregularities on the terrain or walker's wheels and (ii the cadence related force components caused by user's trunk oscillations during gait. As a result, a third component related to user's navigation commands is distinguished. Results For the cancelation of high-frequency noise, a Benedict-Bordner g-h filter was designed presenting very low values for Kinematic Tracking Error ((2.035 ± 0.358·10-2 kgf and delay ((1.897 ± 0.3697·101ms. A Fourier Linear Combiner filtering architecture was implemented for the adaptive attenuation of about 80% of the cadence related components' energy from force data. This was done without compromising the information contained in the frequencies close to such notch filters. Conclusions The presented methodology offers an effective cancelation of the undesired components from force data, allowing the system to extract in real-time voluntary user's navigation commands. Based on this real-time identification of voluntary user's commands, a classical approach to the control architecture of the robotic walker is being developed, in order to obtain stable and safe user assisted locomotion.

  15. Optimal motion planning using navigation measure

    Science.gov (United States)

    Vaidya, Umesh

    2018-05-01

    We introduce navigation measure as a new tool to solve the motion planning problem in the presence of static obstacles. Existence of navigation measure guarantees collision-free convergence at the final destination set beginning with almost every initial condition with respect to the Lebesgue measure. Navigation measure can be viewed as a dual to the navigation function. While the navigation function has its minimum at the final destination set and peaks at the obstacle set, navigation measure takes the maximum value at the destination set and is zero at the obstacle set. A linear programming formalism is proposed for the construction of navigation measure. Set-oriented numerical methods are utilised to obtain finite dimensional approximation of this navigation measure. Application of the proposed navigation measure-based theoretical and computational framework is demonstrated for a motion planning problem in a complex fluid flow.

  16. Action video game play and transfer of navigation and spatial cognition skills in adolescents who are blind.

    Science.gov (United States)

    Connors, Erin C; Chrastil, Elizabeth R; Sánchez, Jaime; Merabet, Lotfi B

    2014-01-01

    For individuals who are blind, navigating independently in an unfamiliar environment represents a considerable challenge. Inspired by the rising popularity of video games, we have developed a novel approach to train navigation and spatial cognition skills in adolescents who are blind. Audio-based Environment Simulator (AbES) is a software application that allows for the virtual exploration of an existing building set in an action video game metaphor. Using this ludic-based approach to learning, we investigated the ability and efficacy of adolescents with early onset blindness to acquire spatial information gained from the exploration of a target virtual indoor environment. Following game play, participants were assessed on their ability to transfer and mentally manipulate acquired spatial information on a set of navigation tasks carried out in the real environment. Success in transfer of navigation skill performance was markedly high suggesting that interacting with AbES leads to the generation of an accurate spatial mental representation. Furthermore, there was a positive correlation between success in game play and navigation task performance. The role of virtual environments and gaming in the development of mental spatial representations is also discussed. We conclude that this game based learning approach can facilitate the transfer of spatial knowledge and further, can be used by individuals who are blind for the purposes of navigation in real-world environments.

  17. SU-F-P-42: “To Navigate, Or Not to Navigate: HDR BT in Recurrent Spine Lesions”

    Energy Technology Data Exchange (ETDEWEB)

    Voros, L; Cohen, G; Zaider, M; Yamada, Y [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2016-06-15

    Purpose: We compare the accuracy of HDR catheter placement for paraspinal lesions using O-arm CBCT imaging combined with StealthStation navigation and traditional fluoroscopically guided catheter placement. Methods: CT and MRI scans were acquired pre-treatment to outline the lesions and design treatment plans (pre-plans) to meet dosimetric constrains. The pre-planned catheter trajectories were transferred into the StealthStation Navigation system prior to the surgery. The StealthStation is an infra red (IR) optical navigation system used for guidance of surgical instruments. An intraoperative CBCT scan (O-arm) was acquired with reference IR optical fiducials anchored onto the patient and registered with the preplan image study to guide surgical instruments in relation to the patients’ anatomy and to place the brachytherapy catheters along the pre-planned trajectories. The final treatment plan was generated based on a 2nd intraoperative CBCT scan reflecting achieved implant geometry. The 2nd CBCT was later registered with the initial CT scan to compare the preplanned dwell positions with actual dwell positions (catheter placements). Similar workflow was used in placement of 8 catheters (1 patient) without navigation, but under fluoroscopy guidance in an interventional radiology suite. Results: A total of 18 catheters (3 patients) were placed using navigation assisted surgery. Average displacement of 0.66 cm (STD=0.37cm) was observed between the pre-plan source positions and actual source positions in the 3 dimensional space. This translates into an average 0.38 cm positioning error in one direction including registration errors, digitization errors, and the surgeons ability to follow the planned trajectory. In comparison, average displacement of non-navigated catheters was 0.50 cm (STD=0.22cm). Conclusion: Spinal lesion HDR brachytherapy planning is a difficult task. Catheter placement has a direct impact on target coverage and dose to critical structures. While

  18. Meta-image navigation augmenters for unmanned aircraft systems (MINA for UAS)

    Science.gov (United States)

    Òªelik, Koray; Somani, Arun K.; Schnaufer, Bernard; Hwang, Patrick Y.; McGraw, Gary A.; Nadke, Jeremy

    2013-05-01

    GPS is a critical sensor for Unmanned Aircraft Systems (UASs) due to its accuracy, global coverage and small hardware footprint, but is subject to denial due to signal blockage or RF interference. When GPS is unavailable, position, velocity and attitude (PVA) performance from other inertial and air data sensors is not sufficient, especially for small UASs. Recently, image-based navigation algorithms have been developed to address GPS outages for UASs, since most of these platforms already include a camera as standard equipage. Performing absolute navigation with real-time aerial images requires georeferenced data, either images or landmarks, as a reference. Georeferenced imagery is readily available today, but requires a large amount of storage, whereas collections of discrete landmarks are compact but must be generated by pre-processing. An alternative, compact source of georeferenced data having large coverage area is open source vector maps from which meta-objects can be extracted for matching against real-time acquired imagery. We have developed a novel, automated approach called MINA (Meta Image Navigation Augmenters), which is a synergy of machine-vision and machine-learning algorithms for map aided navigation. As opposed to existing image map matching algorithms, MINA utilizes publicly available open-source geo-referenced vector map data, such as OpenStreetMap, in conjunction with real-time optical imagery from an on-board, monocular camera to augment the UAS navigation computer when GPS is not available. The MINA approach has been experimentally validated with both actual flight data and flight simulation data and results are presented in the paper.

  19. Spatial navigation by congenitally blind individuals

    OpenAIRE

    Schinazi, Victor R.; Thrash, Tyler; Chebat, Daniel?Robert

    2015-01-01

    Spatial navigation in the absence of vision has been investigated from a variety of perspectives and disciplines. These different approaches have progressed our understanding of spatial knowledge acquisition by blind individuals, including their abilities, strategies, and corresponding mental representations. In this review, we propose a framework for investigating differences in spatial knowledge acquisition by blind and sighted people consisting of three longitudinal models (i.e., convergen...

  20. Navigability of Random Geometric Graphs in the Universe and Other Spacetimes.

    Science.gov (United States)

    Cunningham, William; Zuev, Konstantin; Krioukov, Dmitri

    2017-08-18

    Random geometric graphs in hyperbolic spaces explain many common structural and dynamical properties of real networks, yet they fail to predict the correct values of the exponents of power-law degree distributions observed in real networks. In that respect, random geometric graphs in asymptotically de Sitter spacetimes, such as the Lorentzian spacetime of our accelerating universe, are more attractive as their predictions are more consistent with observations in real networks. Yet another important property of hyperbolic graphs is their navigability, and it remains unclear if de Sitter graphs are as navigable as hyperbolic ones. Here we study the navigability of random geometric graphs in three Lorentzian manifolds corresponding to universes filled only with dark energy (de Sitter spacetime), only with matter, and with a mixture of dark energy and matter. We find these graphs are navigable only in the manifolds with dark energy. This result implies that, in terms of navigability, random geometric graphs in asymptotically de Sitter spacetimes are as good as random hyperbolic graphs. It also establishes a connection between the presence of dark energy and navigability of the discretized causal structure of spacetime, which provides a basis for a different approach to the dark energy problem in cosmology.

  1. Juvenile Osprey Navigation during Trans-Oceanic Migration.

    Directory of Open Access Journals (Sweden)

    Travis W Horton

    Full Text Available To compensate for drift, an animal migrating through air or sea must be able to navigate. Although some species of bird, fish, insect, mammal, and reptile are capable of drift compensation, our understanding of the spatial reference frame, and associated coordinate space, in which these navigational behaviors occur remains limited. Using high resolution satellite-monitored GPS track data, we show that juvenile ospreys (Pandion haliaetus are capable of non-stop constant course movements over open ocean spanning distances in excess of 1500 km despite the perturbing effects of winds and the lack of obvious landmarks. These results are best explained by extreme navigational precision in an exogenous spatio-temporal reference frame, such as positional orientation relative to Earth's magnetic field and pacing relative to an exogenous mechanism of keeping time. Given the age (<1 year-old of these birds and knowledge of their hatching site locations, we were able to transform Enhanced Magnetic Model coordinate locations such that the origin of the magnetic coordinate space corresponded with each bird's nest. Our analyses show that trans-oceanic juvenile osprey movements are consistent with bicoordinate positional orientation in transformed magnetic coordinate or geographic space. Through integration of movement and meteorological data, we propose a new theoretical framework, chord and clock navigation, capable of explaining the precise spatial orientation and temporal pacing performed by juvenile ospreys during their long-distance migrations over open ocean.

  2. Extrinsic Parameter Calibration for Line Scanning Cameras on Ground Vehicles with Navigation Systems Using a Calibration Pattern

    Directory of Open Access Journals (Sweden)

    Alexander Wendel

    2017-10-01

    Full Text Available Line scanning cameras, which capture only a single line of pixels, have been increasingly used in ground based mobile or robotic platforms. In applications where it is advantageous to directly georeference the camera data to world coordinates, an accurate estimate of the camera’s 6D pose is required. This paper focuses on the common case where a mobile platform is equipped with a rigidly mounted line scanning camera, whose pose is unknown, and a navigation system providing vehicle body pose estimates. We propose a novel method that estimates the camera’s pose relative to the navigation system. The approach involves imaging and manually labelling a calibration pattern with distinctly identifiable points, triangulating these points from camera and navigation system data and reprojecting them in order to compute a likelihood, which is maximised to estimate the 6D camera pose. Additionally, a Markov Chain Monte Carlo (MCMC algorithm is used to estimate the uncertainty of the offset. Tested on two different platforms, the method was able to estimate the pose to within 0.06 m/1.05 ∘ and 0.18 m/2.39 ∘ . We also propose several approaches to displaying and interpreting the 6D results in a human readable way.

  3. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    Science.gov (United States)

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode

  4. Using Genetic Algorithms for Navigation Planning in Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Ferhat Uçan

    2012-01-01

    Full Text Available Navigation planning can be considered as a combination of searching and executing the most convenient flight path from an initial waypoint to a destination waypoint. Generally the aim is to follow the flight path, which provides minimum fuel consumption for the air vehicle. For dynamic environments, constraints change dynamically during flight. This is a special case of dynamic path planning. As the main concern of this paper is flight planning, the conditions and objectives that are most probable to be used in navigation problem are considered. In this paper, the genetic algorithm solution of the dynamic flight planning problem is explained. The evolutionary dynamic navigation planning algorithm is developed for compensating the existing deficiencies of the other approaches. The existing fully dynamic algorithms process unit changes to topology one modification at a time, but when there are several such operations occurring in the environment simultaneously, the algorithms are quite inefficient. The proposed algorithm may respond to the concurrent constraint updates in a shorter time for dynamic environment. The most secure navigation of the air vehicle is planned and executed so that the fuel consumption is minimum.

  5. Navigation Tools and Equipment and How They Have Improved Aviation Safety

    OpenAIRE

    Sulaiman D. S Alsahli FadalahassanALfadala

    2017-01-01

    This paper highlights the impact of navigation tools and equipment, such as the GPS, navigation radar, and other communications tools, which aid in ensuring aviation safety. It emphasizes the need for aviation safety and how these navigation methods are of great help to reduce the hazards and clearly indicate the problems related to the aircraft, aircraft traffic management, weather disturbances, among others. It also recommends how these tools and equipment must be further developed to promo...

  6. Environmental layout complexity affects neural activity during navigation in humans.

    Science.gov (United States)

    Slone, Edward; Burles, Ford; Iaria, Giuseppe

    2016-05-01

    Navigating large-scale surroundings is a fundamental ability. In humans, it is commonly assumed that navigational performance is affected by individual differences, such as age, sex, and cognitive strategies adopted for orientation. We recently showed that the layout of the environment itself also influences how well people are able to find their way within it, yet it remains unclear whether differences in environmental complexity are associated with changes in brain activity during navigation. We used functional magnetic resonance imaging to investigate how the brain responds to a change in environmental complexity by asking participants to perform a navigation task in two large-scale virtual environments that differed solely in interconnection density, a measure of complexity defined as the average number of directional choices at decision points. The results showed that navigation in the simpler, less interconnected environment was faster and more accurate relative to the complex environment, and such performance was associated with increased activity in a number of brain areas (i.e. precuneus, retrosplenial cortex, and hippocampus) known to be involved in mental imagery, navigation, and memory. These findings provide novel evidence that environmental complexity not only affects navigational behaviour, but also modulates activity in brain regions that are important for successful orientation and navigation. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Relative contribution of allothetic and idiothetic navigation to place avoidance on stable and rotating arenas in darkness

    Czech Academy of Sciences Publication Activity Database

    Stuchlík, Aleš; Bureš, Jan

    2002-01-01

    Roč. 128, č. 2 (2002), s. 179-188 ISSN 0166-4328 R&D Projects: GA ČR GA309/00/1656 Institutional research plan: CEZ:AV0Z5011922 Keywords : allothetic navigation * idiothetic navigation * place avoidance Subject RIV: AN - Psychology Impact factor: 2.791, year: 2002

  8. Risk Assessment of Nautical Navigational Environment Based on Grey Fixed Weight Cluster

    Directory of Open Access Journals (Sweden)

    Yanfei Tian

    2017-06-01

    Full Text Available In order to set up a mathematical model suitable for nautical navigational environment risk evaluation and systematically master the navigational environment risk characteristics of the Qiongzhou Strait in a quantitative way, a risk assessment model with approach steps is set up based on the grey fixed weight cluster (GFWC. The evaluation index system is structured scientifically through both literature review and expert investigation. The relative weight of each index is designed to be obtained via fuzzy analytic hierarchy process (FAHP; Index membership degree of every grey class is proposed to be achieved by fuzzy statistics (FS to avoid the difficulty of building whiten weight functions. By using the model, nautical navigational environment risk of the Qiongzhou Strait is determined at a “moderate” level according to the principle of maximum membership degree. The comprehensive risk evaluation of the Qiongzhou Strait nautical navigational environment can provide theoretical reference for implementing targeted risk control measures. It shows that the constructed GFWC risk assessment model as well as the presented steps are workable in case of incomplete information. The proposed strategy can excavate the collected experts’ knowledge mathematically, quantify the weight of each index and risk level, and finally lead to a comprehensive risk evaluation result. Besides, the adoptions of probability and statistic theory, fuzzy theory, aiming at solving the bottlenecks in case of uncertainty, will give the model a better adaptability and executability.

  9. Autonomous Navigation for Autonomous Underwater Vehicles Based on Information Filters and Active Sensing

    Directory of Open Access Journals (Sweden)

    Tianhong Yan

    2011-11-01

    Full Text Available This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM, and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China. Weak links in the information matrix in an extended information filter (EIF can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM. All the basic update formulae can be implemented in constant time irrespective of the size of the map; hence the computational complexity is significantly reduced. The mechanical scanning imaging sonar is chosen as the active sensing device for the underwater vehicle, and a compensation method based on feedback of the AUV pose is presented to overcome distortion of the acoustic images due to the vehicle motion. In order to verify the feasibility of the navigation methods proposed for the C-Ranger, a sea trial was conducted in Tuandao Bay. Experimental results and analysis show that the proposed navigation approach based on SEIF-SLAM improves the accuracy of the navigation compared with conventional method; moreover the algorithm has a low computational cost when compared with EKF-SLAM.

  10. Autonomous navigation for autonomous underwater vehicles based on information filters and active sensing.

    Science.gov (United States)

    He, Bo; Zhang, Hongjin; Li, Chao; Zhang, Shujing; Liang, Yan; Yan, Tianhong

    2011-01-01

    This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV) C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM), and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China). Weak links in the information matrix in an extended information filter (EIF) can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM). All the basic update formulae can be implemented in constant time irrespective of the size of the map; hence the computational complexity is significantly reduced. The mechanical scanning imaging sonar is chosen as the active sensing device for the underwater vehicle, and a compensation method based on feedback of the AUV pose is presented to overcome distortion of the acoustic images due to the vehicle motion. In order to verify the feasibility of the navigation methods proposed for the C-Ranger, a sea trial was conducted in Tuandao Bay. Experimental results and analysis show that the proposed navigation approach based on SEIF-SLAM improves the accuracy of the navigation compared with conventional method; moreover the algorithm has a low computational cost when compared with EKF-SLAM.

  11. Lunar Navigation Architecture Design Considerations

    Science.gov (United States)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  12. A true minimally invasive approach for cochlear implantation: high accuracy in cranial base navigation through flat-panel-based volume computed tomography.

    Science.gov (United States)

    Majdani, Omid; Bartling, Soenke H; Leinung, Martin; Stöver, Timo; Lenarz, Minoo; Dullin, Christian; Lenarz, Thomas

    2008-02-01

    High-precision intraoperative navigation using high-resolution flat-panel volume computed tomography makes feasible the possibility of minimally invasive cochlear implant surgery, including cochleostomy. Conventional cochlear implant surgery is typically performed via mastoidectomy with facial recess to identify and avoid damage to vital anatomic landmarks. To accomplish this procedure via a minimally invasive approach--without performing mastoidectomy--in a precise fashion, image-guided technology is necessary. With such an approach, surgical time and expertise may be reduced, and hearing preservation may be improved. Flat-panel volume computed tomography was used to scan 4 human temporal bones. A drilling channel was planned preoperatively from the mastoid surface to the round window niche, providing a margin of safety to all functional important structures (e.g., facial nerve, chorda tympani, incus). Postoperatively, computed tomographic imaging and conventional surgical exploration of the drilled route to the cochlea were performed. All 4 specimens showed a cochleostomy located at the scala tympani anterior inferior to the round window. The chorda tympani was damaged in 1 specimen--this was preoperatively planned as a narrow facial recess was encountered. Using flat-panel volume computed tomography for image-guided surgical navigation, we were able to perform minimally invasive cochlear implant surgery defined as a narrow, single-channel mastoidotomy with cochleostomy. Although this finding is preliminary, it is technologically achievable.

  13. E-navigation Services for Non-SOLAS Ships

    Directory of Open Access Journals (Sweden)

    Kwang An

    2016-06-01

    Full Text Available It is clearly understood that the main benefits of e-navigation are improved safety and better protection of the environment through the promotion of standards of navigational system and a reduction in human error. In order to meet the expectations on the benefit of e-navigation, e-navigation services should be more focused on non-SOLAS ships. The purpose of this paper is to present necessary e-navigation services for non-SOLAS ships in order to prevent marine accidents in Korean coastal waters. To meet the objectives of the study, an examination on the present navigation and communication system for non-SOLAS ships was performed. Based on the IMO's e-navigation Strategy Implementation Plan (SIP and Korea's national SIP for e-navigation, future trends for the development and implementation of e-navigation were discussed. Consequently, Electronic Navigational Chart (ENC download and ENC up-date service, ENC streaming service, route support service and communication support service based on Maritime Cloud were presented as essential e-navigation services for non-SOLAS ships. This study will help for the planning and designing of the Korean e-navigation system. It is expected that the further researches on the navigation support systems based on e-navigation will be carried out in order to implement the essential e-navigation services for non-SOLAS ships.

  14. Action Video Game Play and Transfer of Navigation and Spatial Cognition Skills in Adolescents who are Blind

    Directory of Open Access Journals (Sweden)

    Erin eConnors

    2014-03-01

    Full Text Available For individuals who are blind, navigating independently in an unfamiliar environment represents a considerable challenge. Inspired from recent developments in accessible technology and the rising popularity of video games, we have developed a novel approach to train navigation and spatial cognition skills in adolescents who are blind. Audio-based Environment Simulator (AbES is a software application that allows for the virtual exploration of an existing building set in an action video game metaphor. We investigated the ability and efficacy of adolescents with early onset blindness to acquire spatial information gained from the exploration of a virtual indoor environment using this ludic approach to learning. Following game play, participants were then assessed on their ability to transfer and mentally manipulate acquired spatial information in a set of navigation tasks carried out in the real environment represented in the game. The transfer of navigation skill performance was markedly high suggesting that interacting with AbES leads to the generation of an accurate spatial mental representation. Furthermore, there was a positive correlation between success in game play and navigation task performance. The role of virtual environments and gaming in the development of mental spatial representations is also discussed. We conclude that this novel software and learning by a gaming approach can facilitate the transfer of spatial knowledge and can be used by individuals who are blind for the purposes of navigation in real-world environments.

  15. Applications of different design methodologies in navigation systems and development at JPL

    Science.gov (United States)

    Thurman, S. W.

    1990-01-01

    The NASA/JPL deep space navigation system consists of a complex array of measurement systems, data processing systems, and support facilities, with components located both on the ground and on-board interplanetary spacecraft. From its beginings nearly 30 years ago, this system has steadily evolved and grown to meet the demands for ever-increasing navigation accuracy placed on it by a succession of unmanned planetary missions. Principal characteristics of this system are its capabilities and great complexity. Three examples in the design and development of interplanetary space navigation systems are examined in order to make a brief assessment of the usefulness of three basic design theories, known as normative, rational, and heuristic. Evaluation of the examples indicates that a heuristic approach, coupled with rational-based mathematical and computational analysis methods, is used most often in problems such as orbit determination strategy development and mission navigation system design, while normative methods have seen only limited use is such applications as the development of large software systems and in the design of certain operational navigation subsystems.

  16. Indoor navigation by image recognition

    Science.gov (United States)

    Choi, Io Teng; Leong, Chi Chong; Hong, Ka Wo; Pun, Chi-Man

    2017-07-01

    With the progress of smartphones hardware, it is simple on smartphone using image recognition technique such as face detection. In addition, indoor navigation system development is much slower than outdoor navigation system. Hence, this research proves a usage of image recognition technique for navigation in indoor environment. In this paper, we introduced an indoor navigation application that uses the indoor environment features to locate user's location and a route calculating algorithm to generate an appropriate path for user. The application is implemented on Android smartphone rather than iPhone. Yet, the application design can also be applied on iOS because the design is implemented without using special features only for Android. We found that digital navigation system provides better and clearer location information than paper map. Also, the indoor environment is ideal for Image recognition processing. Hence, the results motivate us to design an indoor navigation system using image recognition.

  17. Navigation Study of Lower Lock Approach, John Day Lock and Dam, Columbia River, Oregon

    National Research Council Canada - National Science Library

    Wilson, Donald

    2001-01-01

    Representatives of the Columbia River Towing Association reported recent structural and/or operational changes at John Day Lock and Dam have created difficult navigation conditions for tows entering...

  18. Absolute Navigation Information Estimation for Micro Planetary Rovers

    Directory of Open Access Journals (Sweden)

    Muhammad Ilyas

    2016-03-01

    Full Text Available This paper provides algorithms to estimate absolute navigation information, e.g., absolute attitude and position, by using low power, weight and volume Microelectromechanical Systems-type (MEMS sensors that are suitable for micro planetary rovers. Planetary rovers appear to be easily navigable robots due to their extreme slow speed and rotation but, unfortunately, the sensor suites available for terrestrial robots are not always available for planetary rover navigation. This makes them difficult to navigate in a completely unexplored, harsh and complex environment. Whereas the relative attitude and position can be tracked in a similar way as for ground robots, absolute navigation information, unlike in terrestrial applications, is difficult to obtain for a remote celestial body, such as Mars or the Moon. In this paper, an algorithm called the EASI algorithm (Estimation of Attitude using Sun sensor and Inclinometer is presented to estimate the absolute attitude using a MEMS-type sun sensor and inclinometer, only. Moreover, the output of the EASI algorithm is fused with MEMS gyros to produce more accurate and reliable attitude estimates. An absolute position estimation algorithm has also been presented based on these on-board sensors. Experimental results demonstrate the viability of the proposed algorithms and the sensor suite for low-cost and low-weight micro planetary rovers.

  19. Differential GNSS and Vision-Based Tracking to Improve Navigation Performance in Cooperative Multi-UAV Systems

    Directory of Open Access Journals (Sweden)

    Amedeo Rodi Vetrella

    2016-12-01

    Full Text Available Autonomous navigation of micro-UAVs is typically based on the integration of low cost Global Navigation Satellite System (GNSS receivers and Micro-Electro-Mechanical Systems (MEMS-based inertial and magnetic sensors to stabilize and control the flight. The resulting navigation performance in terms of position and attitude accuracy may not suffice for other mission needs, such as the ones relevant to fine sensor pointing. In this framework, this paper presents a cooperative UAV navigation algorithm that allows a chief vehicle, equipped with inertial and magnetic sensors, a Global Positioning System (GPS receiver, and a vision system, to improve its navigation performance (in real time or in the post processing phase exploiting formation flying deputy vehicles equipped with GPS receivers. The focus is set on outdoor environments and the key concept is to exploit differential GPS among vehicles and vision-based tracking (DGPS/Vision to build a virtual additional navigation sensor whose information is then integrated in a sensor fusion algorithm based on an Extended Kalman Filter. The developed concept and processing architecture are described, with a focus on DGPS/Vision attitude determination algorithm. Performance assessment is carried out on the basis of both numerical simulations and flight tests. In the latter ones, navigation estimates derived from the DGPS/Vision approach are compared with those provided by the onboard autopilot system of a customized quadrotor. The analysis shows the potential of the developed approach, mainly deriving from the possibility to exploit magnetic- and inertial-independent accurate attitude information.

  20. A SCHEMA FOR EXTRACTION OF INDOOR PEDESTRIAN NAVIGATION GRID NETWORK FROM FLOOR PLANS

    Directory of Open Access Journals (Sweden)

    L. Niu

    2016-06-01

    Full Text Available The requirement of the indoor navigation related tasks such emergency evacuation calls for efficient solutions for handling data sources. Therefore, the navigation grid extraction from existing floor plans draws attentions. To this, we have to thoroughly analyse the source data, such as Autocad dxf files. Then, we could establish a sounding navigation solution, which firstly complements the basic navigation rectangle boundaries, secondly subdivides these rectangles and finally generates accessible networks with these refined rectangles. Test files are introduced to validate the whole workflow and evaluate the solution performance. In conclusion, we have achieved the preliminary step of forming up accessible network from the navigation grids.

  1. a Schema for Extraction of Indoor Pedestrian Navigation Grid Network from Floor Plans

    Science.gov (United States)

    Niu, Lei; Song, Yiquan

    2016-06-01

    The requirement of the indoor navigation related tasks such emergency evacuation calls for efficient solutions for handling data sources. Therefore, the navigation grid extraction from existing floor plans draws attentions. To this, we have to thoroughly analyse the source data, such as Autocad dxf files. Then, we could establish a sounding navigation solution, which firstly complements the basic navigation rectangle boundaries, secondly subdivides these rectangles and finally generates accessible networks with these refined rectangles. Test files are introduced to validate the whole workflow and evaluate the solution performance. In conclusion, we have achieved the preliminary step of forming up accessible network from the navigation grids.

  2. Inertial Navigation System/Doppler Velocity Log (INS/DVL Fusion with Partial DVL Measurements

    Directory of Open Access Journals (Sweden)

    Asaf Tal

    2017-02-01

    Full Text Available The Technion autonomous underwater vehicle (TAUV is an ongoing project aiming to develop and produce a small AUV to carry on research missions, including payload dropping, and to demonstrate acoustic communication. Its navigation system is based on an inertial navigation system (INS aided by a Doppler velocity log (DVL, magnetometer, and pressure sensor (PS. In many INSs, such as the one used in TAUV, only the velocity vector (provided by the DVL can be used for aiding the INS, i.e., enabling only a loosely coupled integration approach. In cases of partial DVL measurements, such as failure to maintain bottom lock, the DVL cannot estimate the vehicle velocity. Thus, in partial DVL situations no velocity data can be integrated into the TAUV INS, and as a result its navigation solution will drift in time. To circumvent that problem, we propose a DVL-based vehicle velocity solution using the measured partial raw data of the DVL and additional information, thereby deriving an extended loosely coupled (ELC approach. The implementation of the ELC approach requires only software modification. In addition, we present the TAUV six degrees of freedom (6DOF simulation that includes all functional subsystems. Using this simulation, the proposed approach is evaluated and the benefit of using it is shown.

  3. Navigation Lights - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic Navigational charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  4. INTEGRITY ANALYSIS OF REAL-TIME PPP TECHNIQUE WITH IGS-RTS SERVICE FOR MARITIME NAVIGATION

    Directory of Open Access Journals (Sweden)

    M. El-Diasty

    2017-10-01

    Full Text Available Open sea and inland waterways are the most widely used mode for transporting goods worldwide. It is the International Maritime Organization (IMO that defines the requirements for position fixing equipment for a worldwide radio-navigation system, in terms of accuracy, integrity, continuity, availability and coverage for the various phases of navigation. Satellite positioning systems can contribute to meet these requirements, as well as optimize marine transportation. Marine navigation usually consists of three major phases identified as Ocean/Coastal/Port approach/Inland waterway, in port navigation and automatic docking with alert limit ranges from 25 m to 0.25 m. GPS positioning is widely used for many applications and is currently recognized by IMO for a future maritime navigation. With the advancement in autonomous GPS positioning techniques such as Precise Point Positioning (PPP and with the advent of new real-time GNSS correction services such as IGS-Real-Time-Service (RTS, it is necessary to investigate the integrity of the PPP-based positioning technique along with IGS-RTS service in terms of availability and reliability for safe navigation in maritime application. This paper monitors the integrity of an autonomous real-time PPP-based GPS positioning system using the IGS real-time service (RTS for maritime applications that require minimum availability of integrity of 99.8 % to fulfil the IMO integrity standards. To examine the integrity of the real-time IGS-RTS PPP-based technique for maritime applications, kinematic data from a dual frequency GPS receiver is collected onboard a vessel and investigated with the real-time IGS-RTS PPP-based GPS positioning technique. It is shown that the availability of integrity of the real-time IGS-RTS PPP-based GPS solution is 100 % for all navigation phases and therefore fulfil the IMO integrity standards (99.8 % availability immediately (after 1 second, after 2 minutes and after 42 minutes

  5. Integrity Analysis of Real-Time Ppp Technique with Igs-Rts Service for Maritime Navigation

    Science.gov (United States)

    El-Diasty, M.

    2017-10-01

    Open sea and inland waterways are the most widely used mode for transporting goods worldwide. It is the International Maritime Organization (IMO) that defines the requirements for position fixing equipment for a worldwide radio-navigation system, in terms of accuracy, integrity, continuity, availability and coverage for the various phases of navigation. Satellite positioning systems can contribute to meet these requirements, as well as optimize marine transportation. Marine navigation usually consists of three major phases identified as Ocean/Coastal/Port approach/Inland waterway, in port navigation and automatic docking with alert limit ranges from 25 m to 0.25 m. GPS positioning is widely used for many applications and is currently recognized by IMO for a future maritime navigation. With the advancement in autonomous GPS positioning techniques such as Precise Point Positioning (PPP) and with the advent of new real-time GNSS correction services such as IGS-Real-Time-Service (RTS), it is necessary to investigate the integrity of the PPP-based positioning technique along with IGS-RTS service in terms of availability and reliability for safe navigation in maritime application. This paper monitors the integrity of an autonomous real-time PPP-based GPS positioning system using the IGS real-time service (RTS) for maritime applications that require minimum availability of integrity of 99.8 % to fulfil the IMO integrity standards. To examine the integrity of the real-time IGS-RTS PPP-based technique for maritime applications, kinematic data from a dual frequency GPS receiver is collected onboard a vessel and investigated with the real-time IGS-RTS PPP-based GPS positioning technique. It is shown that the availability of integrity of the real-time IGS-RTS PPP-based GPS solution is 100 % for all navigation phases and therefore fulfil the IMO integrity standards (99.8 % availability) immediately (after 1 second), after 2 minutes and after 42 minutes of convergence

  6. A novel angle computation and calibration algorithm of bio-inspired sky-light polarization navigation sensor.

    Science.gov (United States)

    Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao

    2014-09-15

    Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice.

  7. Virtual Environments for the Transfer of Navigation Skills in the Blind: A Comparison of Directed Instruction Versus Video Game Based Learning Approaches

    Directory of Open Access Journals (Sweden)

    Erin C Connors

    2014-05-01

    Full Text Available For profoundly blind individuals, navigating in an unfamiliar building can represent a significant challenge. We investigated the use of an audio-based, virtual environment called Audio-based Environment Simulator (AbES that can be explored for the purposes of learning the layout of an unfamiliar, complex indoor environment. Furthermore, we compared two modes of interaction with AbES. In one group, blind participants implicitly learned the layout of a target environment while playing an exploratory, goal-directed video game. By comparison, a second group was explicitly taught the same layout following a standard route and instructions provided by a sighted facilitator. As a control, a third group interacted with AbES while playing an exploratory, goal-directed video game however, the explored environment did not correspond to the target layout. Following interaction with AbES, a series of route navigation tasks were carried out in the virtual and physical building represented in the training environment to assess the transfer of acquired spatial information. We found that participants from both modes of interaction were able to transfer the spatial knowledge gained as indexed by their successful route navigation performance. This transfer was not apparent in the control participants. Most notably, the game-based learning strategy was also associated with enhanced performance when participants were required to find alternate routes and short cuts within the target building suggesting that a ludic-based training approach may provide for a more flexible mental representation of the environment. Furthermore, outcome comparisons between early and late blind individuals suggested that greater prior visual experience did not have a significant effect on overall navigation performance following training. Finally, performance did not appear to be associated with other factors of interest such as age, gender, and verbal memory recall. We conclude that the

  8. Semiotic resources for navigation

    DEFF Research Database (Denmark)

    Due, Brian Lystgaard; Lange, Simon Bierring

    2018-01-01

    This paper describes two typical semiotic resources blind people use when navigating in urban areas. Everyone makes use of a variety of interpretive semiotic resources and senses when navigating. For sighted individuals, this especially involves sight. Blind people, however, must rely on everything...... else than sight, thereby substituting sight with other modalities and distributing the navigational work to other semiotic resources. Based on a large corpus of fieldwork among blind people in Denmark, undertaking observations, interviews, and video recordings of their naturally occurring practices...... of walking and navigating, this paper shows how two prototypical types of semiotic resources function as helpful cognitive extensions: the guide dog and the white cane. This paper takes its theoretical and methodological perspective from EMCA multimodal interaction analysis....

  9. Polar Cooperative Navigation Algorithm for Multi-Unmanned Underwater Vehicles Considering Communication Delays

    Directory of Open Access Journals (Sweden)

    Zheping Yan

    2018-03-01

    Full Text Available To solve the navigation accuracy problems of multi-Unmanned Underwater Vehicles (multi-UUVs in the polar region, a polar cooperative navigation algorithm for multi-UUVs considering communication delays is proposed in this paper. UUVs are important pieces of equipment in ocean engineering for marine development. For UUVs to complete missions, precise navigation is necessary. It is difficult for UUVs to establish true headings because of the rapid convergence of Earth meridians and the severe polar environment. Based on the polar grid navigation algorithm, UUV navigation in the polar region can be accomplished with the Strapdown Inertial Navigation System (SINS in the grid frame. To save costs, a leader-follower type of system is introduced in this paper. The leader UUV helps the follower UUVs to achieve high navigation accuracy. Follower UUVs correct their own states based on the information sent by the leader UUV and the relative position measured by ultra-short baseline (USBL acoustic positioning. The underwater acoustic communication delay is quantized by the model. In this paper, considering underwater acoustic communication delay, the conventional adaptive Kalman filter (AKF is modified to adapt to polar cooperative navigation. The results demonstrate that the polar cooperative navigation algorithm for multi-UUVs that considers communication delays can effectively navigate the sailing of multi-UUVs in the polar region.

  10. Enhancing Maritime Education and Training: Measuring a Ship Navigator's Stress Based on Salivary Amylase Activity

    Science.gov (United States)

    Murai, Koji; Wakida, Shin-Ichi; Miyado, Takashi; Fukushi, Keiichi; Hayashi, Yuji; Stone, Laurie C.

    2009-01-01

    Purpose: The purpose of this paper is to propose that the measurement of salivary amylase activity is an effective index to evaluate the stress of a ship navigator for safe navigation training and education. Design/methodology/approach: Evaluation comes from the simulator and actual on-board experiments. The subjects are real captains who have…

  11. 33 CFR 401.54 - Interference with navigation aids.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Interference with navigation aids. 401.54 Section 401.54 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION... with navigation aids. (a) Aids to navigation shall not be interfered with or used as moorings. (b) No...

  12. VISION-AIDED CONTEXT-AWARE FRAMEWORK FOR PERSONAL NAVIGATION SERVICES

    Directory of Open Access Journals (Sweden)

    S. Saeedi

    2012-07-01

    Full Text Available The ubiquity of mobile devices (such as smartphones and tablet-PCs has encouraged the use of location-based services (LBS that are relevant to the current location and context of a mobile user. The main challenge of LBS is to find a pervasive and accurate personal navigation system (PNS in different situations of a mobile user. In this paper, we propose a method of personal navigation for pedestrians that allows a user to freely move in outdoor environments. This system aims at detection of the context information which is useful for improving personal navigation. The context information for a PNS consists of user activity modes (e.g. walking, stationary, driving, and etc. and the mobile device orientation and placement with respect to the user. After detecting the context information, a low-cost integrated positioning algorithm has been employed to estimate pedestrian navigation parameters. The method is based on the integration of the relative user’s motion (changes of velocity and heading angle estimation based on the video image matching and absolute position information provided by GPS. A Kalman filter (KF has been used to improve the navigation solution when the user is walking and the phone is in his/her hand. The Experimental results demonstrate the capabilities of this method for outdoor personal navigation systems.

  13. Olfaction Contributes to Pelagic Navigation in a Coastal Shark.

    Science.gov (United States)

    Nosal, Andrew P; Chao, Yi; Farrara, John D; Chai, Fei; Hastings, Philip A

    2016-01-01

    How animals navigate the constantly moving and visually uniform pelagic realm, often along straight paths between distant sites, is an enduring mystery. The mechanisms enabling pelagic navigation in cartilaginous fishes are particularly understudied. We used shoreward navigation by leopard sharks (Triakis semifasciata) as a model system to test whether olfaction contributes to pelagic navigation. Leopard sharks were captured alongshore, transported 9 km offshore, released, and acoustically tracked for approximately 4 h each until the transmitter released. Eleven sharks were rendered anosmic (nares occluded with cotton wool soaked in petroleum jelly); fifteen were sham controls. Mean swimming depth was 28.7 m. On average, tracks of control sharks ended 62.6% closer to shore, following relatively straight paths that were significantly directed over spatial scales exceeding 1600 m. In contrast, tracks of anosmic sharks ended 37.2% closer to shore, following significantly more tortuous paths that approximated correlated random walks. These results held after swimming paths were adjusted for current drift. This is the first study to demonstrate experimentally that olfaction contributes to pelagic navigation in sharks, likely mediated by chemical gradients as has been hypothesized for birds. Given the similarities between the fluid three-dimensional chemical atmosphere and ocean, further research comparing swimming and flying animals may lead to a unifying paradigm explaining their extraordinary navigational abilities.

