Sample records for relative lightning fault

  1. Fault pseudotachylyte: a coseismic lightning rod

    Ferre, E. C.; Conder, J. A.; MathanaSekaran, N.; Geissman, J. W.


    of melt during the formation of a pseudotachylite vein. The increase in melt temperature is the most important factor affecting electrical conductivity in the fault plane. When the melt temperature rises from 1300 to 2000K, its electrical conductivity increases about 80 times. This implies that once a continuous pseudotachylite sheet-like vein is formed during an earthquake, the vein has a much higher electrical conductivity than its host-rock. The dramatic increase in electrical conductivity along the pseudotachylite plane might be synchronous with the generation of the coseismic electrical current. Thus, regardless of its origin, any electrical current produced during an earthquake will travel along the pseudotachylite plane which acts as a lightning rod. The magnetization of a solid due to an electrical current results from Biot-Savart law which states that an electrical current generates a magnetic field. The solidification of the pseudotachylite vein does not happen at once but proceeds from the margin inwards as an electrical current may still pass through the conducting pseudotachylite. Therefore, the host-rock of the pseudotachylite vein or its solidified margin can be magnetized by a coseismic current.

  2. Evaluation of 1-phase, 3-phase and Lightning Faults on Wind Farms using EMTP-RV

    Saber Arabi Nowdeh


    Full Text Available Since the development of wind power plants installation is growing, problems which are related to network connecting, stability and voltage effects become more important. On the other hand, wind farms are often open to lightning because of their long height and specific appearance. In this paper, modeling and simulation of 1-phase, 3-phase and lightning faults in a wind farm consisting of 40 wind turbines and faults impact on wind farm and the network is investigated in EMTP-RV environment. In this field, it’s necessary to develop a precise modeling out of wind power plant in order to evaluate the effects of these power plants on dynamical behavior of the power system. These models can be used in designing new protection systems, new protection algorithms, and new strategies for power plants exploitation improvement. Each wind unit in the farm is connected to the whole units that are connected to the network using a doubly fed induction generator (DFIG.

  3. Nowcasting of Lightning-Related Accidents in Africa

    Ihrlich, Laura; Price, Colin


    Tropical Africa is the world capital of thunderstorm activity with the highest density of strikes per square kilometer per year. As a result it is also the continent with perhaps the highest casualties and injuries from direct lightning strikes. This region of the globe also has little lightning protection of rural homes and schools, while many casualties occur during outdoor activities (e.g. farming, fishing, sports, etc.) In this study we investigated two lightning-caused accidents that got wide press coverage: A lightning strike to a Cheetah Center in Namibia which caused a huge fire and great destruction (16 October 2013), and a plane crash in Mali where 116 people died (24 July 2014). Using data from the World Wide Lightning Location Network (WWLLN) we show that the lightning data alone can provide important early warning information that can be used to reduce risks and damages and loss of life from lightning strikes. We have developed a now-casting scheme that allows for early warnings across Africa with a relatively low false alarm rate. To verify the accuracy of our now-cast, we have performed some statistical analysis showing relatively high skill at providing early warnings (lead time of a few hours) based on lightning alone. Furthermore, our analysis can be used in forensic meteorology for determining if such accidents are caused by lightning strikes.

  4. Fault-Related Sanctuaries

    Piccardi, L.


    Beyond the study of historical surface faulting events, this work investigates the possibility, in specific cases, of identifying pre-historical events whose memory survives in myths and legends. The myths of many famous sacred places of the ancient world contain relevant telluric references: "sacred" earthquakes, openings to the Underworld and/or chthonic dragons. Given the strong correspondence with local geological evidence, these myths may be considered as describing natural phenomena. It has been possible in this way to shed light on the geologic origin of famous myths (Piccardi, 1999, 2000 and 2001). Interdisciplinary researches reveal that the origin of several ancient sanctuaries may be linked in particular to peculiar geological phenomena observed on local active faults (like ground shaking and coseismic surface ruptures, gas and flames emissions, strong underground rumours). In many of these sanctuaries the sacred area is laid directly above the active fault. In a few cases, faulting has affected also the archaeological relics, right through the main temple (e.g. Delphi, Cnidus, Hierapolis of Phrygia). As such, the arrangement of the cult site and content of relative myths suggest that specific points along the trace of active faults have been noticed in the past and worshiped as special `sacred' places, most likely interpreted as Hades' Doors. The mythological stratification of most of these sanctuaries dates back to prehistory, and points to a common derivation from the cult of the Mother Goddess (the Lady of the Doors), which was largely widespread since at least 25000 BC. The cult itself was later reconverted into various different divinities, while the `sacred doors' of the Great Goddess and/or the dragons (offspring of Mother Earth and generally regarded as Keepers of the Doors) persisted in more recent mythologies. Piccardi L., 1999: The "Footprints" of the Archangel: Evidence of Early-Medieval Surface Faulting at Monte Sant'Angelo (Gargano, Italy

  5. Lightning

    Pampe, William R.


    Presents basic physical theory for movement of electric charges in clouds, earth, and air during production of lightning and thunder. Amount of electrical energy produced and heating effects during typical thunderstorms is described. Generalized safety practices are given. (JM)

  6. Lightning related fatalities in livestock: veterinary expertise and the added value of lightning location data.

    Vanneste, E; Weyens, P; Poelman, D R; Chiers, K; Deprez, P; Pardon, B


    Although lightning strike is an important cause of sudden death in livestock on pasture and among the main reasons why insurance companies consult an expert veterinarian, scientific information on this subject is limited. The aim of the present study was to provide objective information on the circumstantial evidence and pathological findings in lightning related fatalities (LRF), based on a retrospective analysis of 410 declarations, examined by a single expert veterinarian in Flanders, Belgium, from 1998 to 2012. Predictive logistic models for compatibility with LRF were constructed based on anamnestic, environmental and pathological factors. In addition, the added value of lightning location data (LLD) was evaluated. Pathognomonic singe lesions were present in 84/194 (43%) confirmed reports. Factors which remained significantly associated with LRF in the multivariable model were age, presence of a tree or open water in the near surroundings, tympany and presence of feed in the oral cavity at the time of investigation. This basic model had a sensitivity (Se) of 53.8% and a specificity (Sp) of 88.2%. Relying only on LLD to confirm LRF in livestock resulted in a high Se (91.3%), but a low Sp (41.2%), leading to a high probability that a negative case would be wrongly accepted as an LRF. The best results were obtained when combining the model based on the veterinary expert investigation (circumstantial evidence and pathological findings), together with the detection of cloud-to-ground (CG) lightning at the time and location of death (Se 89.1%; Sp 66.7%). Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Lightning flash sizes relative to storm structure and turbulence during the Kinematic Texture and Lightning Experiment

    Bruning, E. C.; Salinas, V.; Berkseth, S.; Chmielewski, V.; Brothers, M.


    Ongoing work as part of the Kinematic Texture and Lightning Experiment at Texas Tech University has quantified the lightning flash size, rate, and energy alongside the turbulent structure of thunderclouds. 2016 was the final year of observations, which fielded two high-resolution mobile Ka-band radars and mobile environmental soundings. Lightning measurements were made by a VHF Lightning Mapping Array. In order to enhance the detection of the smallest lightning discharges in the turbulent portions of the thundercloud, a rapidly-deployable mobile Lightning Mapping Array (LMA) station augmented a traditional fixed LMA. This capability of targeting particular storm complexes with LMA measurements will be described, and the improved detection capability quantified. The complete set of field measurements from 2014-16 sampled numerous individual cells and storm complexes, ranging in intensity from multicellular convection to supercells and mesoscale convective systems. Flash measurements coincident with radar observations included deep, highly turbulent convective cores and extensive anvil regions. Comparison of flash characteristics across these storm morphologies will be shown, with a focus on the dynamical organization of storms and the turbulent kinematics that drive differences in lightning flash sizes and rates.

  8. Accuracy of LLP system and lightning frequency map evaluated from transmission line faults; Rakurai ichi hyotei system no seido to rakurai hindo map no sodensen torippu jiko ni motozuku hyoka

    Shinjo, K.; Wakai, T.; Sakai, T. [Hokuriku Electric Power Co., Inc., Toyama (Japan)] Ishii, M. [Tokyo Univ. (Japan)


    Accuracy of an LLP system and a lightning frequency map is evaluated by using transmission line faults in Hokuriku area from November in 1993 to October in 1996. The accuracy and efficiency of the system were calculated by statistical methods. From the above results, the lightning frequency map with 10 minutes meshes was proved capable of replacing the Isokeraunic Level Map with 15 minutes meshes used now for lightning protection design. However, the correlation between the number of detected lightning flashes and transmission line faults in each mesh was found to be week. This result suggests that more detailed analysis taking account of the length of transmission lines in each mesh is necessary. The correlation is stronger in winter than in summer, despite the fact that there is difference in the lightning current distribution in each mesh in winter. This characteristic can be explained if upward flashes from transmission lines are dominant among lightning faults in winter. 19 refs., 11 figs., 6 tabs.

  9. Lightning Jump Algorithm and Relation to Thunderstorm Cell Tracking, GLM Proxy and Other Meteorological Measurements

    Schultz, Christopher J.; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte


    The lightning jump algorithm has a robust history in correlating upward trends in lightning to severe and hazardous weather occurrence. The algorithm uses the correlation between the physical principles that govern an updraft's ability to produce microphysical and kinematic conditions conducive for electrification and its role in the development of severe weather conditions. Recent work has demonstrated that the lightning jump algorithm concept holds significant promise in the operational realm, aiding in the identification of thunderstorms that have potential to produce severe or hazardous weather. However, a large amount of work still needs to be completed in spite of these positive results. The total lightning jump algorithm is not a stand-alone concept that can be used independent of other meteorological measurements, parameters, and techniques. For example, the algorithm is highly dependent upon thunderstorm tracking to build lightning histories on convective cells. Current tracking methods show that thunderstorm cell tracking is most reliable and cell histories are most accurate when radar information is incorporated with lightning data. In the absence of radar data, the cell tracking is a bit less reliable but the value added by the lightning information is much greater. For optimal application, the algorithm should be integrated with other measurements that assess storm scale properties (e.g., satellite, radar). Therefore, the recent focus of this research effort has been assessing the lightning jump's relation to thunderstorm tracking, meteorological parameters, and its potential uses in operational meteorology. Furthermore, the algorithm must be tailored for the optically-based GOES-R Geostationary Lightning Mapper (GLM), as what has been observed using Very High Frequency Lightning Mapping Array (VHF LMA) measurements will not exactly translate to what will be observed by GLM due to resolution and other instrument differences. Herein, we present some of

  10. Lightning flash density in relation to aerosol over Nanjing (China)

    Tan, Y. B.; Peng, L.; Shi, Z.; Chen, H. R.


    Time series data of lightning flash density, aerosol optical depth (AOD), surface temperature, convective available potential energy (CAPE) and thunderstorm days for 10 years (2002-2011), cloud-to-ground lightning (CG), and AOD of 5 years for summer season, i.e., June, July, and August over Nanjing, China, have been analyzed, to investigate the impact of aerosols on lightning. The results indicate that the radiative effect of aerosol may be one of the main reason for the decrease of the lightning flash density in a long period, while the aerosol microphysical effect may be a major role in the increase of the percent of + CG flashes (P+ CG). The dependence of surface temperature, CAPE, and thunderstorm days on AOD (R = - 0.748, - 0.741, - 0.744), and the negative correlation (R = - 0.634) between lightning flash density and AOD may lend support for the radiative effect of aerosol on lightning. In addition, elevated aerosols may change the charge distribution in thundercloud, hence enhancing the positive cloud-to-ground lightning (+ CG) activity, as P+ CG is positively correlated with AOD.

  11. Mechanical Models of Fault-Related Folding

    Johnson, A. M.


    The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).

  12. A Case Study of Assimilating Lightning-Proxy Relative Humidity with WRF-3DVAR

    Ying Wang


    Full Text Available Lightning network data, considered as a useful supplement to radar observations, are a good indicator of severe convection, and has high temporal and spatial resolution. In Numerical Weather Prediction (NWP models, lightning data are a new source of data to improve the forecasting of convective systems. In this case study, lightning data assimilation is conducted by converting lightning data to water vapor mixing ratio via a simple smooth continuous function, with input variables of total flash rate and simulated graupel mixing ratio at 9 km gridded resolution. Relative humidity converted from the retrieved water vapor mixing ratio is assimilated into the background field utilizing the three-dimensional variational (3DVAR method in WRFDA (the Weather Research and Forecasting model Data Assimilation system. The benefits of assimilating lightning data are demonstrated in a series of experiments using data from a strong convection event that affected Beijing, Tianjin, Hebei and Shandong Province, on 31 July 2007. A nested domain with resolutions of 9 km and 3 km is implemented. For this case, assimilating lightning data shows some improvements in predictions of both reflectivity and neighboring precipitation, and in the temperature, dew-point temperature and relative humidity profile after seven hours.

  13. 基于雷电定位系统与行波实测数据的雷击故障关联度分析%The Correlation Degree of Lightning Location System and Measured Field Traveling Wave Data for Lightning Induced Fault Distinguishing

    曹璞璘; 束洪春; 马仪; 黄然; 董俊; 余多; 白冰


    The identification of lightning induced fault and fault without lightning striking is a significant factor for lightning protection design to reduce number of lightning induced fault. In order to analyze the possibility of the information fusion of lightning location system (LLS) record and traveling wave data, this paper dissected different time and space domain characteristic of these two systems records. Considered the height difference influence, the fault distance calculated by traveling wave was transformed to suspected fault tower to calculating the difference between lightning records and traveling wave data. The polarity of traveling wave and lightning current was taken into account to remove some lightning records with different polarity. For computing the correlation degree of lightning records and traveling wave data, the number of detection station demonstrated the accuracy of lightning records is considered. The lightning induced fault and fault without lightning is identified based on the incidence of lightning records and traveling wave data. The proposed method was confirmed by the line patrolling results.%准确识别雷击故障与非雷击性故障对针对化防雷设计、降低雷击跳闸率具有重要意义.从雷电定位系统记录与行波数据所包含时空信息的不同特点入手,分析雷电地闪记录与行波数据在时间与空间上的关联可能性,计及高程差对线路长度影响,将行波测距结果换算为故障参考杆塔坐标,使行波测距结果能够与雷电地闪记录位置进行空间层面的匹配.引入雷电流极性与初始行波极性排除部分极性不一致的雷电地闪记录干扰,以地闪观测站数作为必要的附加条件,构造雷击记录与行波数据之间的关联度函数,对具体一次实际故障是否为雷击故障计算出关联度,在此基础上对雷击故障与非雷击性故障进行判断.并以实际巡线结果为依据,验证了所提算法的可行性.

  14. Examination of Height of Transmission Line and Lightning Striking Distance concerning Lightning Shielding Effect Prediction

    Sakata, Tadashi; Yamamoto, Kazuo; Sekioka, Shozo; Yokoyama, Shigeru

    We examined the lightning frequency reported by Eriksson and the lightning current distribution shown in IEC 62305-1. The lightning striking coefficient is assumed to be related to height of structures. The lightning current distribution to ground which was applicable to the electro-geometric model is estimated. Using the assumption of lightning striking distance coefficient and the estimated lightning current distribution, we calculated the lightning frequency and the lightning current distribution, concerning lightning shielding effect in transmission lines. The calculation results of the lightning frequency and the lightning current distributions were compared with the observation results, and agree satisfactorily with them.

  15. Lightning safety of animals.

    Gomes, Chandima


    This paper addresses a concurrent multidisciplinary problem: animal safety against lightning hazards. In regions where lightning is prevalent, either seasonally or throughout the year, a considerable number of wild, captive and tame animals are injured due to lightning generated effects. The paper discusses all possible injury mechanisms, focusing mainly on animals with commercial value. A large number of cases from several countries have been analyzed. Economically and practically viable engineering solutions are proposed to address the issues related to the lightning threats discussed.

  16. Design of the Remote Location Device for Lightning Strike Fault Point on Transmission Line%输电线路雷击故障点远程定位装置的设计

    陈小雄; 黄新波; 朱永灿; 王卓; 王列华; 张烨


    电力系统输电线路距离长、跨度大,受雷击的机率高,故障点不易确定,对设备的及时修复带来了很大困难,针对这一问题,笔者设计了输电线路雷击故障点远程定位装置.该装置基于GSM无线通信网络,以超低功耗单片机MSP430为控制单元,采用电流采集环和罗氏电流传感器,对输电线路上各绝缘子串进行实时监测,当被监测绝缘子串发生雷击闪络事故,该装置就会利用GSM无线网络以手机短信的形式将雷击点信息传输到监测中心及相关工作人员手机,从而代替了繁琐的人力检查,准确有效地对雷击故障点进行定位,给线路抢修抢险赢得宝贵时间,节约人力物力,减少经济损失,保障供电可靠性.%The long distance and large span of the power system transmission lines lead to its high risk of lightning stroke.Moreover it is difficult to fix the lightning fault point,which brings very great difficulty for equipment repair timely.In order to solve this problem,the paper presents the design of a remote location device for transmission line lightning fault point.The device is based on GSM wireless communication network and uses low power consumption MCU MSP430 as the control unit,adopting the current collection ring and Rogowski current sensor to monitor the insulator string on the transmission lines.If the lightning flashover accidents happened on the monitored insulator string,this device will transmit the information of lighting fault point to the monitoring center and mobile phones of related staff through GSM wireless network in the form of mobile phone short message,thus replacing the human inspection tour.This device can correctly and effectively locate the lightning fault point,which will win precious time for the emergent repairing of transmission lines,as well as save manpower and material resources.In addition,it can reduce the economic loss and ensure the reliability of power supply.

  17. Lightning Jump Algorithm and Relation to Thunderstorm Cell Tracking, GLM Proxy and other Meteorological Measurements

    Schultz, Christopher J.; Carey, Larry; Cecil, Dan; Bateman, Monte; Stano, Geoffrey; Goodman, Steve


    Objective of project is to refine, adapt and demonstrate the Lightning Jump Algorithm (LJA) for transition to GOES -R GLM (Geostationary Lightning Mapper) readiness and to establish a path to operations Ongoing work . reducing risk in GLM lightning proxy, cell tracking, LJA algorithm automation, and data fusion (e.g., radar + lightning).

  18. Lightning location system supervising Swedish power transmission network

    Melin, Stefan A.


    For electric utilities, the ability to prevent or minimize lightning damage on personnel and power systems is of great importance. Therefore, the Swedish State Power Board, has been using data since 1983 from a nationwide lightning location system (LLS) for accurately locating lightning ground strikes. Lightning data is distributed and presented on color graphic displays at regional power network control centers as well as at the national power system control center for optimal data use. The main objectives for use of LLS data are: supervising the power system for optimal and safe use of the transmission and generating capacity during periods of thunderstorms; warning service to maintenance and service crews at power line and substations to end operations hazardous when lightning; rapid positioning of emergency crews to locate network damage at areas of detected lightning; and post analysis of power outages and transmission faults in relation to lightning, using archived lightning data for determination of appropriate design and insulation levels of equipment. Staff have found LLS data useful and economically justified since the availability of power system has increased as well as level of personnel safety.

  19. Lightning rod ionizing natural ionca - Ionic electrode active trimetallictriac of grounding - Definitive and total solution against 'blackouts' and electrical faults generated by atmospheric charges (lightning)

    Cabareda, Luis


    The Natural Ionizing System of Electrical Protection conformed by: Lightning Rod Ionizing Natural Ionca and Ionic Electrode Active Trimetallic Triac of Grounding offers Total Protection, Maximum Security and Zero Risk to Clinics, Hospitals, Integral Diagnostic Center, avoiding ''the burning'' of Electronics Cards; Refineries, Tanks and Stations of Fuel Provision; Electrical Substations, Towers and Transmission Lines with transformer protection, motors, elevators, A/C, mechanicals stairs, portable and cooling equipment, electrical plants, others. This New High Technology is the solution to the paradigm of Benjamin Franklin and it's the mechanism to end the 'Blackouts' that produces so many damages and losses throughout the world.

  20. The spatio-temporal distribution of lightning over Israel and the neighboring area and its relation to regional synoptic systems

    Shalev, S.; Saaroni, H.; Izsak, T.; Yair, Y.; Ziv, B.


    The spatio-temporal distribution of lightning flashes over Israel and the neighboring area and its relation to the regional synoptic systems has been studied, based on data obtained from the Israel Lightning Location System (ILLS) operated by the Israel Electric Corporation (IEC). The system detects cloud-to-ground lightning discharges in a range of ~500 km around central Israel (32.5° N, 35° E). The study period was defined for annual activity from August through July, for 5 seasons in the period 2004-2010. The spatial distribution of lightning flash density indicates the highest concentration over the Mediterranean Sea, attributed to the contribution of moisture as well as sensible and latent heat fluxes from the sea surface. Other centers of high density appear along the coastal plain, orographic barriers, especially in northern Israel, and downwind from the metropolitan area of Tel Aviv, Israel. The intra-annual distribution shows an absence of lightning during the summer months (JJA) due to the persistent subsidence over the region. The vast majority of lightning activity occurs during 7 months, October to April. Although over 65 % of the rainfall in Israel is obtained during the winter months (DJF), only 35 % of lightning flashes occur in these months. October is the richest month, with 40 % of total annual flashes. This is attributed both to tropical intrusions, i.e., Red Sea Troughs (RST), which are characterized by intense static instability and convection, and to Cyprus Lows (CLs) arriving from the west. Based on daily study of the spatial distribution of lightning, three patterns have been defined; "land", "maritime" and "hybrid". CLs cause high flash density over the Mediterranean Sea, whereas some of the RST days are typified by flashes over land. The pattern defined "hybrid" is a combination of the other 2 patterns. On CL days, only the maritime pattern was noted, whereas in RST days all 3 patterns were found, including the maritime pattern. It is

  1. Characteristics of cloud-to-ground lightning activity over Seoul, South Korea in relation to an urban effect

    S. K. Kar


    Full Text Available Cloud-to-ground (CG lightning flash data collected by the lightning detection network installed at the Korean Meteorological Administration (KMA have been used to study the urban effect on lightning activity over and around Seoul, the largest metropolitan city of South Korea, for the period of 1989–1999. Negative and positive flash density and the percentage of positive flashes have been calculated. Calculation reveals that an enhancement of approximately 60% and 42% are observed, respectively, for negative and positive flash density over and downwind of the city. The percentage decrease of positive flashes occurs over and downwind of Seoul and the amount of decrease is nearly 20% compared to upwind values. The results are in good agreement with those obtained by Steiger et al. (2002 and Westcott (1995. CG lightning activities have also been considered in relation to annual averages of PM10 (particulate matter with an aerodynamic diameter smaller than 10 μm and sulphur dioxide (SO2 concentrations. Interesting results are found, indicating that the higher concentration of SO2 contributes to the enhancement of CG lightning flashes. On the other hand, the contribution from PM10 concentration has not appeared in this study to be as significant as SO2 in the enhancement of CG lightning flashes. Correlation coefficients of 0.33 and 0.64 are found between the change in CG lightning flashes and the PM10 and SO2, respectively, for upwind to downwind areas, suggesting a significant influence of the increased concentration of SO2 on the enhancement of CG flashes.

  2. Lightning detection in planetary atmospheres

    Aplin, Karen L


    Lightning in planetary atmospheres is now a well-established concept. Here we discuss the available detection techniques for, and observations of, planetary lightning by spacecraft, planetary landers and, increasingly, sophisticated terrestrial radio telescopes. Future space missions carrying lightning-related instrumentation are also summarised, specifically the European ExoMars mission and Japanese Akatsuki mission to Venus, which could both yield lightning observations in 2016.

  3. Lightning medicine in South Africa.

    Blumenthal, Ryan; Trengrove, Estelle; Jandrell, Ian R; Saayman, Gert


    South Africa has a rich history of lightning research; however, research on the clinical and pathological effects and features of lightning-related injury (keraunomedicine or lightning medicine) remains neglected locally. By providing an overview of keraunomedicine and focussing on South African perspectives, we hope to raise awareness and propose that a concerted and co-ordinated attempt be made to report and collate data regarding lightning strike victims in South Africa.

  4. Fire Environment Mechanism of Lightning Fire for Daxing an Mountains


    Lightning fire is one of natural fires; its mechanism is very complex and difficult to control. Daxing'an Mountain is the main region that lightning fires occur in China. Research on lightning fires indicates that special fuel, dry-storm weather and high altitude form the lightning fire environment. Lightning fires have close relation with lights. When lightning occurs, especially dry-lightning which brings little precipitation with surface temperature growing and fuel dehydrating, these often lead to l...

  5. Lightning characteristics relative to radar, altitude and temperature for a multicell, MCS and supercell over northern Alabama

    Mecikalski, Retha M.; Carey, Lawrence D.


    Cloud electrification leads to the production of nitrogen oxides (NOx), which has an effect on ozone concentrations. Currently large uncertainties exist regarding the contribution of lightning to the global and local NOx budget, even on a per flash basis. Most lightning NOx (LNOx) models distribute the LNOx at reflectivities (Z) ≥ 20 dBZ in the horizontal, while vertically, a Gaussian distribution function with a peak at - 15 °C is used for cloud-to-ground (CG) flashes and a bimodal distribution function with peaks at - 15 °C and - 45 °C is used for inter- and intra-cloud (IC) flashes. This research aims to improve our basic understanding of lightning location relative to radar Z as a function of storm and flash type. Using data from the North Alabama Lightning Mapping Array (NALMA) and the Multi-Radar Multi-Sensor data suite, the results from analyzing a multicell storm, mesoscale convective system and supercell storm showed that 29.7%, 15.9% and 6.9% of all flashes initiated in regions where Z lightning initiation distribution for IC flashes was also not observed for any of the three storms. In addition, it is shown that when incorporating the propagation of the flash, the percentage of NALMA lightning sources located in regions where Z < 20 dBZ increases. Finally, when comparing flash types, the results show that Hybrid flashes have consistently larger sizes than IC and CG flashes, while IC and Hybrid flashes tend to have more sources located at Z < 20 dBZ than CG flashes.

  6. The physics of lightning

    Dwyer, Joseph R., E-mail: [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Uman, Martin A. [Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611 (United States)


    Despite being one of the most familiar and widely recognized natural phenomena, lightning remains relatively poorly understood. Even the most basic questions of how lightning is initiated inside thunderclouds and how it then propagates for many tens of kilometers have only begun to be addressed. In the past, progress was hampered by the unpredictable and transient nature of lightning and the difficulties in making direct measurements inside thunderstorms, but advances in instrumentation, remote sensing methods, and rocket-triggered lightning experiments are now providing new insights into the physics of lightning. Furthermore, the recent discoveries of intense bursts of X-rays and gamma-rays associated with thunderstorms and lightning illustrate that new and interesting physics is still being discovered in our atmosphere. The study of lightning and related phenomena involves the synthesis of many branches of physics, from atmospheric physics to plasma physics to quantum electrodynamics, and provides a plethora of challenging unsolved problems. In this review, we provide an introduction to the physics of lightning with the goal of providing interested researchers a useful resource for starting work in this fascinating field.

  7. Fault instability on a finite and planar fault related to early phase of nucleation

    Mitsui, Yuta; Hirahara, Kazuro


    We numerically investigate the early phase of nucleation on a planar fault with the rate- and state-dependent friction law, loaded externally by steady slip, to clarify its relation to fault instability. We define Rn as the invasion distance of the inward creep to characterize that phase. For a circular fault, the dependence of Rn on the dimensionless parameters lb, lb-a, and lRA (all of these are proportional to the rigidity and the characteristic distance of the state evolution L and inversely proportional to the normal stress and the fault radius) can be compiled. We found that Rn is proportional to lb (both aging law and slip law of the state evolution) and lb-a (aging law). In the case of the aging law only, there are two regimes (ordinary events and slow events) separated by the value of lRA. The regimes have different trend lines, although we could not measure Rn for the case of lRA < 0.35 because of breaking of the mirror symmetry of instability along the loading direction. Rn in the slow event regime is smaller. Moreover, we investigated the effect of fault shape and found that a model with a long radius along the mode 2 direction has similar parameter dependence to circular faults, but a model with a long radius along the mode 3 direction has different ones. Our results imply that we can qualitatively estimate the fault instability parameters from the early phase of nucleation, although further research is necessary to enable application to actual faults.

  8. Lightning Injuries

    ... to electrical equipment or telephone lines inside a house. Lightning can injure a person several ways: Lightning ... a feathering, branching pattern, consist of clusters of tiny pinpoint spots like a cigarette burn, or consist ...

  9. Does a sixth mechanism exist to explain lightning injuries?: investigating a possible new injury mechanism to determine the cause of injuries related to close lightning flashes.

    Blumenthal, Ryan; Jandrell, Ian R; West, Nicholas J


    Five mechanisms have been described in the literature regarding lightning injury mechanisms. A sixth mechanism is proposed in this article, namely, lightning barotrauma. A simple laboratory experiment was conducted using ordnance gelatin for ballistic studies. Lightning was simulated in a high-voltage laboratory using an 8/20-microsecond current impulse generator and discharged through ballistic gel. Temporary and permanent cavity formations were confirmed. The cavities formed were directly proportional to the currents used. Findings suggest that a sixth mechanism of lightning injury, namely, barotrauma, should be considered.


    PENG Li-ying; WAN Qi-lin; WANG Qian-qian; YI Yan-ming


    Based on the CINRAD Doppler radar data in Guangzhou and the lightning data in 2004 by power suppliers of Guangdong, statistical study is done by overlaying lightning's position on radar's echo. The result shows the followings. The concentrated period in which more negative lightning occurred at the middle levels (2 - 14 km), where radar echo was moderate (12 - 45 dBz), rather than at the low levels with the weakest echoes or at high levels with the strongest echoes. At levels 3 - 11 km, where the radar echo was between 10 dBz and 35 dBz, the area of negative lightning was much larger in central Guangdong than in the rest of the province. At levels 0.5 - 7 km where the radar echoes were between 44 dBz and 51 dBz,the probability for a point to have negative lightning varies from 0.4 to 0.7.

  11. Faults

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  12. The spatio-temporal distribution of lightning over Israel and the neighboring area and its relation to regional synoptic systems

    S. Shalev


    Full Text Available The spatio-temporal distribution of lightning flashes over Israel and the neighboring area and its relation to the regional synoptic systems has been studied, based on data obtained from the Israel Lightning Location System (ILLS operated by the Israel Electric Corporation (IEC. The system detects cloud-to-ground lightning discharges in a range of ~500 km around central Israel (32.5° N, 35° E. The study period was defined for annual activity from August through July, for 5 seasons in the period 2004–2010.

    The spatial distribution of lightning flash density indicates the highest concentration over the Mediterranean Sea, attributed to the contribution of moisture as well as sensible and latent heat fluxes from the sea surface. Other centers of high density appear along the coastal plain, orographic barriers, especially in northern Israel, and downwind from the metropolitan area of Tel Aviv, Israel. The intra-annual distribution shows an absence of lightning during the summer months (JJA due to the persistent subsidence over the region. The vast majority of lightning activity occurs during 7 months, October to April. Although over 65 % of the rainfall in Israel is obtained during the winter months (DJF, only 35 % of lightning flashes occur in these months. October is the richest month, with 40 % of total annual flashes. This is attributed both to tropical intrusions, i.e., Red Sea Troughs (RST, which are characterized by intense static instability and convection, and to Cyprus Lows (CLs arriving from the west.

    Based on daily study of the spatial distribution of lightning, three patterns have been defined; "land", "maritime" and "hybrid". CLs cause high flash density over the Mediterranean Sea, whereas some of the RST days are typified by flashes over land. The pattern defined "hybrid" is a combination of the other 2 patterns. On CL days, only the maritime pattern was noted, whereas in RST days all 3 patterns were found

  13. Note on lightning temperature

    Alanakyan, Yu. R., E-mail: [Department of General and Applied Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, 141700 Moscow Region (Russian Federation)


    In this paper, some features of the dynamics of a lightning channel that emerges after the leader-streamer process, are theoretically studied. It is shown that the dynamic pinch effect in the channel becomes possible if a discharge current before the main (quasi-steady) stage of a lightning discharge increases rapidly. The ensuing magnetic compression of the channel increases plasma temperature to several million degrees leading to a soft x-ray flash within the highly ionized plasma. The relation between the plasma temperature and the channel radius during the main stage of a lightning discharge is derived.

  14. Lightning hazards to aircraft

    Corn, P. B.


    Lightning hazards and, more generally, aircraft static electricity are discussed by a representative for the Air Force Flight Dynamics Laboratory. An overview of these atmospheric electricity hazards to aircraft and their systems is presented with emphasis on electrical and electronic subsystems. The discussion includes reviewing some of the characteristics of lightning and static electrification, trends in weather and lightning-related mishaps, some specific threat mechanisms and susceptible aircraft subsystems and some of the present technology gaps. A roadmap (flow chart) is presented to show the direction needed to address these problems.

  15. The 1868 Hayward fault, California, earthquake: Implications for earthquake scaling relations on partially creeping faults

    Hough, Susan E.; Martin, Stacey


    The 21 October 1868 Hayward, California, earthquake is among the best-characterized historical earthquakes in California. In contrast to many other moderate-to-large historical events, the causative fault is clearly established. Published magnitude estimates have been fairly consistent, ranging from 6.8 to 7.2, with 95% confidence limits including values as low as 6.5. The magnitude is of particular importance for assessment of seismic hazard associated with the Hayward fault and, more generally, to develop appropriate magnitude–rupture length scaling relations for partially creeping faults. The recent reevaluation of archival accounts by Boatwright and Bundock (2008), together with the growing volume of well-calibrated intensity data from the U.S. Geological Survey “Did You Feel It?” (DYFI) system, provide an opportunity to revisit and refine the magnitude estimate. In this study, we estimate the magnitude using two different methods that use DYFI data as calibration. Both approaches yield preferred magnitude estimates of 6.3–6.6, assuming an average stress drop. A consideration of data limitations associated with settlement patterns increases the range to 6.3–6.7, with a preferred estimate of 6.5. Although magnitude estimates for historical earthquakes are inevitably uncertain, we conclude that, at a minimum, a lower-magnitude estimate represents a credible alternative interpretation of available data. We further discuss implications of our results for probabilistic seismic-hazard assessment from partially creeping faults.

  16. The San Andreas fault experiment. [gross tectonic plates relative velocity

    Smith, D. E.; Vonbun, F. O.


    A plan was developed during 1971 to determine gross tectonic plate motions along the San Andreas Fault System in California. Knowledge of the gross motion along the total fault system is an essential component in the construction of realistic deformation models of fault regions. Such mathematical models will be used in the future for studies which will eventually lead to prediction of major earthquakes. The main purpose of the experiment described is the determination of the relative velocity of the North American and the Pacific Plates. This motion being so extremely small, cannot be measured directly but can be deduced from distance measurements between points on opposite sites of the plate boundary taken over a number of years.

  17. Research on Line Patrol Strategy of 110kV Transmission Line after Lightning Strike

    Li Mingjun


    Full Text Available Lightning faults occupy in the majority of instantaneous fault and reclosing can usually be successful, so power supply can be restored without immediate patrol in many cases. Firstly, this paper introduces the lightning fault positioning and identifying method. Then test electrical performance of insulators after lightning strike from 110kV lines. Data shows that lightning strike has little effect on the electric performance of insulator. Finally, illustrating disposal process of the 110 kV transmission line after lightning fault, certifying that the power supply reliability be ensured without line patrol.

  18. Lightning Phenomenology

    Kawasaki, Zen

    This paper presents a phenomenological idea about lightning flash to share the back ground understanding for this special issue. Lightning discharges are one of the terrible phenomena, and Benjamin Franklin has led this natural phenomenon to the stage of scientific investigation. Technical aspects like monitoring and location are also summarized in this article.

  19. Geological Effects on Lightning Strike Distributions

    Berdahl, J. Scott


    Recent advances in lightning detection networks allow for detailed mapping of lightning flash locations. Longstanding rumors of geological influence on cloud-to-ground (CG) lightning distribution and recent commercial claims based on such influence can now be tested empirically. If present, such influence could represent a new, cheap and efficient geophysical tool with applications in mineral, hydrothermal and oil exploration, regional geological mapping, and infrastructure planning. This project applies statistical analysis to lightning data collected by the United States National Lightning Detection Network from 2006 through 2015 in order to assess whether the huge range in electrical conductivities of geological materials plays a role in the spatial distribution of CG lightning. CG flash densities are mapped for twelve areas in the contiguous United States and compared to elevation and geology, as well as to the locations of faults, railroads and tall towers including wind turbines. Overall spatial randomness is assessed, along with spatial correlation of attributes. Negative and positive polarity lightning are considered separately and together. Topography and tower locations show a strong influence on CG distribution patterns. Geology, faults and railroads do not. This suggests that ground conductivity is not an important factor in determining lightning strike location on scales larger than current flash location accuracies, which are generally several hundred meters. Once a lightning channel is established, however, ground properties at the contact point may play a role in determining properties of the subsequent stroke.

  20. Wind turbine with lightning protection system


    The present invention relates to a wind turbine comprising a lightning protection system comprising a waveguide interconnecting a communication device and a signal-carrying structure. In other aspects, the present invention relates to the use of a waveguide in a lightning protection system...... of a wind turbine, a power splitter and its use in a lightning protection system of a wind turbine....

  1. Audible thunder characteristic and the relation between peak frequency and lightning parameters

    OuYang Yuhua; Yuan Ping


    In recent summers, some natural lightning optical spectra and audible thunder signals were observed. Twelve events on 15 August 2008 are selected as samples since some synchronizing information about them are obtained, such as lightning optical spectra, surface E-field changes, etc. By using digital filter and Fourier transform, thunder frequency spectra in observation location have been calculated. Then the two main propagation effects, finite amplitude propagation and attenuation by air, are calculated. Upon that we take the test thunder frequency spectra and work backward to recalculate the original frequency spectra near generation location. Thunder frequency spectra and the frequency distribution varying with distance are researched. According to the theories on plasma, the channel temperature and electron density are further calculated by transition parameters of lines in lightning optical spectra. Pressure and the average ionization degree of each discharge channel are obtained by using Saha equations, charge conservation equations and particle conservation equations. Moreover, the relationship between the peak frequency of each thunder and channel parameters of the lightning is studied.

  2. Analysis and elimination of lightning fault of CAWS600-S automatic weather station%CAWS600-S型自动气象站雷击故障的分析与排除

    邬铭法; 蔚立存; 董秀荣


    以惠民自动气象站的一次雷击故障检修为例,介绍了CAWS600S型自动气象站雷击故障排除流程、检修步骤和有效减少数据缺测的应急措施,并针对故障检修和备件更换过程中出现的异常情况,提出了行之有效的处理办法,以供从事自动气象站维护保障的工作人员参考。%Through maintenance for lightning faults of automatic weather station in Huimin, this paper introduces troubleshooting processes, maintenance steps and emergency measures to reduce data missing for lightning faults of CAWS600-S automatic weather station. Aiming at the abnormalities happened in the troubleshooting processes and component replacement procedure, effective approaches are proposed that can be referenced for other personnel engage in maintenance of automatic weather station.

  3. Lightning NOx and Impacts on Air Quality

    Murray, Lee T.


    Lightning generates relatively large but uncertain quantities of nitrogen oxides, critical precursors for ozone and hydroxyl radical (OH), the primary tropospheric oxidants. Lightning nitrogen oxide strongly influences background ozone and OH due to high ozone production efficiencies in the free troposphere, effecting small but non-negligible contributions to surface pollutant concentrations. Lightning globally contributes 3-4 ppbv of simulated annual-mean policy-relevant background (PRB) surface ozone, comprised of local, regional, and hemispheric components, and up to 18 ppbv during individual events. Feedbacks via methane may counter some of these effects on decadal time scales. Lightning contributes approximately 1 percent to annual-mean surface particulate matter, as a direct precursor and by promoting faster oxidation of other precursors. Lightning also ignites wildfires and contributes to nitrogen deposition. Urban pollution influences lightning itself, with implications for regional lightning-nitrogen oxide production and feedbacks on downwind surface pollution. How lightning emissions will change in a warming world remains uncertain.

  4. Active Faulting and Quaternary Landforms Deformation Related to the Nain Fault

    Abolghasem Gourabi


    Full Text Available Problem statement: Landforms developed across terrain defining boundary the Nain fault have imprints of recent tectonic activity in the west region of Central Iran. Depositional landforms such as alluvial fans bear signatures of later phases of tectonic activity in the form of faulting of alluvial fan deposits and development of fault traces and scarps within 100 km long and a NW-SE-trending zone, 1000-2000 m wide. Approach: We are addressing the neotectonic landforms based on detailed field work carried out in the Nain exposed active fault segments which brought forward some outstanding morphtectonic evidence of quaternary tectonically activities. Tectonic geomorphology applied to the Nain fault suggests recent subsurface activity along the Nain fault and an interconnecting faulting network of roughly NW-SE-trending, right-lateral, strike-slip segments and mostly NW-SE-oriented, transtensional to normal faults. Results: Evidence for recent activity is provided by faulted Pleistocene-Holocene deposits, fresh scarps in Late Quaternary deposits, 8-15 m lateral offsets locally affecting the drainage pattern of the area, ground creeping, aligning of series of spring faults, deflected streams and fault trace over recent alluvial fans. The existences of strike-slip faults system in the Nain area can be implications for seismic hazard. Conclusion: Motion along these structures suggests, in fact, that cumulative displacements include normal, transtensional and strike-slip components. Based on all evidence of active tectonics, earthquake risk and occurrence area is significant.

  5. Depositional history and fault-related studies, Bolinas Lagoon, California

    Berquist, Joel R.


    Studies of core sediments and seismic reflection profiles elucidate the structure and depositional history of Bolinas Lagoon, Calif., which covers 4.4 km 2 and lies in the San Andreas fault zone at the southeast corner of the Point Reyes Peninsula 20 km northwest of San Francisco. The 1906 trace of the San Andreas fault crosses the west side of the lagoon and was determined from (1) tectonically caused salt-marsh destruction indicated by comparison of 1854 and 1929 U.S. Coast and Geodetic Survey (U.S.C. & G.S.) topographic surveys, (2) formation of a tidal channel along the border of destroyed salt marshes, and (3) azimuths of the trend of the fault measured in 1907. Subsidence in the lagoon of 30 cm occurred east of the San Andreas fault in 1906. Near the east shore, seismic-reflection profiling indicates the existence of a graben fault that may connect to a graben fault on the Golden Gate Platform. Comparison of radiocarbon dates on shells and plant debris from boreholes drilled on Stinson Beach spit with a relative sea-level curve constructed for southern San Francisco Bay indicates 5.8 to more than 17.9 m of tectonic subsidence of sediments now located 33 m below mean sea level. Cored sediments indicate a marine transgression dated at 7770?65 yrs B.P. overlying freshwater organic-rich lake deposits. Fossil pollen including 2 to 8 percent Picea (spruce) indicate a late Pleistocene (?)-Early Holocene climate, cooler, wetter, and foggier than at present. Above the transgression are discontinuous and interfingering sequences of transgressive-regressive marine, estuarine, and barrier sediments that reflect rapid lateral and vertical shifts of successive depositional environments. Fossil megafauna indicate (1) accumulation in a protected, shallow-water estuary or bay, and (2) that the lagoon was probably continuously shallow and never a deep-water embayment. Analysis of grain-size parameters, pollen frequencies, and organic remains from a core near the north end of

  6. Application and Analysis for Surge Arrester on Lightning Protection of Distribution Network

    Wang Daxing


    Full Text Available In order to effectively reduce lightning stroke outage rate, effect of lightning protection with surge arrester on transmission line has been generally acknowledged relative to other lightning protection measures. This article introduces in such aspects as the working principle of line surge arrester and effect of lightning protection, and also explores application for lightning arrester of distribution network to achieve difference lightning protection and improve the lightning protection performance of distribution network.

  7. Application and Analysis for Surge Arrester on Lightning Protection of Distribution Network

    Wang Daxing


    Full Text Available In order to effectively reduce lightning stroke outage rate, effect of lightning protection with surge arrester on transmission line has been generally acknowledged relative to other lightning protection measures. This article introduces in such aspects as the working principle of line surge arrester and effect of lightning protection, and also explores application for lightning arrester of distribution network to achieve difference lightning protection and improve the lightning protection performance of distribution network.

  8. Exploring Lightning Jump Characteristics

    Chronis, Themis; Carey, Larry D.; Schultz, Christopher J.; Schultz, Elise; Calhoun, Kristin; Goodman, Steven J.


    This study is concerned with the characteristics of storms exhibiting an abrupt temporal increase in the total lightning flash rate (i.e., lightning jump, LJ). An automated storm tracking method is used to identify storm "clusters" and total lightning activity from three different lightning detection systems over Oklahoma, northern Alabama and Washington, D.C. On average and for different employed thresholds, the clusters that encompass at least one LJ (LJ1) last longer, relate to higher Maximum Expected Size of Hail, Vertical Integrated Liquid and lightning flash rates (area-normalized) than the clusters that did not exhibit any LJ (LJ0). The respective mean values for LJ1 (LJ0) clusters are 80 min (35 min), 14 mm (8 mm), 25 kg per square meter (18 kg per square meter) and 0.05 flash per min per square kilometer (0.01 flash per min per square kilometer). Furthermore, the LJ1 clusters are also characterized by slower decaying autocorrelation functions, a result that implies a less "random" behavior in the temporal flash rate evolution. In addition, the temporal occurrence of the last LJ provides an estimate of the time remaining to the storm's dissipation. Depending of the LJ strength (i.e., varying thresholds), these values typically range between 20-60 min, with stronger jumps indicating more time until storm decay. This study's results support the hypothesis that the LJ is a proxy for the storm's kinematic and microphysical state rather than a coincidental value.

  9. Mountain front migration and drainage captures related to fault segment linkage and growth: The Polopos transpressive fault zone (southeastern Betics, SE Spain)

    Giaconia, Flavio; Booth-Rea, Guillermo; Martínez-Martínez, José Miguel; Azañón, José Miguel; Pérez-Romero, Joaquín; Villegas, Irene


    The Polopos E-W- to ESE-WNW-oriented dextral-reverse fault zone is formed by the North Alhamilla reverse fault and the North and South Gafarillos dextral faults. It is a conjugate fault system of the sinistral NNE-SSW Palomares fault zone, active from the late most Tortonian (≈7 Ma) up to the late Pleistocene (≥70 ky) in the southeastern Betics. The helicoidal geometry of the fault zone permits to shift SE-directed movement along the South Cabrera reverse fault to NW-directed shortening along the North Alhamilla reverse fault via vertical Gafarillos fault segments, in between. Since the Messinian, fault activity migrated southwards forming the South Gafarillos fault and displacing the active fault-related mountain-front from the north to the south of Sierra de Polopos; whilst recent activity of the North Alhamilla reverse fault migrated westwards. The Polopos fault zone determined the differential uplift between the Sierra Alhamilla and the Tabernas-Sorbas basin promoting the middle Pleistocene capture that occurred in the southern margin of the Sorbas basin. Continued tectonic uplift of the Sierra Alhamilla-Polopos and Cabrera anticlinoria and local subsidence associated to the Palomares fault zone in the Vera basin promoted the headward erosion of the Aguas river drainage that captured the Sorbas basin during the late Pleistocene.

  10. The saptio-temporal distribution of lightning over the southern Levant and its relation to the regional synoptic systems

    Shalev, S.; Izsak, T.; Saaroni, H.; Yair, Y.; Ziv, B.


    The saptio-temporal distribution of lightning flashes over the southern Levant is derived from data obtained from the Lightning Positioning and Tracking System (LPATS) operated by the Israeli Electrical Company (IEC). The system has an aerial coverage in a range of ~ 500 Km around central Israel, including the southeastern Mediterranean Sea, Israel, Lebanon, western Syria and Jordan and the eastern part of Sinai Peninsula and the Red Sea. The study period includes 4 years. The spatial distribution of lightning flash density indicated the highest concentration over the sea, and is attributed to the contribution of sensible and latent heat fluxes. Other centers of high flash density appear along the coastal plain, expressing the friction effect of the coastline, and along orographic barriers, especially in northern Israel. The intra-annual distribution shows a complete absence of lightning in the eastern Mediterranean during the summer (JJA) which is due to the persistent existence of the subtropical high above the region. The vast majority of the lightning activity occurs during 7 months between October and April. Even though over 65% of the rainfall is obtained in the winter months (DJF) only 35% of the lightning is obtained in the winter and October is the richest month, with 40% of total annual number of lightning flashes. This is attributed mostly to tropical intrusions, i.e., Red Sea Trough (RST), which is characterized by high static instability. Cyprus lows are the synoptic system contributing the vast majority, >80%, of the rainfall in Israel, but only 42% of the lightning, whereas the RST, a minor contributor of rainfall, shares 48% of the lightning. However, during the winter 66% of the lightning flashes are associated with Cyprus lows and 25% with RST while during the autumn months the ratio is reversed: only 27% are associated with Cyprus lows and the majority (63%) occurs during RST. It was found that over 80% of the days defined as Cyprus lows were

  11. Characteristics of the Lithology, Fault-Related Rocks and Fault Zone Structures in TCDP Hole-A

    Sheng-Rong Song


    Full Text Available The main objective of the Taiwan Chelungpu-fault Drilling Project (TCDP was to conduct an in-depth probe into a fault zone of recent major activity so as to gain a better understanding of and more insight into the physical, mechanical and chemical properties involved. By the end of 2004, with the completion of the drilling of Hole-A, cuttings from 0 to 431.34 m and cores from a 431.34- to 2003.26-m depth had been obtained. Stratigraphically, the Pliocene to Pleistocene Cholan Formation is found from the surface to a 1029-m depth and is predominantly composed of sandstone and sandstone-siltstone alternations with weak to intense bioturbation. The Pliocene Chinshui Formation is observed from a depth of 1029- to 1303-m and predominantly consists of siltstone with weak bioturbation. From 1303- to 1712-m down there is the late Miocene to early Pliocene Kueichulin Formation which is predominantly composed of massive sandstone with minor siltstone. Below 1712 m, the Formation again resembles the younger Cholan Formation with mollusca-rich, thick, layered shale and heavy bioturbated sandstone. Four types of fault-related rocks are identified in the cores. They are the fault breccia, gouges, foliated and non-foliated cataclasites and pseudotachylytes. At least six major fault zones are found in the cores: FZ1111, FZ1153, FZ1220, FZ1580, FZ1712, and FZ1812. Among these, FZ1111 most probably corresponds to the slip surface of the Chi-Chi earthquake, the Chelungpu fault, while FZ1712 very likely represents the Sanyi fault.

  12. Using Total Lightning Observations to Enhance Lightning Safety

    Stano, Geoffrey T.


    Lightning is often the underrated threat faced by the public when it comes to dangerous weather phenomena. Typically, larger scale events such as floods, hurricanes, and tornadoes receive the vast majority of attention by both the general population and the media. This comes from the fact that these phenomena are large, longer lasting, can impact a large swath of society at one time, and are dangerous events. The threat of lightning is far more isolated on a case by case basis, although millions of cloud-to-ground lightning strikes hit this United States each year. While attention is given to larger meteorological events, lightning is the second leading cause of weather related deaths in the United States. This information raises the question of what steps can be taken to improve lightning safety. Already, the meteorological community s understanding of lightning has increased over the last 20 years. Lightning safety is now better addressed with the National Weather Service s access to the National Lightning Detection Network data and enhanced wording in their severe weather warnings. Also, local groups and organizations are working to improve public awareness of lightning safety with easy phrases to remember, such as "When Thunder Roars, Go Indoors." The impacts can be seen in the greater array of contingency plans, from airports to sports stadiums, addressing the threat of lightning. Improvements can still be made and newer technologies may offer new tools as we look towards the future. One of these tools is a network of sensors called a lightning mapping array (LMA). Several of these networks exist across the United States. NASA s Short-term Prediction Research and Transition Center (SPoRT), part of the Marshall Spaceflight Center, has access to three of these networks from Huntsville, Alabama, the Kennedy Space Center, and Washington D.C. The SPoRT program s mission is to help transition unique products and observations into the operational forecast environment

  13. Lightning Science: Five Ways Lightning Strikes People

    ... Hurricanes Lightning Rip Currents Space Thunderstorms, Hail Tornadoes Tsunamis Ultraviolet (UV) Wildland Fires Wind Winter Weather INFORMATION ... affects a much larger area than the other causes of lightning casualties, the ground current causes the ...

  14. Fault-Tolerant Relative Navigation System (RNS) for Docking Project

    National Aeronautics and Space Administration — A method is propsed to develop a sensor fusion process for blending GPS/IMU/EO data for fault tolerant rendezvous and docking of spacecraft. The methodology takes...

  15. Relativistic-microwave theory of ball lightning

    Wu, H.-C.


    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.

  16. Relativistic-microwave theory of ball lightning.

    Wu, H-C


    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.

  17. Seismic imaging of deformation zones associated with normal fault-related folding

    Lapadat, Alexandru; Imber, Jonathan; Iacopini, David; Hobbs, Richard


    bed rotation, affect, presumably, the acoustic properties of the rocks. We calculate the strains associated with fault displacement (using elastic dislocation models) and generate a synthetic seismic section of the model, taking into account the strain-related changes in the acoustic properties of the deformed rocks. Finally, we investigate whether variations in the magnitudes of volumetric strain correlate with the magnitudes of seismic amplitude variations near the analysed faults.

  18. Fault isolability with different forms of the faults–symptoms relation

    Kóscielny Jan Maciej


    Full Text Available The definitions and conditions for fault isolability of single faults for various forms of the diagnostic relation are reviewed. Fault isolability and unisolability on the basis of a binary diagnostic matrix are analyzed. Definitions for conditional and unconditional isolability and unisolability on the basis of a fault information system (FIS, symptom sequences and directional residuals are formulated. General definitions for conditional and unconditional isolability and unisolability in the cases of simultaneous evaluation of diagnostic signal values and a sequence of symptoms are provided. A comprehensive example is discussed.

  19. Lightning Technology.


    33-38, 1975. 6. Schonland, B.F.J., The Lightning Discharge, Handbuch der Physik , 22, 576-628, Springer-Verlag, OHG, Berlin, 1956. 25 (K,z) R GROUND o... Dictionary of Electrical and Electronic Terms, IEEE Std 100-1977, New York, John Wiley & Sons, Inc., 1977. 313 cc C 0J 0J o -4 0$4j 4j)4J 0 1.4 >- ~ o 0 0 .,.C...Electric Power Research Institute) EL-1140, Project 1141 Final Report, Sept. 1979. 8. IEEE Standard Dictionary of Electrical and Electronics Terms, Wiley

  20. Fault-Related Controls on Upward Hydrothermal Flow: An Integrated Geological Study of the Têt Fault System, Eastern Pyrénées (France

    Audrey Taillefer


    Full Text Available The way faults control upward fluid flow in nonmagmatic hydrothermal systems in extensional context is still unclear. In the Eastern Pyrénées, an alignment of twenty-nine hot springs (29°C to 73°C, along the normal Têt fault, offers the opportunity to study this process. Using an integrated multiscale geological approach including mapping, remote sensing, and macro- and microscopic analyses of fault zones, we show that emergence is always located in crystalline rocks at gneiss-metasediments contacts, mostly in the Têt fault footwall. The hot springs distribution is related to high topographic reliefs, which are associated with fault throw and segmentation. In more detail, emergence localizes either (1 in brittle fault damage zones at the intersection between the Têt fault and subsidiary faults or (2 in ductile faults where dissolution cavities are observed along foliations, allowing juxtaposition of metasediments. Using these observations and 2D simple numerical simulation, we propose a hydrogeological model of upward hydrothermal flow. Meteoric fluids, infiltrated at high elevation in the fault footwall relief, get warmer at depth because of the geothermal gradient. Topography-related hydraulic gradient and buoyancy forces cause hot fluid rise along permeability anisotropies associated with lithological juxtapositions, fracture, and fault zone compositions.

  1. Relating faults in diagnostic reasoning with diagnostic errors and patient harm.

    Zwaan, L.; Thijs, A.; Wagner, C.; Wal, G. van der; Timmermans, D.R.M.


    Purpose: The relationship between faults in diagnostic reasoning, diagnostic errors, and patient harm has hardly been studied. This study examined suboptimal cognitive acts (SCAs; i.e., faults in diagnostic reasoning), related them to the occurrence of diagnostic errors and patient harm, and studied

  2. Radioactive lightning rods: radiologic evaluation and regulatory policy related to its use in Cuba; Pararrayos radiactivos: evaluacion radiologica de su empleo y politica regulatoria com relacion a su utilizacion en Cuba

    Lopez Forteza, Yamil; Quevedo Garcia, Jose R.; Diaz Guerra, Pedro I.; Cruz Dumenico, Gonzalez; Fuente Puch, Andres de la [Centro Nacional de Seguridad Nuclear, La Habana (Cuba)


    The radioactive lightning rod employment for the protection of facilities against atmospheric discharges reached its maximum splendor in the eighties. It was in fact at the end of this decade when the technical considerations related to the justification of this practice finally conclude that the production of such teams was abolished. For the regulatory authorities, however, it continues having validity the question related to the control of lightning rod still in use as well as the question related to the establishment of a coherent with the international practice national policy. The paper shows the results of the last 10 years of control of the radioactive lightning rod use in Cuba and the radiological evaluation carried out on the base of this experience. Lastly, it exposes the regulatory policy referred to the employment of the radioactive lightning rod in the country. (author)

  3. The 1997-98 El Nino Event and Related Wintertime Lightning Variations in the Southeastern United States

    Goodman, S. J.; Buechler, D. E.; Knupp, K.; Driscoll, K.; McCaul, E. W., Jr.


    The El Nino Southern Oscillation (ENSO) is a climate anomaly responsible for worldwide weather impacts ranging from droughts to floods. In the United States, warm episode years are known to produce above normal rainfall along the Southeast U.S. Gulf Coast and into the Gulf of Mexico, with the greatest response observed in the October-March period of the warm episode year. The 1997-98 warm episode is notable for being the strongest event since 198283. With the recent launch of a lightning sensor on NASA's Tropical Rainfall Measuring Mission (TRMM) in November 1997 and the detailed coverage of the U.S. National Lightning Detection Network (NLDN), such interannual changes in lightning activity can be examined with far greater detail than ever before. For the 1997-98 ENSO event the most significant year-to-year changes in lightning frequency worldwide occurred along the Gulf Coast and within the Gulf of Mexico basin during the Northern Hemisphere winter. Within a broad swath across the northern Gulf of Mexico basin there is a 100-150% increase in lightning days year-to-year (a peak of 33 days in the winter of 1997-98 vs. only 15 days or fewer in both the 1996-97 and 1998-99 winter). In addition, there is a nearly 200% increase in lightning hours (a peak of 138 hours in 1996-97 vs. 50 hours in both 1996-97 and 1998-99). The increase in lightning activity during ENSO occurs in association with a 100% increase in the number of synoptic scale cyclones that developed within or moved through the Gulf basin. The primary variables controlling these enhancements in thunderstorm activity are the position and strength of the jet stream.

  4. Lightning: Nature's Probe of Severe Weather for Research and Operations

    Blakeslee, R.J.


    Lightning, the energetic and broadband electrical discharge produced by thunderstorms, provides a natural remote sensing signal for the study of severe storms and related phenomena on global, regional and local scales. Using this strong signal- one of nature's own probes of severe weather -lightning measurements prove to be straightforward and take advantage of a variety of measurement techniques that have advanced considerably in recent years. We briefly review some of the leading lightning detection systems including satellite-based optical detectors such as the Lightning Imaging Sensor, and ground-based radio frequency systems such as Vaisala's National Lightning Detection Network (NLDN), long range lightning detection systems, and the Lightning Mapping Array (LMA) networks. In addition, we examine some of the exciting new research results and operational capabilities (e.g., shortened tornado warning lead times) derived from these observations. Finally we look forward to the next measurement advance - lightning observations from geostationary orbit.

  5. Do fault-related folds follow the same scaling law as their associated faults? A study using 3D seismic reflection data

    Pitcher, Eleanor; Imber, Jonathan


    Fractal distributions are largely agreed to follow a power-law distribution. Power-law scaling relationships describe the size distribution of fault lengths or displacements. Being able to identify these scaling properties provides a powerful tool for predicting the numbers of geological structures, such as small-scale faults in sedimentary basins that are below the resolution of seismic reflection data. The aim of this study is to determine whether fault-related folds follow the same power law scaling properties, or if they follow a different scaling law. We use TrapTester to interpret a 3D seismic volume from the Gulf of Mexico to construct fault planes and cut-off lines along selected horizons in the vicinity of fault upper tip lines. Fault-related folds are particularly well developed above steeply plunging tip lines, but are discontinuous along the strike of the fault plane. Folding is less well developed on horizons that intersect, or lie close to, the locus of maximum throw (bullseye) of the fault plane. We then measured fold amplitudes and fault throws across these same horizons using a one-dimensional multi-line sampling approach. Graphs of fault throw and fold amplitude vs. distance parallel to fault strike show that folds occur where there is no resolvable fault throw, and that fault throw and fold amplitudes show an approximately inverse relationship. Close to the locus of maximum throw, there is largely just faulting, whilst at the upper tip line folding predominates. By plotting cumulative frequency against throw for the fault and fold data we can investigate whether the data follow a power law, log normal or exponential distribution. Plotting the data on log vs. log (power law), linear vs. log (log normal) and log vs. linear (exponential) axes allow us to establish which displays the best "straight-line fit". We observed that the fault throw data satisfied a straight-line on a log vs. log graph - implying a power law distribution - and also returned

  6. TRIP illumines lightning

    Hill, R. D.

    It is 8 yr since important measurements of lightning in single-cell thunderstorms were made during the Thunderstorm Research International Project (TRIP), yet no theoretical interpretation of the lightning generation mechanism from the data has been made. This tardiness in interpreting the data is undoubtedly related to the existing confusion in lightning generation theories.According to Chalmers [1967], there are two classes of thunderstorm charge separation theories: those that rely on gravitation and those that do not involve gravitation. In the gravitational class, Chalmers again distinguished two types of processes: those in which ions are naturally generated (e.g., by cosmic rays, etc.) and are then attached to particles in the cloud and those in which some process (e.g., collision, coagulation, etc.) generates positive and negatively charged particles from neutrals in the cloud. Some of these two process types, cited in Chalmers' work, are given in Table 1, together with some of the scientists who originally proposed these processes.

  7. The 1997-98 El-Nino Event and Related Lightning Variations in the Southeastern United States

    Buechler, D. E.; Goodman, S. J.; McCaul, E. W.; Knupp, K.


    The El Nino Southern Oscillation (ENSO) is a climate anomaly responsible for world-wide weather impacts ranging from droughts to floods. In the United States, warm episode years are known to produce above normal rainfall along the Southeast US Gulf Coast and into the Gulf of Mexico, with the greatest response observed in the October-March period of the current warm-episode year. The 1997-98 warm episode, notable for being the strongest event since 1982-83, presents our first opportunity to examine the response to a major ENSO event and determine the variation of wintertime thunderstorm activity in this part of the world. Due to the recent launch of a lightning sensor on NASA's Tropical Rainfall Measuring Mission (TRMM) in November 1997 and the expanded coverage of the National Lightning Detection Network (NLDN), we are able to examine such year-to-year changes in lightning activity with far greater detail than ever before.

  8. North East Atlantic Tsunamis Related with Gloria Fault

    Baptista, M.; Miranda, J. M.; Batllo, J.; Macia, R.


    Gloria fault is one segment of the Eurasia-Nubia plate boundary. It is a large strike slip fault, located between 24W and 19W, with scarce seismic activity but which was the location of several large events during the XX Century, in particular the 25 November 1941 earthquake, a submarine strike-slip event of magnitude 8.3-8.4 and the 26 May 1975 with magnitude 7.9. Since the installation of the tide-gauge networks in several countries of the North East Atlantic area a significant amount of mareograms were obtained, concerning these events, in a number of coastal stations located along the European coasts. The most impacted areas were the north coast of Portugal where the sea overtopped some beaches, in November 1941, and the harbors of Azores, in 1975, where it was observed the fast withdraw of the sea followed by a strong influx over the highest water mark. We present here a systematic view of the tsunami potential of the Gloria Fault and using results of hydrodynamic simulations we compare model results against observations and tide records and we discuss the corresponding implications in the design of the NEAMTWS decision matrix. To properly constrain the source characteristics of the tsunamigenic earthquakes, relocation and scalar moment calculation of the 1941 earthquake from digitized seismograms have been performed. This work is a funded by project s TAGUSDELTA. Ref. PTDC/MAR/113888/2009 and PTDC/CTE-GIX/110205/2009

  9. Lightning injuries in sports and recreation.

    Thomson, Eric M; Howard, Thomas M


    The powers of lightning have been worshiped and feared by all known human cultures. While the chance of being struck by lightning is statistically very low, that risk becomes much greater in those who frequently work or play outdoors. Over the past 2 yr, there have been nearly 50 lightning-related deaths reported within the United States, with a majority of them associated with outdoor recreational activities. Recent publications primarily have been case studies, review articles, and a discussion of a sixth method of injury. The challenge in reducing lightning-related injuries in organized sports has been addressed well by both the National Athletic Trainers' Association and the National Collegiate Athletic Association in their guidelines on lightning safety. Challenges remain in educating the general population involved in recreational outdoor activities that do not fall under the guidelines of organized sports.

