Sample records for relative interval slope

  1. The Interval Slope Method for Long-Term Forecasting of Stock Price Trends

    Chun-xue Nie


    Full Text Available A stock price is a typical but complex type of time series data. We used the effective prediction of long-term time series data to schedule an investment strategy and obtain higher profit. Due to economic, environmental, and other factors, it is very difficult to obtain a precise long-term stock price prediction. The exponentially segmented pattern (ESP is introduced here and used to predict the fluctuation of different stock data over five future prediction intervals. The new feature of stock pricing during the subinterval, named the interval slope, can characterize fluctuations in stock price over specific periods. The cumulative distribution function (CDF of MSE was compared to those of MMSE-BC and SVR. We concluded that the interval slope developed here can capture more complex dynamics of stock price trends. The mean stock price can then be predicted over specific time intervals relatively accurately, in which multiple mean values over time intervals are used to express the time series in the long term. In this way, the prediction of long-term stock price can be more precise and prevent the development of cumulative errors.

  2. Interval Slopes as Numerical Abstract Domain for Floating-Point Variables

    Chapoutot, Alexandre


    The design of embedded control systems is mainly done with model-based tools such as Matlab/Simulink. Numerical simulation is the central technique of development and verification of such tools. Floating-point arithmetic, that is well-known to only provide approximated results, is omnipresent in this activity. In order to validate the behaviors of numerical simulations using abstract interpretation-based static analysis, we present, theoretically and with experiments, a new relational abstract domain dedicated to floating-point variables. It comes from interval expansion of non-linear functions using slopes and it is able to mimic all the behaviors of the floating-point arithmetic. It is hence adapted to prove the absence of run-time errors or to analyze the numerical precision of embedded control systems.

  3. Relating weak layer and slab properties to snow slope stability

    J. Schweizer


    Full Text Available Snow slope stability evaluation requires considering weak layer as well as slab properties – and in particular their interaction. We developed a stability index from snow micro-penetrometer measurements and compared it to 129 concurrent point observations with the compression test (CT. The index considers the SMP-derived micro-structural strength and the additional load which depends on the hardness of the surface layers. The new quantitative measure of stability discriminated well between point observations rated as either "poor" or "fair" (CT < 19 and those rated as "good" (CT ≥ 19. However, discrimination power within the intermediate range was low. We then applied the index to gridded snow micro-penetrometer measurements from 11 snow slopes to explore the spatial structure and possibly relate it to slope stability. Stability distributions on the 11 slopes reflected various possible strength and load (stress distributions that naturally can occur. Their relation to slope stability was poor possibly because the index does not consider crack propagation. Hence, the relation between spatial patterns of point stability and slope stability remains elusive. Whereas this is the first attempt of a truly quantitative measure of stability, future developments should consider a better reference of stability and incorporate a measure of crack propagation.

  4. [Analysis of related factors of slope plant hyperspectral remote sensing].

    Sun, Wei-Qi; Zhao, Yun-Sheng; Tu, Lin-Ling


    In the present paper, the slope gradient, aspect, detection zenith angle and plant types were analyzed. In order to strengthen the theoretical discussion, the research was under laboratory condition, and modeled uniform slope for slope plant. Through experiments we found that these factors indeed have influence on plant hyperspectral remote sensing. When choosing slope gradient as the variate, the blade reflection first increases and then decreases as the slope gradient changes from 0° to 36°; When keeping other factors constant, and only detection zenith angle increasing from 0° to 60°, the spectral characteristic of slope plants do not change significantly in visible light band, but decreases gradually in near infrared band; With only slope aspect changing, when the dome meets the light direction, the blade reflectance gets maximum, and when the dome meets the backlit direction, the blade reflectance gets minimum, furthermore, setting the line of vertical intersection of incidence plane and the dome as an axis, the reflectance on the axis's both sides shows symmetric distribution; In addition, spectral curves of different plant types have a lot differences between each other, which means that the plant types also affect hyperspectral remote sensing results of slope plants. This research breaks through the limitations of the traditional vertical remote sensing data collection and uses the multi-angle and hyperspectral information to analyze spectral characteristics of slope plants. So this research has theoretical significance to the development of quantitative remote sensing, and has application value to the plant remote sensing monitoring.

  5. Landscape evolution in relation with occurrence of gravitational slope deformation and catastrophic landslides

    Tsou, Ching-Ying; Chigira, Masahiro; Matsushi, Yuki; Chen, Su-Chin


    The Central Range of Taiwan is an example of a tectonically active orogen. The topography of a mountainous catchment of the Dahan River in northern side of the Central Range exhibits V-shaped inner valleys where landsliding is the dominant process of hillslope erosion and bedrock rivers are incising into the landscape. We take two approaches including (i) the study of present day morphostructural features of gravitationally deformed slopes and (ii) the study of the relationship between the gravitational slope deformation and fluvial incision to research the linkage of gravitational slope deformations, catastrophic landslides, and landscape evolution for the prediction of potential sites of future landslides. Mapped deep-seated gravitational slope deformations and scars of rainfall-induced rock/debris avalanches imply that their distributions are closely related to three series of convex slope breaks relating to the rejuvenation of topography by a three-phase fluvial incision leaded by three series of knickpoints migration. Many shallow rock/debris avalanches have occurred below the lowest slope break. By contrast, majority of gravitational slope deformations have occurred at the margins of the highest slope break around the paleosurface remnants, suggesting that the rejuvenation caused debuttressing of hillslopes and subsequent stress-release led to large scale slope destabilization, resulting in gravitational slope deformations. Catastrophic landslides in many locations deem to be preceded by gravitational slope deformation of rocks with adverse geological structures, many of which are buckling of alternating beds of sandstone and mudstone, and toppling of argillite and slate. The gravitationally deformed slopes change the topography and remain for a long time, and commonly accompany with some other types of mass movements (e.g. debris flows, rock/debris avalanches, and rockfalls). The results suggest that landslides are strongly controlled by geomorphology and

  6. Composing Cardinal Direction Relations Basing on Interval Algebra

    Chen, Juan; Jia, Haiyang; Liu, Dayou; Zhang, Changhai

    Direction relations between extended spatial objects are important commonsense knowledge. Skiadopoulos proposed a formal model for representing direction relations between compound regions (the finite union of simple regions), known as SK-model. It perhaps is currently one of most cognitive plausible models for qualitative direction information, and has attracted interests from artificial intelligence and geographic information system. Originating from Allen first using composition table to process time interval constraints; composing has become the key technique in qualitative spatial reasoning to check the consistency. Due to the massive number of basic directions in SK-model, its composition becomes extraordinary complex. This paper proposed a novel algorithm for the composition. Basing the concepts of smallest rectangular directions and its original directions, it transforms the composition of basic cardinal direction relations into the composition of interval relations corresponding to Allen's interval algebra. Comparing with existing methods, this algorithm has quite good dimensional extendibility, that is, it can be easily transferred to the tridimensional space with a few modifications.

  7. The use of relative coupling intervals in horses during walk

    Olsen, Emil; Pfau, Thilo

    Walking speed varies between over-ground trials and a speed-independent gait-parameter does not exist for use in horses. We introduce relative (R) lateral (L) and diagonal (D) coupling intervals (CI) and hypothesize that both are independent of walking speed. Four horses were walked over 8 Kistler...... for either RLCI or RDCI. RLCI and RDCI can thus be applied as speed-independent stride-to-stride variability parameters in horses during walk over-ground. This might prove useful for detection of gait deficits caused by spinal cord injury....

  8. Dark Matter Halos: Velocity Anisotropy -- Density Slope Relation

    Zait, Amir; Shlosman, Isaac


    Dark matter (DM) halos formed in CDM cosmologies seem to be characterized by a power law phase-space density profile. The density of the DM halos is often fitted by the NFW profile but a better fit is provided by the Sersic fitting formula. These relations are empirically derived from cosmological simulations of structure formation but have not yet been explained on a first principle basis. Here we solve the Jeans equation under the assumption of a spherical DM halo in dynamical equilibrium, that obeys a power law phase space density and either the NFW-like or the Sersic density profile. We then calculate the velocity anisotropy, beta(r), analytically. Our main result is that for the NFW-like profile the beta - gamma relation is not a linear one (where gamma is the logarithmic derivative of the density rho[r]). The shape of beta(r) depends mostly on the ratio of the gravitational to kinetic energy within the NFW scale radius R_s. For the Sersic profile a linear beta - gamma relation is recovered, and in parti...

  9. Age-related differences when walking downhill on different sloped terrains.

    Scaglioni-Solano, Pietro; Aragón-Vargas, Luis Fernando


    Despite the common situation of walking on different sloped terrains, previous work on gait has focused on level terrain. This study aims to assess whether any age-related differences exist in spatiotemporal and stability parameters when walking downhill on three different sloped walkways. Two tri-axial accelerometers were used at the levels of head and pelvis to investigate spatiotemporal parameters, magnitude (root mean square, RMS), harmonic content of accelerations (harmonic ratios, HR) and attenuation between body levels (ATT) in 35 older adults (OA, 69 ± 4.5 y.o.) and 22 young adults (YA, 22.1 ± 1.9 y.o.). Older adults walked at the same speed and cadence as young adults in flat terrain (FL, 0%) and moderate hill (MH, 8%). In the highest slope (PH, 20%), older adults reduced speed and step length and both groups increased cadence. Age had no effect on attenuation and RMS profiles. RMS increased with slope in all directions at both head and pelvis, except, for medio-lateral direction (ML), with similar head RMS in all slopes. There is an important shift in ATT from anteroposterior direction (AP) to ML at the highest slope, resulting in smaller antero-posterior attenuation and greater medio-lateral attenuation. Age differences appeared in the smoothness (HR) at the flat terrain, with increased vertical and antero-posterior values for young adults. As slope increased, group differences disappeared and HR decreased for all directions of motion. In general, spatiotemporal adaptations to increased slope seem to be part of a mechanism to improve ML attenuation, in both young and old adults. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A Slippery Slope: Systematic Uncertainties in the Baryonic Tully-Fisher Relation

    Bradford, Jeremy D; Bosch, Frank C van den


    The baryonic Tully-Fisher relation (BTFR) is both a valuable observational tool and a critical test of galaxy formation theory. We explore the systematic uncertainty in the slope and the scatter of the observed BTFR utilizing a homogeneously measured dataset of 930 isolated galaxies. We measure a fiducial relation of log_10 M_baryon = 3.24 log_10 V_rot + 3.21 with a scatter of 0.25 dex over the baryonic mass range of 10^7.4 to 10^11.3 M_sun. We then conservatively vary the definitions of M_baryon and V_rot, the sample definition and the linear fitting algorithm used to fit the BTFR. We obtain slopes ranging from 2.64 to 3.46 and scatter measurements ranging from 0.16 to 0.41 dex. We next compare our fiducial slope to literature measurements, where reported slopes range from 3.0 to 4.3 and scatter is either unmeasured, unmeasurable or as large as 0.4 dex. Measurements derived from unresolved HI line-widths tend to produce slopes of 3.2, while measurements derived strictly from resolved asymptotic rotation velo...

  11. Establishing and Understanding Adsorption-Energy Scaling Relations with Negative Slopes.

    Su, Hai-Yan; Sun, Keju; Wang, Wei-Qi; Zeng, Zhenhua; Calle-Vallejo, Federico; Li, Wei-Xue


    Adsorption-energy scaling relations are widely used for the design of catalytic materials. To date, only linear scaling relations are known in which the slopes are positive. Considering the adsorption energies of F, O, N, C, and B on transition metals, we show here that scaling relations with negative slopes also exist between certain adsorbates. The origin of such unconventional scaling relations is analyzed in terms of common descriptors such as d-band center, work function, number of outer electrons, electronic charge on the adsorbates, integrated crystal orbital overlap populations, and crystal orbital Hamilton populations. Conventional scaling relations are formed between adsorbates such as F, O, N, and C, which create ionic-like bonds with surfaces. Conversely, anomalous scaling relations are established between those and covalently bound adsorbates such as B. This widens the theory of adsorption-energy scaling relations and opens new avenues in physical chemistry and catalysis, for instance, in direct borohydride fuel cells.

  12. Interstellar medium structure and the slope of the radio $\\Sigma-D$ relation of supernova remnants

    Kostić, Petar; Urošević, Dejan; Arbutina, Bojan; Prodanović, Tijana


    We analyze the influence of fractal structure of the interstellar matter (ISM) density on the parameter values for the radio surface brightness to diameter ($\\Sigma-D$) relation for supernovae remnants (SNRs). We model a dense ISM as a molecular cloud with fractal density structure. SNRs are modelled as spheres of different radius scattered in the modelled ISM. The surface brightness of the SNRs is calculated from the simple relation $\\Sigma \\propto \\rho^{0.5}D^{-3.5}$ and also from the parametrized more general form $\\Sigma \\propto \\rho^{\\eta}D^{-\\beta_0}$. Our results demonstrate that empirical $\\Sigma-D$ slopes that are steeper than the ones derived from theory, might be partly explained with the fractal structure of the ambient medium into which SNRs expand. The slope of the $\\Sigma-D$ relation steepens if the density of the regions where SNRs are formed is higher. The simple geometrical effects combined with the fractal structure of the ISM can contribute to a steeper empirical $\\Sigma-D$ slopes, especia...

  13. Relative contribution of structural inheritance and glacial morphology on the post-glacial slope destabilization. The Séchilienne slope case study (French western Alps).

    Schwartz, Stéphane; Zerathe, Swann; Audin, Laurence; Dumont, Thierry; Jarre, Raphael; Jongmans, Denis; Carcaillet, Julien; Dubois, Laurent


    In the main Alpine valleys, the chronological constraints about the onset of the slope movements following glacial retreat are scarse. The southern part of the Belledonne massif (French western Alps) along the Romanche valley is affected by numerous slope destabilizations. A detailed geomorphological study using a high resolution LIDAR digital model elevation, allows to characterize the structural framework, the evolution of the glacial retreat and the distribution of the gravitational instabilities. The systematic survey of (i) the main fracturing and (ii) the glacial and gravity morphological witness along the slopes of the Romanche valley coupled with (iii) cosmogenic 10Be dating provides a regional view of the dynamics of slope destabilisation in this area. The proposed scenario allows to evaluate the relative influence of different triggering factors such as seismo-tectonic stresses and climatic changes. These data also allow to propose a consistent dynamic destabilization model of a major lanslide (> 100×106 m3) in relation with the last episode of glacial retreat ~ 21ka ago.

  14. Study on decision-making for slope treatment scheme based on the method of interval fuzzy analysis%基于区间模糊分析法的边坡治理方案决策

    周志军; 张铁柱; 牛涌; 梁涵


    Aimed at the shortcomings of decision-making method for slop treatment scheme and considering the multi-objective, multi-level, vagueness and comprehensiveness in decision-making process, a multi-level comprehensive evaluation model for slope treatment scheme was established based on the theory of interval fuzzy analysis. Engineering examples show that the model reflects the logical relationship between the factors and evaluation indexes of the slope treatment scheme, reflects the levels and comprehensiveness of decision-making process. The interval numbers can well reflect the characteristics of decision-making process in the parameter values. Weight vectors can measure relative importance between different indexes and fully reflect both the influences of main factors and the effect of secondary factors. This model makes slope treatment scheme a more rational decision-making process and provides a reasonable and feasible method for slope treatment scheme decision-making. 2 tabs, 1 fig, 11 refs.%针对现有边坡治理方案评价方法所存在的缺陷与不足,同时考虑到评价过程中的多层次、多目标、模糊性、全面性等特征给决策过程所带来的困难,基于区间模糊分析理论,构造了边坡治理方案的多层次综合评价模型.工程实例计算表明:该模型体现了边坡治理方案各影响因素与评价指标的逻辑关系,反映了决策过程中的层次性和全面性;区间数的引入可以很好的体现参数取值不确定性、模糊性的特点;权向量能衡量不同指标间的相对重要程度,充分体现了主要因素的影响,同时也兼顾了次要因素的作用,使边坡治理方案决策过程更加合理.为边坡治理方案决策提供了一种合理可行的方法.

  15. Differences in the Slope of the QT-RR Relation Based on 24-Hour Holter ECG Recordings between Cardioembolic and Atherosclerotic Stroke.

    Fujiki, Akira; Sakabe, Masao

    Objective Detecting paroxysmal atrial fibrillation in patients with ischemic stroke presenting in sinus rhythm is difficult because such episodes are often short, and they are also frequently asymptomatic. It is possible that the ventricular repolarization dynamics may reflect atrial vulnerability and cardioembolic stroke. Hence, we compared the QT-RR relation between cardioembolic stroke and atherosclerotic stroke during sinus rhythm. Methods The subjects comprised 62 consecutive ischemic stroke patients including 31 with cardioembolic strokes (71.8±12.7 years, 17 men) and 31 with atherosclerotic strokes (74.8±10.8 years, 23 men). The QT and RR intervals were measured from ECG waves based on a 15-sec averaged ECG during 24-hour Holter recording using an automatic QT analyzing system. The QT interval dependence on the RR interval was analyzed using a linear regression line for each subject ([QT]=A[RR]+B; where A is the slope and B is the y-intercept). Results The mean slope of the QT-RR relation was significantly greater in cardioembolic stroke than in atherosclerotic stroke (0.187±0.044 vs. 0.142±0.045, pHolter recordings did not differ between them. An increased slope (≥0.14) of the QT-RR regression line could predict cardioembolic stroke with 97% sensitivity, 55% specificity and a positive predictive value of 64%. Conclusion The increased slope of the QT-RR linear regression line based on 24-hour Holter ECG in patients with ischemic stroke presenting in sinus rhythm may therefore be a simple and useful marker for cardioembolic stroke.

  16. ElevationSlope_SLOPE2M

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Bennington County 2012 2.0m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  17. ElevationSlope_SLOPE1M2005

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Essex County 2005 1m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce change in...

  18. ElevationSlope_SLOPE1M2010

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Bennington Floodplain 2010 1m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  19. ElevationSlope_SLOPE1M2007

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Bennington Floodplain 2007 1m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  20. ElevationSlope_SLOPE1M2009

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Barre Montpelier 2009 1m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  1. Relation between Visual Acuity and Slope of Psychometric Function in Young Adults

    Tomoki Tokutake


    Full Text Available Mita et al. (2010 devised a technique of comparing a visual acuity (VA change in an individual with more accurate VA than conventional VA tests by significant difference examined logarithmic (Log VA ± standard deviation (SD. Using this technique, in this study, we examined a relation between VA and the slope of the psychometric function in normal young subjects. Six occlusion foil conditions were employed (1.0, 0.8, 0.6, 0.4, 0.1 and without the foil under a full refractive correction. Ten normal young adults (22.8 years old on average who have no ophthalmologic disease except ametropia participated in the measurement. The experiment was carried out with the constant method, a series of ten Landolt rings were used and each ring was presented 20 times randomly in a measurement. A 5.6-inch type of liquid crystal display driven by a computer, which has 1,280×800 pixels spatial resolution, was used to present the stimulus. In the normal young adults, the slope of the psychometric function did not change as the VA change systematically, and there was almost no correlation between them (r = −0.103.

  2. Detection and Analysis of Deep Seated Gravitational Slope Deformation and Relations with the Active Tectonics

    Moro, M.; Saroli, M.; Lancia, M.; Albano, M.; Lo Sardo, L.; Stramondo, S.


    Modern geomorphological investigations focused on the definition of major factors conditioning the landscape evolution. The interaction of some of these factors as the litho-structural setting, the local relief, the tectonic activity, the climatic conditions and the seismicity plays a key-role in determining large scale slope instability phenomena which display the general morphological features of deep seated gravitational deformations (DSGD). The present work aims to detect the large scale gravitational deformation and relations with the active tectonics affecting the Abruzzo Region and to provide a description of the morphologic features of the deformations by means of aerial photograph interpretation, geological/geomorphological field surveys and DInSAR data. The investigated areas are morphologically characterized by significant elevation changes due to the presence of high mountain peaks, separated from surrounding depressed areas by steep escarpments, frequently represented by active faults. Consequently, relief energy favours the development of gravity-driven deformations. These deformations seem to be superimposed on and influenced by the inherited structural and tectonic pattern, related to the sin- and post-thrusting evolution. The morphological evidences of these phenomena, are represented by landslides, sackungen or rock-flows, lateral spreads and block slides. DInSAR analysis measured deformation of the large scale gravitative phenomena previously identified through aerial-photo analysis. DSGD may evolve in rapid, catastrophic mass movements and this paroxistic evolution of the deformations may be triggered by high magnitude seismic events. These assumptions point out the great importance of mapping in detail large scale slope instability phenomena in relation to the active faults, in a perspective of land-use planning such as the Abruzzo Region characterized by a high magnitude historical seismicity.

  3. Reexamination of the Infrared Excess-Ultraviolet Slope Relation of Local Galaxies

    Takeuchi, Tsutomu T; Ikeyama, Akira; Murata, Katsuhiro L; Inoue, Akio K


    The relation between the ratio of infrared (IR) and ultraviolet (UV) flux densities (the infrared excess: IRX) and the slope of the UV spectrum (\\beta) of galaxies plays a fundamental role in the evaluation of the dust attenuation of star forming galaxies especially at high redshifts. Many authors, however, pointed out that there is a significant dispersion and/or deviation from the originally proposed IRX-\\beta relation depending on sample selection. We reexamined the IRX-\\beta relation by measuring the far- and near-UV flux densities of the original sample galaxies with GALEX and AKARI imaging data, and constructed a revised formula. We found that the newly obtained IRX values were lower than the original relation because of the significant underestimation of the UV flux densities of the galaxies, caused by the small aperture of IUE, Further, since the original relation was based on IRAS data which covered a wavelength range of \\lambda = 42--122\\mum, using the data from AKARI which has wider wavelength cove...


    Yunliang JIANG


    In this paper,we investigate group decision making problems where the decision information given by decision makers takes the form of interval fuzzy preference relations.We first give an index to measure the similarity degree of two interval fuzzy preference relations,and utilize the similarity index to check the consistency degree of group opinion.Furthermore,we use the error-propagation principle to determine the priority vector of the aggregated matrix,and then develop an approach to group decision making based on interval fuzzy preference relations.Finally,we give an example to illustrate the developed approach.

  5. 75 FR 65366 - Recovery Policy RP9524.2, Landslides and Slope Stability Related to Public Facilities


    ... SECURITY Federal Emergency Management Agency Recovery Policy RP9524.2, Landslides and Slope Stability Related to Public Facilities AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice of availability. SUMMARY: This document provides notice of the final Recovery Policy RP9524.2, Landslides and...

  6. Slope processes and related risk appearance within the Icelandic Westfjords during the twentieth century

    A. Decaulne


    Full Text Available In North-western Iceland, records of slope processes were increasing during the twentieth century. Few dramatic events during the last decades highlighted the danger due to slope dynamics, leaving local populations in a risk situation that was merely unknown before 1970. The recent snow-avalanche, debris-flow and rock-fall activity underlined that the most frequent processes are not these with the largest human impact. In fact, the most catastrophic events were the extreme ones, following directly from a low frequency and a high magnitude. The purpose of this paper is to draw a parallel history of natural hazard and residence spatial extension, for an accurate understanding of the present-day risk situation, as the population growth markedly increased during the same time. Different quantitative and qualitative methods are applied. Geomorphological investigations locate the main threaten areas, in the path of slope processes release evidences, i.e. suitable slope morphology and/or inherited/actual forms. By a collection of dating data, as historic records and lichenometrical analysis, the frequency of given magnitude events is known. Climatic analysis clarifies the triggering meteorological conditions of slope processes and offers an overview of climate fluctuation during the investigated period; wind speed and direction is critical to hazardous snow-avalanche departure and snowmelt is crucial for debris-flow release. The findings clearly indicate that a combination of spatial expansion of inhabited areas and a lack of slope processes knowledge at the expansion time led to a recent and progressive risk appearance due to snow avalanches (including slush flows, debris flows and rock fall in most towns and villages of North-western Iceland.

  7. Soil fertility in relation to slope position and agricultural land use: a case study of Umbulo Catchment in southern Ethiopia.

    Moges, Awdenegest; Holden, Nicholas M


    A study was conducted in southern Ethiopia to evaluate the nutrient status on smallholder farms with respect to land use class (garden, grassland, and outfield) and slope position (upper, middle, and lower). Soil physical and chemical properties were quantified using soil samples collected at two depths (0-15 and 15-30 cm). Available phosphorous was significantly different among the three land use classes. However, organic carbon and total nitrogen were lower in the outfield compared to the garden and grass land but not significantly different. The lower than expected nutrient status of the garden and grassland, which receive almost all available organic supplements, was attributed to the overall low availability of these inputs. Similarly, pH and cation exchange capacity were not significantly different among the different land use classes. However, the sum of the exchangeable cations was significantly higher in the garden compared to the outfields. Comparison at landscape level revealed that the sand fraction was significantly greater, whereas the silt fractions were significantly smaller, on the lower slopes relative to the middle slopes. Moreover, the organic carbon, total nitrogen, cation exchange capacity, Ca, and Mg values were significantly less on lower slopes than upper and middle slopes. Perhaps this is because of leaching and the effect of deposition of coarser sediments from the prevailing gully system. Overall, the fertility of the soil was adequate for supporting smallholder farming, but consideration must be given to reducing pressure on the land resources, addressing erosion problems, and providing a line of credit for purchasing inputs.

  8. [Sizes of soil macropores and related main affecting factors on a vegetated basalt slope].

    Guan, Qi; Xu, Ze-Min; Tian, Lin


    The landslide on vegetated slopes caused by extreme weather has being increased steadily, and the preferential flow in soil macropores plays an important role in the landslide. By using water breakthrough curve and Poiseuille equation, this paper estimated the radius range, amount, and average volume of soil macropores on a vegetated basalt slope of Maka Mountain, Southwest China, and analyzed the distribution of the soil macropores and the main affecting factors. In the study area, the radius of soil macropores ranged from 0.3 to 1.8 mm, mainly between 0.5 and 1.2 mm. The large-radius macropores (1.4-1.8 mm) were lesser, while the small-radius macropores (< 1.4 mm) were more. With the development of soil profile, soil macropores were more in upper layers and lesser in deeper layers. The average volume of the macropores contributed 84.7% to the variance of steady effluent rate. Among the factors affecting the average volume of the large macropores, vegetations root mass had a linear relationship, with the correlation coefficient being 0.70, and soil organic matter content also had a linear relationship, with the correlation coefficient being 0.64.

  9. A Method to Compute Multiplicity Corrected Confidence Intervals for Odds Ratios and Other Relative Effect Estimates

    Jimmy Thomas Efird


    Full Text Available Epidemiological studies commonly test multiple null hypotheses. In some situations it may be appropriate to account for multiplicity using statistical methodology rather than simply interpreting results with greater caution as the number of comparisons increases. Given the one-to-one relationship that exists between confidence intervals and hypothesis tests, we derive a method based upon the Hochberg step-up procedure to obtain multiplicity corrected confidence intervals (CI for odds ratios (OR and by analogy for other relative effect estimates. In contrast to previously published methods that explicitly assume knowledge of P values, this method only requires that relative effect estimates and corresponding CI be known for each comparison to obtain multiplicity corrected CI.

  10. Fundamental relations between short-term RR interval and arterial pressure oscillations in humans

    Taylor, J. A.; Eckberg, D. L.


    BACKGROUND: One of the principal explanations for respiratory sinus arrhythmia is that it reflects arterial baroreflex buffering of respiration-induced arterial pressure fluctuations. If this explanation is correct, then elimination of RR interval fluctuations should increase respiratory arterial pressure fluctuations. METHODS AND RESULTS: We measured RR interval and arterial pressure fluctuations during normal sinus rhythm and fixed-rate atrial pacing at 17.2+/-1.8 (SEM) beats per minute greater than the sinus rate in 16 healthy men and 4 healthy women, 20 to 34 years of age. Measurements were made during controlled-frequency breathing (15 breaths per minute or 0.25 Hz) with subjects in the supine and 40 degree head-up tilt positions. We characterized RR interval and arterial pressure variabilities in low-frequency (0.05 to 0.15 Hz) and respiratory-frequency (0.20 to 0.30 Hz) ranges with fast Fourier transform power spectra and used cross-spectral analysis to determine the phase relation between the two signals. As expected, cardiac pacing eliminated beat-to-beat RR interval variability. Against expectations, however, cardiac pacing in the supine position significantly reduced arterial pressure oscillations in the respiratory frequency (systolic, 6.8+/-1.8 to 2.9 +/-0.6 mm Hg2/Hz, P=.017). In contrast, cardiac pacing in the 40 degree tilt position increased arterial pressure variability (systolic, 8.0+/-1.8 to 10.8 +/-2.6, P=.027). Cross-spectral analysis showed that 40 degree tilt shifted the phase relation between systolic pressure and RR interval at the respiratory frequency from positive to negative (9 +/-7 degrees versus -17+/-11 degrees, P=.04); that is, in the supine position, RR interval changes appeared to lead arterial pressure changes, and in the upright position, RR interval changes appeared to follow arterial pressure changes. CONCLUSIONS: These results demonstrate that respiratory sinus arrhythmia can actually contribute to respiratory arterial

  11. ASVCP reference interval guidelines: determination of de novo reference intervals in veterinary species and other related topics.

    Friedrichs, Kristen R; Harr, Kendal E; Freeman, Kathy P; Szladovits, Balazs; Walton, Raquel M; Barnhart, Kirstin F; Blanco-Chavez, Julia


    Reference intervals (RI) are an integral component of laboratory diagnostic testing and clinical decision-making and represent estimated distributions of reference values (RV) from healthy populations of comparable individuals. Because decisions to pursue diagnoses or initiate treatment are often based on values falling outside RI, the collection and analysis of RV should be approached with diligence. This report is a condensation of the ASVCP 2011 consensus guidelines for determination of de novo RI in veterinary species, which mirror the 2008 Clinical Laboratory and Standards Institute (CLSI) recommendations, but with language and examples specific to veterinary species. Newer topics include robust methods for calculating RI from small sample sizes and procedures for outlier detection adapted to data quality. Because collecting sufficient reference samples is challenging, this document also provides recommendations for determining multicenter RI and for transference and validation of RI from other sources (eg, manufacturers). Advice for use and interpretation of subject-based RI is included, as these RI are an alternative to population-based RI when sample size or inter-individual variation is high. Finally, generation of decision limits, which distinguish between populations according to a predefined query (eg, diseased or non-diseased), is described. Adoption of these guidelines by the entire veterinary community will improve communication and dissemination of expected clinical laboratory values in a variety of animal species and will provide a template for publications on RI. This and other reports from the Quality Assurance and Laboratory Standards (QALS) committee are intended to promote quality laboratory practices in laboratories serving both clinical and research veterinarians.

  12. MorePower 6.0 for ANOVA with relational confidence intervals and Bayesian analysis.

    Campbell, Jamie I D; Thompson, Valerie A


    MorePower 6.0 is a flexible freeware statistical calculator that computes sample size, effect size, and power statistics for factorial ANOVA designs. It also calculates relational confidence intervals for ANOVA effects based on formulas from Jarmasz and Hollands (Canadian Journal of Experimental Psychology 63:124-138, 2009), as well as Bayesian posterior probabilities for the null and alternative hypotheses based on formulas in Masson (Behavior Research Methods 43:679-690, 2011). The program is unique in affording direct comparison of these three approaches to the interpretation of ANOVA tests. Its high numerical precision and ability to work with complex ANOVA designs could facilitate researchers' attention to issues of statistical power, Bayesian analysis, and the use of confidence intervals for data interpretation. MorePower 6.0 is available at .

  13. Soil aggregation and slope stability related to soil density, root length, and mycorrhiza

    Graf, Frank; Frei, Martin


    Eco-engineering measures combine the use of living plants and inert mechanical constructions to protect slopes against erosion and shallow mass movement. Whereas in geotechnical engineering several performance standards and guidelines for structural safety and serviceability of construction exist, there is a lack of comparable tools in the field of ecological restoration. Various indicators have been proposed, including the fractal dimension of soil particle size distribution, microbiological parameters, and soil aggregate stability. We present results of an soil aggregate stability investigation and compare them with literature data of the angle of internal friction ?' which is conventionally used in slope stability analysis and soil failure calculation. Aggregate stability tests were performed with samples of differently treated moraine, including soil at low (~15.5 kN/m³) and high (~19.0 kN/m³) dry unit weight, soil planted with Alnus incana (White Alder) as well as the combination of soil planted with alder and inoculated with the mycorrhizal fungus Melanogaster variegatus s.l. After a 20 weeks growth period in a greenhouse, a total of 100 samples was tested and evaluated. Positive correlations were found between the soil aggregate stability and the three variables dry unit weight, root length per soil volume, and degree of mycorrhization. Based on robust statistics it turned out that dry unit weight and mycorrhization degree were strongest correlated with soil aggregate stability. Compared to the non-inoculated control plants, mycorrhized White Alder produced significantly more roots and higher soil aggregate stability. Furthermore, the combined biological effect of plant roots and mycorrhizal mycelia on aggregate stability on soil with low density (~15.5 kN/m³) was comparable to the compaction effect of the pure soil from 15.5 to ~19.0 kN/m³. Literature data on the effect of vegetation on the angle of internal friction ?' of the same moraine showed

  14. Seamount subduction and related deformation and seismicity of the continental slope off Manzanillo, Mexico, as evidenced by multibeam data

    Bandy, W. L.; Castillo Maldonado, M.; Mortera-Gutierrez, C. A.


    The west coast of Mexico presents a complex pattern of deformation related to the convergence and subduction of the Rivera plate beneath the Jalisco Block/North American plate. Previous single beam bathymetric data have evidenced a large bathymetric high at 104.6218oW, 18.7123oN, in the continental slope region off Manzanillo, Mexico. One school of thought held that this high was the offshore extension of the onshore Manzanillo horst, although the two features are offset in a right-lateral sense. Alternatively, given the presence of a large positive magnetic anomaly near the bathymetric high, the high could also be caused by the collision and subsequent subduction of a large seamount. Given that the offset between the two structures was the main evidence for proposing the existence of a forearc sliver in the offshore area of the Jalisco margin, resolving the nature of this bathymetric high is quite important in our attempts to understand the plate kinematics and tectonics of this region. Thus, to better define the deformation pattern associated with the bathymetric high, multibeam bathymetric data (obtained using the Kongsberg EM300 multibeam system), subbottom profiles (obtained using the Kongsberg TOPAS18 system), and total field magnetic data (obtained using the Geometrics G877 marine proton precession magnetometer) were collected in the continental slope region between Manzanillo, Colima, and Chamela, Jalisco, during several cruises of UNAM´s research vessel the B.O. EL PUMA. The morphology and structural deformation patterns obtained in this study indicate very clearly that a large seamount is in the process of subducting beneath the continental slope off Manzanillo. The results also indicate that not only has the seamount uplifted the slope but has resulted in slumping of the area of the slope landward of the seamount. Given these results the proposal of the existence of an independent forearc sliver in the offshore area of the southern Jalisco block needs

  15. Rapid storage and retrieval of genomic intervals from a relational database system using nested containment lists.

    Wiley, Laura K; Sivley, R Michael; Bush, William S


    Efficient storage and retrieval of genomic annotations based on range intervals is necessary, given the amount of data produced by next-generation sequencing studies. The indexing strategies of relational database systems (such as MySQL) greatly inhibit their use in genomic annotation tasks. This has led to the development of stand-alone applications that are dependent on flat-file libraries. In this work, we introduce MyNCList, an implementation of the NCList data structure within a MySQL database. MyNCList enables the storage, update and rapid retrieval of genomic annotations from the convenience of a relational database system. Range-based annotations of 1 million variants are retrieved in under a minute, making this approach feasible for whole-genome annotation tasks. Database URL:

  16. ElevationSlope_SLOPE0p7M2013

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Rutland/GI Counties 2013 0.7m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  17. ElevationSlope_SLOPE0p7M2015

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Windham County 2015 0.7m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  18. ElevationSlope_SLOPE1p6M2010

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Missisquoi Upper 2010 1.6m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  19. ElevationSlope_SLOPE1p6M2012

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Addison County 2012 1.6m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  20. ElevationSlope_SLOPE0p7M2014

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Eastern VT 2014 0.7m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce change in...

  1. ElevationSlope_SLOPE1p6M2008

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Missisquoi Lower 2008 1.6m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  2. ElevationSlope_SLOPE3p2M

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): ( and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce change in elevation over the...

  3. ElevationSlope_SLOPE3p2M2004

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): ( and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce change in elevation over the...

  4. On the calibration of the polarimetric slope - albedo relation for asteroids: Work in progress

    A. Cellino


    Full Text Available Asteroid polarimetry is known to be an excellent tool to derive information on the geometric albedo of these objects. This is made possible by the existence of a relation between the albedo and the morphology of the curve which describes the variation of the degree of linear polarization of asteroid light as a function of the illumination conditions. A major problem is that the calibration of the commonly accepted form of the polarization - albedo relation includes numerical coefficients which are affected by fairly high uncertainties. Following some recommendations issued by IAU Commission 15, we are trying to improve the albedo - polarization relation by taking advantage of new polarimetric data obtained in dedicated observation campaigns. We present here some very preliminary results.

  5. Expressiveness of the Interval Logics of Allen's Relations on the Class of all Linear Orders: Complete Classification

    Monica, Dario Della; Goranko, Valentin; Montanari, Angelo;


    We compare the expressiveness of the fragments of Halpern and Shoham’s interval logic (HS), i.e., of all interval logics with modal operators associated with Allen’s relations between intervals in linear orders. We establish a complete set of interdefinability equations between these modal operat...... operators, and thus obtain a complete classification of the family of 212 fragments of HS with respect to their expressiveness. Using that result and a computer program, we have found that there are 1347 expressively different such interval logics over the class of all linear orders....

  6. Acute marijuana effects on response-reinforcer relations under multiple variable-interval schedules.

    Lane, S D; Cherek, D R; Pietras, C J; Tcheremissine, O V


    Acute marijuana administration may alter response-reinforcer relationships via a change in reinforcer efficacy, but may also impair coordination and motor function. One approach to evaluating drug effects on both motor function and reinforcer efficacy involves fitting the matching law equation to data obtained under multiple variable interval (VI) schedules. The present report describes an experiment that examined the effects of acute marijuana on response properties using this approach. Six human subjects responded under a multiple VI schedule for monetary reinforcers after smoking placebo and two active doses of marijuana. The low marijuana dose produced unsystematic changes in responding. As measured by the matching law equation parameters (k and rB), at the high dose five subjects showed a decrease-motor-related properties of response rate and four subjects' responding indicated a decrease in reinforcer efficacy. These data raise the possibility that, at high doses, marijuana administration alters both motor function and reinforcer efficacy.

  7. Physiological and Health-Related Adaptations to Low-Volume Interval Training: Influences of Nutrition and Sex

    Gibala, Martin J.; Gillen, Jenna B.; Michael E Percival


    Interval training refers to the basic concept of alternating periods of relatively intense exercise with periods of lower-intensity effort or complete rest for recovery. Low-volume interval training refers to sessions that involve a relatively small total amount of exercise (i.e. ≤10 min of intense exercise), compared with traditional moderate-intensity continuous training (MICT) protocols that are generally reflected in public health guidelines. In an effort to standardize terminology, a cla...

  8. Relation of increased short-term variability of QT interval to congenital long-QT syndrome

    Hinterseer, Martin; Beckmann, Britt-Maria; Thomsen, Morten B


    Apart from clinical symptoms the diagnosis and risk stratification in long-QT syndrome (LQTS) is usually based on the surface electrocardiogram. Studies have indicated that not only prolongation of the QT interval but also an increased short-term variability of QT interval (STV(QT)) is a marker f...

  9. Observer Error when Measuring Safety-Related Behavior: Momentary Time Sampling versus Whole-Interval Recording

    Taylor, Matthew A.; Skourides, Andreas; Alvero, Alicia M.


    Interval recording procedures are used by persons who collect data through observation to estimate the cumulative occurrence and nonoccurrence of behavior/events. Although interval recording procedures can increase the efficiency of observational data collection, they can also induce error from the observer. In the present study, 50 observers were…

  10. Observer Error when Measuring Safety-Related Behavior: Momentary Time Sampling versus Whole-Interval Recording

    Taylor, Matthew A.; Skourides, Andreas; Alvero, Alicia M.


    Interval recording procedures are used by persons who collect data through observation to estimate the cumulative occurrence and nonoccurrence of behavior/events. Although interval recording procedures can increase the efficiency of observational data collection, they can also induce error from the observer. In the present study, 50 observers were…

  11. Sea-level related resedimentation processes on the northern slope of Little Bahama Bank (Middle Pleistocene to Holocene)

    Lantzsch, H.; Roth, S.; Reijmer, J.J.G.


    Middle Pleistocene to Holocene sediment variations observed in a 26 metre long core taken during a cruise of the RV Marion Dufresne are presented. Core MD992202 was retrieved from the northern slope of Little Bahama Bank and provides an excellent example for sedimentation processes in a mid-slope....... These glacial to interglacial differences in mineralogy, grain-size distribution and organic content clearly show the impact of climatically controlled sea-level fluctuations on the sedimentation patterns of the northern slope of Little Bahama Bank. The coarser deposits (ii) occur mainly at the transitions from...

  12. A Method to Compute Multiplicity Corrected Confidence Intervals for Odds Ratios and Other Relative Effect Estimates

    Jimmy Thomas Efird; Susan Searles Nielsen


    Epidemiological studies commonly test multiple null hypotheses. In some situations it may be appropriate to account for multiplicity using statistical methodology rather than simply interpreting results with greater caution as the number of comparisons increases. Given the one-to-one relationship that exists between confidence intervals and hypothesis tests, we derive a method based upon the Hochberg step-up procedure to obtain multiplicity corrected confidence intervals (CI) for odds ratios ...

  13. QT interval prolongation related to psychoactive drug treatment: a comparison of monotherapy versus polytherapy

    Piccinelli Marco


    Full Text Available Abstract Background Several antipsychotic agents are known to prolong the QT interval in a dose dependent manner. Corrected QT interval (QTc exceeding a threshold value of 450 ms may be associated with an increased risk of life threatening arrhythmias. Antipsychotic agents are often given in combination with other psychotropic drugs, such as antidepressants, that may also contribute to QT prolongation. This observational study compares the effects observed on QT interval between antipsychotic monotherapy and psychoactive polytherapy, which included an additional antidepressant or lithium treatment. Method We examined two groups of hospitalized women with Schizophrenia, Bipolar Disorder and Schizoaffective Disorder in a naturalistic setting. Group 1 was composed of nineteen hospitalized women treated with antipsychotic monotherapy (either haloperidol, olanzapine, risperidone or clozapine and Group 2 was composed of nineteen hospitalized women treated with an antipsychotic (either haloperidol, olanzapine, risperidone or quetiapine with an additional antidepressant (citalopram, escitalopram, sertraline, paroxetine, fluvoxamine, mirtazapine, venlafaxine or clomipramine or lithium. An Electrocardiogram (ECG was carried out before the beginning of the treatment for both groups and at a second time after four days of therapy at full dosage, when blood was also drawn for determination of serum levels of the antipsychotic. Statistical analysis included repeated measures ANOVA, Fisher Exact Test and Indipendent T Test. Results Mean QTc intervals significantly increased in Group 2 (24 ± 21 ms however this was not the case in Group 1 (-1 ± 30 ms (Repeated measures ANOVA p Conclusions No significant prolongation of the QT interval was found following monotherapy with an antipsychotic agent, while combination of these drugs with antidepressants caused a significant QT prolongation. Careful monitoring of the QT interval is suggested in patients taking a

  14. Grey Relational Analysis on the Effects of Rainfall Factors on Runoff and Sediment in the Sloping Farmland with Different Plants in the Central South of Shandong Province


    [Objective] The aim was to study the main rainfall factors influencing runoff and sediment in the sloping farmland with different plants in the central south of Shandong Province.[Method] Through grey relational analysis,the effects of different rainfall factors on runoff and sediment with different plants in the central south of Shandong were studied.[Result] In the sloping farmland with different plants,the effects of rainfall factors on runoff and sediment weren't consistent.Rainfall was the dominant inf...

  15. Variation Of The Tully-Fisher Relation As A Function Of The Magnitude Interval Of A Sample Of Galaxies

    Ruelas-Mayorga, A; Trujillo-Lara, M; Nigoche-Netro, A; Echevarría, J; García, A M; Ramírez-Vélez, J


    In this paper we carry out a preliminary study of the dependence of the Tully-Fisher Relation (TFR) with the width and intensity level of the absolute magnitude interval of a limited sample of 2411 galaxies taken from Mathewson \\& Ford (1996). The galaxies in this sample do not differ significantly in morphological type, and are distributed over an $\\sim11$-magnitude interval ($-24.4 < I < -13.0$). We take as directives the papers by Nigoche-Netro et al. (2008, 2009, 2010) in which they study the dependence of the Kormendy (KR), the Fundamental Plane (FPR) and the Faber-Jackson Relations (FJR) with the magnitude interval within which the observed galaxies used to derive these relations are contained. We were able to characterise the behaviour of the TFR coefficients $(\\alpha, \\beta)$ with respect to the width of the magnitude interval as well as with the brightness of the galaxies within this magnitude interval. We concluded that the TFR for this specific sample of galaxies depends on observational ...

  16. Bioavailability of D-methionine relative to L-methionine for nursery pigs using the slope-ratio assay

    Changsu Kong


    Full Text Available This experiment was conducted to determine the bioavailability of D-methionine (Met relative to L-Met for nursery pigs using the slope-ratio assay. A total of 50 crossbred barrows with an initial BW of 13.5 kg (SD = 1.0 were used in an N balance study. A Met-deficient basal diet (BD was formulated to contain an adequate amount of all amino acids (AA for 10–20 kg pigs except for Met. The two reference diets were prepared by supplementing the BD with 0.4 or 0.8 g L-Met/kg at the expense of corn starch, and an equivalent concentration of D-Met was added to the BD for the two test diets. The pigs were adapted to the experimental diets for 5 d and then total but separated collection of feces and urine was conducted for 4 d according to the marker-to-marker procedure. Nitrogen intakes were similar across the treatments. Fecal N output was not affected by Met supplementation regardless of source and consequently apparent N digestibility did not change. Conversely, there was a negative linear response (P < 0.01 to Met supplementation with both Met isomers in urinary N output, which resulted in increased retained N (g/4 d and N retention (% of intake. No quadratic response was observed in any of the N balance criteria. The estimated bioavailability of D-Met relative to L-Met from urinary N output (g/4 d and N retention (% of intake as dependent variables using supplemental Met intake (g/4 d as an independent variable were 87.6% and 89.6%, respectively; however, approximately 95% of the fiducial limits for the relative bioavailability estimates included 100%. In conclusion, with an absence of statistical significance, the present study indicated that the mean relative bioequivalence of D- to L-Met was 87.6% based on urinary N output or 89.6% based on N retention.


    PU Shu-zhen; CHENG Jun; ZHANG Yi-jun; SHI Qiang


    Based on the monthly average sea level data from the tide gauge measurement(1999-2001),the seasonal variability of the sea level in the Northern and Middle Yellow Sea is studied to reveal that the sea surface height at all the tide gauges becomes higher in summer than that in winter.In addition,the sea surface height of the Northern Yellow Sea is higher than the one of the Middle Yellow Sea with a slope downward from the north to the south in summer,while it is lower with a reversed slope in winter.The seasonal reverse of the sea surface slope can be attributed to the monsoon effects i.e.the annual reverse of the monsoon direction and the annual variation of the monsoon rainfall.A set of equations are established in light of the dynamic principles to expound how the monsoon forcing and the sea surface slope generate a summer outflow and a winter inflow in the Yellow Sea.

  18. Anatomy of the capsulolabral complex and rotator interval related to glenohumeral instability.

    Itoigawa, Yoshiaki; Itoi, Eiji


    The glenohumeral joint with instability is a common diagnosis that often requires surgery. The aim of this review was to present an overview of the anatomy of the glenohumeral joint with emphasis on instability based on the current literature and to describe the detailed anatomy and anatomical variants of the glenohumeral joint associated with anterior and posterior shoulder instability. A review was performed using PubMed/MEDLINE using key words: Search terms were "glenohumeral", "shoulder instability", "cadaver", "rotator interval", "anatomy", and "anatomical study". During the last decade, the interest in both arthroscopic repair techniques and surgical anatomy of the glenohumeral ligament (superior, middle, and inferior), labrum, and rotator interval has increased. Understanding of the rotator interval and attachment of the inferior glenohumeral ligament on the glenoid or humeral head have evolved significantly. The knowledge of the detailed anatomy and anatomical variations is essential for the surgeon in order to understand the pathology, make a correct diagnosis of instability, and select proper treatment options. Proper understanding of anatomical variants can help us avoid misdiagnosis. Level of evidence V.

  19. Parturition in gilts: duration of farrowing, birth intervals and placenta expulsion in relation to maternal, piglet and placental traits

    Rens, van B.T.T.M.; Lende, van der T.


    Large White×Meishan F2 crossbred gilts (n=57) were observed continuously during farrowing while the placentae of their offspring were labeled in order to examine the duration of farrowing and placenta expulsion in relation to maternal-, piglet- and placental traits and the duration of birth interval

  20. Q-T interval (QT(C)) in patients with cirrhosis: relation to vasoactive peptides and heart rate

    Henriksen, Jens Henrik Sahl; Gülberg, V; Fuglsang, S


    OBJECTIVE: Prolonged Q-T interval (QT) has been reported in patients with cirrhosis who also exhibit profound abnormalities in vasoactive peptides and often present with elevated heart rate (HR). The aim of this study was to relate QT to the circulating level of endothelins (ET-1 and ET-3) and ca...

  1. A Grey Interval Relational Degree-Based Dynamic Multiattribute Decision Making Method and Its Application in Investment Decision Making

    Yuhong Wang


    Full Text Available The purpose of this paper is to propose a three-dimensional grey interval relational degree model for dynamic Multiattribute decision making. In the model, the observed values are interval grey numbers. Elements are selected in the system as the points in an m-dimensional linear space. Then observation data of each element to different time and objects are as the coordinates of point. An optimization model is employed to obtain each scheme’s affiliate degree for the positive and negative ideal schemes. And a three-dimensional grey interval relational degree model based on time, index, and scheme is constructed in the paper. The result shows that the three-dimensional grey relational degree simplifies the traditional dynamic multiattribute decision making method and can better resolve the dynamic multiattribute decision making problem of interval numbers. The example illustrates that the method presented in the paper can be used to deal with problems of uncertainty such as dynamic multiattribute decision making.

  2. Physiological and health-related adaptations to low-volume interval training: influences of nutrition and sex.

    Gibala, Martin J; Gillen, Jenna B; Percival, Michael E


    Interval training refers to the basic concept of alternating periods of relatively intense exercise with periods of lower-intensity effort or complete rest for recovery. Low-volume interval training refers to sessions that involve a relatively small total amount of exercise (i.e. ≤10 min of intense exercise), compared with traditional moderate-intensity continuous training (MICT) protocols that are generally reflected in public health guidelines. In an effort to standardize terminology, a classification scheme was recently proposed in which the term 'high-intensity interval training' (HIIT) be used to describe protocols in which the training stimulus is 'near maximal' or the target intensity is between 80 and 100 % of maximal heart rate, and 'sprint interval training' (SIT) be used for protocols that involve 'all out' or 'supramaximal' efforts, in which target intensities correspond to workloads greater than what is required to elicit 100 % of maximal oxygen uptake (VO2max). Both low-volume SIT and HIIT constitute relatively time-efficient training strategies to rapidly enhance the capacity for aerobic energy metabolism and elicit physiological remodeling that resembles changes normally associated with high-volume MICT. Short-term SIT and HIIT protocols have also been shown to improve health-related indices, including cardiorespiratory fitness and markers of glycemic control in both healthy individuals and those at risk for, or afflicted by, cardiometabolic diseases. Recent evidence from a limited number of studies has highlighted potential sex-based differences in the adaptive response to SIT in particular. It has also been suggested that specific nutritional interventions, in particular those that can augment muscle buffering capacity, such as sodium bicarbonate, may enhance the adaptive response to low-volume interval training.

  3. The physics inside the scaling relations for X-ray galaxy clusters: gas clumpiness, gas mass fraction and slope of the pressure profile

    Ettori, S


    In galaxy clusters, the relations between observables in X-ray and millimeter wave bands and the total mass have normalizations, slopes and redshift evolutions that are simple to estimate in a self-similar scenario. We study these scaling relations and show that they can be efficiently expressed, in a more coherent picture, by fixing the normalizations and slopes to the self-similar predictions, and advocating, as responsible of the observed deviations, only three physical mass-dependent quantities: the gas clumpiness $C$, the gas mass fraction $f_g$ and the logarithmic slope of the thermal pressure profile $\\beta_P$. We use samples of the observed gas masses, temperature, luminosities, and Compton parameters in local clusters to constrain normalization and mass dependence of these 3 physical quantities, and measure: $C^{0.5} f_g = 0.110 (\\pm 0.002 \\pm 0.002) \\left( E_z M / 5 \\times 10^{14} M_{\\odot} \\right)^{0.198 (\\pm 0.025 \\pm 0.04)}$ and $\\beta_P = -d \\ln P/d \\ln r = 3.14 (\\pm 0.04 \\pm 0.02) \\left( E_z M ...

  4. Step-up related simultaneous confidence intervals for MCC and MCB.

    Finner, Helmut; Strassburger, Klaus


    The derivation of compatible confidence bounds related to stepwise decision procedures is a serious issue. Especially the derivation of step-up related bounds is rather complex. In this article we consider (one-sided) multiple comparisons with a control (MCC) and multiple comparisons with the best (MCB) with the aim of establishing delta-equivalence to the best and derive step-up related confidence bounds by applying the projection method proposed in Finner and Strassburger (2006). Some examples illustrate the resulting procedures.

  5. Structural highs on the western continental slope of India: Implications for regional tectonics

    Mukhopadhyay, R.; Rajesh, M.; De, Suritha; Chakraborty, B.; Jauhari, P.

    Transmission(RDT)modetoobtainuniform Fig. 4. The continental slope bathymetry as deduced from multibeam swath contours at 25 m intervals shows the presence of structural highs (white semi-circular patches 01, 04, 05, 08) and a linear depression on the eastern strip considered as Upper... and manual error de- Fig. 5. The 3-Ddigital terrainmodel (DTM) ofa part of thecontinental slope strips are shown. Note the flat summits, steep western and relatively gentle bulged slope wall in the north-central part and a channel-like depression relatively...

  6. Pacemaker patients’ perspective and experiences in a pacemaker outpatient clinic in relation to test intervals of the pacemaker

    Lauberg, Astrid; Hansen, Tina; Pedersen, Trine Pernille Dahl

    the pacemaker and psychological reactions. Patients with pacemakers older than 3 months lacked communication with fellowmen. Conclusion The patients express receiving competent and professional treatment when visiting the outpatient clinic, there seems to be a discrepancy between the long test intervals......In and out in 15 minutes! Shorttime nursing in an outpatient clinic Pacemaker patients’ perspective and experiences in a pacemaker outpatient clinic in relation to test intervals of the pacemaker. Background Pacemaker implantation is a highly documented treatment for patients with bradycardia...... an evident decline in quality of life regarding psychological and social aspects 6 month after the implantation in terms of cognitive function, work ability, and sexual activity. Mlynarski et al (2009) have found correlations between pacemaker implantation and anxiety and depression. Aim The aim...

  7. Morpho-structural evolution of the valley-slope systems and related implications on slope-scale gravitational processes: New results from the Mt. Genzana case history (Central Apennines, Italy)

    Della Seta, M.; Esposito, C.; Marmoni, G. M.; Martino, S.; Scarascia Mugnozza, G.; Troiani, F.


    This work is aimed at constraining a slope-scale, deep-seated gravitational slope deformation (DSGSD) and an associated rockslide-avalanche in the frame of the Quaternary morpho-structural evolution of Central Apennines (Italy). The study area is the western slope of the Mt. Genzana calcareous ridge, for which a conceptual slope evolutionary model had been already proposed. The existing model has highlighted the role of inherited geological-structural setting combined with Quaternary morpho-evolution in the onset of rock-slope deformational processes until paroxysmal phases (i.e. occurrence of massive rock slope failures). In this work, the previous conceptual evolutionary model was strengthened and detailed by means of a mid-term landscape evolution model, based on the study of geomorphic markers hanging at different elevations above the present valley floor. The Quaternary landscape evolution was also constrained by means of time-dependent landscape metrics. Consequently, it was possible to back-analyse the observed DSGSD process from its onset up to the occurrence of localized massive rock slope failures, through a time-dependent stress-strain numerical modeling. The results of such a multi-modeling approach: i) highlighted the importance of rock mass creep during some stages of the morpho-evolution; ii) pointed out the relevant role of the inherited structural pattern in identifying the preferential strain concentration zones and failure surfaces; and iii) confirmed the hypothesis that the Scanno rockslide-avalanche scar is the result of two separate failure events, as an initial landslide involving the lower part of the slope that favoured a subsequent failure in the upper part of the slope.

  8. Establishment of a paediatric age-related reference interval for the measurement of urinary total fractionated metanephrines.

    Griffin, Alison


    INTRODUCTION: Normetanephrine and metanephrine are intermediate metabolites of noradrenaline and adrenaline metabolism. To assess whether normetanephrine and metanephrine analysis may aid in the diagnosis of Neuroblastoma, a reference interval for these metabolites must first be established. AIM: The overall aim of this study was to establish a paediatric age-related reference interval for the measurement of total fractionated metanephrines. METHODS: A total of 267 urine samples were analysed following acid hydrolysis. This releases the metanephrines from their sulphate-bound metabolites. The samples were analysed using reverse phase high-performance liquid chromatography with electro-chemical detection on a Gilson automated sequential trace enrichment of dialysate sample system. RESULTS: Data were analysed using Minitab Release version 14. Outliers were removed using the Dixon\\/Reed one-third rule. Partitioning of the age groups was achieved using Harris and Boyd\\'s standard normal deviate test. Non-parametric analysis of the data was performed, followed by the establishment of the 2.5th and the 97.5th reference limits. CONCLUSIONS: The established reference intervals are described in Table 2.

  9. ElevationSlope_SLOPE1p6M

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Addison County 2012 1.6m; Missisquoi Upper 2010 1.6m; Missisquoi Lower 2008 1.6m and related SLOPE...

  10. VT Lidar Slope (1 meter) - 2005 - Essex

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Essex County 2005 1m and related SLOPE datasets. Created using ArcGIS "SLOPE" command...

  11. The effect of acidosis on the interval-force relation and mechanical restitution in ferret papillary muscle.

    McCall, E; Orchard, C H


    1. The effect of a respiratory acidosis on the interval-force relation and on mechanical restitution was investigated in ferret papillary muscles. 2. Acidosis (pH 6.85) decreased developed force over a range of stimulation frequencies (1.0.06 Hz); the percentage decrease was greatest at the lowest stimulation frequencies. Qualitatively similar effects of acidosis on developed force were observed in the presence of the sarcoplasmic reticulum (SR) inhibitor ryanodine. 3. Mechanical restitution curves were constructed by interpolating extra-systoles at different test intervals following a train of steady-state beats. Mechanical restitution in ferret papillary muscle was triphasic: an initial, rapid, exponential increase in force with test intervals to 2 s, a further increase with test intervals between 60 and 90 s and then a slow decline, with a plateau at about 30 min (0.33 Hz, 30 degrees C). 4. Acidosis slowed the initial phase of mechanical restitution. The degree of slowing depended on the steady-state stimulation frequency, being greatest at low frequencies. 5. Inhibition of the SR abolished the initial phase of mechanical restitution, suggesting that this phase depends on Ca2+ release from the SR. 6. The strength of the first contraction after the extra-systole varied inversely with the size of the extra-systole under all conditions studied. 7. It is concluded that acidosis may inhibit the SR by altering the time required for Ca2+ recycling between contractions. This effect may alter Ca2+ release from the SR during acidosis, and may underlie the mechanical alternans (the alternation of small and large contractions) that can occur during acidosis.