  14. Memristive device based learning for navigation in robots.

    Science.gov (United States)

    Sarim, Mohammad; Kumar, Manish; Jha, Rashmi; Minai, Ali A

    2017-11-08

    Biomimetic robots have gained attention recently for various applications ranging from resource hunting to search and rescue operations during disasters. Biological species are known to intuitively learn from the environment, gather and process data, and make appropriate decisions. Such sophisticated computing capabilities in robots are difficult to achieve, especially if done in real-time with ultra-low energy consumption. Here, we present a novel memristive device based learning architecture for robots. Two terminal memristive devices with resistive switching of oxide layer are modeled in a crossbar array to develop a neuromorphic platform that can impart active real-time learning capabilities in a robot. This approach is validated by navigating a robot vehicle in an unknown environment with randomly placed obstacles. Further, the proposed scheme is compared with reinforcement learning based algorithms using local and global knowledge of the environment. The simulation as well as experimental results corroborate the validity and potential of the proposed learning scheme for robots. The results also show that our learning scheme approaches an optimal solution for some environment layouts in robot navigation.

  15. Navigational efficiency in a biased and correlated random walk model of individual animal movement.

    Science.gov (United States)

    Bailey, Joseph D; Wallis, Jamie; Codling, Edward A

    2018-01-01

    Understanding how an individual animal is able to navigate through its environment is a key question in movement ecology that can give insight into observed movement patterns and the mechanisms behind them. Efficiency of navigation is important for behavioral processes at a range of different spatio-temporal scales, including foraging and migration. Random walk models provide a standard framework for modeling individual animal movement and navigation. Here we consider a vector-weighted biased and correlated random walk (BCRW) model for directed movement (taxis), where external navigation cues are balanced with forward persistence. We derive a mathematical approximation of the expected navigational efficiency for any BCRW of this form and confirm the model predictions using simulations. We demonstrate how the navigational efficiency is related to the weighting given to forward persistence and external navigation cues, and highlight the counter-intuitive result that for low (but realistic) levels of error on forward persistence, a higher navigational efficiency is achieved by giving more weighting to this indirect navigation cue rather than direct navigational cues. We discuss and interpret the relevance of these results for understanding animal movement and navigation strategies. © 2017 by the Ecological Society of America.

  16. Virtual environments for the transfer of navigation skills in the blind: a comparison of directed instruction vs. video game based learning approaches.

    Science.gov (United States)

    Connors, Erin C; Chrastil, Elizabeth R; Sánchez, Jaime; Merabet, Lotfi B

    2014-01-01

    For profoundly blind individuals, navigating in an unfamiliar building can represent a significant challenge. We investigated the use of an audio-based, virtual environment called Audio-based Environment Simulator (AbES) that can be explored for the purposes of learning the layout of an unfamiliar, complex indoor environment. Furthermore, we compared two modes of interaction with AbES. In one group, blind participants implicitly learned the layout of a target environment while playing an exploratory, goal-directed video game. By comparison, a second group was explicitly taught the same layout following a standard route and instructions provided by a sighted facilitator. As a control, a third group interacted with AbES while playing an exploratory, goal-directed video game however, the explored environment did not correspond to the target layout. Following interaction with AbES, a series of route navigation tasks were carried out in the virtual and physical building represented in the training environment to assess the transfer of acquired spatial information. We found that participants from both modes of interaction were able to transfer the spatial knowledge gained as indexed by their successful route navigation performance. This transfer was not apparent in the control participants. Most notably, the game-based learning strategy was also associated with enhanced performance when participants were required to find alternate routes and short cuts within the target building suggesting that a ludic-based training approach may provide for a more flexible mental representation of the environment. Furthermore, outcome comparisons between early and late blind individuals suggested that greater prior visual experience did not have a significant effect on overall navigation performance following training. Finally, performance did not appear to be associated with other factors of interest such as age, gender, and verbal memory recall. We conclude that the highly interactive

  17. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering

    Science.gov (United States)

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-01-01

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level. PMID:27223293

  18. Navigation concepts for MR image-guided interventions.

    Science.gov (United States)

    Moche, Michael; Trampel, Robert; Kahn, Thomas; Busse, Harald

    2008-02-01

    The ongoing development of powerful magnetic resonance imaging techniques also allows for advanced possibilities to guide and control minimally invasive interventions. Various navigation concepts have been described for practically all regions of the body. The specific advantages and limitations of these concepts largely depend on the magnet design of the MR scanner and the interventional environment. Open MR scanners involve minimal patient transfer, which improves the interventional workflow and reduces the need for coregistration, ie, the mapping of spatial coordinates between imaging and intervention position. Most diagnostic scanners, in contrast, do not allow the physician to guide his instrument inside the magnet and, consequently, the patient needs to be moved out of the bore. Although adequate coregistration and navigation concepts for closed-bore scanners are technically more challenging, many developments are driven by the well-known capabilities of high-field systems and their better economic value. Advanced concepts such as multimodal overlays, augmented reality displays, and robotic assistance devices are still in their infancy but might propel the use of intraoperative navigation. The goal of this work is to give an update on MRI-based navigation and related techniques and to briefly discuss the clinical experience and limitations of some selected systems. (Copyright) 2008 Wiley-Liss, Inc.

  19. Navigating the MESSENGER Spacecraft through End of Mission

    Science.gov (United States)

    Bryan, C. G.; Williams, B. G.; Williams, K. E.; Taylor, A. H.; Carranza, E.; Page, B. R.; Stanbridge, D. R.; Mazarico, E.; Neumann, G. A.; O'Shaughnessy, D. J.; McAdams, J. V.; Calloway, A. B.

    2015-12-01

    eventually allowed the navigation team to settle on an approach that gave consistently accurate predictions. Thus, final mission success was truly the result of a collaborative effort between members of the science, mission operations, mission design, and navigation teams.

  20. FPGA-based real-time embedded system for RISS/GPS integrated navigation.

    Science.gov (United States)

    Abdelfatah, Walid Farid; Georgy, Jacques; Iqbal, Umar; Noureldin, Aboelmagd

    2012-01-01

    Navigation algorithms integrating measurements from multi-sensor systems overcome the problems that arise from using GPS navigation systems in standalone mode. Algorithms which integrate the data from 2D low-cost reduced inertial sensor system (RISS), consisting of a gyroscope and an odometer or wheel encoders, along with a GPS receiver via a Kalman filter has proved to be worthy in providing a consistent and more reliable navigation solution compared to standalone GPS receivers. It has been also shown to be beneficial, especially in GPS-denied environments such as urban canyons and tunnels. The main objective of this paper is to narrow the idea-to-implementation gap that follows the algorithm development by realizing a low-cost real-time embedded navigation system capable of computing the data-fused positioning solution. The role of the developed system is to synchronize the measurements from the three sensors, relative to the pulse per second signal generated from the GPS, after which the navigation algorithm is applied to the synchronized measurements to compute the navigation solution in real-time. Employing a customizable soft-core processor on an FPGA in the kernel of the navigation system, provided the flexibility for communicating with the various sensors and the computation capability required by the Kalman filter integration algorithm.

  1. Distributed Ship Navigation Control System Based on Dual Network

    Science.gov (United States)

    Yao, Ying; Lv, Wu

    2017-10-01

    Navigation system is very important for ship’s normal running. There are a lot of devices and sensors in the navigation system to guarantee ship’s regular work. In the past, these devices and sensors were usually connected via CAN bus for high performance and reliability. However, as the development of related devices and sensors, the navigation system also needs the ability of high information throughput and remote data sharing. To meet these new requirements, we propose the communication method based on dual network which contains CAN bus and industrial Ethernet. Also, we import multiple distributed control terminals with cooperative strategy based on the idea of synchronizing the status by multicasting UDP message contained operation timestamp to make the system more efficient and reliable.

  2. Real-time precision pedestrian navigation solution using Inertial Navigation System and Global Positioning System

    OpenAIRE

    Yong-Jin Yoon; King Ho Holden Li; Jiahe Steven Lee; Woo-Tae Park

    2015-01-01

    Global Positioning System and Inertial Navigation System can be used to determine position and velocity. A Global Positioning System module is able to accurately determine position without sensor drift, but its usage is limited in heavily urbanized environments and heavy vegetation. While high-cost tactical-grade Inertial Navigation System can determine position accurately, low-cost micro-electro-mechanical system Inertial Navigation System sensors are plagued by significant errors. Global Po...

  3. Evolutionary Fuzzy Control and Navigation for Two Wheeled Robots Cooperatively Carrying an Object in Unknown Environments.

    Science.gov (United States)

    Juang, Chia-Feng; Lai, Min-Ge; Zeng, Wan-Ting

    2015-09-01

    This paper presents a method that allows two wheeled, mobile robots to navigate unknown environments while cooperatively carrying an object. In the navigation method, a leader robot and a follower robot cooperatively perform either obstacle boundary following (OBF) or target seeking (TS) to reach a destination. The two robots are controlled by fuzzy controllers (FC) whose rules are learned through an adaptive fusion of continuous ant colony optimization and particle swarm optimization (AF-CACPSO), which avoids the time-consuming task of manually designing the controllers. The AF-CACPSO-based evolutionary fuzzy control approach is first applied to the control of a single robot to perform OBF. The learning approach is then applied to achieve cooperative OBF with two robots, where an auxiliary FC designed with the AF-CACPSO is used to control the follower robot. For cooperative TS, a rule for coordination of the two robots is developed. To navigate cooperatively, a cooperative behavior supervisor is introduced to select between cooperative OBF and cooperative TS. The performance of the AF-CACPSO is verified through comparisons with various population-based optimization algorithms for the OBF learning problem. Simulations and experiments verify the effectiveness of the approach for cooperative navigation of two robots.

  4. Navigating oceans and cultures: Polynesian and European navigation systems in the late eighteenth century

    Science.gov (United States)

    Walker, M.

    2012-05-01

    Significant differences in the rotation of the celestial dome between the tropical and temperate zones did not stop the peoples of either the tropical Pacific or temperate Europe from using geocentric astronomy to guide exploration of the oceans. Although the differences in the night sky contributed to differences between the Pacific Island and European systems for navigation at sea, the two navigation systems exhibit substantial similarities. Both systems define positions on the surface of the Earth using two coordinates that vary at right angles to each other and use stars, and to a lesser extent the sun, to determine directions. This essay explores similarities and differences in the use of geocentric astronomy for navigation at sea by the peoples of Polynesia and Europe in the late eighteenth century. Captain Cook's orders to discover the unknown southern continent after observing the transit of Venus combined with differences in language and culture to obscure the deeper similarities between the navigation systems used by Cook and the Polynesians. Although it was a further 200 years before anthropologists studied Pacific navigation, collaborations in voyaging with communities in Oceania demonstrated the effectiveness of Pacific navigation systems, revived interest in traditional voyaging in island communities around the Pacific, and potentially open the way for further collaborations in other areas.

  5. Electrophysiological correlates of mental navigation in blind and sighted people.

    Science.gov (United States)

    Kober, Silvia Erika; Wood, Guilherme; Kampl, Christiane; Neuper, Christa; Ischebeck, Anja

    2014-10-15

    The aim of the present study was to investigate functional reorganization of the occipital cortex for a mental navigation task in blind people. Eight completely blind adults and eight sighted matched controls performed a mental navigation task, in which they mentally imagined to walk along familiar routes of their hometown during a multi-channel EEG measurement. A motor imagery task was used as control condition. Furthermore, electrophysiological activation patterns during a resting measurement with open and closed eyes were compared between blind and sighted participants. During the resting measurement with open eyes, no differences in EEG power were observed between groups, whereas sighted participants showed higher alpha (8-12Hz) activity at occipital sites compared to blind participants during an eyes-closed resting condition. During the mental navigation task, blind participants showed a stronger event-related desynchronization in the alpha band over the visual cortex compared to sighted controls indicating a stronger activation in this brain region in the blind. Furthermore, groups showed differences in functional brain connectivity between fronto-central and parietal-occipital brain networks during mental navigation indicating stronger visuo-spatial processing in sighted than in blind people during mental navigation. Differences in electrophysiological parameters between groups were specific for mental navigation since no group differences were observed during motor imagery. These results indicate that in the absence of vision the visual cortex takes over other functions such as spatial navigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Towards high-speed autonomous navigation of unknown environments

    Science.gov (United States)

    Richter, Charles; Roy, Nicholas

    2015-05-01

    In this paper, we summarize recent research enabling high-speed navigation in unknown environments for dynamic robots that perceive the world through onboard sensors. Many existing solutions to this problem guarantee safety by making the conservative assumption that any unknown portion of the map may contain an obstacle, and therefore constrain planned motions to lie entirely within known free space. In this work, we observe that safety constraints may significantly limit performance and that faster navigation is possible if the planner reasons about collision with unobserved obstacles probabilistically. Our overall approach is to use machine learning to approximate the expected costs of collision using the current state of the map and the planned trajectory. Our contribution is to demonstrate fast but safe planning using a learned function to predict future collision probabilities.

  7. Current use of navigation system in ACL surgery: a historical review.

    Science.gov (United States)

    Zaffagnini, S; Urrizola, F; Signorelli, C; Grassi, A; Di Sarsina, T Roberti; Lucidi, G A; Marcheggiani Muccioli, G M; Bonanzinga, T; Marcacci, M

    2016-11-01

    The present review aims to analyse the available literature regarding the use of navigation systems in ACL reconstructive surgery underling the evolution during the years. A research of indexed scientific papers was performed on PubMed and Cochrane Library database. The research was performed in December 2015 with no publication year restriction. Only English-written papers and related to the terms ACL, NAVIGATION, CAOS and CAS were considered. Two reviewers independently selected only those manuscripts that presented at least the application of navigation system for ACL reconstructive surgery. One hundred and forty-six of 394 articles were finally selected. In this analysis, it was possible to review the main uses of navigation system in ACL surgery including tunnel positioning for primary and revision surgery and kinematic assessment of knee laxity before and after different surgical procedures. In the early years, until 2006, navigation system was mainly used to improve tunnel positioning, but since the last decade, this tool has been principally used for kinematics evaluation. Increased accuracy of tunnel placement was observed using navigation surgery, especially, regarding femoral, 42 of 146 articles used navigation to guide tunnel positioning. During the following years, 82 of 146 articles have used navigation system to evaluate intraoperative knee kinematic. In particular, the importance of controlling rotatory laxity to achieve better surgical outcomes has been underlined. Several applications have been described and despite the contribution of navigation systems, its potential uses and theoretical advantages, there are still controversies about its clinical benefit. The present papers summarize the most relevant studies that have used navigation system in ACL reconstruction. In particular, the analysis identified four main applications of the navigation systems during ACL reconstructive surgery have been identified: (1) technical assistance for tunnel

  8. Interactive navigation and bronchial tube tracking in virtual bronchoscopy.

    Science.gov (United States)

    Heng, P A; Fung, P F; Wong, T T; Siu, Y H; Sun, H

    1999-01-01

    An interactive virtual environment for simulation of bronchoscopy is developed. Medical doctor can safely plan their surgical bronchoscopy using the virtual environment without any invasive diagnosis which may risk the patient's health. The 3D pen input device of the system allows the doctor to navigate and visualize the bronchial tree of the patient naturally and interactively. To navigate the patient's bronchial tree, a vessel tracking process is required. While manual tracking is tedious and labor-intensive, fully automatic tracking may not be reliable. We propose a semi-automatic tracking technique called Intelligent Path Tracker which provides automation and enough user control during the vessel tracking. To support an interactive frame rate, we also introduce a new volume rendering acceleration technique, named as IsoRegion Leaping. The volume rendering is further accelerated by distributed rendering on a TCP/IP-based network of low-cost PCs. With these approaches, a 256 x 256 x 256 volume data of human lung, can be navigated and visualized at a frame rate of over 10 Hz in our virtual bronchoscopy system.

  9. Fully autonomous navigation for the NASA cargo transfer vehicle

    Science.gov (United States)

    Wertz, James R.; Skulsky, E. David

    1991-01-01

    A great deal of attention has been paid to navigation during the close approach (less than or equal to 1 km) phase of spacecraft rendezvous. However, most spacecraft also require a navigation system which provides the necessary accuracy for placing both satellites within the range of the docking sensors. The Microcosm Autonomous Navigation System (MANS) is an on-board system which uses Earth-referenced attitude sensing hardware to provide precision orbit and attitude determination. The system is capable of functioning from LEO to GEO and beyond. Performance depends on the number of available sensors as well as mission geometry; however, extensive simulations have shown that MANS will provide 100 m to 400 m (3(sigma)) position accuracy and 0.03 to 0.07 deg (3(sigma)) attitude accuracy in low Earth orbit. The system is independent of any external source, including GPS. MANS is expected to have a significant impact on ground operations costs, mission definition and design, survivability, and the potential development of very low-cost, fully autonomous spacecraft.

  10. Endoscopic trans-nasal approach for biopsy of orbital tumors using image-guided neuro-navigation system

    International Nuclear Information System (INIS)

    Sieskiewicz, A.; Mariak, Z.; Rogowski, M.; Lyson, T.

    2008-01-01

    Histopathological diagnosis of intraorbital tumors is of crucial value for planning further therapy. The aim of the study was to explore clinical utility of image-guided endoscopy for biopsy of orbital tumors. Trans-nasal endoscopic biopsy of intraorbital mass lesions was performed in 6 patients using a neuro-navigation system (Medtronic Stealth Station Treon plus). The CT and MRI 1 mm slice images were fused by the system in order to visualise both bony and soft tissue structures. The anatomic fiducial registration protocol was used during the procedure. All lesions were precisely localised and the biopsies could be taken from the representative part of the pathological mass. None of the patients developed aggravation of ocular symptoms after the procedure. The operative corridor as well as the size of orbital wall fenestration could be limited to a minimum. The accuracy of neuro-navigation remained high and stable during the entire procedure. The image-guided neuro-navigation system facilitated endoscopic localisation and biopsy of intraorbital tumors and contributed to the reduction of surgical trauma during the procedure. The technique was particularly useful in small, medially located, retrobulbar tumors and in unclear situations when the structure of the lesion resembled surrounding intraorbital tissue. (author)

  11. Visual map and instruction-based bicycle navigation: a comparison of effects on behaviour.

    Science.gov (United States)

    de Waard, Dick; Westerhuis, Frank; Joling, Danielle; Weiland, Stella; Stadtbäumer, Ronja; Kaltofen, Leonie

    2017-09-01

    Cycling with a classic paper map was compared with navigating with a moving map displayed on a smartphone, and with auditory, and visual turn-by-turn route guidance. Spatial skills were found to be related to navigation performance, however only when navigating from a paper or electronic map, not with turn-by-turn (instruction based) navigation. While navigating, 25% of the time cyclists fixated at the devices that present visual information. Navigating from a paper map required most mental effort and both young and older cyclists preferred electronic over paper map navigation. In particular a turn-by-turn dedicated guidance device was favoured. Visual maps are in particular useful for cyclists with higher spatial skills. Turn-by-turn information is used by all cyclists, and it is useful to make these directions available in all devices. Practitioner Summary: Electronic navigation devices are preferred over a paper map. People with lower spatial skills benefit most from turn-by-turn guidance information, presented either auditory or on a dedicated device. People with higher spatial skills perform well with all devices. It is advised to keep in mind that all users benefit from turn-by-turn information when developing a navigation device for cyclists.

  12. 75 FR 50884 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments, Sector...

    Science.gov (United States)

    2010-08-18

    ... 3 and 165 to reflect changes in Coast Guard internal organizational structure. Sector Portland and... 1625-ZA25 Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments, Sector... Waters; Technical, Organizational, and Conforming Amendments, Sector Columbia River.'' 2. On page 48564...

  13. Global navigation satellite systems performance analysis and augmentation strategies in aviation

    Science.gov (United States)

    Sabatini, Roberto; Moore, Terry; Ramasamy, Subramanian

    2017-11-01

    In an era of significant air traffic expansion characterized by a rising congestion of the radiofrequency spectrum and a widespread introduction of Unmanned Aircraft Systems (UAS), Global Navigation Satellite Systems (GNSS) are being exposed to a variety of threats including signal interferences, adverse propagation effects and challenging platform-satellite relative dynamics. Thus, there is a need to characterize GNSS signal degradations and assess the effects of interfering sources on the performance of avionics GNSS receivers and augmentation systems used for an increasing number of mission-essential and safety-critical aviation tasks (e.g., experimental flight testing, flight inspection/certification of ground-based radio navigation aids, wide area navigation and precision approach). GNSS signal deteriorations typically occur due to antenna obscuration caused by natural and man-made obstructions present in the environment (e.g., elevated terrain and tall buildings when flying at low altitude) or by the aircraft itself during manoeuvring (e.g., aircraft wings and empennage masking the on-board GNSS antenna), ionospheric scintillation, Doppler shift, multipath, jamming and spurious satellite transmissions. Anyone of these phenomena can result in partial to total loss of tracking and possible tracking errors, depending on the severity of the effect and the receiver characteristics. After designing GNSS performance threats, the various augmentation strategies adopted in the Communication, Navigation, Surveillance/Air Traffic Management and Avionics (CNS + A) context are addressed in detail. GNSS augmentation can take many forms but all strategies share the same fundamental principle of providing supplementary information whose objective is improving the performance and/or trustworthiness of the system. Hence it is of paramount importance to consider the synergies offered by different augmentation strategies including Space Based Augmentation System (SBAS), Ground

  14. Getting Lost Through Navigation

    DEFF Research Database (Denmark)

    Debus, Michael S.

    2017-01-01

    In this presentation, I argued two things. First, that it is navigation that lies at the core of contemporary (3D-) videogames and that its analysis is of utmost importance. Second, that this analysis needs a more rigorous differentiation between specific acts of navigation. Considering the Oxford...... in videogames is a configurational rather than an interpretational one (Eskelinen 2001). Especially in the case of game spaces, navigation appears to be of importance (Wolf 2009; Flynn 2008). Further, it does not only play a crucial role for the games themselves, but also for the experience of the player...

  15. Collaborative filtering to improve navigation of large radiology knowledge resources.

    Science.gov (United States)

    Kahn, Charles E

    2005-06-01

    Collaborative filtering is a knowledge-discovery technique that can help guide readers to items of potential interest based on the experience of prior users. This study sought to determine the impact of collaborative filtering on navigation of a large, Web-based radiology knowledge resource. Collaborative filtering was applied to a collection of 1,168 radiology hypertext documents available via the Internet. An item-based collaborative filtering algorithm identified each document's six most closely related documents based on 248,304 page views in an 18-day period. Documents were amended to include links to their related documents, and use was analyzed over the next 5 days. The mean number of documents viewed per visit increased from 1.57 to 1.74 (P Collaborative filtering can increase a radiology information resource's utilization and can improve its usefulness and ease of navigation. The technique holds promise for improving navigation of large Internet-based radiology knowledge resources.

  16. An Analysis of Video Navigation Behavior for Web Leisure

    Directory of Open Access Journals (Sweden)

    Ying-Han Chang

    2012-12-01

    Full Text Available People nowadays put much emphasis on leisure activities, and web video has gradually become one of the main sources for popular leisure. This article introduces the related concepts of leisure and navigation behavior as well as some recent research topics. Moreover, using YouTube as an experimental setting, the authors invited some experienced web video users and conducted an empirical study on their navigating the web videos for leisure purpose. The study used questionnaires, navigation logs, diaries, and interviews to collect data. Major results show: the subjects watched a variety of video content on the web either from traditional media or user-generated video; these videos can meet their leisure needs of both the broad and personal interests; during the navigation process, each subject quite focuses on video leisure, and is willingly to explore unknown videos; however, within a limited amount of time for leisure, a balance between leisure and rest becomes an issue of achieving real relaxation, which is worth of further attention. [Article content in Chinese

  17. Multi-rover navigation on the lunar surface

    Science.gov (United States)

    Dabrowski, Borys; Banaszkiewicz, Marek

    2008-07-01

    The paper presents a method of determination an accurate position of a target (rover, immobile sensor, astronaut) on surface of the Moon or other celestial body devoid of navigation infrastructure (like Global Positioning System), by using a group of self-calibrating rovers, which serves as mobile reference points. The rovers are equipped with low-precision clocks synchronized by external broadcasting signal, to measure the moments of receiving radio signals sent by localized target. Based on the registered times, distances between transmitter and receivers installed on beacons are calculated. Each rover determines and corrects its own absolute position and orientation by using odometry navigation and measurements of relative distances and angles to other mobile reference points. Accuracy of navigation has been improved by the use of a calibration algorithm based on the extended Kalman filter, which uses internal encoder readings as inputs and relative measurements of distances and orientations between beacons as feedback information. The key idea in obtaining reliable values of absolute position and orientation of beacons is to first calibrate one of the rovers, using the remaining ones as reference points and then allow the whole group to move together and calibrate all the rovers in-motion. We consider a number of cases, in which basic modeling parameters such as terrain roughness, formation size and shape as well as availability of distance and angle measurements are varied.

  18. Lost after stroke: Theory, assessment, and rehabilitation of navigation impairment

    NARCIS (Netherlands)

    Claessen, M.H.G.

    2017-01-01

    The general objective of this thesis was to better understand the navigation problems that nearly a third of stroke patients are faced with. Insight into these types of problems is currently very limited in this patient group. I adopted four approaches to address this main objective, corresponding

  19. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation.

    Science.gov (United States)

    Nitti, Davide O; Bovenga, Fabio; Chiaradia, Maria T; Greco, Mario; Pinelli, Gianpaolo

    2015-07-28

    This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  20. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation

    Directory of Open Access Journals (Sweden)

    Davide O. Nitti

    2015-07-01

    Full Text Available This study explores the potential of Synthetic Aperture Radar (SAR to aid Unmanned Aerial Vehicle (UAV navigation when Inertial Navigation System (INS measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE UAV class, which permits heavy and wide payloads (as required by SAR and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM. A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  1. Accuracy of the hypothetical sky-polarimetric Viking navigation versus sky conditions: revealing solar elevations and cloudinesses favourable for this navigation method

    Science.gov (United States)

    Száz, Dénes; Farkas, Alexandra; Barta, András; Kretzer, Balázs; Blahó, Miklós; Egri, Ádám; Szabó, Gyula; Horváth, Gábor

    2017-09-01

    skies, the sky-polarimetric navigation is more accurate, but at low solar elevations its accuracy remains relatively large even at high cloudiness. For a given ρ, the absolute value of averaged peak North uncertainties dramatically decreases with increasing θ until the sign (±) change of these uncertainties. For a given θ, this absolute value can either decrease or increase with increasing ρ. The most advantageous sky situations for this navigation method are at summer solstice when the solar elevation and cloudiness are 35° ≤ θ ≤ 40° and 2 oktas ≤ ρ ≤ 3 oktas.

  2. 78 FR 41304 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments; Correction

    Science.gov (United States)

    2013-07-10

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 105 [Docket No. USCG-2013-0397] RIN 1625-AC06 Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments; Correction AGENCY: Coast Guard, DHS. ACTION: Final rule; correction. SUMMARY: The Coast Guard published a final rule...

  3. A New PDR Navigation Device for Challenging Urban Environments

    Directory of Open Access Journals (Sweden)

    Miguel Ortiz

    2017-01-01

    Full Text Available The motivations, the design, and some applications of the new Pedestrian Dead Reckoning (PDR navigation device, ULISS (Ubiquitous Localization with Inertial Sensors and Satellites, are presented in this paper. It is an original device conceived to follow the European recommendation of privacy by design to protect location data which opens new research toward self-contained pedestrian navigation approaches. Its application is presented with an enhanced PDR algorithm to estimate pedestrian’s footpaths in an autonomous manner irrespective of the handheld device carrying mode: texting or swinging. An analysis of real-time coding issues toward a demonstrator is also conducted. Indoor experiments, conducted with 3 persons, give a 5.8% mean positioning error over the 3 km travelled distances.

  4. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments.

    Science.gov (United States)

    Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha

    2015-07-10

    A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies-INS and LiDAR SLAM-into one navigation frame with a loosely coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV) platform-NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment.

  5. Restricted Navigation Areas - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic Navigational charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  6. Navigating the flow: individual and continuum models for homing in flowing environments.

    Science.gov (United States)

    Painter, Kevin J; Hillen, Thomas

    2015-11-06

    Navigation for aquatic and airborne species often takes place in the face of complicated flows, from persistent currents to highly unpredictable storms. Hydrodynamic models are capable of simulating flow dynamics and provide the impetus for much individual-based modelling, in which particle-sized individuals are immersed into a flowing medium. These models yield insights on the impact of currents on population distributions from fish eggs to large organisms, yet their computational demands and intractability reduce their capacity to generate the broader, less parameter-specific, insights allowed by traditional continuous approaches. In this paper, we formulate an individual-based model for navigation within a flowing field and apply scaling to derive its corresponding macroscopic and continuous model. We apply it to various movement classes, from drifters that simply go with the flow to navigators that respond to environmental orienteering cues. The utility of the model is demonstrated via its application to 'homing' problems and, in particular, the navigation of the marine green turtle Chelonia mydas to Ascension Island. © 2015 The Author(s).

  7. Inertial Pocket Navigation System: Unaided 3D Positioning

    Directory of Open Access Journals (Sweden)

    Estefania Munoz Diaz

    2015-04-01

    Full Text Available Inertial navigation systems use dead-reckoning to estimate the pedestrian’s position. There are two types of pedestrian dead-reckoning, the strapdown algorithm and the step-and-heading approach. Unlike the strapdown algorithm, which consists of the double integration of the three orthogonal accelerometer readings, the step-and-heading approach lacks the vertical displacement estimation. We propose the first step-and-heading approach based on unaided inertial data solving 3D positioning. We present a step detector for steps up and down and a novel vertical displacement estimator. Our navigation system uses the sensor introduced in the front pocket of the trousers, a likely location of a smartphone. The proposed algorithms are based on the opening angle of the leg or pitch angle. We analyzed our step detector and compared it with the state-of-the-art, as well as our already proposed step length estimator. Lastly, we assessed our vertical displacement estimator in a real-world scenario. We found that our algorithms outperform the literature step and heading algorithms and solve 3D positioning using unaided inertial data. Additionally, we found that with the pitch angle, five activities are distinguishable: standing, sitting, walking, walking up stairs and walking down stairs. This information complements the pedestrian location and is of interest for applications, such as elderly care.

  8. Inertial Pocket Navigation System: Unaided 3D Positioning

    Science.gov (United States)

    Munoz Diaz, Estefania

    2015-01-01

    Inertial navigation systems use dead-reckoning to estimate the pedestrian's position. There are two types of pedestrian dead-reckoning, the strapdown algorithm and the step-and-heading approach. Unlike the strapdown algorithm, which consists of the double integration of the three orthogonal accelerometer readings, the step-and-heading approach lacks the vertical displacement estimation. We propose the first step-and-heading approach based on unaided inertial data solving 3D positioning. We present a step detector for steps up and down and a novel vertical displacement estimator. Our navigation system uses the sensor introduced in the front pocket of the trousers, a likely location of a smartphone. The proposed algorithms are based on the opening angle of the leg or pitch angle. We analyzed our step detector and compared it with the state-of-the-art, as well as our already proposed step length estimator. Lastly, we assessed our vertical displacement estimator in a real-world scenario. We found that our algorithms outperform the literature step and heading algorithms and solve 3D positioning using unaided inertial data. Additionally, we found that with the pitch angle, five activities are distinguishable: standing, sitting, walking, walking up stairs and walking down stairs. This information complements the pedestrian location and is of interest for applications, such as elderly care. PMID:25897501

  9. NFC Internal: An Indoor Navigation System

    Science.gov (United States)

    Ozdenizci, Busra; Coskun, Vedat; Ok, Kerem

    2015-01-01

    Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC)-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability. PMID:25825976

  10. 75 FR 48564 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments, Sector...

    Science.gov (United States)

    2010-08-11

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Parts 3 and 165 [Docket No. USCG-2010-0351] RIN 1625-ZA25 Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments, Sector Columbia River, WA AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: This rule makes non-substantive...

  11. Navigation towards a goal position: from reactive to generalised learned control

    Energy Technology Data Exchange (ETDEWEB)

    Freire da Silva, Valdinei [Laboratorio de Tecnicas Inteligentes - LTI, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Luciano Gualberto, trav.3, n.158, Cidade Universitaria Sao Paulo (Brazil); Selvatici, Antonio Henrique [Universidade Nove de Julho, Rua Vergueiro, 235, Sao Paulo (Brazil); Reali Costa, Anna Helena, E-mail: valdinei.freire@gmail.com, E-mail: antoniohps@uninove.br, E-mail: anna.reali@poli.usp.br [Laboratorio de Tecnicas Inteligentes - LTI, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Luciano Gualberto, trav.3, n.158, Cidade Universitaria Sao Paulo (Brazil)

    2011-03-01

    The task of navigating to a target position in space is a fairly common task for a mobile robot. It is desirable that this task is performed even in previously unknown environments. One reactive architecture explored before addresses this challenge by denning a hand-coded coordination of primitive behaviours, encoded by the Potential Fields method. Our first approach to improve the performance of this architecture adds a learning step to autonomously find the best way to coordinate primitive behaviours with respect to an arbitrary performance criterion. Because of the limitations presented by the Potential Fields method, especially in relation to non-convex obstacles, we are investigating the use of Relational Reinforcement Learning as a method to not only learn to act in the current environment, but also to generalise prior knowledge to the current environment in order to achieve the goal more quickly in a non-convex structured environment. We show the results of our previous efforts in reaching goal positions along with our current research on generalised approaches.

  12. Navigation towards a goal position: from reactive to generalised learned control

    International Nuclear Information System (INIS)

    Freire da Silva, Valdinei; Selvatici, Antonio Henrique; Reali Costa, Anna Helena

    2011-01-01

    The task of navigating to a target position in space is a fairly common task for a mobile robot. It is desirable that this task is performed even in previously unknown environments. One reactive architecture explored before addresses this challenge by denning a hand-coded coordination of primitive behaviours, encoded by the Potential Fields method. Our first approach to improve the performance of this architecture adds a learning step to autonomously find the best way to coordinate primitive behaviours with respect to an arbitrary performance criterion. Because of the limitations presented by the Potential Fields method, especially in relation to non-convex obstacles, we are investigating the use of Relational Reinforcement Learning as a method to not only learn to act in the current environment, but also to generalise prior knowledge to the current environment in order to achieve the goal more quickly in a non-convex structured environment. We show the results of our previous efforts in reaching goal positions along with our current research on generalised approaches.

  13. Celestial Navigation in the USA, Fiji, and Tunisia

    Science.gov (United States)

    Holbrook, Jarita C.

    2015-05-01

    Today there are many coastal communities that are home to navigators who use stars for position finding at night; I was, however, unaware of this fact when I began researching celestial navigation practices in 1997. My project focused on three communities: the Moce Islanders of Fiji, the Kerkennah Islanders in Tunisia, and the U.S. Navy officers and students at the United States Naval Academy, Annapolis, Maryland. My goal was to answer the question of why people continue to navigate by the stars, but also to understand the role of technology in their navigation practices. Using anthropology techniques of ethnography including participant observation, formal and informal interviews, audio and videotaping, I gathered data over five years at the three communities. I began by learning the details of how they use the stars for navigation. Next, I learned about who did the navigation and where they learned to navigate. I gathered opinions on various navigation aids and instruments, and opinions about the future of using the stars for navigation. I listened to the stories that they told about navigating. In the United States I worked in English, in Fiji, in Fijian and English, and in Tunisia, French and English. For the formal interviews I worked with translators. The navigators use stars for navigating today but the future of their techniques is not certain. Though practiced today, these celestial navigation traditions have undergone and continue to undergo changes. New navigational technologies are part of the stimulation for change, thus 'a meeting of different worlds' is symbolized by peoples encounters with these technologies.

  14. "Geomat.dk": Historical Instruments of Navigation--Used as Educational Tools in Mathematics

    Science.gov (United States)

    Jakobsen, Ivan Tafteberg; Matthiasen, Jesper

    2016-01-01

    This paper gives a short description of the scope and content of an educational project. The approach is to use historical navigational devices, such as sextants and cross staffs, to teach mathematics in secondary schools. By making collections of these devices available to teachers and bringing them into the class room a new approach to combine…

  15. Nautical Navigation Aids (NAVAID) Locations

    Data.gov (United States)

    Department of Homeland Security — Structures intended to assist a navigator to determine position or safe course, or to warn of dangers or obstructions to navigation. This dataset includes lights,...

  16. Navigation studies based on the ubiquitous positioning technologies

    Science.gov (United States)

    Ye, Lei; Mi, Weijie; Wang, Defeng

    2007-11-01

    This paper summarized the nowadays positioning technologies, such as absolute positioning methods and relative positioning methods, indoor positioning and outdoor positioning, active positioning and passive positioning. Global Navigation Satellite System (GNSS) technologies were introduced as the omnipresent out-door positioning technologies, including GPS, GLONASS, Galileo and BD-1/2. After analysis of the shortcomings of GNSS, indoor positioning technologies were discussed and compared, including A-GPS, Cellular network, Infrared, Electromagnetism, Computer Vision Cognition, Embedded Pressure Sensor, Ultrasonic, RFID (Radio Frequency IDentification), Bluetooth, WLAN etc.. Then the concept and characteristics of Ubiquitous Positioning was proposed. After the ubiquitous positioning technologies contrast and selection followed by system engineering methodology, a navigation system model based on Incorporate Indoor-Outdoor Positioning Solution was proposed. And this model was simulated in the Galileo Demonstration for World Expo Shanghai project. In the conclusion, the prospects of ubiquitous positioning based navigation were shown, especially to satisfy the public location information acquiring requirement.

  17. Navigation Signal Disturbances by Multipath Propagation - Scaled Measurements with a Universal Channel Sounder Architecture

    Science.gov (United States)

    Geise, Robert; Neubauer, Bjoern; Zimmer, Georg

    2015-11-01

    The performance of navigation systems is always reduced by unwanted multipath propagation. This is especially of practical importance for airborne navigation systems like the instrument landing system (ILS) or the VHF omni directional radio range (VOR). Nevertheless, the quantitative analysis of corresponding, potentially harmful multipath propagation disturbances is very difficult due to the large parameter space. Experimentally difficulties arise due to very expensive, real scale measurement campaigns and numerical simulation techniques still have shortcomings which are briefly discussed. In this contribution a new universal approach is introduced on how to measure very flexibly multipath propagation effects for arbitrary navigation systems using a channel sounder architecture in a scaled measurement environment. Two relevant scenarios of multipath propagation and the impact on navigation signals are presented. The first describes disturbances of the ILS due to large taxiing aircraft. The other example shows the influence of rotating wind turbines on the VOR.