  10. Theory of ball lightning

    Wu, H -C


    We present a comprehensive explanation on ball lightning, a luminous sphere occasionally witnessed after ordinary lightning. In the last decade, it has been well established that natural lightning routinely generates relativistic electrons, which account for observed x rays. So we assume that, in a ball lightning event, a well-defined relativistic electron bunch is produced by the stepped leader of lightning. When this electron bunch strikes various media, a powerful microwave pulse is emitted by the coherent transition radiation mechanism. This intense microwave ionizes air, evacuates plasmas by its radiation pressure to form a globular plasma cavity, and then gets trapped inside the cavity. This theory successfully explains all characteristics of ball lightning, especially the appearance of ball lightning in fully-screened aircraft. Moreover, the proposed radiation mechanism fully explains the strongest radio signals from lightning and nanosecond spikes in the signals are direct evidences on the generation ...

  11. Fault-related fold styles and progressions in fold-thrust belts: Insights from sandbox modeling

    Yan, Dan-Ping; Xu, Yan-Bo; Dong, Zhou-Bin; Qiu, Liang; Zhang, Sen; Wells, Michael


    Fault-related folds of variable structural styles and assemblages commonly coexist in orogenic belts with competent-incompetent interlayered sequences. Despite their commonality, the kinematic evolution of these structural styles and assemblages are often loosely constrained because multiple solutions exist in their structural progression during tectonic restoration. We use a sandbox modeling instrument with a particle image velocimetry monitor to test four designed sandbox models with multilayer competent-incompetent materials. Test results reveal that decollement folds initiate along selected incompetent layers with decreasing velocity difference and constant vorticity difference between the hanging wall and footwall of the initial fault tips. The decollement folds are progressively converted to fault-propagation folds and fault-bend folds through development of fault ramps breaking across competent layers and are followed by propagation into fault flats within an upper incompetent layer. Thick-skinned thrust is produced by initiating a decollement fault within the metamorphic basement. Progressive thrusting and uplifting of the thick-skinned thrust trigger initiation of the uppermost incompetent decollement with formation of a decollement fold and subsequent converting to fault-propagation and fault-bend folds, which combine together to form imbricate thrust. Breakouts at the base of the early formed fault ramps along the lowest incompetent layers, which may correspond to basement-cover contacts, domes the upmost decollement and imbricate thrusts to form passive roof duplexes and constitute the thin-skinned thrust belt. Structural styles and assemblages in each of tectonic stages are similar to that in the representative orogenic belts in the South China, Southern Appalachians, and Alpine orogenic belts.

  12. Spatiotemporal variability of lightning activity in Europe and the relation to the North Atlantic Oscillation teleconnection pattern

    Piper, David; Kunz, Michael


    Comprehensive lightning statistics are presented for a large, contiguous domain covering several European countries such as France, Germany, Austria, and Switzerland. Spatiotemporal variability of convective activity is investigated based on a 14-year time series (2001-2014) of lightning data. Based on the binary variable thunderstorm day, the mean spatial patterns of lightning activity and regional peculiarities regarding seasonality are discussed. Diurnal cycles are compared among several regions and evaluated with respect to major seasonal changes. Further analyses are performed regarding interannual variability and the impact of teleconnection patterns on convection. Mean convective activity across central Europe is characterized by a strong northwest-to-southeast gradient with pronounced secondary features superimposed. The zone of maximum values of thunderstorm days propagates southwestward along the southern Alpine range from April to July. Diurnal cycles vary substantially between both different months and regions, particularly regarding the incidence of nighttime lightning. The North Atlantic Oscillation (NAO) is shown to have a significant impact on convective activity in several regions, which is primarily caused by variations of the large-scale lifting pattern in both NAO phases. This dynamical effect is partly compensated for by thermodynamical modifications of the pre-convective environment. The results point to a crucial role of large-scale flow in steering the spatiotemporal patterns of convective activity.

  13. Tropic lightning: myth or menace?

    McCarthy, John


    Lightning is one of the leading causes of death related to environmental disaster. Of all lightning fatalities documented between 2006 and 2012, leisure activities contributed the largest proportion of deaths, with water-associated, sports, and camping being the most common. Despite the prevalence of these activities throughout the islands, Hawai'i has had zero documented lightning fatalities since weather data tracking was initiated in 1959. There is a common misconception that lightning does not strike the ground in Hawai'i. This myth may contribute to a potentially dangerous false sense of security, and recognition of warning signs and risk factor modification remain the most important prevention strategies. Lightning damage occurs on a spectrum, from minor burns to multi-organ dysfunction. After injury, initial treatment should focus on "reverse triage" and immediate cardiopulmonary resuscitation when indicated, followed by transfer to a healthcare facility. Definitive treatment entails monitoring and management of potential sequelae, to include cardiovascular, neurologic, dermatologic, ophthalmologic, audiovestibular, and psychiatric complications.

  14. Positive lightning and severe weather

    Price, C.; Murphy, B.


    In recent years researchers have noticed that severe weather (tornados, hail and damaging winds) are closely related to the amount of positive lightning occurring in thunderstorms. On 4 July 1999, a severe derecho (wind storm) caused extensive damage to forested regions along the United States/Canada border, west of Lake Superior. There were 665,000 acres of forest destroyed in the Boundary Waters Canoe Area Wilderness (BWCAW) in Minnesota and Quetico Provincial Park in Canada, with approximately 12.5 million trees blown down. This storm resulted in additional severe weather before and after the occurrence of the derecho, with continuous cloud-to-ground (CG) lightning occurring for more than 34 hours during its path across North America. At the time of the derecho the percentage of positive cloud-to-ground (+CG) lightning measured by the Canadian Lightning Detection Network (CLDN) was greater than 70% for more than three hours, with peak values reaching 97% positive CG lightning. Such high ratios of +CG are rare, and may be useful indicators for short-term forecasts of severe weather.

  15. The lightning flash

    Cooray, Vernon


    With contributions from today's leading lightning engineers and researchers, this updated 2nd edition of Vernon Cooray's classic text, The Lightning Flash provides the reader with an essential introduction to lightning and its impact on electrical and electronic equipment. Providing the reader with a thorough background into almost every aspect of lightning and its impact on electrical and electronic equipment, this new edition is updated throughout and features eight new chapters that bring the science up to date.

  16. Experimental generation of volcanic lightning

    Cimarelli, Corrado; Alatorre-Ibargüengoitia, Miguel; Kueppers, Ulrich; Scheu, Bettina; Dingwell, Donald B.


    Ash-rich volcanic plumes that are responsible for injecting large quantities of aerosols into the atmosphere are often associated with intense electrical activity. Direct measurement of the electric potential at the crater, where the electric activity in the volcanic plume is first observed, is severely impeded, limiting progress in its investigation. We have achieved volcanic lightning in the laboratory during rapid decompression experiments of gas-particle mixtures under controlled conditions. Upon decompression (from ~100 bar argon pressure to atmospheric pressure), loose particles are vertically accelerated and ejected through a nozzle of 2.8 cm diameter into a large tank filled with air at atmospheric conditions. Because of their impulsive character, our experiments most closely represent the conditions encountered in the gas-thrust region of the plume, when ash is first ejected from the crater. We used sieved natural ash with different grain sizes from Popocatépetl (Mexico), Eyjafjallajökull (Iceland), and Soufrière Hills (Montserrat) volcanoes, as well as micrometric glass beads to constrain the influence of material properties on lightning. We monitored the dynamics of the particle-laden jets with a high-speed camera and the pressure and electric potential at the nozzle using a pressure transducer and two copper ring antennas connected to a high-impedance data acquisition system, respectively. We find that lightning is controlled by the dynamics of the particle-laden jet and by the abundance of fine particles. Two main conditions are required to generate lightning: 1) self-electrification of the particles and 2) clustering of the particles driven by the jet fluid dynamics. The relative movement of clusters of charged particles within the plume generates the gradient in electrical potential, which is necessary for lightning. In this manner it is the gas-particle dynamics together with the evolving particle-density distribution within different regions of

  17. Development of attenuation relation for the near fault ground motion from the characteristic earthquake

    SHI Bao-ping; LIU Bo-yan; ZHANG Jian


    A composite source model has been used to simulate a broadband strong ground motion with an associated fault rupture process. A scenario earthquake fault model has been used to generate 1 000 earthquake events with a magnitude of Mw8.0. The simulated results show that, for the characteristic event with a strike-slip faulting, the characteristics of near fault ground motion is strongly dependent on the rupture directivity. If the distance between the sites and fault was given, the ground motion in the forward direction (Site A) is much larger than that in the backward direction (Site C) and that close to the fault (Site B). The SH waves radiated from the fault, which corresponds to the fault-normal component plays a key role in the ground motion amplification. Corresponding to the sites A, B, and C, the statistical analysis shows that the ratio of their aPG is 2.15:1.5:1 and their standard deviations are about 0.12, 0.11, and 0.13, respectively. If these results are applied in the current probabilistic seismic hazard analysis (PSHA), then, for the lower annual frequency of exceedance of peak ground acceleration, the predicted aPG from the hazard curve could reduce by 30% or more compared with the current PSHA model used in the developing of seismic hazard map in the USA. Therefore, with a consideration of near fault ground motion caused by the rupture directivity, the regression model used in the development of the regional attenuation relation should be modified accordingly.

  18. MSFC shuttle lightning research

    Vaughan, Otha H., Jr.


    The shuttle mesoscale lightning experiment (MLE), flown on earlier shuttle flights, and most recently flown on the following space transportation systems (STS's), STS-31, -32, -35, -37, -38, -40, -41, and -48, has continued to focus on obtaining additional quantitative measurements of lightning characteristics and to create a data base for use in demonstrating observation simulations for future spaceborne lightning mapping systems. These flights are also providing design criteria data for the design of a proposed shuttle MLE-type lightning research instrument called mesoscale lightning observational sensors (MELOS), which are currently under development here at MSFC.

  19. Scaling Relations for the Thermal Structure of Segmented Oceanic Transform Faults

    Wolfson-Schwehr, M.; Boettcher, M. S.; Behn, M. D.


    Mid-ocean ridge-transform faults (RTFs) are a natural laboratory for studying strike-slip earthquake behavior due to their relatively simple geometry, well-constrained slip rates, and quasi-periodic seismic cycles. However, deficiencies in our understanding of the limited size of the largest RTF earthquakes are due, in part, to not considering the effect of short intra-transform spreading centers (ITSCs) on fault thermal structure. We use COMSOL Multiphysics to run a series of 3D finite element simulations of segmented RTFs with visco-plastic rheology. The models test a range of RTF segment lengths (L = 10-150 km), ITSC offset lengths (O = 1-30 km), and spreading rates (V = 2-14 cm/yr). The lithosphere and upper mantle are approximated as steady-state, incompressible flow. Coulomb failure incorporates brittle processes in the lithosphere, and a temperature-dependent flow law for dislocation creep of olivine activates ductile deformation in the mantle. ITSC offsets as small as 2 km affect the thermal structure underlying many segmented RTFs, reducing the area above the 600˚C isotherm, A600, and thus the size of the largest expected earthquakes, Mc. We develop a scaling relation for the critical ITSC offset length, OC, which significantly reduces the thermal affect of adjacent fault segments of length L1 and L2. OC is defined as the ITSC offset that results in an area loss ratio of R = (Aunbroken - Acombined)/Aunbroken - Adecoupled) = 63%, where Aunbroken = C600(L1+L2)1.5V-0.6 is A600 for an RTF of length L1 + L2; Adecoupled = C600(L11.5+L21.5)V-0.6 is the combined A600 of RTFs of lengths L1 and L2, respectively; and Acombined = Aunbroken exp(-O/ OC) + Adecoupled (1-exp(-O/ OC)). C600 is a constant. We use OC and kinematic fault parameters (L1, L2, O, and V) to develop a scaling relation for the approximate seismogenic area, Aseg, for each segment of a RTF system composed of two fault segments. Finally, we estimate the size of Mc on a fault segment based on Aseg. We

  20. Fractal model of lightning channel for simulating lightning strikes to transmission lines

    HE JinLiang; ZHANG XueWei; DONG Lin; ZENG Rong; LIU ZeHong


    How to accurately evaluate the direct-strike lightning protection is one of the key issues in the design of transmission lines.In this paper, three important issues in applying the fractal simulation to the lightning protection of transmission lines were discussed, including the criteria and implementation of upward leader inception, the connection with the magnitude of lightning current, and the calculation and control of fractal dimensions.Then we conducted the simulation iterately, leading to statistical results, which indicate that even if the transmission line satisfies the perfect shielding condition, shielding failure fault remains possible.Furthermore, we calculated the shielding failure fault rates of an EHV line with different ground obliquities and distribution of strike points over the interval between two neighboring towers along a UHV-DC line to find out the weak point of transmission-line lightning protection.This work provides a promising approach for improving the lightning protection property of transmission lines by optimizing the configuration of shielding wires and phase or pole conductors.

  1. Fractal model of lightning channel for simulating lightning strikes to transmission lines


    How to accurately evaluate the direct-strike lightning protection is one of the key issues in the design of transmission lines. In this paper, three important issues in applying the fractal simulation to the lightning protection of transmission lines were discussed, including the criteria and implementation of upward leader inception, the connection with the magnitude of lightning current, and the calculation and control of fractal dimensions. Then we conducted the simulation iterately, leading to statistical results, which indicate that even if the transmission line satisfies the perfect shielding condition, shielding failure fault remains possible. Furthermore, we calculated the shielding failure fault rates of an EHV line with different ground obliquities and distribution of strike points over the interval between two neighboring towers along a UHV-DC line to find out the weak point of transmission-line lightning protection. This work provides a promising approach for improving the lightning protection property of transmission lines by optimizing the configuration of shielding wires and phase or pole conductors.

  2. Visual Analysis for Nowcasting of Multidimensional Lightning Data

    Stefan Peters


    Full Text Available Globally, most weather-related damages are caused by thunderstorms. Besides floods, strong wind, and hail, one of the major thunderstorm ground effects is lightning. Therefore, lightning investigations, including detection, cluster identification, tracking, and nowcasting are essential. To enable reliable decisions, current and predicted lightning cluster- and track features as well as analysis results have to be represented in the most appropriate way. Our paper introduces a framework which includes identification, tracking, nowcasting, and in particular visualization and statistical analysis of dynamic lightning data in three-dimensional space. The paper is specifically focused on enabling users to conduct the visual analysis of lightning data for the purpose of identification and interpretation of spatial-temporal patterns embedded in lightning data, and their dynamics. A graphic user interface (GUI is developed, wherein lightning tracks and predicted lightning clusters, including their prediction certainty, can be investigated within a 3D view or within a Space-Time-Cube. In contrast to previous work, our approach provides insight into the dynamics of past and predicted 3D lightning clusters and cluster features over time. We conclude that an interactive visual exploration in combination with a statistical analysis can provide new knowledge within lightning investigations and, thus, support decision-making in weather forecast or lightning damage prevention.

  3. Characteristics of Lightning Discharges and Electric Structure of Thunderstorm

    Qie Xiushu; Zhang Yijun; Zhang Qilin


    Progresses in the research on physical processes of lightning discharge and electric structure of thunderstorm in the last decade in China have been reviewed. By using the self-developed lightning detecting and locating techniques with high temporal and spatial resolution, the characteristics and parameters of lightning discharge in some representative areas in China have been obtained. Observations on lightning activity were conducted for the first time in the Qinghai-Tibetan Plateau in 2002-2005, and the special characteristics of the thunderstorm and lightning activity in the plateau were revealed. The lightning spectra in the band of visible light were recorded, and the spectral lines were identified in detail with introduction of modern theories of atomic structure. The techniques on artificially altitude triggered lightning and related measurements under a harsh electromagnetic environment have been well developed. Evidences of bi-directional leader propagation were observed by means of optics and VHF radiation during the triggered lightning discharges. Some lightning protection devices have been tested using the artificial lightning triggering techniques. In addition, the correlation between lightning activities and weather and climate was preliminarily studied.

  4. 广东电网同塔多回线路雷击跳闸影响因素及故障分析%Influencing Factors of Lightning Outage in Multi-Circuit Transmission Lines on Same Tower in Guangdong Power Grid and Fault Analysis

    彭向阳; 詹清华; 周华敏


    In recent years the land supply for power construction projects is decreased increasingly and it makes the planner of UHV/EHV transmission line construction inclined to adopt the structure of multi-circuit transmission lines on the same tower, therefore as the result the proportion of simultaneous lightning outage of multi-circuit transmission lines on the same tower evidently raises, thus the secure operation of power grid is affected. The peculiarity of simultaneous lightning outage occurred in multi-circuit transmission lines on the same tower is presented and the influences of key factors on lightning outage are analyzed, besides, the recovery analysis on electromagnetic transient of typical simultaneous lightning outage fault is performed. Results of recovery analysis show that the main reason leading to simultaneous lightning outage of multi-circuit transmission lines on the same tower is the flashback of lightning, however successive shielding failures lead to simultaneous lightning outage of multi-circuit transmission lines as well. It is emphasized that special attentions should be paid to the prevention of simultaneous lightning outage occurred in 110 kV and 220 kV double circuit transmission lines on the same tower, and it is pointed out that the power frequency voltage and the phase sequence arrangement of transmission lines on the same tower greatly influence the lightning outage caused by flashback; the simultaneous lightning outages often occur in the same phase of multi-circuit transmission lines; and the flashover is prone to occur on the upper cross arm insulator that is closer to the struck point.%近年来广东地区线路工程用地趋紧,同塔多回线路规模迅速增大,导致多回线路雷击同时跳闸比例显著上升,给电网安全运行带来新的挑战。介绍同塔线路雷击同时跳闸的特点,分析雷击跳闸关键因素的影响,并对典型雷击同时跳闸故障进行电磁暂态复原分析。指出雷

  5. Lightning and thermal injuries.

    Sanford, Arthur; Gamelli, Richard L


    Electrical burns are classified as either high voltage (1000 volts and higher) or low voltage (Lightning strikes may conduct millions of volts of electricity, yet the effects can range from minimal cutaneous injuries to significant injury comparable to a high-voltage industrial accident. Lightning strikes commonly result in cardiorespiratory arrest, for which CPR is effective when begun promptly. Neurologic complications from electrical and lightning injuries are highly variable and may present early or late (up to 2 years) after the injury. The prognosis for electricity-related neurologic injuries is generally better than for other types of traumatic causes, suggesting a conservative approach with serial neurologic examinations after an initial CT scan to rule out correctable causes. One of the most common complications of electrical injury is a cardiac dysrhythmia. Because of the potential for large volumes of muscle loss and the release of myoglobin, the presence of heme pigments in the urine must be evaluated promptly. Presence of these products of breakdown of myoglobin and hemoglobin puts the injured at risk for acute renal failure and must be treated. The exact mechanism of nerve injury has not been explained, but both direct injury by electrical current overload or a vascular cause receive the most attention. Because electrical injuries carry both externally visible cutaneous injuries and possible hidden musculoskeletal damage, conventional burn resuscitation formulas based on body surface area injured may not provide enough fluid to maintain urine output. Damaged muscle resulting in swelling within the investing fascia of an extremity may result in compartment syndromes, requiring further attention. If myoglobin has been detected in the urine, treatment is aggressive volume resuscitation and possibly alkalinization of the urine or mannitol is given IV push to minimize pigment precipitation in the renal tubules. Approximately 15% of electrical burn victims

  6. Thruster fault identification method for autonomous underwater vehicle using peak region energy and least square grey relational grade

    Mingjun Zhang


    Full Text Available A novel thruster fault identification method for autonomous underwater vehicle is presented in this article. It uses the proposed peak region energy method to extract fault feature and uses the proposed least square grey relational grade method to estimate fault degree. The peak region energy method is developed from fusion feature modulus maximum method. It applies the fusion feature modulus maximum method to get fusion feature and then regards the maximum of peak region energy in the convolution operation results of fusion feature as fault feature. The least square grey relational grade method is developed from grey relational analysis algorithm. It determines the fault degree interval by the grey relational analysis algorithm and then estimates fault degree in the interval by least square algorithm. Pool experiments of the experimental prototype are conducted to verify the effectiveness of the proposed methods. The experimental results show that the fault feature extracted by the peak region energy method is monotonic to fault degree while the one extracted by the fusion feature modulus maximum method is not. The least square grey relational grade method can further get an estimation result between adjacent standard fault degrees while the estimation result of the grey relational analysis algorithm is just one of the standard fault degrees.

  7. Parity Relation Based Fault Estimation for Nonlinear Systems: An LMI Approach

    Sing Kiong Nguang; Ping Zhang; Steven X. Ding


    This paper proposes a parity relation based fault estimation for a class of nonlinear systems which can be modelled by Takagi-Sugeno (TS) fuzzy models. The design of a parity relation based residual generator is formulated in terms of a family of linear matrix inequalities (LMIs). A numerical example is provided to illustrate the effectiveness of the proposed design techniques.

  8. An Integrated 0-1 Hour First-Flash Lightning Nowcasting, Lightning Amount and Lightning Jump Warning Capability

    Mecikalski, John; Jewett, Chris; Carey, Larry; Zavodsky, Brad; Stano, Geoffrey


    Lightning one of the most dangerous weather-related phenomena, especially as many jobs and activities occur outdoors, presenting risk from a lightning strike. Cloud-to-ground (CG) lightning represents a considerable safety threat to people at airfields, marinas, and outdoor facilities-from airfield personnel, to people attending outdoor stadium events, on beaches and golf courses, to mariners, as well as emergency personnel. Holle et al. (2005) show that 90% of lightning deaths occurred outdoors, while 10% occurred indoors despite the perception of safety when inside buildings. Curran et al. (2000) found that nearly half of fatalities due to weather were related to convective weather in the 1992-1994 timeframe, with lightning causing a large component of the fatalities, in addition to tornadoes and flash flooding. Related to the aviation industry, CG lightning represents a considerable hazard to baggage-handlers, aircraft refuelers, food caterers, and emergency personnel, who all become exposed to the risk of being struck within short time periods while convective storm clouds develop. Airport safety protocols require that ramp operations be modified or discontinued when lightning is in the vicinity (typically 16 km), which becomes very costly and disruptive to flight operations. Therefore, much focus has been paid to nowcasting the first-time initiation and extent of lightning, both of CG and of any lightning (e.g, in-cloud, cloud-to-cloud). For this project three lightning nowcasting methodologies will be combined: (1) a GOESbased 0-1 hour lightning initiation (LI) product (Harris et al. 2010; Iskenderian et al. 2012), (2) a High Resolution Rapid Refresh (HRRR) lightning probability and forecasted lightning flash density product, such that a quantitative amount of lightning (QL) can be assigned to a location of expected LI, and (3) an algorithm that relates Pseudo-GLM data (Stano et al. 2012, 2014) to the so-called "lightning jump" (LJ) methodology (Shultz et al

  9. Infrasound from lightning measured in Ivory Coast

    Farges, T.; Millet, C.; Matoza, R. S.


    . Moreover, numerous infrasound events which have the infrasound from lightning signature could not be correlated when thunderstorms were close to the station. Statistical analyses of all correlated infrasound events show an exponential decrease of the infrasound amplitude with the distance of one order of magnitude per 50 km. These analyses show also that the relative position of lightning is important: the detection limit is higher when lightning occur at the East of the station than when they occur at the West. The dominant wind (the Easterlies) could be responsible of this dissymmetry. It also exists a high variability of detection efficiency with the seasons (better efficiency in fall than in spring). Finally, these statistics show clearly a structure inside the shadow zone (from 70 to 200 km away from the station). These results will be compared with intensive numerical simulations. The simulations are separated into two parts: the simulation of the near-field blast wave generated by a lightning and the simulation of the non-linear propagation of the shock front through a realistic atmosphere. By comparing our numerical results to recorded data over a full 1-year period, we aim to show that dominant features of statistics at the IMS station may be explained by the meteorological variability.

  10. Lightning Injury: A Review


    bilateral perilymphatic fistulas from a lightning strike have been reported [65,68]. Other neuro-otologic findings have included transient vertigo...Keraunopathology. An analysis of 45 fatalities. Am J Forensic Med Pathol 1996;17(2):89–98. [7] Blumenthal R. Lightning fatalities on the South African...Trauma 1989;29(5):665–71. [65] Sun GH, Simons JP, Mandell DL. Bilateral perilymphatic fistulas from a lightning strike: a case report. Laryngoscope

  11. Relation between the isokeraunic level and occurrence frequency of lightning flashes to overhead transmission lines; Chiiki no nenkan kaminari nissu to sodensen ni taisuru raigeki hindo

    Udo, T.


    In Japan, mean annual days of thunderstorm activity (Td) is determined based on the observation of 10 years from 1954 to 1963, for each rectangular area of about 23 km times 27 km. The Td may change depending on the long term variation of climate. In addition, only one Td for a 23 km times 27 km area is not enough to express the locality of lightning activities. On the other hand, based on the analysis of lightning current measurement on 15 transmission lines in Japan, the author found that the content (%) of large current lightnings (such as larger than 80kA) is very larger in heavy lightning districts than in mild lightning districts. Taking the above phenomenon into account, and based on the statistical analysis of field investigation data, the author set up a new theory to estimate the lightning performance of transmission lines. 9 refs., 5 figs., 1 tab.

  12. Lightning Sensors for Observing, Tracking and Nowcasting Severe Weather

    Price, Colin


    Severe and extreme weather is a major natural hazard all over the world, often resulting in major natural disasters such as hail storms, tornados, wind storms, flash floods, forest fires and lightning damages. While precipitation, wind, hail, tornados, turbulence, etc. can only be observed at close distances, lightning activity in these damaging storms can be monitored at all spatial scales, from local (using very high frequency [VHF] sensors), to regional (using very low frequency [VLF] sensors), and even global scales (using extremely low frequency [ELF] sensors). Using sensors that detect the radio waves emitted by each lightning discharge, it is now possible to observe and track continuously distant thunderstorms using ground networks of sensors. In addition to the number of lightning discharges, these sensors can also provide information on lightning characteristics such as the ratio between intra-cloud and cloud-to-ground lightning, the polarity of the lightning discharge, peak currents, charge removal, etc. It has been shown that changes in some of these lightning characteristics during thunderstorms are often related to changes in the severity of the storms. In this paper different lightning observing systems are described, and a few examples are provided showing how lightning may be used to monitor storm hazards around the globe, while also providing the possibility of supplying short term forecasts, called nowcasting. PMID:27879700

  13. Diagnosis method based on wavelet coefficient scale relativity correlation dimension for fault


    Correlation dimension as a tool to describe machinery condition is introduced.Vibration signals of the fan under different working conditions are analyzed using a threshold filtering algorithm based on the region relativity of the wavelet coefficients for reducing noise.The result shows that the characteristics of the signal could be preserved completely.The correlation dimension is able to identify conditions of the fan with faults compared with the normal condition,thereby providing an effective technology for condition monitoring and fault diagnosis of mechanical equipment.

  14. Estimation of the Current Peak Value Distribution of All Lightning to the Ground by Electro-Geometric Model

    Sakata, Tadashi; Yamamoto, Kazuo; Sekioka, Shozo; Yokoyama, Shigeru

    When we examine the lightning frequency and the lightning shielding effect by EGM (electro-geometric model), we need the current distribution of all lightning to the ground. The lightning current distribution to structures is different from this distribution, but it has been used in EGM conventionally. We assumed the lightning striking distance coefficient related to height of structures for getting the result which corresponds to observed lightning frequency to structures, and estimated the current distribution of all lightning to the ground from data listed in IEC 62305 series by EGM. The estimated distribution adjusted by detection efficiency of LLS almost corresponded to observed distribution by LLS.

  15. Lightning injury: a review.

    Ritenour, Amber E; Morton, Melinda J; McManus, John G; Barillo, David J; Cancio, Leopoldo C


    Lightning is an uncommon but potentially devastating cause of injury in patients presenting to burn centers. These injuries feature unusual symptoms, high mortality, and significant long-term morbidity. This paper will review the epidemiology, physics, clinical presentation, management principles, and prevention of lightning injuries.

  16. Data Related to Late Quaternary Surface Faulting on the Sangre de Cristo Fault, Rito Seco Site, Costilla County, Colorado

    Crone, Anthony J.; Machette, Michael N.; Bradley, Lee-Ann; Mahan, Shannon


    In this report, we present detailed maps of the trenches and a compilation of field and laboratory data used to support our interpretation of the history of four (PE1-PE4) prehistoric surface-faulting earthquakes at this site.

  17. Geology and geothermal waters of Lightning Dock region, Animas Valley and Pyramid Mountains, Hidalgo County, New Mexico

    Elston, W.E.; Deal, E.G.; Logsdon, M.J.


    This circular covers the geology of the Pyramid Peak, Swallow Fork Peak, Table Top Mountain, and South Pyramid Peak 7-1/2-min quadrangles, which include the Lightning Dock KGRA. Hot wells (70 to 115.5/sup 0/C) seem to be structurally controlled by intersections of the ring-fracture zone of an Oligocene ash-flow tuff cauldron (Muir cauldron), a Miocene-to-Holocene north-trending basin-and-range fault (Animas Valley fault), and a northeast-trending lineament that appears to control anomalously heated underground waters and Pliocene-Pleistocene basalt cones in the San Bernardino, San Simon, and Animas Valleys. The Muir cauldron, approximately 20 km in diameter, collapsed in two stages, each associated with the eruption of a rhyolite ash-flow-tuff sheet and of ring-fracture domes. Most of the hydrothermal alteration of the Lightning Dock KGRA is related to the first stage of eruption and collapse, not to the modern geothermal system. Contrary to previous reports, no silicic volcanic rocks younger than basin-and-range faulting are known; unconformities beneath rhyolite ring-fracture domes are caused by Oligocene caldera collapse, not by basin-and-range faulting. The Animas Valley is the site of widespread post-20 My travertine deposits and near-surface veins of calcite, fluorite, and/or psilomelane, controlled by north- or northwest-trending basin-and-range faults. The fluoride-bearing waters of the Lightning Dock KGRA may be a late stage of this hydrothermal activity. Distribution of Pliocene-Pleistocene basalt suggests that deep-seated basalt near the solids may be the ultimate heat source.

  18. Overview of Saturn lightning observations

    Fischer, G; Kurth, W S; Gurnett, D A; Zarka, P; Barry, T; Delcroix, M; Go, C; Peach, D; Vandebergh, R; Wesley, A


    The lightning activity in Saturn's atmosphere has been monitored by Cassini for more than six years. The continuous observations of the radio signatures called SEDs (Saturn Electrostatic Discharges) combine favorably with imaging observations of related cloud features as well as direct observations of flash-illuminated cloud tops. The Cassini RPWS (Radio and Plasma Wave Science) instrument and ISS (Imaging Science Subsystem) in orbit around Saturn also received ground-based support: The intense SED radio waves were also detected by the giant UTR-2 radio telescope, and committed amateurs observed SED-related white spots with their backyard optical telescopes. Furthermore, the Cassini VIMS (Visual and Infrared Mapping Spectrometer) and CIRS (Composite Infrared Spectrometer) instruments have provided some information on chemical constituents possibly created by the lightning discharges and transported upward to Saturn's upper atmosphere by vertical convection. In this paper we summarize the main results on Satur...

  19. Cochlear implantation for severe sensorineural hearing loss caused by lightning.

    Myung, Nam-Suk; Lee, Il-Woo; Goh, Eui-Kyung; Kong, Soo-Keun


    Lightning strike can produce an array of clinical symptoms and injuries. It may damage multiple organs and cause auditory injuries ranging from transient hearing loss and vertigo to complete disruption of the auditory system. Tympanic-membrane rupture is relatively common in patients with lightning injury. The exact pathogenetic mechanisms of auditory lesions in lightning survivors have not been fully elucidated. We report the case of a 45-year-old woman with bilateral profound sensorineural hearing loss caused by a lightning strike, who was successfully rehabilitated after a cochlear implantation. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Lightning Pin Injection Testing on MOSFETS

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.; Koppen, Sandra V.; Mielnik, John J.; Vaughan, Roger K.; Wysocki, Philip F.; Celaya, Jose R.; Saha, Sankalita


    Lightning transients were pin-injected into metal-oxide-semiconductor field-effect transistors (MOSFETs) to induce fault modes. This report documents the test process and results, and provides a basis for subsequent lightning tests. MOSFETs may be present in DC-DC power supplies and electromechanical actuator circuits that may be used on board aircraft. Results show that unprotected MOSFET Gates are susceptible to failure, even when installed in systems in well-shielded and partial-shielded locations. MOSFET Drains and Sources are significantly less susceptible. Device impedance decreased (current increased) after every failure. Such a failure mode may lead to cascading failures, as the damaged MOSFET may allow excessive current to flow through other circuitry. Preliminary assessments on a MOSFET subjected to 20-stroke pin-injection testing demonstrate that Breakdown Voltage, Leakage Current and Threshold Voltage characteristics show damage, while the device continues to meet manufacturer performance specifications. The purpose of this research is to develop validated tools, technologies, and techniques for automated detection, diagnosis and prognosis that enable mitigation of adverse events during flight, such as from lightning transients; and to understand the interplay between lightning-induced surges and aging (i.e. humidity, vibration thermal stress, etc.) on component degradation.

  1. Geomechanical modeling of stress and strain evolution during contractional fault-related folding

    Smart, Kevin J.; Ferrill, David A.; Morris, Alan P.; McGinnis, Ronald N.


    Understanding stress states and rock mass deformation deep underground is critical to a range of endeavors including oil and gas exploration and production, geothermal reservoir characterization and management, and subsurface disposal of CO2. Geomechanical modeling can predict the onset of failure and the type and abundance of deformation features along with the orientations and magnitudes of stresses. This approach enables development of forward models that incorporate realistic mechanical stratigraphy (e.g., including competence contrasts, bed thicknesses, and bedding planes), include faults and bedding-slip surfaces as frictional sliding interfaces, reproduce the overall geometry of the fold structures of interest, and allow tracking of stress and strain through the deformation history. Use of inelastic constitutive relationships (e.g., elastic-plastic behavior) allows permanent strains to develop in response to the applied loads. This ability to capture permanent deformation is superior to linear elastic models, which are often used for numerical convenience, but are incapable of modeling permanent deformation or predicting permanent deformation processes such as faulting, fracturing, and pore collapse. Finite element modeling results compared with field examples of a natural contractional fault-related fold show that well-designed geomechanical modeling can match overall fold geometries and be applied to stress, fracture, and subseismic fault prediction in geologic structures. Geomechanical modeling of this type allows stress and strain histories to be obtained throughout the model domain.

  2. Laboratory measurements of the relative permeability of cataclastic fault rocks: An important consideration for production simulation modelling

    Al-Hinai, Suleiman; Fisher, Quentin J. [School of Earth and Environment, University of Leeds, Leeds LS2 9JT (United Kingdom); Al-Busafi, Bader [Petroleum Development of Oman, MAF, Sultanate of Oman, Muscat (Oman); Guise, Phillip; Grattoni, Carlos A. [Rock Deformation Research Limited, School of Earth and Environment, University of Leeds, Leeds LS2 9JT (United Kingdom)


    It is becoming increasingly common practice to model the impact of faults on fluid flow within petroleum reservoirs by applying transmissibility multipliers, calculated from the single-phase permeability of fault rocks, to the grid-blocks adjacent to faults in production simulations. The multi-phase flow properties (e.g. relative permeability and capillary pressure) of fault rocks are not considered because special core analysis has never previously been conducted on fault rock samples. Here, we partially fill this knowledge gap by presenting data from the first experiments that have measured the gas relative permeability (k{sub rg}) of cataclastic fault rocks. The cataclastic faults were collected from an outcrop of Permo-Triassic sandstone in the Moray Firth, Scotland; the fault rocks are similar to those found within Rotliegend gas reservoirs in the UK southern North Sea. The relative permeability measurements were made using a gas pulse-decay technique on samples whose water saturation was varied using vapour chambers. The measurements indicate that if the same fault rocks were present in gas reservoirs from the southern Permian Basin they would have k{sub rg} values of <0.02. Failure to take into account relative permeability effects could therefore lead to an overestimation of the transmissibility of faults within gas reservoirs by several orders of magnitude. Incorporation of these new results into a simplified production simulation model can explain the pressure evolution from a compartmentalised Rotliegend gas reservoir from the southern North Sea, offshore Netherlands, which could not easily be explained using only single-phase permeability data from fault rocks. (author)

  3. Total Lightning Characteristics and Electric Structure Evolution in a Hailstorm

    ZHENG Dong; ZHANG Yijun; MENG Qing; LU Weitao; YI Xiaoyuan


    In this paper, total lightning data observed by SAFIR3000 3-D Lightning Locating System was combined with radar data to analyze characteristics of the lightning activity and electric structure of a hailstorm that occurred in Beijing on 31 May 2005. The results indicated that there were two active periods for the lightning activity during the hailstorm process. The hail shooting was found in the first period. After the end of the hail shooting, lightning frequency decreased suddenly. However, more active lightning activities occurred in the second period with lots of them appearing in the cloud anvil region. The peak of the lightning frequency came about 5 rain prior to the hail shooting. Only 6.16% of the total lightning was cloud-to-ground (CG) lightning, among which 20% had positive polarity. This percentage was higher than that in normal thunderstorms. In addition, heavier positive CG lightning discharge occurred before rather than after the hail shooting. In the stage of the hail shooting, the electric structure of the hailstorm was inverted, with the main negative charge region located around the -40℃ level and the main positive charge region around the -15℃ level. In addition, a weak negative charge region existed below the positive charge region transitorily. After the hail shooting, the electric structure underwent fast and persistent adjustments and became a normal tripole, with positive charge in the upper and lower levels and negative charge in the middle levels. However, the electric structure was tilted under the influence of the westerly wind in the middle and upper levels. The lightning activity and electric structure were closely related to the dynamic and microphysical processes of the hailstorm. It was believed that severe storms with stronger updrafts were more conducive to an inverted tripolar electric structure than normal thunderstorms, and the inverted distribution could then facilitate more positive CG lightning in the severe storms.

  4. Infrasound Observations from Lightning

    Arechiga, R. O.; Johnson, J. B.; Edens, H. E.; Thomas, R. J.; Jones, K. R.


    To provide additional insight into the nature of lightning, we have investigated its infrasound manifestations. An array of three stations in a triangular configuration, with three sensors each, was deployed during the Summer of 2008 (July 24 to July 28) in the Magdalena mountains of New Mexico, to monitor infrasound (below 20 Hz) sources due to lightning. Hyperbolic formulations of time of arrival (TOA) measurements and interferometric techniques were used to locate lightning sources occurring over and outside the network. A comparative analysis of simultaneous Lightning Mapping Array (LMA) data and infrasound measurements operating in the same area was made. The LMA locates the sources of impulsive RF radiation produced by lightning flashes in three spatial dimensions and time, operating in the 60 - 66 MHz television band. The comparison showed strong evidence that lightning does produce infrasound. This work is a continuation of the study of the frequency spectrum of thunder conducted by Holmes et al., who reported measurements of infrasound frequencies. The integration of infrasound measurements with RF source localization by the LMA shows great potential for improved understanding of lightning processes.

  5. Lightning in aeronautics

    Lago, F.


    It is generally accepted that a civilian aircraft is struck, on average, once or twice per year. This number tends to indicate that a lightning strike risk is far from being marginal and so requires that aircraft manufacturers have to demonstrate that their aircraft is protected against lightning. The first generation of aircrafts, which were manufactured mainly in aluminium alloy and had electromechanical and pneumatic controls, had a natural immunity to the effects of lightning. Nowadays, aircraft structures are made primarily with composite materials and flight controls are mostly electronic. This aspect of the "more composite and more electric" aircraft demands to aircraft manufacturers to pay a particular attention to the lightning protection and to its certification by testing and/or analysis. It is therefore essential to take this risk into account when designing the aircraft. Nevertheless, it is currently impossible to reproduce the entire lightning phenomenon in testing laboratories and the best way to analyse the lightning protection is to reproduce its effects. In this context, a number of standards and guides are produced by standards committees to help laboratories and aircraft manufacturers to perform realistic tests. Although the environment of a laboratory is quite different from those of a storm cloud, the rules of aircraft design, the know-how of aircraft manufacturers, the existence of international work leading to a better understanding of the lightning phenomenon and standards more precise, permit, today, to consider the risk as properly controlled.

  6. High lightning activity in maritime clouds near Mexico

    B. Kucienska


    Full Text Available Lightning activity detected by the World Wide Lightning Location Network (WWLLN over oceanic regions adjacent to Mexico is often as high as that observed over the continent. In order to explore the possible cause of the observed high flash density over those regions, the relationships between lightning, rainfall, vertical hydrometeor profiles, latent heating, wind variability and aerosol optical thickness are analyzed. The characteristics of lightning and precipitation over four oceanic zones adjacent to Mexican coastlines are contrasted against those over the continent. In addition, we compare two smaller regions over the Tropical Pacific Ocean: one located within the Inter-Tropical Converge Zone and characterized by high rainfall and weak lightning activity and the other influenced by a continental jet and presenting high rainfall and strong lightning activity over the Gulf of Tehuantepec. Maritime precipitating clouds that develop within the region influenced by offshore winds exhibit similar properties to continental clouds: large content of precipitation ice and an increased height range of coexistence of precipitation ice and cloud water. During the rainy season, monthly distribution of lightning within the region influenced by the continental jet is contrary to that of rainfall. Moreover, the monthly variability of lightning is very similar to the variability of the meridional wind component and it is also related to the variability of aerosol optical depth. The analysis strongly suggests that the high lightning activity observed over the Gulf of Tehuantepec is caused by continental cloud condensation nuclei advected over the ocean.

  7. Morphometric measurement of the faults in Kerman province and its relation with earthquake magnitude in Richter scale

    Mostafa khabazi


    Full Text Available Iran is geographically one of the most prone regions to natural disasters especially earthquake in the world such that it is in the seventh place in Asia and the 13th place in the world regarding annual mean of the highest number of population at risk of earthquake. On the other hand, 32% of the area, 70% of the population, and 67% of the gross production of the country are located in regions prone to earthquake. Iran with its several faults is always prone to this terrible natural disaster and it is one of high risk regions regarding the earthquake. There is a mutual relation between fault and earthquake. It means that the number of faults in the region is effective on earthquake occurrence. On the other hand, every earthquake will cause creation of new faults. In present research, the faults in the region will be positioned using satellite images and their dimensions have been measured by GIS advanced techniques. Then, the relationship between fault length and earthquake magnitude will be studied and the amount of human and inhuman losses of earthquake have been estimated. Therefore, the potential and allometric power of a fault such as length, width, and depth of a fault has been estimated in occurrence of earthquake. Then the extension of ruptures resulted from earthquake has been determined in the area of fault and finally the region has been zoned into non-risky, low risk and high risk categories. Results show that there is a direct relationship between fault length and its magnitude in Richter scale. The longer the length of the fault, the earthquake will be more intensive. The highest frequency of earthquake associates to the west and northwest of the region under study meaning where faults are longer and denser.

  8. Estimates of lightning NOx production from GOME satellite observations

    K. F. Boersma


    Full Text Available Tropospheric NO2 column retrievals from the Global Ozone Monitoring Experiment (GOME satellite spectrometer are used to quantify the source strength and 3-D distribution of lightning produced nitrogen oxides (NOx=NO+NO2. A sharp increase of NO2 is observed at convective cloud tops with increasing cloud top height, consistent with a power-law behaviour with power 5±2. Convective production of clouds with the same cloud height are found to produce NO2 with a ratio 1.6/1 for continents compared to oceans. This relation between cloud properties and NO2 is used to construct a 10:30 local time global lightning NO2 production map for 1997. An extensive statistical comparison is conducted to investigate the capability of the TM3 chemistry transport model to reproduce observed patterns of lightning NO2 in time and space. This comparison uses the averaging kernel to relate modelled profiles of NO2 to observed NO2 columns. It exploits a masking scheme to minimise the interference of other NOx sources on the observed total columns. Simulations are performed with two lightning parameterizations, one relating convective preciptation (CP scheme to lightning flash distributions, and the other relating the fifth power of the cloud top height (H5 scheme to lightning distributions. The satellite-retrieved NO2 fields show significant correlations with the simulated lightning contribution to the NO2 concentrations for both parameterizations. Over tropical continents modelled lightning NO2 shows remarkable quantitative agreement with observations. Over the oceans however, the two model lightning parameterizations overestimate the retrieved NO2 attributed to lightning. Possible explanations for these overestimations are discussed. The ratio between satellite-retrieved NO2 and modelled lightning NO2 is used to rescale the original modelled lightning NOx production. Eight estimates of the lightning NOx production in 1997 are obtained from spatial and temporal

  9. Estimates of lightning NOx production from GOME satellite observations

    H. M. Kelder


    Full Text Available Tropospheric NO2 column retrievals from the Global Ozone Monitoring Experiment (GOME satellite spectrometer are used to quantify the source strength and 3D distribution of lightning produced nitrogen oxides (NOx=NO2+NO2. A sharp increase of NO2 is observed at convective cloud tops with increasing cloud top height, consistent with a power-law behaviour with power 5±2. Convective production of clouds with the same cloud height are found to produce NO2 with a ratio 1.6/1 for continents compared to oceans. This relation between cloud properties and NO2 is used to construct a 10:30 local time global lightning NO2 production map for 1997. An extensive statistical comparison is conducted to investigate the capability of the TM3 chemistry transport model to reproduce observed patterns of lightning NO2 in time and space. This comparison uses the averaging kernel to relate modelled profiles of NO2 to observed NO2 columns. It exploits a masking scheme to minimise the interference of other NOx sources on the observed total columns. Simulations are performed with two lightning parametrisations, one relating convective preciptation (CP scheme to lightning flash distributions, and the other relating the fifth power of the cloud top height (H5 scheme to lightning distributions. The satellite-retrieved NO2 fields show significant correlations with the simulated lightning contribution to the NO2 concentrations for both parametrisations. Over tropical continents modelled lightning NO2 shows remarkable quantitative agreement with observations. Over the oceans however, the two model lightning parametrisations overestimate the retrieved NO2 attributed to lightning. Possible explanations for these overestimations are discussed. The ratio between satellite-retrieved NO2 and modelled lightning NO2 is used to rescale the original modelled lightning NOx production. Eight estimates of the lightning NOx production in 1997 are obtained from spatial and temporal correlation

  10. An Optical Lightning Simulator in an Electrified Cloud-Resolving Model to Prepare the Future Space Lightning Missions

    Bovalo, Christophe; Defer, Eric; Pinty, Jean-Pierre


    The future decade will see the launch of several space missions designed to monitor the total lightning activity. Among these missions, the American (Geostationary Lightning Mapper - GLM) and European (Lightning Imager - LI) optical detectors will be onboard geostationary satellites (GOES-R and MTG, respectively). For the first time, the total lightning activity will be monitored over the full Earth disk and at a very high temporal resolution (2 and 1 ms, respectively). Missions like the French Tool for the Analysis of Radiation from lightNIng and Sprites (TARANIS) and ISS-LIS will bring complementary information in order to better understand the lightning physics and to improve the weather prediction (nowcasting and forecasting). Such missions will generate a huge volume of new and original observations for the scientific community and weather prediction centers that have to be prepared. Moreover, before the launch of these missions, fundamental questions regarding the interpretation of the optical signal property and its relation to cloud optical thickness and lightning discharge processes need to be further investigated. An innovative approach proposed here is to use the synergy existing in the French MesoNH Cloud-Resolving Model (CRM). Indeed, MesoNH is one of the only CRM able to simulate the lifecycle of electrical charges generated within clouds through non-inductive charging process (dependent of the 1-moment microphysical scheme). The lightning flash geometry is based on a fractal law while the electrical field is diagnosed thanks to the Gauss' law. The lightning optical simulator is linked to the electrical scheme as the lightning radiance at 777.4 nm is a function of the lightning current, approximated by the charges neutralized along the lightning path. Another important part is the scattering of this signal by the hydrometeors (mainly ice particles) that is taken into account. Simulations at 1-km resolution are done over the Langmuir Laboratory (New

  11. Indirect Lightning Safety Assessment Methodology

    Ong, M M; Perkins, M P; Brown, C G; Crull, E W; Streit, R D


    Lightning is a safety hazard for high-explosives (HE) and their detonators. In the However, the current flowing from the strike point through the rebar of the building The methodology for estimating the risk from indirect lighting effects will be presented. It has two parts: a method to determine the likelihood of a detonation given a lightning strike, and an approach for estimating the likelihood of a strike. The results of these two parts produce an overall probability of a detonation. The probability calculations are complex for five reasons: (1) lightning strikes are stochastic and relatively rare, (2) the quality of the Faraday cage varies from one facility to the next, (3) RF coupling is inherently a complex subject, (4) performance data for abnormally stressed detonators is scarce, and (5) the arc plasma physics is not well understood. Therefore, a rigorous mathematical analysis would be too complex. Instead, our methodology takes a more practical approach combining rigorous mathematical calculations where possible with empirical data when necessary. Where there is uncertainty, we compensate with conservative approximations. The goal is to determine a conservative estimate of the odds of a detonation. In Section 2, the methodology will be explained. This report will discuss topics at a high-level. The reasons for selecting an approach will be justified. For those interested in technical details, references will be provided. In Section 3, a simple hypothetical example will be given to reinforce the concepts. While the methodology will touch on all the items shown in Figure 1, the focus of this report is the indirect effect, i.e., determining the odds of a detonation from given EM fields. Professor Martin Uman from the University of Florida has been characterizing and defining extreme lightning strikes. Using Professor Uman's research, Dr. Kimball Merewether at Sandia National Laboratory in Albuquerque calculated the EM fields inside a Faraday-cage type

  12. Deep crustal heterogeneity along and around the San Andreas fault system in central California and its relation to the segmentation

    Nishigami, Kin'ya


    The three-dimensional distribution of scatterers in the crust along and around the San Andreas fault system in central California is estimated using an inversion analysis of coda envelopes from local earthquakes. I analyzed 3801 wave traces from 157 events recorded at 140 stations of the Northern California Seismic Network. The resulting scatterer distribution shows a correlation with the San Gregorio, San Andreas, Hayward, and Calaveras faults. These faults seem to be almost vertical from the surface to ˜15 km depth. Some of the other scatterers are estimated to be at shallow depths, 0-5 km, below the Diablo Range, and these may be interpreted as being generated by topographic roughness. The depth distribution of scatterers shows relatively stronger scattering in the lower crust, at ˜15-25 km depth, especially between the San Andreas fault and the Hayward-Calaveras faults. This suggests a subhorizontal detachment structure connecting these two faults in the lower crust. Several clusters of scatterers are located along the San Andreas fault at intervals of ˜20-30 km from south of San Francisco to the intersection with the Calaveras fault. This part of the San Andreas fault appears to consist of partially locked segments, also ˜20-30 km long, which rupture during M6-7 events, and segment boundaries characterized by stronger scattering and stationary microseismicity. The segment boundaries delineated by the present analysis correspond with those estimated from the slip distribution of the great 1906 San Francisco earthquake, and from the fault geometry as reported by the Working Group on California Earthquake Probabilities [1990], although the segment boundaries along the San Andreas fault in and around the San Francisco Bay area are still uncertain.

  13. Franklin Lecture: Lightning in Planetary Atmospheres

    Gurnett, D. A.


    A broad overview is given of lightning in planetary atmospheres. Searches for lightning using spacecraft-borne instrumentation have now been conducted at almost all of the planets in the solar system, the exceptions being Mercury, which has no appreciable atmosphere, and Pluto which has not yet been visited by a spacecraft. The techniques used include (1) imaging observations to detect optical flashes produced by lightning; (2) high-frequency radio measurements to detect the impulsive broadband radio bursts, called spherics, produced by lightning discharges; and (3) low-frequency plasma wave measurements to detect the whistling tones, called whistlers, produced by lightning. Using these techniques, lightning has been reported at five planets other than Earth. These are: Venus, Jupiter, Saturn, Uranus, and Neptune. Of these, the existence of lightning at Venus is doubtful, and the evidence of lightning at Neptune is at best marginal. Jupiter and Saturn have by far the most intense and well documented lightning activity. During the Voyager 1 flyby of Jupiter, whistlers and intense optical flashes, comparable to those from terrestrial superbolts, were observed by the plasma wave and optical imaging instruments. However, no impulsive high-frequency radio bursts were observed. Two factors may be responsible for the absence of high-frequency radio signals: (1) the very strong magnetic field of Jupiter, which blocks the escape of the extra-ordinary mode; and (2) the relatively high electron collision frequency in the ionosphere, which increases the absorption of radio waves. During the Voyager 1 and 2 flybys of Saturn many very strong high-frequency radio bursts, called Saturn Electrostatic Discharges (SEDs), were detected. Although the origin of these impulsive radio bursts was initially uncertain, strong evidence now exists that SEDs are produced by lightning. Recent optical imaging and radio measurements from the Cassini spacecraft clearly show that SEDs originate from

  14. Quantification and identification of lightning damage in tropical forests.

    Yanoviak, Stephen P; Gora, Evan M; Burchfield, Jeffrey M; Bitzer, Phillip M; Detto, Matteo


    Accurate estimates of tree mortality are essential for the development of mechanistic forest dynamics models, and for estimating carbon storage and cycling. However, identifying agents of tree mortality is difficult and imprecise. Although lightning kills thousands of trees each year and is an important agent of mortality in some forests, the frequency and distribution of lightning-caused tree death remain unknown for most forests. Moreover, because all evidence regarding the effects of lightning on trees is necessarily anecdotal and post hoc, rigorous tests of hypotheses regarding the ecological effects of lightning are impossible. We developed a combined electronic sensor/camera-based system for the location and characterization of lightning strikes to the forest canopy in near real time and tested the system in the forest of Barro Colorado Island, Panama. Cameras mounted on towers provided continuous video recordings of the forest canopy that were analyzed to determine the locations of lightning strikes. We used a preliminary version of this system to record and locate 18 lightning strikes to the forest over a 3-year period. Data from field surveys of known lightning strike locations (obtained from the camera system) enabled us to develop a protocol for reliable, ground-based identification of suspected lightning damage to tropical trees. In all cases, lightning damage was relatively inconspicuous; it would have been overlooked by ground-based observers having no knowledge of the event. We identified three types of evidence that can be used to consistently identify lightning strike damage in tropical forests: (1) localized and directionally biased branch mortality associated with flashover among tree and sapling crowns, (2) mortality of lianas or saplings near lianas, and (3) scorched or wilting epiphytic and hemiepiphytic plants. The longitudinal trunk scars that are typical of lightning-damaged temperate trees were never observed in this study. Given the

  15. Lightning and severe thunderstorms in event management.

    Walsh, Katie M


    There are a few national position stands/guidelines that address environmental conditions in athletics, yet they do not govern all outdoor sports. Extreme heat and cold, lightning, and severe wind can all be fatal, yet the majority of outdoor sports have no published guidelines addressing these conditions in relation to activity. Available research on extreme heat and cold conditions in athletics provides prevention strategies, to include acclimatization. Lightning and severe wind are two environmental conditions to which humans cannot accommodate, and they both can be deadly. There are strong positions on extreme heat/cold and lightning safety in athletics, but none affiliated with severe winds. Medical personnel involved in planning large outdoor sporting events must know of the presence of nationally published weather-related documents and apply them to their event. In addition, research needs to be expanded in the realm of establishing guidelines for safety to participants and spectators in severe wind conditions.

  16. Relation of deformation behavior with precipitation and groundwater of the Babaoshan fault in Beijing

    HUANG Fu-qiong; CHEN Yong; BAI Chang-qing; ZHANG Jing; YAN Rui; YANG Ming-bo; LAN Cong-xin; ZHANG Xiao-dong; JIANG Zai-sen


    We discuss the influence of precipitation and groundwater on the deformation behavior of the Babaoshan fault of Beijing by using long-term observation data from Dahuichang station during 1970~2003. The results show that a)the pore pressure on fault zone as well as the fault deformation behavior exhibited periodically variation as precipitation changed steadily and periodically; b) the periodicity of the pore pressure of fault zones disappeared and the manner of fault deformation behavior changed when precipitation was small and/or was in aberrance. This implies that rainfall plays a key role in fault deformation behavior through changing the pore pressure of fault zones. Combining the existing results about the Babaoshan fault, it is concluded that precipitation and groundwater may adjust the stress/strain field by controlling the deformation behavior of the fault, which can provide direct observation evidence for the interaction of fluid and solid in shallow crust of the Earth.

  17. Climate Change and Tropical Total Lightning

    Albrecht, R.; Petersen, W.; Buechler, D.; Goodman, S.; Blakeslee, R.; Christian, H.


    While global warming is regarded as a fact by many in the scientific community, its future impact remains a challenge to be determined and measured. The International Panel on Climate Change (IPCC) assessment report (IPCC, 2007) shows inconclusive answers on global rainfall trends and general agreement on a future drier climate with increased global warming. The relationship between temperature, humidity and convection is not linear and is strongly dependent on regional scale features, such as topography and land cover. Furthermore, the relationship between convective lightning production (thunderstorms) and temperature is even more complicated, being subjected to the cloud dynamics and microphysics. Total lightning (intracloud and cloud-to-ground) monitoring is a relatively new field of observation. Global and tropical total lightning began to be more extensively measured by satellites in the mid 90s. In this scope, the Lightning Imaging Sensor (LIS) onboard of the Tropical Rainfall Measurement Mission (TRMM) has been operational for over 11 years. Here we address total lightning trends observed by LIS from 1998 to 2008 in different temporal (annual and seasonal) and spatial (large and regional) scales. The observed 11-year trends are then associate to different predicted/hypothesized climate change scenarios.

  18. Spatial Variation of the Correlated Color Temperature of Lightning Channel

    Shimoji, Nobuaki; Sakihama, Singo


    In this paper, we studied the spatial variation of the correlated color temperature (CCT) of lightning channel. We also discussed the energy of lightning channels relating to the CCT . First we applied digital image processing techniques to lightning images. In order to reduce the chromatic aberration, we created the reduction technique algorithm of the chromatic aberration on digital still images. We applied the reduction technique of the chromatic aberration to digital still images, and then the obtained results was mapped to the xy-chromaticity diagram. The CCT of the lightning channel was decided on the xy-chromaticity diagram. From results, the spatial variation of the CCT of the lightning channel was confirmed. Then the energy associated with the the CCT was discussed.

  19. Integration of Lightning- and Human-Caused Wildfire Occurrence Models

    Vilar, Lara; Nieto Solana, Hector; Martín, M. Pilar


    Fire risk indices are useful tools for fire prevention actions by fire managers. A fire ignition is either the result of lightning or human activities. In European Mediterranean countries most forest fires are due to human activities. However, lightning is still an important fire ignition source...... in some regions. Integration of lightning and human fire occurrence probability into fire risk indices would be necessary to have a complete picture of the causal agents and their relative importance in fire occurrence. We present two methods for the integration of lightning and human fire occurrence...... probability models at 1 × 1 km grid cell resolution in two regions of Spain: Madrid, which presents a high fire incidence due to human activities; and Aragón, one of the most affected regions in Spain by lightning-fires. For validation, independent fire ignition points were used to compute the Receiver...

  20. Statistical Evolution of the Lightning Flash

    Zoghzoghy, F. G.; Cohen, M.; Said, R.; Inan, U. S.


    Natural lightning is one of the most fascinating and powerful electrical processes on Earth. To date, the physics behind this natural phenomenon are not fully understood, due primarily to the difficulty of obtaining measurements inside thunderstorms and to the wide range of timescales involved (from nanoseconds to seconds). Our aim is to use accurate lightning geo-location data from the National Lightning Detection Network (NLDN) to study statistical patterns in lightning, taking advantage of the fact that millions of lightning flashes occur around the globe every day. We present two sets of results, one involving the patterns of flashes in a storm, and a second involving the patterns of strokes in a flash. These patterns can provide a surrogate measure of the timescales and the spatial extents of the underlying physical processes. First, we study the timescales of charge buildup inside thunderstorms. We find that, following a lightning flash, the probability of another neighboring flash decreases and takes tens of seconds to recover. We find that this suppression effect is a function of flash type, stroke peak current, cloud-to-ground (CG) stroke multiplicity, and other lightning and geographical parameters. We find that the probabilities of subsequent flashes are more suppressed following oceanic lightning, or following flashes with higher peak currents and/or higher multiplicities (for CG flashes). Second, we use NLDN data to study the evolution of the strokes within a CG flash. A CG flash typically includes multiple return strokes, which can occur in the same channel or in multiple channels within a few kilometers. We cluster NLDN stroke data into flashes and produce the probability density function of subsequent strokes as a function of distance and time-delays relative to the previous stroke. Using this technique, we investigate processes which occur during the CG lightning flash with nanosecond to millisecond timescales. For instance, our results suggest

  1. Faraday Cage Protects Against Lightning

    Jafferis, W.; Hasbrouck, R. T.; Johnson, J. P.


    Faraday cage protects electronic and electronically actuated equipment from lightning. Follows standard lightning-protection principles. Whether lightning strikes cage or cables running to equipment, current canceled or minimized in equipment and discharged into ground. Applicable to protection of scientific instruments, computers, radio transmitters and receivers, and power-switching equipment.

  2. Lightning incidents in Mongolia

    Myagmar Doljinsuren


    Full Text Available This is one of the first studies that has been conducted in Mongolia on the distribution of lightning incidents. The study covers a 10-year period from 2004 to 2013. The country records a human death rate of 15.4 deaths per 10 million people per year, which is much higher than that of many countries with similar isokeraunic level. The reason may be the low-grown vegetation observed in most rural areas of Mongolia, a surface topography, typical to steppe climate. We suggest modifications to Gomes–Kadir equation for such countries, as it predicts a much lower annual death rate for Mongolia. The lightning incidents spread over the period from May to August with the peak of the number of incidents occurring in July. The worst lightning affected region in the country is the central part. Compared with impacts of other convective disasters such as squalls, thunderstorms and hail, lightning stands as the second highest in the number of incidents, human deaths and animal deaths. Economic losses due to lightning is only about 1% of the total losses due to the four extreme weather phenomena. However, unless precautionary measures are not promoted among the public, this figure of losses may significantly increase with time as the country is undergoing rapid industrialization at present.

  3. Objective Lightning Probability Forecast Tool Phase II

    Lambert, Winnie


    This presentation describes the improvement of a set of lightning probability forecast equations that are used by the 45th Weather Squadron forecasters for their daily 1100 UTC (0700 EDT) weather briefing during the warm season months of May-September. This information is used for general scheduling of operations at Cape Canaveral Air Force Station and Kennedy Space Center. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts during Shuttle flight operations. Five modifications were made by the Applied Meteorology Unit: increased the period of record from 15 to 17 years, changed the method of calculating the flow regime of the day, calculated a new optimal layer relative humidity, used a new smoothing technique for the daily climatology, and used a new valid area. The test results indicated that the modified equations showed and increase in skill over the current equations, good reliability, and an ability to distinguish between lightning and non-lightning days.

  4. Stepped Fault Line Selection Method Based on Spectral Kurtosis and Relative Energy Entropy of Small Current to Ground System

    Xiaowei Wang


    Full Text Available This paper proposes a stepped selection method based on spectral kurtosis relative energy entropy. Firstly, the length and type of window function are set; then when fault occurs, enter step 1: the polarity of first half-wave extremes is analyzed; if the ratios of extremes between neighboring lines are positive, the bus bar is the fault line, else, the SK relative energy entropies are calculated, and then enter step 2: if the obtained entropy multiple is bigger than the threshold or equal to the threshold, the overhead line of max entropy corresponding is the fault line, if not, enter step 3: the line of max entropy corresponding is the fault line. At last, the applicability of the proposed algorithm is presented, and the comparison results are discussed.

  5. The start of lightning: Evidence of bidirectional lightning initiation

    Montanyà, Joan; van der Velde, Oscar; Williams, Earle R.


    Lightning flashes are known to initiate in regions of strong electric fields inside thunderstorms, between layers of positively and negatively charged precipitation particles. For that reason, lightning inception is typically hidden from sight of camera systems used in research. Other technology such as lightning mapping systems based on radio waves can typically detect only some aspects of the lightning initiation process and subsequent development of positive and negative leaders. We report here a serendipitous recording of bidirectional lightning initiation in virgin air under the cloud base at ~11,000 images per second, and the differences in characteristics of opposite polarity leader sections during the earliest stages of the discharge. This case reveals natural lightning initiation, propagation and a return stroke as in negative cloud-to-ground flashes, upon connection to another lightning channel - without any masking by cloud.

  6. Lightning not detected on Titan

    Tretkoff, Ernie


    Scientists have speculated that lightning on Saturn's moon Titan could produce changes in atmospheric chemistry and could even spark production of organic compounds that could be precursors to the evolution of life, but so far there has been no conclusive detection of lightning on Titan. Extending previous searches for lightning on Titan, Fischer and Gurnett analyzed radio data up to the 72nd close flyby of Titan by the Cassini spacecraft. They found no evidence of lightning and concluded that if lightning occurs at all on Titan, it is probably a very rare event. (Geophysical Research Letters, doi:10.1029/2011GL047316, 2011)

  7. Fault Detection and Isolation Using Analytical Redundancy Relations for the Ship Propulsion Benchmark

    Izadi-Zamanabadi, Roozbeh

    The prime objective of Fault-tolerant Control (FTC) systems is to handle faults and discrepancies using appropriate accommodation policies. The issue of obtaining information about various parameters and signals, which have to be monitored for fault detection purposes, becomes a rigorous task wit...... is illustrated on the ship propulsion benchmark....

  8. High lightning activity in maritime clouds near Mexico

    Kucienska, B.; Raga, G. B.; Romero-Centeno, R.


