WorldWideScience

Sample records for relative mechanical properties

  1. Relating porosity and mechanical properties in spray formed tubulars

    International Nuclear Information System (INIS)

    Payne, R.D.; Naval Surface Warfare Center, Annapolis, MD; Moran, A.L.; United States Naval Academy, Annapolis, MD; Cammarata, R.C.

    1993-01-01

    Because the spray forming process holds the potential to reduce the cost of alloy production, there is significant interest in developing methods to industrialized and automate this process through advanced sensing techniques. These advanced sensing techniques will observe the process real-time and give inputs to a process controller. By determining relationships between part quality, process parameters and sensor inputs, the process controller will be able to determine the quality of a part while it is being made and make adjustments if necessary. A Tinius-Olsen Tensile Tester was used to test five tensile specimens. The five tensile specimens were taken from five alloy 625 (60% Ni, 20% Cr, 8%Mo, 5% Fe) tubulars with varying properties. Among the advanced sensing techniques currently used to monitor the spray forming process is a surface roughness sensor. It consists of an argon laser, a charge coupled device (CCD) camera and roughness determination software. The laser emission is expanded into a long, thin line and projected onto the substrate as the molten metal consolidates on the surface. The roughness determination software will grab a frame with the laser stripe, digitize it and calculate the root mean square (RMS) value of the roughness in that particular frame. Each frame has a time stamp and can be related back to other time stamped process parameters. Recent sensor work has tried to find correlations between RMS values and porosities determined after processing. This venture has met with limited success. The object of this paper is to link porosity with mechanical properties and therefore define quality. Eventually the input from all sensors and process parameters will be entered into a process controller. If there is a link between sensor data and quality, this controller will be able to determine the quality of a forming material from sensor inputs and make changes in the process parameters if the quality is poor

  2. Silk Fibroin Degradation Related to Rheological and Mechanical Properties.

    Science.gov (United States)

    Partlow, Benjamin P; Tabatabai, A Pasha; Leisk, Gary G; Cebe, Peggy; Blair, Daniel L; Kaplan, David L

    2016-05-01

    Regenerated silk fibroin has been proposed as a material substrate for biomedical, optical, and electronic applications. Preparation of the silk fibroin solution requires extraction (degumming) to remove contaminants, but results in the degradation of the fibroin protein. Here, a mechanism of fibroin degradation is proposed and the molecular weight and polydispersity is characterized as a function of extraction time. Rheological analysis reveals significant changes in the viscosity of samples while mechanical characterization of cast and drawn films shows increased moduli, extensibility, and strength upon drawing. Fifteen minutes extraction time results in degraded fibroin that generates the strongest films. Structural analysis by wide angle X-ray scattering (WAXS) and Fourier transform infrared spectroscopy (FTIR) indicates molecular alignment in the drawn films and shows that the drawing process converts amorphous films into the crystalline, β-sheet, secondary structure. Most interesting, by using selected extraction times, films with near-native crystallinity, alignment, and molecular weight can be achieved; yet maximal mechanical properties for the films from regenerated silk fibroin solutions are found with solutions subjected to some degree of degradation. These results suggest that the regenerated solutions and the film casting and drawing processes introduce more complexity than native spinning processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mechanical Properties of Photovoltaic Silicon in Relation to Wafer Breakage

    Science.gov (United States)

    Kulshreshtha, Prashant Kumar

    This thesis focuses on the fundamental understanding of stress-modified crack-propagation in photovoltaic (PV) silicon in relation to the critical issue of PV silicon "wafer breakage". The interactions between a propagating crack and impurities/defects/residual stresses have been evaluated for consequential fracture path in a thin PV Si wafer. To investigate the mechanism of brittle fracture in silicon, the phase transformations induced by elastic energy released at a propagating crack-tip have been evaluated by locally stressing the diamond cubic Si lattice using a rigid Berkovich nanoindenter tip (radius ≈50 nm). Unique pressure induced phase transformations and hardness variations have been then related to the distribution of precipitates (O, Cu, Fe etc.), and the local stresses in the wafer. This research demonstrates for the first time the "ductile-like fracture" in almost circular crack path that significantly deviates from its energetically favorable crystallographic [110](111) system. These large diameter (≈ 200 mm) Si wafers were sliced to less than 180 microm thickness from a Czochralski (CZ) ingot that was grown at faster than normal growth rates. The vacancy (vSi) driven precipitation of oxygen at enhanced thermal gradients in the wafer core develops large localized stresses (upto 100 MPa) which we evaluated using Raman spectral analysis. Additional micro-FTIR mapping and microscopic etch pit measurements in the wafer core have related the observed crack path deviations to the presence of concentric ring-like distributions of oxygen precipitates (OPs). To replicate these "real-world" breakage scenarios and provide better insight on crack-propagation, several new and innovative tools/devices/methods have been developed in this study. An accurate quantitative profiling of local stress, phase changes and load-carrying ability of Si lattice has been performed in the vicinity of the controlled micro-cracks created using micro-indentations to represent

  4. The Relation between the Rheological Properties of Gels and the Mechanical Properties of Their Corresponding Aerogels

    Directory of Open Access Journals (Sweden)

    Mingze Sun

    2018-04-01

    Full Text Available A series of low density, highly porous clay/poly(vinyl alcohol composite aerogels, incorporating ammonium alginate, were fabricated via a convenient and eco-friendly freeze drying method. It is significant to understand rheological properties of precursor gels because they directly affect the form of aerogels and their processing behaviors. The introduction of ammonium alginate impacted the rheological properties of colloidal gels and improved the mechanical performance of the subject aerogels. The specific compositions and processing conditions applied to those colloidal gel systems brought about different aerogel morphologies, which in turn translated into the observed mechanical properties. The bridge between gel rheologies and aerogel structures are established in the present work.

  5. Mechanical properties of the normal human cartilage-bone complex in relation to age

    DEFF Research Database (Denmark)

    Ding, Ming; Dalstra, M; Linde, F

    1998-01-01

    OBJECTIVE: This study investigates the age-related variations in the mechanical properties of the normal human tibial cartilage-bone complex and the relationships between cartilage and bone. DESIGN: A novel technique was applied to assess the mechanical properties of the cartilage and bone by mea...... that are of importance for the understanding of the etiology and pathogenesis of degenerative joint diseases, such as arthrosis....

  6. Comparative Evaluations and Microstructure: Mechanical Property Relations of Sintered Silicon Carbide Consolidated by Various Techniques

    Science.gov (United States)

    Barick, Prasenjit; Chatterjee, Arya; Majumdar, Bhaskar; Saha, Bhaskar Prasad; Mitra, Rahul

    2018-04-01

    A comparative evaluation between pressureless or self-sintered silicon carbide (SSiC), hot-pressed silicon carbide (HP-SiC), and spark plasma-sintered silicon carbide (SPS-SiC) has been carried out with emphasis on examination of their microstructures and mechanical properties. The effect of sample dimensions on density and properties of SPS-SiC has been also examined. Elastic modulus, flexural strength, and fracture toughness measured by indentation or testing of single-edge notched beam specimens have been found to follow the following trend, HP-SiC > SSiC > SPS-SiC. The SPS-SiC samples have shown size-dependent densification and mechanical properties, with the smaller sample exhibiting superior properties. The mechanical properties of sintered SiC samples appear to be influenced by relative density, grain size, and morphology, as well as the existence of intergranular glassy phase. Studies of fracture surface morphologies have revealed the mechanism of failure to be transgranular in SSiC or HP-SiC, and intergranular in case of SPS-SiC, indicating the dominating influence of grain size and α-SiC formation with high aspect ratio.

  7. Determination of Basic Structure-Property Relations for Processing and Modeling in Advanced Nuclear Fuel: Microstructure Evolution and Mechanical Properties

    International Nuclear Information System (INIS)

    Wheeler, Kirk; Parra, Manuel; Peralta, Pedro

    2009-01-01

    The project objective is to study structure-property relations in solid solutions of nitrides and oxides with surrogate elements to simulate the behavior of fuels of inert matrix fuels of interest to the Advanced Fuel Cycle Initiative (AFCI), with emphasis in zirconium-based materials. Work with actual fuels will be carried out in parallel in collaboration with Los Alamos National Laboratory (LANL). Three key aspects will be explored: microstructure characterization through measurement of global texture evolution and local crystallographic variations using Electron Backscattering Diffraction (EBSD); determination of mechanical properties, including fracture toughness, quasi-static compression strength, and hardness, as functions of load and temperature, and, finally, development of structure-property relations to describe mechanical behavior of the fuels based on experimental data. Materials tested will be characterized to identify the mechanisms of deformation and fracture and their relationship to microstructure and its evolution. New aspects of this research are the inclusion of crystallographic information into the evaluation of fuel performance and the incorporation of statistical variations of microstructural variables into simplified models of mechanical behavior of fuels that account explicitly for these variations. The work is expected to provide insight into processing conditions leading to better fuel performance and structural reliability during manufacturing and service, as well as providing a simplified testing model for future fuel production

  8. Mechanical properties and related substructure of TiNi shape memory alloys

    International Nuclear Information System (INIS)

    Filip, P.; Kneissl, A.C.

    1995-01-01

    The mechanical properties of binary near equiatomic TiNi shape memory alloys were investigated after different types of mechanical and heat treatments. The changes of deformation behaviour are explained on the basis of substructure differences after work hardening. The ''elastic moduli'' of both the high-temperature phase B2 and the martensite B19' as well as the ''easy stage of deformation'' are dependent on the work hardening intensity and these changes are related to the mobility of B2/B19' interfaces. The martensite changes its morphology after work hardening. In contrast to a twinned martensite, typical for annealed alloys, the internally slipped martensite was detected after work hardening. (orig.)

  9. RELATION BETWEEN MECHANICAL PROPERTIES AND PYROLYSIS TEMPERATURE OF PHENOL FORMALDEHYDE RESIN FOR GAS SEPARATION MEMBRANES

    Directory of Open Access Journals (Sweden)

    MONIKA ŠUPOVÁ

    2012-03-01

    Full Text Available The aim of this paper has been to characterize the relation between the pyrolysis temperature of phenol-formaldehyde resin, the development of a porous structure, and the mechanical properties for the application of semipermeable membranes for gas separation. No previous study has dealt with this problem in its entirety. Phenol-formaldehyde resin showed an increasing trend toward micropore porosity in the temperature range from 500 till 1000°C, together with closure of mesopores and macropores. Samples cured and pyrolyzed at 1000°C pronounced hysteresis of desorption branch. The ultimate bending strength was measured using a four-point arrangement that is more suitable for measuring of brittle materials. The chevron notch technique was used for determination the fracture toughness. The results for mechanical properties indicated that phenol-formaldehyde resin pyrolyzates behaved similarly to ceramic materials. The data obtained for the material can be used for calculating the technical design of gas separation membranes.

  10. Constitutive relations in plasticity, damage and fracture mechanics based on a work property

    International Nuclear Information System (INIS)

    Marigo, J.J.

    1989-01-01

    This paper is devoted to restrictions imposed by a work property of Drucker-Iliushin's type on the general class of mechanical systems with an elastic range which contains plastic, damaged and cracked media. The analysis is purely mechanical and quasi-static. Starting from very weak assumptions relative to this constitutive class, we obtain a fundamental inequality which generalizes Hill's maximal work principle. So we can justify, for instance: the convexity of the elastic domain and the normality rule of the plastic strain rate in stress space for the infinitesimal and some finite plasticity theories, Griffith's criterion in brittle fracture mechanics, and we obtain some original results for elastic and elastic plastic damaged materials. It must be noted that the procedure is purely deductive, the assumptions are explicit and the results are implications

  11. Intrinsic and extrinsic mechanical properties related to the differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Lee, Jin-Ho; Park, Hun-Kuk; Kim, Kyung Sook

    2016-05-06

    Diverse intrinsic and extrinsic mechanical factors have a strong influence on the regulation of stem cell fate. In this work, we examined recent literature on the effects of mechanical environments on stem cells, especially on differentiation of mesenchymal stem cells (MSCs). We provide a brief review of intrinsic mechanical properties of single MSC and examined the correlation between the intrinsic mechanical property of MSC and the differentiation ability. The effects of extrinsic mechanical factors relevant to the differentiation of MSCs were considered separately. The effect of nanostructure and elasticity of the matrix on the differentiation of MSCs were summarized. Finally, we consider how the extrinsic mechanical properties transfer to MSCs and then how the effects on the intrinsic mechanical properties affect stem cell differentiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Hydraulic and mechanical properties of young Norway spruce clones related to growth and wood structure

    Science.gov (United States)

    ROSNER, SABINE; KLEIN, ANDREA; MÜLLER, ULRICH; KARLSSON, BO

    2011-01-01

    Summary Stem segments of eight five-year-old Norway spruce (Picea abies (L.) Karst.) clones differing in growth characteristics were tested for maximum specific hydraulic conductivity (ks100), vulnerability to cavitation and behavior under mechanical stress. The vulnerability of the clones to cavitation was assessed by measuring the applied air pressure required to cause 12 and 50% loss of conductivity (Ψ12, Ψ50) and the percent loss of conductivity at 4 MPa applied air pressure (PLC4MPa). The bending strength and stiffness and the axial compression strength and stiffness of the same stem segments were measured to characterize wood mechanical properties. Growth ring width, wood density, latewood percentage, lumen diameter, cell wall thickness, tracheid length and pit dimensions of earlywood cells, spiral grain and microfibril angles were examined to identify structure–function relationships. High ks100 was strongly and positively related to spiral grain angle, which corresponded positively to tracheid length and pit dimensions. Spiral grain may reduce flow resistance of the bordered pits of the first earlywood tracheids, which are characterized by rounded tips and an equal distribution of pits along the entire length. Wood density was unrelated to hydraulic vulnerability parameters. Traits associated with higher hydraulic vulnerability were long tracheids, high latewood percentage and thick earlywood cell walls. The positive relationship between earlywood cell wall thickness and vulnerability to cavitation suggest that air seeding through the margo of bordered pits may occur in earlywood. There was a positive phenotypic and genotypic relationship between ks100 and PLC4MPa, and both parameters were positively related to tree growth rate. Variability in mechanical properties depended mostly on wood density, but also on the amount of compression wood. Accordingly, hydraulic conductivity and mechanical strength or stiffness showed no tradeoff. PMID:17472942

  13. Barrier, structural and mechanical properties of bovine gelatin-chitosan blend films related to biopolymer interactions.

    Science.gov (United States)

    Benbettaïeb, Nasreddine; Kurek, Mia; Bornaz, Salwa; Debeaufort, Frédéric

    2014-09-01

    The increased use of synthetic packaging films has led to a high ecological problem due to their total non-biodegradability. Thus, there is a vital need to develop renewable and environmentally friendly bio-based polymeric materials. Films and coatings made from polysaccharide polymers, particularly chitosans and gelatins have good gas barrier properties and are envisaged more and more for applications in the biomedical and food fields, as well as for packaging. In this study a casting method was used to develop an edible plasticised film from chitosan and gelatin. Aiming to develop a blend film with enhanced properties, the effects of mixing chitosan (CS) and gelatin (G) in different proportions (CS:G, 75:25, 50:50, 25:75, w/w) on functional and physico-chemical properties have been studied. Mean film thickness increased linearly (R2 =0.999) with surface density of the film forming solution. An enhancement of mechanical properties by increasing the tensile strength (38.7±11 MPa for pure chitosan and 76.8±9 MPa for pure gelatin film) was also observed in blends, due to gelatin content.When the gelatin content in blend filmswas increased an improvement of both water vapour barrier properties [(4±0.3)×10(-10) g m(-1) s(-1) Pa(-1) for pure chitosan and (2.5±0.14)×10(-10) g m(-1) s(-1) Pa(-1) for pure gelatin, at 70% RH gradient] and oxygen barrier properties ((822.62±90.24)×10(-12) g m(-1) s(-1) Pa(-1) for blend film chitosan:gelatin (25:75 w/w) and (296.67±18.76)×10(-12) g m(-1) s(-1) Pa(-1) for pure gelatin was observed. Fourier transform infrared spectra of blend films showed a shift in the peak positions related to the amide groups (amide-I and amide-III) indicating interactions between biopolymers. Addition of gelatin in chitosan induced greater functional properties (mechanical, barrier) due to chemical interactions, suggesting an inter-penetrated network. © 2014 Society of Chemical Industry.

  14. Relation of the external mechanical stress to the properties of piezoelectric materials for energy harvesting

    Science.gov (United States)

    Jeong, Soon-Jong; Kim, Min-Soo; Lee, Dae-Su; Song, Jae-Sung; Cho, Kyung-Ho

    2013-12-01

    We investigated the piezoelectric properties and the generation of voltage and power under the mechanical compressive loads for three types of piezoelectric ceramics 0.2Pb(Mg1/3Nb2/3)O3-0.8Pb(Zr0.475Ti0.525)O3 (soft-PZT), 0.1Pb(Mg1/3Sb2/3)O3- 0.9Pb(Zr0.475Ti0.525)O3 (hard-PZT) and [0.675Pb(Mg1/3Nb2/3)O3-0.35PbTiO3]+5 wt% BaTiO3 (textured-PMNT). The piezoelectric d 33 coefficients of all specimens increased with increasing compressive load. The generated voltage and power showed a linear relation and square relation to the applied stress, respectively. These results were larger than those calculated using the simple piezoelectric equation due to the non-linear characteristics of the ceramics, so they were evaluated with a simple model based on a non-linear relation.

  15. Mechanical properties of MEMS materials: reliability investigations by mechanical- and HRXRD-characterization related to environmental testing

    Science.gov (United States)

    Bandi, T.; Shea, H.; Neels, A.

    2014-06-01

    The performance and aging of MEMS often rely on the stability of the mechanical properties over time and under harsh conditions. An overview is given on methods to investigate small variations of the mechanical properties of structural MEMS materials by functional characterization, high-resolution x-ray diffraction methods (HR-XRD) and environmental testing. The measurement of the dynamical properties of micro-resonators is a powerful method for the investigation of elasticity variations in structures relevant to microtechnology. X-ray diffraction techniques are used to analyze residual strains and deformations with high accuracy and in a non-destructive manner at surfaces and in buried micro-structures. The influence of elevated temperatures and radiation damage on the performance of resonant microstructures with a focus on quartz and single crystal silicon is discussed and illustrated with examples including work done in our laboratories at CSEM and EPFL.

  16. Mechanical and corrosion properties of Ni-Cr-Fe Alloy 600 related to primary side SCC

    International Nuclear Information System (INIS)

    Begley, J.A.; Jacko, R.J.; Gold, R.E.

    1987-01-01

    The two-fold objective of the program is to provide the mechanical property data required for the development of a strain rate damage model for environmentally assisted cracking of Inconel 600 and to evaluate critical damage model parameters in primary water environments by conducting a series of stress corrosion tests. The test program includes mechanical property tests at 20 0 C, 316 0 C and strain rate tests to determine critical strain rate SCC parameters in primary water environments. Data are presented from slow strain rate tensile tests, stress relaxation tests and creep tests. A short discussion of the Gerber-Garud Strain Rate Damage Model is included to provide the background rationale for the test program. Utilitarian aspects of the Strain Rate Damage Model and the test program data are presented. Analysis of accelerated stress corrosion testing at high temperatures, and the contribution of thermally activated inelastic deformation to apparent activation energies for stress corrosion cracking is emphasized

  17. Relation between Mechanical Properties and Pyrolysis Temperature of Phenol Formaldehyde Resin for Gas Separation Membranes

    Czech Academy of Sciences Publication Activity Database

    Šupová, Monika; Svítilová, Jaroslava; Chlup, Zdeněk; Černý, Martin; Weishauptová, Zuzana; Suchý, Tomáš; Machovič, Vladimír; Sucharda, Zbyněk; Žaloudková, Margit

    2012-01-01

    Roč. 56, č. 1 (2012), s. 40-49 ISSN 0862-5468 R&D Projects: GA ČR GA203/09/1327 Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z20410507 Keywords : glassy carbon * membranes * mechanical properties Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.418, year: 2012 http://www.ceramics-silikaty.cz/2012/pdf/2012_01_40.pdf

  18. Determination of Some Mechanical Properties of Almond Seed Related to Design of Food Processing Machines

    Directory of Open Access Journals (Sweden)

    M. O. Sunmonu

    2015-06-01

    Full Text Available In this study, some selected mechanical properties of red and white varieties of Almond seeds grown in Nigeria were determined using Testometric M500 – 100AT machine. The fracture force, compressive strength, deformation at yield for red varieties were 2679.40 ± 580.29 N, 408.70 ± 41.90 N/mm2 and 7.03 ± 0.65 mm respectively. The values obtained for the white varieties were 2843.90 ± 330.22 N, 396.20 ± 49.40 N/mm2, and 7.27 ± 0.46 mm. The determined engineering properties are vital for the design of postharvest handling and processing systems for Almond seeds as statistical test showed that there are significant differences (at 5% level between the engineering properties of the two seeds studied.

  19. Moisture-related mechanical properties of softwood: 3D micromechanical modeling

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2009-01-01

    Computational micromechanical analysis of the influence of moisture, density and microstructure of latewood on its hydroelastic and shrinkage properties is carried out. The elastic properties of cell sublayers have been determined using the unit cell models as for fiber reinforced composites (two....... The results for elastic properties of cell sublayers obtained from the unit cell models, from the self-consistent method and Halpin-Tsai equations are compared, and good agreement between these methods was observed. A computational technique, based on the representation of moisture effect as equivalent...... temperature-caused effects, has been developed and employed to the modeling of the moisture-related changes of the elastic properties of cell layers. A series of computational experiments have been carried out. In the simulations, it was observed that the shrinkage coefficients of longitudinal direction...

  20. Some properties of the functions satisfying Bell's inequalities in relation to quantum mechanics

    International Nuclear Information System (INIS)

    Roussel, P.

    1986-01-01

    A detailed comparison of Bell's inequalities (B.I.) and quantum mechanics (Q.M.) in an E.P.R.B. situation is given. It is first shown that Q.M. violates the original (3 directions) or generalized (4 directions) B.I. almost everywhere. The properties of functions satisfying the original B.I. are then derived and compared to Q.M. predictions. Finally, the behaviour of functions which satisfy B.I. and attempt to fit Q.M. is described. Altogether, an incompatibility is shown to be stronger than that resulting from just the usual examination

  1. Relation between the mechanical properties and SCC behavior of the alloys used in high temperature water

    International Nuclear Information System (INIS)

    Tsubota, M.; Katayama, Y.; Kanazawa, Y.

    2007-01-01

    It was shown in the previous reports that carbon and low alloy steels, martensitic stainless steels and cold worked austenitic stainless steels have shown high SCC susceptibility in the highly hardened condition. Those steels had similar critical hardness for SCC (HV300-340), over which the materials showed SCC susceptibility, even though the hardening process was different. Hardening processes applied for the alloys were as follows: (1) Martensitic transformation: Carbon and low alloy steels and martensitic stainless steels. (2) Alpha-prime decomposition (precipitation hardening): martensitic stainless steels. (3) Cold work: austenitic stainless steels. The relationship between the mechanical properties and SCC susceptibility of the alloys is discussed and summarized in the present paper. (author)

  2. Some properties of the functions satisfying Bell's inequalities in relation to quantum mechanics

    International Nuclear Information System (INIS)

    Roussel, P.

    1985-01-01

    Having recalled the 1935 debate between A. Einstein and N. Bohr about quantum mechanics (Q.M.) the thought-experiment of D. Bohm is described and a new derivation of the Bell's inequalities is established to test the class of theories based on the hypothesis of hidden-parameters in the common past. It is shown that Q.M. violates these inequalities almost everywhere. The general properties of functions satisfying Bell's inequalities are studied in order to compare them to Q.M. predictions as regards derivatives, integrals, values, intervals, amplitudes and finally the overall behaviour: a few of the Bell's functions chosen to approach somehow Q.M. are given. Altogether, in the comparison between Q.M. and functions satisfying Bell's inequalities, an incompatibility is revealed that is stronger then that resulting from consideration of just the inequalities [fr

  3. Biomaterials Based on Electrospun Chitosan. Relation between Processing Conditions and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Christian Enrique Garcia Garcia

    2018-03-01

    Full Text Available In this paper, it is shown that pure chitosan nanofibers and films were prepared with success in 0.5 M acetic acid as solvent using poly (ethylene oxide (PEO at different yields, allowing electrospinning of the blends. After processing, a neutralization step of chitosan followed by water washing is performed, preserving the initial morphology of chitosan materials. The influence of the yield in PEO in the blend on the degree of swelling and hydrophilicity of films and nanofibers is demonstrated. Then, the mechanical behavior of blended nanofibers and films used as reference are determined for small stress applied in the linear domain by DMA and by uniaxial traction up to rupture. The dried and wet states are covered for the first time. It is shown that the mechanical properties are increased when electrospinning is performed in the presence of PEO up to a 70/30 chitosan/PEO weight ratio even after PEO extraction. This result can be explained by a better dispersion of the chitosan in the presence of PEO.

  4. Mechanical properties of dissimilar friction welded steel bars in relation to post weld heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Yu Sik; Kim, Seon Jin [Pukyong National University, Busan (Korea, Republic of)

    2006-04-15

    Dissimilar friction welding were produced using 15(mm) diameter solid bar in chrome molybedenum steel(KS SCM440) to carbon steel(KS S45C) to investigate their mechanical properties. The main friction welding parameters were selected to endure good quality welds on the basis of visual examination, tensile tests, Vickers hardness surveys of the bond of area and H.A.Z and microstructure investigations. The specimens were tested as-welded and Post-Weld Heat Treated(PWHT). The tensile strength of the friction welded steel bars was increased up to 100% of the S45C base metal under the condition of all heating time. Optimal welding conditions were n=2,000(rpm), P{sub 1}=60(MPa), P{sub 2}=100(MPa), t{sub 1}=4(s), t{sub 2}=5(s) when the total upset length is 5.4 and 5.7(mm), respectively. The peak of hardness distribution of the friction welded joints can be eliminated by PWHT. Two different kinds of materials are strongly mixed to show a well-combined structure of macro-particles without any molten material and particle growth or any defects.

  5. Age- and gender-related distribution of bone mineral density and mechanical properties of the proximal humerus

    International Nuclear Information System (INIS)

    Lill, H.; Hepp, P.; Korner, J.; Josten, C.; Gowin, W.; Oestmann, J.W.; Haas, N.P.; Duda, G.N.

    2002-01-01

    Purpose: To evaluate age- and gender-related mechanical properties and bone mineral density (BMD) of the proximal humerus at different levels and regions. Materials and methods: Mechanical indentation testing, DXA, QCT, pQCT and the radiogrammetry (Cortical Index, CI) were carried out in 70 freshly harvested humeri from 46 human cadavers (23 females, 23-males; median age 70.5 years). Results: In the female group, a high correlation between age and BMD was found (ρ=0.62 to -0.70, p [de

  6. Absorption of Carotenoids and Mechanisms Involved in Their Health-Related Properties.

    Science.gov (United States)

    Cervantes-Paz, Braulio; Victoria-Campos, Claudia I; Ornelas-Paz, José de Jesús

    Carotenoids participate in the normal metabolism and function of the human body. They are involved in the prevention of several diseases, especially those related to the inflammation syndrome. Their main mechanisms of action are associated to their potent antioxidant activity and capacity to regulate the expression of specific genes and proteins. Recent findings suggest that carotenoid metabolites may explain several processes where the participation of their parent carotenoids was unclear. The health benefits of carotenoids strongly depend on their absorption and transformation during gastrointestinal digestion. The estimation of the 'bioaccessibility' of carotenoids through in vitro models have made possible the evaluation of the effect of a large number of factors on key stages of carotenoid digestion and intestinal absorption. The bioaccessibility of these compounds allows us to have a clear idea of their potential bioavailability, a term that implicitly involves the biological activity of these compounds.

  7. Wood Modification at High Temperature and Pressurized Steam: a Relational Model of Mechanical Properties Based on a Neural Network

    Directory of Open Access Journals (Sweden)

    Hong Yang

    2015-07-01

    Full Text Available Thermally modified wood has high dimensional stability and biological durability.But if the process parameters of thermal modification are not appropriate, then there will be a decline in the physical properties of wood.A neural network algorithm was employed in this study to establish the relationship between the process parameters of high-temperature and high-pressure thermal modification and the mechanical properties of the wood. Three important parameters: temperature, relative humidity, and treatment time, were considered as the inputs to the neural network. Back propagation (BP neural network and radial basis function (RBF neural network models for prediction were built and compared. The comparison showed that the RBF neural network model had advantages in network structure, convergence speed, and generalization capacity. On this basis, the inverse model, reflecting the relationship between the process parameters and the mechanical properties of wood, was established. Given the desired mechanical properties of the wood, the thermal modification process parameters could be inversely optimized and predicted. The results indicated that the model has good learning ability and generalization capacity. This is of great importance for the theoretical and applicational studies of the thermal modification of wood.

  8. Relation of murine thoracic aortic structural and cellular changes with aging to passive and active mechanical properties.

    Science.gov (United States)

    Wheeler, Jason B; Mukherjee, Rupak; Stroud, Robert E; Jones, Jeffrey A; Ikonomidis, John S

    2015-02-25

    Maintenance of the structure and mechanical properties of the thoracic aorta contributes to aortic function and is dependent on the composition of the extracellular matrix and the cellular content within the aortic wall. Age-related alterations in the aorta include changes in cellular content and composition of the extracellular matrix; however, the precise roles of these age-related changes in altering aortic mechanical function are not well understood. Thoracic aortic rings from the descending segment were harvested from C57BL/6 mice aged 6 and 21 months. Thoracic aortic diameter and wall thickness were higher in the old mice. Cellular density was reduced in the medial layer of aortas from the old mice; concomitantly, collagen content was higher in old mice, but elastin content was similar between young and old mice. Stress relaxation, an index of compliance, was reduced in aortas from old mice and correlated with collagen fraction. Contractility of the aortic rings following potassium stimulation was reduced in old versus young mice. Furthermore, collagen gel contraction by aortic smooth muscle cells was reduced with age. These results demonstrate that numerous age-related structural changes occurred in the thoracic aorta and were related to alterations in mechanical properties. Aortic contractility decreased with age, likely because of a reduction in medial cell number in addition to a smooth muscle contractile deficit. Together, these unique findings provide evidence that the age-related changes in structure and mechanical function coalesce to provide an aortic substrate that may be predisposed to aortopathies. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  9. Dynamic and Mechanical Properties of Calcium Borophosphate Glasses in Relation to Structure and Topology

    DEFF Research Database (Denmark)

    Hermansen, Christian; Yue, Yuanzheng

    Calcium borophosphate glasses and glass ceramics are of interest as bone-replacement implants as they can bond to bone through an apatite layer, and dissolve in vitro at a rate comparable to the growth rate of natural bone. We investigate the pseudo-binary join between CaO•P2O5 and CaO•2B2O3...... the crystallization behavior of this glass series. The compositional variation of these properties is analyzed using the Phillips-Thorpe rigidity percolation paradigm and the temperature dependent constraint theory. This analysis gives insight into the link between properties and composition in borophosphate glasses....

  10. Mechanical properties of ceramics

    CERN Document Server

    Pelleg, Joshua

    2014-01-01

    This book discusses the mechanical properties of ceramics and aims to provide both a solid background for undergraduate students, as well as serving as a text to bring practicing engineers up to date with the latest developments in this topic so they can use and apply these to their actual engineering work.  Generally, ceramics are made by moistening a mixture of clays, casting it into desired shapes and then firing it to a high temperature, a process known as 'vitrification'. The relatively late development of metallurgy was contingent on the availability of ceramics and the know-how to mold them into the appropriate forms. Because of the characteristics of ceramics, they offer great advantages over metals in specific applications in which hardness, wear resistance and chemical stability at high temperatures are essential. Clearly, modern ceramics manufacturing has come a long way from the early clay-processing fabrication method, and the last two decades have seen the development of sophisticated technique...

  11. The morphology of amputated human teeth and its relation to mechanical properties after restoration treatment

    Science.gov (United States)

    Gugger, Jonas; Krastl, Gabriel; Huser, Marius; Deyhle, Hans; Müller, Bert

    2010-09-01

    The increased susceptibility to fracture of root canal- and post-treated teeth is less affected by alterations of the dentin structure, but seems to crucially depend on the loss of coronal tooth substance. The surface, available for adhesion of the composite material in the root canal and in the coronal part of the tooth, is assumed to be of key importance for the fracture resistance. Thus, an appropriate three-dimensional method should be identified to determine the adhesive surface with necessary precision. For this purpose, severely decayed teeth were simulated decapitating clinical crowns. After root canal filling and post space preparation, impressions of the root canal and the amputation surface were obtained using silicone. Micro computed tomography scans of these impressions were acquired. For one selected specimen, an additional high-resolution scan was recorded at a synchrotron radiation source. Software of ImageLab served for the extraction of the amputation interface, the post surface and the post volume from the tomography data, which have been finally correlated with the Young's modulus and the maximal load derived from mechanical tests. The morphological parameters show a realistic relationship to the mechanical tests performed after the restoration treatments and are consequently important for improving the dental skills.

  12. The effect of relativity on stability of Copernicium phases, their electronic structure and mechanical properties

    Science.gov (United States)

    Čenčariková, Hana; Legut, Dominik

    2018-05-01

    The phase stability of the various crystalline structures of the super-heavy element Copernicium was determined based on the first-principles calculations with different levels of the relativistic effects. We utilized the Darwin term, mass-velocity, and spin-orbit interaction with the single electron framework of the density functional theory while treating the exchange and correlation effects using local density approximations. It is found that the spin-orbit coupling is the key component to stabilize the body-centered cubic (bcc) structure over the hexagonal closed packed (hcp) structure, which is in accord with Sol. Stat. Comm. 152 (2012) 530, but in contrast to Atta-Fynn and Ray (2015) [11], Gaston et al. (2007) [10], Papaconstantopoulos (2015) [9]. It seems that the main role here is the correct description of the semi-core relativistic 6p1/2 orbitals. The all other investigated structures, i.e. face-centered cubic (fcc) , simple cubic (sc) as well as rhombohedral (rh) structures are higher in energy. The criteria of mechanical stability were investigated based on the calculated elastic constants, identifying the phase instability of fcc and rh structures, but surprisingly confirm the stability of the energetically higher sc structure. In addition, the pressure-induced structural transition between two stable sc and bcc phases has been detected. The ground-state bcc structure exhibits the highest elastic anisotropy from single elements of the Periodic table. At last, we support the experimental findings that Copernicium is a metal.

  13. Relation between interfacial structure and mechanical properties in AlN/TiN bilayers investigated by EXAFS

    International Nuclear Information System (INIS)

    Ersen, O.; Tuilier, M.-H.; Thobor-Keck, A.; Rousselot, C.; Cortes, R.

    2005-01-01

    The relation between the mechanical properties and the structure of AlN/TiN bilayers prepared by reactive magnetron sputtering in the 600 nm range is investigated. Al and Ti K-edge extended X-ray absorption fine structure is used in order to determine the local order around Al and Ti by comparison with 300 nm thick AlN and TiN single layers. The use of this powerful local probe allows the evidence of intermixing between AlN and TiN deposited layers, which is suggested by glow discharge optical emission spectroscopy experiments. The effect of ionic bombardment applied at various steps of the deposition process is studied. The ionic bombardment applied during the deposit induces substantial changes in the absorption spectra that are assigned to a decrease of intermixing and an improvement of local order. Simulations of (Al, Ti)N ternary alloys Al and Ti K-edge absorption spectra for increasing mean occupation factors C Ti (C Al ) of Ti(Al) substituting Al(Ti) in hexagonal AlN (cubic TiN) lattice are performed in order to determine the initial parameters for the fit of the experimental data. The refinements performed by using FEFFIT software demonstrate that an ionic bombardment applied during the deposition phase results in a significant reduction of the number of Al-Ti pairs within the bilayer and an improvement of the local order around Ti and Al, which is quantified by a decrease of the Debye-Waller parameters. This structural evolution is tentatively correlated with the improvement of mechanical properties of the bilayers

  14. Relation between interfacial structure and mechanical properties in AlN/TiN bilayers investigated by EXAFS

    Energy Technology Data Exchange (ETDEWEB)

    Ersen, O. [Equipe de Recherche Mecanique, Materiaux et Procedes de Fabrication, 61, rue Albert Camus, F-68093 Mulhouse (France)]. E-mail: ovidiu.ersen@ipcms.u-strasbg.fr; Tuilier, M.-H. [Equipe de Recherche Mecanique, Materiaux et Procedes de Fabrication, 61, rue Albert Camus, F-68093 Mulhouse (France); Thobor-Keck, A. [Centre de Recherche sur les Ecoulements les Surfaces et les Transferts (UMR CNRS 6000), ITSFC, 4, place Tharradin, BP 71427, F-25211 Montbeliard (France); Rousselot, C. [Centre de Recherche sur les Ecoulements les Surfaces et les Transferts (UMR CNRS 6000), ITSFC, 4, place Tharradin, BP 71427, F-25211 Montbeliard (France); Cortes, R. [Laboratoire de Physique de la Matiere Condensee (UMR CNRS 7643), Ecole Polytechnique, F-91128 Palaiseau cedex (France)

    2005-06-01

    The relation between the mechanical properties and the structure of AlN/TiN bilayers prepared by reactive magnetron sputtering in the 600 nm range is investigated. Al and Ti K-edge extended X-ray absorption fine structure is used in order to determine the local order around Al and Ti by comparison with 300 nm thick AlN and TiN single layers. The use of this powerful local probe allows the evidence of intermixing between AlN and TiN deposited layers, which is suggested by glow discharge optical emission spectroscopy experiments. The effect of ionic bombardment applied at various steps of the deposition process is studied. The ionic bombardment applied during the deposit induces substantial changes in the absorption spectra that are assigned to a decrease of intermixing and an improvement of local order. Simulations of (Al, Ti)N ternary alloys Al and Ti K-edge absorption spectra for increasing mean occupation factors C {sub Ti} (C {sub Al}) of Ti(Al) substituting Al(Ti) in hexagonal AlN (cubic TiN) lattice are performed in order to determine the initial parameters for the fit of the experimental data. The refinements performed by using FEFFIT software demonstrate that an ionic bombardment applied during the deposition phase results in a significant reduction of the number of Al-Ti pairs within the bilayer and an improvement of the local order around Ti and Al, which is quantified by a decrease of the Debye-Waller parameters. This structural evolution is tentatively correlated with the improvement of mechanical properties of the bilayers.

  15. Mechanical Properties of Composite Materials

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu

    2014-10-01

    Full Text Available An examination has been made of the mechanical and failure properties of several composite materials, such as a short and a long carbon fiber reinforced plastic (short- and long-CFRP and metal based composite material. The short CFRP materials were used for a recycled CFRP which fabricated by the following process: the CFRP, consisting of epoxy resin with carbon fiber, is injected to a rectangular plate cavity after mixing with acrylonitrile butadiene styrene resin with different weight fractions of CFRP. The fatigue and ultimate tensile strength (UTS increased with increasing CFRP content. These correlations, however, break down, especially for tensile strength, as the CFPR content becomes more than 70%. Influence of sample temperature on the bending strength of the long-CFRP was investigated, and it appears that the strength slightly degreases with increasing the temperature, due to the weakness in the matrix. Broken fiber and pull-out or debonding between the fiber and matrix were related to the main failure of the short- and long-CFRP samples. Mechanical properties of metal based composite materials have been also investigated, where fiber-like high hardness CuAl2 structure is formed in aluminum matrix. Excellent mechanical properties were obtained in this alloy, e.g., the higher strength and the higher ductility, compared tothe same alloy without the fiber-like structure. There are strong anisotropic effects on the mechanical properties due to the fiber-like metal composite in a soft Al based matrix.

  16. Microstructure and mechanical properties of hard zone in friction stir welded X80 pipeline steel relative to different heat input

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, Hakan, E-mail: hakanay@uludag.edu.tr [Engineering and Architecture Faculty, Mechanical Engineering Department, Uludag University, 16059 Gorukle-Bursa (Turkey); Nelson, Tracy W. [Mechanical Engineering Department, Brigham Young University, 435 CTB, Provo, UT 84602 (United States)

    2013-12-01

    The study was conducted to investigate the microstructure and mechanical properties of the hard zone in friction stir welded X80 pipeline steel at different heat inputs. Microstructural analysis of the welds was carried out using optical microscopy, transmission electron microscopy, and microhardness. Heat input during friction stir welding process had a significant influence on the microstructure and mechanical properties in the hard zone along the advancing side of the weld nugget. Based on the results, the linear relationships between heat input and post-weld microstructures and mechanical properties in the hard zone of friction stir welded X80 steels were established. It can be concluded that with decrease in heat input the bainitic structure in the hard zone becomes finer and so hard zone strength increases.

  17. Microstructure and mechanical properties of hard zone in friction stir welded X80 pipeline steel relative to different heat input

    International Nuclear Information System (INIS)

    Aydin, Hakan; Nelson, Tracy W.

    2013-01-01

    The study was conducted to investigate the microstructure and mechanical properties of the hard zone in friction stir welded X80 pipeline steel at different heat inputs. Microstructural analysis of the welds was carried out using optical microscopy, transmission electron microscopy, and microhardness. Heat input during friction stir welding process had a significant influence on the microstructure and mechanical properties in the hard zone along the advancing side of the weld nugget. Based on the results, the linear relationships between heat input and post-weld microstructures and mechanical properties in the hard zone of friction stir welded X80 steels were established. It can be concluded that with decrease in heat input the bainitic structure in the hard zone becomes finer and so hard zone strength increases

  18. Mechanical properties of papercrete

    Directory of Open Access Journals (Sweden)

    Zaki Harith

    2018-01-01

    Full Text Available This paper studies the uses, of waste paper as an additional material in concrete mixes. Papercrete is a term as the name seems, to imply a mixture of paper and concrete. It is a new, composite material using waste paper, as a partial addition of Portland cement, and is a sustainable, building material due to, reduced amount of waste paper being put to use. It gains, latent strength due to presence of hydrogen bonds in microstructure of paper. Papercrete has been, reported to be a low cost alternative, building construction, material and has, good sound absorption, and thermal insulation; to be a lightweight and fire-resistant material. The percent of waste paper used (after treating namely (5%, 10%, 15% and 20% by weight of cement to explore the mechanical properties of the mixes (compressive strength, splitting tensile strength, flexural strength, density, as compared with references mixes, it was found that fresh properties affected significantly by increasing the waste paper content. The compressive strength, splitting tensile strength, flexural strength and density got decreased with increase in the percentage of paper.

  19. Polyurethane Grouted Gravel Type Geomaterials—A Model Study on Relations Between Material Structure and Physical–Mechanical Properties

    Czech Academy of Sciences Publication Activity Database

    Ščučka, Jiří; Martinec, Petr; Souček, Kamil

    2015-01-01

    Roč. 38, č. 2 (2015), s. 229-242 ISSN 0149-6115 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : grouting * structural and textural parameters * physical and mechanical properties * composite materials * polyurethane Subject RIV: JJ - Other Materials Impact factor: 0.663, year: 2015 http://www.astm.org/DIGITAL_LIBRARY/JOURNALS/GEOTECH/PAGES/GTJ20140100.htm

  20. Mechanical tests imaging on metallic matrix composites. Experimental contribution to homogenization methods validation and identification of phase-related mechanical properties

    International Nuclear Information System (INIS)

    Quoc-Thang Vo

    2013-01-01

    This work is focused on a matrix/inclusion metal composite. A simple method is proposed to evaluate the elastic properties of one phase while the properties of the other phase are assumed to be known. The method is based on both an inverse homogenization scheme and mechanical field's measurements by 2D digital image correlation. The originality of the approach rests on the scale studied, i.e. the microstructure scale of material: the characteristic size of the inclusions is about few tens of microns. The evaluation is performed on standard uniaxial tensile tests associated with a long-distance microscope. It allows observation of the surface of a specimen on the microstructure scale during the mechanical stress. First, the accuracy of the method is estimated on 'perfect' mechanical fields coming from numerical simulations for four microstructures: elastic or porous single inclusions having either spherical or cylindrical shape. Second, this accuracy is estimated on real mechanical field for two simple microstructures: an elasto-plastic metallic matrix containing a single cylindrical micro void or four cylindrical micro voids arranged in a square pattern. Third, the method is used to evaluate elastic properties of αZr inclusions with arbitrary shape in an oxidized Zircaloy-4 sample of the fuel cladding of a pressurized water reactor after an accident loss of coolant accident (LOCA). In all this study, the phases are assumed to have isotropic properties. (author) [fr

  1. Relating mechanical properties and chemical bonding in an inorganic-organic framework material: a single-crystal nanoindentation study.

    Science.gov (United States)

    Tan, Jin Chong; Furman, Joshua D; Cheetham, Anthony K

    2009-10-14

    We report the application of nanoindentation and atomic force microscopy to establish the fundamental relationships between mechanical properties and chemical bonding in a dense inorganic-organic framework material: Ce(C(2)O(4))(HCO(2)), 1. Compound 1 is a mixed-ligand 3-D hybrid which crystallizes in an orthorhombic space group, in which its three basic building blocks, i.e. the inorganic metal-oxygen-metal (M-O-M) chains and the two organic bridging ligands, (oxalate and formate) are all oriented perpendicular to one another. This unique architecture enabled us to decouple the elastic and plastic mechanical responses along the three primary axes of a single crystal to understand the contribution associated with stiff vs compliant basic building blocks. The (001)-oriented facet that features rigid oxalate ligands down the c-axis exhibits the highest stiffness and hardness (E approximately 78 GPa and H approximately 4.6 GPa). In contrast, the (010)-oriented facet was found to be the most compliant and soft (E approximately 43 GPa and H approximately 3.9 GPa), since the formate ligand, which is the more compliant building block within this framework, constitutes the primary linkages down the b-axis. Notably, intermediate stiffness and hardness (E approximately 52 GPa and H approximately 4.1 GPa) were measured on the (100)-oriented planes. This can be attributed to the Ce-O-Ce chains that zigzag down the a-axis (Ce...Ce metal centers form an angle of approximately 132 degrees) and also the fact that the 9-coordinated CeO(9) polyhedra are expected to be geometrically more compliant. Our results present the first conclusive evidence that the crystal orientation dominated by inorganic chains is not necessarily more robust from the mechanical properties standpoint. Rigid organic bridging ligands (such as oxalate), on the other hand, can be used to produce greater stiffness and hardness properties in a chosen crystallographic orientation. This study demonstrates that

  2. Mechanical properties of Stripa granite

    International Nuclear Information System (INIS)

    Stephansson, O.; Swan, G.; Leijon, B.

    1978-01-01

    For the determination of the mechanical properties of Stripa Granite samples were taken from the boreholes in the vicinity of the test site. The granite type taken from these different sources is of variable character. For the purpose of numerical calculations performed in projects related to the waste storage research program the following parameters have been determined: Young's modulus, Poisson's ratio, compressive fracture stress and expansion coefficient as a function of temperature 20< T<200C; Young's modulus and compressive fracture stress as a function of confining pressure; Brazilian tensile fracture stress; residual shear stress as a function of normal stress; anisotropy ratio for Young's modulus and compressive fracture stress; dilatational wave velocity and deduced dynamic Young's modulus. A brief description of the test methods and the results for each test are presented

  3. Glaucoma-related Changes in the Mechanical Properties and Collagen Micro-architecture of the Human Sclera

    Science.gov (United States)

    Coudrillier, Baptiste; Pijanka, Jacek K.; Jefferys, Joan L.; Goel, Adhiraj; Quigley, Harry A.; Boote, Craig; Nguyen, Thao D.

    2015-01-01

    Objective The biomechanical behavior of the sclera determines the level of mechanical insult from intraocular pressure to the axons and tissues of the optic nerve head, as is of interest in glaucoma. In this study, we measure the collagen fiber structure and the strain response, and estimate the material properties of glaucomatous and normal human donor scleras. Methods Twenty-two posterior scleras from normal and diagnosed glaucoma donors were obtained from an eyebank. Optic nerve cross-sections were graded to determine the presence of axon loss. The specimens were subjected to pressure-controlled inflation testing. Full-field displacement maps were measured by digital image correlation (DIC) and spatially differentiated to compute surface strains. Maps of the collagen fiber structure across the posterior sclera of each inflated specimen were obtained using synchrotron wide-angle X-ray scattering (WAXS). Finite element (FE) models of the posterior scleras, incorporating a specimen-specific representation of the collagen structure, were constructed from the DIC-measured geometry. An inverse finite element analysis was developed to estimate the stiffness of the collagen fiber and inter-fiber matrix. Results The differences between glaucoma and non-glaucoma eyes were small in magnitude. Sectorial variations of degree of fiber alignment and peripapillary scleral strain significantly differed between normal and diagnosed glaucoma specimens. Meridional strains were on average larger in diagnosed glaucoma eyes compared with normal specimens. Non-glaucoma specimens had on average the lowest matrix and fiber stiffness, followed by undamaged glaucoma eyes, and damaged glaucoma eyes but the differences in stiffness were not significant. Conclusion The observed biomechanical and microstructural changes could be the result of tissue remodeling occuring in glaucoma and are likely to alter the mechanical environment of the optic nerve head and contribute to axonal damage. PMID

  4. Analytical mechanics for relativity and quantum mechanics

    CERN Document Server

    Johns, Oliver Davis

    2011-01-01

    Analytical Mechanics for Relativity and Quantum Mechanics is an innovative and mathematically sound treatment of the foundations of analytical mechanics and the relation of classical mechanics to relativity and quantum theory. It is intended for use at the introductory graduate level. A distinguishing feature of the book is its integration of special relativity into teaching of classical mechanics. After a thorough review of the traditional theory, Part II of the book introduces extended Lagrangian and Hamiltonian methods that treat time as a transformable coordinate rather than the fixed parameter of Newtonian physics. Advanced topics such as covariant Langrangians and Hamiltonians, canonical transformations, and Hamilton-Jacobi methods are simplified by the use of this extended theory. And the definition of canonical transformation no longer excludes the Lorenz transformation of special relativity. This is also a book for those who study analytical mechanics to prepare for a critical exploration of quantum...

  5. Quantum mechanics, relativity and casuality

    International Nuclear Information System (INIS)

    Tati, T.

    1976-01-01

    In quantum mechanics, the state is prepared by a measurement on a spacelike surface sigma. What is that determine the surface sigma on which the measurement prepares the stae. It si considered either a mechanism proper to the measuring process (apparatus) or a universal property of space-time. In the former case, problems arise, concerning casuality or conservation of probability due to the fact that the velocity of reduction of a wave packet is considered to exceed the light velocity. The theory of finite degree of freedom proposed previously belongs to the latter case. In this theory, the surface sigma is restricted to the hyper-plane perpendicular to a universal time-like vector governing casual relations. An experimental to discriminate between the above-mentioned two cases and to test the existence of the universal timelike vector is proposed

  6. Quantum mechanics, relativity and causality

    International Nuclear Information System (INIS)

    Tati, Takao.

    1975-07-01

    In quantum mechanics, the state is prepared by a measurement on a space-like surface sigma. What is that determines the surface sigma on which the measurement prepares the state It is considered either a mechanism proper to the measuring process (apparatus) or a universal property of space-time. In the former case, problems arise, concerning causality or conservation of probability due to that the velocity of reduction of wave-packet is considered to exceed the light velocity. The theory of finite degree of freedom proposed previously belongs to the latter case. In this theory, the surface sigma is restricted to the hyper-plane perpendicular to a universal time-like vector governing causal relations. We propose an experiment to discriminate between the above-mentioned two cases and to test the existence of the universal time-like vector. (auth.)

  7. Mechanical properties of ordered alloys

    International Nuclear Information System (INIS)

    Kroupa, F.

    1977-06-01

    A survey is given of the metallophysical fundamentals of the mechanical properties of ordered two-phase alloys. Alloys of this type have a superlattice structure in a substitution mixed crystal. Ordering is achieved by slow cooling or by annealing below the critical temperature, during which ordering domains (antiphase domains) are formed. At a high degree of ordering, the dislocations are concentrated to form pairs, so-called super-dislocations. The mechanical properties may be selectively changed by varying different parameters (size of the ordering domains, degree of ordering, energy of the antiphase boundaries) by a special composition and heat treatment.(GSC) [de

  8. Influence of Storage on Briquettes Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Brožek M.

    2014-09-01

    Full Text Available The effects of the storage place, placing manner, and storage time on mechanical properties of briquettes made from birch chips were laboratorily tested. A unique methodology developed by the present author enabling a relatively easy assessment of mechanical properties of the briquettes is described. The briquettes properties were evaluated by their density and rupture force determination. From the test results it follows that if the briquettes are stored in a well closed plastic bag, neither the place nor the storage time influence significantly their life time. When stored in a net plastic bag, the briquettes get seriously damaged, namely depending on their storage place and storage time.

  9. Mechanical Properties of Picea sitchensis

    DEFF Research Database (Denmark)

    Bräuner, Lise; Hoffmeyer, Preben; Poulsson, Lise

    2000-01-01

    the requirements at the same level as Danish grown Norway spruce. The study shows that Sitka spruce and Norway spruce of the same origin exhibit highly comparable mechanical properties. Key words: annual ring width, bending strength, characteristic strength, dry density, EN 338, INSTA 142, modulus of elasticity...

  10. Mechanical properties of organic nanofibers

    DEFF Research Database (Denmark)

    Kjelstrup-Hansen, Jakob; Hansen, Ole; Rubahn, H.R.

    2006-01-01

    Intrinsic elastic and inelastic mechanical Properties of individual, self-assembled, quasi-single-crystalline para-hexaphenylene nanofibers supported on substrates with different hydrophobicities are investigated as well as the interplay between the fibers and the underlying substrates. We find...

  11. Relational quantum mechanics

    International Nuclear Information System (INIS)

    Rovelli, C.

    1996-01-01

    I suggest that the common unease with taking quantum mechanics as a fundamental description of nature (the open-quotes measurement problemclose quotes) could derive from the use of an incorrect notion, as the unease with the Lorentz transformations before Einstein derived from the notion of observer-independent time. I suggest that this incorrect notion that generates the unease with quantum mechanics is the notion of open-quotes observer-independent stateclose quotes of a system, or open-quotes observer-independent values of physical quantities.close quotes I reformulate the problem of the open-quotes interpretation of quantum mechanicsclose quotes as the problem of deriving the formalism from a set of simple physical postulates. I consider a reformulation of quantum mechanics in terms of information theory. All systems are assumed to be equivalent, there is no observer-observed distinction, and the theory describes only the information that systems have about each other; nevertheless, the theory is complete

  12. Mechanical properties of irradiated materials

    International Nuclear Information System (INIS)

    Robertson, I.M.; Robach, J.; Wirth, B.

    2001-01-01

    The effect of irradiation on the mechanical properties of metals is considered with particular attention being paid to the development of defect-free channels following uniaxial tensile loading. The in situ transmission electron microscope deformation technique is coupled with dislocation dynamic computer simulations to reveal the fundamental processes governing the elimination of defects by glissile dislocations. The observations of preliminary experiments are reported.(author)

  13. Mechanical properties of carbon nanotubes

    Science.gov (United States)

    Salvetat, J.-P.; Bonard, J.-M.; Thomson, N. H.; Kulik, A. J.; Forró, L.; Benoit, W.; Zuppiroli, L.

    A variety of outstanding experimental results on the elucidation of the elastic properties of carbon nanotubes are fast appearing. These are based mainly on the techniques of high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM) to determine the Young's moduli of single-wall nanotube bundles and multi-walled nanotubes, prepared by a number of methods. These results are confirming the theoretical predictions that carbon nanotubes have high strength plus extraordinary flexibility and resilience. As well as summarising the most notable achievements of theory and experiment in the last few years, this paper explains the properties of nanotubes in the wider context of materials science and highlights the contribution of our research group in this rapidly expanding field. A deeper understanding of the relationship between the structural order of the nanotubes and their mechanical properties will be necessary for the development of carbon-nanotube-based composites. Our research to date illustrates a qualitative relationship between the Young's modulus of a nanotube and the amount of disorder in the atomic structure of the walls. Other exciting results indicate that composites will benefit from the exceptional mechanical properties of carbon nanotubes, but that the major outstanding problem of load transfer efficiency must be overcome before suitable engineering materials can be produced.

  14. Mechanical properties of fracture zones

    International Nuclear Information System (INIS)

    Leijon, B.

    1993-05-01

    Available data on mechanical characteristics of fracture zones are compiled and discussed. The aim is to improve the basis for adequate representation of fracture zones in geomechanical models. The sources of data researched are primarily borehole investigations and case studies in rock engineering, involving observations of fracture zones subjected to artificial load change. Boreholes only yield local information about the components of fracture zones, i.e. intact rock, fractures and various low-strength materials. Difficulties are therefore encountered in evaluating morphological and mechanical properties of fracture zones from borehole data. Although often thought of as macroscopically planar features, available field data consistently show that fracture zones are characterized by geometrical irregularities such as thickness variations, surface undulation and jogs. These irregularities prevail on all scales. As a result, fracture zones are on all scales characterized by large, in-plane variation of strength- and deformational properties. This has important mechanical consequences in terms of non-uniform stress transfer and complex mechanisms of shear deformation. Field evidence for these findings, in particular results from the underground research laboratory in Canada and from studies of induced fault slip in deep mines, is summarized and discussed. 79 refs

  15. Superconducting state mechanisms and properties

    CERN Document Server

    Kresin, Vladimir Z; Wolf, Stuart A

    2014-01-01

    'Superconducting State' provides a very detailed theoretical treatment of the key mechanisms of superconductivity, including the current state of the art (phonons, magnons, and plasmons). A very complete description is given of the electron-phonon mechanism responsible for superconductivity in the majority of superconducting systems, and the history of its development, as well as a detailed description of the key experimental techniques used to study the superconducting state and determine the mechanisms. In addition, there are chapters describing the discovery and properties of the key superconducting compounds that are of the most interest for science, and applications including a special chapter on the cuprate superconductors. It provides detailed treatments of some very novel aspects of superconductivity, including multiple bands (gaps), the "pseudogap" state, novel isotope effects beyond BCS, and induced superconductivity.