  18. Design of all-weather celestial navigation system

    Science.gov (United States)

    Sun, Hongchi; Mu, Rongjun; Du, Huajun; Wu, Peng

    2018-03-01

    In order to realize autonomous navigation in the atmosphere, an all-weather celestial navigation system is designed. The research of celestial navigation system include discrimination method of comentropy and the adaptive navigation algorithm based on the P value. The discrimination method of comentropy is studied to realize the independent switching of two celestial navigation modes, starlight and radio. Finally, an adaptive filtering algorithm based on P value is proposed, which can greatly improve the disturbance rejection capability of the system. The experimental results show that the accuracy of the three axis attitude is better than 10″, and it can work all weather. In perturbation environment, the position accuracy of the integrated navigation system can be increased 20% comparing with the traditional method. It basically meets the requirements of the all-weather celestial navigation system, and it has the ability of stability, reliability, high accuracy and strong anti-interference.

  19. 4D Dynamic Required Navigation Performance Final Report

    Science.gov (United States)

    Finkelsztein, Daniel M.; Sturdy, James L.; Alaverdi, Omeed; Hochwarth, Joachim K.

    2011-01-01

    New advanced four dimensional trajectory (4DT) procedures under consideration for the Next Generation Air Transportation System (NextGen) require an aircraft to precisely navigate relative to a moving reference such as another aircraft. Examples are Self-Separation for enroute operations and Interval Management for in-trail and merging operations. The current construct of Required Navigation Performance (RNP), defined for fixed-reference-frame navigation, is not sufficiently specified to be applicable to defining performance levels of such air-to-air procedures. An extension of RNP to air-to-air navigation would enable these advanced procedures to be implemented with a specified level of performance. The objective of this research effort was to propose new 4D Dynamic RNP constructs that account for the dynamic spatial and temporal nature of Interval Management and Self-Separation, develop mathematical models of the Dynamic RNP constructs, "Required Self-Separation Performance" and "Required Interval Management Performance," and to analyze the performance characteristics of these air-to-air procedures using the newly developed models. This final report summarizes the activities led by Raytheon, in collaboration with GE Aviation and SAIC, and presents the results from this research effort to expand the RNP concept to a dynamic 4D frame of reference.

  20. True navigation and magnetic maps in spiny lobsters.

    Science.gov (United States)

    Boles, Larry C; Lohmann, Kenneth J

    2003-01-02

    Animals are capable of true navigation if, after displacement to a location where they have never been, they can determine their position relative to a goal without relying on familiar surroundings, cues that emanate from the destination, or information collected during the outward journey. So far, only a few animals, all vertebrates, have been shown to possess true navigation. Those few invertebrates that have been carefully studied return to target areas using path integration, landmark recognition, compass orientation and other mechanisms that cannot compensate for displacements into unfamiliar territory. Here we report, however, that the spiny lobster Panulirus argus oriented reliably towards a capture site when displaced 12-37 km to unfamiliar locations, even when deprived of all known orientation cues en route. Little is known about how lobsters and other animals determine position during true navigation. To test the hypothesis that lobsters derive positional information from the Earth's magnetic field, lobsters were exposed to fields replicating those that exist at specific locations in their environment. Lobsters tested in a field north of the capture site oriented themselves southwards, whereas those tested in a field south of the capture site oriented themselves northwards. These results imply that true navigation in spiny lobsters, and perhaps in other animals, is based on a magnetic map sense.

  1. In-motion initial alignment and positioning with INS/CNS/ODO integrated navigation system for lunar rovers

    Science.gov (United States)

    Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang; Liu, Ming

    2017-06-01

    Many countries have been paying great attention to space exploration, especially about the Moon and the Mars. Autonomous and high-accuracy navigation systems are needed for probers and rovers to accomplish missions. Inertial navigation system (INS)/celestial navigation system (CNS) based navigation system has been used widely on the lunar rovers. Initialization is a particularly important step for navigation. This paper presents an in-motion alignment and positioning method for lunar rovers by INS/CNS/odometer integrated navigation. The method can estimate not only the position and attitude errors, but also the biases of the accelerometers and gyros using the standard Kalman filter. The differences between the platform star azimuth, elevation angles and the computed star azimuth, elevation angles, and the difference between the velocity measured by odometer and the velocity measured by inertial sensors are taken as measurements. The semi-physical experiments are implemented to demonstrate that the position error can reduce to 10 m and attitude error is within 2″ during 5 min. The experiment results prove that it is an effective and attractive initialization approach for lunar rovers.

  2. Adaptive Human aware Navigation based on Motion Pattern Analysis

    DEFF Research Database (Denmark)

    Tranberg, Søren; Svenstrup, Mikael; Andersen, Hans Jørgen

    2009-01-01

    Respecting people’s social spaces is an important prerequisite for acceptable and natural robot navigation in human environments. In this paper, we describe an adaptive system for mobile robot navigation based on estimates of whether a person seeks to interact with the robot or not. The estimates...... are based on run-time motion pattern analysis compared to stored experience in a database. Using a potential field centered around the person, the robot positions itself at the most appropriate place relative to the person and the interaction status. The system is validated through qualitative tests...

  3. 32 CFR 644.3 - Navigation Projects.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Navigation Projects. 644.3 Section 644.3 National... HANDBOOK Project Planning Civil Works § 644.3 Navigation Projects. (a) Land to be acquired in fee. All... construction and borrow areas. (3) In navigation-only projects, the right to permanently flood should be...

  4. Evolving earth-based and in-situ satellite network architectures for Mars communications and navigation support

    Science.gov (United States)

    Hastrup, Rolf; Weinberg, Aaron; McOmber, Robert

    1991-09-01

    Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.

  5. 14 CFR 121.349 - Communication and navigation equipment for operations under VFR over routes not navigated by...

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Communication and navigation equipment for... § 121.349 Communication and navigation equipment for operations under VFR over routes not navigated by... receiver providing visual and aural signals; and (iii) One ILS receiver; and (3) Any RNAV system used to...

  6. Quantum imaging for underwater arctic navigation

    Science.gov (United States)

    Lanzagorta, Marco

    2017-05-01

    The precise navigation of underwater vehicles is a difficult task due to the challenges imposed by the variable oceanic environment. It is particularly difficult if the underwater vehicle is trying to navigate under the Arctic ice shelf. Indeed, in this scenario traditional navigation devices such as GPS, compasses and gyrocompasses are unavailable or unreliable. In addition, the shape and thickness of the ice shelf is variable throughout the year. Current Arctic underwater navigation systems include sonar arrays to detect the proximity to the ice. However, these systems are undesirable in a wartime environment, as the sound gives away the position of the underwater vehicle. In this paper we briefly describe the theoretical design of a quantum imaging system that could allow the safe and stealthy navigation of underwater Arctic vehicles.

  7. When gestures show us the way: Co-speech gestures selectively facilitate navigation and spatial memory.

    OpenAIRE

    Galati, Alexia; Weisberg, Steven M.; Newcombe, Nora S.; Avraamides, Marios N.

    2017-01-01

    How does gesturing during route learning relate to subsequent spatial performance? We examined the relationship between gestures produced spontaneously while studying route directions and spatial representations of the navigated environment. Participants studied route directions, then navigated those routes from memory in a virtual environment, and finally had their memory of the environment assessed. We found that, for navigators with low spatial perspective-taking pe...

  8. Autonomous Robot Navigation based on Visual Landmarks

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2005-01-01

    The use of landmarks for robot navigation is a popular alternative to having a geometrical model of the environment through which to navigate and monitor self-localization. If the landmarks are defined as special visual structures already in the environment then we have the possibility of fully a...... automatically learn and store visual landmarks, and later recognize these landmarks from arbitrary positions and thus estimate robot position and heading.......The use of landmarks for robot navigation is a popular alternative to having a geometrical model of the environment through which to navigate and monitor self-localization. If the landmarks are defined as special visual structures already in the environment then we have the possibility of fully...... autonomous navigation and self-localization using automatically selected landmarks. The thesis investigates autonomous robot navigation and proposes a new method which benefits from the potential of the visual sensor to provide accuracy and reliability to the navigation process while relying on naturally...

  9. Behaviour based Mobile Robot Navigation Technique using AI System: Experimental Investigation on Active Media Pioneer Robot

    Directory of Open Access Journals (Sweden)

    S. Parasuraman, V.Ganapathy

    2012-10-01

    Full Text Available A key issue in the research of an autonomous robot is the design and development of the navigation technique that enables the robot to navigate in a real world environment. In this research, the issues investigated and methodologies established include (a Designing of the individual behavior and behavior rule selection using Alpha level fuzzy logic system  (b Designing of the controller, which maps the sensors input to the motor output through model based Fuzzy Logic Inference System and (c Formulation of the decision-making process by using Alpha-level fuzzy logic system. The proposed method is applied to Active Media Pioneer Robot and the results are discussed and compared with most accepted methods. This approach provides a formal methodology for representing and implementing the human expert heuristic knowledge and perception-based action in mobile robot navigation. In this approach, the operational strategies of the human expert driver are transferred via fuzzy logic to the robot navigation in the form of a set of simple conditional statements composed of linguistic variables.Keywards: Mobile robot, behavior based control, fuzzy logic, alpha level fuzzy logic, obstacle avoidance behavior and goal seek behavior

  10. NFC Internal: An Indoor Navigation System

    Directory of Open Access Journals (Sweden)

    Busra Ozdenizci

    2015-03-01

    Full Text Available Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability.

  11. Ground Stereo Vision-Based Navigation for Autonomous Take-off and Landing of UAVs: A Chan-Vese Model Approach

    Directory of Open Access Journals (Sweden)

    Dengqing Tang

    2016-04-01

    Full Text Available This article aims at flying target detection and localization of a fixed-wing unmanned aerial vehicle (UAV autonomous take-off and landing within Global Navigation Satellite System (GNSS-denied environments. A Chan-Vese model–based approach is proposed and developed for ground stereo vision detection. Extended Kalman Filter (EKF is fused into state estimation to reduce the localization inaccuracy caused by measurement errors of object detection and Pan-Tilt unit (PTU attitudes. Furthermore, the region-of-interest (ROI setting up is conducted to improve the real-time capability. The present work contributes to real-time, accurate and robust features, compared with our previous works. Both offline and online experimental results validate the effectiveness and better performances of the proposed method against the traditional triangulation-based localization algorithm.

  12. Golf cart prototype development and navigation simulation using ROS and Gazebo

    Directory of Open Access Journals (Sweden)

    Shimchik Ilya

    2016-01-01

    Full Text Available This paper presents our approach to development of an autonomous golf cart, which will navigate in inaccessible by regular vehicles private areas. For this purpose, we have built a virtual golf course terrain and golf cart model in Gazebo, selected and modernized ROS-based packages in order to use them with Ackermann steering vehicle simulation. To verify our simulation and algorithms, we navigated the golf cart model from one golf hole to another within a virtual 3D golf course. For the real world algorithms’ verification, we developed a small-size vehicle prototype based on Traxxas radio-controlled car model, which is equipped with an on-board controller and sensors. The autonomous navigation of Traxxas-based vehicle prototype has been tested in indoor environment, where it utilized sensory data about environment and vehicle states, and performed localization, optimal trajectory computation and dynamic obstacles’ recognition with adjusting the route in real time.

  13. Inland Electronic Navigational Charts (IENC)

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — These Inland Electronic Navigational Charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  14. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.

    Science.gov (United States)

    Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing

    2016-07-26

    This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches.

  15. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems

    Directory of Open Access Journals (Sweden)

    Chien-Hao Tseng

    2016-07-01

    Full Text Available This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF and fuzzy logic adaptive system (FLAS for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF, unscented Kalman filter (UKF, and CKF approaches.

  16. Low Cost Integrated Navigation System for Unmanned Vessel

    Directory of Open Access Journals (Sweden)

    Yang Changsong

    2017-11-01

    Full Text Available Large errors of low-cost MEMS inertial measurement unit (MIMU lead to huge navigation errors, even wrong navigation information. An integrated navigation system for unmanned vessel is proposed. It consists of a low-cost MIMU and Doppler velocity sonar (DVS. This paper presents an integrated navigation method, to improve the performance of navigation system. The integrated navigation system is tested using simulation and semi-physical simulation experiments, whose results show that attitude, velocity and position accuracy has improved awfully, giving exactly accurate navigation results. By means of the combination of low-cost MIMU and DVS, the proposed system is able to overcome fast drift problems of the low cost IMU.

  17. Telecommunications and navigation systems design for manned Mars exploration missions

    Science.gov (United States)

    Hall, Justin R.; Hastrup, Rolf C.

    1989-06-01

    This paper discusses typical manned Mars exploration needs for telecommunications, including preliminary navigation support functions. It is a brief progress report on an ongoing study program within the current NASA JPL Deep Space Network (DSN) activities. A typical Mars exploration case is defined, and support approaches comparing microwave and optical frequency performance for both local in situ and Mars-earth links are described. Optical telecommunication and navigation technology development opportunities in a Mars exploration program are also identified. A local Mars system telecommunication relay and navigation capability for service support of all Mars missions has been proposed as part of an overall solar system communications network. The effects of light-time delay and occultations on real-time mission decision-making are discussed; the availability of increased local mass data storage may be more important than increasing peak data rates to earth. The long-term frequency use plan will most likely include a mix of microwave, millimeter-wave and optical link capabilities to meet a variety of deep space mission needs.

  18. Navigating the field of temporally framed care in the Danish home care sector

    DEFF Research Database (Denmark)

    Tufte, Pernille Juul; Dahl, Hanne Marlene

    2016-01-01

    this framing: how care workers approach the services specified in their rotas, and navigate between needs, demands and opportunities in the daily performance of their duties. Applying feminist theory on time and anthropological theory on social navigation, it examines the practice of home care work in two......The organisational and temporal framing of elderly care in Europe has changed in the wake of new public management reforms and standardised care services, strict time measurements and work schedules have become central aspects of care work. The article investigates the crafting of care within...... workers respond to these dilemmas in practice, the article identifies various navigation tactics, including ‘leaving time outside’, individualised routinisation, working on different paths simultaneously and postponing tasks. These insights provide an additional perspective on the feminist literature...

  19. Communicating in complex situations: a normative approach to HIV-related talk among parents who are HIV+.

    Science.gov (United States)

    Edwards, Laura L; Donovan-Kicken, Erin; Reis, Janet S

    2014-01-01

    Parents with HIV/AIDS are confronted with unique challenges when discussing HIV-related information with their children. Strategies for navigating these challenges effectively have not been systematically examined. In this study, we conducted in-depth interviews with 76 parents with HIV/AIDS who had children ages 10-18 years. Guided by O'Keefe and Delia's definition of a complex communication situation and Goldsmith's normative approach to interpersonal communication, we examined parents' goals for discussing HIV-related information, factors that made conversations challenging, and instances where these conversational purposes conflicted with one another. Our data reveal the following parent-adolescent communication predicaments: relaying safety information about HIV while minimizing child anxiety, modeling open family communication without damaging one's parental identity, and balancing parent-child relational needs amid living with an unpredictable health condition. Parents also described a variety of strategies for mitigating challenges when discussing HIV-related topics. Strategies parents perceived as effective included reframing HIV as a chronic, manageable illness; keeping talk educational; and embedding HIV-related topics within more general conversations. The theoretical and practical applications of these findings are discussed with regard to their relevance to health communication scholars and HIV care professionals.

  20. Development of field navigation system; Field navigation system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ibara, S; Minode, M; Nishioka, K [Daihatsu Motor Co. Ltd., Osaka (Japan)

    1995-04-20

    This paper describes the following matters on a field navigation system developed for the purpose of covering a field of several kilometer square. This system consists of a center system and a vehicle system, and the center system comprises a map information computer and a communication data controlling computer; since the accuracy for a vehicle position detected by a GPS is not sufficient, an attempt of increasing the accuracy of vehicle position detection is made by means of a hybrid system; the hybrid system uses a satellite navigation method of differential system in which the error components in the GPS are transmitted from the center, and also uses a self-contained navigation method which performs an auxiliary function when the accuracy in the GPS has dropped; corrected GPS values, emergency messages to all of the vehicles and data of each vehicle position are communicated by wireless transmission in two ways between the center and vehicles; and accommodation of the map data adopted a system that can respond quickly to any change in roads and facilities. 3 refs., 13 figs., 1 tab.

  1. Compact autonomous navigation system (CANS)

    Science.gov (United States)

    Hao, Y. C.; Ying, L.; Xiong, K.; Cheng, H. Y.; Qiao, G. D.

    2017-11-01

    Autonomous navigation of Satellite and constellation has series of benefits, such as to reduce operation cost and ground station workload, to avoid the event of crises of war and natural disaster, to increase spacecraft autonomy, and so on. Autonomous navigation satellite is independent of ground station support. Many systems are developed for autonomous navigation of satellite in the past 20 years. Along them American MANS (Microcosm Autonomous Navigation System) [1] of Microcosm Inc. and ERADS [2] [3] (Earth Reference Attitude Determination System) of Honeywell Inc. are well known. The systems anticipate a series of good features of autonomous navigation and aim low cost, integrated structure, low power consumption and compact layout. The ERADS is an integrated small 3-axis attitude sensor system with low cost and small volume. It has the Earth center measurement accuracy higher than the common IR sensor because the detected ultraviolet radiation zone of the atmosphere has a brightness gradient larger than that of the IR zone. But the ERADS is still a complex system because it has to eliminate many problems such as making of the sapphire sphere lens, birefringence effect of sapphire, high precision image transfer optical fiber flattener, ultraviolet intensifier noise, and so on. The marginal sphere FOV of the sphere lens of the ERADS is used to star imaging that may be bring some disadvantages., i.e. , the image energy and attitude measurements accuracy may be reduced due to the tilt image acceptance end of the fiber flattener in the FOV. Besides Japan, Germany and Russia developed visible earth sensor for GEO [4] [5]. Do we have a way to develop a cheaper/easier and more accurate autonomous navigation system that can be used to all LEO spacecraft, especially, to LEO small and micro satellites? To return this problem we provide a new type of the system—CANS (Compact Autonomous Navigation System) [6].

  2. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments

    Directory of Open Access Journals (Sweden)

    Jian Tang

    2015-07-01

    Full Text Available A new scan that matches an aided Inertial Navigation System (INS with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR and Simultaneous Localization and Mapping (SLAM technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies—INS and LiDAR SLAM—into one navigation frame with a loosely coupled Extended Kalman Filter (EKF to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV platform—NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment.

  3. HyMoTrack: A Mobile AR Navigation System for Complex Indoor Environments.

    Science.gov (United States)

    Gerstweiler, Georg; Vonach, Emanuel; Kaufmann, Hannes

    2015-12-24

    Navigating in unknown big indoor environments with static 2D maps is a challenge, especially when time is a critical factor. In order to provide a mobile assistant, capable of supporting people while navigating in indoor locations, an accurate and reliable localization system is required in almost every corner of the building. We present a solution to this problem through a hybrid tracking system specifically designed for complex indoor spaces, which runs on mobile devices like smartphones or tablets. The developed algorithm only uses the available sensors built into standard mobile devices, especially the inertial sensors and the RGB camera. The combination of multiple optical tracking technologies, such as 2D natural features and features of more complex three-dimensional structures guarantees the robustness of the system. All processing is done locally and no network connection is needed. State-of-the-art indoor tracking approaches use mainly radio-frequency signals like Wi-Fi or Bluetooth for localizing a user. In contrast to these approaches, the main advantage of the developed system is the capability of delivering a continuous 3D position and orientation of the mobile device with centimeter accuracy. This makes it usable for localization and 3D augmentation purposes, e.g. navigation tasks or location-based information visualization.

  4. HyMoTrack: A Mobile AR Navigation System for Complex Indoor Environments

    Directory of Open Access Journals (Sweden)

    Georg Gerstweiler

    2015-12-01

    Full Text Available Navigating in unknown big indoor environments with static 2D maps is a challenge, especially when time is a critical factor. In order to provide a mobile assistant, capable of supporting people while navigating in indoor locations, an accurate and reliable localization system is required in almost every corner of the building. We present a solution to this problem through a hybrid tracking system specifically designed for complex indoor spaces, which runs on mobile devices like smartphones or tablets. The developed algorithm only uses the available sensors built into standard mobile devices, especially the inertial sensors and the RGB camera. The combination of multiple optical tracking technologies, such as 2D natural features and features of more complex three-dimensional structures guarantees the robustness of the system. All processing is done locally and no network connection is needed. State-of-the-art indoor tracking approaches use mainly radio-frequency signals like Wi-Fi or Bluetooth for localizing a user. In contrast to these approaches, the main advantage of the developed system is the capability of delivering a continuous 3D position and orientation of the mobile device with centimeter accuracy. This makes it usable for localization and 3D augmentation purposes, e.g. navigation tasks or location-based information visualization.

  5. Risk management model of winter navigation operations

    International Nuclear Information System (INIS)

    Valdez Banda, Osiris A.; Goerlandt, Floris; Kuzmin, Vladimir; Kujala, Pentti; Montewka, Jakub

    2016-01-01

    The wintertime maritime traffic operations in the Gulf of Finland are managed through the Finnish–Swedish Winter Navigation System. This establishes the requirements and limitations for the vessels navigating when ice covers this area. During winter navigation in the Gulf of Finland, the largest risk stems from accidental ship collisions which may also trigger oil spills. In this article, a model for managing the risk of winter navigation operations is presented. The model analyses the probability of oil spills derived from collisions involving oil tanker vessels and other vessel types. The model structure is based on the steps provided in the Formal Safety Assessment (FSA) by the International Maritime Organization (IMO) and adapted into a Bayesian Network model. The results indicate that ship independent navigation and convoys are the operations with higher probability of oil spills. Minor spills are most probable, while major oil spills found very unlikely but possible. - Highlights: •A model to assess and manage the risk of winter navigation operations is proposed. •The risks of oil spills in winter navigation in the Gulf of Finland are analysed. •The model assesses and prioritizes actions to control the risk of the operations. •The model suggests navigational training as the most efficient risk control option.

  6. Transit navigation through Northern Sea Route from satellite data and CMIP5 simulations

    Science.gov (United States)

    Khon, Vyacheslav C.; Mokhov, Igor I.; Semenov, Vladimir A.

    2017-02-01

    Rapid Arctic sea ice decline over the last few decades opens new perspectives for Arctic marine navigation. Further warming in the Arctic will promote the Northern Sea Route (NSR) as an alternative to the conventional Suez or Panama Canal routes for intercontinental shipping. Here we use both satellite data and CMIP5 ensemble of climate models to estimate the NSR transit window allowing intercontinental navigation between Atlantic and Pacific regions. To this end, we introduce a novel approach to calculate start and end dates of the navigation season along the NSR. We show that modern climate models are able to reproduce the mean time of the NSR transit window and its trend over the last few decades. The selected models demonstrate that the rate of increase of the NSR navigation season will slow down over the next few decades with the RCP4.5 scenario. By the end of the 21st century ensemble-mean estimates show an increase of the NSR transit window by about 4 and 6.5 months according to RCP4.5 and 8.5, respectively. Estimated trends for the end date of the navigation season are found to be stronger compared to those for the start date.

  7. EU external relations law : text, cases and materials

    NARCIS (Netherlands)

    Van Vooren, Bart; Wessel, Ramses A.

    2014-01-01

    This major new textbook for students in European law uses a text, cases and materials approach to explore the law, politics, policy and practice of EU external relations, and navigates the complex questions at the interface of these areas. The subject is explored by explaining major constitutional

  8. Soft tissue navigation for laparoscopic prostatectomy: evaluation of camera pose estimation for enhanced visualization

    Science.gov (United States)

    Baumhauer, M.; Simpfendörfer, T.; Schwarz, R.; Seitel, M.; Müller-Stich, B. P.; Gutt, C. N.; Rassweiler, J.; Meinzer, H.-P.; Wolf, I.

    2007-03-01

    We introduce a novel navigation system to support minimally invasive prostate surgery. The system utilizes transrectal ultrasonography (TRUS) and needle-shaped navigation aids to visualize hidden structures via Augmented Reality. During the intervention, the navigation aids are segmented once from a 3D TRUS dataset and subsequently tracked by the endoscope camera. Camera Pose Estimation methods directly determine position and orientation of the camera in relation to the navigation aids. Accordingly, our system does not require any external tracking device for registration of endoscope camera and ultrasonography probe. In addition to a preoperative planning step in which the navigation targets are defined, the procedure consists of two main steps which are carried out during the intervention: First, the preoperatively prepared planning data is registered with an intraoperatively acquired 3D TRUS dataset and the segmented navigation aids. Second, the navigation aids are continuously tracked by the endoscope camera. The camera's pose can thereby be derived and relevant medical structures can be superimposed on the video image. This paper focuses on the latter step. We have implemented several promising real-time algorithms and incorporated them into the Open Source Toolkit MITK (www.mitk.org). Furthermore, we have evaluated them for minimally invasive surgery (MIS) navigation scenarios. For this purpose, a virtual evaluation environment has been developed, which allows for the simulation of navigation targets and navigation aids, including their measurement errors. Besides evaluating the accuracy of the computed pose, we have analyzed the impact of an inaccurate pose and the resulting displacement of navigation targets in Augmented Reality.

  9. Adaptive Landmark-Based Navigation System Using Learning Techniques

    DEFF Research Database (Denmark)

    Zeidan, Bassel; Dasgupta, Sakyasingha; Wörgötter, Florentin

    2014-01-01

    The goal-directed navigational ability of animals is an essential prerequisite for them to survive. They can learn to navigate to a distal goal in a complex environment. During this long-distance navigation, they exploit environmental features, like landmarks, to guide them towards their goal. In...... hexapod robots. As a result, it allows the robots to successfully learn to navigate to distal goals in complex environments.......The goal-directed navigational ability of animals is an essential prerequisite for them to survive. They can learn to navigate to a distal goal in a complex environment. During this long-distance navigation, they exploit environmental features, like landmarks, to guide them towards their goal....... Inspired by this, we develop an adaptive landmark-based navigation system based on sequential reinforcement learning. In addition, correlation-based learning is also integrated into the system to improve learning performance. The proposed system has been applied to simulated simple wheeled and more complex...

  10. A navigational evaluation model for content management systems

    International Nuclear Information System (INIS)

    Gilani, S.; Majeed, A.

    2016-01-01

    Web applications are widely used world-wide, however it is important that the navigation of these websites is effective, to enhance usability. Navigation is not limited to links between pages, it is also how we complete a task. Navigational structure presented as hypertext is one of the most important component of the Web application besides content and presentation. The main objective of this paper is to explore the navigational structure of various open source Content Management Systems from the developer's perspective. For this purpose three CMS are chosen which are WordPress, Joomla, and Drupal. Objective of the research is to identify the important navigational aspects present in these CMSs. Moreover, a comparative study of these CMSs in terms of navigational support is required. For this purpose an industrial survey is conducted based on our proposed navigational evaluation model. The results shows that there exist correlation between the identified factors and these CMSs provide helpful and effective navigational support to their users. (author)

  11. 76 FR 33773 - Navigation Safety Advisory Council; Vacancies

    Science.gov (United States)

    2011-06-09

    ... Council; Vacancies AGENCY: Coast Guard, DHS. ACTION: Request for applications. SUMMARY: The Coast Guard seeks applications for membership on the Navigation Safety Advisory Council (NAVSAC). NAVSAC provides... the U.S. Coast Guard, on matters relating to prevention of maritime collisions, rammings, and...

  12. A relative navigation sensor for CubeSats based on LED fiducial markers

    Science.gov (United States)

    Sansone, Francesco; Branz, Francesco; Francesconi, Alessandro

    2018-05-01

    Small satellite platforms are becoming very appealing both for scientific and commercial applications, thanks to their low cost, short development times and availability of standard components and subsystems. The main disadvantage with such vehicles is the limitation of available resources to perform mission tasks. To overcome this drawback, mission concepts are under study that foresee cooperation between autonomous small satellites to accomplish complex tasks; among these, on-orbit servicing and on-orbit assembly of large structures are of particular interest and the global scientific community is putting a significant effort in the miniaturization of critical technologies that are required for such innovative mission scenarios. In this work, the development and the laboratory testing of an accurate relative navigation package for nanosatellites compliant to the CubeSat standard is presented. The system features a small camera and two sets of LED fiducial markers, and is conceived as a standard package that allows small spacecraft to perform mutual tracking during rendezvous and docking maneuvers. The hardware is based on off-the-shelf components assembled in a compact configuration that is compatible with the CubeSat standard. The image processing and pose estimation software was custom developed. The experimental evaluation of the system allowed to determine both the static and dynamic performances. The system is capable to determine the close range relative position and attitude faster than 10 S/s, with errors always below 10 mm and 2 deg.

  13. IAE-adaptive Kalman filter for INS/GPS integrated navigation system

    Institute of Scientific and Technical Information of China (English)

    Bian Hongwei; Jin Zhihua; Tian Weifeng

    2006-01-01

    A marine INS/GPS adaptive navigation system is presented in this paper. GPS with two antenna providing vessel's altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The standard Kalman filter (SKF) assumes that the statistics of the noise on each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce fuzzy logic control method into innovation-based adaptive estimation adaptive Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However how to design the fuzzy logic controller is a very complicated problem still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAE-AKF algorithm theoretically in detail, the approach is tested by the simulation based on the system error model of the developed INS/GPS integrated marine navigation system. Simulation results show that the adaptive Kalman filter outperforms the SKF with higher accuracy, robustness and less computation. It is demonstrated that this proposed approach is a valid solution for the unknown changing measurement noise exited in the Kalman filter.

  14. 33 CFR 401.51 - Signaling approach to a bridge.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Signaling approach to a bridge... approach to a bridge. (a) Unless a vessel's approach has been recognized by a flashing signal, the master shall signal the vessel's presence to the bridge operator by VHF radio when it comes abreast of any of...

  15. Dissociable cerebellar activity during spatial navigation and visual memory in bilateral vestibular failure.

    Science.gov (United States)

    Jandl, N M; Sprenger, A; Wojak, J F; Göttlich, M; Münte, T F; Krämer, U M; Helmchen, C

    2015-10-01

    Spatial orientation and navigation depends on information from the vestibular system. Previous work suggested impaired spatial navigation in patients with bilateral vestibular failure (BVF). The aim of this study was to investigate event-related brain activity by functional magnetic resonance imaging (fMRI) during spatial navigation and visual memory tasks in BVF patients. Twenty-three BVF patients and healthy age- and gender matched control subjects performed learning sessions of spatial navigation by watching short films taking them through various streets from a driver's perspective along a route to the Cathedral of Cologne using virtual reality videos (adopted and modified from Google Earth). In the scanner, participants were asked to respond to questions testing for visual memory or spatial navigation while they viewed short video clips. From a similar but not identical perspective depicted video frames of routes were displayed which they had previously seen or which were completely novel to them. Compared with controls, posterior cerebellar activity in BVF patients was higher during spatial navigation than during visual memory tasks, in the absence of performance differences. This cerebellar activity correlated with disease duration. Cerebellar activity during spatial navigation in BVF patients may reflect increased non-vestibular efforts to counteract the development of spatial navigation deficits in BVF. Conceivably, cerebellar activity indicates a change in navigational strategy of BVF patients, i.e. from a more allocentric, landmark or place-based strategy (hippocampus) to a more sequence-based strategy. This interpretation would be in accord with recent evidence for a cerebellar role in sequence-based navigation. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Interactive navigation-guided ophthalmic plastic surgery: navigation enabling of telescopes and their use in endoscopic lacrimal surgeries

    Directory of Open Access Journals (Sweden)

    Ali MJ

    2016-11-01

    Full Text Available Mohammad Javed Ali,1 Swati Singh,1 Milind N Naik,1 Swathi Kaliki,2 Tarjani Vivek Dave1 1The Institute of Dacryology, 2The Operation Eyesight Universal Institute for Eye Cancer, L.V. Prasad Eye Institute, Hyderabad, India Purpose: The aims of this study were to report the preliminary experience of using telescopes, which were enabled for navigation guidance, and their utility in complex endoscopic lacrimal surgeries. Methods: Navigation enabling of the telescope was achieved by using the AxiEM™ malleable neuronavigation shunt stylet. Image-guided dacryolocalization was performed in five patients using the intraoperative image-guided StealthStation™ system in the electromagnetic mode. The “look ahead” protocol software was used to assist the surgeon in assessing the intraoperative geometric location of the endoscope and what lies ahead in real time. All patients underwent navigation-guided powered endoscopic dacryocystorhinostomy. The utility of uninterrupted navigation guidance throughout the surgery with the endoscope as the navigating tool was noted. Results: Intraoperative geometric localization of the lacrimal sac and the nasolacrimal duct could be easily deciphered. Constant orientation of the lacrimal drainage system and the peri-lacrimal anatomy was possible without the need for repeated point localizations throughout the surgery. The “look ahead” features could accurately alert the surgeon of anatomical structures that exists at 5, 10 and 15 mm in front of the endoscope. Good securing of the shunt stylet with the telescope was found to be essential for constant and accurate navigation. Conclusion: Navigation-enabled endoscopes provide the surgeon with the advantage of sustained stereotactic anatomical awareness at all times during the surgery. Keywords: telescope, endoscope, image guidance, navigation, lacrimal surgery, powered endoscopic DCR

  17. 49 CFR 195.412 - Inspection of rights-of-way and crossings under navigable waters.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Inspection of rights-of-way and crossings under navigable waters. 195.412 Section 195.412 Transportation Other Regulations Relating to Transportation... Inspection of rights-of-way and crossings under navigable waters. (a) Each operator shall, at intervals not...

  18. Vibrotactile in-vehicle navigation system

    NARCIS (Netherlands)

    Erp, J.B.F. van; Veen, H.J. van

    2004-01-01

    A vibrotactile display, consisting ofeight vibrating elements or tactors mounted in a driver's seat, was tested in a driving simulator. Participants drove with visual, tactile and multimodal navigation displays through a built-up area. Workload and the reaction time to navigation messages were

  19. ANALYSIS OF FREE ROUTE AIRSPACE AND PERFORMANCE BASED NAVIGATION IMPLEMENTATION IN THE EUROPEAN AIR NAVIGATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Svetlana Pavlova

    2014-12-01

    Full Text Available European Air Traffic Management system requires continuous improvements as air traffic is increasingday by day. For this purpose it was developed by international organizations Free Route Airspace and PerformanceBased Navigation concepts that allow to offer a required level of safety, capacity, environmental performance alongwith cost-effectiveness. The aim of the article is to provide detailed analysis of Free Route Airspace and PerformanceBased Navigation implementation status within European region including Ukrainian air navigation system.

  20. Supporting Development of Satellite's Guidance Navigation and Control Software: A Product Line Approach

    Science.gov (United States)

    McComas, David; Stark, Michael; Leake, Stephen; White, Michael; Morisio, Maurizio; Travassos, Guilherme H.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The NASA Goddard Space Flight Center Flight Software Branch (FSB) is developing a Guidance, Navigation, and Control (GNC) Flight Software (FSW) product line. The demand for increasingly more complex flight software in less time while maintaining the same level of quality has motivated us to look for better FSW development strategies. The GNC FSW product line has been planned to address the core GNC FSW functionality very similar on many recent low/near Earth missions in the last ten years. Unfortunately these missions have not accomplished significant drops in development cost since a systematic approach towards reuse has not been adopted. In addition, new demands are continually being placed upon the FSW which means the FSB must become more adept at providing GNC FSW functionality's core so it can accommodate additional requirements. These domain features together with engineering concepts are influencing the specification, description and evaluation of FSW product line. Domain engineering is the foundation for emerging product line software development approaches. A product line is 'A family of products designed to take advantage of their common aspects and predicted variabilities'. In our product line approach, domain engineering includes the engineering activities needed to produce reusable artifacts for a domain. Application engineering refers to developing an application in the domain starting from reusable artifacts. The focus of this paper is regarding the software process, lessons learned and on how the GNC FSW product line manages variability. Existing domain engineering approaches do not enforce any specific notation for domain analysis or commonality and variability analysis. Usually, natural language text is the preferred tool. The advantage is the flexibility and adapt ability of natural language. However, one has to be ready to accept also its well-known drawbacks, such as ambiguity, inconsistency, and contradictions. While most domain analysis

  1. Aircraft navigation and surveillance analysis for a spherical earth

    Science.gov (United States)

    2014-10-01

    This memorandum addresses a fundamental function in surveillance and navigation analysis : quantifying the geometry of two or more locations relative to each other and to a spherical earth. Here, geometry refers to: (a) points (idealized lo...

  2. Accuracy of the hypothetical sky-polarimetric Viking navigation versus sky conditions: revealing solar elevations and cloudinesses favourable for this navigation method.

    Science.gov (United States)

    Száz, Dénes; Farkas, Alexandra; Barta, András; Kretzer, Balázs; Blahó, Miklós; Egri, Ádám; Szabó, Gyula; Horváth, Gábor

    2017-09-01

    . Generally, under clear or less cloudy skies, the sky-polarimetric navigation is more accurate, but at low solar elevations its accuracy remains relatively large even at high cloudiness. For a given ρ , the absolute value of averaged peak North uncertainties dramatically decreases with increasing θ until the sign (±) change of these uncertainties. For a given θ , this absolute value can either decrease or increase with increasing ρ . The most advantageous sky situations for this navigation method are at summer solstice when the solar elevation and cloudiness are 35° ≤  θ  ≤ 40° and 2 oktas ≤  ρ  ≤ 3 oktas.

  3. Applications of navigation for orthognathic surgery.

    Science.gov (United States)

    Bobek, Samuel L

    2014-11-01

    Stereotactic surgical navigation has been used in oral and maxillofacial surgery for orbital reconstruction, reduction of facial fractures, localization of foreign bodies, placement of implants, skull base surgery, tumor removal, temporomandibular joint surgery, and orthognathic surgery. The primary goals in adopting intraoperative navigation into these different surgeries were to define and localize operative anatomy, to localize implant position, and to orient the surgical wound. Navigation can optimize the functional and esthetic outcomes in patients with dentofacial deformities by identifying pertinent anatomic structures, transferring the surgical plan to the patient, and verifying the surgical result. This article discusses the principles of navigation-guided orthognathic surgery. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. An approach for real-time fast point positioning of the BeiDou Navigation Satellite System using augmentation information

    Science.gov (United States)

    Tu, Rui; Zhang, Rui; Zhang, Pengfei; Liu, Jinhai; Lu, Xiaochun

    2018-07-01

    This study proposes an approach to facilitate real-time fast point positioning of the BeiDou Navigation Satellite System (BDS) based on regional augmentation information. We term this as the precise positioning based on augmentation information (BPP) approach. The coordinates of the reference stations were highly constrained to extract the augmentation information, which contained not only the satellite orbit clock error correlated with the satellite running state, but also included the atmosphere error and unmodeled error, which are correlated with the spatial and temporal states. Based on these mixed augmentation corrections, a precise point positioning (PPP) model could be used for the coordinates estimation of the user stations, and the float ambiguity could be easily fixed for the single-difference between satellites. Thus, this technique provided a quick and high-precision positioning service. Three different datasets with small, medium, and large baselines (0.6 km, 30 km and 136 km) were used to validate the feasibility and effectiveness of the proposed BPP method. The validations showed that using the BPP model, 1–2 cm positioning service can be provided in a 100 km wide area after just 2 s of initialization. Thus, as the proposed approach not only capitalized on both PPP and RTK but also provided consistent application, it can be used for area augmentation positioning.