  12. Diurnal variation and dispersion in QT interval in cirrhosis: relation to haemodynamic changes

    Hansen, Stig; Møller, Søren; Bendtsen, Flemming


    with cirrhosis, undergoing a haemodynamic investigation. 24-h 12 lead Holter monitoring provided information on QT and heart rate variability. RESULTS: Mean QT(C) was above upper normal limit (440 ms(1/2)) in eleven patients (47%) and significantly higher than in controls (441 vs 400 ms(1/2), p...=0.03-0.001). No diurnal variation of QT(disp) was found in cirrhosis. Heart rate variability was reduced with a significant relation to central hypovolaemia (r=0.55, p=0.01). CONCLUSIONS: Twenty-four hours QT(C) is prolonged in a substantial fraction of patients with cirrhosis, but with normal...... diurnal variation. The combination of long QT(C) and normal QT(disp) suggests delayed myocyte repolarisation on the cellular level, rather than temporal and spatial heterogeneity in the myocardial wall....

  13. Deepwater Program: Studies of Gulf of Mexico lower continental slope communities related to chemosynthetic and hard substrate habitats

    Ross, Steve W.; Demopoulos, Amanda W.J.; Kellogg, Christina A.; Morrison, Cheryl L.; Nizinski, Martha S.; Ames, Cheryl L.; Casazza, Tara L.; Gualtieri, Daniel; Kovacs, Kaitlin; McClain, Jennifer P.; Quattrini, Andrea M.; Roa-Varon, Adela Y.; Thaler, Andrew D.


    This report summarizes research funded by the U.S. Geological Survey (USGS) in collaboration with the University of North Carolina at Wilmington (UNCW) on the ecology of deep chemosynthetic communities in the Gulf of Mexico. The research was conducted at the request of the U.S. Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE; formerly Minerals Management Service) to complement a BOEMRE-funded project titled "Deepwater Program: Investigations of Chemosynthetic Communities on the Lower Continental Slope of the Gulf of Mexico." The overall research partnership, known as "Chemo III," was initiated to increase understanding of the distribution, structure, function, and vulnerabilities of these poorly known associations of animals and microbes for water depths greater than 1,000 meters (m) in the Gulf of Mexico. Chemosynthetic communities rely on carbon sources that are largely independent of sunlight and photosynthetic food webs. Despite recent research directed toward chemosynthetic and deep coral (for example, Lophelia pertusa) based ecosystems, these habitats are still poorly studied, especially at depths greater than 1,000 m. With the progression into deeper waters by fishing and energy industries, developing sufficient knowledge to manage these deep ecosystems is essential. Increased understanding of deep-sea communities will enable sound evaluations of potential impacts and appropriate mitigations.

  14. Detection of cosmogeophysical periodicities by the statistical analysis of intervals between the dates of birth of genetic relatives

    Poghosyan, G. V.


    A statistical analysis of time intervals between the dates of birth of genetic relatives has been carried out on the basis of 33 family trees. Using the Monte Carlo method, a significant departure of the distribution of birthdays from random results is detected relative to two long-period solar harmonics known from the theory of the Earth tides, i.e., a solar elliptical wave ( S a ) with a period of an anomalistic year (365.259640 days) and a solar declinational wave ( S sa ) with a period of half of the tropical year (182.621095 days). Further research requires larger statistical samples and involves clarifying the effect of long-period lunar harmonics, i.e., an lunar elliptical wave ( M m ) with a period of an anomalistic month (27.554551 days) and a lunar declinational wave ( M f ) with a period of half of a tropical month (13.660791 day), as well as the impact of important lunar and solar tides of time intervals with periods of half (14.765294 days, the interval between syzygial tides at new and full moon) and a whole (29.530588 days) synodic month. It is known that the periodic compression and stretching of the Earth's crust at the time of the tides by means of the piezoelectric effect lead to the generation of long-period electric oscillations with periods corresponding to the harmonics of the theory of the Earth tides. The detection of these harmonics in connection with biological processes will make it possible to determine the impact of regular cosmogeophysical fluctuations (tidal waves) on the processes in the biosphere.

  15. Talus slope development: an integrated concept based on the Eastern Alps.

    Sanders, D.; Ostermann, M.


    Talus slopes are deposystems that accumulate in onlap onto the area of sediment provenance, that is, rock cliffs. 'Talus slope - rock cliff ensembles' are subject to strong internal feedback due to the direct interplay of slope accumulation with cliff degradation. Our field observations in numerous Quaternary talus-slope successions indicate an overall predictable relation between talus slope maturity, depositional geometry, and sedimentary facies: After exposure of rock cliffs by deglaciation or rocksliding, a low-dipping immature talus (dominated by debris flows and/or by rockfalls) or a rock glacier initially accumulates. Upon progressive aggradation and steepening of the proximal slope segment, prevalent processes of deposition change to grain flows and 'sorted rockfalls' in the steep-dipping (30-35°) proximal slope segment, while deposits of debris flows, ephemeral fluid flows, and rare large rockfalls prevail on the distal, lower-dipping slope segment. In successions of mature talus slopes, the proximal slope package overlies the lower-dipping, distal slope deposits along a narrow 'downlap interval'. The downlap interval is characterized by a marked upslope steepening of bedding surfaces over a short vertical and lateral distance. Immediately after cliff exposure by deglaciation or rocksliding, talus can aggrade at rates of up to a few tens of meters per 1000 years; initially high accumulation rates, however, decrease rapidly with buildup of slope and consequent burial of the rock cliff. On present carbonate-lithic talus slopes of the Eastern Alps the prevalent processes of sediment transport, final deposition, and deposit overprint in many cases change over lateral distances of a few tens to a few hundreds of meters; this gives rise to different types of talus slopes. Whereas glacial-interglacial cycles determine presence/absence of talus, as well as the altitude range of effective talus formation, minor climatic changes thus are hardly to read clearly from

  16. Shortened time interval between colorectal cancer diagnosis and risk testing for hereditary colorectal cancer is not related to higher psychological distress

    Landsbergen, K.M.; Prins, J.B.; Brunner, H.G.; Hoogerbrugge, N.


    Current diagnostic practices have shortened the interval between colorectal cancer (CRC) diagnosis and genetic analysis for Lynch syndrome by MSI-testing. We studied the relation of time between MSI-testing since CRC diagnosis (MSI-CRC interval) and psychological distress. We performed a

  17. Pacemaker patients’ perspective and experiences in a pacemaker outpatient clinic in relation to test intervals of the pacemaker

    Lauberg, Astrid; Hansen, Tina; Pedersen, Trine Pernille Dahl

    In and out in 15 minutes! Shorttime nursing in an outpatient clinic Pacemaker patients’ perspective and experiences in a pacemaker outpatient clinic in relation to test intervals of the pacemaker. Background Pacemaker implantation is a highly documented treatment for patients with bradycardia....... In Aalborg University Hospital pacemakers are tested when implanted, 3 months later and then two years after the implantation. It is tested by a nurse specialist who also is interested in the patient’s general health status and well being. Patient expectations are unknown. Cheng et al (2002) have found...... an evident decline in quality of life regarding psychological and social aspects 6 month after the implantation in terms of cognitive function, work ability, and sexual activity. Mlynarski et al (2009) have found correlations between pacemaker implantation and anxiety and depression. Aim The aim...

  18. Big Boss Interval Games

    Alparslan-Gok, S.Z.; Brânzei, R.; Tijs, S.H.


    In this paper big boss interval games are introduced and various characterizations are given. The structure of the core of a big boss interval game is explicitly described and plays an important role relative to interval-type bi-monotonic allocation schemes for such games. Specifically, each element

  19. Technical note: A mathematical function to predict daily milk yield of dairy cows in relation to the interval between milkings.

    Klopčič, M; Koops, W J; Kuipers, A


    The milk production of a dairy cow is characterized by lactation production, which is calculated from daily milk yields (DMY) during lactation. The DMY is calculated from one or more milkings a day collected at the farm. Various milking systems are in use today, resulting in one or many recorded milk yields a day, from which different calculations are used to determine DMY. The primary objective of this study was to develop a mathematical function that described milk production of a dairy cow in relation to the interval between 2 milkings. The function was partly based on the biology of the milk production process. This function, called the 3K-function, was able to predict milk production over an interval of 12h, so DMY was twice this estimate. No external information is needed to incorporate this function in methods to predict DMY. Application of the function on data from different milking systems showed a good fit. This function could be a universal tool to predict DMY for a variety of milking systems, and it seems especially useful for data from robotic milking systems. Further study is needed to evaluate the function under a wide range of circumstances, and to see how it can be incorporated in existing milk recording systems. A secondary objective of using the 3K-function was to compare how much DMY based on different milking systems differed from that based on a twice-a-day milking. Differences were consistent with findings in the literature. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. An After-School, high-intensity, interval physical activity programme improves health-related fitness in children

    Sergio Reloba Martínez

    Full Text Available Abstract Health problems related to a low level of physical activity (PA in children and adolescents have prompted research into extracurricular PA programs. This study was designed to determine the effects of two different levels of PA on the health-related fitness of school children. Ninety-four girls and boys (7-9 years were randomly assigned to a control group (CG or intervention group (IG. Over a 12 week study period, children in the CG participated in a similar PA program to that of a standard school physical education program while those in the IG completed a high intensity interval training (HIIT program. Both programs involved two 40 minute extracurricular sessions per week. Our findings indicate that the HIIT intervention improved motor capacity (speed/agility, Vpeak, VO2 max and excess post-exercise oxygen consumption (EPOC (p < 0.05 along with the musculoskeletal capacity of the lower trunk (mean propulsive velocity and standing long jump, p < 0.05. The PA program had no effect on anthropometric variables or hand-grip strength. The data indicate that a 12 week strength training program using workloads adapted to children may significantly improve several markers of health and physical fitness compared to a standard school PA program.

  1. Measurement of tibial slope angle after medial opening wedge high tibial osteotomy: case series

    Ricardo Hideki Yanasse

    Full Text Available CONTEXT AND OBJECTIVE: In the past, changes in tibial slope were not considered when planning or evaluating osteotomies, and success in high tibial osteotomy was related to the alignment and amount of femorotibial angular correction. The aim here was to measure changes in tibial slope after medial opening wedge tibial osteotomy and investigate the effect of tibial slope angle on the clinical results. DESIGN AND SETTING: Retrospective review study on a series of cases, at the Department of Orthopedics and Traumatology, Faculdade de Medicina de Marília (Famema, Marília, Brazil. METHODS: Twenty-eight patients were studied, and a total of thirty-one knees. Lateral roentgenograms of the tibia were used pre and postoperatively to measure the tibial slope based on the proximal tibial anatomical axis. The clinical results were measured using the Lysholm knee score. RESULTS: There was an average increase in tibial slope angle after surgery of 2.38° (95% confidence interval: ± 0.73°. There was no correlation (r = -0.28 between the postoperative Lysholm knee score and the difference in tibial slope angle from before to after surgery (P = 0.13. CONCLUSION: Medial opening wedge tibial osteotomy led to a small increase in tibial slope. No significant correlation was found between increased tibial slope and short-term clinical results after high tibial osteotomy. Other clinical studies are needed in order to establish whether extension or flexion osteotomy could benefit patients with medial compartment gonarthrosis.

  2. Slope stability hazard management systems


    Weather-related geo-hazards are a major concern for both natural slopes and man-made slopes and embankments.Government agencies and private companies are increasingly required to ensure that there is adequate protection of sloping surfaces in order that interaction with the climate does not produce instability. Superior theoretical formulations and computer tools are now available to address engineering design issues related to the near ground surface soil-atmospheric interactions. An example is given in this paper that illustrates the consequences of not paying adequate attention to the hazards of slope stability prior to the construction of a highway in South America. On the other hand, examples are given from Hong Kong and Mainland China where significant benefits are derived from putting in place a hazard slope stability management system. Some results from a hazard management slope stability study related to the railway system in Canada are also reported. The study took advantage of recent research on unsaturated soil behaviour and applied this information to real-time modelling of climatic conditions. The quantification of the water balance at the ground surface, and subsequent infiltration, is used as the primary tool for hazard level assessment. The suggested hazard model can be applied at either specific high risk locations or in a more general, broad-based manner over large areas. A more thorough understanding of unsaturated soil behaviour as it applies to near ground surface soils,along with the numerical computational power of the computer has made it possible for new approaches to be used in slope hazard management engineering.

  3. Steeper Slope of Age-Related Changes in White Matter Microstructure and Processing Speed in Bipolar Disorder.

    Dev, Sheena I; Nguyen, Tanya T; McKenna, Benjamin S; Sutherland, Ashley N; Bartsch, Hauke; Theilmann, Rebecca J; Eyler, Lisa T


    Bipolar disorder (BD) is associated with compromised white matter (WM) integrity and deficits in processing speed (PS). Few studies, however, have investigated age relationships with WM structure and cognition to understand possible changes in brain health over the lifespan. This investigation explored whether BD and healthy counterpart (HC) participants exhibited differential age-related associations with WM and cognition, which may be suggestive of accelerated brain and cognitive aging. Cross-sectional study. University of California San Diego and the Veterans Administration San Diego Healthcare System. 33 euthymic BD and 38 HC participants. Diffusion tensor imaging was acquired as a measure of WM integrity, and tract-specific fractional anisotropy (FA) was extracted utilizing the Johns Hopkins University probability atlas. PS was assessed with the Number and Letter Sequencing conditions of the Delis-Kaplan Executive Function System Trail Making Test. BD participants demonstrated slower PS compared with the HC group, but no group differences were found in FA across tracts. Multiple linear regressions revealed a significant group-by-age interaction for the right uncinate fasciculus, the left hippocampal portion of the cingulum, and for PS, such that older age was associated with lower FA values and slower PS in the BD group only. The relationship between age and PS did not significantly change after accounting for uncinate FA, suggesting that the observed age associations occur independently. Results provide support for future study of the accelerated aging hypothesis by identifying markers of brain health that demonstrate a differential age association in BD. Copyright © 2017 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Aspectos cognitivos relacionados à noção de intervalos de tempo Cognitive aspects related to time interval notion

    Liliane Cristina de Além-Mar e Silva


    Full Text Available OBJETIVO: Procuramos analisar os aspectos cognitivos e metodológicos envolvidos na avaliação da noção de intervalos de tempo, verificando os aspectos cognitivos envolvidos durante a sua execução, e apontar a relevância, aplicabilidade e sensibilidade dessa avaliação no exame neuropsicológico. MÉTODOS: Realizou-se revisão bibliográfica abrangendo artigos e pesquisas das literaturas nacional e internacional no período de 1990 a 2005. RESULTADOS: Encontraram-se 13 diferentes estudos. São controversas as discussões acerca de teorias sobre a noção de tempo. Os estudos podem ser agrupados de acordo com duas perspectivas diferentes: a teoria da contagem atencional, de grande utilização por pesquisadores americanos, e a teoria do relógio interno, muito abordada por estudiosos franceses que se diferem tanto em relação à abordagem teórica quanto à metodológica. CONCLUSÕES: Ambos os grupos de pesquisa, americanos e franceses, retratam a relevância da aplicação dos testes de estimativa, reprodução e produção de tempo no estudo das funções executivas.OBJECTIVE: We tried to analyze the cognitive and methodological aspects involved in the evaluation of time intervals notion, verifying the cognitive aspects involved during your execution, and to point the relevance, applicability and sensibility of this evaluation in the neuropsychologic exam. METHODS: Bibliographical revision was accomplished including articles and researches of the national and international literature in the period of 1990 to 2005. RESULTS: Were found 13 different researches. The discussions concerning theories about the time notion are controversial. These studies can be grouped into two different perspectives: the attentional counter theory, used by American researchers, and the internal clock theory, very boarded by French studious, that are differed in relation to the theoretical and to the methodological approaches. CONCLUSIONS: Both research groups

  5. Trophic ecology of Lampanyctus crocodilus on north-west Mediterranean Sea slopes in relation to reproductive cycle and environmental variables.

    Fanelli, E; Papiol, V; Cartes, J E; Rodriguez-Romeu, O


    feeding intensity in pre-reproductive periods enabled energy storage in the liver. I(G) was linked directly (i.e. mysids) or indirectly (i.e. surface primary production recorded 2 months before sampling) to food availability, implying a rapid response to vertical food inputs by deep-sea predators. Also, I(G) in L. crocodilus was related to population density, which suggests aggregations for reproduction. Estimates of L. crocodilus trophic levels, and of other accompanying mesopelagic fishes, indicated that the species feed through a continuum spanning the third trophic level, confirming the key role of mesopelagic fishes in transferring organic carbon between trophic levels. Trophic niche segregation among mesopelagic species was pronounced and non-overlapping groups could be distinguished because of the different vertical distribution and migratory behaviour. The study highlights the important role of the benthic boundary layer in sustaining benthopelagic communities in the deep Mediterranean Sea and the need to study the biology of a species throughout its whole depth range and not just at exploited depths (i.e. fishing grounds).

  6. Establishment of a paediatric age-related reference interval for the measurement of urinary total fractionated metanephrines.

    Griffin, Alison


    Normetanephrine and metanephrine are intermediate metabolites of noradrenaline and adrenaline metabolism. To assess whether normetanephrine and metanephrine analysis may aid in the diagnosis of Neuroblastoma, a reference interval for these metabolites must first be established.

  7. ElevationSlope_SLOPE0p7M

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Windham County 2015 0.7m; Eastern VT 2014 0.7m; Rutland/GI Counties 2013 0.7m and related SLOPE datasets....

  8. Introducing the event related fixed interval area (ERFIA multilevel technique: a method to analyze the complete epoch of event-related potentials at single trial level.

    Catherine J Vossen

    Full Text Available In analyzing time-locked event-related potentials (ERPs, many studies have focused on specific peaks and their differences between experimental conditions. In theory, each latency point after a stimulus contains potentially meaningful information, regardless of whether it is peak-related. Based on this assumption, we introduce a new concept which allows for flexible investigation of the whole epoch and does not primarily focus on peaks and their corresponding latencies. For each trial, the entire epoch is partitioned into event-related fixed-interval areas under the curve (ERFIAs. These ERFIAs, obtained at single trial level, act as dependent variables in a multilevel random regression analysis. The ERFIA multilevel method was tested in an existing ERP dataset of 85 healthy subjects, who underwent a rating paradigm of 150 painful and non-painful somatosensory electrical stimuli. We modeled the variability of each consecutive ERFIA with a set of predictor variables among which were stimulus intensity and stimulus number. Furthermore, we corrected for latency variations of the P2 (260 ms. With respect to known relationships between stimulus intensity, habituation, and pain-related somatosensory ERP, the ERFIA method generated highly comparable results to those of commonly used methods. Notably, effects on stimulus intensity and habituation were also observed in non-peak-related latency ranges. Further, cortical processing of actual stimulus intensity depended on the intensity of the previous stimulus, which may reflect pain-memory processing. In conclusion, the ERFIA multilevel method is a promising tool that can be used to study event-related cortical processing.

  9. Introducing the event related fixed interval area (ERFIA) multilevel technique: a method to analyze the complete epoch of event-related potentials at single trial level.

    Vossen, Catherine J; Vossen, Helen G M; Marcus, Marco A E; van Os, Jim; Lousberg, Richel


    In analyzing time-locked event-related potentials (ERPs), many studies have focused on specific peaks and their differences between experimental conditions. In theory, each latency point after a stimulus contains potentially meaningful information, regardless of whether it is peak-related. Based on this assumption, we introduce a new concept which allows for flexible investigation of the whole epoch and does not primarily focus on peaks and their corresponding latencies. For each trial, the entire epoch is partitioned into event-related fixed-interval areas under the curve (ERFIAs). These ERFIAs, obtained at single trial level, act as dependent variables in a multilevel random regression analysis. The ERFIA multilevel method was tested in an existing ERP dataset of 85 healthy subjects, who underwent a rating paradigm of 150 painful and non-painful somatosensory electrical stimuli. We modeled the variability of each consecutive ERFIA with a set of predictor variables among which were stimulus intensity and stimulus number. Furthermore, we corrected for latency variations of the P2 (260 ms). With respect to known relationships between stimulus intensity, habituation, and pain-related somatosensory ERP, the ERFIA method generated highly comparable results to those of commonly used methods. Notably, effects on stimulus intensity and habituation were also observed in non-peak-related latency ranges. Further, cortical processing of actual stimulus intensity depended on the intensity of the previous stimulus, which may reflect pain-memory processing. In conclusion, the ERFIA multilevel method is a promising tool that can be used to study event-related cortical processing.

  10. Reconstruction of late Quaternary relative humidity changes on the southern slopes of Mt. Kilimanjaro, East Africa, using a coupled δ2H-δ18O biomarker paleohygrometer

    Hepp, Johannes; Zech, Roland; Rozanski, Kazimierz; Tuthorn, Mario; Glaser, Bruno; Greule, Markus; Keppler, Frank; Huang, Yongsong; Zech, Wolfgang; Zech, Michael


    Our understanding of African paleoclimate/-hydrological history is decisively based on lake level and lake sediment studies. It furthermore improved remarkably during the last decade thanks to emerging stable isotope techniques such as compound-specific deuterium analysis of sedimentary leaf wax biomarkers (δ2Hleaf wax). Here we present results from a multi-proxy biomarker study carried out on a ~100 ka paleosol sequence developed in the Maundi crater at ~2780 m a.s.l. on the southeastern slopes of Mt. Kilimanjaro in equatorial East Africa. The Maundi stable isotope records established for hemicellulose-derived sugars, lignin- and pectin-derived methoxyl groups and leaf wax-derived fatty acid and n-alkane biomarkers (δ18Osugars, δ2Hmethoxyl groups, δ2Hfatty acids and δ2Hn-alkanes) reveal differences but also similar patterns. Maxima characterize the period from 70 to 60 ka, the last glacial maximum (LGM) and the Younger Dryas (YD), whereas minima occur during the Holocene. The application of a 'coupled δ2Hn-alkane-δ18Osugar paleohygrometer' allows the reconstruction of the Late Quaternary relative humidity (RH) history of the Maundi study site. Accordingly, the reconstructed RH changes are well in agreement with the Maundi pollen results. Apart from the overall regional moisture availability, the intensification versus weakening of the trade wind inversion, which affects the diurnal montane atmospheric circulation on the slopes of Mt. Kilimanjaro, is suggested as local second important factor controlling the RH history at Maundi. Furthermore, the Maundi results of the coupled δ2Hn-alkane-δ18Osugar approach caution against interpreting δ2Hleaf wax (as well as δ18Osugar) records straight forwards in terms of reflecting δ2Hprec, because variably and primarily RH-dependent isotopic evapotranspirative enrichment of leaf water can mask δ2Hprec changes. Concerning the biomarker-based reconstructed Maundi δ2H/δ18Oprec record, the comparison with the


    Oprea Radu


    Full Text Available Nowadays, water and its supply raise problems of strategic importance, of great complexity, being considered one of the keys to sustainable human development. Drip irrigation consists in the slow and controlled administration of water in the area of the root system of the plants for the purposes of fulfilling their physiological needs and is considered to be one of the variants of localized irrigation. Water is distributed in a uniform and slow manner, drop by drop, in a quantity and with a frequency that depend on the needs of the plant, thanks to the exact regulation of the water flow rate and pressure, as well as to the activation of the irrigation based on the information recorded by the tensiometer with regard to soil humidity. This method enables the exact dosage of the water quantity necessary in the various evolution stages of the plant, thus eliminating losses. By applying the irrigation with 5 liters of water per linear meter, at a 7 days interval, in the month of august, for a vine cultivated on a slope, in layers covered with black film and irrigated via dropping, soil humidity immediately after irrigation reaches its highest level, but within the limits of active humidity, on the line of the irrigation band. Three days later, the water content of the soil in the layer is relatively uniform, and, after this interval, it is higher in the points situated at the basis of the film. This technology of cultivation on slopes favors the accumulation, in the soil, of the water resulted from heavy rains and reduces soil losses as a result of erosion.

  12. Routine oral examination: differences in characteristics of Dutch general dental practitioners related to type of recall interval.

    Mettes, Th.G.P.H.; Bruers, J.J.M.; Sanden, W.J.M. van der; Verdonschot, E.H.A.M.; Mulder, J.; Grol, R.P.T.M.; Plasschaert, A.J.M.


    OBJECTIVES: The aim of this study was to explore differences in behaviour (characteristics and opinions) among general dental practitioners (GDPs), using either a fixed (Fx) or an individualized recall interval (Iv) between successive routine oral examinations (ROEs). METHODS: In the year 2000, data

  13. Effects of Weak Layer Angle and Thickness on the Stability of Rock Slopes

    Garmondyu Crusoe Jr


    Full Text Available This paper researches two key factors (angle and thickness of a weak layer in relation to their influencing mechanism on slope stability. It puts forward the sliding surface angle and morphological model criteria for the control of rock slopes and realization of its failure mechanism. By comparing the Failure Modes and Safety Factors (Fs obtained from numerical analysis, the influence pattern for the weak layer angle and thickness on the stability of rock slopes is established. The result shows that the weak layer angle influences the slope by validating the existence of the “interlocking” situation. It also illustrates that as the angle of the weak layer increases, the Fs unceasingly decreases with an Fs transformation angle. The transformation interval of the Fs demonstrates the law of diminishing of a quadratic function. Analysis of the weak layer thickness on the influence pattern of slope stability reveals three decrease stages in the Fs values. The result also shows that the increase in the thickness of the weak layer increases the failure zone and influences the mode of failure. Given the theoretical and numerical analysis of a weak layer effects on the stability of rock slopes, this work provides a guiding role in understanding the influence of a weak layer on the failure modes and safety factors of rock slopes.

  14. Slope streaks in the Antarctic Dry Valleys: Characteristics, candidate formation mechanisms, and implications for slope streak formation on Mars

    Head, J. W.


    Slope streaks on Mars are typically dark, extend downslope for up to ~2 km, are relief, and have been observed to form and change over less than decadal time periods. Mars slope streaks occur exclusively in regions of low thermal inertia, steep slopes, and only where peak temperatures exceed 275 K; changes are observed only if the interval includes the warm season. Mechanisms proposed for Mars slope streaks include dry dust avalanches, dust avalanches controlled by wind, wet debris flows, both wet and dry debris flows, and erosive fluvial processes from spring discharge, where melting is aided by hydrothermal activity or hypersaline aquifers. Although the ADV represent one of the most Mars-like terrestrial environments, there are also substantial differences (e.g., atmospheric pressure and composition; abundance of water, etc.) and thus analogs must be assessed cautiously. We investigated very similar slope streaks in upper Wright Valley of the Antarctic Dry Valleys and interpret their formation to be due to snowpack and near-surface melting-derived saline water traveling downslope along the top of the ice table, wicking upward, and dampening the surface to cause the streak. Among the observations of Mars streaks that suggest that this mechanism should be seriously considered are: 1) similarities in characteristics, brightness, scales, slopes, aspect ratio, temporal behavior, and modes of occurrence; 2) distribution and geometry of occurrence suggesting a relation to solar insolation (low latitudes and northernmost streaks occur preferentially on warmer south-facing slopes); 3) the observation that they occur only where peak temperatures exceed 275 K, and that changes occur only where there has been an intervening warm season, suggesting a potential role for the melting of surface snow and ice. We thus conclude that the saline-assisted surface-near surface melting and water migration origin of slope streaks interpreted from the ADV should be further assessed as a

  15. A slippery directional slope: Individual differences in using slope as a directional cue.

    Weisberg, Steven M; Newcombe, Nora S


    Navigators rely on many different types of cues to build representations of large-scale spaces. Sloped terrain is an important cue that has received recent attention in comparative and human spatial research. However, the studies to date have been unable to determine how directional slope information leads to more accurate spatial representations. Moreover, whereas some studies have shown that the inclusion of slope cues improves performance on spatial tasks across participants (Kelly, 2011; Restat, Steck, Mochnatzki, & Mallot, 2004), other research has suggested individual differences in the benefits of slope cues (Chai & Jacobs, 2010; Nardi, Newcombe, & Shipley, 2011). We sought to clarify the role of sloped terrain in improving the representation of large-scale environments. In Experiment 1, participants learned the layout of buildings in one of two desktop virtual environments: either a directionally sloped terrain or a completely flat one. Participants in the sloped environment outperformed those in the flat environment. However, participants used slope information as an additional cue, rather than as a preferred reference direction. In Experiment 2, the two virtual environments were again either flat or sloped, but we increased the complexity of the relations between the slope and the path. In this experiment, better performance in the sloped environment was only seen for participants with good self-reported senses of direction. Taken together, the studies show that slope provides useful information for building environmental representations in simple cases, but that individual differences emerge in more complex situations. We suggest that good and bad navigators use different navigational strategies.

  16. HST Hα grism spectroscopy of ROLES: a flatter low-mass slope for the z ∼ 1 SSFR-mass relation

    Ramraj, Riona; Gilbank, David G.; Blyth, Sarah-Louise; Skelton, Rosalind E.; Glazebrook, Karl; Bower, Richard G.; Balogh, Michael L.


    We present measurements of star formation rates (SFRs) for dwarf galaxies (M* ∼ 108.5 M_{⊙}) at z ∼ 1 using near-infrared slitless spectroscopy from the Hubble Space Telescope (HST) by targeting and measuring the luminosity of the Hα emission line. Our sample is derived from the Redshift One LDSS3 Emission Line Survey (ROLES), which used [O II]λ3727 as a tracer of star formation to target very low stellar masses down to very low SFRs (∼0.1 M_{⊙} yr-1) at this epoch. Dust corrections are estimated using SED fits and we find, by comparison with other studies using Balmer decrement dust corrections, that we require a smaller ratio between the gas phase and stellar extinction than the nominal Calzetti relation, in agreement with recent findings by other studies. By stacking the Wide-Field Camera (WFC)3 spectra at the redshifts obtained from ground-based [O II] detections, we are able to push the WFC3 spectra to much lower SFRs and obtain the most complete spectroscopic measurement of the low-mass end of the SSFR-mass relation to date. We measure a flatter low-mass power-law slope (-0.47 ± 0.04) than found by other (shallower) H α-selected samples (≈-1), although still somewhat steeper than that predicted by the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulation (-0.14 ± 0.05), hinting at possible missing physics not modelled by EAGLE or remaining incompleteness for our H α data.

  17. Secondary formation of oxalic acid and related organic species from biogenic sources in a larch forest at the northern slope of Mt. Fuji

    Mochizuki, Tomoki; Kawamura, Kimitaka; Miyazaki, Yuzo; Wada, Ryuichi; Takahashi, Yoshiyuki; Saigusa, Nobuko; Tani, Akira


    To better understand the formation of water-soluble organic aerosols in the forest atmosphere, we measured low molecular weight (LMW) dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, unsaturated fatty acids (UFAs), and water-soluble organic carbon (WSOC) in aerosols from a Larix kaempferi forest located at the northern slope of Mt. Fuji, Japan, in summer 2012. Concentrations of dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and WSOC showed maxima in daytime. Relative abundance of oxalic acid in LMW dicarboxylic acids was on average 52% and its average concentration was 214 ng m-3. We found that diurnal and temporal variations of oxalic acid are different from those of isoprene and α-pinene, whereas biogenic secondary organic aerosols (BSOAs) derived from isoprene and α-pinene showed similar variations with oxalic acid. The mass concentration ratios of oxalic acid/BSOAs were relatively constant, although a large variation in the concentrations of toluene that is an anthropogenic volatile organic compound was observed. These results suggest that formation of oxalic acid is associated with the oxidation of isoprene and α-pinene with O3 and other oxidants in the forest atmosphere. In addition, concentrations of UFAs were observed, for the first time, to decrease dramatically during daytime in the forest. Mass concentration ratios of azelaic acid to UFAs showed a positive correlation with O3, suggesting that UFAs are oxidized to yield azelaic acid, which may be further decomposed to oxalic acid in the forest atmosphere. We found that contributions of oxalic acid to WSOC are significantly high ranging from 3.7 to 9.7% (average 6.0%). This study demonstrates that forest ecosystem is an important source of oxalic acid and other dicarboxylic acids in the atmosphere.

  18. Simultaneous Interval Graphs

    Jampani, Krishnam Raju


    In a recent paper, we introduced the simultaneous representation problem (defined for any graph class C) and studied the problem for chordal, comparability and permutation graphs. For interval graphs, the problem is defined as follows. Two interval graphs G_1 and G_2, sharing some vertices I (and the corresponding induced edges), are said to be `simultaneous interval graphs' if there exist interval representations R_1 and R_2 of G_1 and G_2, such that any vertex of I is mapped to the same interval in both R_1 and R_2. Equivalently, G_1 and G_2 are simultaneous interval graphs if there exist edges E' between G_1-I and G_2-I such that G_1 \\cup G_2 \\cup E' is an interval graph. Simultaneous representation problems are related to simultaneous planar embeddings, and have applications in any situation where it is desirable to consistently represent two related graphs, for example: interval graphs capturing overlaps of DNA fragments of two similar organisms; or graphs connected in time, where one is an updated versi...

  19. interval functions

    J. A. Chatfield


    Full Text Available Suppose N is a Banach space of norm |•| and R is the set of real numbers. All integrals used are of the subdivision-refinement type. The main theorem [Theorem 3] gives a representation of TH where H is a function from R×R to N such that H(p+,p+, H(p,p+, H(p−,p−, and H(p−,p each exist for each p and T is a bounded linear operator on the space of all such functions H. In particular we show that TH=(I∫abfHdα+∑i=1∞[H(xi−1,xi−1+−H(xi−1+,xi−1+]β(xi−1+∑i=1∞[H(xi−,xi−H(xi−,xi−]Θ(xi−1,xiwhere each of α, β, and Θ depend only on T, α is of bounded variation, β and Θ are 0 except at a countable number of points, fH is a function from R to N depending on H and {xi}i=1∞ denotes the points P in [a,b]. for which [H(p,p+−H(p+,p+]≠0 or [H(p−,p−H(p−,p−]≠0. We also define an interior interval function integral and give a relationship between it and the standard interval function integral.

  20. Impact cratering on slopes

    Aschauer, Johannes; Kenkmann, Thomas


    The majority of impact craters have circular outlines and axially symmetric morphologies. Deviation from crater circularity is caused by either target heterogeneity, a very oblique impact incidence, post-impact deformation, or by topography. Here, we investigate the effect of topography on crater formation and systematically study impact cratering processes on inclined hillsides up to 25° slope utilizing analogue experiments. A spring-driven air gun mounted in a vertical position shoots into three different types of granular bulk solids (two sorts of glass beads, quartz sand) to emulate impact cratering on slopes. In all, 170 experiments were conducted. The transient crater develops roughly symmetrically perpendicular to the slope plane, resulting in higher ejection angles uphill than downhill when measured with respect to a horizontal plane. Craters become increasingly elliptical with increasing slope angle. At slope angles close to angle of repose of the respective bulk solids, aspect ratios of the craters reach ∼1.7. Uphill-downhill cross sections become increasingly asymmetric, the depth-diameter ratio of the craters decreases, and the deepest point shifts downhill with increasing slope angle. Mass wasting is initiated both in the uphill and downhill sectors of the crater rim. For steep slopes the landslides that emanate from the uphill rim can overshoot the crater cavity and superpose the downhill crater rim in a narrow tongue. Mass wasting initiated at the downhill sector forms broader and shallower tongues and is triggered by the deposition of ejecta on the inclined slope. Our experiments help to explain asymmetric crater morphologies observed on asteroids such as Ceres, Vesta, Lutetia, and also on Mars.

  1. VT Lidar Slope (1.6 meter) - 2008 - West Franklin

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Missisquoi Lower 2008 1.6m and related SLOPE datasets. Created using ArcGIS "SLOPE"...

  2. VT Lidar Slope (1.6 meter) - 2012 - Addison County

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Addison County 2012 1.6m and related SLOPE datasets. Created using ArcGIS "SLOPE"...

  3. VT Lidar Slope (1.6 meter) - 2010 - Missisquoi Upper

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Missisquoi Upper 2010 1.6m and related SLOPE datasets. Created using ArcGIS "SLOPE"...

  4. Across-slope relations between the biological populations, the euphotic zone and the oxygen minimum layer off the coast of Oman during the southwest monsoon (August, 1994)

    Herring, P. J.; Fasham, M. J. R.; Weeks, A. R.; Hemmings, J. C. P.; Roe, H. S. J.; Pugh, P. R.; Holley, S.; Crisp, N. A.; Angel, M. V.


    An area some 120×70 km off the eastern coast of Oman (containing the UK JGOFS Arabesque station) was intensively studied over a 17 day period in August 1994, with the objective of determining the relationships between the biological populations, the oxygen minimum layer and the dynamic hydrography of the euphotic zone. The outer margin of the area was delimited by a rectangle of 15 full depth CTD casts and the hydrography was further defined by two Seasoar surveys within the box. Midwater trawls were used to sample the populations at three stations, oceanic, slope and shelf edge respectively. Day and night samples of macroplankton and micronekton were taken at each station to determine the extent of diel vertical migration and the effect of the hypoxic region on these migrations. Concurrent ADCP data were used to follow the migrations and spatial changes in real time. Despite the limited area studied the patterns of upwelling and their temporal and spatial changes were complex. Coastal upwelling was observed directly only at the southwestern edge of the area during both Seasoar surveys. Persian Gulf Water was a consistent but spatially discrete feature of the region at depths of 200-300 m. Arabian Sea Surface Water was present at the eastern margin of the first survey. Between these two water masses was a large area with small horizontal gradients and variable silicate and chlorophyll levels. Satellite data suggest that this water may have been advected as a filament from a more northerly coastal source. Very marked changes took place in the hydrography and in the phytoplankton composition and abundance at the reference station at 19°N 59°E over the 16 day period between visits. The highest biomass of plankton and micronekton (expressed as wet volume or as carbon) occurred in the upper 100 m, closely correlated with the relatively high oxygen levels at these depths. Gelatinous animals predominated in these layers, with additional swarms of swimming crabs. Quite

  5. Can C7 Slope Substitute the T1 slope? An Analysis Using Cervical Radiographs and Kinematic MRIs.

    Tamai, Koji; Buser, Zorica; Paholpak, Permsak; Seesumpun, Kittipong; Nakamura, Hiroaki; Wang, Jeffrey C


    Retrospective analysis of consecutive 45 radiographs and 120 kinematic magnetic resonance images (kMRI) OBJECTIVE.: The aim was to assess the visibility of C7 and T1 endplates on radiographs, and to verify the correlation between C7 or T1 slope and cervical balance parameters using kMRI. Because the T1 slope is not always visible due to the anatomical interference, several studies have used C7 slope instead of T1. However, it is still unclear whether the C7 endplate is more visible on radiographs than T1, and if C7 slope has similarity with T1 slope. The endplate visibility was determined using weight-bearing radiography. Subsequently, using weight-bearing MR images, the C7 slope of upper and lower endplate, T1 slope, C1 inclination, C2 slope, atlas-dens interval (ADI), C2-C7 lordotic angle, cervical sagittal vertical axis (cSVA), cervical tilt, cranial tilt, neck tilt, thoracic inlet angle (TIA) were measured, for the analysis of correlation between three types of slopes and cervical balance parameters. 82% of the upper C7, and 18% of T1 endplate were clearly visible. The upper C7 endplate was significantly visible, whereas T1 endplate was significantly invisible (residual analysis, p < 0.01). Linear regression analysis showed correlation between the upper C7 slope and T1 slope (R = 0.818, p < 0.01) and, lower C7 slope and T1 slope (R = 0.840, p < 0.01). T1 slope significantly correlated with neck tilt, TIA, C2-C7 angle, cSVA, cervical and cranial tilt, but not with the C1 inclination, C2 slope and ADI. Upper and lower C7 slopes showed the close resemblance with T1 slope in terms of correlation with those parameters. Both, upper and lower C7 slope correlated strongly with T1 slope and showed similar relationship with cervical balance parameters as T1 slope. Therefore, C7 slope could potentially substitute T1 slope, especially upper C7 slope due to the good visibility. 3.

  6. Depositional characteristics of Suvero submarine slide, Paola Slope basin, eastern Tyrrhenian margin

    Trincardi, F.; Normark, W.R. (Istituto per la Geologia Marina, Bologna (Italy))


    The Suvero submarine slide covers an area of about 225 km{sup 2} in the Paola slope basin on the eastern Tyrrhenian margin. The shape and lateral extent of the deposit, investigated by means of 1 and 30-kJ Sparker seismic profiles, strongly reflect the topographic confinement between the steep uppermost continental slope and a morphologic barrier formed by a margin-parallel slope ridge. The slide is small when compared with similar features on large delta-fed submarine fans or other slope-rise examples, but it constitutes a major depositional event relative to the size of the slope basin. No headwall and slide slip surface comparable in size with the slide deposit were found, suggesting that a significant part of the material flooring the slope basin became involved in the deformation and experienced some short-distance transport or internal shearing in response to a relatively small downslope-moving slide. The presence of small-relief ramps, over intervals of many kilometers, along the otherwise flat basal contact seems to indicate some strength and cohesion of the material involved. The development of a deep scour, localized where the regional gradient decreases from the steep upper slope to the flat basin floor, is also consistent with the occurrence of in-situ deformation of underconsolidated sediments. The source area of the slide deposit lies in a margin sector where uplift was particularly effect during Pleistocene time (1 mm/year), causing the presence of steep upper-slope gradients and the generation of other small-scale creep and failure events.

  7. A novel approach for enhancing green supply chain management using converged interval-valued triangular fuzzy numbers-grey relation analysis

    Tseng, Ming-Lang; Lim, Ming; Wu, Kuo-Jui; Zhou, Li


    The existing literatures are lacking on the cost and benefit concerns, screening the measures and convergence of interval-valued triangular fuzzy numbers-grey relation analysis (IVTFN-GRA) weight together. Nonetheless, Green supply chain management is always suffering the linguistic preferences and system incomplete information in evaluation process to enhance the performance. Yet, those previous studies are merely based on un-converged weight results. Hence, this study proposed a hybrid meth...

  8. Shortened time interval between colorectal cancer diagnosis and risk testing for hereditary colorectal cancer is not related to higher psychological distress.

    Landsbergen, K M; Prins, J B; Brunner, H G; Hoogerbrugge, N


    Current diagnostic practices have shortened the interval between colorectal cancer (CRC) diagnosis and genetic analysis for Lynch syndrome by MSI-testing. We studied the relation of time between MSI-testing since CRC diagnosis (MSI-CRC interval) and psychological distress. We performed a cross-sectional study in 89 patients who had previously been treated for CRC. Data were collected during MSI-testing after genetic counseling. Psychological distress was measured with the IES, the SCL-90 and the POMS; social issues with the ISS, ISB and the ODHCF. The median time of MSI-CRC interval was 24 months (range 0-332), with 23% of the patients diagnosed less than 12 months and 42% more than 36 months prior to MSI-testing. In 34% of the patients cancer specific distress was high (IES scores >26). Mean psychopathology (SCL-90) scores were low, mean mood states (POMS) scores were moderate. Interval MSI-CRC was not related to psychological distress. High cancer specific distress was reported by 24% of patients diagnosed with CRC less than 12 months ago versus 39 and 35% by those diagnosed between 12 and 36 months and more than 36 months ago respectively. Distress was positively related to female gender (P = 0.04), religiousness (P = 0.01), low social support (P = 0.02) and difficulties with family communication (P testing is not associated with higher psychological distress. Females, religious persons, those having low social support and those reporting difficulties communicating hereditary colorectal cancer with relatives are at higher risk for psychological distress.

  9. Percent Agricultural Land Cover on Steep Slopes

    U.S. Environmental Protection Agency — Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type....

  10. Standardization of immunoassay for CRM-related proteins in Japan: from evaluating CRM 470 to setting reference intervals.

    Itoh, Y; Ichihara, K


    The Japan National Institute of Health (JNIH), in close collaboration with academic societies, commercial companies, and the Japan Society of Medical Technologists, has led in the attempt to standardize plasma protein assays since the mid 1980s. Under a framework of global standardization, they used WHO primary reference materials to reduce discrepancies in values reported for proteins assayed using different systems, thus laying the foundations for a protein immunoassay standardization system in Japan. With the introduction of CRM 470 in 1993, the Japanese Committee for Clinical Laboratory Standards (JCCLS) has taken the initiative in promoting the use of the new material and bringing about the re-evaluation of all systems of quality assurance in clinical laboratories. This eventually led to the establishment of reference intervals in Japanese populations of children and adults after preparation of assigned calibrators from CRM 470 for each assay system. Here we review the history of a series of projects carried out in Japan and describe several remaining problems, through which we will attempt to evaluate the potential value of protein immunoassay standardization.

  11. Effects of interstimulus intervals on behavioral, heart rate, and event-related potential indices of infant engagement and sustained attention.

    Xie, Wanze; Richards, John E


    Maximizing infant attention to stimulus presentation during an EEG or ERP experiment is important for making valid inferences about the neural correlates of infant cognition. The present study examined the effects of stimulus presentation interstimulus interval (ISI) on behavioral and physiological indices of infant attention including infants' fixation to visual presentation, the amount of heart rate (HR) change during sustained attention, and ERP components. This study compared an ISI that is typically used in infant EEG/ERP studies (e.g., 1,500-2,000 ms) with two shorter durations (400-600 ms and 600-1,000 ms). Thirty-six infants were tested cross-sectionally at 3, 4.5, and 6 months. It was found that using the short (400-600 ms) and medium (600-1,000 ms) ISIs resulted in more visually fixated trials and reduced frequency of fixation disengagement per experimental block. We also found larger HR changes during sustained attention to both of the shorter ISIs compared with the long ISI, and larger ERP responses when using the medium ISI compared to using the short and long ISIs. These data suggest that utilizing an optimal ISI (e.g., 600-1,000 ms), which increases the presentation complexity and provides sufficient time for information processing, can promote infant engagement and sustained attention during stimulus presentation.

  12. Denudational slope processes on weathered basalt in northern California: 130 ka history of soil development, periods of slope stability and colluviation, and climate change

    McDonald, Eric; Harrison, Bruce; Baldwin, John; Page, William; Rood, Dylan


    The geomorphic history of hillslope evolution is controlled by multiple types of denudational processes. Detailed analysis of hillslope soil-stratigraphy provides a means to identify the timing of periods of slope stability and non-stability, evidence of the types of denudational processes, and possible links to climatic drivers. Moreover, the degree of soil formation and the presence of buried or truncated soils provide evidence of the relative age of alternating periods of colluviation and stability. We use evaluation of soil stratigraphy, for a small forested hillslope (slope length) located in the Cascades of northern California, to elucidate both the timing and processes controlling 130 ka of hillslope evolution. The soils and slope colluvium are derived from highly weathered basalt. Stratigraphic interpretation is reinforced with soil profile development index (PDI) derived age estimates, tephrochronology, luminescence ages on colluvium, and He3 nuclide exposure dates. Soils formed along hilltop ridges are well developed and reflect deep (>2-3 m) in-situ weathering of the basalt bedrock. PDI age estimates and He3 exposure dates indicate that these hilltop soils had been in place for 100-130 ka, implying a long period of relative surface stability. At about 40-30 ka, soil stratigraphy indicates the onset of 3 distinct cycles of denudation of the hilltop and slopes. Evidence for changes in stability and onset of soil erosion is the presence of several buried soils formed in colluvium downslope of the hilltop. These buried soils have formed in sediment derived from erosion of the hilltop soils (i.e. soil parent material of previously weathered soil matrix and basalt cobbles). The oldest buried soil indicates that slope stability was re-established between 32-23 ka, with stability and soil formation lasting to about 10 ka. Soil-stratigraphy indicates that two additional intervals of downslope transport of sediment between 6-10 ka, and 2-5 ka. Soil properties

  13. Mild Slope Ligningen

    Brorsen, Michael

    Der gives en beskrivelse af forudsætningerne for Mild Slope ligningen, som kort fortalt kan benyttes til at beregne harmoniske, lineære bølger i områder med "små" gradienter på dybderne.......Der gives en beskrivelse af forudsætningerne for Mild Slope ligningen, som kort fortalt kan benyttes til at beregne harmoniske, lineære bølger i områder med "små" gradienter på dybderne....

  14. On Front Slope Stability of Berm Breakwaters

    Burcharth, Hans F.


    The short communication presents application of the conventional Van der Meer stability formula for low-crested breakwaters for the prediction of front slope erosion of statically stable berm breakwaters with relatively high berms. The method is verified (Burcharth, 2008) by comparison with the r......The short communication presents application of the conventional Van der Meer stability formula for low-crested breakwaters for the prediction of front slope erosion of statically stable berm breakwaters with relatively high berms. The method is verified (Burcharth, 2008) by comparison...... test results including tests presented in Sigurdarson and Van der Meer (2011) are discussed. A proposal is presented for performance of new model tests with the purpose of developing more accurate formulae for the prediction of front slope erosion as a function of front slope, relative berm height...

  15. Hazard assessment of vegetated slopes

    Norris, J.E.; Greenwood, J.R.; Achim, A.; Gardiner, B.A.; Nicoll, B.C.; Cammeraat, E.; Mickovski, S.B.; Norris, J.E.; Stokes, A.; Mickovski, S.B.; Cammeraat, E.; van Beek, R.; Nicoll, B.C.; Achim, A.


    The hazard assessment of vegetated slopes are reviewed and discussed in terms of the stability of the slope both with and without vegetation, soil erosion and the stability of the vegetated slope from windthrow and snow loading. Slope stability can be determined by using either limit equilibrium or

  16. Hazard assessment of vegetated slopes

    J.E. Norris; J.R. Greenwood; A. Achim; B.A. Gardiner; B.C. Nicoll; E. Cammeraat; S.B. Mickovski


    The hazard assessment of vegetated slopes are reviewed and discussed in terms of the stability of the slope both with and without vegetation, soil erosion and the stability of the vegetated slope from windthrow and snow loading. Slope stability can be determined by using either limit equilibrium or

  17. Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men.

    Whyte, Laura J; Gill, Jason M R; Cathcart, Andrew J


    The aim of this study was to investigate the effects of very high intensity sprint interval training (SIT) on metabolic and vascular risk factors in overweight/obese sedentary men. Ten men (age, 32.1 ± 8.7 years; body mass index, 31.0 ± 3.7 kg m(-2)) participated. After baseline metabolic, anthropometric, and fitness measurements, participants completed a 2-week SIT intervention, comprising 6 sessions of 4 to 6 repeats of 30-second Wingate anaerobic sprints on an electromagnetically braked cycle ergometer, with 4.5-minute recovery between each repetition. Metabolic, anthropometric, and fitness assessments were repeated post-intervention. Both maximal oxygen uptake (2.98 ± 0.15 vs 3.23 ± 0.14 L min(-1), P = .013) and mean Wingate power (579 ± 24 vs 600 ± 19 W, P = .040) significantly increased after 2 weeks of SIT. Insulin sensitivity index (5.35 ± 0.72 vs 4.34 ± 0.72, P = .027) and resting fat oxidation rate in the fasted state (0.13 ± 0.01 vs 0.11 ± 0.01 g min(-1), P = .019) were significantly higher and systolic blood pressure (121 ± 3 vs 127 ± 3 mm Hg, P = .020) and resting carbohydrate oxidation in the fasted state (0.03 ± 0.01 vs 0.08 ± 0.02 g min(-1), P = .037) were significantly lower 24 hours post-intervention compared with baseline, but these changes were no longer significant 72 hours post-intervention. Significant decreases in waist (98.9 ± 3.1 vs 101.3 ± 2.7 cm, P = .004) and hip (109.8 ± 2.2 vs 110.9 ± 2.2 cm, P = .017) circumferences compared with baseline were also observed after the intervention. Thus, 2 weeks of SIT substantially improved a number of metabolic and vascular risk factors in overweight/obese sedentary men, highlighting the potential for this to provide an alternative exercise model for the improvement of vascular and metabolic health in this population.

  18. The Chukchi slope current

    Corlett, W. Bryce; Pickart, Robert S.


    Using a collection of 46 shipboard hydrographic/velocity transects occupied across the shelfbreak and slope of the Chukchi Sea between 2002 and 2014, we have quantified the existence of a current transporting Pacific-origin water westward over the upper continental slope. It has been named the Chukchi slope current, which is believed to emanate from Barrow Canyon. The current is surface-intensified, order 50 km wide, and advects both summer and winter waters. It is not trapped to a particular isobath, but instead is reminiscent of a free jet. There is no significant variation in Pacific water transport with distance from Barrow Canyon. A potential vorticity analysis suggests that the flow is baroclinically unstable, consistent with the notion that it meanders. The current is present during all synoptic wind conditions, but increases in strength from summer to fall presumably due to the seasonal enhancement of the easterly winds in the region. Its transport increased over the 12-year period of data coverage, also likely in response to wind forcing. In the mean, the slope current transports 0.50 ± 0.07 Sv of Pacific water. This estimate allows us to construct a balanced mass budget of the Chukchi shelf inflows and outflows. Our study also confirms the existence of an eastward-flowing Chukchi shelfbreak jet transporting 0.10 ± 0.03 Sv of Pacific water towards Barrow Canyon.

  19. Slope constrained Topology Optimization

    Petersson, J.; Sigmund, Ole


    pointwise bounds on the density slopes. A finite element discretization procedure is described, and a proof of convergence of finite element solutions to exact solutions is given, as well as numerical examples obtained by a continuation/SLP (sequential linear programming) method. The convergence proof...


    魏春启; 白润才


    The artificial neural network model which forecasts Open Mining Slope stability is established by neural network theory and method. The nonlinear reflection relation between stability target of open mining slope and its influence factor is described. The method of forecasting Open Mining Slope stability is brought forward.

  1. Fetal Growth in Pregnancies Conceived after Gastric Bypass Surgery in Relation to Surgery-to-Conception Interval

    Nørgaard, Lone Nikoline; Gjerris, Anne Cathrine Roslev; Kirkegaard, Ida;


    OBJECTIVE: To describe early and late fetal growth in pregnancies conceived after gastric bypass surgery in relation to time from surgery to conception of pregnancy. METHODS: National cohort study on 387 Danish women, who had laparoscopic or open gastric bypass surgery prior to a singleton...... and early or late fetal growth in pregnancies conceived after gastric bypass surgery....

  2. Scientific Infrastructure To Support Manned And Unmanned Aircraft, Tethered Balloons, And Related Aerial Activities At Doe Arm Facilities On The North Slope Of Alaska

    Ivey, M.; Dexheimer, D.; Hardesty, J.; Lucero, D. A.; Helsel, F.


    The U.S. Department of Energy (DOE), through its scientific user facility, the Atmospheric Radiation Measurement (ARM) facilities, provides scientific infrastructure and data to the international Arctic research community via its research sites located on the North Slope of Alaska. DOE has recently invested in improvements to facilities and infrastructure to support operations of unmanned aerial systems for science missions in the Arctic and North Slope of Alaska. A new ground facility, the Third ARM Mobile Facility, was installed at Oliktok Point Alaska in 2013. Tethered instrumented balloons were used to make measurements of clouds in the boundary layer including mixed-phase clouds. A new Special Use Airspace was granted to DOE in 2015 to support science missions in international airspace in the Arctic. Warning Area W-220 is managed by Sandia National Laboratories for DOE Office of Science/BER. W-220 was successfully used for the first time in July 2015 in conjunction with Restricted Area R-2204 and a connecting Altitude Reservation Corridor (ALTRV) to permit unmanned aircraft to operate north of Oliktok Point. Small unmanned aircraft (DataHawks) and tethered balloons were flown at Oliktok during the summer and fall of 2015. This poster will discuss how principal investigators may apply for use of these Special Use Airspaces, acquire data from the Third ARM Mobile Facility, or bring their own instrumentation for deployment at Oliktok Point, Alaska. The printed poster will include the standard DOE funding statement.

  3. Root tensile strength of grey alder and mountain maple grown on a coarse grained eco-engineered slope in the Swiss Alps related to wood anatomical features

    Kink, Dimitri; Bast, Alexander; Meyer, Christine; Meier, Wolfgang; Egli, Markus; Gärtner, Holger


    Steep, vegetation free slopes are a common feature in alpine areas. The material covering these slopes is prone to all kind of erosional processes, resulting in a high risk potential for population and infrastructure. This risk potential is likely to increase with the predicted change in the spatiotemporal distribution of precipitation events. A potential increase in extreme precipitation events will also result in a higher magnitude and frequency of erosional processes. In the Swiss Alps as in many other mountainous areas, there is a need to stabilize these slopes to reduce their direct or indirect hazard potential. In this regard, eco-engineering is a very promising and sustainable approach for slope stabilization. Planting trees and shrubs is a central task in eco-engineering. A developing vegetation cover will on one hand reduce the mechanical effects of rainfall by an increased interception, on the other hand, the root systems cause modifications of soil properties. Roots not only provide anchorage for the plants, they also promote soil aggregation and are able to penetrate possible shear horizons. Overall, anchorage of plants is at the same extend also stabilizing the near subsurface. When rainfall occurs, the saturated soil exerts downhill pressure to a tree or shrub. As long as the root distribution supports anchorage, the respective slope area remains stable. At this point, the tensile strength of the roots is a critical measure, because it is more likely that the supporting roots break than the entire root system being pulled out of the soil completely. As a consequence, root tensile strength is an important parameter in characterizing the soil stabilization potential of trees and shrubs. It is known that tree roots show a high variability in their anatomical structure depending on their depth below soil surface as well as their distance to the main stem. Therefore, we assume that these structural changes affect the tensile strength of every single root

  4. Estimation of reference intervals of five endocannabinoids and endocannabinoid related compounds in human plasma by two dimensional-LC/MS/MS

    Fanelli, Flaminia; Di Lallo, Valentina D.; Belluomo, Ilaria; De Iasio, Rosaria; Baccini, Margherita; Casadio, Elena; Gasparini, Daniela Ibarra; Colavita, Michelangelo; Gambineri, Alessandra; Grossi, Gabriele; Vicennati, Valentina; Pasquali, Renato; Pagotto, Uberto


    The elucidation of the role of endocannabinoids in physiological and pathological conditions and the transferability of the importance of these mediators from basic evidence into clinical practice is still hampered by the indefiniteness of their circulating reference intervals. In this work, we developed and validated a two-dimensional LC/MS/MS method for the simultaneous measurement of plasma endocannabinoids and related compounds such as arachidonoyl-ethanolamide, palmitoyl-ethanolamide, and oleoyl-ethanolamide, belonging to the N-acyl-ethanolamide (NAE) family, and 2-arachidonoyl-glycerol and its inactive isomer 1-arachidonoyl-glycerol from the monoacyl-glycerol (MAG) family. We found that several pitfalls in the endocannabinoid measurement may occur, from blood withdrawal to plasma processing. Plasma extraction with toluene followed by on-line purification was chosen, allowing high-throughput and reliability. We estimated gender-specific reference intervals on 121 healthy normal weight subjects fulfilling rigorous anthropometric and hematic criteria. We observed no gender differences for NAEs, whereas significantly higher MAG levels were found in males compared with females. MAGs also significantly correlated with triglycerides. NAEs increased with age in females, and arachidonoyl-ethanolamide correlated with adiposity and metabolic parameters in females. This work paves the way to the establishment of definitive reference intervals for circulating endocannabinoids to help physicians move from the speculative research field into the clinical field. PMID:22172516

  5. Slope gradient and shape effects on soil profiles in the northern mountainous forests of Iran

    Fazlollahi Mohammadi, M.; Jalali, S. G. H.; Kooch, Y.; Said-Pullicino, D.


    In order to evaluate the variability of the soil profiles at two shapes (concave and convex) and five positions (summit, shoulder, back slope, footslope and toeslope) of a slope, a study of a virgin area was made in a Beech stand of mountain forests, northern Iran. Across the slope positions, the soil profiles demonstrated significant changes due to topography for two shape slopes. The solum depth of the convex slope was higher than the concave one in all five positions, and it decreased from the summit to shoulder and increased from the mid to lower slope positions for both convex and concave slopes. The thin solum at the upper positions and concave slope demonstrated that pedogenetic development is least at upper slope positions and concave slope where leaching and biomass productivity are less than at lower slopes and concave slope. A large decrease in the thickness of O and A horizons from the summit to back slope was noted for both concave and convex slopes, but it increased from back slope toward down slope for both of them. The average thickness of B horizons increased from summit to down slopes in the case of the concave slope, but in the case of convex slope it decreased from summit to shoulder and afterwards it increased to the down slope. The thicknesses of the different horizons varied in part in the different positions and shape slopes because they had different plant species cover and soil features, which were related to topography.