    Lightning activity detected by the World Wide Lightning Location Network (WWLLN) over oceanic regions adjacent to Mexico is often as high as that observed over the continent. In order to explore the possible causes of the observed high flash density over those regions, the relationships between lightning, rainfall, vertical hydrometeor profiles, latent heating, wind variability and aerosol optical depth are analyzed. The characteristics of lightning and precipitation over four oceanic zones adjacent to Mexican coastlines are contrasted against those over the continent. The number of flashes per rainfall over some coastal maritime regions is found to be higher than over the continent. The largest number of flashes per rainfall is observed during the biomass burning season. In addition, we compare two smaller areas of the Tropical Pacific Ocean: one located within the Inter-Tropical Convergence Zone and characterized by high rainfall and weak lightning activity and the other one influenced by a continental wind jet and characterized by high rainfall and strong lightning activity. During the rainy season, the monthly distribution of lightning within the region influenced by the continental wind jet is contrary to that of rainfall. Moreover, the monthly variability of lightning is very similar to the variability of the meridional wind component and it is also related to the variability of aerosol optical depth. The analysis suggests that the high lightning activity observed over coastal Pacific region is linked to the continental cloud condensation nuclei advected over the ocean. Analysis of daily observations indicates that the greatest lightning density is observed for moderate values of the aerosol optical depth, between 0.2 and 0.35.

  9. An Efficient Quality-Related Fault Diagnosis Method for Real-Time Multimode Industrial Process

    Kaixiang Peng


    Full Text Available Focusing on quality-related complex industrial process performance monitoring, a novel multimode process monitoring method is proposed in this paper. Firstly, principal component space clustering is implemented under the guidance of quality variables. Through extraction of model tags, clustering information of original training data can be acquired. Secondly, according to multimode characteristics of process data, the monitoring model integrated Gaussian mixture model with total projection to latent structures is effective after building the covariance description form. The multimode total projection to latent structures (MTPLS model is the foundation of problem solving about quality-related monitoring for multimode processes. Then, a comprehensive statistics index is defined which is based on the posterior probability of the monitored samples belonging to each Gaussian component in the Bayesian theory. After that, a combined index is constructed for process monitoring. Finally, motivated by the application of traditional contribution plot in fault diagnosis, a gradient contribution rate is applied for analyzing the variation of variable contribution rate along samples. Our method can ensure the implementation of online fault monitoring and diagnosis for multimode processes. Performances of the whole proposed scheme are verified in a real industrial, hot strip mill process (HSMP compared with some existing methods.

  10. Recognition of earthquake-related damage in archaeological sites: Examples from the Dead Sea fault zone

    Marco, Shmuel


    Archaeological structures that exhibit seismogenic damage expand our knowledge of temporal and spatial distribution of earthquakes, afford independent examination of historical accounts, provide information on local earthquake intensities and enable the delineation of macroseismic zones. They also illustrate what might happen in future earthquakes. In order to recover this information, we should be able to distinguish earthquake damage from anthropogenic damage and from other natural processes of wear and tear. The present paper reviews several types of damage that can be attributed with high certainty to earthquakes and discusses associated caveats. In the rare cases, where faults intersect with archaeological sites, offset structures enable precise determination of sense and size of slip, and constrain its time. Among the characteristic off-fault damage types, I consider horizontal shifting of large building blocks, downward sliding of one or several blocks from masonry arches, collapse of heavy, stably-built walls, chipping of corners of building blocks, and aligned falling of walls and columns. Other damage features are less conclusive and require additional evidence, e.g., fractures that cut across several structures, leaning walls and columns, warps and bulges in walls. Circumstantial evidence for catastrophic earthquake-related destruction includes contemporaneous damage in many sites in the same area, absence of weapons or other anthropogenic damage, stratigraphic data on collapse of walls and ceilings onto floors and other living horizons and burial of valuable artifacts, as well as associated geological palaeoseismic phenomena such as liquefaction, land- and rock-slides, and fault ruptures. Additional support may be found in reliable historical accounts. Special care must be taken in order to avoid circular reasoning by maintaining the independence of data acquisition methods.

  11. Lightning Imaging with LOFAR

    Scholten Olaf


    Full Text Available We show that LOFAR can be used as a lightning mapping array with a resolution that is orders of magnitude better than existing arrays. In addition the polarization of the radiation can be used to track the direction of the stepping discharges.

  12. The Origin of Lightning.

    Weewish Tree, 1979


    A heavenly source gives an orphaned Cherokee boy 12 silver arrows and directs him to kill the chief of the cruel Manitos (spirits). When the boy fails in his mission, the angry Manitos turn him into lightning, condemning him to flash like his silver arrows across the skies forever. (DS)

  13. Polarization of stacking fault related luminescence in GaN nanorods

    G. Pozina


    Full Text Available Linear polarization properties of light emission are presented for GaN nanorods (NRs grown along [0001] direction on Si(111 substrates by direct-current magnetron sputter epitaxy. The near band gap photoluminescence (PL measured at low temperature for a single NR demonstrated an excitonic line at ∼3.48 eV and the stacking faults (SFs related transition at ∼3.43 eV. The SF related emission is linear polarized in direction perpendicular to the NR growth axis in contrast to a non-polarized excitonic PL. The results are explained in the frame of the model describing basal plane SFs as polymorphic heterostructure of type II, where anisotropy of chemical bonds at the interfaces between zinc blende and wurtzite GaN subjected to in-built electric field is responsible for linear polarization parallel to the interface planes.

  14. Comparing lightning polarity and cloud microphysical properties over regions of high ground flash density in South Africa

    Simpson, LA


    Full Text Available This study aims to find a correlation between lightning polarity and microphysical properties of a storm cloud, for events where large amounts of lightning damage have occured and/or there has been a reported lightning-related fatality....

  15. Science of Ball Lightning (Fire Ball)

    Ohtsuki, Yoshi-Hiko


    The Table of Contents for the full book PDF is as follows: * Organizing Committee * Preface * Ball Lightning -- The Continuing Challenge * Hungarian Ball Lightning Observations in 1987 * Nature of Ball Lightning in Japan * Phenomenological and Psychological Analysis of 150 Austrian Ball Lightning Reports * Physical Problems and Physical Properties of Ball Lightning * Statistical Analysis of the Ball Lightning Properties * A Fluid-Dynamical Model for Ball Lightning and Bead Lightning * The Lifetime of Hill's Vortex * Electrical and Radiative Properties of Ball Lightning * The Candle Flame as a Model of Ball Lightning * A Model for Ball Lightning * The High-Temperature Physico-Chemical Processes in the Lightning Storm Atmosphere (A Physico-Chemical Model of Ball Lightning) * New Approach to Ball Lightning * A Calculation of Electric Field of Ball Lightning * The Physical Explanation to the UFO over Xinjiang, Northern West China * Electric Reconnection, Critical Ionization Velocity, Ponderomotive Force, and Their Applications to Triggered and Ball Lightning * The PLASMAK™ Configuration and Ball Lightning * Experimental Research on Ball Lightning * Performance of High-Voltage Test Facility Designed for Investigation of Ball Lightning * List of Participants

  16. Distribution of large-scale detachment faults on mid-ocean ridges in relation to spreading rates

    YU Zhiteng; LI Jiabiao; LIANG Yuyang; HAN Xiqiu; ZHANG Jie; ZHU Lei


    Large-scale detachment faults on mid-ocean ridges (MORs) provide a window into the deeper earth. They have megamullion on their corrugated surfaces, with exposed lower crustal and upper mantle rocks, rela-tively high residual Bouguer gravity anomaly and P-wave velocity, and are commonly associated with ocean-ic core complex. According to 30 detachment faults identified on MORs, we found that their distances to the axis mostly range from 5 to 50 km, half-spreading rates range from 6.8 to 17 mm/a, and activity time ranges from recent to 3 Ma. Most of the detachment faults are developed on the slow spreading Mid-Atlantic Ridge (MAR) and ultra-slow spreading Southwest Indian Ridge (SWIR), with the dominant half-spreading rates of 7-13 mm/a, especially 10-13 mm/a. Furthermore, they mostly occur at the inside corner of one segment end and result in an asymmetric seafloor spreading. The detachment faults on MORs are mainly controlled by the tectonism and influenced by the magmatism. Long-lived detachment faults tend to be formed where the ridge magma supply is at a moderate level, although the tectonism is a first-order controlling factor. At the slow spreading ridges, detachment faults tend to occur where local magma supply is relatively low, whilst at the ultra-slow spreading ridges, they normally occur where local magma supply is relatively high. These faults are accompanied by hydrothermal activities, with their relationships being useful in the study of hydrothermal polymetallic sulfides and their origin.

  17. Attempts to Create Ball Lightning with Triggered Lightning


    fluids, solids, and vegetation , as described in the next section. The experiments were performed during Summer 2008 at the International Center for... filters were used on all 35 mm cameras to prevent over-exposure. There were a total of eight successful triggered lightning events during the ball...Dinnis, Ball Lightning Caused by Oxidation of Nanoparticle Networks from Normal Lightning Strikes in Soil, Nature 403, 519-521, 2000 Paiva, G. and Pavão

  18. Meter-scale characterization of surface processes and fault-related deformation using LiDAR topography (Invited)

    Arrowsmith, R.; Crosby, C. J.


    Earthquake slip, fault zone geometric evolution, and geomorphic response to surface displacements from faulting are phenomena well manifest in topography at the meter scale. With laser ground return densities of multiple per square meter, LiDAR-derived topography provide a powerful tool to characterize features related to these processes at the appropriate scale. Many of the active faults in the western US, in particular the San Andreas Fault (SAF) system, have been scanned using LiDAR by community-oriented projects such as B4 and EarthScope. These data and many others (along with processed derivatives, dataset citation information, and educational and training materials) are available from the OpenTopography Facility ( New meter-scale offsets along the SAF and other faults have been discovered and measured and known ones remeasured to provide a rich description of slip in the last few earthquakes. However, this method requires direct association of earthquake timing with measured (often cumulative) slip. Surface ruptures of recent earthquakes (Hector Mine, Denali, Sierra El Mayor) have been spectacularly documented by various research teams using LiDAR and other methods, and prepare us for future opportunities to directly measure post-event near field deformation with multi-temporal LiDAR surveys (the original motivator of the B4 project for the southern SAF and San Jacinto Fault). Cumulative ground deformation associated with repeated late Quaternary earthquakes produces the discontinuous fault zones well manifest in few km-wide swaths of LiDAR topography. Mapping these traces and associated landforms provides important ground rupture hazard information, locations of possible paleoseismic sites, and improved understanding of the structural geometry, mechanical behavior, and evolution of the shallow, velocity-strengthening portion of active fault zones. Fault-related deformation, in particular localized by geometric discontinuities

  19. Industrial accidents triggered by lightning.

    Renni, Elisabetta; Krausmann, Elisabeth; Cozzani, Valerio


    Natural disasters can cause major accidents in chemical facilities where they can lead to the release of hazardous materials which in turn can result in fires, explosions or toxic dispersion. Lightning strikes are the most frequent cause of major accidents triggered by natural events. In order to contribute towards the development of a quantitative approach for assessing lightning risk at industrial facilities, lightning-triggered accident case histories were retrieved from the major industrial accident databases and analysed to extract information on types of vulnerable equipment, failure dynamics and damage states, as well as on the final consequences of the event. The most vulnerable category of equipment is storage tanks. Lightning damage is incurred by immediate ignition, electrical and electronic systems failure or structural damage with subsequent release. Toxic releases and tank fires tend to be the most common scenarios associated with lightning strikes. Oil, diesel and gasoline are the substances most frequently released during lightning-triggered Natech accidents.

  20. Lightning hazards overview: Aviation requirements and interests

    Corn, P. B.


    A ten-year history of USAF lightning incidents is presented along with a discussion of the problems posed by lightning to current aircraft, and the hazards it constitutes to the electrical and electronic subsystems of new technology aircraft. Lightning technical protection technical needs, both engineering and operational, include: (1) in-flight data on lightning electrical parameters; (2) tech base and guidelines for protection of advanced systems and structures; (3) improved laboratory test techniques; (4) analysis techniques for predicting induced effects; (5) lightning strike incident data from general aviation; (6) lightning detection systems; (7) pilot reports on lightning strikes; and (8) better training in lightning awareness.

  1. Lightning protection of PV systems

    Pons, Enrico; Tommasini, Riccardo


    Lightning strikes can affect photovoltaic (PV) generators and their installations, involving also the inverter's electronics. It is therefore necessary to evaluate the risk connected to lightning strikes in order to adopt the correct protective measures for the system. The Standard IEC (EN) 62305-2 reports the procedures for the risk calculation and for the choice of proper lightning protection systems. Usually the technical guidelines suggest protecting with SPDs (surge protective devices) b...

  2. Study of the Relation Between the Features of Fault Deformation Tendency Anomaly and Earthquake Activity in the West of China

    Chen Bing; Jiang Zaisen; Zhao Zhencai


    Using the tendentious accumulation rate of crustal deformation, Dc, the spatial distributionfeatures of deformation across fault in the West of China was studied; the regional patterns ofdeformation accumulation induced by fault activity was established and its seismogenicmeaning was discussed. The types of fault deformation evolution in the time domain and thefeatures of change of large extent anomaly in fault deformation which occurred in 1995 ~ 1996was analyzed comprehensively. It was indicated definitely that 1995~ 1996 is the turningpoint of fault network activity in the West of China since the 1990s; it is closely related to thechange of main seismic active regions in the West of China, i.e., the alternation of strong/weak stages and the change of action range of tectonic stress field in the Qinghai-Tibet blockand its environs; and hence it is of medium- and short-term precursor meaning for the changeof the overall pattern of earthquake activity in the West of China in the year 1996. On such abasis, a preliminary investigation of the mechanical mechanism and block movementbackground was made. We hold that the formation of NE-trending band of Ms6.0earthquakes in 1988~1996 and NW-trending band of Ms5.0 earthquakes in 1997~1999 canprove in mechanics that the West of China is now in a state that the N-S stress weakensrelatively but E-W stress strengthens relatively and predominates.

  3. An Assessment of Land Surface and Lightning Characteristics Associated with Lightning-Initiated Wildfires

    Coy, James; Schultz, Christopher J.; Case, Jonathan L.


    Can we use modeled information of the land surface and characteristics of lightning beyond flash occurrence to increase the identification and prediction of wildfires? Combine observed cloud-to-ground (CG) flashes with real-time land surface model output, and Compare data with areas where lightning did not start a wildfire to determine what land surface conditions and lightning characteristics were responsible for causing wildfires. Statistical differences between suspected fire-starters and non-fire-starters were peak-current dependent 0-10 cm Volumetric and Relative Soil Moisture comparisons were statistically dependent to at least the p = 0.05 independence level for both polarity flash types Suspected fire-starters typically occurred in areas of lower soil moisture than non-fire-starters. GVF value comparisons were only found to be statistically dependent for -CG flashes. However, random sampling of the -CG non-fire starter dataset revealed that this relationship may not always hold.

  4. Lightning Initiation and Propagation


    measured by the Thunderstorm Energetic Radiation Array ( TERA ), J. Geophys. Res, Vol. 114, accepted for publication, Z. Saleh, 1. Dwyer,1. Howard, M...triggered lightning as measured by the Thunderstorm Energetic Radiation Array ( TERA ), 1. Geophys. Res. VoL 114 accepted for publication, Z. Saleh, 1. Dwyer, 1...Howard, M. Uman, M. Bakhtiari, D. Concha, M. Stapleton, D. Hill, C. Biagi, and H. Rassoul Abstract The Thunderstorm Energetic Radiation Array ( TERA

  5. Global distribution of winter lightning: a threat to wind turbines and aircraft

    Montanyà, Joan; Fabró, Ferran; van der Velde, Oscar; March, Víctor; Rolfe Williams, Earle; Pineda, Nicolau; Romero, David; Solà, Glòria; Freijo, Modesto


    Lightning is one of the major threats to multi-megawatt wind turbines and a concern for modern aircraft due to the use of lightweight composite materials. Both wind turbines and aircraft can initiate lightning, and very favorable conditions for lightning initiation occur in winter thunderstorms. Moreover, winter thunderstorms are characterized by a relatively high production of very energetic lightning. This paper reviews the different types of lightning interactions and summarizes the well-known winter thunderstorm areas. Until now comprehensive maps of global distribution of winter lightning prevalence to be used for risk assessment have been unavailable. In this paper we present the global winter lightning activity for a period of 5 years. Using lightning location data and meteorological re-analysis data, six maps are created: annual winter lightning stroke density, seasonal variation of the winter lightning and the annual number of winter thunderstorm days. In the Northern Hemisphere, the maps confirmed Japan to be one of the most active regions but other areas such as the Mediterranean and the USA are active as well. In the Southern Hemisphere, Uruguay and surrounding area, the southwestern Indian Ocean and the Tasman Sea experience the highest activity. The maps provided here can be used in the development of a risk assessment.


    Agung Warsito


    Full Text Available Electric energy has been transmiting from power station to end user with transmission and distribution lines.Lightning strokes are problems that occure in transmission and distribution lines and make them fault when theelectric energy were transmited. Surge Diverter or Lightning Arrester has been installing to reduce these faults.In this paper the simulation of lightning stroke and lightning arrester performance on distribution lines 20 kVwere done using EMTP (Electromagnetic Transient Program. Some parameters such us impuls voltage andincreasing voltage on distribution line was inverstigated. As case study in this simulation, Mojosongo 1 mainfeeder 20 kV three phase lines were used.The simulation results show that the lightning stroke 20 kA in By1-61-61E-84-9I on S phase at 0,1 ms, makevoltage on S phase was increased about 1,3054 MV. For R phase and T phase will increase of induced voltagewere 0.79539 MV and 0.80484 MV. We also show the performance of MOV Arrester (Metal Oxide Varistor inovercoming lightning stroke trouble, where arrester can decrease voltage up to 15.198 kV on S phase, while atR phase and T phase arrester can decrease voltage up to 11.375 kV and 13.616 kV.

  7. Fine-scale delineation of the location of and relative ground shaking within the San Andreas Fault zone at San Andreas Lake, San Mateo County, California

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Prentice, C.S.; Sickler, R.R.


    extensional stresses on built structures within the fault zone. Such differential movement and resulting distortion of built structures appear to have occurred between fault traces at the gatewell near the southern end of San Andreas Lake during the 1906 San Francisco earthquake (Schussler, 1906). In addition to the three fault traces within the main 1906 surface rupture zone, our data indicate at least one additional fault trace (or zone) about 80 meters northeast of the main 1906 surface rupture zone. Because ground shaking also can damage structures, we used fault-zone guided waves to investigate ground shaking within the fault zones relative to ground shaking outside the fault zones. Peak ground velocity (PGV) measurements from our guided-wave study indicate that ground shaking is greater at each of the surface fault traces, varying with the frequency of the seismic data and the wave type (P versus S). S-wave PGV increases by as much as 5–6 times at the fault traces relative to areas outside the fault zone, and P-wave PGV increases by as much as 3–10 times. Assuming shaking increases linearly with increasing earthquake magnitude, these data suggest strong shaking may pose a significant hazard to built structures that extend across the fault traces. Similarly complex fault structures likely underlie other strike-slip faults (such as the Hayward, Calaveras, and Silver Creek Faults) that intersect structures of the water delivery system, and these fault structures similarly should be investigated.

  8. Analysis of the fault geometry of a Cenozoic salt-related fault close to the D-1 well, Danish North Sea

    Roenoe Clausen, O.; Petersen, K.; Korstgaard, A.


    A normal detaching fault in the Norwegian-Danish Basin around the D-1 well (the D-1 faults) has been mapped using seismic sections. The fault has been analysed in detail by constructing backstripped-decompacted sections across the fault, contoured displacement diagrams along the fault, and vertical displacement maps. The result shows that the listric D-1 fault follows the displacement patterns for blind normal faults. Deviations from the ideal displacement pattern is suggested to be caused by salt-movements, which is the main driving mechanisms for the faulting. Zechstein salt moves primarily from the hanging wall to the footwall and is superposed by later minor lateral flow beneath the footwall. Back-stripping of depth-converted and decompacted sections results in an estimation of the salt-surface and the shape of the fault through time. This procedure then enables a simple modelling of the hanging wall deformation using a Chevron model with hanging wall collapse along dipping surfaces. The modelling indicates that the fault follows the salt surface until the Middle Miocene after which the offset on the fault also may be accommodated along the Top Chalk surface. (au) 16 refs.

  9. Lightning and middle atmospheric discharges in the atmosphere

    Siingh, Devendraa; Singh, R. P.; Kumar, Sarvan; Dharmaraj, T.; Singh, Abhay K.; Singh, Ashok K.; Patil, M. N.; Singh, Shubha


    Recent development in lightning discharges including transient luminous events (TLEs) and global electric circuit are discussed. Role of solar activity, convective available potential energy, surface temperature and difference of land-ocean surfaces on convection process are discussed. Different processes of discharge initiation are discussed. Events like sprites and halos are caused by the upward quasi-electrostatic fields associated with intense cloud-to-ground discharges while jets (blue starter, blue jet, gigantic jet) are caused by charge imbalance in thunderstorm during lightning discharges but they are not associated with a particular discharge flash. Elves are generated by the electromagnetic pulse radiated during lightning discharges. The present understanding of global electric circuit is also reviewed. Relation between lightning activity/global electric circuit and climate is discussed.

  10. Electromagnetic computation methods for lightning surge protection studies

    Baba, Yoshihiro


    This book is the first to consolidate current research and to examine the theories of electromagnetic computation methods in relation to lightning surge protection. The authors introduce and compare existing electromagnetic computation methods such as the method of moments (MOM), the partial element equivalent circuit (PEEC), the finite element method (FEM), the transmission-line modeling (TLM) method, and the finite-difference time-domain (FDTD) method. The application of FDTD method to lightning protection studies is a topic that has matured through many practical applications in the past decade, and the authors explain the derivation of Maxwell's equations required by the FDTD, and modeling of various electrical components needed in computing lightning electromagnetic fields and surges with the FDTD method. The book describes the application of FDTD method to current and emerging problems of lightning surge protection of continuously more complex installations, particularly in critical infrastructures of e...

  11. Improving Multiple Fault Diagnosability using Possible Conflicts

    National Aeronautics and Space Administration — Multiple fault diagnosis is a difficult problem for dynamic systems. Due to fault masking, compensation, and relative time of fault occurrence, multiple faults can...

  12. Fault-related dolomitization in the Orpesa Ranges (Iberian Chain, E Spain): reactive transport simulations and field data constraints

    Gomez-Rivas, E.; Martin-Martin, J. D.; Corbella, M.; Teixell, A.


    The relationships between hydrothermal fluid circulation and fracturing that lead to mineral dissolution and/or precipitation in carbonate rocks have direct impacts on the evolution and final distribution of hydrocarbon reservoir permeability. Understanding the coupling between these processes is important for predicting permeability and improving hydrocarbon recovery. We present a case study of dolomitization processes in Cretaceous limestone from the Orpesa Ranges (Iberian Chain, E Spain). Extending over part of the Maestrat Cretaceous Basin, the Orpesa area is deformed by extensional faults. These faults accommodated thick sequences of shallow marine limestone, mainly during Aptian times. The syn-rift carbonates are partially dolomitized due to the circulation and mixing of hydrothermal fluids along normal faults and bedding. Both Aptian and later Neogene extensional faults must have served as conduits for the circulation of fluids. MVT deposits of Paleocene age are well documented in the Maestrat basin and may also be related to dolomitization. Samples of host rocks and vein fillings have been collected along strike and analyzed in different fault sections to characterize fluid and rock composition, track flow pathways and map the relationships of fluid flow with respect to the main normal faults in the area. Using field and geochemical data from the Orpesa Ranges carbonates, we have developed reactive-transport models to study the influence of different parameters in the dolomitization of carbonates related to the circulation and mixing of hydrothermal fluids at the outcrop scale. We present results from models that were run with constant and non-constant permeability. The main parameters analyzed include: initial porosity and permeability of layers and fractures, composition of fluids, groundwater and brines flux, composition of layers, reactive surface of minerals, differences in vertical and horizontal permeability, and presence or absence of stratigraphic

  13. Earthquake volume, fault plane area, seismic energy, strain, deformation and related quantities

    S. J. DUDA


    Full Text Available An effort is made to improve Benioff's method for investigation
    of strain release in aftershock sequences. The improvement
    may be summarized as follows:
    1. Earthquake volume increases with magnitude, instead of being
    constant. A relation is given, relating volume to magnitude.
    2. A revised energy-magnitude formula is used.
    3. The seismic gain ratio, i. e. the ratio between seismic energy and
    elastic strain energy, probably increases with magnitude, instead of being
    constant. Likewise, the ratio of fault plane area of the main shock to the
    vertical section through the aftershock volume increases with magnitude.
    4. The seismic energy density, the elastic strain energy density as
    well as strain are independent of magnitude.
    5. The deformation, i. e. the total strain in the aftershock zone, increases
    with magnitude at the same rate as seismic energy and volume do.
    As a consequence of these improvements some earlier published strain
    release characteristics are reconstructed, this time as deformation characteristics

  14. The impact of a 2 X CO2 climate on lightning-caused fires

    Price, Colin; Rind, David


    Future climate change could have significant repercussions for lightning-caused wildfires. Two empirical fire models are presented relating the frequency of lightning fires and the area burned by these fires to the effective precipitation and the frequency of thunderstorm activity. One model deals with the seasonal variations in lightning fires, while the second model deals with the interannual variations of lightning fires. These fire models are then used with the Goddard Institute for Space Studies General Circulation Model to investigate possible changes in fire frequency and area burned in a 2 X CO2 climate. In the United States, the annual mean number of lightning fires increases by 44%, while the area burned increases by 78%. On a global scale, the largest increase in lightning fires can be expected in untouched tropical ecosystems where few natural fires occur today.

  15. Radon, carbon dioxide and fault displacements in central Europe related to the Tōhoku Earthquake.

    Briestenský, M; Thinová, L; Praksová, R; Stemberk, J; Rowberry, M D; Knejflová, Z


    Tectonic instability may be measured directly using extensometers installed across active faults or it may be indicated by anomalous natural gas concentrations in the vicinity of active faults. This paper presents the results of fault displacement monitoring at two sites in the Bohemian Massif and Western Carpathians. These data have been supplemented by radon monitoring in the Mladeč Caves and by carbon dioxide monitoring in the Zbrašov Aragonite Caves. A significant period of tectonic instability is indicated by changes in the fault displacement trends and by anomalous radon and carbon dioxide concentrations. This was recorded around the time of the catastrophic MW=9.0 Tōhoku Earthquake, which hit eastern Japan on 11 March 2011. It is tentatively suggested that the Tōhoku Earthquake in the Pacific Ocean and the unusual geodynamic activity recorded in the Bohemian Massif and Western Carpathians both reflect contemporaneous global tectonic changes.

  16. Research on Winter Lightning in Japan

    Ishii, Masaru

    Winter lightning in Japan is known for such characteristics as frequent occurrence of upward lightning and of positive ground flashes. On the engineering side, higher frequencies of troubles at transmission lines or wind turbines in winter due to lightning than those in summer have been experienced in the winter thunderstorm area of Japan, despite the much smaller number of lightning strokes in winter observed by lightning location systems (LLS). Such frequent troubles by lightning in the cold season are unique in Japan, which have promoted intensive research on winter lightning in Japan since 1980s.

  17. Fault-related structural permeability: Qualitative insights of the damage-zone from micro-CT analysis.

    Gomila, Rodrigo; Arancibia, Gloria; Nehler, Mathias; Bracke, Rolf; Stöckhert, Ferdinand


    Fault zones and their related structural permeability play a leading role in the migration of fluids through the continental crust. A first approximation to understanding the structural permeability conditions, and the estimation of its hydraulic properties (i.e. palaeopermeability and fracture porosity conditions) of the fault-related fracture mesh is the 2D analysis of its veinlets, usually made in thin-section. Those estimations are based in the geometrical parameters of the veinlets, such as average fracture density, length and aperture, which can be statistically modelled assuming penny-shaped fractures of constant radius and aperture within an anisotropic fracture system. Thus, this model is related to fracture connectivity, its length and to the cube of the fracture apertures. In this way, the estimated values presents their own inaccuracies owing to the method used. Therefore, the study of the real spatial distribution of the veinlets of the fault-related fracture mesh (3D), feasible with the use of micro-CT analyses, is a first order factor to unravel both, the real structural permeability conditions of a fault-zone, together with the validation of previous estimations made in 2D analyses in thin-sections. This early contribution shows the preliminary results of a fault-related fracture mesh and its 3D spatial distribution in the damage zone of the Jorgillo Fault (JF), an ancient subvertical left-lateral strike-slip fault exposed in the Atacama Fault System in northern Chile. The JF is a ca. 20 km long NNW-striking strike-slip fault with sinistral displacement of ca. 4 km. The methodology consisted of the drilling of vertically oriented plugs of 5 mm in diameter located at different distances from the JF core - damage zone boundary. Each specimen was, then, scanned with an x-ray micro-CT scanner (ProCon X-Ray CTalpha) in order to assess the fracture mesh. X-rays were generated in a transmission target x-ray tube with acceleration voltages ranging from 90

  18. The spectra and temperature of cloud lightning discharge channel


    Spectra of seven cloud lightning discharges are reported for the first time after captured with a Slit-less Spectrograph on Chinese Tibet Plateau. The structural characters are analyzed and compared with the spectra of cloud-to-ground lightning, and the results indicate that the spectra of cloud lightning show two different kinds of structure characteristics. One has the similar structure as those of cloud-to-ground lightning discharge, and the other is absolutely different. Meanwhile, more lines of OII with high excited energy are recorded in the spectra of cloud lightning discharge in comparison with that of cloud-to-ground lighting happening in the same region. Temperatures at different positions are calculated and temperature characteristics of these two sorts are analyzed, based to the wavelength, relative intensities and other transition parameters. We suggest that the physical process in the cloud discharge channels changes with much more rapid velocity and wider range compared to cloud-to-ground lightning. The differences between the two types of cloud discharge also reflect some discrepancies between the discharge characteristics.

  19. Investigations of fluid flow and heat transport related to the strength of the San Andreas fault

    Fulton, Patrick M.


    The shear strength of faults is an important factor in earthquake hazard assessment, and in understanding the earthquake process and the forces that drive tectonic deformation. However, on the basis of both geomechanical and thermal observations, many plate boundary faults, including the San Andreas Fault (SAF) in California, have been interpreted to slip at shear stresses considerably less than predicted by laboratory-derived friction laws and for hydrostatic fluid pressures. An understanding of whether plate-boundary faults truly are "weak" and the potential causes for such weakness are thus key unknowns in the physics of faulting. In the first section of this thesis, I evaluate whether thermal and hydrologic effects might disturb heat flow data which are used to interpret the strength of the SAF. Using numerical models of coupled fluid flow and heat transport, and by comparing model results with observational constraints, I show that redistribution of heat by groundwater flow is an unlikely explanation for the lack of a near fault increase in heat flow that would be associated with frictional heat generation on a strong fault (i.e. one that supports large shear stresses). I also show that the effects of topographic and subsurface refraction may account for previously unexplained spatial scatter in heat flow data around the fault, but even with these effects the data are most consistent with little or no frictional heat generation. In the second section of this thesis, I evaluate hypotheses invoking regional sources of fluid resulting from metamorphic dehydration reactions within the crust or upper mantle as mechanisms that generate large fluid overpressures within the fault zone required to explain the apparent weakness of the SAF. I calculate reasonable fluid source terms for both crustal and mantle dehydration following the creation of the SAF. I show that crustal dehydration sources are too small and short-lived to generate large overpressures, but it is

  20. Cloud — Aerosol interaction during lightning activity over land and ocean: Precipitation pattern assessment

    Pal, Jayanti; Chaudhuri, Sutapa; Chowdhury, Arumita Roy; Bandyopadhyay, Tanuka


    The present study attempts to identify the land - ocean contrast in cloud - aerosol relation during lightning and non-lightning days and its effect on subsequent precipitation pattern. The thermal hypothesis in view of Convective Available Potential Energy (CAPE) behind the land - ocean contrast is observed to be insignificant in the present study region. The result shows that the lightning activities are significantly and positively correlated with aerosols over both land and ocean in case of low aerosol loading whereas for high aerosol loading the correlation is significant but, only over land. The study attempts to comprehend the mechanism through which the aerosol and lightning interact using the concept of aerosol indirect effect that includes the study of cloud effective radius, cloud fraction and precipitation rate. The result shows that the increase in lightning activity over ocean might have been caused due to the first aerosol indirect effect, while over land the aerosol indirect effect might have been suppressed due to lightning. Thus, depending on the region and relation between cloud parameters it is observed that the precipitation rate decreases (increases) over ocean during lightning (non-lightning) days. On the other hand during non-lightning days, the precipitation rate decreases over land.

  1. The CHUVA Lightning Mapping Campaign

    Goodman, Steven J.; Blakeslee, Richard J.; Bailey, Jeffrey C.; Carey, Lawrence D.; Hoeller, Hartmut; Albrecht, Rachel I.; Morales, Carlos; Pinto, Osmar; Saba, Marcelo M.; Naccarato, Kleber; Hembury, Nikki; Nag, Amitabh; Heckman, Stan; Holzworth, Robert H.; Rudlosky, Scott D.; Betz, Hans-Dieter; Said, Ryan; Rauenzahn, Kim


    The primary science objective for the CHUVA lightning mapping campaign is to combine measurements of total lightning activity, lightning channel mapping, and detailed information on the locations of cloud charge regions of thunderstorms with the planned observations of the CHUVA (Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement) field campaign. The lightning campaign takes place during the CHUVA intensive observation period October-December 2011 in the vicinity of S o Luiz do Paraitinga with Brazilian, US, and European government, university and industry participants. Total lightning measurements that can be provided by ground-based regional 2-D and 3-D total lightning mapping networks coincident with overpasses of the Tropical Rainfall Measuring Mission Lightning Imaging Sensor (LIS) and the SEVIRI (Spinning Enhanced Visible and Infrared Imager) on the Meteosat Second Generation satellite in geostationary earth orbit will be used to generate proxy data sets for the next generation US and European geostationary satellites. Proxy data, which play an important role in the pre-launch mission development and in user readiness preparation, are used to develop and validate algorithms so that they will be ready for operational use quickly following the planned launch of the GOES-R Geostationary Lightning Mapper (GLM) in 2015 and the Meteosat Third Generation Lightning Imager (LI) in 2017. To date there is no well-characterized total lightning data set coincident with the imagers. Therefore, to take the greatest advantage of this opportunity to collect detailed and comprehensive total lightning data sets, test and validate multi-sensor nowcasting applications for the monitoring, tracking, warning, and prediction of severe and high impact weather, and to advance our knowledge of thunderstorm physics, extensive measurements from lightning mapping networks will be collected

  2. Lightning-Generated Whistler Waves Observed by Probes On The Communication/Navigation Outage Forecast System Satellite at Low Latitudes

    Holzworth, R. H.; McCarthy, M. P.; Pfaff, R. F.; Jacobson, A. R.; Willcockson, W. L.; Rowland, D. E.


    Direct evidence is presented for a causal relationship between lightning and strong electric field transients inside equatorial ionospheric density depletions. In fact, these whistler mode plasma waves may be the dominant electric field signal within such depletions. Optical lightning data from the Communication/Navigation Outage Forecast System (C/NOFS) satellite and global lightning location information from the World Wide Lightning Location Network are presented as independent verification that these electric field transients are caused by lightning. The electric field instrument on C/NOFS routinely measures lightning ]related electric field wave packets or sferics, associated with simultaneous measurements of optical flashes at all altitudes encountered by the satellite (401.867 km). Lightning ]generated whistler waves have abundant access to the topside ionosphere, even close to the magnetic equator.

  3. Lightning Observations with the Upgraded Lanmguir Lab Lightning Mapping Array

    Rison, W.; Krehbiel, P. R.; Hunyady, S.; Edens, H. E.; Aulich, G. D.


    The Langmuir Lab Lightning Mapping Array (LMA) is located on and around the Magdalena Mountains in central New Mexico. Recently there have been several improvements to the LMA which have dramatically increased its sensitivity. By switching most stations to solar power (which allows us to place them far from buildings and power lines) and reducing the noise of the power supply, the station-generated and local environmental noise has been reduced to levels near the theoretical thermal value. Because of the recent switch to digital television, the LMA is no longer degraded by the anthropogenic noise of distant VHF television transmitters, due to the stations mostly being switched to UHF. The distant interference was a particularly bad problem for the stations located high in the Magdalena Mountains. The combination of lower threshold values and increasing the number of stations to 16 enables lower-power sources to be detected above the local noise levels and hence located by the system. We are now able to observe the positive leaders (which produce a much lower level of VHF radiation than negative leaders) which propagate upward from a triggering rocket. Lightning channels in natural lightning discharges are also much more clearly defined than in the past. Minor discharges (with one or a few LMA-detected sources) between larger lightning flashes are routinely observed. Much more detail is observed from distant lightning discharges. (However, the increased sensitivity does not reduce the vertical and radial errors for lightning observed outside the array.) In addition to the more sensitive LMA, we continue to improve our array of high-resolution electrostatic field change stations, which provides considerable information on lightning-induced charge transfer. We will present examples of observations of natural and triggered lightning, showing the increased detail now available from the recent improvements to the Langmuir Lab LMA.

  4. Variation in Regional and Global Lightning

    Holzworth, R. H., II; Brundell, J. B.; McCarthy, M.; Virts, K.; Hutchins, M. L.; Jacobson, A. R.; Heckman, S.


    Daily global lightning variation over oceans and orography, caused by major weather patterns such as typhoons and seasonal weather oscillations, are determined with high time resolution. Observations of strong variations in global lightning are used to study possible variations in magnetospheric particle densities. Strong lightning patterns associated with ocean currents are demonstrated with a study of the Gulf Stream. We located all major lightning producing storms, using a clustering algorithm on 10 years of World Wide Lightning Location Network (WWLLN) data to reduce the influence of rapidly increasing lightning network detection efficiency on temporal studies. The clustered storms are used to study the variations and patterns of global and regional lightning activity. WWLLN and Earth Networks lightning detection networks have been used to show the energy per flash of lightning over the oceans is higher than over land, and the sharp contrast at the coasts will be examined.

  5. Epidemiology of electrical and lightning-related injuries among Canadian children and youth, 1997-2010: A Canadian Hospitals Injury Reporting and Prevention Program (CHIRPP) study.

    Böhrer, Madeleine; Stewart, Samuel A; Hurley, Katrina F


    Introduction Although death due to electrical injury and lightning are rare in children, these injuries are often preventable. Twenty years ago, most injuries occurred at home, precipitated by oral contact with electrical cords, contact with wall sockets and faulty electrical equipment. We sought to assess the epidemiology of electrical injuries in children presenting to Emergency Departments (EDs) that participate in the Canadian Hospitals Injury Reporting and Prevention Program (CHIRPP). This study is a retrospective review of electrical and lightning injury data from CHIRPP. The study population included children and youth aged 0-19 presenting to participating CHIRPP EDs from 1997-2010. Age, sex, year, setting, circumstance and disposition were extracted. Variables were tested using Fisher's exact test and simple linear regression. The dataset included 1183 electrical injuries, with 84 (7%) resulting in hospitalization. Most events occurred at home in the 2-5 year age group and affected the hands. Since 1997 there has been a gradual decrease in the number of electrical injuries per year (plightning were rare (n=19). No deaths were recorded in the database. Despite the decrease in the number of electrical injuries per year, a large portion of injuries still appear to be preventable. Further research should focus on effective injury prevention strategies.

  6. 2016 T Division Lightning Talks

    Ramsey, Marilyn Leann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Adams, Luke Clyde [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Ferre, Gregoire Robing [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Grantcharov, Vesselin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Iaroshenko, Oleksandr [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Krishnapriyan, Aditi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Kurtakoti, Prajvala Kishore [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Le Thien, Minh Quan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Lim, Jonathan Ng [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Low, Thaddeus Song En [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Lystrom, Levi Aaron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Ma, Xiaoyu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Nguyen, Hong T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Pogue, Sabine Silvia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Orandle, Zoe Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Reisner, Andrew Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Revard, Benjamin Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Roy, Julien [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Sandor, Csanad [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Slavkova, Kalina Polet [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Weichman, Kathleen Joy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Wu, Fei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Yang, Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division


    These are the slides for all of the 2016 T Division lightning talks. There are 350 pages worth of slides from different presentations, all of which cover different topics within the theoretical division at Los Alamos National Laboratory (LANL).

  7. Lightning Caused Fires and Acres

    Bureau of Land Management, Department of the Interior — Number of wildland fires and acres burned as a result of lightning, from 2001 through 2008 (updated annually). Displayed by the eleven Geographic Areas used by the...

  8. Aerodynamically generated noise by lightning arrester

    Váchová J.


    Full Text Available This paper presents the general solution of aerodynamically generated noise by lightning arrester. Governing equations are presented in form of Lighthill acoustic analogy, as embodied in the Ffowcs Williams-Hawkings (FW-H equation. This equation is based on conservation laws of fluid mechanics rather than on the wave equation. Thus, the FW-H equation is valid even if the integration surface is in nonlinear region. That’s why the FWH method is superior in aeroacoustics. The FW-H method is implemented in program Fluent and the numerical solution is acquired by Fluent code.The general solution of acoustic signal generated by lightning arrester is shown and the results in form of acoustic pressure and frequency spectrum are presented. The verification of accuracy was made by evaluation of Strouhal number. A comparison of Strouhal number for circumfluence of a cylinder and the lightning arrester was done, because the experimental data for cylinder case are known and these solids are supposed to be respectively in shape relation.

  9. Full scale lightning test technique

    Walko, L. C.; Schneider, J. G.


    A test technique was developed for applying a full scale mean value (30 kiloampere peak) simulated lightning return stroke current on a complete flight ready aircraft to assess the threat of lightning to aircraft electrical circuits. A computer-aided generator design was used to establish the parameters of the test system. Data from previous work done on development of low inductance current paths determined the basic system configuration.

  10. Lightning in superconductors.

    Vestgården, J I; Shantsev, D V; Galperin, Y M; Johansen, T H


    Crucially important for application of type-II superconductor films is the stability of the vortex matter--magnetic flux lines penetrating the material. If some vortices get detached from pinning centres, the energy dissipated by their motion will facilitate further depinning, and may trigger a massive electromagnetic breakdown. Up to now, the time-resolved behaviour of these ultra-fast events was essentially unknown. We report numerical simulation results revealing the detailed dynamics during breakdown as within nanoseconds it develops branching structures in the electromagnetic fields and temperature, with striking resemblance of atmospheric lightning. During a dendritic avalanche the superconductor is locally heated above its critical temperature, while electrical fields rise to several kV/m as the front propagates at instant speeds near up to 100 km/s. The numerical approach provides an efficient framework for understanding the ultra-fast coupled non-local dynamics of electromagnetic fields and dissipation in superconductor films.

  11. Lightning Imaging via VHF Emission

    Kawasaki, Z.


    Osaka University has been developing interferometric lightning mapping systems for some time, first with narrow band VHF interferometers, and then with broadband digital VHF interferometers (DITF). Recently, a collaboration between New Mexico Tech and Osaka University resulted in the development of the NMT INTF. All of these interferometric lightning mapping systems have added greatly to our understanding of lightning physics. The next generation of digital broadband VHF interferometer is now being developed in Osaka, called the Lightning Imaging via VHF Emission (LIVE) interferometer. LIVE is capable of mapping lightning in real-time with sub-millisecond time resolution, or through post processing with sub-microsecond time resolution. Near-field corrections have been developed, so that sources very close to the array can be located accurately, and so that the baselines can lengthened for improved angular resolution. LIVE is capable of locating lighting over more than a 75 dB range of brightnesses, allowing the system to be extremely sensitive, and the long baselines allow for location uncertainties as low as tens of meters. Presented are observations of lightning recorded in the Kasai area of Japan, as well as the Pengerang region of Malaysia showing the capabilities of the LIVE interferometer.

  12. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world.

    Dowdy, Andrew J


    Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world's tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world.

  13. Lightning climatology in the Congo Basin: methodology and first results

    Kigotsi, Jean; Soula, Serge; Georgis, Jean-François; Barthe, Christelle


    The global climatology of lightning issued from space observations (OTD and LIS) clearly showed the maximum of the thunderstorm activity is located in a large area of the Congo Basin, especially in the Democratic Republic of Congo (DRC). The first goal of the present study is to compare observations from the World Wide Lightning Location Network (WWLLN) from the Lightning Imaging Sensor (LIS) over a 9-year period (2005-2013) in this 2750 km × 2750 km area. The second goal is to analyse the lightning activity in terms of time and space variability. The detection efficiency (DE) of the WWLLN relative to LIS has increased between 2005 and 2013, typically from about 1.70 % to 5.90 %, in agreement with previous results for other regions of the world. The mean monthly flash rate describes an annual cycle with a maximum between November and March and a minimum between June and August, associated with the ICTZ migration but not exactly symmetrical on both sides of the equator. The diurnal evolution of the flash rate has a maximum between 1400 and 1700 UTC, depending on the reference year, in agreement with previous works in other regions of the world. The annual flash density shows a sharp maximum localized in eastern DRC regardless of the reference year and the period of the year. This annual maximum systematically located west of Kivu Lake corresponds to that previously identified by many authors as the worldwide maximum which Christian et al. (2013) falsely attributed to Rwanda. Another more extended region within the Congo Basin exhibits moderately large values, especially during the beginning of the period analyzed. A comparison of both patterns of lightning density from the WWLLN and from LIS allows to validate the representativeness of this world network and to restitute the total lightning activity in terms of lightning density and rate.

  14. Analysis of Channel Luminosity Characteristics in Rocket-Triggered Lightning

    LU Weitao; ZHANG Yijun; ZHOU Xiuji; MENG Qing; ZHENG Dong; MA Ming; WANG Fei; CHEN Shaodong; QIE Xiushu


    A comparison is made of the high-speed(2000 fps)photographic records in rocket-triggered negative lightning between two techniques.The analysis shows that:the initial speed of upward positive leader (UPL)in altitude-triggered negative lightning(ATNL)is about one order of magnitude less than that in classically triggered negative lightning(CTNL),while the triggering height of ATNL is higher than that of CTNL;the afterglow time of metal-vaporized part of the lightning channel Call endure for about 160-170 ms,thus the luminosity of the air-ionized part can reflect the characteristics of the current in the lightning channel better than that of the metal-vaporized part.According to the different characteristics of the luminosity change of the lightning channel,together with the observation of the electric field changes,three kinds of processes after return-stroke(RS)can be distinguished:the continuous decaying type without M component,the isolated type and the continuing type with M component,corresponding to different wave shapes of the continuous current.The geometric mean of the interval of RS with M component is 77 ms,longer than that(37 ms)of RS without M component.And the initial continuous current(ICC)with M component also has a longer duration compared to the ICC without M component.The distinction in the relative luminosity between the lightning channel before RS and that before M component is obvious:the former is very weak or even cannot be observed,while the latter is still considerably luminous.

  15. Interaction between Adjacent Lightning Discharges in Clouds

    WANG Yanhui; ZHANG Guangshu; ZHANG Tong; LI Yajun; WU Bin; ZHANG Tinglong


    Using a 3D lightning radiation source locating system (LLS),three pairs of associated lightning discharges (two or more adjacent lightning discharges following an arbitrary rule that their space-gap was less than 10 km and their time-gap was less than 800 ms) were observed,and the interaction between associated lightning discharges was analyzed.All these three pairs of associated lightning discharges were found to involve three or more charge regions (the ground was considered as a special charge region).Moreover,at least one charge region involved two lightning discharges per pair of associated lightning discharges.Identified from electric field changes,the subsequent lightning discharges were suppressed by the prior lightning discharges.However,it is possible that the prior lightning discharge provided a remaining discharge channel to facilitate the subsequent lightning discharge.The third case provided evidence of this possibility.Together,the results suggested that,if the charges in the main negative charge region can be consumed using artificial lightning above the main negative charge regions,lightning accidents on the ground could be greatly reduced,on the condition that the height of the main negative charge region and the charge intensity of the lower positive charge region are suitable.

  16. The 13 years of TRMM Lightning Imaging Sensor: From Individual Flash Characteristics to Decadal Tendencies

    Albrecht, R. I.; Goodman, S. J.; Petersen, W. A.; Buechler, D. E.; Bruning, E. C.; Blakeslee, R. J.; Christian, H. J.


    How often lightning strikes the Earth has been the object of interest and research for decades. Several authors estimated different global flash rates using ground-based instruments, but it has been the satellite era that enabled us to monitor lightning thunderstorm activity on the time and place that lightning exactly occurs. Launched into space as a component of NASA s Tropical Rainfall Measuring Mission (TRMM) satellite, in November 1997, the Lighting Imaging Sensor (LIS) is still operating. LIS detects total lightning (i.e., intracloud and cloud-to-ground) from space in a low-earth orbit (35deg orbit). LIS has collected lightning measurements for 13 years (1998-2010) and here we present a fully revised and current total lightning climatology over the tropics. Our analysis includes the individual flash characteristics (number of events and groups, total radiance, area footprint, etc.), composite climatological maps, and trends for the observed total lightning during these 13 years. We have identified differences in the energetics of the flashes and/or the optical scattering properties of the storms cells due to cell-relative variations in microphysics and kinematics (i.e., convective or stratiform rainfall). On the climatological total lightning maps we found a dependency on the scale of analysis (resolution) in identifying the lightning maximums in the tropics. The analysis of total lightning trends observed by LIS from 1998 to 2010 in different temporal (annual and seasonal) and spatial (large and regional) scales, showed no systematic trends in the median to lower-end of the distributions, but most places in the tropics presented a decrease in the highest total lightning flash rates (higher-end of the distributions).

  17. Fault-related carbonate breccia dykes in the La Chilca area, Eastern Precordillera, San Juan, Argentina

    Castro de Machuca, Brígida; Perucca, Laura P.


    Carbonate fault breccia dykes in the Cerro La Chilca area, Eastern Precordillera, west-central Argentina, provide clues on the probable mechanism of both fault movement and dyke injection. Breccia dykes intrude Upper Carboniferous sedimentary rocks and Triassic La Flecha Trachyte Formation. The timing of breccia dyke emplacement is constrained by cross cutting relationships with the uppermost Triassic unit and conformable contacts with the Early Miocene sedimentary rocks. This study supports a tectonic-hydrothermal origin for these breccia dykes; fragmentation and subsequent hydraulic injection of fluidized breccia are the more important processes in the breccia dyke development. Brecciation can be triggered by seismic activity which acts as a catalyst. The escape of fluidized material can be attributed to hydrostatic pressure and the direction of movement of the material establishes the direction of least pressure. Previous studies have shown that cross-strike structures have had an important role in the evolution of this Andean segment since at least Triassic times. These structures represent pre-existing crustal fabrics that could have controlled the emplacement of the dykes. The dykes, which are composed mostly of carbonate fault breccia, were injected upward along WNW fractures.

  18. Causation mechanism analysis for haze pollution related to vehicle emission in Guangzhou, China by employing the fault tree approach.

    Huang, Weiqing; Fan, Hongbo; Qiu, Yongfu; Cheng, Zhiyu; Xu, Pingru; Qian, Yu


    Recently, China has frequently experienced large-scale, severe and persistent haze pollution due to surging urbanization and industrialization and a rapid growth in the number of motor vehicles and energy consumption. The vehicle emission due to the consumption of a large number of fossil fuels is no doubt a critical factor of the haze pollution. This work is focused on the causation mechanism of haze pollution related to the vehicle emission for Guangzhou city by employing the Fault Tree Analysis (FTA) method for the first time. With the establishment of the fault tree system of "Haze weather-Vehicle exhausts explosive emission", all of the important risk factors are discussed and identified by using this deductive FTA method. The qualitative and quantitative assessments of the fault tree system are carried out based on the structure, probability and critical importance degree analysis of the risk factors. The study may provide a new simple and effective tool/strategy for the causation mechanism analysis and risk management of haze pollution in China.

  19. Major Crustal Fault Zone Trends and Their Relation to Mineral Belts in the North-Central Great Basin, Nevada

    Rodriguez, Brian D.; Sampson, Jay A.; Williams, Jackie M.


    The Great Basin physiographic province covers a large part of the western United States and contains one of the world's leading gold-producing areas, the Carlin Trend. In the Great Basin, many sedimentary-rock-hosted disseminated gold deposits occur along such linear mineral-occurrence trends. The distribution and genesis of these deposits is not fully understood, but most models indicate that regional tectonic structures play an important role in their spatial distribution. Over 100 magnetotelluric (MT) soundings were acquired between 1994 and 2001 by the U.S. Geological Survey to investigate crustal structures that may underlie the linear trends in north-central Nevada. MT sounding data were used to map changes in electrical resistivity as a function of depth that are related to subsurface lithologic and structural variations. Two-dimensional (2-D) resistivity modeling of the MT data reveals primarily northerly and northeasterly trending narrow 2-D conductors (1 to 30 ohm-m) extending to mid-crustal depths (5-20 km) that are interpreted to be major crustal fault zones. There are also a few westerly and northwesterly trending 2-D conductors. However, the great majority of the inferred crustal fault zones mapped using MT are perpendicular or oblique to the generally accepted trends. The correlation of strike of three crustal fault zones with the strike of the Carlin and Getchell trends and the Alligator Ridge district suggests they may have been the root fluid flow pathways that fed faults and fracture networks at shallower levels where gold precipitated in favorable host rocks. The abundant northeasterly crustal structures that do not correlate with the major trends may be structures that are open to fluid flow at the present time.

  20. FDTD Analysis of the Current Distribution within the Grounding System for a Wind Turbine Generation Tower Struck by Lightning

    Nagao, Mitsuhiro; Nagaoka, Naoto; Baba, Yoshihiro; Ametani, Akihiro

    Transient current distribution within the grounding system for a wind-turbine-generation tower of height 61m struck by lightning has been calculated using the finite-difference time-domain (FDTD) method. The grounding grid for the lightning-struck tower considered in this paper is connected electrically via an insulated wire to one neighboring-tower grounding grid located 50m away from it. High-frequency components of a lightning current tend to flow in ground through the grounding grid of the lightning-struck tower, and they become larger with increasing the ground conductivity. Relatively-lower-frequency components of the lightning current flow in ground through each of the two grounding grids roughly in inverse proportion to the grounding resistance of each grid. For example, when two identical grounding grids for the lightning-struck tower and the neighboring tower are buried in the same ground, about 50% of the lightning current flows in the grounding grid for the neighboring tower via the insulated wire connecting these two grounding grids. When the grounding resistance of the neighboring tower is about 1/4 of that for the lightning-struck tower, about 4/5 of the lightning current flows in the neighboring-tower grounding grid. This agrees well with the trend shown by Nagaoka et al. from their measurement in the grounding system for an actual wind-turbine-generation tower struck by natural lightning.

  1. Measuring Method for Lightning Channel Temperature

    Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.


    In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5–50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8–10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases. PMID:27665937

  2. Measuring Method for Lightning Channel Temperature

    Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.


    In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.

  3. Measuring Method for Lightning Channel Temperature.

    Li, X; Zhang, J; Chen, L; Xue, Q; Zhu, R


    In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.

  4. Lightning climatology in the Congo Basin

    Soula, S.; Kasereka, J. Kigotsi; Georgis, J. F.; Barthe, C.


    The lightning climatology of the Congo Basin including several countries of Central Africa is analysed in detail for the first time. It is based on data from the World Wide Lightning Location Network (WWLLN), for the period from 2005 to 2013. A comparison of these data with Lightning Imaging Sensor (LIS) data for the same period shows the relative detection efficiency of the WWLLN (DE) in the 2500 km × 2500 km region increases from about 1.70% in the beginning of the period to 5.90% in 2013, and it is in agreement with previous results for other regions of the world. However, the increase of DE is not uniform over the whole region. The average monthly flash rate describes an annual cycle with a strong activity from October to March and a low one from June to August, associated with the ITCZ migration but not exactly symmetrical on both sides of the equator. The zonal distribution of the lightning flashes exhibits a maximum between 1°S and 2°S and about 56% of the flashes are located south of the equator in the 10°S-10°N interval. The diurnal evolution of the flash rate has a maximum between 1400 and 1700 UTC, according to the reference year. The annual flash density and number of stormy days show a sharp maximum localized in the eastern part of Democratic Republic of Congo (DRC) regardless of the reference year and the period of the year. These maxima reach 12.86 fl km- 2 and 189 days, respectively, in 2013, and correspond to a very active region located at the rear of the Virunga mountain range at altitudes that exceed 3000 m. The presence of these mountains plays a role in the thunderstorm development along the year. The estimation of this local maximum of the lightning density by taking into account the DE, leads to a value consistent with that of the global climatology by Christian et al. (2003).

  5. Multivariate Statistical Inference of Lightning Occurrence, and Using Lightning Observations

    Boccippio, Dennis


    Two classes of multivariate statistical inference using TRMM Lightning Imaging Sensor, Precipitation Radar, and Microwave Imager observation are studied, using nonlinear classification neural networks as inferential tools. The very large and globally representative data sample provided by TRMM allows both training and validation (without overfitting) of neural networks with many degrees of freedom. In the first study, the flashing / or flashing condition of storm complexes is diagnosed using radar, passive microwave and/or environmental observations as neural network inputs. The diagnostic skill of these simple lightning/no-lightning classifiers can be quite high, over land (above 80% Probability of Detection; below 20% False Alarm Rate). In the second, passive microwave and lightning observations are used to diagnose radar reflectivity vertical structure. A priori diagnosis of hydrometeor vertical structure is highly important for improved rainfall retrieval from either orbital radars (e.g., the future Global Precipitation Mission "mothership") or radiometers (e.g., operational SSM/I and future Global Precipitation Mission passive microwave constellation platforms), we explore the incremental benefit to such diagnosis provided by lightning observations.

  6. Infrasonic Observations from Triggered Lightning

    Arechiga, R. O.; Johnson, J. B.; Edens, H. E.; Rison, W.; Thomas, R. J.; Eack, K.; Eastvedt, E. M.


    We measured acoustic signals during both triggered and natural lightning. A comparative analysis of simultaneous data from the Lightning Mapping Array (LMA), acoustic measurements and digital high-speed photography operating in the same area was made. Acoustic emissions, providing quantitative estimates of acoustic power and spectral content, will complement coincident investigations, such as X-ray emissions. Most cloud-to-ground lightning flashes lower negative charge to ground, but flashes that lower positive charge to ground are often unusually destructive and are less understood. The New Mexico Tech Lightning Mapping Array (LMA) locates the sources of impulsive RF radiation produced by lightning flashes in three spatial dimensions and time, operating in the 60 - 66 MHz television band. However, positive breakdown is rarely detected by the LMA and positive leader channels are outlined only by recoil events. Positive cloud-to-ground (CG) channels are usually not mapped (or partially mapped because they may have recoil events). Acoustic and electric field instruments are a good complement to the LMA, since they can detect both negative and positive leaders. An array of five stations was deployed during the Summer of 2009 (July 20 to August 13) in the Magdalena mountains of New Mexico, to monitor infrasound (below 20 Hz) and audio range sources due to natural and triggered lightning. The stations were located at close (57 m), medium (303 and 537 m) and far (1403 and 2556 m) distances surrounding the triggering site. Each station consisted of five sensors, one infrasonic and one in the audio range at the center, and three infrasonic in a triangular configuration. This research will provide a more complete picture, and provide further insight into the nature of lightning.

  7. Protection of LV system against lightning

    Yordanova Nedyalkova, Greta


    Lightning is a natural hazard and one of the greatest local mysteries. Scientists have not fully understood the mechanism of lightning. It is one of the most beautiful displays in nature and one of the nature's most dangerous phenomenon known to man. Overvoltage due to lightning is a very important problem of LV systems. Some lightning flashes damage buildings and a few kill or injure people and animals, either directly or indirectly, by causing fire and explosions. The need for protect...

  8. Space Launching Site Protection against Lightning Hazards

    Issac, F.; Bachelier, E.; Prost, D.; Enjalbert, V.; Mohedano, L.


    International audience; A launching pad, because of its activity, is particularly sensitive to the risk of lightning. The use of Standard IEC62305 "Protection against lightning" establishes the general framework for the Lightning Protection System (LPS). However, the specific activity of a launching pad requires special analysis on specific points of the LPS. Indeed, it is necessary to take into account the lightning conductor system particularity on the one hand, and the launcher electromagn...

  9. 2000~2007年输电线路雷击闪络统计分析%Statistics and Analysis of Lightning Flashovers of Transmission Lines During 2000~2007

    李晓岚; 陈家宏; 谷山强


    Lightning stroke is one of the important causes of the accidents that occur on transmission lines. With the development of power system, the proportion of outages on transmission lines because of lightning stroke also increases. And according to the lightning accidents results, the lightning stroke characteristics is related to the time factors tightly. In order to analyze the correlativity between the lightning flashover amount and the time factors, about 425 times lightning flashover on 187 lines in l0 power supply companies of 220 kV and 500 kV transmission lines during 2000~2007 are investigated in this paper. The correlativity between the lightning flashover amount and the time factors is analyzed. According to the lightning stroke accidents investigation records, the lightning flashover amount of transmission line increases from the year of 2000 to 2007. In each year lightning flashovers mostly happen in the month of June, July and August. Similarly in each day the flashover amount also varies with the time of day obviously. These lightning flashovers mainly occur during 14:00~21:00 in the afternoon. The analysis results in this paper have a good agreement with the meteorological observations and lightning detection data of lightning location system (LLS). And these results provide good reference for the lightning protection work in power system.

  10. A lightning multiple casualty incident in Sequoia and Kings Canyon National Parks.

    Spano, Susanne J; Campagne, Danielle; Stroh, Geoff; Shalit, Marc


    Multiple casualty incidents (MCIs) are uncommon in remote wilderness settings. This is a case report of a lightning strike on a Boy Scout troop hiking through Sequoia and Kings Canyon National Parks (SEKI), in which the lightning storm hindered rescue efforts. The purpose of this study was to review the response to a lightning-caused MCI in a wilderness setting, address lightning injury as it relates to field management, and discuss evacuation options in inclement weather incidents occurring in remote locations. An analysis of SEKI search and rescue data and a review of current literature were performed. A lightning strike at 10,600 feet elevation in the Sierra Nevada Mountains affected a party of 5 adults and 7 Boy Scouts (age range 12 to 17 years old). Resources mobilized for the rescue included 5 helicopters, 2 ambulances, 2 hospitals, and 15 field and 14 logistical support personnel. The incident was managed from strike to scene clearance in 4 hours and 20 minutes. There were 2 fatalities, 1 on scene and 1 in the hospital. Storm conditions complicated on-scene communication and evacuation efforts. Exposure to ongoing lightning and a remote wilderness location affected both victims and rescuers in a lightning MCI. Helicopters, the main vehicles of wilderness rescue in SEKI, can be limited by weather, daylight, and terrain. Redundancies in communication systems are vital for episodes of radio failure. Reverse triage should be implemented in lightning injury MCIs. Education of both wilderness travelers and rescuers regarding these issues should be pursued.

  11. Analysis and calculation of lightning-induced voltages in aircraft electrical circuits

    Plumer, J. A.


    Techniques to calculate the transfer functions relating lightning-induced voltages in aircraft electrical circuits to aircraft physical characteristics and lightning current parameters are discussed. The analytical work was carried out concurrently with an experimental program of measurements of lightning-induced voltages in the electrical circuits of an F89-J aircraft. A computer program, ETCAL, developed earlier to calculate resistive and inductive transfer functions is refined to account for skin effect, providing results more valid over a wider range of lightning waveshapes than formerly possible. A computer program, WING, is derived to calculate the resistive and inductive transfer functions between a basic aircraft wing and a circuit conductor inside it. Good agreement is obtained between transfer inductances calculated by WING and those reduced from measured data by ETCAL. This computer program shows promise of expansion to permit eventual calculation of potential lightning-induced voltages in electrical circuits of complete aircraft in the design stage.

  12. Upward lightning attachment analysis on wind turbines and correlated current parameters

    Vogel, Stephan; Ishii, M.; Saito, M.


    for intense upward lightning activity. 172 video recordings of lightning discharges on rotating wind turbines are analysed and attachment angle, detachment angle, and the resulting angular displacement were determined. A classification between self-initiated and other-triggered upward lightning events...... is performed by means of video analysis. The results reveal that the majority of discharges are initiated on vertical blades; however, also attachments to horizontal blades are reported. Horizontal attachment (or a slightly inclined blade state) is often related with a triggered lightning event prior...... to the discharge. There are about twice as many lightning attachments during the ascending blade movement compared to the descending blade movement. Furthermore, a comparison between current parameters from stationary and rotating wind turbines reveal no substantial difference between the two operational modes...

  13. Lightning transient analysis in wind turbine blades

    Candela Garolera, Anna; Holbøll, Joachim; Madsen, Søren Find


    The transient behavior of lightning surges in the lightning protection system of wind turbine blades has been investigated in this paper. The study is based on PSCAD models consisting of electric equivalent circuits with lumped and distributed parameters involving different lightning current...

  14. 3D Faulting Numerical Model Related To 2009 L'Aquila Earthquake Based On DInSAR Observations

    Castaldo, Raffaele; Tizzani, Pietro; Solaro, Giuseppe; Pepe, Susi; Lanari, Riccardo


    , obtained through the activation of different structural segments; then, we compared the synthetic (related to the performed forward model) and the measured ground deformation fields, in order to select the minimum RMS solution. We search for the best model results using an optimization algorithm based on the genetic algorithm, providing an accurate spatial characterization of ground deformation. Our results improve kinematic solutions for the Paganica fault and allow identification of additional fault segments that have contributed to the observed complex ground deformation pattern. The FEM-based methodology is applicable to other seismic areas where the complexity of buried structures plays a fundamental role on the associated surface deformation pattern.