  16. On uncertainty relations in quantum mechanics

    International Nuclear Information System (INIS)

    Ignatovich, V.K.

    2004-01-01

    Uncertainty relations (UR) are shown to have nothing specific for quantum mechanics (QM), being the general property valid for the arbitrary function. A wave function of a particle simultaneously having a precisely defined position and momentum in QM is demonstrated. Interference on two slits in a screen is shown to exist in classical mechanics. A nonlinear classical system of equations replacing the QM Schroedinger equation is suggested. This approach is shown to have nothing in common with the Bohm mechanics

  17. Dynamic mechanical properties of buffer material

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Taniguchi, Wataru

    1999-11-01

    The buffer material is expected to maintain its low water permeability, self-sealing properties, radionuclides adsorption and retardation properties, thermal conductivity, chemical buffering properties, overpack supporting properties, stress buffering properties, etc. over a long period of time. Natural clay is mentioned as a material that can relatively satisfy above. Among the kinds of natural clay, bentonite when compacted is superior because (i) it has exceptionally low water permeability and properties to control the movement of water in buffer, (ii) it fills void spaces in the buffer and fractures in the host rock as it swells upon water uptake, (iii) it has the ability to exchange cations and to adsorb cationic radioelements. In order to confirm these functions for the purpose of safety assessment, it is necessary to evaluate buffer properties through laboratory tests and engineering-scale tests, and to make assessments based on the ranges in the data obtained. This report describes the procedures, test conditions, results and examinations on the buffer material of dynamic triaxial tests, measurement of elastic wave velocity and liquefaction tests that aim at getting hold of dynamic mechanical properties. We can get hold of dependency on the shearing strain of the shearing modulus and hysteresis damping constant, the application for the mechanical model etc. by dynamic triaxial tests, the acceptability of maximum shearing modulus obtained from dynamic triaxial tests etc. by measurement of elastic wave velocity and dynamic strength caused by cyclic stress etc. by liquefaction tests. (author)

  18. Effect of Strengthening Mechanism on Strain-Rate Related Tensile Properties of Low-Carbon Sheet Steels for Automotive Application

    Science.gov (United States)

    Das, Anindya; Biswas, Pinaki; Tarafder, S.; Chakrabarti, D.; Sivaprasad, S.

    2018-05-01

    In order to ensure crash resistance of the steels used in automotive components, the ensile deformation behavior needs to be studied and predicted not only under quasi-static condition, but also under dynamic loading rates. In the present study, tensile tests have been performed on four different automobile grade sheet steels, namely interstitial free steel, dual-phase 600 and 800, and a carbon manganese steel over the strain rate regime of 0.001-800/s. Apart from the variation in strength (which always increased with strain rate), the effect of strengthening mechanism on strain rate sensitivity and strain hardening behavior has been evaluated. Strain rate sensitivity was found to increase at high-strain rate regime for all the steels. Contribution of solid solution hardening on strain rate sensitivity at lower plastic strains was found to be higher compared to dislocation strengthening and second-phase hardening. However, precipitation hardening coupled with solid solution hardening produced the highest strain rate sensitivity, in C-Mn-440 steel at high strain rates. Different strain-rate-sensitive models which take into account the change in yield stress and strain hardening behavior with strain rate for ductile materials were used to predict the flow behavior of these sheet steels at strain rates up to 800/s.

  19. On the electronic nature of silicon and germanium based oxynitrides and their related mechanical, optical and vibrational properties as obtained from DFT and DFPT

    KAUST Repository

    Goumri-Said, Souraya

    2012-02-01

    Electronic structure, bonding and optical properties of the orthorhombic oxynitrides Si 2N 2O and Ge 2N 2O are studied using the density function theory as implemented in pseudo-potential plane wave and full-potential (linearized) augmented plane wave plus local orbitals methods. Generalized gradient approximation is employed in order to determine the band gap energy. Indeed, the Si 2N 2O exhibits a large direct gap whereas Ge 2N 2O have an indirect one. Bonding is analyzed via the charge densities and Mulliken population, where the role of oxygen is investigated. The analysis of the elastic constants show the mechanical stability of both oxynitrides. Their bulk and shear modulus are slightly smaller than those reported on nitrides semiconductors due to the oxygen presence. The optical properties, namely the dielectric function, optical reflectivity, refractive index and electron energy loss, are reported for radiation up to 30 eV. The phonon dispersion relation, zone-center optical mode frequency, density of phonon states are calculated using the density functional perturbed theory. Thermodynamic properties of Si 2N 2O and Ge 2N 2O, such as heat capacity and Debye temperature, are given for reference. Our study suggests that Si 2N 2O and Ge 2N 2O could be a promising potential materials for applications in the microelectronics and optoelectronics areas of research. © 2011 Elsevier B.V. All rights reserved.

  20. Relative and Absolute Interrater Reliabilities of a Hand-Held Myotonometer to Quantify Mechanical Muscle Properties in Patients with Acute Stroke in an Inpatient Ward

    Directory of Open Access Journals (Sweden)

    Wai Leung Ambrose Lo

    2017-01-01

    Full Text Available Introduction. The reliability of using MyotonPRO to quantify muscles mechanical properties in a ward setting for the acute stroke population remains unknown. Aims. To investigate the within-session relative and absolute interrater reliability of MyotonPRO. Methods. Mechanical properties of biceps brachii, brachioradialis, rectus femoris, and tibialis anterior were recorded at bedside. Participants were within 1 month of the first occurrence of stroke. Relative reliability was assessed by intraclass correlation coefficient (ICC. Absolute reliability was assessed by standard error of measurement (SEM, SEM%, smallest real difference (SRD, SRD%, and the Bland-Altman 95% limits of agreement. Results. ICCs of all studied muscles ranged between 0.63 and 0.97. The SEM of all muscles ranged within 0.30–0.88 Hz for tone, 0.07–0.19 for decrement, 6.42–20.20 N/m for stiffness, and 0.04–0.07 for creep. The SRD of all muscles ranged within 0.70–2.05 Hz for tone, 0.16–0.45 for decrement, 14.98–47.15 N/m for stiffness, and 0.09–0.17 for creep. Conclusions. MyotonPRO demonstrated acceptable relative and absolute reliability in a ward setting for patients with acute stroke. However, results must be interpreted with caution, due to the varying level of consistency between different muscles, as well as between different parameters within a muscle.

  1. On the Process-Related Rivet Microstructural Evolution, Material Flow and Mechanical Properties of Ti-6Al-4V/GFRP Friction-Riveted Joints

    Directory of Open Access Journals (Sweden)

    Natascha Z. Borba

    2017-02-01

    Full Text Available In the current work, process-related thermo-mechanical changes in the rivet microstructure, joint local and global mechanical properties, and their correlation with the rivet plastic deformation regime were investigated for Ti-6Al-4V (rivet and glass-fiber-reinforced polyester (GF-P friction-riveted joints of a single polymeric base plate. Joints displaying similar quasi-static mechanical performance to conventional bolted joints were selected for detailed characterization. The mechanical performance was assessed on lap shear specimens, whereby the friction-riveted joints were connected with AA2198 gussets. Two levels of energy input were used, resulting in process temperatures varying from 460 ± 130 °C to 758 ± 56 °C and fast cooling rates (178 ± 15 °C/s, 59 ± 15 °C/s. A complex final microstructure was identified in the rivet. Whereas equiaxial α-grains with β-phase precipitated in their grain boundaries were identified in the rivet heat-affected zone, refined α′ martensite, Widmanstätten structures and β-fleck domains were present in the plastically deformed rivet volume. The transition from equiaxed to acicular structures resulted in an increase of up to 24% in microhardness in comparison to the base material. A study on the rivet material flow through microtexture of the α-Ti phase and β-fleck orientation revealed a strong effect of shear stress and forging which induced simple shear deformation. By combining advanced microstructural analysis techniques with local mechanical testing and temperature measurement, the nature of the complex rivet plastic deformational regime could be determined.

  2. On the Process-Related Rivet Microstructural Evolution, Material Flow and Mechanical Properties of Ti-6Al-4V/GFRP Friction-Riveted Joints

    Science.gov (United States)

    Borba, Natascha Z.; Afonso, Conrado R. M.; Blaga, Lucian; dos Santos, Jorge F.; Canto, Leonardo B.; Amancio-Filho, Sergio T.

    2017-01-01

    In the current work, process-related thermo-mechanical changes in the rivet microstructure, joint local and global mechanical properties, and their correlation with the rivet plastic deformation regime were investigated for Ti-6Al-4V (rivet) and glass-fiber-reinforced polyester (GF-P) friction-riveted joints of a single polymeric base plate. Joints displaying similar quasi-static mechanical performance to conventional bolted joints were selected for detailed characterization. The mechanical performance was assessed on lap shear specimens, whereby the friction-riveted joints were connected with AA2198 gussets. Two levels of energy input were used, resulting in process temperatures varying from 460 ± 130 °C to 758 ± 56 °C and fast cooling rates (178 ± 15 °C/s, 59 ± 15 °C/s). A complex final microstructure was identified in the rivet. Whereas equiaxial α-grains with β-phase precipitated in their grain boundaries were identified in the rivet heat-affected zone, refined α′ martensite, Widmanstätten structures and β-fleck domains were present in the plastically deformed rivet volume. The transition from equiaxed to acicular structures resulted in an increase of up to 24% in microhardness in comparison to the base material. A study on the rivet material flow through microtexture of the α-Ti phase and β-fleck orientation revealed a strong effect of shear stress and forging which induced simple shear deformation. By combining advanced microstructural analysis techniques with local mechanical testing and temperature measurement, the nature of the complex rivet plastic deformational regime could be determined. PMID:28772545

  3. Mechanical properties of ion-implanted alumina

    International Nuclear Information System (INIS)

    Pope, S.G.

    1988-01-01

    Monolithic oxide ceramics are being proposed as structural materials in continuously more-demanding applications. The demands being placed on these materials have caused concern pertaining to the continued growth of oxide structural ceramics due to limited toughness. The realization that ceramic strength and toughness can be affected by surface conditions has led to many surface-modification techniques, all striving to improve the mechanical properties of ceramics. Along these lines, the effects of ion implantation as a surface modification technique for improvement of the mechanical properties of alumina were studied. Initially, sapphire samples were implanted with elemental ion species that would produce oxide precipitates within the sapphire surface when annealed in an oxygen-containing atmosphere. Optimum conditions as determined from implantation into sapphire were then used to modify a polycrystalline alumina. Specific modifications in microhardness, indentation fracture toughness and flexure strength are reported for the parameters studied. Microstructure and phase relationships related to modified surfaces properties are also reported

  4. Mechanical properties of additively manufactured octagonal honeycombs

    Energy Technology Data Exchange (ETDEWEB)

    Hedayati, R., E-mail: rezahedayati@gmail.com [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran (Iran, Islamic Republic of); Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Sadighi, M.; Mohammadi-Aghdam, M. [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran (Iran, Islamic Republic of); Zadpoor, A.A. [Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2016-12-01

    Honeycomb structures have found numerous applications as structural and biomedical materials due to their favourable properties such as low weight, high stiffness, and porosity. Application of additive manufacturing and 3D printing techniques allows for manufacturing of honeycombs with arbitrary shape and wall thickness, opening the way for optimizing the mechanical and physical properties for specific applications. In this study, the mechanical properties of honeycomb structures with a new geometry, called octagonal honeycomb, were investigated using analytical, numerical, and experimental approaches. An additive manufacturing technique, namely fused deposition modelling, was used to fabricate the honeycomb from polylactic acid (PLA). The honeycombs structures were then mechanically tested under compression and the mechanical properties of the structures were determined. In addition, the Euler-Bernoulli and Timoshenko beam theories were used for deriving analytical relationships for elastic modulus, yield stress, Poisson's ratio, and buckling stress of this new design of honeycomb structures. Finite element models were also created to analyse the mechanical behaviour of the honeycombs computationally. The analytical solutions obtained using Timoshenko beam theory were close to computational results in terms of elastic modulus, Poisson's ratio and yield stress, especially for relative densities smaller than 25%. The analytical solutions based on the Timoshenko analytical solution and the computational results were in good agreement with experimental observations. Finally, the elastic properties of the proposed honeycomb structure were compared to those of other honeycomb structures such as square, triangular, hexagonal, mixed, diamond, and Kagome. The octagonal honeycomb showed yield stress and elastic modulus values very close to those of regular hexagonal honeycombs and lower than the other considered honeycombs. - Highlights: • The octagonal

  5. Mechanical properties of irradiated beryllium

    International Nuclear Information System (INIS)

    Beeston, J.M.; Longhurst, G.R.; Wallace, R.S.

    1992-01-01

    Beryllium is planned for use as a neutron multiplier in the tritium breeding blanket of the International Thermonuclear Experimental Reactor (ITER). After fabricating samples of beryllium at densities varying from 80 to 100% of the theoretical density, we conducted a series of experiments to measure the effect of neutron irradiation on mechanical properties, especially strength and ductility. Samples were irradiated in the Advanced Test Reactor (ATR) to a neutron fluence of 2.6 x 10 25 n/m 2 (E > MeV) at an irradiation temperature of 75deg C. These samples were subsequently compression-tested at room temperature, and the results were compared with similar tests on unirradiated specimens. We found that the irradiation increased the strength by approximately four times and reduced the ductility to approximately one fourth. Failure was generally ductile, but the 80% dense irradiated samples failed in brittle fracture with significant generation of fine particles and release of small quantities of tritium. (orig.)

  6. Mechanical properties of irradiated beryllium

    Science.gov (United States)

    Beeston, J. M.; Longhurst, G. R.; Wallace, R. S.; Abeln, S. P.

    1992-10-01

    Beryllium is planned for use as a neutron multiplier in the tritium breeding blanket of the International Thermonuclear Experimental Reactor (ITER). After fabricating samples of beryllium at densities varying from 80 to 100% of the theoretical density, we conducted a series of experiments to measure the effect of neutron irradiation on mechanical properties, especially strength and ductility. Samples were irradiated in the Advanced Test Reactor (ATR) to a neutron fluence of 2.6 × 10 25 n/m 2 ( E > 1 MeV) at an irradiation temperature of 75°C. These samples were subsequently compression-tested at room temperature, and the results were compared with similar tests on unirradiated specimens. We found that the irradiation increased the strength by approximately four times and reduced the ductility to approximately one fourth. Failure was generally ductile, but the 80% dense irradiated samples failed in brittle fracture with significant generation of fine particles and release of small quantities of tritium.

  7. Mechanical Properties of Stable Glasses Using Nanoindentation

    Science.gov (United States)

    Wolf, Sarah; Liu, Tianyi; Jiang, Yijie; Ablajan, Keyume; Zhang, Yue; Walsh, Patrick; Turner, Kevin; Fakhraai, Zahra

    Glasses with enhanced stability over ordinary, liquid quenched glasses have been formed via the process of Physical Vapor Deposition (PVD) by using a sufficiently slow deposition rate and a substrate temperature slightly below the glass transition temperature. These stable glasses have been shown to exhibit higher density, lower enthalpy, and better kinetic stability over ordinary glass, and are typically optically birefringent, due to packing and orientational anisotropy. Given these exceptional properties, it is of interest to further investigate how the properties of stable glasses compare to those of ordinary glass. In particular, the mechanical properties of stable glasses remain relatively under-investigated. While the speed of sound and elastic moduli have been shown to increase with increased stability, little is known about their hardness and fracture toughness compared to ordinary glasses. In this study, glasses of 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene were deposited at varying temperatures relative to their glass transition temperature, and their mechanical properties measured by nanoindentation. Hardness and elastic modulus of the glasses were compared across substrate temperatures. After indentation, the topography of these films were studied using Atomic Force Microscopy (AFM) in order to further compare the relationship between thermodynamic and kinetic stability and mechanical failure. Z.F. and P.W. acknowledge funding from NSF(DMREF-1628407).

  8. Effect of temperature and relative humidity on the water vapour permeability and mechanical properties of cassava starch and soy protein concentrate based edible films.

    Science.gov (United States)

    Chinma, C E; Ariahu, C C; Alakali, J S

    2015-04-01

    The effect of temperature and relative humidity on the water vapour permeability (WVP) and mechanical properties of cassava starch and soy protein concentrate (SPC) based edible films containing 20 % glycerol level were studied. Tensile strength and elastic modulus of edible films increased with increase in temperature and decreased with increase in relative humidity, while elongation at break decreased. Water vapour permeability of the films increased (2.6-4.3 g.mm/m(2).day.kPa) with increase in temperature and relative humidity. The temperature dependence of water vapour permeation of cassava starch-soy protein concentrate films followed Arrhenius relationship. Activation energy (Ea) of water vapour permeation of cassava starch-soy protein concentrate edible films ranged from 1.9 to 5.3 kJ/mol (R (2)  ≥ 0.93) and increased with increase in SPC addition. The Ea values were lower for the bio-films than for polyvinylidene chloride, polypropylene and polyethylene which are an indication of low water vapour permeability of the developed biofilms compared to those synthetic films.

  9. Mechanical properties of cork under contact stresses

    International Nuclear Information System (INIS)

    Parralejo, A. D.; Guiberteau, F.; Fortes, M. A.; Rosa, M. E.

    2001-01-01

    In this work our interest is focussed on the mechanical behaviour of natural cork under contact stresses. Many of the applications of this curious material are related with its mechanical response under such a stress field, however this topic has not been still sufficiently considered in the scientific literature. For this purpose, we proposed the use of Hertzian indentation tests. By using this mythology we have investigated the cork structure influence on the corresponding mechanical properties. Our results reveal a clear mechanical anisotropy effect. Moreover, the elastic modulus corresponding to specific directions have been estimated. Several are the main advantages of this specific test mythology versus traditional uniaxial compression tests, specially simplicity and local character. (Author) 9 refs

  10. Mechanical properties of nuclear waste glasses

    International Nuclear Information System (INIS)

    Connelly, A.J.; Hand, R.J.; Bingham, P.A.; Hyatt, N.C.

    2011-01-01

    The mechanical properties of nuclear waste glasses are important as they will determine the degree of cracking that may occur either on cooling or following a handling accident. Recent interest in the vitrification of intermediate level radioactive waste (ILW) as well as high level radioactive waste (HLW) has led to the development of new waste glass compositions that have not previously been characterised. Therefore the mechanical properties, including Young's modulus, Poisson's ratio, hardness, indentation fracture toughness and brittleness of a series of glasses designed to safely incorporate wet ILW have been investigated. The results are presented and compared with the equivalent properties of an inactive simulant of the current UK HLW glass and other nuclear waste glasses from the literature. The higher density glasses tend to have slightly lower hardness and indentation fracture toughness values and slightly higher brittleness values, however, it is shown that the variations in mechanical properties between these different glasses are limited, are well within the range of published values for nuclear waste glasses, and that the surveyed data for all radioactive waste glasses fall within relatively narrow range.

  11. Mechanical properties of irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Beeston, J.M.; Longhurst, G.R.; Wallace, R.S. (EG and G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.); Abeln, S.P. (EG and G Rocky Flats, Inc., Golden, CO (United States))

    1992-10-01

    Beryllium is planned for use as a neutron multiplier in the tritium breeding blanket of the International Thermonuclear Experimental Reactor (ITER). After fabricating samples of beryllium at densities varying from 80 to 100% of the theoretical density, we conducted a series of experiments to measure the effect of neutron irradiation on mechanical properties, especially strength and ductility. Samples were irradiated in the Advanced Test Reactor (ATR) to a neutron fluence of 2.6 x 10[sup 25] n/m[sup 2] (E > MeV) at an irradiation temperature of 75deg C. These samples were subsequently compression-tested at room temperature, and the results were compared with similar tests on unirradiated specimens. We found that the irradiation increased the strength by approximately four times and reduced the ductility to approximately one fourth. Failure was generally ductile, but the 80% dense irradiated samples failed in brittle fracture with significant generation of fine particles and release of small quantities of tritium. (orig.).

  12. Microstructure and Mechanical Properties of Porous Mullite

    Science.gov (United States)

    Hsiung, Chwan-Hai Harold

    Mullite (3 Al2O3 : 2 SiO2) is a technologically important ceramic due to its thermal stability, corrosion resistance, and mechanical robustness. One variant, porous acicular mullite (ACM), has a unique needle-like microstructure and is the material platform for The Dow Chemical Company's diesel particulate filter AERIFY(TM). The investigation described herein focuses on the microstructure-mechanical property relationships in acicular mullites as well as those with traditional porous microstructures with the goal of illuminating the critical factors in determining their modulus, strength, and toughness. Mullites with traditional pore morphologies were made to serve as references via slipcasting of a kaolinite-alumina-starch slurry. The starch was burned out to leave behind a pore network, and the calcined body was then reaction-sintered at 1600C to form mullite. The samples had porosities of approximately 60%. Pore size and shape were altered by using different starch templates, and pore size was found to influence the stiffness and toughness. The ACM microstructure was varied along three parameters: total porosity, pore size, and needle size. Total porosity was found to dominate the mechanical behavior of ACM, while increases in needle and pore size increased the toughness at lower porosities. ACM was found to have much improved (˜130%) mechanical properties relative to its non-acicular counterpart at the same porosity. A second set of investigations studied the role of the intergranular glassy phase which wets the needle intersections of ACM. Removal of the glassy phase via an HF etch reduced the mechanical properties by ˜30%, highlighting the intergranular phase's importance to the enhanced mechanical properties of ACM. The composition of the glassy phase was altered by doping the ACM precursor with magnesium and neodymium. Magnesium doping resulted in ACM with greatly reduced fracture strength and toughness. Studies showed that the mechanical properties of the

  13. Study of anisotropic mechanical properties for aeronautical PMMA

    Directory of Open Access Journals (Sweden)

    Wei Shang

    Full Text Available For the properties of polymer are relative to its structure, the main purpose of the present work is to investigate the mechanical properties of the aeronautical PMMA which has been treated by the directional tensile technology. Isodyne images reveal the stress state in directional PMMA. And then, an anisotropic mechanical model is established. Furthermore, all mechanical parameters are measured by the digital image correlation method. Finally, based on the anisotropic mechanical model and mechanical parameters, the FEM numerical simulation and experimental methods are applied to analyze the fracture mechanical properties along different directions.

  14. Martensite and bainite in steels: transformation mechanism and mechanical properties

    International Nuclear Information System (INIS)

    Bhadeshia, H.K.D.H.

    1997-01-01

    Many essential properties of iron alloys depend on what actually happens when one allotropic form gives way to another, i.e. on the mechanism of phase change. The dependence of the mechanical properties on the atomic mechanism by which bainite and martensite grow is the focus of this paper. The discussion is illustrated in the context of some common engineering design parameters, and with a brief example of the inverse problem in which the mechanism may be a function of the mechanical properties. (orig.)

  15. Mechanical Properties of Nanofilled Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    Cristina-Elisabeta PELIN

    2015-06-01

    Full Text Available The paper presents a study concerning mechanical performance of thermoplastic nanocomposites based on isotactic polypropylene matrix, nanofilled with montmorillonite modified with quaternary ammonium salt and carboxyl functionalized carbon nanotubes, respectively, added in the same concentration relative to the matrix. The nanofilled and single polymer materials were obtained by simple melt compounding through extrusion process followed by injection molding into specific shape specimens for mechanical testing of the samples. Mechanical properties were evaluated by tensile and 3 point bending tests. In terms of modulus of elasticity, the results showed overall positive effects concerning the effect of nanofiller addition to the thermoplastic polymer. The fracture cross section of the tested specimens was characterized by FT-IR spectroscopy and SEM microscopy.

  16. Selected mechanical properties of modified beech wood

    Directory of Open Access Journals (Sweden)

    Jiří Holan

    2008-01-01

    Full Text Available This thesis deals with an examination of mechanical properties of ammonia treated beach wood with a trademark Lignamon. For determination mechanical properties were used procedures especially based on ČSN. From the results is noticeable increased density of wood by 22% in comparison with untreated beach wood, which makes considerable increase of the most mechanical wood properties. Considering failure strength was raised by 32% and modulus of elasticity was raised at average about 46%.

  17. Static mechanical properties of buffer material

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Suzuki, Hideaki

    1999-11-01

    The buffer material is expected to maintain its low water permeability, self-sealing properties, radionuclides adsorption and retardation properties, thermal conductivity, chemical buffering properties, overpack supporting properties, stress buffering properties, etc. over a long period of time. Natural clay is mentioned as a material that can relatively satisfy above. Among the kinds of natural clay, bentonite when compacted is superior because (i) it has exceptionally low water permeability and properties to control the movement of water in buffer, (ii) it fills void spaces in the buffer and fractures in the host rock as it swells upon water uptake, (iii) it has the ability to exchange cations and to adsorb cationic radioelements. In order to confirm these functions for the purpose of safety assessment, it is necessary to evaluate buffer properties through laboratory tests and engineering-scale tests, and to make assessments based on the ranges in the data obtained. This report describes the procedures, test conditions, results and examinations on the buffer material of unconfined compression tests, one-dimensional consolidation tests, consolidated-undrained triaxial compression tests and consolidated-undrained triaxial creep tests that aim at getting hold of static mechanical properties. We can get hold of the relationship between the dry density and tensile stress etc. by Brazilian tests, between the dry density and unconfined compressive strength etc. by unconfined compression tests, between the consolidation stress and void ratio etc. by one-dimensional consolidation tests, the stress pass of each effective confining pressure etc. by consolidated-undrained triaxial compression tests and the axial strain rate with time of each axial stress etc. by consolidated-undrained triaxial creep tests. (author)

  18. Skin mechanical properties and modeling: A review.

    Science.gov (United States)

    Joodaki, Hamed; Panzer, Matthew B

    2018-04-01

    The mechanical properties of the skin are important for various applications. Numerous tests have been conducted to characterize the mechanical behavior of this tissue, and this article presents a review on different experimental methods used. A discussion on the general mechanical behavior of the skin, including nonlinearity, viscoelasticity, anisotropy, loading history dependency, failure properties, and aging effects, is presented. Finally, commonly used constitutive models for simulating the mechanical response of skin are discussed in the context of representing the empirically observed behavior.

  19. The relative entropy in the quantum mechanics

    International Nuclear Information System (INIS)

    Lecomte Montes, A.

    1983-06-01

    Relative Entropy is a generalization of entropy which substitutes the Liouville measure from classical mechanics or the trace from quantum mechanics by an arbitrary state. There are many different defintions of it in quantum mechanics because the algebra of observables is not commutative. In this work, three known defintions of the quantum relative entropy are studied and compared but specifically their common properties are presented. The best known defintion was proposed many years ago by Umegaki and later on by Lindblad. This defintion can be realized through a functional calculus for quadratic forms introduced by Pusz and Woronowicz, for two arbitrary states on a Csup(*)-algebra. The two other definitions investigated are the Naudt's entropy and the inference function of Marchand and Wyss. The first one can be expressed through the functional calculus too, it has then almost the same properties as the Umegaki-Lindblad defintion. The inference function can be considered only as some kind of 1/2-relative entropy. The function is nevertheless very important because it can be expressed as the logarithm of the transition probability between the basis state and the actual state. A general theory which includes the three defintions is not found yet, but it is shown that the functional calculus provides a great family of relative entropies. This is important for a unified theory of all defintions and their properties. (Author)

  20. Mechanical properties of phosphorene nanoribbons and oxides

    International Nuclear Information System (INIS)

    Hao, Feng; Chen, Xi

    2015-01-01

    Mechanical properties of phosphorene nanoribbons and oxides are investigated by using density functional theory. It is found that the ideal strength of nanoribbon decreases in comparison with that of 2D phosphorene. The Young's modulus of armchair nanoribbon has a remarkable size effect because of the edge relaxations. The analysis of the stress-strain relation indicates that, owing to chemisorbed oxygen atoms, the ideal strength and Young's modulus of 2D phosphorene oxide are greatly reduced along the zigzag direction, especially upon high oxidation ratios. In addition, strain and oxidation have significant impacts on phonon dispersion

  1. Mechanical properties of phosphorene nanoribbons and oxides

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Feng [Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027 (United States); Chen, Xi, E-mail: xichen@columbia.edu [International Center for Applied Mechanics, SV Laboratory, School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China); Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027 (United States)

    2015-12-21

    Mechanical properties of phosphorene nanoribbons and oxides are investigated by using density functional theory. It is found that the ideal strength of nanoribbon decreases in comparison with that of 2D phosphorene. The Young's modulus of armchair nanoribbon has a remarkable size effect because of the edge relaxations. The analysis of the stress-strain relation indicates that, owing to chemisorbed oxygen atoms, the ideal strength and Young's modulus of 2D phosphorene oxide are greatly reduced along the zigzag direction, especially upon high oxidation ratios. In addition, strain and oxidation have significant impacts on phonon dispersion.

  2. Quantum mechanics from general relativity

    International Nuclear Information System (INIS)

    Sachs, M.

    1986-01-01

    A generalization of quantum mechanics is demonstrated in the context of general relativity, following from a generally covariant field theory of inertia. Nonrelativistically, the formalism corresponds with linear quantum mechanics. In the limit of special relativity, nonlinearity remains and several new features are derived: (1) Particle-antiparticle pairs do not annihilate; an exact bound state solution is derived corresponding with all experimental facts about annihilation/creation - which, in approximation, gives the blackbody radiation spectrum for a sea of such pairs. (2) A result is proven, without approximation, that is physically equivalent to the Pauli exclusion principle - which, in linear approximation, gives the totally antisymmetrised many-body wave function and Fermi-Dirac statistics. (3) The hydrogen spectrum is derived, including the Lamb shifts, in agreement with experiment; new results are found for high energy electron-proton scattering. (4) Finally, several applications to the elementary particle domain are demonstrated, in agreement with results from experimental high energy physics. (Auth.)

  3. Enhancement of mechanical properties of 123 superconductors

    Science.gov (United States)

    Balachandran, U.

    1995-04-25

    A composition and method are disclosed of preparing YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T{sub c}. About 5-20% additions give rise to substantially improved mechanical properties.

  4. Enhancement of mechanical properties of 123 superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam

    1995-01-01

    A composition and method of preparing YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T.sub.c. About 5-20% additions give rise to substantially improved mechanical properties.

  5. Relative effects of chromium and niobium on microstructure and mechanical properties as a function of oxygen content in TiAl alloys

    International Nuclear Information System (INIS)

    Lamirand, M.; Bonnentien, J.-L.; Ferriere, G.; Guerin, S.; Chevalier, J.-P.

    2007-01-01

    The effects of 2 at.% chromium and niobium on microstructure and mechanical properties of Ti-48Al-x(Cr, Nb) have been investigated for alloys with different oxygen content, ranging from ultra-high purity to doped alloys. Chromium and niobium additions have significant effects for the high purity alloys, whereas for alloys containing oxygen, no significant modification is observed due to the strong stabilizing effect of oxygen on the lamellar microstructure

  6. Mechanical properties of rock at high temperatures

    International Nuclear Information System (INIS)

    Kinoshita, Naoto; Abe, Tohru; Wakabayashi, Naruki; Ishida, Tsuyoshi.

    1997-01-01

    The laboratory tests have been performed in order to investigate the effects of temperature up to 300degC and pressure up to 30 MPa on the mechanical properties of three types of rocks, Inada granite, Sanjoume andesite and Oya tuff. The experimental results indicated that the significant differences in temperature dependence of mechanical properties exist between the three rocks, because of the difference of the factors which determine the mechanical properties of the rocks. The effect of temperature on the mechanical properties for the rocks is lower than that of pressure and water content. Temperature dependence of the mechanical properties is reduced by increase in pressure in the range of pressure and temperature investigated in this paper. (author)

  7. Mechanical properties of chemically modified portuguese pinewood

    OpenAIRE

    Lopes, Duarte B; Mai, Carsten; Militz, Holger

    2014-01-01

    To turn wood into a construction material with enhanced properties, many methods of chemical modification have been developed in the last few decades. In this work, mechanical properties of pine wood were chemically modified, compared and evaluated. Maritime pine wood (Pinus pinaster) was modified with four chemical processes: 1,3-dimethylol-4,5- dihydroxyethyleneurea, N-methylol melamine formaldehyde, tetra-alkoxysilane and wax. The following mechanical properties were assessed experiment...

  8. Energy transfer properties and mechanisms

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses the energy transfer mechanisms in azulene, benzene, toluene, and isotopomers. Also discussed is the coupled energy reservoirs model, quantum effects in energy transfer, NO 2 energy transfer, densities of states, the reactant states model, and O 3 excited electronic states

  9. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    Science.gov (United States)

    Solum, J.G.; Davatzes, N.C.; Lockner, D.A.

    2010-01-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ???1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon. ?? 2010 Elsevier Ltd.

  10. Densely crosslinked polycarbosiloxanes .2. Thermal and mechanical properties

    NARCIS (Netherlands)

    Flipsen, T.A C; Derks, R.; van der Vegt, H.A.; Stenekes, R.; Pennings, A.J; Hadziioannou, G

    1997-01-01

    The thermal and mechanical properties of two densely crosslinked polycarbosiloxane systems were investigated in relation to the molecular structure. The networks were prepared from functional branched prepolymers and crosslinked via a hydrosilylation curing reaction. The prepolymers having only

  11. Energy transfer properties and mechanisms

    International Nuclear Information System (INIS)

    Barker, J.R.

    1993-01-01

    Since no single experimental technique is the best method for energy transfer experiments, we have used both time-dependent infrared fluorescence (IRF) and time-dependent thermal lensing (TDTL) to study energy transfer in various systems. We are investigating pump-probe techniques employing resonance enhanced multiphoton ionization (REMPI). IRF was used to study benzene, azulene, and toluene. TDTL was used to study CS 2 and SO 2 (data not given for latter). Large molecule energy transfer mechanisms are discussed. 10 figs

  12. Influence of helium generation rate and temperature history on mechanical properties of model Fe-Cr-Ni alloys irradiated in FFTF at relatively low displacement rates

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Garner, F.A.; Edwards, D.J.

    1993-01-01

    In agreement with earlier studies conducted at higher displacement rates, evolution of mechanical properties of model Fe-Cr-Ni alloys irradiated at lower displacement rates in the 59 Ni isotopic doping experiment does not appear to be strongly affected by large differences in helium generation rate. This insensitivity to helium/dpa ratio is exhibited during both isothermal and non-isothermal irradiation. The overall behavior of the model alloys used in this study is dominated by the tendency to converge to a saturation strength level that is independent of thermomechanical starting state and helium/dpa ratio, but which is dependent on irradiation temperature and alloy composition

  13. Mechanical properties of low dimensional materials

    Science.gov (United States)

    Saini, Deepika

    Recent advances in low dimensional materials (LDMs) have paved the way for unprecedented technological advancements. The drive to reduce the dimensions of electronics has compelled researchers to devise newer techniques to not only synthesize novel materials, but also tailor their properties. Although micro and nanomaterials have shown phenomenal electronic properties, their mechanical robustness and a thorough understanding of their structure-property relationship are critical for their use in practical applications. However, the challenges in probing these mechanical properties dramatically increase as their dimensions shrink, rendering the commonly used techniques inadequate. This dissertation focuses on developing techniques for accurate determination of elastic modulus of LDMs and their mechanical responses under tensile and shear stresses. Fibers with micron-sized diameters continuously undergo tensile and shear deformations through many phases of their processing and applications. Significant attention has been given to their tensile response and their structure-tensile properties relations are well understood, but the same cannot be said about their shear responses or the structure-shear properties. This is partly due to the lack of appropriate instruments that are capable of performing direct shear measurements. In an attempt to fill this void, this dissertation describes the design of an inexpensive tabletop instrument, referred to as the twister, which can measure the shear modulus (G) and other longitudinal shear properties of micron-sized individual fibers. An automated system applies a pre-determined twist to the fiber sample and measures the resulting torque using a sensitive optical detector. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers. Two industrially important fibers, IM7 carbon fiber and KevlarRTM 119, were found to have G = 17 and 2.4 GPa, respectively. In addition to measuring the shear

  14. Characterization and modelling of the mechanical properties of mineral wool

    DEFF Research Database (Denmark)

    Chapelle, Lucie

    2016-01-01

    and as a consequence focus on the mechanical properties of mineral wool has intensified. Also understanding the deformation mechanisms during compression of low density mineral wool is crucial since better thickness recovery after compression will result in significant savings on transport costs. The mechanical...... properties of mineral wool relate closely to the arrangement and characteristics of the fibres inside the material. Because of the complex architecture of mineral wool, the characterization and the understanding of the mechanism of deformations require a new methodology. In this PhD thesis, a methodology...... of the structure on mechanical properties can be explored. The size of the representative volume elements for the prediction of the elastic properties is determined for two types of applied boundary conditions. For sufficiently large volumes, the predicted elastic properties are consistent with results from...

  15. Synthesis, microstructure and mechanical properties of ceria ...

    Indian Academy of Sciences (India)

    Unknown

    ceria stabilized zirconia powders with improved mechanical properties. Ce–ZrO2 with 20 wt% ... structural ceramic materials (Garvie et al 1975; Evans and. Cannon 1986) ... thermal expansion matching with that of iron alloys. (Tsukuma and ...

  16. Microstructures and mechanical properties of aging materials

    International Nuclear Information System (INIS)

    Liaw, P.K.; Viswanathan, R.; Murty, K.L.; Simonen, E.P.; Frear, D.

    1993-01-01

    This book contains a collection of papers presented at the symposium on ''Microstructures and Mechanical Properties of Aging Materials,'' that was held in Chicago, IL. November 2-5, 1992 in conjunction with the Fall Meeting of The Minerals, Metals and Materials Society (TMS). The subjects of interest in the symposium included: (1) mechanisms of microstructural degradation, (2) effects of microstructural degradation on mechanical behavior, (3) development of life prediction methodology for in-service structural and electronic components, (4) experimental techniques to monitor degradation of microstructures and mechanical properties, and (5) effects of environment on microstructural degradation and mechanical properties. Individual papers have been processed separately for inclusion in the appropriate data bases

  17. Material modeling of biofilm mechanical properties.

    Science.gov (United States)

    Laspidou, C S; Spyrou, L A; Aravas, N; Rittmann, B E

    2014-05-01

    A biofilm material model and a procedure for numerical integration are developed in this article. They enable calculation of a composite Young's modulus that varies in the biofilm and evolves with deformation. The biofilm-material model makes it possible to introduce a modeling example, produced by the Unified Multi-Component Cellular Automaton model, into the general-purpose finite-element code ABAQUS. Compressive, tensile, and shear loads are imposed, and the way the biofilm mechanical properties evolve is assessed. Results show that the local values of Young's modulus increase under compressive loading, since compression results in the voids "closing," thus making the material stiffer. For the opposite reason, biofilm stiffness decreases when tensile loads are imposed. Furthermore, the biofilm is more compliant in shear than in compression or tension due to the how the elastic shear modulus relates to Young's modulus. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Effects of moisture on the mechanical properties of glass fibre ...

    Indian Academy of Sciences (India)

    However, the properties were relatively inferior when treated with boiling water for longer hours attributing to ingress of moisture by capillary action through the interface between the fibre and the resin matrix. Considering the rates of moisture absorption and correlating with the mechanical properties, it was observed that the ...

  19. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.

    Science.gov (United States)

    Chen, Mian; Zhang, Erlin; Zhang, Lan

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti-Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti-Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti-Ag phase, residual pure Ag and Ti were the mainly phases in Ti-Ag(S75) sintered alloy while Ti2Ag was synthesized in Ti-Ag(S10) sintered alloy. The mechanical test indicated that Ti-Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti-Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti-Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti2Ag and its distribution. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Mechanical properties of ceramic-polymer nanocomposites

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available Nano crystalline powders of Barium Sodium Niobate (BNN with the composition Ba3–2x Na4+x R Nb10 O30 with (R stands for rare earth = 0, x = 0 have been prepared by conventional ceramic technique. Barium Sodium Niobate can form a wide range of solid solutions, incorporating rare earth and alkali, alkaline earth elements with different compositions. The powder belonged to tungsten bronze type structure with tetragonal symmetry and lattice constants a = b = 1.2421 nm and c = 0.3903 nm. XRD (X-ray Diffraction SEM (Scanning Electron Microscope and AFM (Atomic Force Microscope studies revealed that the particle size is in the nanometer range. Composites are prepared by mixing powders of BNN with polystyrene at different volume fractions of the BNN. Melt mixing technique is carried out in a Brabender Plasticoder at a rotor speed of 60 rpm (rotations per minute for composite preparation. Mechanical properties such as stress-strain behavior, Young’s modulus, tensile strength, strain at break etc. are evaluated. Addition of filler enhances the mechanical properties of the polymer such as Young’s modulus and tensile strength. The composites showed the trend of perfect adhesion between the filler and the polymer. The filler particles are distributed relatively uniform fashion in all composites and the particles are almost spherical in shape with irregular boundaries. To explore more carefully the degree of interfacial adhesion between the two phases, the results are analyzed by using models featuring adhesion parameter. The experimental results are compared with theoretical predictions.

  1. SWCNT Composites, Interfacial Strength and Mechanical Properties

    DEFF Research Database (Denmark)

    Ma, Jing; Larsen, Mikael

    2013-01-01

    Abstract: Single-Walled Carbon Nanotubes (SWCNT) have despite the superior mechanical properties not fully lived up to the promise as reinforcement in SWCNT composites. The strain transfer from matrix to carbon nanotubes (CNT) is poorly understood and is caused by both fewer localized strong...... is applied to the composite materials. The effect of polymer matrix, modification and concentration of the CNTs are discussed. The strain transfer i.e. 2D band shift under tension is compared to the mechanical properties of the SWCNT composite material....

  2. Mechanical properties of human atherosclerotic intima tissue.

    Science.gov (United States)

    Akyildiz, Ali C; Speelman, Lambert; Gijsen, Frank J H

    2014-03-03

    Progression and rupture of atherosclerotic plaques in coronary and carotid arteries are the key processes underlying myocardial infarctions and strokes. Biomechanical stress analyses to compute mechanical stresses in a plaque can potentially be used to assess plaque vulnerability. The stress analyses strongly rely on accurate representation of the mechanical properties of the plaque components. In this review, the composition of intima tissue and how this changes during plaque development is discussed from a mechanical perspective. The plaque classification scheme of the American Heart Association is reviewed and plaques originating from different vascular territories are compared. Thereafter, an overview of the experimental studies on tensile and compressive plaque intima properties are presented and the results are linked to the pathology of atherosclerotic plaques. This overview revealed a considerable variation within studies, and an enormous dispersion between studies. Finally, the implications of the dispersion in experimental data on the clinical applications of biomechanical plaque modeling are presented. Suggestions are made on mechanical testing protocol for plaque tissue and on using a standardized plaque classification scheme. This review identifies the current status of knowledge on plaque mechanical properties and the future steps required for a better understanding of the plaque type specific material properties. With this understanding, biomechanical plaque modeling may eventually provide essential support for clinical plaque risk stratification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Mechanical Properties of Plug Welds after Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Hadryś D.

    2016-12-01

    Full Text Available New technology of micro-jet welding could be regarded as a new way to improve mechanical properties of plug welds. The main purpose of that paper was analyzing of mechanical properties of plug welds made by MIG welding method with micro-jet cooling. The main way for it was comparison of plug welds made by MIG welding method with micro-jet cooling and plug welds made by ordinary MIG welding method. It is interesting for steel because higher amount of acicular ferrite (AF in weld metal deposit (WMD is obtained in MIG welding method with micro-jet cooling in relation to ordinary MIG welding method. This article presents the influence of the cooling medium and the number of micro-jet streams on mechanical properties of the welded joint. Mechanical properties were described by force which is necessary to destroy weld joint.

  4. Cycles and Common Cycles in Property and Related Sectors

    OpenAIRE

    Peijie Wang

    2003-01-01

    This paper examines cycles and common cycles in the property market and the economy. While focusing on common cycles, the study also incorporates common trends in the meantime, so it covers the whole spectrum of dynamic analysis. It has been found that property shares common cycles, particularly with those sectors that are the user markets of property. The mechanisms of common cycles and the relative magnitudes of cycles of the sectors related to property are discussed to shed light on proper...

  5. Probing cell mechanical properties with microfluidic devices

    Science.gov (United States)

    Rowat, Amy

    2012-02-01

    Exploiting flow on the micron-scale is emerging as a method to probe cell mechanical properties with 10-1000x advances in throughput over existing technologies. The mechanical properties of cells and the cell nucleus are implicated in a wide range of biological contexts: for example, the ability of white blood cells to deform is central to immune response; and malignant cells show decreased stiffness compared to benign cells. We recently developed a microfluidic device to probe cell and nucleus mechanical properties: cells are forced to deform through a narrow constrictions in response to an applied pressure; flowing cells through a series of constrictions enables us to probe the ability of hundreds of cells to deform and relax during flow. By tuning the constriction width so it is narrower than the width of the cell nucleus, we can specifically probe the effects of nuclear physical properties on whole cell deformability. We show that the nucleus is the rate-limiting step in cell passage: inducing a change in its shape to a multilobed structure results in cells that transit more quickly; increased levels of lamin A, a nuclear protein that is key for nuclear shape and mechanical stability, impairs the passage of cells through constrictions. We are currently developing a new class of microfluidic devices to simultaneously probe the deformability of hundreds of cell samples in parallel. Using the same soft lithography techniques, membranes are fabricated to have well-defined pore distribution, width, length, and tortuosity. We design the membranes to interface with a multiwell plate, enabling simultaneous measurement of hundreds of different samples. Given the wide spectrum of diseases where altered cell and nucleus mechanical properties are implicated, such a platform has great potential, for example, to screen cells based on their mechanical phenotype against a library of drugs.

  6. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti–Ag sintered alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mian [Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, Northeastern University, Shenyang 110819 (China); Zhang, Erlin, E-mail: zhangel@atm.neu.edu.cn [Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, Northeastern University, Shenyang 110819 (China); Zhang, Lan [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti–Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti–Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti–Ag phase, residual pure Ag and Ti were the mainly phases in Ti–Ag(S75) sintered alloy while Ti{sub 2}Ag was synthesized in Ti–Ag(S10) sintered alloy. The mechanical test indicated that Ti–Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti–Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti–Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3 wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti{sub 2}Ag and its distribution. - Highlights: • Ti–Ag alloy with up to 99% antibacterial rate was developed by powder metallurgy. • The effects of the Ag powder size and the Ag content on the

  7. Pit slope manual chapter 3. Mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Gyenge, M.; Herget, G.

    1977-01-01

    Guidance is given on the procedures required to obtain adequate knowledge of the mechanical properties of the soils and rocks which constitute the walls of the pit. The reason why certain data is necessary is explained and the tests required to obtain these data are described.

  8. Mechanical properties of flexible knitted composites

    NARCIS (Netherlands)

    Haan, de J.; Peijs, A.A.J.M.

    1996-01-01

    This study investigates the influence of the matrix material and the degree of prestretch of a knitted fibre structure on the mechanical properties of knitted composites with low fibre volume fractions. By embedding a flexible textile structure in an elastomeric matrix, composite materials are

  9. Mechanical properties of bioactive glass putty formulations

    NARCIS (Netherlands)

    van Gestel, N.A.P.; Geurts, J.A.P.; Hulsen, D.J.W.; Hofmann, S.; Ito, K.; van Rietbergen, B.; Arts, J.J.C.

    2016-01-01

    Introduction: Bioactive glass (BAG) has been studied widely and seems to be a very promising biomaterial in regeneration of large bone defects and osteomyelitis treatment, because of its bone bonding and antibacterial properties[1]-[5]. Its high stiffness could potentially also enable mechanical

  10. Material, compressional and mechanical properties of Borassus ...

    African Journals Online (AJOL)

    The compressional and mechanical properties of tablet formulations incorporating native and modified Borassus aethiopum starches as binder were evaluated. The native Borassus aethiopum starch (BAS) was modified to yield fully gelatinised starch (FGBAS) and microcrystalline starch (MBAS). The compressional ...

  11. Investigations on the microstructure and mechanical properties

    Indian Academy of Sciences (India)

    This paper addresses the weldability, microstructure and mechanical properties of the multi-pass welding of super-duplex stainless steel (SDSS). Pulsed current gas tungsten arc welding (PCGTAW) was carried out employing ER2553 and ERNiCrMo-4 fillers. Microstructure examination showed the presence of austenite in ...

  12. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  13. Food mechanical properties and dietary ecology.

    Science.gov (United States)

    Berthaume, Michael A

    2016-01-01

    Interdisciplinary research has benefitted the fields of anthropology and engineering for decades: a classic example being the application of material science to the field of feeding biomechanics. However, after decades of research, discordances have developed in how mechanical properties are defined, measured, calculated, and used due to disharmonies between and within fields. This is highlighted by "toughness," or energy release rate, the comparison of incomparable tests (i.e., the scissors and wedge tests), and the comparison of incomparable metrics (i.e., the stress and displacement-limited indices). Furthermore, while material scientists report on a myriad of mechanical properties, it is common for feeding biomechanics studies to report on just one (energy release rate) or two (energy release rate and Young's modulus), which may or may not be the most appropriate for understanding feeding mechanics. Here, I review portions of materials science important to feeding biomechanists, discussing some of the basic assumptions, tests, and measurements. Next, I provide an overview of what is mechanically important during feeding, and discuss the application of mechanical property tests to feeding biomechanics. I also explain how 1) toughness measures gathered with the scissors, wedge, razor, and/or punch and die tests on non-linearly elastic brittle materials are not mechanical properties, 2) scissors and wedge tests are not comparable and 3) the stress and displacement-limited indices are not comparable. Finally, I discuss what data gathered thus far can be best used for, and discuss the future of the field, urging researchers to challenge underlying assumptions in currently used methods to gain a better understanding between primate masticatory morphology and diet. © 2016 Wiley Periodicals, Inc.

  14. CW 316 mechanical properties during thermal transients

    International Nuclear Information System (INIS)

    Cauvin, R.; Boutard, J.L.; Allegraud, G.

    1984-06-01

    During in pile incidents, the cladding can experience higher temperatures than the nominal one; it is necessary to know the mechanical properties of the cladding material during such thermal transients to predict the time and location of rupture. Two types of tests have been developed: first tensile (constant strain rate) tests after a heating at a constant rate and secondly constant load tests where heating is performed until rupture occurs. The tensile tests clearly show the role of the heating rate: the higher is the heating rate, the lower is the cold work recovery. Constant load tests were conducted with either uniaxial or biaxial (burst tests) loading. The same stress/failure temperature relation is found in both types of loading using the Von Mises equivalent stress. To predict failure, the Larson Miller parameter is not adequate, as well as all parameters based on a time/temperature equivalence. The yield stress measured in the two types of tests are very different probably due to a strain rate effect. Indeed the tensile tests are dynamic ones to avoid thermal recovery during the test duration, while the strain rate measured in constant load tests ranges only from 10 -5 s -1 to 10 -3 s -1 , being an increasing function of heating rate (ranging from 1 0 c/s to 100 0 c/s)

  15. Correlation between the mechanical and histological properties of liver tissue.

    Science.gov (United States)

    Yarpuzlu, Berkay; Ayyildiz, Mehmet; Tok, Olgu Enis; Aktas, Ranan Gulhan; Basdogan, Cagatay

    2014-01-01

    In order to gain further insight into the mechanisms of tissue damage during the progression of liver diseases as well as the liver preservation for transplantation, an improved understanding of the relation between the mechanical and histological properties of liver is necessary. We suggest that this relation can only be established truly if the changes in the states of those properties are investigated dynamically as a function of post mortem time. In this regard, we first perform mechanical characterization experiments on three bovine livers to investigate the changes in gross mechanical properties (stiffness, viscosity, and fracture toughness) for the preservation periods of 5, 11, 17, 29, 41 and 53h after harvesting. Then, the histological examination is performed on the samples taken from the same livers to investigate the changes in apoptotic cell count, collagen accumulation, sinusoidal dilatation, and glycogen deposition as a function of the same preservation periods. Finally, the correlation between the mechanical and histological properties is investigated via the Spearman's Rank-Order Correlation method. The results of our study show that stiffness, viscosity, and fracture toughness of bovine liver increase as the preservation period is increased. These macroscopic changes are very strongly correlated with the increase in collagen accumulation and decrease in deposited glycogen level at the microscopic level. Also, we observe that the largest changes in mechanical and histological properties occur after the first 11-17h of preservation. © 2013 Elsevier Ltd. All rights reserved.

  16. Mechanical Properties and Durability of CNT Cement Composites

    Directory of Open Access Journals (Sweden)

    María del Carmen Camacho

    2014-02-01

    Full Text Available In the present paper, changes in mechanical properties of Portland cement-based mortars due to the addition of carbon nanotubes (CNT and corrosion of embedded steel rebars in CNT cement pastes are reported. Bending strength, compression strength, porosity and density of mortars were determined and related to the CNT dosages. CNT cement paste specimens were exposed to carbonation and chloride attacks, and results on steel corrosion rate tests were related to CNT dosages. The increase in CNT content implies no significant variations of mechanical properties but higher steel corrosion intensities were observed.

  17. PVA/Polysaccharides Blended Films: Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Fábio E. F. Silva

    2013-01-01

    Full Text Available Blends of polyvinyl alcohol (PVA and angico gum (AG and/or cashew gum (CG were used to produce films by casting method. Morphological and mechanical properties of these films were studied and compared to the properties of a commercial collagen membrane of bovine origin (MBO. The films presented thickness varying from 70 to 140 μm (PVA/AG and 140 to 200 μm (PVA/CG. Macroscopic analysis showed that a PVA/CG film was very similar to MBO regarding the color and transparency. The higher values of tensile strength (TS and elastic modulus (EM were observed in the film. On the other hand, PVA/CG and PVA/CG-AG presented the highest value of percentage of elongation (E%. Pearson’s Correlation Analysis revealed a positive correlation between TS and EM and a negative correlation between E% and EM. The PVA/CG film presented mechanical properties very similar to MBO, with the advantage of a higher E% (11.96 than MBO (2.94. The properties of the PVA blended films depended on the polysaccharide added in the blend, as well as the acid used as a catalyst. However, all produced films presented interesting mechanical characteristics which enables several biotechnological applications.

  18. Mechanical properties and morphology of poly(etheretherKetone)

    Science.gov (United States)

    Cebe, Peggy; Chung, Shirley; Gupta, Amitava; Hong, Su-Don

    1987-01-01

    Mechanical properties and morphology of poly(etheretherketone) (PEEK) were studied for samples having different thermal histories. Isothermal and rate-dependent crystallization were studied to ascertain the relationship between crystallinity/morphology and processing condition. Degree of crystallinity and microstructure were controlled by cooling the melt at different rates, ranging from quenching to slowly cooling, and by annealing amorphous material above the glass transition temperature Tg. It is found that degree of crystallinity was not as important as processing history in determining the room temperature mechanical properties. Samples with the same degree of crystallinity had very different tensile properties, depending on rate of cooling from the melt. All samples yielded by shear band formation and necked down. Quenched films had the largest breaking strains, drawing to 270 percent. Slowly cooled films exhibited ductile failure at relatively low strains. Best combined mechanical properties were obtained from semicrystalline films cooled at intermediate rates from the melt.

  19. PVA/Polysaccharides Blended Films: Mechanical Properties

    OpenAIRE

    Silva, Fábio E. F.; Di-Medeiros, Maria Carolina B.; Batista, Karla A.; Fernandes, Kátia F.

    2013-01-01

    Blends of polyvinyl alcohol (PVA) and angico gum (AG) and/or cashew gum (CG) were used to produce films by casting method. Morphological and mechanical properties of these films were studied and compared to the properties of a commercial collagen membrane of bovine origin (MBO). The films presented thickness varying from 70 to 140 μm (PVA/AG) and 140 to 200 μm (PVA/CG). Macroscopic analysis showed that a PVA/CG film was very similar to MBO regarding the color and transparency. The higher valu...

  20. A Novel Method of Mechanical Oxidation of CNT for Polymer Nanocomposite Application: Evaluation of Mechanical, Dynamic Mechanical, and Rheological Properties

    Directory of Open Access Journals (Sweden)

    Priyanka Pandey

    2014-01-01

    Full Text Available A new approach of oxidation of carbon nanotubes has been used to oxidize the CNTs. A comparative aspect of the mechanical oxidation and acid oxidation process has been established. FTIR analysis and titration method have shown the higher feasibility of the mechanical oxidation method to oxidize the CNTs. Comparatively less damage to the CNTs has been observed in case of mechanically oxidized as compared to acid oxidized CNTs. The mechanical properties of the nanocomposites reinforced with the acid oxidized CNT (ACNT and mechanically oxidized CNTs (McCNT were analyzed and relatively higher properties in the nanocomposites reinforced with McCNT were noticed. The less degree of entanglement in the McCNTs was noticed as compared to ACNTs. The dynamic mechanical analysis of the nanocomposites revealed much improved load transfer capability in the McCNT reinforced composites. Further, the rheological properties of the nanocomposites revealed the higher performance of McCNT reinforced composites.