  6. Wave run-up on sandbag slopes

    Thamnoon Rasmeemasmuang


    Full Text Available On occasions, sandbag revetments are temporarily applied to armour sandy beaches from erosion. Nevertheless, an empirical formula to determine the wave run -up height on sandbag slopes has not been available heretofore. In this study a wave run-up formula which considers the roughness of slope surfaces is proposed for the case of sandbag slopes. A series of laboratory experiments on the wave run -up on smooth slopes and sandbag slopes were conducted in a regular-wave flume, leading to the finding of empirical parameters for the formula. The proposed empirical formula is applicable to wave steepness ranging from 0.01 to 0.14 and to the thickness of placed sandbags relative to the wave height ranging from 0.17 to 3.0. The study shows that the wave run-up height computed by the formula for the sandbag slopes is 26-40% lower than that computed by the formula for the smooth slopes.

  7. Estimating significances of differences between slopes: A new methodology and software

    Vasco M. N. C. S. Vieira


    Full Text Available Determining the significance of slope differences is a common requirement in studies of self-thinning, ontogeny and sexual dimorphism, among others. This has long been carried out testing for the overlap of the bootstrapped 95% confidence intervals of the slopes. However, the numerical random re-sampling with repetition favours the occurrence of re-combinations yielding largely diverging slopes, widening the confidence intervals and thus increasing the chances of overlooking significant differences. To overcome this problem a permutation test simulating the null hypothesis of no differences between slopes is proposed. This new methodology, when applied both to artificial and factual data, showed an enhanced ability to differentiate slopes.

  8. Investigation of a hydrological system related to the stability of slope sediments off the Nice Aiport, Ligurian Sea - preliminary data and a sketch for a MSP drilling proposal

    Henry, P.; Stegmann, S.; Sultan, N.; Sage, F.; Migeon, S.; Kopf, A.


    The sedimentary instability of submarine slopes poses a major geohazard and threatens coastal infrastructure both on- and offshore. The Ligurian Margin, Southern France, represents such a potentially unstable slope where factors favouring instability include seismicity, groundwater charging, presence of weak minerals, high sediment accumulation rates, anthropogenic impact by construction, and slope oversteepening. On the 16th of October 1979 a major submarine landslide (~8.7 km2) affected the coastal system offshore Nice and resulted in destruction of an embankment at the Nice airport, a debris flow cutting two submarine cables tens of kilometres away from the sliding area, and a tsunami wave of 2-3 m at the nearby coast. It was proposed several years ago that overpressuring linked to the hydrogeological condition could have been the trigger mechanism of the Nice Airport failure, and seawater composition in this area further suggested that fresh ground water is released offshore by coastal aquifers. The hydrogeological triggering model is also supported by sedimentary and seismic data indicating that gently seaward-dipping permeable layers of sediment may provide aquifer pathways down to a maximum depth of 150 m. An investigation of the superficial sediments (max. 30 mbsf) was recently performed in close collaboration between France (e.g. PRISME cruise with RV L'Atalante, 2007) and Germany (e.g. M73 cruise with RV Meteor, 2007). The study included geophysical acquisition, in situ pore pressure and shear strength measurements (CPTU devices, Penfeld penetrometer) as well as gravity coring. For long- and mid-term measurements, piezometers, which acquire the pore pressure at five different depth levels within the sediment, were installed by IFREMER Brest, France. Short-term measurements were carried out with the marine shallow-water FF-CPTU probe by the MARUM Bremen, Germany, while geochemical analysis was performed on pore water extracted from the cores. The main

  9. Does Tibial Slope Affect Perception of Coronal Alignment on a Standing Anteroposterior Radiograph?

    Schwartz, Adam J; Ravi, Bheeshma; Kransdorf, Mark J; Clarke, Henry D


    A standing anteroposterior (AP) radiograph is commonly used to evaluate coronal alignment following total knee arthroplasty (TKA). The impact of coronal alignment on TKA outcomes is controversial, perhaps due to variability in imaging and/or measurement technique. We sought to quantify the effect of image rotation and tibial slope on coronal alignment. Using a standard extramedullary tibial alignment guide, 3 cadaver legs were cut to accept a tibial tray at 0°, 3°, and 7° of slope. A computed tomography scan of the entire tibia was obtained for each specimen to confirm neutral coronal alignment. Images were then obtained at progressive 10° intervals of internal and external rotation up to 40° maximum in each direction. Images were then randomized and 5 blinded TKA surgeons were asked to determine coronal alignment. Continuous data values were transformed to categorical data (neutral [0], valgus [L], and varus [R]). Each 10° interval of external rotation of a 7° sloped tibial cut (or relative internal rotation of a tibial component viewed in the AP plane) resulted in perception of an additional 0.75° of varus. The slope of the proximal tibia bone cut should be taken into account when measuring coronal alignment on a standing AP radiograph. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Slope earthquake stability

    Changwei, Yang; Jing, Lian; Wenying, Yu; Jianjing, Zhang


    This book begins with the dynamic characteristics of the covering layerbedrock type slope, containing monitoring data of the seismic array, shaking table tests, numerical analysis and theoretical derivation. Then it focuses on the landslide mechanism and assessment method. It also proposes a model that assessing the hazard area based on the field investigations. Many questions, exercises and solutions are given. Researchers and engineers in the field of Geotechnical Engineering and Anti-seismic Engineering can benefit from it.

  11. Stability analysis of the open-pit mine slope and the study on the incensement of the slope angle

    LIU Bao-xu(刘宝许); QIAO Lan(乔兰); LAI Xing-ping(来兴平)


    Based on the exploration of the engineering geology and the rock mechanics testing, limit equilibrium analysis method was adopted to calculate the stability of the Huogeqi Copper Mine slope, the results show that the original slope angle is too conservative and the slope have the potential of more preferable slope angle. In order to discuss the possibility of slope angle enhancement, sensitivity analysis of parameters related to limit state slope was made. Quantitatively determined angle value of the adding and the optimal slope angle was obtained. The study having performed showed that it is not only useful for the safety control of open-pit mine slope but also for the open-pit mine design for the similar geological condition.

  12. A Different Pitch to Slope

    Wolbert, William


    The query "When are we ever going to use this?" is easily answered when discussing the slope of a line. The pitch of a roof, the grade of a road, and stair stringers are three applications of slope that are used extensively. The concept of slope, which is introduced fairly early in the mathematics curriculum has hands-on applications…

  13. Comments on the slope function

    Kim, Minkyoo


    The exact slope function was first proposed in $SL(2)$ sector and generalized to $SU(2)$ sector later. In this note, we consider the slope function in $SU(1|1)$ sector of ${\\cal N}=4$ SYM. We derive the quantity through the method invented by N. Gromov and discuss about its validity. Further, we give comments on the slope function in deformed SYM.

  14. Introducing the event related fixed interval area (ERFIA) multilevel technique: a method to analyze the complete epoch of event-related potentials at single trial level

    Vossen, C.J.; Vossen, H.G.M.; Marcus, M.A.E.; van Os, J.; Lousberg, R.


    In analyzing time-locked event-related potentials (ERPs), many studies have focused on specific peaks and their differences between experimental conditions. In theory, each latency point after a stimulus contains potentially meaningful information, regardless of whether it is peak-related. Based on

  15. Suspended sediment load and mechanical erosion in the Senegal Basin — Estimation of the surface runoff concentration and relative contributions of channel and slope erosion

    Kattan, Z.; Gac, J. Y.; Probst, J. L.


    The main purpose of this paper is to propose a method to better understand the suspended sediment dynamics in the Senegal Basin, and the behaviour of the river particulate load at Bakel gauging station (218,000 km 2) during the period 1979-1984. The method is based on the estimation of surface discharge using a simple hydrological model which allows separation of the different flow components of the annual hydrograph. Then the suspended sediment loads can be correlated with the surface discharge. During the study period, the mean annual flow (330 m 3s -1) represented only 46% of the mean long-term flow (1903-1984), and the mean yearly particulate load carried by the Senegal River was about 1.9 million tons. Two approaches are used to estimate the different contributions to the river's suspended sediment transport. The main contribution originates from slope erosion, which supplies 50-80% of the total sediment transport and the second originates from channel erosion. The suspended sediment concentration in the surface runoff, primarily calculated by a global annual method, ranges from 0.9 to 1.6 gl -1 and averages 1.3 gl -1. After correction for channel erosion input, this concentration is reduced to 1.1 gl -1.

  16. Prediction of slope failure due to earthquake

    CHEN XiaoLi; KATO Nobuaki; TSUNAKI Ryosuke; MUKAI Keiji


    The earthquake-triggered landslides and slope failures are common phenomena during strong earthquakes and have drawn more attention from the world because of severe hazards they induced.These hazards usually cannot be prevented by current mitigating measures,thus,it becomes more and more important to develop a precise technique for the risk assessment of earthquake-induced failures in the mountainous area.The application of discrimination analysis method is proved to be successful and effective in the prediction of earthquake-triggered landslides and slope failures in the region of Imokawa Basin in Japan.Diacriminant score can be used to assess the relative risk of slope failures,as the score increases,the possibility of slope failures occurrence increases accordingly.At the same time,the variables in the judgement formula,such as slope gradient,slope curvature and seismic peak ground acceleration,are easy to obtain.This advantage makes this method more practical and manipulable than others at present.In order to apply this method more effectively,there are still several problems to resolve.


    黄虎; 丁平兴; 吕秀红


    The Hamiltonian formalism for surface waves and the mild-slope approximation were empolyed in handling the case of slowly varying three-dimensional currents and an uneven bottom, thus leading to an extended mild-slope equation. The bottom topography consists of two components: the slowly varying component whose horizontal length scale is longer than the surface wave length, and the fast varying component with the amplitude being smaller than that of the surface wave. The frequency of the fast varying depth component is, however, comparable to that of the surface waves. The extended mild- slope equation is more widely applicable and contains as special cases famous mild-slope equations below: the classical mild-slope equation of Berkhoff , Kirby' s mild-slope equation with current, and Dingemans' s mild-slope equation for rippled bed. The extended shallow water equations for ambient currents and rapidly varying topography are also obtained.

  18. Decision Guide for Roof Slope Selection

    Sharp, T.R.


    This decision guide has been written for personnel who are responsible for the design, construction, and replacement of Air Force roofs. It provides the necessary information and analytical tools for making prudent and cost-effective decisions regarding the amount of slope to provide in various roofing situations. Because the expertise and experience of the decision makers will vary, the guide contains both basic slope-related concepts as well as more sophisticated technical data. This breadth of information enables the less experienced user to develop an understanding of roof slope issues before applying the more sophisticated analytical tools, while the experienced user can proceed directly to the technical sections. Although much of this guide is devoted to the analysis of costs, it is not a cost-estimating document. It does, however, provide the reader with the relative costs of a variety of roof slope options; and it shows how to determine the relative cost-effectiveness of different options. The selection of the proper roof slope coupled with good roof design, a quality installation, periodic inspection, and appropriate maintenance and repair will achieve the Air Force's objective of obtaining the best possible roofing value for its buildings.

  19. Biomechanics and Physiology for Propelling Wheelchair Uphill Slope.

    Hashizume, Tsutomu; Kitagawa, Hiroshi; Lee, Hokyoo; Ueda, Hisatoshi; Yoneda, Ikuo; Booka, Masayuki


    A vertical slope of sidewalks significantly inhibits to the mobility of manual wheelchair users in their daily life. International guidelines of the vertical slope are specified approximately 4% or 5% (1:20) gradient or less as preferred, and allow 8.3% (1:12) as its maximum when it is impossible. Relevant research of the physical strain for wheelchair users with pushing on slopes, and the validity assessment of slope guidelines have been investigated. However, the analysis for the effect of a slope distance and their transient performance are still remained. The purpose of this study is to clarify the physiological and biomechanical characteristics of manual wheelchair users that propelling a wheelchair on an uphill slope. We measured these data by a metabolic analysis system, a heart rate monitor system and an instrumented wheelchair wheel. Sixteen unimpaired subjects (non-wheelchair users) were examined to investigate the effect of a long slope with 120m distance and 8% gradient. And five wheelchair users with cervical cord injury were examined to evaluate the influence of different gradients (5%, 6.7%, 8.3%, 10% and 12.5%) with 3m length in laboratory. Our experimental results of the long slope showed that wheelchair propulsion velocity and power increased considerably at the beginning of the slope where the peak mean value of them were 0.96 m/s and 70.8W and they decreased linearly to 0.55m/s and 33.6W at final interval. A mean oxygen uptake and heart rate were increased as the distance increased and their results indicated the extremely high exercise intensity at a final interval that were 1.2liter /min and 152bpm. While wheelchair pushing cadence reduced after an initial interval, mean of strokes per10m increased to compensate the decrease of upper limb's power. The results of different gradients indicated that the normalized power of subjects with cervical cord injury was significant difference between each subject in the ability to climb a slope. Mean

  20. Fetal growth in pregnancies conceived after gastric bypass surgery in relation to surgery-to-conception interval: a Danish national cohort study.

    Lone Nikoline Nørgaard

    Full Text Available OBJECTIVE: To describe early and late fetal growth in pregnancies conceived after gastric bypass surgery in relation to time from surgery to conception of pregnancy. METHODS: National cohort study on 387 Danish women, who had laparoscopic or open gastric bypass surgery prior to a singleton pregnancy in which first trimester screening was performed between January 2008 and June 2011. Data were derived from national registers (Danish National Registry of Patients and Danish National Birth Registry, Pregnancy Complications and Abortion-clinical quality database (PreCAb and the Danish Fetal Medicine Database. Main outcome measures were early and late fetal growth in relation to time from bariatric surgery to conception of the pregnancy. Early fetal growth was expressed as "Fetal Growth Index": the ratio between the estimated number of days from first trimester ultrasound to second trimester ultrasound biometries and the actual calender time elapsed in days. Late fetal growth was expressed as the observed versus expected birthweight according to gestational age (GA. RESULTS: The surgery-to-conception interval ranged from 3 to 1851 days with a mean value of 502 (SD, 351 days. The mean "fetal growth index" was 0.99 (SD, 0.02 days/day and thus significantly lower than in the background population (mean, 1.04 (SD, 0.09 days/day, p<0.0001. The proportion of infants being small for gestational age was 18.8% and the proportion of large for gestational age infants was 6.7%. The correlation coefficients between surgery-to-conception time and "fetal growth index" and birthweight according to GA were 0.01 (p = 0.8 and 0.04 (p = 0.4, respectively. CONCLUSION: Fetal growth index was lower than reported in the background population. No correlation was found between the surgery-to-conception interval and early or late fetal growth in pregnancies conceived after gastric bypass surgery.

  1. Natural variability of parasite communities of Macrouridae of the middle and lower slope of the Mediterranean Sea and their relation with fish diet and health indicators

    Pérez-i-García, D.; Constenla, M.; Soler-Membrives, A.; Cartes, J. E.; Solé, M.; Carrassón, M.


    This study examines the parasite communities of Coelorinchus caelorhincus, Coelorinchus mediterraneus, Coryphaenoides guentheri and Coryphaenoides mediterraneus of the middle and lower slopes of the Mediterranean Sea. Histopathological, enzymatic activity (acetylcholinesterase and lactate dehydrogenase), dietary and environmental (oxygen, salinity, temperature and turbidity) information were also obtained. A total of 11 parasite taxa were found in the four fish species, the copepod Hamaticolax resupinus being the only parasite shared by all of them. Coelorinchus mediterraneus, Coryphaenoides guentheri and Cor. mediterraneus exhibited rather homogeneous parasite communities, especially in the case of the latter two. Coelorinchus mediterraneus showed the highest richness of parasite taxa (eight species), whereas C. guentheri and Cor. mediterraneus harboured up to five and six, respectively, and C. caelorhincus up to three. Several of the parasites encountered occurred at very low prevalences (<10%), while only three species were exceptionally prevalent and abundant: Cucullanidae fam. gen. sp. larvae in C. caelorhincus; Lepidapedon desclersae in Coe. mediterraneus and Hysterothylacium aduncum in both Coryphaenoides spp. The abundance of the nematode H. aduncum, present in all host species except for C. caelorhincus, increased with water temperature and depth and became the dominant parasite below 2000 m. Salinity may be an important factor affecting the distribution of H. resupinus. The diet was generally homogeneous between the studied species, C. guentheri being more specialized on suprabenthic/benthic prey. The parasites H. aduncum and Tetraphylidea, and to lesser extent Raphidascaris sp., were associated with the most mobile (swimming) prey consumed by macrourids (Chaetognaths, decapod larvae, and Boreomysis arctica). The parasites L. desclersae, Capillostrongyloides morae and Otodistomum sp. were associated in Coe. mediterraneus with epibenthic prey (ophiuroids

  2. Dynamic Response and Dynamic Failure Mode of a Weak Intercalated Rock Slope Using a Shaking Table

    Fan, Gang; Zhang, Jianjing; Wu, Jinbiao; Yan, Kongming


    A large-scale shaking table test was performed to study the dynamic response of slopes parallel to geological bedding (bedding slopes) and slopes that cross-cut geological bedding (counter-bedding slopes). The test results show that the acceleration amplification coefficients increase with increasing elevation and, when the input earthquake amplitude is greater than 0.3 g, both bedding and counter-bedding slopes begin to show nonlinear dynamic response characteristics. With increasing elevation, the displacement of the bedding slope surface increases greatly. Conversely, the displacement of the counter-bedding slope surface increases first and then decreases; the slope develops a bulge at the relative elevation of 0.85. The displacement of the bedding slope surface is greater than that of the counter-bedding slope. The counter-bedding slope is more seismically stable compared with the bedding slope. Based on the Hilbert-Huang transform and marginal spectrum theories, the processes that develop dynamic damage of the bedding and counter-bedding slopes are identified. It is shown that the dynamic failure mode of the bedding slope is mainly represented by vertical tensile cracks at the rear of the slope, bedding slide of the strata along the weak intercalation, and rock collapse from the slope crest. However, the dynamic failure mode of the counter-bedding slope is mainly represented by staggered horizontal and vertical fissures, extrusion of the weak intercalation, and breakage at the slope crest.

  3. Mycorrhizal aspects in slope stabilisation

    Graf, Frank


    In order to re-colonise and stabilise slopes affected by superficial soil failure with plants essential requirements have to be met: the plants must grow the plants must survive sustainably plant succession must start and continuously develop These requirements, however, are anything but easy given, particularly under the often hostile environmental conditions dominating on bare and steep slopes. Mycorrhizal fungi, the symbiotic partners of almost all plants used in eco-engineering, are said to improve the plants' ability to overcome periods governed by strongly (growth) limiting factors. Subsequently, results of investigations are presented of mycorrhizal effects on different plant and soil functions related to eco-engineering in general and soil and slope stabilisation in particular. Generally, inoculation yielded higher biomass of the host plants above as well as below ground. Furthermore, the survival rate was higher for mycorrhized compared to non-mycorrhized plants, particularly under extreme environmental conditions. However, the scale of the mycorrhizal impact may be species specific of both the plant host as well as the fungal partner(s) and often becomes evident only after a certain time lag. Depending on the plant-fungus combination the root length per soil volume was found to be between 0 and 2.5 times higher for inoculated compared to non-inoculated specimens. On an alpine graded ski slope the survival of inoculated compared to non-treated Salix herbacea cuttings was significant after one vegetation period only for one of the three added mycorrhizal fungus species. However, after three years all of the inoculated plantlets performed significantly better than the non-inoculated controls. The analysis of the potential for producing and stabilising soil aggregates of five different ectomycorrhizal fungi showed high variation and, for the species Inocybe lacera, no significant difference compared to untreated soil. Furthermore, inoculation of Salix

  4. Development of a GIS-based failure investigation system for highway soil slopes

    Ramanathan, Raghav; Aydilek, Ahmet H.; Tanyu, Burak F.


    A framework for preparation of an early warning system was developed for Maryland, using a GIS database and a collective overlay of maps that highlight highway slopes susceptible to soil slides or slope failures in advance through spatial and statistical analysis. Data for existing soil slope failures was collected from geotechnical reports and field visits. A total of 48 slope failures were recorded and analyzed. Six factors, including event precipitation, geological formation, land cover, slope history, slope angle, and elevation were considered to affect highway soil slope stability. The observed trends indicate that precipitation and poor surface or subsurface drainage conditions are principal factors causing slope failures. 96% of the failed slopes have an open drainage section. A majority of the failed slopes lie in regions with relatively high event precipitation ( P>200 mm). 90% of the existing failures are surficial erosion type failures, and only 1 out of the 42 slope failures is deep rotational type failure. More than half of the analyzed slope failures have occurred in regions having low density land cover. 46% of failures are on slopes with slope angles between 20° and 30°. Influx of more data relating to failed slopes should give rise to more trends, and thus the developed slope management system will aid the state highway engineers in prudential budget allocation and prioritizing different remediation projects based on the literature reviewed on the principles, concepts, techniques, and methodology for slope instability evaluation (Leshchinsky et al., 2015).

  5. The GLM representation of the global relation for the two-component nonlinear Schrödinger equation on the interval

    Xu, Jian; Fan, Engui


    In a previous work, we show that the solution of the initial-boundary value problem for the two-component nonlinear Schrödinger equation on the finite interval can be expressed in terms of the solution of a 3 ×3 Riemann-Hilbert problem. The relevant jump matrices are explicitly given in terms of the three matrix-value spectral functions s(k), S(k), and SL(k), which in turn are defined in terms of the initial values, boundary values at x = 0, and boundary values at x = L, respectively. However, for a well-posed problem, only part of the boundary values can be prescribed, the remaining boundary data cannot be independently specified but are determined by the so-called global relation. Here, we use a Gelfand-Levitan-Marchenko representation to derive an expression for the generalized Dirichlet-to-Neumann map to characterize the unknown boundary values in physical domain, which is different from the approach, in fact it analyzed the global relation in spectral domain, used in the previous work. And, we can show that these two representations are equivalent.

  6. Research on monitoring system for slope deformation

    LIU Xiao-sheng; ZHANG Xue-zhuang; WANG Ai-gong


    The monitoring system for slope deformation which bases on Leica (TCA series)was researched and developed. This system consists of electronic total stations, high precision thermometer, digital barometer, photoelectric frequency adjustor and other related instruments and data collection and processing software. The system can monitor a series of targets automatically to obtain accurate data of distance at predetermined time, besides,it can timely display targets' coordinates and deformation value, velocity, etc. in graph as well. To compare of the results of different monitoring time, we can find the problems of mine slope deformation rapidly and accurately.

  7. Simulating the seismic behaviour of soil slopes and embankments

    Zania, Varvara; Tsompanakis, Yiannis; Psarropoulos, Prodromos


    In the current study the clarification of the main assumptions, related to the two most commonly used methods of seismic slope stability analysis (pseudostatic and permanent deformation) is attempted. The seismic permanent displacements and the corresponding seismic coefficients were determined via...... parametric dynamic numerical analyses taking into account not only the main parameters dominating the seismic slope stability, but also the inherent assumptions of the applied approaches that affect the obtained results. The investigation conclude to a realistic procedure for seismic slope stability...

  8. Simulating the seismic behaviour of soil slopes and embankments

    Zania, Varvara; Tsompanakis, Yiannis; Psarropoulos, Prodromos


    In the current study the clarification of the main assumptions, related to the two most commonly used methods of seismic slope stability analysis (pseudostatic and permanent deformation) is attempted. The seismic permanent displacements and the corresponding seismic coefficients were determined via...... parametric dynamic numerical analyses taking into account not only the main parameters dominating the seismic slope stability, but also the inherent assumptions of the applied approaches that affect the obtained results. The investigation conclude to a realistic procedure for seismic slope stability...

  9. Some Characterizations of Convex Interval Games

    Brânzei, R.; Tijs, S.H.; Alparslan-Gok, S.Z.


    This paper focuses on new characterizations of convex interval games using the notions of exactness and superadditivity. We also relate big boss interval games with concave interval games and obtain characterizations of big boss interval games in terms of exactness and subadditivity.

  10. Some Characterizations of Convex Interval Games

    Brânzei, R.; Tijs, S.H.; Alparslan-Gok, S.Z.


    This paper focuses on new characterizations of convex interval games using the notions of exactness and superadditivity. We also relate big boss interval games with concave interval games and obtain characterizations of big boss interval games in terms of exactness and subadditivity.

  11. Effects of grapevine root density and reinforcement on slopes prone to shallow slope instability

    Meisina, Claudia; Bordoni, Massimiliano; Bischetti, Gianbattista; Vercesi, Alberto; Chiaradia, Enrico; Cislaghi, Alessio; Valentino, Roberto; Bittelli, Marco; Vergani, Chiara; Chersich, Silvia; Giuseppina Persichillo, Maria; Comolli, Roberto


    Slope erosion and shallow slope instabilities are the major factors of soil losses in cultivated steep terrains. These phenomena also cause loss of organic matter and plants nutrients, together with the partial or total destruction of the structures, such as the row tillage pattern of the vineyards, which allow for the plants cultivation. Vegetation has long been used as an effective tool to decrease the susceptibility of a slope to erosion and to shallow landslides. In particular, the scientific research focused on the role played by the plant roots, because the belowground biomass has the major control on the potential development of soil erosion and of shallow failures. Instead, a comprehensive study that analyzes the effects of the roots of agricultural plants on both soil erosion and slope instability has not been carried out yet. This aspect should be fundamental where sloped terrains are cultivated with plants of great economical relevance, as grapevine. To contribute to fill this gap, in this study the features of root density in the soil profile have been analyzed in slopes cultivated with vineyards, located on a sample hilly area of Oltrepò Pavese (northern Italy). In this area, the viticulture is the most important branch of the local economy. Moreover, several events of rainfall-induced slope erosion and shallow landslides have occurred in this area in the last 6 years, causing several economical damages linked to the destruction of the vineyards and the loss of high productivity soils. Grapevine root distribution have been measured in different test-site slopes, representative of the main geological, geomorphological, pedological, landslides distribution, agricultural features, in order to identify particular patterns on root density that can influence the development of slope instabilities. Roots have been sampled in each test-site for characterizing their strength, in terms of the relation between root diameter and root force at rupture. Root

  12. Application of fuzzy optimal selection of similar slopes to the evaluation of slope stability

    WANG Xu-hua; CHEN Shou-yu; TANG Lie-xian; ZHANG Hou-quan


    The numerical calculation method is widely used in the evaluation of slope stability, but it cannot take the randomness and fuzziness into account that exist in rock and soil engineering objectively. The fuzzy optimization theory is thus introduced to the evaluation of slope stability by this paper and a method of fuzzy optimal selection of similar slopes is put forward to analyze slope stability. By comparing the relative membership degrees that the evaluated object sample of slope is similar to the source samples of which the stabilities are detected clearly, the source sample with the maximal relative membership degree will be chosen as the best similar one to the object sample, and the stability of the object sample can be evaluated by that of the best similar source sample. In the process many uncertain influential factors are considered and characteristics and knowledge of the source samples are obtained. The practical calculation indicates that it can achieve good results to evaluate slope stability by using this method.

  13. New Insights into the Sedimentary Dynamics along Carbonate Slopes

    Wunsch, Marco; Betzler, Christian; Lindhorst, Sebastian; Lüdmann, Thomas; Eberli, Gregor


    Hydroacoustic, sedimentological and seismic data of the leeward slope of Great Bahama Bank and the windward slope of the adjacent Cay Sal Bank provide new insights into carbonate platform slope sedimentation. Our study focuses on the diversity and complexity of the slope morphologies and sedimentary patterns which characterize the youngest high-frequency sequence, forming since the Last Glacial Maximum. It is shown that both carbonate platform slopes are dissected by furrows, gullies and channels which are genetically not related. Along the windward slope of Cay Sal Bank, toe of slope erosion, in conjunction with the local tectonic regime is responsible for channel incisions. Our data show that these channels were active during the regression after the last interglacial highstand of sea level. During this regression, downwelling transported platform sediment downslope, which was redistributed along the slope by contour currents. It is also shown that large mass transport complexes at the leeward slope of Great Bahama Bank formed during the last sea level lowstand, probably triggered by the release of pore-water pressure. These MTC created a complex slope morphology of gullies and scarps. These gullies act as a point source by confining the exported platform sediments during the present day sea level highstand.

  14. Extended cycle combined oral contraceptives and prophylactic frovatriptan during the hormone-free interval in women with menstrual-related migraines.

    Coffee, Andrea L; Sulak, Patricia J; Hill, Alexandria J; Hansen, Darci J; Kuehl, Thomas J; Clark, Jeffrey W


    Migraine headaches are a significant problem for American women with many of them suffering from headaches around the time of their menstrual cycle. Women taking oral contraceptives in the standard 21/7 cycle regimen often suffer from headaches around the time of the hormone free intervals (HFIs) as well. Extended oral contraceptive regimens have been shown to decrease the frequency, but not eliminate these headaches. This study is a double-blind, randomized, placebo-controlled pilot study of participants with menstrual-related migraines (MRMs) who were initiated on extended combined oral contraceptives and given frovatriptan prophylactically during HFIs. Participants having spontaneous menstrual cycles or taking daily combined oral contraceptives in a 21/7 regimen with MRMs were placed on a contraceptive containing levonorgestrel and ethinyl estradiol. Analyses compared headache scores during pre-study baseline cycles to those in a 168-day extended regimen with placebo versus frovatriptan treatments during HFIs. Daily headache scores decreased (p=0.034) from 1.29 ± 0.10 during pre-study cycles to 1.10 ± 0.14 during extended combined oral contraceptive use. Frovatriptan blocked the increase in headache score over the placebo during HFIs. However, following the withdrawal of frovatriptan, headache scores increased (p>0.01) despite resuming combined oral contraceptive use. Extended combined oral contraceptive regimen reduces MRM severity. Frovatriptan prevents headaches during HFIs, but is associated with new headache symptoms when withdrawn.

  15. A Steep Slope and Small Scatter for the High-Mass End of the Faber-Jackson Relation at z~0.55

    Montero-Dorta, Antonio D; Bolton, Adam S; Brownstein, Joel R; Weiner, Benjamin J


    We measure the intrinsic Faber-Jackson (F-J) relation between velocity dispersion $\\sigma$ and luminosity $L$ for massive, luminous red galaxies (LRGs) at redshift z~0.55. We achieve unprecedented precision by using a sample of 600,000 galaxies with spectra from the Baryon Oscillation Spectroscopic Survey (BOSS) of the third Sloan Digital Sky Survey (SDSS-III). We deconvolve the effects of photometric errors, limited spectroscopic signal-to-noise ratio, and red--blue galaxy confusion using a novel hierarchical Bayesian formalism that is generally applicable to any combination of photometric and spectroscopic observables. For a F-J relation of the form $L \\propto \\sigma^{\\beta}$, we find $\\beta = 7.8 \\pm 1.1$ for $\\sigma$ corrected to the effective radius. We find a very small intrinsic scatter of $s = 0.047 \\pm 0.004$ in $\\log_{10} \\sigma$ at fixed $L$. Assuming plausible stellar population models, our measurements are consistent with no evolution in the parameters of the F-J relation over the range 0.5 < ...

  16. The Role of Slope Geometry on Flowslide Occurrence

    Chiara Deangeli


    Full Text Available The paper reports a study aimed to the prediction of susceptibility to flowslide of granular soil slopes as a consequence of the in situ state of stress. In particular, the slope geometry has been investigated as a factor influencing the initial state of stress. For this purpose the results of numerical models, performed by a finite different approach (FLAC, allowed the complete definition, in any point of the slope, of the stress conditions by changing slope height and inclination. By relating this state of stress to parameters used to describe potential for liquefaction of loose granular soils a chart of instability has been set up.

  17. Interval arithmetic in calculations

    Bairbekova, Gaziza; Mazakov, Talgat; Djomartova, Sholpan; Nugmanova, Salima


    Interval arithmetic is the mathematical structure, which for real intervals defines operations analogous to ordinary arithmetic ones. This field of mathematics is also called interval analysis or interval calculations. The given math model is convenient for investigating various applied objects: the quantities, the approximate values of which are known; the quantities obtained during calculations, the values of which are not exact because of rounding errors; random quantities. As a whole, the idea of interval calculations is the use of intervals as basic data objects. In this paper, we considered the definition of interval mathematics, investigated its properties, proved a theorem, and showed the efficiency of the new interval arithmetic. Besides, we briefly reviewed the works devoted to interval analysis and observed basic tendencies of development of integral analysis and interval calculations.

  18. Chaos on the interval

    Ruette, Sylvie


    The aim of this book is to survey the relations between the various kinds of chaos and related notions for continuous interval maps from a topological point of view. The papers on this topic are numerous and widely scattered in the literature; some of them are little known, difficult to find, or originally published in Russian, Ukrainian, or Chinese. Dynamical systems given by the iteration of a continuous map on an interval have been broadly studied because they are simple but nevertheless exhibit complex behaviors. They also allow numerical simulations, which enabled the discovery of some chaotic phenomena. Moreover, the "most interesting" part of some higher-dimensional systems can be of lower dimension, which allows, in some cases, boiling it down to systems in dimension one. Some of the more recent developments such as distributional chaos, the relation between entropy and Li-Yorke chaos, sequence entropy, and maps with infinitely many branches are presented in book form for the first time. The author gi...

  19. Cloning and analysizing the up-regulated expression of transthyretin-related gene(LR1) in rat liver regeneration following short interval successive partial hepatectomy

    Cun-Shuan Xu; Yu-Chang Li; Jun-Tang Lin; Hui-Yong Zhang; Yun-Han Zhang


    AIM: Cloning and analysizing the up-regulated expressionof transthyretin-related gene following short intervalsuccessive partial hepatectomy (SISPH) to elucidate themechanism of differentiation, division, dedifferentiation andredifferentiation in rat liver regeneration (LR).METHODS: Lobus external sinister and lobus centralissinister, lobus centralis, lobus dexter, lobus candatus wereremoved one by one from rat liver at four different time points4, 36, 36 and 36 hr (total time: 4 hr, 40 hr, 76 hr, 112 hr)respectively. Suppression subtractive hybridization (SSH) wascarried out by using normal rat liver tissue as driver and thetissue following short interval successive partial hepatectomy(SISPH) as tester to construct a highly efficient forward-subtractive cDNA library. After screening, an interested ESTfragment was selected by SSH and primers were designedaccording to the sequence of the EST to clone the full-lengthcDNA fragment using RACE (rapid amplification of cDNAend). Homologous detection was performed between thefull-lenth cDNA and Genbank.RESULTS: Forward suppression subtractive hybridization(FSSH) library between 0 h and 112 h following SISPH wasconstructed and an up-regulated full-length cDNA (namedLR1), which was related with the transthyretin gene, wascloned by rapid amplification of cDNA end. It was suggestedthat the gene is involved in the cellular dedifferentiation inLR following SISPH.CONCLUSION: Some genes were up-regulated in 112 hfollowing SISPH in rat. LR1 is one of these up-regulatedexpression genes which may play an important role in rat LR.


    NianXiaohong; GaoJintai


    The robust stability for some types of tlme-varying interval raatrices and nonlineartime-varying interval matrices is considered and some sufficient conditions for robust stability of such interval matrices are given, The main results of this paper are only related to the verticesset of a interval matrices, and therefore, can be easily applied to test robust stability of interval matrices. Finally, some examples are given to illustrate the results.

  1. Land Use Classification Based on Slope Spatial Spectrum and Spatial Relations%坡度空间谱与空间关系参与下的土地利用分类研究

    何挺; 王玲玲; 张友静; 邵蔚; 余远见


    研究目的:依据《土地利用现状分类》,利用QuickBird高空间分辨率遥感影像,采用面向对象的影像分析方法对黄土高原实验区土地利用进行分类,探索提高土地资源数量及质量信息挖掘的广度、深度、自动化程度与准确度,提高工作效率,为国土资源行业的土地资源遥感监测工作提供技术参考。研究方法:在光谱和纹理分类的基础上,提出利用坡度空间谱和对象空间关系构建决策规则的方法;通过对DEM数据的学习,可以得到对象的高程、坡度和坡度空间谱;通过空间方位、距离和拓扑关系,可以分析对象之间的位置关系;最后将学习所得的规则加入到土地利用分类的规则集中。研究结果:相对于完全基于光谱和纹理信息的分类方法,本方法使分类总精度和KAPPA系数分别从76%和0.71提高到87%和0.86。研究结论:坡度空间谱与空间关系规则的应用能有效减少混分,提高分类精度,对于黄土高原区域土地利用分类规则集的构建具有参考价值。%The purpose of this study is to classify the land use through the object-oriented image analysis method with the QuickBird images. It focuses on the scope, depth, automation degree, and accuracy in order to provide the technological reference for land monitoring through remote sensing. The method used is the newly developed decision-rule method based on the slope spatial spectrum and spatial relations. The slope spatial spectrum and the spatial distribution can be obtained through DEM data. The distance, direction and topological spatial relations can beused to analyze the spatial relation between objectives. The results showed that the slope spatial spectral and spatial relationship can effectively reduce the mixing classifications and improve the classification accuracy. The slope spatial spectrum can reduce misclassification between dry land and grass land. The

  2. RMS slope of exponentially correlated surface roughness for radar applications

    Dierking, Wolfgang


    In radar signature analysis, the root mean square (RMS) surface slope is utilized to assess the relative contribution of multiple scattering effects. For an exponentially correlated surface, an effective RMS slope can be determined by truncating the high frequency tail of the roughness spectrum...

  3. Slope Stability Analysis Using GIS

    Bouajaj, Ahmed; Bahi, Lahcen; Ouadif, Latifa; Awa, Mohamed


    An analysis of slope stability using Geographic Information System (GIS) is presented in this paper. The methodology is based on the calculation of the safety factor in 2D and 3D using ArcGis. Hovland's Method in 3D and 2D were used in the stability analysis of the slope located at the 34 kilometer point (K.P.34) on the highway in the North of Morocco connecting Tangier to Ksar Sghir. Results shows that the safety factors obtained in 3D are always higher than those obtained in 2D and the slope becomes unstable when the water table level is less than 1 m.


    A. Bouajaj


    Full Text Available An analysis of slope stability using Geographic Information System (GIS is presented in this paper. The methodology is based on the calculation of the safety factor in 2D and 3D using ArcGis. Hovland's Method in 3D and 2D were used in the stability analysis of the slope located at the 34 kilometer point (K.P.34 on the highway in the North of Morocco connecting Tangier to Ksar Sghir. Results shows that the safety factors obtained in 3D are always higher than those obtained in 2D and the slope becomes unstable when the water table level is less than 1 m.

  5. Effects of inter-stimulus interval (ISI) duration on the N1 and P2 components of the auditory event-related potential.

    Pereira, Diana R; Cardoso, Susana; Ferreira-Santos, Fernando; Fernandes, Carina; Cunha-Reis, Cassilda; Paiva, Tiago O; Almeida, Pedro R; Silveira, Celeste; Barbosa, Fernando; Marques-Teixeira, João


    The N1 and P2 components of the event-related potential are relevant markers in the processing of auditory information, indicating the presence of several acoustic phenomena, such as pure tones or speech sounds. In addition, the expression of these components seems to be sensitive to diverse experimental variations. The main purpose of the present investigation was to explore the role of inter-stimulus interval (ISI) on the N1 and P2 responses, considering two widely used experimental paradigms: a single tone task (1000 Hz sound repeated in a fixed rhythm) and an auditory oddball (80% of the stimuli were equal to the sound used in the single tone and the remaining were a 1500 Hz tone). Both tasks had four different conditions, and each one tested a fixed value of ISI (600, 1000, 3000, or 6000 ms). A sample of 22 participants performed these tasks, while an EEG was recorded, in order to examine the maximum amplitude of the N1 and P2 components. Analysis of the stimuli in the single tone task and the frequent tones in the oddball task revealed a similar outcome for both tasks and for both components: N1 and P2 amplitudes were enhanced in conditions with longer ISIs regardless of task. This response pattern emphasizes the dependence of both the N1 and P2 components on the ISI, especially in a scenario of repetitive and regular stimulation. The absence of task effects suggests that the ISI effect reported may depend on refractory mechanisms rather than being due to habituation effects.

  6. Interval Appraise Method Based on Grey Relation%基于灰色关联度的区间评价方法探讨

    李伟军; 叶飞


    Among the social economic system,valuatorsare difficult to getcorrect data on a certain index,but can give an appraisal interval because of a lot of uncertain factors. For this problem,literature[1]gives out a kind of ideal point appraisal method,literature [2,3]also put forward a few methods to carry out the problem.This paper gives another method named grey relation appraisal method.%社会经济系统中,由于存在着大量不确定性因素,使得对系统进行评估时,在某些指标下难以精确量化,但评估者常常可以给出一个评估区间。对此类带区间值评价问题,文献[1]给出了一种基于理想点的区间评价方法,文献[2,3]针对带区间评价值的评价问题也做出了一些有意义的探讨。在文献[1]的基础上,提出了一种基于灰色关联度的区间评价方法,并利用文献[1]的实例来证实此方法的科学性与可行性。

  7. Slope reinforcement design using geotextiles and geogrids

    Setser, Darrell M.


    A geotextile is defined by ASTM as: any permeable textile material used with foundation, soil, rock, earth, or any other geotechnical engineering related material, as a integral part of a man-made project, structure, or system. A geogrid is defined as: any geotextile-related material used in a similar manner to geotextiles. They are usually made of plastic, but can be metal or wood. Geotextiles and geogrids are collectively referred to as geosynthetics in this paper. Geosynthetic reinforcement of slopes is a relatively new option available to the civil engineer. Slope angles can be increased and 'poor' soil can be used to construct economical soil-geosynthetic facilities. Uncertainties exist in the complex interaction between the soil and the geosynthetic but there are numerous procedures which ignore this in the design. The design procedures available may be conservative yet still may be an economical alternative when compared to more conventional options.

  8. Impact of low-volume, high-intensity interval training on maximal aerobic capacity, health-related quality of life and motivation to exercise in ageing men.

    Knowles, Ann-Marie; Herbert, Peter; Easton, Chris; Sculthorpe, Nicholas; Grace, Fergal M


    There is a demand for effective training methods that encourage exercise adherence during advancing age, particularly in sedentary populations. This study examined the effects of high-intensity interval training (HIIT) exercise on health-related quality of life (HRQL), aerobic fitness and motivation to exercise in ageing men. Participants consisted of males who were either lifelong sedentary (SED; N = 25; age 63 ± 5 years) or lifelong exercisers (LEX; N = 19; aged 61 ± 5 years). [Formula: see text] and HRQL were measured at three phases: baseline (Phase A), week seven (Phase B) and week 13 (Phase C). Motivation to exercise was measured at baseline and week 13. [Formula: see text] was significantly higher in LEX (39.2 ± 5.6 ml kg min(-1)) compared to SED (27.2 ± 5.2 ml kg min(-1)) and increased in both groups from Phase A to C (SED 4.6 ± 3.2 ml kg min(-1), 95 % CI 3.1 - 6.0; LEX 4.9 ± 3.4 ml kg min(-1), 95 % CI 3.1-6.6) Physical functioning (97 ± 4 LEX; 93 ± 7 SED) and general health (70 ± 11 LEX; 78 ± 11 SED) were significantly higher in LEX but increased only in the SED group from Phase A to C (physical functioning 17 ± 18, 95 % CI 9-26, general health 14 ± 14, 95 % CI 8-21). Exercise motives related to social recognition (2.4 ± 1.2 LEX; 1.5 ± 1.0 SED), affiliation (2.7 ± 1.0 LEX; 1.6 ± 1.2 SED) and competition (3.3 ± 1.3 LEX; 2.2 ± 1.1) were significantly higher in LEX yet weight management motives were significantly higher in SED (2.9 ± 1.1 LEX; 4.3 ± 0.5 SED). The study provides preliminary evidence that low-volume HIIT increases perceptions of HRQL, exercise motives and aerobic capacity in older adults, to varying degrees, in both SED and LEX groups.

  9. Seepage and slope stability modelling of rainfall-induced slope failures in topographic hollows

    Kiran Prasad Acharya


    Full Text Available This study focuses on topographic hollows, their flow direction and flow accumulation characteristics, and highlights discharge of hillslope seepage so as to understand porewater pressure development phenomena in relation with slope failure in topographic hollows. For this purpose, a small catchment in Niihama city of Shikoku Island in western Japan, with a record of seven slope failures triggered by typhoon-caused heavy rainfall on 19–20 October 2004, was selected. After extensive fieldwork and computation of hydro-mechanical parameters in unsaturated and saturated conditions through a series of laboratory experiments, seepage and slope stability modellings of these slope failures were done in GeoStudio environment using the precipitation data of 19–20 October 2004. The results of seepage modelling showed that the porewater pressure was rapid transient in silty sand, and the maximum porewater pressure measured in an area close to the base of topographic hollows was found to be higher with bigger topographic hollows. Furthermore, a threshold relationship between the topographic hollow area and maximum porewater pressure in this study indicates that a topographic hollow of 1000 sq. m area can develop maximum porewater pressure of 1.253 kPa. However, the porewater pressures required to initiate slope instability in the upper part of the topographic hollows is relatively smaller than those in the lower part of the topographic hollows.

  10. Mapping basin-wide subaquatic slope failure susceptibility as a tool to assess regional seismic and tsunami hazards

    Strasser, Michael; Hilbe, Michael; Anselmetti, Flavio S.


    With increasing awareness of oceanic geohazards, submarine landslides are gaining wide attention because of their catastrophic impacts on both offshore infrastructures (e.g. pipelines, cables and platforms) and coastal areas (e.g. landslide-induced tsunamis). They also are of great interest because they can be directly related to primary trigger mechanisms including earthquakes, rapid sedimentation, gas release, glacial and tidal loading, wave action, or clathrate dissociation, many of which represent potential geohazards themselves. In active tectonic environments, for instance, subaquatic landslide deposits can be used to make inferences regarding the hazard derived from seismic activity. Enormous scientific and economic efforts are thus being undertaken to better determine and quantify causes and effects of natural hazards related to subaquatic landslides. In order to achieve this fundamental goal, the detailed study of past events, the assessment of their recurrence intervals and the quantitative reconstruction of magnitudes and intensities of both causal and subsequent processes and impacts are key requirements. Here we present data and results from a study using fjord-type Lake Lucerne in central Switzerland as a "model ocean" to test a new concept for the assessment of regional seismic and tsunami hazard by basin-wide mapping of critical slope stability conditions for subaquatic landslide initiation. Previously acquired high-resolution bathymetry and reflection seismic data as well as sedimentological and in situ geotechnical data, provide a comprehensive data base to investigate subaquatic landslides and related geohazards. Available data are implemented into a basin-wide slope model. In a Geographic Information System (GIS)-framework, a pseudo-static limit equilibrium infinite slope stability equation is solved for each model point representing reconstructed slope conditions at different times in the past, during which earthquake-triggered landslides

  11. North Slope (Wahluke Slope) expedited response action cleanup plan


    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi{sup 2} (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives.

  12. Interval-based Synthesis

    Angelo Montanari


    Full Text Available We introduce the synthesis problem for Halpern and Shoham's modal logic of intervals extended with an equivalence relation over time points, abbreviated HSeq. In analogy to the case of monadic second-order logic of one successor, the considered synthesis problem receives as input an HSeq formula phi and a finite set Sigma of propositional variables and temporal requests, and it establishes whether or not, for all possible evaluations of elements in Sigma in every interval structure, there exists an evaluation of the remaining propositional variables and temporal requests such that the resulting structure is a model for phi. We focus our attention on decidability of the synthesis problem for some meaningful fragments of HSeq, whose modalities are drawn from the set A (meets, Abar (met by, B (begins, Bbar (begun by, interpreted over finite linear orders and natural numbers. We prove that the fragment ABBbareq is decidable (non-primitive recursive hard, while the fragment AAbarBBbar turns out to be undecidable. In addition, we show that even the synthesis problem for ABBbar becomes undecidable if we replace finite linear orders by natural numbers.

  13. Orders on Intervals Over Partially Ordered Sets: Extending Allen's Algebra and Interval Graph Results

    Zapata, Francisco; Kreinovich, Vladik; Joslyn, Cliff A.; Hogan, Emilie A.


    To make a decision, we need to compare the values of quantities. In many practical situations, we know the values with interval uncertainty. In such situations, we need to compare intervals. Allen’s algebra describes all possible relations between intervals on the real line, and ordering relations between such intervals are well studied. In this paper, we extend this description to intervals in an arbitrary partially ordered set (poset). In particular, we explicitly describe ordering relations between intervals that generalize relation between points. As auxiliary results, we provide a logical interpretation of the relation between intervals, and extend the results about interval graphs to intervals over posets.

  14. Rock slope instabilities in Norway: First systematic hazard and risk classification of 22 unstable rock slopes

    Böhme, Martina; Hermanns, Reginald L.; Oppikofer, Thierry; Penna, Ivanna


    Unstable rock slopes that can cause large failures of the rock-avalanche type have been mapped in Norway for almost two decades. Four sites have earlier been characterized as high-risk objects based on expertise of few researchers. This resulted in installing continuous monitoring systems and set-up of an early-warning system for those four sites. Other unstable rock slopes have not been ranked related to their hazard or risk. There are ca. 300 other sites known of which 70 sites were installed for periodic deformation measurements using multiple techniques (Global Navigation Satellite Systems, extensometers, measurement bolts, and others). In 2012 a systematic hazard and risk classification system for unstable rock slopes was established in Norway and the mapping approach adapted to that in 2013. Now, the first 22 sites were classified for hazard, consequences and risk using this classification system. The selection of the first group of sites to be classified was based on an assumed high hazard or risk and importance given to the sites by Norwegian media and the public. Nine of the classified 22 unstable rock slopes are large sites that deform inhomogeneously or are strongly broken up in individual blocks. This suggests that different failure scenarios are possible that need to be analyzed individually. A total of 35 failure scenarios for those nine unstable rock slopes were considered. The hazard analyses were based on 9 geological parameters defined in the classification system. The classification system will be presented based on the Gamanjunni unstable rock slope. This slope has a well developed back scarp that exposes 150 m preceding displacement. The lateral limits of the unstable slope are clearly visible in the morphology and InSAR displacement data. There have been no single structures observed that allow sliding kinematically. The lower extend of the displacing rock mass is clearly defined in InSAR data and by a zone of higher rock fall activity. Yearly

  15. Question of Slope Evolution,

    A mass-area transposition of fragmentary materials, which plays a determining role in the formation of relief, takes place in the humid climatic...conditions of the south of the Far East with its very cold winters causing retention of a continuous frozen state and a deep seasonal frost line in vast...areas. In the areas of a lengthy, relatively stable position of the erosion network where a round incision still has not penetrated, the relief

  16. Percent Agricultural Land Cover on Steep Slopes (Future)

    U.S. Environmental Protection Agency — Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type....

  17. Age related vascular endothelial function following lifelong sedentariness: positive impact of cardiovascular conditioning without further improvement following low frequency high intensity interval training

    Grace, Fergal M.; Herbert, Peter; Ratcliffe, John W.; New, Karl J; Baker, Julien S; Sculthorpe, Nicholas F.


    Abstract Aging is associated with diffuse impairments in vascular endothelial function and traditional aerobic exercise is known to ameliorate these changes. High intensity interval training (HIIT) is effective at improving vascular function in aging men with existing disease, but its effectiveness remains to be demonstrated in otherwise healthy sedentary aging. However, the frequency of commonly used HIIT protocols may be poorly tolerated in older cohorts. Therefore, the present study invest...

  18. Scaling of light and dark time intervals.

    Marinova, J


    Scaling of light and dark time intervals of 0.1 to 1.1 s is performed by the mehtod of magnitude estimation with respect to a given standard. The standards differ in duration and type (light and dark). The light intervals are subjectively estimated as longer than the dark ones. The relation between the mean interval estimations and their magnitude is linear for both light and dark intervals.

  19. The interval ordering problem

    Dürr, Christoph; Spieksma, Frits C R; Nobibon, Fabrice Talla; Woeginger, Gerhard J


    For a given set of intervals on the real line, we consider the problem of ordering the intervals with the goal of minimizing an objective function that depends on the exposed interval pieces (that is, the pieces that are not covered by earlier intervals in the ordering). This problem is motivated by an application in molecular biology that concerns the determination of the structure of the backbone of a protein. We present polynomial-time algorithms for several natural special cases of the problem that cover the situation where the interval boundaries are agreeably ordered and the situation where the interval set is laminar. Also the bottleneck variant of the problem is shown to be solvable in polynomial time. Finally we prove that the general problem is NP-hard, and that the existence of a constant-factor-approximation algorithm is unlikely.

  20. CCN-supersaturation spectra slopes (k)

    Jiusto, J. E.; Lala, G. G.


    Theoretically the slope k of a CCN-supesaturation spectrum should equal two thirds of the slope of the total (soluble) aerosol size distribution. Workshop results tended to verify this relation. The k values are markedly different depending on whether one is measuring ambient CCN concentrations at supersaturations S above or below approximately 0.1-0.2%. The larger k values for S approximately 0.1% is consistent with the greater decrease in large particle concentration with increasing size. It is concluded that over the S range of 0.02% to 2%, two power fits (and k values) may sometimes suffice for a reasonable approximation of the CCN distribution. At other times, and with laboratory generated aeosols, such an approach is inadequate and requires refinement.

  1. The effects of plant density of Melastoma malabathricum on the erosion rate of slope soil at different slope orientations

    Aimee Halim n; Osman Normaniza


    abstract Malaysia's cut slopes, especially for road lines accommodation, are prone to erosions and landslides. These problems mainly occur due to lack of vegetation cover and strong erosive forces. In addition, the topography factors have also become a major factor affecting soil degradation. Thus, this study is aimed at determining the effects of planting density of a selected species, namely Melastoma malabathricum;one, two, and three seedlings per box, on the erosion rate at selected slopes of different orientation (morning and evening sun) at the Guthrie Corridor Expressway, Selangor. In six months of observation, treatment with three seedlings/box on the morning sun slope showed a lower erosion rate by 69.2%than those with the same treatment on the evening sun slope. In addition, the treatment of the three seedlings recorded at month six (final observation) had the highest reduction of soil saturation level (STL), by 23.6%. Furthermore, the physiological values of the species studied, grown on the morning sun slope, were higher in terms of stomatal conductance and photosynthetic rate by 12.1%and15.8%(three seedlings/box), respectively. The overall results showed that plant density was inversely related to the STL and erosion rate on the slope. In conclusion, a planting density of three seedlings/box and morning sun orientation gave positive effects on the plant's physiological performance of the slope, reducing the STL, as well as alleviating the erosion rate of slope soils.

  2. Western Slope of Andes, Peru


    Along the western flank of the Andes, 400 km SE of Lima Peru, erosion has carved the mountain slopes into long, narrow serpentine ridges. The gently-sloping sediments have been turned into a plate of worms wiggling their way downhill to the ocean. The image was acquired September 28, 2004, covers an area of 38 x 31.6 km, and is located near 14.7 degrees south latitude, 74.5 degrees west longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  3. Slope Morphology of Twin Peaks, Mars Pathfinder Landing Site

    Hobbs, Steven; Paine, Colin; Clarke, Jon; Caprarelli, Graziella


    . Processes such as ice flow or deposition were proposed as being the principal cause of most of observed features, by analogy with similar features observed on Earth [10]. Here we propose that the slopes on the Twin Peaks may provide an indication of the processes that shaped them after they were formed. This work shows the results of a detailed morphometric analysis of slopes on the southernmost peak, conducted to gain a greater understanding of past and present slope processes at work at the Pathfinder landing site. The southern Twin Peak is a conical hill rising 38 m above the local terrain. A portion of the Pathfinder super panorama was used to analyse the hill-slope morphology. The camera horizon was used as a baseline and all slope angles were measured from this. The hill comprises four separate regions including the top of the hill, which is convex in shape. The convex nature of the hilltop is a common if not ubiquitous feature of hills regardless of their origin. It is related to the creep processes that frequently dominate the tops of hill slopes. In this case it was probably caused by heating and cooling during the Martian diurnal cycle, by the action of soil water, or a combination of both. All slope sections were observed to be similar in length. The slopes nearest the hill top measure 21˚ and 22.5˚ respectively on the north and south sides of the Southern Twin Peak. Mid way down the hill the next sequence of slopes have north and south angles of 9˚ and 15˚ respectively. Shallow end-slopes measure 4˚ and 5˚ north and south respectively. Similarity of slope angles and lengths indicates symmetry, suggesting that the rocks are the same all around the hill. Our analysis suggests that slope angles are controlled by a combination of the materials of which they are formed and the processes that are operating on them. Their primarily symmetrical outlook indicates no structural control, suggesting that the hill is formed by flat-lying or massive homogeneous rocks

  4. From incipient slope instability through slope deformation to catastrophic failure - Different stages of failure development on the Ivasnasen and Vollan rock slopes (western Norway)

    Oppikofer, T.; Saintot, A.; Hermanns, R. L.; Böhme, M.; Scheiber, T.; Gosse, J.; Dreiås, G. M.


    with its up to 130-m-wide graben, which opened along the subvertical foliation in the quartzite, and a conspicuous array of counter-scarps in the micaschist. The morphologic features are explained by a flexural toppling mechanism in the micaschist, which likely initiated in the lower slope section and propagated retrogressively until reaching the massive quartzite at the back scarp. Flexural toppling cannot solely explain the total along-slope displacement of up to 200 m, i.e., an elongation of 28%. Creep along a basal shear zone, which may have developed in the hinge zone of the flexural toppling, combined with shallow valley-dipping joints, likely accounts for the large elongation. Implications of this study for the hazard assessment of unstable rock slopes in Norway include the relatively rapid development of instabilities in cataclinal slopes and the important insights on long-term displacement rates gained from cosmogenic nuclide dating for a better understanding of the evolution of unstable rock slopes.

  5. Interval Scheduling: A Survey

    Kolen, A.W.J.; Lenstra, J.K.; Papadimitriou, C.H.; Spieksma, F.C.R.


    In interval scheduling, not only the processing times of the jobs but also their starting times are given. This article surveys the area of interval scheduling and presents proofs of results that have been known within the community for some time. We first review the complexity and approximability o

  6. Estimating duration intervals

    Ph.H.B.F. Franses (Philip Hans); B.L.K. Vroomen (Björn)


    textabstractDuration intervals measure the dynamic impact of advertising on sales. More precise, the p per cent duration interval measures the time lag between the advertising impulse and the moment that p per cent of its effect has decayed. In this paper, we derive an expression for the duration

  7. Exploring Slope with Stairs & Steps

    Smith, Toni M.; Seshaiyer, Padmanabhan; Peixoto, Nathalia; Suh, Jennifer M.; Bagshaw, Graham; Collins, Laurena K.


    As much as ever before, mathematics teachers are searching for ways to connect mathematics to real-life scenarios within STEM contexts. As students develop skill in proportional reasoning, they examine graphical representations of linear functions, learn to associate "slope" with "steepness" and rate of change, and develop…

  8. Ocean processes at the Antarctic continental slope.

    Heywood, Karen J; Schmidtko, Sunke; Heuzé, Céline; Kaiser, Jan; Jickells, Timothy D; Queste, Bastien Y; Stevens, David P; Wadley, Martin; Thompson, Andrew F; Fielding, Sophie; Guihen, Damien; Creed, Elizabeth; Ridley, Jeff K; Smith, Walker


    The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean-atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system.

  9. The relationship between consecutive pregnancies in Thoroughbred mares. Does the location of one pregnancy affect the location of the next, is this affected by mare age and foal heat to conception interval or related to pregnancy success.

    Davies Morel, M C G; Newcombe, J R; Hinchliffe, J


    Delayed uterine involution is a major cause of early reproductive failure in mares. Involution is affected by mare age, and foaling to covering interval. Involution rates vary between the previously non-gravid horn (PNGH), which recovers the quicker, and the previously gravid horn (PGH). Location of a pregnancy and its likely success may, therefore, be affected by its location relative to the previous pregnancy. This study aimed to determine: (i) the location of concepti in consecutive pregnancies; (ii) whether this varies with mare age or foaling to conception interval; (iii) whether location in relation to the previous pregnancy affects success. 1383 Thoroughbred mares were monitored by ultrasonic scanning during oestrus and early pregnancy. Significantly (psuccess are greatest. The larger number of pregnancies locating in the PGH in older mares and those with shorter foaling to conception intervals may in part account for the higher conceptus mortality rates in such mares. Hence breeding older mares on alternate years and maximising foaling to conception interval may improve reproductive success. Alternatively termination of pregnancies located in the PGH followed by timely recovering may be justifiable as might ET in older mares covered close to foaling.