  15. Study of fault configuration related mysteries through multi seismic attribute analysis technique in Zamzama gas field area, southern Indus Basin, Pakistan

    Shabeer Ahmed Abbasi


    Full Text Available Seismic attribute analysis approach has been applied for the interpretation and identification of fault geometry of Zamzama Gas Field. Zamzama gas field area, which lies in the vicinity of Kirthar fold and thrust belt, Southern Indus Basin of Pakistan. The Zamzama fault and its related structure have been predicted by applying the Average Energy Attribute, Instantaneous Frequency Attribute, relative Acoustic Impedance Attribute and Chaotic Reflection Attribute on the seismic line GHPK98A.34. The results have been confirmed by applying the spectral decomposition attribute on the same seismic line that reveal the geometric configuration of Zamzama structure. The fault is reverse and started from 0 s and ended at the depth of 2.5 s on the vertical seismic section. Hanging wall moves up along the fault plane under the action of eastward oriented stress, which formed a large north–south oriented and eastward verging thrusted anticline.

  16. Physical properties of volcanic lightning: Constraints from magnetotelluric and video observations at Sakurajima volcano, Japan

    Aizawa, Koki; Cimarelli, Corrado; Alatorre-Ibargüengoitia, Miguel A.; Yokoo, Akihiko; Dingwell, Donald B.; Iguchi, Masato


    The lightning generated by explosive volcanic eruptions is of interest not only as a promising technique for monitoring volcanic activity, but also for its broader implications and possible role in the origin of life on Earth, and its impact on the atmosphere and biosphere of the planet. However, at present the genetic mechanisms and physical properties of volcanic lightning remain poorly understood, as compared to our understanding of thundercloud lightning. Here, we present joint magnetotelluric (MT) data and video imagery that were used to investigate the physical properties of electrical discharges generated during explosive activity at Sakurajima volcano, Japan, and we compare these data with the characteristics of thundercloud lightning. Using two weeks of high-sensitivity, high-sample-rate MT data recorded in 2013, we detected weak electromagnetic signals radiated by volcanic lightning close to the crater. By carefully inspecting all MT waveforms that synchronized with visible flashes, and comparing with high-speed (3000 frame/s) and normal-speed (30 frame/s) videos, we identified two types of discharges. The first type consists of impulses (Type A) and is interpreted as cloud-to-ground (CG) lightning. The second type is characterized by weak electromagnetic variations with multiple peaks (Type B), and is interpreted as intra-cloud (IC) lightning. In addition, we observed a hybrid MT event wherein a continuous weak current accompanied Type A discharge. The observed features of volcanic lightning are similar to thunderstorm lightning, and the physical characteristics show that volcanic lightning can be treated as a miniature version of thunderstorm lightning in many respects. The overall duration, length, inter-stroke interval, peak current, and charge transfer all exhibit values 1-2 orders of magnitude smaller than those of thunderstorm lightning, thus suggesting a scaling relation between volcanic and thunderstorm lightning parameters that is independent of

  17. Magnetic fabrics in fault-related fold and its relation with finite strain: an example from Mingjiang thrust structures in Western Sichuan

    Jia Dong; Chen Zhuxin; Luo Liang; Hu Qianwei; Jia Qiupeng


    The anisotropy of magnetic susceptibility (AMS) is a quick, effective and sensitive technique used to measure the weakly deformed sedimentary rocks, and also a reliable method to reveal the deforming mechanisms of fault-related folds. In Longmenshan front belt, a typical cross-section of fault-related folds is chosen to study the AMS. A total of 224 oriented specimens have been drilled at 23 different sampling sites which were distributed at the key structural positions of this structural section developed in the Xujiahe formation of the upper Triassic. Six elementary types of magnetic fabrics are recognized and established through this AMS study: 1 ) a sedimentary fabric; 2) an initial deformation fabric; 3) a pencil structure fabric; 4) a weak cleavage fabric; 5) a strong cleavage fabric; 6) a stretching lineation fabric. It has been found that most of magnetic fabrics are characterized by fabrics of weak deformation which belong to the pureshear results of a pre-folding layer parallel shortening (LPS). In the fault-bend fold, almost all magnetic fabrics are the initial deformation fabrics of weak deformation, and denote that the deformation in the forelimb is stronger than that in the backlimb and no finite strain is shown in the footwall. While in the fault-propagation fold, finite strains are concentrated in the trishear zone where magnetic fabric results are approximately consistent with the estimated consequences of the kinematic model. The tectonic stress field indicated by the magnetic fabrics is basically the same along the whole structural section and shows a NW to SE compression and shortening which is accordant with the regional compressive stress field of the Longmenshan fold-thrust belt.

  18. Effect of cloud-to-ground lightning and meteorological conditions on surface NOx and O3 in Hong Kong

    Fei, Leilei; Chan, L. Y.; Bi, Xinhui; Guo, Hai; Liu, Yonglin; Lin, Qinhao; Wang, Xinming; Peng, Ping'an; Sheng, Guoying


    Cloud-to-ground (CG) lightning, meteorological conditions and corresponding surface nitrogen oxides (NOx) and ozone (O3) variations in relation to thunderstorm and lightning activities over Hong Kong at Kwai Chung (urban), Tung Chung (new town) and Tap Mun (background) during active lightning seasons from 2009 to 2013 were studied by analyzing respective air quality monitoring station data along with CG lightning and meteorological data. We observed NOx enhancement and significant O3 decline on lightning days. Influences of land use types, lightning activities and meteorological conditions on surface NOx and O3 were examined. NOx and O3 concentrations shifted towards higher and lower levels, respectively, during lightning days especially in the dominant wind directions. Principal component analysis/absolute principal component scores (PCA/APCS) method and stepwise multiple linear regression (MLR) analysis were employed to examine the influence of thunderstorm related lightning and meteorological parameters on surface NOx and O3. Wind speed was supposed to be the most important meteorological parameter affecting the concentration of NOx, and lightning activities were observed to make a positive contribution to NOx. Negative contribution of hot, cloudy and wet weather and positive contribution of wind speed were found to affect the concentration of O3. Lightning parameters were also found to make a small positive contribution to O3 concentration at Tap Mun and Tung Chung, but the net effect of lightning activities and corresponding meteorological conditions was the decrease of O3 on lightning days. Reasonably good agreement between the predicted and observed NOx and O3 values indicates that PCA/APCS-MLR is a valuable method to study the thunderstorm induced NOx and O3 variations.

  19. Lightning and Life on Exoplanets

    Rimmer, Paul; Ardaseva, Aleksandra; Hodosan, Gabriella; Helling, Christiane


    Miller and Urey performed a ground-breaking experiment, in which they discovered that electric discharges through a low redox ratio gas of methane, ammonia, water vapor and hydrogen produced a variety of amino acids, the building blocks of proteins. Since this experiment, there has been significant interest on the connection between lightning chemistry and the origin of life. Investigation into the atmosphere of the Early Earth has generated a serious challenge for this project, as it has been determined both that Earth's early atmosphere was likely dominated by carbon dioxide and molecular nitrogen with only small amounts of hydrogen, having a very high redox ratio, and that discharges in gases with high redox ratios fail to yield more than trace amounts of biologically relevant products. This challenge has motivated several origin of life researchers to abandon lightning chemistry, and to concentrate on other pathways for prebiotic synthesis. The discovery of over 2000 exoplanets includes a handful of rocky planets within the habitable zones around their host stars. These planets can be viewed as remote laboratories in which efficient lightning driven prebiotic synthesis may take place. This is because many of these rocky exoplanets, called super-Earths, have masses significantly greater than that of Earth. This higher mass would allow them to more retain greater amounts hydrogen within their atmosphere, reducing the redox ratio. Discharges in super-Earth atmospheres can therefore result in a significant yield of amino acids. In this talk, I will discuss new work on what lightning might look like on exoplanets, and on lightning driven chemistry on super-Earths. Using a chemical kinetics model for a super-Earth atmosphere with smaller redox ratios, I will show that in the presence of lightning, the production of the amino acid glycine is enhanced up to a certain point, but with very low redox ratios, the production of glycine is again inhibited. I will conclude

  20. Update Direct-Strike Lightning Environment for Stockpile-to-Target Sequence

    Uman, M A; Rakov, V A; Elisme, J O; Jordan, D M; Biagi, C J; Hill, J D


    The University of Florida has surveyed all relevant publications reporting lightning characteristics and presents here an up-to-date version of the direct-strike lightning environment specifications for nuclear weapons published in 1989 by R. J. Fisher and M. A. Uman. Further, we present functional expressions for current vs. time, current derivative vs. time, second current derivative vs. time, charge transfer vs. time, and action integral (specific energy) vs. time for first return strokes, for subsequent return strokes, and for continuing currents; and we give sets of constants for these expressions so that they yield approximately the median and extreme negative lightning parameters presented in this report. Expressions for the median negative lightning waveforms are plotted. Finally, we provide information on direct-strike lightning damage to metals such as stainless steel, which could be used as components of storage containers for nuclear waste materials; and we describe UF's new experimental research program to add to the sparse data base on the properties of positive lightning. Our literature survey, referred to above, is included in four Appendices. The following four sections (II, III, IV, and V) of this final report deal with related aspects of the research: Section II. Recommended Direct-Strike Median and Extreme Parameters; Section III. Time-Domain Waveforms for First Strokes, Subsequent Strokes, and Continuing Currents; Section IV. Damage to Metal Surfaces by Lightning Currents; and Section V. Measurement of the Characteristics of Positive Lightning. Results of the literature search used to derive the material in Section II and Section IV are found in the Appendices: Appendix 1. Return Stroke Current, Appendix 2. Continuing Current, Appendix 3. Positive Lightning, and Appendix 4. Lightning Damage to Metal Surfaces.

  1. Observation of Long Ionospheric Recoveries from Lightning-induced Electron Precipitation Events

    Mohammadpour Salut, M.; Cohen, M.


    Lightning strokes induces lower ionospheric nighttime disturbances which can be detected through Very Low Frequency (VLF) remote sensing via at least two means: (1) direct heating and ionization, known as an Early event, and (2) triggered precipitation of energetic electrons from the radiation belts, known as Lightning-induced Electron Precipitation (LEP). For each, the ionospheric recover time is typically a few minutes or less. A small class of Early events have been identified as having unusually long ionospheric recoveries (10s of minutes), with the underlying mechanism still in question. Our study shows for the first time that some LEP events also demonstrate unusually long recovery. The VLF events were detected by visual inspection of the recorded data in both the North-South and East-West magnetic fields. Data from the National Lightning Detection Network (NLDN) are used to determine the location and peak current of the lightning responsible for each lightning-associated VLF perturbation. LEP or Early VLF events are determined by measuring the time delay between the causative lightning discharges and the onset of all lightning-associated perturbations. LEP events typically possess an onset delay greater than ~ 200 msec following the causative lightning discharges, while the onset of Early VLF events is time-aligned (events are distinguished from ducted events based on the location of the causative lightning relative to the precipitation region. From 15 March to 20 April and 15 October to 15 November 2011, a total of 385 LEP events observed at Indiana, Montana, Colorado and Oklahoma VLF sites, on the NAA, NLK and NML transmitter signals. 46 of these events exhibited a long recovery. It has been found that the occurrence rate of ducted long recovery LEP events is higher than nonducted. Of the 46 long recovery LEP events, 33 events were induced by ducted whistlers, and 13 events were associated with nonducted obliquely propagating whistler waves. The occurrence

  2. Characterizing the potential for fault reactivation related to CO2 injection through subsurface structural mapping and stress field analysis, Wellington Field, Sumner County, KS

    Schwab, D.; Bidgoli, T.; Taylor, M. H.


    South-central Kansas has experienced an unprecedented increase in seismic activity since 2013. The spatial and temporal relationship of the seismicity with brine disposal operations has renewed interest in the role of fluids in fault reactivation. This study focuses on determining the suitability of CO2 injection into a Cambro-Ordovician reservoir for long-term storage and a Mississippian reservoir for enhanced oil recovery in Wellington Field, Sumner County, Kansas. Our approach for determining the potential for induced seismicity has been to (1) map subsurface faults and estimate in-situ stresses, (2) perform slip and dilation tendency analysis to identify optimally-oriented faults relative to the estimated stress field, and (3) monitor surface deformation through cGPS data and InSAR imaging. Through the use of 3D seismic reflection data, 60 near vertical, NNE-striking faults have been identified. The faults range in length from 140-410 m and have vertical separations of 3-32m. A number of faults appear to be restricted to shallow intervals, while others clearly cut the top basement reflector. Drilling-induced tensile fractures (N=78) identified from image logs and inversion of earthquake focal mechanism solutions (N=54) are consistent with the maximum horizontal stress (SHmax) oriented ~E-W. Both strike-slip and normal-slip fault plane solutions for earthquakes near the study area suggest that SHmax and Sv may be similar in magnitude. Estimates of stress magnitudes using step rate tests (Shmin = 2666 psi), density logs (Sv = 5308 psi), and calculations from wells with drilling induced tensile fractures (SHmax = 4547-6655 psi) are determined at the gauge depth of 4869ft. Preliminary slip and dilation tendency analysis indicates that faults striking 0°-20° are stable, whereas faults striking 26°-44° may have a moderate risk for reactivation with increasing pore-fluid pressure.

  3. Holocene activities of the Taigu fault zone,Shanxi Province, and their relations with the 1303 Hongdong M=8 earthquake

    谢新生; 江娃利; 王焕贞; 冯西英


    The Taigu fault zone is one of the major 12 active boundary faults of the Shanxi fault-depression system, locatedon the eastern boundary of the Jinzhong basin. As the latest investigation indicated, the fault zone had dislocatedgully terrace of the f1rst order, forming fault-scarp in front of the loess mesa. It has been discovered in many placesin ground surface and trenches that Holocene deposits were dislocated. The latest activity was the 1303 Hongdongearthquake M=8, the fault appeared as right-lateral strike-slip with normal faulting. During that earthquake, theTaigu fault together with the Mianshan western-side fault on the Lingshi upheaval and the Huoshan pediment faulton the eastern boundary of the Linfen basin was being active, forming a surface rupture belt of 160 km in length.Moreover, the Taigu fault were active in the mid-stage of Holocene and near 7 700 aB.P. From these we learnt that,in Shanxi fault-depression system, the run-through activity of two boundary faults of depression-basins mightgenerate great earthquake with M=8.

  4. Lightning hazard reduction at wind farms

    Kithil, R. [National Lightning Safety Institute, Louisville, CO (United States)


    The USA wind farm industry (WFI) largely is centered in low-lightning areas of the State of California. While some evidence of lightning incidents is reported here, the problem is not regarded as serious by most participants. The USA WFI now is moving eastward, into higher areas of lightning activity. The European WFI has had many years experience with lightning problems. One 1995 German study estimated that 80% of wind turbine insurance claims paid for damage compensation were caused by lightning strikes. The European and USA WFI have not adopted site criteria, design fundamentals, or certification techniques aimed at lightning safety. Sufficient evidence about lightning at wind farms is available to confirm that serious potential problems exist.

  5. Lightning climatology in the Congo Basin: detailed analysis

    Soula, Serge; Kigotsi, Jean; Georgis, Jean-François; Barthe, Christelle


    The lightning climatology of the Congo Basin including several countries of Central Africa is analyzed in detail for the first time. It is based on World Wide Lightning Location Network (WWLLN) data for the period from 2005 to 2013. A comparison of these data with the Lightning Imaging Sensor (LIS) data for the same period shows the WWLLN detection efficiency (DE) in the region increases from about 1.70 % in the beginning of the period to 5.90 % in 2013, relative to LIS data, but not uniformly over the whole 2750 km × 2750 km area. Both the annual flash density and the number of stormy days show sharp maximum values localized in eastern of Democratic Republic of Congo (DRC) and west of Kivu Lake, regardless of the reference year and the period of the year. These maxima reach 12.86 fl km-2 and 189 days, respectively, in 2013, and correspond with a very active region located at the rear of the Virunga mountain range characterised with summits that can reach 3000 m. The presence of this range plays a role in the thunderstorm development along the year. The estimation of this local maximum of the lightning density by taking into account the DE, leads to a value consistent with that of the global climatology by Christian et al. (2003) and other authors. Thus, a mean maximum value of about 157 fl km-2 y-1 is found for the annual lightning density. The zonal distribution of the lightning flashes exhibits a maximum between 1°S and 2°S and about 56 % of the flashes located below the equator in the 10°S - 10°N interval. The diurnal evolution of the flash rate has a maximum between 1400 and 1700 UTC, according to the reference year, in agreement with previous works in other regions of the world.

  6. Fault Estimation

    Stoustrup, Jakob; Niemann, H.


    This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis prob-lems are reformulated in the so-called standard problem setup introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis pr...... problems can be solved by standard optimization tech-niques. The proposed methods include: (1) fault diagnosis (fault estimation, (FE)) for systems with model uncertainties; (2) FE for systems with parametric faults, and (3) FE for a class of nonlinear systems.......This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis prob-lems are reformulated in the so-called standard problem setup introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis...

  7. Lightning protection of wind turbines

    Soerensen, T.; Brask, M.H. [DEFU (Denmark); Jensen, F.V.; Raben, N. [SEAS (Denmark); Saxov, J. [Nordjyllandsvaerket (Denmark); Nielsen, L. [Vestkraft (Denmark); Soerensen, P.E. [Risoe National Lab. (Denmark)


    Lightning damage to wind turbines is a serious problem for Danish power companies, who have experienced some cases with very costly lightning damage and a large number of cases with minor damage. The most costly cases include one catastrophic damage to an entire wind turbine, and several cases of destruction of blades, main bearings, generators and control systems. Over the years there have been several hundreds of cases with minor damage - typically damage and interruptions of the control and communication systems, or the power systems. The Danish power companies anticipate that the lightning threat will be even bigger for the large off-shore wind turbine installations that are currently being planned in Denmark. Furthermore, it is known from the off-shore wind turbines at Vindeby in Denmark that the costs of inspection and particularly repair work must be expected to be much higher off-shore as compared to wind turbines on land. These considerations was the background for a two year project concerned with investigation of lighting damages and with the formulation of a DEFU Recommendation for lightning protection of wind turbines, which was published in January 1999. The project was funded by the Danish power companies Elsam, Eltra, Elkraft and by DEFU. (au)

  8. Aircraft Lightning Electromagnetic Environment Measurement

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.


    This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.

  9. A Conjecture Concerning Ball Lightning

    Sturrock, P A


    There is at present no theory that can explain the curious properties of ball lightning. This suggests that we may not be using the most appropriate concepts. The concept of a 'parallel space' may point the way to a valid theory.

  10. Fractal-Based Lightning Channel Length Estimation from Convex-Hull Flash Areas for DC3 Lightning Mapping Array Data

    Bruning, Eric C.; Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Carey, Larry D.; Koshak, William; Peterson, Harold; MacGorman, Donald R.


    We will use VHF Lightning Mapping Array data to estimate NOx per flash and per unit channel length, including the vertical distribution of channel length. What s the best way to find channel length from VHF sources? This paper presents the rationale for the fractal method, which is closely related to the box-covering method.

  11. Jovian Lightning and Moonlit Clouds


    Jovian lightning and moonlit clouds. These two images, taken 75 minutes apart, show lightning storms on the night side of Jupiter along with clouds dimly lit by moonlight from Io, Jupiter's closest moon. The images were taken in visible light and are displayed in shades of red. The images used an exposure time of about one minute, and were taken when the spacecraft was on the opposite side of Jupiter from the Earth and Sun. Bright storms are present at two latitudes in the left image, and at three latitudes in the right image. Each storm was made visible by multiple lightning strikes during the exposure. Other Galileo images were deliberately scanned from east to west in order to separate individual flashes. The images show that Jovian and terrestrial lightning storms have similar flash rates, but that Jovian lightning strikes are a few orders of magnitude brighter in visible light.The moonlight from Io allows the lightning storms to be correlated with visible cloud features. The latitude bands where the storms are seen seem to coincide with the 'disturbed regions' in daylight images, where short-lived chaotic motions push clouds to high altitudes, much like thunderstorms on Earth. The storms in these images are roughly one to two thousand kilometers across, while individual flashes appear hundreds of kilometer across. The lightning probably originates from the deep water cloud layer and illuminates a large region of the visible ammonia cloud layer from 100 kilometers below it.There are several small light and dark patches that are artifacts of data compression. North is at the top of the picture. The images span approximately 50 degrees in latitude and longitude. The lower edges of the images are aligned with the equator. The images were taken on October 5th and 6th, 1997 at a range of 6.6 million kilometers by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office

  12. The Colorado Lightning Mapping Array

    Rison, W.; Krehbiel, P. R.; Thomas, R. J.; Rodeheffer, D.; Fuchs, B.


    A fifteen station Lightning Mapping Array (LMA) was installed in northern Colorado in the spring of 2012. While the driving force for the array was to produce 3-dimensional lightning data to support the Deep Convective Clouds and Chemistry (DC3) Experiment (Barth, this conference), data from the array are being used for several other projects. These include: electrification studies in conjunction with the CSU CHILL radar (Lang et al, this conference); observations of the parent lightning discharges of sprites (Lyons et al, this conference); trying to detect upward discharges triggered by wind turbines, characterizing conditions in which aircraft flying through clouds produce discharges which can be detected by the LMA, and other opportunities, such as observations of lightning in pyrocumulus clouds produced by the High Park Fire west of Fort Collins, CO. All the COLMA stations are solar-powered, and use broadband cellular modems for data communications. This makes the stations completely self-contained and autonomous, allowing a station to be installed anywhere a cellular signal is available. Because most of the stations were installed well away from anthropogenic noise sources, the COLMA is very sensitive. This is evidenced by the numerous plane tracks detected in its the vicinity. The diameter, D, of the COLMA is about 100 km, significantly larger than other LMAs. Because the error in the radial distance r is proportional to (r/D)2, and the error in the altitude z is proportional to (z/D)2, the larger array diameter greatly expands the usable range of the COLMA. The COLMA is able to detect and characterize lighting flashes to a distance of about 350 km from the array center. In addition to a web-based display (, geo-referenced images are produced and updated at one-minute intervals. These geo-referenced images can be used to overlay the real-time lightning data on Google Earth and other mapping software. These displays were used by the DC3

  13. a Time-Resolved Photographic Study of Lightning in the Thunderstorm Research International Program

    Idone, Vincent Peter

    triggered lightning data, it was possible to compare the time-resolved image density with the stroke current as measured at ground. This comparison reveals that the density changes vary approximately linearly with the current changes. This observation, based on only a single event, tentatively suggests an exponential dependence of channel luminosity on channel current. Evaluation of the density-current proportionality in this stroke permits inference of the peak current in the other strokes of the flash via measurement of the peak density change in each time-resolved image. This analysis shows that the stroke peak current appears to be functionally related to the return stroke propagation speed.

  14. Physical and Dynamical Linkages Between Lightning Jumps and Storm Conceptual Models

    Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.


    The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end-to-end physical and dynamical basis for coupling total lightning flash rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, their relationship specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler and polarimetric

  15. On the Relationship between Observed NLDN Lightning ...

    Lightning-produced nitrogen oxides (NOX=NO+NO2) in the middle and upper troposphere play an essential role in the production of ozone (O3) and influence the oxidizing capacity of the troposphere. Despite much effort in both observing and modeling lightning NOX during the past decade, considerable uncertainties still exist with the quantification of lightning NOX production and distribution in the troposphere. It is even more challenging for regional chemistry and transport models to accurately parameterize lightning NOX production and distribution in time and space. The Community Multiscale Air Quality Model (CMAQ) parameterizes the lightning NO emissions using local scaling factors adjusted by the convective precipitation rate that is predicted by the upstream meteorological model; the adjustment is based on the observed lightning strikes from the National Lightning Detection Network (NLDN). For this parameterization to be valid, the existence of an a priori reasonable relationship between the observed lightning strikes and the modeled convective precipitation rates is needed. In this study, we will present an analysis leveraged on the observed NLDN lightning strikes and CMAQ model simulations over the continental United States for a time period spanning over a decade. Based on the analysis, new parameterization scheme for lightning NOX will be proposed and the results will be evaluated. The proposed scheme will be beneficial to modeling exercises where the obs

  16. Predictive modelling of fault related fracturing in carbonate damage-zones: analytical and numerical models of field data (Central Apennines, Italy)

    Mannino, Irene; Cianfarra, Paola; Salvini, Francesco


    Permeability in carbonates is strongly influenced by the presence of brittle deformation patterns, i.e pressure-solution surfaces, extensional fractures, and faults. Carbonate rocks achieve fracturing both during diagenesis and tectonic processes. Attitude, spatial distribution and connectivity of brittle deformation features rule the secondary permeability of carbonatic rocks and therefore the accumulation and the pathway of deep fluids (ground-water, hydrocarbon). This is particularly true in fault zones, where the damage zone and the fault core show different hydraulic properties from the pristine rock as well as between them. To improve the knowledge of fault architecture and faults hydraulic properties we study the brittle deformation patterns related to fault kinematics in carbonate successions. In particular we focussed on the damage-zone fracturing evolution. Fieldwork was performed in Meso-Cenozoic carbonate units of the Latium-Abruzzi Platform, Central Apennines, Italy. These units represent field analogues of rock reservoir in the Southern Apennines. We combine the study of rock physical characteristics of 22 faults and quantitative analyses of brittle deformation for the same faults, including bedding attitudes, fracturing type, attitudes, and spatial intensity distribution by using the dimension/spacing ratio, namely H/S ratio where H is the dimension of the fracture and S is the spacing between two analogous fractures of the same set. Statistical analyses of structural data (stereonets, contouring and H/S transect) were performed to infer a focussed, general algorithm that describes the expected intensity of fracturing process. The analytical model was fit to field measurements by a Montecarlo-convergent approach. This method proved a useful tool to quantify complex relations with a high number of variables. It creates a large sequence of possible solution parameters and results are compared with field data. For each item an error mean value is

  17. Lightning Protection Performance Assessment of Transmission Line Based on ATP model Automatic Generation

    Luo Hanwu


    Full Text Available This paper presents a novel method to solve the initial lightning breakdown current by combing ATP and MATLAB simulation software effectively, with the aims to evaluate the lightning protection performance of transmission line. Firstly, the executable ATP simulation model is generated automatically according to the required information such as power source parameters, tower parameters, overhead line parameters, grounding resistance and lightning current parameters, etc. through an interface program coded by MATLAB. Then, the data are extracted from the generated LIS files which can be obtained by executing the ATP simulation model, the occurrence of transmission lie breakdown can be determined by the relative data in LIS file. The lightning current amplitude should be reduced when the breakdown occurs, and vice the verse. Thus the initial lightning breakdown current of a transmission line with given parameters can be determined accurately by continuously changing the lightning current amplitude, which is realized by a loop computing algorithm that is coded by MATLAB software. The method proposed in this paper can generate the ATP simulation program automatically, and facilitates the lightning protection performance assessment of transmission line.

  18. A Lightning Activity Forecast Scheme Developed for Summer Thunderstorms in South China

    WANG Fei; ZHANG Yijun; DONG Wansheng


    Based on the relationship between lightning flash density and radar echoes and a statistical analysis using satellite and radar observations,a scheme was introduced into the mesoscale model GRAPES(Global and Regional Assimilation and PrEdiction System)to forecast the cloud to ground(CC)flash activities.Because the relationship is a necessary but not sufficient condition for lightning,an additional constraint condition related to temperature of cloud top is added into the scheme to determine whether the lightning activity really occurs.Only if the lightning activity meets the criterion to occur,the CG flash density in a grid is considered to be valid.This was proved to be necessary for reducing the false prediction.Two cases that occurred on the edge of the subtropical high in coastal regions of South China were simulated to examine the efficiency of the scheme.The results showed that the scheme was capable of forecasting lightning activities in South China.The simulated lightning areas agreed with the CG flash observations,and the CG flash density forecast by the model was also consistent with observational results in magnitude.In consideration of the forecast aging of the explicit cloud microphysical scheme in GRAPES,lightning activities can now be forecast accurately within 6 h.

  19. Where are the lightning hotspots on Earth?

    Albrecht, R. I.; Goodman, S. J.; Buechler, D. E.; Blakeslee, R. J.; Christian, H. J., Jr.


    The first lightning observations from space date from the early 1960s and more than a dozen spacecraft orbiting the Earth have flown instruments that recorded lightning signals from thunderstorms over the past 45 years. In this respect, the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS), having just completed its mission (1997-2015), provides the longest and best total (intracloud and cloud-to-ground) lightning data base over the tropics.We present a 16 year (1998-2013) reprocessed data set to create very high resolution (0.1°) TRMM LIS total lightning climatology. This detailed very high resolution climatology is used to identify the Earth's lightning hotspots and other regional features. Earlier studies located the lightning hotspot within the Congo Basin in Africa, but our very high resolution lightning climatology found that the highest lightning flash rate on Earth actually occurs in Venezuela over Lake Maracaibo, with a distinct maximum during the night. The higher resolution dataset clearly shows that similar phenomenon also occurs over other inland lakes with similar conditions, i.e., locally forced convergent flow over a warm lake surface which drives deep nocturnal convection. Although Africa does not have the top lightning hotspot, it comes in a close second and it is the continent with the highest number of lightning hotspots, followed by Asia, South America, North America, and Oceania. We also present climatological maps for local hour and month of lightning maxima, along with a ranking of the highest five hundred lightning maxima, focusing discussion on each continent's 10 highest lightning maxima. Most of the highest continental maxima are located near major mountain ranges, revealing the importance of local topography in thunderstorm development. These results are especially relevant in anticipation of the upcoming availability of continuous total lightning observations from the Geostationary Lightning Mapping (GLM

  20. Lightning attachment process to common buildings

    Saba, M. M. F.; Paiva, A. R.; Schumann, C.; Ferro, M. A. S.; Naccarato, K. P.; Silva, J. C. O.; Siqueira, F. V. C.; Custódio, D. M.


    The physical mechanism of lightning attachment to grounded structures is one of the most important issues in lightning physics research, and it is the basis for the design of the lightning protection systems. Most of what is known about the attachment process comes from leader propagation models that are mostly based on laboratory observations of long electrical discharges or from observations of lightning attachment to tall structures. In this paper we use high-speed videos to analyze the attachment process of downward lightning flashes to an ordinary residential building. For the first time, we present characteristics of the attachment process to common structures that are present in almost every city (in this case, two buildings under 60 m in São Paulo City, Brazil). Parameters like striking distance and connecting leaders speed, largely used in lightning attachment models and in lightning protection standards, are revealed in this work.Plain Language SummarySince the time of Benjamin Franklin, no one has ever recorded high-speed video images of a lightning connection to a common building. It is very difficult to do it. Cameras need to be very close to the structure chosen to be observed, and long observation time is required to register one lightning strike to that particular structure. Models and theories used to determine the zone of protection of a lightning rod have been developed, but they all suffer from the lack of field data. The submitted manuscript provides results from high-speed video observations of lightning attachment to low buildings that are commonly found in almost every populated area around the world. The proximity of the camera and the high frame rate allowed us to see interesting details that will improve the understanding of the attachment process and, consequently, the models and theories used by lightning protection standards. This paper also presents spectacular images and videos of lightning flashes connecting lightning rods that

  1. Using Flow Regime Lightning and Sounding Climatologies to Initialize Gridded Lightning Threat Forecasts for East Central Florida

    Lambert, Winifred; Short, David; Volkmer, Matthew; Sharp, David; Spratt, Scott


    Each morning, the forecasters at the National Weather Service in Melbourne, FL (NWS MLB) produce an experimental cloud-to-ground (CG) lightning threat index map for their county warning area (CWA) that is posted to their web site (httl:// . Given the hazardous nature of lightning in East Central Florida, especially during the warm season months of May September, these maps help users factor the threat of lightning, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of lightning occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative lightning threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The lightning threat index maps are issued for the 24-hour period beginning at 1200 UTC each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Until recently, the forecasters created each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season lightning climatologies that could be used as first-guess inputs to initialize lightning threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent was to improve consistency between forecasters while allowing them to focus on the

  2. The Anthropogenic/Lightning Effects Around Houston: The Houston Environmental Aerosol Thunderstorm (HEAT) Project - 2005

    Orville, R. E.


    A major field program will occur in summer 2005 to determine the sources and causes for the enhanced cloud-to-ground lightning over Houston, Texas. This program will be in association with simultaneous experiments supported by the Environmental Protection Agency (EPA) and the Texas Commission on Environmental Quality (TCEQ), formally the Texas Natural Resource Conservation Commission (TNRCC). Recent studies covering the period 1989-2002 document a 60 percent increase of cloud-to-ground lightning in the Houston area as compared to surrounding background values, which is second in flash density only to the Tampa Bay, Florida area. We suggest that the elevated flash densities could result from several factors, including 1) the convergence due to the urban heat island effect and complex sea breeze (thermal hypothesis), and 2) the increasing levels of air pollution from anthropogenic sources producing numerous small cloud droplets and thereby suppressing mean droplet size (aerosol hypothesis). The latter effect would enable more cloud water to reach the mixed phase region where it is involved in the formation of precipitation and the separation of electric charge, leading to an enhancement of lightning. The primary goals of HEAT are to examine the effects of (1) pollution, (2) the urban heat island, and (3) the complex coastline on storms and lightning characteristics in the Houston area. The transport of air pollutants by Houston thunderstorms will be investigated. In particular, the relative amounts of lightning-produced and convectively transported NOx into the upper troposphere will be determined, and a comparison of the different NOx sources in the urban area of Houston will be developed. The HEAT project is based on the observation that there is an enhancement in cloud-to-ground (CG) lightning. Total lightning (intracloud (IC) and CG) will be measured using a lightning mapping system (LDAR II) to observe if there is an enhancement in intracloud lightning as well.

  3. The effect of lightning NOx production on surface ozone in the continental United States

    Y. Choi


    Full Text Available Lightning NOx emissions calculated using the U.S. National Lightning Detection Network data were found to account for 30% of the total NOx emissions for July–August 2004, a period chosen both for having higher lightning NOx production and high ozone levels, thus maximizing the likelihood that such emissions could impact peak ozone levels. Including such emissions led to modest, but sometimes significant increases in simulated surface ozone when using the Community Multi-scale Air Quality Model (CMAQ. Three model simulations were performed, two with the addition of lightning NOx emissions, and one without. Domain-wide daily maximum 8-h ozone changes due to lightning NOx were less than 2 ppbv in 71% of the cases with a maximum of 10-ppbv; whereas the difference in 1-h ozone was less than 2 ppbv in 77% of the cases with a maximum of 6 ppbv. Daily maximum 1-h and 8-h ozone for grids containing O3 monitoring stations changed slightly, with more than 43% of the cases differing less than 2 ppbv. The greatest differences were 42-ppbv for both 1-h and 8-h O3, though these tended to be on days of lower ozone. Lightning impacts on the season-wide maximum 1-h and 8-h averaged ozone decreased starting from the 1st to 4th highest values (an average of 4th highest, 8-h values is used for attainment demonstration in the U.S.. Background ozone values from the y-intercept of O3 versus NOz curve were 42.2 and 43.9 ppbv for simulations without and with lightning emissions, respectively. Results from both simulations with lightning NOx suggest that while North American lightning production of NOx can lead to significant local impacts on a few occasions, they will have a relatively small impact on typical maximum levels and determination of Policy Relevant Background levels.

  4. The 1st Asian Lightning Protection Forum


    @@ The First Asian Lightning Protection Forum was held on October 28-29, 2003 in Beijing, China.The forum was sponsored by the China Association for Standardization and was organized by Chinese National Committee for Lightning Protection Technology Standardization, Department of Electrical Engineering Tsinghua University, China Electricity Council, Zhongguang High-tech Industrial Development Co.,Ltd, and Lightning Protection Center of Guangdong Province.

  5. Electric systems failures produced by CG lightning in Eastern Amazonia

    Ana Paula Paes dos Santos


    Full Text Available Operational records of power outages of the electric energy distribution systems in eastern Amazonia presented a large number of events attributed to lightning strikes, during the 2006 to 2009 period. The regional electricity concessionary data were compared to actual lightning observations made by SIPAM's LDN system, over two areas where operational sub systems of transmission lines are installed. Statistical relations were drawn between the monthly lightning occurrence density and the number of power outages of the electric systems for both areas studied. The results showed that, although with some delays between these variables peaks, the number of power disruptions has a tendency to follow the behavior of the lightning occurrence densities variations. The numerical correlations were positive and may be useful to the transmission lines maintenance crews at least for the Belém-Castanhal electricity distribution sub system. Evidence was found, that the SST's over certain areas of the Pacific and Atlantic Oceans, influence convection over the area of interest, and may help to prognosticate the periods of intense electric storms, requiring repair readiness for the regional electric systems.

  6. Using Cloud-to-Ground Lightning Climatologies to Initialize Gridded Lightning Threat Forecasts for East Central Florida

    Lambert, Winnie; Sharp, David; Spratt, Scott; Volkmer, Matthew


    Each morning, the forecasters at the National Weather Service in Melbourn, FL (NWS MLB) produce an experimental cloud-to-ground (CG) lightning threat index map for their county warning area (CWA) that is posted to their web site ( . Given the hazardous nature of lightning in central Florida, especially during the warm season months of May-September, these maps help users factor the threat of lightning, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of lightning occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative lightning threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The lightning threat index maps are issued for the 24-hour period beginning at 1200 UTC (0700 AM EST) each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Currently, the forecasters create each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season lightning climatologies that could be used as first-guess inputs to initialize lightning threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent is to increase consistency between forecasters while enabling them to focus on

  7. In-situ Stresses, Pore-fluid Pressures and Uplift Erosion in Relation to Active Thrust Faulting in western Taiwan

    Hung, J.; Yen, P.; Wang, L.


    We have studied the in-situ stresses, pore-fluid pressures and amounts of uplift erosion (UE) from petroleum wells drilled in the Hsinchu-Taichung area of western Taiwan Fold-thrust Belt. The average gradient of regional vertical stress (Sv) calculated from formation density logs is about 23 MPa/km. The magnitude of pore pressure (Pp) is estimated from mud pressure, gas cut and repeat formation test (RFT) in reservoir sandstone, and sonic logs. P-wave travel time in shale (STT) is used to determine the fluid-retention depth (ZFRD) which defines current fully compacted sediments with hydrostatic pressures above and undercompacted, overpressured zones below. Regional ZFRD is ~ 3 km except in the Chuhuangkeng anticline, where ZFRD is at shallower depth (~ 2.2 km) and extremely high pore pressure (λ=0.8) is also observed.. Calculated amounts of UE increase from 0.6 to 4.6 km eastward from outer to inner Foothills belt and correspond to stratigraphy downward and depth upward migration of the ZFRD. Along-strike variation of UE is insignificant. Hydraulic fracturing data including leak-off tests (LOTs) and mini-fracs, as well as qualitative data such as mud loss, are used to constrain the minimum horizontal stress (Shmin). The linear gradient of Shmin is about 17~19 MPa/km, relatively less than that of Sv (~23.60 MPa/km). This implies the in-situ stresses are at strike-slip (SHmax>SV>Shmin) to reverse fault considering focal mechanisms of seismicity are dominant by these two stress regimes in the study area. An upper-bound value of the maximum horizontal stress (SHmax) constrained by frictional limits and the coefficient of friction (μ=0.6) can be estimated from Anderson (1951) faulting criterion. Caliper logs from 8 wells are used to calculate the orientations of the maximum horizontal stresses following the definitions of borehole breakout in World Stress Map. The maximum horizontal stress axis is oriented in NW-SE but local variations occur when passing through

  8. Lightning Protection and Detection System

    Dudley, Kenneth L. (Inventor); Szatkowski, George N. (Inventor); Woodard, Marie (Inventor); Nguyen, Truong X. (Inventor); Ely, Jay J. (Inventor); Wang, Chuantong (Inventor); Mielnik, John J. (Inventor); Koppen, Sandra V. (Inventor); Smith, Laura J. (Inventor)


    A lightning protection and detection system includes a non-conductive substrate material of an apparatus; a sensor formed of a conductive material and deposited on the non-conductive substrate material of the apparatus. The sensor includes a conductive trace formed in a continuous spiral winding starting at a first end at a center region of the sensor and ending at a second end at an outer corner region of the sensor, the first and second ends being open and unconnected. An electrical measurement system is in communication with the sensor and receives a resonant response from the sensor, to perform detection, in real-time, of lightning strike occurrences and damage therefrom to the sensor and the non-conductive substrate material.

  9. High precision analysis of an embryonic extensional fault-related fold using 3D orthorectified virtual outcrops: The viewpoint importance in structural geology

    Tavani, Stefano; Corradetti, Amerigo; Billi, Andrea


    Image-based 3D modeling has recently opened the way to the use of virtual outcrop models in geology. An intriguing application of this method involves the production of orthorectified images of outcrops using almost any user-defined point of view, so that photorealistic cross-sections suitable for numerous geological purposes and measurements can be easily generated. These purposes include the accurate quantitative analysis of fault-fold relationships starting from imperfectly oriented and partly inaccessible real outcrops. We applied the method of image-based 3D modeling and orthorectification to a case study from the northern Apennines, Italy, where an incipient extensional fault affecting well-layered limestones is exposed on a 10-m-high barely accessible cliff. Through a few simple steps, we constructed a high-quality image-based 3D model of the outcrop. In the model, we made a series of measurements including fault and bedding attitudes, which allowed us to derive the bedding-fault intersection direction. We then used this direction as viewpoint to obtain a distortion-free photorealistic cross-section, on which we measured bed dips and thicknesses as well as fault stratigraphic separations. These measurements allowed us to identify a slight difference (i.e. only 0.5°) between the hangingwall and footwall cutoff angles. We show that the hangingwall strain required to compensate the upward-decreasing displacement of the fault was accommodated by this 0.5° rotation (i.e. folding) and coeval 0.8% thickening of strata in the hangingwall relatively to footwall strata. This evidence is consistent with trishear fault-propagation folding. Our results emphasize the viewpoint importance in structural geology and therefore the potential of using orthorectified virtual outcrops.

  10. Infrasound from lightning measured in Ivory Coast from 2004 to 2014

    Farges, Thomas; Le Pichon, Alexis; Ceranna, Lars; Diawara, Adama


    infrasound amplitude with the distance of one order of magnitude per 50 km is found. The detection variability with the arrival azimuth is examined. A non-negligible number of events coming from the shadow zone (30 - 200 km) is found. It is also interesting to note that most of the infrasound related to lightning flashes is due to thunderstorm which occurred more than 200 km away from the station. However, it is hard to deduce any precise characteristics in those cases.

  11. Radio signatures of lightning discharges in exoplanets and brown dwarfs

    Hodosán, Gabriella; Helling, Christiane; Vorgul, Irena


    Lightning related signatures can be found in the whole spectral range from radio to gamma-rays. While for example UV, visible or IR molecular emission (as the lightning discharge causes changes in the local chemistry) depends on the composition of the atmosphere of the extrasolar body, radio signatures do not have this limitation, which means they may give us a universal tool for lightning observations outside the Solar System, both on exoplanets and brown dwarfs. Lightning induced radio signatures have three main types. Sferics emit in the low-frequency (LF) range with a power density peak at 10 kHz on Earth. (Aplin, K. L., 'Electrifying atmospheres', Springer 2013) Whistlers are electromagnetic waves propagating along magnetic field lines and emitting in the very low-frequency (VLF) range. (Desch, S. J. et al. 2002, Rep. Prog. Phys. 65, 955) While Schumann-resonances are VLF lightning discharge-induced electromagnetic oscillations of the earth-ionosphere cavity. (Simões, F. et al. 2012, LPICo 1683, 1052) There are certain factors that limit the observability of radio signatures. Every object with an ionosphere has a low cutoff frequency. This means radio waves with frequencies below this peak-frequency cannot propagate through the atmosphere. For Earth this value is about 5-10 MHz. However, the values for extrasolar atmospheres remain to be determined. Besides that, natural background noises like the galactic radio background or photo-electron noises give a limitation. (Zarka et al. 2012, PSS 74, 156) Putting all together, radio signatures with frequency below 10 MHz might only be observable from space. Waves below 30 kHz would not be able to reach the inner Solar System. (Zarka et al. 2012, PSS 74, 156) We show a general summary of radio signatures and their properties. A table of other lightning discharge signatures that have been observed either on Earth or other Solar System planets is also included. This table, also contains a list of different instruments

  12. Lightning in Colorado forest fire smoke plumes during summer 2012

    Lang, T. J.; Krehbiel, P. R.; Dolan, B.; Lindsey, D.; Rutledge, S. A.; Rison, W.


    lightning by 10-15 minutes. Discharges typically only occurred over the span of a few minutes thereafter, or sporadically over the course of one of more hours. Plume lightning was intra-cloud and relatively small in size, and featured extensive precursor activity. Due to the preponderance of ash in the plumes and the lack of precipitation-sized ice, electrification had to occur via some other mechanism besides standard graupel-based non-inductive mechanisms. Triboelectric charging of the ash particles, aided by reduced breakdown fields at high altitudes, is posited as the primary mechanism behind the lightning in these smoke plumes.

  13. Broadband interferometer observations of a triggered lightning


    The development of positive leader of an artificially triggered lightning has been analyzed based on the data of electric field change, location of radiation source and frequency spectrum obtained by using the broadband interferometer system. The results indicate that radiation from positive leader could be detected within close distance in spite of the relatively weak radiation, while the radiation from negative breakdown processes was relatively stronger.Positive leader developed with few branches, and the initial progression velocity was of the order of 10s m/s. The distribution of power spectrum by 25 MHz high pass filter indicated that the radiation frequency from positive leader maximized at 25-30 MHz, while that from negative breakdown processes maximized at 60-70 MHz.

  14. Lightning Initiation Forecasting: An Operational Dual-Polarimetric Radar Technique

    Woodard, Crystal J.; Carey, L. D.; Petersen, W. A.; Roeder, W. P.


    The objective of this NASA MSFC and NOAA CSTAR funded study is to develop and test operational forecast algorithms for the prediction of lightning initiation utilizing the C-band dual-polarimetric radar, UAHuntsville's Advanced Radar for Meteorological and Operational Research (ARMOR). Although there is a rich research history of radar signatures associated with lightning initiation, few studies have utilized dual-polarimetric radar signatures (e.g., Z(sub dr) columns) and capabilities (e.g., fuzzy-logic particle identification [PID] of precipitation ice) in an operational algorithm for first flash forecasting. The specific goal of this study is to develop and test polarimetric techniques that enhance the performance of current operational radar reflectivity based first flash algorithms. Improving lightning watch and warning performance will positively impact personnel safety in both work and leisure environments. Advanced warnings can provide space shuttle launch managers time to respond appropriately to secure equipment and personnel, while they can also provide appropriate warnings for spectators and players of leisure sporting events to seek safe shelter. Through the analysis of eight case dates, consisting of 35 pulse-type thunderstorms and 20 non-thunderstorm case studies, lightning initiation forecast techniques were developed and tested. The hypothesis is that the additional dual-polarimetric information could potentially reduce false alarms while maintaining high probability of detection and increasing lead-time for the prediction of the first lightning flash relative to reflectivity-only based techniques. To test the hypothesis, various physically-based techniques using polarimetric variables and/or PID categories, which are strongly correlated to initial storm electrification (e.g., large precipitation ice production via drop freezing), were benchmarked against the operational reflectivity-only based approaches to find the best compromise between

  15. [Lightning strikes and lightning injuries in prehospital emergency medicine. Relevance, results, and practical implications].

    Hinkelbein, J; Spelten, O; Wetsch, W A


    Up to 32.2% of patients in a burn center suffer from electrical injuries. Of these patients, 2-4% present with lightning injuries. In Germany, approximately 50 people per year are injured by a lightning strike and 3-7 fatally. Typically, people involved in outdoor activities are endangered and affected. A lightning strike usually produces significantly higher energy doses as compared to those in common electrical injuries. Therefore, injury patterns vary significantly. Especially in high voltage injuries and lightning injuries, internal injuries are of special importance. Mortality ranges between 10 and 30% after a lightning strike. Emergency medical treatment is similar to common electrical injuries. Patients with lightning injuries should be transported to a regional or supraregional trauma center. In 15% of all cases multiple people may be injured. Therefore, it is of outstanding importance to create emergency plans and evacuation plans in good time for mass gatherings endangered by possible lightning.

  16. A Comparative Study on the Positive Lightning Return Stroke Electric Fields in Different Meteorological Conditions

    Chin-Leong Wooi


    Full Text Available Positive cloud-ground lightning is considerably more complex and less studied compared to the negative lightning. This paper aims to measure and characterize the significant parameters of positive return strokes electric field, namely, the zero-to-peak rise time, 10–90% rise time, slow front duration, fast transition rise time (10–90%, zero-crossing time, and opposite polarity overshoot relative to peak. To the best of the authors’ knowledge, this is the first time such detailed characteristics of positive lightning in Malaysia are thoroughly analyzed. A total of 41 positive lightning flashes containing 48 return strokes were analyzed. The average multiplicity is 1.2 strokes per flash. The majority of positive lightning was initiated from the primary positive charge rather than as a byproduct of in-cloud discharges. The cumulative probability distribution of rise time parameters, opposite polarity overshoot relative to peak, and slow front amplitude relative to peak are presented. A comparison between studies in four countries representing tropic, subtropic, and temperate regions was also carried out. Measured parameters in Florida, Sweden, and Japan are generally lower than those in Malaysia. Positive lightning occurrences in tropical regions should be further studied and analyzed to improve our current understanding on positive return strokes.

  17. Search for possible relationship between volcanic ash particles and thunderstorm lightning activity

    Várai, A.; Vincze, M.; Lichtenberger, J.; Jánosi, I. M.


    Explosive volcanic eruptions that eject columns of ash from the crater often generate lightning discharges strong enough to be remotely located by very low frequency radio waves. A fraction of volcanic ash particles can stay and disperse long enough to have an effect on weather phenomena days later such as thunderstorms and lightnings. In this work we report on lightning activity analysis over Europe following two recent series of volcanic eruptions in order to identify possible correlations between ash release and subsequent thunderstorm flash frequency. Our attempts gave negative results which can be related to the fact that we have limited information on local atmospheric variables of high enough resolution, however lightning frequency is apparently determined by very local circumstances.

  18. Cardiac Arrest Secondary to Lightning Strike: Case Report and Review of the Literature.

    Rotariu, Elena L; Manole, Mioara D


    Lightning strike injuries, although less common than electrical injuries, have a higher morbidity rate because of critical alterations of the circulatory system, respiratory system, and central nervous system. Most lightning-related deaths occur immediately after injury because of arrhythmia or respiratory failure. We describe the case of a pediatric patient who experienced cardiorespiratory arrest secondary to a lightning strike, where the Advanced Cardiac Life Support and Basic Life Support chain of survival was well executed, leading to return of spontaneous circulation and intact neurological survival. We review the pathophysiology of lightning injuries, prognostic factors of favorable outcome after cardiac arrest, including bystander cardiopulmonary resuscitation, shockable rhythm, and automatic external defibrillator use, and the importance of temperature management after cardiac arrest.

  19. A study of the relationship between cloud-to-ground lightning and precipitation in the convective weather system in China

    Y. Zhou

    Full Text Available In this paper, the correlation between cloud-to-ground (CG lightning and precipitation has been studied by making use of the data from weather radar, meteorological soundings, and a lightning location system that includes three direction finders about 40 km apart from each other in the Pingliang area of east Gansu province in P. R. China. We have studied the convective systems that developed during two cold front processes passing over the observation area, and found that the CG lightning can be an important factor in the precipitation estimation. The regression equation between the average precipitation intensity (R and the number of CG lightning flashes (L in the main precipitation period is R = 1.69 ln (L - 0.27, and the correlation coefficient r is 0.86. The CG lightning flash rate can be used as an indicator of the formation and development of the convective weather system. Another more exhaustive precipitation estimation method has been developed by analyzing the temporal and spatial distributions of the precipitation relative to the location of the CG lightning flashes. Precipitation calculated from the CG lightning flashes is very useful, especially in regions with inadequate radar cover.

    Key words. Meteorology and atmospheric dynamics (atmospheric electricity; lightning; precipitation

  20. Hydro-Quebec TransEnergie's perspective on overhead transmission line protection against lightning

    Dutil, A. [Hydro-Quebec, Montreal, PQ (Canada). TransEnergie Div.


    Hydro-Quebec TransEnergie's interest in transmission line surge arresters (TLSA) was discussed. The utility conducted studies regarding the use of TLSAs to reduce outages caused by lightning in overhead transmission lines having voltages of 52 to 330 kV. It was determined that in some cases, TLSA is the only solution to reducing flashover initiated by lightning. This paper presented the results of 4 different TLSA configurations in which the impact of grounding resistance on TLSA performance was examined in an effort to determine the most effective configuration. The study revealed that lightning flashovers could be reduced by 70 per cent by installing 1 TLSA on every 2 poles of a 52 kV transmission line. The TLSA should be mounted on one pole structure and the earth wire on the unprotected poles should be removed. According to several tests conducted at Hydro-Quebec's Institut de Recherche en Electricite du Quebec (IREQ), the energy absorption capability of arresters from 4 different manufacturers proved to be at least 6 kJ/kv. The arresters failure rate was estimated to 3 per cent every time a lightning strike occurred on a transmission line. It was suggested that a 100 km long line with one pole every 60 meters should not have more than one arrester failure per year. The arresters must be installed with a mechanical device that could disconnect a failed unit from the transmission system to avoid a permanent fault on the network. It was concluded that TLSAs are useful in reducing lightning flashovers caused by lightning. However, Hydro-Quebec TransEnergie still has concerns regarding their cost, reliability, impact on line maintenance, testing difficulties in the field, mechanical stress on the conductors, and their ability to withstand dielectric behaviour under ice. tabs., figs.

  1. Seasonal prediction of lightning activity in North Western Venezuela: Large-scale versus local drivers

    Muñoz, Á. G.; Díaz-Lobatón, J.; Chourio, X.; Stock, M. J.


    The Lake Maracaibo Basin in North Western Venezuela has the highest annual lightning rate of any place in the world (~ 200 fl km- 2 yr- 1), whose electrical discharges occasionally impact human and animal lives (e.g., cattle) and frequently affect economic activities like oil and natural gas exploitation. Lightning activity is so common in this region that it has a proper name: Catatumbo Lightning (plural). Although short-term lightning forecasts are now common in different parts of the world, to the best of the authors' knowledge, seasonal prediction of lightning activity is still non-existent. This research discusses the relative role of both large-scale and local climate drivers as modulators of lightning activity in the region, and presents a formal predictability study at seasonal scale. Analysis of the Catatumbo Lightning Regional Mode, defined in terms of the second Empirical Orthogonal Function of monthly Lightning Imaging Sensor (LIS-TRMM) and Optical Transient Detector (OTD) satellite data for North Western South America, permits the identification of potential predictors at seasonal scale via a Canonical Correlation Analysis. Lightning activity in North Western Venezuela responds to well defined sea-surface temperature patterns (e.g., El Niño-Southern Oscillation, Atlantic Meridional Mode) and changes in the low-level meridional wind field that are associated with the Inter-Tropical Convergence Zone migrations, the Caribbean Low Level Jet and tropical cyclone activity, but it is also linked to local drivers like convection triggered by the topographic configuration and the effect of the Maracaibo Basin Nocturnal Low Level Jet. The analysis indicates that at seasonal scale the relative contribution of the large-scale drivers is more important than the local (basin-wide) ones, due to the synoptic control imposed by the former. Furthermore, meridional CAPE transport at 925 mb is identified as the best potential predictor for lightning activity in the Lake

  2. Integral lightning protection system in petroleum facilities

    Torres, Horacio; Gallego, Luis; Montana, Johny; Younes, Camilo; Rondon, Daniel; Gonzalez, Diego; Herrera, Javier; Perez, Ernesto; Vargas, Mauricio; Quintana, Carlos; Salgado, Milton [Universidad Nacional de Colombia, Bogota (Colombia)]. E-mail:


    This paper presents an Integral Lightning Protection System, focused mainly in petroleum facilities and applied to a real case in Colombia, South America. As introduction it is presented a summary of the incidents happened in last years, a diagnosis and the proposal of solution. Finally, as part of the analysis, a lightning risk assessment for the Central Process Facility is showed. (author)

  3. Lightning-caused fires in Central Spain

    Nieto Solana, Hector; Aguado, Inmaculada; García, Mariano;


    a high occurrence. The research was conducted between May and September, which happens to be the most lightning-fire prone period in Spain, for a three year interval starting in 2002 up to 2004. A time-invariant model for lightning-caused fire occurrence was developed for each region at a spatial...

  4. A model for lightning in littoral areas

    Blaj, M.A.; Leferink, Frank Bernardus Johannes


    The littoral or coastal areas are different compared to the maritime or continental areas considering lightning. Only the last years some research about these areas has been carried out. The need for a model, regarding the lightning activity in these areas is much needed. And now, with the changes i

  5. Lightning protecting materials used on radar system

    Blaj, M.A.; Damstra, Geert C.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes


    Because of the extensive use in modern systems of very sensitive electronic components, lightning strikes does not represent only a threat, but something that cannot be neglected anymore and safety hazards caused by direct and indirect lightning to the aircraft or naval industry. Everyday new materi

  6. When Lightning Strikes a Second Time

    Allen, Kent


    The chances of lightning striking twice are infinitesimal, at best. What are the odds, in middle age, of being struck with a jarring bolt of figurative lightning, then a few months later being an eyewitness as the same sizzle in the sky jolts a group of students--those decision-makers of tomorrow? The author describes two experiences that proved…

  7. Network Fault Diagnosis Using DSM

    Jiang Hao; Yan Pu-liu; Chen Xiao; Wu Jing


    Difference similitude matrix (DSM) is effective in reducing information system with its higher reduction rate and higher validity. We use DSM method to analyze the fault data of computer networks and obtain the fault diagnosis rules. Through discretizing the relative value of fault data, we get the information system of the fault data. DSM method reduces the information system and gets the diagnosis rules. The simulation with the actual scenario shows that the fault diagnosis based on DSM can obtain few and effective rules.

  8. The GOES-R Lightning Mapper Sensor

    Buechler, Dennis; Christian, Hugh; Goodman, Steve


    The Lightning Mapper Sensor on GOES-R builds on previous measurements of lightning from low earth orbit by the OTD (Optical Transient Detector) and LIS (Lightning Imaging Sensor) sensors. Unlike observations from low earth orbit, the GOES-R platform will allow continuous monitoring of lightning activity over the Continental United States and southern Canada, Central and South America, and portions of the Atlantic and Pacific Oceans. The LMS will detect total (cloud-to-ground and intracloud) lightning at storm scale resolution (approx. 8 km) using a highly sensitive Charge Coupled Device (CCD) detector array. Discrimination between lightning optical transients and a bright sunlit background scene is accomplished by employing spectral, spatial, and temporal filtering along with a background subtraction technique. The result is 24 hour detection capability of total lightning. These total lightning observations can be made available to users within about 20 seconds. Research indicates a number of ways that total lightning observations from LMS could benefit operational activities, including 1) potential increases in lead times and reduced false alarms for severe thunderstorm and tornado Warnings, 2) improved routing of &rail around thunderstorms, 3) support for spacecraft launches and landings, 4) improved ability to monitor tropical cyclone intensity, 5) ability to monitor thunderstorm intensification/weakening during radar outages or where radar coverage is poor, 6) better identification of deep convection for the initialization of numerical prediction models, 7) improved forest fire forecasts, 8) identification of convective initiation, 9) identification of heavy convective snowfall, and 10) enhanced temporal resolution of storm evolution (1 minute) than is available from radar observations. Total lightning data has been used in an operational environment since July 2003 at the Huntsville, Alabama National Weather Service office. Total lightning measurements are

  9. Lightning Protection of Floating Roof Tanks



    Full Text Available Prior to export, processed crude oil is stored in Floating Roof Tanks (FRT to further allow any trapped gas within the crude oil to escape, as this stabilises the crude oil. In the oil and gas industry, FRT’s are vital in the processing of crude oil to the acceptable export specification.In the tropics and other lightning prone regions, lightning induced floating roof tank fire constitutes a major threat to crude oil production. Among others, a single lightning incident could result in the loss of life, product and production time, avoidable incident review time, damaged equipment, wasted repair cost, bad publicity and loss of income.This paper therefore, is aimed at providing an effective solution to the menace of lightning induced tank fire by focussing on the starting process of the lightning induced fire and proposing alternative concepts for breaking the fire triangle before fire ensues

  10. Lightning-caused fires in Central Spain

    Nieto Solana, Hector; Aguado, Inmaculada; García, Mariano;


    Lightning-caused fire occurrence has been modelled for two different Spanish regions, Madrid andAragon, based on meteorological, terrain, and vegetation variables. The model was built on two very contrasting regions, one presenting low number of lightning-caused fires whereas the other presented...... a high occurrence. The research was conducted between May and September, which happens to be the most lightning-fire prone period in Spain, for a three year interval starting in 2002 up to 2004. A time-invariant model for lightning-caused fire occurrence was developed for each region at a spatial...... resolution of 3 km ×3 km. The probabilistic models were based on the logistic regression, aiming to explain the probability of having at least a lightning-fire during the three year period. Results showed that the number of thunderstorms during the three-year period was the most significantvariable...

  11. Spatial variations in fault friction related to lithology from rupture and afterslip of the 2014 South Napa, California, earthquake

    Michael Floyd,; Richard Walters,; John Elliot,; Gareth Funning,; Svarc, Jerry L.; Murray, Jessica R.; Andy Hooper,; Yngvar Larsen,; Petar Marinkovic,; Roland Burgmann,; Johanson, Ingrid; Tim Wright,


    Following earthquakes, faults are often observed to continue slipping aseismically. It has been proposed that this afterslip occurs on parts of the fault with rate-strengthening friction that are stressed by the mainshock, but our understanding has been limited by a lack of immediate, high-resolution observations. Here we show that the behavior of afterslip following the 2014 South Napa earthquake varied over distances of only a few kilometers. This variability cannot be explained by coseismic stress changes alone. We present daily positions from continuous and survey GPS sites that we re-measured within 12 hours of the mainshock, and surface displacements from the new Sentinel-1 radar mission. This unique geodetic data set constrains the distribution and evolution of coseismic and postseismic fault slip with exceptional resolution in space and time. We suggest that the observed heterogeneity in behavior is caused by lithological controls on the frictional properties of the fault plane.

  12. Disposition of Lightning Activity Due to Pollution Load during Dissimilar Seasons as Observed from Satellite and Ground-Based Data

    Anirban Middey


    Full Text Available The precise role of air pollution on the climate and local weather has been an issue for quite a long time. Among the diverse issues, the effects of air pollution on lightning are of recent interest. Exploration over several years (2004 to 2011 has been made over Gangetic West Bengal of India using lightning flash data from TRMM-LIS (Tropical Rainfall Measuring Mission-Lightning Imaging Sensor, atmospheric pollutants, and rainfall data during pre-monsoon (April and May and monsoon (June, July, August and September seasons. Near-surface pollutants such as PM10 and SO2 have a good positive association with aerosol optical depth (AOD for both the pre-monsoon and monsoon months. High atmospheric aerosol loading correlates well with pre-monsoon and monsoon lightning flashes. However, rainfall has a dissimilar effect on lightning flashes. Flash count is positively associated with pre-monsoon rainfall (r = 0.64, but the reverse relation (r = −0.4 is observed for monsoon rainfall. Apart from meteorological factors, wet deposition of atmospheric pollutant may be considered a crucial factor for decreased lightning flash count in monsoon. The variation in the monthly average tropospheric column amount of NO2, from the Tropospheric Emission Monitoring Internet Service (TEMIS, is synchronic with average lightning flash rate. It has a good linear association with flash count for both pre-monsoon and monsoon seasons. The effect of lightning on tropospheric NO2 production is evident from the monthly average variation in NO2 on lightning and non-lightning days.

  13. Characteristics of the Radiation Field Waveforms Produced by Lightning Return Strokes

    Lee, Bok-Hee; Eom, Ju-Hong; Kang, Sung-Man; Paek, Seung-Kwon; Kawamura, Tatsuo


    Some features of the radiation field waveforms produced by cloud-to-ground lightning return strokes were investigated. A transient analyzer was used together with electric and magnetic field measuring devices with frequency bandwidths of 200 Hz to 1.6 MHz and 270 Hz to 2.3 MHz, respectively. The initial peak of the first lightning return stroke fields is followed by several large subsidiary peaks, whose amplitudes are a fraction of that of the initial peak and decrease with time. The subsidiary peaks of the first lightning return stroke fields may be caused by the effect of branches of leader channels. The mean amplitude ratios of the subsidiary peaks to the first return stroke field peak were widely distributed over the ranges of 0.25-0.8, and the mean time interval between the subsidiary peaks ranged from 5 to 15 μs. Detailed statistical analysis showed that the time interval between the subsidiary peaks and the ratio of the subsidiary peaks to the first lightning return stroke field peak in the present work are less than those obtained in subtropical and tropical regions. The parameters characterizing the wave tail of lightning return stroke fields are closely related to the propagation velocity and length of return stroke throughout the entire leader channel, and the subsidiary large pulses in the wave tail of return stroke fields seem to be associated with the resonance in major branches of lightning return stroke channels.

  14. A Total Lightning Perspective of the 20 May 2013 Moore, Oklahoma Supercell

    Stano, Geoffrey T.; Schultz, Christopher J.; Carey, Lawrence D.; MacGorman, Don R.; Calhoun, Kristin M.


    In the early afternoon of 20 May 2013, a storm initiated to the west-southwest of Newcastle, Oklahoma. This storm would rapidly intensify into the parent supercell of the tornado that struck the city of Moore, Oklahoma. This article describes what contributions total lightning observations from the Oklahoma Lightning Mapping Array could provide to operational forecasters had these observations been available in real-time. This effort includes a focus on the GOES-R pseudo-geostationary lightning mapper demonstration product as well as the NASA SPoRT / Meteorological Development Laboratory's total lightning tracking tool. These observations and tools identified several contributions. Two distinct lightning jumps at 1908 and 1928 UTC provided a lead time of 19 minutes ahead of severe hail and 26 minutes ahead of the Moore, Oklahoma tornado's touchdown. These observations provide strong situational awareness to forecasters, as the lightning jumps are related to the rapid strengthening of the storm's updraft and mesocyclone and serve as a precursor to the stretching of the storm vortex ahead severe weather.

