WorldWideScience

Sample records for relative interval slope

  1. The Interval Slope Method for Long-Term Forecasting of Stock Price Trends

    Directory of Open Access Journals (Sweden)

    Chun-xue Nie

    2016-01-01

    Full Text Available A stock price is a typical but complex type of time series data. We used the effective prediction of long-term time series data to schedule an investment strategy and obtain higher profit. Due to economic, environmental, and other factors, it is very difficult to obtain a precise long-term stock price prediction. The exponentially segmented pattern (ESP is introduced here and used to predict the fluctuation of different stock data over five future prediction intervals. The new feature of stock pricing during the subinterval, named the interval slope, can characterize fluctuations in stock price over specific periods. The cumulative distribution function (CDF of MSE was compared to those of MMSE-BC and SVR. We concluded that the interval slope developed here can capture more complex dynamics of stock price trends. The mean stock price can then be predicted over specific time intervals relatively accurately, in which multiple mean values over time intervals are used to express the time series in the long term. In this way, the prediction of long-term stock price can be more precise and prevent the development of cumulative errors.

  2. Adriatic storm surges and related cross-basin sea-level slope

    Science.gov (United States)

    Međugorac, Iva; Orlić, Mirko; Janeković, Ivica; Pasarić, Zoran; Pasarić, Miroslava

    2018-05-01

    Storm surges pose a severe threat to the northernmost cities of the Adriatic coast, with Venice being most prone to flooding. It has been noted that some flooding episodes cause significantly different effects along the eastern and western Adriatic coasts, with indications that the difference is related to cross-basin sea-level slope. The present study aims to determine specific atmospheric conditions under which the slope develops and to explore connection with increased sea level along the two coastlines. The analysis is based on sea-level time series recorded at Venice and Bakar over the 1984-2014 interval, from which 38 most intensive storm-surge episodes were selected, and their meteorological backgrounds (ERA-Interim) were studied. The obtained sea-level extremes were grouped into three categories according to their cross-basin sea-level slope: storm surges that slope strongly westward (W type), those that slope eastward (E type) and ordinary storm surges (O type). Results show that the slope is controlled by wind action only, specifically, by the wind component towards a particular coast and by the cross-basin shear of along-basin wind. Meteorological fields were used to force an oceanographic numerical model in order to confirm the empirically established connection between the atmospheric forcing and the slope. Finally, it has been found that the intensity of storm surges along a particular Adriatic coast is determined by an interplay of sea-level slopes in the along and cross-basin directions.

  3. Geological hazards investigation - relative slope stability map

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dae Suk; Kim, Won Young; Yu, Il Hyon; Kim, Kyeong Su; Lee, Sa Ro; Choi, Young Sup [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    The Republic of Korea is a mountainous country; the mountains occupy about three quarters of her land area, an increasing urban development being taken place along the mountainside. For the reason, planners as well as developers and others must realize that some of the urban areas may be threaten by geologic hazards such as landslides and accelerated soil and rock creeps. For the purpose of environmental land-use planning, a mapping project on relative slope-stability was established in 1996. The selected area encompasses about 5,900 km{sup 2} including the topographic maps of Ulsan, Yongchon, Kyongju, Pulguksa, and Kampo, all at a scale of 1:50,000. Many disturbed and undisturbed soil samples, which were collected from the ares of the landslides and unstable slopes, were tested for their physical properties and shear strength. They were classified as GC, SP, SC, SM, SP-SM, SC-SM, CL, ML, and MH according to the Unified Soil Classification System, their liquid limit and plasticity index ranging from 25.3% to as high as 81.3% and from 4.1% to 41.5%, respectively. X-ray analysis revealed that many of the soils contained a certain amount of montmorillonite. Based on the available information as well as both field and laboratory investigation, it was found out that the most common types of slope failures in the study area were both debris and mud flows induced by the heavy rainfalls during the period of rainy season; the flows mostly occurred in the colluvial deposits at the middle and foot of mountains. Thus the deposits generally appear to be the most unstable slope forming materials in the study area. Produced for the study area were six different maps consisting of slope classification map, soil classification map, lineament density map, landslide distribution map, zonal map of rainfall, and geology map, most of them being stored as data base. Using the first four maps and GIS, two sheets of relative slope-stability maps were constructed, each at a scale of 1