  1. Microstructure mechanical properties relationship in bainitic structures

    International Nuclear Information System (INIS)

    Altuna, M. A.; Gutierrez, I.

    2005-01-01

    In the present work, the microstructures and their mechanical properties have been studies in different bainitic structures. therefore, different bainitic morphologies have been produced by isothermal treatments carried out at different temperatures. For these steels, 400-450 degree centigree is the optimum range of temperatures in order to obtain bainitic structures. If the Temperature is higher, perlite is also formed and if it is lower, martensite is obtained during quenching. SEM and EBSD/OIM techniques were applied in order to study the microstructure. Tensile tests were carried out for mechanical characterization. (Author) 20 refs

  2. Investigation of Mechanical Properties and Interfacial Mechanics of Crystalline Nanomaterials

    Science.gov (United States)

    Qin, Qingquan

    Nanowires (NWs) and nanotubes (NTs) are critical building blocks of nanotechnologies. The operation and reliability of these nanomaterials based devices depend on their mechanical properties of the nanomaterials, which is therefore important to accurately measure the mechanical properties. Besides, the NW--substrate interfaces also play a critical role in both mechanical reliability and electrical performance of these nanodevices, especially when the size of the NW is small. In this thesis, we focus on the mechanical properties and interface mechanics of three important one dimensional (1D) nanomaterials: ZnO NWs, Ag NWs and Si NWs. For the size effect study, this thesis presents a systematic experimental investigation on the elastic and failure properties of ZnO NWs under different loading modes: tension and buckling. Both tensile modulus (from tension) and bending modulus (from buckling) were found to increase as the NW diameter decreased from 80 to 20 nm. The elastic modulus also shows loading mode dependent; the bending modulus increases more rapidly than the tensile modulus. The tension experiments showed that fracture strain and strength of ZnO NWs increase as the NW diameter decrease. A resonance testing setup was developed to measure elastic modulus of ZnO NWs to confirm the loading mode dependent effect. A systematic study was conducted on the effect of clamping on resonance frequency and thus measured Young's modulus of NWs via a combined experiment and simulation approach. A simple scaling law was provided as guidelines for future designs to accurate measure elastic modulus of a cantilevered NW using the resonance method. This thesis reports the first quantitative measurement of a full spectrum of mechanical properties of five-fold twinned Ag NWs including Young's modulus, yield strength and ultimate tensile strength. In situ tensile testing of Ag NWs with diameters between 34 and 130 nm was carried out inside a SEM. Young's modulus, yield strength and

  3. Fuel cladding mechanical properties for transient analysis

    International Nuclear Information System (INIS)

    Johnson, G.D.; Hunter, C.W.; Hanson, J.E.

    1976-01-01

    Out-of-pile simulated transient tests have been conducted on irradiated fast-reactor fuel pin cladding specimens at heating rates of 10 0 F/s (5.6 0 K/s) and 200 0 F/s (111 0 K/s) to generate mechanical property information for use in describing cladding behavior during off-normal events. Mechanical property data were then analyzed, applying the Larson-Miller Parameter to the effects of heating rate and neutron fluence. Data from simulated transient tests on TREAT-tested fuel pins demonstrate that Plant Protective System termination of 3$/s transients prevents significant damage to cladding. The breach opening produced during simulated transient testing is shown to decrease in size with increasing neutron fluence

  4. Rhenium Mechanical Properties and Joining Technology

    Science.gov (United States)

    Reed, Brian D.; Biaglow, James A.

    1996-01-01

    Iridium-coated rhenium (Ir/Re) provides thermal margin for high performance and long life radiation cooled rockets. Two issues that have arisen in the development of flight Ir/Re engines are the sparsity of rhenium (Re) mechanical property data (particularly at high temperatures) required for engineering design, and the inability to directly electron beam weld Re chambers to C103 nozzle skirts. To address these issues, a Re mechanical property database is being established and techniques for creating Re/C103 transition joints are being investigated. This paper discusses the tensile testing results of powder metallurgy Re samples at temperatures from 1370 to 2090 C. Also discussed is the evaluation of Re/C103 transition pieces joined by both, explosive and diffusion bonding. Finally, the evaluation of full size Re transition pieces, joined by inertia welding, as well as explosive and diffusion bonding, is detailed.

  5. Mechanical properties of intra-ocular lenses

    Science.gov (United States)

    Ehrmann, Klaus; Kim, Eon; Parel, Jean-Marie

    2008-02-01

    Cataract surgery usually involves the replacement of the natural crystalline lens with a rigid or foldable intraocular lens to restore clear vision for the patient. While great efforts have been placed on optimising the shape and optical characteristics of IOLs, little is know about the mechanical properties of these devices and how they interact with the capsular bag once implanted. Mechanical properties measurements were performed on 8 of the most commonly implanted IOLs using a custom build micro tensometer. Measurement data will be presented for the stiffness of the haptic elements, the buckling resistance of foldable IOLs, the dynamic behaviour of the different lens materials and the axial compressibility. The biggest difference between the lens types was found between one-piece and 3-piece lenses with respect to the flexibility of the haptic elements

  6. Evaluation of mechanical properties of esthetic brackets

    OpenAIRE

    Matsui, Shigeyuki; Umezaki, Eisaku; Komazawa, Daigo; Otsuka, Yuichiro; Suda, Naoto

    2015-01-01

    Plastic brackets, as well as ceramic brackets, are used in various cases since they have excellent esthetics. However, their mechanical properties remain uncertain. The purpose of this study was to determine how deformation and stress distribution in esthetic brackets differ among materials under the same wire load. Using the digital image correlation method, we discovered the following: (1) the strain of the wings of plastic brackets is within 0.2% and that of ceramic and metal brackets is n...

  7. Modeling the mechanical properties of DNA nanostructures.

    Science.gov (United States)

    Arbona, Jean Michel; Aimé, Jean-Pierre; Elezgaray, Juan

    2012-11-01

    We discuss generalizations of a previously published coarse-grained description [Mergell et al., Phys. Rev. E 68, 021911 (2003)] of double stranded DNA (dsDNA). The model is defined at the base-pair level and includes the electrostatic repulsion between neighbor helices. We show that the model reproduces mechanical and elastic properties of several DNA nanostructures (DNA origamis). We also show that electrostatic interactions are necessary to reproduce atomic force microscopy measurements on planar DNA origamis.

  8. Mechanical Properties of Additively Manufactured Thick Honeycombs

    Directory of Open Access Journals (Sweden)

    Reza Hedayati

    2016-07-01

    Full Text Available Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In this paper, we study the mechanical behavior of thick honeycombs made using additive manufacturing techniques that allow for fabrication of honeycombs with arbitrary and precisely controlled thickness. Thick honeycombs with different wall thicknesses were produced from polylactic acid (PLA using fused deposition modelling, i.e., an additive manufacturing technique. The samples were mechanically tested in-plane under compression to determine their mechanical properties. We also obtained exact analytical solutions for the stiffness matrix of thick hexagonal honeycombs using both Euler-Bernoulli and Timoshenko beam theories. The stiffness matrix was then used to derive analytical relationships that describe the elastic modulus, yield stress, and Poisson’s ratio of thick honeycombs. Finite element models were also built for computational analysis of the mechanical behavior of thick honeycombs under compression. The mechanical properties obtained using our analytical relationships were compared with experimental observations and computational results as well as with analytical solutions available in the literature. It was found that the analytical solutions presented here are in good agreement with experimental and computational results even for very thick honeycombs, whereas the analytical solutions available in the literature show a large deviation from experimental observation, computational results, and our analytical solutions.

  9. Measurement of material mechanical properties in microforming

    Science.gov (United States)

    Yun, Wang; Xu, Zhenying; Hui, Huang; Zhou, Jianzhong

    2006-02-01

    As the rapid market need of micro-electro-mechanical systems engineering gives it the wide development and application ranging from mobile phones to medical apparatus, the need of metal micro-parts is increasing gradually. Microforming technology challenges the plastic processing technology. The findings have shown that if the grain size of the specimen remains constant, the flow stress changes with the increasing miniaturization, and also the necking elongation and the uniform elongation etc. It is impossible to get the specimen material properties in conventional tensile test machine, especially in the high precision demand. Therefore, one new measurement method for getting the specimen material-mechanical property with high precision is initiated. With this method, coupled with the high speed of Charge Coupled Device (CCD) camera and high precision of Coordinate Measuring Machine (CMM), the elongation and tensile strain in the gauge length are obtained. The elongation, yield stress and other mechanical properties can be calculated from the relationship between the images and CCD camera movement. This measuring method can be extended into other experiments, such as the alignment of the tool and specimen, micro-drawing process.

  10. Characterization of Mechanical Properties of Microbial Biofilms

    Science.gov (United States)

    Callison, Elizabeth; Gose, James; Perlin, Marc; Ceccio, Steven

    2017-11-01

    The physical properties of microbial biofilms grown subject to shear flows determine the form and mechanical characteristics of the biofilm structure, and consequently, the turbulent interactions over and through the biofilm. These biofilms - sometimes referred to as slime - are comprised of microbial cells and extracellular polymeric substance (EPS) matrices that surround the multicellular communities. Some of the EPSs take the form of streamers that tend to oscillate in flows, causing increased turbulent mixing and drag. As the presence of EPS governs the compliance and overall stability of the filamentous streamers, investigation of the mechanical properties of biofilms may also inform efforts to understand hydrodynamic performance of fouled systems. In this study, a mixture of four diatom genera was grown under turbulent shear flow on test panels. The mechanical properties and hydrodynamic performance of the biofilm were investigated using rheology and turbulent flow studies in the Skin-Friction Flow Facility at the University of Michigan. The diatoms in the mixture of algae were identified, and the elastic and viscous moduli were determined from small-amplitude oscillations, while a creep test was used to evaluate the biofilm compliance.

  11. Measuring Mechanical Properties Of Optical Glasses

    Science.gov (United States)

    Tucker, Dennis S.; Nichols, Ronald L.

    1989-01-01

    Report discusses mechanical tests measuring parameters of strength and fracture mechanics of optical glasses. To obtain required tables of mechanical properties of each glass of interest, both initial-strength and delayed-fracture techniques used. Modulus of rupture measured by well-known four-point bending method. Initial bending strength measured by lesser-known double-ring method, in which disk of glass supported on one face near edge by larger ring and pressed on its other face by smaller concentric ring. Method maximizes stress near center, making it more likely specimen fractures there, and thereby suppresses edge effects. Data from tests used to predict reliabilities and lifetimes of glass optical components of several proposed spaceborne instruments.

  12. Bone Quality: The Mechanical Effects of Microarchitecture and Matrix Properties

    NARCIS (Netherlands)

    J.S. Day (Judd)

    2005-01-01

    textabstractIn this body of work we have examined some of the current concepts pertaining to the relation between bone mass, bone quality and the mechanical properties of bone. In our first series of studies we used a model of human osteoarthritis to investigate the implications of changes in the

  13. Correlation between fuel structure and mechanical properties of UO2

    International Nuclear Information System (INIS)

    Blank, H.; Mandler, R.; Matzke, H.; Routbort, J.; Werner, P.

    1982-10-01

    The relation between the structure of a UO 2 fuel and its mechanical properties are discussed and illustrated for particular types of UO 2 by measurements of fracture surface energy, hardness, fracture stress and of compressive deformation at 1870 and 1970 0 K. This gives the background for treating the question whether it is possible to find a simple experimental method for correlating the mechanical properties of UO 2 before irradiation with those after various irradiation histories. Hardness measurements might be such a method if combined with a detailed structural analysis and sufficient knowledge about the irradiation history

  14. Ultrasound-based testing of tendon mechanical properties

    DEFF Research Database (Denmark)

    Seynnes, O R; Bojsen-Møller, J.; Albracht, K

    2015-01-01

    In the past 20 years, the use of ultrasound-based methods has become a standard approach to measure tendon mechanical properties in vivo. Yet the multitude of methodological approaches adopted by various research groups probably contribute to the large variability of reported values. The technique......, or signal synchronization; and 2) in physiological considerations related to the viscoelastic behavior or length measurements of tendons. Hence, the purpose of the present review is to assess and discuss the physiological and technical aspects connected to in vivo testing of tendon mechanical properties...

  15. Mechanical properties of timber from wind damaged Norway spruce

    DEFF Research Database (Denmark)

    Hoffmeyer, Preben

    2003-01-01

    A storm may subject a tree to such bending stresses that extensive compression damage develops in the lee side. The tree may survive the wind load or it may be thrown. However, the damage is inherent and it may be of a magnitude to influence the mechanical properties of boards sawn from the stem....... The paper reports on a investigation of the relation between degree of damage and mechanical proper-ties of sawn timber from wind damaged Norway spruce. The project included about 250 bolts from wind damaged trees. The majority of bolts were cut to deliver a full-diameter plank containing the pith...

  16. On the electronic nature of silicon and germanium based oxynitrides and their related mechanical, optical and vibrational properties as obtained from DFT and DFPT

    KAUST Repository

    Goumri-Said, Souraya; Kanoun-Bouayed, Nawel; Reshak, A. H.; Kanoun, Mohammed

    2012-01-01

    frequency, density of phonon states are calculated using the density functional perturbed theory. Thermodynamic properties of Si 2N 2O and Ge 2N 2O, such as heat capacity and Debye temperature, are given for reference. Our study suggests that Si 2N 2O and Ge

  17. Mechanical properties of ion implanted ceramic surfaces

    International Nuclear Information System (INIS)

    Burnett, P.J.

    1985-01-01

    This thesis investigates the mechanisms by which ion implantation can affect those surface mechanical properties of ceramics relevant to their tribological behaviour, specifically hardness and indentation fracture. A range of model materials (including single crystal Si, SiC, A1 2 0 3 , Mg0 and soda-lime-silica glass) have been implanted with a variety of ion species and at a range of ion energies. Significant changes have been found in both low-load microhardness and indentation fracture behaviour. The changes in hardness have been correlated with the evolution of an increasingly damaged and eventually amorphous thin surface layer together with the operation of radiation-, solid-solution- and precipitation-hardening mechanisms. Compressive surface stresses have been shown to be responsible for the observed changes in identation fracture behaviour. In addition, the levels of surface stress present have been correlated with the structure of the surface layer and a simple quantitative model proposed to explain the observed stress-relief upon amorphisation. Finally, the effects of ion implantation upon a range of polycrystalline ceramic materials has been investigated and the observed properties modifications compared and contrasted to those found for the model single crystal materials. (author)

  18. Mechanical Properties of Nylon Harp Strings

    Science.gov (United States)

    Lynch-Aird, Nicolas; Woodhouse, Jim

    2017-01-01

    Monofilament nylon strings with a range of diameters, commercially marketed as harp strings, have been tested to establish their long-term mechanical properties. Once a string had settled into a desired stress state, the Young’s modulus was measured by a variety of methods that probe different time-scales. The modulus was found to be a strong function of testing frequency and also a strong function of stress. Strings were also subjected to cyclical variations of temperature, allowing various thermal properties to be measured: the coefficient of linear thermal expansion and the thermal sensitivities of tuning, Young’s modulus and density. The results revealed that the particular strings tested are divided into two groups with very different properties: stress-strain behaviour differing by a factor of two and some parametric sensitivities even having the opposite sign. Within each group, correlation studies allowed simple functional fits to be found to the key properties, which have the potential to be used in automated tuning systems for harp strings. PMID:28772858

  19. Mechanical Properties of Nylon Harp Strings

    Directory of Open Access Journals (Sweden)

    Nicolas Lynch-Aird

    2017-05-01

    Full Text Available Monofilament nylon strings with a range of diameters, commercially marketed as harp strings, have been tested to establish their long-term mechanical properties. Once a string had settled into a desired stress state, the Young’s modulus was measured by a variety of methods that probe different time-scales. The modulus was found to be a strong function of testing frequency and also a strong function of stress. Strings were also subjected to cyclical variations of temperature, allowing various thermal properties to be measured: the coefficient of linear thermal expansion and the thermal sensitivities of tuning, Young’s modulus and density. The results revealed that the particular strings tested are divided into two groups with very different properties: stress-strain behaviour differing by a factor of two and some parametric sensitivities even having the opposite sign. Within each group, correlation studies allowed simple functional fits to be found to the key properties, which have the potential to be used in automated tuning systems for harp strings.

  20. PICA Variants with Improved Mechanical Properties

    Science.gov (United States)

    Thornton, Jeremy; Ghandehari, Ehson M.; Fan, Wenhong; Stackpoole, Margaret; Chavez-Garcia, Jose

    2011-01-01

    Phenolic Impregnated Carbon Ablator (PICA) is a member of the family of Lightweight Ceramic Ablators (LCAs) and was developed at NASA Ames Research Center as a thermal protection system (TPS) material for the Stardust mission probe that entered the Earth s atmosphere faster than any other probe or vehicle to date. PICA, carbon fiberform base and phenolic polymer, shows excellent thermal insulative properties at heating rates from about 250 W/sq cm to 1000 W/sq cm. The density of standard PICA - 0.26 g/cu cm to 0.28 g/cu cm - can be changed by changing the concentration of the phenolic resin. By adding polymers to the phenolic resin before curing it is possible to significantly improve the mechanical properties of PICA without significantly increasing the density.

  1. Design and mechanical properties of insect cuticle.

    Science.gov (United States)

    Vincent, Julian F V; Wegst, Ulrike G K

    2004-07-01

    Since nearly all adult insects fly, the cuticle has to provide a very efficient and lightweight skeleton. Information is available about the mechanical properties of cuticle-Young's modulus of resilin is about 1 MPa, of soft cuticles about 1 kPa to 50 MPa, of sclerotised cuticles 1-20 GPa; Vicker's Hardness of sclerotised cuticle ranges between 25 and 80 kgf mm(-2); density is 1-1.3 kg m(-3)-and one of its components, chitin nanofibres, the Young's modulus of which is more than 150 GPa. Experiments based on fracture mechanics have not been performed although the layered structure probably provides some toughening. The structural performance of wings and legs has been measured, but our understanding of the importance of buckling is lacking: it can stiffen the structure (by elastic postbuckling in wings, for example) or be a failure mode. We know nothing of fatigue properties (yet, for instance, the insect wing must undergo millions of cycles, flexing or buckling on each cycle). The remarkable mechanical performance and efficiency of cuticle can be analysed and compared with those of other materials using material property charts and material indices. Presented in this paper are four: Young's modulus-density (stiffness per unit weight), specific Young's modulus-specific strength (elastic hinges, elastic energy storage per unit weight), toughness-Young's modulus (fracture resistance under various loading conditions), and hardness (wear resistance). In conjunction with a structural analysis of cuticle these charts help to understand the relevance of microstructure (fibre orientation effects in tendons, joints and sense organs, for example) and shape (including surface structure) of this fibrous composite for a given function. With modern techniques for analysis of structure and material, and emphasis on nanocomposites and self-assembly, insect cuticle should be the archetype for composites at all levels of scale.

  2. Mechanical properties of irradiated rubber-blends

    International Nuclear Information System (INIS)

    Nasr, G.M.; Madani, M.

    2005-01-01

    A study has been made on blend ratios of natural rubber (NR) and acrylonitrile butadiene rubber (NBR) that are loaded with general purpose furnace (GPE) carbon black and irradiated at different gamma radiation doses. It was fount that the mechanical properties of such blend are highly affected by γ- irradiation dose and the composition ratios of its constituents. The elongation at break for blends was found to increase slightly with increasing NBR loafing which is mainly due to the stiffness of blending matrix formation between NR and GPF carbon black particles. The hysteresis loss, extension ratio and shape factor have been calculated for the different un-irradiated and irradiated samples

  3. Effects of irradiation on mechanical properties

    International Nuclear Information System (INIS)

    Server, W.L.; Griesbach, T.J.; Dragunov, Y.; Amaev, A.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. The effects of irradiation on the mechanical properties of reactor pressure vessel steels are explained. This chapter provides some background on the critical elements controlling neutron damage effects. Distinction is made between vessels made in the USA and in the former USSR

  4. Analysis of Mechanical Properties for GEM Foil

    CERN Document Server

    Chin, Yuk Ming

    2016-01-01

    In view of new assembly technique of the GEM detector; in which three foils stack is stretched to get the uniform gaps among the foils. We studied the mechanical properties of the foil material. We conditioned the samples in different environments to make them extra dry and wet. As holes are the major source of the charge amplification their deformation can effect the detector performance. Therefore in our studies we also studied at which level of the stress the holes deformation is seen. These tensile and holes deformation studies can help to optimize the stress during detector assembly.

  5. Phase imaging of mechanical properties of live cells (Conference Presentation)

    Science.gov (United States)

    Wax, Adam

    2017-02-01

    The mechanisms by which cells respond to mechanical stimuli are essential for cell function yet not well understood. Many rheological tools have been developed to characterize cellular viscoelastic properties but these typically require direct mechanical contact, limiting their throughput. We have developed a new approach for characterizing the organization of subcellular structures using a label free, noncontact, single-shot phase imaging method that correlates to measured cellular mechanical stiffness. The new analysis approach measures refractive index variance and relates it to disorder strength. These measurements are compared to cellular stiffness, measured using the same imaging tool to visualize nanoscale responses to flow shear stimulus. The utility of the technique is shown by comparing shear stiffness and phase disorder strength across five cellular populations with varying mechanical properties. An inverse relationship between disorder strength and shear stiffness is shown, suggesting that cell mechanical properties can be assessed in a format amenable to high throughput studies using this novel, non-contact technique. Further studies will be presented which include examination of mechanical stiffness in early carcinogenic events and investigation of the role of specific cellular structural proteins in mechanotransduction.

  6. Effects of humidity on the mechanical properties of gecko setae.

    Science.gov (United States)

    Prowse, Michael S; Wilkinson, Matt; Puthoff, Jonathan B; Mayer, George; Autumn, Kellar

    2011-02-01

    We tested the hypothesis that an increase in relative humidity (RH) causes changes in the mechanical properties of the keratin of adhesive gecko foot hairs (setae). We measured the effect of RH on the tensile deformation properties, fracture, and dynamic mechanical response of single isolated tokay gecko setae and strips of the smooth lamellar epidermal layer. The mechanical properties of gecko setae were strongly affected by RH. The complex elastic modulus (measured at 5 Hz) of a single seta at 80% RH was 1.2 GPa, only 39% of the value when dry. An increase in RH reduced the stiffness and increased the strain to failure. The loss tangent increased significantly with humidity, suggesting that water absorption produces a transition to a more viscous type of deformation. The influence of RH on the properties of the smooth epidermal layer was comparable with that of isolated seta, with the exception of stress at rupture. These values were two to four times greater for the setae than for the smooth layer. The changes in mechanical properties of setal keratin were consistent with previously reported increases in contact forces, supporting the hypothesis that an increase in RH softens setal keratin, which increases adhesion and friction. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Dynamic mechanical properties of toughened polyamide composites

    International Nuclear Information System (INIS)

    Alsewailem, Fares D.

    2008-01-01

    The effect of incorporating thermoplastic rubber on the dynamic mechanical properties, storage and loss moduli, of virgin and recycled glass-fiber-reinforced polyamide 66 has been investigated in this study. Styrene-Ethylene-Styrene and Ethylene-Propylene grafted with maleic anhydride were used as elastomers for toughening. Dynamic mechanical properties of the composites were examined by the rotational rhometry. Shear storage and loss moduli of recycled and virgin materials were measured against frequency. Also the variation of storage modulus of the virgin composites was measured against temperatures by conducting a series of torsion tests. Both dynamic storage and loss moduli of the composites were found to increase with increasing glass fiber and rubber contents. Recycled composites had lower values of dynamic modulus compared that of virgin composites; however by proper combining of fiber and rubber into the recycled material, its modulus fairly matches that of the virgin material. Addition of rubber to virgin composites causes a reduction in G' as temperature increases. Rubber, which acts as a stress concentrator, had a major effect on minimizing the overall modulus of the composites. The in G' versus temperature has been observed for all composites: however the temperature at which the transition G' occurs decreases with increasing rubber content. (author)

  8. Laser welding of polymers, compatibility and mechanical properties

    DEFF Research Database (Denmark)

    Nielsen, Steen Erik; Strange, Marianne; Kristensen, Jens Klæstrup

    2013-01-01

    for research and development. This paper presents some research results related to laser welding of various polymer materials, including weld compatibility investigations related to the joining of different polymers. Theory for bonding mechanisms, strength development, mechanical properties testing and other......Laser welding of polymers is today a commonly used industrial technology. It has shown obvious advantages compared to e.g. adhesive bonding in terms of higher productivity, better quality and easiness for automation. The ongoing development of lasers tailored for polymer welding in coordination...

  9. Mechanical properties of the beetle elytron, a biological composite material

    Science.gov (United States)

    We determined the relationship between composition and mechanical properties of elytral (modified forewing) cuticle of the beetles Tribolium castaneum and Tenebrio molitor. Elytra of both species have similar mechanical properties at comparable stages of maturation (tanning). Shortly after adult ecl...

  10. Special Relativity, Causality and Quantum Mechanics - 1

    Indian Academy of Sciences (India)

    postulate of the special theory of relativity (STR) stipulating the ... STR may be a more general principle to orga- nize our ... keep the laws of mechanics invariant in all inertial frames. .... cording to a different set of transformation equations.

  11. Risk sharing relations and enforcement mechanisms

    NARCIS (Netherlands)

    Barr, A.; Dekker, M.; Fafchamps, M.

    2008-01-01

    We investigate whether the set of available enforcement mechanisms affects the formation of risk sharing relations by applying dyadic regression analysis to data from a specifically designed behavioural experiment, two surveys and a genealogical mapping exercise. During the experiment participants

  12. Mechanical properties of Nd-Ba-Cu-O bulk superconductors

    International Nuclear Information System (INIS)

    Matsui, Motohide; Sakai, Naomichi; Murakami, Masato; Osamura, Kozo

    2003-01-01

    We investigated the effects of Nd422 and Ag particles on the mechanical properties in Nd-Ba-Cu-O bulk superconductors. Both Nd422 and Ag particles were effective in decreasing the amount of microcracks running along the c direction. In the case of Nd422, however, excessive Nd422 addition enhanced the crack propagation, resulting in the degradation of mechanical strength. In the case of Ag addition, the beneficial effect of its ductile mechanical property was not observed. This was due to a relatively large size of Ag particles and low interfacial strength between Ag and Nd123 matrix. It was remarkable that the Weibull coefficient of the sample with Ag 2 O addition exceeded 13, which is reliable enough for practical engineering applications

  13. Comparative effects of indium/ytterbium doping on, mechanical and gas-sensitivity-related morphological, properties of sprayed ZnO compounds

    International Nuclear Information System (INIS)

    Boukhachem, A.; Fridjine, S.; Amlouk, A.; Boubaker, K.; Bouhafs, M.; Amlouk, M.

    2010-01-01

    In this study, conducting and transparent indium-doped zinc oxide (ZnO) thin films have been deposited on glass substrates by the micro-spray technique. First, zinc oxide layers were obtained by spaying a solution of propanol and zinc acetate in acidified medium. Alternatively, some of the obtained films were doped with indium (In) at the molar rates of: 1%, 2% and 3%. In addition to the classical structural investigated using XRD, AFM and SEM techniques, microhardness Vickers (Hv) measurements have been carried out along with comparative morphological prospecting. The specific gases sensitivity-related surface morphology of the doped ZnO compounds was favorably different from that of the non-doped ones, and showed a thin overlay structure. Results were compared to those recorded for similar ytterbium-doped material.

  14. Teletactile System Based on Mechanical Properties Estimation

    Directory of Open Access Journals (Sweden)

    Mauro M. Sette

    2011-01-01

    Full Text Available Tactile feedback is a major missing feature in minimally invasive procedures; it is an essential means of diagnosis and orientation during surgical procedures. Previous works have presented a remote palpation feedback system based on the coupling between a pressure sensor and a general haptic interface. Here a new approach is presented based on the direct estimation of the tissue mechanical properties and finally their presentation to the operator by means of a haptic interface. The approach presents different technical difficulties and some solutions are proposed: the implementation of a fast Young’s modulus estimation algorithm, the implementation of a real time finite element model, and finally the implementation of a stiffness estimation approach in order to guarantee the system’s stability. The work is concluded with an experimental evaluation of the whole system.

  15. Mechanical Properties of Graphene-Rubber Nanocomposites

    Science.gov (United States)

    Anhar, N. A. M.; Ramli, M. M.; Hambali, N. A. M. A.; Aziz, A. A.; Mat Isa, S. S.; Danial, N. S.; Abdullah, M. M. A. B.

    2017-11-01

    This research focused on development of wearable sensor device by using Prevulcanized Natural Rubber (PV) and Epoxidized Natural Rubber (ENR 50) latex incorporated with graphene oxide (GO), graphene paste, graphene powder and reduced graphene oxide (rGO) powder. The compounding formulation and calculation were based on phr (parts per hundred rubber) and all the samples were then tested for mechanical properties using Instron 5565 machine. It was found that the sonication effects on tensile strength may have better quality of tensile strength compared to non-sonicated GO. For PV incorporate GO, the optimum loading was best determined at loading 1.5 phr with or without sonication and similar result was recorded for PV/G. For ENR 50 incorporate graphene paste and rGO powder nanocomposite shows the best optimum was at 3.0 phr with 24 hours’ sonication.

  16. Mechanical properties of high-strength concrete

    Science.gov (United States)

    Mokhtarzadeh, Alireza

    This report summarizes an experimental program conducted to investigate production techniques and mechanical properties of high strength concrete in general and to provide recommendations for using these concretes in manufacturing precast/prestressed bridge girders. Test variables included total amount and composition of cementitious material (portland cement, fly ash, and silica fume), type and brand of cement, type of silica fume (dry densified and slurry), type and brand of high-range water-reducing admixture, type of aggregate, aggregate gradation, maximum aggregate size, and curing. Tests were conducted to determine the effects of these variables on changes in compressive strength and modulus of elasticity over time, splitting tensile strength, modulus of rupture, creep, shrinkage, and absorption potential (as an indirect indicator of permeability). Also investigated were the effects of test parameters such as mold size, mold material, and end condition. Over 6,300 specimens were cast from approximately 140 mixes over a period of 3 years.

  17. Mechanical properties on geopolymer brick: A review

    Science.gov (United States)

    Deraman, L. M.; Abdullah, M. M. A.; Ming, L. Y.; Ibrahim, W. M. W.; Tahir, M. F. M.

    2017-09-01

    Bricks has stand for many years as durable construction substantial, especially in the area of civil engineering to construct buildings. Brick commonly used in the structure of buildings as a construction wall, cladding, facing perimeter, paving, garden wall and flooring. The contribution of ordinary Portland cement (OPC) in cement bricks production worldwide to greenhouse gas emissions. Due to this issue, some researchers have done their study with other materials to produce bricks, especially as a by-product material. Researchers take effort in this regard to synthesizing from by-product materials such as fly ash, bottom ash and kaolin that are rich in silicon and aluminium in the development of inorganic alumina-silicate polymer, called geopolymer Geopolymer is a polymerization reaction between various aluminosilicate oxides with silicates solution or alkali hydroxide solution forming polymerized Si-O-Al-O bonds. This paper summarized some research finding of mechanical properties of geopolymer brick using by-product materials.

  18. Evaluation of mechanical properties of esthetic brackets.

    Science.gov (United States)

    Matsui, Shigeyuki; Umezaki, Eisaku; Komazawa, Daigo; Otsuka, Yuichiro; Suda, Naoto

    2015-01-01

    Plastic brackets, as well as ceramic brackets, are used in various cases since they have excellent esthetics. However, their mechanical properties remain uncertain. The purpose of this study was to determine how deformation and stress distribution in esthetic brackets differ among materials under the same wire load. Using the digital image correlation method, we discovered the following: (1) the strain of the wings of plastic brackets is within 0.2% and that of ceramic and metal brackets is negligible, (2) polycarbonate brackets having a stainless steel slot show significantly smaller displacement than other plastic brackets, and (3) there is a significant difference between plastic brackets and ceramic and stainless steel brackets in terms of the displacement of the bracket wing.

  19. Mechanical properties of porous PNZT polycrystalline ceramics

    International Nuclear Information System (INIS)

    Biswas, D.R.; Fulrath, R.M.

    1977-08-01

    Niobium-doped lead zirconate-titanate (PNZT) was used to investigate the effect of porosity on the mechanical properties of a polycrystalline ceramic. Spherical pores (110 to 150 μm diameter) were introduced by using organic materials in the initial specimen fabrication. The matrix grain size (2 to 5 μm) was kept constant. Small pores (2 to 3 μm diameter) of the order of the grain size were formed by varying the sintering conditions. The effect of porosity on strength was predicted quite well by Weibull's probabilistic approach. The Young's modulus showed a linear relationship with increase in porosity. A decrease in fracture toughness with increase in porosity was also observed. It was found that at equivalent porosities, small pore specimens gave higher strength, Young's modulus and fracture toughness compared to specimens containing large pores. Fracture surface analysis, by scanning electron microscopy, showed fracture originated either at the tensile surface or at the edge of the specimen

  20. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    Science.gov (United States)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  1. Mechanical properties of nanostructure of biological materials

    Science.gov (United States)

    Ji, Baohua; Gao, Huajian

    2004-09-01

    Natural biological materials such as bone, teeth and nacre are nanocomposites of protein and mineral with superior strength. It is quite a marvel that nature produces hard and tough materials out of protein as soft as human skin and mineral as brittle as classroom chalk. What are the secrets of nature? Can we learn from this to produce bio-inspired materials in the laboratory? These questions have motivated us to investigate the mechanics of protein-mineral nanocomposite structure. Large aspect ratios and a staggered alignment of mineral platelets are found to be the key factors contributing to the large stiffness of biomaterials. A tension-shear chain (TSC) model of biological nanostructure reveals that the strength of biomaterials hinges upon optimizing the tensile strength of the mineral crystals. As the size of the mineral crystals is reduced to nanoscale, they become insensitive to flaws with strength approaching the theoretical strength of atomic bonds. The optimized tensile strength of mineral crystals thus allows a large amount of fracture energy to be dissipated in protein via shear deformation and consequently enhances the fracture toughness of biocomposites. We derive viscoelastic properties of the protein-mineral nanostructure and show that the toughness of biocomposite can be further enhanced by the viscoelastic properties of protein.

  2. Biodegradable compounds: Rheological, mechanical and thermal properties

    Science.gov (United States)

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  3. Effects of pore design on mechanical properties of nanoporous silicon

    International Nuclear Information System (INIS)

    Winter, Nicholas; Becton, Matthew; Zhang, Liuyang; Wang, Xianqiao

    2017-01-01

    Nanoporous silicon has been emerging as a powerful building block for next-generation sensors, catalysts, transistors, and tissue scaffolds. The capability to design novel devices with desired mechanical properties is paramount to their reliability and serviceability. In order to bring further resolution to the highly variable mechanical characteristics of nanoporous silicon, here we perform molecular dynamics simulations to study the effects of ligament thickness, relative density, and pore geometry/orientation on the mechanical properties of nanoporous silicon, thereby determining its Young's modulus, ultimate strength, and toughness as well as the scaling laws versus the features of interior ligaments. Results show that pore shape and pattern dictate stress accumulation inside the designed structure, leading to the corresponding failure signature, such as stretching-dominated, bending-dominated, or stochastic failure signatures, in nanoporous silicon. The nanostructure of the material is also seen to drive or mute size effects such as “smaller is stronger” and “smaller is ductile”. This investigation provides useful insight into the behavior of nanoporous silicon and how one might leverage its promising applications. - Graphical abstract: Molecular dynamics simulations are performed to study the effects of ligament thickness, relative density, and pore geometry/orientation on the mechanical properties of nanoporous silicon, thereby determining its Young's modulus, ultimate strength, and toughness as well as the scaling trends versus the features of interior ligaments.

  4. Modification of membrane properties and fatty acids biosynthesis-related genes in Escherichia coli and Staphylococcus aureus: Implications for the antibacterial mechanism of naringenin.

    Science.gov (United States)

    Wang, Lang-Hong; Zeng, Xin-An; Wang, Man-Sheng; Brennan, Charles S; Gong, Deming

    2018-02-01

    In this work, modifications of cell membrane fluidity, fatty acid composition and fatty acid biosynthesis-associated genes of Escherichia coli ATCC 25922 (E. coli) and Staphylococcus aureus ATCC 6538 (S. aureus), during growth in the presence of naringenin (NAR), one of the natural antibacterial components in citrus plants, was investigated. Compared to E. coli, the growth of S. aureus was significantly inhibited by NAR in low concentrations. Combination of gas chromatography-mass spectrometry with fluorescence polarization analysis revealed that E. coli and S. aureus cells increased membrane fluidity by altering the composition of membrane fatty acids after exposure to NAR. For example, E. coli cells produced more unsaturated fatty acids (from 18.5% to 43.3%) at the expense of both cyclopropane and saturated fatty acids after growth in the concentrations of NAR from 0 to 2.20mM. For S. aureus grown with NAR at 0 to 1.47mM, the relative proportions of anteiso-branched chain fatty acids increased from 37.2% to 54.4%, whereas iso-branched and straight chain fatty acids decreased from 30.0% and 33.1% to 21.6% and 23.7%, respectively. Real time q-PCR analysis showed that NAR at higher concentrations induced a significant down-regulation of fatty acid biosynthesis-associated genes in the bacteria, with the exception of an increased expression of fabA gene. The minimum inhibitory concentration (MIC) of NAR against these two bacteria was determined, and both of bacteria underwent morphological changes after exposure to 1.0 and 2.0 MIC. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Mechanical properties of canine osteosarcoma-affected antebrachia.

    Science.gov (United States)

    Steffey, Michele A; Garcia, Tanya C; Daniel, Leticia; Zwingenberger, Allison L; Stover, Susan M

    2017-05-01

    To determine the influence of neoplasia on the biomechanical properties of canine antebrachia. Ex vivo biomechanical study. Osteosarcoma (OSA)-affected canine antebrachia (n = 12) and unaffected canine antebrachia (n = 9). Antebrachia were compressed in axial loading until failure. A load-deformation curve was used to acquire the structural mechanical properties of neoplastic and unaffected specimens. Structural properties and properties normalized by body weight (BW) and radius length were compared using analysis of variance (ANOVA). Modes of failure were compared descriptively. Neoplastic antebrachia fractured at, or adjacent to, the OSA in the distal radial diaphysis. Unaffected antebrachia failed via mid-diaphyseal radial fractures with a transverse cranial component and an oblique caudal component. Structural mechanical properties were more variable in neoplastic antebrachia than unaffected antebrachia, which was partially attributable to differences in bone geometry related to dog size. When normalized by dog BW and radial length, strength, stiffness, and energy to yield and failure, were lower in neoplastic antebrachia than in unaffected antebrachia. OSA of the distal radial metaphysis in dogs presented for limb amputation markedly compromises the structural integrity of affected antebrachia. However, biomechanical properties of affected bones was sufficient for weight-bearing, as none of the neoplastic antebrachia fractured before amputation. The behavior of tumor invaded bone under cyclic loading warrants further investigations to evaluate the viability of in situ therapies for bone tumors in dogs. © 2017 The American College of Veterinary Surgeons.

  6. Mechanical and vasomotor properties of piglet isolated middle cerebral artery

    DEFF Research Database (Denmark)

    Eriksen, Vibeke R.; Abdolalizadeh, Bahareh; Trautner, Simon

    2017-01-01

    in newborns, is not characterized in piglets’ MCA. Finally, the influence of preterm birth on the dopamine response is not known. The aim of this current was to compare by wire myography the active and passive mechanical characteristics and dopamine concentration–response relations of MCAs isolated from...... to increasing concentrations of dopamine was biphasic, starting with vasodilation in the 1 nmol/L–0.3 μmol/L concentration range followed by vasoconstriction at higher concentrations. The response was very similar between the two groups. In conclusion, the mechanical properties of the MCA as well...

  7. Stretchable polyurethane sponge reinforced magnetorheological material with enhanced mechanical properties

    International Nuclear Information System (INIS)

    Ge, Lin; Xuan, Shouhu; Liao, Guojiang; Yin, Tiantian; Gong, Xinglong

    2015-01-01

    A stretchable magnetorheological material (SMRM) consisting of micro-meter carbonyl iron (CI) particles, low cross-linking polyurethane (PU) polymer and porous PU sponge has been developed. Due to the presence of the PU sponge, the high-performance MR material can be reversibly stretched or bent, just as MR elastomers. When the CI content increases to 80 wt%, the magnetic induced modulus of the MR material can reach as high as 7.34 MPa and the corresponding relative MR effect increases to 820%. A possible strengthening mechanism of the SMRM was proposed. The attractive mechanical properties make the SMRM a promising candidate for future high-performance devices. (technical note)

  8. Variability of mechanical properties of nuclear pressure vessel steels

    International Nuclear Information System (INIS)

    Petrequin, P.; Soulat, P.

    1980-01-01

    Causes of variability of mechanical properties nuclear pressure vessel steels are reviewed and discussed. The effects of product shape and size, processing history and heat treatment are investigated. Some quantitative informations are given on the scatter of mechanical properties of typical pressure vessel components. The necessity of using recommended or standardized properties for comparing mechanical properties before and after irradiation in pin pointed. (orig.) [de

  9. Effect of cold drawing on mechanical properties of biodegradable fibers.

    Science.gov (United States)

    La Mantia, Francesco Paolo; Ceraulo, Manuela; Mistretta, Maria Chiara; Morreale, Marco

    2017-01-26

    Biodegradable polymers are currently gaining importance in several fields, because they allow mitigation of the impact on the environment related to disposal of traditional, nonbiodegradable polymers, as well as reducing the utilization of oil-based sources (when they also come from renewable resources). Fibers made of biodegradable polymers are of particular interest, though, it is not easy to obtain polymer fibers with suitable mechanical properties and to tailor these to the specific application. The main ways to tailor the mechanical properties of a given biodegradable polymer fiber are based on crystallinity and orientation control. However, crystallinity can only marginally be modified during processing, while orientation can be controlled, either during hot drawing or cold stretching. In this paper, a systematic investigation of the influence of cold stretching on the mechanical and thermomechanical properties of fibers prepared from different biodegradable polymer systems was carried out. Rheological and thermal characterization helped in interpreting the orientation mechanisms, also on the basis of the molecular structure of the polymer systems. It was found that cold drawing strongly improved the elastic modulus, tensile strength and thermomechanical resistance of the fibers, in comparison with hot-spun fibers. The elastic modulus showed higher increment rates in the biodegradable systems upon increasing the draw ratio.

  10. Relationship between Magnetic and Mechanical Properties of Cermet Tools

    International Nuclear Information System (INIS)

    Ahn, Dong Gil; Lee, Jeong Hee

    2000-01-01

    The commercial cermet cutting tools consist of multi-carbide and a binder metal of iron group, such as cobalt and nickel which are ferromagnetic. In this paper, a new approach to evaluate the mechanical properties of TiCN based cermet by magnetic properties were studied in relation to binder content and sintering conditions. The experimental cermet was prepared using commercial composition with the other binder contents by PM process. It was found that the magnetic properties of the sintered cermets remarkably depended on the microstructure and the total carbon content. The magnetic saturation was proportional to increment of coercive force. At high carbon content in sintered cermet, the magnetic saturation was increased by decreasing the concentration of solutes such as W, Mo, Ti in Co-Ni binder. As the coercive force increases, the hardness usually increases. The strength and toughness of the cermet also increased with increasing the magnetic saturation. The measurement of magnetic properties made it possible to evaluate the mechanical properties in the cermet cutting tools

  11. Mechanical properties and fracture of titanium hydrides

    International Nuclear Information System (INIS)

    Koketsu, Hideyuki; Taniyama, Yoshihiro; Yonezu, Akio; Cho, Hideo; Ogawa, Takeshi; Takemoto, Mikio; Nakayama, Gen

    2006-01-01

    Titanium hydrides tend to suffer fracture when their thicknesses reach a critical thickness. Morphology and mechanical property of the hydrides are, however, not well known. The study aims to reveal the hydride morphology and fracture types of the hydrides. Chevron shaped plate hydrides were found to be produced on the surface of pure titanium (Grade 1) and Grade 7 titanium absorbing hydrogen. There were tree types of fracture of the hydrides, i.e., crack in hydride layer, exfoliation of the layer and shear-type fracture of the hydride plates, during the growth of the hydrides and deformation. We next estimated the true stress-strain curves of the hydrides on Grade 1 and 7 titanium using the dual Vickers indentation method, and the critical strain causing the Mode-I fine crack by indentation. Fracture strength and strain of the hydrides in Grade 1 titanium were estimated as 566 MPa and 4.5%, respectively. Those of the hydride in Grade 7 titanium were 498 MPa and 16%. Though the fracture strains estimated from the plastic instability of true stress-strain curves were approximately the half of those estimated by finite element method, the titanium hydrides were estimated to possess some extent of toughness or plastic deformation capability. (author)

  12. Mechanical properties of JPDR biological shield concrete

    International Nuclear Information System (INIS)

    Idei, Yoshio; Kamata, Hiroshi; Akutsu, Youichi; Onizawa, Kunio; Nakajima, Nobuya; Sukegawa, Takenori; Kakizaki, Masayoshi.

    1990-11-01

    Plant life of nuclear power plant will be determined by the aging degradation of main components and structures because of the difficulty and the cost of the replacement. These components are the reactor pressure vessel, concrete structures and cables. Authors have performed the investigation of JPDR biological shield which was the succeeded in first generating electricity in Japan and is now being decommissioned in JAERI. The test core samples were bored from the shield concrete and tested to obtain the mechanical properties. Test results are summarized as below, (1) Peak value of fast neutron dose was estimated as 1 x 10 18 n/cm 2 which is equivalent to the dose at the end of life for commercial power reactor. (2) Averaged compressive strength of all specimens had been increased about 20 % compared with initial design strength. (3) It was identified that the compressive strength had a little trend to increase with the increase of neutron dose within the dose range obtained in this study. (4) Tensile strength, Elastic modulus and Poisson's ratio showed little effect of neutron dose. (5) It was suggested that the inside and the mid-section liners were effective to keep the water in concrete and to avoid the reduction in strength. (author)

  13. Mechanical properties and impact behavior of a microcellular structural foam

    Directory of Open Access Journals (Sweden)

    M. Avalle

    Full Text Available Structural foams are a relatively new class of materials with peculiar characteristics that make them very attractive in some energy absorption applications. They are currently used for packaging to protect goods from damage during transportation in the case of accidental impacts. Structural foams, in fact, have sufficient mechanical strength even with reduced weight: the balance between the two antagonist requirements demonstrates that these materials are profitable. Structural foams are generally made of microcellular materials, obtained by polymers where voids at the microscopic level are created. Although the processing technologies and some of the material properties, including mechanical, are well known, very little is established for what concerns dynamic impact properties, for the design of energy absorbing components made of microcellular foams. The paper reports a number of experimental results, in different loading conditions and loading speed, which will be a basis for the structural modeling.

  14. Microstructure and mechanical properties of selective laser melted magnesium

    International Nuclear Information System (INIS)

    Ng, C.C.; Savalani, M.M.; Lau, M.L.; Man, H.C.

    2011-01-01

    The effects of laser processing parameters on the microstructure and mechanical properties of selective laser-melted magnesium were investigated. The results show that the microstructure characteristics of the laser-melted samples are dependent on the grain size of SLM magnesium. The grains in the molten zone coarsen as the laser energy density increases. In addition, the average hardness values of the molten zone decreases significantly with an increase of the laser energy densities and then decreased slowly at a relatively high laser energy density irrespective of mode of irradiation. The hardness value was obtained from 0.59 to 0.95 GPa and corresponding elastic modulus ranging from 27 to 33 GPa. The present selective laser-melted magnesium parts are promising for biomedical applications since the mechanical properties are more closely matched with human bone than other metallic biomaterials.

  15. Asbestos-related diseases in automobile mechanics.

    Science.gov (United States)

    Ameille, Jacques; Rosenberg, Nicole; Matrat, Mireille; Descatha, Alexis; Mompoint, Dominique; Hamzi, Lounis; Atassi, Catherine; Vasile, Manuela; Garnier, Robert; Pairon, Jean-Claude

    2012-01-01

    Automobile mechanics have been exposed to asbestos in the past, mainly due to the presence of chrysotile asbestos in brakes and clutches. Despite the large number of automobile mechanics, little is known about the non-malignant respiratory diseases observed in this population. The aim of this retrospective multicenter study was to analyse the frequency of pleural and parenchymal abnormalities on high-resolution computed tomography (HRCT) in a population of automobile mechanics. The study population consisted of 103 automobile mechanics with no other source of occupational exposure to asbestos, referred to three occupational health departments in the Paris area for systematic screening of asbestos-related diseases. All subjects were examined by HRCT and all images were reviewed separately by two independent readers; who in the case of disagreement discussed until they reached agreement. Multiple logistic regression models were constructed to investigate factors associated with pleural plaques. Pleural plaques were observed in five cases (4.9%) and interstitial abnormalities consistent with asbestosis were observed in one case. After adjustment for age, smoking status, and a history of non-asbestos-related respiratory diseases, multiple logistic regression models showed a significant association between the duration of exposure to asbestos and pleural plaques. The asbestos exposure experienced by automobile mechanics may lead to pleural plaques. The low prevalence of non-malignant asbestos-related diseases, using a very sensitive diagnostic tool, is in favor of a low cumulative exposure to asbestos in this population of workers.

  16. Asbestos-related diseases in automobile mechanics

    Science.gov (United States)

    Ameille, Jacques; Rosenberg, Nicole; Matrat, Mireille; Descatha, Alexis; Mompoint, Dominique; Hamzi, Lounis; Atassi, Catherine; Vasile, Manuela; Garnier, Robert; Pairon, Jean-Claude

    2012-01-01

    Purpose Automobile mechanics have been exposed to asbestos in the past, mainly due to the presence of chrysotile asbestos in brakes and clutches. Despite the large number of automobile mechanics, little is known about the non-malignant respiratory diseases observed in this population. The aim of this retrospective multicenter study was to analyze the frequency of pleural and parenchymal abnormalities on HRCT in a population of automobile mechanics. Methods The study population consisted of 103 automobile mechanics with no other source of occupational exposure to asbestos, referred to three occupational health departments in the Paris area for systematic screening of asbestos–related diseases. All subjects were examined by HRCT and all images were reviewed separately by two independent readers, with further consensus in the case of disagreement. Multiple logistic regression models were constructed to investigate factors associated with pleural plaques. Results Pleural plaques were observed in 5 cases (4.9%) and interstitial abnormalities consistent with asbestosis were observed in 1 case. After adjustment for age, smoking status, and a history of non-asbestos-related respiratory diseases, multiple logistic regression models showed a significant association between the duration of exposure to asbestos and pleural plaques. Conclusions The asbestos exposure experienced by automobile mechanics may lead to pleural plaques. The low prevalence of non-malignant asbestos-related diseases, using a very sensitive diagnostic tool, is in favor of a low cumulative exposure to asbestos in this population of workers. PMID:21965465

  17. Mechanical Properties of Moringa ( Moringa oleifera ) Seeds in ...

    African Journals Online (AJOL)

    Mechanical properties are very important in the design of machines and the analysis of the behaviour of products during agricultural processing. In this research work, the mechanical properties of Moringa were determined as design parameters for the development of an oil expeller for the crop. The properties were the ...

  18. Mechanical and Thermal Properties of the AH of FRW Universe

    International Nuclear Information System (INIS)

    Yi-Huan, Wei

    2010-01-01

    We calculate the work made out by the apparent horizon (AH) of the Friedmann–Robertson–Walker (FRW) universe and the heat flux through the AH from the first law of thermodynamics. We discuss the mechanical properties of the AH and analyze the universe model for which the mechanical properties can change. Finally, the thermal properties of the AH of FRW universe are discussed

  19. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry

    Science.gov (United States)

    Aho, Johnathon M.; Qiang, Bo; Wigle, Dennis A.; Tschumperlin, Daniel J.; Urban, Matthew W.

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal-submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa-submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered esophageal

  20. Thermo-mechanical behavior of bituminous mixtures at low temperatures. Links between the binder characteristics and the mix properties; Comportement thermomecanique des enrobes bitumeux a basses temperatures: relations entre les proprietes du liant et de l'enrobe

    Energy Technology Data Exchange (ETDEWEB)

    Olard, F.

    2003-10-01

    This thesis has been realized within the framework of a partnership between the Ecole Nationale des TPE, APPIA and EUROVIA. The company Total has also been associated to this project. The study deals with the thermo-mechanical behavior of bituminous materials at low temperatures. The aim is to establish the links between the characteristics of the binder and the properties of bituminous mixes at low temperatures, and to better understand the existing low-temperature parameters and criteria for binders (or to propose new ones), related to the in-situ behavior of bituminous mixtures. A large experimental campaign has been carried out so as to fulfill this goal. After a bibliographical study on the rheology and the thermo-mechanical properties of (pure or modified) binders, putties and mixes, the experimental campaign carried out both in the small strain domain and in the large strain domain, is presented. The low temperature behavior of binders has been evaluated with three common fundamental tests: i)the complex modulus determination, ii)the Bending Beam Rheometer and iii)the tensile strength at a constant strain rate and constant temperatures. A new three point bending test on pre-notched bitumen beams has also been developed at the ENTPE. The low-temperature fracture properties of bitumens were studied at constant temperatures and cross-head speeds considering the Linear Elastic Fracture Mechanics (LEFM) assumptions. The thermo-mechanical behavior of bituminous mixtures has been studied by performing i)complex modulus tests, ii)measurements of the coefficient of thermal dilatation and contraction, iii)tensile tests at constant temperatures and strain rates, and iv)Thermal Stress Restrained Specimen Tests. Apart from the determination of some pertinent links between binder and mix properties and discriminating characteristics with regard to the thermal cracking of bituminous mixes at low temperatures, the analysis has also consisted in modeling the behavior of

  1. Mechanism of economic regulation of land relations

    OpenAIRE

    Mykhaylo Stupen'; Svitlana Rogach; Ivan Riy

    2015-01-01

    In the article the mechanism of economic regulation of land relations is revealed. The main functions of the economic evaluation of land resources are: registration of land resources and environment; choices of resources and conditions usage. The author proves that the proper economic regulation needs governmental support which is to preserve the land as a natural resource.

  2. A comparison of mechanical properties of some foams and honeycombs

    Science.gov (United States)

    Bhat, Balakrishna T.; Wang, T. G.

    1990-01-01

    A comparative study is conducted of the mechanical properties of foam-core and honeycomb-core sandwich panels, using a normalizing procedure based on common properties of cellular solids and related properties of dense solids. Seven different honeycombs and closed-foam cells are discussed; of these, three are commercial Al alloy honeycombs, one is an Al-alloy foam, and two are polymeric foams. It is concluded that ideal, closed-cell foams may furnish compressive strengths which while isotropic can be fully comparable to the compressive strengths of honeycombs in the thickness direction. The shear strength of ideal closed-cell foams may be superior to the shear strength of honeycombs.

  3. Mechanisms for development of property rights institutions

    Directory of Open Access Journals (Sweden)

    Žarković Jelena

    2006-01-01

    Full Text Available The institution of property rights is increasingly recognized as an essential building block of an economically prosperous society. The question that remains unsolved, however, is how do we develop effective property rights institutions? The literature dealing with the development of property rights tends to be, in general, an optimistic one since there is a tendency to view the design of property rights institutions as maximizing decisions to economize on transaction costs and to facilitate new economic activities. On the other hand, since property rights define the distribution of wealth and political power in a society, changes in property rights structures are likely to be influenced by more than pure efficiency considerations. Therefore, in order to achieve a balanced analysis of the evolution of property rights institutions, the model of endogenous property rights creation should be modified. We did that by introducing the neoinstitutional theory of the state in the model.

  4. Mechanical properties of dental restorative materials: relative contribution of laboratory tests Propriedades mecânicas dos materiais dentários restauradores: contribuição relativa dos ensaios laboratoriais

    Directory of Open Access Journals (Sweden)

    Linda Wang

    2003-09-01

    Full Text Available A wide variety of dental products that are launched on the market becomes the correct selection of these materials a difficult task. Although the mechanical properties do not necessarily represent their actual clinical performance, they are used to guide the effects of changes in their composition or processing on these properties. Also, these tests might help somehow the clinician to choose once comparisons between former formulations and new ones, as well as, with the leading brand, are highlighted by manufactures. This paper presents a review of the most important laboratory tests. In this manner, the knowledge of these tests will provide a critical opinion related to the properties of different dental materials.Uma grande variedade de produtos odontológicos que são lançados no mercado faz da seleção do material uma difícil tarefa. Apesar das propriedades mecânicas não representarem necessariamente o seu real desempenho clínico, os testes são utilizados para orientar os efeitos das alterações das composições do material ou a evolução das suas propriedades. Além disso, estas propriedades podem ajudar o clínico de alguma forma na seleção correta, uma vez que a comparação entre as formulações anteriores e as mais recentes, assim como as líderes de mercado são mais destacadas pelos fabricantes. Este artigo apresenta uma revisão dos testes laboratoriais mais importantes. Desta forma, o conhecimento destes ensaios fornecerá uma opinião crítica relacionada às propriedades dos diferentes materiais dentários.

  5. Mechanical Models of Fault-Related Folding

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A. M.

    2003-01-09

    The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).