  5. Collective navigation of complex networks: Participatory greedy routing.

    Science.gov (United States)

    Kleineberg, Kaj-Kolja; Helbing, Dirk

    2017-06-06

    Many networks are used to transfer information or goods, in other words, they are navigated. The larger the network, the more difficult it is to navigate efficiently. Indeed, information routing in the Internet faces serious scalability problems due to its rapid growth, recently accelerated by the rise of the Internet of Things. Large networks like the Internet can be navigated efficiently if nodes, or agents, actively forward information based on hidden maps underlying these systems. However, in reality most agents will deny to forward messages, which has a cost, and navigation is impossible. Can we design appropriate incentives that lead to participation and global navigability? Here, we present an evolutionary game where agents share the value generated by successful delivery of information or goods. We show that global navigability can emerge, but its complete breakdown is possible as well. Furthermore, we show that the system tends to self-organize into local clusters of agents who participate in the navigation. This organizational principle can be exploited to favor the emergence of global navigability in the system.

  6. Navigating the fifth dimension: new concepts in interactive multimodality and multidimensional image navigation

    Science.gov (United States)

    Ratib, Osman; Rosset, Antoine; Dahlbom, Magnus; Czernin, Johannes

    2005-04-01

    Display and interpretation of multi dimensional data obtained from the combination of 3D data acquired from different modalities (such as PET-CT) require complex software tools allowing the user to navigate and modify the different image parameters. With faster scanners it is now possible to acquire dynamic images of a beating heart or the transit of a contrast agent adding a fifth dimension to the data. We developed a DICOM-compliant software for real time navigation in very large sets of 5 dimensional data based on an intuitive multidimensional jog-wheel widely used by the video-editing industry. The software, provided under open source licensing, allows interactive, single-handed, navigation through 3D images while adjusting blending of image modalities, image contrast and intensity and the rate of cine display of dynamic images. In this study we focused our effort on the user interface and means for interactively navigating in these large data sets while easily and rapidly changing multiple parameters such as image position, contrast, intensity, blending of colors, magnification etc. Conventional mouse-driven user interface requiring the user to manipulate cursors and sliders on the screen are too cumbersome and slow. We evaluated several hardware devices and identified a category of multipurpose jogwheel device that is used in the video-editing industry that is particularly suitable for rapidly navigating in five dimensions while adjusting several display parameters interactively. The application of this tool will be demonstrated in cardiac PET-CT imaging and functional cardiac MRI studies.

  7. Deep space telecommunications, navigation, and information management - Support of the Space Exploration Initiative

    Science.gov (United States)

    Hall, Justin R.; Hastrup, Rolf C.

    1990-10-01

    The principal challenges in providing effective deep space navigation, telecommunications, and information management architectures and designs for Mars exploration support are presented. The fundamental objectives are to provide the mission with the means to monitor and control mission elements, obtain science, navigation, and engineering data, compute state vectors and navigate, and to move these data efficiently and automatically between mission nodes for timely analysis and decision making. New requirements are summarized, and related issues and challenges including the robust connectivity for manned and robotic links, are identified. Enabling strategies are discussed, and candidate architectures and driving technologies are described.

  8. Transport Canada : navigable water protection technical paper on boating safety at dams

    Energy Technology Data Exchange (ETDEWEB)

    Putt, B [Transport Canada, Sarnia, ON (Canada); Di Censo, V M [Transport Canada, Ottawa, ON (Canada)

    2009-07-01

    The Navigable Waters Protection Act (NWPA) was designed to ensure a balance between public rights of navigation and the need to build bridges, dams, and other structures. This paper discussed an owner's guide to navigation safety around water control structures. Developed by Transport Canada, the guide was intended to help owners of water control structures address boating safety matters and assist owners in making applications under the NWPA. The guide was prepared to address amendments made to the NWPA in 2009 as well as to assist owners in identifying potential hazards and interactions by the boating public at water control structures. The guide included information related to signage; navigation aids; barriers and booms; warning alerts and alarms; portage and access around structures; and application requirements. It was concluded that the guide will also provide a summary of legislation that may affect owners of water control structures.

  9. A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents.

    Science.gov (United States)

    Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha

    2017-01-01

    Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control-enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates.

  10. AEKF-SLAM: A New Algorithm for Robotic Underwater Navigation

    Directory of Open Access Journals (Sweden)

    Xin Yuan

    2017-05-01

    Full Text Available In this work, we focus on key topics related to underwater Simultaneous Localization and Mapping (SLAM applications. Moreover, a detailed review of major studies in the literature and our proposed solutions for addressing the problem are presented. The main goal of this paper is the enhancement of the accuracy and robustness of the SLAM-based navigation problem for underwater robotics with low computational costs. Therefore, we present a new method called AEKF-SLAM that employs an Augmented Extended Kalman Filter (AEKF-based SLAM algorithm. The AEKF-based SLAM approach stores the robot poses and map landmarks in a single state vector, while estimating the state parameters via a recursive and iterative estimation-update process. Hereby, the prediction and update state (which exist as well in the conventional EKF are complemented by a newly proposed augmentation stage. Applied to underwater robot navigation, the AEKF-SLAM has been compared with the classic and popular FastSLAM 2.0 algorithm. Concerning the dense loop mapping and line mapping experiments, it shows much better performances in map management with respect to landmark addition and removal, which avoid the long-term accumulation of errors and clutters in the created map. Additionally, the underwater robot achieves more precise and efficient self-localization and a mapping of the surrounding landmarks with much lower processing times. Altogether, the presented AEKF-SLAM method achieves reliably map revisiting, and consistent map upgrading on loop closure.

  11. Real Time Mapping and Dynamic Navigation for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Maki K. Habib

    2008-11-01

    Full Text Available This paper discusses the importance, the complexity and the challenges of mapping mobile robot?s unknown and dynamic environment, besides the role of sensors and the problems inherited in map building. These issues remain largely an open research problems in developing dynamic navigation systems for mobile robots. The paper presenst the state of the art in map building and localization for mobile robots navigating within unknown environment, and then introduces a solution for the complex problem of autonomous map building and maintenance method with focus on developing an incremental grid based mapping technique that is suitable for real-time obstacle detection and avoidance. In this case, the navigation of mobile robots can be treated as a problem of tracking geometric features that occur naturally in the environment of the robot. The robot maps its environment incrementally using the concept of occupancy grids and the fusion of multiple ultrasonic sensory information while wandering in it and stay away from all obstacles. To ensure real-time operation with limited resources, as well as to promote extensibility, the mapping and obstacle avoidance modules are deployed in parallel and distributed framework. Simulation based experiments has been conducted and illustrated to show the validity of the developed mapping and obstacle avoidance approach.

  12. 33 CFR 117.458 - Inner Harbor Navigation Canal, New Orleans.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Inner Harbor Navigation Canal, New Orleans. 117.458 Section 117.458 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Harbor Navigation Canal, New Orleans. (a) The draws of the SR 46 (St. Claude Avenue) bridge, mile 0.5...

  13. 33 CFR 209.170 - Violations of laws protecting navigable waters.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Violations of laws protecting navigable waters. 209.170 Section 209.170 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF... navigable waters. (a) [Reserved] (b) Injuries to Government works. Section 14 of the River and Harbor Act of...

  14. Fault-tolerant and Diagnostic Methods for Navigation

    DEFF Research Database (Denmark)

    Blanke, Mogens

    2003-01-01

    to diagnose faults and autonomously provide valid navigation data, disregarding any faulty sensor data and use sensor fusion to obtain a best estimate for users. This paper discusses how diagnostic and fault-tolerant methods are applicable in marine systems. An example chosen is sensor fusion for navigation......Precise and reliable navigation is crucial, and for reasons of safety, essential navigation instruments are often duplicated. Hardware redundancy is mostly used to manually switch between instruments should faults occur. In contrast, diagnostic methods are available that can use analytic redundancy...

  15. Illumination Tolerance for Visual Navigation with the Holistic Min-Warping Method

    Directory of Open Access Journals (Sweden)

    Ralf Möller

    2014-02-01

    Full Text Available Holistic visual navigation methods are an emerging alternative to the ubiquitous feature-based methods. Holistic methods match entire images pixel-wise instead of extracting and comparing local feature descriptors. In this paper we investigate which pixel-wise distance measures are most suitable for the holistic min-warping method with respect to illumination invariance. Two novel approaches are presented: tunable distance measures—weighted combinations of illumination-invariant and illumination-sensitive terms—and two novel forms of “sequential” correlation which are only invariant against intensity shifts but not against multiplicative changes. Navigation experiments on indoor image databases collected at the same locations but under different conditions of illumination demonstrate that tunable distance measures perform optimally by mixing their two portions instead of using the illumination-invariant term alone. Sequential correlation performs best among all tested methods, and as well but much faster in an approximated form. Mixing with an additional illumination-sensitive term is not necessary for sequential correlation. We show that min-warping with approximated sequential correlation can successfully be applied to visual navigation of cleaning robots.

  16. Deep imitation learning for 3D navigation tasks.

    Science.gov (United States)

    Hussein, Ahmed; Elyan, Eyad; Gaber, Mohamed Medhat; Jayne, Chrisina

    2018-01-01

    Deep learning techniques have shown success in learning from raw high-dimensional data in various applications. While deep reinforcement learning is recently gaining popularity as a method to train intelligent agents, utilizing deep learning in imitation learning has been scarcely explored. Imitation learning can be an efficient method to teach intelligent agents by providing a set of demonstrations to learn from. However, generalizing to situations that are not represented in the demonstrations can be challenging, especially in 3D environments. In this paper, we propose a deep imitation learning method to learn navigation tasks from demonstrations in a 3D environment. The supervised policy is refined using active learning in order to generalize to unseen situations. This approach is compared to two popular deep reinforcement learning techniques: deep-Q-networks and Asynchronous actor-critic (A3C). The proposed method as well as the reinforcement learning methods employ deep convolutional neural networks and learn directly from raw visual input. Methods for combining learning from demonstrations and experience are also investigated. This combination aims to join the generalization ability of learning by experience with the efficiency of learning by imitation. The proposed methods are evaluated on 4 navigation tasks in a 3D simulated environment. Navigation tasks are a typical problem that is relevant to many real applications. They pose the challenge of requiring demonstrations of long trajectories to reach the target and only providing delayed rewards (usually terminal) to the agent. The experiments show that the proposed method can successfully learn navigation tasks from raw visual input while learning from experience methods fail to learn an effective policy. Moreover, it is shown that active learning can significantly improve the performance of the initially learned policy using a small number of active samples.

  17. Test Bed for Safety Assessment of New e-Navigation Systems

    Directory of Open Access Journals (Sweden)

    Axel Hahn

    2014-12-01

    Full Text Available New e-navigation strains require new technologies, new infrastructures and new organizational structures on bridge, on shore as well as in the cloud. Suitable engineering and safety/risk assessment methods facilitate these efforts. Understanding maritime transportation as a sociotechnical system allows the application of system-engineering methods. Formal, simulation based and in situ verification and validation of e-navigation technologies are important methods to obtain system safety and reliability. The modelling and simulation toolset HAGGIS provides methods for system specification and formal risk analysis. It provides a modelling framework for processes, fault trees and generic hazard specification and a physical world and maritime traffic simulation system. HAGGIS is accompanied by the physical test bed LABSKAUS which implements a physical test bed. The test bed provides reference ports and waterways in combination with an experimental Vessel Traffic Services (VTS system and a mobile integrated bridge: This enables in situ experiments for technological evaluation, testing, ground research and demonstration. This paper describes an integrated seamless approach for developing new e-navigation technologies starting with simulation based assessment and ending in physical real world demonstrations

  18. Development of performance measures based on visibility for effective placement of aids to navigation

    Science.gov (United States)

    Fang, Tae Hyun; Kim, Yeon-Gyu; Gong, In-Young; Park, Sekil; Kim, Ah-Young

    2015-09-01

    In order to develop the challenging process of placing Aids to Navigation (AtoN), we propose performance measures which quantifies the effect of such placement. The best placement of AtoNs is that from which the navigator can best recognize the information provided by an AtoN. The visibility of AtoNs depends mostly on light sources, the weather condition and the position of the navigator. Visual recognition is enabled by achieving adequate contrast between the AtoN light source and background light. Therefore, the performance measures can be formulated through the amount of differences between these two lights. For simplification, this approach is based on the values of the human factor suggested by International Association of Marine Aids to Navigation and Lighthouse Authorities (IALA). Performance measures for AtoN placement can be evaluated through AtoN Simulator, which has been being developed by KIOST/KRISO in Korea and has been launched by Korea National Research Program. Simulations for evaluation are carried out at waterway in Busan port in Korea.

  19. Development of performance measures based on visibility for effective placement of aids to navigation

    Directory of Open Access Journals (Sweden)

    Tae Hyun Fang

    2015-05-01

    Full Text Available In order to develop the challenging process of placing Aids to Navigation (AtoN, we propose performance measures which quantifies the effect of such placement. The best placement of AtoNs is that from which the navigator can best recognize the information provided by an AtoN. The visibility of AtoNs depends mostly on light sources, the weather condition and the position of the navigator. Visual recognition is enabled by achieving adequate contrast between the AtoN light source and background light. Therefore, the performance measures can be formulated through the amount of differences between these two lights. For simplification, this approach is based on the values of the human factor suggested by International Association of Marine Aids to Navigation and Lighthouse Authorities (IALA. Performance measures for AtoN placement can be evaluated through AtoN Simulator, which has been being developed by KIOST/KRISO in Korea and has been launched by Korea National Research Program. Simulations for evaluation are carried out at waterway in Busan port in Korea.

  20. Systems Engineering Approach to Develop Guidance, Navigation and Control Algorithms for Unmanned Ground Vehicle

    Science.gov (United States)

    2016-09-01

    Global Positioning System HNA hybrid navigation algorithm HRI human-robot interface IED Improvised Explosive Device IMU inertial measurement unit...Potential Field Method R&D research and development RDT&E Research, development, test and evaluation RF radiofrequency RGB red, green and blue ROE...were radiofrequency (RF) controlled and pneumatically actuated upon receiving the wireless commands from the radio operator. The pairing of such an

  1. WAYS OF NAVIGATION SYSTEMS DEVELOPMENT WITHIN THE IMPLEMENTATION OF THE CNS/ATM CONCEPT

    Directory of Open Access Journals (Sweden)

    Igor A. Chekhov

    2017-01-01

    Full Text Available The general development principles of the civil aviation air navigation systems for the next years according to the concept of International Civil Aviation Organization (IСAO CNS/ATM are stated in the article. It was reflected in the Global air navigation plan of IСAO accepted in 2013. The author considered the structure of block modernization of aviation system directed to optimization according to four main characteristics, such as: operations at the airports; systems and data interoperable on a global scale; optimum capacity and flexible flight routes, and also effective trajectories of flight. At the same time the main attention in the plan is paid to questions of the performance based navigation (PBN, the basic theses of which lean on four main units that make the concept of PBN. The possible ways of the specified blocks implementation taking into account features of the Russian Federation airspace use are considered in this paper. On the basis of the carried-out analysis conclusions are drawn on gradual transition from the RNAV navigation specifications to the RNP specifications, on increase in accuracy of navigation by modernization of ground radio navigational aids, both on a flight route and airspace of airfield area, on need of continuing the development of inexact calling schemes, using GNSS, with the subsequent transition to schemes of exact landing approaches by means of functional additions to GLONASS – GBAS and SBAS, also on the need of opportunities research in the domestic system SBAS (SDKM for the increase in accuracy of navigation at various stages of flight. At the same time, standard instrument routes of arrival and departure (SID/STAR have to be carried out in the mode of constant climb or continuous descent.

  2. Carrying Position Independent User Heading Estimation for Indoor Pedestrian Navigation with Smartphones

    Directory of Open Access Journals (Sweden)

    Zhi-An Deng

    2016-05-01

    Full Text Available This paper proposes a novel heading estimation approach for indoor pedestrian navigation using the built-in inertial sensors on a smartphone. Unlike previous approaches constraining the carrying position of a smartphone on the user’s body, our approach gives the user a larger freedom by implementing automatic recognition of the device carrying position and subsequent selection of an optimal strategy for heading estimation. We firstly predetermine the motion state by a decision tree using an accelerometer and a barometer. Then, to enable accurate and computational lightweight carrying position recognition, we combine a position classifier with a novel position transition detection algorithm, which may also be used to avoid the confusion between position transition and user turn during pedestrian walking. For a device placed in the trouser pockets or held in a swinging hand, the heading estimation is achieved by deploying a principal component analysis (PCA-based approach. For a device held in the hand or against the ear during a phone call, user heading is directly estimated by adding the yaw angle of the device to the related heading offset. Experimental results show that our approach can automatically detect carrying positions with high accuracy, and outperforms previous heading estimation approaches in terms of accuracy and applicability.

  3. Magnetic navigation in a coronary phantom: experimental results.

    Science.gov (United States)

    García-García, Héctor M; Tsuchida, Keiichi; Meulenbrug, Hans; Ong, Andrew T L; Van der Giessen, Willem J; Serruys, Patrick W

    2005-11-01

    The objective was to investigate the efficacy of a magnetic navigation system (MNS) in a coronary phantom. The number of coronary interventional procedures performed is steadily increasing with the availability of new devices to treat more complex lesions. Vessel tortuosity remains an important limiting factor in percutaneous coronary intervention. The MNS can orient the tip of magnetized wire. The coronary phantom is a representation of the coronary tree. Two operators using both a magnetic wire and a standard wire, measured the procedural time (PT), the fluoroscopic time (FT) and the radiation exposure/area product (DAP) required to navigate through to fourteen segments. Ten wire advancements were performed per segment. In all but two segments, the PT was significantly longer using magnetic navigation than using manual navigation. The median FT in the left main artery (LMA) - first septal segment was 7 seconds vs. 18 seconds, with magnetic and manual navigation respectively, (p=0.05); in the LMA - obtuse marginal segment the median FT was 15 seconds with magnetic navigation vs. 29.5 seconds with manual navigation, (p=0.01); in the segment from proximal right coronary artery (RCA1) to the acute marginal branch, the median FT was 8 seconds with magnetic vs. 11 seconds with manual navigation, (p=0.05); and in the RCA1 -posterior descending segment the median FT was 9.5 seconds with magnetic vs. 15 seconds with manual navigation, (p=0.006). The MNS facilitates wire access to distal segments in a coronary phantom, with a reduction in FT and radiation exposure using magnetic navigation in tortuous segments.

  4. Heading Estimation for Indoor Pedestrian Navigation Using a Smartphone in the Pocket

    Directory of Open Access Journals (Sweden)

    Zhi-An Deng

    2015-08-01

    Full Text Available Heading estimation is a central problem for indoor pedestrian navigation using the pervasively available smartphone. For smartphones placed in a pocket, one of the most popular device positions, the essential challenges in heading estimation are the changing device coordinate system and the severe indoor magnetic perturbations. To address these challenges, we propose a novel heading estimation approach based on a rotation matrix and principal component analysis (PCA. Firstly, through a related rotation matrix, we project the acceleration signals into a reference coordinate system (RCS, where a more accurate estimation of the horizontal plane of the acceleration signal is obtained. Then, we utilize PCA over the horizontal plane of acceleration signals for local walking direction extraction. Finally, in order to translate the local walking direction into the global one, we develop a calibration process without requiring noisy compass readings. Besides, a turn detection algorithm is proposed to improve the heading estimation accuracy. Experimental results show that our approach outperforms the traditional uDirect and PCA-based approaches in terms of accuracy and feasibility.

  5. Smoothing-Based Relative Navigation and Coded Aperture Imaging

    Science.gov (United States)

    Saenz-Otero, Alvar; Liebe, Carl Christian; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    This project will develop an efficient smoothing software for incremental estimation of the relative poses and velocities between multiple, small spacecraft in a formation, and a small, long range depth sensor based on coded aperture imaging that is capable of identifying other spacecraft in the formation. The smoothing algorithm will obtain the maximum a posteriori estimate of the relative poses between the spacecraft by using all available sensor information in the spacecraft formation.This algorithm will be portable between different satellite platforms that possess different sensor suites and computational capabilities, and will be adaptable in the case that one or more satellites in the formation become inoperable. It will obtain a solution that will approach an exact solution, as opposed to one with linearization approximation that is typical of filtering algorithms. Thus, the algorithms developed and demonstrated as part of this program will enhance the applicability of small spacecraft to multi-platform operations, such as precisely aligned constellations and fractionated satellite systems.

  6. A Single RF Emitter-Based Indoor Navigation Method for Autonomous Service Robots.

    Science.gov (United States)

    Sherwin, Tyrone; Easte, Mikala; Chen, Andrew Tzer-Yeu; Wang, Kevin I-Kai; Dai, Wenbin

    2018-02-14

    Location-aware services are one of the key elements of modern intelligent applications. Numerous real-world applications such as factory automation, indoor delivery, and even search and rescue scenarios require autonomous robots to have the ability to navigate in an unknown environment and reach mobile targets with minimal or no prior infrastructure deployment. This research investigates and proposes a novel approach of dynamic target localisation using a single RF emitter, which will be used as the basis of allowing autonomous robots to navigate towards and reach a target. Through the use of multiple directional antennae, Received Signal Strength (RSS) is compared to determine the most probable direction of the targeted emitter, which is combined with the distance estimates to improve the localisation performance. The accuracy of the position estimate is further improved using a particle filter to mitigate the fluctuating nature of real-time RSS data. Based on the direction information, a motion control algorithm is proposed, using Simultaneous Localisation and Mapping (SLAM) and A* path planning to enable navigation through unknown complex environments. A number of navigation scenarios were developed in the context of factory automation applications to demonstrate and evaluate the functionality and performance of the proposed system.

  7. A Single RF Emitter-Based Indoor Navigation Method for Autonomous Service Robots

    Directory of Open Access Journals (Sweden)

    Tyrone Sherwin

    2018-02-01

    Full Text Available Location-aware services are one of the key elements of modern intelligent applications. Numerous real-world applications such as factory automation, indoor delivery, and even search and rescue scenarios require autonomous robots to have the ability to navigate in an unknown environment and reach mobile targets with minimal or no prior infrastructure deployment. This research investigates and proposes a novel approach of dynamic target localisation using a single RF emitter, which will be used as the basis of allowing autonomous robots to navigate towards and reach a target. Through the use of multiple directional antennae, Received Signal Strength (RSS is compared to determine the most probable direction of the targeted emitter, which is combined with the distance estimates to improve the localisation performance. The accuracy of the position estimate is further improved using a particle filter to mitigate the fluctuating nature of real-time RSS data. Based on the direction information, a motion control algorithm is proposed, using Simultaneous Localisation and Mapping (SLAM and A* path planning to enable navigation through unknown complex environments. A number of navigation scenarios were developed in the context of factory automation applications to demonstrate and evaluate the functionality and performance of the proposed system.

  8. Piles, tabs and overlaps in navigation among documents

    DEFF Research Database (Denmark)

    Jakobsen, Mikkel Rønne; Hornbæk, Kasper

    2010-01-01

    Navigation among documents is a frequent, but ill supported activity. Overlapping or tabbed documents are widespread, but they offer limited visibility of their content. We explore variations on navigation support: arranging documents with tabs, as overlapping windows, and in piles. In an experim......Navigation among documents is a frequent, but ill supported activity. Overlapping or tabbed documents are widespread, but they offer limited visibility of their content. We explore variations on navigation support: arranging documents with tabs, as overlapping windows, and in piles....... In an experiment we compared 11 participants’ navigation with these variations and found strong task effects. Overall, overlapping windows were preferred and their structured layout worked well with some tasks. Surprisingly, tabbed documents were efficient in tasks requiring simply finding a document. Piled...... on document navigation and its support by piling....

  9. Design and testing of a multi-sensor pedestrian location and navigation platform.

    Science.gov (United States)

    Morrison, Aiden; Renaudin, Valérie; Bancroft, Jared B; Lachapelle, Gérard

    2012-01-01

    Navigation and location technologies are continually advancing, allowing ever higher accuracies and operation under ever more challenging conditions. The development of such technologies requires the rapid evaluation of a large number of sensors and related utilization strategies. The integration of Global Navigation Satellite Systems (GNSSs) such as the Global Positioning System (GPS) with accelerometers, gyros, barometers, magnetometers and other sensors is allowing for novel applications, but is hindered by the difficulties to test and compare integrated solutions using multiple sensor sets. In order to achieve compatibility and flexibility in terms of multiple sensors, an advanced adaptable platform is required. This paper describes the design and testing of the NavCube, a multi-sensor navigation, location and timing platform. The system provides a research tool for pedestrian navigation, location and body motion analysis in an unobtrusive form factor that enables in situ data collections with minimal gait and posture impact. Testing and examples of applications of the NavCube are provided.

  10. SOVEREIGN: An autonomous neural system for incrementally learning planned action sequences to navigate towards a rewarded goal.

    Science.gov (United States)

    Gnadt, William; Grossberg, Stephen

    2008-06-01

    How do reactive and planned behaviors interact in real time? How are sequences of such behaviors released at appropriate times during autonomous navigation to realize valued goals? Controllers for both animals and mobile robots, or animats, need reactive mechanisms for exploration, and learned plans to reach goal objects once an environment becomes familiar. The SOVEREIGN (Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goal-oriented Navigation) animat model embodies these capabilities, and is tested in a 3D virtual reality environment. SOVEREIGN includes several interacting subsystems which model complementary properties of cortical What and Where processing streams and which clarify similarities between mechanisms for navigation and arm movement control. As the animat explores an environment, visual inputs are processed by networks that are sensitive to visual form and motion in the What and Where streams, respectively. Position-invariant and size-invariant recognition categories are learned by real-time incremental learning in the What stream. Estimates of target position relative to the animat are computed in the Where stream, and can activate approach movements toward the target. Motion cues from animat locomotion can elicit head-orienting movements to bring a new target into view. Approach and orienting movements are alternately performed during animat navigation. Cumulative estimates of each movement are derived from interacting proprioceptive and visual cues. Movement sequences are stored within a motor working memory. Sequences of visual categories are stored in a sensory working memory. These working memories trigger learning of sensory and motor sequence categories, or plans, which together control planned movements. Predictively effective chunk combinations are selectively enhanced via reinforcement learning when the animat is rewarded. Selected planning chunks effect a gradual transition from variable reactive exploratory

  11. 33 CFR 401.52 - Limit of approach to a bridge.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Limit of approach to a bridge... approach to a bridge. (a) No vessel shall pass the limit of approach sign at any movable bridge until the bridge is in a fully open position and the signal light shows green. (b) No vessel shall pass the limit...

  12. Fault-tolerant Sensor Fusion for Marine Navigation

    DEFF Research Database (Denmark)

    Blanke, Mogens

    2006-01-01

    Reliability of navigation data are critical for steering and manoeuvring control, and in particular so at high speed or in critical phases of a mission. Should faults occur, faulty instruments need be autonomously isolated and faulty information discarded. This paper designs a navigation solution...... where essential navigation information is provided even with multiple faults in instrumentation. The paper proposes a provable correct implementation through auto-generated state-event logics in a supervisory part of the algorithms. Test results from naval vessels document the performance and shows...... events where the fault-tolerant sensor fusion provided uninterrupted navigation data despite temporal instrument defects...

  13. New Control Paradigms for Resources Saving: An Approach for Mobile Robots Navigation.

    Science.gov (United States)

    Socas, Rafael; Dormido, Raquel; Dormido, Sebastián

    2018-01-18

    In this work, an event-based control scheme is presented. The proposed system has been developed to solve control problems appearing in the field of Networked Control Systems (NCS). Several models and methodologies have been proposed to measure different resources consumptions. The use of bandwidth, computational load and energy resources have been investigated. This analysis shows how the parameters of the system impacts on the resources efficiency. Moreover, the proposed system has been compared with its equivalent discrete-time solution. In the experiments, an application of NCS for mobile robots navigation has been set up and its resource usage efficiency has been analysed.

  14. Visual navigation in adolescents with early periventricular lesions: knowing where, but not getting there.

    Science.gov (United States)

    Pavlova, Marina; Sokolov, Alexander; Krägeloh-Mann, Ingeborg

    2007-02-01

    Visual navigation in familiar and unfamiliar surroundings is an essential ingredient of adaptive daily life behavior. Recent brain imaging work helps to recognize that establishing connectivity between brain regions is of importance for successful navigation. Here, we ask whether the ability to navigate is impaired in adolescents who were born premature and suffer congenital bilateral periventricular brain damage that might affect the pathways interconnecting subcortical structures with cortex. Performance on a set of visual labyrinth tasks was significantly worse in patients with periventricular leukomalacia (PVL) as compared with premature-born controls without lesions and term-born adolescents. The ability for visual navigation inversely relates to the severity of motor disability, leg-dominated bilateral spastic cerebral palsy. This agrees with the view that navigation ability substantially improves with practice and might be compromised in individuals with restrictions in active spatial exploration. Visual navigation is negatively linked to the volumetric extent of lesions over the right parietal and frontal periventricular regions. Whereas impairments of visual processing of point-light biological motion are associated in patients with PVL with bilateral parietal periventricular lesions, navigation ability is specifically linked to the frontal lesions in the right hemisphere. We suggest that more anterior periventricular lesions impair the interrelations between the right hippocampus and cortical areas leading to disintegration of neural networks engaged in visual navigation. For the first time, we show that the severity of right frontal periventricular damage and leg-dominated motor disorders can serve as independent predictors of the visual navigation disability.

  15. Sensor guided control and navigation with intelligent machines. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Bijoy K.

    2001-03-26

    This item constitutes the final report on ''Visionics: An integrated approach to analysis and design of intelligent machines.'' The report discusses dynamical systems approach to problems in robust control of possibly time-varying linear systems, problems in vision and visually guided control, and, finally, applications of these control techniques to intelligent navigation with a mobile platform. Robust design of a controller for a time-varying system essentially deals with the problem of synthesizing a controller that can adapt to sudden changes in the parameters of the plant and can maintain stability. The approach presented is to design a compensator that simultaneously stabilizes each and every possible mode of the plant as the parameters undergo sudden and unexpected changes. Such changes can in fact be detected by a visual sensor and, hence, visually guided control problems are studied as a natural consequence. The problem here is to detect parameters of the plant and maintain st ability in the closed loop using a ccd camera as a sensor. The main result discussed in the report is the role of perspective systems theory that was developed in order to analyze such a detection and control problem. The robust control algorithms and the visually guided control algorithms are applied in the context of a PUMA 560 robot arm control where the goal is to visually locate a moving part on a mobile turntable. Such problems are of paramount importance in manufacturing with a certain lack of structure. Sensor guided control problems are extended to problems in robot navigation using a NOMADIC mobile platform with a ccd and a laser range finder as sensors. The localization and map building problems are studied with the objective of navigation in an unstructured terrain.

  16. Navigation in Cross-cultural business relationships

    DEFF Research Database (Denmark)

    Andersen, Poul Houman

    2001-01-01

    Cross-cultural business navigation concerns the process of handling the complexity of several interacting cultural spheres of influence......Cross-cultural business navigation concerns the process of handling the complexity of several interacting cultural spheres of influence...

  17. Assessing risk of navigational hazard from sea-level-related datum in the South West of Java Sea, Indonesia

    Science.gov (United States)

    Poerbandono

    2017-07-01

    This paper assesses the presence of navigational hazards due to underestimation of charted depths originated from an establishment of a sea-level-related reference plane, i.e. datum. The study domain is situated in one of Indonesia's densest marine traffic, SW Java Sea, Indonesia. The assessment is based on the comparison of the authorized Chart Datum (CD), being uniformly located at 0.6 m below Mean Sea Level (MSL), and a spatially varying Lowest Astronomical Tide (LAT) generated for the purpose of this research. Hazards are considered here as the deviation of LAT from CD and quantified as the ratio of LAT -CD deviation with respect to the allowable Total Vertical Uncertainty (TVU), i.e. the international standard for accuracy of depth information on nautical charts. Underestimation of charted depth is expected for the case that LAT falls below CD. Such a risk magnifies with decreasing depths, as well as the increasing volume of traffic and draught of the vessel. It is found that most of the domain is in the interior of risk-free zone from using uniform CD. As much as 0.08 and 0.19 parts of the area are in zones where the uncertainty of CD contributes respectively to 50% and 30% of Total Vertical Uncertainty. These are zones where the hazard of navigation is expected to increase due to underestimated lowest tidal level.

  18. A fuzzy logic based navigation for mobile robot

    International Nuclear Information System (INIS)

    Adel Ali S Al-Jumaily; Shamsudin M Amin; Mohamed Khalil

    1998-01-01

    The main issue of intelligent robot is how to reach its goal safely in real time when it moves in unknown environment. The navigational planning is becoming the central issue in development of real-time autonomous mobile robots. Behaviour based robots have been successful in reacting with dynamic environment but still there are some complexity and challenging problems. Fuzzy based behaviours present as powerful method to solve the real time reactive navigation problems in unknown environment. We shall classify the navigation generation methods, five some characteristics of these methods, explain why fuzzy logic is suitable for the navigation of mobile robot and automated guided vehicle, and describe a reactive navigation that is flexible to react through their behaviours to the change of the environment. Some simulation results will be presented to show the navigation of the robot. (Author)

  19. Automated endoscopic navigation and advisory system from medical image

    Science.gov (United States)

    Kwoh, Chee K.; Khan, Gul N.; Gillies, Duncan F.

    1999-05-01

    , which is developed to obtain the relative depth of the colon surface in the image by assuming a point light source very close to the camera. If we assume the colon has a shape similar to a tube, then a reasonable approximation of the position of the center of the colon (lumen) will be a function of the direction in which the majority of the normal vectors of shape are pointing. The second layer is the control layer and at this level, a decision model must be built for endoscope navigation and advisory system. The system that we built is the models of probabilistic networks that create a basic, artificial intelligence system for navigation in the colon. We have constructed the probabilistic networks from correlated objective data using the maximum weighted spanning tree algorithm. In the construction of a probabilistic network, it is always assumed that the variables starting from the same parent are conditionally independent. However, this may not hold and will give rise to incorrect inferences. In these cases, we proposed the creation of a hidden node to modify the network topology, which in effect models the dependency of correlated variables, to solve the problem. The conditional probability matrices linking the hidden node to its neighbors are determined using a gradient descent method which minimizing the objective cost function. The error gradients can be treated as updating messages and ca be propagated in any direction throughout any singly connected network to adjust the network parameters. With the above two- level approach, we have been able to build an automated endoscope navigation and advisory system successfully.

  20. Ecodesign Navigator

    DEFF Research Database (Denmark)

    Simon, M; Evans, S.; McAloone, Timothy Charles

    The Ecodesign Navigator is the product of a three-year research project called DEEDS - DEsign for Environment Decision Support. The initial partners were Manchester Metropolitan University, Cranfield University, Engineering 6 Physical Sciences Resaech Council, Electrolux, ICL, and the Industry...

  1. Exploitation of Semantic Building Model in Indoor Navigation Systems

    Science.gov (United States)

    Anjomshoaa, A.; Shayeganfar, F.; Tjoa, A. Min

    2009-04-01

    There are many types of indoor and outdoor navigation tools and methodologies available. A majority of these solutions are based on Global Positioning Systems (GPS) and instant video and image processing. These approaches are ideal for open world environments where very few information about the target location is available, but for large scale building environments such as hospitals, governmental offices, etc the end-user will need more detailed information about the surrounding context which is especially important in case of people with special needs. This paper presents a smart indoor navigation solution that is based on Semantic Web technologies and Building Information Model (BIM). The proposed solution is also aligned with Google Android's concepts to enlighten the realization of results. Keywords: IAI IFCXML, Building Information Model, Indoor Navigation, Semantic Web, Google Android, People with Special Needs 1 Introduction Built environment is a central factor in our daily life and a big portion of human life is spent inside buildings. Traditionally the buildings are documented using building maps and plans by utilization of IT tools such as computer-aided design (CAD) applications. Documenting the maps in an electronic way is already pervasive but CAD drawings do not suffice the requirements regarding effective building models that can be shared with other building-related applications such as indoor navigation systems. The navigation in built environment is not a new issue, however with the advances in emerging technologies like GPS, mobile and networked environments, and Semantic Web new solutions have been suggested to enrich the traditional building maps and convert them to smart information resources that can be reused in other applications and improve the interpretability with building inhabitants and building visitors. Other important issues that should be addressed in building navigation scenarios are location tagging and end-user communication

  2. Shape Perception and Navigation in Blind Adults

    Science.gov (United States)

    Gori, Monica; Cappagli, Giulia; Baud-Bovy, Gabriel; Finocchietti, Sara

    2017-01-01

    Different sensory systems interact to generate a representation of space and to navigate. Vision plays a critical role in the representation of space development. During navigation, vision is integrated with auditory and mobility cues. In blind individuals, visual experience is not available and navigation therefore lacks this important sensory signal. In blind individuals, compensatory mechanisms can be adopted to improve spatial and navigation skills. On the other hand, the limitations of these compensatory mechanisms are not completely clear. Both enhanced and impaired reliance on auditory cues in blind individuals have been reported. Here, we develop a new paradigm to test both auditory perception and navigation skills in blind and sighted individuals and to investigate the effect that visual experience has on the ability to reproduce simple and complex paths. During the navigation task, early blind, late blind and sighted individuals were required first to listen to an audio shape and then to recognize and reproduce it by walking. After each audio shape was presented, a static sound was played and the participants were asked to reach it. Movements were recorded with a motion tracking system. Our results show three main impairments specific to early blind individuals. The first is the tendency to compress the shapes reproduced during navigation. The second is the difficulty to recognize complex audio stimuli, and finally, the third is the difficulty in reproducing the desired shape: early blind participants occasionally reported perceiving a square but they actually reproduced a circle during the navigation task. We discuss these results in terms of compromised spatial reference frames due to lack of visual input during the early period of development. PMID:28144226

  3. 3-D world modeling based on combinatorial geometry for autonomous robot navigation

    International Nuclear Information System (INIS)

    Goldstein, M.; Pin, F.G.; De Saussure, G.; Weisbin, C.R.

    1987-01-01

    In applications of robotics to surveillance and mapping at nuclear facilities the scene to be described is three-dimensional. Using range data a 3-D model of the environment can be built. First, each measured point on the object surface is surrounded by a solid sphere with a radius determined by the range to that point. Then the 3-D shapes of the visible surfaces are obtained by taking the (Boolean) union of the spheres. Using this representation distances to boundary surfaces can be efficiently calculated. This feature is particularly useful for navigation purposes. The efficiency of the proposed approach is illustrated by a simulation of a spherical robot navigating in a 3-D room with static obstacles

  4. A simultaneous navigation and radiation evasion algorithm (SNARE)

    Energy Technology Data Exchange (ETDEWEB)

    Khasawneh, Mohammed A., E-mail: mkha@ieee.org [Department of Electrical Engineering, Jordan University of Science and Technology, Irbid 221 10 (Jordan); Jaradat, Mohammad A., E-mail: majaradat@just.edu.jo [Department of Mechanical Engineering, Jordan University of Science and Technology, Irbid 221 10 (Jordan); Al-Shboul, Zeina Aman M., E-mail: xeinaaman@gmail.com [Department of Electrical Engineering, Jordan University of Science and Technology, Irbid 221 10 (Jordan)

    2013-12-15

    Highlights: • A new navigation algorithm for radiation evasion around nuclear facilities. • An optimization criteria minimized under algorithm operation. • A man-borne device guiding the occupational worker towards paths that warrant least radiation × time products. • Benefits of using localized navigation as opposed to global navigation schemas. • A path discrimination function for finding the navigational paths exhibiting the least amounts of radiation. - Abstract: In this paper, we address the issue of localization as pertains to indoor navigation under radiation contaminated environments. In this context, navigation, in the absence of any GPS signals, is guided by the location of the sensors that make up the entire wireless sensor network in a given locality within a nuclear facility. It, also, draws on the radiation levels as measured by the sensors around a given locale. Here, localization is inherently embedded into the algorithm presented in (Khasawneh et al., 2011a, 2011b) which was designed to provide navigational guidance to optimize any of two criteria: “Radiation Evasion” and “Nearest Exit”. As such, the algorithm can either be applied to setting a navigational “lowest” radiation exposure path from an initial point A to some other point B; a case typical of occupational workers performing maintenance operations around the facility; or providing a radiation-safe passage from point A to the nearest exit. Algorithm's navigational performance is tested under statistical reference, wherein for a given number of runs (trials) algorithm performance is evaluated as a function of the number of steps of look-ahead it uses to acquire navigational information, and is compared against the performance of the renowned Dijkstra global navigation algorithm. This is done with reference to the amount of (radiation × time) product and that of the time needed to reach an exit point, under the two optimization criteria. To evaluate algorithm

  5. A simultaneous navigation and radiation evasion algorithm (SNARE)

    International Nuclear Information System (INIS)

    Khasawneh, Mohammed A.; Jaradat, Mohammad A.; Al-Shboul, Zeina Aman M.