  4. Effect of cement injection on sandy soil slope stability, case study: slope in Petang district, Badung regency

    Science.gov (United States)

    Arya, I. W.; Wiraga, I. W.; GAG Suryanegara, I.

    2018-01-01

    Slope is a part of soil topography formed due to elevation difference from two soil surface. Landslides is frequently occur in natural slope, it is because shear force is greater than shear strength in the soil. There are some factor that influence slope stability such as: rain dissipation, vibration from earthquake, construction and crack in the soil. Slope instability can cause risk in human activity or even threaten human lives. Every years in rainy season, landslides always occur in Indonesia. In 2016, there was some landslide occurred in Bali. One of the most damaging is landslide in Petang district, Badung regency. This landslide caused main road closed entirely. In order to overcome and prevent landslide, a lot of method have been practiced and still looking for more sophisticated method for forecasting slope stability. One of the method to strengthen soil stability is filling the soil pores with some certain material. Cement is one of the material that can be used to fill the soil pores because when it is in liquid form, it can infiltrate into soil pores and fill the gap between soil particles. And after it dry, it can formed a bond with soil particle so that soil become stronger and the slope as well. In this study, it will use experimental method, slope model in laboratory to simulate a real slope behavior in the field. The first model is the slope without any addition of cement. This model will be become a benchmark for the other models. The second model is a slope with improved soil that injects the slope with cement. Injection of cement is done with varying interval distance of injection point is 5 cm and 10 cm. Each slope model will be given a load until the slope collapses. The slope model will also be analyzed with slope stability program. The test results on the improved slope models will be compared with unimproved slope. In the initial test will consist of 3 model. First model is soil without improvement or cement injection, second model is soil

  5. Estimating significances of differences between slopes: A new methodology and software

    Directory of Open Access Journals (Sweden)

    Vasco M. N. C. S. Vieira

    2013-09-01

    Full Text Available Determining the significance of slope differences is a common requirement in studies of self-thinning, ontogeny and sexual dimorphism, among others. This has long been carried out testing for the overlap of the bootstrapped 95% confidence intervals of the slopes. However, the numerical random re-sampling with repetition favours the occurrence of re-combinations yielding largely diverging slopes, widening the confidence intervals and thus increasing the chances of overlooking significant differences. To overcome this problem a permutation test simulating the null hypothesis of no differences between slopes is proposed. This new methodology, when applied both to artificial and factual data, showed an enhanced ability to differentiate slopes.

  6. 75 FR 65366 - Recovery Policy RP9524.2, Landslides and Slope Stability Related to Public Facilities

    Science.gov (United States)

    2010-10-22

    ...] Recovery Policy RP9524.2, Landslides and Slope Stability Related to Public Facilities AGENCY: Federal... the final Recovery Policy RP9524.2, Landslides and Slope Stability Related to Public Facilities, which... facilities threatened by landslides or slope failures; as well as the eligibility of permanent repairs to...