  10. Lacustrine Basin Slope Break — A New Domain of Strata and Lithological Trap Exploration

    WangYingmin; LiuHao; XinRenchen; JinWudi; WangYuan; LiWeiguo


    Based on the studies of the Songliao Basin characterized by Cretaceous down-warping, of the Jurassic compressional flexural Junggar basin and of the Bohai Bay Basin characterized by Paleogene rifting, the multiple-grades slope break has developed in lacustrine basins of different origins. Their genetic types can be divided into tectonic slope break, depositional slope break and erodent slope break. The dominant agent of the slope break is tectogenesis, and the scale of slope breaks relates with the size of tectogenesis. The results of the study show that control of mutual grades slope breaks on atectonic traps mainly represent: 1) Atectonic traps develop close to mutual grades slope breaks, with beads-shaped distribution along the slope breaks. 2) In the longitudinal direction, the development of atectonic traps is characterized by the inheritance. 3) Different slope breaks and their different geographical positions can lead to different development types of atectonic traps. 4) A slope break can form different kinds of atectonic traps because of its great lateral variation. 5) The existence of mutual-grade slope breaks leads to different responses of erosion and deposition at different geographical positions in the basin. The oil source bed, reservoir and cap rock combination of atectonic traps is fine. 6) The oil-bearing condition of atectonic traps controlled by slope breaks is very favorable.

  11. Slope stability analysis using limit equilibrium method in nonlinear criterion.

    Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu


    In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σ ci , and the parameter of intact rock m i . There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σ ci is relatively small, the relation between F and σ ci is nonlinear, but when σ ci is relatively large, the relation is linear; with the increase of m i , F decreases first and then increases.

  12. Synergism Analysis of Bedding Slope with Piles and Anchor Cable Support under Sine Wave Vehicle Load

    Li Dan-Feng


    Full Text Available Slope instability under dynamic load is the technical difficulty in the engineering; the evaluation of slope stability under dynamic load and the control of dynamic load is particularly important. In this paper, taking the right side slope of K27+140 m~380 m typical section (K27 slope for short in Chongqing Fuling-Fengdu-Shizhu expresses highway as an example to calculate and analyze. The K27 slope is under sinusoidal vehicle load and supported by anchor cable and antislide pile to resist downslide strength; at the same time, the combined effect of them is studied. Three-dimensional finite element methodology (FEM is used to simulate the bedding slope with piles and anchor cable support; furthermore, the eigenvalue can be obtained. In order to reduce error of the elastic boundary conditions caused by the reflection effect of wavelengths, the combination of Lysmer surface viscous boundary and traditional ground support boundaries is utilized to analyze and calculate the time-histories during bedding slope under dynamic load. The dynamic response of pile anchor support to resist sliding force is obtained. The concept of the pile anchor supporting coordinate interval is put forward. Furthermore, it is verified that the pile anchor supporting coordinate interval can be used to evaluate the stability of the slope under dynamic load and provide a new method for the control of the dynamic load.


    Xiaoguang ZHAO; Hui SHI; Ming'an SHAO


    The slopes in field conditions are always irregular, but the supposed uniform slopes are used in most erosion models. Some studies used several uniform slopes to approximate an irregular slope for estimating soil erosion. This approximation is both time-consuming and weak in physical insights. In this paper, the concept of equivalent slope is presented based on that runoff potential on uniform slope is equal to that of irregular slope, and the equivalent uniform slope is used to estimate soil erosion instead of the irregular slopes. The estimated results of slope-length factors for convex and concave slopes are consistent with those from the method of Foster and Wischmeier.The experiments in the southern part of the Loess Plateau in China confirmed the applicability of the present method. The method is simple and has, to some extent, clear physical meanings, and is applicable for estimating soil erosion from irregular slopes.

  14. Slope equalities for genus 5 surface fibrations

    Tenni, Elisa


    K. Konno proved a slope equality for fibred surfaces with fibres of odd genus and general fibre of maximal gonality. More precisely he found a relation between the invariants of the fibration and certain weights of special fibres (called the Horikawa numbers). We give an alternative and more geometric proof in the case of a genus 5 fibration, under generality assumptions. In our setting we are able to prove that the fibre with positive Horikawa numbers are precisely the trigonal ones, we compute their weights explicitly and thus we exhibit explicit examples of regular surfaces with assigned invariants and Horikawa numbers.

  15. Changes in Quality of Native and Frozenthawed Semen in Relation to Two Collections Performed in a 24-hour Interval and Adition of Clarified Egg Yolk to Extender

    Folková P.


    Full Text Available The aim of the study was to evaluate the effect of repeated semen collection and the substitution of normal egg yolk with clarified egg yolk to commercially produced semen extender on qualitative parameters of frozen-thawed canine semen. Two semen collections were scheduled in a 24-hour interval and in each of six dogs, three 1st and three 2nd collections were performed. The frozen-thawed sperm samples were prepared either with clarified or normal egg yolk and motility and viability were evaluated. The effect of the sequence of semen collection was demonstrated by significant differences in motility and also in viability of sperms both in native and frozen-thawed ejaculate. The percentage of viable sperms was significantly higher in samples from the 2nd compared to the 1st collection. This trend was the same also in motility except in native ejaculate. The addition of clarified egg yolk was beneficial for higher survival of sperms immediately after thawing and also after 30 min of incubation, compared to samples with normal egg yolk. Sperm motility evaluated after thawing was higher in samples with clarified egg yolk, without an apparent connection with semen collection sequence. The decrease of values of the qualitative parameters of sperms observed in the period of 30 min of incubation was significantly slowed down when clarified egg yolk was used. This was especially obvious in samples from the 2nd collection.

  16. Slope Streaks in Terra Sabaea


    [figure removed for brevity, see original site] Figure 1 Click on image for larger version This HiRISE image shows the rim of a crater in the region of Terra Sabaea in the northern hemisphere of Mars. The subimage (figure 1) is a close-up view of the crater rim revealing dark and light-toned slope streaks. Slope streak formation is among the few known processes currently active on Mars. While their mechanism of formation and triggering is debated, they are most commonly believed to form by downslope movement of extremely dry sand or very fine-grained dust in an almost fluidlike manner (analogous to a terrestrial snow avalanche) exposing darker underlying material. Other ideas include the triggering of slope streak formation by possible concentrations of near-surface ice or scouring of the surface by running water from aquifers intercepting slope faces, spring discharge (perhaps brines), and/or hydrothermal activity. Several of the slope streaks in the subimage, particularly the three longest darker streaks, show evidence that downslope movement is being diverted around obstacles such as large boulders. Several streaks also appear to originate at boulders or clumps of rocky material. In general, the slope streaks do not have large deposits of displaced material at their downslope ends and do not run out onto the crater floor suggesting that they have little reserve kinetic energy. The darkest slope streaks are youngest and can be seen to cross cut and superpose older and lighter-toned streaks. The lighter-toned streaks are believed to be dark streaks that have lightened with time as new dust is deposited on their surface. Observation Geometry Image PSP_001808_1875 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 15-Dec-2006. The complete image is centered at 7.4 degrees latitude, 47.0 degrees East longitude. The range to the target site was 272.1 km (170.1 miles). At this distance the

  17. Age related vascular endothelial function following lifelong sedentariness: positive impact of cardiovascular conditioning without further improvement following low frequency high intensity interval training.

    Grace, Fergal M; Herbert, Peter; Ratcliffe, John W; New, Karl J; Baker, Julien S; Sculthorpe, Nicholas F


    Aging is associated with diffuse impairments in vascular endothelial function and traditional aerobic exercise is known to ameliorate these changes. High intensity interval training (HIIT) is effective at improving vascular function in aging men with existing disease, but its effectiveness remains to be demonstrated in otherwise healthy sedentary aging. However, the frequency of commonly used HIIT protocols may be poorly tolerated in older cohorts. Therefore, the present study investigated the effectiveness of lower frequency HIIT (LfHIIT) on vascular function in a cohort of lifelong sedentary (SED; n = 22, age 62.7 ± 5.2 years) men compared with a positive control group of lifelong exercisers (LEX; n = 17, age 61.1 ± 5.4 years). The study consisted of three assessment phases; enrolment to the study (Phase A), following 6 weeks of conditioning exercise in SED (Phase B) and following 6 weeks of low frequency HIIT in both SED and LEX (LfHIIT; Phase C). Conditioning exercise improved FMD in SED (3.4 ± 1.5% to 4.9 ± 1.1%; P < 0.01) such that the difference between groups on enrolment (3.4 ± 1.5% vs. 5.3 ± 1.4%; P < 0.01) was abrogated. This was maintained but not further improved following LfHIIT in SED whilst FMD remained unaffected by LfHIIT in LEX. In conclusion, LfHIIT is effective at maintaining improvements in vascular function achieved during conditioning exercise in SED. LfHIIT is a well-tolerated and effective exercise mode for reducing cardiovascular risk and maintaining but does not improve vascular function beyond that achieved by conditioning exercise in aging men, irrespective of fitness level. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  18. Systolic blood pressure response after high-intensity interval exercise is independently related to decreased small arterial elasticity in normotensive African American women.

    Carter, Stephen J; Goldsby, TaShauna U; Fisher, Gordon; Plaisance, Eric P; Gower, Barbara A; Glasser, Stephen P; Hunter, Gary R


    Aerobic exercise transiently lowers blood pressure. However, limited research has concurrently evaluated blood pressure and small arterial elasticity (SAE), an index of endothelial function, among African American (AA) and European American (EA) women the morning after (i.e., ≈22 h later) acute bouts of moderate-intensity continuous (MIC) and high-intensity interval (HII) exercise matched for total work. Because of greater gradients of shear stress, it was hypothesized that HII exercise would elicit a greater reduction in systolic blood pressure (SBP) compared to MIC exercise. After baseline, 22 AA and EA women initiated aerobic exercise training 3 times/week. Beginning at week 8, three follow-up assessments were conducted over the next 8 weeks at random to measure resting blood pressure and SAE. In total all participants completed 16 weeks of training. Follow-up evaluations were made: (i) in the trained state (TS; 8-16 weeks of aerobic training); (ii) ≈22 h after an acute bout of MIC exercise; and (iii) ≈22 h after an acute bout of HII exercise. Among AAs, the acute bout of HII exercise incited a significant increase in SBP (mm Hg) (TS, 121 ± 14 versus HII, 128 ± 14; p = 0.01) whereas responses (TS, 116 ± 12 versus HII, 113 ± 9; p = 0.34) did not differ in EAs. After adjusting for race, changes in SAE were associated (partial r = -0.533; p = 0.01) with changes in SBP following HII exercise. These data demonstrate an acute, unaccustomed bout of HII exercise produces physiological perturbations resulting in a significant increase in SBP that are independently associated with decreased SAE among AA women, but not EA women.

  19. Recurring Slope Lineae in Mid-Latitude and Equatorial Mars

    McEwen, A. S.; Dundas, C. M.; Mattson, S.; Toigo, A. D.; Ojha, L.; Wray, J. J.; Chojnacki, M.; Byrne, S.; Murchie, S. L.; Thomas, N.


    A key to potential present-day habitability of Mars is the presence of liquid H2O (water). Recurring slope lineae (RSL) could be evidence for the seasonal flow of water on relatively warm slopes. RSL are narrow (250 K to >300 K. In the past year we have monitored active RSL in equatorial (0°-15°S) regions of Mars, especially in the deep canyons of Valles Marineris. They are especially active on north-facing slopes in northern summer and spring and on south-facing slopes in southern spring and summer, following the most normal solar incidence angles on these steep slopes. However, predicted peak temperatures for north-facing slopes are nearly constant throughout the Martian year because orbital periapse occurs near the southern summer solstice. Although warm temperatures and steep low-albedo slopes are required, some additional effect besides temperature may serve to trigger and stop RSL activity. Seasonal variation in the atmospheric column abundance of water does not match the RSL activity. Although seasonal melting of shallow ice could explain the mid-latitude RSL, the equatorial activity requires a different explanation, perhaps migration of briny groundwater. To explain RSL flow lengths, exceeding 1 km in Valles Marineris, the water is likely to be salty. Several RSL attributes are not yet understood: (1) the relation between apparent RSL activity and dustiness of the atmosphere; (2) salt composition and concentration; (3) variability in RSL activity from year to year; (4) seasonal activity on north-facing equatorial slopes in spite of little change in temperature; and (5) temporal changes in the color properties of fans where RSL terminate. Continued orbital monitoring, laboratory experiments, and future orbital and landed exploration with new measurement types are needed. Equatorial water activity, if confirmed, creates new exploration opportunities and challenges. RSL >1 km long near boundary between Eos and Capri Chasmata of Valles Marineris, Mars.

  20. Gravity-induced stresses in finite slopes

    Savage, W.Z.


    An exact solution for gravity-induced stresses in finite elastic slopes is presented. This solution, which is applied for gravity-induced stresses in 15, 30, 45 and 90?? finite slopes, has application in pit-slope design, compares favorably with published finite element results for this problem and satisfies the conditions that shear and normal stresses vanish on the ground surface. The solution predicts that horizontal stresses are compressive along the top of the slopes (zero in the case of the 90?? slope) and tensile away from the bottom of the slopes, effects which are caused by downward movement and near-surface horizontal extension in front of the slope in response to gravity loading caused by the additional material associated with the finite slope. ?? 1994.




    Full Text Available To have an, idea about the relation between the length of birth interval and lactation, and birth control program this study have been done. The material for such analysis was nomad women's fertility history that was in their reproductive period (15-44. The material itself was gathered through a health survey. The main sample was composed of 2,165 qualified women, of whom 49 due to previous or presently using contraceptive methods and 10 for the lack of enough data were excluded from 'this study. Purpose of analysis was to find a relation between No. of live births and pregnancies with total duration of married life (in other word, total months which the women were at risk of pregnancy. 2,106 women which their fertility history was analyzed had a totally of272, 502 months married life. During this time 8,520 live births did occurred which gave a birth interval of 32 months. As pregnancy termination could be through either live birth, still birth or abortion (induced or spontaneous, bringing all together will give No. of pregnancies which have occurred during this period (8,520 + 124 + 328 = 8,972 with an average of interpregnancy interval of 30.3 months. Considering the length of components of birth interval: Post partum amenorrhea which depends upon lactation. - Anovulatory cycles (2 month - Ooulatory exposure, in the absence of contraceptive methods (5 months - Pregnancy (9 months.Difference between the length, of birth interval from the sum of the mentioned period (except the first component, (2 + 5+ 9 = 16 will be duration of post partum amenorrhea (32 - 16 = 16, or in other word duration of breast feeding among nomad women. In this study it was found that, in order to reduce birth by 50% a contraceptive method with 87% effectiveness is needed.

  2. The Impact of Vegetative Slope on Water Flow and Pollutant Transport through Embankments

    Liting Sheng


    Full Text Available Embankments are common structures along rivers or lakes in riparian zones in plain areas. They should have natural slopes instead of slopes covered by concrete or other hard materials, in order to rebuild sustainable ecosystems for riparian zones. This study was conducted to evaluate the effects of vegetative slopes on water flow and pollutant transport through the embankments. Three embankments with different slope treatments (a bare slope, a slope covered in centipede grass, a slope covered in tall fescue were examined, and three inflow applications of pollute water with different concentration of total nitrogen (TN and total phosphorus (TP used to simulate different agricultural non-point pollution levels. The results showed that the water flux rates of the three embankments were relatively stable under all inflow events, and almost all values were higher than 80%. The embankments with vegetative slopes had better nitrogen removal than the bare slope under all events, and the one with tall fescue slope was best, but the benefits of vegetative slopes decreased with increasing inflow concentration. Moreover, there were no significant differences between the embankments on phosphorus removal, for which the reductions were all high (above 90% with most loads remaining in the front third of embankment bodies. Overall, the embankments with vegetative slopes had positive effects on water exchange and reducing non-point pollutant into lake or river water, which provides a quantitative scientific basis for the actual layout of lakeshores.

  3. Episodic Forearc Uplift Related to Subduction of the Woodlark Basin, Western Solomons Arc: Intermittent Aseismic Slip or Multi-Century Earthquake Recurrence Intervals?

    Taylor, F. W.; Frohlich, C.; Mann, P.; Burr, G. S.; Beck, W.; Edwards, R. L.; Phillips, D. A.


    Aseismic subduction of very young lithosphere may occur if the downgoing plate is too young and hot to support stick-slip cycles of interplate elastic strain accumulation and rupture. However, we have found a series of discrete episodic uplift events of 1-2 m each in the Western Solomons forearc where ˜1-2 Ma Woodlark Basin lithosphere is subducting at rates on the order of 80-100 mm/yr. These uplift events produce average forearc Holocene uplift rates ranging up to 5-8 mm/yr on southern Rendova and Tetepare Islands about 25 km from the plate boundary in a forearc area lacking historical evidence for large forearc thrust events. The best evidence of paleouplifts is in central eastern Rendova where the Holocene uplift rate is ˜3 mm/yr. Here we find morphologically pristine emerged corals at ˜2 m elevation that give a cluster of radiocarbon ages (783+/-38, 799+/-28, 800+/-34 yr BP) (calib. age: 279 - 463 yr BP) that match a local solution notch at ˜2 m elevation. Additional distinct notches occur immediately above at ˜3.5 and 5 m elevation. Corals at ˜3.3 m give ages of 1286+/-43 yr BP(calib. age: 663 -787 yr BP) and at ˜ 4.75 m the age is 1436+/-39 yr BP (calib. age: 762 - 932 yr BP). Additional notches cut the lower 10 m of emerged Holocene reef that rises to 20 m maximum elevation in this area. Thus, late Holocene uplift appears to occur by discrete events on the order of 1-2 m that affect a large area of the outer forearc. Maximum uplift rates located in a zone only ˜25 km from the convergent plate boundary are best explained by subducting rugged seafloor topography causing full or at least partial locking of the interplate thrust zone from near the sea floor to ˜10-20 km depth on the interplate thrust zone. A recurrence interval of several hundred years between ruptures on a locked thrust zone could explain why seismicity in this area is depressed. However, if the interplate thrust zone is aseismic, then perhaps these uplift events are generated by

  4. Product interval automata

    Deepak D’Souza; P S Thiagarajan


    We identify a subclass of timed automata called product interval automata and develop its theory. These automata consist of a network of timed agents with the key restriction being that there is just one clock for each agent and the way the clocks are read and reset is determined by the distribution of shared actions across the agents. We show that the resulting automata admit a clean theory in both logical and language theoretic terms. We also show that product interval automata are expressive enough to model the timed behaviour of asynchronous digital circuits.

  5. In-Place Randomized Slope Selection

    Blunck, Henrik; Vahrenhold, Jan


    Slope selection, i.e. selecting the slope with rank k among all 􀀀n 2lines induced by a collection P of points, results in a widely used robust estimator for linefitting. In this paper, we demonstrate that it is possible to perform slope selection in expected O(n·log2 n) time using only...

  6. In-Place Randomized Slope Selection

    Blunck, Henrik; Vahrenhold, Jan


    Slope selection, i.e. selecting the slope with rank k among all 􀀀n 2lines induced by a collection P of points, results in a widely used robust estimator for linefitting. In this paper, we demonstrate that it is possible to perform slope selection in expected O(n·log2 n) time using only...

  7. Visible spectral slope survey of Jupiter Trojans

    Erasmus, Nicolas; Rivkin, Andrew S.; Sickafoose, Amanda A.


    Jupiter's Trojans are predicted by the Nice Model [1,2] to be Trans-Neptunian Objects (TNOs) that moved from 30+ AU to 5.2 AU during the early evolution period of the Solar System. This model, predicting giant planet migration and widespread transport of material throughout the Solar System, is however still lacking important constraints. Correlations between the composition, size, and orbital geometry of Jupiter's Trojans can provide additional information to test predicted migration and evolution models.Two main colour groups have been observed, roughly equivalent to the C (plus low-albedo X) and D classes with distinguishable spectral slopes, and one interpretation is that the two groups have different compositions [3]. Independent compositions together with hints of differing orbital inclination distributions could imply separate formation locations; therefore, determining the relative fractions of C and D asteroids at different sizes would provide a key test for Solar System dynamical models. However, there is a caveat: the distinct colour groups could also arise by other means. Regolith processes or "space weathering" such as micrometeorite impacts and UV irradiation of ice are also plausible explanations for a range of spectrographic slopes from C-like to D-like [4].Here we report on our latest survey observations at Sutherland, South Africa of approximately 50 Trojan targets using the Sutherland High Speed Optical Camera (SHOC) [5] on the 74" telescope. These observations are part of a larger multi-telescope survey to determine the spectral slopes (C-like or D-like) for multiple Trojans, focusing on those of small size. These slopes can be used to determine the relative fraction of C+X and D asteroids at different sizes to determine whether what is seen is more consistent with regolith processes or different compositions.References:[1] A. Morbidelli, et al. Nature, 435, 462-465, (2005)[2] R. Gomes, et al. Nature 435, 466-469 (2005)[3] J.P. Emery, et al. The

  8. Research on the Slope Protection Mechanism of Roots

    Juan Wan


    Full Text Available This study aims to investigate the slope protection mechanism of roots. In ecological slope protection, plant roots can fix soil and protect slop through biological and mechanical action. However, previous studies on the slope protection mechanism are still not deep enough and inadequate. By taking four kinds of typical plant roots along Wu-Shen Expressway as the research object, through the indoor tensile test and root morphology observation analysis, the tensile strength and ultimate tension were studied and the influence to the stability of the slope was discussed in this study. The results show that the mean ultimate tension of roots is 7.19~29.96 N. The mean tension of shrub roots is 2~4 times greater than that of herb roots. The ultimate tension of the same plant roots increases with the diameter significantly. To the range of improvement, Shrub roots exceed herb ones. It also indicates that the mean tensile strength of roots are 24.48~74.25 MPa. Compared with the steel HRB235, the tensile strength of herb roots is as great as 1/5~1/3, while Shrub roots is about 1/10~1/5. The slope stability coefficient with plant growing is a positive correlation with roots tension and root number through the sliding surface and is a negative correlation with plants weight. In addition, the slope stability coefficient is related to plant density and root morphology. The test results demonstrate that the roots tension with acute angle or right angle to the landslide surface and the roots shear stiffness with obtuse angle can improve the performance of slope’s anti-slide. Four kinds of plants can improve the stability coefficient of shallow soil. As for the slope protection effect, herbage is superior to shrub. In general, grass-shrub mixed community is the ideal system for slope protection.

  9. Geospatial Data Integration for Assessing Landslide Hazard on Engineered Slopes

    Miller, P. E.; Mills, J. P.; Barr, S. L.; Birkinshaw, S. J.


    Road and rail networks are essential components of national infrastructures, underpinning the economy, and facilitating the mobility of goods and the human workforce. Earthwork slopes such as cuttings and embankments are primary components, and their reliability is of fundamental importance. However, instability and failure can occur, through processes such as landslides. Monitoring the condition of earthworks is a costly and continuous process for network operators, and currently, geospatial data is largely underutilised. The research presented here addresses this by combining airborne laser scanning and multispectral aerial imagery to develop a methodology for assessing landslide hazard. This is based on the extraction of key slope stability variables from the remotely sensed data. The methodology is implemented through numerical modelling, which is parameterised with the slope stability information, simulated climate conditions, and geotechnical properties. This allows determination of slope stability (expressed through the factor of safety) for a range of simulated scenarios. Regression analysis is then performed in order to develop a functional model relating slope stability to the input variables. The remotely sensed raster datasets are robustly re-sampled to two-dimensional cross-sections to facilitate meaningful interpretation of slope behaviour and mapping of landslide hazard. Results are stored in a geodatabase for spatial analysis within a GIS environment. For a test site located in England, UK, results have shown the utility of the approach in deriving practical hazard assessment information. Outcomes were compared to the network operator's hazard grading data, and show general agreement. The utility of the slope information was also assessed with respect to auto-population of slope geometry, and found to deliver significant improvements over the network operator's existing field-based approaches.

  10. Effect of assay measurement error on parameter estimation in concentration-QTc interval modeling.

    Bonate, Peter L


    Linear mixed-effects models (LMEMs) of concentration-double-delta QTc intervals (QTc intervals corrected for placebo and baseline effects) assume that the concentration measurement error is negligible, which is an incorrect assumption. Previous studies have shown in linear models that independent variable error can attenuate the slope estimate with a corresponding increase in the intercept. Monte Carlo simulation was used to examine the impact of assay measurement error (AME) on the parameter estimates of an LMEM and nonlinear MEM (NMEM) concentration-ddQTc interval model from a 'typical' thorough QT study. For the LMEM, the type I error rate was unaffected by assay measurement error. Significant slope attenuation ( > 10%) occurred when the AME exceeded > 40% independent of the sample size. Increasing AME also decreased the between-subject variance of the slope, increased the residual variance, and had no effect on the between-subject variance of the intercept. For a typical analytical assay having an assay measurement error of less than 15%, the relative bias in the estimates of the model parameters and variance components was less than 15% in all cases. The NMEM appeared to be more robust to AME error as most parameters were unaffected by measurement error. Monte Carlo simulation was then used to determine whether the simulation-extrapolation method of parameter bias correction could be applied to cases of large AME in LMEMs. For analytical assays with large AME ( > 30%), the simulation-extrapolation method could correct biased model parameter estimates to near-unbiased levels.

  11. Terrestrial Radar Interferometry: The current state-of-the-art demonstrated by real-world slope stability case studies

    Wooster, Michael; Thomas, Adam; Holley, Rachel


    Risk associated with natural terrain is typically mapped and monitored using established geodetic, geotechnical and remote sensing (satellite and airborne) techniques; however such techniques can pose challenges related to health and safety, cost and the density and frequency of measurements. Terrestrial Radar Interferometry (TRI) systems offer users new capabilities in the mapping and monitoring of ground displacements, and more specifically, slope stability. Use of portable radar systems that facilitate quick deployment and data acquisition, rapid and long distance scanning, and the ability to function and operate in most weather conditions, are revolutionising the terrestrial survey industry. This work presents a summary of the capabilities, limitations and applications of a state-of-the-art TRI system. The system is quick to deploy, allowing data acquisition within tens of minutes of arrival on site and requiring little or no permanent site infrastructure. Imaging scans are typically completed in less than 1 minute for a field of view of up to 360°, with repeat scans possible at up to 1-2 minute intervals. The system gives an azimuth resolution of around 8 m at distances of 1 km, with the capability to image slopes at distances of between 50 m and 10 km from the sensor with a deformation accuracy of less than 1 mm. These capabilities represent a significant advance over more traditional stability monitoring methods. The benefits of the TRI technology will be demonstrated through various natural and artificial slope stability case studies. Measurements on artificial slopes in environments such as quarries and open-cast mines allow benchmarking of capabilities across a variety of surface characteristics and failure mechanisms. These results allow an informed consideration of the applicability in various natural slope stability applications, and enable discussion on how TRI can meet the additional challenges encountered in natural environments.

  12. Submarine landslides along the eastern Mediterranean Israeli continental slope

    Reuven, Einav; Katz, Oded; Aharonov, Einat


    of these channels is not clear yet. Field relations show that the landslides, both young and old, either emerge from the over-steepened steps, or are displaced by them, and hence submarine landslides and steps are apparently contemporaneous. In addition this suggests that salt dynamics at depth is a main drive for at least some of these shallow slides. The above preliminary results testify to the complicated and highly dynamic nature of the studied continental slope, yet to be revealed.

  13. Western Ross Sea continental slope gravity currents

    Gordon, Arnold L.; Orsi, Alejandro H.; Muench, Robin; Huber, Bruce A.; Zambianchi, Enrico; Visbeck, Martin


    Antarctic Bottom Water of the world ocean is derived from dense Shelf Water that is carried downslope by gravity currents at specific sites along the Antarctic margins. Data gathered by the AnSlope and CLIMA programs reveal the presence of energetic gravity currents that are formed over the western continental slope of the Ross Sea when High Salinity Shelf Water exits the shelf through Drygalski Trough. Joides Trough, immediately to the east, offers an additional escape route for less saline Shelf Water, while the Glomar Challenger Trough still farther east is a major pathway for export of the once supercooled low-salinity Ice Shelf Water that forms under the Ross Ice Shelf. The Drygalski Trough gravity currents increase in thickness from ˜100 to ˜400 m on proceeding downslope from ˜600 m (the shelf break) to 1200 m (upper slope) sea floor depth, while turning sharply to the west in response to the Coriolis force during their descent. The mean current pathway trends ˜35° downslope from isobaths. Benthic-layer current and thickness are correlated with the bottom water salinity, which exerts the primary control over the benthic-layer density. A 1-year time series of bottom-water current and hydrographic properties obtained on the slope near the 1000 m isobath indicates episodic pulses of Shelf Water export through Drygalski Trough. These cold (34.75) pulses correlate with strong downslope bottom flow. Extreme examples occurred during austral summer/fall 2003, comprising concentrated High Salinity Shelf Water (-1.9 °C; 34.79) and approaching 1.5 m s -1 at descent angles as large as ˜60° relative to the isobaths. Such events were most common during November-May, consistent with a northward shift in position of the dense Shelf Water during austral summer. The coldest, saltiest bottom water was measured from mid-April to mid-May 2003. The summer/fall export of High Salinity Shelf Water observed in 2004 was less than that seen in 2003. This difference, if real

  14. VT Lidar Slope (0.7 meter) - 2014 - Swaths of Area from Burlington to Newport to portion of Killington

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Eastern VT 2014 0.7m and related SLOPE datasets. Created using ArcGIS "SLOPE" command...

  15. The Influence of Shales on Slope Instability

    Stead, Doug


    Shales play a major role in the stability of slopes, both natural and engineered. This paper attempts to provide a review of the state-of-the-art in shale slope stability. The complexities of shale terminology and classification are first reviewed followed by a brief discussion of the important physical and mechanical properties of relevance to shale slope stability. The varied mechanisms of shale slope stability are outlined and their importance highlighted by reference to international shale slope failures. Stability analysis and modelling of anisotropic rock slope masses are briefly discussed and the potential role of brittle rock fracture and damage highlighted. A short review of shale slopes in open pits is presented.

  16. Comprehensive evaluation of high-steep slope stability and optimal high-steep slope design by 3D physical modeling

    Lai, Xing-ping; Shan, Peng-fei; Cai, Mei-feng; Ren, Fen-hua; Tan, Wen-hui


    High-steep slope stability and its optimal excavation design in Shuichang open pit iron mine were analyzed based on a large 3D physical simulation technique. An optimal excavation scheme with a relatively steeper slope angle was successfully implemented at the northwest wall between Nos. 4 and 5 exploration lines of Shuichang Iron Mine, taking into account the 3D scale effect. The physico-mechanical properties of rock materials were obtained by laboratory tests conducted on sample cores from exploration drilling directly from the iron mine. A porous rock-like composite material was formed for the model, and the mechanical parameters of the material were assessed experimentally; specifically, the effect of water on the sample was quantitatively determined. We adopted an experimental setup using stiff modular applied static loading to carry out a visual excavation of the slope at a random depth. The setup was equipped with acoustic emission (AE) sensors, and the experiments were monitored by crack optical acquirement, ground penetrating radar, and close-field photogrammetry to investigate the mechanisms of rock-mass destabilization in the high-steep slope. For the complex study area, the model results indicated a clear correlation between the model's destabilization resulting from slope excavation and the collected monitoring information. During the model simulation, the overall angle of the slope increased by 1-6 degrees in different sections. Dramatically, the modeled excavation scheme saved over 80 million tons of rock from extraction, generating enormous economic and ecological benefits.

  17. [The QT interval: standardization, limits and interpretation].

    Ouali, S; Ben Salem, H; Gribaa, R; Kacem, S; Hammas, S; Fradi, S; Neffeti, E; Remedi, F; Boughzela, E


    Despite clinical importance of ventricular repolarisation, it remains difficult to analyse. Conventionally, quantification of the electrocardiographic ventricular repolarization is usually performed with reference to axis of the T wave and QT interval duration. A variety of factors can prolong the QT interval, such as drug effects, electrolyte imbalances, and myocardial ischemia. The biggest risk with prolongation of the QT interval is the development of torsades de pointes. Commonly accepted reference ranges for the electrocardiogram (ECG) have been in use, with little change, for many years. Populations throughout the world present several differences: age, ethnic compositions, and are exposed to different environmental factors. Recent studies have reported reference data for QT interval in healthy population and have evaluated the influence of age, gender, QRS duration and heart rate on this interval. In this review, we address several issues relative to the measurement, and interpretation of QT interval and its adjustment for rate, age, gender and QRS duration.

  18. Developmental intervals during the larval and juvenile stages of the Antarctic myctophid fish Electrona antarctica in relation to changes in feeding and swimming functions

    Moteki, Masato; Tsujimura, Eri; Hulley, Percy-Alexander


    The Antarctic myctophid fish species Electrona antarctica is believed to play a key role in the Southern Ocean food web, but there have been few studies on its early life history. This study examined the developmental changes in the external morphology and osteology of E. antarctica from the early larva to juvenile stages through the transformation phase and inferred changes in its behaviour and feeding mode. Once the larvae reached 12-13 mm body length (BL), they adopted a primordial suction feeding mode along with the acquisition of early swimming capabilities. Thereafter, both swimming and feeding functions were enhanced through fin development and ossification and acquisition of elements of the jaw and suspensorium. These processes indicate that larvae transition from the planktonic to nektonic phase upon reaching 12-13 mm BL when they enhance their both swimming and feeding abilities with growth. Transformation occurred when larvae reached 19-21 mm BL with changes such as discontinuous increases in eye diameter and upper jaw length and the appearance of photophores and dense body pigmentation. Osteological development of swimming- and feeding-related structures were mostly complete after transformation. Rapid changes in external morphology and osteology during the transformation stage are most likely related to ontogenetic vertical migration into deep waters.

  19. Investigation of Reference Intervals of Hemoglobin and Related Tests Within Healthy Adult Individuals in Kunming%昆明地区健康成人血红蛋白及相关指标的参考区间调查

    尹利民; 饶迪; 贾蔚; 胡大春


    目的 建立昆明地区健康成人血红蛋白(HGB)及相关指标的生物参考区间.方法 按照美国临床和实验室标准协会(CLSI) C28-A2文件推荐的间接抽样法,选取了2010年5月~2011年3月的健康体检者共10 970例(男性6 076例,女性4 894例),年龄18~80岁,用Sysmex XS-800i对HGB及相关指标进行检测,用Stata 11对检测结果进行统计分析.结果 分别按性别和年龄进行分组,计算HGB及相关指标的参考区间.各项指标的参考区间(P2.5~P97.5)如下:HGB男性为146~187 g/L,女性为120~161g/L;红细胞计数(RBC)男性为(4.69~6.35)×1012/L,女性为(4.16~5.58)×1012/L;红细胞平均血红蛋白浓度(MCHC)男性为318~355 g/L,女性为309~346 g/L;红细胞压积(HCT)男性为43.8%~55.3%,女性为37.7%~49.0%.不同性别组的HGB及相关指标的参考区间经Z检验分析,需分别给出;而不同年龄组的参考区间经Z检验可予以合并.结论 昆明地区HGB及相关指标的参考区间明显高于以往采用的参考区间,因此建立或验证该实验室HGB的生物参考区间非常必要.%Objective To establish the biological reference intervals of hemoglobin and related tests within healthy adult indi viduals in Kunming. Methods According to the indirect sampling technique in Clinical and Laboratory Standards Institute (CLSI) C28 A2,hemoglobin and related tests of 10 970 healthy individuals (6 076 male,4 894 female;aged 18 ~ 80 y) were determined by Sysmex XS 800i from May 2010 to March 2011. The test results were statistical analysis by Stata 11. Results Grouped by sex and age, the reference intervals of hemoglobin and related tests were calculated. The reference intervals (P2.5~P97.3) were showed as follows:HGB 146 ~ 187 g/L(male) and 120 ~ 161 g/L(female) ,RBC (4. 69 ~ 6. 35) ×1012/L (male) and (4. 16 ~ 5. 58) × 1012/L(female) ,MCHC 318 ~ 355 g/L(male) and 309 ~ 346 g/L(female) , HCT 43. 8 ~55. 3% (male) and 37. 7 ~ 49. 0% (female) , respectively. The

  20. Comparing Potential Unstable Sites and Stable Sites on Revegetated Cut-Slopes of Mountainous Terrain in Korea

    Sung-Ho Kil


    Full Text Available This study employs a diverse set of variables to explain slope stabilization on stable versus failure-prone revegetated cut-slopes in Korea. A field survey was conducted at potential unstable sites and stable sites using 23 variables. Through a non-parametric test of the field survey results, 15 variables were identified as primary determinants of slope failure. Of these variables, one described physical characteristics (elapsed year; four variables described vegetation properties (plant community, vegetation coverage rate, number of trees, and number of herbs; and 10 variables represented soil properties (porosity, soil hardness, water content, sand ratio and silt ratio of soil texture, tensile strength, permeability coefficient, soil depth, soil acidity, salt concentration, and organic matter. Slope angle, which was mainly considered in previous studies, of variables in physical characteristics was not statistically selected as one of the 15 variables because most of sites were located on steep slopes. The vegetation community, vegetation coverage, and number of trees influence slope stabilization. Vegetation coverage is highly correlated with other soil and vegetation variables, making it a major indicator of slope stabilization. All soil variables were related to slope failure such that subsequent slope failure was related to the method of slope revegetation rather than the environmental condition of the slope. Slope failure did not occur in revegetated slopes that matched the characteristics of the surrounding landscape and contained a large number of native trees. Most soil and vegetation variables showed differing values for whether a revegetated slope is potentially unstable or stable.

  1. Age-related alterations of relaxation processes and non-Markov effects in stochastic dynamics of R-R intervals variability from human ECGs

    Yulmetyev, R M; Panischev, O Y; Hänggi, P; Yulmetyev, Renat M.; Demin, Sergey A.; Panischev, Oleg Yu.; H\\"anggi, Peter


    In this paper we consider the age-related alterations of heart rate variability on the basis of the study of non-Markovian effects. The age dynamics of relaxation processes is quantitatively described by means of local relaxation parameters, calculated by the specific localization procedure. We offer a quantitative informational measure of non-Markovity to evaluate the change of statistical effects of memory. Local relaxation parameters for young and elderly people differ by 3.3 times, and quantitative measures of non-Markovity differ by 4.2 times. The comparison of quantitative parameters allows to draw conclusions about the reduction of relaxation rate with ageing and the higher degree of the Markovity of heart rate variability of elderly people.

  2. Overland flow resistances on varying slope gradients and partitioning on grassed slopes under simulated rainfall

    Pan, Chengzhong; Ma, Lan; Wainwright, John; Shangguan, Zhouping


    It is still unclear how slope steepness (S) and revegetation affect resistance (f) to overland flow. A series of experiments on runoff hydraulics was conducted on granular surfaces (bare soil and sandpaper) and grassed surfaces, including grass plots (GP), GP with litter (GL), and GP without leaves (GS) under simulated rainfall and inflow (30grass plots. A greater f occurred at the gentle and steep slopes for the granular surfaces, while f decreased with increasing slopes for the grass treatments. The different f-S relations suggest that f is not a simple function of S. When Re≈1000, the sowing rye grass with level lines increased f by approximately 100 times and decreased bed shear stress to approximately 5%. The contribution of grass leaves, stems, litter, and grain surface to total resistance in the grass plots were averagely 52%, 32%, 16%, and 1%. The greater resistance from leaves may result from the leaves lying at the plot surface impacted by raindrop impact. These results are beneficial to understand the dynamics of runoff and erosion on hillslopes impacted by vegetation restoration.

  3. Interval methods: An introduction

    Achenie, L.E.K.; Kreinovich, V.; Madsen, Kaj


    . An important characteristic of the computer performance in scientific computing is the accuracy of the Computation results. Often, we can estimate this accuracy by using traditional statistical techniques. However, in many practical situations, we do not know the probability distributions of different...... the potential for solving increasingly difficult computational problems. However, given the complexity of modern computer architectures, the task of realizing this potential needs careful attention. A main concern of HPC is the development of software that optimizes the performance of a given computer...... measurement, estimation, and/or roundoff errors, we only know estimates of the upper bounds on the corresponding measurement errors, i.e., we only know an interval of possible values of each such error. The papers from the following chapter contain the description of the corresponding '' interval computation...

  4. Varieties of Confidence Intervals.

    Cousineau, Denis


    Error bars are useful to understand data and their interrelations. Here, it is shown that confidence intervals of the mean (CI M s) can be adjusted based on whether the objective is to highlight differences between measures or not and based on the experimental design (within- or between-group designs). Confidence intervals (CIs) can also be adjusted to take into account the sampling mechanisms and the population size (if not infinite). Names are proposed to distinguish the various types of CIs and the assumptions underlying them, and how to assess their validity is explained. The various CIs presented here are easily obtained from a succession of multiplicative adjustments to the basic (unadjusted) CI width. All summary results should present a measure of precision, such as CIs, as this information is complementary to effect sizes.

  5. Applications of interval computations

    Kreinovich, Vladik


    Primary Audience for the Book • Specialists in numerical computations who are interested in algorithms with automatic result verification. • Engineers, scientists, and practitioners who desire results with automatic verification and who would therefore benefit from the experience of suc­ cessful applications. • Students in applied mathematics and computer science who want to learn these methods. Goal Of the Book This book contains surveys of applications of interval computations, i. e. , appli­ cations of numerical methods with automatic result verification, that were pre­ sented at an international workshop on the subject in EI Paso, Texas, February 23-25, 1995. The purpose of this book is to disseminate detailed and surveyed information about existing and potential applications of this new growing field. Brief Description of the Papers At the most fundamental level, interval arithmetic operations work with sets: The result of a single arithmetic operation is the set of all possible results as the o...

  6. Links among Slope Morphology, Canyon Types and Tectonics on Passive and Active Margins in the Northernmost South China Sea

    Ho-Shing Yu; Emmy T Y Chang


    We examine slope profile types and variations in slope gradient and slope relief with depth for both passive and active margins in the northern most South China Sea.The passive South China margin is characterized by an exponential slope profile,mainly assodated with clustered slope-confined canyons.The active Taiwan margin shows a linear-like shape with great variations along the lower slope.Fewer eanyom occur on the Taiwau margin,and hence the influence of canyon incision on slope morphology is relatively less significant.Quantitative analyses of slope curvature,slope gradleut and square root of relief variance are useful statistical parameters to explain characteristics and variability of morphology of the slope of the South China margin,but not for the Kaoping slope on the Talwan side.On the active Taiwan margin,tectonic activities are dominant over sediment deposition and surface erosion,producing a slope profile quite different from those of passive margins of the Middle Atlantic,KwaZulu-Natal,South Africa where failure on slope and accompanying canyon incision are the dominant processes shaping the slope morphology.

  7. Weathering Characteristics of Sloping Fields in the Three Gorges Reservoir Area, China

    JIANG Hong-Tao; XU Fei-Fei; CAI Yi; YANG Da-Yuan


    For the purpose of understanding the weathering characteristics of surface layers in purple mudstone sloping fields of the Three Gorges Reservoir area of China, oxide content of major elements, composition of clay minerals, magnetic susceptibility, and difference in weathering characteristics of surface layers under different slope gradients were determined.The results showed that the oxide content of Si, Al, and Fe ranged from 60% to 75% and the weathering coefficient with depth showed no trend along the slope gradient. Also, for gentle (10° and 15°) and intermediate (25° and 40°) slopes the clay relative diffraction peak for kaolinite at the surface between 0-10 cm and 10-20 cm declined with an increase in slope gradient, while the relative diffraction peak for kaolinite in weathered layers on steep slopes (50° and 60°) disappeared altogether. Magnetic susceptibility decreased with increasing depth and, for a given depth layer, decreased with an increase in slope gradient. Analysis of the oxide content, weathering coefficients, clay minerals, and magnetic susceptibility showed that in the Three Gorges Reservoir area, the pedogenesis of the weathering layer in purple mudstone sloping fields was weak with weaker soil formation going from gentle slope to steep slope.

  8. Three Practical Methods for Analyzing Slope Stability

    XU Shiguang; ZHANG Shitao; ZHU Chuanbing; YIN Ying


    Since the environmental capacity and the arable as well as the inhabitant lands have actually reached a full balance, the slopes are becoming the more and more important options for various engineering constructions. Because of the geological complexity of the slope, the design and thedecision-making of a slope-based engineering is still not ractical to rely solely on the theoretical analysis and numerical calculation, but mainly on the experience of the experts. Therefore, it hasimportant practical significance to turn some successful experience into mathematic equations. Basedupon the abundant typical slope engineering construction cases in Yunnan, Southwestern China, 3methods for yzing the slope stability have been developed in this paper. First of all, the corresponded analogous mathematic equation for analyzing slope stability has been established through case studies. Then, artificial neural network and multivariate regression analysis have alsobeen set up when 7 main influencing factors are adopted

  9. One-way ANOVA based on interval information

    Hesamian, Gholamreza


    This paper deals with extending the one-way analysis of variance (ANOVA) to the case where the observed data are represented by closed intervals rather than real numbers. In this approach, first a notion of interval random variable is introduced. Especially, a normal distribution with interval parameters is introduced to investigate hypotheses about the equality of interval means or test the homogeneity of interval variances assumption. Moreover, the least significant difference (LSD method) for investigating multiple comparison of interval means is developed when the null hypothesis about the equality of means is rejected. Then, at a given interval significance level, an index is applied to compare the interval test statistic and the related interval critical value as a criterion to accept or reject the null interval hypothesis of interest. Finally, the method of decision-making leads to some degrees to accept or reject the interval hypotheses. An applied example will be used to show the performance of this method.

  10. Interval methods: An introduction

    Achenie, L.E.K.; Kreinovich, V.; Madsen, Kaj


    This chapter contains selected papers presented at the Minisymposium on Interval Methods of the PARA'04 Workshop '' State-of-the-Art in Scientific Computing ''. The emphasis of the workshop was on high-performance computing (HPC). The ongoing development of ever more advanced computers provides....... An important characteristic of the computer performance in scientific computing is the accuracy of the Computation results. Often, we can estimate this accuracy by using traditional statistical techniques. However, in many practical situations, we do not know the probability distributions of different...... '' techniques, and the applications of these techniques to various problems of scientific computing....

  11. Karstic slope "breathing": morpho-structural influence and hazard implications

    Devoti, Roberto; Falcucci, Emanuela; Gori, Stefano; Eliana Poli, Maria; Zanferrari, Adriano; Braitenberg, Carla; Fabris, Paolo; Grillo, Barbara; Zuliani, David


    The study refers to the active slope deformation detected by GPS and tiltmeter stations in the Cansiglio karstic plateau located in the western Carnic Prealps (NE Italy). The observed transient deformation clearly correlates with the rainfall, so that the southernmost border of the Plateau reacts instantly to heavy rains displaying a "back and forth" deformation up to a few centimeters wide, with different time constants, demonstrating a response to different catchment volumes. We carried out a field survey along the southern Cansiglio slope, to achieve structural characterization of the relief and to verify the possible relation between structural features and the peculiar geomorphological setting dominated by widespread karstic features. The Cansiglio plateau develops on the frontal ramp anticline of the Cansiglio thrust, an about ENE-WSW trending, SSE-verging, low angle thrust, belonging to the Neogene-Quaternary front of the eastern Southern Alps. The Cansiglio thrust outcrops at the base of the Cansiglio plateau, where it overlaps the Mesozoic carbonates on the Miocene-Quaternary terrigenous succession. All along its length cataclastic limestone largely outcrop. The Cansiglio thrust is bordered by two transfer zones probably inherited from the Mesozoic paleogeography: the Caneva fault in the west and the Col Longone fault in the east. The carbonatic massif is also characterized by a series of about northward steeply dipping reverse minor faults and a set of subvertical joints parallel to the axes of the Cansiglio anticline. Other NNW-SSE and NNE-SSW conjugate faults and fractures perpendicular to the Cansiglio southern slope are also identified. This structural setting affect pervasively the whole slope and may determine centimetre- to metre-scale rock prisms. Interestingly, along the topmost portion of the slope, some dolines and swallow holes show an incipient coalescence, that trends parallel to the massif front and to the deformation zones related to the

  12. Mathematical Model of the Identical Slope Surface


    The formation of the identical slope surface and the method of construction are discussed. Onthe basement of building the parameter equation of variable-radius circle family envelope, the frequentlyused parameter equation of the identical slope surface of the top of taper moving along column helix,horizental arc and line is built. The equation can be used to construct the identical slope surface's con-tours, gradient lines and three dimensional figures correctly.

  13. Slope Estimation from ICESat/GLAS

    Craig Mahoney


    Full Text Available We present a novel technique to infer ground slope angle from waveform LiDAR, known as the independent slope method (ISM. The technique is applied to large footprint waveforms (\\(\\sim\\ mean diameter from the Ice, Cloud and Land Elevation Satellite (ICESat Geoscience Laser Altimeter System (GLAS to produce a slope dataset of near-global coverage at \\(0.5^{\\circ} \\times 0.5^{\\circ}\\ resolution. ISM slope estimates are compared against high resolution airborne LiDAR slope measurements for nine sites across three continents. ISM slope estimates compare better with the aircraft data (R\\(^{2}=0.87\\ and RMSE\\(=5.16^{\\circ}\\ than the Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM inferred slopes (R\\(^{2}=0.71\\ and RMSE\\(=8.69^{\\circ}\\ ISM slope estimates are concurrent with GLAS waveforms and can be used to correct biophysical parameters, such as tree height and biomass. They can also be fused with other DEMs, such as SRTM, to improve slope estimates.

  14. Profile Orientation and Slope Stability Analysis

    Zhe-Ping Shen


    Full Text Available This paper presents an analysis of soil slope stability using a terrestrial laser scanner, particle swarm optimization, and the force equilibrium method. The aim of this study was to demonstrate that a slope needed to be analyzed in many different directions in order to assess its stability conclusively, rather than using just one cross-sectional profile to represent the entire slope. To achieve this purpose, this study illustrates how a particle swarm optimization algorithm can be successfully incorporated into the analysis with slope stability analysis software, STABL. This study compares results obtained with those of previous studies and makes important observations.


    刘青泉; 陈力; 李家春


    The main factors influencing soil erosion include the net rain excess, the water depth, the velocity, the shear stress of overland flows , and the erosion-resisting capacity of soil. The laws of these factors varying with the slope gradient were investigated by using the kinematic wave theory. Furthermore, the critical slope gradient of erosion was driven. The analysis shows that the critical slope gradient of soil erosion is dependent on grain size , soil bulk density , surface roughness, runoff length, net rain excess, and the friction coefficient of soil, etc. The critical slope gradient has been estimated theoretically with its range between 41. 5 °~ 50°.

  16. Fuzzy Logic System for Slope Stability Prediction

    Tarig Mohamed


    Full Text Available The main goal of this research is to predict the stability of slopes using fuzzy logic system. GeoStudio, a commercially available software was used to compute safety factors for various designs of slope. The general formulation of the software could analyze slope stability using various methods of analysis i.e. Morgenstern-Price, Janbu, Bishop and Ordinary to calculate the safety factors. After analyzing, fuzzy logic was used to predict the slope stability. Fuzzy logic is based on natural language and conceptually easy to understand, flexible, tolerant of imprecise data and able to model nonlinear functions of arbitrary complexity. Several important parameters such as height of slope, unit weight of slope material, angle of slope, coefficient of cohesion and internal angle of friction were used as the input parameters, while the factor of safety was the output parameter. A model to test the stability of the slope was generated from the calculated data. This model presented a relationship between input parameters and stability of the slopes. Results showed that the prediction using fuzzy logic was accurate and close to the target data.

  17. Interval probabilistic neural network.

    Kowalski, Piotr A; Kulczycki, Piotr


    Automated classification systems have allowed for the rapid development of exploratory data analysis. Such systems increase the independence of human intervention in obtaining the analysis results, especially when inaccurate information is under consideration. The aim of this paper is to present a novel approach, a neural networking, for use in classifying interval information. As presented, neural methodology is a generalization of probabilistic neural network for interval data processing. The simple structure of this neural classification algorithm makes it applicable for research purposes. The procedure is based on the Bayes approach, ensuring minimal potential losses with regard to that which comes about through classification errors. In this article, the topological structure of the network and the learning process are described in detail. Of note, the correctness of the procedure proposed here has been verified by way of numerical tests. These tests include examples of both synthetic data, as well as benchmark instances. The results of numerical verification, carried out for different shapes of data sets, as well as a comparative analysis with other methods of similar conditioning, have validated both the concept presented here and its positive features.

  18. Interval arithmetic operations for uncertainty analysis with correlated interval variables

    Chao Jiang; Chun-Ming Fu; Bing-Yu Ni; Xu Han


    A new interval arithmetic method is proposed to solve interval functions with correlated intervals through which the overestimation problem existing in interval analy-sis could be significantly alleviated. The correlation between interval parameters is defined by the multidimensional par-allelepiped model which is convenient to describe the correlative and independent interval variables in a unified framework. The original interval variables with correlation are transformed into the standard space without correlation, and then the relationship between the original variables and the standard interval variables is obtained. The expressions of four basic interval arithmetic operations, namely addi-tion, subtraction, multiplication, and division, are given in the standard space. Finally, several numerical examples and a two-step bar are used to demonstrate the effectiveness of the proposed method.

  19. The slope-background for the near-peak regimen of photoemission spectra

    Herrera-Gomez, A., E-mail: [CINVESTAV-Unidad Queretaro, Queretaro 76230 (Mexico); Bravo-Sanchez, M. [CINVESTAV-Unidad Queretaro, Queretaro 76230 (Mexico); Aguirre-Tostado, F.S. [Centro de Investigación en Materiales Avanzados, Chihuahua, Chihuahua 31109 (Mexico); Vazquez-Lepe, M.O. [Departamento de Ingeniería de Proyectos, Universidad de Guadalajara, Jalisco 44430 (Mexico)


    Highlights: •We propose a method that accounts for the change in the background slope of XPS data. •The slope-background can be derived from Tougaard–Sigmund's transport theory. •The total background is composed by Shirley–Sherwood and Tougaard type backgrounds. •The slope-background employs one parameter that can be related to REELS spectra. •The slope, in conjunction with the Shirley–Sherwood background, provides better fits. -- Abstract: Photoemission data typically exhibits a change on the intensity of the background between the two sides of the peaks. This step is usually very well reproduced by the Shirley–Sherwood background. Yet, the change on the slope of the background in the near-peak regime, although usually present, is not always as obvious to the eye. However, the intensity of the background signal associated with the evolution of its slope can be appreciable. The slope-background is designed to empirically reproduce the change on the slope. Resembling the non-iterative Shirley method, the proposed functional form relates the slope of the background to the integrated signal at higher electron kinetic energies. This form can be predicted under Tougaard–Sigmund's electron transport theory in the near-peak regime. To reproduce both the step and slope changes on the background, it is necessary to employ the slope-background in conjunction with the Shirley–Sherwood background under the active-background method. As it is shown for a series of materials, the application of the slope-background provides excellent fits, is transparent to the operator, and is much more independent of the fitting range than other background methods. The total area assessed through the combination of the slope and the Shirley–Sherwood backgrounds is larger than when only the Shirley–Sherwood background is employed, and smaller than when the Tougaard background is employed.

  20. Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Stynes, J. K.; Ihas, B.


    The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.

  1. Soil Erodibility of Slope Farmland in Guizhou Mountain Areas

    Jian; LI; Li; CHENG; Zhenggang; CHEN; Qing; ZHU


    This paper studied soil erodibility of slope farmland in Guizhou mountain areas by the plot runoff method,analysis and test. Results show that the variation coefficient of erodibility K value calculated according to formula introduced by Sharply is low and relatively stable and accurate,so it is a suitable method for calculating erodibility K value of slope farmland in Guizhou mountain areas. K value of layer A slope farmland decreases with increase of years. The erodibility of entire soil layer is high,and the erosion resistance is weak. From the influence of different planting system and use types in 4 years,K values of different soil layers decrease,average reduction of A,B and C layers reaches 3. 17%- 11. 64%( 1. 26%- 12. 34% for layer A,1. 29%- 13. 80% for layer B,and 1. 26%- 10. 80% for layer C). Except engineering terraced treatment,the decline of K value of grassland,zoning crop rotation,economic fruit forest,grain and grass intercropping,plant hedge, and mixed forest treatment is higher than farmers’ treatment,and the decline level is grassland > zoning crop rotation > economic fruit forest > grain and grass intercropping > plant hedge > and mixed forest treatment. Planting grass and trees is favorable for lowering erodibility of slope farmland and improving farmland quality. Interplanting of corns with other plants can increase plant coverage and species,so it is favorable for improving erodibility of slope farmland.

  2. Sequencing interval situations and related games

    Alparslan-Gok, S.Z.; Brânzei, R.; Fragnelli, V.; Tijs, S.H.


    Uncertainty accompanies almost every situation in real world and it influences our decisions. In sequencing situations it may affect parameters used to determine an optimal order in the queue, and consequently the decision of whether (or not) to rearrange the queue by sharing the realized cost

  3. Slope of the Slope Derivative Surface used to characterize the complexity of the seafloor around St. John, USVI

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope of slope was calculated from the bathymetry surface for each raster cell by applying the ArcGIS Spatial Analyst 'Slope' Tool to a previously created slope...

  4. Research on the seasonal snow of the Arctic Slope

    Benson, C.S.


    This project deals with the seasonal snow on Alaska's Arctic Slope. It is concentrated on snow of the R{sub 4}D project area. However, an important aspect of this study is to relate the snow cover of this area with the rest of the Arctic Slope. The goals include determination of the amount of precipitation which comes as snow, the wind transport of this snow and its depositional pattern as influenced by drifting, the physical properties of the snow, the physical processes which operate in it, the proportions of it which go into evaporation, infiltration and runoff, and the biological role of the snow cover.

  5. Research on the seasonal snow of the Arctic Slope

    Benson, C.S.


    This project deals with the seasonal snow on Alaska's Arctic Slope. Although it is concentrated on snow of the R{sub 4}D project area, it is important to relate the snow cover of this area with the rest of the Arctic Slope. The goals include determination of the amount of precipitation which comes as snow, the wind transport of this snow and its depositional pattern as influenced by drifting, the physical properties of the snow, the physical processes which operate in it, the proportions of it which go into evaporation, infiltration and runoff, and the biological role of the snow cover.

  6. Research on the seasonal snow of the Arctic Slope

    Benson, C.S.


    This project deals with the seasonal snow on Alaska's Arctic Slope. Although it is concentrated on snow of the R40 project area, it is important to relate the snow cover of this area with the rest of the Arctic Slope. The goals include determination Of the amount of precipitation which comes as snow, the wind transport of this snow and its depositional pattern as influenced by drifting, the physical properties of the snow, the physical processes which operate in it, the proportions of it which go into evaporation, infiltration and runoff, and the biological role of the snow cover.

  7. Oscillating Nocturnal Slope Flow in a Coastal Valley

    Gryning, Sven-Erik; Larsen, Søren Ejling; Mahrt, Larry


    Observations of slope flows in a coastal valley are analyzed. The diurnal variation of upslope and downslope flows depends on season in a systematic way which appears to be related to the high latitude of the observational site and the presence of a nearby layer of marine air. Summer nocturnal flow...... over the sloping valley floor was studied during a special observing campaign. A downslope gravity flow interacts with even colder surface air at the valley floor. The latter originates as cold marine air or previous drainage of cold air. Regular oscillations which appear to be trapped, terrain...

  8. Comparison between characteristics of mild slope equations and Boussinesq equations


    Boussinesq-type equations and mild-slope equations are compared in terms of their basic forms and characteristics. It is concluded that linear mild-slope equations on dispersion relation are better than non-linear Boussinesq equations. In addition, Berkhoff experiments are computed and compared by the two models, and agreement between model results and available experimental data is found to be quite reasonable, which demonstrates the two models' capacity to simulate wave transformation. However they can deal with different physical processes respectively, and they have their own characteristics.