    2013-01-01

    Highlights: • A new navigation algorithm for radiation evasion around nuclear facilities. • An optimization criteria minimized under algorithm operation. • A man-borne device guiding the occupational worker towards paths that warrant least radiation × time products. • Benefits of using localized navigation as opposed to global navigation schemas. • A path discrimination function for finding the navigational paths exhibiting the least amounts of radiation. - Abstract: In this paper, we address the issue of localization as pertains to indoor navigation under radiation contaminated environments. In this context, navigation, in the absence of any GPS signals, is guided by the location of the sensors that make up the entire wireless sensor network in a given locality within a nuclear facility. It, also, draws on the radiation levels as measured by the sensors around a given locale. Here, localization is inherently embedded into the algorithm presented in (Khasawneh et al., 2011a, 2011b) which was designed to provide navigational guidance to optimize any of two criteria: “Radiation Evasion” and “Nearest Exit”. As such, the algorithm can either be applied to setting a navigational “lowest” radiation exposure path from an initial point A to some other point B; a case typical of occupational workers performing maintenance operations around the facility; or providing a radiation-safe passage from point A to the nearest exit. Algorithm's navigational performance is tested under statistical reference, wherein for a given number of runs (trials) algorithm performance is evaluated as a function of the number of steps of look-ahead it uses to acquire navigational information, and is compared against the performance of the renowned Dijkstra global navigation algorithm. This is done with reference to the amount of (radiation × time) product and that of the time needed to reach an exit point, under the two optimization criteria. To evaluate algorithm

  6. Off the Beaten tracks: Exploring Three Aspects of Web Navigation

    NARCIS (Netherlands)

    Weinreich, H.; Obendorf, H.; Herder, E.; Mayer, M.; Edmonds, H.; Hawkey, K.; Kellar, M.; Turnbull, D.

    2006-01-01

    This paper presents results of a long-term client-side Web usage study, updating previous studies that range in age from five to ten years. We focus on three aspects of Web navigation: changes in the distribution of navigation actions, speed of navigation and within-page navigation. “Navigation

  7. Principles and issues related to SBS-PCM based self-navigation of lasers on injected pellets

    Directory of Open Access Journals (Sweden)

    Kalal Milan

    2013-11-01

    Full Text Available Current status of recently proposed novel approach to inertial fusion energy technology, where phase conjugating mirrors generated by stimulated Brillouin scattering are employed to take care of automatic self-navigation of every individual laser beam on injected pellets, has been reviewed. This novel technology is of a particular importance to the direct drive schemes of pellets irradiation as assumed, e.g., in HiPER project. If successful also in its full scale realization, such an aiming scheme would greatly reduce the technical challenges of adjusting large and heavy optical elements on each shot in a system with a repetition rate of at least several Hertz. In the gradual step-by-step tuning of this technology, in this paper a close attention has been paid to the unconverted basic harmonic issue with a special Faraday isolator design proposed. However, a practical realization of this component in its simplest form might be somewhat difficult to achieve due to a suitable optical material shortage. Hence, a more elaborate scheme of this isolator which would make its realization much more realistic even for optical materials currently available has been examined and will be presented.

  8. Structural and reliability analysis of a patient satisfaction with cancer-related care measure: a multisite patient navigation research program study.

    Science.gov (United States)

    Jean-Pierre, Pascal; Fiscella, Kevin; Freund, Karen M; Clark, Jack; Darnell, Julie; Holden, Alan; Post, Douglas; Patierno, Steven R; Winters, Paul C

    2011-02-15

    Patient satisfaction is an important outcome measure of quality of cancer care and 1 of the 4 core study outcomes of the National Cancer Institute (NCI)-sponsored Patient Navigation Research Program to reduce race/ethnicity-based disparities in cancer care. There is no existing patient satisfaction measure that spans the spectrum of cancer-related care. The objective of this study was to develop a Patient Satisfaction With Cancer Care measure that is relevant to patients receiving diagnostic/therapeutic cancer-related care. The authors developed a conceptual framework, an operational definition of Patient Satisfaction With Cancer Care, and an item pool based on literature review, expert feedback, group discussion, and consensus. The 35-item Patient Satisfaction With Cancer Care measure was administered to 891 participants from the multisite NCI-sponsored Patient Navigation Research Program. Principal components analysis (PCA) was conducted for latent structure analysis. Internal consistency was assessed using Cronbach coefficient alpha (α). Divergent analysis was performed using correlation analyses between the Patient Satisfaction With Cancer Care, the Communication and Attitudinal Self-Efficacy-Cancer, and demographic variables. The PCA revealed a 1-dimensional measure with items forming a coherent set explaining 62% of the variance in patient satisfaction. Reliability assessment revealed high internal consistency (α ranging from 0.95 to 0.96). The Patient Satisfaction With Cancer Care demonstrated good face validity, convergent validity, and divergent validity, as indicated by moderate correlations with subscales of the Communication and Attitudinal Self-Efficacy-Cancer (all P .05). The Patient Satisfaction With Cancer Care is a valid tool for assessing satisfaction with cancer-related care for this sample. Copyright © 2010 American Cancer Society.

  9. Responsibility navigator

    NARCIS (Netherlands)

    Kuhlmann, Stefan; Edler, Jakob; Ordonez Matamoros, Hector Gonzalo; Randles, Sally; Walhout, Bart; Walhout, Bart; Gough, Clair; Lindner, Ralf; Lindner, Ralf; Kuhlmann, Stefan; Randles, Sally; Bedsted, Bjorn; Gorgoni, Guido; Griessler, Erich; Loconto, Allison; Mejlgaard, Niels

    2016-01-01

    Research and innovation activities need to become more responsive to societal challenges and concerns. The Responsibility Navigator, developed in the Res-AGorA project, supports decision-makers to govern such activities towards more conscious responsibility. What is considered “responsible” will

  10. Significance of Waterway Navigation Positioning Systems On Ship's Manoeuvring Safety

    Science.gov (United States)

    Galor, W.

    The main goal of navigation is to lead the ship to the point of destination safety and efficiently. Various factors may affect ship realisating this process. The ship movement on waterway are mainly limited by water area dimensions (surface and depth). These limitations cause the requirement to realise the proper of ship movement trajectory. In case when this re requirement cant't fulfil then marine accident may happend. This fact is unwanted event caused losses of human health and life, damage or loss of cargo and ship, pollution of natural environment, damage of port structures or blocking the port of its ports and lost of salvage operation. These losses in same cases can be catas- trophical especially while e.i. crude oil spilling could be place. To realise of safety navigation process is needed to embrace the ship's movement trajectory by waterways area. The ship's trajectory is described by manoeuvring lane as a surface of water area which is require to realise of safety ship movement. Many conditions affect to ship manoeuvring line. The main are following: positioning accuracy, ship's manoeuvring features and phenomena's of shore and ship's bulk common affecting. The accuracy of positioning system is most important. This system depends on coast navigation mark- ing which can range many kinds of technical realisation. Mainly used systems based on lights (line), radionavigation (local system or GPS, DGPS), or radars. If accuracy of positiong is higer, then safety of navigation is growing. This article presents these problems exemplifying with approaching channel to ports situated on West Pomera- nian water region.

  11. Associations between clinical outcome and navigated transcranial magnetic stimulation characteristics in patients with motor-eloquent brain lesions: a combined navigated transcranial magnetic stimulation-diffusion tensor imaging fiber tracking approach.

    Science.gov (United States)

    Sollmann, Nico; Wildschuetz, Noémie; Kelm, Anna; Conway, Neal; Moser, Tobias; Bulubas, Lucia; Kirschke, Jan S; Meyer, Bernhard; Krieg, Sandro M

    2018-03-01

    OBJECTIVE Navigated transcranial magnetic stimulation (nTMS) and diffusion tensor imaging fiber tracking (DTI FT) based on nTMS data are increasingly used for preoperative planning and resection guidance in patients suffering from motor-eloquent brain tumors. The present study explores whether nTMS-based DTI FT can also be used for individual preoperative risk assessment regarding surgery-related motor impairment. METHODS Data derived from preoperative nTMS motor mapping and subsequent nTMS-based tractography in 86 patients were analyzed. All patients suffered from high-grade glioma (HGG), low-grade glioma (LGG), or intracranial metastasis (MET). In this context, nTMS-based DTI FT of the corticospinal tract (CST) was performed at a range of fractional anisotropy (FA) levels based on an individualized FA threshold ([FAT]; tracking with 50%, 75%, and 100% FAT), which was defined as the highest FA value allowing for visualization of fibers (100% FAT). Minimum lesion-to-CST distances were measured, and fiber numbers of the reconstructed CST were assessed. These data were then correlated with the preoperative, postoperative, and follow-up status of motor function and the resting motor threshold (rMT). RESULTS At certain FA levels, a statistically significant difference in lesion-to-CST distances was observed between patients with HGG who had no impairment and those who developed surgery-related transient or permanent motor deficits (75% FAT: p = 0.0149; 100% FAT: p = 0.0233). In this context, no patient with a lesion-to-CST distance ≥ 12 mm suffered from any new surgery-related permanent paresis (50% FAT and 75% FAT). Furthermore, comparatively strong negative correlations were observed between the rMT and lesion-to-CST distances of patients with surgery-related transient paresis (Spearman correlation coefficient [r s ]; 50% FAT: r s = -0.8660; 75% FAT: r s = -0.8660) or surgery-related permanent paresis (50% FAT: r s = -0.7656; 75% FAT: r s = -0.6763). CONCLUSIONS

  12. A Qualitative Comparison between the Proportional Navigation and Differential Geometry Guidance Algorithms

    Directory of Open Access Journals (Sweden)

    Yunes Sh. ALQUDSI

    2018-06-01

    Full Text Available This paper discusses and presents an overview of the proportional navigation (PN guidance law as well as the differential geometry (DG guidance algorithm that are used to develop the intercept course of a certain target. The intent of this study is to illustrate the advantages of the guidance algorithm generated based on the concepts of differential geometry against the well-known PN guidance law. The basic principles behind the both algorithms are mentioned. Moreover, the different versions of the PN approach is briefly clarified to show the essential improvement from one version to the other. The paper terminated with numerous two-dimension simulation figures to give a great value of visual aids, illustrating the significant relations and main features and properties of both algorithms.

  13. Letting in-vehicle navigation lead the way: Older drivers' perceptions of and ability to follow a GPS navigation system.

    Science.gov (United States)

    Stinchcombe, Arne; Gagnon, Sylvain; Kateb, Matthew; Curtis, Meredith; Porter, Michelle M; Polgar, Jan; Bédard, Michel

    2017-09-01

    In-vehicle navigation systems have the potential to simplify the driving task by reducing the drivers' need to engage in wayfinding, especially in unfamiliar environments. This study sought to characterize older drivers' overall assessment of using in-vehicle GPS technology as part of a research study and to explore whether the use of this technology has an impact on participants' driving behaviour. Forty-seven older drivers completed an on-road evaluation where directions were provided by an in-vehicle GPS navigation system and their behaviour was recorded using video technology. They later completed a questionnaire to assess their perception of the navigation system. After the study, participants were grouped based on whether they were able to accurately follow the instructions provided by the navigation system. The results indicated that most drivers were satisfied with the navigation technology and found the directions it provided to be clear. There were no statistically significant differences in the number of on-road errors committed by drivers who did not follow the directions from the navigation system in comparison to drivers who did follow the directions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. 78 FR 52941 - Cooperative Research and Development Agreement: Next Generation Arctic Navigational Safety...

    Science.gov (United States)

    2013-08-27

    ... advantages, disadvantages, required technology enhancements, performance, costs, and other issues associated... technology approach to the ``Next Generation Arctic Maritime Navigational Safety Information System,'' which... Federal Technology Transfer Act of 1986 (Pub. L. 99-502, codified at 15 U.S.C. 3710(a)). A CRADA [[Page...

  15. Navigating Instructional Dialectics: Empirical Exploration of Paradox in Teaching

    Science.gov (United States)

    Thompson, Blair; Rudick, C. Kyle; Kerssen-Griep, Jeff; Golsan, Kathryn

    2018-01-01

    Navigating contradiction represents an integral part of the teaching process. While educational literature has discussed the paradoxes that teachers experience in the classroom, minimal empirical research has analyzed the strategies teachers employ to address these paradoxes. Using relational dialectics as a theoretical framework for understanding…

  16. EYE TRACKING TO EXPLORE THE IMPACTS OF PHOTOREALISTIC 3D REPRESENTATIONS IN PEDSTRIAN NAVIGATION PERFORMANCE

    Directory of Open Access Journals (Sweden)

    W. Dong

    2016-06-01

    Full Text Available Despite the now-ubiquitous two-dimensional (2D maps, photorealistic three-dimensional (3D representations of cities (e.g., Google Earth have gained much attention by scientists and public users as another option. However, there is no consistent evidence on the influences of 3D photorealism on pedestrian navigation. Whether 3D photorealism can communicate cartographic information for navigation with higher effectiveness and efficiency and lower cognitive workload compared to the traditional symbolic 2D maps remains unknown. This study aims to explore whether the photorealistic 3D representation can facilitate processes of map reading and navigation in digital environments using a lab-based eye tracking approach. Here we show the differences of symbolic 2D maps versus photorealistic 3D representations depending on users’ eye-movement and navigation behaviour data. We found that the participants using the 3D representation were less effective, less efficient and were required higher cognitive workload than using the 2D map for map reading. However, participants using the 3D representation performed more efficiently in self-localization and orientation at the complex decision points. The empirical results can be helpful to improve the usability of pedestrian navigation maps in future designs.

  17. Surgical Navigation

    DEFF Research Database (Denmark)

    Azarmehr, Iman; Stokbro, Kasper; Bell, R. Bryan

    2017-01-01

    Purpose: This systematic review investigates the most common indications, treatments, and outcomes of surgical navigation (SN) published from 2010 to 2015. The evolution of SN and its application in oral and maxillofacial surgery have rapidly developed over recent years, and therapeutic indicatio...

  18. Hybrid optical navigation by crater detection for lunar pin-point landing: trajectories from helicopter flight tests

    Science.gov (United States)

    Trigo, Guilherme F.; Maass, Bolko; Krüger, Hans; Theil, Stephan

    2018-01-01

    Accurate autonomous navigation capabilities are essential for future lunar robotic landing missions with a pin-point landing requirement, since in the absence of direct line of sight to ground control during critical approach and landing phases, or when facing long signal delays the herein before mentioned capability is needed to establish a guidance solution to reach the landing site reliably. This paper focuses on the processing and evaluation of data collected from flight tests that consisted of scaled descent scenarios where the unmanned helicopter of approximately 85 kg approached a landing site from altitudes of 50 m down to 1 m for a downrange distance of 200 m. Printed crater targets were distributed along the ground track and their detection provided earth-fixed measurements. The Crater Navigation (CNav) algorithm used to detect and match the crater targets is an unmodified method used for real lunar imagery. We analyze the absolute position and attitude solutions of CNav obtained and recorded during these flight tests, and investigate the attainable quality of vehicle pose estimation using both CNav and measurements from a tactical-grade inertial measurement unit. The navigation filter proposed for this end corrects and calibrates the high-rate inertial propagation with the less frequent crater navigation fixes through a closed-loop, loosely coupled hybrid setup. Finally, the attainable accuracy of the fused solution is evaluated by comparison with the on-board ground-truth solution of a dual-antenna high-grade GNSS receiver. It is shown that the CNav is an enabler for building autonomous navigation systems with high quality and suitability for exploration mission scenarios.

  19. Enhanced Subsea Acoustically Aided Inertial Navigation

    DEFF Research Database (Denmark)

    Jørgensen, Martin Juhl

    time is expensive so lots of effort is put into cutting down on time spent on all tasks. Accuracy demanding tasks such as subsea construction and surveying are subject to strict quality control requirements taking up a lot of time. Offshore equipment is rugged and sturdy as the environmental conditions...... are harsh, likewise should the use of it be simple and robust to ensure that it actually works. The contributions of this thesis are all focused on enhancing accuracy and time efficiency while bearing operational reliability and complexity strongly in mind. The basis of inertial navigation, the inertial...... at desired survey points; the other uses a mapping sensor such as subsea lidar to simply map the area in question. Both approaches are shown to work in practice. Generating high resolution maps, as the latter approach, is how the author anticipates all subsea surveys will be conducted in the near future....

  20. A HEURISTIC CASCADING FUZZY LOGIC APPROACH TO REACTIVE NAVIGATION FOR UAV

    Directory of Open Access Journals (Sweden)

    Yew-Chung Chak

    2014-12-01

    Full Text Available ABSTRACT: The capability of navigating Unmanned Aerial Vehicles (UAVs safely in unknown terrain offers huge potential for wider applications in non-segregated airspace. Flying in non-segregated airspace present a risk of collision with static obstacles (e.g., towers, power lines and moving obstacles (e.g., aircraft, balloons. In this work, we propose a heuristic cascading fuzzy logic control strategy to solve for the Conflict Detection and Resolution (CD&R problem, in which the control strategy is comprised of two cascading modules. The first one is Obstacle Avoidance control and the latter is Path Tracking control. Simulation results show that the proposed architecture effectively resolves the conflicts and achieve rapid movement towards the target waypoint.ABSTRAK: Keupayaan mengemudi Kenderaan Udara Tanpa Pemandu (UAV dengan selamat di kawasan yang tidak diketahui menawarkan potensi yang besar untuk aplikasi yang lebih luas dalam ruang udara yang tidak terasing. Terbang di ruang udara yang tidak terasing menimbulkan risiko perlanggaran dengan halangan statik (contohnya, menara, talian kuasa dan halangan bergerak (contohnya, pesawat udara, belon. Dalam kajian ini, kami mencadangkan satu strategi heuristik kawalan logik kabur yang melata untuk menyelesaikan masalah Pengesanan Konflik dan Penyelesaian (CD&R, di mana strategi kawalan yang terdiri daripada dua modul melata. Hasil simulasi menunjukkan bahawa seni bina yang dicadangkan berjaya menyelesaikan konflik dan mencapai penerbangan pesat ke arah titik laluan sasaran.KEYWORDS: fuzzy logic; motion planning; obstacle avoidance; path tracking; reactive navigation; UAV Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso

  1. New Control Paradigms for Resources Saving: An Approach for Mobile Robots Navigation

    Directory of Open Access Journals (Sweden)

    Rafael Socas

    2018-01-01

    Full Text Available In this work, an event-based control scheme is presented. The proposed system has been developed to solve control problems appearing in the field of Networked Control Systems (NCS. Several models and methodologies have been proposed to measure different resources consumptions. The use of bandwidth, computational load and energy resources have been investigated. This analysis shows how the parameters of the system impacts on the resources efficiency. Moreover, the proposed system has been compared with its equivalent discrete-time solution. In the experiments, an application of NCS for mobile robots navigation has been set up and its resource usage efficiency has been analysed.

  2. A Novel Online Data-Driven Algorithm for Detecting UAV Navigation Sensor Faults.

    Science.gov (United States)

    Sun, Rui; Cheng, Qi; Wang, Guanyu; Ochieng, Washington Yotto

    2017-09-29

    The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs' flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate.

  3. A Novel Online Data-Driven Algorithm for Detecting UAV Navigation Sensor Faults

    Directory of Open Access Journals (Sweden)

    Rui Sun

    2017-09-01

    Full Text Available The use of Unmanned Aerial Vehicles (UAVs has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs’ flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate.

  4. Dr Google and the consumer: a qualitative study exploring the navigational needs and online health information-seeking behaviors of consumers with chronic health conditions.

    Science.gov (United States)

    Lee, Kenneth; Hoti, Kreshnik; Hughes, Jeffery David; Emmerton, Lynne

    2014-12-02

    The abundance of health information available online provides consumers with greater access to information pertinent to the management of health conditions. This is particularly important given an increasing drive for consumer-focused health care models globally, especially in the management of chronic health conditions, and in recognition of challenges faced by lay consumers with finding, understanding, and acting on health information sourced online. There is a paucity of literature exploring the navigational needs of consumers with regards to accessing online health information. Further, existing interventions appear to be didactic in nature, and it is unclear whether such interventions appeal to consumers' needs. Our goal was to explore the navigational needs of consumers with chronic health conditions in finding online health information within the broader context of consumers' online health information-seeking behaviors. Potential barriers to online navigation were also identified. Semistructured interviews were conducted with adult consumers who reported using the Internet for health information and had at least one chronic health condition. Participants were recruited from nine metropolitan community pharmacies within Western Australia, as well as through various media channels. Interviews were audio-recorded, transcribed verbatim, and then imported into QSR NVivo 10. Two established approaches to thematic analysis were adopted. First, a data-driven approach was used to minimize potential bias in analysis and improve construct and criterion validity. A theory-driven approach was subsequently used to confirm themes identified by the former approach and to ensure identified themes were relevant to the objectives. Two levels of analysis were conducted for both data-driven and theory-driven approaches: manifest-level analysis, whereby face-value themes were identified, and latent-level analysis, whereby underlying concepts were identified. We conducted 17

  5. Total knee arthroplasty with computer-assisted navigation: an analysis of 200 cases,

    Directory of Open Access Journals (Sweden)

    Marcus Vinicius Malheiros Luzo

    2014-04-01

    Full Text Available OBJECTIVE: to evaluate the results from surgery with computer-assisted navigation in cases of total knee arthroplasty.METHOD: a total of 196 patients who underwent total knee arthroplasty with computer-assisted navigation were evaluated. The extension and flexion spaces (gaps were evaluated during the operation and the alignment after the operation was assessed. The Knee Society Score (KSS questionnaire for assessing patient's function was applied preoperatively and postoperatively after a mean follow-up of 22 months.RESULTS: in all, 86.7% of the patients presented good alignment of the mechanical axis (less than 3◦ of varus or valgus in relation to the mechanical axis and 96.4% of the patients presented balanced flexion and extension gaps. Before the operation, 97% of the patients presented poor or insufficient KSS, but after the operation, 77.6% presented good or excellent KSS.CONCLUSION: the navigation system made it possible to achieve aligned and balanced implants, with notable functional improvement among the patients. It was found to be useful in assessing, understanding and improving knowledge in relation to performing arthroplasty procedures.

  6. Fuzzy adaptive integration scheme for low-cost SINS/GPS navigation system

    Science.gov (United States)

    Nourmohammadi, Hossein; Keighobadi, Jafar

    2018-01-01

    Due to weak stand-alone accuracy as well as poor run-to-run stability of micro-electro mechanical system (MEMS)-based inertial sensors, special approaches are required to integrate low-cost strap-down inertial navigation system (SINS) with global positioning system (GPS), particularly in long-term applications. This paper aims to enhance long-term performance of conventional SINS/GPS navigation systems using a fuzzy adaptive integration scheme. The main concept behind the proposed adaptive integration is the good performance of attitude-heading reference system (AHRS) in low-accelerated motions and its degradation in maneuvered or accelerated motions. Depending on vehicle maneuvers, gravity-based attitude angles can be intelligently utilized to improve orientation estimation in the SINS. Knowledge-based fuzzy inference system is developed for decision-making between the AHRS and the SINS according to vehicle maneuvering conditions. Inertial measurements are the main input data of the fuzzy system to determine the maneuvering level during the vehicle motions. Accordingly, appropriate weighting coefficients are produced to combine the SINS/GPS and the AHRS, efficiently. The assessment of the proposed integrated navigation system is conducted via real data in airborne tests.

  7. Self-motivated visual scanning predicts flexible navigation in a virtual environment

    Directory of Open Access Journals (Sweden)

    Elisabeth Jeannette Ploran

    2014-01-01

    Full Text Available The ability to navigate flexibly (e.g., reorienting oneself based on distal landmarks to reach a learned target from a new position may rely on visual scanning during both initial experiences with the environment and subsequent test trials. Reliance on visual scanning during navigation harkens back to the concept of vicarious trial and error, a description of the side-to-side head movements made by rats as they explore previously traversed sections of a maze in an attempt to find a reward. In the current study, we examined if visual scanning predicted the extent to which participants would navigate to a learned location in a virtual environment defined by its position relative to distal landmarks. Our results demonstrated a significant positive relationship between the amount of visual scanning and participant accuracy in identifying the trained target location from a new starting position as long as the landmarks within the environment remain consistent with the period of original learning. Our findings indicate that active visual scanning of the environment is a deliberative attentional strategy that supports the formation of spatial representations for flexible navigation.

  8. GPS Navigation for the Magnetospheric Multi-Scale Mission

    Science.gov (United States)

    Bamford, William; Mitchell, Jason; Southward, Michael; Baldwin, Philip; Winternitz, Luke; Heckler, Gregory; Kurichh, Rishi; Sirotzky, Steve

    2009-01-01

    In 2014. NASA is scheduled to launch the Magnetospheric Multiscale Mission (MMS), a four-satellite formation designed to monitor fluctuations in the Earth's magnetosphere. This mission has two planned phases with different orbits (1? x 12Re and 1.2 x 25Re) to allow for varying science regions of interest. To minimize ground resources and to mitigate the probability of collisions between formation members, an on-board orbit determination system consisting of a Global Positioning System (GPS) receiver and crosslink transceiver was desired. Candidate sensors would be required to acquire GPS signals both below and above the constellation while spinning at three revolutions-per-minute (RPM) and exchanging state and science information among the constellation. The Intersatellite Ranging and Alarm System (IRAS), developed by Goddard Space Flight Center (GSFC) was selected to meet this challenge. IRAS leverages the eight years of development GSFC has invested in the Navigator GPS receiver and its spacecraft communication expertise, culminating in a sensor capable of absolute and relative navigation as well as intersatellite communication. The Navigator is a state-of-the-art receiver designed to acquire and track weak GPS signals down to -147dBm. This innovation allows the receiver to track both the main lobe and the much weaker side lobe signals. The Navigator's four antenna inputs and 24 tracking channels, together with customized hardware and software, allow it to seamlessly maintain visibility while rotating. Additionally, an extended Kalman filter provides autonomous, near real-time, absolute state and time estimates. The Navigator made its maiden voyage on the Space Shuttle during the Hubble Servicing Mission, and is scheduled to fly on MMS as well as the Global Precipitation Measurement Mission (GPM). Additionally, Navigator's acquisition engine will be featured in the receiver being developed for the Orion vehicle. The crosslink transceiver is a 1/4 Watt transmitter

  9. An Effective Terrain Aided Navigation for Low-Cost Autonomous Underwater Vehicles.

    Science.gov (United States)

    Zhou, Ling; Cheng, Xianghong; Zhu, Yixian; Dai, Chenxi; Fu, Jinbo

    2017-03-25

    Terrain-aided navigation is a potentially powerful solution for obtaining submerged position fixes for autonomous underwater vehicles. The application of terrain-aided navigation with high-accuracy inertial navigation systems has demonstrated meter-level navigation accuracy in sea trials. However, available sensors may be limited depending on the type of the mission. Such limitations, especially for low-grade navigation sensors, not only degrade the accuracy of traditional navigation systems, but further impact the ability to successfully employ terrain-aided navigation. To address this problem, a tightly-coupled navigation is presented to successfully estimate the critical sensor errors by incorporating raw sensor data directly into an augmented navigation system. Furthermore, three-dimensional distance errors are calculated, providing measurement updates through the particle filter for absolute and bounded position error. The development of the terrain aided navigation system is elaborated for a vehicle equipped with a non-inertial-grade strapdown inertial navigation system, a 4-beam Doppler Velocity Log range sensor and a sonar altimeter. Using experimental data for navigation performance evaluation in areas with different terrain characteristics, the experiment results further show that the proposed method can be successfully applied to the low-cost AUVs and significantly improves navigation performance.

  10. Data Integration from GPS and Inertial Navigation Systems for Pedestrians in Urban Area

    OpenAIRE

    Krzysztof Bikonis; Jerzy Demkowicz

    2013-01-01

    The GPS system is widely used in navigation and the GPS receiver can offer long-term stable absolute positioning information. The overall system performance depends largely on the signal environments. The position obtained from GPS is often degraded due to obstruction and multipath effect caused by buildings, city infrastructure and vegetation, whereas, the current performance achieved by inertial navigation systems (INS) is still relatively poor due to the large inertial sensor errors. The c...

  11. Navigation System of Marks Areas - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic Navigational charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  12. Learning for Autonomous Navigation

    Science.gov (United States)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Robotic ground vehicles for outdoor applications have achieved some remarkable successes, notably in autonomous highway following (Dickmanns, 1987), planetary exploration (1), and off-road navigation on Earth (1). Nevertheless, major challenges remain to enable reliable, high-speed, autonomous navigation in a wide variety of complex, off-road terrain. 3-D perception of terrain geometry with imaging range sensors is the mainstay of off-road driving systems. However, the stopping distance at high speed exceeds the effective lookahead distance of existing range sensors. Prospects for extending the range of 3-D sensors is strongly limited by sensor physics, eye safety of lasers, and related issues. Range sensor limitations also allow vehicles to enter large cul-de-sacs even at low speed, leading to long detours. Moreover, sensing only terrain geometry fails to reveal mechanical properties of terrain that are critical to assessing its traversability, such as potential for slippage, sinkage, and the degree of compliance of potential obstacles. Rovers in the Mars Exploration Rover (MER) mission have got stuck in sand dunes and experienced significant downhill slippage in the vicinity of large rock hazards. Earth-based off-road robots today have very limited ability to discriminate traversable vegetation from non-traversable vegetation or rough ground. It is impossible today to preprogram a system with knowledge of these properties for all types of terrain and weather conditions that might be encountered.

  13. Navigating in higher education

    DEFF Research Database (Denmark)

    Thingholm, Hanne Balsby; Reimer, David; Keiding, Tina Bering

    Denne rapport er skrevet på baggrund af spørgeskemaundersøgelsen – Navigating in Higher Education (NiHE) – der rummer besvarelser fra 1410 bachelorstuderende og 283 undervisere fordelt på ni uddannelser fra Aarhus Universitet: Uddannelsesvidenskab, Historie, Nordisk sprog og litteratur, Informati......Denne rapport er skrevet på baggrund af spørgeskemaundersøgelsen – Navigating in Higher Education (NiHE) – der rummer besvarelser fra 1410 bachelorstuderende og 283 undervisere fordelt på ni uddannelser fra Aarhus Universitet: Uddannelsesvidenskab, Historie, Nordisk sprog og litteratur...

  14. THE ROLE OF NAVIGATIONAL AIDS IN FLIGHT SAFETY MANAGEMENT WITHIN ICAO GLOBAL AIR NAVIGATION PLAN

    Directory of Open Access Journals (Sweden)

    Vadim V. Vurobyov

    2017-01-01

    Full Text Available The development of the global civil aviation is provided on the basis of the ICAO Communication and Surveillance/Air Traffic Management Concept, which has determined the basic strategy for further commercial flight management effectiveness improvement. On the basis of this concept a Global Air Navigation Plan has been developed by ICAO recently. The core strategies of CNS/ATM concept were specified and combined into so-called blocks. Thus the term Global Aviation System block upgrade has been introduced. At the same time, GANP states that the introduction of new procedures and flight management systems will inevitably affect flight safety. Accordingly, there is a task of flight safety management level maintaining, or even increasing within the Global Air Navigation Plan implementation. Various air navigational aids play a significant role in the process as they are directly associated with the new systems and structures introduction.This breeds the new global challenge of flight safety management level change assessment during the introduction of new procedures and systems connected with the use of both navigational aids and instruments. Some aspects of this problem solution are covered in the article.

  15. The Use of the Lead and Line by Early Navigators in the North Sea?

    Directory of Open Access Journals (Sweden)

    John Kemp

    2014-12-01

    Full Text Available This paper draws attention to the lack of information as to how early North Sea sailors navigated, particularly during the one thousand year period that followed Roman times. The lead and line was the only navigational aid available for most of this period, but there is little recorded as to whether it was used simply for ensuring a ship or boat had enough water to proceed or whether, together with the knowledge it provided of the nature of the sea bed, it was used as a more positive position fixing device. The author would appreciate any information relating to navigation techniques used during this period.

  16. GPS Navigation and Tracking Device

    Directory of Open Access Journals (Sweden)

    Yahya Salameh Khraisat

    2011-10-01

    Full Text Available Since the introduction of GPS Navigation systems in the marketplace, consumers and businesses have been coming up with innovative ways to use the technology in their everyday life. GPS Navigation and Tracking systems keep us from getting lost when we are in strange locations, they monitor children when they are away from home, keep track of business vehicles and can even let us know where a philandering partner is at all times. Because of this we attend to build a GPS tracking device to solve the mentioned problems. Our work consists of the GPS module that collects data from satellites and calculates the position information before transmitting them to the user’s PC (of Navigation system or observers (of Tracking System using wireless technology (GSM.

  17. Amblypygids: Model Organisms for the Study of Arthropod Navigation Mechanisms in Complex Environments?

    Directory of Open Access Journals (Sweden)

    Daniel D Wiegmann

    2016-03-01

    Full Text Available Navigation is an ideal behavioral model for the study of sensory system integration and the neural substrates associated with complex behavior. For this broader purpose, however, it may be profitable to develop new model systems that are both tractable and sufficiently complex to ensure that information derived from a single sensory modality and path integration are inadequate to locate a goal. Here, we discuss some recent discoveries related to navigation by amblypygids, nocturnal arachnids that inhabit the tropics and sub-tropics. Nocturnal displacement experiments under the cover of a tropical rainforest reveal that these animals possess navigational abilities that are reminiscent, albeit on a smaller spatial scale, of true-navigating vertebrates. Specialized legs, called antenniform legs, which possess hundreds of olfactory and tactile sensory hairs, and vision appear to be involved. These animals also have enormous mushroom bodies, higher-order brain regions that, in insects, integrate contextual cues and may be involved in spatial memory. In amblypygids, the complexity of a nocturnal rainforest may impose navigational challenges that favor the integration of information derived from multimodal cues. Moreover, the movement of these animals is easily studied in the laboratory and putative neural integration sites of sensory information can be manipulated. Thus, amblypygids could serve as a model system for the discovery of neural substrates associated with a unique and potentially sophisticated navigational capability. The diversity of habitats in which amblypygids are found also offers an opportunity for comparative studies of sensory integration and ecological selection pressures on navigation mechanisms.

  18. Building a grid-semantic map for the navigation of service robots through human–robot interaction

    Directory of Open Access Journals (Sweden)

    Cheng Zhao

    2015-11-01

    Full Text Available This paper presents an interactive approach to the construction of a grid-semantic map for the navigation of service robots in an indoor environment. It is based on the Robot Operating System (ROS framework and contains four modules, namely Interactive Module, Control Module, Navigation Module and Mapping Module. Three challenging issues have been focused during its development: (i how human voice and robot visual information could be effectively deployed in the mapping and navigation process; (ii how semantic names could combine with coordinate data in an online Grid-Semantic map; and (iii how a localization–evaluate–relocalization method could be used in global localization based on modified maximum particle weight of the particle swarm. A number of experiments are carried out in both simulated and real environments such as corridors and offices to verify its feasibility and performance.

  19. Navigation in musculoskeletal oncology: An overview

    Directory of Open Access Journals (Sweden)

    Guy Vernon Morris

    2018-01-01

    Full Text Available Navigation in surgery has increasingly become more commonplace. The use of this technological advancement has enabled ever more complex and detailed surgery to be performed to the benefit of surgeons and patients alike. This is particularly so when applying the use of navigation within the field of orthopedic oncology. The developments in computer processing power coupled with the improvements in scanning technologies have permitted the incorporation of navigational procedures into day-to-day practice. A comprehensive search of PubMed using the search terms “navigation”, “orthopaedic” and “oncology” yielded 97 results. After filtering for English language papers, excluding spinal surgery and review articles, this resulted in 38 clinical studies and case reports. These were analyzed in detail by the authors (GM and JS and the most relevant papers reviewed. We have sought to provide an overview of the main types of navigation systems currently available within orthopedic oncology and to assess some of the evidence behind its use.

  20. Visual navigation in insects: coupling of egocentric and geocentric information

    Science.gov (United States)

    Wehner; Michel; Antonsen

    1996-01-01

    Social hymenopterans such as bees and ants are central-place foragers; they regularly depart from and return to fixed positions in their environment. In returning to the starting point of their foraging excursion or to any other point, they could resort to two fundamentally different ways of navigation by using either egocentric or geocentric systems of reference. In the first case, they would rely on information continuously collected en route (path integration, dead reckoning), i.e. integrate all angles steered and all distances covered into a mean home vector. In the second case, they are expected, at least by some authors, to use a map-based system of navigation, i.e. to obtain positional information by virtue of the spatial position they occupy within a larger environmental framework. In bees and ants, path integration employing a skylight compass is the predominant mechanism of navigation, but geocentred landmark-based information is used as well. This information is obtained while the animal is dead-reckoning and, hence, added to the vector course. For example, the image of the horizon skyline surrounding the nest entrance is retinotopically stored while the animal approaches the goal along its vector course. As shown in desert ants (genus Cataglyphis), there is neither interocular nor intraocular transfer of landmark information. Furthermore, this retinotopically fixed, and hence egocentred, neural snapshot is linked to an external (geocentred) system of reference. In this way, geocentred information might more and more complement and potentially even supersede the egocentred information provided by the path-integration system. In competition experiments, however, Cataglyphis never frees itself of its homeward-bound vector - its safety-line, so to speak - by which it is always linked to home. Vector information can also be transferred to a longer-lasting (higher-order) memory. There is no need to invoke the concept of the mental analogue of a topographic

  1. Angles-only relative orbit determination in low earth orbit

    Science.gov (United States)

    Ardaens, Jean-Sébastien; Gaias, Gabriella

    2018-06-01

    The paper provides an overview of the angles-only relative orbit determination activities conducted to support the Autonomous Vision Approach Navigation and Target Identification (AVANTI) experiment. This in-orbit endeavor was carried out by the German Space Operations Center (DLR/GSOC) in autumn 2016 to demonstrate the capability to perform spaceborne autonomous close-proximity operations using solely line-of-sight measurements. The images collected onboard have been reprocessed by an independent on-ground facility for precise relative orbit determination, which served as ultimate instance to monitor the formation safety and to characterize the onboard navigation and control performances. During two months, several rendezvous have been executed, generating a valuable collection of images taken at distances ranging from 50 km to only 50 m. Despite challenging experimental conditions characterized by a poor visibility and strong orbit perturbations, angles-only relative positioning products could be continuously derived throughout the whole experiment timeline, promising accuracy at the meter level during the close approaches. The results presented in the paper are complemented with former angles-only experience gained with the PRISMA satellites to better highlight the specificities induced by different orbits and satellite designs.