  15. Fault-related fold kinematics recorded by terrestrial growth strata, Sant Llorenç de Morunys, Pyrenees Mountains, NE Spain

    Carrigan, James H.; Anastasio, David J.; Kodama, Kenneth P.; Parés, Josep M.


    Foreland basin growth strata are ideal recorders of deformation rates and kinematics in tectonically active regions. This study develops a high-resolution chronostratigraphic age model to determine folding rates in the Eocene-Oligocene terrestrial growth strata of the Berga Conglomerate Group, NE Spain. The Berga Conglomerate Group was sampled for rock magnetic, magnetostratigraphic, and magnetic susceptibility (χ) cyclostratigraphy analyses. Analysis of rock magnetic measurements indicate a mixed mineral assemblage with both paramagnetic and ferromagnetic minerals. A new magnetic reversal stratigraphy constrains the time frame of folding and is in agreement with previous interpretations. Time series analysis of χ variations show statistically significant power at expected orbital frequencies and provides precession-scale (20 kyr) temporal resolution. Strain measurements including anisotropy of magnetic susceptibility (AMS) fabrics and bedding plane strain worm burrow distortion are consistent with fixed hinge, flexural folding kinematics. Fault-related folding was modeled using χ cyclostratigraphy timing and strain measurement kinematic constraints. The onset of folding was at 33.85 Ma and the end of deformation is less constrained but is younger than 31.06 Ma. Deformation and sediment accumulation rates are unsteady at 20 kyr time scales but appear artificially steady at polarity chron time scales.

  16. A refinement of the chronology of rift-related faulting in the Broadly Rifted Zone, southern Ethiopia, through apatite fission-track analysis

    Balestrieri, Maria Laura; Bonini, Marco; Corti, Giacomo; Sani, Federico; Philippon, Melody


    To reconstruct the timing of rift inception in the Broadly Rifted Zone in southern Ethiopia, we applied the fission-track method to basement rocks collected along the scarp of the main normal faults bounding (i) the Amaro Horst in the southern Main Ethiopian Rift and (ii) the Beto Basin in the Gofa Province. At the Amaro Horst, a vertical traverse along the major eastern scarp yielded pre-rift ages ranging between 121.4 ± 15.3 Ma and 69.5 ± 7.2 Ma, similarly to two other samples, one from the western scarp and one at the southern termination of the horst (103.4 ± 24.5 Ma and 65.5 ± 4.2 Ma, respectively). More interestingly, a second traverse at the Amaro northeastern terminus released rift-related ages spanning between 12.3 ± 2.7 and 6.8 ± 0.7 Ma. In the Beto Basin, the ages determined along the base of the main (northwestern) fault scarp vary between 22.8 ± 3.3 Ma and 7.0 ± 0.7 Ma. We ascertain through thermal modeling that rift-related exhumation along the northwestern fault scarp of the Beto Basin started at 12 ± 2 Ma while in the eastern margin of the Amaro Horst faulting took place later than 10 Ma, possibly at about 8 Ma. These results suggest a reconsideration of previous models on timing of rift activation in the different sectors of the Ethiopian Rift. Extensional basin formation initiated more or less contemporaneously in the Gofa Province (~ 12 Ma) and Northern Main Ethiopian Rift (~ 10-12 Ma) at the time of a major reorganization of the Nubia-Somalia plate boundary (i.e., 11 ± 2 Ma). Afterwards, rift-related faulting involved the Southern MER (Amaro Horst) at ~ 8 Ma, and only later rifting seemingly affected the Central MER (after ~ 7 Ma).

  17. Draft IEC 61400-24 wind turbines: lightning protection blades

    Hermoso Alameda, Blas; Montañá Puig, Juan


    Wind turbine blades are the most exposed parts of the turbine, and would experience the full impact from the electric fields as associated with the lightning attachment process, the lightning currents, and the magnetic field associated with lightning currents.At some point in time hopes were high that lightning would not strike blades made of non-conducting material only, but practical experiences have clearly demonstrated that this is not the case. Lightning does in fact st...

  18. Spatial Variation of the Correlated Color Temperature of Lightning Channel

    Shimoji, Nobuaki; Aoyama, Ryoma


    In present work, we propose the analysis method of lightning based on the color analysis. We analyzed the digital still images in which the cloud-to-ground (CG) and intracloud (IC) lightning flashes are shown. Applying some digital image processing techniques, we extracted lightning channels. Then, the correlated color temperature (CCT) of the extracted lightning channels was obtained by mapping digital pixels of the extracted lightning channels to CIE 1931 xy-chromaticity diagram. Our result...

  19. Fault-Related CO2 Degassing, Geothermics, and Fluid Flow in Southern California Basins--Physiochemical Evidence and Modeling

    Garven, Grant [Tufts University


    Our studies have had an important impact on societal issues. Experimental and field observations show that CO2 degassing, such as might occur from stored CO2 reservoir gas, can result in significant stable isotopic disequilibrium. In the offshore South Ellwood field of the Santa Barbara channel, we show how oil production has reduced natural seep rates in the area, thereby reducing greenhouse gases. Permeability is calculated to be ~20-30 millidarcys for km-scale fault-focused fluid flow, using changes in natural gas seepage rates from well production, and poroelastic changes in formation pore-water pressure. In the Los Angeles (LA) basin, our characterization of formation water chemistry, including stable isotopic studies, allows the distinction between deep and shallow formations waters. Our multiphase computational-based modeling of petroleum migration demonstrates the important role of major faults on geological-scale fluid migration in the LA basin, and show how petroleum was dammed up against the Newport-Inglewood fault zone in a “geologically fast” interval of time (less than 0.5 million years). Furthermore, these fluid studies also will allow evaluation of potential cross-formational mixing of formation fluids. Lastly, our new study of helium isotopes in the LA basin shows a significant leakage of mantle helium along the Newport Inglewood fault zone (NIFZ), at flow rates up to 2 cm/yr. Crustal-scale fault permeability (~60 microdarcys) and advective versus conductive heat transport rates have been estimated using the observed helium isotopic data. The NIFZ is an important deep-seated fault that may crosscut a proposed basin decollement fault in this heavily populated area, and appears to allow seepage of helium from the mantle sources about 30 km beneath Los Angeles. The helium study has been widely cited in recent weeks by the news media, both in radio and on numerous web sites.

  20. Determination of the fault plane and rupture size of the 2013 Santa Cruz earthquake, Bolivia, 5.2 Mw, by relative location of the aftershocks

    Rivadeneyra-Vera, C.; Assumpção, M.; Minaya, E.; Aliaga, P.; Avila, G.


    The Central Andes of southern Bolivia is a highly seismic region with many active faults, that could generate earthquakes up to 8.9 Mw. In 2013, an earthquake of 5.2 Mw occurred in Santa Cruz de la Sierra, in the sub-Andean belt, close to the Mandeyapecua fault, one of the most important reverse faults in Bolivia. Five larger aftershocks were reported by the International Seismological Centre (ISC) and 33 smaller aftershocks were recorded by the San Calixto Observatory (OSC) in the two months after the mainshock. Distances between epicenters of the events were up to 36 km, which is larger than expected for an earthquake of this magnitude. Using data from South American regional stations and the relative location technique with Rayleigh waves, the epicenters of the five larger aftershocks of the Santa Cruz series were determined in relation to the mainshock. This method enabled to achieve epicentral locations with uncertainties smaller than 1 km. Additionally, using data of three Bolivian stations (MOC, SIV and LPAZ) eight smaller aftershocks, recorded by the OSC, were relocated through correlation of P and S waves. The results show a NNW-SSE trend of epicenters and suggest an E dipping plane. The maximum distance between the aftershocks is 14 km, which is not consistent with the expected subsurface rupture length, in accordance with the magnitude of the mainshock. The events are located away from the Mandeyapecua fault and show an opposite dip, demonstrating that these events were generated by another fault in the area, that had not been well studied yet.

  1. Use of integrated analogue and numerical modelling to predict tridimensional fracture intensity in fault-related-folds.

    Pizzati, Mattia; Cavozzi, Cristian; Magistroni, Corrado; Storti, Fabrizio


    Fracture density pattern predictions with low uncertainty is a fundamental issue for constraining fluid flow pathways in thrust-related anticlines in the frontal parts of thrust-and-fold belts and accretionary prisms, which can also provide plays for hydrocarbon exploration and development. Among the drivers that concur to determine the distribution of fractures in fold-and-thrust-belts, the complex kinematic pathways of folded structures play a key role. In areas with scarce and not reliable underground information, analogue modelling can provide effective support for developing and validating reliable hypotheses on structural architectures and their evolution. In this contribution, we propose a working method that combines analogue and numerical modelling. We deformed a sand-silicone multilayer to eventually produce a non-cylindrical thrust-related anticline at the wedge toe, which was our test geological structure at the reservoir scale. We cut 60 serial cross-sections through the central part of the deformed model to analyze faults and folds geometry using dedicated software (3D Move). The cross-sections were also used to reconstruct the 3D geometry of reference surfaces that compose the mechanical stratigraphy thanks to the use of the software GoCad. From the 3D model of the experimental anticline, by using 3D Move it was possible to calculate the cumulative stress and strain underwent by the deformed reference layers at the end of the deformation and also in incremental steps of fold growth. Based on these model outputs it was also possible to predict the orientation of three main fractures sets (joints and conjugate shear fractures) and their occurrence and density on model surfaces. The next step was the upscaling of the fracture network to the entire digital model volume, to create DFNs.

  2. Lightning activity and precipitation structure of hailstorms

    FENG GuiLi; QIE XiuShu; YUAN Tie; NIU ShuZhen


    By using the cloud-to-ground (CG) lightning location data from the lightning detection network of Henan Province, surface Doppler radar data and standard orbit data of PR, TMI and LIS on TRMM satellite, the apatjal and temporal characteristice of CG lightning flashes in 10 severe hailstorms are analyzed. The results show that the percentage of+CG lightning in these hailstorms is high with an average value of 45.5%.There is a distinct increase in CG flash rate during the rapid development stage of hailstorms. The hailstone falling corresponds to an active positive flash period, and the increase of+CG flash rate is generally accompanied with a decrease of-CG flash rate. The flash rate declines rapidly during the dissipating stage of hailstorms. The precipitation structure and lightning activity in two typical hailstorms are studied in detail. It is found that strong convective cells with reflectivity greater than 30dBZ mainly are situated in the front region of hailstorms, whereas the trailing stratiform region is in the rear part of the hailstorme. The maximum heights of echo top are higher than 14km.Convective rain contributes much more rainfall to the total than stratiform rain, and the convective rain takes about 85% and 97% of the total in the two cases, respectively. Total lightning in the hailstorms is very active with the flash rate up to 183 fl/min and 55 fl/min, respectively. The results also indicate that most lightning flashes occurred in the echo region greater than 30dBZ and its immediate periphery. The probability of lightning occurrence is 20 times higher in the convective region than in the stratiform region. The result suggests that the lightning information is helpful to the identification of convective rain region. The linear relationship between flash rate and ice water content is disclosed primarily.

  3. Lightning activity and precipitation structure of hailstorms


    By using the cloud-to-ground (CG) lightning location data from the lightning detection network of He- nan Province, surface Doppler radar data and standard orbit data of PR, TMI and LIS on TRMM satellite, the spatial and temporal characteristics of CG lightning flashes in 10 severe hailstorms are analyzed. The results show that the percentage of +CG lightning in these hailstorms is high with an average value of 45.5%. There is a distinct increase in CG flash rate during the rapid development stage of hailstorms. The hailstone falling corresponds to an active positive flash period, and the increase of +CG flash rate is generally accompanied with a decrease of –CG flash rate. The flash rate declines rapidly during the dissipating stage of hailstorms. The precipitation structure and lightning activity in two typical hail- storms are studied in detail. It is found that strong convective cells with reflectivity greater than 30dBZ mainly are situated in the front region of hailstorms, whereas the trailing stratiform region is in the rear part of the hailstorms. The maximum heights of echo top are higher than 14 km. Convective rain con- tributes much more rainfall to the total than stratiform rain, and the convective rain takes about 85% and 97% of the total in the two cases, respectively. Total lightning in the hailstorms is very active with the flash rate up to 183 fl/min and 55 fl/min, respectively. The results also indicate that most lightning flashes occurred in the echo region greater than 30 dBZ and its immediate periphery. The probability of lightning occurrence is 20 times higher in the convective region than in the stratiform region. The result suggests that the lightning information is helpful to the identification of convective rain region. The linear relationship between flash rate and ice water content is disclosed primarily.

  4. Geometrical Effects on the Electromagnetic Radiation from Lightning Return Strokes

    Willett, J. C.; Smith, D. A.; LeVine, D. M.; Zukor, Dorothy J. (Technical Monitor)


    The morphological difference between the electromagnetic radiation-field waveforms of "first" and "subsequent" return strokes in cloud-to-ground lightning flashes is well known and can be used to identify the formation of new channels to ground. This difference is generally believed due to the existence of branches on first-stroke channels, whereas subsequent strokes re-illuminate only the main channel of a previous stroke; but experimental evidence for this hypothesis is relatively weak. It has been argued for the influence of channel geometry on the fine structure of radiation from subsequent return strokes by comparing the field-change waveforms recorded at the same station from strokes within the same flash and between different flashes of both natural and triggered lightning. The present paper introduces new evidence for both of these hypotheses from a comparison of waveforms between sensors in different directions from the same stroke.

  5. Fault diagnosis

    Abbott, Kathy


    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  6. Process Analysis of Double Circuit Transmission Line Trip-out on the Same Tower Due to Lightning

    DUAN Da-peng; REN Zhi-gang; WANG Peng; YE Kuan; CHANG Xiao-qi; LI Wei


    In recent years,several failures of double circuit transmission line on the same tower due to lightning were happened in Beijing power grid.Although it can be reclosed successful,the lightning strike caused a grave threat to the power grid security.The cause of the accident and the accident process were studied for the sake of further understanding of the impact of lightning on power grid.As an example,110 kV double circuit transmission line(Xilong-line) was analyzed.At first,the system topology was given.Through the analysis on relay protection actions and the fault recorder data,over voltageon the insulator strings was calculated.Based on the analysis and the calculation,accident cause and the process were presented respectively.Secondly,it comes to the conclusion that the lightning failure was caused by counterattack.The wave of the lightning over voltage would spread to the not grounded neutral point of the transformers,and make the neutral protective gap breakdown,then cause freewheeling with the frequency of 50 Hz.As results of the relay protection,the double circuit transmission line all tripped out.Finally,the causes of the accident were proposed that included terrain features,large corner towers,strong thunderstorm weather and poor grounded contact of the tower.

  7. Lightning strike-induced brachial plexopathy.

    Bhargava, Amita N; Kasundra, Gaurav M; Khichar, Subhakaran; Bhushan, Bharat S K


    We describe a patient who presented with a history of lightning strike injury. Following the injury, he sustained acute right upper limb weakness with pain. Clinically, the lesion was located to the upper and middle trunk of the right brachial plexus, and the same confirmed with electrophysiological studies. Nerve damage due to lightning injuries is considered very rare, and a plexus damage has been described infrequently, if ever. Thus, the proposed hypothesis that lightning rarely causes neuropathy, as against high-voltage electric current, due to its shorter duration of exposure not causing severe burns which lead to nerve damage, needs to be reconsidered.

  8. An architecture for fault tolerant controllers

    Niemann, Hans Henrik; Stoustrup, Jakob


    degradation in the sense of guaranteed degraded performance. A number of fault diagnosis problems, fault tolerant control problems, and feedback control with fault rejection problems are formulated/considered, mainly from a fault modeling point of view. The method is illustrated on a servo example including......A general architecture for fault tolerant control is proposed. The architecture is based on the (primary) YJBK parameterization of all stabilizing compensators and uses the dual YJBK parameterization to quantify the performance of the fault tolerant system. The approach suggested can be applied...... for additive faults, parametric faults, and for system structural changes. The modeling for each of these fault classes is described. The method allows to design for passive as well as for active fault handling. Also, the related design method can be fitted either to guarantee stability or to achieve graceful...

  9. Response of Global Lightning Activity Observed by the TRMM/LIS During Warm and Cold ENSO Phases

    Chronis, Themis G.; Cecil, Dan; Goodman, Steven J.; Buechler, Dennis


    This paper investigates the response of global lightning activity to the transition from the warm (January February March-JFM 1998) to the cold (JFM 1999) ENSO phase. The nine-year global lightning climatology for these months from the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) provides the observational baseline. Flash rate density is computed on a 5.0x5.0 degree lat/lon grid within the LIS coverage area (between approx.37.5 N and S) for each three month period. The flash rate density anomalies from this climatology are examined for these months in 1998 and 1999. The observed lightning anomalies spatially match the documented general circulation features that accompany the warm and cold ENSO events. During the warm ENSO phase the dominant positive lightning anomalies are located mostly over the Western Hemisphere and more specifically over Gulf of Mexico, Caribbean and Northern Mid-Atlantic. We further investigate specifically the Northern Mid-Atlantic related anomaly features since these show strong relation to the North Atlantic Oscillation (NAO). Furthermore these observed anomaly patterns show strong spatial agreement with anomalous upper level (200 mb) cold core cyclonic circulations. Positive sea surface temperature anomalies during the warm ENSO phase also affect the lightning activity, but this is mostly observed near coastal environments. Over the open tropical oceans, there is climatologically less lightning and the anomalies are less pronounced. Warm ENSO related anomalies over the Eastern Hemisphere are most prominent over the South China coast. The transition to the cold ENSO phase illustrates the detected lightning anomalies to be more pronounced over East and West Pacific. A comparison of total global lightning between warm and cold ENSO phase reveals no significant difference, although prominent regional anomalies are located over mostly oceanic environments. All three tropical "chimneys" (Maritime Continent, Central

  10. Lightning Attachment Estimation to Wind Turbines by Utilizing Lightning Location Systems

    Vogel, Stephan; Holbøll, Joachim; Lopez, Javier


    The goal of a lightning exposure assessment is to identify the number, type and characteristics of lightning discharges to a certain structure. There are various Lightning Location System (LLS) technologies available, each of them are characterized by individual performance characteristics...... three different wind power plant locations are analyzed and the impact of varying data qualities is evaluated regarding the ability to detect upward lightning. This work provides a variety of background information which is relevant to the exposure assessment of wind turbine and includes practical...

  11. Comparing distinct ground-based lightning location networks covering the Netherlands

    de Vos, Lotte; Leijnse, Hidde; Schmeits, Maurice; Beekhuis, Hans; Poelman, Dieter; Evers, Läslo; Smets, Pieter


    Lightning can be detected using a ground-based sensor network. The Royal Netherlands Meteorological Institute (KNMI) monitors lightning activity in the Netherlands with the so-called FLITS-system; a network combining SAFIR-type sensors. This makes use of Very High Frequency (VHF) as well as Low Frequency (LF) sensors. KNMI has recently decided to replace FLITS by data from a sub-continental network operated by Météorage which makes use of LF sensors only (KNMI Lightning Detection Network, or KLDN). KLDN is compared to the FLITS system, as well as Met Office's long-range Arrival Time Difference (ATDnet), which measures Very Low Frequency (VLF). Special focus lies on the ability to detect Cloud to Ground (CG) and Cloud to Cloud (CC) lightning in the Netherlands. Relative detection efficiency of individual flashes and lightning activity in a more general sense are calculated over a period of almost 5 years. Additionally, the detection efficiency of each system is compared to a ground-truth that is constructed from flashes that are detected by both of the other datasets. Finally, infrasound data is used as a fourth lightning data source for several case studies. Relative performance is found to vary strongly with location and time. As expected, it is found that FLITS detects significantly more CC lightning (because of the strong aptitude of VHF antennas to detect CC), though KLDN and ATDnet detect more CG lightning. We analyze statistics computed over the entire 5-year period, where we look at CG as well as total lightning (CC and CG combined). Statistics that are considered are the Probability of Detection (POD) and the so-called Lightning Activity Detection (LAD). POD is defined as the percentage of reference flashes the system detects compared to the total detections in the reference. LAD is defined as the fraction of system recordings of one or more flashes in predefined area boxes over a certain time period given the fact that the reference detects at least one

  12. Cloud-to-ground lightning over Mexico and adjacent oceanic regions: a preliminary climatology using the WWLLN dataset

    Kucieńska, B.; Raga, G. B.; Rodríguez, O.


    This work constitutes the first climatological study of lightning over Mexico and adjacent oceanic areas for the period 2005-2009. Spatial and temporal distributions of cloud to ground lightning are presented and the processes that contribute to the lightning variability are analysed. The data are retrieved from the World Wide Lightning Location Network (WWLLN) dataset. The current WWLL network includes 40 stations which cover much of the globe and detect very low frequency radiation ("spherics") associated with lightning. The spatial distribution of the average yearly lightning over the continental region of Mexico shows the influence of orographic forcing in producing convective clouds with high lightning activity. However, a very high number of strikes is also observed in the States of Tabasco and Campeche, which are low-lying areas. This maximum is related to the climatological maximum of precipitation for the country and it may be associated with a region of persistent low-level convergence and convection in the southern portion of the Gulf of Mexico. The maps of correlation between rainfall and lightning provide insight into the microphysical processes occurring within the clouds. The maritime clouds close to the coastline exhibit similar properties to continental clouds as they produce very high lightning activity. The seasonal cycle of lightning registered by WWLLN is consistent with the LIS/OTD dataset for the selected regions. In terms of the annual distribution of cloud-to-ground strikes, July, August and September exhibit the highest number of strikes over continental Mexico. The diurnal cycle indicates that the maximum number of strikes over the continent is observed between 6 and 9 p.m. LT. The surrounding oceanic regions were subdivided into four distinct sectors: Gulf of Mexico, Caribbean, Sub-tropical Pacific and Tropical Pacific. The Gulf of Mexico has the broadest seasonal distribution, since during winter lightning associated with mid

  13. Structural and metamorphic evolution of the Orocopia Schist and related rocks, southern California: Evidence for late movement on the Orocopia fault

    Jacobson, Carl E.; Dawson, M. Robert


    The Pelona, Orocopia, and Rand Schists (POR schists) of southern California and southwesternmost Arizona are late Mesozoic or early Tertiary subduction complexes that underlie Precambrian to Mesozoic continental basement along the low-angle Vincent-Chocolate Mountains (VCM) fault system. The VCM faults are often considered to be remnants of the original subduction zone, but recent work indicates that many have undergone substantial postsubduction reactivation. In the Orocopia Mountains, for example, the Orocopia Schist exhibits an exceptionally complex structural and metamorphic history due to multiple periods of movement along the Orocopia fault. Structures in the schist include isoclinal folds with axial-planar schistosity, open-to-tight folds that fold schistosity, penetrative stretching lineations, and crenulation lineations, all of which show a nearly 360° range in trend. Folds and lineations that trend approximately NE-SW occur throughout the schist and are thought to be part of an early phase of deformation related to subduction. Folds of this orientation show no consistent vergence. Folds and lineations that trend approximately NW-SE are concentrated near the Orocopia fault and are interpreted to have formed during exhumation of the schist. The NW-SE trending folds, and shear indicators in late-stage mylonite at the top of the schist, consistently verge NE. The exhumation event culminated in emplacement of the schist against brittlely deformed upper plate. Exhumation of the Orocopia Schist was accompanied by retrograde replacement of garnet, biotite, epidote, and calcic amphibole by chlorite, calcite, and sericite. Matrix amphibole has a lower Na/Al ratio than amphibole inclusions in albite, consistent with a late-stage decrease in pressure. As NE vergence in the Orocopia Mountains is associated with exhumation of the schist, the NE movement along other segments of the VCM fault may also be late and therefore have no bearing on the facing direction of the

  14. Active Fault Research (1996); Katsudanso kenkyu (1996)



    This is a general collection of papers dealing with the research of active faults. In Japan, since very heavy damage was produced by the Hyogoken-Nambu earthquake of January, 1955, discussion of active faults has promptly grown very active. In relation to the said earthquake, detailed maps of earthquake faults that emerged in the same, trench investigations of the Awajishima surface fault rupture related to the same, and the circumstances of the southern and northern ends of the Nojima earthquake fault are reported. Discussion is made about the re-examination of precaution faults and the possibility of the presence of C-class active faults, dealing with the entirety of Japan. Itemized discussion covers the fossil liquefaction observed on the campus of Hokkaido University, fault outcrop at the geological boundary west of Hanamaki and at the western edge of the Kitakami lowland, morphology at the Median Tectonic Line active fault system Iyo fault, fault outcrop discovered at the Iwakuni active fault system Otake fault, and the Kokura Higashi fault and the topography surrounding it (northern part of Kyushu) are introduced. Furthermore, there are reports on the F1 fault and neotectonics in the Tan-Lu fracture zone in the Linyi area, Shandong Province, eastern part of China.

  15. Forest fires caused by lightning activity in Portugal

    Russo, Ana; Ramos, Alexandre M.; Benali, Akli; Trigo, Ricardo M.


    Wildfires in southern Europe have been causing in the last decades extensive economic and ecological losses and, even human casualties (e.g. Pereira et al., 2011). According to statistics provided by the EC-JRC European Forest Fires Information System (EFFIS) for Europe, the years of 2003 and 2007 represent the most dramatic fire seasons since the beginning of the millennium, followed by the years 2005 and 2012. These extreme years registered total annual burned areas for Europe of over 600.000 ha, reaching 800.000 ha in 2003. Over Iberia and France, the exceptional fire seasons registered in 2003 and 2005 were coincident respectively with one of the most severe heatwaves (Bastos et al., 2014) and droughts of the 20th century (Gouveia et al., 2009). On the other hand, the year 2007 was very peculiar as the area of the Peloponnese was struck by a severe winter drought followed by a subsequent wet spring, being also stricken by three heat heaves during summer and played a major role increasing the susceptibility of the region to wildfires (Gouveia et al., 2016). Some countries have a relatively large fraction of fires caused by natural factors such as lightning, e.g. northwestern USA, Canada, Russia. In contrast, Mediterranean countries such as Portugal has only a small percentage of fire records caused by lightning. Although significant uncertainties remain for the triggering mechanism for the majority of fires registered in the catalog, since they were cataloged without a likely cause. In this work we have used mainly two different databases: 1) the Portuguese Rural Fire Database (PRFD) which is representative of rural fires that have occurred in Continental Portugal, 2002-2009, with the original data provided by the National forestry Authority; 2) lightning discharges location which were extracted from the Portuguese Lightning Location System that has been in service since June of 2002 and is operated by the national weather service - Portuguese Institute for Sea

  16. A study of lightning activity over land and oceanic regions of India

    Asha Nath; G K Manohar; K K Dani; P C S Devara


    Monthly variations of lightning activity over typical land and oceanic regions of India were examined using satellite data (OTD)for a 5-year period (1995-1999).It is noted that the nature of variation between surface air maximum temperature (max) ,thunderstorm days (Thn) ,and lightning flash count over ER and WR showed remarkable correspondence and sensitivity with each other on monthly time scale.As we move out of winter season and enter the monsoon season,via pre-monsoon season,the WR undergoes cooling relative to the ER in the range 0.1-1.2°C. As a result,WR experiences reduction of thunder days and lowering in flash count. This decrease in max Thn and flash count over WR may also be associated with relatively small values of w and CAPE in comparison with similar values over ER during the monsoon sea-son.Our observation of associated reduction in Th_n and lightning count per 1°C cooling in surface air maximum temperature suggests reduction of ∼3.5 thunderstorms per station and 73 flashes. Comparison of lightning flashes between pairs of coastal,oceanic,arid-zone,hilly,and island stations reveals distinct relationship between climate regime and intensity of lightning activity. We may conclude the results of this study by saying that the overhead lightning activity is a clear reflection of the status of the underlying ground-earth properties. A close and continuous monitoring of lightning activity may be considered as a need of present day scientific studies.

  17. Lightning on Saturn observed by Cassini ISS and RPWS during 2006-2009

    Dyudina, U.; Ingersoll, A. P.; Ewald, S. P.; Porco, C.; Fischer, G.


    Throughout the Cassini mission thousands of images had been taken on the night side of saturn in search for optical lightning flashes. No flashes were unambiguously detected so far. The reasons for that may be the lightning located too deep and covered by the thick clouds, and thus faint as seen from the orbit, cosmic rays hitting the detector that could be confused with lightning, and the ringshine compromising the observations both by potential saturation of the images and by illuminating small convective clouds whose shape in reflected light can be confused with lightning flash. The only time of nearly zero ringshine in the 30-year-long Saturnian year is during the equinox, which happened on August 11, 2009. Cassini ISS took 211 lightning search images within ten days from the equinox. We will report on possible lightning detections in those images and also in the previous Cassini ISS lightning searches. We also report on Cassini Imaging Science Subsystem (ISS) and Radio and Plasma Wave Science (RPWS) observations that indicate lightning on Saturn. A lightning storm that began in 2007 lasted for 7.5 months. Another storm started in mid-January 2009 and was still active in August of 2009. We will compare these recent storms with those studied by Cassini in 2004 and 2006. In all cases, radio emissions (Saturn Electrostatic Discharges, or SEDs) occur when a rare bright cloud erupts at a unique latitude ˜ 35 degrees South (planetocentric).The cloud typically lasts for several weeks to months, and then both the cloud and the SEDs disappear.The cloud and SED's reappear synchronously after being inactive for several months. The SEDs are periodic with roughly Saturn's rotation rate, and show correlated phase relative to the times when the clouds are seen on the spacecraft-facing side of the planet. The storm clouds erupt to unusually high altitudes and then slowly descend and spread.The eruption lasts for less than a day during which time the SEDs reach their maximum

  18. GEMACS (General EM Model for the Analysis of Computer Systems) Frequency-Domain Analysis to Determine the Lightning Induced Electromagnetic Skin Current Distributions on an Aircraft.


    Static Electricity. Paper No 17: 1-9. Fort Worth TX, June 21- 23, 1983. 40. Rustan, P.L. and J. Moreau . "Aircraft Lightning Attach- ment at Low Altitudes...John F. and Gustave L. Weinstock. Aircraft Related Lightning Mechanisms: Technical Report. Contract F33615-71-C-1581. McDonnell Aircraft Company, St

  19. Lightning protection for wind turbines in Vietnam

    Thuan Nguyen


    Full Text Available Wind energy has become increasingly important in the total electrical energy supply mix in Vietnam over the last few years. Small, kW turbines were installed in isolated areas a decade ago, while wind farms of several MW to few hundred MW are now being connected directly to national grid, with many additional projects in planning or under construction to fulfill an objective of 6% of the total installed capacity by 2030 (approximately 6200 MW of wind energy component. The increase in wind farm generation results in increased damage from lightning. In this paper, the annual frequency of lightning strikes to wind turbines in Vietnam is calculated using electrogeometric model. Reported lightning incidents to three major wind farms in Vietnam are summarized. Possible causes of failure are discussed, and an EMTP simulation for each incident was performed accordingly. The simulations suggest the failure mechanisms as well the potential of improved grounding to reduce lightning induced damage in future windfarms.

  20. Lightning activity during the 1999 Superior derecho

    Price, Colin G.; Murphy, Brian P.


    On 4 July 1999, a severe convective windstorm, known as a derecho, caused extensive damage to forested regions along the United States/Canada border, west of Lake Superior. There were 665,000 acres of forest destroyed in the Boundary Waters Canoe Area Wilderness (BWCAW) in Minnesota and Quetico Provincial Park in Canada, with approximately 12.5 million trees blown down. This storm resulted in additional severe weather before and after the occurrence of the derecho, with continuous cloud-to-ground (CG) lightning occurring for more than 34 hours during its path across North America. At the time of the derecho the percentage of positive cloud-to-ground (+CG) lightning measured by the Canadian Lightning Detection Network (CLDN) was greater than 70% for more than three hours, with peak values reaching 97% positive CG lightning. Such high ratios of +CG are rare, and may be useful indicators of severe weather.

  1. Lightning phenomenology in the Tampa Bay Area

    Peckham, D. W.; Uman, M. A.; Wilcox, C. E., Jr.


    A commercial lightning-locating system (LLS) was employed in the study of lightning phenomenology in the Tampa Bay area of Florida. The LLS output included the time, location, number of strokes per flash, and initial peak magnetic field value of first strokes for lightning ground flashes lowering negative charge. Attention is given to the design and the operation of the LLS, and the experimental results. Measured properties of each of 111 storms are given in a number of tables. It was observed that the apparent motion associated with the lightning activity in storm systems was not due to the motion of the individual single-peak and multiple-peak storms but rather to the successive growth of new storms near previously active storms.

  2. Central hyperadrenergic state after lightning strike.

    Parsaik, Ajay K; Ahlskog, J Eric; Singer, Wolfgang; Gelfman, Russell; Sheldon, Seth H; Seime, Richard J; Craft, Jennifer M; Staab, Jeffrey P; Kantor, Birgit; Low, Phillip A


    To describe and review autonomic complications of lightning strike. Case report and laboratory data including autonomic function tests in a subject who was struck by lightning. A 24-year-old man was struck by lightning. Following that, he developed dysautonomia, with persistent inappropriate sinus tachycardia and autonomic storms, as well as posttraumatic stress disorder (PTSD) and functional neurologic problems. The combination of persistent sinus tachycardia and episodic exacerbations associated with hypertension, diaphoresis, and agitation was highly suggestive of a central hyperadrenergic state with superimposed autonomic storms. Whether the additional PTSD and functional neurologic deficits were due to a direct effect of the lightning strike on the central nervous system or a secondary response is open to speculation.

  3. Image navigation and registration for the geostationary lightning mapper (GLM)

    van Bezooijen, Roel W. H.; Demroff, Howard; Burton, Gregory; Chu, Donald; Yang, Shu S.


    The Geostationary Lightning Mappers (GLM) for the Geostationary Operational Environmental Satellite (GOES) GOES-R series will, for the first time, provide hemispherical lightning information 24 hours a day from longitudes of 75 and 137 degrees west. The first GLM of a series of four is planned for launch in November, 2016. Observation of lightning patterns by GLM holds promise to improve tornado warning lead times to greater than 20 minutes while halving the present false alarm rates. In addition, GLM will improve airline traffic flow management, and provide climatology data allowing us to understand the Earth's evolving climate. The paper describes the method used for translating the pixel position of a lightning event to its corresponding geodetic longitude and latitude, using the J2000 attitude of the GLM mount frame reported by the spacecraft, the position of the spacecraft, and the alignment of the GLM coordinate frame relative to its mount frame. Because the latter alignment will experience seasonal variation, this alignment is determined daily using GLM background images collected over the previous 7 days. The process involves identification of coastlines in the background images and determination of the alignment change necessary to match the detected coastline with the coastline predicted using the GSHHS database. Registration is achieved using a variation of the Lucas-Kanade algorithm where we added a dither and average technique to improve performance significantly. An innovative water mask technique was conceived to enable self-contained detection of clear coastline sections usable for registration. Extensive simulations using accurate visible images from GOES13 and GOES15 have been used to demonstrate the performance of the coastline registration method, the results of which are presented in the paper.

  4. Simulating statistics of lightning-induced and man made fires

    Krenn, R.; Hergarten, S.


    The frequency-area distributions of forest fires show power-law behavior with scaling exponents α in a quite narrow range, relating wildfire research to the theoretical framework of self-organized criticality. Examples of self-organized critical behavior can be found in computer simulations of simple cellular automata. The established self-organized critical Drossel-Schwabl forest fire model (DS-FFM) is one of the most widespread models in this context. Despite its qualitative agreement with event-size statistics from nature, its applicability is still questioned. Apart from general concerns that the DS-FFM apparently oversimplifies the complex nature of forest dynamics, it significantly overestimates the frequency of large fires. We present a straightforward modification of the model rules that increases the scaling exponent α by approximately 1•3 and brings the simulated event-size statistics close to those observed in nature. In addition, combined simulations of both the original and the modified model predict a dependence of the overall distribution on the ratio of lightning induced and man made fires as well as a difference between their respective event-size statistics. The increase of the scaling exponent with decreasing lightning probability as well as the splitting of the partial distributions are confirmed by the analysis of the Canadian Large Fire Database. As a consequence, lightning induced and man made forest fires cannot be treated separately in wildfire modeling, hazard assessment and forest management.

  5. Lightning frequency over the Italian peninsula

    Turoldo, F.; Stel, F.; Giaiotti, D. B.; Bernardi, M.; Adamo, C.; Rovelli, C.; Dietrich, S.; Goi, D.


    The aim of this work is to analize the spatial frequency of lightning over Italy and to interpret the observed features in relationship with topography and with the climatic characteristics of the area. The data used to perform this analysis are : i) cloud to ground measurem ents (CG) from 1995 to 2000 given by CESI/SIRF (Sistem a Italiano Rilevamento Fulmini); ii) total flash measurements from 1995 to 2000 obtained trough the OTD system (Optical Transient Detector) given by NASA; iii) topography measurements obtained trough the ETOPO -2 database downloaded from NOAA. Both the yearly number of positive and negative CG lightning decrease with the increasing of topographic height. The number of positive and negative CG lightning decreases with the same derivative even if it seems that only below 1000 m it is possible to reach ratios between positive over negative CG lightning higher than 1. These values are observed only in the North African area present in the ranges of our analysis , that is from longitude 5 to 11 °E and from latitude 36 to 37 °N. Future studies will confirm if this is a real effect or an observational bias. The behavior of total lightning activity (IC and CG) in relationship with CG lightning activity and with topography is studied by means of OTD data. Being OTD data retrieved trough satellites, the analysis is done making us e of the flash rate per squared kilometer and per year instead of the number of lightning. Flash rate is computed using data on a re solution of 0.5°x0.5° and keping into account the changes in the surface due to the changes in latitude and longitude. This work confirms the observation (made even by other authors) that CG lightning frequency decreases as topographic height increases. A similar trend is found in total lightning flash rate, which is essentially due to the contribution of IC lightning. These observations are explained assuming that thunderstorm activity decreases with the increasing of topographic height

  6. Active faulting on the Ninetyeast Ridge and its relation to deformation of the Indo-Australian plate

    Sager, W.W.; Bull, J.M.; Krishna, K.S.

    extents are poorly defined. New multichannel seismic reflection profiles image active faults along the entire length of the NER and show spatial changes in the style of deformation along the ridge. The northern NER (0°N–5°N) displays transpressional motion...

  7. Density of oxidation-induced stacking faults in damaged silicon

    Kuper, F.G.; Hosson, J.Th.M. De; Verwey, J.F.


    A model for the relation between density and length of oxidation-induced stacking faults on damaged silicon surfaces is proposed, based on interactions of stacking faults with dislocations and neighboring stacking faults. The model agrees with experiments.

  8. Late Holocene landscape change history related to the Alpine Fault determined from drowned forests in Lake Poerua, Westland, New Zealand

    R. M. Langridge


    Full Text Available Lake Poerua is a small, shallow lake that abuts the scarp of the Alpine Fault on the West Coast of New Zealand's South Island. Radiocarbon dates from drowned podocarp trees on the lake floor, a sediment core from a rangefront alluvial fan, and living tree ring ages have been used to deduce the late Holocene history of the lake. Remnant drowned stumps of kahikatea (Dacrycarpus dacrydioides at 1.7–1.9 m water depth yield a preferred time-of-death age at 1766–1807 AD, while a dryland podocarp and kahikatea stumps at 2.4–2.6 m yield preferred time-of-death ages of ca. 1459–1626 AD. These age ranges are matched to, but offset from, the timings of Alpine Fault rupture events at ca. 1717 AD, and either ca. 1615 or 1430 AD. Alluvial fan detritus dated from a core into the toe of a rangefront alluvial fan, at an equivalent depth to the maximum depth of the modern lake (6.7 m, yields a calibrated age of AD 1223–1413. This age is similar to the timing of an earlier Alpine Fault rupture event at ca. 1230 AD ± 50 yr. Kahikatea trees growing on rangefront fans give ages of up to 270 yr, which is consistent with alluvial fan aggradation following the 1717 AD earthquake. The elevation levels of the lake and fan imply a causal and chronological link between lake-level rise and Alpine Fault rupture. The results of this study suggest that the growth of large, coalescing alluvial fans (Dry and Evans Creek fans originating from landslides within the rangefront of the Alpine Fault and the rise in the level of Lake Poerua may occur within a decade or so of large Alpine Fault earthquakes that rupture adjacent to this area. These rises have in turn drowned lowland forests that fringed the lake. Radiocarbon chronologies built using OxCal show that a series of massive landscape changes beginning with fault rupture, followed by landsliding, fan sedimentation and lake expansion. However, drowned Kahikatea trees may be poor candidates for intimately dating

  9. Scientific Lightning Detection Network for Kazakhstan

    Streltsov, A. V.; Lozbin, A.; Inchin, A.; Shpadi, Y.; Inchin, P.; Shpadi, M.; Ayazbayev, G.; Bykayev, R.; Mailibayeva, L.


    In the frame of grant financing of the scientific research in 2015-2017 the project "To Develop Electromagnetic System for lightning location and atmosphere-lithosphere coupling research" was found. The project was start in January, 2015 and should be done during 3 years. The purpose is to create a system of electromagnetic measurements for lightning location and atmosphere-lithosphere coupling research consisting of a network of electric and magnetic sensors and the dedicated complex for data processing and transfer to the end user. The main tasks are to set several points for electromagnetic measurements with 100-200 km distance between them, to develop equipment for these points, to develop the techniques and software for lightning location (Time-of-arrival and Direction Finding (TOA+DF)) and provide a lightning activity research in North Tien-Shan region with respect to seismicity and other natural and manmade activities. Also, it is planned to use lightning data for Global Electric Circuit (GEC) investigation. Currently, there are lightning detection networks in many countries. In Kazakhstan we have only separate units in airports. So, we don't have full lightning information for our region. It is planned, to setup 8-10 measurement points with magnetic and electric filed antennas for VLF range. The final data set should be including each stroke location, time, type (CG+, CG-, CC+ or CC-) and waveform from each station. As the magnetic field lightning antenna the ferrite rod VLF antenna will be used. As the electric field antenna the wide range antenna with specific frequencies filters will be used. For true event detection TOA and DF methods needs detected stroke from minimum 4 stations. In this case we can get location accuracy about 2-3 km and better.

  10. Z-M in Lightning Forecasting


    reflectivity 20-25 dBZ which maintained their electric field for many tens of minutes well downstream of the 34 convective core. Dye and Willett (2007...concede that although the two anvils did not produce lightning, the electric field was probably sufficient to trigger lightning for many tens of at: uso /readme/ldar.html.] Greene, Douglas R. and Robert A. Clark, 1972: Vertically integrated liquid water—A new

  11. Lightning protection system for a wind turbine

    Costin, Daniel P [Chelsea, VT; Petter, Jeffrey K [Williston, VT


    In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

  12. Large earthquakes and creeping faults

    Harris, Ruth A.


    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  13. Recognition of Active Faults and Stress Field

    Azuma, T.


    Around the plate-boundary region, the directions of maximum and minimum stress related to the plate motion is one of the key for the recognition of active faults. For example, it is typical idea that there are many N-S trading reverse faults, NE-SW and NW-SE trending strike slip faults and less normal faults (only near volcanoes) in Japan, where the compressional stress with E-W direction is dominant caused by the motion of the subduction of the Pacific Plate beneath the North American Plate. After the 2011 Tohoku earthquake (Mj 9.0), however, many earthquakes with the mechanism of the normal fault type occurred in the coastal region of the northern-east Japan. On 11th April 2011, the Fukushima Hamadori Earthquake (Mj 7.0) occurred accompanying surface faults along two faults, the Idosawa fault and the Yunotake fault, that recognized as active faults by the Research Group for Active Fault of Japan (1980, 1991). It impacted on active fault study by the reason of not only the appearance of two traces of significant surface faults with maximum displacement up to 2.1 m, but also the reactivation of the normal faults under the E-W compressional stress field. When we identify the active faults, it is one of the key whether the direction of slip on the fault consists with the stress field in that area or not. And there is a technique to recognized whether the fault is active or not by using the data of the direction of stress in the field and the geometry of the fault plane. Though it is useful for the fault in the rock without overlain Quaternary deposits, we should care that the active faults may react caused by the temporal stress condition after the generation of large earthquakes.

  14. A Fossilized Energy Distribution of Lightning

    Pasek, Matthew A.; Hurst, Marc


    When lightning strikes soil, it may generate a cylindrical tube of glass known as a fulgurite. The morphology of a fulgurite is ultimately a consequence of the energy of the lightning strike that formed it, and hence fulgurites may be useful in elucidating the energy distribution frequency of cloud-to-ground lightning. Fulgurites from sand mines in Polk County, Florida, USA were collected and analyzed to determine morphologic properties. Here we show that the energy per unit length of lightning strikes within quartz sand has a geometric mean of ~1.0 MJ/m, and that the distribution is lognormal with respect to energy per length and frequency. Energy per length is determined from fulgurites as a function of diameter, and frequency is determined both by cumulative number and by cumulative length. This distribution parallels those determined for a number of lightning parameters measured in actual atmospheric discharge events, such as charge transferred, voltage, and action integral. This methodology suggests a potential useful pathway for elucidating lightning energy and damage potential of strikes.

  15. On the initiation of lightning in thunderclouds.

    Chilingarian, Ashot; Chilingaryan, Suren; Karapetyan, Tigran; Kozliner, Lev; Khanikyants, Yeghia; Hovsepyan, Gagik; Pokhsraryan, David; Soghomonyan, Suren


    The relationship of lightning and elementary particle fluxes in the thunderclouds is not fully understood to date. Using the particle beams (the so-called Thunderstorm Ground Enhancements - TGEs) as a probe we investigate the characteristics of the interrelated atmospheric processes. The well-known effect of the TGE dynamics is the abrupt termination of the particle flux by the lightning flash. With new precise electronics, we can see that particle flux decline occurred simultaneously with the rearranging of the charge centers in the cloud. The analysis of the TGE energy spectra before and after the lightning demonstrates that the high-energy part of the TGE energy spectra disappeared just after lightning. The decline of particle flux coincides on millisecond time scale with first atmospheric discharges and we can conclude that Relativistic Runaway Electron Avalanches (RREA) in the thundercloud assist initiation of the negative cloud to ground lightning. Thus, RREA can provide enough ionization to play a significant role in the unleashing of the lightning flash.

  16. Temporal and spatial characteristics of lightning-produced nitrogen oxides in China

    Fengxia, Guo; Min, Bao; Yijun, Mu; Zupei, Liu; Yawen, Li; Haifeng, Shi


    Tropospheric NO2 vertical column densities (NO2VCDs) retrieved from the Global Ozone Monitoring Experiment-2 satellite spectrometer, as well as lightning flashes measured by an Optical Transient Detector and Lightning Image Sensor from 1997 to 2013 are used to investigate spatial and temporal characteristics of lightning-produced nitrogen oxides (LNOX) under the recent period of rapid and locally-unbalanced economic development in China. Correlations between spatial distributions of lightning flashes and monthly mean tropospheric NO2VCDs were analyzed over this period. Mean production of LNOX per flash is 330 mol[N]/flash which was estimated using the correlation between lightning flashes and monthly mean tropospheric NO2VCD for the Tibetan Plateau. Using this correlation, the spatial and temporal characteristics of the ratio of LNOX to tropospheric NOX in China were determined. Results show that the ratio of LNOX to the tropospheric NOX is small in eastern regions, having a developed industrial sector and dense population, but relatively large in western regions, with a developing industrial sector and sparser population. The annual mean value of LNOX contributing to tropospheric NOX is 7.5% in China, which is lower than global averages (10-20%). The difference in interannual variability of LNOX production contributing to tropospheric NOX in different areas is distinct, ranging from high to low values for the Tibetan Plateau, Pearl River Delta, Yangtze River Delta and Beijing-Tianjin-Hebei regions, respectively. This indicates that lightning had a large influence on the column density of tropospheric NOX on the Tibetan Plateau, a region typically used as a sensitivity indicator for climate change. Lightning had less influence on atmospheric environments of the Pearl River Delta, Yangtze River Delta and Beijing-Tianjin-Hebei regions.

  17. Multicolor Photometric Observation of Lightning from Space: Comparison with Radio Measurements

    Adachi, Toru; Cohen, Morris; Said, Ryan; Blakeslee, Richard J.; Cummer, Steven A.; Li, Jingbo; Lu, Geopeng; Hsu, Rue-Ron; Su, Han-Tzong; Chen, Alfred Bing-Chih; Takahashi, Yukihiro; Frey, Harald U.; Mende, Stephen B.


    This study evaluates the effectiveness of spectrophotometric measurements from space in revealing properties of lightning flash. The multicolor optical waveform data obtained by FORMOSAT-2/Imager of Sprites and Upper Atmospheric Lightning (ISUAL) were analyzed in relation to National Lightning Detection Network (NLDN), North Alabama Lightning Mapping Array (LMA). As of July 2011, we found six lightning events which were observed by ISUAL and North Alabama LMA. In two of these events, NLDN showed clear positive cloud-to-ground (CG) discharges with peak current of +139.9 kA and +41.6 kA and, around that time, LMA showed continuous intra-cloud (IC) leader activities at 4-6 km altitudes. ISUAL also observed consistent optical waveforms of the IC and CG components and, interestingly, it was found that the blue/red spectral ratio clearly decreased by a factor of 1.5-2.5 at the time of CG discharges. Other four lightning events in which NLDN did not detect any CG discharges were also investigated, but such a feature was not found in any of these cases. These results suggest that the optical color of CG component is more reddish than that of IC component and we explain this as a result of more effective Rayleigh scattering in blue light emissions coming from lower-altitude light source. This finding suggests that spectral measurements could be a new useful technique to characterize ICs and CGs from space. In this talk, we will also present a result from lightning statistical analysis of ISUAL spectrophotometric data and ULF magnetic data.

  18. Lightning NOx Production in CMAQ Part I – Using Hourly NLDN Lightning Strike Data

    Lightning-produced nitrogen oxides (NOX=NO+NO2) in the middle and upper troposphere play an essential role in the production of ozone (O3) and influence the oxidizing capacity of the troposphere. Despite much effort in both observing and modeling lightning NOX during the past dec...

  19. Multiple Lightning Discharges in Wind Turbines Associated with Nearby Cloud-to-Ground Lightning

    Candela Garolera, Anna; Cummins, Kenneth L.; Madsen, Søren Find;


    This paper presents the analysis of five events where simultaneous lightning currents were registered in different wind turbines of a wind farm with lightning monitoring equipment installed. Measurements from current monitoring devices installed at the wind turbines and observations from auto-tri...

  20. Lightning NOx Production in CMAQ Part I – Using Hourly NLDN Lightning Strike Data

    Lightning-produced nitrogen oxides (NOX=NO+NO2) in the middle and upper troposphere play an essential role in the production of ozone (O3) and influence the oxidizing capacity of the troposphere. Despite much effort in both observing and modeling lightning NOX during the past dec...

  1. Mechanical stratigraphy and normal faulting

    Ferrill, David A.; Morris, Alan P.; McGinnis, Ronald N.; Smart, Kevin J.; Wigginton, Sarah S.; Hill, Nicola J.


    Mechanical stratigraphy encompasses the mechanical properties, thicknesses, and interface properties of rock units. Although mechanical stratigraphy often relates directly to lithostratigraphy, lithologic description alone does not adequately describe mechanical behavior. Analyses of normal faults with displacements of millimeters to 10's of kilometers in mechanically layered rocks reveal that mechanical stratigraphy influences nucleation, failure mode, fault geometry, displacement gradient, displacement distribution, fault core and damage zone characteristics, and fault zone deformation processes. The relationship between normal faulting and mechanical stratigraphy can be used either to predict structural style using knowledge of mechanical stratigraphy, or conversely to interpret mechanical stratigraphy based on characterization of the structural style. This review paper explores a range of mechanical stratigraphic controls on normal faulting illustrated by natural and modeled examples.


    Chenglong Sun


    Full Text Available Fault localization is time-consuming and difficult, which makes it the bottleneck of the debugging progress. To help facilitate this task, there exist many fault localization techniques that help narrow down the region of the suspicious code in a program. Better accuracy in fault localization is achieved from heavy computation cost. Fault localization techniques that can effectively locate faults also manifest slow response rate. In this paper, we promote the use of pre-computing to distribute the time-intensive computations to the idle period of coding phase, in order to speed up such techniques and achieve both low-cost and high accuracy. We raise the research problems of finding suitable techniques that can be pre-computed and adapt it to the pre-computing paradigm in a continuous integration environment. Further, we use an existing fault localization technique to demonstrate our research exploration, and shows visions and challenges of the related methodologies.

  3. 3D modeling of lightning-induced electromagnetic pulses on Venus, Jupiter and Saturn

    Pérez-Invernón, Francisco J.; Luque, Alejandro; Gordillo-Vázquez, Francisco J.


    Atmospheric electricity is a common phenomenon in some planets of The Solar System. We know that atmospheric discharges exist on Earth and gaseous planets; however, some characteristics of lightning on Saturn and Jupiter as well as their relevance on the effects of lightning in the atmospheres of these planets are still unknown. In the case of Venus, there exist some radio evidences of lightning, but the lack of optical observations suggests exploring indirect methods of detection, such as searching for lightning-induced transient optical emissions from the upper atmosphere. The Akatsuki probe, currently orbiting Venus, is equipped with a camera whose temporal resolution is high enough to detect optical emissions from lightning discharges and to measure nightglow enhancements. In this work, we extend previous models [1,2] to investigate the chemical impact and transient optical emissions produced by possible lightning-emitted electromagnetic pulses (EMP) in Venus, Saturn and Jupiter. Using a 3D FDTD ("Finite Differences Time Domain") model we solve the Maxwell equations coupled with the Langevin equation for electrons [3] and with a kinetic scheme, different for each planetary atmosphere. This method is useful to investigate the temporal and spatial impact of lightning-induced electromagnetic fields in the atmosphere of each planet for different lightning characteristics (e.g. energy released, orientation). This 3D FDTD model allows us to include the saturnian and jovian background magnetic field inclination and magnitude at different latitudes, and to determine the effects of different lightning channel inclinations. Results provide useful information to interpret lightning observations on giant gaseous planets and in the search for indirect optical signals from atmospheric discharge on Venus such as fast nightglow transient enhancements related to lightning as seen on Earth. Furthermore, we underline the observation of electrical discharges characteristics as a

  4. The Relative Tectonic Activity Evaluation of Some River Basins Developing on a Fault Line: The Case of the Ganos Fault (Tekirdað)

    Emre Özþahin


    River systems are one of the important indicators of crustal deformation in tectonically active areas. This is because; tectonic activity mostly determines the general character of valley morphology and drainage in such areas. In this regard, the relative effect of tectonic activity on topography has been evaluated more precisely in recent years through studies based on digital measurements that employ various morphometric parameters (geomorphic indices). The present study aims to make a tect...

  5. Lightning Performance on Overhead Distribution Lines : After Improvement Field Observation

    Reynaldo Zoro


    Full Text Available Two feeders of 20 kV overhead distribution lines which are located in a high lightning density area are chosen to be observed as a field study due to their good lightning performance after improvement of lightning protection system. These two feeders used the new overhead ground wire and new line arrester equipped with lightning counter on the main lines. The significant reduced of lines outages are reported. Study was carried out to observe these improvements by comparing to the other two feeders line which are not improved and not equipped yet with the ground wire and line arrester. These two feeders located in the nearby area. Two cameras were installed to record the trajectory of the lightning strikes on the improved lines. Lightning peak currents are measured using magnetic tape measurement system installed on the grounding lead of lightning arrester. Lightning overvoltage calculations are carried out by using several scenarios based on observation results and historical lightning data derived from lightning detection network. Lightning overvoltages caused by indirect or direct strikes are analyzed to get the lightning performance of the lines. The best scenario was chosen and performance of the lines were improved significantly by installing overhead ground wire and improvement of lightning arrester installation.

  6. Spatiotemporal characteristics of positive cloud-to-ground lightning discharges and bidirectional leader of the lightning


    The three-dimension spatiotemporal development characteristics of positive cloud-toground (CG) lightning discharges have been analyzed by using the data measured by the lightning mapping array system with high time and space resolution. The results indicate that a positive CG lightning discharge can be divided into three stages based on the characteristics of its development. The first stage is discharge process in cloud with a long duration preceding the return stroke. This process with an average of 370 ms propagated at velocity of 105 m/s and produced intensive radiation with a magnitude equal to that of the negative leader. During this stage, the lightning channels developed horizontally in the positive charge region with few branches as the negative polarity breakdown. During the stage after the return stroke of the positive CG lightning, the lightning channels propagated at velocity of 2 times faster than that before the return stroke. This stage involved lots of positive fast impulses and corresponded to the continuing current process producing less and dispersed radiation points and more intensive radiation powers. During the final stage of the positive CG lightning, the lightning channels developed at velocity equal to that before the return stroke and the radiation points appeared mainly at the ends of channel. The spatiotemporal development characteristics of the positive CG lightning are very different from that of the negative CG lightning. All of the radiation points of the positive CG lightning appeared in the positive charge region of cloud. Little or no radiation was detected during the positive leader just before the return stroke. The duration of the positive CG lightning was an average of 730 ms. The positive CG lightning discharges with lasting time of 500-600 ms were 43%. 90% of the positive CG lightning discharges involved one return stroke, the most return stroke number being four. The current of the return stroke was an average of 36.5 k

  7. Impact and Improvement Method of the Biological Effects during the Transmission Tower Being Lightning Struck

    Hengzhen, Li; Youguang, Mo; Guanghui, Sun; Pengcheng, Wang; Han, Xu; Zhijie, He


    When lightning strikes the transmission line towers, the lightning current flow through the overhead line shunted along the grounding conductor dispersed in the earth, the lightning current amplitude of tens of thousands of amperes or even hundreds of thousands of amperes, making the local current density is very large, seriously affecting the surrounding biological safety. This paper analyzes that different fish fatalities in fish ponds after lightning strikes the transmission line towers, the typical accident towers were simulated and the correctness of the model was verified by CDEGS. Meanwhile the effects of lightning current on fish were simulated, according to the simulation results that the fish current density is related to body length and the current angle in the electric field. By comparing the simulated results with the fish tolerance limits, we can quantitatively evaluate the fish bioelectromagnetism of the relationship between soil resistivity and fishpond distance. The modification of the external grounding network based on the insulated lead wire can be used to guide the related grounding devices.

  8. Frequency domain analysis of lightning protection using four lightning protection rods

    Javor Vesna


    Full Text Available In this paper the lightning discharge channel is modeled as a vertical monopole antenna excited by a pulse generator at its base. The lightning electromagnetic field of a nearby lightning discharge in the case of lightning protection using four vertical lightning protection rods was determined in the frequency domain. Unknown current distributions were determined by numerical solving of a system of integral equations of two potentials using the Point Matching Method and polynomial approximation of the current distributions. The influence of the real ground, treated as homogeneous loss half-space of known electrical parameters, expressed through a Sommerfeld integral kernel, was modeled using a new Two-image approximation which gives good results in both near and far fields.

  9. Data Assimilation of Lightning using 1D+3D/4D WRF Var Assimilation Schemes with Non-Linear Observation Operators

    Navon, M. I.; Stefanescu, R.; Fuelberg, H. E.; Marchand, M.


    NASA's launch of the GOES-R Lightning Mapper (GLM) in 2015 will provide continuous, full disc, high resolution total lightning (IC + CG) data. The data will be available at a horizontal resolution of approximately 9 km. Compared to other types of data, the assimilation of lightning data into operational numerical models has received relatively little attention. Previous efforts of lightning assimilation mostly have employed nudging. This paper will describe the implementation of 1D+3D/4D Var assimilation schemes of existing ground-based WTLN (Worldwide Total Lightning Network) lightning observations using non-linear observation operators in the incremental WRFDA system. To mimic the expected output of GLM, the WTLN data were used to generate lightning super-observations characterized by flash rates/81 km2/20 min. A major difficulty associated with variational approaches is the complexity of the observation operator that defines the model equivalent of lightning. We use Convective Available Potential Energy (CAPE) as a proxy between lightning data and model variables. This operator is highly nonlinear. Marecal and Mahfouf (2003) have shown that nonlinearities can prevent direct assimilation of rainfall rates in the ECMWF 4D-VAR (using the incremental formulation proposed by Courtier et al. (1994)) from being successful. Using data from the 2011 Tuscaloosa, AL tornado outbreak, we have proved that the direct assimilation of lightning data into the WRF 3D/4D - Var systems is limited due to this incremental approach. Severe threshold limits must be imposed on the innovation vectors to obtain an improved analysis. We have implemented 1D+3D/4D Var schemes to assimilate lightning observations into the WRF model. Their use avoids innovation vector constrains from preventing the inclusion of a greater number of lightning observations Their use also minimizes the problem that nonlinearities in the moist convective scheme can introduce discontinuities in the cost function

  10. Injuries, Sequelae, and Treatment of Lightning-Induced Injuries: 10 Years of Experience at a Swiss Trauma Center

    Carmen A. Pfortmueller


    Full Text Available Principals. Lightning is one of the most powerful and spectacular natural phenomena. Lightning strikes to humans are uncommon but can cause devastating injuries. We analyzed lightning-related admissions to our emergency department from January 2000 to December 2010 to review and highlight the main features of lightning-related injuries. Methods. All data were collected prospectively and entered in the emergency department’ database (Qualicare Switzerland and retrospectively analyzed. Results. Nine patients with lightning-related injuries presented to our emergency department. Four were female, and five were male. The most common site of injury was the nervous system (6 out of 9 patients followed by the cardiovascular system (5 out of 9 patients. The third most common injuries occurred to the skin (3 out of 9 patients. Four of the patients had to be hospitalized for further observation. Conclusion. Reports of lightning strikes and related injuries are scarce. The establishment of an international register would therefore benefit the understanding of their injury patterns and facilitate specific treatment.

  11. Developing Lightning Prediction Tools for the CCAFS Dual-Polarimetric Radar

    Petersen, W. A.; Carey, L. D.; Deierling, W.; Johnson, E.; Bateman, M.


    NASA Marshall Space Flight Center and the University of Alabama Huntsville are collaborating with the 45th Weather Squadron (45WS) to develop improved lightning prediction capabilities for the new C-band dual-polarimetric weather radar being acquired for use by 45WS and launch weather forecasters at Cape Canaveral Air Force Station (CCAFS). In particular, these algorithms will focus on lightning onset, cessation and combined lightning-radar applications for convective winds assessment. Research using radar reflectivity (Z) data for prediction of lightning onset has been extensively discussed in the literature and subsequently applied by launch weather forecasters as it pertains to lightning nowcasting. Currently the forecasters apply a relatively straight forward but effective temperature-Z threshold algorithm for assessing the likelihood of lightning onset in a given storm. In addition, a layered VIL above the freezing level product is used as automated guidance for the onset of lightning. Only limited research and field work has been conducted on lightning cessation using Z and vertically-integrated Z for determining cessation. Though not used operationally vertically-integrated Z (basis for VIL) has recently shown promise as a tool for use in nowcasting lightning cessation. The work discussed herein leverages and expands upon these and similar reflectivity-threshold approaches via the application/addition of over two decades of polarimetric radar research focused on distinct multi-parameter radar signatures of ice/mixed-phase initiation and ice-crystal orientation in highly electrified convective clouds. Specifically, our approach is based on numerous previous studies that have observed repeatable patterns in the behavior of the vertical hydrometeor column as it relates to the temporal evolution of differential reflectivity and depolarization (manifested in either LDR or p(sub hv)), development of in-situ mixed and ice phase microphysics, electric fields, and

  12. Knickpoint series of gullies along the Luoyunshan Piedmont and its relation with fault activity since late Pleistocene

    Sun, Changbin; Wan, Tianfeng; Xie, Xinsheng; Shen, Xiaoming; Liang, Kuan


    The authors surveyed the longitudinal profiles of 28 gullies across the Luoyunshan Piedmont fault (LPF) by differential GPS and dating of sediments well preserved in the typical terraces and obtained 6-level knickpoint series of the gullies along the Luoyunshan Piedmont. The authors compared it with previous studies on the paleo-earthquakes of the LPF revealed by trenches and found that the paleo-earthquake events from knickpoint and trench studies are in good agreement in terms of the time of occurrence and vertical displacement of the fault. It shows studying the paleo-earthquake events of the fault by knickpoint series is feasible. At last, the authors established a more complete paleo-earthquake sequence of the LPF supported by geomorphologic and sedimentary evidence, i.e., six paleo-earthquake events happened on the LPF from about 28,000 years ago; the LPF has the characteristic of quasi-periodic recurrence and the average recurrence interval is 4585 years. The vertical displacement of the paleo-earthquake events is 2.4-3.0 m; according to the empirical equations between co-seismic displacement and earthquake magnitude the magnitude of these events is Ms 7.0-7.5. This study aims to complement and improve the traditional trenching method, provide theoretical and methodological support for the research of active tectonics, and contribute important information for the seismic hazard assessment of the densely populated Linfen area.

  13. Ambient seismic noise tomography reveals a hidden caldera and its relation to the Tarutung pull-apart basin at the Sumatran Fault Zone, Indonesia

    Ryberg, Trond; Muksin, Umar; Bauer, Klaus


    We analyzed the noise recordings of a short-period seismic network to derive a shallow crustal S-wave velocity model at the Sumatra Fault in Northern Sumatra, Indonesia. By correlating the noise of 40 seismic stations' recording for 9 months, we could recover Rayleigh waves from vertical component recordings with sufficient signal-to-noise ratio. Group velocities of the Rayleigh waves could be determined in the period range from 0.71 to 4.4 s. These group velocities were used to invert for 2D group velocity maps at specific periods. Finally, the derived group velocity maps were inverted for a 3D S-wave velocity model. This model shows a region of a strong velocity decrease off the Great Sumatran Fault Zone, at the northeastern margin of the young Tarutung pull-apart basin. This observed low velocity block coincides with a caldera-like morphological feature which is interpreted as the surface expression of a hidden volcanic caldera. Considering the surface manifestations of geothermal activity around this anomaly, we conclude that the caldera is still acting as a heat source. On the other hand, the weak morphological expression at the surface indicates a certain age of the caldera which might be older than the Tarutung pull-apart basin. The findings provide important constraints on general concepts for the formation of pull-apart basins along the Sumatran fault and their relation to volcanism.