  6. Mechanical properties of self-compacting concrete state-of-the-art report of the RILEM technical committee 228-MPS on mechanical properties of self-compacting concrete

    CERN Document Server

    Schutter, Geert

    2014-01-01

    The State-of-the-Art Report of RILEM Technical Committee 228-MPS on Mechanical properties of Self-Compacting Concrete (SCC) summarizes an extensive body of information related to mechanical properties and mechanical behaviour of SCC. Due attention is given to the fact that the composition of SCC varies significantly. A wide range of  mechanical properties are considered, including compressive strength, stress-strain relationship, tensile and flexural strengths, modulus of elasticity, shear strength, effect of elevated temperature, such as fire spalling and residual properties after fire, in-situ properties, creep, shrinkage, bond properties, and structural behaviour. A chapter on fibre-reinforced SCC is included, as well as a chapter on specialty SCC, such as light-weight SCC, heavy-weight SCC, preplaced aggregate SCC, special fibre reinforced SCC, and underwater concrete.

  7. Direct neutron capture and related mechanisms

    International Nuclear Information System (INIS)

    Lynn, J.E.; Raman, S.

    1990-01-01

    We consider the evidence for the role of direct and related mechanisms in neutron capture at low and medium energies. Firstly, we compare the experimental data on the thermal neutron cross sections for El transitions in light nuclei with careful estimates of direct capture. Over the full range of light nuclei with small cross sections direct capture is found to be the predominant mechanism, in some cases being remarkable accurate, but in a few showing evidence for collective effects. When resonance effects become substantial there is evidence for an important contribution from the closely related valence mechanism, but full agreement with the data in such cases appears to require the introduction of a more generalised valence model. The possibility of direct and valence mechanisms playing a role in M1 capture is studied, and it is concluded that in light nuclei at relatively low gamma ray energies, it does indeed play some role. In heavier nuclei it appears that the evidence, especially from the correlations between E1 and M1 transitions to the same final states, favours the hypothesis that the main transition strength is governed by the M1 giant resonance. 31 refs., 2 tabs

  8. Application-related properties of giant magnetostrictive thin films

    International Nuclear Information System (INIS)

    Lim, S.H.; Kim, H.J.; Na, S.M.; Suh, S.J.

    2002-01-01

    In an effort to facilitate the utilization of giant magnetostrictive thin films in microdevices, application-related properties of these thin films, which include induced anisotropy, residual stress and corrosion properties, are investigated. A large induced anisotropy with an energy of 6x10 4 J/m 3 is formed in field-sputtered amorphous Sm-Fe-B thin films, resulting in a large magnetostriction anisotropy. Two components of residual stress, intrinsic compressive stress and tensile stress due to the difference of the thermal expansion coefficients between the substrate and thin film, are identified. The variation of residual stress with fabrication parameter and annealing temperature, and its influence on mechanical bending and magnetic properties are examined. Better corrosion properties are observed in Sm-Fe thin films than in Tb-Fe. Corrosion properties of Tb-Fe thin films, however, are much improved with the introduction of nitrogen to the thin films without deteriorating magnetostrictive properties

  9. Mechanics of advanced materials analysis of properties and performance

    CERN Document Server

    Matveenko, Valery

    2015-01-01

    The last decades have seen a large extension of types of materials employed in various applications. In many cases these materials demonstrate mechanical properties and performance that vary significantly from those of their traditional counterparts. Such uniqueness is sought – or even specially manufactured – to meet increased requirements on modern components and structures related to their specific use. As a result, mechanical behaviors of these materials under different loading and environmental conditions are outside the boundaries of traditional mechanics of materials, presupposing development of new characterization techniques, theoretical descriptions and numerical tools. The book presents interesting examples of recent developments in this area. Among the studied materials are bulk metallic glasses, metamaterials, special composites, piezoelectric smart structures, nonwovens, etc.

  10. Some Physical and Mechanical Properties of Daniellia Ogea Harms ...

    African Journals Online (AJOL)

    ADOWIE PERE

    density were the physical properties tested while the mechanical properties were the modulus of rupture ... 300kN capacity of the food laboratory of the department of Agriculture of the University. ..... Negro, F; Cremonini, C; Zanuttini, R (2013).

  11. Nucleus geometry and mechanical properties of resistance spot ...

    Indian Academy of Sciences (India)

    Keywords. Automotive steels; resistance spot welding; mechanical properties; nucleus geometry. 1. .... High va- lues of hardness can be explained with martensitic forma- ... interface of DP450–DP600 steels may have stainless steel properties.

  12. Chirality: a relational geometric-physical property.

    Science.gov (United States)

    Gerlach, Hans

    2013-11-01

    The definition of the term chirality by Lord Kelvin in 1893 and 1904 is analyzed by taking crystallography at that time into account. This shows clearly that chirality is a relational geometric-physical property, i.e., two relations between isometric objects are possible: homochiral or heterochiral. In scientific articles the relational term chirality is often mistaken for the two valued measure for the individual (absolute) sense of chirality, an arbitrary attributive term. © 2013 Wiley Periodicals, Inc.

  13. Elastic and Mechanical Properties of the MAX Phases

    Science.gov (United States)

    Barsoum, Michel W.; Radovic, Miladin

    2011-08-01

    The more than 60 ternary carbides and nitrides, with the general formula Mn+1AXn—where n = 1, 2, or 3; M is an early transition metal; A is an A-group element (a subset of groups 13-16); and X is C and/or N—represent a new class of layered solids, where Mn+1Xn layers are interleaved with pure A-group element layers. The growing interest in the Mn+1AXn phases lies in their unusual, and sometimes unique, set of properties that can be traced back to their layered nature and the fact that basal dislocations multiply and are mobile at room temperature. Because of their chemical and structural similarities, the MAX phases and their corresponding MX phases share many physical and chemical properties. In this paper we review our current understanding of the elastic and mechanical properties of bulk MAX phases where they differ significantly from their MX counterparts. Elastically the MAX phases are in general quite stiff and elastically isotropic. The MAX phases are relatively soft (2-8 GPa), are most readily machinable, and are damage tolerant. Some of them are also lightweight and resistant to thermal shock, oxidation, fatigue, and creep. In addition, they behave as nonlinear elastic solids, dissipating 25% of the mechanical energy during compressive cycling loading of up to 1 GPa at room temperature. At higher temperatures, they undergo a brittle-to-plastic transition, and their mechanical behavior is a strong function of deformation rate.

  14. Epoxy Resin Based Composites, Mechanical and Tribological Properties: A Review

    Directory of Open Access Journals (Sweden)

    S.A. Bello

    2015-12-01

    Full Text Available High fuel consumption by automobile and aerospace vehicles built from legacy alloys has been a great challenge to global design and material engineers. This has called for researches into material development for the production of lighter materials of the same or even superior mechanical properties to the existing materials in this area of applications. This forms a part of efforts to achieve the global vision 2025 i.e to reduce the fuel consumption by automobile and aerospace vehicles by at least 75 %. Many researchers have identified advanced composites as suitable materials in this regard. Among the common matrices used for the development of advanced composites, epoxy resin has attained a dominance among its counterparts because of its excellent properties including chemical, thermal and electrical resistance properties, mechanical properties and dimensional stability. This review is a reflection of the extensive study on the currently ongoing research aimed at development of epoxy resin hybrid nanocomposites for engineering applications. In this paper, brief explanation has been given to different terms related to the research work and also, some previous works (in accordance with materials within authors’ reach in the area of the ongoing research have been reported.

  15. Real-time observations of mechanical stimulus-induced enhancements of mechanical properties in osteoblast cells

    International Nuclear Information System (INIS)

    Zhang Xu; Liu Xiaoli; Sun Jialun; He Shuojie; Lee, Imshik; Pak, Hyuk Kyu

    2008-01-01

    Osteoblast, playing a key role in the pathophysiology of osteoporosis, is one of the mechanical stress sensitive cells. The effects of mechanical load-induced changes of mechanical properties in osteoblast cells were studied at real-time. Osteoblasts obtained from young Wister rats were exposed to mechanical loads in different frequencies and resting intervals generated by atomic force microscopy (AFM) probe tip and simultaneously measured the changes of the mechanical properties by AFM. The enhancement of the mechanical properties was observed and quantified by the increment of the apparent Young's modulus, E * . The observed mechanical property depended on the frequency of applied tapping loads. For the resting interval is 50 s, the mechanical load-induced enhancement of E * -values disappears. It seems that the enhanced mechanical property was recover able under no additional mechanical stimulus

  16. Mechanical properties of the human Achilles tendon, in vivo

    DEFF Research Database (Denmark)

    Kongsgaard, M; Nielsen, C H; Hegnsvad, S

    2011-01-01

    Ultrasonography has been widely applied for in vivo measurements of tendon mechanical properties. Assessments of human Achilles tendon mechanical properties have received great interest. Achilles tendon injuries predominantly occur in the tendon region between the Achilles-soleus myotendinous...... junction and Achilles-calcaneus osteotendinous junction i.e. in the free Achilles tendon. However, there has been no adequate ultrasound based method for quantifying the mechanical properties of the free human Achilles tendon. This study aimed to: 1) examine the mechanical properties of the free human...

  17. Physical-mechanical and electrical properties of aluminium anodic films

    Energy Technology Data Exchange (ETDEWEB)

    Dima, L. [Research and Design Inst. for Electr. Eng., Bucharest (Romania); Anicai, L. [Research and Design Inst. for Electr. Eng., Bucharest (Romania)

    1995-11-01

    Mechanical, thermal and electrical properties of aluminium anodic films obtained by continuously anodization of Al wires of 4.5 mm diameter and Al sheets of 40 x 0.2 mm (Al min.99.5% purity), using an electrolyte based on oxalic acid, citric acid, boric acid, isopropilic alcohol, were investigated. The thickness of Al anodic oxide layers was 5 {+-} 1{mu}, 10 {+-} 1{mu}, for Al sheet, respectively 5 {+-} 1{mu}, 10 {+-} 1{mu}, 15 {+-} 1{mu}, for Al wire. To establish the influence of anodic film formation on mechanical parameters, measurements of breaking strength and relative elongation at break for anodized and non-anodized Al conductors, were made. In order to electrically characterize the anodic films, the breakdown voltage for different curvature radii of the conductor, between 50 - 12.5 mm, were measured. The influence of the layer thickness, as well as of the cracking during its bending, was established, too. To test the thermal resistance of the insulating anodic films, the Al conductors were subjected to 1 - 5 cyclic thermal shocks at 500 C. After the experimentals were done, it was found that Al anodic films of 5 {+-} 1{mu} may assure a breakdown voltage of minimum 200 V, for coils having a curvature radius greater than 12.5 mm and operating temperatures up to 500 C. From mechanical point of view, anodic oxide film determines a relatively reinforcing of Al conductor, but it doesn`t influence its functional properties. (orig.)

  18. The Coulomb potential in quantum mechanics and related topics

    International Nuclear Information System (INIS)

    Haeringen, H. van.

    1978-01-01

    This dissertation consists of an analytic study of the Coulomb interaction in nonrelativistic quantum mechanics and some related topics. The author investigates in a number of self-contained articles various interesting and important properties of the Coulomb potential. Some of these properties are shared by other potentials which also play a role in quantum mechanics. For such related interactions a comparative study is made. The principal difficulties in the description of proton-deuteron scattering and break-up reactions, due to the Coulomb interaction, are studied by working out a simple model. The bound states are studied for the Coulomb plus Yamaguchi potential, for the symmetric shifted Coulomb potential, and for local potentials with an inverse-distance-squared asymptotic behaviour. (Auth.)

  19. Mechanical properties of gamma-aluminium oxynitride

    NARCIS (Netherlands)

    Willems, H.X.; Hal, van P.F.; With, de G.; Metselaar, R.

    1993-01-01

    Mech. properties have been measured of three compositionally different types of g-aluminum oxynitride (Alon). The compns. corresponded to 67.5, 73 and 77.5 mol% Al2O3. To characterize the Alons, lattice parameters, densities, grain sizes and optical properties were measured. The measurements for the

  20. Thermal, electrochemical and mechanical properties of shape

    African Journals Online (AJOL)

    T. Ahmad

    2017-05-01

    May 1, 2017 ... C for 30 min with two pre-stressing conditions of straight and ... of nitinol mesh into technical fabric for examining it weaving properties as compared to ... nitinol wire showed better properties of weaving as compared to stainless steel. Ming et ... Phase transformation temperature was determined by DSC at a.

  1. Structure-function relations in physiology education: Where's the mechanism?

    Science.gov (United States)

    Lira, Matthew E; Gardner, Stephanie M

    2017-06-01

    Physiology demands systems thinking: reasoning within and between levels of biological organization and across different organ systems. Many physiological mechanisms explain how structures and their properties interact at one level of organization to produce emergent functions at a higher level of organization. Current physiology principles, such as structure-function relations, selectively neglect mechanisms by not mentioning this term explicitly. We explored how students characterized mechanisms and functions to shed light on how students make sense of these terms. Students characterized mechanisms as 1 ) processes that occur at levels of organization lower than that of functions; and 2 ) as detailed events with many steps involved. We also found that students produced more variability in how they characterized functions compared with mechanisms: students characterized functions in relation to multiple levels of organization and multiple definitions. We interpret these results as evidence that students see mechanisms as holding a more narrow definition than used in the biological sciences, and that students struggle to coordinate and distinguish mechanisms from functions due to cognitive processes germane to learning in many domains. We offer the instructional suggestion that we scaffold student learning by affording students opportunities to relate and also distinguish between these terms so central to understanding physiology. Copyright © 2017 the American Physiological Society.

  2. Basic requirements of mechanical properties for nuclear pressure vessel materials in ASME-BPV code

    International Nuclear Information System (INIS)

    Ning Dong; Yao Weida

    2011-01-01

    The four basic aspects of strengths, ductility, toughness and fatigue strengths can be summarized for overall mechanical properties requirements of materials for nuclear pressure-retaining vessels in ASME-BPV code. These mechanical property indexes involve in the factors of melting, manufacture, delivery conditions, check or recheck for mechanical properties and chemical compositions, etc. and relate to degradation and damage accumulation during the use of materials. This paper specifically accounts for the basic requirements and theoretic basis of mechanical properties for nuclear pressure vessel materials in ASME-BPV code and states the internal mutual relationships among the four aspects of mechanical properties. This paper focuses on putting forward at several problems on mechanical properties of materials that shall be concerned about during design and manufacture for nuclear pressure vessels according to ASME-BPV code. (author)

  3. Experimental Analysis of Tensile Mechanical Properties of Sprayed FRP

    Directory of Open Access Journals (Sweden)

    Zhao Yang

    2016-01-01

    Full Text Available To study the tensile mechanical properties of sprayed FRP, 13 groups of specimens were tested through uniaxial tensile experiments, being analyzed about stress-strain curve, tensile strength, elastic modulus, breaking elongation, and other mechanical properties. Influencing factors on tensile mechanical properties of sprayed FRP such as fiber type, resin type, fiber volume ratio, fiber length, and composite thickness were studied in the paper too. The results show that both fiber type and resin type have an obvious influence on tensile mechanical properties of sprayed FRP. There will be a specific fiber volume ratio for sprayed FRP to obtain the best tensile mechanical property. The increase of fiber length can lead to better tensile performance, while that of composite thickness results in property degradation. The study can provide reference to popularization and application of sprayed FRP material used in structure reinforcement.

  4. Retrogradation of concentrated starch systems : mechanism and consequences for product properties

    NARCIS (Netherlands)

    Keetels, C.J.A.M.

    1995-01-01

    The mechanical properties of concentrated starch + water systems were studied during heating, cooling and storage. Methods used were a small-amplitude dynamic rheological test and compression between parallel plates. The mechanical properties were related to the structure of the gels.

  5. Some experimental considerations regarding ion beam simulation of neutron irradiation for mechanical property measurements

    International Nuclear Information System (INIS)

    Styris, D.L.; Jones, R.H.; Harling, O.K.; Kulcinski, G.L.; Marshall, R.P.

    1975-01-01

    A preliminary assessment of the requirements for mechanical property data related to CTR materials is given. The status of ion simulation for mechanical property measurements is described. A damage analysis and calculations for light ions are presented along with sample size, heating and cooling, and surface considerations

  6. 大豆籽粒的化学-力学特性灰色关联度及本构模拟%Gray relation degree and constitutive modeling of chemo-mechanical properties for soybean seed

    Institute of Scientific and Technical Information of China (English)

    张涛; 张锋伟; 孙伟; 孙步功; 王婷; 吴建民

    2017-01-01

    The chemical composition of soybean seeds has an important effect on the mechanical properties,and there is an inevitable connection between them.In order to study the mechanical properties of soybean seed under different loading types,and to explore the relationship between chemical composition and mechanical properties of soybean seed,11 kinds of soybeans were selected as research material with the moisture content of 8.65%,and the chemical components test,the needle inserting test,the shear test and the compression test were carried out.Depending on the outline structure of soybean seed,compression types included flat placing,side placing,stand placing,and shear types included horizontal and vertical.The experiment was carried out in Gansu Agricultural University from March to July in 2016.Gray relation degree method was used to study the relationship of the 2 types of indices,chemical indices were set as the reference sequence,mechanical parameters were set as the comparison sequence,and the correlation degree and correlation order were analyzed with DPS software.With the support of Abaqus software,soybean seed constitutive modeling was set up,which defined the structure and properties by using the finite element software,and 3 types of compression test processes were simulated.The validity of the constitutive model was verified by comparing the simulation curve and the testing curve.Through mechanical test and compression simulation of soybean seed,the results indicated that the hardness of soybean seed was between 18.39 and 52.58 N/rm,the crippling strength of soybean seed was between 3.65 and 15.32 MPa,the ultimate shear force of soybean seed was between 12.70 and 52.33 N,and the variety had a highly significant effect on its mechanical properties (P<0.01).The resistance shear capacity of the virtical axis was significantly higher than the horizontal axis,and the ability of resisting damage from higher to lower was flat placing,side placing,and stand

  7. Iatrogenic pneumothorax related to mechanical ventilation

    Science.gov (United States)

    Hsu, Chien-Wei; Sun, Shu-Fen

    2014-01-01

    Pneumothorax is a potentially lethal complication associated with mechanical ventilation. Most of the patients with pneumothorax from mechanical ventilation have underlying lung diseases; pneumothorax is rare in intubated patients with normal lungs. Tension pneumothorax is more common in ventilated patients with prompt recognition and treatment of pneumothorax being important to minimize morbidity and mortality. Underlying lung diseases are associated with ventilator-related pneumothorax with pneumothoraces occurring most commonly during the early phase of mechanical ventilation. The diagnosis of pneumothorax in critical illness is established from the patients’ history, physical examination and radiological investigation, although the appearances of a pneumothorax on a supine radiograph may be different from the classic appearance on an erect radiograph. For this reason, ultrasonography is beneficial for excluding the diagnosis of pneumothorax. Respiration-dependent movement of the visceral pleura and lung surface with respect to the parietal pleura and chest wall can be easily visualized with transthoracic sonography given that the presence of air in the pleural space prevents sonographic visualization of visceral pleura movements. Mechanically ventilated patients with a pneumothorax require tube thoracostomy placement because of the high risk of tension pneumothorax. Small-bore catheters are now preferred in the majority of ventilated patients. Furthermore, if there are clinical signs of a tension pneumothorax, emergency needle decompression followed by tube thoracostomy is widely advocated. Patients with pneumothorax related to mechanical ventilation who have tension pneumothorax, a higher acute physiology and chronic health evaluation II score or PaO2/FiO2 < 200 mmHg were found to have higher mortality. PMID:24834397

  8. Mechanical Properties of Oil Palm Empty Fruit Bunch Fiber

    Science.gov (United States)

    Gunawan, Fergyanto E.; Homma, Hiroomi; Brodjonegoro, Satryo S.; Hudin, Afzer Bin Baseri; Zainuddin, Aryanti Binti

    In tropical countries such as Indonesia and Malaysia, the empty fruit bunches are wastes of the oil palm industry. The wastes are abundantly available and has reached a level that severely threats the environment. Therefore, it is a great need to find useful applications of those waste materials; but firstly, the mechanical properties of the EFB fiber should be quantified. In this work, a small tensile test machine is manufactured, and the tensile test is performed on the EFB fibers. The results show that the strength of the EFB fiber is strongly affected by the fiber diameter; however, the fiber strength is relatively low in comparison to other natural fibers.

  9. Moisture relations and physical properties of wood

    Science.gov (United States)

    Samuel V. Glass; Samuel L. Zelinka

    2010-01-01

    Wood, like many natural materials, is hygroscopic; it takes on moisture from the surrounding environment. Moisture exchange between wood and air depends on the relative humidity and temperature of the air and the current amount of water in the wood. This moisture relationship has an important influence on wood properties and performance. Many of the challenges of using...

  10. Effect of the mechanical processing on the mechanical properties of MA956 alloy. II. Mechanical characterization

    International Nuclear Information System (INIS)

    Chao, J.; Gonzalez-Doncel, G.

    1998-01-01

    The mechanical properties at room and low temperature of MA 956 alloy in some stages of their processing route are evaluated. In this study the influence of crystallographic orientation on plastic deformation and brittle fracture, strongly anisotropic phenomena, is also considered. It is concluded that even though MA 956 alloy was designated for high temperature applications it could be also used for cryogenic temperatures applications. (Author) 8 refs

  11. Morphology, crystallization and dynamic mechanical properties of ...

    Indian Academy of Sciences (India)

    Unknown

    considerable interest both in industry and academia because of its significantly ... super-engineering materials because of their superior mecha- nical properties at ... proves the barrier (Kojima et al 1993c) and ablative. (Vaia et al 1999) ...

  12. Advanced mechanics and general relativity an introduction to general relativity

    CERN Document Server

    Franklin, Joel

    2010-01-01

    Aimed at advanced undergraduates with background knowledge of classical mechanics and electricity and magnetism, this textbook presents both the particle dynamics relevant to general relativity, and the field dynamics necessary to understand the theory. Focusing on action extremization, the book develops the structure and predictions of general relativity by analogy with familiar physical systems. Topics ranging from classical field theory to minimal surfaces and relativistic strings are covered in a homogeneous manner. Nearly 150 exercises and numerous examples throughout the textbook enable students to test their understanding of the material covered.

  13. Mechanical properties of brain tissue by indentation : interregional variation

    NARCIS (Netherlands)

    Dommelen, van J.A.W.; Sande, van der T.P.J.; Hrapko, M.; Peters, G.W.M.

    2010-01-01

    Although many studies on the mechanical properties of brain tissue exist, some controversy concerning the possible differences in mechanical properties of white and gray matter tissue remains. Indentation experiments are conducted on white and gray matter tissue of various regions of the cerebrum

  14. Microstructure and Mechanical Properties of a Laser Treated Al Alloy

    NARCIS (Netherlands)

    Noordhuis, J.; Hosson, J.Th.M. De

    An Al-Cu-Mg alloy, Al 2024-T3, was exposed to laser treatments at various scan velocities. In this paper the microstructural features and mechanical properties are reported. As far as the mechanical property is concerned a striking observation is a minimum in the hardness value at a laser scan

  15. Region-specific mechanical properties of the human patella tendon

    DEFF Research Database (Denmark)

    Haraldsson, B T; Aagaard, P; Krogsgaard, M

    2004-01-01

    The present study investigated the mechanical properties of tendon fascicles from the anterior and posterior human patellar tendon. Collagen fascicles from the anterior and posterior human patellar tendon in healthy young men (mean +/- SD, 29.0 +/- 4.6 yr, n = 6) were tested in a mechanical rig...... portion of the tendon, indicating region-specific material properties....

  16. Microstructure and mechanical properties of laser treated aluminium alloys

    NARCIS (Netherlands)

    deHosson, JTM; vanOtterloo, LDM; Noordhuis, J; Mazumder, J; Conde, O; Villar, R; Steen, W

    1996-01-01

    Al-Cu alloys and an Al-Cu-Mg alloy, Al 2024-T3, were exposed to laser treatments at various scan velocities. In this paper the microstructural features and mechanical properties are reported. As far as the mechanical property of the Al-Cu-Mg alloy is concerned a striking observation is a minimum in

  17. Mechanical properties of natural fibre reinforced polymer composites

    Indian Academy of Sciences (India)

    In the present communication, a study on the synthesis and mechanical properties of new series of green composites involving Hibiscus sabdariffa fibre as a reinforcing material in urea–formaldehyde (UF) resin based polymer matrix has been reported. Static mechanical properties of randomly oriented intimately mixed ...

  18. Thermodynamics and statistical mechanics. [thermodynamic properties of gases

    Science.gov (United States)

    1976-01-01

    The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.

  19. Mechanical property evaluation of natural fiber coir composite

    International Nuclear Information System (INIS)

    Harish, S.; Michael, D. Peter; Bensely, A.; Lal, D. Mohan; Rajadurai, A.

    2009-01-01

    The fiber which serves as a reinforcement in reinforced plastics may be synthetic or natural. Past studies show that only artificial fibers such as glass, carbon etc., have been used in fiber-reinforced plastics. Although glass and other synthetic fiber-reinforced plastics possess high specific strength, their fields of application are very limited because of their inherent higher cost of production. In this connection, an investigation has been carried out to make use of coir, a natural fiber abundantly available in India. Natural fibers are not only strong and lightweight but also relatively very cheap. In the present work, coir composites are developed and their mechanical properties are evaluated. Scanning electron micrographs obtained from fractured surfaces were used for a qualitative evaluation of the interfacial properties of coir/epoxy and compared with glass fiber/epoxy. These results indicate that coir can be used as a potential reinforcing material for making low load bearing thermoplastic composites

  20. Sensing, Measuring and Modelling the Mechanical Properties of Sandstone

    Science.gov (United States)

    Antony, S. J.; Olugbenga, A.; Ozerkan, N. G.

    2018-02-01

    We present a hybrid framework for simulating the strength and dilation characteristics of sandstone. Where possible, the grain-scale properties of sandstone are evaluated experimentally in detail. Also, using photo-stress analysis, we sense the deviator stress (/strain) distribution at the micro-scale and its components along the orthogonal directions on the surface of a V-notch sandstone sample under mechanical loading. Based on this measurement and applying a grain-scale model, the optical anisotropy index K 0 is inferred at the grain scale. This correlated well with the grain contact stiffness ratio K evaluated using ultrasound sensors independently. Thereafter, in addition to other experimentally characterised structural and grain-scale properties of sandstone, K is fed as an input into the discrete element modelling of fracture strength and dilation of the sandstone samples. Physical bulk-scale experiments are also conducted to evaluate the load-displacement relation, dilation and bulk fracture strength characteristics of sandstone samples under compression and shear. A good level of agreement is obtained between the results of the simulations and experiments. The current generic framework could be applied to understand the internal and bulk mechanical properties of such complex opaque and heterogeneous materials more realistically in future.

  1. Size dependence of elastic mechanical properties of nanocrystalline aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenwu; Dávila, Lilian P., E-mail: ldavila@ucmerced.edu

    2017-04-24

    The effect of grain size on the elastic mechanical properties of nanocrystalline pure metal Al is quantified by molecular dynamics simulation method. In this work, the largest nanocrystalline Al sample has a mean grain size of 29.6 nm and contains over 100 millions atoms in the modeling system. The simulation results show that the elastic properties including elastic modulus and ultimate tensile strength of nanocrystalline Al are relatively insensitive to the variation of mean grain size above 13 nm yet they become distinctly grain size dependent below 13 nm. Moreover, at a grain size <13 nm, the elastic modulus decreases monotonically with decreasing grain size while the ultimate tensile strength of nanocrystalline Al initially decreases with the decrease of the grain size down to 9 nm and then increases with further reduction of grain size. The increase of ultimate tensile strength below 9 nm is believed to be a result of an extended elasticity in the ultrafine grain size nanocrystalline Al. This study can facilitate the prediction of varied mechanical properties for similar nanocrystalline materials and even guide testing and fabrication schemes of such materials.

  2. Characterization of porosity in support of mechanical property analysis

    International Nuclear Information System (INIS)

    Price, R.H.; Martin, R.J. III; Boyd, P.J.

    1992-01-01

    Previous laboratory investigations of tuff have shown that porosity has a dominant, general effect on mechanical properties. As a result, it is very important for the interpretation of mechanical property data that porosity is measured on each sample tested. Porosity alone, however, does not address all of the issues important to mechanical behavior. Variability in size and distribution of pore space produces significantly different mechanical properties. A nondestructive technique for characterizing the internal structure of the sample prior to testing is being developed and the results are being analyzed. The information obtained from this technique can help in both qualitative and quantitative interpretation of test results

  3. Mechanical properties of tannin-based rigid foams undergoing compression

    Energy Technology Data Exchange (ETDEWEB)

    Celzard, A., E-mail: Alain.Celzard@enstib.uhp-nancy.fr [Institut Jean Lamour - UMR CNRS 7198, CNRS - Nancy-Universite - UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces, ENSTIB, 27 rue du Merle Blanc, BP 1041, 88051 Epinal cedex 9 (France); Zhao, W. [Institut Jean Lamour - UMR CNRS 7198, CNRS - Nancy-Universite - UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces, ENSTIB, 27 rue du Merle Blanc, BP 1041, 88051 Epinal cedex 9 (France); Pizzi, A. [ENSTIB-LERMAB, Nancy-University, 27 rue du Merle Blanc, BP 1041, 88051 Epinal cedex 9 (France); Fierro, V. [Institut Jean Lamour - UMR CNRS 7198, CNRS - Nancy-Universite - UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces, ENSTIB, 27 rue du Merle Blanc, BP 1041, 88051 Epinal cedex 9 (France)

    2010-06-25

    The mechanical properties of a new class of extremely lightweight tannin-based materials, namely organic foams and their carbonaceous counterparts are detailed. Scaling laws are shown to describe correctly the observed behaviour. Information about the mechanical characteristics of the elementary forces acting within these solids is derived. It is suggested that organic materials present a rather bending-dominated behaviour and are partly plastic. On the contrary, carbon foams obtained by pyrolysis of the former present a fracture-dominated behaviour and are purely brittle. These conclusions are supported by the differences in the exponent describing the change of Young's modulus as a function of relative density, while that describing compressive strength is unchanged. Features of the densification strain also support such conclusions. Carbon foams of very low density may absorb high energy when compressed, making them valuable materials for crash protection.

  4. Experimental study of mechanical properties on spacer in NHR

    International Nuclear Information System (INIS)

    Jiang Yueyuan; Shi Jibing; Xu Yong

    2007-01-01

    The spacer of NHR-200 is composed mainly of the inner, outer and cornual strips which are ranged in egg-crate of 12 x 12-3. First, the pre-distortion of three kinds of three-arc springs on reactor working condition and their related clipping-force ranges are analyzed in this paper. Secondly, the mechanical experiments of 1:1 prototype, such as the load-distortion experiments, which the load and distortion are respectively measured by strain gauge and displacement sensor, of three kinds of springs, rigid supports and the spacers in two different directions are carried out on a special experimental facility. The experimental results show that the spacer can completely meet the design demands of mechanical properties of the fuel assemblies in NHR-200. (authors)

  5. Preparation, characterization and mechanical properties of k ...

    Indian Academy of Sciences (India)

    2017-06-09

    Jun 9, 2017 ... Nanocomposite; k-Carrageenan; SiO2 nanoparticles; mechanical strength; antimicrobial activity. 1. Introduction ... Silicon dioxide (SiO2)-filled polymer matrix com- posites have ... by using the agar disk diffusion method. 2.

  6. Effect of vacancies on the mechanical properties of phosphorene nanotubes

    Science.gov (United States)

    Sorkin, V.; Zhang, Y. W.

    2018-06-01

    Using density functional tight-binding method, we studied the mechanical properties, deformation and failure of armchair (AC) and zigzag (ZZ) phosphorene nanotubes (PNTs) with monovacancies and divacancies subjected to uniaxial tensile strain. We found that divacancies in AC PNTs and monovacancies in ZZ PNTs possess the lowest vacancy formation energy, which decreases with the tube diameter in AC PNTs and increases in ZZ PNTs. The Young’s modulus is reduced, while the radial and thickness Poisson’s ratios are increased by hosted vacancies. In defective AC PNTs, deformation involves fracture of the intra-pucker bonds and formation of the new inter-pucker bonds at a critical strain, and the most stretched bonds around the vacancy rupture first, triggering a sequence of the structural transformations terminated by the ultimate failure. The critical strain of AC PNTs is reduced significantly by hosted vacancies, whereas their effect on the critical stress is relatively weaker. Defective ZZ PNTs fail in a brittle-like manner once the most stretched bonds around a vacancy rupture, and vacancies are able to significantly reduce the failure strain but only moderately reduce the failure stress of ZZ PNTs. The understandings revealed here on the mechanical properties and the deformation and failure mechanisms of PNTs provide useful guidelines for their design and fabrication as building blocks in nanodevices.

  7. Phonon spectrum, mechanical and thermophysical properties of thorium carbide

    International Nuclear Information System (INIS)

    Pérez Daroca, D.; Jaroszewicz, S.; Llois, A.M.; Mosca, H.O.

    2013-01-01

    In this work, we study, by means of density functional perturbation theory and the pseudopotential method, mechanical and thermophysical properties of thorium carbide. These properties are derived from the lattice dynamics in the quasi-harmonic approximation. The phonon spectrum of ThC presented in this article, to the best authors’ knowledge, have not been studied, neither experimentally, nor theoretically. We compare mechanical properties, volume thermal expansion and molar specific capacities with previous results and find a very good agreement

  8. Phonon spectrum, mechanical and thermophysical properties of thorium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Cientı´ficas y Técnicas (Argentina); Jaroszewicz, S. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Cientı´ficas y Técnicas (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA (Argentina)

    2013-06-15

    In this work, we study, by means of density functional perturbation theory and the pseudopotential method, mechanical and thermophysical properties of thorium carbide. These properties are derived from the lattice dynamics in the quasi-harmonic approximation. The phonon spectrum of ThC presented in this article, to the best authors’ knowledge, have not been studied, neither experimentally, nor theoretically. We compare mechanical properties, volume thermal expansion and molar specific capacities with previous results and find a very good agreement.

  9. Preparation and Mechanical Properties of Aligned Discontinuous Carbon Fiber Composites

    OpenAIRE

    DENG Hua; GAO Junpeng; BAO Jianwen

    2018-01-01

    Aligned discontinuous carbon fiber composites were fabricated from aligned discontinuous carbon fiber prepreg, which was prepared from continuous carbon fiber prepreg via mechanical high-frequency cutting. The internal quality and mechanical properties were characterized and compared with continuous carbon fiber composites. The results show that the internal quality of the aligned discontinuous carbon fiber composites is fine and the mechanical properties have high retention rate after the fi...

  10. Estimation of mechanical properties of single wall carbon nanotubes ...

    Indian Academy of Sciences (India)

    Molecular mechanics; single wall carbon nanotube; mechanical proper- ... Fracture Mechanics); Rossi & Meo 2009). Furthermore, the work carried out by Natsuki & Endo. (2004), Xiao et al (2005) and Sun & Zhao (2005) in the direction of ..... Jin Y and Yuan F G 2003 Simulation of elastic properties of single walled carbon ...

  11. Mechanical properties of additively manufactured thick honeycombs

    NARCIS (Netherlands)

    Hedayati, R.; Sadighi, M.; Mohammadi-Aghdam, M; Zadpoor, A.A.

    2016-01-01

    Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding

  12. Stochastic modelling in design of mechanical properties of nanometals

    International Nuclear Information System (INIS)

    Tengen, T.B.; Wejrzanowski, T.; Iwankiewicz, R.; Kurzydlowski, K.J.

    2010-01-01

    Polycrystalline nanometals are being fabricated through different processing routes and conditions. The consequence is that nanometals having the same mean grain size may have different grain size dispersion and, hence, may have different material properties. This has often led to conflicting reports from both theoretical and experimental findings about the evolutions of the mechanical properties of nanomaterials. The present paper employs stochastic model to study the impact of microstructure evolution during grain growth on the mechanical properties of polycrystalline nanometals. The stochastic model for grain growth and the stochastic model for changes in mechanical properties of nanomaterials are proposed. The model for the mechanical properties developed is tested on aluminium samples.Many salient features of the mechanical properties of the aluminium samples are revealed. The results show that the different mechanisms of grain growth impart different nature of response to the material mechanical properties. The conventional, homologous and anomalous temperature dependences of the yield stress have also been revealed to be due to different nature of interactions of the microstructures during evolution.

  13. Mechanical properties of F82H plates with different thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Sakasegawa, Hideo, E-mail: sakasegawa.hideo@jaea.go.jp; Tanigawa, Hiroyasu

    2016-11-01

    Highlights: • Mass effect, homogeneity, and anisotropy in mechanical properties were studied. • Thickness dependence of tensile property was not observed. • Thickness dependence of Charpy impact property was observed. • Appropriate mechanical properties were obtained using an electric furnace. - Abstract: Fusion DEMO reactor requires over 11,000 tons of reduced activation ferritic/martensitic steel and it is indispensable to develop the manufacturing technology for producing large-scale components of DEMO blanket with appropriate mechanical properties. This is because mechanical properties are generally degraded with increasing production volume. In this work, we focused mechanical properties of F82H–BA12 heat which was melted in a 20 tons electric arc furnace. Plates with difference thicknesses from 18 to 100 mm{sup t} were made from its ingot through forging and hot-rolling followed by heat treatments. Tensile and Charpy impact tests were then performed on plates focusing on their homogeneity and anisotropy. From the result, their homogeneity and anisotropy were not significant. No obvious differences were observed in tensile properties between the plates with different thicknesses. However, Charpy impact property changed with increasing plate thickness, i.e. the ductile brittle transition temperature of a 100 mm{sup t} thick plate was higher than that of the other thinner plates.

  14. Rationally designed synthetic protein hydrogels with predictable mechanical properties.

    Science.gov (United States)

    Wu, Junhua; Li, Pengfei; Dong, Chenling; Jiang, Heting; Bin Xue; Gao, Xiang; Qin, Meng; Wang, Wei; Bin Chen; Cao, Yi

    2018-02-12

    Designing synthetic protein hydrogels with tailored mechanical properties similar to naturally occurring tissues is an eternal pursuit in tissue engineering and stem cell and cancer research. However, it remains challenging to correlate the mechanical properties of protein hydrogels with the nanomechanics of individual building blocks. Here we use single-molecule force spectroscopy, protein engineering and theoretical modeling to prove that the mechanical properties of protein hydrogels are predictable based on the mechanical hierarchy of the cross-linkers and the load-bearing modules at the molecular level. These findings provide a framework for rationally designing protein hydrogels with independently tunable elasticity, extensibility, toughness and self-healing. Using this principle, we demonstrate the engineering of self-healable muscle-mimicking hydrogels that can significantly dissipate energy through protein unfolding. We expect that this principle can be generalized for the construction of protein hydrogels with customized mechanical properties for biomedical applications.

  15. Reciprocal relativity of noninertial frames: quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Low, Stephen G [4301 Avenue D, Austin, Texas, 78751 (United States)

    2007-04-06

    Noninertial transformations on time-position-momentum-energy space {l_brace}t, q, p, e{r_brace} with invariant Born-Green metric ds{sup 2} = -dt{sup 2} + 1/c{sup 2} dq{sup 2} + 1/b{sup 2} (dp{sup 2} = 1/c{sup 2} de{sup 2}) and the symplectic metric -de and dt + dp and dq are studied. This U 1,3) group of transformations contains the Lorentz group as the inertial special case and, in the limit of small forces and velocities, reduces to the expected Hamilton transformations leaving invariant the symplectic metric and the nonrelativistic line element ds{sup 2} -dt{sup 2}. The U(1,3) transformations bound relative velocities by c and relative forces by b. Spacetime is no longer an invariant subspace but is relative to noninertial observer frames. In the limit of b {yields} {infinity}, spacetime is invariant. Born was lead to the metric by a concept of reciprocity between position and momentum degrees of freedom and for this reason we call this reciprocal relativity. For large b, such effects will almost certainly only manifest in a quantum regime. Wigner showed that special relativistic quantum mechanics follows from the projective representations of the inhomogeneous Lorentz group. Projective representations of a Lie group are equivalent to the unitary representations of its central extension. The same method of projective representations for the inhomogeneous U(1,3) group is used to define the quantum theory in the noninertial case. The central extension of the inhomogeneous U(1,3) group is the cover of the quaplectic group Q(1,3) U(1,3) x{sub s} H(4), H(4) is the Weyl-Heisenberg group. The H(4) group, and the associated Heisenberg commutation relations central to quantum mechanics, results directly from requiring projective representations. A set of second-order wave equations result from the representations of the Casimir operators.

  16. ON MODELLING OF MICROSTRUCTURE FORMATION, LOCAL MECHANICAL PROPERTIES AND STRESS – STRAIN DEVELOPMENT IN ALUMINIUM CASTINGS

    DEFF Research Database (Denmark)

    Svensson, Ingvar; Seifeddine, Salem; Kotas, Petr

    2009-01-01

    , related to mechanical properties as elastic modulus, yield stress, ultimate strength and elongation. In the present work, a test case of a complex casting in an aluminium alloy is considered including simulation of the entire casting process with focus on of microstructure formation, related to mechanical...

  17. Mechanical properties of structural materials in HLM

    International Nuclear Information System (INIS)

    Moisa, A. E.; Valeca, S.; Pitigoi, V.

    2016-01-01

    The Generation IV nuclear systems are nowadays in the design stage, and this is one of the reasons of testing stage for candidate materials. The purpose of this paper is to present the tensile tests, for candidate materials. The studied test are: on temperature of 500°C in air, on mechanical testing machine Walter + Bie by using the furnace of the testing machine, and environmental molten lead using testing machine Instron, equipped with a lead testing device attached to it. Also the mechanical parameters will be determined on tensile strength and yield strength for steel 316L material to be used as candidate in achieving LFR reactor vessel type, and the microstructural analysis of surface breaking will be performed by electronic microscopy. The paper will present the main components, the operating procedure of the testing system, and the results of tensile tests in molten lead. (authors)

  18. Mechanical properties of ISABELLE superconducting coils

    International Nuclear Information System (INIS)

    Thompson, P.; Bertsche, A.; Fuhrmann, J.; Greene, A.; Grove, E.; Repeta, L.; Short, F.; Tannenbaum, M.; Wanderer, P.

    1981-01-01

    As a part of the manufacturing processes, several mechanical measurements are made on ISABELLE dipoles. These are done both to control the process and to provide information for the evaluation of the behavior of the completed magnets. This paper discusses the Young's Modulus (E = 1-3 x 10 6 psi), the thermal contraction of the coil assembly (ΔL/L = 290 +- 17 x 10 -5 at 77 0 K), and the loss of applied prestress with time

  19. Dependence of Glass Mechanical Properties on Thermal and Pressure History

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Bauchy, Mathieu

    Predicting the properties of new glasses prior to manufacturing is a topic attracting great industrial and scientific interest. Mechanical properties are currently of particular interest given the increasing demand for stronger, thinner, and more flexible glasses in recent years. However, as a non......-equilibrium material, the structure and properties of glass depend not only on its composition, but also on its thermal and pressure histories. Here we review our recent findings regarding the thermal and pressure history dependence of indentation-derived mechanical properties of oxide glasses....

  20. Mechanical properties of fuel debris for defueling toward decommissioning

    International Nuclear Information System (INIS)

    Hoshino, Takanori; Kitagaki, Toru; Yano, Kimihiko; Okamura, Nobuo; Koizumi, Kenji; Ohara, Hiroshi; Fukasawa, Tetsuo

    2015-01-01

    In the decommissioning of the Fukushima Daiichi Nuclear Power Plant (1F), safe and steady defueling work is required. Before defueling 1F, it is necessary to evaluate fuel debris for properties related to the defueling procedure and technology. While defueling after the Three Mile Island Nuclear Power Plant Unit 2 (TMI-2) accident, a core boring system played an important role. Considering the working principle of core boring, hardness, elastic modulus, and fracture toughness were found to be important fuel debris properties that had a profound effect on the performance of the boring machine. It is speculated that uranium and zirconium oxide solid solution ((U,Zr)O_2) is one of the major materials of fuel debris in 1F, according to the TMI-2 accident experience and the results of past severe accident studies. In addition, the Zr content of 1F fuel debris is expected to be higher than that of TMI-2 debris, because the 1F reactors were boiling-water reactor (BWR). In this report, the mechanical properties of (U,Zr)O_2 are evaluated in the ZrO_2 content range from 10% to 65%. The hardness, elastic modulus, and fracture toughness were measured by Vickers test, ultrasonic pulse echo method, and indentation fracture method, respectively. In the ZrO_2 content range under 50%, the Vickers hardness and fracture toughness of (U,Zr)O_2 increased, and the elastic modulus decreased slightly with ZrO_2 content. In the case of 55% and 65% ZrO_2, all of those measures increased slightly with ZrO_2 content. Summarizing those results, ZrO_2 content affects mechanical properties significantly in the case of low ZrO_2 content. Higher Zr content (exceeding 50%) has little effect on mechanical properties. In the future, nonradioactive surrogate debris will be necessary for small-scale functional and large-scale mockup tests of various defueling technologies. These results are useful to select the material for surrogate debris. (author)

  1. Mechanical property characterization of polymeric composites reinforced by continuous microfibers

    Science.gov (United States)

    Zubayar, Ali

    Innumerable experimental works have been conducted to study the effect of polymerization on the potential properties of the composites. Experimental techniques are employed to understand the effects of various fibers, their volume fractions and matrix properties in polymer composites. However, these experiments require fabrication of various composites which are time consuming and cost prohibitive. Advances in computational micromechanics allow us to study the various polymer based composites by using finite element simulations. The mechanical properties of continuous fiber composite strands are directional. In traditional continuous fiber laminated composites, all fibers lie in the same plane. This provides very desirable increases in the in-plane mechanical properties, but little in the transverse mechanical properties. The effect of different fiber/matrix combinations with various orientations is also available. Overall mechanical properties of different micro continuous fiber reinforced composites with orthogonal geometry are still unavailable in the contemporary research field. In this research, the mechanical properties of advanced polymeric composite reinforced by continuous micro fiber will be characterized based on analytical investigation and FE computational modeling. Initially, we have chosen IM7/PEEK, Carbon Fiber/Nylon 6, and Carbon Fiber/Epoxy as three different case study materials for analysis. To obtain the equivalent properties of the micro-hetero structures, a concept of micro-scale representative volume elements (RVEs) is introduced. Five types of micro scale RVEs (3 square and 2 hexagonal) containing a continuous micro fiber in the polymer matrix were designed. Uniaxial tensile, lateral expansion and transverse shear tests on each RVE were designed and conducted by the finite element computer modeling software ANSYS. The formulae based on elasticity theory were derived for extracting the equivalent mechanical properties (Young's moduli, shear

  2. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    Science.gov (United States)

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  3. Correlation between thermodynamic and mechanical properties in Ta-W

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, Sandra; Mueller, Stefan [Institute of Advanced Ceramics, Hamburg University of Technology, Hamburg (Germany)

    2015-07-01

    Varying an alloy's concentration or alloying constituents strongly influences its structural and mechanical properties. Modern simulation methods like density functional theory in combination with the cluster expansion make the whole configurational space accessible. This way, also metastable structures may be considered, which are experimentally difficult to obtain. Recent results for several face-centered cubic (fcc) binary metal alloys suggest a linear correlation between thermodynamic stability and elastic properties at a fixed stoichiometry. This study aims to investigate the generality of these findings by considering a similar correlation for binary body-centered cubic (bcc) alloys. As a model system, Ta-W was chosen due to its simple phase diagram with solid solution in the whole concentration range. Interestingly, the elastic constants c{sub 44} and c{sub 12} show an opposing trend to that observed for fcc alloys: Energetically favorable structures are mechanically weaker than those further away from the ground-state line. This phenomenon may be related to the anomalous behavior of c{sub 44} with increasing pressure or temperature, which has been reported in the literature for Ta-W. We will discuss the interesting behavior of Ta-W with regard to its electronic structure.

  4. Correlation between some mechanical and physical properties of polycrystalline graphites

    International Nuclear Information System (INIS)

    Yoda, Shinichi; Fujisaki, Katsuo

    1982-01-01

    Mechanical and physical properties of polycrystalline graphites, tensile strength, compressive strength, flexural strength, Young's modulus, thermal expansion coefficient, electrical resistivity, volume fraction of porosity, and graphitisation were measured for ten brand graphites. Correlation between the mechanical and physical properties of the graphites were studied. Young's modulus and thermal expansion coefficient of the graphites depend on volume fraction of porosity. The Young's modulus of the graphites tended to increase with increasing the thermal expansion coefficient. For an anisotropic graphite, an interesting relationship between the Young's modulus E and the thermal expansion coefficient al pha was found in any specimen orientations; alpha E=constant. The value of alphah E was dependent upon the volume fraction of porosity. It should be noted here that the electrical resistivity increased with decreasing grain size. The flexural and the compressive strength were related with the volume fraction of porosity while the tensile strength was not, The relationships between the tensile, the compressive and the flexural strength can be approximately expressed as linear functions over a wide range of the stresses. (author)

  5. Mechanical properties of ISABELLE superconducting coils

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, P.; Bertsche, A.; Fuhrmann, J.; Greene, A.; Grove, E.; Repeta, L.; Short, F.; Tannenbaum, M.; Wanderer, P.

    1981-01-01

    As a part of the manufacturing processes, several mechanical measurements are made on ISABELLE dipoles. These are done both to control the process and to provide information for the evaluation of the behavior of the completed magnets. This paper discusses the Young's Modulus (E = 1-3 x 10/sup 6/ psi), the thermal contraction of the coil assembly (..delta..L/L = 290 +- 17 x 10/sup -5/ at 77/sup 0/K), and the loss of applied prestress with time (approx. 20% for times 20 days).

  6. High temperature mechanical properties of iron aluminides

    International Nuclear Information System (INIS)

    Morris, D. G.; Munoz-Morris, M. A.

    2001-01-01

    Considerable attention has been given to the iron aluminide family of intermetallics over the past years since they offer considerable potential as engineering materials for intermediate to high temperature applications, particularly in cases where extreme oxidation or corrosion resistance is required. Despite efforts at alloy development, however, high temperature strength remains low and creep resistance poor. Reasons for the poor high-temperature strength of iron aluminides will be discussed, based on the ordered crystal structure, the dislocation structure found in the materials, and the mechanisms of dislocation pinning operating. Alternative ways of improving high temperature strength by microstructural modification and the inclusion of second phase particles will also be considered. (Author)

  7. Mechanical properties of short doughs and their corresponding biscuits

    NARCIS (Netherlands)

    Baltsavias, A.

    1996-01-01


    The mechanical properties of short doughs of various composition were determined in small amplitude oscillatory experiments and in uniaxial compression. Regardless of composition, the linear region was very limited; beyond that, pronounced yielding and flow occurred. Conductimetry was

  8. Thermal, electrical, mechanical and fluidity properties of polyester ...

    Indian Academy of Sciences (India)

    Bariş Şimşek

    2018-04-13

    Apr 13, 2018 ... of POREC simultaneously is necessary for real-world applications. ... analysis approach containing a design of experiment (DoE) methodology ...... C–S–H gel and mechanical properties: case of ternary Port- land cements ...

  9. effects of sulphur addition on addition on and mechanical properties

    African Journals Online (AJOL)

    User

    234-8034714355. 8034714355. 1. EFFECTS OF SULPHUR ADDITION ON. ADDITION ON. 2. AND MECHANICAL PROPERTIES O. 3. 4. C. W. Onyia. 5. 1DEPT. OF METALLURGICAL AND MATERIALS. 6. 2, 4DEPT. OF METALLURGICAL ...

  10. Using Quantum Mechanics to Predict Shock Properties of Explosives

    National Research Council Canada - National Science Library

    Romero, N. A; Mattson, W. D; Rice, B. M

    2006-01-01

    .... As little as ten years ago, quantum mechanical calculations were restricted to predictions of static properties of systems containing tens of atoms, thus limiting first principles explorations to gas...

  11. Properties, Mechanisms and Predictability of Eddies in the Red Sea

    KAUST Repository

    Zhan, Peng

    2018-01-01

    of Red Sea eddies, including their temporal and spatial properties, their energy budget, the mechanisms of their evolution, and their predictability. Remote sensing data, in-situ observations, the oceanic general circulation model, and data assimilation

  12. Evaluation on mechanical properties of woven aloevera and sisal ...

    Indian Academy of Sciences (India)

    Administrator

    behaviour of this composite is observed to be more effec- tive.5 The fibre .... been made to study the mechanical properties of woven aloevera and ... In each case, minimum of ... tions in automotive components, structures and consumer goods.

  13. Effect of Mechanical Alloying Atmospheres and Oxygen Concentration on Mechanical Properties of ODS Ferritic Steels

    International Nuclear Information System (INIS)

    Noh, Sanghoon; Choi, Byoungkwon; Han, Changhee; Kim, Kibaik; Kang, Sukhoon; Chun, Youngbum; Kim, Taekyu

    2013-01-01

    Finely dispersed nano-oxide particles with a high number density in the homogeneous grain matrix are essential to achieve superior mechanical properties at high temperatures, and these unique microstructures can be obtained through the mechanical alloying (MA) and hot consolidation process. The microstructure and mechanical property of ODS steel significantly depends on its powder property and the purity after the MA process. These contents should be carefully controlled to improve the mechanical property at elevated temperature. In particular, appropriate the control of oxygen concentration improves the mechanical property of ODS steel at high temperature. An effective method is to control the mechanical alloying atmosphere by high purity inert gas. In the present study, the effects of mechanical alloying atmospheres and oxygen concentration on the mechanical property of ODS steel were investigated. ODS ferritic alloys were fabricated in various atmospheres, and the HIP process was used to investigate the effects of MA atmospheres and oxygen concentration on the microstructure and mechanical property. ODS ferritic alloys milled in an Ar-H 2 mixture, and He is effective to reduce the excess oxygen concentration. The YH 2 addition made an extremely reduced oxygen concentration by the internal oxygen reduction reaction and resulted in a homogeneous microstructure and superior creep strength

  14. Further investigation on boric acid catalytic graphitization of polyacrylonitrile carbon fibers: Mechanism and mechanical properties

    International Nuclear Information System (INIS)

    Wen, Ya; Lu, Yonggen; Xiao, Hao; Qin, Xianying

    2012-01-01

    Highlights: ► The modulus of carbon fiber was improved by boric acid at the temperature range of 1500–2900 °C. ► 2300 °C is a key temperature degree from which the boron began to benefit fiber strength. ► The fiber strength was affected by the boron reaction and related to the boron states. -- Abstract: Catalytic graphitization of polyacrylonitrile based carbon fibers by boric acid doping was studied and the dependence of fiber tensile strength on the boron content and temperature was discussed. It was found that there existed a key temperature point for the boron to take effect. When the fibers were modified with 7.0 wt.% boric acid solution, with increasing temperature, the tensile strength was lower than that of the unmodified ones below 2300 °C, but a reverse thing happened above 2300 °C. Moreover, when being heated at 2500 °C, the modified fibers showed an increasing tensile modulus and strength with increasing boron content till maximums of 404 GPa and 2.46 GPa, 26% and 16% higher than those of unmodified ones. The mechanical properties of the fibers were affected by the interaction of carbon and boron, and also related with boron states. The decomposition of boron acid and its interaction with carbon brought defects on fiber surface, degrading the mechanical properties below 1300 °C. With further heat treatment, the boron diffused into the fibers and divided into two states: substitutional and interstitial. At a temperature over 2300 °C with an appreciate boron content, the substitutional would be formed predominantly, which removed the structural defects and relaxed the distortions, so as to benefit the mechanical properties.

  15. Mechanical properties of aluminium honeycomb impact limiters

    International Nuclear Information System (INIS)

    Maji, A.K.; Satpathi, D.; Donald, S.

    1992-01-01

    Aluminium honeycombs have been extensively used as impact limiters in nuclear waste transport casks. The mechanical behaviour of these shock absorbing materials was studied to develop an extensive experimental database. A series of tests were performed along various loading paths. Different densities of aluminium honeycombs were tested in different orientations. Static tests included uniaxial tension, uniaxial compression and torsion. Dynamic tests were conducted at different strain rates of up to 100 s -1 , to generate experimental data relevant to accident situations. Dynamic studies included the effects of specimen size and confinement. The purpose of using different loading paths was to generate an extensive experimental database which may also be used to develop constitutive models for these materials. Design charts were constructed which can be accessed by various cask designers to optimise and economise on cask development. (Author)

  16. Measuring the mechanical properties of molecular conformers

    Science.gov (United States)

    Jarvis, S. P.; Taylor, S.; Baran, J. D.; Champness, N. R.; Larsson, J. A.; Moriarty, P.

    2015-09-01

    Scanning probe-actuated single molecule manipulation has proven to be an exceptionally powerful tool for the systematic atomic-scale interrogation of molecular adsorbates. To date, however, the extent to which molecular conformation affects the force required to push or pull a single molecule has not been explored. Here we probe the mechanochemical response of two tetra(4-bromophenyl)porphyrin conformers using non-contact atomic force microscopy where we find a large difference between the lateral forces required for manipulation. Remarkably, despite sharing very similar adsorption characteristics, variations in the potential energy surface are capable of prohibiting probe-induced positioning of one conformer, while simultaneously permitting manipulation of the alternative conformational form. Our results are interpreted in the context of dispersion-corrected density functional theory calculations which reveal significant differences in the diffusion barriers for each conformer. These results demonstrate that conformational variation significantly modifies the mechanical response of even simple porpyhrins, potentially affecting many other flexible molecules.