  9. Oscillating Nocturnal Slope Flow in a Coastal Valley

    Gryning, Sven-Erik; Larsen, Søren Ejling; Mahrt, Larry


    Observations of slope flows in a coastal valley are analyzed. The diurnal variation of upslope and downslope flows depends on season in a systematic way which appears to be related to the high latitude of the observational site and the presence of a nearby layer of marine air. Summer nocturnal flow...... over the sloping valley floor was studied during a special observing campaign. A downslope gravity flow interacts with even colder surface air at the valley floor. The latter originates as cold marine air or previous drainage of cold air. Regular oscillations which appear to be trapped, terrain...

  10. Experimental Study of Wave Breaking on Gentle Slope


    -An experimental study of regular wave and irregular wave breaking is performed on a gentle slope of 1:200. In the experiment, asymmetry of wave profile is analyzed to determine its effect on wave breaker indices and to explain the difference between Goda and Nelson about the breaker indices of regular waves on very mild slopes. The study shows that the breaker index of irregular waves is under less influence of bottom slope i, relative water depth d/ L0 and the asymmetry of wave profile than that of regular waves. The breaker index of regular waves from Goda may be used in the case of irregular waves, while the coefficient A should be 0.15. The ratio of irregular wavelength to the length calculated by linear wave theory is 0.74. Analysis is also made on the waveheight damping coefficient of regular waves after breaking and on the breaking probability of large irregular waves.


    Paweł Wiśniewski


    Full Text Available The basic method of reducing soil and land erosion is a change of land use, for example, from arable to forest. Particularly effective as a protective role – according to the Polish law – soil-protecting forests. The thesis presents differences in the deformation of the basic soil properties on moraine slopes, depending on land use. There has been presented the function and the efficiency of the soil-protecting forests in erosion control. The soil cross section transects and soil analysis displayed that soil-protecting forests are making an essential soil cover protection from degradation, inter alia, limiting the decrease of humus content, reduction of upper soil horizons and soil pedons layer. On the afforested slopes it was stated some clear changes of grain size and chemical properties of soils in relation to adjacent slopes agriculturally used.

  12. Lichenometric dating of slope movements, Nant Ffrancon, North Wales

    Winchester, Vanessa; Chaujar, Ravinder K.


    Over the last 50 years, frequent debris flows on the oversteepened slopes crossed by the main A5 road in Nant Ffrancon, North Wales, have presented a significant traffic hazard. This study uses two approaches to lichenometry to date earlier debris flows. The first approach provides dating estimates based on size/age correlations of the lichen Rhizocarpon geographicum subspecies prospectans growing in two local churchyards. The correlations supplied a growth rate of 1.47 mm year -1 for the species over a 140-year period, with a delay before colonization of 18 years. Remeasurement of the same lichens after a 4.25-year interval confirmed the growth and colonization rates in the churchyards. The second lichenometric approach, based on population size frequency distributions with size increments dated using the churchyard growth rate, provided controls for the Nant Ffrancon study site, with peaks in Rhizocarpon population size frequency distributions correlating with debris flow dates recorded by Gwynedd Council Highways Department. Circumstantial evidence supporting adoption of the growth rate on the Nant Ffrancon slopes was also supplied by data from archival and meteorological sources. The lichenometric dating estimates suggest that these slopes have a history of periodic debris flows covering at least the last 110 years, with major flows occurring in the 1890s followed by further flows in the early decades of the twentieth century.

  13. Interval-valued probability on α-dominance relation rough set model based and their application%基于α-优势关系的区间值概率粗集模型及应用

    何其慧; 罗文刚; 王翠翠; 孙丽; 毛军军


    区间值序信息系统是单值序信息系统的一种扩充。首先在区间值序信息系统中引出一种新的定义属性对象xj优于xi的概率Pjai,进而在此基础定义α-优势关系和优势类,从而定义了一种新的基于α-优势关系的概率粗糙集模型,继而通过相对熵赋权得到多属性决策问题的综合评价的最优解,最后对皖江城市带的经济发展的5年数据做定量分析,该实例有效地证明了该方法的合理性和科学性。%The interval-valued order information system is a generalized model of a single-valued order information system. At first, a novel definition is introduced based on the interval-valued order information system by defining pya which shows the probability of attribute object xj superior to object zz, and then α-dominance relation and dominance class are defined. So a novel probability rough set modal based on α-dominance relation is constructed. Furthermore, the optimal solution in multiple attributes making-decision has been obtained through the weights which are given by relative entropy. Finally, quantitative analysis of five years data for economic development issue of the cities along the Yangtze River in Anhui province has been made, and then the effectiveness and rationality of the above method are verified.


    郭书祥; 吕震宙


    When the uncertainties of structures may be bounded in intervals, through some suitable discretization, interval finite element method can be constructed by combining the interval analysis with the traditional finite element method(FEM). The two parameters,median and deviation, were used to represent the uncertainties of interval variables. Based on the arithmetic rules of intervals, some properties and arithmetic rules of interval variables were demonstrated. Combining the procedure of interval analysis with FEM, a static linear interval finite element method was presented to solve the non-random uncertain structures. The solving of the characteristic parameters of n-freedom uncertain displacement field of the static governing equation was transformed into 2 n-order linear equations. It is shown by a numerical example that the proposed method is practical and effective.

  15. 27 CFR 9.192 - Wahluke Slope.


    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Wahluke Slope. 9.192 Section 9.192 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.192 Wahluke Slope. (a) Name. The name of the...

  16. Internal waves and temperature fronts on slopes

    S. A. Thorpe

    Full Text Available Time series measurements from an array of temperature miniloggers in a line at constant depth along the sloping boundary of a lake are used to describe the `internal surf zone' where internal waves interact with the sloping boundary. More small positive temperature time derivatives are recorded than negative, but there are more large negative values than positive, giving the overall distribution of temperature time derivatives a small negative skewness. This is consistent with the internal wave dynamics; fronts form during the up-slope phase of the motion, bringing cold water up the slope, and the return flow may become unstable, leading to small advecting billows and weak warm fronts. The data are analysed to detect `events', periods in which the temperature derivatives exceed a set threshold. The speed and distance travelled by `events' are described. The motion along the slope may be a consequence of (a instabilities advected by the flow (b internal waves propagating along-slope or (c internal waves approaching the slope from oblique directions. The propagation of several of the observed 'events' can only be explained by (c, evidence that the internal surf zone has some, but possibly not all, the characteristics of the conventional 'surface wave' surf zone, with waves steepening as they approach the slope at oblique angles.

    Key words. Oceanography: general (benthic boundary layers; limnology, Oceanography: physical (internal and inertial waves

  17. How vegetation reinforces soil on slopes

    Stokes, A.; Norris, J.E.; van Beek, L.P.H.; Bogaard, T.; Cammeraat, E.; Mickovski, S.B.; Jenner, A.; Di Iorio, A.; Fourcaud, T.; Norris, J.E.; Stokes, A.; Mickovski, S.B.; Cammeraat, E.; van Beek, R.; Nicoll, B.C.; Achim, A.


    Once the instability process e.g. erosion or landslides has been identified on a slope, the type of vegetation to best reinforce the soil can then be determined. Plants improve slope stability through changes in mechanical and hydrological properties of the root-soil matrix. The architecture of a pl

  18. Gas hydrate dissociation structures in submarine slopes

    Gidley, I.; Grozic, J.L.H. [Calgary Univ., AB (Canada). Dept. of Civil Engineering


    Studies have suggested that gas hydrates may play a role in submarine slope failures. However, the mechanics surrounding such failures are poorly understood. This paper discussed experimental tests conducted on a small-scale physical model of submarine soils with hydrate inclusions. The laboratory tests investigated the effects of slope angle and depth of burial of the hydrate on gas escape structures and slope stability. Laponite was used to model the soils due to its ability to swell and produce a clear, colorless thixotropic gel when dispersed in water. An R-11 refrigerant was used to form hydrate layers and nodules. The aim of the experiment was to investigate the path of the fluid escape structures and the development of a subsequent slip plane caused by the dissociation of the R-11 hydrates. Slope angles of 5, 10, and 15 degrees were examined. Slopes were examined using high-resolution, high-speed imaging techniques. Hydrate placement and slope inclinations were varied in order to obtain stability data. Results of the study showed that slope angle influenced the direction of travel of the escaping gas, and that the depth of burial affected sensitivity to slope angle. Theoretical models developed from the experimental data have accurately mapped deformations and stress states during testing. Further research is being conducted to investigate the influence of the size, shape, and placement of the hydrates. 30 refs., 15 figs.

  19. The Sloping Land Conversion Program in China

    Liu, Zhen

    By overcoming the barriers that limit access to financial liquidity and human resource, the Sloping Land Conversion Program (SLCP) can promote rural livelihood diversification. This paper examines this effect using a household survey data set spanning the 1999 implementation of the Sloping land...

  20. Air pocket removal from downward sloping pipes

    Pothof, I.W.M.; Clemens, F.H.L.R.


    Air-water flow is an undesired condition in water pipelines and hydropower tunnels. Water pipelines and wastewater pressure mains in particular are subject to air pocket accumulation in downward sloping reaches, such as inverted siphons or terrain slopes. Air pockets cause energy losses and an assoc

  1. Stability Analysing of Unsaturated Soil Slope

    张士林; 邵龙潭


    The stability of unsaturated soil slope has been the hot point recently. Especially, the seeping rainfall makes losing stability of unsaturated soil slope, and causes enormous loss to the producation and safety of other people. The seeping rainfall makes volumetric water content of unsaturated soil slope changing, and the volumetric water content has directly relationship with matric suction. And matric suction also has directly relationship with the stability of unsaturated soil slope. So the change of matric suction influence the stability changing, that is, safety coefficient has decided relationship with volumetric water content. The profile of dangerous volumetric water content curves of unsaturated soil slope has been obtained. If a volumetric water content curve of some unsaturated soil slope belongs to one of these dongerous curves, the unsaturated soil slope could be in danger. So this is called DVWCCP(dangerous volumetric water content curves profile). By monitoring the volumetric water content curves can obtain the stability information of some soil slope to serve producing and safety.

  2. In-Place Randomized Slope Selection

    Blunck, Henrik; Vahrenhold, Jan


    Slope selection is a well-known algorithmic tool used in the context of computing robust estimators for fitting a line to a collection P of n points in the plane. We demonstrate that it is possible to perform slope selection in expected O(nlogn) time using only constant extra space in addition...

  3. The Dynamic Evaluation of Rock Slope Stability Considering the Effects of Microseismic Damage

    Xu, N. W.; Dai, F.; Liang, Z. Z.; Zhou, Z.; Sha, C.; Tang, C. A.


    A state-of-the-art microseismic monitoring system has been implemented at the left bank slope of the Jinping first stage hydropower station since June 2009. The main objectives are to ensure slope safety under continuous excavation at the left slope, and, very recently, the safety of the concrete arch dam. The safety of the excavated slope is investigated through the development of fast and accurate real-time event location techniques aimed at assessing the evolution and migration of the seismic activity, as well as through the development of prediction capabilities for rock slope instability. Myriads of seismic events at the slope have been recorded by the microseismic monitoring system. Regions of damaged rock mass have been identified and delineated on the basis of the tempo-spatial distribution analysis of microseismic activity during the periods of excavation and consolidation grouting. However, how to effectively utilize the abundant microseismic data in order to quantify the stability of the slope remains a challenge. In this paper, a rock mass damage evolutional model based on microseismic data is proposed, combined with a 3D finite element method (FEM) model for feedback analysis of the left bank slope stability. The model elements with microseismic damage are interrogated and the deteriorated mechanical parameters determined accordingly. The relationship between microseismic activities induced by rock mass damage during slope instability, strength degradation, and dynamic instability of the slope are explored, and the slope stability is quantitatively evaluated. The results indicate that a constitutive relation considering microseismic damage is concordant with the simulation results and the influence of rock mass damage can be allowed for its feedback analysis of 3D slope stability. In addition, the safety coefficient of the rock slope considering microseismic damage is reduced by a value of 0.11, in comparison to the virgin rock slope model. Our results

  4. Eastern slopes grizzly bear project



    The cumulative effects of human activities on the grizzly bears in the central Canadian Rockies are not well known. As a result, a project was initiated in 1994 to address the urgent requirement for accurate scientific information on the habitat and populations of grizzly bears in the area of the Banff National Park and Kananaskis Country. This area is probably the most heavily used and developed area where the grizzly still survives. The information gathered throughout the course of this study will be used to better protect and manage the bears and other sensitive carnivores in the region. Using telemetry, researchers are monitoring 25 grizzly bears which were radio-collared in a 22,000 square-kilometer area in the upper Bow Valley drainage of the eastern Alberta slopes. The researchers involved in the project are working with representatives from Husky Oil and Talisman Energy on the sound development of the Moose Mountain oil and gas field without adversely affecting the grizzly bear population. Information collected over seven years indicated that the grizzly bears have few and infrequent offspring. Using the information gathered so far, the location of the Moose Mountain to Jumping Pound pipeline was carefully selected, since the bears recover very slowly from high mortality, and also considering that the food and cover had already been compromised by the high number of roads, trails and other human activities in the area. The status of the population and habitat of the grizzly bear will be assessed upon the conclusion of the field research phase in 2001. Models will be updated using the data obtained during eight years and will assist in the understanding of complex variables that affect grizzly bears.

  5. [Effects of slope gradient on slope runoff and sediment yield under different single rainfall conditions].

    He, Ji-Jun; Cai, Qiang-Guo; Liu, Song-Bo


    Based on the field observation data of runoff and sediment yield produced by single rainfall events in runoff plots, this paper analyzed the variation patterns of runoff and sediment yield on the slopes with different gradients under different single rainfall conditions. The differences in the rainfall conditions had little effects on the variation patterns of slope runoff with the gradient. Under the conditions of six different rainfall events in the study area, the variation patterns of slope runoff with the gradient were basically the same, i. e., the runoff increased with increasing gradient, but the increment of the runoff decreased slightly with increasing gradient, which was mainly determined by the infiltration flux of atmospheric precipitation. Rainfall condition played an important role on the slope sediment yield. Generally, there existed a critical slope gradient for slope erosion, but the critical gradient was not a fixed value, which varied with rainfall condition. The critical slope gradient for slope erosion increased with increasing slope gradient. When the critical slope gradient was greater, the variation of slope sediment yield with slope gradient always became larger.

  6. Automated sliding susceptibility mapping of rock slopes

    A. Günther


    Full Text Available We present a suite of extensions for ARCVIEW GIS™ (ESRI that allows to map the spatial distribution of first-order mechanical slope-properties in hard rock terrain, e.g. for large slope areas like water reservoir slopes. Besides digital elevation data, this expert-system includes regional continuous grid-based data on geological structures that might act as potential sliding or cutoff planes for rockslides. The system allows rapid automated mapping of geometrical and kinematical slope properties in hard rock, providing the basis for spatially distributed deterministic sliding-susceptibility evaluations on a pixel base. Changing hydrostatic slope conditions and rock mechanical parameters can be implemented and used for simple predictive static stability calculations. Application is demonstrated for a study area in the Harz Mts., Germany.

  7. Mechanics of weathered clay-marl rock masses along the rupture surface in homogeneous dry slopes

    Kostić Srđan


    Full Text Available Authors analyze stress-strain distribution within slope using the shear stress reduction technique based on finite element method, which was previously confirmed to provide approximately the same results as the Janbu's corrected limit equilibrium method. Results obtained indicate that the largest vertical displacements occur at the slope base and crest, while central part of the slope is exposed to the largest horizontal displacements. Normal and shear stress show maximum values in the middle part of the slope. It was also determined that separate stress-strain relations could be derived for the exact upper and lower part of the rupture surface. [Projekat Ministarstva nauke Republike Srbije, br. 37005

  8. Stress and Displacement Distribution of Soft Clay Slope with 2D and 3D Elastoplastic Finite Element Method

    YAN Zuwe; YAN Shuwang; LI Sa


    Based on elastoplastic model, 2D and 3D finite element method (FEM) are used to calculate the stress and displacement distribution in the soft clay slope under gravity and uniform load at the slope top. Stability analyses indicate that 3D boundary effect varies with the stress level of the slope. When the slope is stable, end effect of 3D space is not remarkable. When the stability decreases, end effect occurs; when the slope is at limit state, end effect reaches maximum. The energy causing slope failure spreads preferentially along y-z section, and when the failure resistance capability reaches the limit state, the energy can extend along x-axis direction. The 3D effect of the slope under uniform load on the top is related to the ratio of load influence width to slope height, and the effect is remarkable with the decrease of the ratio.

  9. Aspect-Driven Changes in Slope Stability Due to Ecohydrologic Feedbacks

    Poulos, M. J.; Pierce, J. L.; Flores, A. N.; Benner, S. G.; Smith, T. J.; McNamara, J. P.


    southwestern batholith, are most sensitive to aspect, with average northern slope angles of 29°, and southern slope angles of 21°. Initial assessment of ecohydrologic factors in Dry Creek finds that annual precipitation for the watershed ranges from 20-35 inches, forestation ranges from ~15% forested on south-facing slopes, to ~80% forested on north-facing slopes, and annual insolation on north-facing slopes is roughly three-fifths that for south-facing slopes. Furthermore, preliminary analysis of soil textures finds soils to contain 29-41% silt on north-facing slopes, and ~12% silt on south-facing slopes. Slope distributions from the Lochsa River basin in the northern Idaho Batholith had little contrast between slope angles; this basin, however, receives 30-70 inches of precipitation and has nearly-homogenous forest cover for all aspects. Ongoing study seeks to 1) use large-scale spatial analysis to correlate the influence of aspect on slope angles to changes in ecohydrologic conditions and 2) understand the spatial distribution and relative influence of processes that affect the weathering of slope materials, erosive processes that reduce slope angles, and cohesive forces that stabilize slopes (e.g. root strength, soil texture, and soil moisture).

  10. Regional variability of slope stability: Application to the Eel margin, California

    Lee, H.; Locat, J.; Dartnell, P.; Israel, K.; Florence, Wong


    Relative values of downslope driving forces and sediment resisting forces determine the locations of submarine slope failures. Both of these vary regionally, and their impact can be addressed when the data are organized in a Geographic Information System (GIS). The study area on the continental margin near the Eel River provides an excellent opportunity to apply GIS spatial analysis techniques for evaluation of slope stability. In this area, swath bathymetric mapping shows seafloor morphology and distribution of slope steepness in fine detail, and sediment analysis of over 70 box cores delineates the variability of sediment density near the seafloor surface. Based on the results of ten geotechnical studies of submarine study areas, we developed an algorithm that relates surface sediment density to the shear strength appropriate to the type of cyclic loading produced by an earthquake. Strength and stress normalization procedures provide results that are conceptually independent of subbottom depth. Results at depth are rigorously applicable if sediment lithology does not vary significantly and consolidation state can be estimated. Otherwise, the method applies only to shallow-seated slope failure. Regional density, slope, and level of anticipated seismic shaking information were combined in a GIS framework to yield a map that illustrates the relative stability of slopes in the face of seismically induced failure. When a measure of predicted relative slope stability is draped on an oblique view of swath bathymetry, a variation in this slope stability is observed on an otherwise smooth slope along the mid-slope region north of a plunging anticline. The section of slope containing diffuse, pockmarked gullies has a lower measure of stability than a separate section containing gullies that have sharper boundaries and somewhat steeper sides. Such an association suggests that our slope-stability analysis relates to the stability of the gully sides. The remainder of the

  11. The slope of the oxygen pulse curve does not depend on the maximal heart rate in elite soccer players

    Raphael Rodrigues Perim


    Full Text Available INTRODUCTION: It is unknown whether an extremely high heart rate can affect oxygen pulse profile during progressive maximal exercise in healthy subjects. OBJECTIVE: Our aim was to compare relative oxygen pulse (adjusted for body weight curves in athletes at their maximal heart rate during treadmill cardiopulmonary exercise testing. METHODS: A total of 180 elite soccer players were categorized in quartiles according to their maximum heart rate values (n = 45. Oxygen consumption, maximum heart rate and relative oxygen pulse curves in the extreme quartiles, Q1 and Q4, were compared at intervals corresponding to 10% of the total duration of a cardiopulmonary exercise testing. RESULTS: Oxygen consumption was similar among all subjects during cardiopulmonary exercise testing; however subjects in Q1 started to exhibit lower maximum heart rate values when 20% of the test was complete. Conversely, the relative oxygen pulse was higher in this group when cardiopulmonary exercise testing was 40% complete (p<.01. Although the slopes of the lines were similar (p = .25, the regression intercepts differed (p<.01 between Q1 and Q4. During the last two minutes of testing, a flat or decreasing oxygen pulse was identified in 20% of the soccer players, and this trend was similar between subjects in Q1 and Q4. CONCLUSION: Relative oxygen pulse curve slopes, which serve as an indirect and non-invasive surrogate for stroke volume, suggest that the stroke volume is similar in young and aerobically fit subjects regardless of the maximum heart rate reached.

  12. Recurring Slope Lineae and Future Exploration of Mars

    McEwen, Alfred; Byrne, Shane; Chevrier, Vincent; Chojnacki, Matt; Dundas, Colin; Masse, Marion; Mattson, Sarah; Ojha, Lujendra; Pommerol, Antoine; Toigo, Anthony; Wray, James


    Recurring slope lineae (RSL) on Mars may be evidence for the seasonal flow or seepage of water on relatively warm slopes. RSL are narrow (250 K to >300 K. Over the past Martian year we have monitored active RSL in equatorial (0°-15°S) regions of Mars, especially in the deep canyons of Valles Marineris [McEwen et al., 2014, Nature Geoscience]. These equatorial RSL are especially active on north-facing slopes in northern summer and spring and on south-facing slopes in southern spring and summer, following the most normal solar incidence angles on these steep slopes. More recently we have confirmed RSL near 35°N in the low-albedo and low-altitude Acidalia Planitia. All RSL locations have warm peak daily temperatures (typically >273 K at the surface) in the seasons when RSL are active, and occur on steep, rocky, low-albedo slopes. However, most times and places with these properties lack apparent RSL, so there are additional, unseen requirements. We do not know what time of day RSL are actively flowing. Seasonal variation in the atmospheric column abundance of water vapor does not match the RSL activity. Seasonal melting of shallow ice best explains the RSL observations, but the origin and replenishment of such ice is not understood, especially in the tropics. Laboratory experiments are consistent with two key MRO observations: (1) that seeping water darkens basaltic soils but may only produce weak water absorption bands undetectable in ratio spectra after partial dehydration during the low-humidity middle afternoon conditions when MRO observes; and (2) the flows are more linear than under terrestrial conditions and do not erode channels under Martian atmospheric pressures [Masse et al., 2014, LPSC]. No dry process is known to create such slowly creeping seasonal flows. The potential for equatorial water activity creates new exploration opportunities, to search for extant life, as well as challenges such as the definition of special regions for planetary protection.

  13. Wind-driven export of Weddell Sea slope water

    Meijers, A. J. S.; Meredith, M. P.; Abrahamsen, E. P.; Morales Maqueda, M. A.; Jones, D. C.; Naveira Garabato, A. C.


    The export of waters from the Weddell Gyre to lower latitudes is an integral component of the southern subpolar contribution to the three-dimensional oceanic circulation. Here we use more than 20 years of repeat hydrographic data on the continental slope on the northern tip of the Antarctic Peninsula and 5 years of bottom lander data on the slope at 1000 m to show the intermittent presence of a relatively cold, fresh, westward flowing current. This is often bottom-intensified between 600 and 2000 dbar with velocities of over 20 cm s-1, transporting an average of 1.5 ± 1.5 Sv. By comparison with hydrography on the continental slope within the Weddell Sea and modeled tracer release experiments we show that this slope current is an extension of the Antarctic Slope Current that has crossed the South Scotia Ridge west of Orkney Plateau. On monthly to interannual time scales the density of the slope current is negatively correlated (r > 0.6 with a significance of over 95%) with eastward wind stress over the northern Weddell Sea, but lagging it by 6-13 months. This relationship holds in both the high temporal resolution bottom lander time series and the 20+ year annual hydrographic occupations and agrees with Weddell Sea export variability observed further east. We compare several alternative hypotheses for this wind stress/export relationship and find that it is most consistent with wind-driven acceleration of the gyre boundary current, possibly modulated by eddy dynamics, and represents a mechanism by which climatic perturbations can be rapidly transmitted as fluctuations in the supply of intermediate-level waters to lower latitudes.

  14. Reinforcement mechanism of slope stability method with no cutting trees

    Yuki, Chikata; Harushige, KUSUMI; 楠見, 晴重; Katsumi, TERAOKA


    The study in this paper is the slope stability. Although many slopes are prone to collapse, countermeasures against slop failures have not been progressed yet in Japan. Most slope protection methods were to cover shotcrete on the slope in 1960’s. However, the slope covered shotcrete have been deteriorating. Therefore, the slope failures frequently occur due to the natural disaster such as heavy rainfall and earthquake. It is important to develop an effective slope stability method. Moreover, ...

  15. Alaskan North Slope petroleum systems

    Magoon, L.B.; Lillis, P.G.; Bird, K.J.; Lampe, C.; Peters, K.E.


    Six North Slope petroleum systems are identified, described, and mapped using oil-to-oil and oil-to-source rock correlations, pods of active source rock, and overburden rock packages. To map these systems, we assumed that: a) petroleum source rocks contain 3.2 wt. % organic carbon (TOC); b) immature oil-prone source rocks have hydrogen indices (HI) >300 (mg HC/gm TOC); c) the top and bottom of the petroleum (oil plus gas) window occur at vitrinite reflectance values of 0.6 and 1.0% Ro, respectively; and d) most hydrocarbons are expelled within the petroleum window. The six petroleum systems we have identified and mapped are: a) a southern system involving the Kuna-Lisburne source rock unit that was active during the Late Jurassic and Early Cretaceous; b) two western systems involving source rock in the Kingak-Blankenship, and GRZ-lower Torok source rock units that were active during the Albian; and c) three eastern systems involving the Shublik-Otuk, Hue Shale and Canning source rock units that were active during the Cenozoic. The GRZ-lower Torok in the west is correlative with the Hue Shale to the east. Four overburden rock packages controlled the time of expulsion and gross geometry of migration paths: a) a southern package of Early Cretaceous and older rocks structurally-thickened by early Brooks Range thrusting; b) a western package of Early Cretaceous rocks that filled the western part of the foreland basin; c) an eastern package of Late Cretaceous and Paleogene rocks that filled the eastern part of the foreland basin; and d) an offshore deltaic package of Neogene rocks deposited by the Colville, Canning, and Mackenzie rivers. This petroleum system poster is part of a series of Northern Alaska posters on modeling. The poster in this session by Saltus and Bird present gridded maps for the greater Northern Alaskan onshore and offshore that are used in the 3D modeling poster by Lampe and others. Posters on source rock units are by Keller and Bird as well as

  16. A new vision of carbonate slopes: the Little Bahama Bank

    Mulder, Thierry; Gillet, Hervé; Hanquiez, Vincent; Reijmer, John J.; Tournadour, Elsa; Chabaud, Ludivine; Principaud, Mélanie; Schnyder, Jara; Borgomano, Jean; Fauquembergue, Kelly; Ducassou, Emmanuelle


    Recent high-quality multibeam and seismic data allow to image a large part of the uppermost slope of Northeastern Little Bahama Bank between 30 and 400 m water depth and to characterize the uppermost slope (Rankey and Doolitle, 1992) over a surface of 170 km2. The new data set includes multibeam bathymetry and acoustic imagery, 3.5 kHz very-high resolution (VHR) seismic reflexion lines (1120 km), 21 gravity cores and 11 Van Veen grabs. This dataset completes the recent surveys of the slope adjacent to LBB (Carambar cruise, Mulder et al, 2012). The data provide insight into sediment transfer from the shallow carbonate bank to the adjacent slope. Four major terraces and escarpments dominate the morphology of the slope. The terraces are located at 22 m, 27-33 m, 40-46 and 55-64 m below present water depth (mpwd). They could either be related to periods of stagnating sea-level and therefore increased erosion by waves, or periods of accelerated sea-level rise since the Last Glacial Maximum. Escarpments bound the terraces. The deepest one (64-56 mpwd) is also the steepest 35-50°). It corresponds to the marginal scarp of Rankey and Doolitle (1992). The lower part of the uppermost slope shows a discontinuous Holocene sediment wedge with varying thickness between 0 and 35 m. It forms a blind or very crudely stratified echo facies. This Holocene unit can be thicker than 20 m and consists of mud that forms most of the present sediment export. This unit fills small depressions in the substratum and thickens in front of gullies that cut the carbonate platform edge. It forms by off-bank export initiated when a cold front passes by, resulting in density cascading currents. The associated sediment fall-out and convective sedimentation can generate density currents that flow through linear structures on the upper slope. The survey reveals the presence of recently active channels that extend laterally over the entire uppermost slope and interrupt the density cascading fall

  17. Conservation scenarios for olive farming on sloping land in de Mediterranean

    Fleskens, L.


    The future of olive farming on sloping land in the Mediterranean is uncertain. Sloping and Mountainous Olive Production Systems (SMOPS) that have been sustainable for ages have in a relatively short time frame witnessed major changes. Although remnants of many of these traditional landscapes still

  18. Conservation scenarios for olive farming on sloping land in de Mediterranean

    Fleskens, L.


    The future of olive farming on sloping land in the Mediterranean is uncertain. Sloping and Mountainous Olive Production Systems (SMOPS) that have been sustainable for ages have in a relatively short time frame witnessed major changes. Although remnants of many of these traditional landscapes still e




    Full Text Available Brazilian coffee farming is carried out both on flat and steep lands. In flat areas, mechanized operations are intensive; however, in steep slope areas, certain mechanized operations cannot be performed, such as harvesting. Based on this, the industry has developed machinery to harvest coffee in areas with up to 30% slope. However, harvesters have their efficiency and operational performance influenced by land slope. Thus, this study aimed to evaluate the operational performance and harvesting efficiency of a steep-slope harvester under different situations, using different speed settings. The experiment was carried out in the county of Santo Antônio do Amparo, state of Minas Gerais, Brazil, using five coffee stands with 10, 15, 20, 25 and 30% slope. Evaluations were performed with a self-propelled harvester (Electron, TDI®, Araguari, MG, Brazil at three rotation speeds (600, 800 and 1.000 rpm and two ground speeds (800 and 1.000 m h-1. The results showed the lower speed (800 m h-1 was suitable for 10% slope areas since the amount of fallen coffee berries. For areas of 20% slope, harvesting time was 21.6% longer than in flatter areas. Downtime varied from 10.66 to 29.18% total harvest due to a higher number of maneuvers.

  20. Comprehensive evaluation of high-steep slope stability and optimal high-steep slope design by 3D physical modeling

    Xing-ping Lai; Peng-fei Shan; Mei-feng Cai; Fen-hua Ren; Wen-hui Tan


    High-steep slope stability and its optimal excavation design in Shuichang open pit iron mine were analyzed based on a large 3D physical simulation technique. An optimal excavation scheme with a relatively steeper slope angle was successfully implemented at the northwest wall between Nos. 4 and 5 exploration lines of Shuichang Iron Mine, taking into account the 3D scale effect. The phys-ico-mechanical properties of rock materials were obtained by laboratory tests conducted on sample cores from exploration drilling directly from the iron mine. A porous rock-like composite material was formed for the model, and the mechanical parameters of the material were assessed experimentally;specifically, the effect of water on the sample was quantitatively determined. We adopted an experimental setup using stiff modular applied static loading to carry out a visual excavation of the slope at a random depth. The setup was equipped with acous-tic emission (AE) sensors, and the experiments were monitored by crack optical acquirement, ground penetrating radar, and close-field pho-togrammetry to investigate the mechanisms of rock-mass destabilization in the high-steep slope. For the complex study area, the model re-sults indicated a clear correlation between the model’s destabilization resulting from slope excavation and the collected monitoring informa-tion. During the model simulation, the overall angle of the slope increased by 1–6 degrees in different sections. Dramatically, the modeled excavation scheme saved over 80 million tons of rock from extraction, generating enormous economic and ecological benefits.

  1. Identify Foot of Continental Slope by singular spectrum and fractal singularity analysis

    Li, Q.; Dehler, S.


    Identifying the Foot of Continental Slope (FOCS) plays a critical role in the determination of exclusive economic zone (EEZ) for coastal nations. The FOCS is defined by the Law of the Sea as the point of maximum change of the slope and it is mathematically equivalent to the point which has the maximum curvature value in its vicinity. However, curvature is the second derivative and the calculation of second derivative is a high pass and noise-prone filtering procedure. Therefore, identification of FOCS with curvature analysis methods is often uncertain and erroneous because observed bathymetry profiles or interpolated raster maps commonly include high frequency noises and artifacts, observation errors, and local sharp changes. Effective low-pass filtering methods and robust FOCS indicator algorithms are highly desirable. In this approach, nonlinear singular spectral filtering and singularity FOCS-indicator methods and software tools are developed to address this requirement. The normally used Fourier domain filtering methods decompose signals into Fourier space, composed of a fixed base that depends only on the acquisition interval of the signal; the signal is required to be stationary or at least weak stationary. In contrast to that requirement, the developed singular spectral filtering method constructs orthogonal basis functions dynamically according to different signals, and it does not require the signal to be stationary or weak stationary. Furthermore, singular spectrum analysis (SSA) can assist in designing suitable filters to carefully remove high-frequency local or noise components while reserving useful global and local components according to energy distribution. Geoscientific signals, including morphological ocean bathymetry data, often demonstrate fractal or multifractal properties. With proper definition of scales in the vicinity of a certain point and related measures, it is found that 1-dimensional bathymetry profiles and 2-dimensional raster maps

  2. Buoyant Turbulent Kinetic Energy Production in Steep-Slope Katabatic Flow

    Oldroyd, Holly J.; Pardyjak, Eric R.; Higgins, Chad W.; Parlange, Marc B.


    We develop several critical concepts that should be considered when interpreting, modelling and designing future experiments for flows over sloping terrain. Vertical buoyancy fluxes in katabatic flows can be positive and a source of turbulent kinetic energy (TKE) despite the statically stable, thermal stratification that drives these flows. This phenomenon occurs when the ratio of along-slope to slope-normal kinematic heat fluxes is greater than the cotangent of the slope angle, suggesting a critical value of slope-angle steepness found in earlier studies. We provide field-data-based evidence that the along-slope heat flux may dominate the variables in this inequality, and therefore in generating buoyant TKE production or suppression over a steep slope. These data show the along-slope heat flux can be more variable and significantly larger in magnitude than the slope-normal component. The gradient Richardson number does not include the effects of the along-slope buoyancy; furthermore, none of the canonical stability parameters can properly reflect the TKE redistribution from turbulent transport divergence and the sink of TKE in cases of counter-gradient momentum fluxes, which we frequently observe near the peak of the katabatic jet. In such cases, canonical stability parameters inadequately represent the physical mechanisms associated with stability. These results have broad implications related to accurately modelling turbulence and surface exchanges over sloping terrain and illustrate the need to more thoroughly investigate the along-slope heat flux and its drivers, the meaning and definitions of stability, and the effects of non-local turbulent transport.

  3. Effects of basin bottom slope on jet hydrodynamics and river mouth bar formation

    Jiménez-Robles, A. M.; Ortega-Sánchez, M.; Losada, M. A.


    River mouth bars are strategic morphological units primarily responsible for the development of entire deltaic systems. This paper addresses the role of receiving basin slope in the hydrodynamics of an exiting sediment-laden turbulent jet and in resulting mouth bar morphodynamics. We use Delft3D, a coupled hydrodynamic and morphodynamic numerical model, along with a theoretical formulation to reproduce the physics of the problem, characterized by a fluvially dominated inlet free of waves and tides. We propose an updated theoretical model with a slope-dependent entrainment coefficient, showing that the rate at which ambient fluid is incorporated into a jet increases with higher basin slopes. Transient results reveal that the magnitude of a basin slope can alter the stability of a jet, favoring the formation of an unstable meandering jet. While a stable jet gives rise to "middle-ground" bars accompanied by diverging channels, a "lunate" mouth bar results from unstable jets. Additional morphodynamic simulations demonstrate that the time required for mouth bar stagnation in its final position increases linearly with the basin slope. In contrast, the distance at which the mouth bar eventually forms decreases until reaching an asymptotic value for slopes higher than 2%. Moreover, the basin slope highly influences sedimentary processes responsible for bar formation: for milder slopes, progradation processes prevail, while in steeper basins aggradation is more relevant. Finally, the minimum relative water depth over a bar crest that forces the flow to bifurcate around a fully developed bar decreases with the basin slope.

  4. Fast transfer of crossmodal time interval training.

    Chen, Lihan; Zhou, Xiaolin


    Sub-second time perception is essential for many important sensory and perceptual tasks including speech perception, motion perception, motor coordination, and crossmodal interaction. This study investigates to what extent the ability to discriminate sub-second time intervals acquired in one sensory modality can be transferred to another modality. To this end, we used perceptual classification of visual Ternus display (Ternus in Psychol Forsch 7:81-136, 1926) to implicitly measure participants' interval perception in pre- and posttests and implemented an intra- or crossmodal sub-second interval discrimination training protocol in between the tests. The Ternus display elicited either an "element motion" or a "group motion" percept, depending on the inter-stimulus interval between the two visual frames. The training protocol required participants to explicitly compare the interval length between a pair of visual, auditory, or tactile stimuli with a standard interval or to implicitly perceive the length of visual, auditory, or tactile intervals by completing a non-temporal task (discrimination of auditory pitch or tactile intensity). Results showed that after fast explicit training of interval discrimination (about 15 min), participants improved their ability to categorize the visual apparent motion in Ternus displays, although the training benefits were mild for visual timing training. However, the benefits were absent for implicit interval training protocols. This finding suggests that the timing ability in one modality can be rapidly acquired and used to improve timing-related performance in another modality and that there may exist a central clock for sub-second temporal processing, although modality-specific perceptual properties may constrain the functioning of this clock.

  5. Effect of Soil Erosion on Soil Properties and Crop Yields on Slopes in the Sichuan Basin, China

    SU Zheng-An; ZHANG Jian-Hui; NIE Xiao-Jun


    Roles of tillage erosion and water erosion in the development of within-field spatial variation of surface soil properties and soil degradation and their contributions to the reduction of crop yields were studied on three linear slopes in the Sichuan Basin,southwestern China.Tillage erosion was found to be the dominant erosion process at upper slope positions of each linear slope and on the whole short slope (20 m).On the long slope (110 m) and medium slope (40 m),watererosion was the dominant erosion process.Soil organic matter and soil nutrients in the tillage layer were significantly related to slope length and 137Cs inventories on the long slope;however,there was no significant correlation among themon the short slope,suggesting that water erosion lowered soil quality by transporting SOM and surface soil nutrients selectively from the upper to lower slope positions,while tillage erosion transported soil materials unselectively.On the medium slope,SOM,total N,and available N in the tillage layer were correlated with slope length and the other properties were distributed evenly on the slope,indicating that water erosion on this slope was still the dominant soil redistribution process.Similar patterns were found for the responses of grain yield,aboveground biomaas,and harvest index for slopes.These results indicated that tillage erosion was a major cause for soil degradation and grain yield reduction on the linear slopes because it resulted in displacement of the tillage layer soil required for maintaining soil quality and plant growth.

  6. Classifying and ranking DMUs in interval DEA

    GUO Jun-peng; WU Yu-hua; LI Wen-hua


    During efficiency evaluating by DEA, the inputs and outputs of DMUs may be intervals because of insufficient information or measure error. For this reason, interval DEA is proposed. To make the efficiency scores more discriminative, this paper builds an Interval Modified DEA (IMDEA) model based on MDEA.Furthermore, models of obtaining upper and lower bounds of the efficiency scores for each DMU are set up.Based on this, the DMUs are classified into three types. Next, a new order relation between intervals which can express the DM' s preference to the three types is proposed. As a result, a full and more eonvietive ranking is made on all the DMUs. Finally an example is given.

  7. Modal interval analysis new tools for numerical information

    Sainz, Miguel A; Calm, Remei; Herrero, Pau; Jorba, Lambert; Vehi, Josep


    This book presents an innovative new approach to interval analysis. Modal Interval Analysis (MIA) is an attempt to go beyond the limitations of classic intervals in terms of their structural, algebraic and logical features. The starting point of MIA is quite simple: It consists in defining a modal interval that attaches a quantifier to a classical interval and in introducing the basic relation of inclusion between modal intervals by means of the inclusion of the sets of predicates they accept. This modal approach introduces interval extensions of the real continuous functions, identifies equivalences between logical formulas and interval inclusions, and provides the semantic theorems that justify these equivalences, along with guidelines for arriving at these inclusions. Applications of these equivalences in different areas illustrate the obtained results. The book also presents a new interval object: marks, which aspire to be a new form of numerical treatment of errors in measurements and computations.

  8. Un problema de consenso para problemas de toma de decisiones multicriterio en grupo mediante relaciones de preferencia intervalares difusas lingüísticas || A Consensus Model for Group Multicriteria Decision Making Problems with Interval Fuzzy Preference Relations

    Amor Pulido, Raúl


    Full Text Available En el contexto de toma de decisiones multicriterio y bajo ciertas circunstancias, puede ocurrir que no se pueda expresar una cierta valoración mediante una única etiqueta lingüística, ya que puede haber duda en esa valoración. En este trabajo, presentamos un modelo de consenso para problemas de toma de decisiones en grupo con relaciones de preferencia intervalares lingüísticas. Este modelo está basado en dos criterios de consenso, una medida de consenso y una de proximidad, y en el concepto de coincidencia entre preferencias. Calcularemos ambos criterios en los tres niveles de representación de una relación de preferencia y diseñaremos un mecanismo de realimentación automático para guiar a los expertos en el proceso para alcanzar el consenso. || In some circumstances a decision maker, expert, in a group decision making problem cannot express his/her preferences with a unique linguistic fuzzy preference because he/she is dubious into some preferences. In this paper, we present a consensus model for group decision making problems with interval fuzzy preference relations. This model is based on two consensus criteria, a consensus measure and a proximity measure, and on the concept of co- incidence among preferences. We compute both consensus criteria in the three representation levels of a preference relation and design an automatic feedback mechanism to guide experts in the consensus reaching process.

  9. Late Holocene Radiocarbon Variability in Northwest Atlantic Slope Waters

    Sherwood, O; Edinger, E; Guilderson, T P; Ghaleb, B; Risk, M J; Scott, D B


    Deep-sea gorgonian corals secrete a 2-part skeleton of calcite, derived from dissolved inorganic carbon at depth, and gorgonin, derived from recently fixed and exported particulate organic matter. Radiocarbon contents of the calcite and gorgonin provide direct measures of seawater radiocarbon at depth and in the overlying surface waters, respectively. Using specimens collected from Northwest Atlantic slope waters, we generated radiocarbon records for surface and upper intermediate water layers spanning the pre- and post bomb-{sup 14}C eras. In Labrador Slope Water (LSW), convective mixing homogenizes the pre-bomb {Delta}{sup 14}C signature (-67 {+-} 4{per_thousand}) to at least 1000 m depth. Surface water bomb-{sup 14}C signals were lagged and damped (peaking at {approx} +45{per_thousand} in the early 1980s) relative to other regions of the northwest Atlantic, and intermediate water signals were damped further. Off southwest Nova Scotia, the vertical gradient in {Delta}{sup 14}C is much stronger. In surface water, pre-bomb {Delta}{sup 14}C averaged -75 {+-} 5{per_thousand}. At 250-475 m depth, prebomb {Delta}{sup 14}C oscillated quasi-decadally between -80 and -100{per_thousand}, likely reflecting interannual variability in the presence of Labrador Slope Water vs. Warm Slope Water (WSW). Finally, subfossil corals reveal no systematic changes in vertical {Delta}{sup 14}C gradients over the last 1200 years.

  10. Soil Strength Characteristics Along an Arable Eroded Slope

    PENG Xin-Hua; ZHANG Bin; ZHAO Qi-Guo; R. HORN


    Undisturbed soil cores were taken from different slope positions (upslope, backslope and footslope) and soil depths (0-15, 20-35 and 100-115 cm) in a soil catena derived from Quaternary red clay to determine the spatial changes in soil strength along the eroded slope and to evaluate an indicator to determine soil strength during compaction. Precompression stress, as an indicator of soil strength, significantly increased from topsoil layer to subsoil layer (P<0.05) and was affected by slope position. In the subsoil layer (20-35 cm), the precompression stress at the footslope position was significantly greater than at the backslope and upslope positions (P<0.05), while there were no significant differences at 0-15 and 100-115 cm. Precompression stress followed the spatial variation of soil clay content with soil depth and had a significant linear relationship with soil porosity (r2 = 0.40, P<0.01). Also, soil cohesion increased with increasing soil clay content.The precompression stress was significantly related to the applied stress corresponding to the highest change of pore water pressure (r2 = 0.69, P<0.01). These results suggested that soil strength induced by soil erosion and soil management varied spatially along the slope and the maximum change in pore water pressure during compaction could be an easy indicator to describe soil strength.

  11. Slope activity in Gale crater, Mars

    Dundas, Colin M.; McEwen, Alfred S.


    High-resolution repeat imaging of Aeolis Mons, the central mound in Gale crater, reveals active slope processes within tens of kilometers of the Curiosity rover. At one location near the base of northeastern Aeolis Mons, dozens of transient narrow lineae were observed, resembling features (Recurring Slope Lineae) that are potentially due to liquid water. However, the lineae faded and have not recurred in subsequent Mars years. Other small-scale slope activity is common, but has different spatial and temporal characteristics. We have not identified confirmed RSL, which Rummel et al. (Rummel, J.D. et al. [2014]. Astrobiology 14, 887–968) recommended be treated as potential special regions for planetary protection. Repeat images acquired as Curiosity approaches the base of Aeolis Mons could detect changes due to active slope processes, which could enable the rover to examine recently exposed material.

  12. North Slope, Alaska ESI: FACILITY (Facility Points)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for oil field facilities for the North Slope of Alaska. Vector points in this data set represent oil field facility locations. This data...

  13. North Slope, Alaska ESI: FISH (Fish Polygons)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and freshwater fish species for the North Slope of Alaska. Vector...

  14. ElevationOther_SLOPE10M

    Vermont Center for Geographic Information — Used ElevationDEM_DEM10M and the Arc/Info SLOPE command with the "PERCENT_RISE" and ".3048" Z_unit options to create this data layer. Input source dataset is...

  15. North Slope, Alaska ESI: NESTS (Nest Points)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for waterfowl, seabirds, gulls and terns for the North Slope of Alaska. Vector points in this data set...

  16. Slope-Based and Geometric Encoding of a Goal Location by the Terrestrial Toad (Rhinella arenarum).

    Sotelo, María Inés; Bingman, Verner P; Muzio, Rubén N


    The current study was designed to test for the ability of terrestrial toads, Rhinella arenarum, to use slope as source of spatial information to locate a goal, and investigate the relative importance of slope and geometric information for goal localization. Toads were trained to locate a single, water-reward goal location in a corner of a rectangular arena placed on an incline. Once the toads learned the task, 3 types of probe trials were carried out to determine the relative use of slope and geometric information for goal localization. The probe trials revealed that the toads were able to independently use slope, and as previously reported, geometry to locate the goal. However, the boundary geometry of the experimental arena was found to be preferentially used by the toads when geometric and slope information were set in conflict. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. True 3D kinematic analysis for slope instability assessment in the Siq of Petra (Jordan), from high resolution TLS

    Gigli, Giovanni; Margottini, Claudio; Spizzichino, Daniele; Ruther, Heinz; Casagli, Nicola


    Most classifications of mass movements in rock slopes use relatively simple, idealized geometries for the basal sliding surface, like planar sliding, wedge sliding, toppling or columnar failures. For small volumes, the real sliding surface can be often well described by such simple geometries. Extended and complex rock surfaces, however, can exhibit a large number of mass movements, also showing various kind of kinematisms. As a consequence, the real situation in large rock surfaces with a complicate geometry is generally very complex and a site depending analysis, such as fieldwork and compass, cannot be comprehensive of the real situation. Since the outstanding development of terrestrial laser scanner (TLS) in recent years, rock slopes can now be investigated and mapped through high resolution point clouds, reaching the resolution of few mm's and accuracy less than a cm in most advanced instruments, even from remote surveying. The availability of slope surface digital data can offer a unique chance to determine potential kinematisms in a wide distributed area for all the investigated geomorphological processes. More in detail the proposed method is based on the definition of least squares fitting planes on clusters of points extracted by moving a sampling cube on the point cloud. If the associated standard deviation is below a defined threshold, the cluster is considered valid. By applying geometric criteria it is possible to join all the clusters lying on the same surface; in this way discontinuity planes can be reconstructed, rock mass geometrical properties are calculated and, finally, potential kinematisms established. The Siq of Petra (Jordan), is a 1.2 km naturally formed gorge, with an irregular horizontal shape and a complex vertical slope, that represents the main entrance to Nabatean archaeological site. In the Siq, discontinuities of various type (bedding, joints, faults), mainly related to geomorphological evolution of the slope, lateral stress

  18. 3D geodetic monitoring slope deformations

    Weiss Gabriel


    Full Text Available For plenty of slope failures that can be found in Slovakia is necessary and very important their geodetic monitoring (because of their activity, reactivisations, checks. The paper gives new methodologies for these works, using 3D terrestrial survey technologies for measurements in convenient deformation networks. The design of an optimal type of deformation model for various kinds of landslides and their exact processing with an efficient testing procedure to determine the kinematics of the slope deformations are presented too.

  19. The Gauss map on a class of interval translation mappings

    Bruin, H; Troubetzkoy, S


    We study the dynamics of a class of interval translation map on three intervals. We show that in this class the typical ITM is of finite type (reduce to an interval exchange transformation) and that the complement contains a Cantor set. We relate our maps to substitution subshifts. Results on

  20. Numerical computation of homogeneous slope stability.

    Xiao, Shuangshuang; Li, Kemin; Ding, Xiaohua; Liu, Tong


    To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS) to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM) and particle swarm optimization algorithm (PSO) to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759) were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS).

  1. Numerical Computation of Homogeneous Slope Stability

    Shuangshuang Xiao


    Full Text Available To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM and particle swarm optimization algorithm (PSO to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759 were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS.

  2. An Interval-valued Fuzzy Competitive Neural Network

    DENG Guan-nan; ZOU Kai-qi


    Because interval value is quite natural in clustering, an interval-valued fuzzy competitive neural network is proposed. Firstly, this paper proposes several definitions of distance relating to interval number. And then, it indicates the method of preprocessing input data, the structure of the network and the learning algorithm of the interval-valued fuzzy competitive neural network. This paper also analyses the principle of the learning algorithm. At last, an experiment is used to test the validity of the network.

  3. Minimax confidence intervals in geomagnetism

    Stark, Philip B.


    The present paper uses theory of Donoho (1989) to find lower bounds on the lengths of optimally short fixed-length confidence intervals (minimax confidence intervals) for Gauss coefficients of the field of degree 1-12 using the heat flow constraint. The bounds on optimal minimax intervals are about 40 percent shorter than Backus' intervals: no procedure for producing fixed-length confidence intervals, linear or nonlinear, can give intervals shorter than about 60 percent the length of Backus' in this problem. While both methods rigorously account for the fact that core field models are infinite-dimensional, the application of the techniques to the geomagnetic problem involves approximations and counterfactual assumptions about the data errors, and so these results are likely to be extremely optimistic estimates of the actual uncertainty in Gauss coefficients.

  4. Connecting Slope, Steepness, and Angles

    Nagle, Courtney R.; Moore-Russo, Deborah


    All teachers, especially high school teachers, face the challenge of ensuring that students have opportunities to relate and connect the various representations and notions of mathematics concepts developed over the course of the pre-K-12 mathematics curriculum. NCTM's (2000) Representation Standard emphasizes the importance of students being…

  5. The dependence of sheet erosion velocity on slope angle

    Chernyshev Sergey Nikolaevich


    Full Text Available The article presents a method for estimating the erosion velocity on forested natural area. As a research object for testing the methodology the authors selected Neskuchny Garden - a city Park on the Moskva river embankment, named after the cognominal Palace of Catherine's age. Here, an almost horizontal surface III of the Moskva river terrace above the flood-plain is especially remarkable, accentuated by the steep sides of the ravine parallel to St. Andrew's, but short and nameless. The crests of the ravine sides are sharp, which is the evidence of its recent formation, but the old trees on the slopes indicate that it has not been growing for at least 100 years. Earlier Russian researchers defined vertical velocity of sheet erosion for different regions and slopes with different parent (in relation to the soil rocks. The comparison of the velocities shows that climatic conditions, in the first approximation, do not have a decisive influence on the erosion velocity of silt loam soils. The velocities on the shores of Issyk-Kul lake and in Moscow proved to be the same. But the composition of the parent rocks strongly affects the sheet erosion velocity. Even low-strength rock material reduces the velocity by times. Phytoindication method gives a real, physically explainable sheet erosion velocities. The speed is rather small but it should be considered when designing long-term structures on the slopes composed of dispersive soils. On the slopes composed of rocky soils sheet erosion velocity is so insignificant that it shouldn't be taken into account when designing. However, there may be other geological processes, significantly disturbing the stability of slopes connected with cracks.

  6. VT Lidar Slope (0.7 meter) - 2013 - most of Rutland Co., most of Grand Isle Co., and portions of Addison and Washington Counties

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Rutland/GI Counties 2013 0.7m and related SLOPE datasets. Created using ArcGIS "SLOPE"...

  7. Reference Intervals in Neonatal Hematology.

    Henry, Erick; Christensen, Robert D


    The various blood cell counts of neonates must be interpreted in accordance with high-quality reference intervals based on gestational and postnatal age. Using very large sample sizes, we generated neonatal reference intervals for each element of the complete blood count (CBC). Knowledge of whether a patient has CBC values that are too high (above the upper reference interval) or too low (below the lower reference interval) provides important insights into the specific disorder involved and in many instances suggests a treatment plan. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Circadian profile of QT interval and QT interval variability in 172 healthy volunteers

    Bonnemeier, Hendrik; Wiegand, Uwe K H; Braasch, Wiebke


    of sleep. QT and R-R intervals revealed a characteristic day-night-pattern. Diurnal profiles of QT interval variability exhibited a significant increase in the morning hours (6-9 AM; P ...-to-beat QT interval duration (QT, QTapex [QTa], Tend [Te]), variability (QTSD, QTaSD), and the mean R-R interval were determined from 24-hour ambulatory electrocardiograms after exclusion of artifacts and premature beats. All volunteers were fully active, awoke at approximately 7:00 AM, and had 6-8 hours...... alterations mainly at daytime with normal aging. Furthermore, the diurnal course of the QT interval variability strongly suggests that it is related to cardiac sympathetic activity and to the reported diurnal pattern of malignant ventricular arrhythmias....

  9. Time shift of pulses due to dispersion slope and nonlinearity

    Marcuse, D.; Menyuk, C.R.; Holzloehner, R.


    The authors show that the time delay of optical pulses traveling in long fibers is influenced by the dispersion slope and the fiber nonlinearity. Consequently, one or more new pulses that are inserted by add-drop operations into a pulse train that has already traveled a long distance may shift relative to the old pulses. This time shift delays the initial pulses more than the newly inserted ones, so that the newly inserted pulses can leave their time frames, leading to errors.

  10. Comprehensive analysis of slope stability and determination of stable slopes in the Chador-Malu iron ore mine using numerical and limit equilibrium methods



    One of the critical aspects in mine design is slope stability analysis and the determination of stable slopes. In the Chador Malu iron ore mine, one of the most important iron ore mines in central Iran, it was considered vital to perform a comprehensive slope stability analysis. At first, we divided the existing rock hosting pit into six zones and a geotechnical map was prepared. Then,the value of MRMR (Mining Rock Mass Rating) was determined for each zone. Owing to the fact that the Chador-Malu iron ore mine is located in a highly tectonic area and the rock mass completely crushed, the Hock-Brown failure criterion was found suitable to estimate geo-mechanical parameters. After that, the value of cohesion (c) and friction angle (e) were calculated for different geotechnical zones and relative graphs and equations were derived as a function of slope height. The stability analyses using numerical and limit equilibrium methods showed that some instability problems might occur by increasing the slope height.Therefore, stable slopes for each geotechnical zone and prepared sections were calculated and presented as a function of slope height.

  11. Real analysis on intervals

    Choudary, A D R


    The book targets undergraduate and postgraduate mathematics students and helps them develop a deep understanding of mathematical analysis. Designed as a first course in real analysis, it helps students learn how abstract mathematical analysis solves mathematical problems that relate to the real world. As well as providing a valuable source of inspiration for contemporary research in mathematics, the book helps students read, understand and construct mathematical proofs, develop their problem-solving abilities and comprehend the importance and frontiers of computer facilities and much more. It offers comprehensive material for both seminars and independent study for readers with a basic knowledge of calculus and linear algebra. The first nine chapters followed by the appendix on the Stieltjes integral are recommended for graduate students studying probability and statistics, while the first eight chapters followed by the appendix on dynamical systems will be of use to students of biology and environmental scie...

  12. Feature of resistivity response of slope from steady to unsteady

    谢忠球; 张玉池; 温佩琳; 段靓靓


    Using resistivity as index and referring to the law about effect of slope to resistivity,the apparent resistivities of geophysical model concerned with unsteady rock type slope failure were calculated systematically by using the boundary integral equation method.After studying the feature of resistivity response of slope failure,the variety of resistivity during evolution of slope from steady to unsteady was found and the characteristics of resistivity response about slope failure was concluded.These make electrical exploring method for detecting the slip plane or structural plane of slope failure,evaluating the stability of the slope,and forecasting slope failure become true.

  13. [Mechanisms of grass in slope erosion control in Loess sandy soil region of Northwest China].

    Zhao, Chun-Hong; Gao, Jian-En; Xu, Zhen


    By adopting the method of simulated precipitation and from the viewpoint of slope hydrodynamics, in combining with the analysis of soil resistance to erosion, a quantitative study was made on the mechanisms of grass in controlling the slope erosion in the cross area of wind-water erosion in Loess Plateau of Northwest China under different combinations of rainfall intensity and slope gradient, aimed to provide basis to reveal the mechanisms of vegetation in controlling soil erosion and to select appropriate vegetation for the soil and water conservation in Loess Plateau. The grass Astragalus adsurgens with the coverage about 40% could effectively control the slope erosion. This grass had an efficiency of more than 70% in reducing sediment, and the grass root had a greater effect than grass canopy. On bare slope and on the slopes with the grass plant or only the grass root playing effect, there existed a functional relation between the flow velocity on the slopes and the rainfall intensity and slope gradient (V = DJ(0.33 i 0.5), where V is flow velocity, D is the comprehensive coefficient which varies with different underlying surfaces, i is rainfall intensity, and J is slope gradient). Both the grass root and the grass canopy could markedly decrease the flow velocity on the slopes, and increase the slope resistance, but the effect of grass root in decreasing flow velocity was greater while the effect in increasing resistance was smaller than that of grass canopy. The effect of grass root in increasing slope resistance was mainly achieved by increasing the sediment grain resistance, while the effect of canopy was mainly achieved by increasing the slope form resistance and wave resistance. The evaluation of the soil resistance to erosion by using a conceptual model of sediment generation by overland flow indicated that the critical shear stress value of bare slope and of the slopes with the grass plant or only the grass root playing effect was 0.533, 1.672 and 0

  14. Photogrammetric analysis of slope failures feeding the head of the Illgraben debris flow channel

    Bennett, G. L.; Molnar, P.; Eisenbeiss, H.; McArdell, B. W.