  14. Numerical tools for lightning protection of wind turbines

    Madsen, Søren Find; Mieritz, Casper Falkenstrøm; Candela Garolera, Anna


    The present paper presents the different numerical tools used for lightning protection analysis. Initially the risk assessment considering attachment point distribution and location of vulnerable points on the wind turbine will be discussed, where also the term Lightning Protection Coordination (...

  15. Lightning impact on micro-second long ionospheric variability

    Koh, Kuang Liang; Liu, Zhongjian; Fullekrug, Martin


    Lightning discharges cause electron heating and enhanced ionisation in the D region ionosphere which disturb the transmission of VLF communications [Inan et al., 2010]. A disturbance of such nature was measured in a VLF transmission with a sampling rate of 1 MHz, enabling much faster ionospheric variability to be observed when compared to previous studies which typically report results with a time resolution >5-20ms. The disturbance resembles "Long Recovery Early VLF" (LORE) events [Haldoupis et al. 2013, Cotts & Inan 2007]. LOREs exhibit observable ionospheric effects that last longer (>200s) than other lightning related disturbances. It was proposed that the mechanism behind the long-lasting effects of LOREs is different to shorter events [Gordillo-Vázquez et al. 2016]. The ionospheric variability inferred from the transmitted signal is seen to change dramatically after the lightning onset, suggesting that there are fast processes in the ionosphere affected or produced which have not been considered in previous research. The ionospheric variability inferred from the main two frequencies of the transmission is different. A possible explanation is a difference in the propagation paths of the two main frequencies of the transmission [Füllekrug et al., 2015]. References Inan, U.S., Cummer, S.A., Marshall, R.A., 2010. A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges. J. Geophys. Res. 115, A00E36. doi:10.1029/2009JA014775 Cotts, B.R.T., Inan, U.S., 2007. VLF observation of long ionospheric recovery events. Geophys. Res. Lett. 34, L14809. doi:10.1029/2007GL030094 Haldoupis, C., Cohen, M., Arnone, E., Cotts, B., Dietrich, S., 2013. The VLF fingerprint of elves: Step-like and long-recovery early VLF perturbations caused by powerful ±CG lightning EM pulses. J. Geophys. Res. Space Physics 118, 5392-5402. doi:10.1002/jgra.50489 Gordillo-Vázquez, F.J., Luque, A., Haldoupis, C., 2016. Upper D region chemical kinetic modeling of

  16. Accelerometer having integral fault null

    Bozeman, Richard J., Jr. (Inventor)


    An improved accelerometer is introduced. It comprises a transducer responsive to vibration in machinery which produces an electrical signal related to the magnitude and frequency of the vibration; and a decoding circuit responsive to the transducer signal which produces a first fault signal to produce a second fault signal in which ground shift effects are nullified.

  17. The Barrancas anticline in west-central Argentina: new geomorphic and geologic constraints on the geometry and activity of a fault-related fold

    Rimando, J. M.; Schoenbohm, L. M.


    The Barrancas anticline in Mendoza Province, west-central Argentina is a N-NW-oriented, east-vergent fault-bend fold located in the transition from the mainly east-vergent, thin-skinned Argentine Precordillera to the mainly west-vergent, thick-skinned Sierras Pampeanas — one of the most active thrust zones on Earth. Previous studies of the Barrancas anticline interpreted its structure from 2-D and 3-D seismic data. The anticline is a fault-bend fold with multiple segments with different uplift histories and which linked only after 2.3Ma. This study aims to establish the temporal persistence of segmentation and to describe the role, extent and rates of deformation processes involved in the development of the Barrancas anticline from morphometric analyses, geologic and geomorphic mapping, and accurate dating of relevant geomorphic features. Longitudinal profile analysis of streams on the anticline reveals marked differences in normalized steepness index (ksn) between the western and eastern limbs as well as variation along strike. This distribution of ksn values reveals patterns consistent with asymmetry and segmentation of the Barrancas anticline. Swath profiles parallel to the fold axis resemble fault slip distribution profiles which was a basis for segmentation from previous studies. Drainage basin morphometric indices such as hypsometry, drainage density, and basin elongation were also measured. Hypsometric integral values were particularly higher on the west than on the east, possibly indicating younger folding on the western limb. This study will contribute to a better understanding of the nature, extent, timing, and rate of folding at the transition from thin- to thick-skinned thrust deformation in west-central Argentina. Additionally, this study will contribute to assessment of seismic hazards associated with fault-related folds in Argentina and in similar tectonic settings worldwide.

  18. An Operational Perspective of Total Lightning Information

    Nadler, David J.; Darden, Christopher B.; Stano, Geoffrey; Buechler, Dennis E.


    The close and productive collaborations between the NWS Warning and Forecast Office, the Short Term Prediction and Research Transition Center at NASA Marshall Space Flight Center and the University of Alabama in Huntsville have provided a unique opportunity for science sharing and technology transfer. One significant technology transfer that has provided immediate benefits to NWS forecast and warning operations is the use of data from the North Alabama Lightning Mapping Array. This network consists of ten VHF receivers deployed across northern Alabama and a base station located at the National Space Science and Technology Center. Preliminary investigations done at WFO Huntsville, along with other similar total lightning networks across the country, have shown distinct correlations between the time rate-of-change of total lightning and trends in intensity/severity of the parent convective cell. Since May 2003 when WFO HUN began receiving these data - in conjunction with other more traditional remotely sensed data (radar, satellite, and surface observations) -- have improved the situational awareness of the WFO staff. The use of total lightning information, either from current ground based systems or future space borne instrumentation, may substantially contribute to the NWS mission, by enhancing severe weather warning and decision-making processes. Operational use of the data has been maximized at WFO Huntsville through a process that includes forecaster training, product implementation, and post event analysis and assessments. Since receiving these data, over 50 surveys have been completed highlighting the use of total lightning information during significant events across the Tennessee Valley. In addition, around 150 specific cases of interest have been archived for collaborative post storm analysis. From these datasets, detailed trending information from radar and total lightning can be compared to corresponding damage reports. This presentation will emphasize

  19. Lightning chemistry on Earth-like exoplanets

    Ardaseva, Aleksandra; Rimmer, Paul B.; Waldmann, Ingo; Rocchetto, Marco; Yurchenko, Sergey N.; Helling, Christiane; Tennyson, Jonathan


    We present a model for lightning shock-induced chemistry that can be applied to atmospheres of arbitrary H/C/N/O chemistry, hence for extrasolar planets and brown dwarfs. The model couples hydrodynamics and the STAND2015 kinetic gas-phase chemistry. For an exoplanet analogue to the contemporary Earth, our model predicts NO and NO2 yields in agreement with observation. We predict height-dependent mixing ratios during a storm soon after a lightning shock of NO ≈10-3 at 40 km and NO2 ≈10-4 below 40 km, with O3 reduced to trace quantities (≪10-10). For an Earth-like exoplanet with a CO2/N2 dominated atmosphere and with an extremely intense lightning storm over its entire surface, we predict significant changes in the amount of NO, NO2, O3, H2O, H2 and predict a significant abundance of C2N. We find that, for the Early Earth, O2 is formed in large quantities by lightning but is rapidly processed by the photochemistry, consistent with previous work on lightning. The chemical effect of persistent global lightning storms are predicted to be significant, primarily due to NO2, with the largest spectral features present at ∼3.4 and ∼6.2 μm. The features within the transmission spectrum are on the order of 1 ppm and therefore are not likely detectable with the James Webb Space Telescope. Depending on its spectral properties, C2N could be a key tracer for lightning on Earth-like exoplanets with a N2/CO2 bulk atmosphere, unless destroyed by yet unknown chemical reactions.

  20. Architecture of small-scale fault zones in the context of the Leinetalgraben Fault System

    Reyer, Dorothea; Philipp, Sonja L.


    Understanding fault zone properties in different geological settings is important to better assess the development and propagation of faults. In addition this allows better evaluation and permeability estimates of potential fault-related geothermal reservoirs. The Leinetalgraben fault system provides an outcrop analogue for many fault zones in the subsurface of the North German Basin. The Leinetalgraben is a N-S-trending graben structure, initiated in the Jurassic, in the south of Lower Saxony and as such part of the North German Basin. The fault system was reactivated and inverted during Alpine compression in the Tertiary. This complex geological situation was further affected by halotectonics. Therefore we can find different types of fault zones, that is normal, reverse, strike-slip an oblique-slip faults, surrounding the major Leinetalgraben boundary faults. Here we present first results of structural geological field studies on the geometry and architecture of fault zones in the Leinetalgraben Fault System in outcrop-scale. We measured the orientations and displacements of 17 m-scale fault zones in limestone (Muschelkalk) outcrops, the thicknesses of their fault cores and damage zones, as well as the fracture densities and geometric parameters of the fracture systems therein. We also analysed the effects of rock heterogeneities, particularly stiffness variations between layers (mechanical layering) on the propagation of natural fractures and fault zones. The analysed fault zones predominantly show similar orientations as the major fault zones they surround. Other faults are conjugate or perpendicular to the major fault zones. The direction of predominant joint strike corresponds to the orientation of the fault zones in the majority of cases. The mechanical layering of the limestone and marlstone stratification obviously has great effects on fracture propagation. Already thin layers (mm- to cm-scale) of low stiffness - here marl - seem to suffice to change the

  1. Lightning Behavior and its Dependence on Storm Kinematic and Precipitation Processes in Northern Alabama

    Johnson, Elsie V.; Petersen, W. A,


    Numerous case studies and recent modeling studies have found that various metrics of updraft intensity appear to be reasonably well correlated to lightning production in thunderstorms, particularly severe thunderstorms. Indeed, the relationship between updraft and lightning flash rate is hypothesized to be the physical connection between a lightning "jump" signature and manifestations of severe weather such as tornadic activity. This study further examines this connection using a combination of dual Doppler wind retrievals made with the UAH ARMOR dual polarimetric and KHTX WSR 88D Doppler radar pair, together with northern Alabama Lightning Mapping Array (LMA) data. The dual Doppler data were used to construct three dimensional wind fields and the retrieved vertical velocity fields were subsequently compared to collocated total lightning flash rates observed by the LMA. Particular attention was paid to the timing of updraft pulses relative to changes in the flash rate, with the goal of assessing impacts on warning decision lead time. Results from the analysis of severe and non severe thunderstorms in Northern Alabama will be presented including the EF 4 tornado producing supercell on 6 February 2008.

  2. Data Retrieval Algorithms for Validating the Optical Transient Detector and the Lightning Imaging Sensor

    Koshak, W. J.; Blakeslee, R. J.; Bailey, J. C.


    A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of lightning ground strikes from an Advanced Lightning Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing, and arrival time of lightning radio emissions. Solutions for the plane (i.e., no earth curvature) are provided that implement all of these measurements. The accuracy of the retrieval method is tested using computer-simulated datasets, and the relative influence of bearing and arrival time data an the outcome of the final solution is formally demonstrated. The algorithm is sufficiently accurate to validate NASA:s Optical Transient Detector and Lightning Imaging Sensor. A quadratic planar solution that is useful when only three arrival time measurements are available is also introduced. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in sc)iirce location, Complex root results are shown to be associated with the presence of measurement errors when the lightning source lies near an outer sensor baseline of the ALDF network. For arbitrary noncollinear network geometries and in the absence of measurement errors, it is shown that the two quadratic roots are equivalent (no source location ambiguity) on the outer sensor baselines. The accuracy of the quadratic planar method is tested with computer-generated datasets, and the results are generally better than those obtained from the three-station linear planar method when bearing errors are about 2 deg.

  3. Analysis of unexplained flashovers on a 69kV transmission line using measured lightning data

    Malone, M.D.; Schneider, J.M. [Global Atmospherics Inc., and American Electric Power (United States)


    The availability of cloud-to-ground lightning strike information has led to the development of methodologies that use these data to determine causal factors of power system interruptions. The information provided by networks of remote lightning sensors includes the geographic location, time, estimated peak current (kA), and various quality parameters that explain the statistical integrity of the data. Lightning strike data, coupled with a geographic information systems-based analysis, are an effective way to understand the relationship of power system interruptions, relative to lightning data characteristics. This paper presents a case study that demonstrates the effectiveness of this methodology for an electric utility in the United States. Lightning strike data were correlated to the occurrence of two transmission line interruptions and led to conclusions about the cause. Furthermore, estimated peak current information about the suspect strokes led engineers at the electric utility to conclude the cause to be shielding failure, due to unique terrain characteristics which physically expose the line making it susceptible to additional failures. (author)

  4. Cloud-to-ground lightning characteristics over Houston, Texas: 1989-2000

    Steiger, Scott M.; Orville, Richard E.; Huffines, Gary


    Cloud-to-ground (CG) lightning detected by the National Lightning Detection Network (NLDN) indicates a relatively high flash density over Houston, Texas, for the 12-year period 1989-2000. A significant enhancement of 45% in the flash density is observed compared to the nearby surrounding areas. The strength of the enhancement varies on the basis of season and time of day, with the greatest increases occurring during the summer (58%) and during the 0900-1800 LT time periods in each season. Observations indicate that large lightning events (defined as days with >100 flashes in a geographic region that includes Houston and nearby rural areas) were responsible for the climatological lightning anomaly and that increased thunderstorm initiation was not the most significant cause of the enhancement. A decrease (-12%) in the percentage of positive flashes is observed over the city. Higher negative median peak currents along the coast and well into the Gulf of Mexico were also discovered. Several explanations for our observations are suggested. The urban heat island and increased cloud condensation nuclei concentrations, especially from industrial pollution, are speculated to be significant factors in creating lightning enhancement. Pollution effects are speculated to cause a change in a thunderstorm's charge distribution, which can affect the polarity of CG flashes. The potential effect of the nearby coastal Gulf salt water on the calculated peak current is examined. Variations in multiplicity values across the region are observed but not explained.

  5. Cloud-to-Ground Lightning Characteristics Over Houston, TX: 1989-2000

    Steiger, S. M.; Orville, R. E.


    Cloud-to-Ground (CG) lightning detected by the National Lightning Detection Network (NLDN) indicates a relatively high flash density over Houston, Texas for the twelve-year period 1989-2000. A significant enhancement of 45% in the flash density is observed compared to the nearby surrounding areas. The strength of the enhancement varies based on season and time-of-day, with the greatest increases occurring during the summer (58%), and during the 0900-1800 LST time periods in each season. Observations indicate that large lightning events (defined as days with > 1,000 flashes in a geographic region that includes Houston and nearby rural areas) were responsible for the climatological lightning anomaly, and that increased thunderstorm initiation was not the most significant cause of the enhancement. A decrease (-12%) in the percentage of positive flashes is observed over the city. Higher negative median peak currents along the coast and well into the Gulf of Mexico were also discovered. Several explanations for our observations are suggested. The urban heat island and increased cloud condensation nuclei (CCN) concentrations, especially from industrial pollution, are shown to be significant factors in creating lightning enhancement. Pollution effects are speculated to cause a change in a thunderstorm's charge distribution, which can affect the polarity of CG flashes. The potential effect of the nearby coastal Gulf salt water on the measured peak current is examined.

  6. Response of lightning energy and total electron content with sprites over Antarctic Peninsula

    Suparta, W.; Yusop, N.


    This paper investigates the response of the lightning energy with the total electron content (TEC) derived from GPS over Antarctic Peninsula during St Patrick’s geomagnetic storm. During this event, sprite as one of the mesospheric transient luminous events (TLEs) associated with positive cloud-to-ground (+CG) lightning discharges can be generated. In this work, GPS and lightning data for the period from 14 to 20 March 2015 is analyzed. Geomagnetic activity and electric field data are also processed to relate the geomagnetic storm and lightning. Results show that during St Patrick’s geomagnetic storm, the lighting energy was produced up to ∼257 kJ. The ionospheric TEC was obtained 60 TECU, 38 TECU and 78 TECU between 18:00 and 21:00 UT for OHI3, PALV and ROTH stations, respectively. The peak of lightning energy was observed 14 hours after peaked of TEC. Sprite possibly generated through the electrical coupling process between the top cloud, middle and upper atmosphere with the DC electric field found to be ∼10 mVm-1 which leading to the sprite generation after the return strokes on 18 March 2015.

  7. North Alabama Total Lightning Climatology in Support of Lightning Safety Operations

    Stano, G. T.; Schultz, C. J.; Koshak, W. J.


    The North Alabama Lightning Mapping Array (NALMA) was installed in 2001 to observe total lightning (cloud-to-ground and intra-cloud) and study its relationship to convective activity. NALMA has served as ground-truth for the Tropical Rainfall Measuring Mission Lightning Imager (TRMM-LIS) and will again for the GOES-R Geostationary Lightning Mapper (GLM). Also, NASA's Short-term Prediction Research and Transition Center (SPoRT) has transitioned these data to National Weather Service Weather Forecast Offices to evaluate the impact in operations since 2003. This study focuses on seasonal and diurnal observations from NALMA's 14 year history. This is initially intended to improve lightning safety at Marshall Space Flight Center, but has other potential applications. Improvements will be made by creating a dataset to investigate temporal, spatial, and seasonal patterns in total lightning over the Tennessee Valley, compare these observations to background environmental parameters and the TRMM-LIS climatology, and investigate applying these data to specific points of interest. Unique characteristics, such as flash extent density and length of flashes can be investigated, which are unavailable from other lightning networks like the National Lightning Detection Network (NLDN). The NALMA and NLDN data can be combined such that end users can use total lightning to gain lead time on the initial cloud-to-ground flash of a storm and identify if lightning is extending far from the storm's core. This spatial extent can be analyzed to determine how often intra-cloud activity may impinge on a region of interest and how often a cloud-to-ground strike may occur in the region. The seasonal and diurnal lightning maps can aid with planning of various experiments or tests that often require some knowledge about future weather patterns months in advance. The main goal is to develop a protocol to enhance lightning safety everywhere once the Geostationary Lightning Mapper (GLM) is on orbit

  8. Seismological Studies for Tensile Faults

    Gwo-Bin Ou


    Full Text Available A shear slip fault, an equivalence of a double couple source, has often been assumed to be a kinematic source model in ground motion simulation. Estimation of seismic moment based on the shear slip model indicates the size of an earthquake. However, if the dislocation of the hanging wall relative to the footwall includes not only a shear slip tangent to the fault plane but also expansion and compression normal to the fault plane, the radiating seismic waves will feature differences from those out of the shear slip fault. Taking account of the effects resulting from expansion and compression to a fault plane, we can resolve the tension and pressure axes as well as the fault plane solution more exactly from ground motions than previously, and can evaluate how far a fault zone opens or contracts during a developing rupture. In addition to a tensile angle and Poisson¡¦s ratio for the medium, a tensile fault with five degrees of freedom has been extended from the shear slip fault with only three degrees of freedom, strike, dip, and slip.

  9. A Study on EMTP-Analysis Model for Switch-Board SPD with Gap and Propagation Characteristics of Lightning Surge on Simple Indoor Distribution Line

    Sakamoto, Yoshiki; Miyazaki, Teru; Okabe, Shigemitsu

    The numbers of damages of home electric appliances due to lightning surges have recently increased. Installing Surge Protective Devices (SPDs) for indoor distribution line is one of countermeasures against the damages, and is also spreading after an amendment of the regulation on indoor wires in 2005. Past studies have showed that the SPDs installed on the switchboard are effective for protecting all the equipment supplied by indoor distribution lines against lightning strokes. However, it is difficult to evaluate the protective effects of the SPDs against lightning strikes when considering complex indoor wires in houses. Thus, a high-precision analysis method is required to clarify the lightning performance of the SPDs for interior wiring. In this research, experiments were conducted to grasp the protective effects of the SPDs installed on a switchboard against lightning surges invading into a house, and an analysis model by the EMTP was proposed. The calculated results relatively agreed with the experimental results.

  10. Active fault diagnosis in closed-loop uncertain systems

    Niemann, Hans Henrik


    Fault diagnosis of parametric faults in closed-loop uncertain systems by using an auxiliary input vector is considered in this paper, i.e. active fault diagnosis (AFD). The active fault diagnosis is based directly on the socalled fault signature matrix, related to the YJBK (Youla, Jabr, Bongiorno...... and Kucera) parameterization. Conditions are given for exact detection and isolation of parametric faults in closed-loop uncertain systems....

  11. Influence of line isolation overlappings on formation of lightning overvoltages

    Antropov I. M.


    Full Text Available The model of substation protection against lightning waves with considered multiple overlappings of line isolation has been presented. Influence of multiple overlapping of isolation on line support on formation of lightning overvoltages has been shown. Ambiguity of determination of lightning current dangerous parameters at the fixed length of its front has been revealed

  12. Modelling lightning caused transmission line outages in Alberta

    Wu, M.; Shen, S.S.P. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mathematical and Statistical Sciences; Koval, D.O. [Alberta Univ., Edmonton, AB (Canada). Dept. of Electrical Engineering


    The characteristics of lightning and the relationship between lightning and transmission line outages is not fully understood by utility planners. This study used 20 year data sets of lightning events to investigate the spatial and temporal patterns of lightning in Alberta. Studies of geographical and temporal characteristics of lightning caused transmission line outages for several voltage level transmission lines were also examined. A lasso regression variable selection procedure and Cp criterion were used to model the duration of the lightning-caused transmission line outages as a function of weather and lightning patterns. The province was divided into 110 by 110 grids, and lightning variables were calculated for each cell. All the lightning variables for each cell were then averaged based on their areas. The overall cloud-ground lightning flashes 20-year mean frequency and the physical locations of power transmission lines were then plotted. Estimated probability density functions of the duration of lightning caused transmission line outages were classified by their voltage levels. The study showed that the characteristics of the lightning caused outages were different for different voltage levels of the transmission lines. Results suggested that the findings will have a significant impact on the accuracy of reliability methodologies that use the average duration of transmission line outages in their calculations. It was concluded that the new methodology can be applied to any transmission line system operating in a unique geographical environmental area. 11 refs., 3 tabs., 5 figs.

  13. Seismicity within the Irpinia Fault System As Monitored By Isnet (Irpinia Seismic Network) and Its Possible Relation with Fluid Storage

    Festa, G.; Zollo, A.; Amoroso, O.; Ascione, A.; Colombelli, S.; Elia, L.; Emolo, A.; Martino, C.; Mazzoli, S.; Orefice, A.; Russo, G.


    ISNet ( is deployed in Southern Apennines along the active fault system responsible for the 1980, M 6.9 Irpinia earthquake. ISNet consists of 32 seismic stations equipped with both strong motion and velocimetric instruments (either broadband or short-period), with the aim of capture a broad set of seismic signals, from ambient noise to strong motion. Real time and near real time procedures run at ISNet with the goal of monitoring the seismicity, check possible space-time anomalies, detect seismic sequences and launch an earthquake early warning in the case of potential significant ground shaking in the area. To understand the role of fluids on the seismicity of the area, we investigated velocity and attenuation models. The former is built from accurate cross-correlation picking and S wave detection based onto polarization analysis. Joint inversion of both P and S arrival times is then based on a linearized multi-scale tomographic approach. Attenuation is instead obtained from inversion of displacement spectra, deconvolving for the source effect. High VP/VS and QS/QP >1 were found within a ~15 km wide rock volume where intense microseismicity is located. This indicates that concentration of seismicity is possibly controlled by high pore fluid pressure. This earthquake reservoir may come from a positive feedback between the seismic pumping that controls the fluid transmission through the fractured damage zone and the low permeability of cross fault barrier, increasing the fluid pore pressure within the fault bounded block. In this picture, sequences mostly occur at the base of this fluid rich layer. They show an anomalous pattern in the earthquake occurrence per magnitude classes; main events evolve with a complex source kinematics, as obtained from backprojection of apparent source time functions, indicating possible directivity effects. In this area sequences might be the key for understanding the transition between the deep

  14. Mesoscopic Structural Observations of Cores from the Chelungpu Fault System, Taiwan Chelungpu-Fault Drilling Project Hole-A, Taiwan

    Hiroki Sone


    Full Text Available Structural characteristics of fault rocks distributed within major fault zones provide basic information in understanding the physical aspects of faulting. Mesoscopic structural observations of the drilled cores from Taiwan Chelungpu-fault Drilling Project Hole-A are reported in this article to describe and reveal the distribution of fault rocks within the Chelungpu Fault System. The Chelungpu Fault System in Hole-A was encountered at a depth of between 1050 - 1250 m where deformation structures increased. Three major fault zone structures were found at approximate depths of 1111, 1153, and 1221 m. The presence of wide fault rock regions were mostly concentrated in these 3 fault zones. The fault zone at 1111 m mainly consists of a nearly brecciated fracture zone and a clayey fault gouge zone of about 1.05 m in thickness. Fault rocks from the fault zone at 1153 m are characterized by the presence of sand grains in the matrix content, consisting of a 1.1-m thick fault breccia zone and a 0.35-m thick fault gouge zone. The fault zone at 1221 m consists of fault breccia and fault gouge of 1.15 m in total thickness. These are relatively harder and darker in color than the previous 2 fault zones. Each of the 3 fault zones contains a few layers of dark colored rocks of approximately 5 - 80 mm in thickness within the fault breccia and fault gouge zones. These dark colored rocks were found distinctively within the fault rocks. However, there relation to the process of faulting is not clearly understood and shall be discussed in detail with the aid of microscopic observations.

  15. Flat-Top and Stacking-Fault-Free GaAs-Related Nanopillars Grown on Si Substrates

    Kouta Tateno


    Full Text Available The VLS (vapor-liquid-solid method is one of the promising techniques for growing vertical III-V compound semiconductor nanowires on Si for application to optoelectronic circuits. Heterostructures grown in the axial direction by the VLS method and in the radial direction by the general layer-by-layer growth method make it possible to fabricate complicated and functional three-dimensional structures in a bottom-up manner. We can grow some vertical heterostructure nanopillars with flat tops on Si(111 substrates, and we have obtained core-multishell Ga(InP/GaAs/GaP nanowires with flat tops and their air-gap structures by using selective wet etching. Simulations indicate that a high- factor of over 2000 can be achieved for this air-gap structure. From the GaAs growth experiments, we found that zincblende GaAs without any stacking faults can be grown after the GaP nanowire growth. Pillars containing a quantum dot and without stacking faults can be grown by using this method. We can also obtain flat-top pillars without removing the Au catalysts when using small Au particles.

  16. Development of lightning-resistant overhead ground wire

    Yokoya, Munehisa; Katsuragi, Yukio (Chubu Electric Power Co., Inc., Nagoya (Japan)); Goda, Yutaka (Central Research Inst. of the Electric Power Industry, Yokosuka (Japan)); Nagata, Yutaka; Asano, Yuji (Fujikura Ltd., Tokyo (Japan))


    Overhead ground wires (GW) are vulnerable to strand breakage due to lightning strikes. With the wider application in recent years of Composite Fiber Optic Ground Wire (OPGW), it becomes more important to protect GW from such damage. In this paper, the authors present the results of various investigations made in developing lightning-resistant GW/OPGW. Investigations included field experiments using rocket-triggered lightning, studies on materials and designs to improve lightning characteristics and various evaluation tests, such as DC arc tests, of several prototypes. As a result, the authors have developed excellent lightning-resistant GW/OPGW applicable for conventional transmission lines.

  17. On ULF Signatures of Lightning Discharges

    Bösinger, T.; Shalimov, S. L.


    Recent works on magnetic signatures due to distant lightning discharges are reviewed. Emphasis is laid on magnetic signatures in the ULF range (in the old definition from less than 1 mHz up to 1 Hz), that is in the frequency range below the Schumann resonance. These signatures are known to be of importance for the excitation of the ionospheric Alfvén resonator (IAR) which works only at night time conditions. This emphasizes the difference between night and day time ULF signatures of lightning. The IAR forms a link between the atmosphere and magnetosphere. Similarities and differences of this link in the VLF (Trimpi effect) and ULF range are worked out. A search for a unique signature of sprite-associated positive cloud-to-ground (+CG) lightning discharges ended with a negative result. In this context, however, a new model of lightning-associated induced mesospheric currents was built. Depending on mesospheric condition it can produce magnetic signatures in the entire frequency range from VLF, ELF to ULF. In the latter case it can explain signatures known as the Ultra Slow Tail of +CG lightning discharges. A current problem on the magnetic background noise intensity has been solved by taking more seriously the contribution of +CG lightning discharges to the overall background noise. Their low occurrence rate is more than compensated by their large and long lasting continuing currents. By superposed epoch analysis it could be shown that the ULF response to -CG is one to two orders smaller that in case of +CG with similar peak current values of the return stroke.

  18. Artificial Neural Network applied to lightning flashes

    Gin, R. B.; Guedes, D.; Bianchi, R.


    The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a

  19. Statistical analysis of lightning electric field measured under Malaysian condition

    Salimi, Behnam; Mehranzamir, Kamyar; Abdul-Malek, Zulkurnain


    Lightning is an electrical discharge during thunderstorms that can be either within clouds (Inter-Cloud), or between clouds and ground (Cloud-Ground). The Lightning characteristics and their statistical information are the foundation for the design of lightning protection system as well as for the calculation of lightning radiated fields. Nowadays, there are various techniques to detect lightning signals and to determine various parameters produced by a lightning flash. Each technique provides its own claimed performances. In this paper, the characteristics of captured broadband electric fields generated by cloud-to-ground lightning discharges in South of Malaysia are analyzed. A total of 130 cloud-to-ground lightning flashes from 3 separate thunderstorm events (each event lasts for about 4-5 hours) were examined. Statistical analyses of the following signal parameters were presented: preliminary breakdown pulse train time duration, time interval between preliminary breakdowns and return stroke, multiplicity of stroke, and percentages of single stroke only. The BIL model is also introduced to characterize the lightning signature patterns. Observations on the statistical analyses show that about 79% of lightning signals fit well with the BIL model. The maximum and minimum of preliminary breakdown time duration of the observed lightning signals are 84 ms and 560 us, respectively. The findings of the statistical results show that 7.6% of the flashes were single stroke flashes, and the maximum number of strokes recorded was 14 multiple strokes per flash. A preliminary breakdown signature in more than 95% of the flashes can be identified.

  20. The lightning activities in super typhoons over the Northwest Pacific


    The spatial and temporal characteristics of lightning activities have been studied in seven super typhoons from 2005 to 2008 over the Northwest Pacific, using data from the World Wide Lightning Location Network (WWLLN). The results indicated that there were three distinct lightning flash regions in mature typhoon, a significant maximum in the eyewall regions (20-80 km from the center), a minimum from 80-200 km, and a strong maximum in the outer rainbands (out of 200 km from the center). The lightning flashes in the outer rainbands were much more than those in the inner rainbands, and less than 1% of flashes occurred within 100 km of the center. Each typhoon produced eyewall lightning outbreak during the periods of its intensification, usually several hours prior to its maximum intensity, indicating that lightning activity might be used as a proxy of intensification of super typhoon. Little lightning occurred near the center after landing of the typhoon.

  1. Irregularities of ionospheric VTEC during lightning activity over Antarctic Peninsula

    Suparta, W.; Nor, W. N. A. Wan Mohd


    This paper investigates the irregularities of vertical total electron content (VTEC) during lightning activity and geomagnetic quiet days over Antarctic Peninsula in year 2014. During the lightning event, the ionosphere may be disturbed which may cause disruption in the radio signal. Thus, it is important to understand the influence of lightning on VTEC in the study of upper-lower interaction. The lightning data is obtained from World Wide Lightning Location Network (WWLLN) and the VTEC data has analyzed from Global Positioning System (GPS) for O’Higgins (OHI3), Palmer (PALV), and Rothera (ROTH). The results demonstrate the VTEC variation of ∼0.2 TECU during low lightning activity which could be caused by energy dissipation through lightning discharges from troposphere into the thermosphere.

  2. The Effect of No-Fault Divorce Law on the Divorce Rate across the 50 States and Its Relation to Income, Education, and Religiosity.

    Nakonezny, Paul A.; And Others


    Studied no-fault divorce law effects on the divorce rate. Results revealed that no-fault divorce laws led to measurable increases in divorce rates. Median family income was the only significant predictor of change in divorce rate; the adjusted post-no-fault divorce rate increased as median family income increased. (RJM)

  3. Growth of faults in crystalline rock

    Martel, S. J.


    The growth of faults depends on the coupled interplay of the distribution of slip, fault geometry, the stress field in the host rock, and deformation of the host rock, which commonly is manifest in secondary fracturing. The distribution of slip along a fault depends highly on its structure, the stress perturbation associated with its interaction with nearby faults, and its strength distribution; mechanical analyses indicate that the first two factors are more influential than the third. Slip distribution data typically are discrete, but commonly are described, either explicitly or implicitly, using continuous interpolation schemes. Where the third derivative of a continuous slip profile is discontinuous, the compatibility conditions of strain are violated, and fracturing and perturbations to fault geometry should occur. Discontinuous third derivatives accompany not only piecewise linear functions, but also functions as seemingly benign as cubic splines. The stress distribution and fracture distribution along a fault depends strongly on how the fault grows. Evidence to date indicates that a fault that nucleates along a pre-existing, nearly planar joint or a dike typically develops secondary fractures only near its tipline when the slip is small relative to the fault length. In contrast, stress concentrations and fractures are predicted where a discontinuous or non-planar fault exhibits steps and bends; field observations bear this prediction out. Secondary fracturing influences how faults grow by creating damage zones and by linking originally discontinuous elements into a single fault zone. Field observations of both strike-slip faults and dip-slip faults show that linked segments usually will not be coplanar; elastic stress analyses indicate that this is an inherent tendency of how three-dimensional faults grow. Advances in the data we collect and in the rigor and sophistication of our analyses seem essential to substantially advance our ability to successfully

  4. Evaluating the potential for catastrophic fault-rupture-related hazards affecting a key hydroelectric and irrigation region in central Asia

    Rust, D.; Korjenkov, A.; Tibaldi, A.; Usmanova, M.


    The Toktogul hydroelectric and irrigation scheme is the largest in central Asia, with a reservoir containing almost 20 km3 of water behind a 230 m-high dam. Annually, the scheme generates 1200 MW of electricity that is distributed over Kyrgyzstan, Uzbekistan, Tajikistan, Kazakhstan and Russia. The scheme is vital for the economic, social and agricultural stability and development of the emerging central Asian republics it serves and, since it is no longer administered centrally as it was in Soviet times, is increasingly the focus of cross-border tensions involving competing needs for irrigation water and power supplies. Our work aims to identify and evaluate potential geo-environmental threats to this region for the benefit of stakeholders; with recommendations for measures to mitigate a range of threat scenarios, presented in a user-friendly GIS format. Most notably these scenarios involve the potential for very large magnitude earthquakes, with associated widespread slope instability, occurring on the little known Talas - Fergana fault. This structure, some 700 km long, bisects the Toktogul region within the actively (~20 mm a-1) contracting Tien Shan mountain range and exhibits geological characteristics similar to large strike-slip faults such as the San Andreas. Historical records are limited in this inaccessible mountainous region that, until Soviet times, was occupied by mainly nomadic peoples, but do not indicate recent fault rupture. This highlights the role of geological investigations in assembling a record of past catastrophic events to serve as a guide for what may be expected in the future, as well as the inherent difficulties in attempting geological forecasts to a precision that is useful on human timescales. Such forecasts in this region must also include the presence of some 23 uranium mining waste dumps within the mountain valleys, a legacy from Soviet times, as well as arsenic-rich waste dumps remaining from an earlier era of gold mining. Many

  5. The verification of lightning location accuracy in Finland deduced from lightning strikes to trees

    Mäkelä, Antti; Mäkelä, Jakke; Haapalainen, Jussi; Porjo, Niko


    We present a new method to determine the ground truth and accuracy of lightning location systems (LLS), using natural lightning strikes to trees. Observations of strikes to trees are being collected with a Web-based survey tool at the Finnish Meteorological Institute. Since the Finnish thunderstorms tend to have on average a low flash rate, it is often possible to identify from the LLS data unambiguously the stroke that caused damage to a given tree. The coordinates of the tree are then the ground truth for that stroke. The technique has clear advantages over other methods used to determine the ground truth. Instrumented towers and rocket launches measure upward-propagating lightning. Video and audio records, even with triangulation, are rarely capable of high accuracy. We present data for 36 quality-controlled tree strikes in the years 2007-2008. We show that the average inaccuracy of the lightning location network for that period was 600 m. In addition, we show that the 50% confidence ellipse calculated by the lightning location network and used operationally for describing the location accuracy is physically meaningful: half of all the strikes were located within the uncertainty ellipse of the nearest recorded stroke. Using tree strike data thus allows not only the accuracy of the LLS to be estimated but also the reliability of the uncertainty ellipse. To our knowledge, this method has not been attempted before for natural lightning.

  6. Machine Fault Signature Analysis

    Pratesh Jayaswal


    Full Text Available The objective of this paper is to present recent developments in the field of machine fault signature analysis with particular regard to vibration analysis. The different types of faults that can be identified from the vibration signature analysis are, for example, gear fault, rolling contact bearing fault, journal bearing fault, flexible coupling faults, and electrical machine fault. It is not the intention of the authors to attempt to provide a detailed coverage of all the faults while detailed consideration is given to the subject of the rolling element bearing fault signature analysis.

  7. Lightning-induced overvoltages in low-voltage systems

    Hoeidalen, Hans Kristian


    Lightning-induced overvoltages (LIOs) are a main source of failures in low-voltage overhead line systems. This thesis deals mainly with calculations of LIOs aiming to enable the design of a proper voltage protection. Models for calculation of LIOs are adapted from the literature or developed based on measurements. The models used are believed to be fairly accurate for the first few microseconds, which is usually sufficient for predicting the maximum induced voltage in the system. The lightning channel is modelled by the Modified Transmission Line (MTL) model with the Transmission Line (TL) model as a special case. The coupling between the electrical fields from a lightning channel and an overhead line is modelled by Agrawal`s model. The attenuation of electrical fields over a lossy ground is modelled by Norton`s- or the Surface Impedance methods. The validity of all the applied models is analysed. In addition, measurements have been performed in order to develop models of distribution transformers and low-voltage power installation (LVPI) networks. Simple models of typical transformers and LVPIs are developed for calculations when specific data are unavailable. The practical range of values and its influence on the LIOs in a system is investigated. The main frequency range of interest related to LIOs is 10 kHz - 1 MHz in which all the models are accurate. The adapted or developed models are used to calculate LIOs in low-voltage systems. The influence of various key parameters in the system is investigated. Most important are the return stroke amplitude and rise time, the overhead line height and location, the termination of overhead line segments, neutral grounding, and the ground conductivity. 135 refs., 136 figs., 12 tabs.

  8. An Electric-Field Meter With Reciprocating Shuter, Used as a Lightning Flash Counter

    Bogoev, I.; Byerley, L. G.; Swenson, J.; Hinckley, A.; Beasley, W. H.


    Cloud-to-ground (CG) lightning flashes result in transfers of charge from cloud to ground. Consequently, there are relatively large and abrupt changes in the electrostatic field in the region near the ground-strike point. Although cloud (IC) discharges can also result in changes in the electrostatic field at the ground, the changes tend to be smaller. In both cases there will be abrupt step changes in the electric-field record, followed by a characteristic relaxation period. Thus electric-field meters normally used to measure the ambient electrostatic field can also be used to count flashes by counting the abrupt changes. The Campbell Scientific CS110 electric-field meter is especially well suited to the task of monitoring and counting local lightning field changes because of its unique design and special features, including built-in data-processing capability. Because it has a reciprocating shutter under microprocessor control, rather than a spinning rotor, the CS110 has several advantages over traditional field mills, including greater reliability, lower noise, continuous adjustment for drift, and, not least, the option of leaving the shutter open so that the instrument can be operated as a field-change meter sensitive to distant lightning. In this paper we discuss use of the CS110 in field-meter mode to count nearby lightning flashes and in field-change-meter mode to count distant lightning flashes. To test the use of the CS110 as a flash counter for nearby lightning, we calculated the time derivative of the field at each sample; a moving median, M, of the derivatives; a moving standard deviation, s and moving Low and High limits, LH = M + ns, and LL = M - ns, (where n is chosen empirically). Events that exceed the limits are counted as nearby lightning flashes, where the meaning of "nearby" depends on the choice of n. To test the use of the CS110 as a flash counter for distant lightning, we operated it with the shutter open and recorded the output of the charge

  9. Lightning driven EMP in the upper atmosphere

    Rowland, H. L.; Fernsler, R. F.; Huba, J. D.; Bernhardt, P. A.


    Large lightning discharges can drive electromagnetic pulses (EMP) that cause breakdown of the neutral atmosphere between 80 and 95 km leading to order of magnitude increases in the plasma density. The increase in the plasma density leads to increased reflection and absorption, and limits the pulse strength that propagates higher into the ionosphere.

  10. 14 CFR 35.38 - Lightning strike.


    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.38 Lightning strike. The applicant must demonstrate, by tests, analysis based on tests, or experience on similar designs, that the propeller can withstand...

  11. Lightning detection and exposure algorithms for smartphones

    Wang, Haixin; Shao, Xiaopeng; Wang, Lin; Su, Laili; Huang, Yining


    This study focuses on the key theory of lightning detection, exposure and the experiments. Firstly, the algorithm based on differential operation between two adjacent frames is selected to remove the lightning background information and extract lighting signal, and the threshold detection algorithm is applied to achieve the purpose of precise detection of lightning. Secondly, an algorithm is proposed to obtain scene exposure value, which can automatically detect external illumination status. Subsequently, a look-up table could be built on the basis of the relationships between the exposure value and average image brightness to achieve rapid automatic exposure. Finally, based on a USB 3.0 industrial camera including a CMOS imaging sensor, a set of hardware test platform is established and experiments are carried out on this platform to verify the performances of the proposed algorithms. The algorithms can effectively and fast capture clear lightning pictures such as special nighttime scenes, which will provide beneficial supporting to the smartphone industry, since the current exposure methods in smartphones often lost capture or induce overexposed or underexposed pictures.

  12. Study of lightning attack location by detecting polarization fluctuation in OPGW; OPGW denpako no henpa hendo ni yoru sodensen raigekiten hyotei no kento

    Kurono, M.; Kuribara, M.; Asakawa, S. [Central Research Institute of Electric Power Industry, Tokyo (Japan); Sumitani, H. [Chugoku Electric Power Co. Inc., Hiroshima (Japan)


    A method has been established by which lightning attack location can be automatically measured by detecting polarization fluctuation in OPGW. A return transmission method and a two way transmission method were proposed, and their characteristics were made clear. For the both methods, optical fiber is used as detecting and transmission media. Additional equipment such as fault locator, the conventional linkage apparatus to transmission line is not required. Optical fiber can be also used as optical communication circuit using wavelength multiplex. For the return transmission method, two times of rising polarization fluctuations can be separated using delaying fiber. Tailings of the fluctuation are often overlapped. A value of polarization fluctuation velocity d{beta} was determined from instantaneous differential values of three measured polarization components. Thus, a method has been proposed by which the lightning attack time can be derived from the peak time. The fluctuation peak could be distinguished from the waveform of d{beta} using data of largest lightning attack polarization fluctuations, and the distances to the lightning attack spots could be calculated. The lightning location agreed well with the result of location by LLS. 9 refs., 16 figs., 8 tabs.

  13. Influence of fault geometry and fault interaction on strain partitioning within western Sichuan and its adjacent region


    There are several major active fault zones in the western Sichuan and its vicinity. Slip rates and seismicity vary on different fault zones. For example, slip rates on the Xianshuihe fault zone are higher than 10 mm/a. Its seismicity is also intense. Slip rates on the Longmenshan fault zone are low. However, Wenchuan Ms8.0 earthquake occurred on this fault zone in 2008. Here we study the impact of fault geometry on strain partitioning in the western Sichuan region using a three-dimensional viscoe- lastoplastic model. We conclude that the slip partitioning on the Xianshuihe-Xiaojiang fault presents as segmented, and it is related to fault geometry and fault structure. Slip rate is high on fault segment with simple geometry and structure, and vice versa. Strain rate outside the fault is localized around the fault segment with complex geometry and fault structure. Strain partitioning on the central section of the Xianshuihe-Xiaojiang fault zone is influenced by the interaction between the Anninghe-Zemuhe fault and the Daliangshan fault zone. Striking of the Longmenshan fault zone is nearly orthogonal to the direction of eastward extrusion in the Tibetan Plateau. It leads to low slip rate on the fault zone.

  14. The Washington DC Metro Area Lightning Mapping Array

    Krehbiel, P.; Rison, W.; Edens, H.; O'Connor, N.; Aulich, G.; Thomas, R.; Kieft, S.; Goodman, S.; Blakeslee, R.; Hall, J.; Bailey, J.


    During the spring and summer of 2006, a network of eight lightning mapping stations has been set up in the greater DC metropolitan area to monitor the total lightning activity in storms over Virginia, Maryland and the Washington DC area. The network is a joint project between New Mexico Tech, NASA, and NOAA/National Weather Service, with real-time data being provided to the NWS for use in their forecast and warning operations. The network utilizes newly available portable stations developed with support from the National Science Foundation. Cooperating institutions involved in hosting the mapping stations are Howard University, Montgomery County Community College in Rockville MD, NOAA/NWS's Test and Evaluation Site in Sterling, VA, College of Southern Maryland near La Plata MD, the Applied Physics Laboratory of Johns Hopkins University, Northern Virginia Community College in Annandale, VA, the University of Maryland at Baltimore County, and George Mason University (Prince William Campus) in Manassas, VA. The network is experimental in that its stations a) operate in the upper rather than the lower VHF (TV channel 10, 192-198 MHz) to reduce the radio frequency background noise associated with urban environments, and b) are linked to the central processing site via the internet rather than by dedicated wireless communication links. The central processing is done in Huntsville, AL, and updated observations are sent to the National Weather Service every 2 min. The observational data will also be available on a public website. The higher operating frequency results in a decrease in signal strength estimated to be about 15-20 dB, relative to the LMA networks being operated in northern Alabama and central Oklahoma (which operate on TV channels 5 and 3, respectively). This is offset somewhat by decreased background noise levels at many of the stations. The detection threshold levels range from about -95 dBm up to -80 dBm and the peak lightning signals typically extend 15

  15. Distribution and migration of aftershocks of the 2010 Mw 7.4 Ogasawara Islands intraplate normal-faulting earthquake related to a fracture zone in the Pacific plate

    Obana, Koichiro; Takahashi, Tsutomu; No, Tetsuo; Kaiho, Yuka; Kodaira, Shuichi; Yamashita, Mikiya; Sato, Takeshi; Nakamura, Takeshi


    describe the aftershocks of a Mw 7.4 intraplate normal-faulting earthquake that occurred 150 km east Ogasawara (Bonin) Islands, Japan, on 21 December 2010. It occurred beneath the outer trench slope of the Izu-Ogasawara trench, where the Pacific plate subducts beneath the Philippine Sea plate. Aftershock observations using ocean bottom seismographs (OBSs) began soon after the earthquake and multichannel seismic reflection surveys were conducted across the aftershock area. Aftershocks were distributed in a NW-SE belt 140 km long, oblique to the N-S trench axis. They formed three subparallel lineations along a fracture zone in the Pacific plate. The OBS observations combined with data from stations on Chichi-jima and Haha-jima Islands revealed a migration of the aftershock activity. The first hour, which likely outlines the main shock rupture, was limited to an 80 km long area in the central part of the subsequent aftershock area. The first hour activity occurred mainly around, and appears to have been influenced by, nearby large seamounts and oceanic plateau, such as the Ogasawara Plateau and the Uyeda Ridge. Over the following days, the aftershocks expanded beyond or into these seamounts and plateau. The aftershock distribution and migration suggest that crustal heterogeneities related to a fracture zone and large seamounts and oceanic plateau in the incoming Pacific plate affected the rupture of the main shock. Such preexisting structures may influence intraplate normal-faulting earthquakes in other regions of plate flexure prior to subduction.

  16. Application of fault tree approach for the causation mechanism of urban haze in Beijing--Considering the risk events related with exhausts of coal combustion.

    Huang, Weiqing; Fan, Hongbo; Qiu, Yongfu; Cheng, Zhiyu; Qian, Yu


    Haze weather has become a serious environmental pollution problem which occurs in many Chinese cities. One of the most critical factors for the formation of haze weather is the exhausts of coal combustion, thus it is meaningful to figure out the causation mechanism between urban haze and the exhausts of coal combustion. Based on above considerations, the fault tree analysis (FAT) approach was employed for the causation mechanism of urban haze in Beijing by considering the risk events related with the exhausts of coal combustion for the first time. Using this approach, firstly the fault tree of the urban haze causation system connecting with coal combustion exhausts was established; consequently the risk events were discussed and identified; then, the minimal cut sets were successfully determined using Boolean algebra; finally, the structure, probability and critical importance degree analysis of the risk events were completed for the qualitative and quantitative assessment. The study results proved that the FTA was an effective and simple tool for the causation mechanism analysis and risk management of urban haze in China.

  17. Acute transient hemiparesis induced by lightning strike.

    Rahmani, Seyed Hesam; Faridaalaee, Gholamreza; Jahangard, Samira


    According to data from the National Oceanic and Atmospheric Administration,in the years from 1959 to 1994, lightning was responsible for more than 3000 deaths and nearly 10,000 casualties. The most important characteristic features of lightning injuries are multisystem involvement and widely variable severity. Lightning strikes are primarily a neurologic injury that affects all 3 components of the nervous system: central, autonomic,and peripheral. Neurologic complications of lightning strikes vary from transient benign symptoms to permanent disability. Many patients experience a temporary paralysis called keraunoparalysis. Here we reported a 22-year-old mountaineer man with complaining of left sided hemiparesis after being hit by a lightning strike in the mountain 3 hours ago. There was no loss of consciousness at hitting time. On arrival the patient was alert, awake and hemodynamically stable. In neurologic examination cranial nerves were intact, left sided upper and lower extremity muscle force was I/V with a combination of complete sensory loss, and right-sided muscle force and sensory examination were normal. There is not any evidence of significant vascular impairment in the affected extremities. Brain MRI and CT scan and cervical MRI were normal. During 2 days of admission, with intravenous hydration, heparin 5000 unit SC q12hr and physical therapy of the affected limbs, motor and sensory function improved and was normal except mild paresthesia. He was discharged 1 day later for outpatient follow up while vitamin B1 100mg orally was prescribed.Paresthesia improved after 3 days without further sequels.

  18. Ionospheric effects of whistler waves from rocket-triggered lightning

    Cotts, B. R. T.; Gołkowski, M.; Moore, R. C.


    Lightning-induced electron precipitation (LEP) is one of the primary mechanisms for energetic electron loss from Earth's radiation belts. While previous works have emphasized lightning location and the return stroke peak current in quantifying lightning's role in radiation belt electron loss, the spectrum of the lightning return stroke has received far less attention. Rocket-triggered lightning experiments performed at the International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, Florida, provide a means to directly measure the spectral content of individual lightning return strokes. Using an integrated set of numerical models and directly observed rocket-triggered lightning channel-base currents we calculate the latitudinal dependence of the precipitation signature. Model results indicate that rocket-triggered lightning may produce detectable LEP events and that return strokes with higher ELF (3 Hz-3 kHz) content cause proportionally more ionospheric ionization and precipitate more electrons at higher latitudes than return strokes with proportionally higher VLF (3 kHz-30 kHz) content. The predicted spatio-temporal signature of the induced electron precipitation is highly dependent upon the return stroke spectral content. As a result, we postulate that rocket-triggered lightning experiments enable us to the estimate the spectral profile of energetic electrons precipitated from the Earth's radiation belts.

  19. Deep Fault Drilling Project—Alpine Fault, New Zealand

    Rupert Sutherland


    Full Text Available The Alpine Fault, South Island, New Zealand, constitutes a globally significant natural laboratory for research into how active plate-bounding continental faults work and, in particular, how rocks exposed at the surface today relate to deep-seated processes of tectonic deformation, seismogenesis, and mineralization. The along-strike homogeneity of the hanging wall, rapid rate of dextral-reverse slip on an inclined fault plane, and relatively shallow depths to mechanical and chemical transitions make the Alpine Fault and the broader South Island plate boundary an important international site for multi-disciplinary research and a realistic target for an ambitious long-term program of scientific drilling investigations.

  20. Modeling of Nonlinear Elements During Lightning Overvoltage Simulations%雷电过电压仿真中非线性元件的建模


    The paper presents some problems of lightning overvoltage modeling in transmission lines with nonlinear elements. The presented results were obtained mostly for fast front transients of subsequent lightning return stroke currents. The effectiveness of numerical algorithms of nonlinear models and possibilities of their development for such transients are analyzed. Computer simulations carried out by application of EMTP show that nonlinear models of back-flashover and ZnO arresters work properly, while the implemented corona model can not be used for relatively large peak values of subsequent lightning return-stroke currents.

  1. FSN-based fault modelling for fault detection and troubleshooting in CANDU stations

    Nasimi, E., E-mail: [Bruce Power LLP., Tiverton, Ontario(Canada); Gabbar, H.A. [Univ. of Ontario Inst. of Tech., Oshawa, Ontario (Canada)


    An accurate fault modeling and troubleshooting methodology is required to aid in making risk-informed decisions related to design and operational activities of current and future generation of CANDU designs. This paper presents fault modeling approach using Fault Semantic Network (FSN) methodology with risk estimation. Its application is demonstrated using a case study of Bruce B zone-control level oscillations. (author)

  2. Tool for Viewing Faults Under Terrain

    Siegel, Herbert, L.; Li, P. Peggy


    Multi Surface Light Table (MSLT) is an interactive software tool that was developed in support of the QuakeSim project, which has created an earthquake- fault database and a set of earthquake- simulation software tools. MSLT visualizes the three-dimensional geometries of faults embedded below the terrain and animates time-varying simulations of stress and slip. The fault segments, represented as rectangular surfaces at dip angles, are organized into collections, that is, faults. An interface built into MSLT queries and retrieves fault definitions from the QuakeSim fault database. MSLT also reads time-varying output from one of the QuakeSim simulation tools, called "Virtual California." Stress intensity is represented by variations in color. Slips are represented by directional indicators on the fault segments. The magnitudes of the slips are represented by the duration of the directional indicators in time. The interactive controls in MSLT provide a virtual track-ball, pan and zoom, translucency adjustment, simulation playback, and simulation movie capture. In addition, geographical information on the fault segments and faults is displayed on text windows. Because of the extensive viewing controls, faults can be seen in relation to one another, and to the terrain. These relations can be realized in simulations. Correlated slips in parallel faults are visible in the playback of Virtual California simulations.

  3. Facies composition and scaling relationships of extensional faults in carbonates

    Bastesen, Eivind; Braathen, Alvar


    :1000. In general the complete dataset shows a positive correlation between thickness (T) of fault cores and the displacement (D) on faults. For increasing displacement relationships, the D/T relationship is not constant. The D/T relationship is generally higher for small faults than for larger faults, which implies that comparisons between small and large fault with respect to this parameter should be handled with care. Fault envelope composition, as reflected by the relative proportions of different fault facies in the core, varies with displacement. In small scale faults (0-1 m displacement), secondary calcite layers and fault gouge dominate, whereas shale dominated fault rocks (shale smear) and carbonate dominated fault rocks (breccias) constitute minor components. Shale dominated fault rocks are restricted to shale-rich protoliths, and fault breccias to break-down of lenses formed near fault jogs. In medium scale faults (1-10m), fault rocks form the dominating facies, whereas the amount of secondary calcite layers decreases due to transformation into breccias. Further, in shale rich carbonates the fault cores consist of composite facies associations. In major faults (10-300 m displacement) fault rock layers and lenses dominate the fault cores. A common observation in large scale faults is a distinct layering of different fault rocks, shale smearing of major shale layers and massive secondary calcite layers along slip surfaces. Fault core heterogeneity in carbonates is ascribed to the distribution of fault facies, such as fault rocks, secondary calcite layers and shale smear. In a broader sense, facies distribution and thickness are controlled by displacement, protolith and tectonic environment. The heterogeneous properties and the varied distribution observed in this study may be valuable in forecasting fault seal characteristics of carbonate reservoirs.

  4. Statistical Studies of Ground-Based Optical Lightning Signatures

    Hunt, C. R.; Nemzek, R. J.; Suszcynsky, D. M.


    Most extensive optical studies of lightning have been conducted from orbit, and the statistics of events collected from earth are relatively poorly documented. The time signatures of optical power measured in the presence of clouds are inevitably affected by scattering,which can distort the signatures by extending and delaying the amplitude profile in time. We have deployed two all-sky photodiode detectors, one in New Mexico and one in Oklahoma, which are gathering data alongside electric field change monitors as part of the LANL EDOTX Great Plains Array. Preliminary results show that the photodiode is sensitive to approximately 50% or more of RF events detected at ranges of up to 30 km, and still has some sensitivity at ranges in excess of 60 km (distances determined by the EDOTX field-change array). The shapes of events within this range were assessed, with focus on rise time, width, peak power, and their correlation to corresponding electric field signatures, and these are being compared with published on-orbit and ground-based data. Initial findings suggest a mean characteristic width (ratio of total detected optical energy to peak power) of 291 +/- 12 microseconds and a mean delay between the RF signal peak and optical peak of 121 +/- 17 microseconds. These values fall between prior ground-based measurements of direct return stroke emissions, and scattering-dominated on-orbit measurements. This work will promote better understanding of the correspondence between radio and optical measurements of lightning.

  5. Electric Field Change and VHF Radiation during Lightning Initiation

    Marshall, T. C.; Karunarathne, S.; Bandara, S. A.; Karunarathne, N. D.; Siedlecki, R.; Stolzenburg, M.


    Recent studies of lightning initiation [e.g., Marshall et al., JGR 2014; Marshall et al., AGU 2015] have shown that an initial electric field change (IEC) occurs for about 1 ms before the first initial breakdown (IB) pulse in most (and perhaps all) lightning flashes. The same studies indicate that the IEC itself begins after an event that radiates strongly in the VHF radio band; this event seems to be the real lightning initiation event [e.g., Rison et al., Nature Communications 2016]. During the summer of 2016 we used an array of E-change sensors and VHF sensors located in north Mississippi to obtain correlated data on the VHF lightning initiation event, the IEC, and the IB pulses of nearby lightning flashes. In this presentation we show examples of lightning initiation events and their subsequent IECs at multiple sensors. In addition, we show examples of the VHF radiation associated with IB pulses.

  6. Weekly Cycle of Lightning: Evidence of Storm Invigoration by Pollution

    Bell, Thomas L.; Rosenfeld, Daniel; Kim, Kyu-Myong


    We have examined summertime 1998 2009 U.S. lightning data from the National Lightning Detection Network (NLDN) to look for weekly cycles in lightning activity. As was found by Bell et al. (2008) for rain over the southeast U.S., there is a significant weekly cycle in afternoon lightning activity that peaks in the middle of the week there. The weekly cycle appears to be reduced over population centers. Lightning activity peaks on weekends over waters near the SE U.S. The statistical significance of weekly cycles over the western half of the country is generally small. We found no evidence of a weekly cycle of synoptic-scale forcing that might explain these patterns. The lightning behavior is entirely consistent with the explanation suggested by Bell et al. (2008) for the cycles in rainfall and other atmospheric data from the SE U.S., that aerosols can cause storms to intensify in humid, convectively unstable environments.

  7. Chasing Lightning: Sferics, Tweeks and Whistlers

    Webb, P. A.; Franzen, K.; Garcia, L.; Schou, P.; Rous, P.


    We all know what lightning looks like during a thunderstorm, but the visible flash we see is only part of the story. This is because lightning also generates light with other frequencies that we cannot perceive with our eyes, but which are just as real as visible light. Unlike the visible light from lightning, these other frequencies can carry the lightning's energy hundreds or thousands of miles across the surface of the Earth in the form of special signals called "tweeks" and "sferics". Some of these emissions can even travel tens of thousands of miles out into space before returning to the Earth as "whistlers". The INSPIRE Project, Inc is a non-profit scientific and educational corporation whose beginning mission was to bring the excitement of observing these very low frequency (VLF) natural radio waves emissions from lightning to high school students. Since 1989, INSPIRE has provided specially designed radio receiver kits to over 2,600 participants around the world to make observations of signals in the VLF frequency range. Many of these participants are using the VLF data they collect in very creative projects that include fiction, music and art exhibitions. During the Fall 2008 semester, the first INSPIRE based university-level course was taught at University of Maryland Baltimore County (UMBC) as part of its First-Year Seminar (FYS) series. The FYS classes are limited to 20 first-year students per class and are designed to create an active-learning environment that encourages student participation and discussion that might not otherwise occur in larger first-year classes. This presentation will cover the experiences gained from using the INSPIRE kits as the basis of a university course. This will include the lecture material that covers the basic physics of lightning, thunderstorms and the Earth's atmosphere, as well as the electronics required to understand the basic workings of the VLF kit. It will also cover the students assembly of the kit in an

  8. The impact of lightning on tropospheric ozone chemistry using a new global lightning parametrisation

    Finney, D. L.; Doherty, R. M.; Wild, O.; Abraham, N. L.


    A lightning parametrisation based on upward cloud ice flux is implemented in a chemistry-climate model (CCM) for the first time. The UK Chemistry and Aerosols model is used to study the impact of these lightning nitric oxide (NO) emissions on ozone. Comparisons are then made between the new ice flux parametrisation and the commonly used, cloud-top height parametrisation. The ice flux approach improves the simulation of lightning and the temporal correlations with ozone sonde measurements in the middle and upper troposphere. Peak values of ozone in these regions are attributed to high lightning NO emissions. The ice flux approach reduces the overestimation of tropical lightning apparent in this CCM when using the cloud-top approach. This results in less NO emission in the tropical upper troposphere and more in the extratropics when using the ice flux scheme. In the tropical upper troposphere the reduction in ozone concentration is around 5-10 %. Surprisingly, there is only a small reduction in tropospheric ozone burden when using the ice flux approach. The greatest absolute change in ozone burden is found in the lower stratosphere, suggesting that much of the ozone produced in the upper troposphere is transported to higher altitudes. Major differences in the frequency distribution of flash rates for the two approaches are found. The cloud-top height scheme has lower maximum flash rates and more mid-range flash rates than the ice flux scheme. The initial Ox (odd oxygen species) production associated with the frequency distribution of continental lightning is analysed to show that higher flash rates are less efficient at producing Ox; low flash rates initially produce around 10 times more Ox per flash than high-end flash rates. We find that the newly implemented lightning scheme performs favourably compared to the cloud-top scheme with respect to simulation of lightning and tropospheric ozone. This alternative lightning scheme shows spatial and temporal differences in

  9. A New Classification of Path-Delay Fault Testability in Terms of Stuck-at Faults

    Subhashis Majumder; Bhargab B.Bhattacharya; Vishwani D.Agrawal; Michael L.Bushnell


    A new classification of path-delay fault testability in a combinational circuit is presented in terms of testability of stuck-at faults in an equivalent circuit. Earlier results describing correlation of path-delay and stuck-at faults are either incomplete, or use a complex model of equivalent circuit based on timing parameters. It is shown here that a path-delay fault (rising or falling) is testable if and only if certain single or multiple stuck-at fault in the equivalent circuit is testable. Thus, all aspects of path-delay faults related to testability under various classification schemes can be interpreted using the stuck-at fault model alone. The results unify most of the existing concepts and provide a better understanding of path-delay faults in logic circuits.

  10. Protection of large wind turbine blades against lightning

    Montañá Puig, Juan; Rachidi-Haeri, Farhad; Rubinstein, Marcos; Bermúdez, José Luis; Solà de Las Fuentes, Gloria; Hermoso Alameda, Blas


    Lightning protection of modern wind turbines presents a number of new challenges due to the geometrical, electrical and mechanical particularities of the turbines. The risk assessment requires the estimation of the number of expected strikes. In the case of modern turbines, most of the expected lightning flashes will be upward. In addition, due to the rotation of the blades, modern wind turbines may trigger their own lightning. Moreover, since wind turbines are becoming tall struc...


    LI Zhao-rong; FU Shuang-xi; LI Bao-zi; JIANG Lin


    @@ 1 INTRODUCTION Lightning is a phenomenon of atmospheric electricity with convective storms. Since the 1960's, its characteristics during weather processes of torrential rain, hails and tornadoes have been widely studied and a lot of attempts made to probe into the mechanisms responsible for the formation of lightning[1], giving rise to two theories explaining the lightning genesis, from the points of convection and ice-phase precipitation,respectively.

  12. New method for lightning location using optical ground wire

    Zhaoyu Qin; Zhaogu Cheng; Zhiping Zhang; Jianqiang Zhu; Feng Li


    A new technology of lightning location is described, which is based on detecting the state of polarization(SOP) fluctuation of the laser light in the optic ground wire (OPGW). Compared with the conventional lightning location method, the new method is more accurate, more stable, and cheaper. Theories of Stokes generated by lightning strike can still be accurately identified by detecting the velocity of polarization motion. A new algorithm to quantify the velocity is also introduced.

  13. Lightning Radio Source Retrieval Using Advanced Lightning Direction Finder (ALDF) Networks

    Koshak, William J.; Blakeslee, Richard J.; Bailey, J. C.