  17. Mechanical properties along interfaces of bonded structures in fusion reactors

    International Nuclear Information System (INIS)

    Hassan, M.H.; Kulcinski, G.L.

    1993-01-01

    Proper assessment of the mechanical properties along interfaces of bonded structures currently used in many fusion reactor designs is essential to compare the different fabrication techniques. A Mechanical Properties Microprobe (MPM) was used to measure hardness and Young's modules along the interfaces of Be/Cu bonded structure. The MPM was able to distinguish different fabrication techniques by a direct measurement of the hardness, Young's modules, and H/E 2 which reflects the ability of deformation of the interfacial region

  18. Mechanical properties of soldered joints of niobium base alloys

    International Nuclear Information System (INIS)

    Grishin, V.L.

    1980-01-01

    Mechanical properties of soldered joints of niobium alloys widely distributed in industry: VN3, VN4, VN5A, VN5AE, VN5AEP etc., 0.6-1.2 mm thick are investigated. It is found out that the usage of zirconium-vanadium, titanium-tantalum solders for welding niobium base alloys permits to obtain soldered joints with satisfactory mechanical properties at elevated temperatures

  19. Structure–mechanics property relationship of waste derived biochars

    International Nuclear Information System (INIS)

    Das, Oisik; Sarmah, Ajit K.; Bhattacharyya, Debes

    2015-01-01

    The widespread applications of biochar in agriculture and environmental remediation made the scientific community ignore its mechanical properties. Hence, to examine the scope of biochar's structural applications, its mechanical properties have been investigated in this paper through nanoindentation technique. Seven waste derived biochars, made under different pyrolysis conditions and from diverse feedstocks, were studied via nanoindentation, infrared spectroscopy, X–ray crystallography, thermogravimetry, and electron microscopy. Following this, an attempt was made to correlate the biochars' hardness/modulus with reaction conditions and their chemical properties. The pine wood biochar made at 900 °C and 60 min residence time was found to have the highest hardness and elastic modulus of 4.29 and 25.01 GPa, respectively. It was shown that a combination of higher heat treatment (≥ 500 °C) temperature and longer residence time (~ 60 min) increases the values of hardness and modulus. It was further realized that pyrolysis temperature was a more dominant factor than residence time in determining the final mechanical properties of biochar particles. The degree of aromaticity and crystallinity of the biochar were also correlated with higher values of hardness and modulus. - Highlights: • Characterization was done on waste based biochars which included nanoindentation. • Pine saw dust biochar made at 900 °C for 60 min had highest hardness/modulus. • Combination of temperature/residence time affect biochar's mechanical propertie.s • Aromaticity and crystallinity positively affected biochar's mechanical properties.

  20. Mechanical and Thermal Properties of Praseodymium Monopnictides: AN Ultrasonic Study

    Science.gov (United States)

    Bhalla, Vyoma; Kumar, Raj; Tripathy, Chinmayee; Singh, Devraj

    2013-09-01

    We have computed ultrasonic attenuation, acoustic coupling constants and ultrasonic velocities of praseodymium monopnictides PrX(X: N, P, As, Sb and Bi) along the , , in the temperature range 100-500 K using higher order elastic constants. The higher order elastic constants are evaluated using Coulomb and Born-Mayer potential with two basic parameters viz. nearest-neighbor distance and hardness parameter in the temperature range of 0-500 K. Several other mechanical and thermal parameters like bulk modulus, shear modulus, Young's modulus, Poisson ratio, anisotropic ratio, tetragonal moduli, Breazeale's nonlinearity parameter and Debye temperature are also calculated. In the present study, the fracture/toughness (B/G) ratio is less than 1.75 which implies that PrX compounds are brittle in nature at room temperature. The chosen material fulfilled Born criterion of mechanical stability. We also found the deviation of Cauchy's relation at higher temperatures. PrN is most stable material as it has highest valued higher order elastic constants as well as the ultrasonic velocity. Further, the lattice thermal conductivity using modified approach of Slack and Berman is determined at room temperature. The ultrasonic attenuation due to phonon-phonon interaction and thermoelastic relaxation mechanisms have been computed using modified Mason's approach. The results with other well-known physical properties are useful for industrial applications.

  1. Prediction of mechanical properties for hexagonal boron nitride nanosheets using molecular mechanics model

    Energy Technology Data Exchange (ETDEWEB)

    Natsuki, Toshiaki [Shinshu University, Faculty of Textile Science and Technology, Ueda (Japan); Shinshu University, Institute of Carbon Science and Technology, Nagano (Japan); Natsuki, Jun [Shinshu University, Institute of Carbon Science and Technology, Nagano (Japan)

    2017-04-15

    Mechanical behaviors of nanomaterials are not easy to be evaluated in the laboratory because of their extremely small size and difficulty controlling. Thus, a suitable model for the estimation of the mechanical properties for nanomaterials becomes very important. In this study, the elastic properties of boron nitride (BN) nanosheets, including the elastic modulus, the shear modulus, and the Poisson's ratio, are predicted using a molecular mechanics model. The molecular mechanics force filed is established to directly incorporate the Morse potential function into the constitutive model of nanostructures. According to the molecular mechanics model, the chirality effect of hexagonal BN nanosheets on the elastic modulus is investigated through a closed-form solution. The simulated result shows that BN nanosheets exhibit an isotropic elastic property. The present analysis yields a set of very simple formulas and is able to be served as a good approximation on the mechanical properties for the BN nanosheets. (orig.)

  2. Prediction of mechanical properties for hexagonal boron nitride nanosheets using molecular mechanics model

    International Nuclear Information System (INIS)

    Natsuki, Toshiaki; Natsuki, Jun

    2017-01-01

    Mechanical behaviors of nanomaterials are not easy to be evaluated in the laboratory because of their extremely small size and difficulty controlling. Thus, a suitable model for the estimation of the mechanical properties for nanomaterials becomes very important. In this study, the elastic properties of boron nitride (BN) nanosheets, including the elastic modulus, the shear modulus, and the Poisson's ratio, are predicted using a molecular mechanics model. The molecular mechanics force filed is established to directly incorporate the Morse potential function into the constitutive model of nanostructures. According to the molecular mechanics model, the chirality effect of hexagonal BN nanosheets on the elastic modulus is investigated through a closed-form solution. The simulated result shows that BN nanosheets exhibit an isotropic elastic property. The present analysis yields a set of very simple formulas and is able to be served as a good approximation on the mechanical properties for the BN nanosheets. (orig.)

  3. The Determination of Some Mechanical Properties of Scheffe's ...

    African Journals Online (AJOL)

    The work determined some mechanical properties of fresh and matured concrete. These properties include Slump, Compressive Strength, Static modulus of elasticity and Modulus of rigidity. It applied Scheffe's optimization theory to determine the ratio of the combined constituents of the concrete mix. The results showed that ...

  4. Grewia Gum 1: Some Mechanical and Swelling Properties of ...

    African Journals Online (AJOL)

    Purpose: To study the mechanical and dynamic swelling properties of grewia gum, evaluate its compression behaviour and determine the effect of drying methods on its properties. Methods: Compacts (500 mg) of both freeze-dried and air-dried grewia gum were separately prepared by compression on a potassium bromide ...

  5. Data for prediction of mechanical properties of aspen flakeboards

    Science.gov (United States)

    C. G. Carll; P. Wang

    1983-01-01

    This research compared two methods of producing flakeboards with uniform density distribution (which could then be used to predict bending properties of flakeboards with density gradients). One of the methods was suspected of producing weak boards because it involved exertion of high pressures on cold mats. Although differences were found in mechanical properties of...

  6. Determination of Some Mechanical Properties of Almond Seed ...

    African Journals Online (AJOL)

    Akorede

    I. INTRODUCTION. Information on mechanical properties of agricultural products as a function of moisture content is needed in the design and adjustment of machines used during harvest, separation, cleaning, handling and storage. It is also used in processing these agricultural materials into food. The properties useful for ...

  7. Mechanical and physical properties of agro-based fiberboard

    Science.gov (United States)

    S. Lee; T.F. Shupe; C.Y. Hse

    2006-01-01

    In order to better utilize agricultural fibers as an alternative resource for composite panels, several variables were investigated to improve mechanical and physical properties of agm-based fiberboard. This study focused on the effect of fiber morphology, slenderness ratios (UD), and fiber mixing combinations on panel properties. The panel construction types were also...

  8. Effects of Polyethylene Glycol on the Mechanical Properties of ...

    African Journals Online (AJOL)

    Akorede

    investigate the mechanical properties and microstructural evaluation of steel. The test ... quenchant on the properties of steel (Eshraghi-Kakhki et al, ... Alloy Steel ... Table 1: Chemical composition of the steel used in this experiment. Elements. C. Si. S ... Cu. W. As. Composition 0.0555 0.00180 0.0029 0.3031 0.0003 0.0060.

  9. Mechanics/heat-transfer relation for particulate materials

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, C.S.; Wang, D.G.; Rahman, K.

    1991-11-01

    The original goal of this study was to try and understand the relationship between the thermal and mechanical properties of particulate flows. Two situations were examined. The first is a study of the effects of simple shear flows, as a embryonic flow type on the apparent thermal conductivity and apparent viscosity of a dry granular flow. The second study involved fluidized beds. The original idea was to try and relate the heat transfer behavior of a fluidized bed to the particle pressure,'' the forces by only the particle phase of the two-phase mixture. (VC)

  10. Mechanics/heat-transfer relation for particulate materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, C.S.; Wang, D.G.; Rahman, K.

    1991-11-01

    The original goal of this study was to try and understand the relationship between the thermal and mechanical properties of particulate flows. Two situations were examined. The first is a study of the effects of simple shear flows, as a embryonic flow type on the apparent thermal conductivity and apparent viscosity of a dry granular flow. The second study involved fluidized beds. The original idea was to try and relate the heat transfer behavior of a fluidized bed to the ``particle pressure,`` the forces by only the particle phase of the two-phase mixture. (VC)

  11. Graphite structure and its relation to mechanical engineering design

    International Nuclear Information System (INIS)

    Brocklehurst, J.E.; Kelly, B.T.

    1980-01-01

    The inhomogeneous nature of polycrystalline graphite requires property measurements to be made over dimensions large enough to average the local variations in the structure. This is particularly true for mechanical integrity, and experimental data are presented which illustrate the importance of the real aggregate structure of graphite and the difficulties of interpreting strength data from different tests. The classical statistical treatments do not hold generally, and the problem of defining a failure criterion for graphite is discussed. It is suggested that the stress conditions in graphite components might be classified in terms of the dimensions and stress gradients related to the characteristic flaw size of the material as determined experimentally. (author)

  12. Surface modification, microstructure and mechanical properties of investment cast superalloy

    OpenAIRE

    M. Zielińska; K. Kubiak; J. Sieniawski

    2009-01-01

    Purpose: The aim of this work is to determine physical and chemical properties of cobalt aluminate (CoAl2O4) modifiers produced by different companies and the influence of different types of modifiers on the grain size, the microstructure and mechanical properties of high temperature creep resisting superalloy René 77.Design/methodology/approach: The first stage of the research work took over the investigations of physical and chemical properties of cobalt aluminate manufactured by three diff...

  13. Mechanical properties of lanthanum and yttrium chromites

    Energy Technology Data Exchange (ETDEWEB)

    Paulik, S.W.; Armstrong, T.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-12-31

    In an operating high-temperature (1000{degrees}C) solid oxide fuel cell (SOFC), the interconnect separates the fuel (P(O{sub 2}){approx}10{sup -16} atm) and the oxidant (P(O2){approx}10{sup 0.2} atm), while being electrically conductive and connecting the cells in series. Such severe atmospheric and thermal demands greatly reduce the number of viable candidate materials. Only two materials, acceptor substituted lanthanum chromite and yttrium chromite, meet these severe requirements. In acceptor substituted chromites (Sr{sup 2+} or Ca{sup 2+} for La{sup 3+}), charge compensation is primarily electronic in oxidizing conditions (through the formation of Cr{sup 4+}). Under reducing conditions, ionic charge compensation becomes significant as the lattice becomes oxygen deficient. The formation of oxygen vacancies is accompanied by the reduction of Cr{sup 4+} ions to Cr{sup 3+} and a resultant lattice expansion. The lattice expansion observed in large chemical potential gradients is not desirable and has been found to result in greatly reduced mechanical strength.

  14. Comparison of morphology and mechanical properties of PLGA bioscaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Leung, L; Chan, C; Baek, S; Naguib, Hani [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario, M5S 3G8 (Canada)], E-mail: naguib@mie.utoronto.ca

    2008-06-01

    In this study, bioscaffolds using poly(DL-lactide-co-glycolide) acid (PLGA) were fabricated and studied. The gas foaming/salt leaching technique in a batch foaming setup was employed, and the effects of material composition of PLGA on the morphology and mechanical properties using this process were investigated. Two material compositions of PLGA 50/50 and 85/15 were used, and characterization of scaffolds fabricated with these materials showed that a lower relative density can be achieved with an increasing poly(DL-lactide) acid (PDLLA) content; however, higher open-cell porosity was obtained with lower PDLLA content. Furthermore, the effect of PLGA composition on modulus of the scaffolds was minor.

  15. Temperature dependence of poly(lactic acid) mechanical properties

    DEFF Research Database (Denmark)

    Zhou, Chengbo; Guo, Huilong; Li, Jingqing

    2016-01-01

    The mechanical properties of polymers are not only determined by their structures, but also related to the temperature field in which they are located. The yield behaviors, Young's modulus and structures of injection-molded poly(lactic acid) (PLA) samples after annealing at different temperatures....... The crystallinity increases with increasing annealing temperature and a' form crystal is formed when the annealing temperature is higher than 100 oC. The stretched samples with low crystallinity show the first yield at draw temperatures below the glass transition temperature (Tg) and the second yield above Tg....... For the samples annealed between 80 and 120 oC, a peculiar double yield appears when stretched within 50–60 oC and only the first or the second yield can be found at the lower and higher draw temperatures. The yield strain and yield stress together with Young's modulus were obtained and discussed in terms...

  16. Mechanism of photonic band gap, optical properties, tuning and applications

    International Nuclear Information System (INIS)

    Tiwari, A.; Johri, M.

    2006-05-01

    Mechanism of occurrence of Photonic Band Gap (PBG) is presented for 3-D structure using close packed face centered cubic lattice. Concepts and our work, specifically optical properties of 3-D photonic crystal, relative width, filling fraction, effective refractive index, alternative mechanism of photonic band gap scattering strength and dielectric contrast, effect of fluctuations and minimum refractive index contrast, are reported. The temperature tuning and anisotropy of nematic and ferroelectric liquid crystal infiltrated opal for different phase transitions are given. Effective dielectric constant with filling fraction using Maxwell Garnet theory (MG), multiple modified Maxwell Garnet (MMMG) and Effective Medium theory (EM) and results are compared with experiment to understand the occurrence of PBG. Our calculations of Lamb shifts including fluctuations are given and compared with those of literature values. We have also done band structure calculations including anisotropy and compared isotropic characteristic of liquid crystal. A possibility of lowest refractive index contrast useful for the fabrication of PBG is given. Our calculations for relative width as a function of refractive index contrast are reported and comparisons with existing theoretical and experimental optimal values are briefed. Applications of photonic crystals are summarized. The investigations conducted on PBG materials and reported here may pave the way for understanding the challenges in the field of PBG. (author)

  17. Mechanical Properties of Shock-Damaged Rocks

    Science.gov (United States)

    He, Hongliang; Ahrens, T. J.

    1994-01-01

    Stress-strain tests were performed both on shock-damaged gabbro and limestone. The effective Young's modulus decreases with increasing initial damage parameter value, and an apparent work-softening process occurs prior to failure. To further characterize shock-induced microcracks, the longitudinal elastic wave velocity behavior of shock-damaged gabbro in the direction of compression up to failure was measured using an acoustic transmission technique under uniaxial loading. A dramatic increase in velocity was observed for the static compressive stress range of 0-50 MPa. Above that stress range, the velocity behavior of lightly damaged (D(sub 0) less than 0.1) gabbro is almost equal to unshocked gabbro. The failure strength of heavily-damaged (D(sub 0) greater than 0.1) gabbro is approx. 100-150 MPa, much lower than that of lightly damaged and unshocked gabbros (approx. 230-260 MPa). Following Nur's theory, the crack shape distribution was analyzed. The shock-induced cracks in gabbro appear to be largely thin penny-shaped cracks with c/a values below 5 x 10(exp -4). Moreover, the applicability of Ashby and Sammis's theory relating failure strength and damage parameter of shock-damaged rocks was examined and was found to yield a good estimate of the relation of shock-induced deficit in elastic modulus with the deficit in compressive strength.

  18. Extending quantum mechanics entails extending special relativity

    International Nuclear Information System (INIS)

    Aravinda, S; Srikanth, R

    2016-01-01

    The complementarity between signaling and randomness in any communicated resource that can simulate singlet statistics is generalized by relaxing the assumption of free will in the choice of measurement settings. We show how to construct an ontological extension for quantum mechanics (QMs) through the oblivious embedding of a sound simulation protocol in a Newtonian spacetime. Minkowski or other intermediate spacetimes are ruled out as the locus of the embedding by virtue of hidden influence inequalities. The complementarity transferred from a simulation to the extension unifies a number of results about quantum non-locality, and implies that special relativity has a different significance for the ontological model and for the operational theory it reproduces. Only the latter, being experimentally accessible, is required to be Lorentz covariant. There may be certain Lorentz non-covariant elements at the ontological level, but they will be inaccessible at the operational level in a valid extension. Certain arguments against the extendability of QM, due to Conway and Kochen (2009) and Colbeck and Renner (2012), are attributed to their assumption that the spacetime at the ontological level has Minkowski causal structure. (paper)

  19. Towards quantification of butadiene content in styrene-butadiene block copolymers and their blends with general purpose polystyrene (GPPS) and the relation between mechanical properties and NMR relaxation times

    Energy Technology Data Exchange (ETDEWEB)

    Nestle, Nikolaus [BASF Aktiengesellschaft, GKP/P-G 201, D-67056 Ludwigshafen (Germany)], E-mail: nikolaus.nestle@basf.com; Heckmann, Walter; Steininger, Helmut; Knoll, Konrad [BASF Aktiengesellschaft, GKP/P-G 201, D-67056 Ludwigshafen (Germany)

    2007-11-26

    The properties of styrene-butadiene-styrene (SBS) block copolymers do not only depend on the butadiene content and the degree of polymerisation but also on their chain architecture. In this contribution we present the results of a low-field time domain (TD) NMR study in which the transverse relaxation behaviour of different SBS block copolymers was analysed and correlated with findings from mechanical testing on pure and blended materials and transmission electron microscopy data which provide information on the microphase separation. The results indicate that while a straightforward determination of the butadiene content as in blended materials like ABS is not possible for these materials, the TD-NMR results correlate quite well with the mechanical performance of blends from SBS block copolymers with general purpose polystyrene (GPPS), i.e. industrial grade homopolymer polystyrene. Temperature-dependent experiments on pure and blended materials revealed a slight reduction in the softening temperature of the GPPS fraction in the blends.

  20. Microstructures and mechanical properties of an Osprey aluminium 7000 alloy

    International Nuclear Information System (INIS)

    Cottignies, L.; Brechet, Y.; Audier, M.; Livet, F.; Louchet, F.; Sainfort, P.

    1993-01-01

    An alloy from the 7000 serie obtained by the Osprey process has been studied both from the microstructural (TEM, SAXS) and from the mechanical viewpoint. The modelling of the mechanical properties and of their anisotropy was performed using both models from physical metallurgy and a self consistent elastoplastic model. (orig.)

  1. Halloysite reinforced epoxy composites with improved mechanical properties

    Directory of Open Access Journals (Sweden)

    Saif Muhammad Jawwad

    2016-03-01

    Full Text Available Halloysite nanotubes (HNTs reinforced epoxy composites with improved mechanical properties were prepared. The prepared HNTs reinforced epoxy composites demonstrated improved mechanical properties especially the fracture toughness and flexural strength. The flexural modulus of nanocomposite with 6% mHNTs loading was 11.8% higher than that of neat epoxy resin. In addition, the nanocomposites showed improved dimensional stability. The prepared halloysite reinforced epoxy composites were characterized by thermal gravimetric analysis (TGA. The improved properties are attributed to the unique characteristics of HNTs, uniform dispersion of reinforcement and interfacial coupling.

  2. Multiscale simulation of mechanical properties of TiNb alloy

    Science.gov (United States)

    Nikonov, A. Yu.

    2017-12-01

    The article presents a numerical simulation of the mechanical properties of a Ti-Nb β-alloy on three different scales. The ab-initio approach is used to estimate the concentrations of the Ti alloy with required elastic properties. On the basis of molecular dynamics simulation, we calculate the adhesive force between individual particles of the alloy. The calculated dependence is implemented within the movable cellular automata method to determine the mechanical properties of Ti-Nb depending on the interparticle free space.

  3. Radiation Improved Mechanical and Thermal Property of PP/HDPE

    International Nuclear Information System (INIS)

    Chaisupaditsin, M.; Thammit, C.; Techakiatkul, C.

    1998-01-01

    The mechanical properties, thermal properties and gel contents of PP-irradiated HDPE blends were studied. HDPE was gamma irradiated in the dose range of 10-30 kGy. The ratios of polymer blends of 30PP:70HDPE was mixed by a twin screw extruder at speed of 50 rpm. Irradiated HDPE with 30 kGy showed the highest gel contents. The blends ratio of 30PP:70HDPE (30 kGy) shows better heat resistance than the blends with non-irradiated HDPE. With increasing the radiation doses, the mechanical properties of the blends were improved

  4. Mechanical properties of austenitic stainless steels in sodium

    International Nuclear Information System (INIS)

    Lloyd, G.J.

    1978-03-01

    A detailed review of the mechanical properties of austenitic stainless steels in liquid sodium is presented. Consideration has been given to the influence of the of the impurities in reactor sodium and metallurgical variables upon the stress rupture life, the low cycle fatigue and combined creep/fatigue resistance, elastic-plastic crack propagation rates, the high cycle fatigue life, tensile properties and fracture toughness. The effects of exposure to contaminated sodium prior to testing are also discussed. Examples of the success of mechanistic interpretations of materials behaviour in sodium are given and additionally, the extent to which mechanical properties in sodium may be predicted with the use of appropriate data. (author)

  5. Mechanical Properties and Durability of "Waterless Concrete"

    Science.gov (United States)

    Toutanji, Houssam; Grugel, Richard N.

    2008-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and by oxidation soil iron and sulfur can be produced. Iron can be used to reinforce the sulfur concrete. Sulfur concrete specimens were cycled between liquid nitrogen (approximately 191 C) and room temperature (approximately 21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (approximately 21 C) and approximately 101 C. Test results showed that due to temperature cycling, compressive strength of cycled specimens was 20% of those non-cycled. Microscopic examination of the fracture surfaces from the cycled samples showed clear de-bonding of the sulfur from the aggregate material whereas it was seen well bonded in those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibers. The glass fibers from lunar regolith simulant was melted in a 25 cc Pt-Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to 1 hour. Glass fibers were cast from the melt into graphite crucibles and were annealed for a couple of hours at 600 C. Glass fibers and small rods were pulled from the melt. The glass melt wets the ceramic rod and long continuous glass fibers were easily hand drawn. The glass fibers were immediately coated with a protective polymer to maintain the mechanical strength. The glass fibers were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Prisms beams strengthened with glass fibers were tested in 4-point bending test. Beams strengthened with glass fiber showed to

  6. The relation between classical and quantum mechanics

    International Nuclear Information System (INIS)

    Taylor, Peter.

    1984-01-01

    The thesis examines the relationship between classical and quantum mechanics from philosophical, mathematical and physical standpoints. Arguments are presented in favour of 'conjectural realism' in scientific theories, distinguished by explicit contextual structure and empirical testability. The formulations of classical and quantum mechanics, based on a general theory of mechanics is investigated, as well as the mathematical treatments of these subjects. Finally the thesis questions the validity of 'classical limits' and 'quantisations' in intertheoretic reduction. (UK)

  7. Chronic alcohol abuse in men alters bone mechanical properties by affecting both tissue mechanical properties and microarchitectural parameters.

    Science.gov (United States)

    Cruel, M; Granke, M; Bosser, C; Audran, M; Hoc, T

    2017-06-01

    Alcohol-induced secondary osteoporosis in men has been characterized by higher fracture prevalence and a modification of bone microarchitecture. Chronic alcohol consumption impairs bone cell activity and results in an increased fragility. A few studies highlighted effects of heavy alcohol consumption on some microarchitectural parameters of trabecular bone. But to date and to our knowledge, micro- and macro-mechanical properties of bone of alcoholic subjects have not been investigated. In the present study, mechanical properties and microarchitecture of trabecular bone samples from the iliac crest of alcoholic male patients (n=15) were analyzed and compared to a control group (n=8). Nanoindentation tests were performed to determine the tissue's micromechanical properties, micro-computed tomography was used to measure microarchitectural parameters, and numerical simulations provided the apparent mechanical properties of the samples. Compared to controls, bone tissue from alcoholic patients exhibited an increase of micromechanical properties at tissue scale, a significant decrease of apparent mechanical properties at sample scale, and significant changes in several microarchitectural parameters. In particular, a crucial role of structure model index (SMI) on mechanical properties was identified. 3D microarchitectural parameters are at least as important as bone volume fraction to predict bone fracture risk in the case of alcoholic patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Mechanical and corrosion properties of AA8011 sheets and foils:

    OpenAIRE

    Asanović, Vanja; Dalijić, Kemal; Radonjić, Dragan

    2006-01-01

    The mechanical and corrosion properties of a twin-roll cast Al-Fe-Si aluminum alloy with 0.74 % Fe and 0.52 % Si (AA8011) were investigated. The influence of the thermo-mehanical processing route on the mechanical behavior of AA8011 sheets was determined. Comparisons were made with AA3003 and A199.5 sheets. The restoration of the mechanical properties was used in the analysis of the recrystallization behavior of the twin-roll cast AA8011 alloy deformed under cold-working conditions and subseq...

  9. Mechanical Properties of Isotactic Polypropylene Modified with Thermoplastic Potato Starch

    Science.gov (United States)

    Knitter, M.; Dobrzyńska-Mizera, M.

    2015-05-01

    In this paper selected mechanical properties of isotactic polypropylene (iPP) modified with potato starch have been presented. Thermoplastic starch (TPS) used as a modifier in the study was produced from potato starch modified with glycerol. Isotactic polypropylene/thermoplastic potato starch composites (iPP/TPS) that contained 10, 30, 50 wt.% of modified starch were examined using dynamic mechanical-thermal analysis, static tensile, Brinell hardness, and Charpy impact test. The studies indicated a distinct influence of a filler content on the mechanical properties of composites in comparison with non-modified polypropylene.

  10. [Studies on the mechanical properties of the knee ligament].

    Science.gov (United States)

    Kubotera, D

    1987-04-01

    To study mechanical properties of the knee ligaments, tension tests at various speeds were performed on the knee of a dog with only the collateral ligament. The results showed that the tensile force was greater in high speed than in low speed test. The difference may be caused in a viscous property of the ligament. The mechanical properties of ligaments can therefore be treated as those of viscoelastic materials and expressed by a modified Voigt model consisting of a non-linear spring element and a dash pot component. Observations regarding the ultrastructure of human knee ligaments using an electron scanning microscope revealed wavy bundles of collagen fiber connected with coarse fibers like network running in parallel with the long axis as the main structure. The above structure and properties were considered to be the decisive factors in the mechanical actions of the knee ligament.

  11. Mechanical properties of experimental composites with different calcium phosphates fillers.

    Science.gov (United States)

    Okulus, Zuzanna; Voelkel, Adam

    2017-09-01

    Calcium phosphates (CaPs)-containing composites have already shown good properties from the point of view of dental restorative materials. The purpose of this study was to examine the crucial mechanical properties of twelve hydroxyapatite- or tricalcium phosphate-filled composites. The raw and surface-treated forms of both CaP fillers were applied. As a reference materials two experimental glass-containing composites and one commercial dental restorative composite were applied. Nano-hardness, elastic modulus, compressive, flexural and diametral tensile strength of all studied materials were determined. Application of statistical methods (one-way analysis of variance and cluster agglomerative analysis) allowed for assessing the similarities between examined materials according to the values of studied parameters. The obtained results show that in almost all cases the mechanical properties of experimental CaPs-composites are comparable or even better than mechanical properties of examined reference materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Lithophysal Rock Mass Mechanical Properties of the Repository Host Horizon

    International Nuclear Information System (INIS)

    D. Rigby

    2004-01-01

    The purpose of this calculation is to develop estimates of key mechanical properties for the lithophysal rock masses of the Topopah Spring Tuff (Tpt) within the repository host horizon, including their uncertainties and spatial variability. The mechanical properties to be characterized include an elastic parameter, Young's modulus, and a strength parameter, uniaxial compressive strength. Since lithophysal porosity is used as a surrogate property to develop the distributions of the mechanical properties, an estimate of the distribution of lithophysal porosity is also developed. The resulting characterizations of rock parameters are important for supporting the subsurface design, developing the preclosure safety analysis, and assessing the postclosure performance of the repository (e.g., drift degradation and modeling of rockfall impacts on engineered barrier system components)

  13. Autoclaving and clinical recycling: Effects on mechanical properties of orthodontic wires

    Directory of Open Access Journals (Sweden)

    M Oshagh

    2012-01-01

    Conclusion: Although recycle wires were softer than those of control group, relatively small differences and also various properties of available wires have obscured the clinical predictability of their application. There is seemingly no problem in terms of mechanical properties to recycle orthodontic wires.

  14. Determining the mechanical properties of high porosity nickel

    International Nuclear Information System (INIS)

    Frappier, J.C.; Poirier, J.

    1975-01-01

    The following tests were carried out on high porosity (40 to 70%) sintered nickel: tensile tests, compression tests, diametral crushing tests, using strain gauges and extensometers. Results were obtained on the relationship elastic properties - porosity, Poisson coefficient in relation to deformation, variations of yield strength, and breaking stress. these various properties were also studied in relation to the sintering methods and the properties of the powders used [fr

  15. Characterization of porosity in support of mechanical property analysis

    International Nuclear Information System (INIS)

    Price, R.H.; Martin, R.J. III; Boyd, P.J.

    1993-01-01

    The general applicability of laboratory data for engineering purposes is a prime concern for the design and licensing of a potential repository of high level nuclear waste at Yucca Mountain. In order for the results of experiments to be applicable to the repository scale, the data must be scaled to in situ size and conditions. Previous laboratory investigations of tuff have shown that porosity has a dominant, general effect on mechanical properties. As a result, it is very important for the interpretation of mechanical property data that porosity is measured on each sampled test. Porosity alone, however, does not address all of the issues important to mechanical behavior. Variability in size and distribution of pore space produces significantly different mechanical properties. A nondestructive technique for characterizing the internal structure of the sample prior to testing is being developed and the results are being analyzed. The information obtained from this technique can help in both qualitative and quantitative interpretation of test results

  16. The Effect of Bedding Structure on Mechanical Property of Coal

    Directory of Open Access Journals (Sweden)

    Zetian Zhang

    2014-01-01

    Full Text Available The mechanical property of coal, influencing mining activity considerably, is significantly determined by the natural fracture distributed within coal mass. In order to study the effecting mechanism of bedding structure on mechanical property of coal, a series of uniaxial compression tests and mesoscopic tests have been conducted. The experimental results show that the distribution characteristic of calcite particles, which significantly influences the growth of cracks and the macroscopic mechanical properties of coal, is obviously affected by the bedding structure. Specifically, the uniaxial compression strength of coal sample is mainly controlled by bedding structure, and the average peak stress of specimens with axes perpendicular to the bedding planes is 20.00 MPa, which is 2.88 times the average amount of parallel ones. The test results also show a close relationship between the bedding structure and the whole deformation process under uniaxial loading.

  17. Mechanical properties used for the qualification of transport casks

    International Nuclear Information System (INIS)

    Salzbrenner, R.; Crenshaw, T.B.; Sorenson, K.B.

    1993-01-01

    The qualification process that should be sufficient for qualification of a specific cask (material/geometry combination) has been examined. The prototype cask should be tested to determine its overall variation in microstructure, chemistry, and mechanical properties. This prototype may also be subjected to 'proof testing' to demonstrate the validity of the design analysis (including the mechanical properties used in the analysis). The complete mechanical property mapping does not necessarily have to precede the proof testing (i.e., portions of the cask which experience only low (elastic) loads during the drop test are suitable for mechanical test specimens). The behavior of the prototype cask and the production casks are linked by assuring that each cask possesses at least the minimum level of one or more critical mechanical properties. This may be done by measuring the properties of interest directly, or by relying on a secondary measurement (such as subsize mechanical test results or microstructure/compositional measurements) which has been statistically correlated to the critical properties. The database required to show the correlation between the secondary measurement and the valid design property may be established by tests on the material from the prototype cask. The production controls must be demonstrated as being adequate to assure that a uniform product is produced. The testing of coring (or test block or prolongation) samples can only be viewed as providing a valid link to the benchmark results provided by the prototype cask if the process used to create follow-on casks remains essentially similar. The MOSAIK Test Program has demonstrated the qualification method through the benchmarking stage. The program did not establish for qualifying serial production casks through, for example, a correlation between small specimen parameters and valid design fracture toughness properties. Such a correlation would require additional experimental work. (J.P.N.)

  18. Modeling the mechanics of cancer: effect of changes in cellular and extra-cellular mechanical properties.

    Science.gov (United States)

    Katira, Parag; Bonnecaze, Roger T; Zaman, Muhammad H

    2013-01-01

    Malignant transformation, though primarily driven by genetic mutations in cells, is also accompanied by specific changes in cellular and extra-cellular mechanical properties such as stiffness and adhesivity. As the transformed cells grow into tumors, they interact with their surroundings via physical contacts and the application of forces. These forces can lead to changes in the mechanical regulation of cell fate based on the mechanical properties of the cells and their surrounding environment. A comprehensive understanding of cancer progression requires the study of how specific changes in mechanical properties influences collective cell behavior during tumor growth and metastasis. Here we review some key results from computational models describing the effect of changes in cellular and extra-cellular mechanical properties and identify mechanistic pathways for cancer progression that can be targeted for the prediction, treatment, and prevention of cancer.

  19. Mechanical properties of jennite: A theoretical and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Juhyuk, E-mail: juhyuk.moon@stonybrook.edu [Civil Engineering Program, Department of Mechanical Engineering, Stony Brook University, NY 11794 (United States); Yoon, Seyoon [School of Engineering, Kings College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Monteiro, Paulo J.M. [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2015-05-15

    The objective of this study is to determine the mechanical properties of jennite. To date, several hypotheses have been proposed to predict the structural properties of jennite. For the first time as reported herein, the isothermal bulk modulus of jennite was measured experimentally. Synchrotron-based high-pressure x-ray diffraction experiments were performed to observe the variation of lattice parameters under pressure. First-principles calculations were applied to compare with the experimental results and predict additional structural properties. Accurately measured isothermal bulk modulus herein (K{sub 0} = 64(2) GPa) and the statistical assessment on experimental and theoretical results suggest reliable mechanical properties of shear and Young's modulus, Poisson's ratio, and elastic tensor coefficients. Determination of these fundamental structural properties is the first step toward greater understanding of calcium–silicate–hydrate, as well as provides a sound foundation for forthcoming atomic level simulations.

  20. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  1. Mechanical Properties of Graphene Nanoplatelet Carbon Fiber Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  2. Issues related to cooperative implementation mechanisms

    International Nuclear Information System (INIS)

    1998-01-01

    This note by the secretariat seeks to focus discussions on some key issues regarding the design and functioning of the three new mechanisms, such as issues concerning mandates, cross-cutting as well as issues concerning individual mechanisms. The note addresses each mechanism separately in view of different origins, approaches, participants and possible applications. Reference is, however, made to similarities among the mechanisms, in particular where coordination of work on methodological and institutional issues and inter-institutional collaboration are concerned. The note suggests, in its concluding part, elements of a work programme up to and, to some extent, beyond COP 4. It draws upon the views submitted by Parties (document FCCC/SB/1998/MISC.1), contains reflections by the secretariat and builds on its consultations with other organizations having activities, under way or planned, that could contribute to the design or operation of the mechanisms. (au)

  3. Investigating the dental toolkit of primates based on food mechanical properties: Feeding action does matter.

    Science.gov (United States)

    Thiery, Ghislain; Guy, Franck; Lazzari, Vincent

    2017-06-01

    Although conveying an indisputable morphological and behavioral signal, traditional dietary categories such as frugivorous or folivorous tend to group a wide range of food mechanical properties together. Because food/tooth interactions are mostly mechanical, it seems relevant to investigate the dental morphology of primates based on mechanical categories. However, existing mechanical categories classify food by its properties but cannot be used as factors to classify primate dietary habits. This comes from the fact that one primate species might be adapted to a wide range of food mechanical properties. To tackle this issue, what follows is an original framework based on action-related categories. The proposal here is to classify extant primates based on the range of food mechanical properties they can process through one given action. The resulting categories can be used as factors to investigate the dental tools available to primates. Furthermore, cracking, grinding, and shearing categories assigned depending on the hardness and the toughness of food are shown to be supported by morphological data (3D relative enamel thickness) and topographic data (relief index, occlusal complexity, and Dirichlet normal energy). Inferring food mechanical properties from dental morphology is especially relevant for the study of extinct primates, which are mainly documented by dental remains. Hence, we use action-related categories to investigate the molar morphology of an extinct colobine monkey Mesopithecus pentelicus from the Miocene of Pikermi, Greece. Action-related categories show contrasting results compared with classical categories and give us new insights into the dietary adaptations of this extinct primate. Finally, we provide some possible directions for future research aiming to test action-related categories. In particular, we suggest acquiring more data on mechanically challenging fallback foods and advocate the use of other food mechanical properties such as

  4. Environmental properties related to active galactic nuclei

    Science.gov (United States)

    Manzer, Lianne H.

    There continues to be significant controversy regarding the mechanisms responsible for the initiation of activity in galactic nuclei. It is well understood that the non-thermal energy produced by an AGN is due to accretion onto a supermassive black hole. It has not yet been determined, however, what leads particular galaxies to become active. An accurate exploration into what triggers an AGN demands an analysis of a large sample of galaxies across a diverse set of environments. In this work, we investigate possible environmental influences by carrying out a statistical investigation of galaxy groups. Using the catalogue of Yang et al. (2007), in which groups of galaxies containing between 2 and 20 members with redshifts between 0.01 -- 0.20 were taken from the Sloan Digital Sky Survey, we investigate the fraction of active galactic nuclei (AGN) within these groups and compare it to the sample of isolated galaxies also obtained from Yang et al. (2007). After correcting our spectroscopic data for extinction and underlying stellar absorption, we classify the galaxy sample using relevant emission-line ratios. We propose an alternate method for classifying emission-line galaxies, including AGN, which builds upon standard diagnostic utilities used for optical classification and includes uncertainties. Such classification probabilities offer a more robust and consistent method of investigating the effect of group environments with galaxy type. We find our sample to be a fair representation of the local universe by comparing the luminosity function of our entire data set to that of Blanton et al. (2001), Blanton et al. (2003b), and Montero-Dorta & Prada (2009). The evidence also suggests that the luminosity function of galaxies differs between isolated galaxies and galaxies in groups. We find a significant increase in the fraction of AGNs identified in grouped environments. On the other hand, we find a higher fraction of starforming galaxies within isolated systems. We

  5. Antioxidant Property of Jobelyn as the Possible Mechanism Underlying

    Directory of Open Access Journals (Sweden)

    Solomon Umukoro

    2013-01-01

    Full Text Available   Introduction: Amnesia or loss of memory is the cardinal hallmark of Alzheimer’s disease (AD, a progressive neurodegenerative disorder associated with ageing process. Although, AD had been discovered over a century ago, drugs which could cure or halt the progression of the disease are yet to see the light of the day. However, there has been a growing interest in the use of phytomedicines with multipronged mechanisms of action that could target various aspects of the pathologies of AD. Jobelyn (JB is a potent antioxidant African polyherbal formulation with active components that have been acclaimed to show neuroprotection. T his investigation was carried out to evaluate whether JB has anti-amnesic and antioxidant activities.   Methods: The alteration of alternation behavior in the Y-maze paradigm was utilized as the test for memory function in mice. The effect of JB on a cetylcholinesterase (AChE activity, malondialdehyde (MDA level and the concentrations of glutathione (GSH in the frontal cortex and hippocampus were assessed in rats as means of providing insight into the mechanism underlying its anti-amnesic activity. The animals were given JB (1, 2.5 or 5mg/kg, i.p. daily for 7 days before the biochemical assays or test for memory functions were carried out.   Results: JB was found to produce a significant increase in the level of alternation behavior compared with the control, suggesting anti-amnesic activity. Also, JB reversed the memory impairment induced by scopolamine, which further indicates anti-amnesic property. Furthermore, JB demonstrated a significant inhibition of MDA formation in the frontal cortex and hippocampus of rats, indicating antioxidant property. In addition, it increased the defense armory of the brain tissues, as it significantly increased the concentrations of GSH in the frontal cortex and hippocampus of rats. However, JB did not demonstrate any inhibitory effect against AChE activity in the frontal cortex and

  6. Physical and Mechanical Properties of Jute Mat Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    S.M Sadaf

    2011-11-01

    Full Text Available Cellulose jute fibre offers a number of benefits as reinforcement for synthetic polymers since it has a high specific strength and stiffness, low hardness, relatively low density and biodegradability. To reduce moisture uptake and hence to improve the mechanical properties of the composites, bleached jute mats were incorporated as reinforcing elements in the epoxy matrix. Composites at varying volume fractions and different orientations of jute mat were fabricated by hot compression machine under specific pressures and temperatures. Tensile, flexure, impact and water absorption tests of composites were conducted. Jute mat oriented at (0 ± 45–90° composites showed reduced strength compared to (0–90° fibre mat composites. Impact strength and water uptake of high volume fraction jute mat reinforced composites was higher compared to that of lower volume fraction composites. Fracture surfaces of jute mat composites were analyzed under SEM. Fracture surface of (0–90° jute mat oriented composites showed twisted fibres, while (0 ± 45–90° jute mat oriented composites had fibre pull-out without any twisting. Overall, composites containing 52% jute mat at orientations of (0–90° showed better properties compared to other fabricated composites.

  7. Experimental Study on Basic Mechanical Properties of BFRP Bars

    Science.gov (United States)

    Fan, Xiaochun; Xu, Ting; Zhou, Zhengrong; Zhou, Xun

    2017-10-01

    Basalt Fiber Reinforced Polymer (BFRP) bars have the advantages of corrosion resistance, high strength, light weight, good dielectric properties, and they are new type of green reinforced alternative material. In order to determine the mechanical properties of BFRP bars, the tensile strength of basalt fiber bars was necessary to be studied. The diameters of the basalt fiber bars were compared by means of uniaxial tensile test in this article. Then the stress-strain curve can be drawn out. The results show that the stress - strain curve of BFRP bars present straight line relation, and there is no sign before failure; there is no yield platform on the stress-strain curve of BFRP bars, which are typical brittle material;the tensile strength of BFRP bars is about 3 times higher than that of ordinary steel bars. and the elastic modulus is about 1/5 of that of ordinary steel; the ultimate tensile strength of BFRP bars varies little with the increase of diameter, but there exist some differences in modulus values.

  8. Relating β+ radionuclides' properties by order theory

    International Nuclear Information System (INIS)

    Quintero, N.Y.; Guillermo Restrepo; Cohen, I.M.; Universidad Tecnologica Nacional, Buenos Aires

    2013-01-01

    We studied 27 β + radionuclides taking into account some of their variants encoding information of their production, such as integral yield, threshold energy and energy of projectiles used to generate them; these radionuclides are of current use in clinical diagnostic imaging by positron emission tomography (PET). The study was conducted based on physical, physico-chemical, nuclear, dosimetric and quantum properties, which characterise the β + radionuclides selected, with the aim of finding meaningful relationships among them. In order to accomplish this objective the mathematical methodology known as formal concept analysis was employed. We obtained a set of logical assertions (rules) classified as implications and associations, for the set of β + radionuclides considered. Some of them show that low mass defect is related to high and medium values of maximum β + energy, and with even parity and low mean lives; all these parameters are associated to the dose received by a patient subjected to a PET analysis. (author)

  9. Relaxation Mechanisms, Structure and Properties of Semi-Coherent Interfaces

    Directory of Open Access Journals (Sweden)

    Shuai Shao

    2015-10-01

    Full Text Available In this work, using the Cu–Ni (111 semi-coherent interface as a model system, we combine atomistic simulations and defect theory to reveal the relaxation mechanisms, structure, and properties of semi-coherent interfaces. By calculating the generalized stacking fault energy (GSFE profile of the interface, two stable structures and a high-energy structure are located. During the relaxation, the regions that possess the stable structures expand and develop into coherent regions; the regions with high-energy structure shrink into the intersection of misfit dislocations (nodes. This process reduces the interface excess potential energy but increases the core energy of the misfit dislocations and nodes. The core width is dependent on the GSFE of the interface. The high-energy structure relaxes by relative rotation and dilatation between the crystals. The relative rotation is responsible for the spiral pattern at nodes. The relative dilatation is responsible for the creation of free volume at nodes, which facilitates the nodes’ structural transformation. Several node structures have been observed and analyzed. The various structures have significant impact on the plastic deformation in terms of lattice dislocation nucleation, as well as the point defect formation energies.

  10. Densification and Mechanical Properties of ZrN-Nb Composites

    Directory of Open Access Journals (Sweden)

    ZHANG Yan

    2018-02-01

    Full Text Available Densification of zirconium nitride (ZrN ceramics was investigated by vacuum hot pressing at temperatures range from 1500℃to 2000℃with Nb as sintering additive. Densification was enhanced with Nb addition. ZrN with 5mol% Nb addition achieved a relative density of 98.5% at 1600℃.XRD and lattice parameter measurements indicated that there were structural differences between samples sintered in different temperatures. It was likely that due to the presence of point defects by changes in stoichiometry, the kinetics of mass transport enhanced. As a result, the relative density of the zirconium nitride (ZrN ceramics have been improved, thus the fully densed ZrN ceramics can be prepared in a relative low temperature. The density, the room-temperature mechanical properties of ZrN ceramics are increased after the addition of Nb. Zirconium nitride (ZrNdoped with Nb sintered at 1600℃ are measured and obtained elasticity modulus of 238 GPa, flexural strength of 463.3 MPa, fracture toughness of 7.0 MPa·m1/2 and hardness of 10.7 GPa.

  11. Metal Additive Manufacturing: A Review of Mechanical Properties

    Science.gov (United States)

    Lewandowski, John J.; Seifi, Mohsen

    2016-07-01

    This article reviews published data on the mechanical properties of additively manufactured metallic materials. The additive manufacturing techniques utilized to generate samples covered in this review include powder bed fusion (e.g., EBM, SLM, DMLS) and directed energy deposition (e.g., LENS, EBF3). Although only a limited number of metallic alloy systems are currently available for additive manufacturing (e.g., Ti-6Al-4V, TiAl, stainless steel, Inconel 625/718, and Al-Si-10Mg), the bulk of the published mechanical properties information has been generated on Ti-6Al-4V. However, summary tables for published mechanical properties and/or key figures are included for each of the alloys listed above, grouped by the additive technique used to generate the data. Published values for mechanical properties obtained from hardness, tension/compression, fracture toughness, fatigue crack growth, and high cycle fatigue are included for as-built, heat-treated, and/or HIP conditions, when available. The effects of test orientation/build direction on properties, when available, are also provided, along with discussion of the potential source(s) (e.g., texture, microstructure changes, defects) of anisotropy in properties. Recommendations for additional work are also provided.

  12. Mechanical and irradiation properties of zirconium alloys irradiated in HANARO

    International Nuclear Information System (INIS)

    Kwon, Oh Hyun; Eom, Kyong Bo; Kim, Jae Ik; Suh, Jung Min; Jeon, Kyeong Lak

    2011-01-01

    These experimental studies are carried out to build a database for analyzing fuel performance in nuclear power plants. In particular, this study focuses on the mechanical and irradiation properties of three kinds of zirconium alloy (Alloy A, Alloy B and Alloy C) irradiated in the HANARO (High-flux Advanced Neutron Application Reactor), one of the leading multipurpose research reactors in the world. Yield strength and ultimate tensile strength were measured to determine the mechanical properties before and after irradiation, while irradiation growth was measured for the irradiation properties. The samples for irradiation testing are classified by texture. For the irradiation condition, all samples were wrapped into the capsule (07M-13N) and irradiated in the HANARO for about 100 days (E > 1.0 MeV, 1.1 10 21 n/cm 2 ). These tests and results indicate that the mechanical properties of zirconium alloys are similar whether unirradiated or irradiated. Alloy B has shown the highest yield strength and tensile strength properties compared to other alloys in irradiated condition. Even though each of the zirconium alloys has a different alloying content, this content does not seem to affect the mechanical properties under an unirradiated condition and low fluence. And all the alloys have shown the tendency to increase in yield strength and ultimate tensile strength. Transverse specimens of each of the zirconium alloys have a slightly lower irradiation growth tendency than longitudinal specimens. However, for clear analysis of texture effects, further testing under higher irradiation conditions is needed

  13. Bone biopsy needles. Mechanical properties, needle design and specimen quality

    International Nuclear Information System (INIS)

    Keulers, Annika; Penzkofer, T.; Cunha-Cruz, V.C.; Bruners, P.; Helmholtz Inst. fuer biomedizinische Technik, Aachen; Braunschweig, T.; Schmitz-Rode, T.; Mahnken, A.; Helmholtz Inst. fuer biomedizinische Technik, Aachen

    2011-01-01

    To quantitatively analyze differences in mechanical properties, needle design including signs of wear, subjective handling and specimen quality of bone biopsy needles. Materials and Methods: In this study 19 different bone biopsy systems (total 38; 2 /type) were examined. With each biopsy needle five consecutive samples were obtained from vertebral bodies of swine. During puncture a force-torques sensor measured the mechanical properties and subjective handling was assessed. Before and after each biopsy the needles were investigated using a profile projector and signs of wear were recorded. Afterwards, a pathologist semi-quantitatively examined the specimen regarding sample quality. The overall evaluation considered mechanical properties, needle wear, subjective handling and sample quality. Differences were assessed for statistical significance using ANOVA and t-test. Results: Needle diameter (p = 0.003) as well as needle design (p = 0.008) affect the mechanical properties significantly. Franseen design is significantly superior to other needle designs. Besides, length reduction recorded by the profile projector, as a quality criterion showed notable distinctions in between the needle designs. Conclusion: Bone biopsy needles vary significantly in performance. Needle design has an important influence on mechanical properties, handling and specimen quality. Detailed knowledge of those parameters would improve selecting the appropriate bone biopsy needle. (orig.)

  14. Statistical mechanics in the context of special relativity.

    Science.gov (United States)

    Kaniadakis, G

    2002-11-01

    In Ref. [Physica A 296, 405 (2001)], starting from the one parameter deformation of the exponential function exp(kappa)(x)=(sqrt[1+kappa(2)x(2)]+kappax)(1/kappa), a statistical mechanics has been constructed which reduces to the ordinary Boltzmann-Gibbs statistical mechanics as the deformation parameter kappa approaches to zero. The distribution f=exp(kappa)(-beta E+betamu) obtained within this statistical mechanics shows a power law tail and depends on the nonspecified parameter beta, containing all the information about the temperature of the system. On the other hand, the entropic form S(kappa)= integral d(3)p(c(kappa) f(1+kappa)+c(-kappa) f(1-kappa)), which after maximization produces the distribution f and reduces to the standard Boltzmann-Shannon entropy S0 as kappa-->0, contains the coefficient c(kappa) whose expression involves, beside the Boltzmann constant, another nonspecified parameter alpha. In the present effort we show that S(kappa) is the unique existing entropy obtained by a continuous deformation of S0 and preserving unaltered its fundamental properties of concavity, additivity, and extensivity. These properties of S(kappa) permit to determine unequivocally the values of the above mentioned parameters beta and alpha. Subsequently, we explain the origin of the deformation mechanism introduced by kappa and show that this deformation emerges naturally within the Einstein special relativity. Furthermore, we extend the theory in order to treat statistical systems in a time dependent and relativistic context. Then, we show that it is possible to determine in a self consistent scheme within the special relativity the values of the free parameter kappa which results to depend on the light speed c and reduces to zero as c--> infinity recovering in this way the ordinary statistical mechanics and thermodynamics. The statistical mechanics here presented, does not contain free parameters, preserves unaltered the mathematical and epistemological structure of

  15. Bioactive glass/hydroxyapatite composites: mechanical properties and biological evaluation.

    Science.gov (United States)

    Bellucci, Devis; Sola, Antonella; Anesi, Alexandre; Salvatori, Roberta; Chiarini, Luigi; Cannillo, Valeria

    2015-06-01

    Bioactive glass/hydroxyapatite composites for bone tissue repair and regeneration have been produced and discussed. The use of a recently developed glass, namely BG_Ca/Mix, with its low tendency to crystallize, allowed one to sinter the samples at a relatively low temperature thus avoiding several adverse effects usually reported in the literature, such as extensive crystallization of the glassy phase, hydroxyapatite (HA) decomposition and reaction between HA and glass. The mechanical properties of the composites with 80wt.% BG_Ca/Mix and 20wt.% HA are sensibly higher than those of Bioglass® 45S5 reference samples due to the presence of HA (mechanically stronger than the 45S5 glass) and to the thermal behaviour of the BG_Ca/Mix, which is able to favour the sintering process of the composites. Biocompatibility tests, performed with murine fibroblasts BALB/3T3 and osteocites MLO-Y4 throughout a multi-parametrical approach, allow one to look with optimism to the produced composites, since both the samples themselves and their extracts do not induce negative effects in cell viability and do not cause inhibition in cell growth. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The fracture properties and toughening mechanisms of bone and dentin

    Science.gov (United States)

    Koester, Kurt John

    The mechanical properties of bone and dentin and in particular their fracture properties, are the subject of intense research. The relevance of these properties is increasing as our population ages and fracture incidence impacts the lives of a greater portion of the population. A robust framework is needed to understand the fracture properties of bone and dentin to guide researchers as they attempt to characterize the effects of aging, disease, and pharmaceutical treatments on the properties of these mineralized tissues. In the present work, this framework is provided and applied to human bone, human dentin, and animal bone. In situ electron microscopy was also used to identify the salient toughening mechanisms in bone and dentin. It was found that bone and dentin are extrinsically toughened materials and consequently their fracture properties are best characterized utilizing a crack-growth resistance approach. A description of the different mechanical measurements commonly employed when using small animal models (rats and mice) to evaluate the influence of drug therapies on bone fragility is provided. A study where these properties were measured for a large population of wild-type rats and mice was also conducted. Given my findings, it was determined that for the most complete understanding of small animal bone it was necessary to measure strength and toughness. Strength measurements probe the flaw distribution and toughness measurements to evaluate the resistance to facture in the presence of a single dominant worst-case flaw.

  17. Montmorillonite polyaniline nanocomposites: Preparation, characterization and investigation of mechanical properties

    International Nuclear Information System (INIS)

    Soundararajah, Q.Y.; Karunaratne, B.S.B.; Rajapakse, R.M.G.

    2009-01-01

    The interest in clay polymer nanocomposites (CPN) materials, initially developed by researchers at Toyota, has grown dramatically over the last decade. They have attracted great interest, both in industry and in academia, because they often exhibit remarkable improvement in materials' properties when compared with virgin polymer or conventional micro- and macro-composites. These improvements can include high moduli, increased strength and heat resistance, decreased gas permeability and flammability, optical transparency and increased biodegradability of biodegradable polymers. Such enhancement in the properties of nanocomposites occurs mostly due to their unique phase morphology and improved interfacial properties. Because of these enhanced properties they find applications in the fields of electronics, automobile industry, packaging, and construction. This study aims at investigating the mechanical property enhancement of polyaniline (PANI) intercalated with montmorillonite (MMT) clay. The MMT-PANI nanocomposites displayed improved mechanical properties compared to the neat polymer or clay. The enhancement was achieved at low clay content probably due to its exfoliated structure. The increased interfacial areas and improved bond characteristics may attribute to the mechanical property enhancement

  18. Size Effect of Defects on the Mechanical Properties of Graphene

    Science.gov (United States)

    Park, Youngho; Hyun, Sangil

    2018-03-01

    Graphene, a two-dimensional material, has been studied and utilized for its excellent material properties. In reality, achieving a pure single-crystalline structure in graphene is difficult, so usually graphene may have various types of defects in it. Vacancies, Stone-Wales defects, and grain boundaries can drastically change the material properties of graphene. Graphene with vacancy defects has been of interest because it is a two-dimensional analogy of three-dimensional porous materials. It has efficient material properties, and can function as a part of modern devices. The mechanical properties have been studied by using molecular dynamics for either a single vacancy defect with various sizes or multiple vacancy defects with same defect ratios. However, it is not clear which one has more influence on the mechanical properties between the size of the defects and the defect ratio. Therefore, we investigated the hole-size effect on the mechanical properties of single-crystalline graphene at various defect ratios. A void defect with large size can have a rather high tensile modulus with a low fracture strain compared to a void defect with small size. We numerically found that the tensile properties of scattered single vacancies is similar to that of amorphous graphene. We suspect that this is due to the local orbital change of the carbon atoms near the boundary of the void defects, so-called the interfacial phase.