  2. Establishment of high-precision navigation system in the Republic of Armenia

    Directory of Open Access Journals (Sweden)

    Manukyan Larisa Vladimirovna

    2015-04-01

    Full Text Available Medium-Earth orbit satellite systems make it possible to provide services on time coordination and navigation support for a wide range of consumers. At present, there are global navigation satellite systems GLONASS (Russia and GPS (USA. Users of these systems have an opportunity to determine their location accurately with the given characteristics of their navigation devices. In all developed countries the progress of geodesy and cartography is closely related to the implementation of advanced new technologies in both scientific and industrial areas. The introduction of new technologies and equipment in production is essential for the development of geodesy and cartography, bringing the existing geodetic networks and cartographic materials to modern condition. In the Republic of Armenia there are also plans on introduction of the systems for monitoring and management of vehicles for various purposes, as well as it is proposed to establish and implement an effective satellite navigation system to monitor and control traffic on the basis of advanced satellite technology. The article describes the basic steps to create the network of reference stations, GPS, aerial photography of much of the territory of Armenia, the creation of digital terrain model and the new maps by orthophotoplans. The analysis of the materials were carried out, on the basis of which in the Republic in 2015 a high-precision navigation system will be created. Due to the hard work of surveyors, cartographers and topographers the Republic was brought to European states level.

  3. Growing Homophilic Networks Are Natural Navigable Small Worlds.

    Science.gov (United States)

    Malkov, Yury A; Ponomarenko, Alexander

    2016-01-01

    Navigability, an ability to find a logarithmically short path between elements using only local information, is one of the most fascinating properties of real-life networks. However, the exact mechanism responsible for the formation of navigation properties remained unknown. We show that navigability can be achieved by using only two ingredients present in the majority of networks: network growth and local homophily, giving a persuasive answer how the navigation appears in real-life networks. A very simple algorithm produces hierarchical self-similar optimally wired navigable small world networks with exponential degree distribution by using only local information. Adding preferential attachment produces a scale-free network which has shorter greedy paths, but worse (power law) scaling of the information extraction locality (algorithmic complexity of a search). Introducing saturation of the preferential attachment leads to truncated scale-free degree distribution that offers a good tradeoff between these parameters and can be useful for practical applications. Several features of the model are observed in real-life networks, in particular in the brain neural networks, supporting the earlier suggestions that they are navigable.

  4. Growing Homophilic Networks Are Natural Navigable Small Worlds.

    Directory of Open Access Journals (Sweden)

    Yury A Malkov

    Full Text Available Navigability, an ability to find a logarithmically short path between elements using only local information, is one of the most fascinating properties of real-life networks. However, the exact mechanism responsible for the formation of navigation properties remained unknown. We show that navigability can be achieved by using only two ingredients present in the majority of networks: network growth and local homophily, giving a persuasive answer how the navigation appears in real-life networks. A very simple algorithm produces hierarchical self-similar optimally wired navigable small world networks with exponential degree distribution by using only local information. Adding preferential attachment produces a scale-free network which has shorter greedy paths, but worse (power law scaling of the information extraction locality (algorithmic complexity of a search. Introducing saturation of the preferential attachment leads to truncated scale-free degree distribution that offers a good tradeoff between these parameters and can be useful for practical applications. Several features of the model are observed in real-life networks, in particular in the brain neural networks, supporting the earlier suggestions that they are navigable.

  5. The Evolution of an Innovative Community-Engaged Health Navigator Program to Address Social Determinants of Health.

    Science.gov (United States)

    Page-Reeves, Janet; Moffett, Maurice L; Steimel, Leah; Smith, Daryl T

    Health navigators and other types of community health workers (CHWs) have become recognized as essential components of quality care, and key for addressing health disparities owing to the complex health care services landscape presents almost insurmountable challenges for vulnerable individuals. Bernalillo County, New Mexico, has high rates of uninsurance, poverty, and food insecurity. The design of the Pathways to a Healthy Bernalillo County Program (BP) has evolved innovations that are unique in terms of program stability and security, expansive reach, and community capacity across six domains: sustainable public mechanism for program funding, involvement of community organizations in designing the program, expanded focus to address the broader social determinants of health with targeted outreach, an integrated, community-based implementation structure, an outcomes-based payment structure, and using an adaptive program design that actively incorporates navigators in the process. In 2008, the Pathways to a Healthy Bernalillo County Program (BP), located in the Albuquerque metropolitan area in central New Mexico, was established to provide navigation and support for the most vulnerable county residents. BP is funded through a 1% carve out of county mill levy funds. The pathways model is an outcome-based approach for health and social services coordination that uses culturally competent CHW as "navigators" trained to connect at-risk individuals to needed health and social services. One of the important innovations of the pathways approach is a shift in focus from merely providing discrete services to confirming healthy outcomes for the individual patient.

  6. Comparative study of navigated versus freehand osteochondral graft transplantation of the knee.

    Science.gov (United States)

    Koulalis, Dimitrios; Di Benedetto, Paolo; Citak, Mustafa; O'Loughlin, Padhraig; Pearle, Andrew D; Kendoff, Daniel O

    2009-04-01

    Osteochondral lesions are a common sports-related injury for which osteochondral grafting, including mosaicplasty, is an established treatment. Computer navigation has been gaining popularity in orthopaedic surgery to improve accuracy and precision. Navigation improves angle and depth matching during harvest and placement of osteochondral grafts compared with conventional freehand open technique. Controlled laboratory study. Three cadaveric knees were used. Reference markers were attached to the femur, tibia, and donor/recipient site guides. Fifteen osteochondral grafts were harvested and inserted into recipient sites with computer navigation, and 15 similar grafts were inserted freehand. The angles of graft removal and placement as well as surface congruity (graft depth) were calculated for each surgical group. The mean harvesting angle at the donor site using navigation was 4 degrees (standard deviation, 2.3 degrees ; range, 1 degrees -9 degrees ) versus 12 degrees (standard deviation, 5.5 degrees ; range, 5 degrees -24 degrees ) using freehand technique (P standard deviation, 2.1 degrees ; range, 0 degrees -9 degrees ) versus 10.7 degrees (standard deviation, 4.9 degrees ; range, 2 degrees -17 degrees ) in freehand (P standard deviation, 2.0 degrees ; range, 1 degrees -9 degrees ) versus 10.6 degrees (standard deviation, 4.4 degrees ; range, 3 degrees -17 degrees ) with freehand technique (P = .0001). The mean height of plug protrusion under navigation was 0.3 mm (standard deviation, 0.2 mm; range, 0-0.6 mm) versus 0.5 mm (standard deviation, 0.3 mm; range, 0.2-1.1 mm) using a freehand technique (P = .0034). Significantly greater accuracy and precision were observed in harvesting and placement of the osteochondral grafts in the navigated procedures. Clinical studies are needed to establish a benefit in vivo. Improvement in the osteochondral harvest and placement is desirable to optimize clinical outcomes. Navigation shows great potential to improve both harvest

  7. Development of a prototype real-time automated filter for operational deep space navigation

    Science.gov (United States)

    Masters, W. C.; Pollmeier, V. M.

    1994-01-01

    Operational deep space navigation has been in the past, and is currently, performed using systems whose architecture requires constant human supervision and intervention. A prototype for a system which allows relatively automated processing of radio metric data received in near real-time from NASA's Deep Space Network (DSN) without any redesign of the existing operational data flow has been developed. This system can allow for more rapid response as well as much reduced staffing to support mission navigation operations.

  8. Switching from reaching to navigation: differential cognitive strategies for spatial memory in children and adults.

    Science.gov (United States)

    Belmonti, Vittorio; Cioni, Giovanni; Berthoz, Alain

    2015-07-01

    Navigational and reaching spaces are known to involve different cognitive strategies and brain networks, whose development in humans is still debated. In fact, high-level spatial processing, including allocentric location encoding, is already available to very young children, but navigational strategies are not mature until late childhood. The Magic Carpet (MC) is a new electronic device translating the traditional Corsi Block-tapping Test (CBT) to navigational space. In this study, the MC and the CBT were used to assess spatial memory for navigation and for reaching, respectively. Our hypothesis was that school-age children would not treat MC stimuli as navigational paths, assimilating them to reaching sequences. Ninety-one healthy children aged 6 to 11 years and 18 adults were enrolled. Overall short-term memory performance (span) on both tests, effects of sequence geometry, and error patterns according to a new classification were studied. Span increased with age on both tests, but relatively more in navigational than in reaching space, particularly in males. Sequence geometry specifically influenced navigation, not reaching. The number of body rotations along the path affected MC performance in children more than in adults, and in women more than in men. Error patterns indicated that navigational sequences were increasingly retained as global paths across development, in contrast to separately stored reaching locations. A sequence of spatial locations can be coded as a navigational path only if a cognitive switch from a reaching mode to a navigation mode occurs. This implies the integration of egocentric and allocentric reference frames, of visual and idiothetic cues, and access to long-term memory. This switch is not yet fulfilled at school age due to immature executive functions. © 2014 John Wiley & Sons Ltd.

  9. Ego-motion based on EM for bionic navigation

    Science.gov (United States)

    Yue, Xiaofeng; Wang, L. J.; Liu, J. G.

    2015-12-01

    Researches have proved that flying insects such as bees can achieve efficient and robust flight control, and biologists have explored some biomimetic principles regarding how they control flight. Based on those basic studies and principles acquired from the flying insects, this paper proposes a different solution of recovering ego-motion for low level navigation. Firstly, a new type of entropy flow is provided to calculate the motion parameters. Secondly, EKF, which has been used for navigation for some years to correct accumulated error, and estimation-Maximization, which is always used to estimate parameters, are put together to determine the ego-motion estimation of aerial vehicles. Numerical simulation on MATLAB has proved that this navigation system provides more accurate position and smaller mean absolute error than pure optical flow navigation. This paper has done pioneering work in bionic mechanism to space navigation.

  10. LOG: Analyzing navigation trough a tutorial of Radiation Protection

    International Nuclear Information System (INIS)

    Vega, J. M.; Pena, J. J.; Rossell, M. A.; Calvo, J. L.

    2003-01-01

    Every day, the number of didactic materials presented through Internet, is greater. However, we have not effective tools to obtain the potential academic yield of such a media. The complexity of the Internet protocols, in spite of the easy handling, makes it almost impossible. In this work, a didactic tool to analyse graphically the navigation through a tutorial on radiation protection is presented. For its visualisation, some subjects related with the biogical effects of radiation and with radiological quantities and units have been selected. The graphical representation shows the tour travelled by the user, in our case students of Medicine, and the time employed in eyeing each one of the nodes. The answers to problems about the contents of each node and its graphical representation in the navigation map allow us to follow the learning progress of the students as well as their standard of navigation. The graphical representation analysis of multiple users permits to detect some of the mistakes in the design of the tutorial and to suggest to the author a method for amending these mistakes. The system is developed on LINEX, but it is easily adaptable to other operating systems. (Author) 7 refs

  11. KIN-Nav navigation system for kinematic assessment in anterior cruciate ligament reconstruction: features, use, and perspectives.

    Science.gov (United States)

    Martelli, S; Zaffagnini, S; Bignozzi, S; Lopomo, N F; Iacono, F; Marcacci, M

    2007-10-01

    In this paper a new navigation system, KIN-Nav, developed for research and used during 80 anterior cruciate ligament (ACL) reconstructions is described. KIN-Nav is a user-friendly navigation system for flexible intraoperative acquisitions of anatomical and kinematic data, suitable for validation of biomechanical hypotheses. It performs real-time quantitative evaluation of antero-posterior, internal-external, and varus-valgus knee laxity at any degree of flexion and provides a new interface for this task, suitable also for comparison of pre-operative and post-operative knee laxity and surgical documentation. In this paper the concept and features of KIN-Nav, which represents a new approach to navigation and allows the investigation of new quantitative measurements in ACL reconstruction, are described. Two clinical studies are reported, as examples of clinical potentiality and correct use of this methodology. In this paper a preliminary analysis of KIN-Nav's reliability and clinical efficacy, performed during blinded repeated measures by three independent examiners, is also given. This analysis is the first assessment of the potential of navigation systems for evaluating knee kinematics.

  12. Social Network Structures of Breast Cancer Patients and the Contributing Role of Patient Navigators.

    Science.gov (United States)

    Gunn, Christine M; Parker, Victoria A; Bak, Sharon M; Ko, Naomi; Nelson, Kerrie P; Battaglia, Tracy A

    2017-08-01

    Minority women in the U.S. continue to experience inferior breast cancer outcomes compared with white women, in part due to delays in care delivery. Emerging cancer care delivery models like patient navigation focus on social barriers, but evidence demonstrating how these models increase social capital is lacking. This pilot study describes the social networks of newly diagnosed breast cancer patients and explores the contributing role of patient navigators. Twenty-five women completed a one hour interview about their social networks related to cancer care support. Network metrics identified important structural attributes and influential individuals. Bivariate associations between network metrics, type of network, and whether the network included a navigator were measured. Secondary analyses explored associations between network structures and clinical outcomes. We identified three types of networks: kin-based, role and/or affect-based, or heterogeneous. Network metrics did not vary significantly by network type. There was a low prevalence of navigators included in the support networks (25%). Network density scores were significantly higher in those networks without a navigator. Network metrics were not predictive of clinical outcomes in multivariate models. Patient navigators were not frequently included in support networks, but provided distinctive types of support. If navigators can identify patients with poorly integrated (less dense) social networks, or who have unmet tangible support needs, the intensity of navigation services could be tailored. Services and systems that address gaps and variations in patient social networks should be explored for their potential to reduce cancer health disparities. This study used a new method to identify the breadth and strength of social support following a diagnosis of breast cancer, especially examining the role of patient navigators in providing support. While navigators were only included in one quarter of patient

  13. Rosetta Star Tracker and Navigation Camera

    DEFF Research Database (Denmark)

    Thuesen, Gøsta

    1998-01-01

    Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera.......Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera....

  14. Fuzzy Behavior Modulation with Threshold Activation for Autonomous Vehicle Navigation

    Science.gov (United States)

    Tunstel, Edward

    2000-01-01

    This paper describes fuzzy logic techniques used in a hierarchical behavior-based architecture for robot navigation. An architectural feature for threshold activation of fuzzy-behaviors is emphasized, which is potentially useful for tuning navigation performance in real world applications. The target application is autonomous local navigation of a small planetary rover. Threshold activation of low-level navigation behaviors is the primary focus. A preliminary assessment of its impact on local navigation performance is provided based on computer simulations.

  15. 76 FR 27337 - Houston/Galveston Navigation Safety Advisory Committee

    Science.gov (United States)

    2011-05-11

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2010-1116] Houston/Galveston Navigation Safety...: The Houston/Galveston Navigation Safety Advisory Committee postponed its originally scheduled February... Houston Ship Channel, and various other navigation safety matters in the Galveston Bay area. The meeting...

  16. Visual Guided Navigation

    National Research Council Canada - National Science Library

    Banks, Martin

    1999-01-01

    .... Similarly, the problem of visual navigation is the recovery of an observer's self-motion with respect to the environment from the moving pattern of light reaching the eyes and the complex of extra...

  17. Surgical treatment of diastematomyelia using ct-based navigation system (case report

    Directory of Open Access Journals (Sweden)

    S. V. Vissarionov

    2013-01-01

    Full Text Available The authors presented the clinical observation of the patient 14 years old with congenital malformation of the spinal canal associated with congenital scoliosis and multiple vertebral malformations. The main congenital malformation was diastematomyelia type I at level Th11-Th12, fixed spinal cord syndrome and flail legs. The surgery was performed in the following way: removal of the bone septum of the spinal canal and elimination of the spinal cord fixation using 3D computer navigation. Using 3D navigation allowed exactly to detect the location of the bone septum, creating conditions for reducing the extent of surgical access and minimizing the area of the approach to the same bone spicules. These factors allowed to manage in postoperative period without additional external orthotics. The observation period for patients was 1 year 7 months after surgery.

  18. Social power and approach-related neural activity.

    Science.gov (United States)

    Boksem, Maarten A S; Smolders, Ruud; De Cremer, David

    2012-06-01

    It has been argued that power activates a general tendency to approach whereas powerlessness activates a tendency to inhibit. The assumption is that elevated power involves reward-rich environments, freedom and, as a consequence, triggers an approach-related motivational orientation and attention to rewards. In contrast, reduced power is associated with increased threat, punishment and social constraint and thereby activates inhibition-related motivation. Moreover, approach motivation has been found to be associated with increased relative left-sided frontal brain activity, while withdrawal motivation has been associated with increased right sided activations. We measured EEG activity while subjects engaged in a task priming either high or low social power. Results show that high social power is indeed associated with greater left-frontal brain activity compared to low social power, providing the first neural evidence for the theory that high power is associated with approach-related motivation. We propose a framework accounting for differences in both approach motivation and goal-directed behaviour associated with different levels of power.

  19. Tinnitus Patient Navigator

    Science.gov (United States)

    ... Cure About Us Initiatives News & Events Professional Resources Tinnitus Patient Navigator Want to get started on the ... unique and may require a different treatment workflow. Tinnitus Health-Care Providers If you, or someone you ...

  20. Ground-Based Global Navigation Satellite System GLONASS (GLObal NAvigation Satellite System) Combined Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLONASS Combined Broadcast Ephemeris Data (daily files of all distinct navigation...

  1. 33 CFR 207.580 - Buffalo Harbor, N.Y.; use, administration, and navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Buffalo Harbor, N.Y.; use, administration, and navigation. 207.580 Section 207.580 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.580 Buffalo Harbor, N.Y.; use...

  2. Evaluation of the Terminal Sequencing and Spacing System for Performance Based Navigation Arrivals

    Science.gov (United States)

    Thipphavong, Jane; Jung, Jaewoo; Swenson, Harry N.; Martin, Lynne; Lin, Melody; Nguyen, Jimmy

    2013-01-01

    NASA has developed the Terminal Sequencing and Spacing (TSS) system, a suite of advanced arrival management technologies combining timebased scheduling and controller precision spacing tools. TSS is a ground-based controller automation tool that facilitates sequencing and merging arrivals that have both current standard ATC routes and terminal Performance-Based Navigation (PBN) routes, especially during highly congested demand periods. In collaboration with the FAA and MITRE's Center for Advanced Aviation System Development (CAASD), TSS system performance was evaluated in human-in-the-loop (HITL) simulations with currently active controllers as participants. Traffic scenarios had mixed Area Navigation (RNAV) and Required Navigation Performance (RNP) equipage, where the more advanced RNP-equipped aircraft had preferential treatment with a shorter approach option. Simulation results indicate the TSS system achieved benefits by enabling PBN, while maintaining high throughput rates-10% above baseline demand levels. Flight path predictability improved, where path deviation was reduced by 2 NM on average and variance in the downwind leg length was 75% less. Arrivals flew more fuel-efficient descents for longer, spending an average of 39 seconds less in step-down level altitude segments. Self-reported controller workload was reduced, with statistically significant differences at the p less than 0.01 level. The RNP-equipped arrivals were also able to more frequently capitalize on the benefits of being "Best-Equipped, Best- Served" (BEBS), where less vectoring was needed and nearly all RNP approaches were conducted without interruption.

  3. Navigation system for interstitial brachytherapy

    International Nuclear Information System (INIS)

    Strassmann, G.; Kolotas, C.; Heyd, R.

    2000-01-01

    The purpose of the stud was to develop a computed tomography (CT) based electromagnetic navigation system for interstitial brachytherapy. This is especially designed for situations when needles have to be positioned adjacent to or within critical anatomical structures. In such instances interactive 3D visualisation of the needle positions is essential. The material consisted of a Polhemus electromagnetic 3D digitizer, a Pentium 200 MHz laptop and a voice recognition for continuous speech. In addition, we developed an external reference system constructed of Perspex which could be positioned above the tumour region and attached to the patient using a non-invasive fixation method. A specially designed needle holder and patient bed were also developed. Measurements were made on a series of phantoms in order to study the efficacy and accuracy of the navigation system. The mean navigation accuracy of positioning the 20.0 cm length metallic needles within the phantoms was in the range 2.0-4.1 mm with a maximum of 5.4 mm. This is an improvement on the accuracy of a CT-guided technique which was in the range 6.1-11.3 mm with a maximum of 19.4 mm. The mean reconstruction accuracy of the implant geometry was 3.2 mm within a non-ferromagnetic environment. We found that although the needles were metallic this did not have a significant influence. We also found for our experimental setups that the CT table and operation table non-ferromagnetic parts had no significant influence on the navigation accuracy. This navigation system will be a very useful clinical tool for interstitial brachytherapy applications, particularly when critical structures have to be avoided. It also should provide a significant improvement on our existing technique

  4. Benefits of multisensory presentation on perception, memory and navigation

    NARCIS (Netherlands)

    Philippi, T.G.|info:eu-repo/dai/nl/313711577

    2012-01-01

    Navigation is the process of planning and following routes to travel from the current location to a target location. In comparison with real world navigation, we have considerable difficulty with navigation in virtual environments. An important cause is that less information is presented in a

  5. DESIGN OF ROBUST NAVIGATION AND STABILIZATION LOOPS OF PRECISION ATTITUDE AND HEADING REFERENCE SYSTEM

    Directory of Open Access Journals (Sweden)

    Olha Sushchenko

    2017-11-01

    Full Text Available Purpose: The paper focuses on problems of design of robust precision attitude and heading reference systems, which can be applied in navigation of marine vehicles. The main goal is to create the optimization procedures for design of navigation and stabilization loops of the multimode gimballed system. The optimization procedure of the navigation loop design is based on the parametric robust H2/H∞-optimization. The optimization procedure of the stabilization loop design is based on the robust structural H∞-synthesis. Methods: To solve the given problem the methods of the robust control system theory and optimization methods are used. Results: The kinematical scheme of the precision gimballed attitude and heading reference system is represented. The parametrical optimization algorithm taking into consideration features of the researched system is given. Method of the mixed sensitivity relative to the researched system design is analyzed. Coefficients of the control laws of navigation loops are obtained based on optimization procedure providing compromise between accuracy and robustness. The robust controller of the stabilization loop was developed based on robust structural synthesis using method of the mixed sensitivity. Simulation of navigation and stabilization processes is carried out. Conclusions: The represented results prove efficiency of the proposed procedures, which can be useful for design of precision navigation systems of the moving vehicles.

  6. Target Tracking with Sensor Navigation Using Coupled RSS and AoA Measurements

    Directory of Open Access Journals (Sweden)

    Slavisa Tomic

    2017-11-01

    Full Text Available This work addresses the problem of tracking a signal-emitting mobile target in wireless sensor networks (WSNs with navigated mobile sensors. The sensors are properly equipped to acquire received signal strength (RSS and angle of arrival (AoA measurements from the received signal, while the target transmit power is assumed not known. We start by showing how to linearize the highly non-linear measurement model. Then, by employing a Bayesian approach, we combine the linearized observation model with prior knowledge extracted from the state transition model. Based on the maximum a posteriori (MAP principle and the Kalman filtering (KF framework, we propose new MAP and KF algorithms, respectively. We also propose a simple and efficient mobile sensor navigation procedure, which allows us to further enhance the estimation accuracy of our algorithms with a reduced number of sensors. Model flaws, which result in imperfect knowledge about the path loss exponent (PLE and the true mobile sensors’ locations, are taken into consideration. We have carried out an extensive simulation study, and our results confirm the superiority of the proposed algorithms, as well as the effectiveness of the proposed navigation routine.

  7. 3D-navigation for interstitial stereotactic brachytherapy; 3D-Navigation in der interstitiellen stereotaktischen Brachytherapie

    Energy Technology Data Exchange (ETDEWEB)

    Auer, T.; Hensler, E.; Eichberger, P.; Bluhm, A.; Lukas, P. [Innsbruck Univ. (Austria). Klinik fuer Strahlentherapie und Radioonkologie; Gunkel, A.; Freysinger, W.; Bale, R.; Thumfart, W.F. [Innsbruck Univ. (Austria). Klinik fuer HNO-Krankheiten; Gaber, O. [Innsbruck Univ. (Austria). Inst. fuer Anatomie

    1998-02-01

    The aim of this paper is to describe the adaption of 3D-navigation for interstitial brachytherapy. The new method leads to prospective and therefore improved planning of the therapy (position of the needle and dose distribution) and to the possibility of a virtual simulation (control if vessels or nerves are on the pathway of the needle). The EasyGuide Neuro {sup trademark} navigation system (Philips) was adapted in the way, that needles for interstitial bracachytherapy were made connectable to the pointer and correctly displayed on the screen. To determine the positioning accuracy, several attempts were performed to hit defined targets on phantoms. Two methods were used: `Free navigation`, where the needle was under control of the navigation system, and the `guided navigation` where an aligned template was used additionally to lead the needle to the target. In addition a mask system was tested, whether it met the requirements of stable and reproducible positioning. The potential of applying this method is clinical practice was tested with an anatomical specimen. About 91% of all attempts lied within 5 mm. There were even better results on the more rigid table (94%<4 mm). No difference could be seen between both application methods (`free navigation` and `navigation with template`), they showed the same accuracy. (orig./MG) [Deutsch] Es war das Ziel dieser Arbeit, ein 3D-Infrarotnavigationssystem fuer die Anforderungen der interstitiellen stereotaktischen Brachytherapie zu adaptieren. Damit wird die Planung der Therapie verbessert (prospektive Planung der Nadelpositionen und der Dosisverteilung), und eine virtuelle Simulation wird realisierbar (Kontrolle des vorgeplanten Zugangs bezueglich Verletzungsmoeglichkeit von Gefaessen oder Nerven). Das EasyGuide-Neuro {sup trademark} -Navigagationssystem (Philips) wurde so veraendert, dass Nadeln, die in der Brachytherapie Verwendung finden, am Pointer befestigt werden konnten und am Bildschirm angezeigt wurden. Um die

  8. Orion Exploration Flight Test-l (EFT -1) Absolute Navigation Design

    Science.gov (United States)

    Sud, Jastesh; Gay, Robert; Holt, Greg; Zanetti, Renato

    2014-01-01

    Scheduled to launch in September 2014 atop a Delta IV Heavy from the Kennedy Space Center, the Orion Multi-Purpose-Crew-Vehicle (MPCV's) maiden flight dubbed "Exploration Flight Test -1" (EFT-1) intends to stress the system by placing the uncrewed vehicle on a high-energy parabolic trajectory replicating conditions similar to those that would be experienced when returning from an asteroid or a lunar mission. Unique challenges associated with designing the navigation system for EFT-1 are presented in the narrative with an emphasis on how redundancy and robustness influenced the architecture. Two Inertial Measurement Units (IMUs), one GPS receiver and three barometric altimeters (BALTs) comprise the navigation sensor suite. The sensor data is multiplexed using conventional integration techniques and the state estimate is refined by the GPS pseudorange and deltarange measurements in an Extended Kalman Filter (EKF) that employs the UDUT decomposition approach. The design is substantiated by simulation results to show the expected performance.

  9. Survey of computer vision technology for UVA navigation

    Science.gov (United States)

    Xie, Bo; Fan, Xiang; Li, Sijian

    2017-11-01

    Navigation based on computer version technology, which has the characteristics of strong independence, high precision and is not susceptible to electrical interference, has attracted more and more attention in the filed of UAV navigation research. Early navigation project based on computer version technology mainly applied to autonomous ground robot. In recent years, the visual navigation system is widely applied to unmanned machine, deep space detector and underwater robot. That further stimulate the research of integrated navigation algorithm based on computer version technology. In China, with many types of UAV development and two lunar exploration, the three phase of the project started, there has been significant progress in the study of visual navigation. The paper expounds the development of navigation based on computer version technology in the filed of UAV navigation research and draw a conclusion that visual navigation is mainly applied to three aspects as follows.(1) Acquisition of UAV navigation parameters. The parameters, including UAV attitude, position and velocity information could be got according to the relationship between the images from sensors and carrier's attitude, the relationship between instant matching images and the reference images and the relationship between carrier's velocity and characteristics of sequential images.(2) Autonomous obstacle avoidance. There are many ways to achieve obstacle avoidance in UAV navigation. The methods based on computer version technology ,including feature matching, template matching, image frames and so on, are mainly introduced. (3) The target tracking, positioning. Using the obtained images, UAV position is calculated by using optical flow method, MeanShift algorithm, CamShift algorithm, Kalman filtering and particle filter algotithm. The paper expounds three kinds of mainstream visual system. (1) High speed visual system. It uses parallel structure, with which image detection and processing are

  10. Quantifying navigational information: The catchment volumes of panoramic snapshots in outdoor scenes.

    Directory of Open Access Journals (Sweden)

    Trevor Murray

    Full Text Available Panoramic views of natural environments provide visually navigating animals with two kinds of information: they define locations because image differences increase smoothly with distance from a reference location and they provide compass information, because image differences increase smoothly with rotation away from a reference orientation. The range over which a given reference image can provide navigational guidance (its 'catchment area' has to date been quantified from the perspective of walking animals by determining how image differences develop across the ground plane of natural habitats. However, to understand the information available to flying animals there is a need to characterize the 'catchment volumes' within which panoramic snapshots can provide navigational guidance. We used recently developed camera-based methods for constructing 3D models of natural environments and rendered panoramic views at defined locations within these models with the aim of mapping navigational information in three dimensions. We find that in relatively open woodland habitats, catchment volumes are surprisingly large extending for metres depending on the sensitivity of the viewer to image differences. The size and the shape of catchment volumes depend on the distance of visual features in the environment. Catchment volumes are smaller for reference images close to the ground and become larger for reference images at some distance from the ground and in more open environments. Interestingly, catchment volumes become smaller when only above horizon views are used and also when views include a 1 km distant panorama. We discuss the current limitations of mapping navigational information in natural environments and the relevance of our findings for our understanding of visual navigation in animals and autonomous robots.

  11. Quantifying navigational information: The catchment volumes of panoramic snapshots in outdoor scenes.

    Science.gov (United States)

    Murray, Trevor; Zeil, Jochen

    2017-01-01

    Panoramic views of natural environments provide visually navigating animals with two kinds of information: they define locations because image differences increase smoothly with distance from a reference location and they provide compass information, because image differences increase smoothly with rotation away from a reference orientation. The range over which a given reference image can provide navigational guidance (its 'catchment area') has to date been quantified from the perspective of walking animals by determining how image differences develop across the ground plane of natural habitats. However, to understand the information available to flying animals there is a need to characterize the 'catchment volumes' within which panoramic snapshots can provide navigational guidance. We used recently developed camera-based methods for constructing 3D models of natural environments and rendered panoramic views at defined locations within these models with the aim of mapping navigational information in three dimensions. We find that in relatively open woodland habitats, catchment volumes are surprisingly large extending for metres depending on the sensitivity of the viewer to image differences. The size and the shape of catchment volumes depend on the distance of visual features in the environment. Catchment volumes are smaller for reference images close to the ground and become larger for reference images at some distance from the ground and in more open environments. Interestingly, catchment volumes become smaller when only above horizon views are used and also when views include a 1 km distant panorama. We discuss the current limitations of mapping navigational information in natural environments and the relevance of our findings for our understanding of visual navigation in animals and autonomous robots.

  12. A change navigation-based, scenario planning process within a developing world context from an Afro-centric leadership perspective

    Directory of Open Access Journals (Sweden)

    Chris A. Geldenhuys

    2011-02-01

    Research purpose: This study aimed to investigate how scenario-based planning (a strictly cognitive management tool can be combined with organisational change navigation (a practice addressing the emotionality of change and how this integrated process should be aligned with the prerequisites imposed by a developing country context and an Afro-centric leadership perspective in order to make the process more context relevant and aligned. Motivation for the study: The integration of organisational change navigation with conventional scenario based planning, as well as the incorporation of the perquisites of a developing countries and an Afro-centric leadership perspective, will give organisations a more robust, holistic strategic management tool that will add significantly more value within a rapidly, radically and unpredictably changing world. Research design, approach and method: The adopted research approach comprised a combination of the sourcing of the latest thinking in the literature (the ‘theory’ as well as the views of seasoned practitioners of scenario planning (the ‘practice’ through an iterative research process, moving between theory and practice, back to practice and finally returning to theory in order to arrive at a validated expanded and enhanced scenario-based planning process which is both theory and practice ‘proof’. Main findings: A management tool incorporating the change navigation and the unique features of developing countries and Afro-centric leadership was formulated and empirically validated. This management tool is referred to as a change navigation based, scenario planning process (CNBSPP. Practical/managerial implications: CNBSPP is available for use by organisations wishing to apply a strategic planning tool that fits within a developing country context and an Afro-centric leadership approach. Contribution/value add: The research makes a unique contribution to the current level of knowledge by integrating two disciplines

  13. Social power and approach-related neural activity

    OpenAIRE

    Boksem, Maarten; Smolders, Ruud; Cremer, David

    2009-01-01

    textabstractIt has been argued that power activates a general tendency to approach whereas powerlessness activates a tendency to inhibit. The assumption is that elevated power involves reward-rich environments, freedom and, as a consequence, triggers an approach-related motivational orientation and attention to rewards. In contrast, reduced power is associated with increased threat, punishment and social constraint and thereby activates inhibition-related motivation. Moreover, approach motiva...

  14. MAGNETIC VT study: a prospective, multicenter, post-market randomized controlled trial comparing VT ablation outcomes using remote magnetic navigation-guided substrate mapping and ablation versus manual approach in a low LVEF population.

    Science.gov (United States)

    Di Biase, Luigi; Tung, Roderick; Szili-Torok, Tamás; Burkhardt, J David; Weiss, Peter; Tavernier, Rene; Berman, Adam E; Wissner, Erik; Spear, William; Chen, Xu; Neužil, Petr; Skoda, Jan; Lakkireddy, Dhanunjaya; Schwagten, Bruno; Lock, Ken; Natale, Andrea

    2017-04-01

    Patients with ischemic cardiomyopathy (ICM) are prone to scar-related ventricular tachycardia (VT). The success of VT ablation depends on accurate arrhythmogenic substrate localization, followed by optimal delivery of energy provided by constant electrode-tissue contact. Current manual and remote magnetic navigation (RMN)-guided ablation strategies aim to identify a reentry circuit and to target a critical isthmus through activation and entrainment mapping during ongoing tachycardia. The MAGNETIC VT trial will assess if VT ablation using the Niobe™ ES magnetic navigation system results in superior outcomes compared to a manual approach in subjects with ischemic scar VT and low ejection fraction. This is a randomized, single-blind, prospective, multicenter post-market study. A total of 386 subjects (193 per group) will be enrolled and randomized 1:1 between treatment with the Niobe ES system and treatment via a manual procedure at up to 20 sites. The study population will consist of patients with ischemic cardiomyopathy with left ventricular ejection fraction (LVEF) of ≤35% and implantable cardioverter defibrillator (ICD) who have sustained monomorphic VT. The primary study endpoint is freedom from any recurrence of VT through 12 months. The secondary endpoints are acute success; freedom from any VT at 1 year in a large-scar subpopulation; procedure-related major adverse events; and mortality rate through 12-month follow-up. Follow-up will consist of visits at 3, 6, 9, and 12 months, all of which will include ICD interrogation. The MAGNETIC VT trial will help determine whether substrate-based ablation of VT with RMN has clinical advantages over manual catheter manipulation. Clinicaltrials.gov identifier: NCT02637947.

  15. Efficacy of navigation may be influenced by retrosplenial cortex-mediated learning of landmark stability.

    Science.gov (United States)

    Auger, Stephen D; Zeidman, Peter; Maguire, Eleanor A

    2017-09-01

    Human beings differ considerably in their ability to orient and navigate within the environment, but it has been difficult to determine specific causes of these individual differences. Permanent, stable landmarks are thought to be crucial for building a mental representation of an environment. Poor, compared to good, navigators have been shown to have difficulty identifying permanent landmarks, with a concomitant reduction in functional MRI (fMRI) activity in the retrosplenial cortex. However, a clear association between navigation ability and the learning of permanent landmarks has not been established. Here we tested for such a link. We had participants learn a virtual reality environment by repeatedly moving through it during fMRI scanning. The environment contained landmarks of which participants had no prior experience, some of which remained fixed in their locations while others changed position each time they were seen. After the fMRI learning phase, we divided participants into good and poor navigators based on their ability to find their way in the environment. The groups were closely matched on a range of cognitive and structural brain measures. Examination of the learning phase during scanning revealed that, while good and poor navigators learned to recognise the environment's landmarks at a similar rate, poor navigators were impaired at registering whether landmarks were stable or transient, and this was associated with reduced engagement of the retrosplenial cortex. Moreover, a mediation analysis showed that there was a significant effect of landmark permanence learning on navigation performance mediated through retrosplenial cortex activity. We conclude that a diminished ability to process landmark permanence may be a contributory factor to sub-optimal navigation, and could be related to the level of retrosplenial cortex engagement. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. Lay Patient Navigators' Perspectives of Barriers, Facilitators and Training Needs in Initiating Advance Care Planning Conversations With Older Patients With Cancer.

    Science.gov (United States)

    Niranjan, Soumya J; Huang, Chao-Hui S; Dionne-Odom, J Nicholas; Halilova, Karina I; Pisu, Maria; Drentea, Patricia; Kvale, Elizabeth A; Bevis, Kerri S; Butler, Thomas W; Partridge, Edward E; Rocque, Gabrielle B

    2018-04-01

    Respecting Choices is an evidence-based model of facilitating advance care planning (ACP) conversations between health-care professionals and patients. However, the effectiveness of whether lay patient navigators can successfully initiate Respecting Choices ACP conversations is unknown. As part of a large demonstration project (Patient Care Connect [PCC]), a cohort of lay patient navigators underwent Respecting Choices training and were tasked to initiate ACP conversations with Medicare beneficiaries diagnosed with cancer. This article explores PCC lay navigators' perceived barriers and facilitators in initiating Respecting Choices ACP conversations with older patients with cancer in order to inform implementation enhancements to lay navigator-facilitated ACP. Twenty-six lay navigators from 11 PCC cancer centers in 4 states (Alabama, George, Tennessee, and Florida) completed in-depth, one-on-one semistructured interviews between June 2015 and August 2015. Data were analyzed using a thematic analysis approach. This evaluation identifies 3 levels-patient, lay navigator, and organizational factors in addition to training needs that influence ACP implementation. Key facilitators included physician buy-in, patient readiness, and navigators' prior experience with end-of-life decision-making. Lay navigators' perceived challenges to initiating ACP conversations included timing of the conversation and social and personal taboos about discussing dying. Our results suggest that further training and health system support are needed for lay navigators playing a vital role in improving the implementation of ACP among older patients with cancer. The lived expertise of lay navigators along with flexible longitudinal relationships with patients and caregivers may uniquely position this workforce to promote ACP.