    A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of lightning ground strikes from an Advanced Lightning Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing and arrival time of lightning radio emissions. Solutions for the plane (i.e., no Earth curvature) are provided that implement all of tile measurements mentioned above. Tests of the retrieval method are provided using computer-simulated data sets. We also introduce a quadratic planar solution that is useful when only three arrival time measurements are available. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in source location. Complex root results are shown to be associated with the presence of measurement errors when the lightning source lies near an outer sensor baseline of the ALDF network. In the absence of measurement errors, quadratic root degeneracy (no source location ambiguity) is shown to exist exactly on the outer sensor baselines for arbitrary non-collinear network geometries. The accuracy of the quadratic planar method is tested with computer generated data sets. The results are generally better than those obtained from the three station linear planar method when bearing errors are about 2 deg. We also note some of the advantages and disadvantages of these methods over the nonlinear method of chi(sup 2) minimization employed by the National Lightning Detection Network (NLDN) and discussed in Cummins et al.(1993, 1995, 1998).

  14. The lightning heart: a case report and brief review of the cardiovascular complications of lightning injury.

    McIntyre, William F; Simpson, Christopher S; Redfearn, Damian P; Abdollah, Hoshiar; Baranchuk, Adrian


    Lightning strike is a rare natural phenomenon, which carries a risk of dramatic medical complications to multiple organ systems and a high risk of fatality. The known complications include but are not limited to: myocardial infarction, arrhythmia, cardiac contusion, stroke, cutaneous burns, respiratory disorders, neurological disorders, acute kidney injury and death. We report a case of a healthy young man who suffered a lightning injury and discuss the cardiovascular complications of lightning injury, ranging from ECG changes to death. The patient in our case, a 27-year old previously healthy male, developed a syndrome of rhabdomyolysis and symptomatic cardiogenic pulmonary edema. Electrocardiographic findings included transient T-wave inversions, late transition shift and long QT. His clinical condition improved with supportive measures.Early recognition of lightning injury syndromes and anticipation of complications may help us improve outcomes for these patients. Evaluation of patients having experienced a lightning injury should include a minimum of a detailed history and physical examination, 12-lead ECG and drawing of baseline troponins. Prolonged electrocardiographical monitoring (for monitoring of ventricular arrhythmias) and assessment for signs and symptoms of hemodynamic compromise may be warranted.

  15. Lightning-Generated NO(x) Seen By OMI during NASA's TC-4 Experiment: First Results

    Bucsela, Eric; Pickering, Kenneth E.; Huntemann, Tabitha; Cohen, Ronald; Perring, Anne; Gleason, James; Blakeslee, Richard; Navarro, Dylana Vargas; Segura, Ileana Mora; Hernandez, Alexia Pacheco; hide


    We present here case studies identifying upper-tropospheric NO2 produced in convective storms during NASA's Tropical Composition, Cloud and Climate Coupling Experiment (TCi)n July and August 2007. DC8 aircraft missions, flown from the mission base in Costa Rica, recorded in situ NO2 profiles near active storms and in relatively quiet areas. We combine these data with measurements from the Ozone Monitoring Instrument (OMI) on the Aura satellite to estimate the amount of NO2 produced by lightning (LN02) above background levels in the regions influenced by storms. In our analysis, improved off-line processing techniques are employed to minimize known artifacts in the OM1 data. Information on lightning flashes (primarily CG) observed by the surface network operated by the Instituto Costarricense de Electricidad are examined upwind of regions where OM1 indicates enhanced LNO2. Comparisons of the observed flash data with measurements by the TRMM/LIS satellite instrument are used to obtain the lightning detection efficiency for total flashes. Finally, using the NO/NO2 ratio estimated from DC-8 observations, we estimate the average NO(x) production per lightning flash for each case in this study. The magnitudes of the measured NO(x) enhancements are compared with those observed by the DC-8 and with similar OM1 measurements analyzed in mid-latitude experiments.

  16. Improving the precipitation accumulation analysis using lightning measurements and different integration periods

    Gregow, Erik; Pessi, Antti; Mäkelä, Antti; Saltikoff, Elena


    The focus of this article is to improve the precipitation accumulation analysis, with special focus on the intense precipitation events. Two main objectives are addressed: (i) the assimilation of lightning observations together with radar and gauge measurements, and (ii) the analysis of the impact of different integration periods in the radar-gauge correction method. The article is a continuation of previous work by Gregow et al. (2013) in the same research field. A new lightning data assimilation method has been implemented and validated within the Finnish Meteorological Institute - Local Analysis and Prediction System. Lightning data do improve the analysis when no radars are available, and even with radar data, lightning data have a positive impact on the results. The radar-gauge assimilation method is highly dependent on statistical relationships between radar and gauges, when performing the correction to the precipitation accumulation field. Here, we investigate the usage of different time integration intervals: 1, 6, 12, 24 h and 7 days. This will change the amount of data used and affect the statistical calculation of the radar-gauge relations. Verification shows that the real-time analysis using the 1 h integration time length gives the best results.

  17. Three-dimensional attenuation imaging of the Irpinia fault zone (Southern Italy): inferences on the fluid storage and earthquake related processes

    Amoroso, Ortensia; De Landro, Grazia; Russo, Guido; Zollo, Aldo; Garambois, Stephane; Mazzoli, Stefano; Parente, Mariano; Virieux, Jean


    The seismic imaging of crustal wave velocity and attenuation provide useful insights into the possible presence and role of fluids in the volume embedding earthquake causative faults. In particular, they allow constraining the range of rock properties such as porosity, consolidation parameter, type of fluid mixing and relative saturation percentage. Our study is focused on the southern Apennines area that experienced moderate to large earthquakes in the past century, the largest one, the Irpinia MS 6.9 earthquake, occurred on November 23th, 1980. In this study we propose to integrate velocity and attenuation tomographic images for a comprehensive seismic interpretation of the 1980 Irpinia earthquake fault zone that uses well established rock physical laws to retrieve information about porosity and the type of permeating fluids from seismic attributes. We performed an attenuation tomographic inversion, which provided 3-D images of the anelastic attenuation properties in terms of body wave quality factors (Qp and Qs). We analyzed a data set of 4801 t*P and 1833 t*S relative to 670 earthquakes with local magnitude 0.1 ≤ ML ≤ 3.2. We inverted the t* data for Q following a multiscale strategy, progressively increasing the density of grid points describing the attenuation model. The Qp model shows a slight increase of the values with depth, reaching a value of about 1000 in the central part of the model, at depths between 8 and 12 km. The Qs model shows strong lateral variations along a SW-NE section with a major transition occurring in correspondence with the Ms 6.9, 1980 earthquake rupture. Moreover the Qs model well delineates the transition between the Apulian Carbonate platform and the basement at about 7 km depth with an increase of values from 400 to 1000. In order to recover the properties of the host rock volume characterized by a set of micro-parameters (porosity, consolidation parameter, permeating fluid type and percentage of fluid saturation), we

  18. Predicting the Probability of Lightning Occurrence with Generalized Additive Models

    Fabsic, Peter; Mayr, Georg; Simon, Thorsten; Zeileis, Achim


    This study investigates the predictability of lightning in complex terrain. The main objective is to estimate the probability of lightning occurrence in the Alpine region during summertime afternoons (12-18 UTC) at a spatial resolution of 64 × 64 km2. Lightning observations are obtained from the ALDIS lightning detection network. The probability of lightning occurrence is estimated using generalized additive models (GAM). GAMs provide a flexible modelling framework to estimate the relationship between covariates and the observations. The covariates, besides spatial and temporal effects, include numerous meteorological fields from the ECMWF ensemble system. The optimal model is chosen based on a forward selection procedure with out-of-sample mean squared error as a performance criterion. Our investigation shows that convective precipitation and mid-layer stability are the most influential meteorological predictors. Both exhibit intuitive, non-linear trends: higher values of convective precipitation indicate higher probability of lightning, and large values of the mid-layer stability measure imply low lightning potential. The performance of the model was evaluated against a climatology model containing both spatial and temporal effects. Taking the climatology model as a reference forecast, our model attains a Brier Skill Score of approximately 46%. The model's performance can be further enhanced by incorporating the information about lightning activity from the previous time step, which yields a Brier Skill Score of 48%. These scores show that the method is able to extract valuable information from the ensemble to produce reliable spatial forecasts of the lightning potential in the Alps.

  19. Experiments of Wind Turbine Blades with Rocket Triggered Lightning

    Minowa, Masayuki; Sumi, Shinichi; Minami, Masayasu; Horii, Kenji

    This paper describes the results of the experiments of wind turbine blades with rocket triggered lightning. A number of wind power stations have been projected and planted. Lightning damage to wind turbines has been an increasing problem recently. So development on protection of wind power plants from lightning is necessary to be fully run for the future. In the experiments, the 1.8m long blade was struck by the lightning discharge triggered by rocket. For the blade kept dry inside, the very strong discharge of positive peak current 28kV, total charge 520 Coulombs, was triggered, but the breakdown did not occur through the blade into inside. Another blade polluted by salty wet inside was struck by the lightning discharge of negative peak current of 4kA with 0.5 Coulombs. The lightning was small, nevertheless, the blade was broken at the upper edge and the blade was disconnected by crack. For the protection of blade, the blade surface was covered with stainless steel plate. The blade itself was safe when the big positive lightning discharged, while most part of stainless steel cover was burned out. Supplement breakdown tests of wind turbine blade were carried out with lightning impulse voltage in laboratory. As a result, it became clear that the blade kept dry inside was an effective lightning protection of wind turbine blades.

  20. Analysis of Conditions favorable for Ball Lightning Creation

    Boerner, H


    This report uses a few well documented cases of Ball Lightning (or BL for short) observations to demonstrate a correlation between BL and positive lightning, especially strong positive lightning. This allows to draw conclusions and predictions about future BL observations and the pro- duction of these objects in the laboratory. Contrary to many current BL theories, these objects can be created without direct contact to a lightning channel. Very high electric fields appear to be essential for the creation, together with the proper temporal structure of the field. So far no experiments have been performed along the ideas presented in this report.

  1. New method for lightning location using optical ground wire

    Qin, Zhaoyu; Cheng, Zhaogu; Zhang, Zhiping; Zhu, Jianqiang; Li, Feng


    A new technology of lightning location is described, which is based on detecting the state of polarization (SOP) fluctuation of the laser light in the optic ground wire (OPGW). Compared with the conventional lightning location method, the new method is more accurate, more stable, and cheaper. Theories of Stokes parameters and Poincare sphere are introduced to analyze the SOP at the lightning strike point. It can be concluded that although the initial points of SOP on the Poincare sphere are random, the SOP fluctuation generated by lightning strike can still be accurately identified by detecting the velocity of polarization motion. A new algorithm to quantify the velocity is also introduced.

  2. Storm clouds on Saturn: Lightning-induced chemistry and associated materials consistent with Cassini/VIMS spectra

    Baines, K.H.; Delitsky, M.L.; Momary, T.W.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.


    Thunderstorm activity on Saturn is associated with optically detectable clouds that are atypically dark throughout the near-infrared. As observed by Cassini/VIMS, these clouds are ~20% less reflective than typical neighboring clouds throughout the spectral range from 0.8 ??m to at least 4.1 ??m. We propose that active thunderstorms originating in the 10-20 bar water-condensation region vertically transport dark materials at depth to the ~1 bar level where they can be observed. These materials in part may be produced by chemical processes associated with lightning, likely within the water clouds near the ~10 bar freezing level of water, as detected by the electrostatic discharge of lightning flashes observed by Cassini/RPWS (e.g., Fischer et al. 2008, Space Sci. Rev., 137, 271-285). We review lightning-induced pyrolytic chemistry involving a variety of Saturnian constituents, including hydrogen, methane, ammonia, hydrogen sulfide, phosphine, and water. We find that the lack of absorption in the 1-2 ??m spectral region by lightning-generated sulfuric and phosphorous condensates renders these constituents as minor players in determining the color of the dark storm clouds. Relatively small particulates of elemental carbon, formed by lightning-induced dissociation of methane and subsequently upwelled from depth - perhaps embedded within and on the surface of spectrally bright condensates such as ammonium hydrosulfide or ammonia - may be a dominant optical material within the dark thunderstorm-related clouds of Saturn. ?? 2009 Elsevier Ltd. All rights reserved.

  3. Constraining lightning channel growth dynamics by comparison of time domain electromagnetic simulations to Huntsville Alabama Marx Meter Array observations

    Carlson, B. E.; Bitzer, P. M.; Burchfield, J.


    Major unknowns in lightning research include the mechanism and dynamics of lightning channel extension. Such processes are most simple during the initial growth of the channel, when the channel is relatively short and has not yet branched extensively throughout the cloud. During this initial growth phase, impulsive electromagnetic emissions (preliminary breakdown pulses) can be well-described as produced by current pulses generated as the channel extends, but the overall growth rate, channel geometry, and degree of branching are not known. We approach such issues by examining electric field change measurements made with the Huntsville Alabama Marx Meter Array (HAMMA) during the first few milliseconds of growth of a lightning discharge. We compare HAMMA observations of electromagnetic emissions and overall field change to models of lightning channel growth and development and attempt to constrain channel growth rate, degree of branching, channel physical properties, and uniformity of thunderstorm electric field. Preliminary comparisons suggest that the lightning channel branches relatively early in the discharge, though more complete and detailed analysis will be presented.

  4. Lightning study - climate change and the impact on the incidence of lightning adaptation needs in the power supply; Lynstudien - Klimaendringenes betydning for forekomsten av lyn tilpassingsbehov i kraftforsyningen

    Midtboe, Knut Helge; Haugen, Jan Erik; Koeltzow, Morten Andreas Oedegaard


    Requirements. Network owners are required by the Energy Act to keep your system in proper working condition. The purpose with emergency response efforts in the power supply is to prevent and handle incidents regard to technical failure, natural damage and deliberate vandalism. This will contribute to good supply. Regulations for standby power supply (Emergency Regulations) gives each company a duty to identify risk and vulnerability at the extraordinary events related to technical failure, natural damage and deliberate vandalism. Furthermore, analysis also embrace the various emergency regulations require to be implemented. This means that each company should assess their risk and vulnerability against all natural phenomena, including lightning. This applies not only to current climate, but also on the basis of what needs to be estimated as the foreseeable risk of the plant technical service life. Furthermore, the Regulations an obligation to identify the need for emergency repairs to deal with the outcome as a result of extraordinary events and analyze whether this repair response is robust enough to meet regulatory requirements. Major challenges As you will see from the report's conclusions, shows's analysis a probable increase in lightning frequency of 25% until the year 2050 for the country as a whole. Until the year 2100 one can expect a further increase of lightning frequency in line with the increase in temperature and precipitation. Lightning is a major cause of failure in power supply. In particular, transformers high-voltage distribution networks with overhead lines where there is continuous conductors, are exposed to this. When a transformer is subjected to lightning surges this result in estimates of isolation followed by a short circuit or breakdown in transformer. This can quickly lead to disruption of shorter or longer duration of electricity supply to customers. Such interruptions are undesirable not only from customers perspective

  5. Seismic Activity Related to the 2002-2003 Mt. Etna Volcano Eruption (Italy): Fault Plane Solutions and Stress Tensor Computation

    Barberi, G.; Cammarata, L.; Cocina, O.; Maiolino, V.; Musumeci, C.; Privitera, E.


    Late on the night of October 26, 2002, a bi-lateral eruption started on both the eastern and the southeastern flanks of Mt. Etna. The opening of the eruptive fracture system on the NE sector and the reactivation of the 2001 fracture system, on the S sector, were accompanied by a strong seismic swarm recorded between October 26 and 28 and by sharp increase of volcanic tremor amplitude. After this initial phase, on October 29 another seismogenetic zone became active in the SE sector of the volcano. At present (January 2003) the eruption is still in evolution. During the whole period a total of 862 earthquakes (Md≫1) was recorded by the local permanent seismic network run by INGV - Sezione di Catania. The maximum magnitude observed was Md=4.4. We focus our attention on 55 earthquakes with magnitude Md≫ 3.0. The dataset consists of accurate digital pickings of P- and S-phases including first-motion polarities. Firstly earthquakes were located using a 1D velocity model (Hirn et alii, 1991), then events were relocated by using two different 3D velocity models (Aloisi et alii, 2002; Patane et alii, 2002). Results indicate that most of earthquakes are located to the east of the Summit Craters and to northeast of them. Fault plane solutions (FPS) obtained show prevalent strike-slip rupture mechanisms. The suitable FPSs were considered for the application of Gephart and Forsyth`s algorithm in order to evaluate seismic stress field characteristics. Taking into account the preliminary results we propose a kinematic model of the eastern flank eastward movement in response of the intrusion processes in the central part of the volcano. References Aloisi M., Cocina O., Neri G., Orecchio B., Privitera E. (2002). Seismic tomography of the crust underneath the Etna volcano, Sicily. Physics of the Earth and Planetary Interiors 4154, pp. 1-17 Hirn A., Nercessian A., Sapin M., Ferrucci F., Wittlinger G. (1991). Seismic heterogeneity of Mt. Etna: structure and activity. Geophys. J

  6. Numerical Simulation of the Lightning Return Stroke.

    da Frota Mattos, Marcos Andre

    Available from UMI in association with The British Library. Requires signed TDF. Several lightning return stroke models were developed in this work. Initially very simple models were developed, and subsequently many of the main features of the channel were added. The corona effect, the geometrical parameters, non-linear losses and the cloud losses are these features. To solve the RLC network model of the channel the numerical technique known as TLM was used. A numerical sensitivity study was made to analyse the influence of the filtering and the Gibbs effects on the results. A sensitivity study of the channel's parameters was also made. For the first time three of the main measured lightning channel quantities were calculated showing good agreement with observations. These quantities are the electromagnetic field, current waveshape at ground and the velocity of propagation. The surge impedence and the current rise-time were also calculated at all heights.

  7. Dust cloud lightning in extraterrestrial atmospheres

    Helling, Christiane; Diver, Declan; Witte, Soeren


    Lightning is present in all solar system planets which form clouds in their atmospheres. Cloud formation outside our solar system is possible in objects with much higher temperatures than on Earth or on Jupiter: Brown dwarfs and giant extrasolar gas planets form clouds made of mixed materials and a large spectrum of grain sizes. These clouds are globally neutral obeying dust-gas charge equilibrium which is, on short timescales, inconsistent with the observation of stochastic ionization events of the solar system planets. We argue that a significant volume of the clouds in brown dwarfs and extrasolar planets is susceptible to local discharge events and that the upper cloud layers are most suitable for powerful lightning-like discharge events. We discuss various sources of atmospheric ionisation, including thermal ionisation and a first estimate of ionisation by cosmic rays, and argue that we should expect thunderstorms also in the atmospheres of brown dwarfs and giant gas planets which contain mineral clouds.

  8. Lightning Strikes and Attribution of Climatic Change

    Webster, Anthony J


    Using lightning strikes as an example, two possible schemes are discussed for the attribution of changes in event frequency to climate change, and estimating the cost associated with them. The schemes determine the fraction of events that should be attributed to climatic change, and the fraction that should be attributed to natural chance. They both allow for the expected increase in claims and the fluctuations about this expected value. Importantly, the attribution fraction proposed in the second of these schemes is necessarily different to that found in epidemiological studies. This ensures that the statistically expected fraction of attributed claims is correctly equal to the expected increase in claims. The analysis of lightning data highlights two particular difficulties with data-driven, as opposed to modeled, attribution studies. The first is the possibility of unknown "confounding" variables that can influence the strike frequency. This is partly accounted for here by considering the influence of temp...

  9. Ionospheric effects of thunderstorms and lightning

    Lay, Erin H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Tropospheric thunderstorms have been reported to disturb the lower ionosphere (~65-90 km) by convective atmospheric gravity waves and by electromagnetic field changes produced by lightning discharges. However, due to the low electron density in the lower ionosphere, active probing of its electron distribution is difficult, and the various perturbative effects are poorly understood. Recently, we have demonstrated that by using remotely-detected ?me waveforms of lightning radio signals it is possible to probe the lower ionosphere and its fluctuations in a spatially and temporally-resolved manner. Here we report evidence of gravity wave effects on the lower ionosphere originating from the thunderstorm. We also report variations in the nighttime ionosphere atop a small thunderstorm and associate the variations with the storm’s electrical activity. Finally, we present a data analysis technique to map ionospheric acoustic waves near thunderstorms.

  10. Runaway breakdown and hydrometeors in lightning initiation.

    Gurevich, A V; Karashtin, A N


    The particular electric pulse discharges are observed in thunderclouds during the initiation stage of negative cloud-to-ground lightning. The discharges are quite different from conventional streamers or leaders. A detailed analysis reveals that the shape of the pulses is determined by the runaway breakdown of air in the thundercloud electric field initiated by extensive atmospheric showers (RB-EAS). The high amplitude of the pulse electric current is due to the multiple microdischarges at hydrometeors stimulated and synchronized by the low-energy electrons generated in the RB-EAS process. The series of specific pulse discharges leads to charge reset from hydrometeors to the free ions and creates numerous stretched ion clusters, both positive and negative. As a result, a wide region in the thundercloud with a sufficiently high fractal ion conductivity is formed. The charge transport by ions plays a decisive role in the lightning leader preconditioning.

  11. Lightning Protection for the Orion Space Vehicle

    Scully, Robert


    The Orion space vehicle is designed to requirements for both direct attachment and indirect effects of lightning. Both sets of requirements are based on a full threat 200kA strike, in accordance with constraints and guidelines contained in SAE ARP documents applicable to both commercial and military aircraft and space vehicles. This paper describes the requirements as levied against the vehicle, as well as the means whereby the design shows full compliance.

  12. Joint voltages resulting from lightning currents.

    Johnson, William Arthur; Warne, Larry Kevin; Merewether, Kimball O.; Chen, Kenneth C.


    Simple formulas are given for the interior voltages appearing across bolted joints from exterior lightning currents. External slot and bolt inductances as well as internal slot and bolt diffusion effects are included. Both linear and ferromagnetic wall materials are considered. A useful simplification of the slot current distribution into linear stripline and cylindrical parts (near the bolts) allows the nonlinear voltages to be estimated in closed form.

  13. Detection of precursory slips on a fault by the quiescence and activation of seismicity relative to the ETAS model and by the anomalous trend of the geodetic time series of distances between GPS stations around the fault

    Ogata, Y.


    This paper is concerned with the detection of precursory slip on a rupturing fault, supported by both seismic and geodetic records. Basically, the detection relies on the principle that, assuming precursory slip on the rupturing fault, the seismic activity around the fault should be enhanced or reduced in the zones where increment of the Coulomb failure stress (CFS) is positive or negative, respectively. However, any occurring event also affects the stress changes in neighboring regions, which can trigger further aftershock clusters. Whereas such stress transfers are too difficult to be computed precisely, due to the unknown complex fault system, the ordinary short-term occurrence rate of earthquakes in a region is easily predicted using the ETAS model of triggering seismicity; and any anomalous seismic activity, such as quiescence and activation, can be quantified by identifying a significant deviation from the predicted rate. Such anomalies are revealed to have occurred during several years leading up to the 2004 Chuetsu Earthquake of M6.8, central Honshu, and also the 2005 Western Fukuoka-Ken-Oki Earthquake of M7.0, Kyushu, Japan. Quiescence and activation in the regions coincided with negative and positive increments of the CFS, respectively, and were probably transferred from possible aseismic slips on the focal fault plane. Such slips are further supported by transient crustal movement around the source preceding the rupture. Time series records of the baseline distances between the permanent GPS stations deviated from the predicted trends, with the deviations consistent with the coseismic horizontal displacements of the stations due to these earthquakes. References Ogata, Y. (2006) Report of the Coordinating Committee for Earthquake Prediction, 76 (to appear, in Japanese).

  14. Simulation of Meteosat Third Generation-Lightning Imager through tropical rainfall measuring mission: Lightning Imaging Sensor data

    Biron, Daniele; De Leonibus, Luigi; Laquale, Paolo; Labate, Demetrio; Zauli, Francesco; Melfi, Davide


    The Centro Nazionale di Meteorologia e Climatologia Aeronautica recently hosted a fellowship sponsored by Galileo Avionica, with the intent to study and perform a simulation of Meteosat Third Generation - Lightning Imager (MTG-LI) sensor behavior through Tropical Rainfall Measuring Mission - Lightning Imaging Sensor data (TRMM-LIS). For the next generation of earth observation geostationary satellite, major operating agencies are planning to insert an optical imaging mission, that continuously observes lightning pulses in the atmosphere; EUMETSAT has decided in recent years that one of the three candidate mission to be flown on MTG is LI, a Lightning Imager. MTG-LI mission has no Meteosat Second Generation heritage, but users need to evaluate the possible real time data output of the instrument to agree in inserting it on MTG payload. Authors took the expected LI design from MTG Mission Requirement Document, and reprocess real lightning dataset, acquired from space by TRMM-LIS instrument, to produce a simulated MTG-LI lightning dataset. The simulation is performed in several run, varying Minimum Detectable Energy, taking into account processing steps from event detection to final lightning information. A definition of the specific meteorological requirements is given from the potential use in meteorology of lightning final information for convection estimation and numerical cloud modeling. Study results show the range of instrument requirements relaxation which lead to minimal reduction in the final lightning information.

  15. Contemporary fault mechanics in southern Alaska

    Kalbas, James L.; Freed, Andrew M.; Ridgway, Kenneth D.

    Thin-shell finite-element models, constrained by a limited set of geologic slip rates, provide a tool for evaluating the organization of contemporary faulting in southeastern Alaska. The primary structural features considered in our analysis are the Denali, Duke River, Totschunda, Fairweather, Queen Charlotte, and Transition faults. The combination of fault configurations and rheological properties that best explains observed geologic slip rates predicts that the Fairweather and Totschunda faults are joined by an inferred southeast-trending strike-slip fault that crosses the St. Elias Mountains. From a regional perspective, this structure, which our models suggest slips at a rate of ˜8 mm/a, transfers shear from the Queen Charlotte fault in southeastern Alaska and British Columbia northward to the Denali fault in central Alaska. This result supports previous hypotheses that the Fairweather-Totschunda connecting fault constitutes a newly established northward extension of the Queen Charlotte-Fairweather transform system and helps accommodate right-lateral motion (˜49 mm/a) of the Pacific plate and Yakutat microplate relative to stable North America. Model results also imply that the Transition fault separating the Yakutat microplate from the Pacific plate is favorably oriented to accommodate significant thrusting (23 mm/a). Rapid dip-slip displacement on the Transition fault does not, however, draw shear off of the Queen Charlotte-Fairweather transform fault system. Our new modeling results suggest that the Totschunda fault, the proposed Fairweather-Totschunda connecting fault, and the Fairweather fault may represent the youngest stage of southwestward migration of the active strike-slip deformation front in the long-term evolution of this convergent margin.

  16. Acoustic vs Interferometric Measurements of Lightning

    Arechiga, R. O.; Erives, H.; Sonnenfeld, R. G.; Stanley, M. A.; Rison, W.; Thomas, R. J.; Edens, H. E.; Lapierre, J. L.; Stock, M.; Jensen, D.; Morris, K.


    During the summer of 2015 we acquired acoustic and RF data on severalflashes from thunderstorms over Fort Morgan CO. and Langmuir Laboratoryin the Magdalena mountains of central New Mexico. The acoustic arrayswere located at a distance of roughly 150 m from the interferometers.Lightning mapping array and slow antenna data were also obtained. Theacoustic arrays consist of arrays of five audio-range and six infrasoundmicrophones operating at 50 KHz and 1 KHz respectively. The lightninginterferometer at Fort Morgan CO. consists of three flat-plate, 13" diameterantennas at the vertices of an equilateral 50 m per side triangle. Theinterferometer at Langmuir Laboratory consists of three 13" dishes separatedby about 15 m. Both interferometers, operating at 180 Megasamples persecond, use the analysis software and digitizer hardware pioneered byStanley, Stock et al. The high data rate allows for excellent spatialresolution of high speed (and typically high current) processes such asK-changes, return strokes and dart-leaders. In previous studies, we haveshown the usefulness of acoustic recordings to locate thunder sources aswell as infrasound pulses from lightning. This work will present acomparison of Acoustic and Interferometric measurements from lightning,using some interesting flashes, including a positive cloud to ground,that occurred in these campaigns.

  17. Impact of lightning strikes on hospital functions.

    Mortelmans, Luc J M; Van Springel, Gert L J; Van Boxstael, Sam; Herrijgers, Jan; Hoflacks, Stefaan


    Two regional hospitals were struck by lightning during a one-month period. The first hospital, which had 236 beds, suffered a direct strike to the building. This resulted in a direct spread of the power peak and temporary failure of the standard power supply. The principle problems, after restoring standard power supply, were with the fire alarm system and peripheral network connections in the digital radiology systems. No direct impact on the hardware could be found. Restarting the servers resolved all problems. The second hospital, which had 436 beds, had a lightning strike on the premises and mainly experienced problems due to induction. All affected installations had a cable connection from outside in one way or another. The power supplies never were endangered. The main problem was the failure of different communication systems (telephone, radio, intercom, fire alarm system). Also, the electronic entrance control went out. During the days after the lightening strike, multiple software problems became apparent, as well as failures of the network connections controlling the technical support systems. There are very few ways to prepare for induction problems. The use of fiber-optic networks can limit damage. To the knowledge of the authors, these are the first cases of lightning striking hospitals in medical literature.

  18. Lightning flash multiplicity in eastern Mediterranean thunderstorms

    Yair, Y.; Shalev, S.; Erlich, Z.; Agrachov, A.; Katz, E.; Saaroni, H.; Price, C.; Ziv, B.


    Cloud-to-ground lightning flashes usually consist of one or several strokes coming in very short temporal succession and close spatial proximity. A commonly used method for converting stroke data into flashes is using the National Lightning Detection Network (NLDN) thresholds of maximum temporal separation of 0.5 s and maximum lateral distance of 10 km radius between successive strokes. In the present study, we tested a location-based algorithm with several spatial and temporal ranges, and analyzed stroke data obtained by the Israel Lightning Location System (ILLS) during one year (1.8.2009-31.7.2010). We computed the multiplicity, the percentage of single stroke flashes and the geographical distribution of average multiplicity values for thunderstorms in the Eastern Mediterranean region. Results show that for the NLDN thresholds, the percentage of single stroke flashes in Israel was 37% and the average multiplicity was 1.7. We reanalyzed the data with a spatial range that equals twice the ILLS location error and shorter times. For the new thresholds of maximum distance of 2.5 km and maximum allowed temporal separation of 0.2 s we find that the mean multiplicity of negative CGs is lowered to 1.4 and find a percentage of 58% of single stroke flashes. A unique severe storm from 30 October 2009 is analyzed and compared with the annual average of 2009/2010, showing that large deviations from the mean values can occur in specific events.

  19. Digital system upset. The effects of simulated lightning-induced transients on a general-purpose microprocessor

    Belcastro, C. M.


    Flight critical computer based control systems designed for advanced aircraft must exhibit ultrareliable performance in lightning charged environments. Digital system upset can occur as a result of lightning induced electrical transients, and a methodology was developed to test specific digital systems for upset susceptibility. Initial upset data indicates that there are several distinct upset modes and that the occurrence of upset is related to the relative synchronization of the transient input with the processing sate of the digital system. A large upset test data base will aid in the formulation and verification of analytical upset reliability modeling techniques which are being developed.

  20. Development of Fault Models for Hybrid Fault Detection and Diagnostics Algorithm: October 1, 2014 -- May 5, 2015

    Cheung, Howard [Purdue Univ., West Lafayette, IN (United States); Braun, James E. [Purdue Univ., West Lafayette, IN (United States)


    This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment in the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.

  1. Development of Fault Models for Hybrid Fault Detection and Diagnostics Algorithm: October 1, 2014 -- May 5, 2015

    Cheung, Howard; Braun, James E.


    This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment in the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.

  2. Recent Study of the Changjiang Fault Zone

    Hou Kangming; Zong Kaihong; Guo Jiangning; Xiong Zhen; Li Limei; Zhou Caixia; Jiang Bo


    The Changjiang fault zone, also known as the Mufushan-Jiaoshan fault, is a famous fault located at the southern bank of the Changjiang River, near the Nanjing downtown area. Based on multidisciplinary data from shallow artificial seismic explorations in the target detecting area (Nanjing city and the nearby areas), trenching and drilling explorations, classification of Quaternary strata and chronology dating data, this paper provides the most up-to-date results regarding activities of the Changjiang fault zone, including the most recent active time, activity nature, related active parameters, and their relation to seismic activity.

  3. Review of the Lightning Shielding Against Direct Lightning Strokes Based on Laboratory Long Air Gap Discharges


    It is one of the most effective ways to use laboratory long air gap discharges tbr investigating the fundamental process involved in the lightning strike. During the 1960s and the 1970s, the electro-geometrical method (EGM) and the rolling sphere method were developed base on the breakdown characteristics of negative long spark discharges, which have been widely used to design the lightning shielding system of transmission lines and structures. In recent years, the scale of the power facilities is increased dramatically with the rising of power grid's voltage level.

  4. Dancing red sprites and the lightning activity in their parent thunderstorm

    Bór, József; Zelkó, Zoltán; Hegedüs, Tibor; Jäger, Zoltán; Mlynarczyk, Janusz; Popek, Martin; Betz, Hans-Dieter


    Red sprites are brief optical emissions initiated in the mesosphere by intense tropospheric lightning discharges. A group of red sprites, in which the elements appear in rapid succession with some lateral offset from one another is referred to as a dancing sprite event. The occurrence of such events implies that significant and sequential charge removal extending to large regions of the thunderstorm can take place in the underlying cloud system. In this work, we examine the relation of the locations and observation times of appearing sprite elements to the temporal and spatial distribution of the lightning activity in a specific sprite-active thunderstorm. The selected mesoscale convective system (MCS) composed of several extremely active thundercloud cells crossed Central Europe from South-West to North-East through Germany, Austria, the Czech Republic, and Poland on the night of 6 August, 2013. This MCS has triggered over one hundred sprites including several dancing sprite events. Video recordings of sprites captured from Sopron, Hungary (16.6°E, 47.7°N) and Nydek, Czech Republic (18.8°E, 49.7°N) were used to identify dancing sprite events and to determine the exact locations of the appearing sprite elements by a triangulation technique used originally to analyze meteor observations. Lightning activity in the MCS can be reviewed using the database of LINET lightning detection network which fully covers the region of interest (ROI). The poster demonstrates how cases of sequential charge removal in the thunderstorm can be followed by combining the available information on the occurrence time, location, polarity, and type (CG/IC) of detected lightning strokes in the ROI on one hand and the occurrence time and location of elements in dancing sprite events on the other hand.

  5. Lightning Processes And Dynamics Of Large Scale Optical Emissions In Long Delayed Sprites

    Li, J.; Cummer, S. A.; Lyons, W. A.; Nelson, T. E.; Hu, W.


    Simultaneous measurements of high altitude optical emissions and the magnetic field produced by sprite-associated lightning discharges enable a close examination of the link between low altitude lightning process and high altitude sprite process. In this work, we report results of the coordinated analysis of high speed (1000--10000 frames per second) sprite video and wideband (0.1 Hz to 30 kHz) magnetic field measurements made simultaneously at the Yucca Ridge Field Station and Duke University during the June through August 2005 campaign period. We investigate the relationship of lightning charge transfer characteristics and long delayed (>30 ms) sprites after the lightning return stroke. These long delayed sprites initiated after a total vertical charge moment change from a few thousand C km to more than ten thousand C km. Continuing currents provide about 50% to 90% of this total charge transfer depending on the sprite delayed time and amplitude of continuing current. Our data also show that intense continuing current bigger than a few kA plays an important role in sprites whose primary optical emissions last unusually long (>30 ms). On one observation night (4 July 2005), a large mesoscale convective system produced many sprites that were part of complex transient luminous event (TLE) sequences that included optical emission elements that appear well after any return stroke and initiate at apparently relatively low altitudes (~ 50 km). These low initiation altitude sprite events are typically associated with intense continuing currents and total charge moment changes of 4000 C km or more. With the estimated lightning source current moment waveform, we also employ a 2-D FDTD model to numerically simulate the electric field at different altitudes and compare it with the breakdown field. This reveals the initiation altitude of those long delayed sprites and the effect of electric field dependence of the electron mobility.

  6. The lightning activity associated with the dry and moist convections in the Himalayan Regions

    Penki, R. K.; Kamra, A. K.


    Lightning activity in the dry environment of northwest India and Pakistan (NW) and in the moist environment of northeast India (NE) has been examined from the Optical Transient Detector and Lightning Imaging Sensor data obtained from the Tropical Rainfall Measuring Mission satellite during 1995-2010. In the NW region, seasonal variation of flash rate is annual with a maximum in July but is semi-annual with a primary maximum in April and a secondary maximum in September, in the NE region. On diurnal scale, flash rate is the maximum in the afternoons, in both the NE and NW regions. The correlation of flash rate with convective parameters, viz. surface temperature, convective available potential energy (CAPE) and outgoing long-wave radiation is better with convective activity in the NW than in the NE region. Mean value of aerosol optical depth at 550 nm is ~ 26% higher and is highly correlated with flash rate in NW as compared to that in NE. Results indicate that CAPE is ~ 120 times more efficient in NW than in the NE region for production of lightning. The empirical orthogonal function analysis of flash rate, surface temperature, and CAPE shows that variance of lightning activity in these regions cannot be fully explained by the variance in the surface temperature and CAPE alone, and that some other factors, such as orographic lifting, precipitation, topography, etc., may also contribute to this variance in these mountainous regions. Further, the increase in CAPE due to orographic lifting in the Himalayan foothills in the NE region may contribute to ~ 7.5% increase in lightning activity. Relative roles of the thermally induced and moisture-induced changes in CAPE are examined in these regions. This study merely raises the questions, and that additional research is required for explaining the fundamental reasons for the reported observations here.

  7. ALDF Data Retrieval Algorithms for Validating the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS)

    Koshak, W. J.; Blakeslee, R. J.; Bailey, J. C.


    A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of lightning ground strikes from in Advanced Lightning Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing, and arrival time of lightning radio emissions and solutions for the plane (i.e.. no Earth curvature) are provided that implement all of these measurements. The accuracy of the retrieval method is tested using computer-simulated data sets and the relative influence of bearing and arrival time data on the outcome of the final solution is formally demonstrated. The algorithm is sufficiently accurate to validate NASA's Optical Transient Detector (OTD) and Lightning Imaging System (LIS). We also introduce a quadratic planar solution that is useful when only three arrival time measurements are available. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in source location. Complex root results are shown to be associated with the presence of measurement errors when the lightning source lies near an outer sensor baseline of the ALDF network. For arbitrary noncollinear network geometries and in the absence of measurement errors, it is shown that the two quadratic roots are equivalent (no source location ambiguity) on the outer sensor baselines. The accuracy of the quadratic planar method is tested with computer-generated data sets and the results are generally better than those obtained from the three station linear planar method when bearing errors are about 2 degrees.

  8. Optical emission related to basal-plane stacking faults in m -plane Zn1 -xMgxO epilayers for 0 ≤x ≤0.1

    Lin, Wan-Hsien; Corfdir, Pierre; Jahn, Uwe; Grahn, Holger T.


    We investigate the optical properties of type-I1 basal-plane stacking faults (BSFs) in ZnO and Zn1 -xMgxO by cathodoluminescence spectroscopy supported by envelope function calculations. We report on a quantum-well-like band alignment of the I1 BSFs in ZnO taking into account the spontaneous polarization as well as an intrinsic self-screening effect on the polarization-related electric field. We present a systematic investigation of the luminescence properties associated with I1 BSFs in Zn1 -xMgxO for varying Mg content (0 ≤x ≤0.1 ) using spatially and spectrally resolved cathodoluminescence spectroscopy. Both the near-band-edge emission and the luminescence line related to the I1 BSF exhibit the expected blueshift and line broadening with increasing Mg content. We propose a band diagram to describe the recombination mechanism of excitons in a Zn1 -xMgxO film containing I1 BSFs. Based on a statistical analysis, we compile the experimentally obtained I1 BSF emission energies of Zn1 -xMgxO samples and establish a linear dependence of the I1 BSF-related emission energy on the Mg content. This correlation provides an alternative way to identify the presence of I1 BSFs in Zn1 -xMgxO without the necessity of sophisticated transmission electron microscopy investigations.

  9. Fault Diagnosis in Deaerator Using Fuzzy Logic

    S Srinivasan


    Full Text Available In this paper a fuzzy logic based fault diagnosis system for a deaerator in a power plant unit is presented. The system parameters are obtained using the linearised state space deaerator model. The fuzzy inference system is created and rule base are evaluated relating the parameters to the type and severity of the faults. These rules are fired for specific changes in system parameters and the faults are diagnosed.

  10. Cloud-to-ground lightning over Mexico and adjacent oceanic regions. A preliminary climatology using the WWLLN dataset

    Kucienska, B.; Raga, G.B. [Universidad Nacional Autonoma de Mexico (Mexico). Centro de Ciencias de la Atmosfera; Rodriguez, O. [Instituto Mexicano de Tecnologia del Agua, Morelos (Mexico)


    This work constitutes the first climatological study of lightning over Mexico and adjacent oceanic areas for the period 2005-2009. Spatial and temporal distributions of cloud to ground lightning are presented and the processes that contribute to the lightning variability are analysed. The data are retrieved from theWorldWide Lightning Location Network (WWLLN) dataset. The current WWLL network includes 40 stations which cover much of the globe and detect very low frequency radiation (''spherics'') associated with lightning. The spatial distribution of the average yearly lightning over the continental region of Mexico shows the influence of orographic forcing in producing convective clouds with high lightning activity. However, a very high number of strikes is also observed in the States of Tabasco and Campeche, which are low-lying areas. This maximum is related to the climatological maximum of precipitation for the country and it may be associated with a region of persistent low-level convergence and convection in the southern portion of the Gulf of Mexico. The maps of correlation between rainfall and lightning provide insight into the microphysical processes occurring within the clouds. The maritime clouds close to the coastline exhibit similar properties to continental clouds as they produce very high lightning activity. The seasonal cycle of lightning registered by WWLLN is consistent with the LIS/OTD dataset for the selected regions. In terms of the annual distribution of cloud-to-ground strikes, July, August and September exhibit the highest number of strikes over continental Mexico. The diurnal cycle indicates that the maximum number of strikes over the continent is observed between 6 and 9 p.m. LT. The surrounding oceanic regions were subdivided into four distinct sectors: Gulf of Mexico, Caribbean, Subtropical Pacific and Tropical Pacific. The Gulf of Mexico has the broadest seasonal distribution, since during winter lightning associated

  11. Probable slow slips in the mid-crust of Hsinchu, northwestern Taiwan: Temporal correlation between normal faulting earthquakes and relative uplift

    Pu, H. C.; Lin, C. H.


    To investigate the seismic behavior of crustal deformation, we deployed a dense seismic network at the Hsinchu area of northwestern Taiwan during the period between 2004 and 2006. Based on abundant local micro-earthquakes recorded at this seismic network, we have successfully determined 274 focal mechanisms among ∼1300 seismic events. It is very interesting to see that the dominant energy of both seismic strike-slip and normal faulting mechanisms repeatedly alternated with each other within two years. Also, the strike-slip and normal faulting earthquakes were largely accompanied with the surface slipping along N60°E and uplifting obtained from the continuous GPS data, individually. Those phenomena were probably resulted by the slow uplifts at the mid-crust beneath the northwestern Taiwan area. As the deep slow uplift was active below 10 km in depth along either the boundary fault or blind fault, the push of the uplifting material would simultaneously produce both of the normal faulting earthquakes in the shallow depths (0-10 km) and the slight surface uplifting. As the deep slow uplift was stop, instead, the strike-slip faulting earthquakes would be dominated as usual due to strongly horizontal plate convergence in the Taiwan. Since the normal faulting earthquakes repeatedly dominated in every 6 or 7 months between 2004 and 2006, it may conclude that slow slip events in the mid crust were frequent to release accumulated tectonic stress in the Hsinchu area.

  12. Unusual features caused by lightning impact in West Greenland

    Appel, P.; Abrahamsen, N.; Rasmussen, T.


    that a strong electric current indeed traversed the boulder. A few years later a second lightning impacted on a mountaintop close to the first impact. The second lightning left a trail on the rock surface covered by a thin layer of glass. The glass displays spectacular colours ranging from metallic blue, to red...

  13. Designing concept on lightning protection of overhead power distribution line

    Yokoyama, Shigeru [Central Research Institute of Electric Power Industry, Kanagawa-ken (Japan)], E-mail:


    The principle is shown for lightning protection of power distribution lines taking the effects of surge arresters, overhead ground wires and their combined use into consideration. Moreover an outline of a rational design method targeting direct lightning hits, induced over voltages and back flow currents from high structures. (author)

  14. Design of Lightning Arresters for Electrical Power Systems Protection

    Shehab Abdulwadood


    Full Text Available This paper presents an overview of how the lightning strikes and their effects on power distribution systems can be modeled, where the results give a clear picture of how to eliminate the devastating impact, caused by lightning, by using lightning arresters. The program ATP-Draw (Alternative Transient Program was used to simulate the problem and was applied on a part of a power network.The simulation was done once when the lightning strikes a transmission line and a substation with no lightning arresters in use and once more with their use. The source of the lightning was represented by the ATP models (Type-15 surge function and Type-13 ramp function and the surge arrester was represented by the MOV-Type 92 component. The voltage was recorded at the substation 110/22 kV and at all loads in the electric network, and was drawn by the PlotXWin program. The results obtained indicate that the voltages induced by the lightning can reach values of the order of millions over insulation flashover levels for 22 kV equipment, where is clearly seen in Fig. 12 to 16 and Tab.10, which requires the installation of lightning arresters.

  15. Integration of Lightning- and Human-Caused Wildfire Occurrence Models

    Vilar, Lara; Nieto Solana, Hector; Martín, M. Pilar


    Fire risk indices are useful tools for fire prevention actions by fire managers. A fire ignition is either the result of lightning or human activities. In European Mediterranean countries most forest fires are due to human activities. However, lightning is still an important fire ignition source ...

  16. 21st Century Lightning Protection for High Altitude Observatories

    Kithil, Richard


    One of the first recorded lightning insults to an observatory was in January 1890 at the Ben Nevis Observatory in Scotland. In more recent times lightning has caused equipment losses and data destruction at the US Air Force Maui Space Surveillance Complex, the Cerro Tololo observatory and the nearby La Serena scientific and technical office, the VLLA, and the Apache Point Observatory. In August 1997 NOAA's Climate Monitoring and Diagnostic Laboratory at Mauna Loa Observatory was out of commission for a month due to lightning outages to data acquisition computers and connected cabling. The University of Arizona has reported "lightning strikes have taken a heavy toll at all Steward Observatory sites." At Kitt Peak, extensive power down protocols are in place where lightning protection for personnel, electrical systems, associated electronics and data are critical. Designstage lightning protection defenses are to be incorporated at NSO's ATST Hawaii facility. For high altitude observatories lightning protection no longer is as simple as Franklin's 1752 invention of a rod in the air, one in the ground and a connecting conductor. This paper discusses selection of engineered lightning protection subsystems in a carefully planned methodology which is specific to each site.

  17. Lightning characteristics of derecho producing mesoscale convective systems

    Bentley, Mace L.; Franks, John R.; Suranovic, Katelyn R.; Barbachem, Brent; Cannon, Declan; Cooper, Stonie R.


    Derechos, or widespread, convectively induced wind storms, are a common warm season phenomenon in the Central and Eastern United States. These damaging and severe weather events are known to sweep quickly across large spatial regions of more than 400 km and produce wind speeds exceeding 121 km h-1. Although extensive research concerning derechos and their parent mesoscale convective systems already exists, there have been few investigations of the spatial and temporal distribution of associated cloud-to-ground lightning with these events. This study analyzes twenty warm season (May through August) derecho events between 2003 and 2013 in an effort to discern their lightning characteristics. Data used in the study included cloud-to-ground flash data derived from the National Lightning Detection Network, WSR-88D imagery from the University Corporation for Atmospheric Research, and damaging wind report data obtained from the Storm Prediction Center. A spatial and temporal analysis was conducted by incorporating these data into a geographic information system to determine the distribution and lightning characteristics of the environments of derecho producing mesoscale convective systems. Primary foci of this research include: (1) finding the approximate size of the lightning activity region for individual and combined event(s); (2) determining the intensity of each event by examining the density and polarity of lightning flashes; (3) locating areas of highest lightning flash density; and (4) to provide a lightning spatial analysis that outlines the temporal and spatial distribution of flash activity for particularly strong derecho producing thunderstorm episodes.

  18. Lightning, IT Diffusion and Economic Growth across US States

    Andersen, Thomas Barnebeck; Bentzen, Jeanet; Dalgaard, Carl-Johan Lars;

    Empirically, a higher frequency of lightning strikes is associated with slower growth in labor productivity across the 48 contiguous US states after 1990; before 1990 there is no correlation between growth and lightning. Other climate variables (e.g., temperature, rainfall and tornadoes) do not c...

  19. 14 CFR 23.954 - Fuel system lightning protection.


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 23.954 Section 23.954 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Fuel System § 23.954 Fuel system lightning protection. The fuel system must be designed and arranged...

  20. 14 CFR 29.610 - Lightning and static electricity protection.


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lightning and static electricity protection... § 29.610 Lightning and static electricity protection. (a) The rotorcraft structure must be protected... electricity must— (1) Minimize the accumulation of electrostatic charge; (2) Minimize the risk of electric...

  1. 14 CFR 27.610 - Lightning and static electricity protection.


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lightning and static electricity protection....610 Lightning and static electricity protection. (a) The rotorcraft must be protected against... static electricity must— (1) Minimize the accumulation of electrostatic charge; (2) Minimize the risk of...

  2. Lightning Sensors for Observing, Tracking and Nowcasting Severe Weather.

    Price, Colin


    Severe and extreme weather is a major natural hazard all over the world, oftenresulting in major natural disasters such as hail storms, tornados, wind storms, flash floods,forest fires and lightning damages. While precipitation, wind, hail, tornados, turbulence,etc. can only be observed at close distances, lightning activity in these damaging stormscan be monitored at all spatial scales, from local (using very high frequency [VHF]sensors), to regional (using very low frequency [VLF] sensors), and even global scales(using extremely low frequency [ELF] sensors). Using sensors that detect the radio wavesemitted by each lightning discharge, it is now possible to observe and track continuouslydistant thunderstorms using ground networks of sensors. In addition to the number oflightning discharges, these sensors can also provide information on lightningcharacteristics such as the ratio between intra-cloud and cloud-to-ground lightning, thepolarity of the lightning discharge, peak currents, charge removal, etc. It has been shownthat changes in some of these lightning characteristics during thunderstorms are oftenrelated to changes in the severity of the storms. In this paper different lightning observingsystems are described, and a few examples are provided showing how lightning may beused to monitor storm hazards around the globe, while also providing the possibility ofsupplying short term forecasts, called nowcasting.

  3. Geophysical characterization of buried active faults: the Concud Fault (Iberian Chain, NE Spain)

    Pueyo Anchuela, Óscar; Lafuente, Paloma; Arlegui, Luis; Liesa, Carlos L.; Simón, José L.


    The Concud Fault is a 14-km-long active fault that extends close to Teruel, a city with about 35,000 inhabitants in the Iberian Range (NE Spain). It shows evidence of recurrent activity during Late Pleistocene time, posing a significant seismic hazard in an area of moderate-to-low tectonic rates. A geophysical survey was carried out along the mapped trace of the southern branch of the Concud Fault to evaluate the geophysical signature from the fault and the location of paleoseismic trenches. The survey identified a lineation of inverse magnetic dipoles at residual and vertical magnetic gradient, a local increase in apparent conductivity, and interruptions of the underground sediment structure along GPR profiles. The origin of these anomalies is due to lateral contrast between both fault blocks and the geophysical signature of Quaternary materials located above and directly south of the fault. The spatial distribution of anomalies was successfully used to locate suitable trench sites and to map non-exposed segments of the fault. The geophysical anomalies are related to the sedimentological characteristics and permeability differences of the deposits and to deformation related to fault activity. The results illustrate the usefulness of geophysics to detect and map non-exposed faults in areas of moderate-to-low tectonic activity where faults are often covered by recent pediments that obscure geological evidence of the most recent earthquakes. The results also highlight the importance of applying multiple geophysical techniques in defining the location of buried faults.

  4. Update to the Objective Lightning Probability Forecast Tool in Use at Cape Canaveral Air Force Station, Florida

    Lambert, Winifred; Roeder, William


    This conference presentation describes the improvement of a set of lightning probability forecast equations that are used by the 45th Weather Squadron forecasters for their daily 1100 UTC (0700 EDT) weather briefing during the warm season months of May-September. This information is used for general scheduling of operations at Cape Canaveral Air Force Station and Kennedy Space Center. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts during Shuttle flight operations. Five modifications were made by the Applied Meteorology Unit: increased the period of record from 15 to 17 years, changed the method of calculating the flow regime of the day, calculated a new optimal layer relative humidity, used a new smoothing technique for the daily climatology, and used a new valid area. The test results indicated that the modified equaitions showed and increase in skill over the current equations, good reliability, and an ability to distinguish between lightning and non-lightning days.

  5. Update to the Lightning Probability Forecast Equations at Kennedy Space Center/Cape Canaveral Air Force Station, Florida

    Lambert, Winifred; Roeder, William


    This conference presentation describes the improvement of a set of lightning probability forecast equations that are used by the 45th Weather Squadron forecasters for their daily 1100 UTC (0700 EDT) weather briefing during the warm season months of May- September. This information is used for general scheduling of operations at Cape Canaveral Air Force Station and Kennedy Space Center. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts during Shuttle flight operations. Five modifications were made by the Applied Meteorology Unit: increased the period of record from 15 to 17 years, changed the method of calculating the flow regime of the day, calculated a new optimal layer relative humidity, used a new smoothing technique for the daily climatology, and used a new valid area. The test results indicated that the modified equations showed and increase in skill over the current equations, good reliability, and an ability to distinguish between lightning and non-lightning days.

  6. Update to the Objective Lightning Probability Forecast Tool in use at Cape Canaveral Air Force Station, Florida

    Lambert, Winifred; Roeder, William


    This conference poster describes the improvement of a set of lightning probability forecast equations that are used by the 45th Weather Squadron forecasters for their daily 1100 UTC (0700 EDT) weather briefing during the warm season months of May-September. This information is used for general scheduling of operations at Cape Canaveral Air Force Station and Kennedy Space Center. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts during Shuttle flight operations. Five modifications were made by the Applied Meteorology Unit: increased the period of record from 15 to 17 years, changed the method of calculating the flow regime of the day, calculated a new optimal layer relative humidity, used a new smoothing technique for the daily climatology, and used a new valid area. The test results indicated that the modified equations showed and increase in skill over the current equations, good reliability and an ability to distinguish between lightning and non-lightning days.

  7. A Lightning Detector Onboard Austrian Nanosatellite (LiNSAT)

    Jaffer, G.; Koudelka, O.; Schwingenschuh, K.; Eichelberger, H.


    This paper presents architecture of a lightning detector onboard future Austrian Lightning Nanosatellite (LiNSAT) in low-earth-orbit (LEO) and results of two terrestrial measurement campaigns to geo-locate and discriminate lightning types in presence of noise sources. The LiNSAT is proposed to be launched with three satellites constellation for the purpose of Time-of-Arrival technique. Our main scientific objective is to investigate lightning events by the observation of VHF electromagnetic signals (Sferics) and to derive the signatures of lightning. One of the important parameters is lightning flash rate, which can be used as a proxy for locating severe weather activity. Another objective is to discriminate the discharges of lightning events evaluated by the inherent features and to differentiate cloud discharges (IC; intercloud and Intracloud) from ground discharges (CG; cloud-to-ground), return strokes, leaders and transionospheric pulse pairs. The discrimination is important because the ratio of the two (IC/CG) is a good indicator of convective storm development. We conducted two measurement campaigns; one for artificial lightning produced in high voltage chamber and second natural lightning recorded at urban environment. We focus mainly on envelopes of the received time series including noisy features and narrowband carriers to extract characteristic parameters. We determined the chamber inter-walls distance by considering reflections in the first measurements. Initially the algorithm for the instruments onboard electronics has been developed and verified in Matlab and will be transformed to machine language. Next consideration is to use existing lightning data from previous French mission “DEMETER” to validate the accomplished results. The lightning detector onboard has to perform tasks like determination of pulse-width, pulse-count, pulse rise/fall time etc; we get noise possibly from narrowband carriers and artifacts from satellite itself (EMC) in

  8. Bayesian techniques to analyze and merge lightning locating system data

    Bitzer, Phillip M.; Burchfield, Jeffrey C.


    As more lightning locating systems (LLSs) become available, there is a growing need to assess how each LLS performs and how to best merge data from multiple LLSs. A Bayesian analysis is used to compare the worldwide data of LLSs from three providers for November 2014 to October 2015: Earth Networks Total Lightning Network (ENTLN, Earth Networks), the combined data from the Global Lightning Detection 360 and National Lightning Detection Network (Vaisala), and the World Wide Lightning Location Network (WWLLN, University of Washington). By using the union of the data sets we are able to determine an estimate for the upper limit of the absolute detection efficiency of each system. Globally, ENTLN detected 56.8% of the discharges, the combined Vaisala networks detected 59.8%, and WWLLN detected 7.9%. In addition, there were 2.842 × 109 unique discharges detected by these LLSs, an average of 90.1 strokes/s.

  9. General Survey for Lightning Protection Standards Development in China


    @@ The introduction of IEC/TC81 Thunderstorms are natural weather phenomena and there are no devices or methods capable of preventing lightning discharges. Lightning flashes striking structures or services entering the structures, or striking earth nearby are hazardous to people, to the structures themselves, their contents and installations, as well as to services.Hence lightning protection is very important for national economic development. The international trade in lightning protection measures integrat ed in plants or buildings is of increasing importance:more than 500 million USD, world wide are estimated today; consequent loss, where protection measures are not provided, is some order of magnitude higher.The number of countries where lightning protection is required either by law or by insurance companies is growing. Some countries have conflicting national rules and many developing countries do not have the relevant international standards, making the need for such standards all the more urgent.

  10. Lightning, IT Diffusion and Economic Growth across US States

    Andersen, Thomas Barnebeck; Bentzen, Jeanet; Dalgaard, Carl-Johan Lars

    Empirically, a higher frequency of lightning strikes is associated with slower growth in labor productivity across the 48 contiguous US states after 1990; before 1990 there is no correlation between growth and lightning. Other climate variables (e.g., temperature, rainfall and tornadoes) do...... not conform to this pattern. A viable explanation is that lightning influences IT diffusion. By causing voltage spikes and dips, a higher frequency of ground strikes leads to damaged digital equipment and thus higher IT user costs. Accordingly, the flash density (strikes per square km per year) should...... adversely affect the speed of IT diffusion. We find that lightning indeed seems to have slowed IT diffusion, conditional on standard controls. Hence, an increasing macroeconomic sensitivity to lightning may be due to the increasing importance of digital technologies for the growth process....

  11. Time domain simulations of preliminary breakdown pulses in natural lightning

    Carlson, B E; Bitzer, P; Christian, H


    Lightning discharge is a complicated process with relevant physical scales spanning many orders of magnitude. In an effort to understand the electrodynamics of lightning and connect physical properties of the channel to observed behavior, we construct a simulation of charge and current flow on a narrow conducting channel embedded in three-dimensional space with the time domain electric field integral equation, the method of moments, and the thin-wire approximation. The method includes approximate treatment of resistance evolution due to lightning channel heating and the corona sheath of charge surrounding the lightning channel. Focusing our attention on preliminary breakdown in natural lightning by simulating stepwise channel extension with a simplified geometry, our simulation reproduces the broad features observed in data collected with the Huntsville Alabama Marx Meter Array. Some deviations in pulse shape details are evident, suggesting future work focusing on the detailed properties of the stepping mecha...

  12. Seasonal and Local Characteristics of Lightning Outages of Power Distribution Lines in Hokuriku Area

    Sugimoto, Hitoshi; Shimasaki, Katsuhiko

    The proportion of the lightning outages in all outages on Japanese 6.6kV distribution lines is high with approximately 20 percent, and then lightning protections are very important for supply reliability of 6.6kV lines. It is effective for the lightning performance to apply countermeasures in order of the area where a large number of the lightning outages occur. Winter lightning occurs in Hokuriku area, therefore it is also important to understand the seasonal characteristics of the lightning outages. In summer 70 percent of the lightning outages on distribution lines in Hokuriku area were due to sparkover, such as power wire breakings and failures of pole-mounted transformers. However, in winter almost half of lightning-damaged equipments were surge arrester failures. The number of the lightning outages per lightning strokes detected by the lightning location system (LLS) in winter was 4.4 times larger than that in summer. The authors have presumed the occurrence of lightning outages from lightning stroke density, 50% value of lightning current and installation rate of lightning protection equipments and overhead ground wire by multiple regression analysis. The presumed results suggest the local difference in the lightning outages.

  13. Bilateral macular hole secondary to remote lightning strike

    Rao Krishna


    Full Text Available We report a case of a 16-year-old girl, who was struck by lightning, and experienced blurred vision in the right eye (RE immediately following the episode. She reported for ophthalmic evaluation two months later. Examination revealed relative afferent pupillary defect in the RE. Posterior subcapsular cataract was noted in both eyes. Fundus examination revealed macular holes and multiple areas of RPE hyperpigmentation in the periphery in both eyes. Fundus fluorescein angiography showed increased choroidal transmission with early fluorescence and late fading in the foveal region and retinal pigment epithelium (RPE stippling in the periphery in both eyes. This is the first case report of such nature in India to the best of our knowledge.

  14. Observation of Lightning Ball (Ball Lightning): A new phenomenological description of the phenomenon

    Tar, Domokos


    The author (physicist)has observed the very strange,beautiful and frightening Lightning Ball (LB). He has never forgotten this phenomenon. During his working life he could not devote himself to the problem of LB-formation.Only two years ago as he has been reading different unbelievable models of LB-formation, he decided to work on this problem. By studying the literature and the crucial points of his observation the author succeeded in creating a completely new model of Lightning Ball(LB) and Ball Lightning(BL)-formation based on the symmetry breaking of the hydrodynamic vortex ring.This agrees fully with the observation and overcomes the shortcomings of current models of LB formation. This model provides answers to the questions: Why are LBs so rarely observed,why do BLs in rare cases have such a high energy and how can we generate LB in the laboratory? Moreover the author differentiates between LB and BL, the latter having a high energy and occuring in 5 % of the observations. Keywords: ball lightning, hydr...

  15. Fault reactivation: The Picuris-Pecos fault system of north-central New Mexico

    McDonald, David Wilson

    The PPFS is a N-trending fault system extending over 80 km in the Sangre de Cristo Mountains of northern New Mexico. Precambrian basement rocks are offset 37 km in a right-lateral sense; however, this offset includes dextral strike-slip (Precambrian), mostly normal dip-slip (Pennsylvanian), mostly reverse dip-slip (Early Laramide), limited strike-slip (Late Laramide) and mostly normal dip-slip (Cenozoic). The PPFS is broken into at least 3 segments by the NE-trending Embudo fault and by several Laramide age NW-trending tear faults. These segments are (from N to S): the Taos, the Picuris, and the Pecos segments. On the east side of the Picuris segment in the Picuris Mountains, the Oligocene-Miocene age Miranda graben developed and represents a complex extension zone south of the Embudo fault. Regional analysis of remotely sensed data and geologic maps indicate that lineaments subparallel to the trace of the PPFS are longer and less frequent than lineaments that trend orthogonal to the PPFS. Significant cross cutting faults and subtle changes in fault trends in each segment are clear in the lineament data. Detailed mapping in the eastern Picuris Mountains showed that the favorably oriented Picuris segment was not reactivated in the Tertiary development of the Rio Grande rift. Segmentation of the PPFS and post-Laramide annealing of the Picuris segment are interpreted to have resulted in the development of the subparallel La Serna fault. The Picuris segment of the PPFS is offset by several E-ESE trending faults. These faults are Late Cenozoic in age and interpreted to be related to the uplift of the Picuris Mountains and the continuing sinistral motion on the Embudo fault. Differential subsidence within the Miranda graben caused the development of several synthetic and orthogonal faults between the bounding La Serna and Miranda faults. Analysis of over 10,000 outcrop scale brittle structures reveals a strong correlation between faults and fracture systems. The dominant

  16. Paleoseismicity of two historically quiescent faults in Australia: Implications for fault behavior in stable continental regions

    Crone, A.J.; De Martini, P. M.; Machette, M.M.; Okumura, K.; Prescott, J.R.


    Paleoseismic studies of two historically aseismic Quaternary faults in Australia confirm that cratonic faults in stable continental regions (SCR) typically have a long-term behavior characterized by episodes of activity separated by quiescent intervals of at least 10,000 and commonly 100,000 years or more. Studies of the approximately 30-km-long Roopena fault in South Australia and the approximately 30-km-long Hyden fault in Western Australia document multiple Quaternary surface-faulting events that are unevenly spaced in time. The episodic clustering of events on cratonic SCR faults may be related to temporal fluctuations of fault-zone fluid pore pressures in a volume of strained crust. The long-term slip rate on cratonic SCR faults is extremely low, so the geomorphic expression of many cratonic SCR faults is subtle, and scarps may be difficult to detect because they are poorly preserved. Both the Roopena and Hyden faults are in areas of limited or no significant seismicity; these and other faults that we have studied indicate that many potentially hazardous SCR faults cannot be recognized solely on the basis of instrumental data or historical earthquakes. Although cratonic SCR faults may appear to be nonhazardous because they have been historically aseismic, those that are favorably oriented for movement in the current stress field can and have produced unexpected damaging earthquakes. Paleoseismic studies of modern and prehistoric SCR faulting events provide the basis for understanding of the long-term behavior of these faults and ultimately contribute to better seismic-hazard assessments.