  19. Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics.

    Science.gov (United States)

    Root, Samuel E; Savagatrup, Suchol; Printz, Adam D; Rodriquez, Daniel; Lipomi, Darren J

    2017-05-10

    Mechanical deformability underpins many of the advantages of organic semiconductors. The mechanical properties of these materials are, however, diverse, and the molecular characteristics that permit charge transport can render the materials stiff and brittle. This review is a comprehensive description of the molecular and morphological parameters that govern the mechanical properties of organic semiconductors. Particular attention is paid to ways in which mechanical deformability and electronic performance can coexist. The review begins with a discussion of flexible and stretchable devices of all types, and in particular the unique characteristics of organic semiconductors. It then discusses the mechanical properties most relevant to deformable devices. In particular, it describes how low modulus, good adhesion, and absolute extensibility prior to fracture enable robust performance, along with mechanical "imperceptibility" if worn on the skin. A description of techniques of metrology precedes a discussion of the mechanical properties of three classes of organic semiconductors: π-conjugated polymers, small molecules, and composites. The discussion of each class of materials focuses on molecular structure and how this structure (and postdeposition processing) influences the solid-state packing structure and thus the mechanical properties. The review concludes with applications of organic semiconductor devices in which every component is intrinsically stretchable or highly flexible.

  20. Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties

    KAUST Repository

    Kalakonda, Parvathalu.; Aldhahri, Musab A.; Abdel-wahab, Mohamed Shaaban; Tamayol, Ali; Moghaddam, K. Mollazadeh; Ben Rached, Fathia; Pain, Arnab; Khademhosseini, Ali; Memic, Adnan; Chaieb, Saharoui

    2017-01-01

    Electrospun scaffolds of poly(glycerol sebacate)/poly(ε-caprolactone) (PGS/PCL) have been used for engineered tissues due to their desirable thermal and mechanical properties as well as their tunable degradability. In this paper, we fabricated micro-fibrous scaffolds from a composite of PGS/PCL using a standard electrospinning method and coated them with silver (Ag). The low temperature coating method prevented substrate melting and the Ag coating decreases the pore size and increases the diameter of fibers which resulted in enhanced thermal and mechanical properties. We further compared the mechanical properties of the composite fibrous scaffolds with different thicknesses of Ag coated scaffolds. The composite fibrous scaffold with a 275 nm Ag coating showed higher tensile modulus (E) and ultimate tensile strength (UTS) without any post-processing treatment. Lastly, potential controlled release of the Ag coating from the composite fibrous scaffolds could present interesting biomedical applications.

  1. Improvement of the mechanical properties of reinforced aluminum foam samples

    Science.gov (United States)

    Formisano, A.; Barone, A.; Carrino, L.; De Fazio, D.; Langella, A.; Viscusi, A.; Durante, M.

    2018-05-01

    Closed-cell aluminum foam has attracted increasing attention due to its very interesting properties, thanks to which it is expected to be used as both structural and functional material. A research challenge is the improvement of the mechanical properties of foam-based structures adopting a reinforced approach that does not compromise their lightness. Consequently, the aim of this research is the fabrication of enhanced aluminum foam samples without significantly increasing their original weight. In this regard, cylindrical samples with a core of closed-cell aluminum foam and a skin of fabrics and grids of different materials were fabricated in a one step process and were mechanically characterized, in order to investigate their behaviour and to compare their mechanical properties to the ones of the traditional foam.

  2. Development the Mechanical Properties of (AL-Li-Cu Alloy

    Directory of Open Access Journals (Sweden)

    Ihsan Kadhom AlNaimi

    2017-11-01

    Full Text Available The aim of this research is to develop mechanical properties of a new aluminium-lithium-copper alloy. This alloy prepared under control atmosphere by casting in a permanent metal mould. The microstructure was examined and mechanical properties were tested before and after heat treatment to study the influence of heat treatment on its mechanical properties including; modulus of elasticity, tensile strength, impact, and fatigue. The results showed that the modulus of elasticity of the prepared alloy is higher than standard alloy about 2%. While the alloy that heat treated for 6 h and cooled in water, then showed a higher ultimate tensile stress comparing with as-cast alloy. The homogenous heat treatment gives best fatigue behaviour comparing with as-cast and other heat treatment alloys. Also, the impact test illustrates that the homogeneous heat treatment alloy gives the highest value.

  3. Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties

    KAUST Repository

    Kalakonda, Parvathalu.

    2017-07-07

    Electrospun scaffolds of poly(glycerol sebacate)/poly(ε-caprolactone) (PGS/PCL) have been used for engineered tissues due to their desirable thermal and mechanical properties as well as their tunable degradability. In this paper, we fabricated micro-fibrous scaffolds from a composite of PGS/PCL using a standard electrospinning method and coated them with silver (Ag). The low temperature coating method prevented substrate melting and the Ag coating decreases the pore size and increases the diameter of fibers which resulted in enhanced thermal and mechanical properties. We further compared the mechanical properties of the composite fibrous scaffolds with different thicknesses of Ag coated scaffolds. The composite fibrous scaffold with a 275 nm Ag coating showed higher tensile modulus (E) and ultimate tensile strength (UTS) without any post-processing treatment. Lastly, potential controlled release of the Ag coating from the composite fibrous scaffolds could present interesting biomedical applications.

  4. Pressing Speed, Specific Pressure and Mechanical Properties of Aluminium Cast

    Directory of Open Access Journals (Sweden)

    Gaspar S.

    2016-06-01

    Full Text Available Recent research in the process of aluminum alloy die castings production, which is nowadays deeply implemented into the rapidly growing automobile, shipping and aircraft industries, is aimed at increasing the useful qualitative properties of the die casting in order to obtain its high mechanical properties at acceptable economic cost. Problem of technological factors of high pressure die casting has been a subject of worldwide research (EU, US, Japan, etc.. The final performance properties of die castings are subjected to a large number of technological factors. The main technological factors of high pressure die casting are as follows: plunger pressing speed, specific (increase pressure, mold temperature as well as alloy temperature. The contribution discusses the impact of the plunger pressing speed and specific (increase pressure on the mechanical properties of the casting aluminum alloy.

  5. Mechanical Properties for Reliability Analysis of Structures in Glassy Carbon

    CERN Document Server

    Garion, Cédric

    2014-01-01

    Despite its good physical properties, the glassy carbon material is not widely used, especially for structural applications. Nevertheless, its transparency to particles and temperature resistance are interesting properties for the applications to vacuum chambers and components in high energy physics. For example, it has been proposed for fast shutter valve in particle accelerator [1] [2]. The mechanical properties have to be carefully determined to assess the reliability of structures in such a material. In this paper, mechanical tests have been carried out to determine the elastic parameters, the strength and toughness on commercial grades. A statistical approach, based on the Weibull’s distribution, is used to characterize the material both in tension and compression. The results are compared to the literature and the difference of properties for these two loading cases is shown. Based on a Finite Element analysis, a statistical approach is applied to define the reliability of a structural component in gl...

  6. Structure–mechanics property relationship of waste derived biochars

    Energy Technology Data Exchange (ETDEWEB)

    Das, Oisik, E-mail: odas566@aucklanduni.ac.nz [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Sarmah, Ajit K., E-mail: a.sarmah@auckland.ac.nz [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Bhattacharyya, Debes, E-mail: d.bhattacharyya@auckland.ac.nz [Department of Mechanical Engineering, Center for Advanced Composite Materials, University of Auckland, Auckland 1142 (New Zealand)

    2015-12-15

    The widespread applications of biochar in agriculture and environmental remediation made the scientific community ignore its mechanical properties. Hence, to examine the scope of biochar's structural applications, its mechanical properties have been investigated in this paper through nanoindentation technique. Seven waste derived biochars, made under different pyrolysis conditions and from diverse feedstocks, were studied via nanoindentation, infrared spectroscopy, X–ray crystallography, thermogravimetry, and electron microscopy. Following this, an attempt was made to correlate the biochars' hardness/modulus with reaction conditions and their chemical properties. The pine wood biochar made at 900 °C and 60 min residence time was found to have the highest hardness and elastic modulus of 4.29 and 25.01 GPa, respectively. It was shown that a combination of higher heat treatment (≥ 500 °C) temperature and longer residence time (~ 60 min) increases the values of hardness and modulus. It was further realized that pyrolysis temperature was a more dominant factor than residence time in determining the final mechanical properties of biochar particles. The degree of aromaticity and crystallinity of the biochar were also correlated with higher values of hardness and modulus. - Highlights: • Characterization was done on waste based biochars which included nanoindentation. • Pine saw dust biochar made at 900 °C for 60 min had highest hardness/modulus. • Combination of temperature/residence time affect biochar's mechanical propertie.s • Aromaticity and crystallinity positively affected biochar's mechanical properties.

  7. The Mechanical Properties of Recycled Polyethylene-Polyethylene Terephthalate Composites

    Directory of Open Access Journals (Sweden)

    Ehsan Avazverdi

    2015-02-01

    Full Text Available Polyethylene terephthalate (PET, one of the thermoplastic polymers, is encountered with arduous problems in its recycling. After recycling, its mechanical properties drop dramatically and therefore it cannot be used to produce the products as virgin PET does. Polyethylene is a thermoplastic polymer which can be easily recycled using the conventional recycling processes. The decreased mechanical properties of virgin polyethylene due to the environmental factors can be improved by reinforcing fillers. In this paper, we studied the effects of adding recycled polyethylene terephthalate (rPET as a filler, in various amounts with different sizes, on the physical and mechanical properties of recycled polyethylene. Composite samples were prepared using an internal mixer at temperature 185°C, well below rPET melting point (250°C, and characterized by their mechanical properties. To improve the compatibility between different components, PE grafted with maleic anhydride was added as a coupling agent in all the compositions under study. The mechanical properties of the prepared samples were performed using the tensile strength, impact strength, surface hardness and melt flow index (MFI tests. To check the dispersity of the polyethylene terephthalate powder in the polyethylene matrix, light microscopy was used. The results showed that the addition of rPET improved the tensile energy, tensile modulus and surface hardness of the composites while reduced the melt flow index, elongation-at-yield, tensile strength and fracture energy of impact test. We could conclude that with increasing rPET percentage in the recycled polyethylene matrix, the composite became brittle, in other words it decreased the plastic behavior of recycled polyethylene. Decreasing particle size led to higher surface contacts, increased the mechanical properties and made the composite more brittle. The light microscopy micrographs of the samples showed a good distribution of small r

  8. Exterior difference systems and invariance properties of discrete mechanics

    International Nuclear Information System (INIS)

    Xie Zheng; Xie Duanqiang; Li Hongbo

    2008-01-01

    Invariance properties describe the fundamental physical laws in discrete mechanics. Can those properties be described in a geometric way? We investigate an exterior difference system called the discrete Euler-Lagrange system, whose solution has one-to-one correspondence with solutions of discrete Euler-Lagrange equations, and use it to define the first integrals. The preservation of the discrete symplectic form along the discrete Hamilton phase flows and the discrete Noether's theorem is also described in the language of difference forms

  9. Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes.

    Science.gov (United States)

    Liou, Kai-Hsin; Tsou, Nien-Ti; Kang, Dun-Yen

    2015-10-21

    Carbon nanotubes (CNTs) are regarded as small but strong due to their nanoscale microstructure and high mechanical strength (Young's modulus exceeds 1000 GPa). A longstanding question has been whether there exist other nanotube materials with mechanical properties as good as those of CNTs. In this study, we investigated the mechanical properties of single-walled aluminosilicate nanotubes (AlSiNTs) using a multiscale computational method and then conducted a comparison with single-walled carbon nanotubes (SWCNTs). By comparing the potential energy estimated from molecular and macroscopic material mechanics, we were able to model the chemical bonds as beam elements for the nanoscale continuum modeling. This method allowed for simulated mechanical tests (tensile, bending, and torsion) with minimum computational resources for deducing their Young's modulus and shear modulus. The proposed approach also enabled the creation of hypothetical nanotubes to elucidate the relative contributions of bond strength and nanotube structural topology to overall nanotube mechanical strength. Our results indicated that it is the structural topology rather than bond strength that dominates the mechanical properties of the nanotubes. Finally, we investigated the relationship between the structural topology and the mechanical properties by analyzing the von Mises stress distribution in the nanotubes. The proposed methodology proved effective in rationalizing differences in the mechanical properties of AlSiNTs and SWCNTs. Furthermore, this approach could be applied to the exploration of new high-strength nanotube materials.

  10. Measurement of the mechanical properties of layered systems

    International Nuclear Information System (INIS)

    Blank, E.

    2002-01-01

    Thin films for integrated electronic circuitry, packaging and small structures in micro-electromechanical systems (MEMS) as well as protective coatings require mechanical testing to control fabrication processes, guarantee product quality and establish data bases for engineering purposes. They generally escape classical materials testing owing to their small size in at least one dimension and their incorporation into larger structures. The fact that material properties change in the micro- and nanometer range when sample dimensions reach the scale of defect structures, implies that sample and probe size become part of the property evaluation process. Although research into the mechanical behaviour of thin films and small structures now is established, the fundamentals of mechanical testing continue to be identified while there is a growing need for methods allowing to measure intrinsic material properties. This lecture will focus on the mechanics of thin film and small volume structures and review recently developed testing techniques for measuring materials properties, particularly indentation, bulge and bend testing. The effect of specimen and probe geometry on property evaluation will be discussed. The use of Raman spectroscopy for residual stress measurement will be illustrated. (Author)

  11. Mechanical properties of welded joints of duplex steels

    International Nuclear Information System (INIS)

    Kawiak, M.; Nowacki, J.

    2003-01-01

    The paper presents the study results of mechanical properties of duplex steels UNS S31803 welded joints as well as duplex and NV A36 steels welded joints. They have ben welded by FCAW method in CO 2 using FCW 2205-H flux-cored wire. The joints have been subjected: tensile tests, impact tests, bending tests, hardness tests and metallographic investigations. The influence of welding parameters and mechanical properties of the joints was appreciated. The welding method assured high tensile strength of the joints (approximately 770 MPa) and high impact strength of the welds (approximately 770 J). All samples were broken outside of welds. (author)

  12. The mechanism and properties of acid-coagulated milk gels

    Directory of Open Access Journals (Sweden)

    Chanokphat Phadungath

    2005-03-01

    Full Text Available Acid-coagulated milk products such as fresh acid-coagulated cheese varieties and yogurt areimportant dairy food products. However, little is known regarding the mechanisms involved in gel formation, physical properties of acid gels, and the effects of processing variables such as heat treatment and gelation temperature on the important physical properties of acid milk gels. This paper reviews the modern concepts of possible mechanisms involved in the formation of particle milk gel aggregation, along with recent developments including the use of techniques such as dynamic low amplitude oscillatory rheology to observe the gel formation process, and confocal laser scanning microscopy to monitor gel microstructure.

  13. Mechanical Properties of Plug Welds after Micro-Jet Cooling

    OpenAIRE

    Hadryś D.

    2016-01-01

    New technology of micro-jet welding could be regarded as a new way to improve mechanical properties of plug welds. The main purpose of that paper was analyzing of mechanical properties of plug welds made by MIG welding method with micro-jet cooling. The main way for it was comparison of plug welds made by MIG welding method with micro-jet cooling and plug welds made by ordinary MIG welding method. It is interesting for steel because higher amount of acicular ferrite (AF) in weld metal deposit...

  14. The factors influencing microstructure and mechanical properties of ADI

    Directory of Open Access Journals (Sweden)

    A. Vaško

    2009-01-01

    Full Text Available The paper deals with the influence of different conditions of isothermal heat treatment on microstructure and mechanical properties of austempered ductile iron (ADI. Different temperature of isothermal transformation of austenite and different holding time at this temperature were used for heat treatment of specimens. The microstructure of specimens after casting and after heat treatment was evaluated by STN EN ISO 945 and by image analysis (using Lucia software. Mechanical properties were evaluated by the tensile test, the Rockwell hardness test and fatigue tests.

  15. Computer simulations of the mechanical properties of metals

    DEFF Research Database (Denmark)

    Schiøtz, Jakob; Vegge, Tejs

    1999-01-01

    Atomic-scale computer simulations can be used to gain a better understanding of the mechanical properties of materials. In this paper we demonstrate how this can be done in the case of nanocrystalline copper, and give a brief overview of how simulations may be extended to larger length scales....... Nanocrystline metals are metals with grain sizes in the nanometre range, they have a number of technologically interesting properties such as much increased hardness and yield strength. Our simulations show that the deformation mechanisms are different in these materials than in coarse-grained materials...

  16. Comparative study of the mechanical properties from different polycarbonates

    International Nuclear Information System (INIS)

    Terence, M.C.; Miranda, A.; Guedes, S.M.L.; Sciani, V.

    1995-01-01

    The polycarbonates (PC) with molecular weight 22000 and 27000 g/mol fabricated by Policarbonatos do Brasil S.A., as irradiated by γ rays with doses between 0 and 300 kGy in presence of air at room temperature. The effects in the mechanical properties of PC were investigated using an INSTRON dynamometer. The results showed that both PC have good mechanical stability. (author). 6 refs, 2 figs

  17. Mechanical Properties of Spray Cast 7XXX Series Aluminium Alloys

    OpenAIRE

    SALAMCI, Elmas

    2014-01-01

    Mechanical properties of spray deposited and extruded 7xxx series aluminium alloys were investigated in peak aged condition. To study the influence of Zn additions on the mechanical behaviour of spray deposited materials, three alloy compositions were selected, namely: SS70 (11.5% Zn), N707 (10.9% Zn) and 7075 (5.6% Zn). After ageing treatment, notched and unnotched specimens of spray deposited alloys were subjected to tensile tests at room temperature. Experimental results showed...

  18. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    International Nuclear Information System (INIS)

    Mierke, Claudia Tanja

    2013-01-01

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation. (paper)

  19. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation.

  20. On the correlation between fuel structure and mechanical properties of UO2

    International Nuclear Information System (INIS)

    Blank, H.; Mandler, R.; Matzke, H.; Routbort, J.; Werner, P.

    1983-01-01

    The relation between the structure of a UO 2 fuel and its mechanical properties are discussed and illustrated for particular types of UO 2 by measurements of fracture surface energy, hardness, fracture stress and compressive deformation at 1870 and 1970 K. This gives the background for treating the question whether it is possible to find a simple experimental method for correlating the mechanical properties of UO 2 before irradiation with those after various irradiation histories. Hardness measurements might be such a method if combined with a detailed structural analysis and sufficient knowledge about the irradiation history. However, for a meaningful interpretation of the data the presently available 'classical' methods of fracture mechanics are inadequate and, furthermore, sufficient additional (not yet available) information on the relations between mechanical properties and structural details are required. (author)

  1. Impact of polymer modification on mechanical and viscoelastic properties.

    Science.gov (United States)

    2015-10-01

    This study was initiated with the aim of evaluating the relative impact of different cross-linking agents : on the rheological and morphological properties of polymer modified asphalt binders (PMAs). To : complete this objective, two cross-linking ag...

  2. Properties of short-dough biscuits in relation to structure

    NARCIS (Netherlands)

    Baltsavias, A.; Jurgens, A.; Vliet, T. van

    1999-01-01

    The mechanical properties of short-dough biscuits of various composition were determined in three-point bending tests. The temperature during dough preparation and the dough water content affected the air volume fraction and the mechanical properties to an extent which depended on the fat content.

  3. Relation between rheological and structural properties of suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Barcal, M; Sebor, G; Volsicky, Z

    1982-01-01

    The paper discusses results of investigations into separation processes for coal and kaolin suspensions. Effects of potassium chlorides and methanol additives on electrostatic potential of solid particles and on sedimentation rate are analyzed. Investigation results are shown in 5 diagrams. The relation between rheological and structural properties of coal and clay suspensions is investigated. Investigations show that the non-Newtonian behavior of suspensions cannot be attributed exclusively to the electrostatic and mechanical action of the solid phase particles. It is also caused by structure of the liquid phase, particularly on the surface of the solid particles, which depends mostly on hydrogen bonds. The internal structure of the liquid phase influences differential viscosity much more than the electrical surface properties of the solid phase. Bonds between the molecules of water and methanol are much stronger than bonds between water molecules alone. (9 refs.)

  4. Effect of electronegativity on the mechanical properties of metal hydrides with a fluorite structure

    International Nuclear Information System (INIS)

    Ito, Masato; Setoyama, Daigo; Matsunaga, Junji; Muta, Hiroaki; Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke

    2006-01-01

    Bulk titanium, yttrium, and zirconium hydrides, which have the same structure as that of fluorite-type fcc C 1, were produced and their mechanical properties were investigated. With an increase in the hydrogen content, the lattice parameters of titanium and zirconium hydrides increased, whereas those of yttrium hydride decreased. The elastic moduli of titanium and zirconium hydrides decreased by hydrogen addition, whereas those of yttrium hydride increased. There are linear relations between the electronegativities and hydrogen content dependence of the properties. Therefore, the mechanical properties of the metal hydrides are considered to be determined by a common rule based on the electronegativity

  5. Effect of quenching techniques on the mechanical properties of low carbon structural steel

    Directory of Open Access Journals (Sweden)

    K. Miernik

    2010-07-01

    Full Text Available The paper presents the results of the impact of incomplete quenching technique on the mechanical properties of low carbon structural steel.Significant influence of the heating method to the α + γ field was observed on the strength and plasticity after hardening process. The best combination of mechanical properties was obtained for the 3th technique consisting of pre-heating the material to the austenite field, next cooling to the appropriate temperature in the α + γ and hardening from that dual phase region. The high level of toughness with relatively high strength were observed, compared to the properties obtained for the two other ways to quench annealing (incomplete hardening.

  6. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland (Australia)

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  7. Mechanical property estimation with ABI and FEM simulation

    International Nuclear Information System (INIS)

    Sharma, Kamal; Singh, P.K.; Das, Gautam; Bhasin, Vivek; Vaze, K.K.; Ghosh, A.K.

    2007-01-01

    A combined mechanical property evaluation methodology with ABI (Automated Ball Indentation) simulation and Artificial Neural Network (ANN) analysis is evolved to evaluate the mechanical properties for material. The experimental load deflection data is converted into meaningful mechanical properties for this material. An ANN database is generated with the help of contact type finite element analysis by numerically simulating the ABI process for various magnitudes of yield strength (σ yp ) (200 MPa - 500 MPa) with a range of strain hardening exponent (n) (0.1 - 0.5) and strength coefficient (K) (500 MPa - 1500 MPa). For the present problem, a ball indenter of 1.57 mm diameter having Young's modulus approximately 100 times more than the test piece is used to minimize the error due to indenter deformation. Test piece dimension is kept large enough in comparison to the indenter configuration in the simulation to minimize the deflection at the outer edge of the test piece. Further this database after the neural network training; is used to analyze measured material properties of different test pieces. The ANN predictions are reconfirmed with contact type finite element analysis for an arbitrary selected test sample. The methodology evolved in this work can be extended to predict material properties for any irradiated nuclear material in the service. (author)

  8. Influence of wood defects on some mechanical properties of two ...

    African Journals Online (AJOL)

    Effects of slope of wood grain, knot, split, ingrowth and sapwood on some mechanical wood properties of Pterygota macrocarpa (Kyere) and Piptadeniastrum africanum (Dahoma) have been studied, using structural size specimens and a 60 tonne structural wood testing machine. The study on the two tropical hardwoods ...

  9. Effects of moisture on the mechanical properties of glass fibre ...

    Indian Academy of Sciences (India)

    Unknown

    of moisture absorption and correlating with the mechanical properties, it was observed that the ..... where F is the flux of moisture molecules crossing a unit ... 300. 400. 500. 600. 700 wt% of nascent fibre loading. 63.50. 55.75. 48.48. 38.63.

  10. Effect of carbon nanofibre addition on the mechanical properties of ...

    Indian Academy of Sciences (India)

    Owing to the good mechanical properties of the carbon nanofibres (CNFs), they ... 8H Satin, T-300 carbon fabric (C-fabric) was used as rein- forcement. ... below. Absolute strength (S) in MPa at a given Vf: S = a + bVf + cV 2 f , where 'a' is the ...

  11. Mechanical Properties of Potato- Starch Linear Low Density ...

    African Journals Online (AJOL)

    The mechanical properties of potato-starch filled LLDPE such as Young's Modulus, tensile strength and elongation at break were studied. Apart from the Young's Modulus, the tensile strength and elongation at break reduced with increased starch content. This is attributed to poor adhesion between starch and the polymer ...

  12. Influence of tempering temperature on mechanical properties of cast steels

    Directory of Open Access Journals (Sweden)

    G. Golański

    2008-12-01

    Full Text Available The paper presents results of research on the influence of tempering temperature on structure and mechanical properties of bainite hardened cast steel: G21CrMoV4 – 6 (L21HMF and G17CrMoV5 – 10 (L17HMF. Investigated cast steels were taken out from internal frames of steam turbines serviced for long time at elevated temperatures. Tempering of the investigated cast steel was carried out within the temperature range of 690 ÷ 730 C (G21CrMoV4 – 6 and 700 ÷ 740 C (G17CrMoV5 – 10. After tempering the cast steels were characterized by a structure of tempered lower bainite with numerous precipitations of carbides. Performed research of mechanical properties has shown that high temperatures of tempering of bainitic structure do not cause decrease of mechanical properties beneath the required minimum.oo It has also been proved that high-temperature tempering (>720 oC ensures high impact energy at the 20% decrease of mechanical properties.

  13. Comparative study of some mechanical and release properties of ...

    African Journals Online (AJOL)

    The mechanical and release properties of paracetamol tablets formulated with cashew gum (CAG), povidone (PVP) and gelatin (GEL) as binders were studied and compared. The parameters studied were tensile strength (TS), brittle fracture index (BFI), friability (F), disintegration time (DT) and percentage drug released ...

  14. IMPACT OF OIL ON THE MECHANICAL PROPERTIES OF SOIL SUBSIDENCE

    Directory of Open Access Journals (Sweden)

    Алексей Алексеевич Бурцев

    2016-08-01

    Full Text Available The paper studied the effect of oil content on the mechanical properties of soil subsidence - Ek modulus and compressibility factor m0, obtained in the laboratory with the help of artificial impregnation oil soil samples. A comparison of the above parameters with samples of the same soil in the natural and water-saturated conditions has been perfomed.

  15. Comparison of mechanical properties for several electrical spring contact alloys

    International Nuclear Information System (INIS)

    Nordstrom, T.V.

    1976-06-01

    Work was conducted to determine whether beryllium-nickel alloy 440 had mechanical properties which made it suitable as a substitute for the presently used precious metal contact alloys Paliney 7 and Neyoro G, in certain electrical contact applications. Possible areas of applicability for the alloy were where extremely low contact resistance was not necessary or in components encountering elevated temperatures above those presently seen in weapons applications. Evaluation of the alloy involved three major experimental areas: 1) measurement of the room temperature microplastic (epsilon approximately 10 -6 ) and macroplastic (epsilon approximately 10 -3 ) behavior of alloy 440 in various age hardening conditions, 2) determination of applied stress effects on stress relaxation or contact force loss and 3) measurement of elevated temperature mechanical properties and stress relaxation behavior. Similar measurements were also made on Neyoro G and Paliney 7 for comparison. The primary results of the study show that beryllium-nickel alloy 440 is from a mechanical properties standpoint, equal or superior to the presently used Paliney 7 and Neyoro G for normal Sandia requirements. For elevated temperature applications, alloy 440 has clearly superior mechanical properties

  16. Structural characterization and mechanical properties of polypropylene reinforced natural fibers

    Science.gov (United States)

    Karim, M. A. A.; Zaman, I.; Rozlan, S. A. M.; Berhanuddin, N. I. C.; Manshoor, B.; Mustapha, M. S.; Khalid, A.; Chan, S. W.

    2017-10-01

    Recently the development of natural fiber composite instead of synthetics fiber has lead to eco-friendly product manufacturing to meet various applications in the field of automotive, construction and manufacturing. The use of natural fibers offer an alternative to the reinforcing fibers because of their good mechanical properties, low density, renewability, and biodegradability. In this present research, the effects of maleic anhydride polypropylene (MAPP) on the mechanical properties and material characterization behaviour of kenaf fiber and coir fiber reinforced polypropylene were investigated. Different fractions of composites with 10wt%, 20wt% and 30wt% fiber content were prepared by using brabender mixer at 190°C. The 3wt% MAPP was added during the mixing. The composites were subsequently molded with injection molding to prepare the test specimens. The mechanical properties of the samples were investigated according to ISO 527 to determine the tensile strength and modulus. These results were also confirmed by the SEM machine observations of fracture surface of composites and FTIR analysis of the chemical structure. As the results, the presence of MAPP helps increasing the mechanical properties of both fibers and 30wt% kenaf fiber with 3wt% MAPP gives the best result compare to others.

  17. Uniaxial and biaxial mechanical properties of porcine linea alba

    NARCIS (Netherlands)

    Cooney, Gerard M.; Moerman, Kevin M.; Takaza, Michael; Winter, Des C.; Simms, Ciaran K.

    2015-01-01

    Incisional hernia is a severe complication post-laparoscopic/laparotomy surgery that is commonly associated with the linea alba. However, the few studies on the mechanical properties of the linea alba in the literature appear contradictory, possible due to challenges with the physical dimensions of

  18. Sterilizing elastomeric chains without losing mechanical properties. Is it possible?

    Directory of Open Access Journals (Sweden)

    Matheus Melo Pithon

    2015-06-01

    Full Text Available OBJECTIVE: To investigate the effects of different sterilization/disinfection methods on the mechanical properties of orthodontic elastomeric chains. METHODS: Segments of elastomeric chains with 5 links each were sent for sterilization by cobalt 60 (Co60 (20 KGy gamma ray technology. After the procedure, the elastomeric chains were contaminated with clinical samples of Streptococcus mutans. Subsequently, the elastomeric chains were submitted to sterilization/disinfection tests carried out by means of different methods, forming six study groups, as follows: Group 1 (control - without contamination, Group 2 (70°GL alcohol, Group 3 (autoclave, Group 4 (ultraviolet, Group 5 (peracetic acid and Group 6 (glutaraldehyde. After sterilization/disinfection, the effectiveness of these methods, by Colony forming units per mL (CFU/mL, and the mechanical properties of the material were assessed. Student's t-test was used to assess the number of CFUs while ANOVA and Tukey's test were used to assess elastic strength. RESULTS: Ultraviolet treatment was not completely effective for sterilization. No loss of mechanical properties occurred with the use of the different sterilization methods (p > 0.05. CONCLUSION: Biological control of elastomeric chains does not affect their mechanical properties.

  19. Microstructure and mechanical properties of SiC materials

    International Nuclear Information System (INIS)

    Yarahmadi, M.

    1985-01-01

    The effect of the microstructure on the mechanical properties of SiC materials of different chemical composition (SSiC, SiSiC, and RSiC) was investigated. Furthermore, the creep strength was determined on oxidized samples and on non-pretreated samples. (HSCH)

  20. Microstructure and mechanical properties of Mg–HAP composites

    Indian Academy of Sciences (India)

    Administrator

    tion of load bearing capacity and suitable mechanical and metallurgical properties. ... lity as compared to β-TCP in our body fluid (Kwon et al. 2003). The HAP ... steel crucible under the protection of gas mixture contain- ing SF6 and CO2.

  1. The Effects of Moisture Content on Mechanical Properties of Soybean

    African Journals Online (AJOL)

    Some mechanical properties were determined for four varieties of soybean (TGX 297-129C, Samsoy1, TGX 306-636C and TGX 536-02D). The hardness, compressive and tensile strength determination were carried out using a Rockwell Hardness machine and tensometer. The effect of moisture content on the hardness ...

  2. a comparative study of the physical and mechanical properties

    African Journals Online (AJOL)

    HP-User

    [11] British Standard Institutes, BS EN 1097-6:2000, Tests for mechanical and physical properties of aggregates. Determination of particle density and water absorption, British Standard Institution, London. [12] Adaba, C. S., Agunwamba, J. C., Nwoji, C. U., Onya, O. E.,. Oze, S, “Comparative Cost And Strength Analysis Of.

  3. PHYSICAL AND MECHANICAL PROPERTIES OF JUVENILE Schizolobium amazonicum WOOD

    Directory of Open Access Journals (Sweden)

    Graziela Baptista Vidaurre

    2018-03-01

    Full Text Available ABSTRACT Growth in world demand for wood implies a search for new fast growing species with silvicultural potential, and in this scenario for native species such as Paricá . Thus, the objective of this study was determining the physical and mechanical wood properties of the Schizolobium amazonicum species (known as Paricá in Brazil. Trees were collected from commercial plantations located in the north of Brazil with ages of 5, 7, 9 and 11 years. Four logs from trees of each age in the longitudinal direction of the trees were obtained, and later a diametrical plank of each log was taken to manufacture the specimens which were used to evaluate some physical and mechanical properties of the wood. The basic density of Paricá was reduced in the basetop direction and no difference between the radial positions was observed, while the average basic density of this wood was characterized as low. The region close to the bark showed less longitudinal contraction and also greater homogeneity of this property along the trunk, while for tangential contraction the smallest variation was found in the region near the pith. Paricá wood contraction was characterized as low. Age influenced most of the mechanical properties, where logs from the base had the highest values of mechanical strength.

  4. ODS steel fabrication: relationships between process, microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Couvrat, M.

    2011-01-01

    Oxide Dispersion Strengthened (ODS) steels are promising candidate materials for generation IV and fusion nuclear energy systems thanks to their excellent thermal stability, high-temperature creep strength and good irradiation resistance. Their superior properties are attributed both to their nano-structured matrix and to a high density of Y-Ti-O nano-scale clusters (NCs). ODS steels are generally prepared by Mechanical Alloying of a pre-alloyed Fe-Cr-W-Ti powder with Y 2 O 3 powder. A fully dense bar or tube is then produced from this nano-structured powder by the mean of hot extrusion. The aim of this work was to determine the main parameters of the process of hot extrusion and to understand the link between the fabrication process, the microstructure and the mechanical properties. The material microstructure was characterized at each step of the process and bars were extruded with varying hot extrusion parameters so as to identify the impact of these parameters. Temperature then appeared to be the main parameter having a great impact on microstructure and mechanical properties of the extruded material. We then proposed a cartography giving the microstructure versus the process parameters. Based on these results, it is possible to control very accurately the obtained material microstructure and mechanical properties setting the extrusion parameters. (author) [fr

  5. Mechanical properties of very thin cover slip glass disk

    Indian Academy of Sciences (India)

    Unknown

    Mechanical properties of very thin cover slip glass disk. A SEAL, A K DALUI, M BANERJEE, A K MUKHOPADHYAY* and K K PHANI. Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. The biaxial flexural strength, Young's modulus, Vicker's microhardness and fracture toughness data for very ...

  6. Effect of surfactants on the mechanical properties of acetaminophen ...

    African Journals Online (AJOL)

    The purpose of this study was to investigate the effect of non ionic surfactant on the mechanical properties of acetaminophen-wax matrix tablet and hence its implication on dissolution profile. Acetaminophen-wax matrix granules were prepared by melt granulation technique. This was formed by triturating acetaminophen ...

  7. Investigation of the mechanical and physical properties of greywacke specimens

    Czech Academy of Sciences Publication Activity Database

    Holub, Karel; Konečný, Pavel; Knejzlík, Jaromír

    2009-01-01

    Roč. 46, č. 1 (2009), s. 188-193 ISSN 1365-1609 Institutional research plan: CEZ:AV0Z30860518 Keywords : greywacke * mechanical and physical properties Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.142, year: 2009 www.elsevier.com/locate ijrmms

  8. Microstructures and mechanical properties of Mg–Zn–Zr–Dy ...

    Indian Academy of Sciences (India)

    Microstructures and phase compositions of as-cast and extruded ZK60–Dy ( = 0–5) alloys were analysed by optical microscope, scanning electron microscope, X-ray diffraction and differential scanning calorimetry. Meanwhile, the tensile mechanical property was tested.With increasing Dy content, Mg–Zn–Dy new phase ...

  9. Mechanical Properties of High Performance Cementitious Grout (II)

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    The present report is an update of the report “Mechanical Properties of High Performance Cementitious Grout (I)” [1] and describes tests carried out on the high performance grout MASTERFLOW 9500, marked “WMG 7145 FP”, developed by BASF Construction Chemicals A/S and designed for use in grouted...

  10. Mechanical properties of concrete for power reactor at high temperatures

    International Nuclear Information System (INIS)

    Kawase, Kiyotaka; Tanaka, Hitoshi; Nakano, Masayuki

    1985-01-01

    The purpose of this study is to investigate the mechanical properties of concrete for power reactor at high temperature. This paper presents the creep behavior of concrete at high temperature and the cause by which a specified aggregate is broken at a specified high temperature. The creep coefficient at high temperature is smaller than that at ordinary temperature. (author)

  11. The durability and mechanical strenght properties of bamboo in ...

    African Journals Online (AJOL)

    The durability and mechanical strenght properties of bamboo in reinforced concrete. GA Alade, FA Olutoge, AA Alade. Abstract. No Abstract. Journal of Applied Science, Engineering and Technology Vol. 4(2) 2004: 35-40. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  12. A biodegradable polymer nanocomposite: Mechanical and barrier properties

    Science.gov (United States)

    Lilichenko, N.; Maksimov, R. D.; Zicans, J.; Merijs Meri, R.; Plume, E.

    2008-01-01

    The preparation of an environmentally friendly nanocomposite based on plasticized potato starch and unmodified montmorillonite clay is described. Data on the influence of montmorillonite concentration on the mechanical properties of the materials obtained are reported. The effective elastic constants of the nanocomposites are calculated. The calculation results are compared with experimental data. The influence of montmorillonite content on the moisture permeability is also investigated.

  13. Mechanical properties of clayey soils and thermal solicitations

    International Nuclear Information System (INIS)

    Boisson, J.Y.

    1992-01-01

    Changes in permeability and mechanical properties of three clayey soils with temperature have been studied by using a special oedometric cell. The action of a thermal solicitation on the fabric and the behavior of the samples is highlighted. 3 figs., 1 tab

  14. Crystallization and mechanical properties of biodegradable poly(p ...

    Indian Academy of Sciences (India)

    Effect of ome-POSS on the isothermal melt crystallization and dynamic mechanical properties of PPDO in the ... attracting more and more attention in recent times.12–14 Blen- ..... spent at Ts is enough to erase the crystalline memory of the.

  15. Investigation of the physical and mechanical properties of Shea Tree ...

    African Journals Online (AJOL)

    Investigation of the physical and mechanical properties of Shea Tree timber ( Vitellaria paradoxa ) used for structural applications in Kwara State, Nigeria. ... strength parallel to grain of 24.7 (N/mm2), compressive strength perpendicular to grain of 8.99 (N/mm2), shear strength of 2.01 (N/mm2), and tensile strength parallel to ...

  16. effects of sulphur addition on addition on and mechanical properties

    African Journals Online (AJOL)

    User

    on the microstructure and mechanical properties of sand cast been investigated ... owed that the addition of sulphur to Al-12wt%Si alloy. 12wt%Si alloy .... 28 materials. 29. Element. Aluminum. Silicon. Al. Si. Ca. Fe. Cu. Zn. Mn. Mg. Cr. B. 99.71.

  17. Could humicity affect the mechanical properties of carbon based coatings?

    Czech Academy of Sciences Publication Activity Database

    Sobota, Jaroslav; Grossman, Jan; Vyskočil, J.; Novák, R.; Fořt, Tomáš; Vítů, T.; Dupák, Libor

    2010-01-01

    Roč. 104, č. 15 (2010), s. 375-377 ISSN 0009-2770 Institutional research plan: CEZ:AV0Z20650511 Keywords : carbon * mechanical properties * humidity * fracture toughness of hard thin coatings Subject RIV: JI - Composite Materials Impact factor: 0.620, year: 2010

  18. Evaluation of the mechanical and physical properties of a posterior ...

    African Journals Online (AJOL)

    To evaluate the mechanical and physical properties of a micro-hybrid resin composite used in adult posterior restorations A micro-hybrid, light curing resin composite Unolux BCS Composite Restorative, (UnoDent, England) was used to restore 74 carious classes I and II cavities on posterior teeth of 62 adult patients.

  19. Mechanical properties of hyaline and repair cartilage studied by nanoindentation.

    Science.gov (United States)

    Franke, O; Durst, K; Maier, V; Göken, M; Birkholz, T; Schneider, H; Hennig, F; Gelse, K

    2007-11-01

    Articular cartilage is a highly organized tissue that is well adapted to the functional demands in joints but difficult to replicate via tissue engineering or regeneration. Its viscoelastic properties allow cartilage to adapt to both slow and rapid mechanical loading. Several cartilage repair strategies that aim to restore tissue and protect it from further degeneration have been introduced. The key to their success is the quality of the newly formed tissue. In this study, periosteal cells loaded on a scaffold were used to repair large partial-thickness cartilage defects in the knee joint of miniature pigs. The repair cartilage was analyzed 26 weeks after surgery and compared both morphologically and mechanically with healthy hyaline cartilage. Contact stiffness, reduced modulus and hardness as key mechanical properties were examined in vitro by nanoindentation in phosphate-buffered saline at room temperature. In addition, the influence of tissue fixation with paraformaldehyde on the biomechanical properties was investigated. Although the repair process resulted in the formation of a stable fibrocartilaginous tissue, its contact stiffness was lower than that of hyaline cartilage by a factor of 10. Fixation with paraformaldehyde significantly increased the stiffness of cartilaginous tissue by one order of magnitude, and therefore, should not be used when studying biomechanical properties of cartilage. Our study suggests a sensitive method for measuring the contact stiffness of articular cartilage and demonstrates the importance of mechanical analysis for proper evaluation of the success of cartilage repair strategies.

  20. A multi-scale model for structure-property relations of materials exhibiting martensite transformation plasticity

    NARCIS (Netherlands)

    Kouznetsova, V.; Balmachnov, A.; Geers, M.G.D.

    2009-01-01

    The remarkable mechanical properties of many advanced steels, e.g. metastable austenitic stainless steels, are related to their complex microstructural behaviour, resulting from the interaction between plastic deformation of the phases and the austenite to martensite phase transformation during

  1. Molecular modeling of polycarbonate materials: Glass transition and mechanical properties

    Science.gov (United States)

    Palczynski, Karol; Wilke, Andreas; Paeschke, Manfred; Dzubiella, Joachim

    2017-09-01

    Linking the experimentally accessible macroscopic properties of thermoplastic polymers to their microscopic static and dynamic properties is a key requirement for targeted material design. Classical molecular dynamics simulations enable us to study the structural and dynamic behavior of molecules on microscopic scales, and statistical physics provides a framework for relating these properties to the macroscopic properties. We take a first step toward creating an automated workflow for the theoretical prediction of thermoplastic material properties by developing an expeditious method for parameterizing a simple yet surprisingly powerful coarse-grained bisphenol-A polycarbonate model which goes beyond previous coarse-grained models and successfully reproduces the thermal expansion behavior, the glass transition temperature as a function of the molecular weight, and several elastic properties.

  2. Unravelling property relations around forest carbon

    NARCIS (Netherlands)

    Mahanty, S.; Dressler, W.H.; Milne, S.; Filer, C.

    2013-01-01

    Market-based interventions to Reduce Emissions from Deforestation and Forest Degradation (REDD+) enable the carbon stored in land and forests to be traded as a new and intangible form of property. Using examples from Cambodia, the Philippines and Papua New Guinea, we examine the property

  3. Determining the Mechanical Properties of Lattice Block Structures

    Science.gov (United States)

    Wilmoth, Nathan

    2013-01-01

    Lattice block structures and shape memory alloys possess several traits ideal for solving intriguing new engineering problems in industries such as aerospace, military, and transportation. Recent testing at the NASA Glenn Research Center has investigated the material properties of lattice block structures cast from a conventional aerospace titanium alloy as well as lattice block structures cast from nickel-titanium shape memory alloy. The lattice block structures for both materials were sectioned into smaller subelements for tension and compression testing. The results from the cast conventional titanium material showed that the expected mechanical properties were maintained. The shape memory alloy material was found to be extremely brittle from the casting process and only compression testing was completed. Future shape memory alloy lattice block structures will utilize an adjusted material composition that will provide a better quality casting. The testing effort resulted in baseline mechanical property data from the conventional titanium material for comparison to shape memory alloy materials once suitable castings are available.

  4. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Farhat, Walid A [Department of Surgery, Division of Urology, University of Toronto and Hospital for Sick Children, Toronto, ON M5G 1X8 (Canada); Chen Jun; Haig, Jennifer; Antoon, Roula; Litman, Jessica; Yeger, Herman [Department of Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8 (Canada); Sherman, Christopher [Department of Anatomic Pathology, Sunnybrook and Women' s College Health Sciences Centre, Toronto, ON (Canada); Derwin, Kathleen [Department of Biomedical Engineering, Lerner Research Institute and Orthopaedic Research Center, Cleveland Clinic Foundation, Cleveland, OH (United States)], E-mail: walid.farhat@sickkids.ca

    2008-06-01

    Experimentally, porcine bladder acellular matrix (ACM) that mimics extracellular matrix has excellent potential as a bladder substitute. Herein we investigated the spatial localization and expression of different key cellular and extracellular proteins in the ACM; furthermore, we evaluated the inherent mechanical properties of the resultant ACM prior to implantation. Using a proprietary decellularization method, the DNA contents in both ACM and normal bladder were measured; in addition we used immunohistochemistry and western blots to quantify and localize the different cellular and extracellular components, and finally the mechanical testing was performed using a uniaxial mechanical testing machine. The mean DNA content in the ACM was significantly lower in the ACM compared to the bladder. Furthermore, the immunohistochemical and western blot analyses showed that collagen I and IV were preserved in the ACM, but possibly denatured collagen III in the ACM. Furthermore, elastin, laminin and fibronectin were mildly reduced in the ACM. Although the ACM did not exhibit nucleated cells, residual cellular components (actin, myosin, vimentin and others) were still present. There was, on the other hand, no significant difference in the mean stiffness between the ACM and the bladder. Although our decellularization method is effective in removing nuclear material from the bladder while maintaining its inherent mechanical properties, further work is mandatory to determine whether these residual DNA and cellular remnants would lead to any immune reaction, or if the mechanical properties of the ACM are preserved upon implantation and cellularization.

  5. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties

    International Nuclear Information System (INIS)

    Farhat, Walid A; Chen Jun; Haig, Jennifer; Antoon, Roula; Litman, Jessica; Yeger, Herman; Sherman, Christopher; Derwin, Kathleen

    2008-01-01

    Experimentally, porcine bladder acellular matrix (ACM) that mimics extracellular matrix has excellent potential as a bladder substitute. Herein we investigated the spatial localization and expression of different key cellular and extracellular proteins in the ACM; furthermore, we evaluated the inherent mechanical properties of the resultant ACM prior to implantation. Using a proprietary decellularization method, the DNA contents in both ACM and normal bladder were measured; in addition we used immunohistochemistry and western blots to quantify and localize the different cellular and extracellular components, and finally the mechanical testing was performed using a uniaxial mechanical testing machine. The mean DNA content in the ACM was significantly lower in the ACM compared to the bladder. Furthermore, the immunohistochemical and western blot analyses showed that collagen I and IV were preserved in the ACM, but possibly denatured collagen III in the ACM. Furthermore, elastin, laminin and fibronectin were mildly reduced in the ACM. Although the ACM did not exhibit nucleated cells, residual cellular components (actin, myosin, vimentin and others) were still present. There was, on the other hand, no significant difference in the mean stiffness between the ACM and the bladder. Although our decellularization method is effective in removing nuclear material from the bladder while maintaining its inherent mechanical properties, further work is mandatory to determine whether these residual DNA and cellular remnants would lead to any immune reaction, or if the mechanical properties of the ACM are preserved upon implantation and cellularization

  6. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties.

    Science.gov (United States)

    Farhat, Walid A; Chen, Jun; Haig, Jennifer; Antoon, Roula; Litman, Jessica; Sherman, Christopher; Derwin, Kathleen; Yeger, Herman

    2008-06-01

    Experimentally, porcine bladder acellular matrix (ACM) that mimics extracellular matrix has excellent potential as a bladder substitute. Herein we investigated the spatial localization and expression of different key cellular and extracellular proteins in the ACM; furthermore, we evaluated the inherent mechanical properties of the resultant ACM prior to implantation. Using a proprietary decellularization method, the DNA contents in both ACM and normal bladder were measured; in addition we used immunohistochemistry and western blots to quantify and localize the different cellular and extracellular components, and finally the mechanical testing was performed using a uniaxial mechanical testing machine. The mean DNA content in the ACM was significantly lower in the ACM compared to the bladder. Furthermore, the immunohistochemical and western blot analyses showed that collagen I and IV were preserved in the ACM, but possibly denatured collagen III in the ACM. Furthermore, elastin, laminin and fibronectin were mildly reduced in the ACM. Although the ACM did not exhibit nucleated cells, residual cellular components (actin, myosin, vimentin and others) were still present. There was, on the other hand, no significant difference in the mean stiffness between the ACM and the bladder. Although our decellularization method is effective in removing nuclear material from the bladder while maintaining its inherent mechanical properties, further work is mandatory to determine whether these residual DNA and cellular remnants would lead to any immune reaction, or if the mechanical properties of the ACM are preserved upon implantation and cellularization.

  7. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy by heat treatment

    Directory of Open Access Journals (Sweden)

    Mianmian Bao

    2018-03-01

    Full Text Available Previous study has shown that Ti-3Cu alloy shows good antibacterial properties (>90% antibacterial rate, but the mechanical properties still need to be improved. In this paper, a series of heat-treatment processes were selected to adjust the microstructure in order to optimize the properties of Ti-3Cu alloy. Microstructure, mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy at different conditions was systematically investigated by X-ray diffraction, optical microscope, scanning electron microscope, transmission electron microscopy, electrochemical measurements, tensile test, fatigue test and antibacterial test. Heat treatment could significantly improve the mechanical properties, corrosion resistance and antibacterial rate due to the redistribution of copper elements and precipitation of Ti2Cu phase. Solid solution treatment increased the yield strength from 400 to 740 MPa and improved the antibacterial rate from 33% to 65.2% while aging treatment enhanced the yield strength to 800–850 MPa and antibacterial rate (>91.32%. It was demonstrated that homogeneous distribution and fine Ti2Cu phase plays a very important role in mechanical properties, corrosion resistance and antibacterial properties.

  8. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy by heat treatment.

    Science.gov (United States)

    Bao, Mianmian; Liu, Ying; Wang, Xiaoyan; Yang, Lei; Li, Shengyi; Ren, Jing; Qin, Gaowu; Zhang, Erlin

    2018-03-01

    Previous study has shown that Ti-3Cu alloy shows good antibacterial properties (>90% antibacterial rate), but the mechanical properties still need to be improved. In this paper, a series of heat-treatment processes were selected to adjust the microstructure in order to optimize the properties of Ti-3Cu alloy. Microstructure, mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy at different conditions was systematically investigated by X-ray diffraction, optical microscope, scanning electron microscope, transmission electron microscopy, electrochemical measurements, tensile test, fatigue test and antibacterial test. Heat treatment could significantly improve the mechanical properties, corrosion resistance and antibacterial rate due to the redistribution of copper elements and precipitation of Ti 2 Cu phase. Solid solution treatment increased the yield strength from 400 to 740 MPa and improved the antibacterial rate from 33% to 65.2% while aging treatment enhanced the yield strength to 800-850 MPa and antibacterial rate (>91.32%). It was demonstrated that homogeneous distribution and fine Ti 2 Cu phase plays a very important role in mechanical properties, corrosion resistance and antibacterial properties.

  9. Indium telluride nanotubes: Solvothermal synthesis, growth mechanism, and properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liyan [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Yan, Shancheng, E-mail: yansc@njupt.edu.cn [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China); Lu, Tao; Shi, Yi; Wang, Jianyu [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Yang, Fan [School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China)

    2014-03-15

    A convenient solvothermal approach was applied for the first time to synthesize In{sub 2}Te{sub 3} nanotubes. The morphology of the resultant nanotubes was studied by scanning electron microscopy and transmission electron microscopy. Nanotubes with a relatively uniform diameter of around 500 nm, tube wall thickness of 50–100 nm, and average length of tens of microns were obtained. X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy were used to study the crystal structures, composition, and optical properties of the products. To understand the growth mechanism of the In{sub 2}Te{sub 3} nanotubes, we studied the influences of temperature, reaction time, and polyvinylpyrrolidone (PVP) and ethylene diamine (EDA) dosages on the final products. Based on the experimental results, a possible growth mechanism of In{sub 2}Te{sub 3} nanotubes was proposed. In this mechanism, TeO{sub 3}{sup −2} is first reduced to allow nucleation. Circumferential edges of these nucleated molecules attract further deposition, and nanotubes finally grow rapidly along the c-axis and relatively slowly along the circumferential direction. The surface area of the products was determined by BET and found to be 137.85 m{sup 2} g{sup −1}. This large surface area indicates that the nanotubes may be suitable for gas sensing and hydrogen storage applications. The nanotubes also showed broad light detection ranging from 300 nm to 1100 nm, which covers the UV–visible–NIR regions. Such excellent optical properties indicate that In{sub 2}Te{sub 3} nanotubes may enable significant advancements in new photodetection and photosensing applications. -- Graphical abstract: A convenient solvothermal approach was applied to synthesize In{sub 2}Te{sub 3} nanotubes, which has not been reported in the literature for our knowledge. Surface area of this material is 137.85 m{sup 2} g{sup −1} from the BET testing, and such a high value makes it probably suitable for gas sensing and

  10. RELATIONAL MECHANISMS IN INNOVATION CO-CREATION

    Directory of Open Access Journals (Sweden)

    Rodica Boier

    2014-12-01

    Full Text Available Increasingly, producers and customers establish relationships to mutually undertake the development of an innovative product. Consequently, it will be always of interest for an innovative company to know the degree to which different related suppliers are willing to form partnerships by participating in its new product development process. Several managerial implications flow from the link between relationship marketing and innovation processes, ranging from tactical product-related decisions to strategic competitor-related decisions, usually made in a relatively short period of time. Dedicated customer relationship systems track the interactions with customers and improve the flow of ideas for new products. When trying to develop long-term customer relationships, the ability to provide superior value to stakeholders is a must. Through carefully conducted relationships, customers are linked with the innovation company during the entire innovation process, and create a space for mutual understanding, learning and value co-creation. In order to co-create business value through online, also combined with offline innovation-related activities, customer orientation should be implemented throughout the organization – its culture, their systems, including the whole range of interactions.

  11. Modeling of mechanical properties in alpha/beta-titanium alloys

    Science.gov (United States)

    Kar, Sujoy Kumar

    2005-11-01

    The accelerated insertion of titanium alloys in component application requires the development of predictive capabilities for various aspects of their behavior, for example, phase stability, microstructural evolution and property-microstructure relationships over a wide range of length and time scales. In this presentation some navel aspects of property-microstructure relationships and microstructural evolution in alpha/beta Ti alloys will be discussed. Neural Network (NN) Models based on a Bayesian framework have been developed to predict the mechanical properties of alpha/beta Ti alloys. The development of such rules-based model requires the population of extensive databases, which in the present case are microstructurally-based. The steps involved in database development include producing controlled variations of the microstructure using novel approaches to heat-treatments, the use of standardized stereology protocols to characterize and quantify microstructural features rapidly, and mechanical testing of the heat-treated specimens. These databases have been used to train and test NN Models for prediction of mechanical properties. In addition, these models have been used to identify the influence of individual microstructural features on the mechanical properties, consequently guiding the efforts towards development of more robust mechanistically based models. In order to understand the property-microstructure relationships, a detailed understanding of microstructure evolution is imperative. The crystallography of the microstructure developing as a result of the solid-state beta → beta+alpha transformation has been studied in detail by employing Scanning Electron Microscopy (SEM), Orientation Imaging Microscopy (in a high resolution SEM), site-specific TEM sample preparation using focused ion beam, and TEM based techniques. The influence of variant selection on the evolution of microstructure will be specifically addressed.

  12. Mechanical properties of self-curing concrete (SCUC

    Directory of Open Access Journals (Sweden)

    Magda I. Mousa

    2015-12-01

    Full Text Available The mechanical properties of concrete containing self-curing agents are investigated in this paper. In this study, two materials were selected as self-curing agents with different amounts, and the addition of silica fume was studied. The self-curing agents were, pre-soaked lightweight aggregate (Leca; 0.0%, 10%, 15%, and 20% of volume of sand; or polyethylene-glycol (Ch.; 1%, 2%, and 3% by weight of cement. To carry out this study the cement content of 300, 400, 500 kg/m3, water/cement ratio of 0.5, 0.4, 0.3 and 0.0%, 15% silica fume of weight of cement as an additive were used in concrete mixes. The mechanical properties were evaluated while the concrete specimens were subjected to air curing regime (in the laboratory environment with 25 °C, 65% R.H. during the experiment. The results show that, the use of self-curing agents in concrete effectively improved the mechanical properties. The concrete used polyethylene-glycol as self-curing agent, attained higher values of mechanical properties than concrete with saturated Leca. In all cases, either 2% Ch. or 15% Leca was the optimum ratio compared with the other ratios. Higher cement content and/or lower water/cement ratio lead(s to more efficient performance of self-curing agents in concrete. Incorporation of silica fume into self-curing concrete mixture enhanced all mechanical properties, not only due to its pozzolanic reaction, but also due to its ability to retain water inside concrete.