    Our understanding of slope failure is restricted by a lack of inventories of sufficient size and directly measured volumes. We used digital photogrammetry to produce a multi-temporal record of erosion of a rock slope in the Illgraben. From this we extracted an inventory of ~2500 slope failures for 3 epochs of 6/7 years between 1986 and 2005 ranging over 6 orders of magnitude in volume. Through analysis of their magnitude-frequency, volume-area and depth-slope gradient relations we aimed to understand the characteristics of slope failure at the head of this active alpine debris-flow catchment. The slope failure volumes follow a characteristic magnitude-frequency distribution with a roll-over at 50m3 and a power-law tail between ~200m3 and 1.6x106m3 with an exponent of 1.65. We compared different methods to estimate the power law scaling exponent and found the maximum likelihood estimator to be the most accurate. Conversely, least squares regression on the probability density function consistently underestimated the exponent. Slope failure volume scales with failure area as a power law with an exponent of 1.1. This exponent is low for the bedrock nature of the slope in comparison with worldwide studies of bedrock and soil landslides and likely results from the highly fractured and incohesive nature of the quartzitic bedrock of the study slope. Comparing the results for different epochs we find that the magnitude-frequency and volume-area relationships are reasonably time-invariant demonstrating their general nature for the setting. We interpret the magnitude-frequency distribution of slope failure volumes as the result of two separate slope failure processes. Type (1) failures are frequent, small slides and slumps within the weathered layer of highly fractured rock and loose sediment. These make up the roll-over of the distribution. Type (2) failures are less frequent rockslides and rockfalls within the internal bedded and fractured slope along pre

  15. Stability analysis of sandy slope considering anisotropy effect in friction angle

    Hamed Farshbaf Aghajani; Hossein Salehzadeh; Habib Shahnazari


    This paper aims to investigate the effect of anisotropy of shear strength parameter on the stability of a sandy slope by performing the limit equilibrium analysis. Because of scarcity of mathematical equation for anisotropic friction angle of sand, at first, all results of principal stress rotation tests are processed by artificial neural network and a computational procedure is developed for determining sand friction angle subjected to various loading directions. By implementing this procedure, slope stability analysis is performed in both isotropic and anisotropic conditions. The results indicate that while isotropic slope stability overestimates the factor of safety between 5 and 25% which the deviation is more for flatter slope, the location of critical slip surface is coincident in both conditions. Also in specific slip surface, the parameters of face angle, geometry of slip surface and soil properties relating to anisotropy are the main factors governing the result of anisotropic slope stability.

  16. Temperature regime of agrosoddy-podzolic soils on slopes of different steepness

    Shein, E. V.; Bannikov, M. V.; Savoskina, O. A.; Mazirov, M. A.


    Soil temperature regime at the depth of 20 cm may vary considerably on different parts of a given slope. This variation may be related to the position of the particular site on the slope and to the geomorphic features of the slope, including its surface inclination. The soils of the upper steep part of the slope of southern aspect are subjected to more active warming in the spring. They are characterized by higher cumulative temperatures above 10°C. The degree of this difference depends on the particular weather conditions. The differences in the soil temperature regimes may be the reason for the unequal crop yields on the different parts of the slope.

  17. River slopes on basalts: Slope-area trends and lithologic control

    Lima, Adalto Gonçalves; Flores, Diego Moraes


    River incisions in continental basalts are distinct and heterogeneous. Knickpoints and the predominance of erosion by plucking contribute to that distinction, whereas significant differences in the vesicularity and jointing of basaltic flows are suggested as controls on the heterogeneities of incisions. We investigated 11 small river channels (<80 km long) installed on continental basalts of the Paraná Volcanic Province, South Brazil, using slope-area analysis (S = ksA-θ), to explore the possible relationships of steepness (ks) and concavity (θ) indices with characteristics of flow basalts. Channels were chosen that did not present signs of significant tectonic interference on a longitudinal profile, i.e., convex reaches and prominent knickpoints. The data were extracted in a Geographic Information System (GIS) environment from digital topographic maps at a scale of 1:50,000. Basaltic flow zones and morphologies, jointing styles, as well as river bed morphologies and erosion processes were surveyed in the field. The longitudinal profiles of the rivers are stepped, and the lower slope reaches are associated predominantly with vesicular basalts and basaltic breccias. Knickpoints are generated by contrasts in the erodibility of the substrate due to vesicular-massive differences and the partial insertion of channels in tectonically fractured zones (lineaments). The normalized steepness index (ksn) is positively correlated (R2 = 0.8) with the knickzone index (the ratio between the number of knickzones and the channel length). Rivers occurring in simple basaltic flows have distinct upper and lower limits of the steepness index (ks), which are represented by massive and vesicular basalts, respectively. The average concavity index (θ) is 0.56 ± 0.16, and its range is from 0.34 to 0.82. The range in θ is inversely related to the rate of downstream variation in the drainage area (discharge). However, the greatest control is exerted by the proportion of basalts that are

  18. Interplay between down-slope and along-slope sedimentary processes during the late Quaternary along the Capo Vaticano margin (southern Tyrrhenian Sea, Italy)

    Martorelli, Eleonora; Bosman, Alessandro; Casalbore, Daniele; Falcini, Federico


    Late Quaternary along-slope and down-slope sedimentary processes and structures in the upper slope-shelf sector of the Calabro-Tyrrhenian continental margin off Capo Vaticano have been investigated using very high-resolution single-channel seismic profiles and multibeam bathymetric data. The results show that a competition among along-slope bottom currents-vs down-slope mass-wasting mostly contributed in shaping the seafloor and controlling deposition of sedimentary units during the Late Quaternary. Along-slope processes mostly formed elongated drifts located on the upper continental slope and outer shelf, between -90 and -300 m. The contourite deposits and associated erosive elements indicate the presence of a northwestward geostrophic flow that can be related to the modified-LIW issued by the Messina Strait. According to the proposed stratigraphic reconstruction it is likely that the activity of bottom-currents off Capo Vaticano was intensified around the LGM period and during the post-glacial sea-level rise, whereas they were less intense during the Holocene. Gravity-driven down-slope processes formed mass-transport deposits and turbidite systems with erosive channels, locally indenting the present-day shelf. Several slide events affected the upper 10-20 m of the stratigraphic record, dismantling considerable volume of contourite sediment. High-resolution seismic profiles indicate that failure processes appear to be dominated by translational sliding with glide plains mainly developed within contourite deposits. The most striking feature is the Capo Vaticano slide complex, which displays a large spatial coverage (area of about 18 km2) and is composed by several intersecting slide scars and overlapping deposits; these characteristics are peculiar for the Tyrrhenian continental margins, where slide events developed in open-slope areas are usually less complex and smaller in size. The presence of high-amplitude reflectors within contourite deposits (representing

  19. Study on extracting method of single slope surface shape based on DEM:taking Wanzhou district of three gorges reservoir area as example

    ZHOU Qi-gang; YUAN Li-feng


    This paper focused on the extracting method of single slope shape. Applying the software of ARCGIS 9.0, DEM (digital elevation model) was established. From the DEM, topographic characters, including valleys and ridges were extracted. Some valley lines were extended in order to intersect with the ridges nearby. All slope were divided into different slope surface, which enclosed by valleys and ridges. And the slope surface shapes were defined three types, Line Slope, Upper-concave and lower-convex slope, Upper-convex and lower-concave slope, according to their functions. And the judge formula of single slope surface shape was brought forward. Taking Wanzhou District as test area, it indicates that auto-extracting method of single slope surface shape has high precision relatively. This study can provide references to the studies of region geological disasters prevention and cure.

  20. Automatic Error Analysis Using Intervals

    Rothwell, E. J.; Cloud, M. J.


    A technique for automatic error analysis using interval mathematics is introduced. A comparison to standard error propagation methods shows that in cases involving complicated formulas, the interval approach gives comparable error estimates with much less effort. Several examples are considered, and numerical errors are computed using the INTLAB…

  1. Explorations in Statistics: Confidence Intervals

    Curran-Everett, Douglas


    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This third installment of "Explorations in Statistics" investigates confidence intervals. A confidence interval is a range that we expect, with some level of confidence, to include the true value of a population parameter…

  2. Terrestrial slopes in northern high latitudes: A paradigm shift regarding sediment origin, composition, and dynamic evolution

    Lønne, Ida


    High-Arctic terrestrial slopes have received limited systematic research interest, but increased vulnerability related to regional warming has driven the call for better knowledge of the dynamics of these systems. Studies of sediment transport from a plateau area in Adventdalen, Svalbard, and associated slopes extending to sea level demonstrate that glacial processes play a more prominent role than earlier anticipated, - especially the impact of glacial meltwater. Traces of drainage at the plateau and the dissection of the plateau edge and upper slope were clearly initiated during various stages of Late Glacial runoff. Further, there is a close association between the sediment distribution and composition at the plateau and the evolution of various types of slopes. The reconstructed sedimentation history shows that the landscape will undergo four stages with contrasting modes of sediment transport: 1) subglacial processes related to active ice, 2) processes related to the margin of active ice, 3) processes related to the melting of inactive ice, and 4) nonglacial processes. These stages form four successions, referred to as supply regimes A-D, which control the supply of water and sediments to a given slope segment. In this landscape, traces of glacial meltwater occur at most altitudes, in "odd" positions and in slope segments "without" catchments. The associated depocenters (isolated, composite or coalescing into aprons), are often outsized compared to the apparent slope catchment. Reworked glacial sediments form a significant part of the slope-debris but are covered partly or entirely by products of physical weathering. Colluvium, senso stricto, thus masks a distinct system shift related to the local termination of glacial meltwater. Consequently, the weathering part of the slope sediment budget in this region is considerably overestimated.

  3. RCPAQAP First Combined Measurement and Reference Interval Survey.

    Jones, Graham Rd; Koetsier, Sabrina DA


    Reference intervals are commonly considered to allow for between-laboratory bias. The RCPAQAP Liquid Serum Chemistry Program has collected data on laboratory measurements as well as reference intervals. This allows assessment of the between-laboratory variation in results, reference intervals and the information transmitted by the combination of these factors. For the majority of common chemistry analytes, the between-laboratory variation in reference intervals is greater than the variation in results. Additionally the reference interval variation is generally not related to bias between the results. Use of common reference intervals, either as an average of the current intervals in use, or the intervals proposed by the AACB Harmonisation Group, improved the variation seen in the information produced by different laboratories.

  4. Stability analysis and optimum reinforcement design for an intense weathered rock slope

    Qi, Kuan; Tan, Zhuoying; Li, Wen


    In view of the complex structural characters of Chengmenshan copper mine slope, the slope stability should be analyzed and additional reinforcement measures need to be considered to ensure mining safety. In this paper, the slope model was built and its stability was analyzed by numerical simulation method under nature and dynamic loading state. After that the design of orthogonal experiment was discussed for the key factors which influence the reinforcement effect of anchors with SPSS software, and the primary and secondary relation of factors and the optimal combination were obtained using the range analysis method. Finally, the slope stability with optimal reinforcement measure was tested. The results show that the safety factor of slope under nature state is low and it is in the critical instability condition. Under dynamic loading state, the failure probability of slope increases from 0 to 18% as the seismic magnitude varies from 6 to 8. Primary and secondary sequence of factors that influence the anchor reinforcement effect is the bonding length, anchor installing angle, anchor length at 3rd bench, anchor length at 2nd bench and anchor length at 1st bench .The safety factor of slope reinforced with anchors is larger than 1.1, which could ensure the safety and stability of the slope.

  5. Formation Mechanism and Stability Assessment of the Colluvial Deposit Slope in Zuoyituo

    Jian Wenxing; Zhang Yihu; Yin Hongmei


    The basic features of the colluvial deposit slope in Zuoyituo such as geological conditions, dimensions, slip surfaces and groundwater conditions are described concisely in this paper. The formation mechanism of the slope is discussed. It is considered that the formation of the colluvial deposit slope in Zuoyituo has undergone accumulation, slip, load, deformation and failure. The effects of rainfall on slope stability are categorized systematically based on existing methodology, and ways to determine the effects quantitatively are presented. The remained slip force method is improved by the addition of quantitative relations to the existing formulae and programs. The parameters of the colluvial deposit slope are determined through experimentation and the method of back-analysis. The safety factors of the slope are calculated with the improved remained slip force method and the Sarma method. The results show that rainfall and water level in the Yangtze River have a significant effect on the stability of the colluvial deposit slope in Zuoyituo. The hazards caused by the instability of the slope are assessed, and prevention methods are put forward.

  6. Population genetic structure of arctic char from rivers of the north slope of Alaska

    US Fish and Wildlife Service, Department of the Interior — Many environmental concerns on the North Slope of Alaska are related to oil and gas development. Both the National Environmental Protection Act and the Alaska...

  7. [Short pregnancy interval and reproductive disorders

    Jongbloet, P.H.; Zielhuis, G.A.; Pasker-de Jong, P.C.M.


    The cause of the 'borderline personality disorder' of Vincent van Gogh has been discussed in social-psychiatric terms related to so-called 'substitute children', born after the loss of a previous child. A biological-organic genesis, i.e. the very short birth interval of precisely one year between Va

  8. High Intensity Interval Training: New Insights

    Martin J.Gibala


    @@ KEY POINTS ·High-intensity interval training(HIT)is characterized by repeated sessions of relatively brief,intermittent exercise.often performed with an“a11 out”effort or at an intensity close to that which elicits peak oxygen uptake(i.e.,≥90%of VO2 peak).

  9. Robust stability of interval parameter matrices


    This note is devoted to the problem of robust stability of interval parameter matrices. Based on some basic facts relating the H∞ norm of a transfer function to the Riccati matrix inequality and Hamilton matrix, several test conditions with parameter perturbation bounds are obtained.

  10. Computation of confidence intervals for Poisson processes

    Aguilar-Saavedra, J. A.


    We present an algorithm which allows a fast numerical computation of Feldman-Cousins confidence intervals for Poisson processes, even when the number of background events is relatively large. This algorithm incorporates an appropriate treatment of the singularities that arise as a consequence of the discreteness of the variable.

  11. Computation of confidence intervals for Poisson processes

    Aguilar-Saavedra, J A


    We present an algorithm which allows a fast numerical computation of Feldman-Cousins confidence intervals for Poisson processes, even when the number of background events is relatively large. This algorithm incorporates an appropriate treatment of the singularities that arise as a consequence of the discreteness of the variable.

  12. Thermomechanical forcing of deep rock slope deformation: 2. The Randa rock slope instability

    Gischig, Valentin S.; Moore, Jeffrey R.; Evans, Keith F.; Amann, Florian; Loew, Simon


    Deformation monitoring between 2004 and 2011 at the rock slope instability above Randa (Switzerland) has revealed an intriguing seasonal trend. Relative dislocation rates across active fractures increase when near-surface rock temperatures drop in the fall and decrease after snowmelt as temperatures rise. This temporal pattern was observed with different monitoring systems at the ground surface and at depths up to 68 m, and represents the behavior of the entire instability. In this paper, the second of two companion pieces, we interpret this seasonal deformation trend as being controlled by thermomechanical (TM) effects driven by near-surface temperature cycles. While Part 1 of this work demonstrated in a conceptual manner how TM effects can drive deep rock slope deformation and progressive failure, we present here in Part 2 a case study where temperature-controlled deformation trends were observed in a natural setting. A 2D discrete-element numerical model is employed, which allows failure along discontinuities and successfully reproduces the observed kinematics of the Randa instability. By implementing simplified ground surface temperature forcing, model results were able to reproduce the observed deformation pattern, and TM-induced displacement rates and seasonal amplitudes in the model are of the same order of magnitude as measured values. Model results, however, exhibit spatial variation in displacement onset times while field measurements show more synchronous change. Additional heat transfer mechanisms, such as fracture ventilation, likely create deviations from the purely transient-conductive temperature field modeled. We suggest that TM effects are especially important at Randa due to the absence of significant groundwater within the unstable rock mass.

  13. Beyond debuttressing: Mechanics of paraglacial rock slope damage during repeat glacial cycles

    Grämiger, Lorenz M.; Moore, Jeffrey R.; Gischig, Valentin S.; Ivy-Ochs, Susan; Loew, Simon


    Cycles of glaciation impose mechanical stresses on underlying bedrock as glaciers advance, erode, and retreat. Fracture initiation and propagation constitute rock mass damage and act as preparatory factors for slope failures; however, the mechanics of paraglacial rock slope damage remain poorly characterized. Using conceptual numerical models closely based on the Aletsch Glacier region of Switzerland, we explore how in situ stress changes associated with fluctuating ice thickness can drive progressive rock mass failure preparing future slope instabilities. Our simulations reveal that glacial cycles as purely mechanical loading and unloading phenomena produce relatively limited new damage. However, ice fluctuations can increase the criticality of fractures in adjacent slopes, which may in turn increase the efficacy of fatigue processes. Bedrock erosion during glaciation promotes significant new damage during first deglaciation. An already weakened rock slope is more susceptible to damage from glacier loading and unloading and may fail completely. We find that damage kinematics are controlled by discontinuity geometry and the relative position of the glacier; ice advance and retreat both generate damage. We correlate model results with mapped landslides around the Great Aletsch Glacier. Our result that most damage occurs during first deglaciation agrees with the relative age of the majority of identified landslides. The kinematics and dimensions of a slope failure produced in our models are also in good agreement with characteristics of instabilities observed in the field. Our results extend simplified assumptions of glacial debuttressing, demonstrating in detail how cycles of ice loading, erosion, and unloading drive paraglacial rock slope damage.

  14. The logarithmic slope in diffractive DIS

    Gay-Ducati, M B; Machado, M V T


    The logarithmic slope of diffractive structure function is a potential observable to separate the hard and soft contributions in diffraction, allowing to disentangle the QCD dynamics at small-x region. In this paper we extend our previous analyzes and calculate the diffractive logarithmic slope for three current approaches in the literature: (i) the Bartels-Wusthoff model, based on perturbative QCD, (ii) the CKMT model, based on Regge theory and (iii) the Golec-Biernat-Wusthoff model which assumes that the saturation phenomena is present in the HERA kinematic region. We analyze the transition region of small to large momentum transfer and verify that future experimental results on the diffractive logarithmic slope could discriminate between these approaches.

  15. Asteroid absolute magnitudes and slope parameters

    Tedesco, Edward F.


    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  16. Assessment of Slope Instability and Risk Analysis of Road Cut Slopes in Lashotor Pass, Iran

    Mohammad Hossein Taherynia


    Full Text Available Assessment of the stability of natural and artificial rock slopes is an important topic in the rock mechanics sciences. One of the most widely used methods for this purpose is the classification of the slope rock mass. In the recent decades, several rock slope classification systems are presented by many researchers. Each one of these rock mass classification systems uses different parameters and rating systems. These differences are due to the diversity of affecting parameters and the degree of influence on the rock slope stability. Another important point in rock slope stability is appraisal hazard and risk analysis. In the risk analysis, the degree of danger of rock slope instability is determined. The Lashotor pass is located in the Shiraz-Isfahan highway in Iran. Field surveys indicate that there are high potentialities of instability in the road cut slopes of the Lashotor pass. In the current paper, the stability of the rock slopes in the Lashotor pass is studied comprehensively with different classification methods. For risk analyses, we estimated dangerous area by use of the RocFall software. Furthermore, the dangers of falling rocks for the vehicles passing the Lashotor pass are estimated according to rockfall hazard rating system.

  17. Reliability analysis method applied in slope stability: slope prediction and forecast on stability analysis

    Wenjuan ZHANG; Li CHEN; Ning QU; Hai'an LIANG


    Landslide is one kind of geologic hazards that often happens all over the world. It brings huge losses to human life and property; therefore, it is very important to research it. This study focused in combination between single and regional landslide, traditional slope stability analysis method and reliability analysis method. Meanwhile, methods of prediction of slopes and reliability analysis were discussed.

  18. Extended Elliptic Mild Slope Equation Incorporating the Nonlinear Shoaling Effect

    Xiao Qian-lu


    Full Text Available The transformation during wave propagation is significantly important for the calculations of hydraulic and coastal engineering, as well as the sediment transport. The exact wave height deformation calculation on the coasts is essential to near-shore hydrodynamics research and the structure design of coastal engineering. According to the wave shoaling results gained from the elliptical cosine wave theory, the nonlinear wave dispersion relation is adopted to develop the expression of the corresponding nonlinear wave shoaling coefficient. Based on the extended elliptic mild slope equation, an efficient wave numerical model is presented in this paper for predicting wave deformation across the complex topography and the surf zone, incorporating the nonlinear wave dispersion relation, the nonlinear wave shoaling coefficient and other energy dissipation factors. Especially, the phenomenon of wave recovery and second breaking could be shown by the present model. The classical Berkhoff single elliptic topography wave tests, the sinusoidal varying topography experiment, and complex composite slopes wave flume experiments are applied to verify the accuracy of the calculation of wave heights. Compared with experimental data, good agreements are found upon single elliptical topography and one-dimensional beach profiles, including uniform slope and step-type profiles. The results indicate that the newly-developed nonlinear wave shoaling coefficient improves the calculated accuracy of wave transformation in the surf zone efficiently, and the wave breaking is the key factor affecting the wave characteristics and need to be considered in the nearshore wave simulations.



    In this paper, the Boussinesq equations and mild-slope equation of wave transformation in near-shore shallow water were introduced and the characteristics of the two forms of equations were compared and analyzed. Meanwhile, a Boussinesq wave model which includes effects of bottom friction, wave breaking and subgrid turbulent mixing is established, slot technique dealing with moving boundary and damping layer dealing with absorbing boundary were established. By adopting empirical nonlinear dispersion relation and including nonlinear term, the mild-slope equation model was modified to take nonlinear effects into account. The two types of models were validated with the experiment results given by Berkhoff and their accuracy was analysed and compared with that of correlated methods.

  20. Influence of groundwater level to slope displacement by geodetic method

    Sadarviana, Vera; Abidin, Hasanuddin Z.; Santoso, Djoko; Kahar, Joenil; Achmad R., T.


    In the rainy season, Indonesia often experience landslide disasters. Rainwater flows on the surface of the ground and partially into the ground, and changing the groundwater level (GWL) which can cause pressure on surrounding material. Water becomes the main factor that triggered landslides because water causes pressure force on the slopes that are prone to move. With the geometric approach, slope material displacement vectors can be known, including the origin of the material pressure using dynamic mathematical model that considers GWL. The data was used 5 campaigns of GPS observations. The results are obtained the correlation coefficients between coefficient changes in groundwater levels to the vector position as a representative of correlation between the physical and geometric parameters. There is relatively strong because of the value of the average correlation coefficient is 0.91997. Further, curves between changes in groundwater levels and the displacement position shows that the greater the groundwater levels, the greater the material position shift occurs.

  1. The Sloping Land Conversion Program in China

    Liu, Zhen

    conversion program. Our results show that SLCP works as a valid external policy intervention on rural livelihood diversification. In addition, the findings demonstrate that there exist heterogeneous effects of SLCP implementation on livelihood diversification across different rural income groups. The lower......By overcoming the barriers that limit access to financial liquidity and human resource, the Sloping Land Conversion Program (SLCP) can promote rural livelihood diversification. This paper examines this effect using a household survey data set spanning the 1999 implementation of the Sloping land...... income group was more affected by the program in terms of income diversification....

  2. Robust misinterpretation of confidence intervals.

    Hoekstra, Rink; Morey, Richard D; Rouder, Jeffrey N; Wagenmakers, Eric-Jan


    Null hypothesis significance testing (NHST) is undoubtedly the most common inferential technique used to justify claims in the social sciences. However, even staunch defenders of NHST agree that its outcomes are often misinterpreted. Confidence intervals (CIs) have frequently been proposed as a more useful alternative to NHST, and their use is strongly encouraged in the APA Manual. Nevertheless, little is known about how researchers interpret CIs. In this study, 120 researchers and 442 students-all in the field of psychology-were asked to assess the truth value of six particular statements involving different interpretations of a CI. Although all six statements were false, both researchers and students endorsed, on average, more than three statements, indicating a gross misunderstanding of CIs. Self-declared experience with statistics was not related to researchers' performance, and, even more surprisingly, researchers hardly outperformed the students, even though the students had not received any education on statistical inference whatsoever. Our findings suggest that many researchers do not know the correct interpretation of a CI. The misunderstandings surrounding p-values and CIs are particularly unfortunate because they constitute the main tools by which psychologists draw conclusions from data.

  3. Circular Interval Arithmetic Applied on LDMT for Linear Interval System

    Stephen Ehidiamhen Uwamusi


    Full Text Available The paper considers the LDMT Factorization of a general nxn matrix arising from system of interval linear equations. We paid special emphasis on Interval Cholesky Factorization. The basic computational tool used is the square root method of circular interval arithmetic in a sense analogous to Gargantini and Henrici as well as the generalized square root method due to Petkovic which enables the construction of the square root of the resulting diagonal matrix. We also made use of Rump’s method for multiplying two intervals expressed in the form of midpoint-radius respectively. Numerical example of matrix factorization in this regard is given which forms the basis of discussion. It is shown that LDMT even though is a numerically stable method for any diagonally dominant matrix it also can lead to excess width of the solution set. It is also pointed out that in spite of the above mentioned objection to interval LDMT it has in addition , the advantage that in the presence of several solution sets sharing the same interval matrix the LDMT Factorization requires to be computed only once which helps in saving substantial computational time. This may be found applicable in the development of military hard ware which requires shooting at a single point but produces multiple broadcast at all other points

  4. Heart rate dependency of JT interval sections.

    Hnatkova, Katerina; Johannesen, Lars; Vicente, Jose; Malik, Marek


    Little experience exists with the heart rate correction of J-Tpeak and Tpeak-Tend intervals. In a population of 176 female and 176 male healthy subjects aged 32.3±9.8 and 33.1±8.4years, respectively, curve-linear and linear relationship to heart rate was investigated for different sections of the JT interval defined by the proportions of the area under the vector magnitude of the reconstructed 3D vectorcardiographic loop. The duration of the JT sub-section between approximately just before the T peak and almost the T end was found heart rate independent. Most of the JT heart rate dependency relates to the beginning of the interval. The duration of the terminal T wave tail is only weakly heart rate dependent. The Tpeak-Tend is only minimally heart rate dependent and in studies not showing substantial heart rate changes does not need to be heart rate corrected. For any correction formula that has linear additive properties, heart rate correction of JT and JTpeak intervals is practically the same as of the QT interval. However, this does not apply to the formulas in the form of Int/RR(a) since they do not have linear additive properties. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A laboratory investigation into the effects of slope on lava flow morphology

    Gregg, Tracy K. P.; Fink, Jonathan H.


    In an attempt to model the effect of slope on the dynamics of lava flow emplacement, four distinct morphologies were repeatedly produced in a series of laboratory simulations where polyethylene glycol (PEG) was extruded at a constant rate beneath cold sucrose solution onto a uniform slope which could be varied from 1° through 60°. The lowest extrusion rates and slopes, and highest cooling rates, produced flows that rapidly crusted over and advanced through bulbous toes, or pillows (similar to subaerial "toey" pahoehoe flows and to submarine pillowed flows). As extrusion rate and slope increased, and cooling rate decreased, pillowed flows gave way to rifted flows (linear zones of liquid wax separated by plates of solid crust, similar to what is observed on the surface of convecting lava lakes), then to folded flows with surface crusts buckled transversely to the flow direction, and, at the highest extrusion rates and slopes, and lowest cooling rates, to leveed flows, which solidified only at their margins. A dimensionless parameter, Ψ, primarily controlled by effusion rate, cooling rate and flow viscosity, quantifies these flow types. Increasing the underlying slope up to 30° allows the liquid wax to advance further before solidifying, with an effect similar to that of increasing the effusion rate. For example, conditions that produce rifted flows on a 10° slope result in folded flows on a 30° slope. For underlying slopes of 40°, however, this trend reverses, slightly owing to increased gravitational forces relative to the strength of the solid wax. Because of its significant influence on heat advection and the disruption of a solid crust, slope must be incorporated into any quantitative attempt to correlate eruption parameters and lava flow morphologies. These experiments and subsequent scaling incorporate key physical parameters of both an extrusion and its environment, allowing their results to be used to interpret lava flow morphologies on land, on the

  6. A Worthwhile Task to Teach Slope

    Wagener, Lauren L.


    Since mathematics is found in every aspect of life, it is important for teachers to provide experiences that help students find connections and develop an appreciation for math and its use in their lives outside school. Slope is an excellent example of a math concept that is usually taught without context or connection. In this article, the…

  7. Negative magnetoresistance slope in superconducting granular films

    Shapiro, Boris Ya., E-mail:; Shapiro, Irina; Levi, Daniel; Shaulov, Avner; Yeshurun, Yosef


    Highlights: • The theory explaining recently observed negative magneto-resistance slope in ultra-thin YBa{sub 2}Cu{sub 2}O{sub 7−δ} films is developed. • Considering film as an array of the Josephson junctions, we solve the sine-Gordon equations including a viscosity term. • The solution yields a negative magneto-resistance slope setting in agreement with the experimental results. - Abstract: A phenomenological theory is developed to explain the recently observed negative magnetoresistance slope in ultra-thin granular YBa{sub 2}Cu{sub 2}O{sub 7−δ} films. Viewing this system as a two-dimensional array of extended Josephson junctions, we numerically solve the sine-Gordon equations including a viscosity term that increases linearly with the external field. The solution yields a negative magnetoresistance slope setting in at a field that is determined by the geometry and thus independent of temperature, in agreement with the experimental results.

  8. Slope stability and erosion control: Ecotechnological solutions

    Norris, J.E.; Stokes, A.; Mickovski, S.B.; Cammeraat, E.; van Beek, R.; Nicoll, B.C.; Achim, A.


    This book is designed to assist the civil and geotechnical engineer, geomorphologist, forester, landscape architect or ecologist in choosing ecotechnological solutions for slopes that are prone to a variety of mass movements e.g. shallow failure or erosion. Within this book, the 'engineer' is used i

  9. A Novel Way To Practice Slope.

    Kennedy, Jane B.


    Presents examples of using a tic-tac-toe format to practice finding the slope and identifying parallel and perpendicular lines from various equation formats. Reports the successful use of this format as a review in both precalculus and calculus classes before students work with applications of analytic geometry. (JRH)

  10. Improved wavefront reconstruction algorithm from slope measurements

    Phuc, Phan Huy; Manh, Nguyen The; Rhee, Hyug-Gyo; Ghim, Young-Sik; Yang, Ho-Soon; Lee, Yun-Woo


    In this paper, we propose a wavefront reconstruction algorithm from slope measurements based on a zonal method. In this algorithm, the slope measurement sampling geometry used is the Southwell geometry, in which the phase values and the slope data are measured at the same nodes. The proposed algorithm estimates the phase value at a node point using the slope measurements of eight points around the node, as doing so is believed to result in better accuracy with regard to the wavefront. For optimization of the processing time, a successive over-relaxation method is applied to iteration loops. We use a trial-and-error method to determine the best relaxation factor for each type of wavefront in order to optimize the iteration time and, thus, the processing time of the algorithm. Specifically, for a circularly symmetric wavefront, the convergence rate of the algorithm can be improved by using the result of a Fourier Transform as an initial value for the iteration. Various simulations are presented to demonstrate the improvements realized when using the proposed algorithm. Several experimental measurements of deflectometry are also processed by using the proposed algorithm.

  11. Slope stability and erosion control: Ecotechnological solutions

    Norris, J.E.; Stokes, A.; Mickovski, S.B.; Cammeraat, E.; van Beek, R.; Nicoll, B.C.; Achim, A.


    This book is designed to assist the civil and geotechnical engineer, geomorphologist, forester, landscape architect or ecologist in choosing ecotechnological solutions for slopes that are prone to a variety of mass movements e.g. shallow failure or erosion. Within this book, the 'engineer' is used

  12. Slope stability and erosion control: Ecotechnological solutions

    Norris, J.E.; Stokes, A.; Mickovski, S.B.; Cammeraat, E.; van Beek, R.; Nicoll, B.C.; Achim, A.


    This book is designed to assist the civil and geotechnical engineer, geomorphologist, forester, landscape architect or ecologist in choosing ecotechnological solutions for slopes that are prone to a variety of mass movements e.g. shallow failure or erosion. Within this book, the 'engineer' is used i


    Gerritsma, G.J.; Stam, M.T.H.C.W.; Lodder, J. C.; Popma, Th.J.A.


    An analytical expression for the initial slope T of the hysteresis curve is derived for a stripe domain structure in a thin magnetic film, giving that T-1 is proportional to t-1/2 (t = film thickness). This is confirmed by measurements on RF sputtered CoCr films with 20 nm ≤ t ≤ 950 nm.

  14. Initial slope of the hysteresis curve

    Gerritsma, G.J.; Stam, M.T.H.C.W.; Lodder, J.C.; Popma, Th.J.A.


    An analytical expression for the initial slope T of the hysteresis curve is derived for a stripe domain structure in a thin magnetic film, giving that T-1 is proportional to t-1/2 (t = film thickness). This is confirmed by measurements on RF sputtered CoCr films with 20 nm £ t £ 950 nm.

  15. Reorienting with terrain slope and landmarks.

    Nardi, Daniele; Newcombe, Nora S; Shipley, Thomas F


    Orientation (or reorientation) is the first step in navigation, because establishing a spatial frame of reference is essential for a sense of location and heading direction. Recent research on nonhuman animals has revealed that the vertical component of an environment provides an important source of spatial information, in both terrestrial and aquatic settings. Nonetheless, humans show large individual and sex differences in the ability to use terrain slope for reorientation. To understand why some participants--mainly women--exhibit a difficulty with slope, we tested reorientation in a richer environment than had been used previously, including both a tilted floor and a set of distinct objects that could be used as landmarks. This environment allowed for the use of two different strategies for solving the task, one based on directional cues (slope gradient) and one based on positional cues (landmarks). Overall, rather than using both cues, participants tended to focus on just one. Although men and women did not differ significantly in their encoding of or reliance on the two strategies, men showed greater confidence in solving the reorientation task. These facts suggest that one possible cause of the female difficulty with slope might be a generally lower spatial confidence during reorientation.

  16. Measuring acoustic emissions in an avalanche slope

    Reiweger, Ingrid; Schweizer, Jürg


    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  17. Level-Slope-Curvature - Fact or Artefact?

    R. Lord (Roger); A.A.J. Pelsser (Antoon)


    textabstractThe first three factors resulting from a principal components analysis of term structure data are in the literature typically interpreted as driving the level, slope and curvature of the term structure. Using slight generalisations of theorems from total positivity, we present sufficient

  18. Speaking rate effects on locus equation slope

    Berry, Jeff; Weismer, Gary


    A locus equation describes a 1st order regression fit to a scatter of vowel steady-state frequency values predicting vowel onset frequency values. Locus equation coefficients are often interpreted as indices of coarticulation. Speaking rate variations with a constant consonant–vowel form are thought to induce changes in the degree of coarticulation. In the current work, the hypothesis that locus slope is a transparent index of coarticulation is examined through the analysis of acoustic samples of large-scale, nearly continuous variations in speaking rate. Following the methodological conventions for locus equation derivation, data pooled across ten vowels yield locus equation slopes that are mostly consistent with the hypothesis that locus equations vary systematically with coarticulation. Comparable analyses between different four-vowel pools reveal variations in the locus slope range and changes in locus slope sensitivity to rate change. Analyses across rate but within vowels are substantially less consistent with the locus hypothesis. Taken together, these findings suggest that the practice of vowel pooling exerts a non-negligible influence on locus outcomes. Results are discussed within the context of articulatory accounts of locus equations and the effects of speaking rate change. PMID:24535890

  19. Genetic analyses of a seasonal interval timer.

    Prendergast, Brian J; Renstrom, Randall A; Nelson, Randy J


    Seasonal clocks (e.g., circannual clocks, seasonal interval timers) permit anticipation of regularly occurring environmental events by timing the onset of seasonal transitions in reproduction, metabolism, and behavior. Implicit in the concept that seasonal clocks reflect adaptations to the local environment is the unexamined assumption that heritable genetic variance exists in the critical features of such clocks, namely, their temporal properties. These experiments quantified the intraspecific variance in, and heritability of, the photorefractoriness interval timer in Siberian hamsters (Phodopus sungorus), a seasonal clock that provides temporal information to mechanisms that regulate seasonal transitions in body weight. Twenty-seven families consisting of 54 parents and 109 offspring were raised in a long-day photoperiod and transferred as adults to an inhibitory photoperiod (continuous darkness; DD). Weekly body weight measurements permitted specification of the interval of responsiveness to DD, a reflection of the duration of the interval timer, in each individual. Body weights of males and females decreased after exposure to DD, but 3 to 5 months later, somatic recrudescence occurred, indicative of photorefractoriness to DD. The interval timer was approximately 5 weeks longer and twice as variable in females relative to males. Analyses of variance of full siblings revealed an overall intraclass correlation of 0.71 +/- 0.04 (0.51 +/- 0.10 for male offspring and 0.80 +/- 0.06 for female offspring), suggesting a significant family resemblance in the duration of interval timers. Parent-offspring regression analyses yielded an overall heritability estimate of 0.61 +/- 0.2; h(2) estimates from parent-offspring regression analyses were significant for female offspring (0.91 +/- 0.4) but not for male offspring (0.35 +/- 0.2), indicating strong additive genetic components for this trait, primarily in females. In nature, individual differences, both within and between

  20. Native plants for erosion control in urban river slopes

    Virginia Alvarado


    Full Text Available Mechanical and structural erosion of soils is produced by the loss of the vegetal cover and the action of rain on unprotected surfaces. Raindrop impact, transport and sediment deposition leads to landslides and slope instability and soil loss. In Costa Rica, water bodies have been negatively impacted by urban development and both water resources and soils have become more vulnerable. This is the case of the Pirro river micro watershed where riverbed vegetation has been replaced by constructions producing erosion problems in its slopes. In order to evaluate how native plants favor sediment control and prevent this sediment from been deposited in the river, eight experimental plots were installed. Four treatments were established: A (Costus pulverulentus Presl, B (Heliconia tortuosa (Griggs Standl., C (Vetiveria zizanioides (L. Nash and D (control. Sediments were collected weekly during the rainy and transitional seasons. A clear relation between rainfall intensity and sediment production was determined, particularly for intensities higher than 50 mm h-1. Significant differences were also determined between the treatments and the efficiency order was B >A > C >D, with the native plants being the most efficient in terms of sediment control. The use of native plants is recommended for the management and rehabilitation of slopes near urban rivers due to their ecological value and their capability for sediment control.

  1. The effect of slope exposition on the growth dynamics of Larix gmelinii in permafrost conditions of Central Siberia. I. Differences in tree radial dynamics growth in the north- and south-facing slopes

    А. V. Benkova


    Full Text Available This paper is devoted to revealing the distinctive characteristics of radial growth of larch trees (Larix gmelinii (Rupr. Rupr. growing in permafrost contrast conditions of the north and south facing slopes (Central Siberia, 64°19´23˝ N, 100°13´28˝ E. Even-aged larch stems regenerated after strong fire in 1899 in opposite north and south facing slopes of the hills situated on the banks of Kulingdakan stream were under study. Two sample sites at the middle part of the slopes were established. 23 model trees in the north facing slope and 13 ones in the south-facing slope were selected for dendrochronological analysis. From each tree, disks at 1.3 m height of the stems were taken. Tree ring widths were measured, comparative analysis of dynamics of radial growth in the slopes was made. In order to separate time intervals, characterized by distinctive climate impact on radial increment, sliding response functions were calculated and analyzed. Daily solar radiation for both sample sites was calculated. The results showed that solar radiation in the north-facing slope is 20 % less than that in south-facing slope. Solar radiation regime promotes intensive thickening of moss-lichen cover, so that its thickness to 2009 was nearly two times thicker than in south-facing slope. Both factors affected the worth thermal soil growth conditions in the north facing slope. The latter was responsible for narrower ring widths formation in the stems and governed higher sensitivity of the trees to air temperature in the periods of cambium reactivation, start and intensive growth.

  2. Tests of Simple Slopes in Multiple Regression Models with an Interaction: Comparison of Four Approaches.

    Liu, Yu; West, Stephen G; Levy, Roy; Aiken, Leona S


    In multiple regression researchers often follow up significant tests of the interaction between continuous predictors X and Z with tests of the simple slope of Y on X at different sample-estimated values of the moderator Z (e.g., ±1 SD from the mean of Z). We show analytically that when X and Z are randomly sampled from the population, the variance expression of the simple slope at sample-estimated values of Z differs from the traditional variance expression obtained when the values of X and Z are fixed. A simulation study using randomly sampled predictors compared four approaches: (a) the Aiken and West ( 1991 ) test of simple slopes at fixed population values of Z, (b) the Aiken and West test at sample-estimated values of Z, (c) a 95% percentile bootstrap confidence interval approach, and (d) a fully Bayesian approach with diffuse priors. The results showed that approach (b) led to inflated Type 1 error rates and 95% confidence intervals with inadequate coverage rates, whereas other approaches maintained acceptable Type 1 error rates and adequate coverage of confidence intervals. Approach (c) had asymmetric rejection rates at small sample sizes. We used an empirical data set to illustrate these approaches.

  3. Fine-grained sediment gravity flow deposits induced by flood and lake slope failure events: examples of lacustrine varved sediments in Japan

    Ishihara, Yoshiro; Sasaki, Yasunori; Sasaki, Hana; Onishi, Yuri


    Fine-grained sediment gravity flow deposits induced by flood and lake slope failure events are frequently intercalated in lacustrine successions. When sediment gravity flow deposits are present in varved sediments, it is suggested that they provide valuable information about sediment gravity flows, because they can easily trace laterally and can give the magnitude of erosion and recurrence interval of events. In addition, because large sedimentary bodies of stacked sediment gravity flow deposits in varved sediments of a calm lake are not suggested, a relatively simple depositional environment is expected. In the present study, we analysed sedimentary facies of sediment gravity flow deposits in varved lacustrine diatomites in the Middle Pleistocene Hiruzenbara and Miyajima formations in Japan, and concluded a depositional model of the lacustrine sediment gravity flow deposits. Varved diatomites: The Hiruzenbara Fm., a dammed lake fill as foots of Hiruzen Volcanos, is deposited during an interglacial period during MIS12 to 15. Varves of ca. 8000 yr were measured in a 20 m intercalating flood and lake slope failure-induced sediment gravity flow deposits. The Miyajima Fm., distributed in a paleo-caldera lake in NE Japan, includes many sediment gravity flow deposits possibly originated from fandeltas around the lake. These formations have differences in their depositional setting; the Hiruzebara Fm. was deposited in a large lake basin, whereas the Miyajima Fm. was deposited in a relatively small basin. Because of the depositional setting, intercalation of volcaniclastics is dominant in the Miyajima Fm. Lacustrine sediment gravity flow deposits: Sediment gravity flow deposits in both formations can be classified into flood- and lake slope failure-induced types based on the sedimentary facies. Composites of the both types are also found. Flood-induced types comprise fine-grained silts dominated by carbonaceous fragments, whereas lake slope failure-induced types are

  4. Age-Related Reference Intervals of the Main Biochemical and Hematological Parameters in C57BL/6J, 129SV/EV and C3H/HeJ Mouse Strains.

    Cristina Mazzaccara

    Full Text Available BACKGROUND: Although the mouse is the animal model most widely used to study the pathogenesis and treatment of human diseases, reference values for biochemical parameters are scanty or lacking for the most frequently used strains. We therefore evaluated these parameters in the C57BL/6J, 129SV/EV and C3H/HeJ mice. METHODOLOGY/PRINCIPAL FINDINGS: We measured by dry chemistry 26 analytes relative to electrolyte balance, lipoprotein metabolism, and muscle/heart, liver, kidney and pancreas functions, and by automated blood counter 5 hematological parameters in 30 animals (15 male and 15 female of each mouse strain at three age ranges: 1-2 months, 3-8 months and 9-12 months. Whole blood was collected from the retro-orbital sinus. We used quality control procedures to investigate analytical imprecision and inaccuracy. Reference values were calculated by non parametric methods (median and 2.5(th and 97.5(th percentiles. The Mann-Whitney and Kruskal-Wallis tests were used for between-group comparisons. Median levels of GLU, LDH, Chol and BUN were higher, and LPS, AST, ALP and CHE were lower in males than in females (p range: 0.05-0.001. Inter-strain differences were observed for: (1 GLU, t-Bil, K+, Ca++, PO(4- (p<0.05 and for TAG, Chol, AST, Fe++ (p<0.001 in 4-8 month-old animals; (2 for CK, Crea, Mg++, Na++, K+, Cl- (p<0.05 and BUN (p<0.001 in 2- and in 10-12 month-old mice; and (3 for WBC, RBC, HGB, HCT and PLT (p<0.05 during the 1 year life span. CONCLUSION/SIGNIFICANCE: Our results indicate that metabolic variations in C57BL/6J, 129SV/EV and C3H/HeJ mice after therapeutic intervention should be evaluated against gender- and age-dependent reference intervals.

  5. Stability calculation method of slope reinforced by prestressed anchor in process of excavation.

    Li, Zhong; Wei, Jia; Yang, Jun


    This paper takes the effect of supporting structure and anchor on the slope stability of the excavation process into consideration; the stability calculation model is presented for the slope reinforced by prestressed anchor and grillage beam, and the dynamic search model of the critical slip surface also is put forward. The calculation model of the optimal stability solution of each anchor tension of the whole process is also given out, through which the real-time analysis and checking of slope stability in the process of excavation can be realized. The calculation examples indicate that the slope stability is changed with the dynamic change of the design parameters of anchor and grillage beam. So it is relatively more accurate and reasonable by using dynamic search model to determine the critical slip surface of the slope reinforced by prestressed anchor and grillage beam. Through the relationships of each anchor layout and the slope height of various stages of excavation, and the optimal stability solution of prestressed bolt tension design value in various excavation stages can be obtained. The arrangement of its prestressed anchor force reflects that the layout of the lower part of bolt and the calculation of slope reinforcement is in line with the actual. These indicate that the method is reasonable and practical.

  6. A Study on the Allowable Safety Factor of Cut-Slopes for Nuclear Facilities

    Kim, Myung Soo; Yee, Eric [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)


    In this study, the issues of allowable safety factor design criteria for cut-slopes in nuclear facilities is derived through case analysis, a proposed construction work slope design criteria that provides relatively detailed conditions can be applied in case of the dry season and some unclear parts of slope design criteria be modified in case of the rainy season. This safety factor can be further subdivided into two; normal and earthquake factors, a factor of 1.5 is applied for normal conditions and a factor of 1.2 is applied for seismic conditions. This safety factor takes into consideration the effect of ground water and rainfall conditions. However, no criteria for the case of cut-slope in nuclear facilities and its response to seismic conditions is clearly defined, this can cause uncertainty in design. Therefore, this paper investigates the allowable safety factor for cut-slopes in nuclear facilities, reviews conditions of both local and international cut-slope models and finally suggests an alternative method of analysis. It is expected that the new design criteria adequately ensures the stability of the cut-slope to reflect clear conditions for both the supervising and design engineers.

  7. Estrategia de intervención educativa sobre la sexualidad en niños con el síndrome de Down Educational intervention strategy related to sexuality in Down syndrome children

    Eloy J. Pineda Pérez


    Full Text Available INTRODUCCIÓN: la sexualidad es un elemento importante en la educación del niño con el síndrome de Down, por lo que los padres deben tener los conocimientos adecuados para enfrentarla de forma responsable desde las primeras etapas de la vida. MÉTODOS: intervención con diseño estudio antes-después con grupo de control no equivalente sobre las nociones y el tratamiento de la sexualidad que tenían los padres de niños con síndrome de Down. Se realizó en 3 fases de investigación, en las que se impartieron 3 talleres. RESULTADOS: antes de los talleres solo el 23,5 % de las madres (8 recibieron información sobre la sexualidad, la acción de rozamiento o frotamiento (30; 88,2 % es la más vinculada a la sexualidad por parte de los niños, las acciones que los padres asocian a la sexualidad se relaciona con la genitalidad en el 100 % de los casos (realizar el acto sexual y tocar sus genitales, y siempre estaban presentes reacciones negativas ante las acciones de los niños. Después de los talleres se coligaron acciones relacionadas con la espiritualidad y los sentimientos junto a la genitalidad, aumentaron las reacciones positivas de los padres, trataron de pedir información especializada 23 (67,6 % y desviar la atención 27 (79,4 %. El 70,6 % de los progenitores consideraron una sexualidad sana en el futuro. CONCLUSIONES: los padres de los niños con síndrome de Down mostraron no tener los conocimientos suficientes sobre sexualidad, los talleres impartidos a los padres tuvieron un impacto positivo en el conocimiento acerca de la sexualidad en ellos mismos y cómo manejarla en sus hijos, y expresaron esperanzas con relación a la sexualidad futura de sus hijos.INTRODUCTION: sexuality is an important education element of children with Down syndrome reason by which the parents must to have the appropriate knowledges to face it in a responsible way from the first stages of live. METHODS: intervention with a before-after study design with a

  8. The role of uncertainty in bedrock depth and hydraulic properties on the stability of a variably-saturated slope

    Gomes, Guilherme J.C.; Vrugt, Jasper A.; Vargas, Eurípedes A.; Camargo, Julia T.; Velloso, Raquel Q.; van Genuchten, Martinus Th


    We investigate the uncertainty in bedrock depth and soil hydraulic parameters on the stability of a variably-saturated slope in Rio de Janeiro, Brazil. We couple Monte Carlo simulation of a three-dimensional flow model with numerical limit analysis to calculate confidence intervals of the safety fac

  9. Conservation scenarios for olive farming on sloping land in de Mediterranean

    Fleskens, L


    The future of olive farming on sloping land in the Mediterranean is uncertain. Sloping and Mountainous Olive Production Systems (SMOPS) that have been sustainable for ages have in a relatively short time frame witnessed major changes. Although remnants of many of these traditional landscapes still exist today, the general trend is different. Demographic changes of the rural population, integration in the market economy with its competitive character, and technological innovation have drastica...

  10. The influence of a hydraulic prosthetic ankle on residual limb loading during sloped walking

    Koehler-McNicholas, Sara R.; Nickel, Eric A.; Medvec, Joseph; Barrons, Kyle; Mion, Spencer; Hansen, Andrew H.


    In recent years, numerous prosthetic ankle-foot devices have been developed to address the demands of sloped walking for individuals with lower-limb amputation. The goal of this study was to compare the performance of a passive, hydraulic ankle-foot prosthesis to two related, non-hydraulic ankles based on their ability to minimize the socket reaction moments of individuals with transtibial amputation during a range of sloped walking tasks. After a two-week accommodation period, kinematic data...

  11. Relief unity emulator and slope stability simulator applied to mass movement occurrence analysis in slope evolution

    Colangelo, Antonio C.


    This work refers to a part of my "Fellow" thesis "Geomorphosynthesis and Geomorphocinematic applied to slope stability and evolution" (Colangelo, 2007). Relief unity emulator (rue) is a device that permits to synthesize a slope unity by means of a single generatrix profile that determine the initial conditions for application of a set of a geotechnical, hydrological and morphological models. This initial profile is considered in equilibrium with original environmental conditions, and operates in an integrated manner with these models. The aim is to induce a boundary condition on initial profile and produce a new profile: a threshold profile. For this manner and by iterations we generate a set of new profiles that represents, each one, a meta-stable profile, or a descending profile. The evolution of these profiles is in according with the central geomorphologycal concepts of slope retreat, base level change and head retreat. This set of "descending profiles" will be now sliced at topographic equivalent points, that will linked for describe a "topographic equivalence line". The crossing of this kind of isolines with descending profiles composes a 3D slope unity. This descending slope unity is represented by a mesh built for the crossing of these new slope profiles with the topographic equivalence lines and, the result is a four-dimensional meta-stable object integrated to the slope stability simulator (sss). This composite "rue-sss" device operates with 10 main models and 16 variables. The models describe effective stress, shearing resistance, soil saturation level behavior, potential rupture surface depth, critical depth, potential rupture surface critical gradient, critical soil saturation level, top of percolation flow gradient and unit weight of soil. Of this manner, is possible to evaluate effective friction angles and cohesion, critical soil saturation levels, critical gradients for potential rupture surfaces, neutral stress, shear strength, shear stress

  12. 不同生长期大豆坡耕地土壤抗侵蚀能力特征%Soil Erosion Resistance of Sloping Farmland under Soybean Cultivation Relative to Growth Stage

    王计磊; 吴发启


    土壤抗侵蚀能力特征是土壤侵蚀预测预报的重要依据之一,为了分析黄土区不同生长期大豆坡耕地土壤抗侵蚀能力特征,采用原状土冲刷槽和静水崩解法,分别在大豆不同生长期测定坡耕地不同土层土壤抗冲性和抗蚀性,并对大豆根系特征与土壤抗侵蚀能力的关系进行分析。结果表明:随着大豆生育期的推进呈现出先增强后减弱的趋势,始粒期土壤抗侵蚀能力最强,苗期最弱;在大豆苗期与分枝期,土壤抗侵蚀能力随土层深度的增加而减弱;大豆开花期以后10~20 cm土层土壤抗侵蚀能力最强,其次为0~5 cm土层;土壤根重密度、根系表面积、根系体积及根系长度对土壤抗侵蚀能力影响均达到极显著水平(p<0.01),且根径在0~0.5 mm之间根系的增多会更加有效地提高土壤的抗侵蚀能力。这表明在大豆生长初期加强对坡面的有效防护,避免地表长期裸露,培育根系发达的大豆品种将有助于对坡耕地土壤侵蚀的防控。%Abstract[Objective]Soil erosion resistance is one of the main factors affecting development of soil erosion. As the Loess Plateau is one of the most severe soil erosion areas in China,it is especially important to characterize the soil erosion resistance of the region to management and control of soil erosion on the Loess Plateau. Soybean,high in drought resistance,is one of the major crops commonly grown on the Loess Plateau,and the one that grows in the season when heavy rain showers occur frequently,and consequently soil erosion tends to take place in the region. Therefore,a field experiment was conducted to determine characteristics of the erosion resistance of the soil and their relationships with soybean root system relative to growth stage of soybean.[Method]Soil anti-scourability and anti-erodibility are two important parameters to evaluate soil resistance. This study determined the soil anti

  13. Consequence assessment of large rock slope failures in Norway

    Oppikofer, Thierry; Hermanns, Reginald L.; Horton, Pascal; Sandøy, Gro; Roberts, Nicholas J.; Jaboyedoff, Michel; Böhme, Martina; Yugsi Molina, Freddy X.


    Steep glacially carved valleys and fjords in Norway are prone to many landslide types, including large rockslides, rockfalls, and debris flows. Large rockslides and their secondary effects (rockslide-triggered displacement waves, inundation behind landslide dams and outburst floods from failure of landslide dams) pose a significant hazard to the population living in the valleys and along the fjords shoreline. The Geological Survey of Norway performs systematic mapping of unstable rock slopes in Norway and has detected more than 230 unstable slopes with significant postglacial deformation. This large number necessitates prioritisation of follow-up activities, such as more detailed investigations, periodic displacement measurements, continuous monitoring and early-warning systems. Prioritisation is achieved through a hazard and risk classification system, which has been developed by a panel of international and Norwegian experts ( The risk classification system combines a qualitative hazard assessment with a consequences assessment focusing on potential life losses. The hazard assessment is based on a series of nine geomorphological, engineering geological and structural criteria, as well as displacement rates, past events and other signs of activity. We present a method for consequence assessment comprising four main steps: 1. computation of the volume of the unstable rock slope; 2. run-out assessment based on the volume-dependent angle of reach (Fahrböschung) or detailed numerical run-out modelling; 3. assessment of possible displacement wave propagation and run-up based on empirical relations or modelling in 2D or 3D; and 4. estimation of the number of persons exposed to rock avalanches or displacement waves. Volume computation of an unstable rock slope is based on the sloping local base level technique, which uses a digital elevation model to create a second-order curved surface between the mapped extent of

  14. General regularity of dynamic responses of slopes under dynamic input

    QI Shengwen; WU Faquan; SUN Jinzhong


    Through lots of numerical simulations with FLAC3D, dynamic responses of slopes are comprehensively studied in this paper and the general regularities of the isoline of the coefficient of the displacement, velocity and acceleration of the slope section are reached. Given a certain material slope, if the height of the slope is less than a certain value, the displacement, velocity and acceleration linearly enlarge with elevation in the vertical direction; if the height of the slope surpasses the certain value, the displacement,velocity and acceleration do not linearly enlarge with elevation any more, on the other hand, they fluctuate with a certain rhythm. At the same time, the rhythm appears in the horizontal direction, and the displacement, velocity and acceleration of the slope surface enlarge near the slope surface. The distribution form of the isoline of the coefficient of displacement, velocity and acceleration in the section of the slope is remarkably affected by the slope angle. In the certain area near the slope surface, the isoline of displacement,velocity and acceleration is parallel to the surface of the slope; in the mean time the strike direction of the extremum area is parallel to the surface of the slope, too. The charts of the slope dynamic responses can be depicted with two indexes, one is the strike direction of the isoline, and the other is the number of the rhythm extremum area of the direction parallel to the surface of the slope.

  15. Linkages between precipitation cycle and slope stability: A case study in the Caijiapo landslide among Weihe River Basin

    Zhu, Y. L.; Qi, G. P.


    It is of great importance to forecast landslide in future certain time interval. Hence, this study proposed a method combination precipitation period with variety of slope stability factor based on macro scale. This study designed 5 grades of rainfall strength simulation and corresponding 5 grades of slope state using Markoff prediction technique analysis change of slope factor K in the short time. Results indicated that: (1) the rainfall in Baoji area has three periods of 5a, 13a and 25a, in which 5a is the primary period; (2) the slope safety factor K has a similar fluctuation trend compared to precipitation state, thus division slope factor K of 5 grade as safety state, basically safety state, stable state, partial risk state and risk state, respectively; (3) in the previous year if slope in the safety, basically safe and stable state, in the next year slope factor K above 1.15 has 60%, 75% and 72% probability, respectively; (4) when the previous year at partial risk or risk situation, there is high probability that value of the K is always more than 1.15, it is means to a great extent the landslide have already occurred, thus defined a concept which between “the safety state after destruction” and “safety state have no destruction”.

  16. Haemostatic reference intervals in pregnancy

    Szecsi, Pal Bela; Jørgensen, Maja; Klajnbard, Anna;


    Haemostatic reference intervals are generally based on samples from non-pregnant women. Thus, they may not be relevant to pregnant women, a problem that may hinder accurate diagnosis and treatment of haemostatic disorders during pregnancy. In this study, we establish gestational age......-specific reference intervals for coagulation tests during normal pregnancy. Eight hundred one women with expected normal pregnancies were included in the study. Of these women, 391 had no complications during pregnancy, vaginal delivery, or postpartum period. Plasma samples were obtained at gestational weeks 13......-20, 21-28, 29-34, 35-42, at active labor, and on postpartum days 1 and 2. Reference intervals for each gestational period using only the uncomplicated pregnancies were calculated in all 391 women for activated partial thromboplastin time (aPTT), fibrinogen, fibrin D-dimer, antithrombin, free protein S...

  17. Maternal cortisol slope at 6 months predicts infant cortisol slope and EEG power at 12 months.

    St John, Ashley M; Kao, Katie; Liederman, Jacqueline; Grieve, Philip G; Tarullo, Amanda R


    Physiological stress systems and the brain rapidly develop through infancy. While the roles of caregiving and environmental factors have been studied, implications of maternal physiological stress are unclear. We assessed maternal and infant diurnal cortisol when infants were 6 and 12 months. We measured 12-month infant electroencephalography (EEG) 6-9 Hz power during a social interaction. Steeper 6-month maternal slope predicted steeper 12-month infant slope controlling for 6-month infant slope and breastfeeding. Steeper 6-month maternal slope predicted lower 6-9 Hz power. Six-month maternal area under the cuve (AUCg) was unrelated to 12-month infant AUCg and 6-9 Hz power. Psychosocial, caregiving, and breastfeeding variables did not explain results. At 6 months, maternal and infant slopes correlated, as did maternal and infant AUCg. Twelve-month maternal and infant cortisol were unrelated. Results indicate maternal slope is an informative predictor of infant physiology and suggest the importance of maternal physiological stress in this developmental period. © 2017 Wiley Periodicals, Inc.

  18. The Alaska North Slope spill analysis

    Pearson, Leslie [Pearson Consulting LLC (United States)], email:; Robertson, Tim L.; DeCola, Elise [Nuka Research and Planning Group, LLC (United States)], email:, email:; Rosen, Ira [Alaska Department of Environmental Conservation (United States)], email:


    This paper reports Alaska North Slope crude oil spills, provides information to help operators identify risks and presents recommendations for future risk reduction and mitigation measures that may reduce the frequency and severity of future spills from piping infrastructure integrity loss. The North Slope spills analysis project was conducted during 2010 by compiling available spill data, and analyzing the cause of past spills in wells and associated piping, flowlines, process centers with their associated piping and above ground storage tanks, and crude oil transmission pipelines. An expert panel, established to provide independent review of this analysis and the presented data, identified seven recommendations on measures, programs, and practices to monitor and address common causes of failures while considering information provided from regulators and operators. These recommendations must be evaluated by the State of Alaska which will consider implementation options to move forward. Based on the study observations, future analyses may show changes to some of the observed trends.