  17. Canoe: An Autonomous Infrastructure-Free Indoor Navigation System

    Directory of Open Access Journals (Sweden)

    Kai Dong

    2017-04-01

    Full Text Available The development of the Internet of Things (IoT has accelerated research in indoor navigation systems, a majority of which rely on adequate wireless signals and sources. Nonetheless, deploying such a system requires periodic site-survey, which is time consuming and labor intensive. To address this issue, in this paper we present Canoe, an indoor navigation system that considers shopping mall scenarios. In our system, we do not assume any prior knowledge, such as floor-plan or the shop locations, access point placement or power settings, historical RSS measurements or fingerprints, etc. Instead, Canoe requires only that the shop owners collect and publish RSS values at the entrances of their shops and can direct a consumer to any of these shops by comparing the observed RSS values. The locations of the consumers and the shops are estimated using maximum likelihood estimation. In doing this, the direction of the target shop relative to the current orientation of the consumer can be precisely computed, such that the direction that a consumer should move can be determined. We have conducted extensive simulations using a real-world dataset. Our experiments in a real shopping mall demonstrate that if 50% of the shops publish their RSS values, Canoe can precisely navigate a consumer within 30 s, with an error rate below 9%.

  18. EOS-based cup navigation: Randomised controlled trial in 78 total hip arthroplasties.

    Science.gov (United States)

    Verdier, N; Billaud, A; Masquefa, T; Pallaro, J; Fabre, T; Tournier, C

    2016-06-01

    Minimising the risk of cup implantation outside the safe zone is among the objectives of navigation during total hip arthroplasty (THA). However, given the technical challenges raised by navigation when the patient is lying on the side, many surgeons still use the freehand technique. We conducted a randomised controlled trial to evaluate the new navigation system NAVEOS in the iliac plane, which is easily identified in the lateral decubitus position, with the objective of determining whether NAVEOS navigation decreased the frequency of cup implantation outside the safe zone compared to freehand cup positioning, without increasing the operative time or the frequency of complications. NAVEOS navigation decreases the frequency of cup positioning outside the safe zone compared to freehand positioning. This randomised controlled trial compared cup positioning using NAVEOS navigation versus the freehand technique in patients undergoing primary THA. The safe zone was defined according to Lewinnek as 15±10° of radiological anteversion and 40±10° of radiological inclination. Cup position parameters were measured on computed tomography images obtained 3months after THA. The images were read by two independent observers who were blinded to group assignment. The primary evaluation criterion was cup position within the safe zone. A 1:1 randomisation scheme was used to assign 78 patients (mean age, 68years; age range, 44-91years) to NAVEOS navigation or freehand cup positioning. The two groups were comparable for age, gender distribution, body mass index, and preoperative functional scores. In the NAVEOS group, navigation was discontinued prematurely in 6 patients, because of technical difficulties (n=2) or a marked discrepancy with clinical findings (n=4); however, the intention-to-treat approach was used for the analysis. The proportion of cups in the safe zone was 67% (28/39) in the NAVEOS group and 38% (17/39) in the freehand group (P=0.012). Anteversion was within the

  19. The Navigation Metaphor in Security Economics

    DEFF Research Database (Denmark)

    Pieters, Wolter; Barendse, Jeroen; Ford, Margaret

    2016-01-01

    The navigation metaphor for cybersecurity merges security architecture models and security economics. By identifying the most efficient routes for gaining access to assets from an attacker's viewpoint, an organization can optimize its defenses along these routes. The well-understood concept of na...... of navigation makes it easier to motivate and explain security investment to a wide audience, encouraging strategic security decisions....

  20. Navigational Strategies of Migrating Monarch Butterflies

    Science.gov (United States)

    2014-11-10

    AFRL-OSR-VA-TR-2014-0339 NAVIGATIONAL STRATEGIES OF MIGRATING MONARCH BUTTERFLIES Steven Reppert UNIVERSITY OF MASSACHUSETTS Final Report 11/10/2014...Final Progress Statement to (Dr. Patrick Bradshaw) Contract/Grant Title: Navigational Strategies of Migrating Monarch Butterflies Contract...Grant #: FA9550-10-1-0480 Reporting Period: 01-Sept-10 to 31-Aug-14 Overview of accomplishments: Migrating monarch butterflies (Danaus

  1. Microwave systems applications in deep space telecommunications and navigation - Space Exploration Initiative architectures

    Science.gov (United States)

    Hall, Justin R.; Hastrup, Rolf C.; Bell, David J.

    1992-06-01

    The general support requirements of a typical SEI mission set, along with the mission operations objectives and related telecommunications, navigation, and information management (TNIM) support infrastructure options are described. Responsive system architectures and designs are proposed, including a Mars orbiting communications relay satellite system and a Mars-centered navigation capability for servicing all Mars missions. With the TNIM architecture as a basis, key elements of the microwave link design are proposed. The needed new technologies which enable these designs are identified, and current maturity is assessed.

  2. PERFORMANCE CHARACTERISTIC MEMS-BASED IMUs FOR UAVs NAVIGATION

    Directory of Open Access Journals (Sweden)

    H. A. Mohamed

    2015-08-01

    Full Text Available Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK, and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS signal outage.

  3. Performance Characteristic Mems-Based IMUs for UAVs Navigation

    Science.gov (United States)

    Mohamed, H. A.; Hansen, J. M.; Elhabiby, M. M.; El-Sheimy, N.; Sesay, A. B.

    2015-08-01

    Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs) are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS) or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK), and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS) signal outage.

  4. Mobile Robot Navigation

    DEFF Research Database (Denmark)

    Andersen, Jens Christian

    2007-01-01

    the current position to a desired destination. This thesis presents and experimentally validates solutions for road classification, obstacle avoidance and mission execution. The road classification is based on laser scanner measurements and supported at longer ranges by vision. The road classification...... is sufficiently sensitive to separate the road from flat roadsides, and to distinguish asphalt roads from gravelled roads. The vision-based road detection uses a combination of chromaticity and edge detection to outline the traversable part of the road based on a laser scanner classified sample area....... The perception of these two sensors are utilised by a path planner to allow a number of drive modes, and especially the ability to follow road edges are investigated. The navigation mission is controlled by a script language. The navigation script controls route sequencing, junction detection, junction crossing...

  5. Navigational strategies during fast walking: a comparison between trained athletes and non-athletes.

    Science.gov (United States)

    Gérin-Lajoie, Martin; Ronsky, Janet L; Loitz-Ramage, Barbara; Robu, Ion; Richards, Carol L; McFadyen, Bradford J

    2007-10-01

    Many common activities such as walking in a shopping mall, moving in a busy subway station, or even avoiding opponents during sports, all require different levels of navigational skills. Obstacle circumvention is beginning to be understood across age groups, but studying trained athletes with greater levels of motor ability will further our understanding of skillful adaptive locomotor behavior. The objective of this work was to compare navigational skills during fast walking between elite athletes (e.g. soccer, field hockey, basketball) and aged-matched non-athletes under different levels of environmental complexity in relation to obstacle configuration and visibility. The movements of eight women athletes and eight women non-athletes were measured as they walked as fast as possible through different obstacle courses in both normal and low lighting conditions. Results showed that athletes, despite similar unobstructed maximal speeds to non-athletes, had faster walking times during the navigation of all obstructed environments. It appears that athletes can process visuo-spatial information faster since both groups can make appropriate navigational decisions, but athletes can navigate through complex, novel, environments at greater speeds. Athletes' walking times were also more affected by the low lighting conditions suggesting that they normally scan the obstructed course farther ahead. This study also uses new objective measures to assess functional locomotor capacity in order to discriminate individuals according to their level of navigational ability. The evaluation paradigm and outcome measures developed may be applicable to the evaluation of skill level in athletic training and selection, as well as in gait rehabilitation following impairment.

  6. Navigating nuclear science: Enhancing analysis through visualization

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, N.H.; Berkel, J. van; Johnson, D.K.; Wylie, B.N.

    1997-09-01

    Data visualization is an emerging technology with high potential for addressing the information overload problem. This project extends the data visualization work of the Navigating Science project by coupling it with more traditional information retrieval methods. A citation-derived landscape was augmented with documents using a text-based similarity measure to show viability of extension into datasets where citation lists do not exist. Landscapes, showing hills where clusters of similar documents occur, can be navigated, manipulated and queried in this environment. The capabilities of this tool provide users with an intuitive explore-by-navigation method not currently available in today`s retrieval systems.

  7. The Programmer's Guide to iSeries Navigator

    CERN Document Server

    Touhy, Paul

    2012-01-01

    iSeries Navigator is a favorite tool of operators and administrators-who use it with great success-but many programmers have missed the great programming tools that is provides! This book introduces you to iSeries Navigator along with all the powerful tools and interfaces that will expand your programming horizons. As iSeries applications continue to move toward a graphical user interface (GUI), so does the development environment. Programs such as CODE and WDSC may fill the need for the programming environment, but iSeries Navigator fills the programmer's need for general system access as wel

  8. Neurosurgical robotic arm drilling navigation system.

    Science.gov (United States)

    Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai

    2017-09-01

    The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Navigable windows of the Northwest Passage

    Science.gov (United States)

    Liu, Xing-he; Ma, Long; Wang, Jia-yue; Wang, Ye; Wang, Li-na

    2017-09-01

    Artic sea ice loss trends support a greater potential for Arctic shipping. The information of sea ice conditions is important for utilizing Arctic passages. Based on the shipping routes given by ;Arctic Marine Shipping Assessment 2009 Report;, the navigable windows of these routes and the constituent legs were calculated by using sea ice concentration product data from 2006 to 2015, by which a comprehensive knowledge of the sea ice condition of the Northwest Passage was achieved. The results showed that Route 4 (Lancaster Sound - Barrow Strait - Prince Regent Inlet and Bellot Strait - Franklin Strait - Larsen Sound - Victoria Strait - Queen Maud Gulf - Dease Strait - Coronation Gulf - Dolphin and Union Strait - Amundsen Gulf) had the best navigable expectation, Route 2 (Parry Channel - M'Clure Strait) had the worst, and the critical legs affecting the navigation of Northwest Passage were Viscount Melville Sound, Franklin Strait, Victoria Strait, Bellot Strait, M'Clure Strait and Prince of Wales Strait. The shortest navigable period of the routes of Northwest Passage was up to 69 days. The methods used and the results of the study can help the selection and evaluation of Arctic commercial routes.

  10. A Discussion on e-Navigation and Implementation in Turkey

    Directory of Open Access Journals (Sweden)

    Y.V. Aydogdu

    2014-03-01

    Full Text Available Electronic navigation, which has great important for ship management, has taken a step with technological improvements. In the result of these enhancements, new systems appeared as well as existing systems and these systems began to be integrated each other or used data of obtaining from the others like that AIS, Radar, ECDIS etc. All these and likely future systems have been put together under the roof of enhanced navigation (e-navigation is defined by organizations such as International Maritime Organization (IMO, International Association of Marine Aids to Navigation and Lighthouse Authorities (IALA, General Lighthouse Authority (GLA etc. Especially IALA guidelines serve as model future applications in Turkish waterways. In this study aim to redefine e-navigation concept based on maritime safety awareness, maritime service portfolio (MSC 85/26 and discuss possible applications.

  11. Multi-morbidity: A patient perspective on navigating the health care system and everyday life

    DEFF Research Database (Denmark)

    Ørtenblad, Lisbeth; Meillier, Lucette Kirsten; Jønsson, Alexandra Brandt Ryborg

    2017-01-01

    and the management of their treatment burdens. Dilemmas were identified within three domains: family and social life; work life; agendas and set goals in appointments with health professionals. Individual resources and priorities in everyday life play a dominant role in resolving dilemmas and navigating the tension...... study using individual interviews and participant-observations. An inductive analytical approach was applied, moving from observations and results to broader generalisations. Results: People with multimorbidity experience dilemmas related to their individual priorities in everyday life...... between everyday life and the health care system. Discussion: People with multimorbidity are seldom supported by health professionals in resolving the dilemmas they must face. This study suggests an increased focus on patient-centeredness and argues in favour of planning health care through cooperation...

  12. Evolved Navigation Theory and Horizontal Visual Illusions

    Science.gov (United States)

    Jackson, Russell E.; Willey, Chela R.

    2011-01-01

    Environmental perception is prerequisite to most vertebrate behavior and its modern investigation initiated the founding of experimental psychology. Navigation costs may affect environmental perception, such as overestimating distances while encumbered (Solomon, 1949). However, little is known about how this occurs in real-world navigation or how…

  13. Mapping, Navigation, and Learning for Off-Road Traversal

    DEFF Research Database (Denmark)

    Konolige, Kurt; Agrawal, Motilal; Blas, Morten Rufus

    2009-01-01

    The challenge in the DARPA Learning Applied to Ground Robots (LAGR) project is to autonomously navigate a small robot using stereo vision as the main sensor. During this project, we demonstrated a complete autonomous system for off-road navigation in unstructured environments, using stereo vision......, online terrain traversability learning, visual odometry, map registration, planning, and control. At the end of 3 years, the system we developed outperformed all nine other teams in final blind tests over previously unseen terrain.......The challenge in the DARPA Learning Applied to Ground Robots (LAGR) project is to autonomously navigate a small robot using stereo vision as the main sensor. During this project, we demonstrated a complete autonomous system for off-road navigation in unstructured environments, using stereo vision...

  14. Lost in Virtual Space: Studies in Human and Ideal Spatial Navigation

    Science.gov (United States)

    Stankiewicz, Brian J.; Legge, Gordon E.; Mansfield, J. Stephen; Schlicht, Erik J.

    2006-01-01

    The authors describe 3 human spatial navigation experiments that investigate how limitations of perception, memory, uncertainty, and decision strategy affect human spatial navigation performance. To better understand the effect of these variables on human navigation performance, the authors developed an ideal-navigator model for indoor navigation…

  15. Model-based software engineering for an optical navigation system for spacecraft

    Science.gov (United States)

    Franz, T.; Lüdtke, D.; Maibaum, O.; Gerndt, A.

    2018-06-01

    The project Autonomous Terrain-based Optical Navigation (ATON) at the German Aerospace Center (DLR) is developing an optical navigation system for future landing missions on celestial bodies such as the moon or asteroids. Image data obtained by optical sensors can be used for autonomous determination of the spacecraft's position and attitude. Camera-in-the-loop experiments in the Testbed for Robotic Optical Navigation (TRON) laboratory and flight campaigns with unmanned aerial vehicle (UAV) are performed to gather flight data for further development and to test the system in a closed-loop scenario. The software modules are executed in the C++ Tasking Framework that provides the means to concurrently run the modules in separated tasks, send messages between tasks, and schedule task execution based on events. Since the project is developed in collaboration with several institutes in different domains at DLR, clearly defined and well-documented interfaces are necessary. Preventing misconceptions caused by differences between various development philosophies and standards turned out to be challenging. After the first development cycles with manual Interface Control Documents (ICD) and manual implementation of the complex interactions between modules, we switched to a model-based approach. The ATON model covers a graphical description of the modules, their parameters and communication patterns. Type and consistency checks on this formal level help to reduce errors in the system. The model enables the generation of interfaces and unified data types as well as their documentation. Furthermore, the C++ code for the exchange of data between the modules and the scheduling of the software tasks is created automatically. With this approach, changing the data flow in the system or adding additional components (e.g., a second camera) have become trivial.

  16. Model-based software engineering for an optical navigation system for spacecraft

    Science.gov (United States)

    Franz, T.; Lüdtke, D.; Maibaum, O.; Gerndt, A.

    2017-09-01

    The project Autonomous Terrain-based Optical Navigation (ATON) at the German Aerospace Center (DLR) is developing an optical navigation system for future landing missions on celestial bodies such as the moon or asteroids. Image data obtained by optical sensors can be used for autonomous determination of the spacecraft's position and attitude. Camera-in-the-loop experiments in the Testbed for Robotic Optical Navigation (TRON) laboratory and flight campaigns with unmanned aerial vehicle (UAV) are performed to gather flight data for further development and to test the system in a closed-loop scenario. The software modules are executed in the C++ Tasking Framework that provides the means to concurrently run the modules in separated tasks, send messages between tasks, and schedule task execution based on events. Since the project is developed in collaboration with several institutes in different domains at DLR, clearly defined and well-documented interfaces are necessary. Preventing misconceptions caused by differences between various development philosophies and standards turned out to be challenging. After the first development cycles with manual Interface Control Documents (ICD) and manual implementation of the complex interactions between modules, we switched to a model-based approach. The ATON model covers a graphical description of the modules, their parameters and communication patterns. Type and consistency checks on this formal level help to reduce errors in the system. The model enables the generation of interfaces and unified data types as well as their documentation. Furthermore, the C++ code for the exchange of data between the modules and the scheduling of the software tasks is created automatically. With this approach, changing the data flow in the system or adding additional components (e.g., a second camera) have become trivial.

  17. Observability of satellite launcher navigation with INS, GPS, attitude sensors and reference trajectory

    Science.gov (United States)

    Beaudoin, Yanick; Desbiens, André; Gagnon, Eric; Landry, René

    2018-01-01

    The navigation system of a satellite launcher is of paramount importance. In order to correct the trajectory of the launcher, the position, velocity and attitude must be known with the best possible precision. In this paper, the observability of four navigation solutions is investigated. The first one is the INS/GPS couple. Then, attitude reference sensors, such as magnetometers, are added to the INS/GPS solution. The authors have already demonstrated that the reference trajectory could be used to improve the navigation performance. This approach is added to the two previously mentioned navigation systems. For each navigation solution, the observability is analyzed with different sensor error models. First, sensor biases are neglected. Then, sensor biases are modelled as random walks and as first order Markov processes. The observability is tested with the rank and condition number of the observability matrix, the time evolution of the covariance matrix and sensitivity to measurement outlier tests. The covariance matrix is exploited to evaluate the correlation between states in order to detect structural unobservability problems. Finally, when an unobservable subspace is detected, the result is verified with theoretical analysis of the navigation equations. The results show that evaluating only the observability of a model does not guarantee the ability of the aiding sensors to correct the INS estimates within the mission time. The analysis of the covariance matrix time evolution could be a powerful tool to detect this situation, however in some cases, the problem is only revealed with a sensitivity to measurement outlier test. None of the tested solutions provide GPS position bias observability. For the considered mission, the modelling of the sensor biases as random walks or Markov processes gives equivalent results. Relying on the reference trajectory can improve the precision of the roll estimates. But, in the context of a satellite launcher, the roll

  18. Expertise on Cognitive Workloads and Performance During Navigation and Target Detection

    Science.gov (United States)

    2012-03-01

    Examples may include sport orienteering, land navigation exercises, boy/girl scouts etc.)?      No Related Experience Very Limited...measure heart rate, HRV , and respiration? Luton, UK: Royal Aircraft Establishment Bedford. Shepherd, A., & Stammers, R. B. (2005). Task Analysis. In

  19. Adding memory processing behaviors to the fuzzy behaviorist-based navigation of mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Pin, F.G.; Bender, S.R.

    1996-05-01

    Most fuzzy logic-based reasoning schemes developed for robot control are fully reactive, i.e., the reasoning modules consist of fuzzy rule bases that represent direct mappings from the stimuli provided by the perception systems to the responses implemented by the motion controllers. Due to their totally reactive nature, such reasoning systems can encounter problems such as infinite loops and limit cycles. In this paper, we proposed an approach to remedy these problems by adding a memory and memory-related behaviors to basic reactive systems. Three major types of memory behaviors are addressed: memory creation, memory management, and memory utilization. These are first presented, and examples of their implementation for the recognition of limit cycles during the navigation of an autonomous robot in a priori unknown environments are then discussed.

  20. Cislunar navigation

    Science.gov (United States)

    Cesarone, R. J.; Burke, J. D.; Hastrup, R. C.; Lo, M. W.

    2003-01-01

    In the future, navigation and communication in Earth-Moon space and on the Moon will differ from past practice due to evolving technology and new requirements. Here we describe likely requirements, discuss options for meeting them, and advocate steps that can be taken now to begin building the navcom systems needed in coming years for exploring and using the moon.

  1. Natural Language Navigation Support in Virtual Reality

    NARCIS (Netherlands)

    van Luin, J.; Nijholt, Antinus; op den Akker, Hendrikus J.A.; Giagourta, V.; Strintzis, M.G.

    2001-01-01

    We describe our work on designing a natural language accessible navigation agent for a virtual reality (VR) environment. The agent is part of an agent framework, which means that it can communicate with other agents. Its navigation task consists of guiding the visitors in the environment and to

  2. A Platform-Independent Plugin for Navigating Online Radiology Cases.

    Science.gov (United States)

    Balkman, Jason D; Awan, Omer A

    2016-06-01

    Software methods that enable navigation of radiology cases on various digital platforms differ between handheld devices and desktop computers. This has resulted in poor compatibility of online radiology teaching files across mobile smartphones, tablets, and desktop computers. A standardized, platform-independent, or "agnostic" approach for presenting online radiology content was produced in this work by leveraging modern hypertext markup language (HTML) and JavaScript web software technology. We describe the design and evaluation of this software, demonstrate its use across multiple viewing platforms, and make it publicly available as a model for future development efforts.

  3. Vehicle navigation in populated areas using predictive control with environmental uncertainty handling

    Directory of Open Access Journals (Sweden)

    Skrzypczyk Krzysztof

    2017-06-01

    Full Text Available This paper addresses the problem of navigating an autonomous vehicle using environmental dynamics prediction. The usefulness of the Game Against Nature formalism adapted to modelling environmental prediction uncertainty is discussed. The possibility of the control law synthesis on the basis of strategies against Nature is presented. The properties and effectiveness of the approach presented are verified by simulations carried out in MATLAB.

  4. Fusion of navigational data in River Information Services

    Science.gov (United States)

    Kazimierski, W.

    2009-04-01

    . Their main advantage over AIS is total independence from tracked target's facilities. For example, wrong indications of ship's GPS would affect AIS accuracy, but wouldn't have any impact on values estimated by radar. In addition to this in many times update rate for AIS data is longer than for radar. Thus, it can be noticed, that efficient tracking system introduced in RIS shall use both AIS receivers (based on satellite derived positions), and independent radar and camera sensors. This will however cause determining at least two different set of information about positions and movement parameters of targets. Doubled or multiplied vectors for single target are unacceptable, due to safety of navigation and traffic management. Hence the need of data fusion in RIS is obvious. The main goal is to develop unambiguous, clear and reliable information about ships' position and movement for all users in the system. Data fusion itself is not a new problem in maritime navigation. There are systems of Integrated Bridge on sea-going ships, which use information coming out from different sources. However the possibilities of integration of navigational information in the aspect of inland navigation, especially in River Information Services, still needs to be thoroughly surveyed. It is quite useful for simplifying the deduction, to introduce two data fusion levels. First of them is being done on board of the vessel. Its aim is to integrate all information coming from different sensors in the so called Integrated Navigational System. The other task of this fusion is to estimate reliable information about other objects based on AIS and radar. The second level is the integration of AIS, radar and closed-circuit television (CCTV) carried out in coastal station in order to determine Tactical and Strategic Traffic Image. The navigational information in RIS itself can be divided into two main groups. The first one is called static data and contains al basic information related to ship itself

  5. Pragmatic Randomized, Controlled Trial of Patient Navigators and Enhanced Personal Health Records in CKD.

    Science.gov (United States)

    Navaneethan, Sankar D; Jolly, Stacey E; Schold, Jesse D; Arrigain, Susana; Nakhoul, Georges; Konig, Victoria; Hyland, Jennifer; Burrucker, Yvette K; Dann, Priscilla Davis; Tucky, Barbara H; Sharp, John; Nally, Joseph V

    2017-09-07

    Patient navigators and enhanced personal health records improve the quality of health care delivered in other disease states. We aimed to develop a navigator program for patients with CKD and an electronic health record-based enhanced personal health record to disseminate CKD stage-specific goals of care and education. We also conducted a pragmatic randomized clinical trial to compare the effect of a navigator program for patients with CKD with enhanced personal health record and compare their combination compared with usual care among patients with CKD stage 3b/4. Two hundred and nine patients from six outpatient clinics (in both primary care and nephrology settings) were randomized in a 2×2 factorial design into four-study groups: ( 1 ) enhanced personal health record only, ( 2 ) patient navigator only, ( 3 ) both, and ( 4 ) usual care (control) group. Primary outcome measure was the change in eGFR over a 2-year follow-up period. Secondary outcome measures included acquisition of appropriate CKD-related laboratory measures, specialty referrals, and hospitalization rates. Median age of the study population was 68 years old, and 75% were white. At study entry, 54% of patients were followed by nephrologists, and 88% were on renin-angiotensin system blockers. After a 2-year follow-up, rate of decline in eGFR was similar across the four groups ( P =0.19). Measurements of CKD-related laboratory parameters were not significantly different among the groups. Furthermore, referral for dialysis education and vascular access placement, emergency room visits, and hospitalization rates were not statistically significant different between the groups. We successfully developed a patient navigator program and an enhanced personal health record for the CKD population. However, there were no differences in eGFR decline and other outcomes among the study groups. Larger and long-term studies along with cost-effectiveness analyses are needed to evaluate the role of patient navigators

  6. 33 CFR 64.16 - Duration of marking on sunken vessels in navigable waters.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Duration of marking on sunken vessels in navigable waters. 64.16 Section 64.16 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Sunken Vessels and Other Obstructions § 64.16 Duration of marking on sunken vessels in navigable waters...

  7. 33 CFR 207.600 - Rochester (Charlotte) Harbor, N.Y.; use, administration, and navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Rochester (Charlotte) Harbor, N.Y.; use, administration, and navigation. 207.600 Section 207.600 Navigation and Navigable Waters CORPS OF... (Charlotte) Harbor, N.Y.; use, administration, and navigation. (a)-(b) [Reserved] (c) No vessel shall moor or...

  8. 33 CFR 165.1402 - Apra Outer Harbor, Guam-regulated navigation area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Apra Outer Harbor, Guam-regulated....1402 Apra Outer Harbor, Guam—regulated navigation area. (a) The following is a regulated navigation area—The waters of the Pacific Ocean and Apra Outer Harbor enclosed by a line beginning at latitude 13...

  9. A model of ant route navigation driven by scene familiarity.

    Directory of Open Access Journals (Sweden)

    Bart Baddeley

    2012-01-01

    Full Text Available In this paper we propose a model of visually guided route navigation in ants that captures the known properties of real behaviour whilst retaining mechanistic simplicity and thus biological plausibility. For an ant, the coupling of movement and viewing direction means that a familiar view specifies a familiar direction of movement. Since the views experienced along a habitual route will be more familiar, route navigation can be re-cast as a search for familiar views. This search can be performed with a simple scanning routine, a behaviour that ants have been observed to perform. We test this proposed route navigation strategy in simulation, by learning a series of routes through visually cluttered environments consisting of objects that are only distinguishable as silhouettes against the sky. In the first instance we determine view familiarity by exhaustive comparison with the set of views experienced during training. In further experiments we train an artificial neural network to perform familiarity discrimination using the training views. Our results indicate that, not only is the approach successful, but also that the routes that are learnt show many of the characteristics of the routes of desert ants. As such, we believe the model represents the only detailed and complete model of insect route guidance to date. What is more, the model provides a general demonstration that visually guided routes can be produced with parsimonious mechanisms that do not specify when or what to learn, nor separate routes into sequences of waypoints.

  10. Human-robot collaborative navigation for autonomous maintenance management of nuclear installation

    International Nuclear Information System (INIS)

    Nugroho, Djoko Hari

    2002-01-01

    Development of human and robot collaborative navigation for autonomous maintenance management of nuclear installation has been conducted. The human-robot collaborative system is performed using a switching command between autonomous navigation and manual navigation that incorporate a human intervention. The autonomous navigation path is conducted using a novel algorithm of MLG method based on Lozano-Perez s visibility graph. The MLG optimizes the shortest distance and safe constraints. While the manual navigation is performed using manual robot tele operation tools. Experiment in the MLG autonomous navigation system is conducted for six times with 3-D starting point and destination point coordinate variation. The experiment shows a good performance of autonomous robot maneuver to avoid collision with obstacle. The switching navigation is well interpreted using open or close command to RS-232C constructed using LabVIEW

  11. Gray and White Matter Correlates of Navigational Ability in Humans

    NARCIS (Netherlands)

    Wegman, J.B.T.; Fonteijn, H.M.; Ekert, J. van; Tyborowska, A.B.; Jansen, C.; Janzen, G.

    2014-01-01

    Humans differ widely in their navigational abilities. Studies have shown that self-reports on navigational abilities are good predictors of performance on navigation tasks in real and virtual environments. The caudate nucleus and medial temporal lobe regions have been suggested to subserve different

  12. Pareto navigation-algorithmic foundation of interactive multi-criteria IMRT planning

    International Nuclear Information System (INIS)

    Monz, M; Kuefer, K H; Bortfeld, T R; Thieke, C

    2008-01-01

    Inherently, IMRT treatment planning involves compromising between different planning goals. Multi-criteria IMRT planning directly addresses this compromising and thus makes it more systematic. Usually, several plans are computed from which the planner selects the most promising following a certain procedure. Applying Pareto navigation for this selection step simultaneously increases the variety of planning options and eases the identification of the most promising plan. Pareto navigation is an interactive multi-criteria optimization method that consists of the two navigation mechanisms 'selection' and 'restriction'. The former allows the formulation of wishes whereas the latter allows the exclusion of unwanted plans. They are realized as optimization problems on the so-called plan bundle-a set constructed from pre-computed plans. They can be approximately reformulated so that their solution time is a small fraction of a second. Thus, the user can be provided with immediate feedback regarding his or her decisions. Pareto navigation was implemented in the MIRA navigator software and allows real-time manipulation of the current plan and the set of considered plans. The changes are triggered by simple mouse operations on the so-called navigation star and lead to real-time updates of the navigation star and the dose visualizations. Since any Pareto-optimal plan in the plan bundle can be found with just a few navigation operations the MIRA navigator allows a fast and directed plan determination. Besides, the concept allows for a refinement of the plan bundle, thus offering a middle course between single plan computation and multi-criteria optimization. Pareto navigation offers so far unmatched real-time interactions, ease of use and plan variety, setting it apart from the multi-criteria IMRT planning methods proposed so far

  13. Pareto navigation: algorithmic foundation of interactive multi-criteria IMRT planning.

    Science.gov (United States)

    Monz, M; Küfer, K H; Bortfeld, T R; Thieke, C

    2008-02-21

    Inherently, IMRT treatment planning involves compromising between different planning goals. Multi-criteria IMRT planning directly addresses this compromising and thus makes it more systematic. Usually, several plans are computed from which the planner selects the most promising following a certain procedure. Applying Pareto navigation for this selection step simultaneously increases the variety of planning options and eases the identification of the most promising plan. Pareto navigation is an interactive multi-criteria optimization method that consists of the two navigation mechanisms 'selection' and 'restriction'. The former allows the formulation of wishes whereas the latter allows the exclusion of unwanted plans. They are realized as optimization problems on the so-called plan bundle -- a set constructed from pre-computed plans. They can be approximately reformulated so that their solution time is a small fraction of a second. Thus, the user can be provided with immediate feedback regarding his or her decisions. Pareto navigation was implemented in the MIRA navigator software and allows real-time manipulation of the current plan and the set of considered plans. The changes are triggered by simple mouse operations on the so-called navigation star and lead to real-time updates of the navigation star and the dose visualizations. Since any Pareto-optimal plan in the plan bundle can be found with just a few navigation operations the MIRA navigator allows a fast and directed plan determination. Besides, the concept allows for a refinement of the plan bundle, thus offering a middle course between single plan computation and multi-criteria optimization. Pareto navigation offers so far unmatched real-time interactions, ease of use and plan variety, setting it apart from the multi-criteria IMRT planning methods proposed so far.

  14. USACE Navigation Channels 2012

    Data.gov (United States)

    California Natural Resource Agency — This dataset represents both San Francisco and Los Angeles District navigation channel lines. All San Francisco District channel lines were digitized from CAD files...

  15. Robotics Vision-based Heuristic Reasoning for Underwater Target Tracking and Navigation

    Directory of Open Access Journals (Sweden)

    Chua Kia

    2005-09-01

    Full Text Available This paper presents a robotics vision-based heuristic reasoning system for underwater target tracking and navigation. This system is introduced to improve the level of automation of underwater Remote Operated Vehicles (ROVs operations. A prototype which combines computer vision with an underwater robotics system is successfully designed and developed to perform target tracking and intelligent navigation. This study focuses on developing image processing algorithms and fuzzy inference system for the analysis of the terrain. The vision system developed is capable of interpreting underwater scene by extracting subjective uncertainties of the object of interest. Subjective uncertainties are further processed as multiple inputs of a fuzzy inference system that is capable of making crisp decisions concerning where to navigate. The important part of the image analysis is morphological filtering. The applications focus on binary images with the extension of gray-level concepts. An open-loop fuzzy control system is developed for classifying the traverse of terrain. The great achievement is the system's capability to recognize and perform target tracking of the object of interest (pipeline in perspective view based on perceived condition. The effectiveness of this approach is demonstrated by computer and prototype simulations. This work is originated from the desire to develop robotics vision system with the ability to mimic the human expert's judgement and reasoning when maneuvering ROV in the traverse of the underwater terrain.

  16. Robotics Vision-based Heuristic Reasoning for Underwater Target Tracking and Navigation

    Directory of Open Access Journals (Sweden)

    Chua Kia

    2008-11-01

    Full Text Available This paper presents a robotics vision-based heuristic reasoning system for underwater target tracking and navigation. This system is introduced to improve the level of automation of underwater Remote Operated Vehicles (ROVs operations. A prototype which combines computer vision with an underwater robotics system is successfully designed and developed to perform target tracking and intelligent navigation. This study focuses on developing image processing algorithms and fuzzy inference system for the analysis of the terrain. The vision system developed is capable of interpreting underwater scene by extracting subjective uncertainties of the object of interest. Subjective uncertainties are further processed as multiple inputs of a fuzzy inference system that is capable of making crisp decisions concerning where to navigate. The important part of the image analysis is morphological filtering. The applications focus on binary images with the extension of gray-level concepts. An open-loop fuzzy control system is developed for classifying the traverse of terrain. The great achievement is the system's capability to recognize and perform target tracking of the object of interest (pipeline in perspective view based on perceived condition. The effectiveness of this approach is demonstrated by computer and prototype simulations. This work is originated from the desire to develop robotics vision system with the ability to mimic the human expert's judgement and reasoning when maneuvering ROV in the traverse of the underwater terrain.

  17. Enabling Autonomous Navigation for Affordable Scooters.

    Science.gov (United States)

    Liu, Kaikai; Mulky, Rajathswaroop

    2018-06-05

    Despite the technical success of existing assistive technologies, for example, electric wheelchairs and scooters, they are still far from effective enough in helping those in need navigate to their destinations in a hassle-free manner. In this paper, we propose to improve the safety and autonomy of navigation by designing a cutting-edge autonomous scooter, thus allowing people with mobility challenges to ambulate independently and safely in possibly unfamiliar surroundings. We focus on indoor navigation scenarios for the autonomous scooter where the current location, maps, and nearby obstacles are unknown. To achieve semi-LiDAR functionality, we leverage the gyros-based pose data to compensate the laser motion in real time and create synthetic mapping of simple environments with regular shapes and deep hallways. Laser range finders are suitable for long ranges with limited resolution. Stereo vision, on the other hand, provides 3D structural data of nearby complex objects. To achieve simultaneous fine-grained resolution and long range coverage in the mapping of cluttered and complex environments, we dynamically fuse the measurements from the stereo vision camera system, the synthetic laser scanner, and the LiDAR. We propose solutions to self-correct errors in data fusion and create a hybrid map to assist the scooter in achieving collision-free navigation in an indoor environment.

  18. Navigator. Volume 45, Number 2, Winter 2009

    Science.gov (United States)

    National Science Education Leadership Association, 2009

    2009-01-01

    The National Science Education Leadership Association (NSELA) was formed in 1959 to meet a need to develop science education leadership for K-16 school systems. "Navigator" is published by NSELA to provide the latest NSELA events. This issue of "Navigator" contains the following reports: (1) A Message from the President: Creating Networks of…

  19. Autonomous navigation - The ARMMS concept. [Autonomous Redundancy and Maintenance Management Subsystem

    Science.gov (United States)

    Wood, L. J.; Jones, J. B.; Mease, K. D.; Kwok, J. H.; Goltz, G. L.; Kechichian, J. A.

    1984-01-01

    A conceptual design is outlined for the navigation subsystem of the Autonomous Redundancy and Maintenance Management Subsystem (ARMMS). The principal function of this navigation subsystem is to maintain the spacecraft over a specified equatorial longitude to within + or - 3 deg. In addition, the navigation subsystem must detect and correct internal faults. It comprises elements for a navigation executive and for orbit determination, trajectory, maneuver planning, and maneuver command. Each of these elements is described. The navigation subsystem is to be used in the DSCS III spacecraft.

  20. On a New Family of Kalman Filter Algorithms for Integrated Navigation

    Science.gov (United States)

    Mahboub, V.; Saadatseresht, M.; Ardalan, A. A.

    2017-09-01

    Here we present a review on a new family of Kalman filter algorithms which recently developed for integrated navigation. In particular it is useful for vision based navigation due to the type of data. Here we mainly focus on three algorithms namely weighted Total Kalman filter (WTKF), integrated Kalman filter (IKF) and constrained integrated Kalman filter (CIKF). The common characteristic of these algorithms is that they can consider the neglected random observed quantities which may appear in the dynamic model. Moreover, our approach makes use of condition equations and straightforward variance propagation rules. The WTKF algorithm can deal with problems with arbitrary weight matrixes. Both of the observation equations and system equations can be dynamic-errors-in-variables (DEIV) models in the IKF algorithms. In some problems a quadratic constraint may exist. They can be solved by CIKF algorithm. Finally, we compare four algorithms WTKF, IKF, CIKF and EKF in numerical examples.

  1. 19 CFR 4.66b - Pollution of coastal and navigable waters.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Pollution of coastal and navigable waters. 4.66b... coastal and navigable waters. (a) If any Customs officer has reason to believe that any refuse matter is being or has been deposited in navigable waters or any tributary of any navigable waters in violation of...

  2. PulsarPlane: a feasibility study for millisecond radio pulsar navigation

    NARCIS (Netherlands)

    Buist, Peter; Hesselink, Henk; Gibbs, Alex; Keuning, Michel; Gaubitch, Nikolay; Noroozi, Arash; Bentum, Marinus Jan; Verhoeven, Chris; Heusdens, Richard; Fernandes, Jorge; Kabakchiev, Hristo; Kestilä, Antti

    2014-01-01

    Stars have been used -in what is called celestial navigation- since thousands of years by mankind. Celestial navigation was used extensively in aviation until the 1960s, and in marine navigation until recently. It has been investigated for agriculture applications, utilized for military aircraft

  3. Automated detection of submerged navigational obstructions in freshwater impoundments with hull mounted sidescan sonar

    Science.gov (United States)

    Morris, Phillip A.

    The prevalence of low-cost side scanning sonar systems mounted on small recreational vessels has created improved opportunities to identify and map submerged navigational hazards in freshwater impoundments. However, these economical sensors also present unique challenges for automated techniques. This research explores related literature in automated sonar imagery processing and mapping technology, proposes and implements a framework derived from these sources, and evaluates the approach with video collected from a recreational grade sonar system. Image analysis techniques including optical character recognition and an unsupervised computer automated detection (CAD) algorithm are employed to extract the transducer GPS coordinates and slant range distance of objects protruding from the lake bottom. The retrieved information is formatted for inclusion into a spatial mapping model. Specific attributes of the sonar sensors are modeled such that probability profiles may be projected onto a three dimensional gridded map. These profiles are computed from multiple points of view as sonar traces crisscross or come near each other. As lake levels fluctuate over time so do the elevation points of view. With each sonar record, the probability of a hazard existing at certain elevations at the respective grid points is updated with Bayesian mechanics. As reinforcing data is collected, the confidence of the map improves. Given a lake's current elevation and a vessel draft, a final generated map can identify areas of the lake that have a high probability of containing hazards that threaten navigation. The approach is implemented in C/C++ utilizing OpenCV, Tesseract OCR, and QGIS open source software and evaluated in a designated test area at Lake Lavon, Collin County, Texas.