  13. Ultrasonic evaluation of the physical and mechanical properties of granites.

    Science.gov (United States)

    Vasconcelos, G; Lourenço, P B; Alves, C A S; Pamplona, J

    2008-09-01

    Masonry is the oldest building material that survived until today, being used all over the world and being present in the most impressive historical structures as an evidence of spirit of enterprise of ancient cultures. Conservation, rehabilitation and strengthening of the built heritage and protection of human lives are clear demands of modern societies. In this process, the use of nondestructive methods has become much common in the diagnosis of structural integrity of masonry elements. With respect to the evaluation of the stone condition, the ultrasonic pulse velocity is a simple and economical tool. Thus, the central issue of the present paper concerns the evaluation of the suitability of the ultrasonic pulse velocity method for describing the mechanical and physical properties of granites (range size between 0.1-4.0 mm and 0.3-16.5 mm) and for the assessment of its weathering state. The mechanical properties encompass the compressive and tensile strength and modulus of elasticity, and the physical properties include the density and porosity. For this purpose, measurements of the longitudinal ultrasonic pulse velocity with distinct natural frequency of the transducers were carried out on specimens with different size and shape. A discussion of the factors that induce variations on the ultrasonic velocity is also provided. Additionally, statistical correlations between ultrasonic pulse velocity and mechanical and physical properties of granites are presented and discussed. The major output of the work is the confirmation that ultrasonic pulse velocity can be effectively used as a simple and economical nondestructive method for a preliminary prediction of mechanical and physical properties, as well as a tool for the assessment of the weathering changes of granites that occur during the serviceable life. This is of much interest due to the usual difficulties in removing specimens for mechanical characterization.

  14. An Introduction to the Mechanical Properties of Ceramics

    Science.gov (United States)

    Green, David J.

    1998-09-01

    Over the past twenty-five years ceramics have become key materials in the development of many new technologies as scientists have been able to design these materials with new structures and properties. An understanding of the factors that influence their mechanical behavior and reliability is essential. This book will introduce the reader to current concepts in the field. It contains problems and exercises to help readers develop their skills. This is a comprehensive introduction to the mechanical properties of ceramics, and is designed primarily as a textbook for advanced undergraduates in materials science and engineering. It will also be of value as a supplementary text for more general courses and to industrial scientists and engineers involved in the development of ceramic-based products, materials selection and mechanical design.

  15. Mechanical properties of amorphous and polycrystalline multilayer systems

    International Nuclear Information System (INIS)

    Barzen, I.; Edinger, M.; Scherer, J.; Ulrich, S.; Jung, K.; Ehrhardt, H.

    1993-01-01

    Amorphous and polycrystalline multilayer structures containing materials with metallic (Cr, Cr 3 C 2 ), ionic (Al 2 O 3 ) and covalent (SiC) bonding have been prepared by magnetron sputtering and ion plating in a dual-source apparatus. Up to 1000 layers have been deposited with a constant total thickness of 2.3 μm. Below a single-layer thickness of 10-30 nm the mechanical properties stress and hardness show strong variations. On one hand it is possible that below a certain thickness the mechanical properties of a single layer change. On the other hand electrical resistance and electron spin density measurements indicate that electronic effects may be involved. An attempt is made to explain the observed correlations by transport mechanisms of the electrons, by saturation of dangling bonds with delocalized electrons and by changes in the electronic band structure. (orig.)

  16. Bioinspired Bouligand cellulose nanocrystal composites: a review of mechanical properties

    Science.gov (United States)

    Natarajan, Bharath; Gilman, Jeffrey W.

    2017-12-01

    The twisted plywood, or Bouligand, structure is the most commonly observed microstructural motif in natural materials that possess high mechanical strength and toughness, such as that found in bone and the mantis shrimp dactyl club. These materials are isotropically toughened by a low volume fraction of soft, energy-dissipating polymer and by the Bouligand structure itself, through shear wave filtering and crack twisting, deflection and arrest. Cellulose nanocrystals (CNCs) are excellent candidates for the bottom-up fabrication of these structures, as they naturally self-assemble into `chiral nematic' films when cast from solutions and possess outstanding mechanical properties. In this article, we present a review of the fabrication techniques and the corresponding mechanical properties of Bouligand biomimetic CNC nanocomposites, while drawing comparison to the performance standards set by tough natural composite materials. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  17. Mechanical properties of polyelectrolyte multilayer self-assembled films

    International Nuclear Information System (INIS)

    Dai Xinhua; Zhang Yongjun; Guan Ying; Yang Shuguang; Xu Jian

    2005-01-01

    The mechanical properties of electrostatic self-assembled multilayer films from polyacrylic acid (PAA) and C 60 -ethylenediamine adduct (C 60 -EDA) or poly(allylamine hydrochloride) (PAH) were evaluated by atomic force microscopy (AFM) wear experiments. Because of the higher molecular weight of PAH, the wear resistance of the (PAH/PAA) 10 film is higher than that of the (PAH/PAA) 2 (C 60 -EDA/PAA) 8 film; that is, the former is mechanically more stable than the latter. The mechanical stability of both films can be improved significantly by heat treatment, which changes the nature of the linkage from ionic to covalent. The AFM measurement also reveals that the (PAH/PAA) 2 (C 60 -EDA/PAA) 8 film is softer than the (PAH/PAA) 10 film. The friction properties of the heated films were measured. These films can be developed as potential lubrication coatings for microelectromechanical systems

  18. PDMS Network Structure-Property Relationships: Influence of Molecular Architecture on Mechanical and Wetting Properties

    Science.gov (United States)

    Melillo, Matthew Joseph

    /TDSS and commercial PDMS-based Sylgard 184 composite, but only keep improving with additional crosslinker in the silanol/TEOS systems due to in situ TEOS aggregation. We relate molecular network topology to mechanical properties using outputs from the Miller-Macosko model in the vinyl/TDSS system. The elastic fraction and storage modulus correlate well, as do the pendant fraction and the loss tangent, demonstrating the importance of each fraction in bulk mechanical properties. By studying the dynamic behavior of water droplets wetting PDMS substrates, we observe non-linear wetting behaviors that are markedly different from linear behaviors seen on glassy polymer substrates. The non-linear behavior is only observed prior to extraction, while after extraction, both systems demonstrate behavior similar to glassy polymers. This reveals the dramatic role small amounts of uncrosslinked materials present in the sol fraction play in the surface wetting dynamics of PDMS materials. We further demonstrate the role of uncrosslinked material by adding silicone oils into otherwise fully crosslinked PDMS networks and study their wetting properties. Through careful formulation and preparation of PDMS materials, compared to simply mixing two formulations present in Sylgard 184, one can apply polymer network models to glean useful information about network topology. The benefits of doing so outweigh the costs. We stress the importance of performing Soxhlet extraction to remove unreacted components from PDMS materials, even when using optimal stoichiometry. These mobile molecules that remain after crosslinking can alter significantly wetting behavior and readily leach into liquid environments. However, it is equally important to stress that Soxhlet extraction will not remove all unreacted material. Some will always remain in PDMS, which is often the practice in preparing microfluidic devices. While Sylgard 184 is very well suited for some applications, the results presented in this

  19. Microstructure and Mechanical Property of Aluminum Alloy Plate AA 7055

    Directory of Open Access Journals (Sweden)

    CHEN Junzhou

    2017-10-01

    Full Text Available Through-thickness microstructure and mechanical property of AA 7055-T7751 aluminum alloy plate were investigated by using electron backscattered diffraction (EBSD, transmission electron microscope (TEM and small angle X-ray scattering(SAXS. The results indicate an inhomogeneous distribution of microstructure through the thickness. The degree of recrystallization decreases gradually from 69% to 19.1%, as deepening from the surface to the center of the plate. The size of subgrains decreases from 10 μm at the surface to around 2 μm at the center. Strong texture of rolling type is observed near the center but the intensity decreases gradually as nearing the surface and the shear texture becomes the dominant. High density of plate-like η' phases are observed in the alloy, indicating the sufficient precipitation. η' precipitates of this condition are around 3.7 nm in radius, 1-3 nm in thickness and are found coherent with the Al matrix with a coherent strain of 0.0133, showing a strong strengthening effect. The heterogeneity in grain scale does not influence the distribution and the morphology of precipitates. The yield strength (L direction varies linearly along the thickness direction of the plate, fitting an equation of σy=-38.7S+604.8 (0≤S≤1. The variation of yield strength is related to the heterogeneity of grain structure.

  20. Physico Mechanical Properties of Irradiated Waste Rubber Cement Mortar

    International Nuclear Information System (INIS)

    Younes, M.M.

    2010-01-01

    In the present study a partial replacement of aggregate with two different ratios of waste rubber (5%, 10%) with the addition of a constant ratio of rice husk ash (RHA), 5% was carried out. The hardened cement mortar used the optimum water of consistency. The specimens were molded into 1 inch cubic moulds .The specimens were first cured for 24 hours, at 100% relative humidity and then cured under tap water for 3, 7 and 28 days followed by irradiation at different doses of gamma irradiation namely 5 and 10 kGy. The physico-chemical and mechanical properties such as compressive strength, total porosity and bulk density were studied for the three types of specimens. The results showed that the values of the compressive strength, bulk density and chemically combined water of the blended cement mortar paste (OPC-RHA) increase ,while blended cement mortar paste with 5% RHA and 5, 10% waste rubber decrease. The results were confirmed by scanning electron microscopy and thermal behavior of the specimens. Also, it was observed that the irradiated sample was thermally more stable than the unirradiated one

  1. Mechanical properties of recycled PET fibers in concrete

    Directory of Open Access Journals (Sweden)

    Fernando Pelisser

    2012-08-01

    Full Text Available Fiber-reinforced concrete represents the current tendency to apply more efficient crack-resistant concrete. For instance, polyethylene terephthalate (PET is a polyester polymer obtained from recyclable bottles; it has been widely used to produce fibers to obtain cement-based products with improved properties. Therefore, this paper reports on an experimental study of recycled-bottle-PET fiber-reinforced concrete. Fibers with lengths of 10, 15 and 20 mm and volume fractions of 0.05, 0.18 and 0.30% related to the volume of the concrete were used. Physical and mechanical characterization of the concrete was performed, including the determination of compressive strength, flexural strength, Young's modulus and fracture toughness as well as analysis using mercury intrusion porosimetry (MIP and scanning electron microscopy (SEM. Flexure and impact tests were performed after 28 and 150 days. No significant effect of the fiber addition on the compressive strength and modulus of elasticity was observed. However, the Young's modulus was observed to decrease as the fiber volume increased. At 28 days, the concrete flexural toughness and impact resistance increased with the presence of PET fibers, except for the 0.05 vol.% sample. However, at 150 days, this improvement was no longer present due to recycled-bottle-PET fiber degradation in the alkaline concrete environment, as visualized by SEM observations. An increase in porosity also has occurred at 365 days for the fiber-reinforced concrete, as determined by MIP.

  2. Spectroscopic properties of transition elements and their related magnetic properties

    International Nuclear Information System (INIS)

    Porcher, P.; Malta, O.L.

    1988-01-01

    The optical and magnetic properties of transition elements (nd N and nf N ions) are analysed. The phenomenological parameters introduced in the crystal-ligand field theory, the free ion interactions and crystalline matrix as well as electrostatic repulsion are studied. (M.J.C.) [pt

  3. Mechanical properties of molybdenum-sealing glass-ceramics

    International Nuclear Information System (INIS)

    Swearengen, J.C.; Eagan, R.J.

    1975-07-01

    Elastic constants, thermal expansion, strength, and fracture toughness were determined for a molybdenum-sealing glass-ceramic containing approximately 31 volume percent Zn 2 SiO 4 crystals in a glass matrix. The microstructure was studied for two different crystallization treatments and moderate changes in composition. Mechanical properties of the composite were compared with the properties of the constituent phases through application of mixture theory and by fractographic observations. The reinforcing effects of the crystal phase at room temperature are evident in comparison with the properties of the residual glass but not necessarily in comparison with the parent glass. Fracture toughness of the composite depends primarily upon additive properties of the separate phases instead of by interactive effects such as microcracks. (U.S.)

  4. Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures

    International Nuclear Information System (INIS)

    Sha, Zhen-Dong; Pei, Qing-Xiang; Ding, Zhiwei; Zhang, Yong-Wei; Jiang, Jin-Wu

    2015-01-01

    Phosphorene, a new two-dimensional (2D) material beyond graphene, has attracted great attention in recent years due to its superior physical and electrical properties. However, compared to graphene and other 2D materials, phosphorene has a relatively low Young’s modulus and fracture strength, which may limit its applications due to possible structure failures. For the mechanical reliability of future phosphorene-based nanodevices, it is necessary to have a deep understanding of the mechanical properties and fracture behaviors of phosphorene. Previous studies on the mechanical properties of phosphorene were based on first principles calculations at 0 K. In this work, we employ molecular dynamics simulations to explore the mechanical properties and fracture behaviors of phosphorene at finite temperatures. It is found that temperature has a significant effect on the mechanical properties of phosphorene. The fracture strength and strain reduce by more than 65% when the temperature increases from 0 K to 450 K. Moreover, the fracture strength and strain in the zigzag direction is more sensitive to the temperature rise than that in the armchair direction. More interestingly, the failure crack propagates preferably along the groove in the puckered structure when uniaxial tension is applied in the armchair direction. In contrast, when the uniaxial tension is applied in the zigzag direction, multiple cracks are observed with rough fracture surfaces. Our present work provides useful information about the mechanical properties and failure behaviors of phosphorene at finite temperatures. (paper)

  5. Modification of mechanical properties of Si crystal irradiated by Kr-beam

    International Nuclear Information System (INIS)

    Guo, Xiaowei; Momota, Sadao; Nitta, Noriko; Yamaguchi, Takaharu; Sato, Noriyuki; Tokaji, Hideto

    2015-01-01

    Graphical abstract: - Highlights: • Modification of mechanical properties of silicon crystal irradiated by Kr-beam was observed by means of continuous measurements of nano-indentation technique. • Modified mechanical properties show fluence-dependence. • Young's modulus is more sensitive to crystal to amorphous phase transition while hardness is more sensitive to damage induced by ion beam irradiation. • The depth profile of modified mechanical properties have a potential application of determining the longitudinal size of phase transition region induced by nanoindentation. - Abstract: The application of ion-beam irradiation in fabrication of structures with micro-/nanometer scale has achieved striking improvement. However, an inevitable damage results in the change of mechanical properties in irradiated materials. To investigate the relation between mechanical properties and ion-irradiation damages, nanoindentation was performed on crystalline silicon irradiated by Kr-beam with an energy of 240 keV. Modified Young's modulus and nanohardness, provided from the indentation, indicated fluence dependence. Stopping and range of ions in matter (SRIM) calculation, transmission electron microscopy (TEM) observation, and Rutherford backscattering-channeling (RBS-C) measurement were utilized to understand the irradiation effect on mechanical properties. In addition, the longitudinal size of the phase transition region induced by indentation was firstly evaluated based on the depth profile of modified nanohardness

  6. Prediction of Mechanical Properties of LDPE-TPS Nanocomposites Using Adaptive Neuro-Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Maryam Sabetzadeh

    2012-12-01

    Full Text Available The changes in the behaviour of mechanical properties of low densitypolyethylene-thermoplastic corn starch (LDPE-TPCS nanocompositeswere studied by an adaptive neuro-fuzzy interference system. LDPE-TPCScomposites containing different quantities of nanoclay (Cloisite®15A, 0.5-3wt. % were prepared by extrusion process. In practice, it is difficult to carry out several experiments to identify the relationship between the extrusion process parameters and mechanical properties of the nanocomposites. In this paper, an adaptive neuro-fuzzy inference system (ANFIS was used for non-linear mapping between the processingparameters and the mechanical properties of LDPE-TPCS nanocomposites. ANFIS model due to possessing inference ability of fuzzy systems and also the learning feature of neural networks, could be used as a multiple inputs-multiple outputs to predict mechanical properties (such as ultimate tensile strength, elongation-at-break, Young’s modulus and relative impact strength of the nanocomposites. The proposed ANFIS model utilizes temperature, torque and Cloisite®15A contents as input parameters to predict the desired mechanical properties. The results obtained in this work indicatedthat ANFIS is an effective and intelligent method for prediction of the mechanical properties of the LDPE-TPCS nanocomposites with a good accuracy. The statistical quality of the ANFIS model was significant due to its acceptable mean square error criterion and good correlation coefficient (values > 0.8 between the experimental and simulated outputs.

  7. DNA origami compliant nanostructures with tunable mechanical properties.

    Science.gov (United States)

    Zhou, Lifeng; Marras, Alexander E; Su, Hai-Jun; Castro, Carlos E

    2014-01-28

    DNA origami enables fabrication of precise nanostructures by programming the self-assembly of DNA. While this approach has been used to make a variety of complex 2D and 3D objects, the mechanical functionality of these structures is limited due to their rigid nature. We explore the fabrication of deformable, or compliant, objects to establish a framework for mechanically functional nanostructures. This compliant design approach is used in macroscopic engineering to make devices including sensors, actuators, and robots. We build compliant nanostructures by utilizing the entropic elasticity of single-stranded DNA (ssDNA) to locally bend bundles of double-stranded DNA into bent geometries whose curvature and mechanical properties can be tuned by controlling the length of ssDNA strands. We demonstrate an ability to achieve a wide range of geometries by adjusting a few strands in the nanostructure design. We further developed a mechanical model to predict both geometry and mechanical properties of our compliant nanostructures that agrees well with experiments. Our results provide a basis for the design of mechanically functional DNA origami devices and materials.

  8. Mechanical Properties in a Bamboo Fiber/PBS Biodegradable Composite

    Science.gov (United States)

    Ogihara, Shinji; Okada, Akihisa; Kobayashi, Satoshi

    In recent years, biodegradable plastics which have low effect on environment have been developed. However, many of them have lower mechanical properties than conventional engineering plastics. Reinforcing them with a natural fiber is one of reinforcing methods without a loss of their biodegradability. In the present study, we use a bamboo fiber as the reinforcement and polybutylenesuccinate (PBS) as the matrix. We fabricate long fiber unidirectional composites and cross-ply laminate with different fiber weight fractions (10, 20, 30, 40 and 50wt%). We conduct tensile tests to evaluate the mechanical properties of these composites. In addition, we measure bamboo fiber strength distribution. We discuss the experimentally-obtained properties based on the mechanical properties of the constituent materials. Young's modulus and tensile strength in unidirectional composite and cross-ply laminate increase with increasing fiber weight fraction. However, the strain at fracture showed decreasing tendency. Young's modulus in fiber and fiber transverse directions are predictable by the rules of mixture. Tensile strength in fiber direction is lower than Curtin's prediction of strength which considers distribution of fiber strength. Young's modulus in cross-ply laminate is predictable by the laminate theory. However, analytical prediction of Poisson's ratio in cross-ply laminate by the laminate theory is lower than the experimental results.

  9. Enhancement of mechanical properties of epoxy/graphene nanocomposite

    Science.gov (United States)

    Berhanuddin, N. I. C.; Zaman, I.; Rozlan, S. A. M.; Karim, M. A. A.; Manshoor, B.; Khalid, A.; Chan, S. W.; Meng, Q.

    2017-10-01

    Graphene is a novel class of nanofillers possessing outstanding characteristics including most compatible with most polymers, high absolute strength, high aspect ratio and cost effectiveness. In this study, graphene was used to reinforce epoxy as a matrix, to enhance its mechanical properties. Two types of epoxy composite were developed which are epoxy/graphene nanocomposite and epoxy/modified graphene nanocomposite. The fabrication of graphene was going through thermal expansion and sonication process. Chemical modification was only done for modified graphene where 4,4’-Methylene diphenyl diisocyanate (MDI) is used. The mechanical properties of both nanocomposite, such as Young’s modulus and maximum stress were investigated. Three weight percentage were used for this study which are 0.5 wt%, 1.0 wt% and 1.5 wt%. At 0.5 wt%, modified and unmodified shows the highest value compared to neat epoxy, where the value were 8 GPa, 6 GPa and 0.675 GPa, respectively. For maximum stress, neat epoxy showed the best result compared to both nanocomposite due to the changes of material properties when adding the filler into the matrix. Therefore, both nanocomposite increase the mechanical properties of the epoxy, however modification surface of graphene gives better improvement.

  10. Unique microstructure and excellent mechanical properties of ADI

    Directory of Open Access Journals (Sweden)

    Jincheng Liu

    2006-11-01

    Full Text Available Amongst the cast iron family, ADI has a unique microstructure and an excellent, optimised combination of mechanical properties. The main microstructure of ADI is ausferrite, which is a mixture ofextremely fine acicular ferrite and stable, high carbon austenite. There are two types of austenite in ADI:(1 the coarser and more equiaxed blocks of austenite between non-parallel acicular structures, which exist mainly in the last solidified area, and (2 the thin films of ustenite between the individual ferriteplatelets in the acicular structure. It is this unique microstructure, which gives ADI its excellent static and dynamic properties, and good low temperature impact toughness. The effect of microstructure on the mechanical properties is explained in more detail by examining the microstructure at the atomic scale. Considering the nanometer grain sizes, the unique microstructure, the excellent mechanical properties,good castability, (which enables near net shape components to be produced economically and in large volumes, and the fact that it can be 100% recycled, it is not overemphasized to call ADI a high-tech,nanometer and “green” material. ADI still has the potential to be further improved and its production and the number of applications for ADI will continue to grow, driven by the resultant cost savings over alternative materials.

  11. Mechanical Properties of a Bainitic Steel Producible by Hot Rolling

    Directory of Open Access Journals (Sweden)

    Rana R.

    2017-12-01

    Full Text Available A carbide-free bainitic microstructure is suitable for achieving a combination of ultra high strength and high ductility. In this work, a steel containing nominally 0.34C-2Mn-1.5Si-1Cr (wt.% was produced via industrial hot rolling and laboratory heat treatments. The austenitization (900°C, 30 min. and austempering (300-400°C, 3 h treatments were done in salt bath furnaces. The austempering treatments were designed to approximately simulate the coiling step, following hot rolling and run-out-table cooling, when the bainitic transformation would take place and certain amount of austenite would be stabilized due to suppression of carbide precipitation. The microstructures and various mechanical properties (tensile properties, bendability, flangeability, and room and subzero temperature impact toughness relevant for applications were characterized. It was found that the mechanical properties were highly dependent on the stability of the retained austenite, presence of martensite in the microstructure and the size of the microstructural constituents. The highest amount of retained austenite (~ 27 wt.% was obtained in the sample austempered at 375°C but due to lower austenite stability and coarser overall microstructure, the sample exhibited lower tensile ductility, bendability, flangeability and impact toughness. The sample austempered at 400°C also showed poor properties due to the presence of initial martensite and coarse microstructure. The best combination of mechanical properties was achieved for the samples austempered at 325-350°C with a lower amount of retained austenite but with the highest mechanical stability.

  12. Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications.

    Science.gov (United States)

    Gautam, Chandkiram; Joyner, Jarin; Gautam, Amarendra; Rao, Jitendra; Vajtai, Robert

    2016-12-06

    Zirconia (ZrO 2 ) based dental ceramics have been considered to be advantageous materials with adequate mechanical properties for the manufacturing of medical devices. Due to its very high compression strength of 2000 MPa, ZrO 2 can resist differing mechanical environments. During the crack propagation on the application of stress on the surface of ZrO 2 , a crystalline modification diminishes the propagation of cracks. In addition, zirconia's biocompatibility has been studied in vivo, leading to the observation of no adverse response upon the insertion of ZrO 2 samples into the bone or muscle. In vitro experimentation has exhibited the absence of mutations and good viability of cells cultured on this material leading to the use of ZrO 2 in the manufacturing of hip head prostheses. The mechanical properties of zirconia fixed partial dentures (FPDs) have proven to be superior to other ceramic/composite restorations and hence leading to their significant applications in implant supported rehabilitations. Recent developments were focused on the synthesis of zirconia based dental materials. More recently, zirconia has been introduced in prosthetic dentistry for the fabrication of crowns and fixed partial dentures in combination with computer aided design/computer aided manufacturing (CAD/CAM) techniques. This systematic review covers the results of past as well as recent scientific studies on the properties of zirconia based ceramics such as their specific compositions, microstructures, mechanical strength, biocompatibility and other applications in dentistry.

  13. Mechanical and electronic properties of Janus monolayer transition metal dichalcogenides

    Science.gov (United States)

    Shi, Wenwu; Wang, Zhiguo

    2018-05-01

    The mechanical and electronic properties of Janus monolayer transition metal dichalcogenides MXY (M  =  Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W; X/Y  =  S, Se, Te) were investigated using density functional theory. Results show that breaking the out-of-plane structural symmetry can be used to tune the electronic and mechanical behavior of monolayer transition metal dichalcogenides. The band gaps of monolayer WXY and MoXY are in the ranges of 0.16–1.91 and 0.94–1.69 eV, respectively. A semiconductor to metallic phase transition occurred in Janus monolayer MXY (M  =  Ti, Zr and Hf). The monolayers MXY (M  =  V, Nb, Ta and Cr) show metallic characteristics, which show no dependence on the structural symmetry breaking. The mechanical properties of MXY depended on the composition. Monolayer MXY (M  =  Mo, Ti, Zr, Hf and W) showed brittle characteristic, whereas monolayer CrXY and VXY are with ductile characteristic. The in-plane stiffness of pristine and Janus monolayer MXY are in the range between 22 and 158 N m‑1. The tunable electronic and mechanical properties of these 2D materials would advance the development of ultra-sensitive detectors, nanogenerators, low-power electronics, and energy harvesting and electromechanical systems.

  14. Mechanical properties of roll extruded nuclear reactor piping

    International Nuclear Information System (INIS)

    Steichen, J.M.; Knecht, R.L.

    1975-01-01

    The elevated temperature mechanical properties of large diameter (28 inches) seamless pipe produced by roll extrusion for use as primary piping for sodium coolant in the Fast Flux Test Facility (FFTF) have been characterized. The three heats of Type 316H stainless steel piping material used exhibited consistent mechanical properties and chemical compositions. Tensile and creep-rupture properties exceeded values on which the allowable stresses for ASME Code Case 1592 on Nuclear Components in Elevated Temperature Service were based. Tensile strength and ductility were essentially unchanged by aging in static sodium at 1050 0 F for times to 10,000 hours. High strain rate tensile tests showed that tensile properties were insensitive to strain rate at temperatures to 900 0 F and that for temperatures of 1050 0 F and above both strength and ductility significantly increased with increasing strain rate. Fatigue-crack propagation properties were comparable to results obtained on plate material and no differences in crack propagation were found between axial and circumferential orientations. (U.S.)

  15. Physical, mechanical, and biodegradable properties of meranti wood polymer composites

    International Nuclear Information System (INIS)

    Enamul Hoque, M.; Aminudin, M.A.M.; Jawaid, M.; Islam, M.S.; Saba, N.; Paridah, M.T.

    2014-01-01

    Highlights: • In-situ polymerization and solution casting method used to manufacture WPC. • In-situ WPC exhibited better properties compared to pure wood, 5% WPC and 20% WPC. • Lowest water absorption and least biodegradability shown by In-situ wood. - Abstract: In-situ polymerization and solution casting techniques are two effective methods to manufacture wood polymer composites (WPCs). In this study, wood polymer composites (WPCs) were manufactured from meranti sapwood by solution casting and in-situ polymerization process using methyl methacrylate (MMA) and epoxy matrix respectively. Physical, mechanical, and morphological characterizations of fabricated WPCs were then carried out to analyse their properties. Morphological properties of composites samples were analyzed through scanning electron microscopy (SEM). The result reveals that in-situ wood composite exhibited better properties compared to pure wood, 5% WPC and 20% WPC. Moreover, in-situ WPC had lowest water absorption and least biodegraded. Conversely, pure wood shown moderate mechanical strength, high biodegradation and water absorption rate. In term of biodegradation, earth-medium brought more severe effect than water in deteriorating the properties of the specimens

  16. Investigation on Mechanical Properties of Graphene Oxide reinforced GFRP

    Science.gov (United States)

    Arun, G. K.; Sreenivas, Nikhil; Brahma Reddy, Kesari; Sai Krishna Reddy, K.; Shashi Kumar, M. E.; Pramod, R.

    2018-02-01

    Graphene and E-glass fibres individually find a very wide field of applications because of their various mechanical and chemical properties. Recently graphene has attracted both academic and industrial interest because it can produce a dramatic improvement in properties at very low filler content. The primary interest of this venture is to investigate on Graphene reinforced polymer matrix nanocomposites and finding the mechanical properties. The composites were fabricated by Hand Lay Process and have been evaluated by the addition of Graphene with 1, 1.5, 2, 2.5 and 3 by weight% as reinforcement in composites. The theoretical and experimental results validate the increase in properties such as tensile strength, hardness and flexural strength with increase in weight proportions from 1% to 3% of graphene powder. It was observed that the composite material with 2.5% weight fraction of graphene yielded superior properties over other weight percentages. Graphene reinforced polymer matrix nanocomposites finds its major applications in the manufacture of aircraft bodies, ballistic missiles, sporting equipment, marine applications and extraterrestrial ventures.

  17. Multiscale mechanisms of nutritionally induced property variation in spider silks

    Science.gov (United States)

    Nobbs, Madeleine; Martens, Penny J.; Tso, I-Min; Chuang, Wei-Tsung; Chang, Chung-Kai; Sheu, Hwo-Shuenn

    2018-01-01

    Variability in spider major ampullate (MA) silk properties at different scales has proven difficult to determine and remains an obstacle to the development of synthetic fibers mimicking MA silk performance. A multitude of techniques may be used to measure multiscale aspects of silk properties. Here we fed five species of Araneoid spider solutions that either contained protein or were protein deprived and performed silk tensile tests, small and wide-angle X-ray scattering (SAXS/WAXS), amino acid composition analyses, and silk gene expression analyses, to resolve persistent questions about how nutrient deprivation induces variations in MA silk mechanical properties across scales. Our analyses found that the properties of each spider’s silk varied differently in response to variations in their protein intake. We found changes in the crystalline and non-crystalline nanostructures to play specific roles in inducing the property variations we found. Across treatment MaSp expression patterns differed in each of the five species. We found that in most species MaSp expression and amino acid composition variations did not conform with our predictions based on a traditional MaSp expression model. In general, changes to the silk’s alanine and proline compositions influenced the alignment of the proteins within the silk’s amorphous region, which influenced silk extensibility and toughness. Variations in structural alignment in the crystalline and non-crystalline regions influenced ultimate strength independent of genetic expression. Our study provides the deepest insights thus far into the mechanisms of how MA silk properties vary from gene expression to nanostructure formations to fiber mechanics. Such knowledge is imperative for promoting the production of synthetic silk fibers. PMID:29390013

  18. Mechanical properties and material characterization of polysialate structural composites

    Science.gov (United States)

    Foden, Andrew James

    One of the major concerns in using Fiber Reinforced Composites in applications that are subjected to fire is their resistance to high temperature. Some of the fabrics used in FRC, such as carbon, are fire resistant. However, almost all the resins used cannot withstand temperatures higher than 200°C. This dissertation deals with the development and use of a potassium aluminosilicate (GEOPOLYMER) resin that is inorganic and can sustain more than 1000°C. The results presented include the mechanical properties of the unreinforced polysialate matrix in tension, flexure, and compression as well as the strain capacities and surface energy. The mechanical properties of the matrix reinforced with several different fabrics were obtained in flexure, tension, compression and shear. The strength and stiffness of the composite was evaluated for each loading condition. Tests were conducted on unexposed samples as well as samples exposed to temperatures from 200 to 1000°C. Fatigue properties were determined using flexural loading. A study of the effect of several processing variables on the properties of the composite was undertaken to determine the optimum procedure for manufacturing composite plates. The processing variables studied were the curing temperature and pressure, and the post cure drying time required to remove any residual water. The optimum manufacturing conditions were determined using the void content, density, fiber volume fraction, and flexural strength. Analytical models are presented based on both micro and macro mechanical analysis of the composite. Classic laminate theory is used to evaluate the state of the composite as it is being loaded to determine the failure mechanisms. Several failure criteria theories are considered. The analysis is then used to explain the mechanical behavior of the composite that was observed during the experimental study.

  19. Mechanical and tribological properties of ion beam-processed surfaces

    International Nuclear Information System (INIS)

    Kodali, P.

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness

  20. A study on thermal and mechanical properties of mechanically milled HDPE and PP

    International Nuclear Information System (INIS)

    Can, S.; Tan, S.

    2003-01-01

    In this study, mechanical mixing of HDPE and PP was performed via ball milling. Prepared compositions were 75/25 , 50/50 , 25/75 w/w HDPE/PP. Milling time and ball to powder ratio (B/P) were kept constant and system was cooled by adding solid CO 2 to improve the milling efficiency. To compare these systems with traditional methods, mixtures were also melt mixed by Brabender Plasti-Corder. Both milled and melt mixed systems were examined with DSC for thermal properties and tensile testing for mechanical properties Results are discussed by comparing milled , melt mixed and as-received polymers. It is observed that, unlike ball milled systems' in melt mixed systems mechanical properties are composition dependent. In addition , ball milling results in amorphization of both polymers and very high amounts of PP (75wt %) creates very amorphous HDPE structure. (Original)

  1. Mechanics of extended masses in general relativity

    International Nuclear Information System (INIS)

    Harte, Abraham I

    2012-01-01

    The 'external' or 'Right' motion of extended bodies is studied in general relativity. Compact material objects of essentially arbitrary shape, spin, internal composition and velocity are allowed as long as there is no direct (non-gravitational) contact with other sources of stress-energy. Physically reasonable linear and angular momenta are proposed for such bodies and exact equations describing their evolution are derived. Changes in the momenta depend on a certain 'effective metric' that is closely related to a non-perturbative generalization of the Detweiler-Whiting R-field originally introduced in the self-force literature. If the effective metric inside a self-gravitating body can be adequately approximated by an appropriate power series, the instantaneous gravitational force and torque exerted on it is shown to be identical to the force and torque exerted on an appropriate test body moving in the effective metric. This result holds to all multipole orders. The only instantaneous effect of a body's self-field is to finitely renormalize the 'bare' multipole moments of its stress-energy tensor. The MiSaTaQuWa expression for the gravitational self-force is recovered as a simple application. A gravitational self-torque is obtained as well. Lastly, it is shown that the effective metric in which objects appear to move is approximately a solution to the vacuum Einstein equation if the physical metric is an approximate solution to Einstein's equation linearized about a vacuum background. (paper)

  2. Evaluating mechanical properties and degradation of YTZP dental implants

    International Nuclear Information System (INIS)

    Sevilla, Pablo; Sandino, Clara; Arciniegas, Milena; Martinez-Gomis, Jordi; Peraire, Maria; Gil, Francisco Javier

    2010-01-01

    Lately new biomedical grade yttria stabilized zirconia (YTZP) dental implants have appeared in the implantology market. This material has better aesthetical properties than conventional titanium used for implants but long term behaviour of these new implants is not yet well known. The aim of this paper is to quantify the mechanical response of YTZP dental implants previously degraded under different time conditions and compare the toughness and fatigue strength with titanium implants. Mechanical response has been studied by means of mechanical testing following the ISO 14801 for Standards for dental implants and by finite element analysis. Accelerated hydrothermal degradation has been achieved by means of water vapour and studied by X-ray diffraction and nanoindentation tests. The results show that the degradation suffered by YTZP dental implants will not have a significant effect on the mechanical behaviour. Otherwise the fracture toughness of YTZP ceramics is still insufficient in certain implantation conditions.

  3. Mechanical properties and microstructure of nano grain nickel alloy deposit

    International Nuclear Information System (INIS)

    Seo, Moo Hong; Kim, Jung Su; Kim, Seung Ho; Jung, Hyun Kyu; Wyi, Jung Il; Hwang, Woon Suk; Jang, Si Sung; Chun, Byung Sun

    2003-01-01

    In this study, Ni-P layers were electroplated on the surface of stainless steel in order to investigate the effects of an additive and agitation on their mechanical properties and microstructure. The concentration of the additive in the plating solution increased, the pores formed in the layer decreased, while the residual stress developed in the layers during electroplating increased. Agitation of the solution during electroplating was observed to force to increase local pores in the layer which lowers its tensile properties. Grain growth was suppressed due to very fine Ni 3 P precipitates formed at its grain boundaries during heat treatment at 343 .deg. C for 1 hr in air

  4. Mixed 2D molecular systems: Mechanic, thermodynamic and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Beno, Juraj [Department of Physics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19-SK Bratislava (Slovakia); Weis, Martin [Department of Physics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19-SK Bratislava (Slovakia)], E-mail: Martin.Weis@stuba.sk; Dobrocka, Edmund [Department of Physics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19-SK Bratislava (Slovakia); Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 841 04-SK Bratislava (Slovakia); Hasko, Daniel [International Laser Centre, Ilkovicova 3, 812 19-SK Bratislava (Slovakia)

    2008-08-15

    Study of Langmuir monolayers consisting of stearic acid (SA) and dipalmitoylphosphatidylcholine (DPPC) molecules was done by surface pressure-area isotherms ({pi}-A), the Maxwell displacement current (MDC) measurement, X-ray reflectivity (XRR) and atomic force microscopy (AFM) to investigate the selected mechanic, thermodynamic and dielectric properties based on orientational structure of monolayers. On the base of {pi}-A isotherms analysis we explain the creation of stable structures and found optimal monolayer composition. The dielectric properties represented by MDC generated monolayers were analyzed in terms of excess dipole moment, proposing the effect of dipole-dipole interaction. XRR and AFM results illustrate deposited film structure and molecular ordering.

  5. Constitutive Modeling of the Mechanical Properties of Optical Fibers

    Science.gov (United States)

    Moeti, L.; Moghazy, S.; Veazie, D.; Cuddihy, E.

    1998-01-01

    Micromechanical modeling of the composite mechanical properties of optical fibers was conducted. Good agreement was obtained between the values of Young's modulus obtained by micromechanics modeling and those determined experimentally for a single mode optical fiber where the wave guide and the jacket are physically coupled. The modeling was also attempted on a polarization-maintaining optical fiber (PANDA) where the wave guide and the jacket are physically decoupled, and found not to applicable since the modeling required perfect bonding at the interface. The modeling utilized constituent physical properties such as the Young's modulus, Poisson's ratio, and shear modulus to establish bounds on the macroscopic behavior of the fiber.

  6. Effective thermo-mechanical properties and shape memory effect of CNT/SMP composites

    Science.gov (United States)

    Yang, Qingsheng; Liu, Xia; Leng, Fangfang

    2009-07-01

    Shape memory polymer (SMP) has been applied in many fields as intelligent sensors and actuators. In order to improve the mechanical properties and recovery force of SMP, the addition of minor amounts of carbon nanotubes (CNT) into SMP has attracted wide attention. A micromechanical model and thermo-mechanical properties of CNT/SMP composites were studied in this paper. The thermo-mechanical constitutive relation of intellectual composites with isotropic and transversely isotropic CNT was obtained. Moreover, the shape memory effect of CNT/SMP composites and the effect of temperature and the volume fraction of CNT were discussed. The work shows that CNT/SMP composites exhibit excellent macroscopic thermo-mechanical properties and shape memory effect, while both of them can be affected remarkably by temperature and the microstructure parameters.

  7. Effect of calcium deficiency on the mechanical properties of hydroxyapatite crystals

    International Nuclear Information System (INIS)

    Viswanath, B.; Shastry, V.V.; Ramamurty, U.; Ravishankar, N.

    2010-01-01

    The deterioration of the mechanical properties of bone with age is related to several factors including the structure, organization and chemistry of the constituent phases; however, the relative contribution of each of these factors is not well understood. In this study, we have investigated the effect of chemistry (calcium deficiency) on the mechanical properties of single crystals of hydroxyapatite. Single crystals of stoichiometric crystals grown by the flux method and calcium-deficient platelet crystals grown using wet chemical methods were used as model systems. Using nanoindentation, we show that calcium deficiency leads to an 80% reduction in the hardness and elastic modulus and at least a 75% reduction in toughness in plate-shaped hydroxyapatite crystals. Measurement of local mechanical properties using nanoindentation and nanoscale chemistry through elemental mapping in a transmission electron microscope points to a direct correlation between the observed spatial variation in composition and the large scatter in the measured hardness and modulus values.

  8. Phase relations, crystal structures and physical properties of nuclear fuels

    International Nuclear Information System (INIS)

    Tagawa, Hiroaki; Fujino, Takeo; Tateno, Jun

    1975-07-01

    Phase relations, crystal structures and physical properties of the compounds for nuclear fuels are presented, including melting point, thermal expansion, diffusion and magnetic and electric properties. Emphasis is on oxides, carbides and nitrides of thorium, uranium and plutonium. (auth.)

  9. Mass production of bulk artificial nacre with excellent mechanical properties.

    Science.gov (United States)

    Gao, Huai-Ling; Chen, Si-Ming; Mao, Li-Bo; Song, Zhao-Qiang; Yao, Hong-Bin; Cölfen, Helmut; Luo, Xi-Sheng; Zhang, Fu; Pan, Zhao; Meng, Yu-Feng; Ni, Yong; Yu, Shu-Hong

    2017-08-18

    Various methods have been exploited to replicate nacre features into artificial structural materials with impressive structural and mechanical similarity. However, it is still very challenging to produce nacre-mimetics in three-dimensional bulk form, especially for further scale-up. Herein, we demonstrate that large-sized, three-dimensional bulk artificial nacre with comprehensive mimicry of the hierarchical structures and the toughening mechanisms of natural nacre can be facilely fabricated via a bottom-up assembly process based on laminating pre-fabricated two-dimensional nacre-mimetic films. By optimizing the hierarchical architecture from molecular level to macroscopic level, the mechanical performance of the artificial nacre is superior to that of natural nacre and many engineering materials. This bottom-up strategy has no size restriction or fundamental barrier for further scale-up, and can be easily extended to other material systems, opening an avenue for mass production of high-performance bulk nacre-mimetic structural materials in an efficient and cost-effective way for practical applications.Artificial materials that replicate the mechanical properties of nacre represent important structural materials, but are difficult to produce in bulk. Here, the authors exploit the bottom-up assembly of 2D nacre-mimetic films to fabricate 3D bulk artificial nacre with an optimized architecture and excellent mechanical properties.

  10. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication

    Science.gov (United States)

    Domack, Marcia S.; Taminger, Karen M. B.; Begley, Matthew

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  11. Properties of SIMOX and related systems

    International Nuclear Information System (INIS)

    Ouisse, T.

    1992-01-01

    This paper is focused on the properties of the SIMOX structure that are essential for the proper operation of integrated circuits. These properties are determined by direct inspection of the wafer or inferred from the characterization of test MOS devices. The next section presents the status of the SIMOX technology in terms of quality of the Si film, buried oxide and Si-SiO 2 interfaces. Interface coupling and floating body effects are typical phenomena in SOI transistors and are briefly discussed. Emphasis is put, in the last section, on reliability aspects which may be governed by the resistance of the buried oxide to hot carrier injection and radiation effects

  12. Enhancing Microstructure and Mechanical Properties of AZ31-MWCNT Nanocomposites through Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    J. Jayakumar

    2013-01-01

    Full Text Available Multiwall carbon nanotubes (MWCNTs reinforced Mg alloy AZ31 nanocomposites were fabricated by mechanical alloying and powder metallurgy technique. The reinforcement material MWCNTs were blended in three weight fractions (0.33%, 0.66%, and 1% with the matrix material AZ31 (Al-3%, zinc-1% rest Mg and blended through mechanical alloying using a high energy planetary ball mill. Specimens of monolithic AZ31 and AZ31-MWCNT composites were fabricated through powder metallurgy technique. The microstructure, density, hardness, porosity, ductility, and tensile properties of monolithic AZ31 and AZ31-MWCNT nano composites were characterized and compared. The characterization reveals significant reduction in CNT (carbon nanoTube agglomeration and enhancement in microstructure and mechanical properties due to mechanical alloying through ball milling.

  13. Response of mechanical properties of glasses to their chemical, thermal and mechanical histories

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    , surface, thermal history or excess entropy of the final glass state. Here I review recent progresses in understanding of the responses of mechanical properties of oxide glasses to the compositional variation, thermal history and mechanical deformation. The tensile strength, elastic modulus and hardness...... of glass fibers are dependent on the thermal history (measured as fictive temperature), tension, chemical composition and redox state. However, the fictive temperature affects the hardness of bulk glass in a complicated manner, i.e., the effect does not exhibit a clear regularity in the range...... and micro-cracks occurring during indentation of a glass is discussed briefly. Finally I describe the future perspectives and challenges in understanding responses of mechanical properties of oxide glasses to compositional variation, thermal history and mechanical deformation....

  14. Influence of porosity on mechanical properties of tetragonal stabilized zirconia

    DEFF Research Database (Denmark)

    Boccaccini, Dino; Frandsen, Henrik Lund; Soprani, Stefano

    2018-01-01

    3YSZ specimens with variable open porosity (1–57%) were fabricated, and the stiffness, strength and fracture properties (fracture toughness and R-curve) were measured to investigate their potential use as support structures for solid oxide fuel or electrolysis cells. The ball-on-ring test was used...... to characterize Young's modulus and Weibull strength. The variation of fracture toughness with porosity was investigated and modelled using the results from fracture mechanical testing. A distinct R-curve behaviour was observed in dense 3YSZ specimens, in samples with a porosity around 15% and in some...... supports for SOFC/SOECs from a mechanical point of view....

  15. Mechanical properties and thermal behaviour of LLDPE/MWNTs nanocomposites

    Directory of Open Access Journals (Sweden)

    Tai Jin-hua

    2012-12-01

    Full Text Available Multi-walled carbon nanotubes (MWNTs were incorporated into a linear low-density polyethylene (LLDPE matrix through using screw extrusion and injection technique. The effect of different weight percent loadings of MWNTs on the morphology, mechanical, and thermal of LLDPE/MWNTs nanocomposite had been investigated. It was found that, at low concentration of MWNTs, it could uniformly disperse into a linear low-density polyethylene matrix and provide LLDPE/MWNTs nanocomposites much improved mechanical properties. Thermal analysis showed that a clear improvement of thermal stability for LLDPE/MWNTs nanocomposites increased with increasing MWNTs content.

  16. Review of research on the mechanical properties of the human tooth

    Science.gov (United States)

    Zhang, Ya-Rong; Du, Wen; Zhou, Xue-Dong; Yu, Hai-Yang

    2014-01-01

    ‘Bronze teeth' reflect the mechanical properties of natural teeth to a certain extent. Their mechanical properties resemble those of a tough metal, and the gradient of these properties lies in the direction from outside to inside. These attributes confer human teeth with effective mastication ability. Understanding the various mechanical properties of human teeth and dental materials is the basis for the development of restorative materials. In this study, the elastic properties, dynamic mechanical properties (visco-elasticity) and fracture mechanical properties of enamel and dentin were reviewed to provide a more thorough understanding of the mechanical properties of human teeth. PMID:24743065

  17. Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction

    Directory of Open Access Journals (Sweden)

    Hao Ma

    2018-01-01

    Full Text Available Silica aerogels are highly porous 3D nanostructures and have exhibited excellent physio-chemical properties. Although silica aerogels have broad potential in many fields, the poor mechanical properties greatly limit further applications. In this study, we have applied the finite volume method (FVM method to calculate the mechanical properties of silica aerogels with different geometric properties such as particle size, pore size, ligament diameter, etc. The FVM simulation results show that a power law correlation existing between relative density and mechanical properties (elastic modulus and yield stress of silica aerogels, which are consistent with experimental and literature studies. In addition, depending on the relative densities, different strategies are proposed in order to synthesize silica aerogels with better mechanical performance by adjusting the distribution of pore size and ligament diameter of aerogels. Finally, the results suggest that it is possible to synthesize silica aerogels with ultra-low density as well as high strength and stiffness as long as the textural features are well controlled. It is believed that the FVM simulation methodology could be a valuable tool to study mechanical performance of silica aerogel based materials in the future.

  18. Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction.

    Science.gov (United States)

    Ma, Hao; Zheng, Xiaoyang; Luo, Xuan; Yi, Yong; Yang, Fan

    2018-01-30

    Silica aerogels are highly porous 3D nanostructures and have exhibited excellent physio-chemical properties. Although silica aerogels have broad potential in many fields, the poor mechanical properties greatly limit further applications. In this study, we have applied the finite volume method (FVM) method to calculate the mechanical properties of silica aerogels with different geometric properties such as particle size, pore size, ligament diameter, etc. The FVM simulation results show that a power law correlation existing between relative density and mechanical properties (elastic modulus and yield stress) of silica aerogels, which are consistent with experimental and literature studies. In addition, depending on the relative densities, different strategies are proposed in order to synthesize silica aerogels with better mechanical performance by adjusting the distribution of pore size and ligament diameter of aerogels. Finally, the results suggest that it is possible to synthesize silica aerogels with ultra-low density as well as high strength and stiffness as long as the textural features are well controlled. It is believed that the FVM simulation methodology could be a valuable tool to study mechanical performance of silica aerogel based materials in the future.

  19. Optimising mechanical properties of hot forged nickel superalloy 625 components

    Science.gov (United States)

    Singo, Nthambe; Coles, John; Rosochowska, Malgorzata; Lalvani, Himanshu; Hernandez, Jose; Ion, William

    2018-05-01

    Hot forging and subsequent heat treatment were resulting in substandard mechanical properties of nickel superalloy, Alloy 625, components. The low strength was found to be due to inadequate deformation during forging, excessive grain growth and precipitation of carbides during subsequent heat treatment. Experimentation in a drop forging company and heat treatment facility led to the establishment of optimal parameters to minimise grain size and mitigate the adverse effects of carbide precipitation, leading to successful fulfilment of mechanical property specifications. This was achieved by reducing the number of operations, maximising the extent of deformation by changing the slug dimensions and its orientation in the die, and minimising the time of exposure to elevated temperatures in both the forging and subsequent heat treatment processes to avoid grain growth.

  20. Mechanical Properties of Low Density Alloys at Cryogenic Temperatures

    International Nuclear Information System (INIS)

    Jiao, X. D.; Liu, H. J.; Li, L. F.; Yang, K.

    2006-01-01

    Low-density alloys include aluminum alloys, titanium alloys and magnesium alloys. Aluminum alloys and titanium alloys have been widely investigated and used as structural materials for cryogenic applications because of their light weight and good low-temperature mechanical properties.For aerospace applications, persistent efforts are being devoted to reducing weight and improving performance. Magnesium alloys are the lightest structural alloys among those mentioned above. Therefore, it is necessary to pay attention to magnesium alloys and to investigate their behaviors at cryogenic temperatures. In this paper, we have investigated the mechanical properties and microstructures of some magnesium alloys at cryogenic temperatures. Experimental results on both titanium and magnesium alloys are taken into account in considering these materials for space application

  1. Anisotropic mechanical properties of graphene sheets from molecular dynamics

    International Nuclear Information System (INIS)

    Ni Zhonghua; Bu Hao; Zou Min; Yi Hong; Bi Kedong; Chen Yunfei

    2010-01-01

    Anisotropic mechanical properties are observed for a sheet of graphene along different load directions. The anisotropic mechanical properties are attributed to the hexagonal structure of the unit cells of the graphene. Under the same tensile loads, the edge bonds bear larger load in the longitudinal mode (LM) than in the transverse mode (TM), which causes fracture sooner in LM than in TM. The Young's modulus and the third order elastic modulus for the LM are slightly larger than that for the TM. Simulation also demonstrates that, for both LM and TM, the loading and unloading stress-strain response curves overlap as long as the graphene is unloaded before the fracture point. This confirms that graphene sustains complete elastic and reversible deformation in the elongation process.

  2. A Review of the Mechanical Properties of Concrete Containing Biofillers

    Science.gov (United States)

    Ezdiani Mohamad, Mazizah; Mahmood, Ali A.; Min, Alicia Yik Yee; Khalid, Nur Hafizah A.

    2016-11-01

    Sustainable construction is a rapidly increasing research area. Investigators of all backgrounds are using industrial and agro wastes to replace Portland cement in concrete to reduce greenhouse emissions and the corresponding decline in general health. Many types of wastes have been used as cement replacements in concrete including: fly ash, slag and rice husk ash in addition to others. This study investigates the possibility of producing a sustainable approach to construction through the partial replacement of concrete using biofillers. This will be achieved by studying the physical and mechanical properties of two widely available biological wastes in Malaysia; eggshell and palm oil fuel ash (POFA). The mechanical properties tests that were studied and compared are the compression, tensile and flexural tests.

  3. Investigation of the mechanical and electrical properties of superconducting coils

    International Nuclear Information System (INIS)

    Saito, T.; Yamagiwa, T.; Hara, K.; Kojima, Y.; Hosoyama, K.; Mori, A.; Nojima, K.; Okamoto, Y.; Takabayashi, S.; Tanaka, T.

    1994-01-01

    Measurement of elastic (Young's) modulus of the superconducting coil and electrical punch-through test have been performed at LBL to understand the mechanical and electrical properties of the superconducting coils. The authors have investigated the elastic modulus of the superconducting coils with six kinds of insulators (made with polyimide-fiberglass-epoxy and all polyimide insulation with epoxy/polyimide adhesive) at room and liquid nitrogen temperatures using samples made of 10 stacks of superconducting cables. The samples are cured under varying compression to investigate the curing pressure dependence of Young's modulus of the coils with six kinds of the insulation system. The electrical punch-through test has also performed under compression at room and liquid nitrogen temperatures to investigate electrical integrity of the insulated coils. The tensile strength test of four kinds of polyimide films has been performed at various temperatures (between cryogenic and coil curing temperatures) to understand the mechanical properties of the films

  4. Effects of water infusions on mechanical properties of carboniferous rocks

    Energy Technology Data Exchange (ETDEWEB)

    Vavro, M; Chlebik, J

    1977-01-01

    Method of water infusion is used in the Ostrava-Karvina coal region in Czechoslovakia, where the roof of the extracted coal seam consists of thick rock layers (sandstone, Namurian B series) characterized by high resistance to compression, high coefficient of linear elasticity and high capacity of accumulating energy. When the resistance boundary is crossed and the rocks are disturbed this energy is suddenly released and transferred to the surrounding rock masses, coal seam and support system. On the basis of laboratory experiments the physico-mechanical and energy properties of carboniferous rocks together with calculation of their energy coefficient and other parameters are described and calculated. The results of research and theoretical solutions are presented. Practical use of water infusions to influence mechanical properties of sandstone in the roof of coal seams is described with the example of the Dukla coal mine. (5 refs.) (In Polish)

  5. Biodegradability and mechanical properties of starch films from Andean crops.

    Science.gov (United States)

    Torres, F G; Troncoso, O P; Torres, C; Díaz, D A; Amaya, E

    2011-05-01

    Different Andean crops were used to obtain starches not previously reported in literature as raw material for the production of biodegradable polymers. The twelve starches obtained were used to prepare biodegradable films by casting. Water and glycerol were used as plasticizers. The mechanical properties of the starch based films were assessed by means of tensile tests. Compost tests and FTIR tests were carried out to assess biodegradability of films. The results show that the mechanical properties (UTS, Young's modulus and elongation at break) of starch based films strongly depend on the starch source used for their production. We found that all the starch films prepared biodegrade following a three stage process and that the weight loss rate of all the starch based films tested was higher than the weight loss rate of the cellulose film used as control. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete

    Science.gov (United States)

    He, Dongqing; Wu, Min; Jie, Pengyu

    2017-12-01

    Several common high elastic modulus fibers (steel fibers, basalt fibers, polyvinyl alcohol fibers) and low elastic modulus fibers (polypropylene fiber) are incorporated into the concrete, and its cube compressive strength, splitting tensile strength and flexural strength are studied. The test result and analysis demonstrate that single fiber and hybrid fiber will improve the integrity of the concrete at failure. The mechanical properties of hybrid steel fiber-polypropylene fiber reinforced concrete are excellent, and the cube compressive strength, splitting tensile strength and flexural strength respectively increase than plain concrete by 6.4%, 3.7%, 11.4%. Doped single basalt fiber or polypropylene fiber and basalt fibers hybrid has little effect on the mechanical properties of concrete. Polyvinyl alcohol fiber and polypropylene fiber hybrid exhibit ‘negative confounding effect’ on concrete, its splitting tensile and flexural strength respectively are reduced by 17.8% and 12.9% than the single-doped polyvinyl alcohol fiber concrete.

  7. Microstructure and mechanical properties of carbon fibre-reinforced ...

    Indian Academy of Sciences (India)

    2018-05-17

    May 17, 2018 ... was focussed on the characteristics of sol and the mechanical properties and high-temperature resistance of ... The reinforcement was 3D carbon fibre (T300 3k, ex-PAN ... where f (a/H) = 2.9(a/H)1/2−4.6(a/H)3/2+21.8(a/H)5/2.

  8. Microstructure and mechanical properties of carbon fiber reinforced ...

    Indian Academy of Sciences (India)

    68

    Alumina; composites; carbon fiber reinforcement; sol; mechanical properties. 1. Introduction ... The reinforcement was 3D carbon fiber (T300 3k, ex-PAN carbon fiber ... where f(a/H) = 2.9(a/H)1/2 – 4.6(a/H)3/2 + 21.8(a/H)5/2. – 37.6(a/H)7/2 + ...