  17. Spatiotemporal evolution of a fault shear stress patch due to viscoelastic interseismic fault zone rheology

    Sone, Hiroki; Uchide, Takahiko


    We conducted numerical studies to explore how shear stress anomalies on fault planes (shear stress patches) evolve spatiotemporally during the interseismic period under the influence of viscoelastic rheology assigned to fault zones of finite thickness. 2-D viscoelastic models consisting of a fault zone and host rock were sheared to simulate shear stress accumulation along fault zones due to tectonic loading. No fault slip along a distinct fault planes is implied in the model, thus all fault shear motion is accommodated by distributed deformation in the viscoelastic fault zone. Results show that magnitudes of shear stress patches evolve not only temporally, but also spatially, especially when the stress anomaly is created by a geometrical irregularity (asperity) along the interface of an elastic host rock and viscoelastic fault zone. Such shear stress anomalies diffuse spatially so that the spatial dimension of the shear stress patch appears to grow over time. Models with varying fault zone viscoelastic properties and varying fault zone viscosity both show that such spatial diffusion of shear stress is enhanced by increasing the contribution of the viscous behavior. The absolute rate at which shear stress patches grow spatially is generally not influenced by the size of the shear stress patch. Therefore shear stress patches with smaller dimensions will appear to grow quicker, in the relative sense, compared to larger stress patches. These results suggest that the minimum dimensions of shear stress patches that can exist along a fault could be governed by the effective viscosity of the fault zone. Therefore patterns of accumulated shear stress could vary along faults when viscous properties are heterogeneous, for instance due to depth or material heterogeneity, which has implications on how earthquake rupture behavior could vary along faults.

  18. Paleoseismological investigations on a slow-moving active fault in central Anatolia, Tecer Fault, Sivas

    Husnu Serdar Akyuz


    Full Text Available Tecer Fault is a N60˚-70˚E-trending, left-lateral, strike-slip fault to the south of the town of Sivas, Turkey. This fault is considered as the eastward continuation of Deliler Fault, which was classified as a probably active, left-lateral fault on the Active Fault Map of Turkey. We investigated the field characteristics and paleoseismic history of Tecer Fault in detail. After analyzing aerial photographs and satellite images, we mapped the exact fault trace on a 1/25,000 scale topographic map, between the towns of Deliilyas in southwest and Bogazdere in northeast. Tecer Fault is characterized by morphological features such as offset streams and gullies, linear depressions and scarps, and elongated hills. Four paleoseismological trenches were excavated on the northeastern extent of the fault. Two past earthquakes were identified in these trenches, and the dates of the collected charcoal samples suggested that the first of these earthquakes occurred about 8000 B.C. while the more recent event took place around 3500 B.C. Field observations and paleoseismic data indicate that Tecer Fault is an active, pure sinistral, strike-slip fault, and that there is about a 4500 years time span between the two earthquakes. It is also clear that there has not been any surface-ruptured faulting over the last 800 years. Compared with the earthquake characteristics of other strike-slip fault zones in Turkey in terms of time-slip relations, the slip rate can be estimated as about 1 mm/yr on Tecer Fault.

  19. Shear heating by translational brittle reverse faulting along a single, sharp and straight fault plane

    Soumyajit Mukherjee


    Shear heating by reverse faulting on a sharp straight fault plane is modelled. Increase in temperature (Ti) of faulted hangingwall and footwall blocks by frictional/shear heating for planar rough reverse faults is proportional to the coefficient of friction (μ), density and thickness of the hangingwall block (ρ). Ti increases as movement progresses with time. Thermal conductivity (Ki) and thermal diffusivity (k'i) of faulted blocks govern Ti but they do not bear simple relation. Ti is significant only near the fault plane. If the lithology is dry and faulting brings adjacent hangingwall and footwall blocks of the same lithology in contact, those blocks undergo the same rate of increase in shear heating per unit area per unit time.

  20. On the Relationship between Observed NLDN Lightning Strikes and Modeled Convective Precipitation Rates Parameterization of Lightning NOx Production in CMAQ

    Lightning-produced nitrogen oxides (NOX=NO+NO2) in the middle and upper troposphere play an essential role in the production of ozone (O3) and influence the oxidizing capacity of the troposphere. Despite much effort in both observing and modeling lightning NOX during the past dec...

  1. Do cosmic ray air showers initiate lightning?: A statistical analysis of cosmic ray air showers and lightning mapping array data

    Hare, B. M.; Dwyer, J. R.; Winner, L. H.; Uman, M. A.; Jordan, D. M.; Kotovsky, D. A.; Caicedo, J. A.; Wilkes, R. A.; Carvalho, F. L.; Pilkey, J. T.; Ngin, T. K.; Gamerota, W. R.; Rassoul, H. K.


    It has been argued in the technical literature, and widely reported in the popular press, that cosmic ray air showers (CRASs) can initiate lightning via a mechanism known as relativistic runaway electron avalanche (RREA), where large numbers of high-energy and low-energy electrons can, somehow, cause the local atmosphere in a thundercloud to transition to a conducting state. In response to this claim, other researchers have published simulations showing that the electron density produced by RREA is far too small to be able to affect the conductivity in the cloud sufficiently to initiate lightning. In this paper, we compare 74 days of cosmic ray air shower data collected in north central Florida during 2013-2015, the recorded CRASs having primary energies on the order of 1016 eV to 1018 eV and zenith angles less than 38°, with Lightning Mapping Array (LMA) data, and we show that there is no evidence that the detected cosmic ray air showers initiated lightning. Furthermore, we show that the average probability of any of our detected cosmic ray air showers to initiate a lightning flash can be no more than 5%. If all lightning flashes were initiated by cosmic ray air showers, then about 1.6% of detected CRASs would initiate lightning; therefore, we do not have enough data to exclude the possibility that lightning flashes could be initiated by cosmic ray air showers.

  2. Lightning Location With Single-Station Observation of VLF Spherics

    Nagano, I.; Yagitani, S.; Komonmae, H.; Takezono, N.


    Most of the lightning location systems recently available require the simultaneous reception of lightning-generated radio pulses (spherics) at multiple stations. In this work, we develop a lightning location system to determine both the direction and range of a lightning stroke with a single-station observation of VLF spherics. The technique used here is a rather classical one, but we try to improve the ranging accuracy by applying sophisticated signal processing techniques, and our final goal is to develop a portable lightning locator. We observe wave forms of two horizontal magnetic fields and one vertical electric field of VLF spherics, each of which usually consists of a couple of sequential pulses. The first pulse comes directly from a lightning return stroke, and is used for the direction finding of the stroke. On the other hand, the second and later pulses are the multiple reflections of the first pulse inside the Earth-ionosphere waveguide. Since the time-of-arrival (ToA) of each pulse is determined by its propagation path length in the waveguide, by using the observed difference in ToA of two or more pulses, we can inversely estimate not only the reflection height at the ionosphere but also the range of the lightning stroke. By installing the developed system at Kanazawa University, we have been observing lightning-generated spherics since April, 2000. Compared with the lightning location data provided by a local power company, preliminary analysis shows that this system can locate each lightning stroke within several hundred km with a sufficient accuracy.

  3. Fault Tolerant Feedback Control

    Stoustrup, Jakob; Niemann, H.


    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...... of the nominal feedback con-troller....

  4. Origin of a crustal splay fault and its relation to the seismogenic zone and underplating at the erosional north Ecuador-south Colombia oceanic margin

    Collot, J.-Y.; Agudelo, W.; Ribodetti, A.; Marcaillou, B.


    Splay faults within accretionary complexes are commonly associated with the updip limit of the seismogenic zone. Prestack depth migration of a multichannel seismic line across the north Ecuador-south Colombia oceanic margin images a crustal splay fault that correlates with the seaward limit of the rupture zone of the 1958 (Mw 7.7) tsunamogenic subduction earthquake. The splay fault separates 5-6.6 km/s velocity, inner wedge basement rocks, which belong to the accreted Gorgona oceanic terrane, from 4 to 5 km/s velocity outer wedge rocks. The outer wedge is dominated by basal tectonic erosion. Despite a 3-km-thick trench fill, subduction of 2-km-high seamount prevented tectonic accretion and promotes basal tectonic erosion. The low-velocity and poorly reflective subduction channel that underlies the outer wedge is associated with the aseismic, décollement thrust. Subduction channel fluids are expected to migrate upward along splay faults and alter outer wedge rocks. Conversely, duplexes are interpreted to form from and above subducting sediment, at ˜14- to 15-km depths between the overlapping seismogenic part of the splay fault and the underlying aseismic décollement. Coeval basal erosion of the outer wedge and underplating beneath the apex of inner wedge control the margin mass budget, which comes out negative. Intraoceanic basement fossil listric normal faults and a rift zone inverted in a flower structure reflect the evolution of the Gorgona terrane from Cretaceous extension to likely Eocene oblique compression. The splay faults could have resulted from tectonic inversion of listric normal faults, thus showing how inherited structures may promote fluid flow across margin basement and control seismogenesis.

  5. Spatial analysis of hypocenter to fault relationships for determining fault process zone width in Japan.

    Arnold, Bill Walter; Roberts, Barry L.; McKenna, Sean Andrew; Coburn, Timothy C. (Abilene Christian University, Abilene, TX)


    Preliminary investigation areas (PIA) for a potential repository of high-level radioactive waste must be evaluated by NUMO with regard to a number of qualifying factors. One of these factors is related to earthquakes and fault activity. This study develops a spatial statistical assessment method that can be applied to the active faults in Japan to perform such screening evaluations. This analysis uses the distribution of seismicity near faults to define the width of the associated process zone. This concept is based on previous observations of aftershock earthquakes clustered near active faults and on the assumption that such seismic activity is indicative of fracturing and associated impacts on bedrock integrity. Preliminary analyses of aggregate data for all of Japan confirmed that the frequency of earthquakes is higher near active faults. Data used in the analysis were obtained from NUMO and consist of three primary sources: (1) active fault attributes compiled in a spreadsheet, (2) earthquake hypocenter data, and (3) active fault locations. Examination of these data revealed several limitations with regard to the ability to associate fault attributes from the spreadsheet to locations of individual fault trace segments. In particular, there was no direct link between attributes of the active faults in the spreadsheet and the active fault locations in the GIS database. In addition, the hypocenter location resolution in the pre-1983 data was less accurate than for later data. These pre-1983 hypocenters were eliminated from further analysis.

  6. Lightning Magnetic Field Measurements around Langmuir Laboratory

    Stock, M.; Krehbiel, P. R.; Rison, W.; Aulich, G. D.; Edens, H. E.; Sonnenfeld, R. G.


    In the absence of artificial conductors, underground lightning transients are produced by diffusion of the horizontal surface magnetic field of a return stroke vertically downward into the conducting earth. The changing magnetic flux produces an orthogonal horizontal electric field, generating a dispersive, lossy transverse electromagnetic wave that penetrates a hundred meters or more into the ground according to the skin depth of the medium. In turn, the electric field produces currents that flow toward or away from the channel to ground depending on the stroke polarity. The underground transients can produce large radial horizontal potential gradients depending on the distance from the discharge and depth below the surface. In this study we focus on the surface excitation field. The goal of the work is to compare measurements of surface magnetic field waveforms B(t) at different distances from natural lightning discharges with simple and detailed models of the return stroke fields. In addition to providing input to the diffusion mechanism, the results should aid in further understanding return stroke field generation processes. The observational data are to be obtained using orthogonal sets of straightened Rogowski coils to measure magnetic field waveforms in N-S and E-W directions. The waveforms are sampled at 500 kS/s over 1.024 second time intervals and recorded directly onto secure digital cards. The instrument operates off of battery power for several days or weeks at a time in remote, unattended locations and measures magnetic field strengths of up to several tens of amperes/meter. The observations are being made in conjunction with collocated slow electric field change measurements and under good 3-D lightning mapping array (LMA) and fast electric field change coverage.


    Yu. O. Kuzmin


    Full Text Available Recent deformation processes taking place in real time are analyzed on the basis of data on fault zones which were collected by long-term detailed geodetic survey studies with application of field methods and satellite monitoring.A new category of recent crustal movements is described and termed as parametrically induced tectonic strain in fault zones. It is shown that in the fault zones located in seismically active and aseismic regions, super intensive displacements of the crust (5 to 7 cm per year, i.e. (5 to 7·10–5 per year occur due to very small external impacts of natural or technogenic / industrial origin.The spatial discreteness of anomalous deformation processes is established along the strike of the regional Rechitsky fault in the Pripyat basin. It is concluded that recent anomalous activity of the fault zones needs to be taken into account in defining regional regularities of geodynamic processes on the basis of real-time measurements.The paper presents results of analyses of data collected by long-term (20 to 50 years geodetic surveys in highly seismically active regions of Kopetdag, Kamchatka and California. It is evidenced by instrumental geodetic measurements of recent vertical and horizontal displacements in fault zones that deformations are ‘paradoxically’ deviating from the inherited movements of the past geological periods.In terms of the recent geodynamics, the ‘paradoxes’ of high and low strain velocities are related to a reliable empirical fact of the presence of extremely high local velocities of deformations in the fault zones (about 10–5 per year and above, which take place at the background of slow regional deformations which velocities are lower by the order of 2 to 3. Very low average annual velocities of horizontal deformation are recorded in the seismic regions of Kopetdag and Kamchatka and in the San Andreas fault zone; they amount to only 3 to 5 amplitudes of the earth tidal deformations per year.A ‘fault

  8. Detection of lightning in Saturn's Northern Hemisphere

    Moghimi, Mohsen Hassanzadeh


    During Cassini flyby of Saturn at a radial distance 6.18R_s (Saturn Radius), a signal was detected from about 200 to 430 Hz that had the proper dispersion characteristics to be a whistler. The frequency-time dispersion of the whistler was found to be 81 Hz1/2s. Based on this dispersion constant, we determined, from a travel time computation, that the whistler must have originated from lightning in the northern hemisphere of Saturn. Using a simple centrifugal potential model consisting of water group ions, and hydrogen ions we also determine the fractional concentration and scale height that gave the best fit to the observed dispersion.

  9. The Energetics of Gravity Driven Faulting

    Barrows, L.


    Faulting can result from either of two different mechanisms. These involve fundamentally different energetics. In displacement-bounded faulting, locked-in elastic strain energy is transformed into seismic waves plus work done in the fault zone. Elastic rebound is an example of displacement-bounded faulting. In force-driven faulting, the forces that create the stress on the fault supply work or energy to the faulting process. Half of this energy is transformed into seismic waves plus work done in the fault zone and half goes into an increase in locked-in elastic strain. In displacement-bounded faulting the locked-in elastic strain drives slip on the fault. In force-driven faulting it stops slip on the fault. Tectonic stress is reasonably attributed to gravity acting on topography and the Earth's lateral density variations. This includes the thermal convection that ultimately drives plate tectonics. The gravity collapse seismic mechanism assumes the fault fails and slips in direct response to the gravitational tectonic stress. Gravity collapse is an example of force-driven faulting. In the simplest case, energy that is released from the gravitational potential of the topography and internal stress-causing density variations is equally split between the seismic waves plus work done in the fault zone and the increase in locked-in elastic strain. The release of gravitational potential energy requires a change in the Earth's density distribution. Gravitational body forces are solely dependent on density so a change in the density distribution requires a change in the body forces. This implies the existence of volumetric body-force displacements. The volumetric body-force displacements are in addition to displacements generated by slip on the fault. They must exist if gravity participates in the energetics of the faulting process. From the perspective of gravitational tectonics, the gravity collapse mechanism is direct and simple. The related mechanics are a little more

  10. Stress history and fracture pattern in fault-related folds based on limit analysis: application to the Sub-Andean thrust belt of Bolivia

    Barbe, Charlotte; Leroy, Yves; Ben Miloud, Camille


    A methodology is proposed to construct the stress history of a complex fault-related fold in which the deformation mechanisms are essentially frictional. To illustrate the approach, fours steps of the deformation of an initially horizontally layered sand/silicone laboratory experiment (Driehaus et al., J. of Struc. Geol., 65, 2014) are analysed with the kinematic approach of limit analysis (LA). The stress, conjugate to the virtual velocity gradient in the sense of mechanicam power, is a proxy for the true statically admmissible stress field which prevailed over the structure. The material properties, friction angles and cohesion, including their time evolution are selected such that the deformation pattern predicted by the LA is consistent with the two main thrusting events, the first forward and the second backward once the layers have sufficiently rotated. The fractures associated to the stress field determined at each step are convected on today configuration to define the complete pattern which should be observed. The end results are presented along virtual vertical wells and could be used within the oil industry at an early phase of exploration to prepare drealing operations.

  11. Fault detection and isolation in systems with parametric faults

    Stoustrup, Jakob; Niemann, Hans Henrik


    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  12. Iowa Bedrock Faults

    Iowa State University GIS Support and Research Facility — This fault coverage locates and identifies all currently known/interpreted fault zones in Iowa, that demonstrate offset of geologic units in exposure or subsurface...

  13. null Faults, null Images

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  14. An Overview of the Lightning - Atmospheric Chemistry Aspects of the Deep Convective Clouds and Chemistry (DC3) Experiment

    Pickering, K. E.; Barth, M. C.; Koshak, W.; Bucsela, E. J.; Allen, D. J.; Weinheimer, A.; Ryerson, T.; Huntrieser, H.; Bruning, E.; MacGorman, D.; Krehbiel, P.; Thomas, R.; Carey, L.


    Some of the major goals of the DC3 experiment are to determine the contribution of lightning to NO(x) in the anvils of observed thunderstorms, examine the relationship of lightning NO(x) production to flash rates and to lightning channel lengths, and estimate the relative production per flash for cloud-to-ground flashes and intracloud flashes. In addition, the effects of lightning NO(x) production on photochemistry downwind of thunderstorms is also being examined. The talk will survey the observation types that were conducted during DC3 relevant to these goals and provide an overview of the analysis and modeling techniques which are being used to achieve them. NO(x) was observed on three research aircraft during DC3 (the NCAR G-V, the NASA DC-8, and the DLR Falcon) in flights through storm anvils in three study regions (NE Colorado, Central Oklahoma to West Texas, and northern Alabama) where lightning mapping arrays (LMAs) and radar coverage were available. Initial comparisons of the aircraft NOx observations in storm anvils relative to flash rates have been conducted, which will be followed with calculations of the flux of NO(x) through the anvils, which when combined with observed flash rates can be used to estimate storm-average lightning NOx production per flash. The WRF-Chem model will be run for cloud-resolved simulations of selected observed storms during DC3. Detailed lightning information from the LMAs (flash rates and flash lengths as a function of time and vertical distributions of flash channel segments) will be input to the model along with assumptions concerning NO(x) production per CG flash and per IC flash. These assumptions will be tested through comparisons with the aircraft NOx data from anvil traverses. A specially designed retrieval method for lightning NO2 column amounts from the OMI instrument on NASA fs Aura satellite has been utilized to estimate NO2 over the region affected by selected DC3 storms. Combined with NO(x) to NO2 ratios from the

  15. Sistem Informasi Petir (SIP dengan Metode Lightning Distribution (LD di Wilayah Sumatera Barat

    Andrew Kurniawan Vadreas


    Full Text Available This paper mapped 200 locations of lightning strikes in West Sumatra province. Mapping the location of lightning strikes as part of Lightning Information System was designed with the method of Lightning Distribution (LD. To get the location of lightning strikes obtained from the calculation reflection of ionosphere method to determine the distance of a lightning strike from stations of lightning and methods of Magnetic Direction Finding (MDF to get directions from the lightning strike. Direction data obtained processed to generate a lightning incident location, then that location will be displayed on Google Maps. After that in the process of Lightning Distribution method which is a form of lightning strike density mapping by using the "File Format" grid, where each grid was measured to be 1 x 1 km2 called the Local Density Flash (LFD. If there are multiple point strikes on the grid will change the color that is on the map fit how many number of strikes on the grid which is a Probabilistic computation Flash Density (PFD. The depiction of the scale of danger lightning in the form of variations color changes at the point where the bolt of green color represents the minimum number density of lightning strikes that contains a single point and the red color represents the maximum number density of strikes which contains more than ten points strike. Based on the color distribution of lightning strikes and Payakumbuh Agam area has the highest rate of lightning strikes in the study period.

  16. Joint development in perturbed stress fields near faults

    Rawnsley, K. D.; Rives, T.; Petti, J.-P.; Hencher, S. R.; Lumsden, A. C.


    Field evidence is presented for complex spatial and temporal perturbations of an otherwise systematic joint pattern around faults from well exposed faulted rock platforms. Joints propagating in perturbed stress fields will curve to follow the directions of the stress field trajectories. A progressive change in joint direction is observed from unperturbed regions away from faults, to strongly perturbed zones adjacent to faults. This indicates that the joint pattern can reflect perturbations of the regional stress field around faults. In the examples, the stress field perturbations are probably due to points of high friction on the fault plane which concentrate stress and distort the stress field in the surrounding rock. The corresponding joints converge at these points and are sub-parallel to the fault along the remainder of the fault plane. The possibility that a fault plane acts as a free surface contained within an elastic body is considered. In this situation the fault plane induces a rotation of the principal stress axes to become either perpendicular or parallel to the fault. The free surface model seems to explain the metre-scale curvature of joints in the vicinity of existing joints, but at the kilometre scale of a large fault plane the model becomes unrealistic unless the fault is open at the Earth's surface. Two examples are investigated from the Lias of Great Britain; at Nash Point and Robin Hood's Bay. Both comprise sub-horizontal strata of relatively homogeneous lithology and bed thickness, which provide striking examples of joints developed near faults.

  17. Fault system polarity: A matter of chance?

    Schöpfer, Martin; Childs, Conrad; Manzocchi, Tom; Walsh, John; Nicol, Andy; Grasemann, Bernhard


    Many normal fault systems and, on a smaller scale, fracture boudinage exhibit asymmetry so that one fault dip direction dominates. The fraction of throw (or heave) accommodated by faults with the same dip direction in relation to the total fault system throw (or heave) is a quantitative measure of fault system asymmetry and termed 'polarity'. It is a common belief that the formation of domino and shear band boudinage with a monoclinic symmetry requires a component of layer parallel shearing, whereas torn boudins reflect coaxial flow. Moreover, domains of parallel faults are frequently used to infer the presence of a common décollement. Here we show, using Distinct Element Method (DEM) models in which rock is represented by an assemblage of bonded circular particles, that asymmetric fault systems can emerge under symmetric boundary conditions. The pre-requisite for the development of domains of parallel faults is however that the medium surrounding the brittle layer has a very low strength. We demonstrate that, if the 'competence' contrast between the brittle layer and the surrounding material ('jacket', or 'matrix') is high, the fault dip directions and hence fault system polarity can be explained using a random process. The results imply that domains of parallel faults are, for the conditions and properties used in our models, in fact a matter of chance. Our models suggest that domino and shear band boudinage can be an unreliable shear-sense indicator. Moreover, the presence of a décollement should not be inferred on the basis of a domain of parallel faults only.

  18. Graphical user interface simplifies infusion pump programming and enhances the ability to detect pump-related faults.

    Syroid, Noah; Liu, David; Albert, Robert; Agutter, James; Egan, Talmage D; Pace, Nathan L; Johnson, Ken B; Dowdle, Michael R; Pulsipher, Daniel; Westenskow, Dwayne R


    Drug administration errors are frequent and are often associated with the misuse of IV infusion pumps. One source of these errors may be the infusion pump's user interface. We used failure modes-and-effects analyses to identify programming errors and to guide the design of a new syringe pump user interface. We designed the new user interface to clearly show the pump's operating state simultaneously in more than 1 monitoring location. We evaluated anesthesia residents in laboratory and simulated environments on programming accuracy and error detection between the new user interface and the user interface of a commercially available infusion pump. With the new user interface, we observed the number of programming errors reduced by 81%, the number of keystrokes per task reduced from 9.2 ± 5.0 to 7.5 ± 5.5 (mean ± SD), the time required per task reduced from 18.1 ± 14.1 seconds to 10.9 ± 9.5 seconds and significantly less perceived workload. Residents detected 38 of 70 (54%) of the events with the new user interface and 37 of 70 (53%) with the existing user interface, despite no experience with the new user interface and extensive experience with the existing interface. The number of programming errors and workload were reduced partly because it took less time and fewer keystrokes to program the pump when using the new user interface. Despite minimal training, residents quickly identified preexisting infusion pump problems with the new user interface. Intuitive and easy-to-program infusion pump interfaces may reduce drug administration errors and infusion pump-related adverse events.

  19. Fault-weighted quantification method of fault detection coverage through fault mode and effect analysis in digital I&C systems

    Cho, Jaehyun; Lee, Seung Jun, E-mail:; Jung, Wondea


    Highlights: • We developed the fault-weighted quantification method of fault detection coverage. • The method has been applied to specific digital reactor protection system. • The unavailability of the module had 20-times difference with the traditional method. • Several experimental tests will be effectively prioritized using this method. - Abstract: The one of the most outstanding features of a digital I&C system is the use of a fault-tolerant technique. With an awareness regarding the importance of thequantification of fault detection coverage of fault-tolerant techniques, several researches related to the fault injection method were developed and employed to quantify a fault detection coverage. In the fault injection method, each injected fault has a different importance because the frequency of realization of every injected fault is different. However, there have been no previous studies addressing the importance and weighting factor of each injected fault. In this work, a new method for allocating the weighting to each injected fault using the failure mode and effect analysis data was proposed. For application, the fault-weighted quantification method has also been applied to specific digital reactor protection system to quantify the fault detection coverage. One of the major findings in an application was that we may estimate the unavailability of the specific module in digital I&C systems about 20-times smaller than real value when we use a traditional method. The other finding was that we can also classify the importance of the experimental case. Therefore, this method is expected to not only suggest an accurate quantification procedure of fault-detection coverage by weighting the injected faults, but to also contribute to an effective fault injection experiment by sorting the importance of the failure categories.

  20. Emergency Preparedness and Response - Lightning

    ... NCEH’s Health Studies Branch Related CDC Resources Floods Hurricanes Tornadoes Health and Safety Concerns for All Disasters Illnesses, ... more. Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis Volcanoes Wildfires Winter Weather Language: English Español ( ...

  1. Beijing Lightning Network (BLNET): Configuration, Function and Preliminary Results

    Qie, X.; Wang, D.; Wang, Y.; Liu, M.; Tian, Y.; Lu, G.


    A regional multi-frequency-band lightning detection network in Beijing (BLNET) has been developed for both research and operational purposes. The network is employed in the experiment of Dynamic-microphysical-electrical Processes in Severe Thunderstorms and Lightning Hazards (Storm973), supported by Ministry of Science and Technology as National Key Basic Research Program of China or 973 Program. The network consisted of 16 stations in 2015 covering most part of The "Jing-Jin-Ji" (Beijing-Tianjin-Hebei) metropolis zone, one of the most developed areas in China. Four different sensors, including slow antenna, fast antenna, magnetic antenna, and VHF antenna, are integrated in each station to detect lightning radiation signals in different frequency band. The Chan algorithm and Levenberg-Marquardt method are adopted jointly in the lightning location algorithm. In addition to locate the lightning radiation pulses in two-dimension or three-dimension in different band, the charge source neutralized by the lightning discharge can be retrieved either. The theoretical horizontal error over the network is less than 200 m and the vertical error is less than 500 m over the network. The comparison of total lightning location results with corresponding radar echoes for thunderstorm cases indicates the good performance of BLNET in the severe convection surveillance. The actual two-dimensional location error in VLF/LF band, compared with a ground truth that acquired with a GPS-synchronized high-speed video camera, is about 250 m.

  2. Extensive air showers, lightning, and thunderstorm ground enhancements

    Chilingarian, A.; Hovsepyan, G.; Kozliner, L.


    For lightning research, we monitor particle fluxes from thunderclouds, the so-called thunderstorm ground enhancements (TGEs) initiated by runaway electrons, and extensive air showers (EASs) originating from high-energy protons or fully stripped nuclei that enter the Earth's atmosphere. We also monitor the near-surface electric field and atmospheric discharges using a network of electric field mills. The Aragats "electron accelerator" produced several TGEs and lightning events in the spring of 2015. Using 1-s time series, we investigated the relationship between lightning and particle fluxes. Lightning flashes often terminated the particle flux; in particular, during some TGEs, lightning events would terminate the particle flux thrice after successive recovery. It was postulated that a lightning terminates a particle flux mostly in the beginning of a TGE or in its decay phase; however, we observed two events (19 October 2013 and 20 April 2015) when the huge particle flux was terminated just at the peak of its development. We discuss the possibility of a huge EAS facilitating lightning leader to find its path to the ground.

  3. Simulating lightning into the RAMS model: implementation and preliminary results

    S. Federico


    Full Text Available This paper shows the results of a tailored version of a previously published methodology, designed to simulate lightning activity, implemented into the Regional Atmospheric Modeling System (RAMS. The method gives the flash density at the resolution of the RAMS grid-scale allowing for a detailed analysis of the evolution of simulated lightning activity. The system is applied in detail to two case studies occurred over the Lazio Region, in Central Italy. Simulations are compared with the lightning activity detected by the LINET network. The cases refer to two thunderstorms of different intensity. Results show that the model predicts reasonably well both cases and that the lightning activity is well reproduced especially for the most intense case. However, there are errors in timing and positioning of the convection, whose magnitude depends on the case study, which mirrors in timing and positioning errors of the lightning distribution. To assess objectively the performance of the methodology, standard scores are presented for four additional case studies. Scores show the ability of the methodology to simulate the daily lightning activity for different spatial scales and for two different minimum thresholds of flash number density. The performance decreases at finer spatial scales and for higher thresholds. The comparison of simulated and observed lighting activity is an immediate and powerful tool to assess the model ability to reproduce the intensity and the evolution of the convection. This shows the importance of the use of computationally efficient lightning schemes, such as the one described in this paper, in forecast models.

  4. Fault-related CO2 degassing, geothermics, and fluid flow in southern California basins---Physiochemical evidence and modeling

    Boles, James R. [Univ. of California, Santa Barbara, CA (United States); Garven, Grant [Tufts Univ., Medford, MA (United States)


    Our studies have had an important impact on societal issues. Experimental and field observations show that CO2 degassing, such as might occur from stored CO2 reservoir gas, can result in significant stable isotopic disequilibrium. In the offshore South Ellwood field of the Santa Barbara channel, we show how oil production has reduced natural seep rates in the area, thereby reducing greenhouse gases. Permeability is calculated to be ~20-30 millidarcys for km-scale fault-focused fluid flow, using changes in natural gas seepage rates from well production, and poroelastic changes in formation pore-water pressure. In the Los Angeles (LA) basin, our characterization of formation water chemistry, including stable isotopic studies, allows the distinction between deep and shallow formations waters. Our multiphase computational-based modeling of petroleum migration demonstrates the important role of major faults on geological-scale fluid migration in the LA basin, and show how petroleum was dammed up against the Newport-Inglewood fault zone in a “geologically fast” interval of time (less than 0.5 million years). Furthermore, these fluid studies also will allow evaluation of potential cross-formational mixing of formation fluids. Lastly, our new study of helium isotopes in the LA basin shows a significant leakage of mantle helium along the Newport Inglewood fault zone (NIFZ), at flow rates up to 2 cm/yr. Crustal-scale fault permeability (~60 microdarcys) and advective versus conductive heat transport rates have been estimated using the observed helium isotopic data. The NIFZ is an important deep-seated fault that may crosscut a proposed basin decollement fault in this heavily populated area, and appears to allow seepage of helium from the mantle sources about 30 km beneath Los Angeles. The helium study has been widely cited in recent weeks by the news media, both in radio and on numerous web sites.

  5. Performance based fault diagnosis

    Niemann, Hans Henrik


    Different aspects of fault detection and fault isolation in closed-loop systems are considered. It is shown that using the standard setup known from feedback control, it is possible to formulate fault diagnosis problems based on a performance index in this general standard setup. It is also shown...

  6. Fault tolerant computing systems

    Randell, B


    Fault tolerance involves the provision of strategies for error detection, damage assessment, fault treatment and error recovery. A survey is given of the different sorts of strategies used in highly reliable computing systems, together with an outline of recent research on the problems of providing fault tolerance in parallel and distributed computing systems. (15 refs).

  7. Fault Tolerant Control Systems

    Bøgh, S. A.

    was to avoid a total close-down in case of the most likely faults. The second was a fault tolerant attitude control system for a micro satellite where the operation of the system is mission critical. The purpose was to avoid hazardous effects from faults and maintain operation if possible. A method...

  8. The Chthonic Charging of Volcanic Flows: The Generation of Vent Lightning

    Méndez Harper, J.; Dufek, J.


    While volcanic lightning has been reported for millennia, the physics that generate charge in plumes still require clarification. Lightning observations during the Augustine (2006) and Redoubt (2009) eruptions have revealed a new form of lightning: nearly continuous, vent discharges associated with the explosive phase of the eruption. Vent lightning is often small (10-100 m in length) and disorganized, suggesting the existence of multiple, transient charge centers proximal to the volcanic vent. Thomas et al., 2007 and Behnke et al., 2012 have postulated that this form of lightning is driven by fragmentation charging [James et al., 2008]. However, triboelectrification—frictional charging arising from particle-particle collisions as material is advected up to the vent—should also play an important role. Because tribocharging is modulated by collision rates and energies, it is within the conduit and the gas-thrust regions that this frictional process should be most efficient. Indeed, the work of Cimarelli et al., 2014 has suggested that lightning can be generated at the vent via triboelectric charging alone. Using an energy-based comparison, we investigate the relative efficiencies of fracto- and triboelectric charging. To generate charged particles via a fragmentation process, we employ Prince Rupert's Drops (PRDs), meta-stable, tadpole-shaped structures formed by quenching molten glass in water. While a PDR's head is extremely strong, even the slightest damage to the tail causes explosive disintegration of the drop [Silverman et al., 2012]. A set of PDRs are disrupted in a controlled environment and the charge on the resulting particles is measured using a set of Faraday cups. The energy density associated with the breaking of PRDs is on the order of 105-106 J/m3. Then, to investigate tribocharging at similar energies, we eject spherical particles at high velocities, producing particle-particle collisions in a novel Faraday cube sensor. Our setup allows us to

  9. A Lightning Channel Retrieval Algorithm for the North Alabama Lightning Mapping Array (LMA)

    Koshak, William; Arnold, James E. (Technical Monitor)


    A new multi-station VHF time-of-arrival (TOA) antenna network is, at the time of this writing, coming on-line in Northern Alabama. The network, called the Lightning Mapping Array (LMA), employs GPS timing and detects VHF radiation from discrete segments (effectively point emitters) that comprise the channel of lightning strokes within cloud and ground flashes. The network will support on-going ground validation activities of the low Earth orbiting Lightning Imaging Sensor (LIS) satellite developed at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. It will also provide for many interesting and detailed studies of the distribution and evolution of thunderstorms and lightning in the Tennessee Valley, and will offer many interesting comparisons with other meteorological/geophysical wets associated with lightning and thunderstorms. In order to take full advantage of these benefits, it is essential that the LMA channel mapping accuracy (in both space and time) be fully characterized and optimized. In this study, a new revised channel mapping retrieval algorithm is introduced. The algorithm is an extension of earlier work provided in Koshak and Solakiewicz (1996) in the analysis of the NASA Kennedy Space Center (KSC) Lightning Detection and Ranging (LDAR) system. As in the 1996 study, direct algebraic solutions are obtained by inverting a simple linear system of equations, thereby making computer searches through a multi-dimensional parameter domain of a Chi-Squared function unnecessary. However, the new algorithm is developed completely in spherical Earth-centered coordinates (longitude, latitude, altitude), rather than in the (x, y, z) cartesian coordinates employed in the 1996 study. Hence, no mathematical transformations from (x, y, z) into spherical coordinates are required (such transformations involve more numerical error propagation, more computer program coding, and slightly more CPU computing time). The new algorithm also has a more realistic

  10. Lightning and radar observations of hurricane Rita landfall

    Henderson, Bradley G [Los Alamos National Laboratory; Suszcynsky, David M [Los Alamos National Laboratory; Hamlin, Timothy E [Los Alamos National Laboratory; Jeffery, C A [Los Alamos National Laboratory; Wiens, Kyle C [TEXAS TECH U.; Orville, R E [TEXAS A& M


    Los Alamos National Laboratory (LANL) owns and operates an array of Very-Low Frequency (VLF) sensors that measure the Radio-Frequency (RF) waveforms emitted by Cloud-to-Ground (CG) and InCloud (IC) lightning. This array, the Los Alamos Sferic Array (LASA), has approximately 15 sensors concentrated in the Great Plains and Florida, which detect electric field changes in a bandwidth from 200 Hz to 500 kHz (Smith et al., 2002). Recently, LANL has begun development of a new dual-band RF sensor array that includes the Very-High Frequency (VHF) band as well as the VLF. Whereas VLF lightning emissions can be used to deduce physical parameters such as lightning type and peak current, VHF emissions can be used to perform precise 3d mapping of individual radiation sources, which can number in the thousands for a typical CG flash. These new dual-band sensors will be used to monitor lightning activity in hurricanes in an effort to better predict intensification cycles. Although the new LANL dual-band array is not yet operational, we have begun initial work utilizing both VLF and VHF lightning data to monitor hurricane evolution. In this paper, we present the temporal evolution of Rita's landfall using VLF and VHF lightning data, and also WSR-88D radar. At landfall, Rita's northern eyewall experienced strong updrafts and significant lightning activity that appear to mark a transition between oceanic hurricane dynamics and continental thunderstorm dynamics. In section 2, we give a brief overview of Hurricane Rita, including its development as a hurricane and its lightning history. In the following section, we present WSR-88D data of Rita's landfall, including reflectivity images and temporal variation. In section 4, we present both VHF and VLF lightning data, overplotted on radar reflectivity images. Finally, we discuss our observations, including a comparison to previous studies and a brief conclusion.

  11. Evaluating the effects of lightning-generated whistlers observed by the DEMETER spacecraft

    Zahlava, Jan; Nemec, Frantisek; Pincon, Jean-Louis; Santolik, Ondrej; Kolmasova, Ivana; Parrot, Michel


    Although lightning-generated whistlers have been studied for nearly a century, there are still questions to be answered. It is clear that, at least in a certain frequency range, these waves significantly contribute to the overall wave intensity in the inner magnetosphere. They also influence distribution functions of energetic particles in the van Allen radiation belts. Due to the on board implemented neural network for automated whistler detection, the data set obtained by the low-altitude DEMETER spacecraft allows us to relate measured electromagnetic wave data and energetic particle flux with the number and dispersion of whistlers detected during a certain time interval. We distinguish the cases with high and low whistler occurrence and we use this information to determine the overall effect of lightning-generated whistlers.

  12. Near ground gamma radiation associated with lightning

    Sakuma, K.; Greenfield, M. B.; Ikeda, Y.; Kubo, K.


    Increases in the atmospheric gamma radiation of 22 to 82above normal background have been observed after the onset of lightning fifteen times since March 2001[1]. Gamma rays have been observed with up to four 12.9 cm3 NaI detectors and recently with a high resolution Ge detector positioned 6-21 m and 15 m above ground, respectively. The tail of the observed background subtracted gamma ray rates GRR were fitted with exponential decay curves yielding typical correlation coefficients of 0.95 to 0.99 and half-lives of 52.7 +/-4.81 min and 52.8+/-10.95 min, without and with precipitation, respectively. The GRR above 300 KeV from radon progeny due to precipitation were subtracted [2]. The 3x3 Ge detector with 2 KeV resolution positioned about 2 m from one of the NaI detectors observed increases in GRR minutes after the onset of lightning with a delayed 50 min exponential decay which was concurrently observed in the NaI detector. [1] M. B. Greenfield et al., Journal of Applied Physics 93 no. 3 (2003) pp 1839-1844. [2] M. B. Greenfield et al., Journal of Applied Physics 93 no. 9 (2003) pp 5733-5741.

  13. Fast radio bursts as pulsar lightning

    Katz, J. I.


    There are striking phenomenological similarities between fast radio bursts (FRBs) and lightning in the Earth's and planetary atmospheres. Both have very low duty factors, ≲10-8-10-5 for FRBs and (very roughly) ˜10-4 for the main return strokes in an active thundercloud. Lightning occurs in an electrified insulating atmosphere when a conducting path is created by and permits current flow. FRBs may occur in neutron star magnetospheres whose plasma is believed to be divided by vacuum gaps. Vacuum is a perfect insulator unless electric fields are sufficient for electron-positron pair production by curvature radiation, a high-energy analogue of electrostatic breakdown in an insulating gas. FRB may be 'electrars' powered by the release of stored electrostatic energy, counterparts to soft gamma repeaters powered by the release of stored magnetostatic energy (magnetars). This frees pulsar FRB models from the constraint that their power not exceeds the instantaneous spin-down power. Energetic constraints imply that the sources of more energetic FRBs have shorter spin-down lifetimes, perhaps even less than the 3 yr over which FRB 121102 has been observed to repeat.

  14. Magnetotelluric distortions directly observed with lightning data

    Hennessy, Lachlan; Macnae, James


    Galvanic distortions complicate magnetotelluric (MT) soundings. In this research, we use lightning network data to identify specific sferics in MT measurements and analyse these events on the basis of the lightning source location. Without source information, identification and removal of galvanic distortion is a fundamentally ill-posed problem, unless data are statistically decomposed into determinable and indeterminable parts. We use realistic assumptions of the earth-ionosphere waveguide propagation velocity to accurately predict the time of arrival, azimuth and amplitude for every significant sferic in our time-series data. For each sferic with large amplitude, we calculate the rotation of the electric field from the measured to the predicted arrival azimuth. This rotation of the electric field is a primary parameter of distortion. Our results demonstrate that a rudimentary model for near-surface galvanic distortion consistently fits observed electric field rotations. When local features rotate regional electric fields, then counter-rotating data to predicted arrival azimuths should correct the directional dependence of static shift. Although we used amplitude thresholds to simplify statistical processing, future developments should incorporate both signal-to-noise improvements and multisite decompositions. Lower amplitude signal may also be useful after the appropriate signal processing for noise reduction. We anticipate our approach will be useful for further work on MT distortion.

  15. Application of fault current limiters

    Neumann, A.


    This report presents the results of a study commissioned by the Department for Business, Enterprise and Industry (BERR; formerly the Department of Trade and Industry) into the application of fault current limiters in the UK. The study reviewed the current state of fault current limiter (FCL) technology and regulatory position in relation to all types of current limiters. It identified significant research and development work with respect to medium voltage FCLs and a move to high voltage. Appropriate FCL technologies being developed include: solid state breakers; superconducting FCLs (including superconducting transformers); magnetic FCLs; and active network controllers. Commercialisation of these products depends on successful field tests and experience, plus material development in the case of high temperature superconducting FCL technologies. The report describes FCL techniques, the current state of FCL technologies, practical applications and future outlook for FCL technologies, distribution fault level analysis and an outline methodology for assessing the materiality of the fault level problem. A roadmap is presented that provides an 'action agenda' to advance the fault level issues associated with low carbon networks.

  16. Properties of Lightning Strike Protection Coatings

    Gagne, Martin

    Composite materials are being increasingly used by many industries. In the case of aerospace companies, those materials are installed on their aircraft to save weight, and thus, fuel costs. These aircraft are lighter, but the loss of electrical conductivity makes aircraft vulnerable to lightning strikes, which hit commercial aircrafts on average once per year. This makes lightning strike protection very important, and while current metallic expanded copper foils offer good protection, they increase the weight of composites. Therefore, under the CRIAQ COMP-502 project, a team of industrial partners and academic researchers are investigating new conductive coatings with the following characteristics: High electromagnetic protection, high mechanical resistance, good environmental protection, manufacturability and moderate cost. The main objectives of this thesis, as part of this project, was to determine the main characteristics, such as electrical and tribomechanical properties, of conductive coatings on composite panels. Their properties were also to be tested after destructive tests such as current injection and environmental testing. Bombardier Aerospace provided the substrate, a composite of carbon fiber reinforced epoxy matrix, and the current commercial product, a surfacing film that includes an expanded copper foil used to compare with the other coatings. The conductive coatings fabricated by the students are: silver nanoparticles inside a binding matrix (PEDOT:PSS or a mix of Epoxy and PEDOT:PSS), silvered carbon nanofibers embedded in the surfacing film, cold sprayed tin, graphene oxide functionalized with silver nanowires, and electroless plated silver. Additionally as part of the project and thesis, magnetron sputtered aluminum coated samples were fabricated. There are three main types of tests to characterize the conductive coatings: electrical, mechanical and environmental. Electrical tests consist of finding the sheet resistance and specific resistivity

  17. Characterization of slow slip rate faults in humid areas: Cimandiri fault zone, Indonesia

    Marliyani, G. I.; Arrowsmith, J. R.; Whipple, K. X.


    In areas where regional tectonic strain is accommodated by broad zones of short and low slip rate faults, geomorphic and paleoseismic characterization of faults is difficult because of poor surface expression and long earthquake recurrence intervals. In humid areas, faults can be buried by thick sediments or soils; their geomorphic expression subdued and sometimes undetectable until the next earthquake. In Java, active faults are diffused, and their characterization is challenging. Among them is the ENE striking Cimandiri fault zone. Cumulative displacement produces prominent ENE oriented ranges with the southeast side moving relatively upward and to the northeast. The fault zone is expressed in the bedrock by numerous NE, west, and NW trending thrust- and strike-slip faults and folds. However, it is unclear which of these structures are active. We performed a morphometric analysis of the fault zone using 30 m resolution Shuttle Radar Topography Mission digital elevation model. We constructed longitudinal profiles of 601 bedrock rivers along the upthrown ranges along the fault zone, calculated the normalized channel steepness index, identified knickpoints and use their distribution to infer relative magnitudes of rock uplift and locate boundaries that may indicate active fault traces. We compare the rock uplift distribution to surface displacement predicted by elastic dislocation model to determine the plausible fault kinematics. The active Cimandiri fault zone consists of six segments with predominant sense of reverse motion. Our analysis reveals considerable geometric complexity, strongly suggesting segmentation of the fault, and thus smaller maximum earthquakes, consistent with the limited historical record of upper plate earthquakes in Java.

  18. Transcranial stimulability of phosphenes by long lightning electromagnetic pulses

    Peer, J


    The electromagnetic pulses of rare long (order of seconds) repetitive lightning discharges near strike point (order of 100m) are analyzed and compared to magnetic fields applied in standard clinical transcranial magnetic stimulation (TMS) practice. It is shown that the time-varying lightning magnetic fields and locally induced potentials are in the same order of magnitude and frequency as those established in TMS experiments to study stimulated perception phenomena, like magnetophosphenes. Lightning electromagnetic pulse induced transcranial magnetic stimulation of phosphenes in the visual cortex is concluded to be a plausible interpretation of a large class of reports on luminous perceptions during thunderstorms.

  19. Transcranial stimulability of phosphenes by long lightning electromagnetic pulses

    Peer, J. [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria); Kendl, A., E-mail: [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria)


    The electromagnetic pulses of rare long (order of seconds) repetitive lightning discharges near strike point (order of 100 m) are analyzed and compared to magnetic fields applied in standard clinical transcranial magnetic stimulation (TMS) practice. It is shown that the time-varying lightning magnetic fields and locally induced electric fields are in the same order of magnitude and frequency as those established in TMS experiments to study stimulated perception phenomena, like magnetophosphenes. Lightning electromagnetic pulse induced transcranial magnetic stimulation of phosphenes in the visual cortex is concluded to be a plausible interpretation of a large class of reports on luminous perceptions during thunderstorms.

  20. The effects of lightning on digital flight control systems

    Plumer, J. A.; Malloy, W. A.; Craft, J. B.


    Present practices in lightning protection of aircraft deal primarily with the direct effects of lightning, such as structural damage and ignition of fuel vapors. There is increasing evidence of troublesome electromagnetic effects, however, in aircraft employing solid-state microelectronics in critical navigation, instrumentation and control functions. The potential impact of these indirect effects on critical systems such as digital fly by wire (DFBW) flight controls was studied. The results indicate a need for positive steps to be taken during the design of future fly by wire systems to minimize the possibility of hazardous effects from lightning.

  1. Lightning arrester models enabling highly accurate lightning surge analysis; Koseidona kaminari surge kaiseki wo kano ni suru hiraiki model

    Ueda, T. [Chubu Electric Power Co. Inc., Nagoya (Japan); Funabashi, T.; Hagiwara, T.; Watanabe, H. [Meidensha Corp., Tokyo (Japan)


    Introduced herein are a dynamic behavior model for lightning arresters designed for power stations and substations and a flashover model for a lightning arresting device designed for transmission, both developed by the author et al. The author et al base their zinc oxide type lightning arrester model on the conventional static V-I characteristics, and supplement them with difference in voltage between static and dynamic characteristics. The model is easily simulated using EMTP (Electromagnetic Transients Program) etc. There is good agreement between the results of calculation performed using this model and actually measured values. Lightning arresting devices for transmission have come into practical use, and their effectiveness is introduced on various occasions. For the proper application of such devices, an analysis model capable of faithfully describing the flashover characteristics of arcing horns installed in great numbers along transmission lines, and of lightning arresting devices for transmission, are required. The author et al have newly developed a flashover model for the devices and uses the model for the analysis of lightning surges. It is found that the actually measured values of discharge characteristics of lightning arresting devices for transmission agree well with the values calculated by use of the model. (NEDO)

  2. A brief review of the problem of lightning initiation and a hypothesis of initial lightning leader formation

    Petersen, Danyal; Bailey, Matthew; Beasley, William H.; Hallett, John


    A brief review of hypothesized mechanisms of lightning initiation is presented, with the suggestion that these mechanisms provide an incomplete picture of lightning initiation. This is followed by two ideas: (1) a combination of previously hypothesized lightning initiation mechanisms as a means for local intensification of the thundercloud electric field, and (2) a process for the formation of a hot lightning leader channel that is analogous to the space leader phase of the laboratory negative stepped leader. Thundercloud electric field observations have consistently yielded peak values that are an order of magnitude weaker than the dielectric strength of air. Various mechanisms have been proposed to explain how lightning can initiate in such weak electric fields, including hydrometeor-initiated positive streamers and cosmic ray-initiated runaway breakdown. The historically favored positive streamer mechanisms are problematic due to requiring electric fields two to three times larger than peak observed fields. The recently favored runaway breakdown mechanisms appear capable of developing in conditions comparable to peak observed fields although it is not clear how these diffuse discharges can lead to creation of a lightning leader. This paper proposes a solution whereby runaway breakdown and hydrometeor-initiated positive streamer systems serve to locally intensify the electric field. Following this local field intensification, it is hypothesized that formation of the initial lightning leader channel is analogous to the formation of a space leader in a laboratory negative stepped leader.

  3. Analysis on a Transformer Lightning Accident%一起变压器雷击故障的分析

    王成亮; 王光亮; 包玉树


    为了研究某高压厂用变压器在雷击后造成机组停运的原因,分析了故障录波,开展了高厂变的油色谱、绝缘电阻、直流电阻、直流耐压泄漏电流、介质损耗、低电压短路阻抗、交流耐压等试验,得出了变压器在承受较大短路电流后绝缘正常,故障的发展首先是两相短路、后发展为三相短路的判断.在现场测绘防雷接地布置的基础上,结合土壤、雷声和弧光情况,计算并推断了雷电反击过电压使得绝缘闪络,后在工频电压作用下持续电弧放电,造成高厂变低压侧母排两相及三相短路的过程,分析得出故障原因为变压器区域墙顶的避雷器接地引下线布置安装不能满足标准规定要求.最后提出了相应的防范措施,为类似雷电反击事故的分析提供具有重要参考价值的信息.%In order to investigate the causes for generator outage after a high-voltage auxiliary power transformer of a power plant experienced a lightning, the fault wave record was analyzed and tests were conducted on the oil chromatogram, insulation resistance, DC resistance, DC leakage, dielectric loss, low voltage short circuit impedance and AC voltage endurance. It was judged from the test results that the transformer worked normally after experiencing a large short-circuit current and the fault was caused by two-phase short-circuit and subsequent three-phase short-circuit. Based on the investigation of lightning protection grounding layout, with consideration of the condition of soil and thunder arc, the fault process is calculated and inferred that the lightning overvoltage firstly caused insulation flashover, and then continuous arc-discharge occurred under power frequency voltage, which in turn caused the two-phase and three phase short-circuit of the transformer' s low voltage side bus. Analysis indicates that the cause for the fault is that the layout of lightning arrester's grounding wiring on the transformer' s

  4. Static Electric Fields and Lightning Over Land and Ocean in Florida Thunderstorms

    Wilson, J. G.; Cummins, K. L.; Simpson, A. A.; Hinckley, A.


    Natural cloud-to-ground (CG) lightning and the charge structure of the associated clouds behave differently over land and ocean. Existing literature has raised questions over the years on the behavior of thunderstorms and lightning over oceans, and there are still open scientific questions. We expand on the observational datasets by obtaining identical electric field observations over coastal land, near-shore, and deep ocean regions during both clear air and thunderstorm periods. Oceanic observations were obtained using two 3-meter NOAA buoys that were instrumented with Campbell Scientific electric field mills to measure the static electric fields. These data were compared to selected electric field records from the existing on-shore electric field mill suite of 31 sensors at Kennedy Space Center (KSC). CG lightning occurrence times, locations and peak current values for both on-shore and ocean were provided by the U.S. National Lightning Detection Network. The buoy instruments were first evaluated on-shore at the Florida coast, to calibrate field enhancements and to confirm proper behavior of the system in elevated-field environments. The buoys were then moored 20NM and 120NM off the coast of KSC in February (20NM) and August (120NM) 2014. Statistically larger CG peak currents were reported over the deep ocean for first strokes and for subsequent strokes with new contacts points. Storm-related static fields were significantly larger at both oceanic sites, likely due to decreased screening by nearby space charge. Time-evolution of the static field during storm development and propagation indicated weak or missing lower positive charge regions in most storms that initiated over the deep ocean, supporting one mechanism for the observed high peak currents in negative first strokes over the deep ocean. This project also demonstrated the practicality of off-shore electric field measurements for safety-related decision making at KSC.

  5. Corona discharges from a windmill and its lightning protection tower in winter thunderstorms

    Wu, Ting; Wang, Daohong; Rison, William; Thomas, Ronald J.; Edens, Harald E.; Takagi, Nobuyuki; Krehbiel, Paul R.


    This paper presents lightning mapping array (LMA) observations of corona discharges from a windmill and its lightning protection tower in winter thunderstorms in Japan. Corona discharges from the windmill, called windmill coronas, and those from the tower, called tower coronas, are distinctly different. Windmill coronas occur with periodic bursts, generally radiate larger power, and possibly develop to higher altitudes than tower coronas do. A strong negative electric field is necessary for the frequent production of tower coronas but is not apparently related with windmill coronas. These differences are due to the periodic rotation of the windmill and the moving blades which can escape space charges produced by corona discharges and sustain a large local electric field. The production period of windmill coronas is related with the rotation period of the windmill. Surprisingly, for one rotation of the windmill, only two out of the three blades produce detectable discharges and source powers of discharges from these two blades are different. The reason for this phenomenon is still unclear. For tower coronas, the source rate can get very high only when there is a strong negative electric field, and the source power can get very high only when the source rate is very low. The relationship between corona discharges and lightning flashes is investigated. There is no direct evidence that corona discharges can increase the chance of upward leader initiation, but nearby lightning flashes can increase the source rate of corona discharges right after the flashes. The peak of the source height distribution of corona discharges is about 100 m higher than the top of the windmill and the top of the tower. Possible reasons for this result are discussed.

  6. The influence of no fault found in analogue CMOS circuits

    Wan, Jinbo; Kerkhoff, Hans G.


    The most difficult fault category in electronic systems is the “No Fault Found” (NFF). It is considered to be the most costly fault category in, for instance, avionics. The relatively few papers in this area rarely deal with analogue integrated systems. In this paper a simple simulation model has be

  7. Information Based Fault Diagnosis

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad


    Fault detection and isolation, (FDI) of parametric faults in dynamic systems will be considered in this paper. An active fault diagnosis (AFD) approach is applied. The fault diagnosis will be investigated with respect to different information levels from the external inputs to the systems....... These inputs are disturbance inputs, reference inputs and auxilary inputs. The diagnosis of the system is derived by an evaluation of the signature from the inputs in the residual outputs. The changes of the signatures form the external inputs are used for detection and isolation of the parametric faults....

  8. Fault-Tree Compiler

    Butler, Ricky W.; Boerschlein, David P.


    Fault-Tree Compiler (FTC) program, is software tool used to calculate probability of top event in fault tree. Gates of five different types allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language easy to understand and use. In addition, program supports hierarchical fault-tree definition feature, which simplifies tree-description process and reduces execution time. Set of programs created forming basis for reliability-analysis workstation: SURE, ASSIST, PAWS/STEM, and FTC fault-tree tool (LAR-14586). Written in PASCAL, ANSI-compliant C language, and FORTRAN 77. Other versions available upon request.

  9. 架空线-电缆混合线路故障行波信号识别的研究%Research on Signal Recognition of Fault Traveling Wave for Cable-Overhead Mixed Line

    王升; 徐伟


    ABSTRACT:This paper deals with fault recognition of the cable-overhead mixed line. With focus on the high resistance instantaneous ground fault and overhead line lightning fault of the mixed line,the paper proposes that the spectrum energy ratio of two characteristic frequency bands and waveform factor in the fault current traveling wave be used to distinguish non lightning strike fault,lightning fault and high impedance arc ground fault. The simulation model of the electromagnetic transient software is used to simulate the lightning strike on the cable-overhead mixed line;meanwhile, the fault traveling wave signal is identified. The simulation results show that the method proposed can effectively identify three kinds of faults.%针对架空-电缆混合线路中的高阻瞬时接地故障和架空线路雷击故障,提出采用电流故障行波的2个特征频带中的频谱能量比和波形系数来有效区分雷击非故障与雷击故障、高阻弧光接地故障的思想。利用电磁暂态软件建立仿真模型对架空-电缆混合线路的各种雷击情况进行了仿真,并且对故障行波信号进行了识别研究。仿真结果表明,采用的雷击识别方法可以有效识别不同类型的故障。

  10. Earthquake fault superhighways

    Robinson, D. P.; Das, S.; Searle, M. P.


    Motivated by the observation that the rare earthquakes which propagated for significant distances at supershear speeds occurred on very long straight segments of faults, we examine every known major active strike-slip fault system on land worldwide and identify those with long (> 100 km) straight portions capable not only of sustained supershear rupture speeds but having the potential to reach compressional wave speeds over significant distances, and call them "fault superhighways". The criteria used for identifying these are discussed. These superhighways include portions of the 1000 km long Red River fault in China and Vietnam passing through Hanoi, the 1050 km long San Andreas fault in California passing close to Los Angeles, Santa Barbara and San Francisco, the 1100 km long Chaman fault system in Pakistan north of Karachi, the 700 km long Sagaing fault connecting the first and second cities of Burma, Rangoon and Mandalay, the 1600 km Great Sumatra fault, and the 1000 km Dead Sea fault. Of the 11 faults so classified, nine are in Asia and two in North America, with seven located near areas of very dense populations. Based on the current population distribution within 50 km of each fault superhighway, we find that more than 60 million people today have increased seismic hazards due to them.

  11. Application of Six-Sequence Fault Components in Fault Location for Joint Parallel Transmission Line

    FAN Chunju; CAI Huarong; YU Weiyong


    A new fault location method based on six-sequence fault components was developed for parallel lines based on the fault analysis of a joint parallel transmission line. In the six-sequence fault network, the ratio of the root-mean square value of the fault current from two terminals is the function of the line impedance, the system impedance, and the fault distance away from the buses. A fault location equation is given to relate these factors. For extremely long transmission lines, the distributed capacitance is divided by the fault point and allocated to the two terminals of the transmission line in a lumped parameter to eliminate the influence of the distributed capacitance on the location accuracy. There is no limit on fault type and synchronization of the sampling data. Simulation results show that the location accuracy is high with an average error about 2%, and it is not influenced by factors such as the load current, the operating mode of the power system, or the fault resistance.

  12. Fuzzy theory-based fault location algorithm for electric power transmission lines with OPGW

    Egawa, Masanao; Sugiyama, Koichi; Kanemaru, Kimiharu; Kano, Hitoshi


    OPGW (optical fiber composite overhead grounding wire) is used for advanced information system in major power transmission lines. Attention has been gathered on its application to the maintenance and monitoring, especially the FL unit to locate section where a fault has occurred. A fault location system has been developed, employing the overhead grounding wire (GW) current as the fault information. GW currents have distinctive features in its distribution in the fault section, making its location simple. The new location technique applies the fuzzy theory to incorporate this human thinking into a computer. This method defines the feature of GW current in the fault section with a fuzzy set and, assuming that a fault is more likely to have occurred in a section with more data belonging to this set, determines the section with the largest proportion of such data as the fault section. Two systems have been put in operation based on this method and successfully located faults by lightning strokes. 18 references, 14 figures, 2 tables.

  13. InSAR measurements around active faults: creeping Philippine Fault and un-creeping Alpine Fault

    Fukushima, Y.


    Recently, interferometric synthetic aperture radar (InSAR) time-series analyses have been frequently applied to measure the time-series of small and quasi-steady displacements in wide areas. Large efforts in the methodological developments have been made to pursue higher temporal and spatial resolutions by using frequently acquired SAR images and detecting more pixels that exhibit phase stability. While such a high resolution is indispensable for tracking displacements of man-made and other small-scale structures, it is not necessarily needed and can be unnecessarily computer-intensive for measuring the crustal deformation associated with active faults and volcanic activities. I apply a simple and efficient method to measure the deformation around the Alpine Fault in the South Island of New Zealand, and the Philippine Fault in the Leyte Island. I use a small-baseline subset (SBAS) analysis approach (Berardino, et al., 2002). Generally, the more we average the pixel values, the more coherent the signals are. Considering that, for the deformation around active faults, the spatial resolution can be as coarse as a few hundred meters, we can severely 'multi-look' the interferograms. The two applied cases in this study benefited from this approach; I could obtain the mean velocity maps on practically the entire area without discarding decorrelated areas. The signals could have been only partially obtained by standard persistent scatterer or single-look small-baseline approaches that are much more computer-intensive. In order to further increase the signal detection capability, it is sometimes effective to introduce a processing algorithm adapted to the signal of interest. In an InSAR time-series processing, one usually needs to set the reference point because interferograms are all relative measurements. It is difficult, however, to fix the reference point when one aims to measure long-wavelength deformation signals that span the whole analysis area. This problem can be

  14. The NASA Lightning Nitrogen Oxides Model (LNOM): Application to Air Quality Modeling

    Koshak, William; Peterson, Harold; Khan, Maudood; Biazar, Arastoo; Wang, Lihua


    Recent improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) and its application to the Community Multiscale Air Quality (CMAQ) modeling system are discussed. The LNOM analyzes Lightning Mapping Array (LMA) and National Lightning Detection Network(TradeMark)(NLDN) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NO(x) (= NO + NO2). The latest LNOM estimates of lightning channel length distributions, lightning 1-m segment altitude distributions, and the vertical profile of lightning NO(x) are presented. The primary improvement to the LNOM is the inclusion of non-return stroke lightning NOx production due to: (1) hot core stepped and dart leaders, (2) stepped leader corona sheath, K-changes, continuing currents, and M-components. The impact of including LNOM-estimates of lightning NO(x) for an August 2006 run of CMAQ is discussed.

  15. Using lightning locating system based on time-of-arrival technique to study three-dimensional lightning discharge processes


    A time-of-arrival(TOA) system based on GPS technology for locating VHF radiation sources from lightning has been developed and used in observation sites in the northern Shandong Province,China.The 3D images of the lightning progression have been obtained successfully for the first time in China.The 3D-channel evolutions of typical negative CG,positive CG and IC lightning flashes have been discussed together with the data of fast electric field change.It was found that significant differences existed between the negative and positive CG lightning flashes in terms of the initiation and propagation of the radiation sources.The preliminary breakdown of a negative CG lightning flash propagated at a speed about 5.2×104 m/s.The stepped leader of negative CG lightning flashes was trigged by negative initial breakdown.Thereafter,it propagated downward at a speed of 1.3×105 m/s.The initial process of the positive CG lightning flashes was also a propagation process of negative streamer.These streamers propagated dominantly horizontally in the positive charge region and accumulated positive charges at the origin of the lightning,and as a consequence,initiated downward positive streamers.A new type of lightning discharge that was triggered by a narrow bipolar pulse(NBP) is discussed in this study.The NBP was originated at altitude of about 10.5 km in the upper positive charge region.As a distinct difference from normal IC flash,its channels extended horizontally all around and produced a lot of radiation sources.The source power of the NBP could approach 16.7 kW,which is much greater than that of normal lightning discharge ranging between 100 mW and 500 W.The 3D propagation of this new type of lightning discharge was observed and obtained for the first time in China.The possible initiation mechanism of this new type of light-ning is discussed here.

  16. Simulation of quasi-linear mesoscale convective systems in northern China: Lightning activities and storm structure

    Li, Wanli; Qie, Xiushu; Fu, Shenming; Su, Debin; Shen, Yonghai


    Two intense quasi-linear mesoscale convective systems (QLMCSs) in northern China were simulated using the WRF (Weather Research and Forecasting) model and the 3D-Var (three-dimensional variational) analysis system of the ARPS (Advanced Regional Prediction System) model. A new method in which the lightning density is calculated using both the precipitation and non-precipitation ice mass was developed to reveal the relationship between the lightning activities and QLMCS structures. Results indicate that, compared with calculating the results using two previous methods, the lightning density calculated using the new method presented in this study is in better accordance with observations. Based on the calculated lightning densities using the new method, it