  4. Design of relative trajectories for in orbit proximity operations

    Science.gov (United States)

    Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele

    2018-04-01

    This paper presents an innovative approach to design relative trajectories suitable for close-proximity operations in orbit, by assigning high-level constraints regarding their stability, shape and orientation. Specifically, this work is relevant to space mission scenarios, e.g. formation flying, on-orbit servicing, and active debris removal, which involve either the presence of two spacecraft carrying out coordinated maneuvers, or a servicing/recovery spacecraft (chaser) performing monitoring, rendezvous and docking with respect to another space object (target). In the above-mentioned scenarios, an important aspect is the capability of reducing collision risks and of providing robust and accurate relative navigation solutions. To this aim, the proposed approach exploits a relative motion model relevant to two-satellite formations, and developed in mean orbit parameters, which takes the perturbation effect due to secular Earth oblateness, as well as the motion of the target along a small-eccentricity orbit, into account. This model is used to design trajectories which ensure safe relative motion, to minimize collision risks and relax control requirements, providing at the same time favorable conditions, in terms of target-chaser relative observation geometry for pose determination and relative navigation with passive or active electro-optical sensors on board the chaser. Specifically, three design strategies are proposed in the context of a space target monitoring scenario, considering as design cases both operational spacecraft and debris, characterized by highly variable shape, size and absolute rotational dynamics. The effectiveness of the proposed design approach in providing favorable observation conditions for target-chaser relative pose estimation is demonstrated within a simulation environment which reproduces the designed target-chaser relative trajectory, the operation of an active LIDAR installed on board the chaser, and pose estimation algorithms.

  5. A Systematic Approach for Solving the Great Circle Track Problems based on Vector Algebra

    Directory of Open Access Journals (Sweden)

    Chen Chih-Li

    2016-04-01

    Full Text Available A systematic approach, based on multiple products of the vector algebra (S-VA, is proposed to derive the spherical triangle formulae for solving the great circle track (GCT problems. Because the mathematical properties of the geometry and algebra are both embedded in the S-VA approach, derivations of the spherical triangle formulae become more understandable and more straightforward as compared with those approaches which use the complex linear combination of a vector basis. In addition, the S-VA approach can handle all given initial conditions for solving the GCT problems simpler, clearer and avoid redundant formulae existing in the conventional approaches. With the technique of transforming the Earth coordinates system of latitudes and longitudes into the Cartesian one and adopting the relative longitude concept, the concise governing equations of the S-VA approach can be easily and directly derived. Owing to the advantage of the S-VA approach, it makes the practical navigator quickly adjust to solve the GCT problems. Based on the S-VA approach, a program namely GCTPro_VA is developed for friendly use of the navigator. Several validation examples are provided to show the S-VA approach is simple and versatile to solve the GCT problems.

  6. Unraveling navigational strategies in migratory insects

    OpenAIRE

    Merlin, Christine; Heinze, Stanley; Reppert, Steven M.

    2011-01-01

    Long-distance migration is a strategy some animals use to survive a seasonally changing environment. To reach favorable grounds, migratory animals have evolved sophisticated navigational mechanisms that rely on a map and compasses. In migratory insects, the existence of a map sense (sense of position) remains poorly understood, but recent work has provided new insights into the mechanisms some compasses use for maintaining a constant bearing during long-distance navigation. The best-studied d...

  7. GPS surveying method applied to terminal area navigation flight experiments

    Energy Technology Data Exchange (ETDEWEB)

    Murata, M; Shingu, H; Satsushima, K; Tsuji, T; Ishikawa, K; Miyazawa, Y; Uchida, T [National Aerospace Laboratory, Tokyo (Japan)

    1993-03-01

    With an objective of evaluating accuracy of new landing and navigation systems such as microwave landing guidance system and global positioning satellite (GPS) system, flight experiments are being carried out using experimental aircraft. This aircraft mounts a GPS and evaluates its accuracy by comparing the standard orbits spotted by a Kalman filter from the laser tracing data on the aircraft with the navigation results. The GPS outputs position and speed information from an earth-centered-earth-fixed system called the World Geodetic System, 1984 (WGS84). However, in order to compare the navigation results with output from a reference orbit sensor or other navigation sensor, it is necessary to structure a high-precision reference coordinates system based on the WGS84. A method that applies the GPS phase interference measurement for this problem was proposed, and used actually in analyzing a flight experiment data. As referred to a case of the method having been applied to evaluating an independent navigation accuracy, the method was verified sufficiently effective and reliable not only in navigation method analysis, but also in the aspect of navigational operations. 12 refs., 10 figs., 5 tabs.

  8. Acoustic Communications and Navigation for Mobile Under-Ice Sensors

    Science.gov (United States)

    2017-02-04

    contact below the ice. 15. SUBJECT TERMS Arctic Ocean , Undersea Workstations & Vehicles, Signal Processing, Navigation , Underwater Acoustics 16...Partan, Peter Koski, and Sandipa Singh, "Long Range Acoustic Communications and Navigation in the Arctic", Proc. IEEE/MTS Oceans Conf., Washington, DC...Oct. 2015. Freitag, L., P. Koski, A. Morozov, S. Singh, J. Partan, "Acoustic Communications and Navigation Under Arctic Ice", OCEANS , 2012

  9. Navigator. Volume 45, Number 3, Spring 2009

    Science.gov (United States)

    National Science Education Leadership Association, 2009

    2009-01-01

    The National Science Education Leadership Association (NSELA) was formed in 1959 to meet a need to develop science education leadership for K-16 school systems. "Navigator" is published by NSELA to provide the latest NSELA events. This issue of "Navigator" includes the following items: (1) A Message from the President (Brenda Wojnowski); (2) NSELA…

  10. Gender differences in navigational memory: pilots vs. nonpilots.

    Science.gov (United States)

    Verde, Paola; Piccardi, Laura; Bianchini, Filippo; Guariglia, Cecilia; Carrozzo, Paolo; Morgagni, Fabio; Boccia, Maddalena; Di Fiore, Giacomo; Tomao, Enrico

    2015-02-01

    The coding of space as near and far is not only determined by arm-reaching distance, but is also dependent on how the brain represents the extension of the body space. Recent reports suggest that the dissociation between reaching and navigational space is not limited to perception and action but also involves memory systems. It has been reported that gender differences emerged only in adverse learning conditions that required strong spatial ability. In this study we investigated navigational versus reaching memory in air force pilots and a control group without flight experience. We took into account temporal duration (working memory and long-term memory) and focused on working memory, which is considered critical in the gender differences literature. We found no gender effects or flight hour effects in pilots but observed gender effects in working memory (but not in learning and delayed recall) in the nonpilot population (Women's mean = 5.33; SD= 0.90; Men's mean = 5.54; SD= 0.90). We also observed a difference between pilots and nonpilots in the maintenance of on-line reaching information: pilots (mean = 5.85; SD=0.76) were more efficient than nonpilots (mean = 5.21; SD=0.83) and managed this type of information similarly to that concerning navigational space. In the navigational learning phase they also showed better navigational memory (mean = 137.83; SD=5.81) than nonpilots (mean = 126.96; SD=15.81) and were significantly more proficient than the latter group. There is no gender difference in a population of pilots in terms of navigational abilities, while it emerges in a control group without flight experience. We found also that pilots performed better than nonpilots. This study suggests that once selected, male and female pilots do not differ from each other in visuo-spatial abilities and spatial navigation.

  11. Accuracy of navigated pedicle screw insertion by a junior spine surgeon without spinal surgery experience

    International Nuclear Information System (INIS)

    Yamazaki, Hironori; Kotani, Toshiaki; Motegi, Hiroyuki; Nemoto, Tetsuharu; Koshi, Takana; Nagahara, Ken; Minami, Syohei

    2010-01-01

    The purpose of this study was to investigate pedicle screw placement accuracy during navigated surgery by a junior spine surgeon who had no spinal surgery experience. A junior spine surgeon with no spinal surgery experience implanted a total of 137 pedicle screws by using a navigation system. Postoperative computerized tomography was performed to evaluate screw placement, and the pedicle perforation rate was 2.2%. There were no neurologic or vascular complications related to the pedicle screws. The results demonstrated that pedicle screws can be placed safely and effectively by a junior spine surgeon who has no spinal surgery experience when instructed by a senior spine surgeon. The results of this study suggest that navigation can be used as a surgical training tool for junior spine surgeons. (author)

  12. 76 FR 58105 - Regulated Navigation Area; Saugus River, Lynn, MA

    Science.gov (United States)

    2011-09-20

    ... final rule. SUMMARY: The Coast Guard is establishing a Regulated Navigation Area (RNA) on the navigable... INFORMATION: Regulatory Information The Coast Guard is issuing this temporary rule without prior notice and... Pipeline bridge poses to the navigational channel necessitates that all mariners comply with this RNA...

  13. Neural-network-based depth computation for blind navigation

    Science.gov (United States)

    Wong, Farrah; Nagarajan, Ramachandran R.; Yaacob, Sazali

    2004-12-01

    A research undertaken to help blind people to navigate autonomously or with minimum assistance is termed as "Blind Navigation". In this research, an aid that could help blind people in their navigation is proposed. Distance serves as an important clue during our navigation. A stereovision navigation aid implemented with two digital video cameras that are spaced apart and fixed on a headgear to obtain the distance information is presented. In this paper, a neural network methodology is used to obtain the required parameters of the camera which is known as camera calibration. These parameters are not known but obtained by adjusting the weights in the network. The inputs to the network consist of the matching features in the stereo pair images. A back propagation network with 16-input neurons, 3 hidden neurons and 1 output neuron, which gives depth, is created. The distance information is incorporated into the final processed image as four gray levels such as white, light gray, dark gray and black. Preliminary results have shown that the percentage errors fall below 10%. It is envisaged that the distance provided by neural network shall enable blind individuals to go near and pick up an object of interest.

  14. Mobile Robot Designed with Autonomous Navigation System

    Science.gov (United States)

    An, Feng; Chen, Qiang; Zha, Yanfang; Tao, Wenyin

    2017-10-01

    With the rapid development of robot technology, robots appear more and more in all aspects of life and social production, people also ask more requirements for the robot, one is that robot capable of autonomous navigation, can recognize the road. Take the common household sweeping robot as an example, which could avoid obstacles, clean the ground and automatically find the charging place; Another example is AGV tracking car, which can following the route and reach the destination successfully. This paper introduces a new type of robot navigation scheme: SLAM, which can build the environment map in a totally strange environment, and at the same time, locate its own position, so as to achieve autonomous navigation function.

  15. Assessment of Spatial Navigation and Docking Performance During Simulated Rover Tasks

    Science.gov (United States)

    Wood, S. J.; Dean, S. L.; De Dios, Y. E.; Moore, S. T.

    2010-01-01

    INTRODUCTION: Following long-duration exploration transits, pressurized rovers will enhance surface mobility to explore multiple sites across Mars and other planetary bodies. Multiple rovers with docking capabilities are envisioned to expand the range of exploration. However, adaptive changes in sensorimotor and cognitive function may impair the crew s ability to safely navigate and perform docking tasks shortly after transition to the new gravitoinertial environment. The primary goal of this investigation is to quantify post-flight decrements in spatial navigation and docking performance during a rover simulation. METHODS: Eight crewmembers returning from the International Space Station will be tested on a motion simulator during four pre-flight and three post-flight sessions over the first 8 days following landing. The rover simulation consists of a serial presentation of discrete tasks to be completed within a scheduled 10 min block. The tasks are based on navigating around a Martian outpost spread over a 970 sq m terrain. Each task is subdivided into three components to be performed as quickly and accurately as possible: (1) Perspective taking: Subjects use a joystick to indicate direction of target after presentation of a map detailing current orientation and location of the rover with the task to be performed. (2) Navigation: Subjects drive the rover to the desired location while avoiding obstacles. (3) Docking: Fine positioning of the rover is required to dock with another object or align a camera view. Overall operator proficiency will be based on how many tasks the crewmember can complete during the 10 min time block. EXPECTED RESULTS: Functionally relevant testing early post-flight will develop evidence regarding the limitations to early surface operations and what countermeasures are needed. This approach can be easily adapted to a wide variety of simulated vehicle designs to provide sensorimotor assessments for other operational and civilian populations.

  16. Social networks improve leaderless group navigation by facilitating long-distance communication

    Directory of Open Access Journals (Sweden)

    Nikolai W. F. BODE, A. Jamie WOOD, Daniel W. FRANKS

    2012-04-01

    Full Text Available Group navigation is of great importance for many animals, such as migrating flocks of birds or shoals of fish. One theory states that group membership can improve navigational accuracy compared to limited or less accurate individual navigational ability in groups without leaders (“Many-wrongs principle”. Here, we simulate leaderless group navigation that includes social connections as preferential interactions between individuals. Our results suggest that underlying social networks can reduce navigational errors of groups and increase group cohesion. We use network summary statistics, in particular network motifs, to study which characteristics of networks lead to these improvements. It is networks in which preferences between individuals are not clustered, but spread evenly across the group that are advantageous in group navigation by effectively enhancing long-distance information exchange within groups. We suggest that our work predicts a base-line for the type of social structure we might expect to find in group-living animals that navigate without leaders [Current Zoology 58 (2: 329-341, 2012].

  17. The role of geomagnetic cues in green turtle open sea navigation.

    Directory of Open Access Journals (Sweden)

    Simon Benhamou

    Full Text Available BACKGROUND: Laboratory and field experiments have provided evidence that sea turtles use geomagnetic cues to navigate in the open sea. For instance, green turtles (Chelonia mydas displaced 100 km away from their nesting site were impaired in returning home when carrying a strong magnet glued on the head. However, the actual role of geomagnetic cues remains unclear, since magnetically treated green turtles can perform large scale (>2000 km post-nesting migrations no differently from controls. METHODOLOGY/PRINCIPAL FINDINGS: In the present homing experiment, 24 green turtles were displaced 200 km away from their nesting site on an oceanic island, and tracked, for the first time in this type of experiment, with Global Positioning System (GPS, which is able to provide much more frequent and accurate locations than previously used tracking methods. Eight turtles were magnetically treated for 24-48 h on the nesting beach prior to displacement, and another eight turtles had a magnet glued on the head at the release site. The last eight turtles were used as controls. Detailed analyses of water masses-related (i.e., current-corrected homing paths showed that magnetically treated turtles were able to navigate toward their nesting site as efficiently as controls, but those carrying magnets were significantly impaired once they arrived within 50 km of home. CONCLUSIONS/SIGNIFICANCE: While green turtles do not seem to need geomagnetic cues to navigate far from the goal, these cues become necessary when turtles get closer to home. As the very last part of the homing trip (within a few kilometers of home likely depends on non-magnetic cues, our results suggest that magnetic cues play a key role in sea turtle navigation at an intermediate scale by bridging the gap between large and small scale navigational processes, which both appear to depend on non-magnetic cues.

  18. Vision enhanced navigation for unmanned systems

    Science.gov (United States)

    Wampler, Brandon Loy

    A vision based simultaneous localization and mapping (SLAM) algorithm is evaluated for use on unmanned systems. SLAM is a technique used by a vehicle to build a map of an environment while concurrently keeping track of its location within the map, without a priori knowledge. The work in this thesis is focused on using SLAM as a navigation solution when global positioning system (GPS) service is degraded or temporarily unavailable. Previous work on unmanned systems that lead up to the determination that a better navigation solution than GPS alone is first presented. This previous work includes control of unmanned systems, simulation, and unmanned vehicle hardware testing. The proposed SLAM algorithm follows the work originally developed by Davidson et al. in which they dub their algorithm MonoSLAM [1--4]. A new approach using the Pyramidal Lucas-Kanade feature tracking algorithm from Intel's OpenCV (open computer vision) library is presented as a means of keeping correct landmark correspondences as the vehicle moves through the scene. Though this landmark tracking method is unusable for long term SLAM due to its inability to recognize revisited landmarks, as opposed to the Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF), its computational efficiency makes it a good candidate for short term navigation between GPS position updates. Additional sensor information is then considered by fusing INS and GPS information into the SLAM filter. The SLAM system, in its vision only and vision/IMU form, is tested on a table top, in an open room, and finally in an outdoor environment. For the outdoor environment, a form of the slam algorithm that fuses vision, IMU, and GPS information is tested. The proposed SLAM algorithm, and its several forms, are implemented in C++ using an Extended Kalman Filter (EKF). Experiments utilizing a live video feed from a webcam are performed. The different forms of the filter are compared and conclusions are made on

  19. Proximity and physical navigation in collaborative work with a multi-touch wall-display

    DEFF Research Database (Denmark)

    Jakobsen, Mikkel Rønne; Hornbæk, Kasper

    2012-01-01

    Multi-touch, wall-sized displays afford new forms of collaboration. Yet, most data on collaboration with multi-touch displays come from tabletop settings, where users often sit and where space is a limited resource. We study how two-person groups navigate in relation to a 2.8m!1.2m multi-touch di......-touch display with 24.8 megapixels and to each other when solving a sensemaking task on a document collection. The results show that users physically navigate to shift fluently among different parts of the display and between parallel and joint group work....

  20. A virtual water maze revisited: Two-year changes in navigation performance and their neural correlates in healthy adults.

    Science.gov (United States)

    Daugherty, Ana M; Raz, Naftali

    2017-02-01

    Age-related declines in spatial navigation are associated with deficits in procedural and episodic memory and deterioration of their neural substrates. For the lack of longitudinal evidence, the pace and magnitude of these declines and their neural mediators remain unclear. Here we examined virtual navigation in healthy adults (N=213, age 18-77 years) tested twice, two years apart, with complementary indices of navigation performance (path length and complexity) measured over six learning trials at each occasion. Slopes of skill acquisition curves and longitudinal change therein were estimated in structural equation modeling, together with change in regional brain volumes and iron content (R2* relaxometry). Although performance on the first trial did not differ between occasions separated by two years, the slope of path length improvement over trials was shallower and end-of-session performance worse at follow-up. Advanced age, higher pulse pressure, smaller cerebellar and caudate volumes, and greater caudate iron content were associated with longer search paths, i.e. poorer navigation performance. In contrast, path complexity diminished faster over trials at follow-up, albeit less so in older adults. Improvement in path complexity after two years was predicted by lower baseline hippocampal iron content and larger parahippocampal volume. Thus, navigation path length behaves as an index of perceptual-motor skill that is vulnerable to age-related decline, whereas path complexity may reflect cognitive mapping in episodic memory that improves with repeated testing, although not enough to overcome age-related deficits. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Navigation with ECDIS: Choosing the Proper Secondary Positioning Source

    Directory of Open Access Journals (Sweden)

    D. Brčic

    2015-09-01

    Full Text Available The completion of ECDIS mandatory implementation period on-board SOLAS vessels requires certain operational, functional and educational gaping holes to be solved. It especially refers to positioning and its redundancy, which represents fundamental safety factor on-board navigating vessels. The proposed paper deals with primary and secondary positioning used in ECDIS system. Standard positioning methods are described, discussing possibilities of obtained positions’ automatic and manual implementation in ECDIS, beside default methods. With the aim of emphasizing the need and importance of using secondary positioning source in ECDIS, positioning issue from the standpoint of end-users was elaborated, representing a practical feedback of elaborated topic. The survey was conducted in the form of international questionnaire placed among OOWs, ranging from apprentice officers to captains. The result answers and discussion regarding (nonusage of secondary positioning sources in ECDIS were analysed and presented. Answers and statements were elaborated focusing not only in usage of the secondary positioning system in ECDIS, but in navigation in general. The study revealed potential risks arising from the lack of knowledge and even negligence. The paper concludes with summary of findings related to discrepancies between theoretical background, good seamanship practice and real actions taken by OOWs. Further research activities are pointed out, together with planned practical actions in raising awareness regarding navigation with ECDIS.

  2. X-ray Pulsar Navigation Algorithms and Testbed for SEXTANT

    Science.gov (United States)

    Winternitz, Luke M. B.; Hasouneh, Monther A.; Mitchell, Jason W.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; hide

    2015-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a NASA funded technologydemonstration. SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar-based Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper describes the basic design of the SEXTANT system with a focus on core models and algorithms, and the design and continued development of the GSFC X-ray Navigation Laboratory Testbed (GXLT) with its dynamic pulsar emulation capability. We also present early results from GXLT modeling of the combined NICER X-ray timing instrument hardware and SEXTANT flight software algorithms.

  3. The effects of individually tailored nurse navigation for patients with newly diagnosed breast cancer

    DEFF Research Database (Denmark)

    Mertz, Birgitte Goldschmidt; Dunn-Henriksen, Anne Katrine; Kroman, Niels

    2017-01-01

    AIM: Our aim was to determine the feasibility and effectiveness of an individual, nurse-navigator intervention for relieving distress, anxiety, depression and health-related quality of life in women who have been treated for breast cancer (BC) and are experiencing moderate-to-severe psychological...... and the secondary outcomes were anxiety, depression, health-related quality of life and feasibility of the intervention. RESULTS: Women in the intervention group reported significantly greater satisfaction with treatment and rehabilitation and lower levels of distress (mean 2.7 vs. 5.1, p.... 7.8, p = .02) and depression (mean 2.2 vs. 4.4, p = .04) after 12 months compared to the control group. No significant effects were seen on health-related quality of life. CONCLUSIONS: The study shows promising feasibility of the individually tailored nurse-navigation intervention and while...

  4. THE DEVELOPMENT OF NAVIGATION SYSTEMS IN CIVIL AVIATION

    Directory of Open Access Journals (Sweden)

    Anastasiya Sergeyevna Stepanenko

    2017-01-01

    Full Text Available The article describes the history of navigation systems formation, such as "Cicada" system, which at that time could compete with the US "Transit", European, Chinese Beidou navigation system and the Japanese Quasi-Zenit.The detailed information about improving the American GPS system, launched in 1978 and working till now is provided. The characteristics of GPS-III counterpart "Transit", which became the platform for creating such modern globalnavigation systems as GLONASS and GPS. The process of implementation of the GLONASS system in civil aviation, itssegments, functions and features are considered. The stages of GLONASS satellite system orbital grouping formation are analyzed. The author draws the analogy with the American GPS system, the GALILEO system, which has a number of additional advantages, are given. The author remarks the features of the European counterpart of the GALILEO global nav- igation system. One of the goals of this system is to provide a high-precision positioning system, which Europe can rely on regardless of the Russian GLONASS system, the US - GPS and the Chinese Beidou. GALILEO offers a unique global search and rescue function called SAR, with an important feedback function. The peculiarities of Chinese scientists’ navi- gation system, the Beidou satellite system, and the Japanese global Quasi-Zenith Satellite System are described.Global navigation systems development tendencies are considered. The author dwells upon the path to world satel- lite systems globalization, a good example of which is the trend towards GLONASS and Beidou unification. Most attention was paid to the latest development of Russian scientists’ autonomous navigation system SINS 2015, which is a strap-down inertial navigation system and allows you to navigate the aircraft without being connected to a global satellite system. The ways of navigation systems further development in Russia are determined. The two naturally opposite directions are

  5. Image processing and applications based on visualizing navigation service

    Science.gov (United States)

    Hwang, Chyi-Wen

    2015-07-01

    When facing the "overabundant" of semantic web information, in this paper, the researcher proposes the hierarchical classification and visualizing RIA (Rich Internet Application) navigation system: Concept Map (CM) + Semantic Structure (SS) + the Knowledge on Demand (KOD) service. The aim of the Multimedia processing and empirical applications testing, was to investigating the utility and usability of this visualizing navigation strategy in web communication design, into whether it enables the user to retrieve and construct their personal knowledge or not. Furthermore, based on the segment markets theory in the Marketing model, to propose a User Interface (UI) classification strategy and formulate a set of hypermedia design principles for further UI strategy and e-learning resources in semantic web communication. These research findings: (1) Irrespective of whether the simple declarative knowledge or the complex declarative knowledge model is used, the "CM + SS + KOD navigation system" has a better cognition effect than the "Non CM + SS + KOD navigation system". However, for the" No web design experience user", the navigation system does not have an obvious cognition effect. (2) The essential of classification in semantic web communication design: Different groups of user have a diversity of preference needs and different cognitive styles in the CM + SS + KOD navigation system.

  6. Comparing two types of navigational interfaces for Virtual Reality.

    Science.gov (United States)

    Teixeira, Luís; Vilar, Elisângela; Duarte, Emília; Rebelo, Francisco; da Silva, Fernando Moreira

    2012-01-01

    Previous studies suggest significant differences between navigating virtual environments in a life-like walking manner (i.e., using treadmills or walk-in-place techniques) and virtual navigation (i.e., flying while really standing). The latter option, which usually involves hand-centric devices (e.g., joysticks), is the most common in Virtual Reality-based studies, mostly due to low costs, less space and technology demands. However, recently, new interaction devices, originally conceived for videogames have become available offering interesting potentialities for research. This study aimed to explore the potentialities of the Nintendo Wii Balance Board as a navigation interface in a Virtual Environment presented in an immersive Virtual Reality system. Comparing participants' performance while engaged in a simulated emergency egress allows determining the adequacy of such alternative navigation interface on the basis of empirical results. Forty university students participated in this study. Results show that participants were more efficient when performing navigation tasks using the Joystick than with the Balance Board. However there were no significantly differences in the behavioral compliance with exit signs. Therefore, this study suggests that, at least for tasks similar to the studied, the Balance Board have good potentiality to be used as a navigation interface for Virtual Reality systems.

  7. A Dataset for Visual Navigation with Neuromorphic Methods

    Directory of Open Access Journals (Sweden)

    Francisco eBarranco

    2016-02-01

    Full Text Available Standardized benchmarks in Computer Vision have greatly contributed to the advance of approaches to many problems in the field. If we want to enhance the visibility of event-driven vision and increase its impact, we will need benchmarks that allow comparison among different neuromorphic methods as well as comparison to Computer Vision conventional approaches. We present datasets to evaluate the accuracy of frame-free and frame-based approaches for tasks of visual navigation. Similar to conventional Computer Vision datasets, we provide synthetic and real scenes, with the synthetic data created with graphics packages, and the real data recorded using a mobile robotic platform carrying a dynamic and active pixel vision sensor (DAVIS and an RGB+Depth sensor. For both datasets the cameras move with a rigid motion in a static scene, and the data includes the images, events, optic flow, 3D camera motion, and the depth of the scene, along with calibration procedures. Finally, we also provide simulated event data generated synthetically from well-known frame-based optical flow datasets.

  8. Bio-robots automatic navigation with electrical reward stimulation.

    Science.gov (United States)

    Sun, Chao; Zhang, Xinlu; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2012-01-01

    Bio-robots that controlled by outer stimulation through brain computer interface (BCI) suffer from the dependence on realtime guidance of human operators. Current automatic navigation methods for bio-robots focus on the controlling rules to force animals to obey man-made commands, with animals' intelligence ignored. This paper proposes a new method to realize the automatic navigation for bio-robots with electrical micro-stimulation as real-time rewards. Due to the reward-seeking instinct and trial-and-error capability, bio-robot can be steered to keep walking along the right route with rewards and correct its direction spontaneously when rewards are deprived. In navigation experiments, rat-robots learn the controlling methods in short time. The results show that our method simplifies the controlling logic and realizes the automatic navigation for rat-robots successfully. Our work might have significant implication for the further development of bio-robots with hybrid intelligence.

  9. Enabling Autonomous Navigation for Affordable Scooters

    Directory of Open Access Journals (Sweden)

    Kaikai Liu

    2018-06-01

    Full Text Available Despite the technical success of existing assistive technologies, for example, electric wheelchairs and scooters, they are still far from effective enough in helping those in need navigate to their destinations in a hassle-free manner. In this paper, we propose to improve the safety and autonomy of navigation by designing a cutting-edge autonomous scooter, thus allowing people with mobility challenges to ambulate independently and safely in possibly unfamiliar surroundings. We focus on indoor navigation scenarios for the autonomous scooter where the current location, maps, and nearby obstacles are unknown. To achieve semi-LiDAR functionality, we leverage the gyros-based pose data to compensate the laser motion in real time and create synthetic mapping of simple environments with regular shapes and deep hallways. Laser range finders are suitable for long ranges with limited resolution. Stereo vision, on the other hand, provides 3D structural data of nearby complex objects. To achieve simultaneous fine-grained resolution and long range coverage in the mapping of cluttered and complex environments, we dynamically fuse the measurements from the stereo vision camera system, the synthetic laser scanner, and the LiDAR. We propose solutions to self-correct errors in data fusion and create a hybrid map to assist the scooter in achieving collision-free navigation in an indoor environment.

  10. Error Analysis of Inertial Navigation Systems Using Test Algorithms

    OpenAIRE

    Vaispacher, Tomáš; Bréda, Róbert; Adamčík, František

    2015-01-01

    Content of this contribution is an issue of inertial sensors errors, specification of inertial measurement units and generating of test signals for Inertial Navigation System (INS). Given the different levels of navigation tasks, part of this contribution is comparison of the actual types of Inertial Measurement Units. Considering this comparison, there is proposed the way of solving inertial sensors errors and their modelling for low – cost inertial navigation applications. The last part is ...

  11. Navigating actions through the rodent parietal cortex

    Directory of Open Access Journals (Sweden)

    Jonathan R. Whitlock

    2014-05-01

    Full Text Available The posterior parietal cortex (PPC participates in a manifold of cognitive functions, including visual attention, working memory, spatial processing and movement planning. Given the vast interconnectivity of PPC with sensory and motor areas, it is not surprising that neuronal recordings show that PPC often encodes mixtures of spatial information as well as the movements required to reach a goal. Recent work sought to discern the relative strength of spatial versus motor signaling in PPC by recording single unit activity in PPC of freely behaving rats during selective changes in either the spatial layout of the local environment or in the pattern of locomotor behaviors executed during navigational tasks. The results revealed unequivocally a predominant sensitivity of PPC neurons to locomotor action structure, with subsets of cells even encoding upcoming movements more than 1 second in advance. In light of these and other recent findings in the field, I propose that one of the key contributions of PPC to navigation is the synthesis of goal-directed behavioral sequences, and that the rodent PPC may serve as an apt system to investigate cellular mechanisms for spatial motor planning as traditionally studied in humans and monkeys.

  12. Kilohoku Ho`okele Wa`a : Astronomy of the Hawaiian Navigators

    Science.gov (United States)

    Slater, Stephanie; Slater, Timothy F.; Baybayan, Kalepa C.

    2016-01-01

    This poster provides an introduction to the astronomy of the Hawaiian wayfinders, Kilohoku Ho`okele Wa`a. Rooted in a legacy of navigation across the Polynesian triangle, wayfinding astronomy has been part of a suite of skills that allows navigators to deliberately hop between the small islands of the Pacific, for thousands of years. Forty years ago, in one manifestation of the Hawaiian Renaissance, our teachers demonstrated that ancient Hawaiians were capable of traversing the wide Pacific to settle and trade on islands separated by thousands of miles. Today those same mentors train a new generation of navigators, making Hawaiian voyaging a living, evolving, sustainable endeavor. This poster presents two components of astronomical knowledge that all crewmen, but particularly those in training to become navigators, learn early in their training. Na Ohana Hoku, the Hawaiian Star Families constitute the basic units of the Hawaiian sky. In contrast to the Western system of 88 constellations, Na Ohana Hoku divides the sky into four sections that each run from the northern to the southern poles. This configuration reduces cognitive load, allowing the navigator to preserve working memory for other complex tasks. In addition, these configurations of stars support the navigator in finding and generatively using hundreds of individual, and navigationally important pairs of stars. The Hawaiian Star Compass divides the celestial sphere into a directional system that uses 32 rather than 8 cardinal points. Within the tropics, the rising and setting of celestial objects are consistent within the Hawaiian Star Compass, providing for extremely reliable direction finding. Together, Na Ohana Hoku and the Hawaiian Star Compass provide the tropical navigator with astronomical assistance that is not available to, and would have been unknown to Western navigators trained at higher latitudes.

  13. Navigated Waterways of Louisiana, Geographic NAD83, LOSCO (1999) [navigated_waterways_LOSCO_1999

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a line dataset of navigated waterways fitting the LOSCO definition: it has been traveled by vessels transporting 10,000 gallons of oil or fuel as determined...

  14. Ultrasound-Aided Pedestrian Dead Reckoning for Indoor Navigation

    NARCIS (Netherlands)

    Fischer, C.; Kavitha Muthukrishnan, K.; Hazas, M.; Gellersen, H.

    2008-01-01

    Ad hoc solutions for tracking and providing navigation support to emergency response teams is an important and safety-critical challenge. We propose a navigation system based on a combination of foot-mounted inertial sensors and ultrasound beacons. We evaluate experimentally the performance of our

  15. An exploration of the patient navigator role: perspectives of younger women with breast cancer.

    Science.gov (United States)

    Pedersen, Allison E; Hack, Thomas F; McClement, Susan E; Taylor-Brown, Jill

    2014-01-01

    To delineate the role of the oncology patient navigator, drawing from the experiences and descriptions of younger women with breast cancer. Interpretive, descriptive, qualitative research design. Participants' homes, researcher's home, and via telephone, all in Winnipeg, Manitoba, Canada. 12 women aged 50 years or younger who were diagnosed with breast cancer within the last three years. Face-to-face semistructured interviews explored patient experiences with the cancer care system, including problems encountered, unmet needs, and opinions about the functions of the patient navigator role. The audio-recorded interviews were transcribed and data were broken down and inductively coded into four categories. Constant comparative techniques also were used during analysis. The role of the oncology patient navigator included two facets: "Processual facets," with the subthemes assigned to me at diagnosis, managing the connection, mapping the process, practical support, and quarterbacking my entire journey; and "Personal qualities: The essentials," with the subthemes empathetic care tenor, knowing the cancer system, and understanding the medical side of breast cancer. Despite the tremendous effort directed toward enhancing care for younger women undergoing treatment for breast cancer, gaps continue to exist. Younger women with breast cancer require a care approach providing ongoing dialogue, teaching, and emotional support from the point of diagnosis through treatment, including transitions of care within the oncology setting and back to their primary care practitioner. Oncology nurse navigators are well positioned to provide patients with anticipatory guidance from diagnosis to the end of treatment.

  16. Determining navigability of terrain using point cloud data.

    Science.gov (United States)

    Cockrell, Stephanie; Lee, Gregory; Newman, Wyatt

    2013-06-01

    This paper presents an algorithm to identify features of the navigation surface in front of a wheeled robot. Recent advances in mobile robotics have brought about the development of smart wheelchairs to assist disabled people, allowing them to be more independent. These robots have a human occupant and operate in real environments where they must be able to detect hazards like holes, stairs, or obstacles. Furthermore, to ensure safe navigation, wheelchairs often need to locate and navigate on ramps. The algorithm is implemented on data from a Kinect and can effectively identify these features, increasing occupant safety and allowing for a smoother ride.

  17. Navigational efficiency of nocturnal Myrmecia ants suffers at low light levels.

    Directory of Open Access Journals (Sweden)

    Ajay Narendra

    Full Text Available Insects face the challenge of navigating to specific goals in both bright sun-lit and dim-lit environments. Both diurnal and nocturnal insects use quite similar navigation strategies. This is despite the signal-to-noise ratio of the navigational cues being poor at low light conditions. To better understand the evolution of nocturnal life, we investigated the navigational efficiency of a nocturnal ant, Myrmecia pyriformis, at different light levels. Workers of M. pyriformis leave the nest individually in a narrow light-window in the evening twilight to forage on nest-specific Eucalyptus trees. The majority of foragers return to the nest in the morning twilight, while few attempt to return to the nest throughout the night. We found that as light levels dropped, ants paused for longer, walked more slowly, the success in finding the nest reduced and their paths became less straight. We found that in both bright and dark conditions ants relied predominantly on visual landmark information for navigation and that landmark guidance became less reliable at low light conditions. It is perhaps due to the poor navigational efficiency at low light levels that the majority of foragers restrict navigational tasks to the twilight periods, where sufficient navigational information is still available.

  18. Deep space telecommunications, navigation, and information management. Support of the space exploration initiative

    Science.gov (United States)

    Hall, Justin R.; Hastrup, Rolf C.

    The United States Space Exploration Initiative (SEI) calls for the charting of a new and evolving manned course to the Moon, Mars, and beyond. This paper discusses key challenges in providing effective deep space telecommunications, navigation, and information management (TNIM) architectures and designs for Mars exploration support. The fundamental objectives are to provide the mission with means to monitor and control mission elements, acquire engineering, science, and navigation data, compute state vectors and navigate, and move these data efficiently and automatically between mission nodes for timely analysis and decision-making. Although these objectives do not depart, fundamentally, from those evolved over the past 30 years in supporting deep space robotic exploration, there are several new issues. This paper focuses on summarizing new requirements, identifying related issues and challenges, responding with concepts and strategies which are enabling, and, finally, describing candidate architectures, and driving technologies. The design challenges include the attainment of: 1) manageable interfaces in a large distributed system, 2) highly unattended operations for in-situ Mars telecommunications and navigation functions, 3) robust connectivity for manned and robotic links, 4) information management for efficient and reliable interchange of data between mission nodes, and 5) an adequate Mars-Earth data rate.

  19. Addressing the Influence of Space Weather on Airline Navigation

    Science.gov (United States)

    Sparks, Lawrence

    2012-01-01

    The advent of satellite-based augmentation systems has made it possible to navigate aircraft safely using radio signals emitted by global navigation satellite systems (GNSS) such as the Global Positioning System. As a signal propagates through the earth's ionosphere, it suffers delay that is proportional to the total electron content encountered along the raypath. Since the magnitude of this total electron content is strongly influenced by space weather, the safety and reliability of GNSS for airline navigation requires continual monitoring of the state of the ionosphere and calibration of ionospheric delay. This paper examines the impact of space weather on GNSS-based navigation and provides an overview of how the Wide Area Augmentation System protects its users from positioning error due to ionospheric disturbances

  20. Celestial Navigation on the Surface of Mars

    Science.gov (United States)

    Malay, Benjamin P.

    2001-05-01

    A simple, accurate, and autonomous method of finding position on the surface of Mars currently does not exist. The goal of this project is to develop a celestial navigation process that will fix a position on Mars with 100-meter accuracy. This method requires knowing the position of the stars and planets referenced to the Martian surface with one arcsecond accuracy. This information is contained in an ephemeris known as the Aeronautical Almanac (from Ares, the god of war) . Naval Observatory Vector Astrometry Subroutines (NOVAS) form the basis of the code used to generate the almanac. Planetary position data come the JPL DE405 Planetary Ephemeris. The theoretical accuracy of the almanac is determined mathematically and compared with the Ephemeris for Physical Observations of Mars contained in the Astronautical Almanac. A preliminary design of an autonomous celestial navigation system is presented. Recommendations of how to integrate celestial navigation into NASA=s current Mars exploration program are also discussed. This project is a useful and much-needed first step towards establishing celestial navigation as a practical way to find position on the surface of Mars.