  9. Some physical and mechanical properties of palm kernel shell (PKS ...

    African Journals Online (AJOL)

    In this study, some of the mechanical and physical properties of palm kernel shells (PKS) were evaluated. These are moisture content, 7.8325 ± 0.6672%; true density, 1.254 ± 5.292 x 10-3 g/cm3; bulk density, 1.1248g/cm3; mean rupture force along width, and thickness were 3174.52 ± 270.70N and 2806.94 ± 498.45N for ...

  10. Influence of tempering on mechanical properties of ferritic martensitic steels

    International Nuclear Information System (INIS)

    Chun, Y. B.; Han, C. H.; Choi, B. K.; Lee, D. W.; Kim, T. K.; Jeong, Y. H.; Cho, S.

    2012-01-01

    In the mid-1980s research programs for development of low activation materials began. This is based on the US Nuclear Regulatory Commission Guidelines (10CFR part 61) that were developed to reduce long-lived radioactive isotopes, which allows nuclear reactor waste to be disposed of by shallow land burial when removed from service. Development of low activation materials is also key issue in nuclear fusion systems, as the structural components can became radioactive due to nuclear transmutation caused by exposure to high dose neutron irradiation. Reduced-activation ferritic martensitic (RAFM) steels have been developed in the leading countries in nuclear fusion technology, and are now being considered as primary candidate material for the test blanket module (TBM) in the international thermonuclear experiment reactor (ITER). RAFM steels developed so far (e.g., EUROFER 97 and F82H) meet the requirement for structural application in the ITER. However, if such alloys are used in the DEMO or commercial fusion reactor is still unclear, as the reactors are designed to operate under much severe conditions (i.e., higher outlet coolant temperature and neutron fluences). Such harsh operating conditions lead to development of RAFM steels with better creep and irradiation resistances. Mechanical properties of RAFM steels are strongly affected by microstructural features including the distribution, size and type of precipitates, dislocation density and grain size. For a given composition, such microstructural characteristics are determined mainly by thermo-mechanical process employed to fabricate the final product, and accordingly a final heat treatment, i.e., tempering is the key step to control the microstructure and mechanical properties. In the present work, we investigated mechanical properties of the RAFM steels with a particular attention being paid to effects of tempering on impact and creep properties

  11. Effect of precipitates on mechanical properties of AA2195

    International Nuclear Information System (INIS)

    Kim, Jae-Hee; Jeun, Jeong-Hoon; Chun, Hyun-Jin; Lee, Ye Rim; Yoo, Joon-Tae; Yoon, Jong-Hoon; Lee, Ho-Sung

    2016-01-01

    Addition of 1–4 wt.% lithium into a conventional Al–Cu–Mg alloy allows lower density and higher mechanical properties, which are attractive for aerospace applications. In this study, fundamental investigations including phase and microstructure evolution, resulting in strengthening, of the AA2195 are conducted to observe a possibility of production with commercial level. Precipitation sequence and kinetics during post-annealing were evaluated with variations of temperature and holding time. Microstructures revealed formation and evolution in representative precipitates including θ (Al_2Cu), ß′ (Al_3Zr), and T (Al_xLi_yCu) series. Aluminum alloys have low hardness, modulus, and strength before aging, but precipitates such as θ′ (Al_2Cu), ß′ (Al_3Zr), and T_1 (Al_2LiCu) show enhanced mechanical properties of AA2195 tempered because of their interaction with dislocation. However, longer holding time and higher annealing temperature result in significant decreases in mechanical properties due to the presence of incoherent precipitates (θ phase) and coarsening of the precipitates via grain-boundary diffusion. In the current study, the tensile strength of 560 MPa was obtained with post-heat treatment without work hardening. This value has never been achieved in other studies. The maximum strength was reported as 500 MPa without a work hardening process. - Highlights: • A relationship between microstructure and mechanical properties to post annealing AA2195. • A formation and dissolution of the precipitates were observed for various treatment. • An optimum post-annealing condition was obtained.

  12. Experimental evaluation of mechanical properties of softwood using acoustic methods

    Czech Academy of Sciences Publication Activity Database

    Tippner, J.; Hrivnák, J.; Kloiber, Michal

    2016-01-01

    Roč. 11, č. 1 (2016), s. 503-518 ISSN 1930-2126 R&D Projects: GA MK(CZ) DF11P01OVV001 Keywords : non destructive testing * Norway spruce * Scots pine * Silver fir * sound speed * strength * stress wave Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 1.321, year: 2016 http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_11_1_503_Tippner_Mechanical_Properties_Acoustic_Methods/4018

  13. Theoretical methods and models for mechanical properties of soft biomaterials

    Directory of Open Access Journals (Sweden)

    Zhonggang Feng

    2017-06-01

    Full Text Available We review the most commonly used theoretical methods and models for the mechanical properties of soft biomaterials, which include phenomenological hyperelastic and viscoelastic models, structural biphasic and network models, and the structural alteration theory. We emphasize basic concepts and recent developments. In consideration of the current progress and needs of mechanobiology, we introduce methods and models for tackling micromechanical problems and their applications to cell biology. Finally, the challenges and perspectives in this field are discussed.

  14. Effect of precipitates on mechanical properties of AA2195

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hee [Launcher Structure and Materials Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Jeun, Jeong-Hoon [Department of Materials Science and Engineering, Seoul National University, Seoul (Korea, Republic of); Chun, Hyun-Jin [Southeast University, Nanjing (China); Lee, Ye Rim [Department of Aerospace System Engineering, University of Science & Technology, Daejeon (Korea, Republic of); Yoo, Joon-Tae [Launcher Structure and Materials Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Yoon, Jong-Hoon [Launcher Structure and Materials Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Department of Aerospace System Engineering, University of Science & Technology, Daejeon (Korea, Republic of); Lee, Ho-Sung, E-mail: hslee@kari.re.kr [Launcher Structure and Materials Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Department of Aerospace System Engineering, University of Science & Technology, Daejeon (Korea, Republic of)

    2016-06-05

    Addition of 1–4 wt.% lithium into a conventional Al–Cu–Mg alloy allows lower density and higher mechanical properties, which are attractive for aerospace applications. In this study, fundamental investigations including phase and microstructure evolution, resulting in strengthening, of the AA2195 are conducted to observe a possibility of production with commercial level. Precipitation sequence and kinetics during post-annealing were evaluated with variations of temperature and holding time. Microstructures revealed formation and evolution in representative precipitates including θ (Al{sub 2}Cu), ß′ (Al{sub 3}Zr), and T (Al{sub x}Li{sub y}Cu) series. Aluminum alloys have low hardness, modulus, and strength before aging, but precipitates such as θ′ (Al{sub 2}Cu), ß′ (Al{sub 3}Zr), and T{sub 1} (Al{sub 2}LiCu) show enhanced mechanical properties of AA2195 tempered because of their interaction with dislocation. However, longer holding time and higher annealing temperature result in significant decreases in mechanical properties due to the presence of incoherent precipitates (θ phase) and coarsening of the precipitates via grain-boundary diffusion. In the current study, the tensile strength of 560 MPa was obtained with post-heat treatment without work hardening. This value has never been achieved in other studies. The maximum strength was reported as 500 MPa without a work hardening process. - Highlights: • A relationship between microstructure and mechanical properties to post annealing AA2195. • A formation and dissolution of the precipitates were observed for various treatment. • An optimum post-annealing condition was obtained.

  15. Nanoscaled Mechanical Properties of Cement Composites Reinforced with Carbon Nanofibers

    OpenAIRE

    Barbhuiya, Salim; Chow, PengLoy

    2017-01-01

    This paper reports the effects of carbon nanofibers (CNFs) on nanoscaled mechanical properties of cement composites. CNFs were added to cement composites at the filler loading of 0.2 wt % (by wt. of cement). Micrographs based on scanning electron microscopy (SEM) show that CNFs are capable of forming strong interfacial bonding with cement matrices. Experimental results using nanoindentation reveal that the addition of CNFs in cement composites increases the proportions of high-density calcium...

  16. Simulative calculation of bromo-polystyrene mechanical properties

    CERN Document Server

    Wang Chao; Tang Yong Jian

    2002-01-01

    The non-crystal model of polystyrene and bromo-polystyrene was established with the help of simulative software in the computer. DREIDING was chosen as force field and its parameters is modified according to the published data. Based on the calculation results and other published data the mechanism properties of polystyrene and bromo-polystyrene, such as bulk module, Yong's module and Poisson's ratios, were discussed

  17. Mechanical properties of green composites based on thermoplastic starch

    Science.gov (United States)

    Fornes, F.; Sánchez-Nácher, L.; Fenollar, O.; Boronat, T.; Garcia-Sanoguera, D.

    2010-06-01

    The present work is focused on study of "green composites" elaborated from thermoplastic starch (TPS) as polymer matrix and a fiber from natural origin (rush) as reinforced fiber. The effect of the fiber content has been studied by means of the mechanical properties. The composite resulting presents a lack of interaction between matrix and fiber that represents a performance decrease. However the biodegradability behavior of the resulting composite raise this composite as useful an industrial level.

  18. Mechanical and thermophysical properties of hot-pressed SYNROC B

    International Nuclear Information System (INIS)

    Hoenig, C.L.; Newkirk, H.W.; Otto, R.A.; Brady, R.L.; Brown, A.E.; Ulrich, A.R.; Lum, R.C.

    1981-01-01

    The optimal SYNROC compositons for use with commercial waste are reviewed. Large amounts of powder (about 2.5 kg) were prepared by convention al ceramic operations to test the SYNROC concept on a processing scale. Samples, 15.2 cm in diameter, were hot pressed in graphite, and representative samples were cut for microstructural evaluations. Measured mechanical and thermophysical properties did not vary significantly as a function of sample location and were typical of titanate ceramic materials

  19. THE STRUCTURAL AND MECHANICAL PROPERTIES OF THE BONE

    Directory of Open Access Journals (Sweden)

    Robert Karpiński

    2017-06-01

    Full Text Available The work contains basic information on the anatomy and physiology of bone tissue. Basic concepts related to the structure of bone tissue are presented. General issues related to bone reconstruction processes and biomechanical structural adaptations processes were described. Mechanical parameters of bone tissue were presented.

  20. High-Mn steel weldment mechanical properties at 4 K

    International Nuclear Information System (INIS)

    Chan, J.W.; Sunwoo, A.J.; Morris, J.W. Jr.

    1988-06-01

    Advanced high-field superconducting magnets of the next generation of magnetic confinement fusion devices will require structural alloys with high yield strength and high toughness at cryogenic temperatures. Commercially available alloys used in the current generation of magnets, such as 300 series stainless steels, do not have the required properties. N-strengthened, high-Mn alloys meet base plate requirements in the as-rolled condition. However, the property changes associated with weld microstructural and chemical changes in these alloys have not been well characterized. In this work welding induced cryogenic mechanical property changes of an 18Mn-16Cr-5Ni-0.2N alloy are correlated with as-solidified weld microstructures and chemistries. 30 refs., 12 figs., 3 tabs

  1. Microstructure and Mechanical Properties of Aligned Natural Fibre Composites

    DEFF Research Database (Denmark)

    Rask, Morten

    properties (stiffness-to-density ratio). The perspective of using natural fibres is to have a sustainable, biodegradable, CO2-neutral alternative to glass fibres. However, so far, it has not been possible to take full advantage of the natural fibre properties when using them for composite applications....... Several challenges have to be addressed and solved, many of which pertain to the fact that the fibres are sourced from a natural resource: 1) Inconsistent properties, depending on plant species, growth and harvest conditions, and fibre extraction techniques. 2) Strength values of composites are lower than...... microscopy during tensile tests of small composite specimens. With this technique, 3D images can be obtained with spatial resolution mechanisms have been identified: (i) Interface...

  2. Protocol dependence of mechanical properties in granular systems.

    Science.gov (United States)

    Inagaki, S; Otsuki, M; Sasa, S

    2011-11-01

    We study the protocol dependence of the mechanical properties of granular media by means of computer simulations. We control a protocol of realizing disk packings in a systematic manner. In 2D, by keeping material properties of the constituents identical, we carry out compaction with various strain rates. The disk packings exhibit the strain rate dependence of the critical packing fraction above which the pressure becomes non-zero. The observed behavior contrasts with the well-studied jamming transitions for frictionless disk packings. We also observe that the elastic moduli of the disk packings depend on the strain rate logarithmically. Our results suggest that there exists a time-dependent state variable to describe macroscopic material properties of disk packings, which depend on its protocol.

  3. The effect of altered lignin composition on mechanical properties of CINNAMYL ALCOHOL DEHYDROGENASE (CAD) deficient poplars.

    Science.gov (United States)

    Özparpucu, Merve; Gierlinger, Notburga; Burgert, Ingo; Van Acker, Rebecca; Vanholme, Ruben; Boerjan, Wout; Pilate, Gilles; Déjardin, Annabelle; Rüggeberg, Markus

    2018-04-01

    CAD-deficient poplars enabled studying the influence of altered lignin composition on mechanical properties. Severe alterations in lignin composition did not influence the mechanical properties. Wood represents a hierarchical fiber-composite material with excellent mechanical properties. Despite its wide use and versatility, its mechanical behavior has not been entirely understood. It has especially been challenging to unravel the mechanical function of the cell wall matrix. Lignin engineering has been a useful tool to increase the knowledge on the mechanical function of lignin as it allows for modifications of lignin content and composition and the subsequent studying of the mechanical properties of these transgenics. Hereby, in most cases, both lignin composition and content are altered and the specific influence of lignin composition has hardly been revealed. Here, we have performed a comprehensive micromechanical, structural, and spectroscopic analysis on xylem strips of transgenic poplar plants, which are downregulated for cinnamyl alcohol dehydrogenase (CAD) by a hairpin-RNA-mediated silencing approach. All parameters were evaluated on the same samples. Raman microscopy revealed that the lignin of the hpCAD poplars was significantly enriched in aldehydes and reduced in the (relative) amount of G-units. FTIR spectra indicated pronounced changes in lignin composition, whereas lignin content was not significantly changed between WT and the hpCAD poplars. Microfibril angles were in the range of 18°-24° and were not significantly different between WT and transgenics. No significant changes were observed in mechanical properties, such as tensile stiffness, ultimate stress, and yield stress. The specific findings on hpCAD poplar allowed studying the specific influence of lignin composition on mechanics. It can be concluded that the changes in lignin composition in hpCAD poplars did not affect the micromechanical tensile properties.

  4. Small specimen technique for assessing mechanical properties of metallic components

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Raquel M.; Andrade, Arnaldo H.P.; Morcelli, Aparecido E., E-mail: rmlobo@ipen.br, E-mail: morcelliae@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    Small Punch Test (SPT) is one of the most promising techniques of small specimen test, which was originally applied in testing of irradiated materials in nuclear engineering. Then it was introduced to other fields as an almost nondestructive method to measure the local mechanical properties that are difficult to be obtained using conventional mechanical tests. Most studies to date are focused on metallic materials, although SPT applications are recently spreading to other materials. The small punch test (SPT) employs small-sized specimens (for example, samples measuring 8 mm in diameter and 0.5 mm thick). The specimen is firmly clamped between two circular dies and is bi-axially strained until failure into a circular hole using a hemispherical punch. The 'load-punch displacement' record can be used to estimate the yield strength, the ultimate tensile strength, the tensile elongation, and the temperature of the ductile-to-brittle transition. Recently, some researchers are working on the use of miniature notched or pre-cracked specimens (denoted as p-SPT) to validate its geometry and dimensions for obtaining the fracture properties of metallic materials. In a first approach, the technique makes it possible to convert primary experimental data into conventional mechanical properties of a massive specimen. In this paper a comprehensive review of the different STP applications is presented with the aim of clarifying its usefulness. (author)

  5. Mechanical properties of LMR structural materials at high temperature

    International Nuclear Information System (INIS)

    Kim, D. W.; Kuk, I. H.; Ryu, W. S. and others

    1999-03-01

    Austenitic stainless is used for the structural material of liquid metal reactor (LMR) because of good mechanical properties at high temperature. Stainless steel having more resistant to temperature by adding minor element has been developing for operating the LMR at higher temperature. Of many elements, nitrogen is a prospective element to modify type 316L(N) stainless steel because nitrogen is the most effective element for solid solution and because nitrogen retards the precipitation of carbide at grain boundary. Ti, Nb, and V are added to improve creep properties by stabilizing the carbides through forming MC carbide. Testing techniques of tensile, fatigue, creep, and creep-fatigue at high temperature are difficult. Moreover, testing times for creep and creep-fatigue tests are very long up to several tens of thousands hours because creep and creep-fatigue phenomena are time-dependent damage mechanism. So, it is hard to acquire the material data for designing LMR systems during a limited time. In addition, the integrity of LMR structural materials at the end of LMR life has to be predicted from the laboratory data tested during the short term because there is no data tested during 40 years. Therefore, the effect of elements on mechanical properties at high temperature was reviewed in this study and many methods to predict the long-term behaviors of structural materials by simulated modelling equation is shown in this report. (author). 32 refs., 9 tabs., 38 figs

  6. Dynamic Mechanical Properties of PMN/CNFs/EP Composites

    International Nuclear Information System (INIS)

    Shi Minxian; Huang Zhixiong; Qin Yan

    2011-01-01

    In this research, piezoelectric ceramic PMN(lead magnesium niobate-lead zirconate-lead titanate)/carbon nano-fibers(CNFs)/epoxy resin(EP) ccomposites were prepared and the dynamic mechanical properties and damping mechanism of PMN/CNFs/EP composites were investigated. The addition of CNFs into PMN/EP composite results in decrease of volume resistivity of the composite. When the concentration of CNFs is 0.6% weight of epoxy resin the volume resistivity of PMN/CNFs/EP composite is about 10 8 Ω·m. Dynamic mechanical analysis indicates that the loss factor, loss area, and damping temperature range of PMN/CNFs/EP composites increase with the CNFs content increasing till to 0.6% of weight of epoxy resin. When the CNFs content is more than 0.6% the damping properties of composites decrease oppositely. In PMN/CNFs/EP composites, the CNFs content 0.6% and the volume resistivity of PMN/CNFs/EP composites about 10 8 Ω·m just satisfy the practicing condition of piezo-damping, so the composites show optimal damping property.

  7. Small specimen technique for assessing mechanical properties of metallic components

    International Nuclear Information System (INIS)

    Lobo, Raquel M.; Andrade, Arnaldo H.P.; Morcelli, Aparecido E.

    2017-01-01

    Small Punch Test (SPT) is one of the most promising techniques of small specimen test, which was originally applied in testing of irradiated materials in nuclear engineering. Then it was introduced to other fields as an almost nondestructive method to measure the local mechanical properties that are difficult to be obtained using conventional mechanical tests. Most studies to date are focused on metallic materials, although SPT applications are recently spreading to other materials. The small punch test (SPT) employs small-sized specimens (for example, samples measuring 8 mm in diameter and 0.5 mm thick). The specimen is firmly clamped between two circular dies and is bi-axially strained until failure into a circular hole using a hemispherical punch. The 'load-punch displacement' record can be used to estimate the yield strength, the ultimate tensile strength, the tensile elongation, and the temperature of the ductile-to-brittle transition. Recently, some researchers are working on the use of miniature notched or pre-cracked specimens (denoted as p-SPT) to validate its geometry and dimensions for obtaining the fracture properties of metallic materials. In a first approach, the technique makes it possible to convert primary experimental data into conventional mechanical properties of a massive specimen. In this paper a comprehensive review of the different STP applications is presented with the aim of clarifying its usefulness. (author)

  8. Structure and mechanical properties of Octopus vulgaris suckers.

    Science.gov (United States)

    Tramacere, Francesca; Kovalev, Alexander; Kleinteich, Thomas; Gorb, Stanislav N; Mazzolai, Barbara

    2014-02-06

    In this study, we investigate the morphology and mechanical features of Octopus vulgaris suckers, which may serve as a model for the creation of a new generation of attachment devices. Octopus suckers attach to a wide range of substrates in wet conditions, including rough surfaces. This amazing feature is made possible by the sucker's tissues, which are pliable to the substrate profile. Previous studies have described a peculiar internal structure that plays a fundamental role in the attachment and detachment processes of the sucker. In this work, we present a mechanical characterization of the tissues involved in the attachment process, which was performed using microindentation tests. We evaluated the elasticity modulus and viscoelastic parameters of the natural tissues (E ∼ 10 kPa) and measured the mechanical properties of some artificial materials that have previously been used in soft robotics. Such a comparison of biological prototypes and artificial material that mimics octopus-sucker tissue is crucial for the design of innovative artificial suction cups for use in wet environments. We conclude that the properties of the common elastomers that are generally used in soft robotics are quite dissimilar to the properties of biological suckers.

  9. Long term mechanical properties of alkali activated slag

    Science.gov (United States)

    Zhu, J.; Zheng, W. Z.; Xu, Z. Z.; Leng, Y. F.; Qin, C. Z.

    2018-01-01

    This article reports a study on the microstructural and long-term mechanical properties of the alkali activated slag up to 180 days, and cement paste is studied as the comparison. The mechanical properties including compressive strength, flexural strength, axis tensile strength and splitting tensile strength are analyzed. The results showed that the alkali activated slag had higher compressive and tensile strength, Slag is activated by potassium silicate (K2SiO3) and sodium hydroxide (NaOH) solutions for attaining silicate modulus of 1 using 12 potassium silicate and 5.35% sodium hydroxide. The volume dosage of water is 35% and 42%. The results indicate that alkali activated slag is a kind of rapid hardening and early strength cementitious material with excellent long-term mechanical properties. Single row of holes block compressive strength, single-hole block compressive strength and standard solid brick compressive strength basically meet engineering requirements. The microstructures of alkali activated slag are studied by X-ray diffraction (XRD). The hydration products of alkali-activated slag are assured as hydrated calcium silicate and hydrated calcium aluminate.

  10. Bismuth oxide based ceramics with improved electrical and mechanical properties: Part II. Structural and mechanical properties

    NARCIS (Netherlands)

    Kruidhof, H.; Seshan, Kulathuiyer; van de Velde, G.M.H.; de Vries, K.J.; Burggraaf, A.J.

    1988-01-01

    Coprecipitation as a method of preparation for bismuth oxides based ceramics yields relatively strong and machineable materials in comparison with the solid state reaction. Compositions within the system (1−x)Bi2O3|xEr2O3 containing up to twenty five mole percent of erbium oxide show a slow

  11. Structure and mechanical properties of polyamide 6/Brazilian clay nanocomposites

    Directory of Open Access Journals (Sweden)

    Amanda Melissa Damião Leite

    2009-06-01

    Full Text Available Recent interest in polymer/organoclays nanocomposites systems is motivated by the possibility of achieving enhanced properties and added functionality at lower clay loading as compared to conventional micron size fillers. By adding montmorillonite clay to polyamide 6 increases the Young modulus, yield strength and also improves barrier properties. In this work, nanocomposites of polyamide 6 with montmorillonite clay were obtained. The clay was chemically modified with three different quaternary ammonium salts such as: Dodigen, Genamin and Cetremide. In this case, a dispersion of Na-MMT was stirred and a salt equivalent to 1:1 of cation exchange capacity (CEC of Na-MMT was added to the dispersion. The montmorillonite clay (untreated and treated by ammonium salts and nanocomposites were characterized by X ray diffractions. Also the nanocomposites were characterized by transmission electron microscopy and mechanical properties. The results indicated that all the quaternary ammonium salts were intercalated between the layers of clay, leading to an expansion of the interlayer spacing. The obtained nanocomposites showed better mechanical properties when compared to polyamide 6. The clay acted as reinforcing filler, increasing the rigidity of nanocomposites and decreasing its ductility.

  12. Compatibility between Hydraulic and Mechanical Properties of Ceramic Water Filters

    Directory of Open Access Journals (Sweden)

    Riyadh Z. Al Zubaidy

    2017-05-01

    Full Text Available In this paper, ceramic water filters were produced by using ten mixtures of different ratios of red clay and sawdust under different production conditions. The physical properties of these filters were tested. The production conditions include five press pressures ranged from 10 to 50MPa and a firing schedule having three different final temperatures of 1000, 1070, and 1100˚C. The tests results of the physical properties were used to obtain best compatibility between the hydraulic and the mechanical properties of these filters. Results showed that as the press pressure and the firing temperature are increased, the bulk density and the compressive and bending strengths of the produced filters are increased, while, the porosity and absorption are decreased. As the sawdust content is increased the bulk density and the compressive and bending strengths are decreased, while, the porosity and absorption are increased. High hydraulic conductivity is obtained at a firing temperature of 1070˚C when the sawdust content is less than 10%. Otherwise, it is increased as sawdust content and the firing temperature are increased. Filters made of mixture 92.5% red clay and 7.5% sawdust formed . under a press pressure of 20MPa and a firing temperature of 1070˚C gave the best compatibility between hydraulic and mechanical properties. In this case, the hydraulic conductivity was 50mm/day, the compressive strength was 14MPa, and the bending strength was 10.8MPa.

  13. Materials properties utilization in a cumulative mechanical damage function for LMFBR fuel pin failure analysis

    International Nuclear Information System (INIS)

    Jacobs, D.C.

    1977-01-01

    An overview is presented of one of the fuel-pin analysis techniques used in the CRBRP program, the cumulative mechanical damage function. This technique, as applied to LMFBR's, was developed along with the majority of models used to describe the mechanical properties and environmental behavior of the cladding (i.e., 20 percent cold-worked, 316 stainless steel). As it relates to fuel-pin analyses the Cumulative Mechanical Damage Function (CDF) continually monitors cladding integrity through steady state and transient operation; it is a time dependent function of temperature and stress which reflects the effects of both the prior mechanical history and the variations in mechanical properties caused by exposure to the reactor environment

  14. Mechanical properties of structural amorphous steels: Intrinsic correlations, conflicts, and optimizing strategies

    International Nuclear Information System (INIS)

    Liu, Z. Q.; Zhang, Z. F.

    2013-01-01

    Amorphous steels have demonstrated superior properties and great potentials for structural applications since their emergence, yet it still remains unclear about how and why their mechanical properties are correlated with other factors and how to achieve intended properties by designing their compositions. Here, the intrinsic interdependences among the mechanical, thermal, and elastic properties of various amorphous steels are systematically elucidated and a general trade-off relation is exposed between the strength and ductility/toughness. Encouragingly, a breakthrough is achievable that the strength and ductility/toughness can be simultaneously improved by tuning the compositions. The composition dependences of the properties and alloying effects are further analyzed thoroughly and interpreted from the fundamental plastic flow and atomic bonding characters. Most importantly, systematic strategies are outlined for optimizing the mechanical properties of the amorphous steels. The study may help establish the intrinsic correlations among the compositions, atomic structures, and properties of the amorphous steels, and provide useful guidance for their alloy design and property optimization. Thus, it is believed to have implications for the development and applications of the structural amorphous steels

  15. Mechanical Property and Its Comparison of Superalloys for High Temperature Gas Cooled Reactor

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Kim, D. W.; Ryu, W. S.; Han, C. H.; Yoon, J. H.; Chang, J.

    2005-01-01

    Since structural materials for high temperature gas cooled reactor are used during long period in nuclear environment up to 1000 .deg. C, it is important to have good properties at elevated temperature such as mechanical properties (tensile, creep, fatigue, creep-fatigue), microstructural stability, interaction between metal and gas, friction and wear, hydrogen and tritium permeation, irradiation behavior, corrosion by impurity in He. Thus, in order to select excellent materials for the high temperature gas cooled reactor, it is necessary to understand the material properties and to gather the data for them. In this report, the items related to material properties which are needed for designing the high temperature gas cooled reactor were presented. Mechanical properties; tensile, creep, and fatigue etc. were investigated for Haynes 230, Hastelloy-X, In 617 and Alloy 800H, which can be used as the major structural components, such as intermediate heat exchanger (IHX), hot duct and piping and internals. Effect of He and irradiation on these structural materials was investigated. Also, mechanical properties; physical properties, tensile properties, creep and creep crack growth rate were compared for them, respectively. These results of this report can be used as important data to select superior materials for high temperature gas reactor

  16. Hydraulic Properties related to Stream Reaeration

    Energy Technology Data Exchange (ETDEWEB)

    Tsivoglou, E. C.; Wallace, J. R. [School of Civil Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    1970-09-15

    The paper reports the results of recent and current field tracer experiments designed to investigate the relationships between the reaeration capacity of a flowing stream and the stream's hydraulic properties. The purpose of the studies is to develop models for the accurate prediction of stream reaeration capacity on the basis of observation of the associated hydraulic properties. The ability of a flowing stream to absorb oxygen from the overlying atmosphere is the principal process by which the stream is able to recover its dissolved oxygen resources once they have been depleted by bacterial degradation of organic wastes. Accurate knowledge of stream reaeration capacity is therefore a necessity in determining the required degree of waste treatment, and the associated costs, in any specific case. Oxygen absorption can only occur at the air-water interface, hence reaeration is a direct function of the rate of surface water replacement due to turbulent mixing. The latter is not directly observable, and so reaeration capacity has not been observable before the quite recent development of a gaseous radiotracer technique for field measurement of reaeration. This procedure involves the simultaneous use of three tracers, namely a fluorescent dye for time of flow, tritiated water for accurate dispersion measurement, and dissolved krypton-85 for measurement of gas transfer. Field results obtained by this technique are highly reproducible. Field tracer studies of the reaeration capacities of three medium-sized streams have been conducted over a total of about fifty river miles. Associated hydraulic properties such as stream flow, cross-sectional area, depth, velocity, hydraulic gradient and dispersion have also been measured. Features such as waterfalls, rapids and pools are included, and more than eighty observations of the reaeration capacities of individual stream reaches have been made. The paper reports the observed relationships between stream reaeration capacity and

  17. Hydraulic properties related to stream reaeration

    Energy Technology Data Exchange (ETDEWEB)

    Tsivoglou, E C; Wallace, J R [School of Civil Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    1970-09-15

    The paper reports the results of recent and current field tracer experiments designed to investigate the relationships between the reaeration capacity of a flowing stream and the stream's hydraulic properties. The purpose of the studies is to develop models for the accurate prediction of stream reaeration capacity on the basis of observation of the associated hydraulic properties. The ability of a flowing stream to absorb oxygen from the overlying atmosphere is the principal process by which the stream is able to recover its dissolved oxygen resources once they have been depleted by bacterial degradation of organic wastes. Accurate knowledge of stream reaeration capacity is therefore a necessity in determining the required degree of waste treatment, and the associated costs, in any specific case. Oxygen absorption can only occur at the air-water interface, hence reaeration is a direct function of the rate of surface water replacement due to turbulent mixing. The latter is not directly observable, and so reaeration capacity has not been observable before the quite recent development of a gaseous radiotracer technique for field measurement of reaeration. This procedure involves the simultaneous use of three tracers, namely a fluorescent dye for time of flow, tritiated water for accurate dispersion measurement, and dissolved krypton-85 for measurement of gas transfer. Field results obtained by this technique are highly reproducible. Field tracer studies of the reaeration capacities of three medium-sized streams have been conducted over a total of about fifty river miles. Associated hydraulic properties such as stream flow, cross-sectional area, depth, velocity, hydraulic gradient and dispersion have also been measured. Features such as waterfalls, rapids and pools are included, and more than eighty observations of the reaeration capacities of individual stream reaches have been made. The paper reports the observed relationships between stream reaeration capacity and

  18. Effect of diluted alloying elements on mechanical properties of iron

    International Nuclear Information System (INIS)

    Hassan, A.A.S.

    1996-01-01

    Iron and its alloys have extensive applications. The effect of solute additions on mechanical properties of iron was investigated to check the efficiency of solute atoms on strength and surface e life. Additions in the range of 0.1 wt.% and 0.3 wt.% of alloying elements of Cu,Ni and Si were used. Samples of grains size ranged from 6-40 m which have been prepared by annealing followed by furnace cooling. The recrystallization temperature increases with alloying addition (475 degree C for Fe-0.3 wt. % C alloy compared to 375 degree C for pure iron). Si and Cu additions inhibit grain growth of iron whereas Ni addition enhances it.Addition of Si or Ni to iron induced softening below room temperature whereas addition of Cu caused hardening. The work hardening parameters decreased due to alloying additions. The strength coefficient K was 290 M N/m2 for Fe-03 wt % Ni compared to 340 M N/m2 for pure iron. The work hardening exponent n is 0.12 for fe-0.3 wt. Cu alloy compared to 0.17 for pure iron. All the investigated alloys fulfilled the Hall-Petch relation at liquid Nitrogen and at room temperature. Alloying addition which caused softening addition which caused hardening increased the Half-Petch parameters. Ni addition favors ductility of iron whereas Cu addition reduces it. Alloying additions generally lead to brittle fracture and decrease the crack resistance of iron. 9 tabs., 55 figs., 103 refs

  19. The Frame of Fixed Stars in Relational Mechanics

    Science.gov (United States)

    Ferraro, Rafael

    2017-01-01

    Relational mechanics is a gauge theory of classical mechanics whose laws do not govern the motion of individual particles but the evolution of the distances between particles. Its formulation gives a satisfactory answer to Leibniz's and Mach's criticisms of Newton's mechanics: relational mechanics does not rely on the idea of an absolute space. When describing the behavior of small subsystems with respect to the so called "fixed stars", relational mechanics basically agrees with Newtonian mechanics. However, those subsystems having huge angular momentum will deviate from the Newtonian behavior if they are described in the frame of fixed stars. Such subsystems naturally belong to the field of astronomy; they can be used to test the relational theory.

  20. Mechanical properties of nanocrystalline palladium prepared by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Castrup, Anna; Hahn, Horst [Forschungszentrum Karlsruhe (Germany); Technical University of Darmstadt (Germany); Scherer, Torsten; Ivanisenko, Yulia; Choi, In-Suk; Kraft, Oliver [Forschungszentrum Karlsruhe (Germany)

    2009-07-01

    Nanocrystalline metals and alloys with grain sizes well below 100 nm often demonstrate unique deformation behaviour and therefore attract a great interest in material science. The understanding of deformation mechanisms operating in nanocrystalline materials is important to predict their mechanical properties. In the present study Pd films of 1{mu}m thickness were prepared using UHV rf magnetron sputtering on dog bone shaped Kapton substrates and on Si/SiO2 wafers. The films were sputtered using multilayer technology with an individual layer thickness of 10 nm. This resulted in grain sizes of about 20 nm. Initial microstructure and texture were characterized using conventional XRD measurements and transmission electron microscopy (TEM) in both cross section- and plane view. The mechanical properties were investigated using tensile testing and nanoindentation at several strain rates. An increased hardness and strength as compared to coarse grained Pd was observed, as well as high strain rate sensitivity. The microstructure in the gauge section after tensile testing was again analyzed using TEM in order to reveal signatures of deformation mechanisms like dislocation motion or twinning.

  1. Preparation and properties of mesoporous silica/bismaleimide/diallylbisphenol composites with improved thermal stability, mechanical and dielectric properties

    Directory of Open Access Journals (Sweden)

    2011-06-01

    Full Text Available New composites with improved thermal stability, mechanical and dielectric properties were developed, which consist of 2,2'-diallylbisphenol A (DBA/4,4'-bismaleimidodiphenylmethane (BDM resin and a new kind of organic/inorganic mesoporous silica (MPSA. Typical properties (curing behavior and mechanism, thermal stability, mechanical and dielectric properties of the composites were systematically investigated, and their origins were discussed. Results show that MPSA/DBA/BDM composites have similar curing temperature as DBA/BDM resin does; however, they have different curing mechanisms, and thus different crosslinked networks. The content of MPSA has close relation with the integrated performance of cured composites. Compared with cured DBA/BDM resin, composites with suitable content of MPSA show obviously improved flexural strength and modulus as well as impact strength; in addition, all composites not only have lower dielectric constant and similar frequency dependence, more interestingly, they also exhibit better stability of frequency on dielectric loss. For thermal stability, the addition of MPSA to DBA/BDM resin significantly decreases the coefficient of thermal expansion, and improves the char yield at high temperature with a slightly reduced glass transition temperature. All these differences in macro-properties are attributed to the different crosslinked networks between MPSA/DBA/BDM composites and DBA/BDM resin.

  2. Atomistic modeling of mechanical properties of polycrystalline graphene

    International Nuclear Information System (INIS)

    Mortazavi, Bohayra; Cuniberti, Gianaurelio

    2014-01-01

    We performed molecular dynamics (MD) simulations to investigate the mechanical properties of polycrystalline graphene. By constructing molecular models of ultra-fine-grained graphene structures, we studied the effect of different grain sizes of 1–10 nm on the mechanical response of graphene. We found that the elastic modulus and tensile strength of polycrystalline graphene decrease with decreasing grain size. The calculated mechanical proprieties for pristine and polycrystalline graphene sheets are found to be in agreement with experimental results in the literature. Our MD results suggest that the ultra-fine-grained graphene structures can show ultrahigh tensile strength and elastic modulus values that are very close to those of pristine graphene sheets. (papers)

  3. Characterisation of Dynamic Mechanical Properties of Resistance Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    2005-01-01

    characterizing the dynamic mechanical characteristics of resistance welding machines is suggested, and a test set-up is designed determining the basic, independent machine parameters required in the model. The model is verified by performing a series of mechanical tests as well as real projection welds.......The dynamic mechanical properties of a resistance welding machine have significant influence on weld quality, which must be considered when simulating the welding process numerically. However, due to the complexity of the machine structure and the mutual coupling of components of the machine system......, it is very difficult to measure or calculate the basic, independent machine parameters required in a mathematical model of the machine dynamics, and no test method has so far been presented in literature, which can be applied directly in an industrial environment. In this paper, a mathematical model...

  4. Mechanical properties of plant cell walls probed by relaxation spectra

    DEFF Research Database (Denmark)

    Hansen, Steen Laugesen; Ray, Peter Martin; Karlsson, Anders Ola

    2011-01-01

    Relax, that deduces relaxation spectra from appropriate rheological measurements is presented and made accessible through a Web interface. BayesRelax models the cell wall as a continuum of relaxing elements, and the ability of the method to resolve small differences in cell wall mechanical properties is demonstrated......Transformants and mutants with altered cell wall composition are expected to display a biomechanical phenotype due to the structural role of the cell wall. It is often quite difficult, however, to distinguish the mechanical behavior of a mutant's or transformant's cell walls from that of the wild...... type. This may be due to the plant’s ability to compensate for the wall modification or because the biophysical method that is often employed, determination of simple elastic modulus and breakstrength, lacks the resolving power necessary for detecting subtle mechanical phenotypes. Here, we apply...

  5. Atomistic modeling of mechanical properties of polycrystalline graphene.

    Science.gov (United States)

    Mortazavi, Bohayra; Cuniberti, Gianaurelio

    2014-05-30

    We performed molecular dynamics (MD) simulations to investigate the mechanical properties of polycrystalline graphene. By constructing molecular models of ultra-fine-grained graphene structures, we studied the effect of different grain sizes of 1-10 nm on the mechanical response of graphene. We found that the elastic modulus and tensile strength of polycrystalline graphene decrease with decreasing grain size. The calculated mechanical proprieties for pristine and polycrystalline graphene sheets are found to be in agreement with experimental results in the literature. Our MD results suggest that the ultra-fine-grained graphene structures can show ultrahigh tensile strength and elastic modulus values that are very close to those of pristine graphene sheets.

  6. Mechanically activated synthesis of PZT and its electromechanical properties

    Science.gov (United States)

    Liu, X.; Akdogan, E. K.; Safari, A.; Riman, R. E.

    2005-08-01

    Mechanical activation was successfully used to synthesize nanostructured phase-pure Pb(Zr0.7Ti0.3)O3 (PZT) powders. Lead zirconium titanium (PbZrTi) hydrous oxide precursor, synthesized from chemical co-precipitation, was mechanically activated in a NaCl matrix. The synthesized PZT particles were characterized by using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, laser-light diffraction, and nitrogen adsorption. Thermogravimetric analysis and differential thermal analysis were used to monitor dehydration and phase transformation of PbZrTi hydrous oxide precursor during mechanical activation. The best mechanical activation conditions corresponded to mechanically activating PbZrTi hydrous oxide precursor in a NaCl matrix with a NaCl/precursor weight ratio of 4:1 for 8 h. These conditions resulted in a dispersible phase-pure PZT powder with a median secondary-particle size of ˜110 nm. The properties of PZT 70/30 from mechanically activated powder, as measured on discs sintered at 1150 °C for 2 h, were found to be in close conformity to those obtained by a conventional mixed oxide solid state reaction route.

  7. Mechanically activated synthesis of PZT and its electromechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Akdogan, E.K.; Safari, A.; Riman, R.E. [Rutgers the State University of New Jersey, Department of Ceramic and Materials Engineering, Piscataway, NJ (United States)

    2005-08-01

    Mechanical activation was successfully used to synthesize nanostructured phase-pure Pb(Zr{sub 0.7}Ti{sub 0.3})O{sub 3} (PZT) powders. Lead-zirconium-titanium (PbZrTi) hydrous oxide precursor, synthesized from chemical co-precipitation, was mechanically activated in a NaCl matrix. The synthesized PZT particles were characterized by using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, laser-light diffraction, and nitrogen adsorption. Thermogravimetric analysis and differential thermal analysis were used to monitor dehydration and phase transformation of PbZrTi hydrous oxide precursor during mechanical activation. The best mechanical activation conditions corresponded to mechanically activating PbZrTi hydrous oxide precursor in a NaCl matrix with a NaCl/precursor weight ratio of 4:1 for 8 h. These conditions resulted in a dispersible phase-pure PZT powder with a median secondary-particle size of {proportional_to}110 nm. The properties of PZT 70/30 from mechanically activated powder, as measured on discs sintered at 1150 C for 2 h, were found to be in close conformity to those obtained by a conventional mixed oxide solid state reaction route. (orig.)

  8. Analysis of mechanical property data obtained from nuclear pressure vessel surveillance capsules

    International Nuclear Information System (INIS)

    Perrin, J.S.

    1977-01-01

    A typical pressure vessel surveillance capsule examination program provides mechanical property data from tensile, Charpy V-notch impact, and, in some cases, fracture mechanics specimens. This data must be analyzed in conjunction with the unirradiated baseline mechanical property data to determine the effect of irradiation on the mechanical properties. In the case of Charpy impact specimens, for example, irradiation typically causes an increase in the transition temperature, and a decrease in the upper shelf energy level. The results of the Charpy impact and other mechanical specimen tests must be evaluated to determine if property changes are occurring in the manner expected when the reactor was put into service. The large amount of data obtained from surveillance capsule examinations in recent years enables one to make fairly good predictions. After the changes in the mechanical properties of specimens from a particular surveillance capsule have been experimentally determined and evaluated, they must be related to the reactor pressure vessel. This requires a knowledge of the neutron fluence of the surveillance capsule, and the ratio of the surveillance capsule fluence to the pressure vessel wall fluence. This ratio is frequently specified by the reactor manufacturer, or can be calculated from a knowledge of the geometry and materials of the reactor components inside the pressure vessel. A knowledge of the exact neutron fluence of the capsule specimens and the capsule to vessel wall neutron fluence ratio is of great importance, since inaccuracies in these numbers cause just as serious a problem as inaccuracies in the mechanical property determinations. A further area causing analysis difficulties is problems encountered in recent capsule programs relating to capsule design, construction, operation, and dismantling. (author)

  9. Improvements in or relating to rotary drive mechanisms

    International Nuclear Information System (INIS)

    Lodge, J.A.

    1981-01-01

    The invention relates to rotary drive mechanisms and relates especially, though not exclusively, to such mechanisms for use in rotating a source of penetrating radiation, such as X-radiation, in steps around a body, in the course of a computerised tomographic (CAT) examination of the body. (author)

  10. Mechanical properties of carbynes investigated by ab initio total-energy calculations

    DEFF Research Database (Denmark)

    Castelli, Ivano E.; Salvestrini, Paolo; Manini, Nicola

    2012-01-01

    As sp carbon chains (carbynes) are relatively rigid molecular objects, can we exploit them as construction elements in nanomechanics? To answer this question, we investigate their remarkable mechanical properties by ab initio total-energy simulations. In particular, we evaluate their linear...

  11. Effect of track maintenance on mechanical properties of a dirt racetrack: a preliminary study.

    Science.gov (United States)

    Peterson, M L; McIlwraith, C W

    2008-09-01

    When Thoroughbred racehorses experience catastrophic injuries, the track surface is often discussed as a factor. The present study investigated the mechanical properties of the surface and found that significant changes in a track occur during routine maintenance. Questions regarding the relative importance of track variability and hardness require further investigation.

  12. Mechanical properties of femoral trabecular bone in dogs

    Directory of Open Access Journals (Sweden)

    Nolte Ingo

    2005-03-01

    Full Text Available Abstract Background Studying mechanical properties of canine trabecular bone is important for a better understanding of fracture mechanics or bone disorders and is also needed for numerical simulation of canine femora. No detailed data about elastic moduli and degrees of anisotropy of canine femoral trabecular bone has been published so far, hence the purpose of this study was to measure the elastic modulus of trabecular bone in canine femoral heads by ultrasound testing and to assess whether assuming isotropy of the cancellous bone in femoral heads in dogs is a valid simplification. Methods From 8 euthanized dogs, both femora were obtained and cubic specimens were cut from the centre of the femoral head which were oriented along the main pressure and tension trajectories. The specimens were tested using a 100 MHz ultrasound transducer in all three orthogonal directions. The directional elastic moduli of trabecular bone tissue and degrees of anisotropy were calculated. Results The elastic modulus along principal bone trajectories was found to be 11.2 GPa ± 0.4, 10.5 ± 2.1 GPa and 10.5 ± 1.8 GPa, respectively. The mean density of the specimens was 1.40 ± 0.09 g/cm3. The degrees of anisotropy revealed a significant inverse relationship with specimen densities. No significant differences were found between the elastic moduli in x, y and z directions, suggesting an effective isotropy of trabecular bone tissue in canine femoral heads. Discussion This study presents detailed data about elastic moduli of trabecular bone tissue obtained from canine femoral heads. Limitations of the study are the relatively small number of animals investigated and the measurement of whole specimen densities instead of trabecular bone densities which might lead to an underestimation of Young's moduli. Publications on elastic moduli of trabecular bone tissue present results that are similar to our data. Conclusion This study provides data about directional elastic

  13. Mechanical properties of copper-lithium alloys produced by mechanic alloyed and hot extrusion

    International Nuclear Information System (INIS)

    Castillo B, Ricardo; Gorziglia S, Ezio; Penaloza V, Augusto

    2004-01-01

    In this work are presented the progress carried out on the characterization of some physical and mechanical properties, together with the determination of the micro mechanism of fracture of the Cu-2% wt Li, that was obtained by mechanical alloying followed hot extrusion at 500 o C and 700 o C. Hardness and tensile mechanical tests were performed together with metallographic and fractographic analysis. The experimental results obtained with powders of the Cu-Li alloy studied are compared with powder of pure copper, under similar test conditions. The results show that by hot extrusion was allowed to obtain very high densification levels for the materials under study. Moreover, it was found that lithium reduce both the tensile strength and elongation, of copper by a mechanism of embrittlement. The results are compares with the literature (au)

  14. Indentation damage and mechanical properties of human enamel and dentin.

    Science.gov (United States)

    Xu, H H; Smith, D T; Jahanmir, S; Romberg, E; Kelly, J R; Thompson, V P; Rekow, E D

    1998-03-01

    Understanding the mechanical properties of human teeth is important to clinical tooth preparation and to the development of "tooth-like" restorative materials. Previous studies have focused on the macroscopic fracture behavior of enamel and dentin. In the present study, we performed indentation studies to understand the microfracture and deformation and the microcrack-microstructure interactions of teeth. It was hypothesized that crack propagation would be influenced by enamel rods and the dentino-enamel junction (DEJ), and the mechanical properties would be influenced by enamel rod orientation and tooth-to-tooth variation. Twenty-eight human third molars were used for the measurement of hardness, fracture toughness, elastic modulus, and energy absorbed during indentation. We examined the effect of enamel rod orientation by propagating cracks in the occlusal surface, and in the axial section in directions parallel and perpendicular to the occlusal surface. The results showed that the cracks in the enamel axial section were significantly longer in the direction perpendicular to the occlusal surface than parallel. The cracks propagating toward the DEJ were always arrested and unable to penetrate dentin. The fracture toughness of enamel was not single-valued but varied by a factor of three as a function of enamel rod orientation. The elastic modulus of enamel showed a significant difference between the occlusal surface and the axial section. It is concluded that the cracks strongly interact with the DEJ and the enamel rods, and that the mechanical properties of teeth are functions of microstructural orientations; hence, single values of properties (e.g., a single toughness value or a single modulus value) should not be used without information on microstructural orientation.

  15. Mechanical properties of cement concrete composites containing nano-metakaolin

    Science.gov (United States)

    Supit, Steve Wilben Macquarie; Rumbayan, Rilya; Ticoalu, Adriana

    2017-11-01

    The use of nano materials in building construction has been recognized because of its high specific surface area, very small particle sizes and more amorphous nature of particles. These characteristics lead to increase the mechanical properties and durability of cement concrete composites. Metakaolin is one of the supplementary cementitious materials that has been used to replace cement in concrete. Therefore, it is interesting to investigate the effectiveness of metakaolin (in nano scale) in improving the mechanical properties including compressive strength, tensile strength and flexural strength of cement concretes. In this experiment, metakaolin was pulverized by using High Energy Milling before adding to the concrete mixes. The pozzolan Portland cement was replaced with 5% and 10% nano-metakaolin (by wt.). The result shows that the optimum amount of nano-metakaolin in cement concrete mixes is 10% (by wt.). The improvement in compressive strength is approximately 123% at 3 days, 85% at 7 days and 53% at 28 days, respectively. The tensile and flexural strength results also showed the influence of adding 10% nano-metakaolin (NK-10) in improving the properties of cement concrete (NK-0). Furthermore, the Backscattered Electron images and X-Ray Diffraction analysis were evaluated to support the above findings. The results analysis confirm the pores modification due to nano-metakaolin addition, the consumption of calcium hydroxide (CH) and the formation of Calcium Silicate Hydrate (CSH) gel as one of the beneficial effects of amorphous nano-metakaolin in improving the mechanical properties and densification of microstructure of mortar and concrete.

  16. Mechanical properties in polypropylene-polyethylene blends modified by gamma radiation

    International Nuclear Information System (INIS)

    Ruiz, F.C.; Terence, M.C.

    2008-01-01

    One of the way to obtain a better mechanical property of polypropylene and polyethylene is related to increase the number polymer chains cross-linked by gamma radiation. After irradiation a network is formed which is the result of various chemical reactions occurred during this process, where the radicals formed are concentrated in the amorphous phase. With the objective to increase the mechanical properties of PP, blends with PE were prepared and irradiated in doses up to 100kGy, in atmospheric ambient. The tests showed increase in rigidity and a particular behaviour in Izod impact resistance. (author)

  17. BOOK REVIEW: Advanced Mechanics and General Relativity Advanced Mechanics and General Relativity

    Science.gov (United States)

    Louko, Jorma

    2011-04-01

    Joel Franklin's textbook `Advanced Mechanics and General Relativity' comprises two partially overlapping, partially complementary introductory paths into general relativity at advanced undergraduate level. Path I starts with the Lagrangian and Hamiltonian formulations of Newtonian point particle motion, emphasising the action principle and the connection between symmetries and conservation laws. The concepts are then adapted to point particle motion in Minkowski space, introducing Lorentz transformations as symmetries of the action. There follows a focused development of tensor calculus, parallel transport and curvature, using examples from Newtonian mechanics and special relativity, culminating in the field equations of general relativity. The Schwarzschild solution is analysed, including a detailed discussion of the tidal forces on a radially infalling observer. Basics of gravitational radiation are examined, highlighting the similarities to and differences from electromagnetic radiation. The final topics in Path I are equatorial geodesics in Kerr and the motion of a relativistic string in Minkowski space. Path II starts by introducing scalar field theory on Minkowski space as a limit of point masses connected by springs, emphasising the action principle, conservation laws and the energy-momentum tensor. The action principle for electromagnetism is introduced, and the coupling of electromagnetism to a complex scalar field is developed in a detailed and pedagogical fashion. A free symmetric second-rank tensor field on Minkowski space is introduced, and the action principle of general relativity is recovered from coupling the second-rank tensor to its own energy-momentum tensor. Path II then merges with Path I and, supplanted with judicious early selections from Path I, can proceed to the Schwarzschild solution. The choice of material in each path is logical and focused. A notable example in Path I is that Lorentz transformations in Minkowki space are introduced

  18. Mechanical properties of lunar regolith and lunar soil simulant

    Science.gov (United States)

    Perkins, Steven W.

    1989-01-01

    Through the Surveyor 3 and 7, and Apollo 11-17 missions a knowledge of the mechanical properties of Lunar regolith were gained. These properties, including material cohesion, friction, in-situ density, grain-size distribution and shape, and porosity, were determined by indirect means of trenching, penetration, and vane shear testing. Several of these properties were shown to be significantly different from those of terrestrial soils, such as an interlocking cohesion and tensile strength formed in the absence of moisture and particle cementation. To characterize the strength and deformation properties of Lunar regolith experiments have been conducted on a lunar soil simulant at various initial densities, fabric arrangements, and composition. These experiments included conventional triaxial compression and extension, direct tension, and combined tension-shear. Experiments have been conducted at low levels of effective confining stress. External conditions such as membrane induced confining stresses, end platten friction and material self weight have been shown to have a dramatic effect on the strength properties at low levels of confining stress. The solution has been to treat these external conditions and the specimen as a full-fledged boundary value problem rather than the idealized elemental cube of mechanics. Centrifuge modeling allows for the study of Lunar soil-structure interaction problems. In recent years centrifuge modeling has become an important tool for modeling processes that are dominated by gravity and for verifying analysis procedures and studying deformation and failure modes. Centrifuge modeling is well established for terrestrial enginering and applies equally as well to Lunar engineering. A brief review of the experiments is presented in graphic and outline form.

  19. Molecular mechanisms in compatibility and mechanical properties of Polyacrylamide/Polyvinyl alcohol blends.

    Science.gov (United States)

    Wei, Qinghua; Wang, Yanen; Che, Yu; Yang, Mingming; Li, Xinpei; Zhang, Yingfeng

    2017-01-01

    The objectives of this study were to develop a computational model based on molecular dynamics technique to investigate the compatibility and mechanical properties of Polyacrylamide (PAM)/Polyvinyl alcohol (PVA) blends. Five simulation models of PAM/PVA with different composition ratios (4/0, 3/1, 2/2, 1/3, 0/4) were constructed and simulated by using molecular dynamics (MD) simulation. The interaction mechanisms of molecular chains in PAM/PVA blend system were elaborated from the aspects of the compatibility, mechanical properties, binding energy and pair correlation function, respectively. The computed values of solubility parameters for PAM and PVA indicate PAM has a good miscibility with PVA. The results of the static mechanical analysis, based on the equilibrium structures of blends with differing component ratios, shows us that the elastic coefficient, engineering modulus, and ductility are increased with the addition of PVA content, which is 4/0 PAM/PVAPVAPVAPVAPVA. Moreover, binding energy results indicate that a stronger interaction exists among PVA molecular chains comparing with PAM molecular chains, which is why the mechanical properties of blend system increasing with the addition of PVA content. Finally, the results of pair correlation functions (PCFs) between polar functional groups and its surrounding hydrogen atoms, indicated they interact with each other mainly by hydrogen bonds, and the strength of three types of polar functional groups has the order of O(-OH)>O(-C=O)>N(-NH 2 ). This further elaborates the root reason why the mechanical properties of blend system increase with the addition of PVA content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.

    Science.gov (United States)

    Vedadghavami, Armin; Minooei, Farnaz; Mohammadi, Mohammad Hossein; Khetani, Sultan; Rezaei Kolahchi, Ahmad; Mashayekhan, Shohreh; Sanati-Nezhad, Amir

    2017-10-15

    Hydrogels have been recognized as crucial biomaterials in the field of tissue engineering, regenerative medicine, and drug delivery applications due to their specific characteristics. These biomaterials benefit from retaining a large amount of water, effective mass transfer, similarity to natural tissues and the ability to form different shapes. However, having relatively poor mechanical properties is a limiting factor associated with hydrogel biomaterials. Controlling the biomechanical properties of hydrogels is of paramount importance. In this work, firstly, mechanical characteristics of hydrogels and methods employed for characterizing these properties are explored. Subsequently, the most common approaches used for tuning mechanical properties of hydrogels including but are not limited to, interpenetrating polymer networks, nanocomposites, self-assembly techniques, and co-polymerization are discussed. The performance of different techniques used for tuning biomechanical properties of hydrogels is further compared. Such techniques involve lithography techniques for replication of tissues with complex mechanical profiles; microfluidic techniques applicable for generating gradients of mechanical properties in hydrogel biomaterials for engineering complex human tissues like intervertebral discs, osteochondral tissues, blood vessels and skin layers; and electrospinning techniques for synthesis of hybrid hydrogels and highly ordered fibers with tunable mechanical and biological properties. We finally discuss future perspectives and challenges for controlling biomimetic hydrogel materials possessing proper biomechanical properties. Hydrogels biomaterials are essential constituting components of engineered tissues with the applications in regenerative medicine and drug delivery. The mechanical properties of hydrogels play crucial roles in regulating the interactions between cells and extracellular matrix and directing the cells phenotype and genotype. Despite