  19. The Salpeter Slope of the IMF Explained

    Oey, M S


    If we accept a paradigm that star formation is a self-similar, hierarchical process, then the Salpeter slope of the IMF for high-mass stars can be simply and elegantly explained as follows. If the instrinsic IMF at the smallest scales follows a simple -2 power-law slope, then the steepening to the -2.35 Salpeter value results when the most massive stars cannot form in the lowest-mass clumps of a cluster. It is stressed that this steepening MUST occur if clusters form hierarchically from clumps, and the lowest-mass clumps can form stars. This model is consistent with a variety of observations as well as theoretical simulations.

  20. An Extended Mild-Slope Equation

    PAN Junning; HONG Guangwen; ZUO Qihua


    On the assumption that the vortex and the vertical velocity component of the current are small, a mild-slope equation for wave propagation on non-uniform flows is deduced from the basic hydrodynamic equations, with the terms of ( h h)2 and /2h h included in the equation. The terms of bottom friction, wind energy input and wave nonlinearity are also introduced into the equation. The wind energy input functions for wind waves and swells are separately considered by adopting Wen′s (1989) empirical formula for wind waves and Snyder′s observation results for swells. Thus, an extended mild-slope equation is obtained, in which the effects of refraction, diffraction, reflection, current, bottom friction, wind energy input and wave nonlinearity are considered synthetically.

  1. Pipeline modeling and assessment in unstable slopes

    Caceres, Carlos Nieves [Oleoducto Central S.A., Bogota, Cundinamarca (Colombia); Ordonez, Mauricio Pereira [SOLSIN S.A.S, Bogota, Cundinamarca (Colombia)


    The OCENSA pipeline system is vulnerable to geotechnical problems such as faults, landslides or creeping slopes, which are well-known in the Andes Mountains and tropical countries like Colombia. This paper proposes a methodology to evaluate the pipe behaviour during the soil displacements of slow landslides. Three different cases of analysis are examined, according to site characteristics. The process starts with a simplified analytical model and develops into 3D finite element numerical simulations applied to the on-site geometry of soil and pipe. Case 1 should be used when the unstable site is subject to landslides impacting significant lengths of pipeline, pipeline is straight, and landslide is simple from the geotechnical perspective. Case 2 should be used when pipeline is straight and landslide is complex (creeping slopes and non-conventional stabilization solutions). Case 3 should be used if the pipeline presents vertical or horizontal bends.

  2. Examining the influence of vegetation on slope hydrology in Hong Kong using the capacitive resistivity technique

    Niu, Qifei; Zhao, Kairan; Wang, Yu-Hsing; Wu, Yuxin


    Vegetation essentially has both beneficial and detrimental hydrological effects on slope stability, and the balance between these effects changes throughout the year. For engineers considering vegetation as an ecotechnological solution to slope instability, it is therefore necessary to understand how the net hydrological effect varies with local weather conditions. In this study, year-round field monitoring was carried out to examine the influence of a native plant on slope hydrology in Hong Kong using the capacitive resistivity technique and a newly developed line-electrode resistivity array. The measured soil resistivity was used to infer the soil moisture conditions on the slopes. The results show that vegetation generally has a strong influence on soil moisture although this effect varies among seasons. During the summer time, vegetation increases the soil moisture if compared with the bare slope. This is mainly due to the high precipitation, most of which enters the vegetated slope because of the increased permeability and infiltration rate caused by the vegetation. During the autumn time, the influence of vegetation evapotranspiration on slope hydrology becomes noticeable mainly because of the low precipitation (monthly less than 100 mm) and the relatively high potential evapotranspiration (monthly around 100 mm). In dry and cold winter, resistivity measurements suggest that the vegetation helps retain the soil water. In the following spring, difference in the soil moisture in bare and vegetated slopes is gradually wiped out because of the frequent rainfall. When the monthly rainfall reaches ~ 400 mm in early summer, the influence of vegetation on slope hydrology (soil moisture) completely disappears.

  3. The effect of slope angle on splash detachment in steep forest plantation

    Mizugaki, S.; Nanko, K.; Onda, Y.


    To study splash detachment rate and investigate the effects of rainfall and slope angle on splash detachment, the field observation of splash detachment was conducted for five months using 27 splash cups under natural rainfall events in Japanese cypress (Hinoki; Chamaecyparis obtusa) plantation in the Shimanto River watershed, southern Japan. In this plantation forest, the unit kinetic energy of throughfall (unit KE; J/m2/mm) was found to be constant independent of rainfall intensity. The total rainfall over six observation periods was 853 mm and the maximum rainfall intensity for 1 h ( RI1h) varied from 8.0 to 19.6 mm h-1. A significantly high coefficient of linear regression was found between RI1h and the average splash detachment of all splash cups over six periods, although the splash detachment from the individual cups had larger variations with RI1h. This variation in splash detachment may attribute to the spatial variability in soil surface condition such as slope angle. In the relationship between the splash detachment and slope angle, no correlation was found over the entire periods. However, different correlations were found among the observation periods due to the differences in rainfall intensity. The splash detachment from a lower slope angle (14°) exhibited a strong relation with the maximum rainfall intensity for a shorter period, such as 10 to 30 minutes. In contrast, the splash detachment from a slope angle of over 35° exhibited high correlation with the maximum rainfall intensity for 3 h, suggesting that longer time is required for ponding in steeper slopes than gentler slopes. In gentler slopes, prolonged rainfall may cause the higher ponding depth, resulting in reducing the raindrop impact and less splash detachment. Therefore, under the forest canopies, the effect of slope angle on the rainfall parameter should be incorporated into the future splash erosion model.

  4. Uncertainty of the Soil–Water Characteristic Curve and Its Effects on Slope Seepage and Stability Analysis under Conditions of Rainfall Using the Markov Chain Monte Carlo Method

    Weiping Liu


    Full Text Available It is important to determine the soil–water characteristic curve (SWCC for analyzing slope seepage and stability under the conditions of rainfall. However, SWCCs exhibit high uncertainty because of complex influencing factors, which has not been previously considered in slope seepage and stability analysis under conditions of rainfall. This study aimed to evaluate the uncertainty of the SWCC and its effects on the seepage and stability analysis of an unsaturated soil slope under conditions of rainfall. The SWCC model parameters were treated as random variables. An uncertainty evaluation of the parameters was conducted based on the Bayesian approach and the Markov chain Monte Carlo (MCMC method. Observed data from granite residual soil were used to test the uncertainty of the SWCC. Then, different confidence intervals for the model parameters of the SWCC were constructed. The slope seepage and stability analysis under conditions of rainfall with the SWCC of different confidence intervals was investigated using finite element software (SEEP/W and SLOPE/W. The results demonstrated that SWCC uncertainty had significant effects on slope seepage and stability. In general, the larger the percentile value, the greater the reduction of negative pore-water pressure in the soil layer and the lower the safety factor of the slope. Uncertainties in the model parameters of the SWCC can lead to obvious errors in predicted pore-water pressure profiles and the estimated safety factor of the slope under conditions of rainfall.

  5. Motion of rock masses on slope

    Urška Petje


    Full Text Available This paper shows the different ways of how rock masses (stones, rocks, and blocks move along slopes and for each different way of motion (free fall, bouncing, rolling, sliding, slowing down, lubrication, fluidizationadequatedynamicequationsaregiven.Knowingthe kinematics and dynamics of travelling rock masses is necessary for mathematical modeling of motion and by this an assessment of maximal possible rockfall runout distances as an example of a sudden and hazardeous natural phenomenon, threatening man and his property, especially in the natural environment.

  6. Transhumanism, medical technology and slippery slopes

    McNamee, M. J.; Edwards, S D


    In this article, transhumanism is considered to be a quasi‐medical ideology that seeks to promote a variety of therapeutic and human‐enhancing aims. Moderate conceptions are distinguished from strong conceptions of transhumanism and the strong conceptions were found to be more problematic than the moderate ones. A particular critique of Boström's defence of transhumanism is presented. Various forms of slippery slope arguments that may be used for and against transhumanism are discussed and on...

  7. Comparison of slope stability in two Brazilian municipal landfills.

    Gharabaghi, B; Singh, M K; Inkratas, C; Fleming, I R; McBean, E


    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use "generic" published shear strength envelopes for municipal waste. Application of the slope stability

  8. Large slope failures in the La Paz basin, Bolivian Andes

    Roberts, N. J.; Hermanns, R. L.; Rabus, B.; Guzmán, M. A.; Minaya, E.; Clague, J. J.


    The La Paz basin in the eastern Bolivian Andes has been a hotspot for large-scale, deep-seated gravitational slope deformation during the Holocene. In less than 2 Ma, a network of steep-sided valleys up to 800 m deep formed in sediments of the Altiplano Plateau and underlying basement rocks. We characterize the distribution, extent, mechanisms, and modern activity of large-scale failures within this landscape using optical image interpretation, existing geologic maps, synthetic RADAR interferometry (InSAR), and field investigation. Deposits of nearly 20 landslides larger than 100 Mm3 occur within the basin. Most failures have occurred in weakly lithified Late Miocene to Pliocene sedimentary rocks and include earth flows, translational and rotational landslides, and plug flows. Failures in underlying tectonized Paleozoic sedimentary rocks include bedding-parallel rockslides. The largest failure is the 3 km3 Achcocalla earth flow (ca. 11 ka BP), which ran out ~20 km. Other dated events span the period from the early Holocene to nearly the Colonial historic period. InSAR results show that many large slope failures, including the Achocalla earth flow, are currently moving at rates of a few centimeters to a few decimeters per year. Rapid deposition, shallow burial, and rapid incision of the basin fills produced steep slopes in weak geologic materials that, coupled with groundwater discharge from the valley walls, are the primary controls on instability. In contrast, the Altiplano surface has changed little in 2 Ma and the adjacent slopes of the Cordilleran Real, although steep, are relatively stable. Of the over 100 landslides that have occurred in the city of La Paz since the early twentieth century, most are at the margins of large, deep-seated prehistoric failures, and two of the most damaging historic landslides (Hanko-Hanko, 1582; Pampahasi, 2011) were large-scale reactivations of previously failed slopes. Improved understanding of large, deep-seated landslides in

  9. Agricultural terraces and slope instability at Cinque Terre (NW Italy)

    Brandolini, Pierluigi; Cevasco, Andrea


    interventions should be focused primarily. In this study, with the aim to contribute to a better understanding of geo-hydrological hazards at basin scale, the main types of slope instability phenomena that occurred on agricultural terraces at Cinque Terre following the 25 October 2011 rainfall event are presented in relation to different geological and geomorphological conditions. In particular, selected examples of shallow landslides and erosive slope processes due to running water affecting abandoned or cultivated terraces for vineyards and olive grooves will be shown.

  10. Slope stability monitoring from microseismic field using polarization methodology

    Yu. I. Kolesnikov


    Full Text Available Numerical simulation of seismoacoustic emission (SAE associated with fracturing in zones of shear stress concentration shows that SAE signals are polarized along the stress direction. The proposed polarization methodology for monitoring of slope stability makes use of three-component recording of the microseismic field on a slope in order to pick the signals of slope processes by filtering and polarization analysis. Slope activity is indicated by rather strong roughly horizontal polarization of the respective portion of the field in the direction of slope dip. The methodology was tested in microseismic observations on a landslide slope in the Northern Tien-Shan (Kyrgyzstan.

  11. Cooperative Three-Robot System for Traversing Steep Slopes

    Stroupe, Ashley; Huntsberger, Terrance; Aghazarian, Hrand; Younse, Paulo; Garrett, Michael


    Teamed Robots for Exploration and Science in Steep Areas (TRESSA) is a system of three autonomous mobile robots that cooperate with each other to enable scientific exploration of steep terrain (slope angles up to 90 ). Originally intended for use in exploring steep slopes on Mars that are not accessible to lone wheeled robots (Mars Exploration Rovers), TRESSA and systems like TRESSA could also be used on Earth for performing rescues on steep slopes and for exploring steep slopes that are too remote or too dangerous to be explored by humans. TRESSA is modeled on safe human climbing of steep slopes, two key features of which are teamwork and safety tethers. Two of the autonomous robots, denoted Anchorbots, remain at the top of a slope; the third robot, denoted the Cliffbot, traverses the slope. The Cliffbot drives over the cliff edge supported by tethers, which are payed out from the Anchorbots (see figure). The Anchorbots autonomously control the tension in the tethers to counter the gravitational force on the Cliffbot. The tethers are payed out and reeled in as needed, keeping the body of the Cliffbot oriented approximately parallel to the local terrain surface and preventing wheel slip by controlling the speed of descent or ascent, thereby enabling the Cliffbot to drive freely up, down, or across the slope. Due to the interactive nature of the three-robot system, the robots must be very tightly coupled. To provide for this tight coupling, the TRESSA software architecture is built on a combination of (1) the multi-robot layered behavior-coordination architecture reported in "An Architecture for Controlling Multiple Robots" (NPO-30345), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 65, and (2) the real-time control architecture reported in "Robot Electronics Architecture" (NPO-41784), NASA Tech Briefs, Vol. 32, No. 1 (January 2008), page 28. The combination architecture makes it possible to keep the three robots synchronized and coordinated, to use data

  12. Geosynthetic clay liners - slope stability field study

    Carson, D.A. [Environmental Protection Agency, Cincinnati, OH (United States); Daniel, D.E. [Univ. of Illinois, Urbana, IL (United States); Koerner, R.M. [Geosynthetic Research Institute, Philadelphia, PA (United States); Bonaparte, R. [GeoSyntec Consultants, Atlanta, GA (United States)


    A field research project was developed to examine the internal shear performance of geosynthetic clay liners (GCLs). Several combinations of cross sections were assembled using GCL materials that were available at the time of project initiation. The cross sections utilized were intended to simulate landfill cover applications. Thirteen (13) resulting test plots were constructed on two different slope angles, and each plot is instrumented for physical displacement and soil moisture characteristics. Test plots were constructed in a manner that dictated the shear plane in the clay portion of the GCL product. The project purpose is to assess field performance and to verify design parameters associated with the application of GCLs in waste containment applications. Interim research data shows that test slopes on 2H:1V show global deformation, but little internal shear evidence, and the 3H:1V slopes show little deformation at approximately 650 days. The research is ongoing, and this paper presents the most recent information available from the project.

  13. Numerical modeling to investigate slopes and mass flow phenomena

    Heinz Konietzky; Lei NIE; Youhong SUN


    An overview is given about up-to-date techniques for slope stability and deformation analysis as well as mass flow phenomena simulation. The paper concentrates on a few aspects in respect to the use of numerical modeling techniques, especially in relation to the shear strength reduction techniques, discontinuum modeling, probabilistic concepts, the combination of GIS and numerical modeling as well as sophisticated hydro-mechanical coupling with time-dependent material behavior. At present these topics are preferred topics of scientific and technical research.

  14. Assessment of rock mass decay in artificial slopes : Beoordeling van de degradatie van gesteentemassa's in kunstmatige hellingen

    Huisman, M.


    This research investigates the decay of rock masses underlying slopes, and seeks to quantify the relations of such decay with time and geotechnical parameters of the slope and rock mass. Decay can greatly affect the geotechnical properties of rocks within engineering timescales, and may induce a

  15. Almost primes in short intervals


    In this paper,we prove that the short interval(x-x101/232,x] contains at least an almost prime P2 for sufficiently large x,where P2 denotes an integer having at most two prime factors counted with multiplicity.

  16. Haemostatic reference intervals in pregnancy

    Szecsi, Pal Bela; Jørgensen, Maja; Klajnbard, Anna


    Haemostatic reference intervals are generally based on samples from non-pregnant women. Thus, they may not be relevant to pregnant women, a problem that may hinder accurate diagnosis and treatment of haemostatic disorders during pregnancy. In this study, we establish gestational age-specific refe......Haemostatic reference intervals are generally based on samples from non-pregnant women. Thus, they may not be relevant to pregnant women, a problem that may hinder accurate diagnosis and treatment of haemostatic disorders during pregnancy. In this study, we establish gestational age......-specific reference intervals for coagulation tests during normal pregnancy. Eight hundred one women with expected normal pregnancies were included in the study. Of these women, 391 had no complications during pregnancy, vaginal delivery, or postpartum period. Plasma samples were obtained at gestational weeks 13......-20, 21-28, 29-34, 35-42, at active labor, and on postpartum days 1 and 2. Reference intervals for each gestational period using only the uncomplicated pregnancies were calculated in all 391 women for activated partial thromboplastin time (aPTT), fibrinogen, fibrin D-dimer, antithrombin, free protein S...

  17. Robust misinterpretation of confidence intervals

    Hoekstra, Rink; Morey, Richard; Rouder, Jeffrey N.; Wagenmakers, Eric-Jan


    Null hypothesis significance testing (NHST) is undoubtedly the most common inferential technique used to justify claims in the social sciences. However, even staunch defenders of NHST agree that its outcomes are often misinterpreted. Confidence intervals (CIs) have frequently been proposed as a more

  18. Robust misinterpretation of confidence intervals

    Hoekstra, R.; Morey, R.D.; Rouder, J.N.; Wagenmakers, E.-J.


    Null hypothesis significance testing (NHST) is undoubtedly the most common inferential technique used to justify claims in the social sciences. However, even staunch defenders of NHST agree that its outcomes are often misinterpreted. Confidence intervals (CIs) have frequently been proposed as a more

  19. Crucial problems on security assessment of a building site adjacent to an excavated high slope

    文海家; ZHANG; Jialan; 等


    The subject of this work is the assessment on the stability of an excavated high slope in order to insure the security of the building site adjacent to the slope,which is frequently encountered in town construction in mountainous areas due to terrain limit.On the base of some typical engineering cases in Chongqing,several crucial problems on security assessment of building site adjacent to an excavated high slope,including the natural geological conditions and man-destroyed degree,engineering environment,potential failure pattern of the high slope,calculation parameters and analysis methods,are roundly discussed.It is demonstrated that the conclusion of security assessment can be determined according to the aspects above-mentioned,and the security assessment is one of the fundamental data to insure the safety of the related construction,site and buildings.

  20. Landslide Hazard and Risk Assessment on the Northern Slope of Mt. Changbai, China

    LIU Zhenghua; ZHANG Yanbin; Yoshiharu ISHIKAWA; Hiroyuki NAKAMURA


    Landslide hazard and risk assessment on the northern slope of Mt. Changbai,a well-known tourist attraction near the North Korean-Chinese border, are assessed. This study is divided into two parts, namely, landslide hazard zonation and risk assessment. The 1992 Anbalagan and Singh method of landslide hazard zonation (LHZ) was modified and used in this area. In this way, an Associative Analysis Method was used in representative areas to get a measure for controlling factors (slope gradient, relative relief, vegetation, geology, discontinuity development, weak layer thickness and ground water). For the membership degree of factor to slope failure, the middle range of limited values was used to calculate LHZ. Based on an estimation of the potential damage from slope failure,a reasonable risk assessment map was obtained using the relationship of potential damage and probable hazard to aid future planning and prediction and to avert loss of life.

  1. Damage-based long-term modelling of a large alpine rock slope

    Riva, Federico; Agliardi, Federico; Amitrano, David; Crosta, Giovanni B.


    The morphology and stability of large alpine rock slopes result from the long-term interplay of different factors, following a complex history spanning several glacial cycles over thousands of years in changing morpho-climatic settings. Large rock slopes often experience slow long-term, creep-like movements interpreted as the macroscopic evidence of progressive failure in subcritically stressed rock masses. Slope damage and rock mass weakening associated to deglaciation are considered major triggers of these processes in alpine environments. Depending on rock mass properties, slope topography and removed ice thickness, valley flanks can progressively evolve over time into rockslides showing seasonal displacement trends, interpreted as evidence of hydro-mechanically coupled responses to hydrologic perturbations. The processes linking the long-term evolution of deglaciated rock slopes and their changing sensitivity to hydrologic triggers until rockslide failure, with significant implications in risk management and Early Warning, are not fully understood. We suggest that modelling long-term rock mass damage under changing conditions may provide such a link. We simulated the evolution of the Spriana rock slope (Italian Central Alps). This is affected by a 50 Mm3 rockslide, significantly active since the late 19th century and characterized by massive geological and geotechnical investigations and monitoring during the last decades. Using an improved version of the 2D Finite-Element, damage-based brittle creep model proposed by Amitrano and Helmstetter (2006) and Lacroix and Amitrano (2013), we combined damage and time-to-failure laws to reproduce diffused damage, strain localization and the long-term creep deformation of the slope. The model was implemented for application to real slopes, by accounting for: 1) fractured rock mass properties upscaling based on site characterization data; 2) fluid pressures in a progressive failure context, relating fluid occurrence to

  2. How does slope form affect erosion in CATFLOW-SED?

    Gabelmann, Petra; Wienhöfer, Jan; Zehe, Erwin


    Erosion is a severe environmental problem in agro-ecosystems with highly erodible loess soils. It is controlled by various factors, e.g. rainfall intensity, initial wetness conditions, soil type, land use and tillage practice. Furthermore slope form and gradient have been shown to influence erosion amounts to a large extent. Within the last fifty years, various erosion models have been developed to describe the erosion process, estimate erosion amounts and identify erosion-prone areas. These models differ in terms of complexity, the processes which are considered, and the data required for model calibration and they can be categorised into empirical or statistical, conceptual, and physically-based models. CATFLOW-SED is a process-based hydrology and erosion model that can operate on catchment and hillslope scales. Soil water dynamics are described by the Richards equation including effective approaches for preferential flow. Evapotranspiration is simulated using an approach based on the Penman-Monteith equation. The model simulates overland flow using the diffusion wave equation. Soil detachment is related to the attacking forces of rainfall and overland flow, and the erosion resistance of soil. Sediment transport capacity and sediment deposition are related to overland flow velocity using the equation of Engelund and Hansen and the sinking velocity of grain sizes respectively. We performed a study to analyse the erosion process on different virtual hillslopes, with varying slope gradient and slope form, using the CATFLOW-SED model. We explored the role of landform on erosion and sedimentation, particularly we look for forms that either maximise or minimise erosion. Results indicate the importance to performing the process implementation within physically meaningful limits and choose appropriate model parameters respectively.

  3. Computing discrete logarithm by interval-valued paradigm

    Benedek Nagy


    Full Text Available Interval-valued computing is a relatively new computing paradigm. It uses finitely many interval segments over the unit interval in a computation as data structure. The satisfiability of Quantified Boolean formulae and other hard problems, like integer factorization, can be solved in an effective way by its massive parallelism. The discrete logarithm problem plays an important role in practice, there are cryptographical methods based on its computational hardness. In this paper we show that the discrete logarithm problem is computable by an interval-valued computing in a polynomial number of steps (within this paradigm.

  4. Confidence Intervals for Effect Sizes: Applying Bootstrap Resampling

    Banjanovic, Erin S.; Osborne, Jason W.


    Confidence intervals for effect sizes (CIES) provide readers with an estimate of the strength of a reported statistic as well as the relative precision of the point estimate. These statistics offer more information and context than null hypothesis statistic testing. Although confidence intervals have been recommended by scholars for many years,…

  5. A Note on Inclusion Intervals of Matrix Singular Values

    Shu-Yu Cui


    Full Text Available We establish an inclusion relation between two known inclusion intervals of matrix singular values in some special case. In addition, based on the use of positive scale vectors, a known inclusion interval of matrix singular values is also improved.

  6. Sample Size for the "Z" Test and Its Confidence Interval

    Liu, Xiaofeng Steven


    The statistical power of a significance test is closely related to the length of the confidence interval (i.e. estimate precision). In the case of a "Z" test, the length of the confidence interval can be expressed as a function of the statistical power. (Contains 1 figure and 1 table.)

  7. Sample Size for the "Z" Test and Its Confidence Interval

    Liu, Xiaofeng Steven


    The statistical power of a significance test is closely related to the length of the confidence interval (i.e. estimate precision). In the case of a "Z" test, the length of the confidence interval can be expressed as a function of the statistical power. (Contains 1 figure and 1 table.)

  8. Mechanical interaction between roots and soil mass in slope vegetation


    The most basic function of slope vegetation is to strengthen rock and soil mass through plant roots which increase the shear strength of the slope markedly and thereby increase the stability of the slope. However, the calculation of the reinforcement ability of slope vegetation still remains at the stage of judging by experience, because it is rather difficult due to the intricacy and volatility of the force condition of plant roots in rock and soil medium. Although some scholars have tried to study the interaction between plant roots and soil mass, the systemic analysis of the mechanical reinforcement mechanism and the contribution of plant roots to strengthening the rock and soil mass on the surface of the slope is untapped. In this paper, by analyzing the mechanism of slope vegetation and the corresponding reinforcement effect, the effects that slope vegetation generates on the shear strength of slope soil mass are studied, thereby a theoretical basis for plant protection designing is provided.

  9. Propagation of internal waves up continental slope and shelf

    DAI Dejun; WANG Wei; QIAO Fangli; YUAN Yeli; XIANG Wenxi


    In a two-dimensional and linear framework, a transformation was developed to derive eigensolutions of internal waves over a subcriticai hyperbolic slope and to approximate the continental slope and shelf. The transformation converts a hyperbolic slope in physical space into a fiat bottom in transform space while the governing equations of internal waves remain hyperbolic. The eigensolutions are further used to study the evolution of linear internal waves as it propagates to subcritical continental slope and shelf. The stream function, velocity, and vertical shear of velocity induced by internal wave at the hyperbolic slope are analytically expressed by superposition of the obtained eigensolutions. The velocity and velocity shear increase as the internal wave propagates to a hyperbolic slope. They become very large especially when the slope of internal wave rays approaches the topographic slope, which is consistent with the previous studies.

  10. Influence of deposit architecture on intrastratal deformation, slope deposits of the Tres Pasos Formation, Chile

    Auchter, Neal C.; Romans, Brian W.; Hubbard, Stephen M.


    increase in ductile deformation through the deformation interval indicates the role of burial depth and compaction. Distinguishing synburial intrastratal deformation (10s of m below seafloor) from tectonic or at-seafloor deformation has important implications for interpretations of burial history, slope stability, and potential triggering mechanisms.

  11. Contrasting Diversity Values: Statistical Inferences Based on Overlapping Confidence Intervals

    MacGregor-Fors, Ian; Payton, Mark E.


    Ecologists often contrast diversity (species richness and abundances) using tests for comparing means or indices. However, many popular software applications do not support performing standard inferential statistics for estimates of species richness and/or density. In this study we simulated the behavior of asymmetric log-normal confidence intervals and determined an interval level that mimics statistical tests with P(α) = 0.05 when confidence intervals from two distributions do not overlap. Our results show that 84% confidence intervals robustly mimic 0.05 statistical tests for asymmetric confidence intervals, as has been demonstrated for symmetric ones in the past. Finally, we provide detailed user-guides for calculating 84% confidence intervals in two of the most robust and highly-used freeware related to diversity measurements for wildlife (i.e., EstimateS, Distance). PMID:23437239

  12. Implementation and Analysis of Interval SRT Radix-2 Division Algorithm

    Milind R. Patel


    Full Text Available Interval arithmetic gives computation for closed bound set of real numbers which provides two values for single result. It gives confirmation that the error which exists due to the mathematical computation does not exceed over defined accuracy. Interval arithmetic provides higher precision and accuracy than the floating point arithmetic. Software computation for interval arithmetic is quite slow. Hardware implementation of the interval arithmetic provides considerable improvement in speed with respect to its software approach. We have used floating point hardware for interval arithmetic to improve the speed of computation. We present the implementation and analysis of interval radix-2 SRT division algorithm in double precision. SRT division gives faster response when partial remainder is relatively small in computation.

  13. Evaluation of Slope Assessment Systems for Predicting Landslides of Cut Slopes in Granitic and Meta-sediment Formations

    Suhaimi Jamaludin


    Full Text Available In Malaysia, slope assessment systems (SAS are widely used in assessing the instability of slope or the probability of occurrence and the likely severity of landslides. These SAS can be derived based on either one particular approach or combination of several approaches of landslide assessments and prediction. This study overviews four slope assessment systems (SAS developed in Malaysia for predicting landslide at a large-scale assessments. They are the Slope Maintenance System (SMS, Slope Priority Ranking System (SPRS, Slope Information Management System (SIMS and the Slope Management and Risk Tracking System (SMART. An attempt is made to evaluate the accuracy of the SAS in predicting landslides based on slope inventory data from 139 cut slopes in granitic formation and 47 cut slopes in meta-sediment formation, which are the two most common rock/soil formations found in Malaysia. Based on this study, it was found that none of existing SAS is satisfactory in predicting landslides of cut slopes in granitic formation, for various reasons such as the use of hazard score developed from another country, insufficient data base, oversimplified approach and use of data base derived from different rock/soil formations. However for the case of cut slope in meta-sediment, the Slope Management and Risk Tracking System (SMART was found to be satisfactory with 90% prediction accuracy. The current database of SMART is largely based on meta-sediment formation.


    RUIYongqin; JIANGZhiming; LIUJinghui


    Based on the model of slope engineering geology,the creep and its failure mechanism of tall and bedding slope are deeply analyzed in this paper .The creep laws of weak intercalations are also discussed.The analysis om the stability of creep slope and the age forecasting of sliding slope have been conducted through mumerical simulations using Finite Element Method (FEM)and Dintimct Element Method(DEM).

  15. Intertidal beach slope predictions compared to field data

    Madsen, A.J.; Plant, N.G.


    This paper presents a test of a very simple model for predicting beach slope changes. The model assumes that these changes are a function of both the incident wave conditions and the beach slope itself. Following other studies, we hypothesized that the beach slope evolves towards an equilibrium

  16. Intertidal beach slope predictions compared to field data

    Madsen, A.J.; Plant, N.G.


    This paper presents a test of a very simple model for predicting beach slope changes. The model assumes that these changes are a function of both the incident wave conditions and the beach slope itself. Following other studies, we hypothesized that the beach slope evolves towards an equilibrium valu

  17. Curriculum-based measurement of oral reading: A preliminary investigation of confidence interval overlap to detect reliable growth.

    Van Norman, Ethan R


    Curriculum-based measurement of oral reading (CBM-R) progress monitoring data is used to measure student response to instruction. Federal legislation permits educators to use CBM-R progress monitoring data as a basis for determining the presence of specific learning disabilities. However, decision making frameworks originally developed for CBM-R progress monitoring data were not intended for such high stakes assessments. Numerous documented issues with trend line estimation undermine the validity of using slope estimates to infer progress. One proposed recommendation is to use confidence interval overlap as a means of judging reliable growth. This project explored the degree to which confidence interval overlap was related to true growth magnitude using simulation methodology. True and observed CBM-R scores were generated across 7 durations of data collection (range 6-18 weeks), 3 levels of dataset quality or residual variance (5, 10, and 15 words read correct per minute) and 2 types of data collection schedules. Descriptive and inferential analyses were conducted to explore interactions between overlap status, progress monitoring scenarios, and true growth magnitude. A small but statistically significant interaction was observed between overlap status, duration, and dataset quality, b = -0.004, t(20992) =-7.96, p < .001. In general, confidence interval overlap does not appear to meaningfully account for variance in true growth across many progress monitoring conditions. Implications for research and practice are discussed. Limitations and directions for future research are addressed. (PsycINFO Database Record

  18. Interval Valued Neutrosophic Soft Topological Spaces

    Anjan Mukherjee


    Full Text Available In this paper we introduce the concept of interval valued neutrosophic soft topological space together with interval valued neutrosophic soft finer and interval valued neutrosophic soft coarser topology. We also define interval valued neutrosophic interior and closer of an interval valued neutrosophic soft set. Some theorems and examples are cites. Interval valued neutrosophic soft subspace topology are studied. Some examples and theorems regarding this concept are presented.

  19. Statistical intervals a guide for practitioners

    Hahn, Gerald J


    Presents a detailed exposition of statistical intervals and emphasizes applications in industry. The discussion differentiates at an elementary level among different kinds of statistical intervals and gives instruction with numerous examples and simple math on how to construct such intervals from sample data. This includes confidence intervals to contain a population percentile, confidence intervals on probability of meeting specified threshold value, and prediction intervals to include observation in a future sample. Also has an appendix containing computer subroutines for nonparametric stati

  20. NOAA TIFF Image - 4m Bathymetric Slope of Slope for Red Snapper Research Areas in the South Atlantic Bight, 2010

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains unified Bathymetric Slope of Slope GeoTiffs with 4x4 meter cell resolution describing the topography of 15 areas along the shelf edge off the...

  1. The sloping land conversion program in China

    Liu, Zhen; Lan, Jing


    Through addressing the motivations behind rural households’ livelihood diversification, this paper examines the effect of the Sloping Land Conversion Program (SLCP) on livelihood diversification using a longitudinal household survey data set spanning the overall implementation of the SLCP. Our...... results show that the SLCP works as a valid external policy intervention to increase rural livelihood diversification. In addition, the findings demonstrate that the implementation of the SLCP has had heterogeneous effects on livelihood diversification across different rural income groups. The lower...... income group was more affected by the program in terms of income diversification....

  2. Seismic Stability of Reinforced Soil Slopes

    Tzavara, I.; Zania, Varvara; Tsompanakis, Y.


    Over recent decades increased research interest has been observed on the dynamic response and stability issues of earth walls and reinforced soil structures. The current study aims to provide an insight into the dynamic response of reinforced soil structures and the potential of the geosynthetics...... to prevent the development of slope instability taking advantage of their reinforcing effect. For this purpose, a onedimensional (SDOF) model, based on Newmark’s sliding block model as well as a two-dimensional (plane-strain) dynamic finite-element analyses are conducted in order to investigate the impact...

  3. Transhumanism, medical technology and slippery slopes.

    McNamee, M J; Edwards, S D


    In this article, transhumanism is considered to be a quasi-medical ideology that seeks to promote a variety of therapeutic and human-enhancing aims. Moderate conceptions are distinguished from strong conceptions of transhumanism and the strong conceptions were found to be more problematic than the moderate ones. A particular critique of Boström's defence of transhumanism is presented. Various forms of slippery slope arguments that may be used for and against transhumanism are discussed and one particular criticism, moral arbitrariness, that undermines both weak and strong transhumanism is highlighted.

  4. Evaluation of repolarization dynamics using the QT-RR regression line slope and intercept relationship during 24-h Holter ECG.

    Fujiki, Akira; Yoshioka, Ryozo; Sakabe, Masao


    QT-RR linear regression consists of two parameters, slope and intercept, and the aim of this study was to evaluate repolarization dynamics using the QT-RR linear regression slope and intercept relationship during 24-h Holter ECG. This study included 466 healthy subjects (54.6 ± 14.6 years; 200 men and 266 women) and 17 patients with ventricular arrhythmias, consisted of 10 patients with idiopathic ventricular fibrillation (IVF) and 7 patients with torsades de pointes (TDP). QT and RR intervals were measured from ECG waves based on a 15-s averaged ECG during 24-h Holter recording using an automatic QT analyzing system. The QT interval dependence on the RR interval was analyzed using a linear regression line for each subject ([QT] = A[RR] + B; where A is the slope and B is the y-intercept). The slope of the QT-RR regression line in healthy subjects was significantly greater in women than in men (0.185 ± 0.036 vs. 0.161 ± 0.033, p Holter ECG may become a simple useful marker for abnormality of ventricular repolarization dynamics.

  5. Effects of pitch-slope-related parameters on stress perception of Tone 2 + Tone 2 disyllabic words in Mandarin%斜率相关参数对双音节阳平词的重音感知的影响

    刘敏; 张劲松; 李雅; 陶建华; 段日成


    传统的基频和时长等声学参数凸显阳平音节的重音的作用有限,因此该文具体考察了双音节阳平词的词重音的声学关联物.通过对6 000句语料中的1 282个双音节阳平词进行重音标注和声学分析,发现双音节阳平词的词重音表现出特殊的声学关联物:两音节的音高升幅差、音高上升部分时长差和斜率差这3个斜率相关参数.主要体现在:3个斜率相关参数与双音节阳平词的重音类别有较高的相关性,它们均能够为区分前重词和后重词提供线索;在不同的韵律边界下,斜率相关参数对词重音的影响不同;3个参数与重音类别存在一定的对应关系.%This paper focuses on the effects of the sound parameters related to pitch slope on stress perception of Tone 2 + Tone 2 disyllabic words.The acoustic parameters of 1 282 Tone 2 + Tone 2 disyllabic words taken from a 6 000 sentence stress-labeled corpus are analyzed to identify the F0 changes,the duration differences and the pitch slope differences of the tone-nucleus part between the syllables of disyllabic words,which are shown to be important acoustic correlates of stress perception.These three parameters,especially the F0 changes,play crucial roles in discriminating between initial-syllable-stressed and final-syllable-stressed words.These parameters show different effects when the boundary levels differ,with the dividing line further clarified for different boundary levels.

  6. [Effects of land use type and slope position on soil physical properties in loess tableland area].

    Li, Zhi; Liu, Wen-Zhao; Wang, Qiu-Xian


    Soil samples under different land use types and at different slope positions in the Wangdonggou watershed of loess tableland area were collected to determine their particle composition, bulk density (pb), and saturated hydraulic conductivity (Ks), and the effects of land use type and slope position on the soil physical properties were studied in virtue of the variation coefficient and non-parameter tests. The results showed that the physical properties of soil varied in horizontal direction and vertical profile, however at the same slope position or under the same land use type, the pb and particle composition were similar. In horizontal direction, Ks varied strongly, slit content and pb varied weakly, and clay and sand contents varied medially. In vertical profile, soil particles had a continuous distribution, but pb and Ks varied greatly in 0-25 cm layer. With the slope degree descended, soil contained more clay and had a higher pb, and Ks increased. At upper and middle slopes, soil physical properties were similar, and thus, could be merged into one in related researches. There was a significant difference in soil physical properties between grassland and other land use types, which was mainly due to the effects of slope position, but the soil physical properties in farmland and orchard were similar, indicating the important effects of human activities.

  7. Potential geologic hazards on the eastern Gulf of Cadiz slope (SW Spain)

    Baraza, J.; Ercilla, G.; Nelson, C.H.


    Geologic hazards resulting from sedimentary, oceanographic and tectonic processes affect more than one third of the offshore Gulf of Cadiz, and are identified by interpreting high-resolution seismic profiles and sonographs. Hazards of sedimentary origin include the occurrence of slope instability processes in the form of single or multiple slumps occupying up to 147 km2 mainly concentrated in the steeper, upper slope area. Besides the presence of steep slopes, the triggering of submarine landslides is probably due to seismic activity and favoured by the presence of biogenic gas within the sediment. Gassy sediments and associated seafloor pockmarks cover more than 240 km2 in the upper slope. Hazards from oceanographic processes result from the complex system of bottom currents created by the interaction of the strong Mediterranean Undercurrent and the rough seafloor physiography. The local intensification of bottom currents is responsible for erosive processes along more than 1900 km2 in the upper slope and in the canyons eroded in the central area of the slope, undermining slopes and causing instability. The strong bottom currents also create a mobile seafloor containing bedforms in an area of the Gulf that extends more than 2500 km2, mostly in the continental slope terraces. Hazards of tectonic origin are important because the Gulf of Cadiz straddles two major tectonic regions, the Azores-Gibraltar fracture zone and the Betic range, which results in diapir uplift over an area of more than 1000 km2, and in active seismicity with earthquakes of moderate magnitude. Also, tsunamis produced by strong earthquakes occur in the Gulf of Cadiz, and are related to the tectonic activity along the Azores-Gibraltar fracture zone.

  8. Spatial filtering of electrical resistivity and slope intensity: Enhancement of spatial estimates of a soil property

    Bourennane, Hocine; Hinschberger, Florent; Chartin, Caroline; Salvador-Blanes, Sébastien


    : PC1 and slope intensity as external drifts; slope intensity as an external drift; and PC1 as an external drift. The results indicate a reasonably low bias of prediction for all of the methods, in particular in the case of kriging using the large scales of both slope intensity and PC1 as external drifts. The root mean square error shows that kriging accounting for the large scales of two secondary exhaustive variables is the most accurate prediction method. The relative improvement of the accuracy is at least equal to 29% between the approach accounting for both large scale components of secondary attributes in the spatial estimates of ST and the other approaches of estimates considered in this study.

  9. Quantifying Slope Effects and Variations in Crater Density across a Single Geologic Unit

    Meyer, Heather; Mahanti, Prasun; Robinson, Mark; Povilaitis, Reinhold


    Steep underlying slopes (>~5°) significantly increase the rate of degradation of craters [1-3]. As a result, the density of craters is less on steeper slopes for terrains of the same age [2, 4]. Thus, when age-dating a planetary surface, an area encompassing one geologic unit of constant low slope is chosen. However, many key geologic units, such as ejecta blankets, lack sufficient area of constant slope to derive robust age estimates. Therefore, accurate age-dating of such units requires an accurate understanding of the effects of slope on age estimates. This work seeks to determine if the observed trend of decreasing crater density with increasing slopes [2] holds for craters >1 km and to quantify the effect of slope for craters of this size, focusing on the effect of slopes over the kilometer scale. Our study focuses on the continuous ejecta of Orientale basin, where we measure craters >1 km excluding secondaries that occur as chains or clusters. Age-dating via crater density measurements relies on uniform cratering across a single geologic unit. In the case of ejecta blankets and other impact related surfaces, this assumption may not hold due to the formation of auto- secondary craters. As such, we use LRO WAC mosaics [5], crater size-frequency distributions, absolute age estimates, a 3 km slope map derived from the WAC GLD100 [6], and density maps for various crater size ranges to look for evidence of non-uniform cratering across the continuous ejecta of Orientale and to determine the effect of slope on crater density. Preliminary results suggest that crater density does decrease with increasing slope for craters >1 km in diameter though at a slower rate than for smaller craters.References: [1] Trask N. J. and Rowan L. C. (1967) Science 158, 1529-1535. [2] Basilevsky (1976) Proc. Lunar Sci. Conf. 7th, p. 1005-1020. [3] Pohn and Offield (1970) USGS Prof. Pap., 153-162. [4] Xiao et al. (2013) Earth and Planet. Sci. Lett., 376, pgs. 1-11. doi:10.1016/j.epsl.2013

  10. Assessment of highway slope failure using neural networks

    Tsung-lin LEE; Hung-ming LIN; Yuh-pin LU


    An artificial intelligence technique of back-propagation neural networks is used to assess the slope failure. On-site slope failure data from the South Cross-Island Highway in southern Taiwan are used to test the performance of the neural network model. The numerical results demonstrate the effectiveness of artificial neural networks in the evaluation of slope failure potential based on five major factors, such as the slope gradient angle, the slope height, the cumulative precipitation, daily rainfall and strength of materials.

  11. Slope evolution of GRB correlations and cosmology

    Dainotti, Maria Giovanna; Piedipalumbo, Ester; Capozziello, Salvatore


    Gamma -ray bursts (GRBs) observed up to redshifts $z>9.4$ can be used as possible probes to test cosmological models. Here we show how changes of the slope of the {\\it luminosity $L^*_X$ -break time $T^*_a$} correlation in GRB afterglows, hereafter the LT correlation, affect the determination of the cosmological parameters. With a simulated data set of 101 GRBs with a central value of the correlation slope that differs on the intrinsic one by a $5\\sigma$ factor, we find an overstimated value of the matter density parameter, $\\Omega_M$, compared to the value obtained with SNe Ia, while the Hubble constant, $H_0$, best fit value is still compatible in 1$\\sigma$ compared to other probes. We show that this compatibility of $H_0$ is due to the large intrinsic scatter associated with the simulated sample. Instead, if we consider a subsample of high luminous GRBs ($HighL$), we find that both the evaluation of $H_0$ and $\\Omega_M$ are not more compatible in 1$\\sigma$ and $\\Omega_M$ is underestimated by the $13\\%$. Ho...

  12. HDMR methods to assess reliability in slope stability analyses

    Kozubal, Janusz; Pula, Wojciech; Vessia, Giovanna


    Stability analyses of complex rock-soil deposits shall be tackled considering the complex structure of discontinuities within rock mass and embedded soil layers. These materials are characterized by a high variability in physical and mechanical properties. Thus, to calculate the slope safety factor in stability analyses two issues must be taken into account: 1) the uncertainties related to structural setting of the rock-slope mass and 2) the variability in mechanical properties of soils and rocks. High Dimensional Model Representation (HDMR) (Chowdhury et al. 2009; Chowdhury and Rao 2010) can be used to carry out the reliability index within complex rock-soil slopes when numerous random variables with high coefficient of variations are considered. HDMR implements the inverse reliability analysis, meaning that the unknown design parameters are sought provided that prescribed reliability index values are attained. Such approach uses implicit response functions according to the Response Surface Method (RSM). The simple RSM can be efficiently applied when less than four random variables are considered; as the number of variables increases, the efficiency in reliability index estimation decreases due to the great amount of calculations. Therefore, HDMR method is used to improve the computational accuracy. In this study, the sliding mechanism in Polish Flysch Carpathian Mountains have been studied by means of HDMR. The Southern part of Poland where Carpathian Mountains are placed is characterized by a rather complicated sedimentary pattern of flysh rocky-soil deposits that can be simplified into three main categories: (1) normal flysch, consisting of adjacent sandstone and shale beds of approximately equal thickness, (2) shale flysch, where shale beds are thicker than adjacent sandstone beds, and (3) sandstone flysch, where the opposite holds. Landslides occur in all flysch deposit types thus some configurations of possible unstable settings (within fractured rocky

  13. Estrategia de intervención educativa sobre la sexualidad en niños con el síndrome de Down Educational intervention strategy related to sexuality in Down syndrome children

    Eloy J Pineda Pérez; Elsa Gutiérrez Baró


    INTRODUCCIÓN: la sexualidad es un elemento importante en la educación del niño con el síndrome de Down, por lo que los padres deben tener los conocimientos adecuados para enfrentarla de forma responsable desde las primeras etapas de la vida. MÉTODOS: intervención con diseño estudio antes-después con grupo de control no equivalente sobre las nociones y el tratamiento de la sexualidad que tenían los padres de niños con síndrome de Down. Se realizó en 3 fases de investigación, en las que se impa...

  14. The effect of beach slope on tidal influenced saltwater intrusion

    Zhao, Z.; Shen, C.; Jin, G.; Xin, P.; Hua, G.; Tao, X.; Zhao, J.


    Beach slope changes the tidal induced saltwater-freshwater circulations in coastal aquifers. However, the effect of beach slope on tidal influenced saltwater-freshwater mixing process is far from understood. Based on sand flume experiments and numerical simulations, we investigated the intrusion process of saltwater into freshwater under tidal forcing and variable beach slopes. The sand flume experiment results show that milder slope induces larger upper saline plume (USP) and seaward salt wedge interface (SWI) under tidal forcing. While, the steady state SWI keeps stagnant with different beach slopes. Consistent with the previous research, our numerical simulations also show a lager flux exchange across the milder beach induced by the tidal fluctuations. The groundwater table fluctuates more intensify with deeper beach slope. The next step of our study will pay attention to the effect of beach slope on the instability of USP which induces the salt-fingering flow.

  15. Comparing interval estimates for small sample ordinal CFA models.

    Natesan, Prathiba


    Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading

  16. Interpreting the observed UV continuum slopes of high-redshift galaxies

    Wilkins, Stephen M; Coulton, William; Croft, Rupert; Di Matteo, Tiziana; Khandai, Nishikanta; Feng, Yu


    The observed UV continuum slope of star forming galaxies is strongly affected by the presence of dust. Its observation is then a potentially valuable diagnostic of dust attenuation, particularly at high-redshift where other diagnostics are currently inaccesible. Interpreting the observed UV continuum slope in the context of dust attenuation is often achieved assuming the empirically calibrated Meurer et al. (1999) relation. Implicit in this relation is the assumption of an intrinsic UV continuum slope ($\\beta=-2.23$). However, results from numerical simulations suggest that the intrinsic UV continuum slopes of high-redshift star forming galaxies are bluer than this, and moreover vary with redshift. Using values of the intrinsic slope predicted by numerical models of galaxy formation combined with a Calzetti et al. (2000) reddening law we infer UV attenuations ($A_{1500}$) $0.35-0.5\\,{\\rm mag}$ ($A_{V}$: $0.14-0.2\\,{\\rm mag}$ assuming Calzetti et al. 2000) greater than simply assuming the Meurer relation. This...


    V. B. Das; A. Kumar


    We obtain a deficient cubic spline function which matches the functions with certain area matching over a greater mesh intervals, and also provides a greater flexibility in replacing area matching as interpolation. We also study their convergence properties to the interpolating functions.

  18. Bi-cruciate stabilized total knee arthroplasty can reduce the risk of knee instability associated with posterior tibial slope.

    Hada, Masaru; Mizu-Uchi, Hideki; Okazaki, Ken; Kaneko, Takao; Murakami, Koji; Ma, Yuan; Hamai, Satoshi; Nakashima, Yasuharu


    The purpose of this study was to evaluate the relationship between posterior tibial slope and knee kinematics in bi-cruciate stabilized (BCS) total knee arthroplasty (TKA), which has not been previously reported. This computer simulation study evaluated Journey 2 BCS components (Smith & Nephew, Inc., Memphis, TN, USA) implanted in a female patient to simulate weight-bearing stair climbing. Knee kinematics, patellofemoral contact forces, and quadriceps forces during stair climbing (from 86° to 6° of flexion) were computed in the simulation. Six different posterior tibial slope angles (0°-10°) were simulated to evaluate the effect of posterior tibial slope on knee kinematics and forces. At 65° of knee flexion, no anterior sliding of the tibial component occurred if the posterior tibial slope was less than 10°. Anterior contact between the anterior aspect of the tibial post- and the femoral component was observed if the posterior tibial slope was 6° or more. An increase of 10° in posterior tibial slope (relative to 0°) led to a 4.8% decrease in maximum patellofemoral contact force and a 1.2% decrease in maximum quadriceps force. BCS TKA has a wide acceptable range of posterior tibial slope for avoiding knee instability if the posterior tibial slope is less than 10°. Surgeons should prioritize avoiding adverse effects over trying to achieve positive effects such as decreasing patellofemoral contact force and quadriceps force by increasing posterior tibial slope. Our study helps surgeons determine the optimal posterior tibial slope during surgery with BCS TKA; posterior tibial slope should not exceed 10° in routine clinical practice.

  19. Establishing maintenance intervals based on measurement reliability of engineering endpoints.

    James, P J


    Methods developed by the metrological community and principles used by the research community were integrated to provide a basis for a periodic maintenance interval analysis system. Engineering endpoints are used as measurement attributes on which to base two primary quality indicators: accuracy and reliability. Also key to establishing appropriate maintenance intervals is the ability to recognize two primary failure modes: random failure and time-related failure. The primary objective of the maintenance program is to avert predictable and preventable device failure, and understanding time-related failures enables service personnel to set intervals accordingly.

  20. Variational collocation on finite intervals

    Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Colima, Colima (Mexico); Cervantes, Mayra [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Colima, Colima (Mexico); Fernandez, Francisco M [INIFTA (Conicet, UNLP), Diag. 113 y 64 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)


    In this paper, we study a set of functions, defined on an interval of finite width, which are orthogonal and which reduce to the sinc functions when the appropriate limit is taken. We show that these functions can be used within a variational approach to obtain accurate results for a variety of problems. We have applied them to the interpolation of functions on finite domains and to the solution of the Schroedinger equation, and we have compared the performance of the present approach with others.

  1. Dijets at large rapidity intervals

    Pope, B G


    Inclusive diet production at large pseudorapidity intervals ( Delta eta ) between the two jets has been suggested as a regime for observing BFKL dynamics. We have measured the dijet cross section for large Delta eta in pp collisions at square root s = 1800 and 630 GeV using the DOE detector. The partonic cross section increases strongly with the size of Delta eta . The observed growth is even stronger than expected on the basis of BFKL resummation in the leading logarithmic approximation. The growth of the partonic cross section can be accommodated with an effective BFKL intercept of alpha /sub BFKL/(20 GeV) = 1.65 +or- 0.07.

  2. Linear chirped slope profile for spatial calibration in slope measuring deflectometry

    Siewert, F., E-mail:; Zeschke, T. [Helmholtz Zentrum Berlin für Materialien und Energie, Institut für Nanometer Optik und Technologie, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Arnold, T.; Paetzelt, H. [Leibnitz Institut für Oberflächen Modifizierung Leipzig e.V., IOM, Permoserstr. 15, 04318 Leipzig (Germany); Yashchuk, V. V. [Lawerence Berkeley National Laboratory, Advanced Light Source, 1 Cyclotron Road, Berkeley, California 94720 (United States)


    Slope measuring deflectometry is commonly used by the X-ray optics community to measure the long-spatial-wavelength surface figure error of optical components dedicated to guide and focus X-rays under grazing incidence condition at synchrotron and free electron laser beamlines. The best performing instruments of this kind are capable of absolute accuracy on the level of 30-50 nrad. However, the exact bandwidth of the measurements, determined at the higher spatial frequencies by the instrument’s spatial resolution, or more generally by the instrument’s modulation transfer function (MTF) is hard to determine. An MTF calibration method based on application of a test surface with a one-dimensional (1D) chirped height profile of constant amplitude was suggested in the past. In this work, we propose a new approach to designing the test surfaces with a 2D-chirped topography, specially optimized for MTF characterization of slope measuring instruments. The design of the developed MTF test samples based on the proposed linear chirped slope profiles (LCSPs) is free of the major drawback of the 1D chirped height profiles, where in the slope domain, the amplitude strongly increases with the local spatial frequency of the profile. We provide the details of fabrication of the LCSP samples. The results of first application of the developed test samples to measure the spatial resolution of the BESSY-NOM at different experimental arrangements are also presented and discussed.

  3. Tidal bores, turbulence and mixing above deep-ocean slopes

    Winters, Kraig


    A tidally driven, stably-stratified turbulent boundary layer over supercritically sloping topography is simulated numerically using a spectral LES approach (Winters, 2015, 2016). The near boundary flow is characterized by quasi-periodic, bore-like motions, whose temporal signature is compared to the high-resolution ocean mooring data of van Haren (2006). The relatively thick bottom boundary layer remains stably stratified owing to the regular cycling of unmixed ambient fluid into the turbulent boundary layer and episodic expulsion events where fluid is ejected into the stratified interior. The effective diffusivity of the flow near the boundary is estimated by means of a synthetic dye tracer experiment. The average dissipation rate within the dye cloud is computed and combined with the diffusivity estimate to yield an overall mixing efficiency of 0.15. Both the estimated diffusivity and dissipation rates are in reasonable agreement with the microstructure observations of Kunze et al. (2012) when scaled to the environmental conditions at the Monterey and Soquel Canyons and to the values estimated by van Haren and Gostiaux (2012) above the sloping bottom of the Great Meteor Seamount in the Canary Basin.

  4. Using airborne LIDAR to measure tides and river slope

    Talke, S. A.; Hudson, A.; Chickadel, C. C.; Farquharson, G.; Jessup, A. T.


    The spatial variability of tides and the tidally-averaged water-level is often poorly resolved in shallow waters, despite its importance in validating models and interpreting dynamics. In this contribution we explore using airborne LIDAR to remotely observe tides and along-river slope in the Columbia River estuary (CRE). Using an airplane equipped with LIDAR, differential GPS, and an infra-red camera, we flew 8 longitudinal transects over a 50km stretch of the CRE over a 14 hour period in June 2013. After correcting for airplane elevation, pitch and roll and median filtering over 1km blocks, a spatially-resolved data set of relative water level was generated. Results show the tide (amplitude 2m) propagating upstream at the expected phase velocity. A sinusoid with 2 periods (12.4 and 24 hours) was next fit to data to produce a smooth tide and extract the mean slope. Comparison with 4 tide gauges indicates first order agreement with measured tides (rms error 0.1m), and confirms that a substantial sub-tidal gradient exists in the CRE. This proof-of-concept experiment indicates that remote sensing of tides in coastal areas is feasible, with possible applications such as improving bathymetric surveys or inferring water depths.

  5. Precision Tiltmeter as a Reference for Slope MeasuringInstruments

    Kirschman, Jonathan L.; Domning, Edward E.; Morrison, Gregory Y.; Smith, Brian V.; Yashchuk, Valeriy V.


    The next generation of synchrotrons and free electron lasers require extremely high-performance x-ray optical systems for proper focusing. The necessary optics cannot be fabricated without the use of precise optical metrology instrumentation. In particular, the Long Trace Profiler (LTP) based on the pencil-beam interferometer is a valuable tool for low-spatial-frequency slope measurement with x-ray optics. The limitations of such a device are set by the amount of systematic errors and noise. A significant improvement of LTP performance was the addition of an optical reference channel, which allowed to partially account for systematic errors associated with wiggling and wobbling of the LTP carriage. However, the optical reference is affected by changing optical path length, non-homogeneous optics, and air turbulence. In the present work, we experimentally investigate the questions related to the use of a precision tiltmeter as a reference channel. Dependence of the tiltmeter performance on horizontal acceleration, temperature drift, motion regime, and kinematical scheme of the translation stage has been investigated. It is shown that at an appropriate experimental arrangement, the tiltmeter provides a slope reference for the LTP system with accuracy on the level of 0.1 {micro}rad (rms).

  6. Geotechnical properties of cemented sands in steep slopes

    Collins, B.D.; Sitar, N.


    An investigation into the geotechnical properties specific to assessing the stability of weakly and moderately cemented sand cliffs is presented. A case study from eroding coastal cliffs located in central California provides both the data and impetus for this study. Herein, weakly cemented sand is defined as having an unconfined compressive strength (UCS) of less than 100 kPa, and moderately cemented sand is defined as having UCS between 100 and 400 kPa. Testing shows that both materials fail in a brittle fashion and can be modeled effectively using linear Mohr-Coulomb strength parameters, although for weakly cemented sands, curvature of the failure envelope is more evident with decreasing friction and increasing cohesion at higher confinement. Triaxial tests performed to simulate the evolving stress state of an eroding cliff, using a reduction in confinement-type stress path, result in an order of magnitude decrease in strain at failure and a more brittle response. Tests aimed at examining the influence of wetting on steep slopes show that a 60% decrease in UCS, a 50% drop in cohesion, and 80% decrease in the tensile strength occurs in moderately cemented sand upon introduction to water. In weakly cemented sands, all compressive, cohesive, and tensile strength is lost upon wetting and saturation. The results indicate that particular attention must be given to the relative level of cementation, the effects of groundwater or surficial seepage, and the small-scale strain response when performing geotechnical slope stability analyses on these materials. ?? 2009 ASCE.

  7. Effects of slope gradient on hydro-erosional processes on an aeolian sand-covered loess slope under simulated rainfall

    Zhang, F. B.; Yang, M. Y.; Li, B. B.; Li, Z. B.; Shi, W. Y.


    The aeolian sand-covered loess slope of the Wind-Water Erosion Crisscross Region of the Loess Plateau in China may play a key role in contributing excessive sediment to the Yellow River. Understanding its hydro-erosional processes is crucial to assessing, controlling and predicting soil and water losses in this region and maintaining the ecological sustainability of the Yellow River. Simulated rainfall (intensity 90 mm h-1) was used to investigate the runoff and soil loss from loess slopes with different slope gradients (18%, 27%, 36%, 47%, and 58%) and overlying sand layer thicknesses (0, 5 and 10 cm). As compared with uncovered loess slopes, an overlying sand layer delayed runoff production, reduced cumulative runoff and increased cumulative soil loss, as well as enhancing variations among slope gradients. Cumulative runoff and soil loss from the sand-covered loess slopes increased with increasing slope gradients and then slightly decreased, with a peak at about 47% gradient; they both were greater from the 10-cm sand-covered loess slope than from the 5-cm except for with 18% slope gradient. In general, differences in cumulative runoff between sand layer thicknesses became smaller, while those in cumulative soil loss became larger, with increasing slope gradient. Runoff and soil loss rates on the sand-covered loess slopes exhibited unimodal distributions during the rainstorms. Maximum values tended to occur at the same rain duration, and increased considerably with increasing slope gradient and sand layer thickness on slopes that were less than 47%. Liquefaction process might occur on the lower loess slopes covered with thinner sand layers but failures similar to shallow landslides might occur when the sand layer was thicker on steeper slopes. The presence of an overlying sand layer changed the relationship between runoff and soil loss rates during intense rainstorms and this change varied with different slope gradients. Our results demonstrated that the effects

  8. North Slope, Alaska: Source rock distribution, richness, thermal maturity, and petroleum charge

    Peters, K.E.; Magoon, L.B.; Bird, K.J.; Valin, Z.C.; Keller, M.A.


    Four key marine petroleum source rock units were identified, characterized, and mapped in the subsurface to better understand the origin and distribution of petroleum on the North Slope of Alaska. These marine source rocks, from oldest to youngest, include four intervals: (1) Middle-Upper Triassic Shublik Formation, (2) basal condensed section in the Jurassic-Lower Cretaceous Kingak Shale, (3) Cretaceous pebble shale unit, and (4) Cretaceous Hue Shale. Well logs for more than 60 wells and total organic carbon (TOC) and Rock-Eval pyrolysis analyses for 1183 samples in 125 well penetrations of the source rocks were used to map the present-day thickness of each source rock and the quantity (TOC), quality (hydrogen index), and thermal maturity (Tmax) of the organic matter. Based on assumptions related to carbon mass balance and regional distributions of TOC, the present-day source rock quantity and quality maps were used to determine the extent of fractional conversion of the kerogen to petroleum and to map the original TOC (TOCo) and the original hydrogen index (HIo) prior to thermal maturation. The quantity and quality of oil-prone organic matter in Shublik Formation source rock generally exceeded that of the other units prior to thermal maturation (commonly TOCo > 4 wt.% and HIo > 600 mg hydrocarbon/g TOC), although all are likely sources for at least some petroleum on the North Slope. We used Rock-Eval and hydrous pyrolysis methods to calculate expulsion factors and petroleum charge for each of the four source rocks in the study area. Without attempting to identify the correct methods, we conclude that calculations based on Rock-Eval pyrolysis overestimate expulsion factors and petroleum charge because low pressure and rapid removal of thermally cracked products by the carrier gas retards cross-linking and pyrobitumen formation that is otherwise favored by natural burial maturation. Expulsion factors and petroleum charge based on hydrous pyrolysis may also be high

  9. Gravitational slopes, geomorphology, and material strengths of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations

    Groussin, O; Auger, A -T; Kührt, E; Gaskell, R; Capanna, C; Scholten, F; Preusker, F; Lamy, P; Hviid, S; Knollenberg, J; Keller, U; Huettig, C; Sierks, H; Barbieri, C; Rodrigo, R; Koschny, D; Rickman, H; Hearn, M F A; Agarwal, J; Barucci, M A; Bertaux, J -L; Bertini, I; Boudreault, S; Cremonese, G; Da Deppo, V; Davidsson, B; Debei, S; De Cecco, M; El-Maarry, M R; Fornasier, S; Fulle, M; Gutiérrez, P J; Güttler, C; Ip, W -H; Kramm, J -R; Küppers, M; Lazzarin, M; Lara, L M; Moreno, J J Lopez; Marchi, S; Marzari, F; Massironi, M; Michalik, H; Naletto, G; Oklay, N; Pommerol, A; Pajola, M; Thomas, N; Toth, I; Tubiana, C; Vincent, J -B


    We study the link between gravitational slopes and the surface morphology on the nucleus of comet 67P/Churyumov-Gerasimenko and provide constraints on the mechanical properties of the cometary material. We computed the gravitational slopes for five regions on the nucleus that are representative of the different morphologies observed on the surface, using two shape models computed from OSIRIS images by the stereo-photoclinometry (SPC) and stereo-photogrammetry (SPG) techniques. We estimated the tensile, shear, and compressive strengths using different surface morphologies and mechanical considerations. The different regions show a similar general pattern in terms of the relation between gravitational slopes and terrain morphology: i) low-slope terrains (0-20 deg) are covered by a fine material and contain a few large ($>$10 m) and isolated boulders, ii) intermediate-slope terrains (20-45 deg) are mainly fallen consolidated materials and debris fields, with numerous intermediate-size boulders from $<$1 m to ...

  10. Interval Arithmetic for Nonlinear Problem Solving


    Implementation of interval arithmetic in complex problems has been hampered by the tedious programming exercise needed to develop a particular implementation. In order to improve productivity, the use of interval mathematics is demonstrated using the computing platform INTLAB that allows for the development of interval-arithmetic-based programs more efficiently than with previous interval-arithmetic libraries. An interval-Newton Generalized-Bisection (IN/GB) method is developed in this platfo...

  11. Seismic Stability of Reinforced Soil Slopes

    Tzavara, I.; Zania, Varvara; Tsompanakis, Y.


    Over recent decades increased research interest has been observed on the dynamic response and stability issues of earth walls and reinforced soil structures. The current study aims to provide an insight into the dynamic response of reinforced soil structures and the potential of the geosynthetics...... to prevent the development of slope instability taking advantage of their reinforcing effect. For this purpose, a onedimensional (SDOF) model, based on Newmark’s sliding block model as well as a two-dimensional (plane-strain) dynamic finite-element analyses are conducted in order to investigate the impact...... of the most significant parameters involved, such as the flexibility of the sliding system, the mechanical properties of the soil and of the geosynthetics material, the frequency content of the excitation and the interface shear strength....

  12. Alaskan North Slope Oil & Gas Transportation Support

    Lilly, Michael Russell [Geo-Watersheds Scientific LLC, Fairbanks, AK (United States)


    North Slope oil and gas resources are a critical part of US energy supplies and their development is facing a period of new growth to meet increasing national energy needs. While this growth is taking place in areas active in development for more than 20 years, there are many increasing environmental challenges facing industry and management agencies. A majority of all exploration and development activities, pipeline maintenance and other field support activities take place in the middle of winter, when the fragile tundra surface is more stable. The window for the critical oil and gas winter operational season has been steadily decreasing over the last 25 years. The number of companies working on the North Slope is increasing. Many of these companies are smaller and working with fewer resources than the current major companies. The winter operations season starts with the tundra-travel opening, which requires 15 cm of snow on the land surface in the coastal management areas and 23 cm in the foothills management areas. All state managed areas require -5°C soil temperatures at a soil depth of 30 cm. Currently there are no methods to forecast this opening date, so field mobilization efforts are dependent on agency personnel visiting field sites to measure snow and soil temperature conditions. Weeks can be easily lost in the winter operating season due to delays in field verification of tundra conditions and the resulting mobilization. After the season is open, a significant percentage of exploration, construction, and maintenance do not proceed until ice roads and pads can be built. This effort is dependent on access to lake ice and under-ice water. Ice chipping is a common ice-road construction technique used to build faster and stronger ice roads. Seasonal variability in water availability and permitting approaches are a constant constraint to industry. At the end of the winter season, projects reliant on ice-road networks are often faced with ending operations

  13. The game of Double-Silver on intervals

    Gerald A. Heuer


    Full Text Available Silverman's game on intervals was analyzed in a special case by Evans, and later more extensively by Heuer and Leopold-Wildburger, who found that optimal strategies exist (and gave them quite generally when the intervals have no endpoints in common. They exist in about half the parameter plane when the intervals have a left endpoint or a right endpoint, but not both, in common, and (as Evans had earlier found exist only on a set of measure zero in this plane if the intervals are identical. The game of Double-Silver, where each player has its own threshold and penalty, is examined. There are several combinations of conditions on relative placement of the intervals, the thresholds and penalties under which optimal strategies exist and are found. The indications are that in the other cases no optimal strategies exist.

  14. Three-dimensional analysis of slopes reinforced with piles

    高玉峰; 叶茂; 张飞


    Based on the upper bound of limit analysis, the plane-strain analysis of the slopes reinforced with a row of piles to the 3D case was extended. A 3D rotational failure mechanism was adopted to yield the upper bound of the factor of safety. Parametric studies were carried out to explore the end effects of the slope failures and the effects of the pile location and diameter on the safety of the reinforced slopes. The results demonstrate that the end effects nearly have no effects on the most suitable location of the installed piles but have significant influence on the safety of the slopes. For a slope constrained to a narrow width, the slope becomes more stable owing to the contribution of the end effects. When the slope is reinforced with a row of piles in small space between piles, the effects of group piles are significant for evaluating the safety of slopes. The presented method is more appropriate for assessing the stability of slopes reinforced with piles and can be also utilized in the design of plies stabilizing the unstable slopes.

  15. An empirical method for establishing positional confidence intervals tailored for composite interval mapping of QTL.

    Andrew Crossett

    Full Text Available BACKGROUND: Improved genetic resolution and availability of sequenced genomes have made positional cloning of moderate-effect QTL realistic in several systems, emphasizing the need for precise and accurate derivation of positional confidence intervals (CIs for QTL. Support interval (SI methods based on the shape of the QTL likelihood curve have proven adequate for standard interval mapping, but have not been shown to be appropriate for use with composite interval mapping (CIM, which is one of the most commonly used QTL mapping methods. RESULTS: Based on a non-parametric confidence interval (NPCI method designed for use with the Haley-Knott regression method for mapping QTL, a CIM-specific method (CIM-NPCI was developed to appropriately account for the selection of background markers during analysis of bootstrap-resampled data sets. Coverage probabilities and interval widths resulting from use of the NPCI, SI, and CIM-NPCI methods were compared in a series of simulations analyzed via CIM, wherein four genetic effects were simulated in chromosomal regions with distinct marker densities while heritability was fixed at 0.6 for a population of 200 isolines. CIM-NPCIs consistently capture the simulated QTL across these conditions while slightly narrower SIs and NPCIs fail at unacceptably high rates, especially in genomic regions where marker density is high, which is increasingly common for real studies. The effects of a known CIM bias toward locating QTL peaks at markers were also investigated for each marker density case. Evaluation of sub-simulations that varied according to the positions of simulated effects relative to the nearest markers showed that the CIM-NPCI method overcomes this bias, offering an explanation for the improved coverage probabilities when marker densities are high. CONCLUSIONS: Extensive simulation studies herein demonstrate that the QTL confidence interval methods typically used to positionally evaluate CIM results can be

  16. Morphology, origin and evolution of Pleistocene submarine canyons, New Jersey continental slope

    Bhatnagar, T.; Mountain, G. S.


    Submarine canyons serve as important conduits for transport of detrital sediments from nearshore and shelf environments to adjacent deep marine basins. However, the processes controlling the formation, maintenance, and fill of these sediment pathways are complex. This study presents an investigation of these systems at the New Jersey continental margin using a grid of high-resolution, 48-channel seismic reflection data collected in 1995 on the R/V Oceanus cruise Oc270 as a part of the STRATAFORM initiative. The aim is to shed new light on the origin and role of submarine canyons in Pleistocene sedimentation beneath the outer shelf and upper continental slope. Preliminary investigation of the Pleistocene interval reveals prominent unconformities tied to and dated with published studies at 7 sites drilled by ODP Legs 150 and 174A. The profiles of the continental slope unveil a series of abandoned and now buried submarine canyons that have influenced the development of modern canyons. Mapping these systems has revealed a range of canyon geometries, including U, V-shaped and flat-bottomed cross sections, each suggesting different histories. At least three types of seismic facies constitute the canyon fills: parallel onlap, interpreted as infilling by alternating coarser turbidites and finer hemipelagic sediments, chaotic infill, signifying structureless, massive debris flow deposition, and lateral accretion infill by both turbidity and bottom currents. Canyon formation and development appear to be strongly influenced by variations in sediment supply, grain size, and currents on the continental slope. One goal of our research is to establish if the canyons were initiated by failures at the base of the slope followed by upslope erosion, or by erosion at the shelf slope transition, and then downslope extension by erosive events. No single model accounts for all canyons. The history of these canyons may elucidate the extent to which the shelf was exposed during sea

  17. Diversity, abundance and community structure of benthic macro- and megafauna on the Beaufort shelf and slope.

    Nephin, Jessica; Juniper, S Kim; Archambault, Philippe


    Diversity and community patterns of macro- and megafauna were compared on the Canadian Beaufort shelf and slope. Faunal sampling collected 247 taxa from 48 stations with box core and trawl gear over the summers of 2009-2011 between 50 and 1,000 m in depth. Of the 80 macrofaunal and 167 megafaunal taxa, 23% were uniques, present at only one station. Rare taxa were found to increase proportional to total taxa richness and differ between the shelf (shelf and maldanid polychaetes (up to 92% in relative abundance/station) dominant on the slope. The megafauna principally comprised echinoderms with Ophiocten sp. (up to 90% in relative abundance/station) dominant on the shelf and Ophiopleura sp. dominant on the slope. Macro- and megafauna had divergent patterns of abundance, taxa richness (α diversity) and β diversity. A greater degree of macrofaunal than megafaunal variation in abundance, richness and β diversity was explained by confounding factors: location (east-west), sampling year and the timing of sampling with respect to sea-ice conditions. Change in megafaunal abundance, richness and β diversity was greatest across the depth gradient, with total abundance and richness elevated on the shelf compared to the slope. We conclude that megafaunal slope taxa were differentiated from shelf taxa, as faunal replacement not nestedness appears to be the main driver of megafaunal β diversity across the depth gradient.

  18. Right Propositional Neighborhood Logic over Natural Numbers with Integer Constraints for Interval Lengths

    Bresolin, Davide; Goranko, Valentin; Montanari, Angelo


    Interval temporal logics are based on interval structures over linearly (or partially) ordered domains, where time intervals, rather than time instants, are the primitive ontological entities. In this paper we introduce and study Right Propositional Neighborhood Logic over natural numbers...... with integer constraints for interval lengths, which is a propositional interval temporal logic featuring a modality for the 'right neighborhood' relation between intervals and explicit integer constraints for interval lengths. We prove that it has the bounded model property with respect to ultimately periodic...

  19. Time-dependent evolution of rock slopes by a multi-modelling approach

    Bozzano, F.; Della Seta, M.; Martino, S.


    This paper presents a multi-modelling approach that incorporates contributions from morpho-evolutionary modelling, detailed engineering-geological modelling and time-dependent stress-strain numerical modelling to analyse the rheological evolution of a river valley slope over approximately 102 kyr. The slope is located in a transient, tectonically active landscape in southwestern Tyrrhenian Calabria (Italy), where gravitational processes drive failures in rock slopes. Constraints on the valley profile development were provided by a morpho-evolutionary model based on the correlation of marine and river strath terraces. Rock mass classes were identified through geomechanical parameters that were derived from engineering-geological surveys and outputs of a multi-sensor slope monitoring system. The rock mass classes were associated to lithotechnical units to obtain a high-resolution engineering-geological model along a cross section of the valley. Time-dependent stress-strain numerical modelling reproduced the main morpho-evolutionary stages of the valley slopes. The findings demonstrate that a complex combination of eustatism, uplift and Mass Rock Creep (MRC) deformations can lead to first-time failures of rock slopes when unstable conditions are encountered up to the generation of stress-controlled shear zones. The multi-modelling approach enabled us to determine that such complex combinations may have been sufficient for the first-time failure of the S. Giovanni slope at approximately 140 ka (MIS 7), even without invoking any trigger. Conversely, further reactivations of the landslide must be related to triggers such as earthquakes, rainfall and anthropogenic activities. This failure involved a portion of the slope where a plasticity zone resulted from mass rock creep that evolved with a maximum strain rate of 40% per thousand years, after the formation of a river strath terrace. This study demonstrates that the multi-modelling approach presented herein is a useful

  20. Circulation and exchange at the continental shelf and slope, SEEP-II

    Houghton, R.W.; Ou, Hsien-Wang.


    This project is a component of the SEEP-2 program to study shelf-slope exchange in the southern Middle Atlantic bight (MBA). It represents the physical oceanographic portion of the SEEP-2 research at Lamont-Doherty Geological Observatory (L-DGO). Since the work consists of two parts: data analysis and theoretical modeling, this report will be divided into two parts to describe the progress of each activity. It covers work performed during the time interval March to December 1990 and is a sequel to the report submitted in February 1990. 25 figs.

  1. Restitution slope is principally determined by steady-state action potential duration.

    Shattock, Michael J; Park, Kyung Chan; Yang, Hsiang-Yu; Lee, Angela W C; Niederer, Steven; MacLeod, Kenneth T; Winter, James


    The steepness of the action potential duration (APD) restitution curve and local tissue refractoriness are both thought to play important roles in arrhythmogenesis. Despite this, there has been little recognition of the apparent association between steady-state APD and the slope of the restitution curve. The objective of this study was to test the hypothesis that restitution slope is determined by APD and to examine the relationship between restitution slope, refractoriness and susceptibility to VF. Experiments were conducted in isolated hearts and ventricular myocytes from adult guinea pigs and rabbits. Restitution curves were measured under control conditions and following intervention to prolong (clofilium, veratridine, bretylium, low [Ca]e, chronic transverse aortic constriction) or shorten (catecholamines, rapid pacing) ventricular APD. Despite markedly differing mechanisms of action, all interventions that prolonged the action potential led to a steepening of the restitution curve (and vice versa). Normalizing the restitution curve as a % of steady-state APD abolished the difference in restitution curves with all interventions. Effects on restitution were preserved when APD was modulated by current injection in myocytes pre-treated with the calcium chelator BAPTA-AM - to abolish the intracellular calcium transient. The non-linear relation between APD and the rate of repolarization of the action potential is shown to underpin the common influence of APD on the slope of the restitution curve. Susceptibility to VF was found to parallel changes in APD/refractoriness, rather than restitution slope. Steady-state APD is the principal determinant of the slope of the ventricular electrical restitution curve. In the absence of post-repolarization refractoriness, factors that prolong the action potential would be expected to steepen the restitution curve. However, concomitant changes in tissue refractoriness act to reduce susceptibility to sustained VF. Dependence on

  2. Long-term vegetation development on a wildfire slope in Innerzwain (Styria, Austria)

    Bodo Malowerschnig; Oliver Sass


    Forest fires in mountainous areas can cause severe defores-tation which can potentially trigger secondary natural hazards like debris falls and avalanches. We documented an extreme case study for the range of possible post-fire land cover (LC) dynamics. We investigated a 15-ha, steep (10°-65°) burnt slope in Styria (Austria) at elevation of 760-1130 m, which burned in 1946 and has not fully recovered to date. Seven 8-class legend LC maps were produced (1954, 1966, 1973, 1982, 1998, 2004, 2009) and integrated in a vector-based GIS, mainly by on-screen interpretation of aerial photos. Our aim was to clarify how post-wildfire LC dynamics take place on a severely damaged, steep slope and to give a basic projection of the future vegetation recovery process. The pre-fire Pinus sylvestrisstands have been mainly replaced by Picea abies and Larix decidua. Regeneration proceeded mainly from the base of the slope upwards. All tree species together still cover no more than 40% of the slope after more than 60 years of recovery, while grassland communities and rock/debris areas have expanded. Multitemporal analysis showed a slow but steady increase in woodland cover. Degraded rock/debris areas, however, expanded as well because soil erosion and related debris flows remained active. Slope angle (with a threshold value of approx. 35-40°) seemed to control whether erosion or regeneration prevailed. According to a simple extrapolation, the slope will not reach its former condition before 2070. This extreme disturbance window of more than 120 years is owed to the steepness of the slope and to the shallow soils on dolomitic bedrock that were severely damaged by the fire. The neglect of any game fencing is a further factor slowing regeneration.

  3. Mesoscale Characterization of Coupled Hydromechanical Behavior of a Fractured Porous Slope in Response to Free Water-Surface Movement

    Rutqvist, Jonny; Guglielmi, Y.; Cappa, F.; Rutqvist, J.; Tsang, C.-F.; Thoraval, A.


    To better understand the role of groundwater-level changes on rock-slope deformation and damage, a carbonate rock slope (30 m x 30 m x 15 m) was extensively instrumented for mesoscale hydraulic and mechanical measurements during water-level changes. The slope is naturally drained by a spring that can be artificially closed or opened by a water gate. In this study, a 2-hour slope-dewatering experiment was analyzed. Changes in fluid pressure and deformation were simultaneously monitored, both at discontinuities and in the intact rock, using short-base extensometers and pressure gauges as well as tiltmeters fixed at the slope surface. Field data were analyzed with different coupled hydromechanical (HM) codes (ROCMAS, FLAC{sup 3D}, and UDEC). Field data indicate that in the faults, a 40 kPa pressure fall occurs in 2 minutes and induces a 0.5 to 31 x 10{sup -6} m normal closure. Pressure fall is slower in the bedding-planes, lasting 120 minutes with no normal deformation. No pressure change or deformation is observed in the intact rock. The slope surface displays a complex tilt towards the interior of the slope, with magnitudes ranging from 0.6 to 15 x 10{sup -6} rad. Close agreement with model for both slope surface and internal measurements is obtained when a high variability in slope-element properties is introduced into the models, with normal stiffnesses of k{sub n{_}faults} = 10{sup -3} x k{sub n{_}bedding-planes} and permeabilities of k{sub h{_}faults} = 10{sup 3} x k{sub h{_}bedding-planes}. A nonlinear correlation between hydraulic and mechanical discontinuity properties is proposed and related to discontinuity damage. A parametric study shows that 90% of slope deformation depends on HM effects in a few highly permeable and highly deformable discontinuities located in the basal, saturated part of the slope while the remaining 10% are related to elasto-plastic deformations in the low-permeability discontinuities induced by complex stress/strain transfers from

  4. Large-area landslide susceptibility with optimized slope-units

    Alvioli, Massimiliano; Marchesini, Ivan; Reichenbach, Paola; Rossi, Mauro; Ardizzone, Francesca; Fiorucci, Federica; Guzzetti, Fausto


    A Slope-Unit (SU) is a type of morphological terrain unit bounded by drainage and divide lines that maximize the within-unit homogeneity and the between-unit heterogeneity across distinct physical and geographical boundaries [1]. Compared to other terrain subdivisions, SU are morphological terrain unit well related to the natural (i.e., geological, geomorphological, hydrological) processes that shape and characterize natural slopes. This makes SU easily recognizable in the field or in topographic base maps, and well suited for environmental and geomorphological analysis, in particular for landslide susceptibility (LS) modelling. An optimal subdivision of an area into a set of SU depends on multiple factors: size and complexity of the study area, quality and resolution of the available terrain elevation data, purpose of the terrain subdivision, scale and resolution of the phenomena for which SU are delineated. We use the recently developed r.slopeunits software [2,3] for the automatic, parametric delineation of SU within the open source GRASS GIS based on terrain elevation data and a small number of user-defined parameters. The software provides subdivisions consisting of SU with different shapes and sizes, as a function of the input parameters. In this work, we describe a procedure for the optimal selection of the user parameters through the production of a large number of realizations of the LS model. We tested the software and the optimization procedure in a 2,000 km2 area in Umbria, Central Italy. For LS zonation we adopt a logistic regression model implemented in an well-known software [4,5], using about 50 independent variables. To select the optimal SU partition for LS zonation, we want to define a metric which is able to quantify simultaneously: (i) slope-unit internal homogeneity (ii) slope-unit external heterogeneity (iii) landslide susceptibility model performance. To this end, we define a comprehensive objective function S, as the product of three

  5. Improvement parameters in dynamic compaction adjacent to the slopes

    Elham Ghanbari


    Full Text Available Dynamic compaction is a cost-effective method commonly used for improvement of sandy soils. A number of researchers have investigated experimentally and numerically the improvement parameters of soils using dynamic compaction, such as crater depth, improvement depth, and radial improvement, however, these parameters are not studied for improvement adjacent to the slopes or trenches. In this research, four different slopes with different inclinations are modeled numerically using the finite element code ABAQUS, and impact loads of dynamic compaction are applied. The static factors of safety are kept similar for all trenches and determined numerically by application of gravity loads to the slope using strength reduction method (SRM. The analysis focuses on crater depth and improvement region which are compared to the state of flat ground. It can be observed that compacted area adjacent to the slopes is narrower and slightly away from the slope compared to the flat state. Moreover, crater depth increases with increase in slope inclination.

  6. Improvement parameters in dynamic compaction adjacent to the slopes

    Elham Ghanbari; Amir Hamidi


    Dynamic compaction is a cost-effective method commonly used for improvement of sandy soils. A number of researchers have investigated experimentally and numerically the improvement parameters of soils using dynamic compaction, such as crater depth, improvement depth, and radial improvement, however, these parameters are not studied for improvement adjacent to the slopes or trenches. In this research, four different slopes with different inclinations are modeled numerically using the finite element code ABAQUS, and impact loads of dynamic compaction are applied. The static factors of safety are kept similar for all trenches and determined numerically by application of gravity loads to the slope using strength reduction method (SRM). The analysis focuses on crater depth and improvement region which are compared to the state of flat ground. It can be observed that compacted area adjacent to the slopes is narrower and slightly away from the slope compared to the flat state. Moreover, crater depth increases with increase in slope inclination.

  7. Earth slope reliability analysis under seismic loadings using neural network

    PENG Huai-sheng; DENG Jian; GU De-sheng


    A new method was proposed to cope with the earth slope reliability problem under seismic loadings. The algorithm integrates the concepts of artificial neural network, the first order second moment reliability method and the deterministic stability analysis method of earth slope. The performance function and its derivatives in slope stability analysis under seismic loadings were approximated by a trained multi-layer feed-forward neural network with differentiable transfer functions. The statistical moments calculated from the performance function values and the corresponding gradients using neural network were then used in the first order second moment method for the calculation of the reliability index in slope safety analysis. Two earth slope examples were presented for illustrating the applicability of the proposed approach. The new method is effective in slope reliability analysis. And it has potential application to other reliability problems of complicated engineering structure with a considerably large number of random variables.

  8. Talus slope evolution under the influence of glaciers with the example of slopes near the Hans Glacier, SW Spitsbergen, Norway

    Senderak, Krzysztof; Kondracka, Marta; Gądek, Bogdan


    On Spitsbergen, which is 60% glaciated, talus slopes have frequently developed in interaction with glaciers, which had an influence on the evolution of the internal structure of slopes. This paper presents the results of geophysical surveys (electrical resistivity tomography - ERT and ground-penetrating radar - GPR) of the talus slopes near the Hans Glacier (SW Spitsbergen). The aim of investigations was to compare the talus slopes under the influence of glaciers in two different parts of the area in order to reveal differences in their internal structure. We assumed that different locations of talus slopes can have an influence on the slope structure, showing different stages of evolution of the talus slopes. The maximum thickness of studied slopes ranges from 20 m in a marginal zone of the glacier, to up to 35 m without contact with the glacier. Permafrost begins at a depth of 2-3 m and can develop until bedrock is reached. The internal structure of these talus slopes contains glacial ice, which is covered by a layer of slope material with a thickness from a few to up to 10 m. The buried glacial ice is slowly melting simultaneously with the deglaciation of the area but can remain in the structure of the talus slopes for much longer. Morphogenetic processes, such as avalanches, rockfalls, and debris flows are most visible until the glacial ice is completely melted within the internal structure of the slope. Based on the geophysical and geomorphological data, general models were proposed for the early stages of evolution of talus slopes in valleys under deglaciation.


    Gianluigi Ciovati


    One of the most interesting phenomenon occurring in superconducting radio-frequency (SRF) cavities made of bulk niobium is represented by a sharp decrease of the quality factor above peak surface magnetic field of about 90 mT and is referred to as "high field Q-slope" or "Q-drop". This phenomenon was observed first in 1997 and since then some effort was devoted to the understanding of the causes behind it. Still, no clear physical interpretation of the Q-drop has emerged, despite several attempts. In this contribution, I will review the experimental results for various cavities measured in many laboratories and I will try to identify common features and differences related to the Q-drop.

  10. Examination of slope design parameters and slope performance in some gneisses in Ghana

    Ayetey, J. K.

    Relict joint properties are studied. Their influence on the weathered rock mass is examined in the different parts of the profile. A slope in a typical profile is monitored for 13 years and evidence is led to show that different parts of the profile have their engineering properties relevant to slope design, modified over the years. It is suggested that in the tropics where weathering is intensive and fast the engineering properties obtained at the time of site investigation would lead to over design or under design if not modified depending on whether the material concerned is self-stabilising as in some parts of the laterite horizon or decreases in strength as in the saprolite.

  11. Rainfall infiltration on hilly slopes under various lithology and its effect on tree growth in the dry-hot valley

    YANG; Zhong; XIONG; Donghong; ZHOU; Hongyi; ZHANG; Xinbao


    Revegetation is very difficult in dry-hot valleys in China. Rainfall infiltration capability on hilly slopes is one of the key factors determining soil moisture conditions and tree growth in the dry-hot valley. Low rainfall infiltration often results in soil drought on slopes under the dry-hot valleys climate. Rainfall infiltration capability varies greatly with the difference of slope lithologic porosity. The infiltration rates of five lithologic slope-types, Schist Slope, Grit Slope, Gravel Slope, the slightly eroded Mudstone Slope and the intensively eroded Mudstone Slope, are 1.40-8.67, 6.33, 0.69-2.20, 0.6-1.3 and 0.03-0.63 mm/min, respectively. With its viscid compact soil body and low infiltration capability which causes little infiltrating rainfall, mudstone slope can afford little effective supply to soil water and leads to serious drought of soil in dry seasons, resulting in cessation of growth or even wide-spread death of trees due to physiological damage for the excessive deficit of water in dry season and also the low productivity of stands. Hence, it is extremely difficult to restore vegetation on this type of slope. The other four lithologic slope-types, however, with well-developed soil crevice, high infiltration capability and thus more infiltrating rainfall, can afford more available soil water supply and the trees on them can obtain better growth and relatively higher productivity, compared with those on Mudstone Slope. Revegetation in dry-hot valleys is controlled by the soil moisture conditions of different slope-types, and it can be implemented by relying on the dominative life-form plant species, the suitable spatial arrangement of different life-forms of arbor-shrub-herb species, and the establishment of ecological community relationship between vegetation and soil moisture in habits. On the other hand, ground making measures for forestation and the runoff-collecting engineering measures to increase the rainfall infiltration are the major

  12. The Morphologic Difference between Crater Slopes with and without Gullies on Mars.

    Conway, S. J.; Mangold, N.; Balme, M. R.; Ansan, V.


    Gullies on Mars are km-scale landforms that resemble small fluvial features on Earth. Their discovery [1] challenged the paradigm that over the last ~2 Ga, Mars has been a dry, frozen desert. The gullies are found commonly in the mid-latitudes, have a pole-facing preference [e.g., 2] and are found many kinds of steep slope (valley wall, dunes, etc.). We have chosen to concentrate on gullies found on impact crater interior wall slopes, as this is the most common type [2]. The aim of our study is to determine whether the morphology of crater walls with and without gullies is different. We chose three study areas, two in the southern hemisphere (where gullies are most common), Terra Cimmeria and Noachis Terra and one in the northern hemisphere, Acidalia Planum. All study areas extend over at least 30° of latitude, from ~25° to 55° North or South. We mapped all craters using the catalog of [3] as a basis. We used HRSC elevation data at better than 100 m/pix to extract the slope and curvature of crater walls in the four cardinal directions. We mapped all the gullies on crater walls in the three areas with the aid of HiRISE, MOC, CTX and HRSC images, using polygons to delimit a slope section that contained gullies. Consistent with previous investigations we found gullies concentrated around 40° latitude, with a pole-facing preference. We also found that east-facing gullies were common in both hemispheres. Gullies were most common in Terra Cimmeria and uncommon in Noachis Terra. We found that for a given latitude band and orientation gullies tend to be found on craters with the steepest slopes and the highest curvature. The lack of gullies in Noachis Terra can be explained by the lack of steep, concave slopes in the mid-latitudes of this region. In Terra Cimmeria we found that almost all steep, concave crater slopes hosted gullies, whereas in Acidalia, in the north, only 10-20% of steep concave slopes had gullies. Crater slopes with gullies in the north are steeper

  13. Measurable Maximal Energy and Minimal Time Interval

    Dahab, Eiman Abou El


    The possibility of finding the measurable maximal energy and the minimal time interval is discussed in different quantum aspects. It is found that the linear generalized uncertainty principle (GUP) approach gives a non-physical result. Based on large scale Schwarzshild solution, the quadratic GUP approach is utilized. The calculations are performed at the shortest distance, at which the general relativity is assumed to be a good approximation for the quantum gravity and at larger distances, as well. It is found that both maximal energy and minimal time have the order of the Planck time. Then, the uncertainties in both quantities are accordingly bounded. Some physical insights are addressed. Also, the implications on the physics of early Universe and on quantized mass are outlined. The results are related to the existence of finite cosmological constant and minimum mass (mass quanta).

  14. Intonation of musical intervals by musical intervals by deaf subjects stimulated with single bipolar cochlear implant electrodes.

    Pijl, S; Schwarz, D W


    Some subjects with cochlear implants have been shown to associate electrical stimulus pulse rates with the pitches of musical tones. In order to clarify the role of these pitch sensations in a musical context, the present investigation examined the intonation accuracy achieved by implant subjects when adjusting pulse rates in the reconstruction of musical intervals. Using a method of adjustment, the subjects altered a variable pulse rate, relative to a fixed reference rate, on one electrode, in the tuning of musical intervals abstracted from familiar melodies. At low pulse rates, subjects generally tuned the intervals to the same frequency ratios which define tonal musical intervals in normal-hearing listeners, with error margins comparable to musically untrained subjects. Two subjects were, in addition, able to transpose these melodic intervals from a standard reference pulse rate to higher and lower reference rates (reference and target pulse rates with geometric means of the intervals ranging from 81 to 466 pulses/s). Generally, the intervals were adjusted on a ratio scale, according to the same frequency ratios which define analogous acoustical musical intervals. These results support the hypothesis that, at low pulse rates, a temporal code in the auditory nerve alone is capable of defining musical pitch.

  15. Diversity, abundance and community structure of benthic macro- and megafauna on the Beaufort shelf and slope.

    Jessica Nephin

    Full Text Available Diversity and community patterns of macro- and megafauna were compared on the Canadian Beaufort shelf and slope. Faunal sampling collected 247 taxa from 48 stations with box core and trawl gear over the summers of 2009-2011 between 50 and 1,000 m in depth. Of the 80 macrofaunal and 167 megafaunal taxa, 23% were uniques, present at only one station. Rare taxa were found to increase proportional to total taxa richness and differ between the shelf (< 100 m where they tended to be sparse and the slope where they were relatively abundant. The macrofauna principally comprised polychaetes with nephtyid polychaetes dominant on the shelf and maldanid polychaetes (up to 92% in relative abundance/station dominant on the slope. The megafauna principally comprised echinoderms with Ophiocten sp. (up to 90% in relative abundance/station dominant on the shelf and Ophiopleura sp. dominant on the slope. Macro- and megafauna had divergent patterns of abundance, taxa richness (α diversity and β diversity. A greater degree of macrofaunal than megafaunal variation in abundance, richness and β diversity was explained by confounding factors: location (east-west, sampling year and the timing of sampling with respect to sea-ice conditions. Change in megafaunal abundance, richness and β diversity was greatest across the depth gradient, with total abundance and richness elevated on the shelf compared to the slope. We conclude that megafaunal slope taxa were differentiated from shelf taxa, as faunal replacement not nestedness appears to be the main driver of megafaunal β diversity across the depth gradient.

  16. Analysis of rainfall infiltration law in unsaturated soil slope.

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo


    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θs - θr), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process.

  17. Geotechnical methods of reinforcement of slopes near railroads

    Vladimir D.Vereskun; Victor A.Yavna


    In order to generate well-based design decisions on reinforcement of landslide slopes and road embankment slopes, a system of combined geotechnical analysis of geological conditions is suggested which includes topographic and geo-physical survey, and laboratory studies of soils using infra-red spectroscopy methods. Calculations of slopes' deflected modes are carried out with taking into account elastic and elasto-plastic behavior of soil, and the presence of supporting man-made constructions. Results of the application of the system suggested may be used as criteria for the classification of landslide slopes along permanent ways according to the degree of danger when used for transportation.

  18. A Hybrid FEM-ANN Approach for Slope Instability Prediction

    Verma, A. K.; Singh, T. N.; Chauhan, Nikhil Kumar; Sarkar, K.


    Assessment of slope stability is one of the most critical aspects for the life of a slope. In any slope vulnerability appraisal, Factor Of Safety (FOS) is the widely accepted index to understand, how close or far a slope from the failure. In this work, an attempt has been made to simulate a road cut slope in a landslide prone area in Rudrapryag, Uttarakhand, India which lies near Himalayan geodynamic mountain belt. A combination of Finite Element Method (FEM) and Artificial Neural Network (ANN) has been adopted to predict FOS of the slope. In ANN, a three layer, feed- forward back-propagation neural network with one input layer and one hidden layer with three neurons and one output layer has been considered and trained using datasets generated from numerical analysis of the slope and validated with new set of field slope data. Mean absolute percentage error estimated as 1.04 with coefficient of correlation between the FOS of FEM and ANN as 0.973, which indicates that the system is very vigorous and fast to predict FOS for any slope.

  19. A Hybrid FEM-ANN Approach for Slope Instability Prediction

    Verma, A. K.; Singh, T. N.; Chauhan, Nikhil Kumar; Sarkar, K.


    Assessment of slope stability is one of the most critical aspects for the life of a slope. In any slope vulnerability appraisal, Factor Of Safety (FOS) is the widely accepted index to understand, how close or far a slope from the failure. In this work, an attempt has been made to simulate a road cut slope in a landslide prone area in Rudrapryag, Uttarakhand, India which lies near Himalayan geodynamic mountain belt. A combination of Finite Element Method (FEM) and Artificial Neural Network (ANN) has been adopted to predict FOS of the slope. In ANN, a three layer, feed- forward back-propagation neural network with one input layer and one hidden layer with three neurons and one output layer has been considered and trained using datasets generated from numerical analysis of the slope and validated with new set of field slope data. Mean absolute percentage error estimated as 1.04 with coefficient of correlation between the FOS of FEM and ANN as 0.973, which indicates that the system is very vigorous and fast to predict FOS for any slope.

  20. Adaptive slope compensation for high bandwidth digital current mode controller

    Taeed, Fazel; Nymand, Morten


    An adaptive slope compensation method for digital current mode control of dc-dc converters is proposed in this paper. The compensation slope is used for stabilizing the inner current loop in peak current mode control. In this method, the compensation slope is adapted with the variations...... in converter duty cycle. The adaptive slope compensation provides optimum controller operation in term of bandwidth over wide range of operating points. In this paper operation principle of the controller is discussed. The proposed controller is implemented in an FPGA to control a 100 W buck converter...


    王家臣; 骆中洲


    In fact, the failure of any slope takes place progressively, but the progressive failure mechanism has not been emphasized sufficently in the present stability analysis of slopes. This paper provides an example of the progressive slope failure which took place at Pingzhuang west surface coal mine and was numbered the 26th slide. The three-dimensional reliability model for progressive slope failure is used to study the failure process of the 26th slide. The outcomes indicate that the progressive failure is indeed the failure mechanism of the slide.

  2. Spatial variability in channel and slope morphology within the Ardennes Massif, and its link with tectonics

    N. Sougnez


    Full Text Available Geomorphic processes that produce and transport sediment, and incise river valleys are complex; and often difficult to quantify over longer timescales of 103 to 105 years. Morphometric indices that describe the topography of hill slopes, valleys and river channels have commonly been used to compare morphological characteristics between catchments and to relate them to hydrological and erosion processes. This work focuses on a wide range of slope and river channel morphometric indices to study their behavior and strength in regions affected by low to moderate tectonic activity. We selected 10 catchments of about 150 to 250 km2 across the Ardennes Massif that cover various tectonic domains with uplift rates ranging from about 0.06 to 0.20 mm year−1 since mid-Pleistocene times. The morphometric analysis indicates that the slope and channel morphology of third-order catchments is not yet in topographic steady-state, and exhibits clear convexities in slope and river profiles. Our data indicate that the fluvial system is the main driver of topographic evolution and that the spatial pattern of uplift rates is reflected in the distribution of channel steepness and convexity. The spatial variation that we observe in slope and channel morphology between the 10 third-order catchments suggests that the response of the fluvial system was strongly diachronous, and that a transient signal of adjustment is migrating from the Meuse valley towards the Ardennian headwaters.

  3. A more general model for the analysis of the rock slope stability

    Mehdi Zamani


    The slope stability analysis has many applications in the engineering projects such as the dams, the roads and open pits structures. The method of analysis is usually based on the equilibrium conditions of the potential plane and wedge failures. The zone of the potential failure is stable whenever the stability forces dominate instability characteristics of the slope. In most of the classic methods of slope stability analysis, the joint surfaces are assumed to be continuous along the potential failure zone. These can cause an underestimated solution to the analysis. In this research the joint trace length is considered to be discontinuous across thepotential surface of failure as it happens in nature. Therefore, there exists a rock bridge between the local joint traces. Because of the numerous problems related to the rock slope stability the above assumption is satisfied and the shear strength characteristics of intact rock have taken part in the analysis. The analysis presented here gives a better concept, view, and idea of understanding the physical nature of rock slopes and includes more parameters governing the stability of the potential failure zone.

  4. Methane Production and Consumption in Loess Soil at Different Slope Position

    Małgorzata Brzezińska


    Full Text Available Methane (CH4 production and consumption and soil respiration in loess soils collected from summit (Top, back slope (Middle, and slope bottom (Bottom positions were assessed in laboratory incubations. The CH4 production potential was determined under conditions which can occur in the field (relatively short-term flooding periods with initially ambient O2 concentrations, and the CH4 oxidation potential was estimated in wet soils enriched with CH4. None of the soils tested in this study emitted a significant amount of CH4. In fact, the Middle and Bottom soils, especially at the depth of 20–40 cm, were a consistent sink of methane. Soils collected at different slope positions significantly differed in their methanogenic, methanotrophic, and respiration activities. In comparison with the Top position (as reference soil, methane production and both CO2 production and O2 consumption under flooding were significantly stimulated in the soil from the Middle slope position (P<0.001, while they were reduced in the Bottom soil (not significantly, by 6 to 57%. All upper soils (0–20 cm completely oxidized the added methane (5 kPa during 9–11 days of incubation. Soils collected from the 20–40 cm at the Middle and Bottom slope positions, however, consumed significantly more CH4 than the Top soil (P<0.001.

  5. Dose-response curve slope helps predict therapeutic potency and breadth of HIV broadly neutralizing antibodies.

    Webb, Nicholas E; Montefiori, David C; Lee, Benhur


    A new generation of HIV broadly neutralizing antibodies (bnAbs) with remarkable potency, breadth and epitope diversity has rejuvenated interest in immunotherapeutic strategies. Potencies defined by in vitro IC50 and IC80 values (50 and 80% inhibitory concentrations) figure prominently into the selection of clinical candidates; however, much higher therapeutic levels will be required to reduce multiple logs of virus and impede escape. Here we predict bnAb potency at therapeutic levels by analysing dose-response curve slopes, and show that slope is independent of IC50/IC80 and specifically relates to bnAb epitope class. With few exceptions, CD4-binding site and V3-glycan bnAbs exhibit slopes >1, indicative of higher expected therapeutic effectiveness, whereas V2-glycan, gp41 membrane-proximal external region (MPER) and gp120-gp41 bnAbs exhibit less favourable slopes <1. Our results indicate that slope is one major predictor of both potency and breadth for bnAbs at clinically relevant concentrations, and may better coordinate the relationship between bnAb epitope structure and therapeutic expectations.

  6. Numerical simulation study of the influence on stability of slope by underground mining under opencast coal mine slope

    LIU Ting-ting; LU Guo-bin; TONG Li-ming


    In view of the study on mining transferred from open-pit to underground,the research on the problem of the stability of slope is less.This article combined the actual situation of the Gaohai Coal Mine in Fuxin City and set up a three-dimensional model of the part of Huizhou open-pit slope by the finite difference software.Through the three-dimensional numerical simulation study of the influence on the stability of slope by underground mining,the basic characteristics of the open-pit slope deformation and the situation of basic stability were discussed.The simulation results of the mining slope of the displacement and deformation analysis of the state for mining provide a reference to the slope stability research.

  7. Interval timing and Parkinson's disease: heterogeneity in temporal performance.

    Merchant, Hugo; Luciana, Monica; Hooper, Catalina; Majestic, Stacy; Tuite, Paul


    Interval timing deficiencies in Parkinson's disease (PD) patients have been a matter of debate. Here we test the possibility of PD heterogeneity as a source for this discrepancy. Temporal performance of PD patients and control subjects was assessed during two interval tapping tasks and during a categorization task of time intervals. These tasks involved temporal processing of intervals in the hundreds of milliseconds range; however, they also covered a wide range of behavioral contexts, differing in their perceptual, decision-making, memory, and execution requirements. The results showed the following significant findings. First, there were two clearly segregated subgroups of PD patients: one with high temporal variability in the three timing tasks, and another with a temporal variability that did not differ substantially from control subjects. In contrast, PD patients with high and low temporal variability showed similar perceptual, decision-making, memory, and execution performance in a set of control tasks. Second, a slope analysis, designed to dissociate time-dependent from time-independent sources of variation, revealed that the increase in variability in this group of PD patients was mainly due to an increment in the variability associated with the timing mechanism. Third, while the control subjects showed significant correlations in performance variability across tasks, PD patients, and particularly those with high temporal variability, did not show such task correlations. Finally, the results showed that dopaminergic treatment restored the correlation effect in PD patients, producing a highly significant correlation between the inter-task variability. Altogether, these results indicate that a subpopulation of PD patients shows a strong disruption in temporal processing in the hundreds of milliseconds range. These findings are discussed in terms of the role of dopamine as a tuning element for the synchronization of temporal processing across different

  8. Electrocardiographic QT interval and mortality: a meta-analysis

    Zhang, Yiyi; Post, Wendy S.; Blasco-Colmenares, Elena; Dalal, Darshan; Tomaselli, Gordon F.; Guallar, Eliseo


    Background Extremely abnormal prolongation of the electrocardiographic QT interval is associated with malignant ventricular arrhythmias and sudden cardiac death. However, the implications of variations in QT-interval length within normal limits for mortality in the general population are still unclear. Methods We performed a meta-analysis to investigate the relation of QT interval with mortality endpoints. Inverse-variance weighted random-effects models were used to summarize the relative risks across studies. Twenty-three observational studies were included. Results The pooled relative risk estimates comparing the highest with the lowest categories of QT-interval length were 1.35 (95% confidence interval = 1.24–1.46) for total mortality, 1.51 (1.29–1.78) for cardiovascular mortality, 1.71 (1.36–2.15) for coronary heart disease mortality, and 1.44 (1.01–2.04) for sudden cardiac death. A 50 msec increase in QT interval was associated with a relative risk of 1.20 (1.15–1.26) for total mortality, 1.29 (1.15–1.46) for cardiovascular mortality, 1.49 (1.25–1.76) for coronary heart disease mortality, and 1.24 (0.97–1.60) for sudden cardiac death. Conclusions We found consistent associations between prolonged QT interval and increased risk of total, cardiovascular, coronary, and sudden cardiac death. QT-interval length is a determinant of mortality in the general population. PMID:21709561

  9. Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Coring operations, core sedimentology, and lithostratigraphy

    Rose, K.; Boswell, R.; Collett, T.


    In February 2007, BP Exploration (Alaska), the U.S. Department of Energy, and the U.S. Geological Survey completed the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) in the Milne Point Unit on the Alaska North Slope. The program achieved its primary goals of validating the pre-drill estimates of gas hydrate occurrence and thickness based on 3-D seismic interpretations and wireline log correlations and collecting a comprehensive suite of logging, coring, and pressure testing data. The upper section of the Mount Elbert well was drilled through the base of ice-bearing permafrost to a casing point of 594??m (1950??ft), approximately 15??m (50??ft) above the top of the targeted reservoir interval. The lower portion of the well was continuously cored from 606??m (1987??ft) to 760??m (2494??ft) and drilled to a total depth of 914??m. Ice-bearing permafrost extends to a depth of roughly 536??m and the base of gas hydrate stability is interpreted to extend to a depth of 870??m. Coring through the targeted gas hydrate bearing reservoirs was completed using a wireline-retrievable system. The coring program achieved 85% recovery of 7.6??cm (3??in) diameter core through 154??m (504??ft) of the hole. An onsite team processed the cores, collecting and preserving approximately 250 sub-samples for analyses of pore water geochemistry, microbiology, gas chemistry, petrophysical analysis, and thermal and physical properties. Eleven samples were immediately transferred to either methane-charged pressure vessels or liquid nitrogen for future study of the preserved gas hydrate. Additional offsite sampling, analyses, and detailed description of the cores were also conducted. Based on this work, one lithostratigraphic unit with eight subunits was identified across the cored interval. Subunits II and Va comprise the majority of the reservoir facies and are dominantly very fine to fine, moderately sorted, quartz, feldspar, and lithic fragment-bearing to

  10. Direct Interval Forecasting of Wind Power

    Wan, Can; Xu, Zhao; Pinson, Pierre


    This letter proposes a novel approach to directly formulate the prediction intervals of wind power generation based on extreme learning machine and particle swarm optimization, where prediction intervals are generated through direct optimization of both the coverage probability and sharpness...

  11. Nomenclature,categorization and usage of formulae to adjust QT interval for heart rate

    Simon; W; Rabkin; Xin; Bo; Cheng


    Assessment of the QT interval on a standard 12 lead electrocardiogram is of value in the recognition of a number of conditions. A critical part of its use is the adjustment for the effect of heart rate on QT interval. A systematic search was conducted to identify studiesthat proposed formulae to standardize the QT interval by heart rate. A nomenclature was developed for current and subsequent equations based on whether they are corrective(QTc) or predictive(QTp). QTc formulae attempt to separate the dependence of the length of the QT interval from the length of the RR interval. QTp formulae utilize heart rate and the output QTp is compared to the uncorrected QT interval. The nomenclature consists of the first letter of the first author’s name followed by the next two consonance(whenever possible) in capital letters; with subscripts in lower case alphabetical letter if the first author develops more than one equation. The single exception was the Framingham equation,because this cohort has developed its own "name" amongst cardiovascular studies. Equations were further categorized according to whether they were linear,rational,exponential,logarithmic,or power based. Data show that a person’s QT interval adjusted for heart rate can vary dramatically with the different QTc and QTp formulae depending on the person’s heart rate and QT interval. The differences in the QT interval adjustment equations encompasses values that are considered normal or significant prolonged. To further compare the equations,we considered that the slope of QTc versus heart rate should be zero if there was no correlation between QT and heart rate. Reviewing a sample of 107 patient ECGs from a hospital setting,the rank order of the slope- from best(closest to zero) to worst was QTc DMT,QTc RTHa,QTc HDG,QTc GOT,QTcF RM,QTcF RD,QTcB ZT and QTcM YD. For two recent formulae based on large data sets specifically QTcD MT and QTcR THa,there was no significant deviation of the slope from zero. In

  12. Excess mortality among male unskilled and semi-skilled workers. A negative slope with age

    Lynge, E; Jeune, B


    Mortality for male unskilled and semi-skilled workers in Denmark, Norway, and England and Wales is 40-50%--about the average for all men with equivalent economic status in the younger age groups, but declines towards the average at pensionable age. The negative slope of the graph for relative...

  13. Slope-Velocity-Equilibrium and evolution of surface roughness on a stony hillslope

    Slope-velocity equilibrium is hypothesized as a state that evolves naturally over time due to the interaction between overland flow and bed morphology, wherein steeper areas develop a relative increase in physical and hydraulic roughness such that flow velocity is a unique function of overland flow ...

  14. Check dams effects on sediment transport in steep slope flume

    Piton, Guillaume; Recking, Alain


    Depending on many influences (geology, relief, hydrology, land use, etc.) some mountainous watershed are prone to cause casualties and facilities damages. Large amounts of sediments episodically released by torrents are often the biggest problem in torrent related hazard mitigation. Series of transversal structures as check dams and ground sills are often used in the panel of risk mitigation technics. A large literature exits on check dams and it mainly concerns engineering design, e.g. toe scouring, stability stress diagram, changes in upper and lower reaches equilibrium slopes. Check dams in steep slope rivers constitute fixed points in the bed profile and prevent general bed incision. However their influence on sediment transport once they are filled is not yet clear. Two flume test campaigns, synthetize in Table 1, were performed to investigate this question: Table 1 : experiment plan Run (duration) Ref1 (50h)CD1a (30h)CD1b (30h)Ref2 (92h)CD2 (18h) Solid feeding discharge (g.s^-1) 44 44 44 60 60 Number of check dams none 1 3 none 2 A nearly 5-m-long, 10-cm-wide and 12%-steep flume was used. The water discharge was set to 0,55 l/s in all runs. A mixture of poorly sorted natural sediments with diameters between 0.8 and 40 mm was used. An open solid-discharge-feeding circuit kept the inlet sediment flux constant during all experiments. As both feeding rates did not present variation, changes in outlet solid discharge were assumed to be due to bed variations in the bed storage. We observed strong fluctuations of solid flux and slope in each reaches of all runs between: (i) steep aggradating armoured bed and (ii) less steep and finer bed releasing bedload sheets during erosion events and inducing bedload pulses. All experiments showed consistent results: transported volume associated with erosion event decreased with the length between two subsequent check dams. Solid transversal structures shorten the upstream erosion-propagation and avoid downstream change in the

  15. Deformation and failure mechanism of slope in three dimensions

    Yingfa Lu


    Full Text Available Understanding three-dimensional (3D slope deformation and failure mechanism and corresponding stability analyses are crucially important issues in geotechnical engineering. In this paper, the mechanisms of progressive failure with thrust-type and pull-type landslides are described in detail. It is considered that the post-failure stress state and the pre-peak stress state may occur at different regions of a landslide body with deformation development, and a critical stress state element (or the soil slice block exists between the post-failure stress state and the pre-peak stress state regions. In this regard, two sorts of failure modes are suggested for the thrust-type and three sorts for pull-type landslides, based on the characteristics of shear stress and strain (or tensile stress and strain. Accordingly, a new joint constitutive model (JCM is proposed based on the current stability analytical theories, and it can be used to describe the mechanical behaviors of geo-materials with softening properties. Five methods, i.e. CSRM (comprehensive sliding resistance method, MTM (main thrust method, CDM (comprehensive displacement method, SDM (surplus displacement method, and MPM (main pull method, for slope stability calculation are proposed. The S-shaped curve of monitored displacement vs. time is presented for different points on the sliding surface during progressive failure process of landslide, and the relationship between the displacement of different points on the sliding surface and height of landslide body is regarded as the parabolic curve. The comparisons between the predicted and observed load–displacement and displacement–time relations of the points on the sliding surface are conducted. The classification of stable/unstable displacement–time curves is proposed. The definition of the main sliding direction of a landslide is also suggested in such a way that the failure body of landslide (simplified as “collapse body” is only

  16. Generalised Interval-Valued Fuzzy Soft Set

    Shawkat Alkhazaleh; Abdul Razak Salleh


    We introduce the concept of generalised interval-valued fuzzy soft set and its operations and study some of their properties. We give applications of this theory in solving a decision making problem. We also introduce a similarity measure of two generalised interval-valued fuzzy soft sets and discuss its application in a medical diagnosis problem: fuzzy set; soft set; fuzzy soft set; generalised fuzzy soft set; generalised interval-valued fuzzy soft set; interval-valued fuzz...

  17. Improved Large-Scale Slope Analysis on Mars Based on Correlation of Slopes Derived with Different Baselines

    Wang, Y.; Wu, B.


    The surface slopes of planetary bodies are important factors for exploration missions, such as landing site selection and rover manoeuvre. Generally, high-resolution digital elevation models (DEMs) such as those generated from the HiRISE images on Mars are preferred to generate detailed slopes with a better fidelity of terrain features. Unfortunately, high-resolution datasets normally only cover small area and are not always available. While lower resolution datasets, such as MOLA, provide global coverage of the Martian surface. Slopes generated from the low-resolution DEM will be based on a large baseline and be smoothed from the real situation. In order to carry out slope analysis at large scale on Martian surface based low-resolution data such as MOLA data, while alleviating the smoothness problem of slopes due to its low resolution, this paper presents an amplifying function of slopes derived from low-resolution DEMs based on the relationships between DEM resolutions and slopes. First, slope maps are derived from the HiRISE DEM (meter-level resolution DEM generated from HiRISE images) and a series of down-sampled HiRISE DEMs. The latter are used to simulate low-resolution DEMs. Then the high-resolution slope map is down- sampled to the same resolution with the slope map from the lower-resolution DEMs. Thus, a comparison can be conducted pixel-wise. For each pixel on the slope map derived from the lower-resolution DEM, it can reach the same value with the down-sampled HiRISE slope by multiplying an amplifying factor. Seven sets of HiRISE images with representative terrain types are used for correlation analysis. It shows that the relationship between the amplifying factors and the original MOLA slopes can be described by the exponential function. Verifications using other datasets show that after applying the proposed amplifying function, the updated slope maps give better representations of slopes on Martian surface compared with the original slopes.

  18. Assessment and mapping of slope stability based on slope units: A case study in Yan’an, China

    Jianqi Zhuang; Jianbing Peng; Yonglong Xu; Qiang Xu; Xinghua Zhu; Wei Li


    Precipitation frequently triggers shallow landslides in the Loess Plateau of Shaanxi, China, resulting in loss of life, damage to gas and oil routes, and destruction of transport infrastructure and farmland. To assess the possibility of shallow landslides at different precipitation levels, a method to draw slope units and steepest slope profiles based on ARCtools and a new method for calculating slope stability areproposed. The methods were implemented in a case study conducted in Yan’an, north-west China. High resolution DEM (Digital Elevation Model) images, soil parameters from in-situ laboratory measurements and maximum depths of precipitation infiltration were used as input parameters in the method. Next,DEM and reverse DEM were employed to map 2146 slope units in the study area, based on which the steepest profiles of the slope units were constructed. Combining analysis of the water content of loess, strength of the sliding surface, its response to precipitation and the infinite slope stability equation, a newequation to calculate infinite slope stability is proposed to assess shallow landslide stability. The slope unit stability was calculated using the equation at 10-, 20-, 50- and 100-year return periods of antecedent effective precipitation. The number of slope units experiencing failure increased in response to increasing effective antecedent rainfall. These results were validated based on the occurrence of landslides in recent decades. Finally, the applicability and limitations of the model are discussed.

  19. Sprint vs. interval training in football.

    Ferrari Bravo, D; Impellizzeri, F M; Rampinini, E; Castagna, C; Bishop, D; Wisloff, U


    The aim of this study was to compare the effects of high-intensity aerobic interval and repeated-sprint ability (RSA) training on aerobic and anaerobic physiological variables in male football players. Forty-two participants were randomly assigned to either the interval training group (ITG, 4 x 4 min running at 90 - 95 % of HRmax; n = 21) or repeated-sprint training group (RSG, 3 x 6 maximal shuttle sprints of 40 m; n = 21). The following outcomes were measured at baseline and after 7 weeks of training: maximum oxygen uptake, respiratory compensation point, football-specific endurance (Yo-Yo Intermittent Recovery Test, YYIRT), 10-m sprint time, jump height and power, and RSA. Significant group x time interaction was found for YYIRT (p = 0.003) with RSG showing greater improvement (from 1917 +/- 439 to 2455 +/- 488 m) than ITG (from 1846 +/- 329 to 2077 +/- 300 m). Similarly, a significant interaction was found in RSA mean time (p = 0.006) with only the RSG group showing an improvement after training (from 7.53 +/- 0.21 to 7.37 +/- 0.17 s). No other group x time interactions were found. Significant pre-post changes were found for absolute and relative maximum oxygen uptake and respiratory compensation point (p RSA training protocol used in this study can be an effective training strategy for inducing aerobic and football-specific training adaptations.

  20. The Fuzzy Set by Fuzzy Interval

    Dr.Pranita Goswami


    Fuzzy set by Fuzzy interval is atriangular fuzzy number lying between the two specified limits. The limits to be not greater than 2 and less than -2 by fuzzy interval have been discussed in this paper. Through fuzzy interval we arrived at exactness which is a fuzzymeasure and fuzzy integral