  7. The Q-Slope Method for Rock Slope Engineering

    Science.gov (United States)

    Bar, Neil; Barton, Nick

    2017-12-01

    Q-slope is an empirical rock slope engineering method for assessing the stability of excavated rock slopes in the field. Intended for use in reinforcement-free road or railway cuttings or in opencast mines, Q-slope allows geotechnical engineers to make potential adjustments to slope angles as rock mass conditions become apparent during construction. Through case studies across Asia, Australia, Central America, and Europe, a simple correlation between Q-slope and long-term stable slopes was established. Q-slope is designed such that it suggests stable, maintenance-free bench-face slope angles of, for instance, 40°-45°, 60°-65°, and 80°-85° with respective Q-slope values of approximately 0.1, 1.0, and 10. Q-slope was developed by supplementing the Q-system which has been extensively used for characterizing rock exposures, drill-core, and tunnels under construction for the last 40 years. The Q' parameters (RQD, J n, J a, and J r) remain unchanged in Q-slope. However, a new method for applying J r/ J a ratios to both sides of potential wedges is used, with relative orientation weightings for each side. The term J w, which is now termed J wice, takes into account long-term exposure to various climatic and environmental conditions such as intense erosive rainfall and ice-wedging effects. Slope-relevant SRF categories for slope surface conditions, stress-strength ratios, and major discontinuities such as faults, weakness zones, or joint swarms have also been incorporated. This paper discusses the applicability of the Q-slope method to slopes ranging from less than 5 m to more than 250 m in height in both civil and mining engineering projects.

  8. Geometric Least Square Models for Deriving [0,1]-Valued Interval Weights from Interval Fuzzy Preference Relations Based on Multiplicative Transitivity

    Directory of Open Access Journals (Sweden)

    Xuan Yang

    2015-01-01

    Full Text Available This paper presents a geometric least square framework for deriving [0,1]-valued interval weights from interval fuzzy preference relations. By analyzing the relationship among [0,1]-valued interval weights, multiplicatively consistent interval judgments, and planes, a geometric least square model is developed to derive a normalized [0,1]-valued interval weight vector from an interval fuzzy preference relation. Based on the difference ratio between two interval fuzzy preference relations, a geometric average difference ratio between one interval fuzzy preference relation and the others is defined and employed to determine the relative importance weights for individual interval fuzzy preference relations. A geometric least square based approach is further put forward for solving group decision making problems. An individual decision numerical example and a group decision making problem with the selection of enterprise resource planning software products are furnished to illustrate the effectiveness and applicability of the proposed models.

  9. Denudational slope processes on weathered basalt in northern California: 130 ka history of soil development, periods of slope stability and colluviation, and climate change

    Science.gov (United States)

    McDonald, Eric; Harrison, Bruce; Baldwin, John; Page, William; Rood, Dylan

    2017-04-01

    The geomorphic history of hillslope evolution is controlled by multiple types of denudational processes. Detailed analysis of hillslope soil-stratigraphy provides a means to identify the timing of periods of slope stability and non-stability, evidence of the types of denudational processes, and possible links to climatic drivers. Moreover, the degree of soil formation and the presence of buried or truncated soils provide evidence of the relative age of alternating periods of colluviation and stability. We use evaluation of soil stratigraphy, for a small forested hillslope (soils and slope colluvium are derived from highly weathered basalt. Stratigraphic interpretation is reinforced with soil profile development index (PDI) derived age estimates, tephrochronology, luminescence ages on colluvium, and He3 nuclide exposure dates. Soils formed along hilltop ridges are well developed and reflect deep (>2-3 m) in-situ weathering of the basalt bedrock. PDI age estimates and He3 exposure dates indicate that these hilltop soils had been in place for 100-130 ka, implying a long period of relative surface stability. At about 40-30 ka, soil stratigraphy indicates the onset of 3 distinct cycles of denudation of the hilltop and slopes. Evidence for changes in stability and onset of soil erosion is the presence of several buried soils formed in colluvium downslope of the hilltop. These buried soils have formed in sediment derived from erosion of the hilltop soils (i.e. soil parent material of previously weathered soil matrix and basalt cobbles). The oldest buried soil indicates that slope stability was re-established between 32-23 ka, with stability and soil formation lasting to about 10 ka. Soil-stratigraphy indicates that two additional intervals of downslope transport of sediment between 6-10 ka, and 2-5 ka. Soil properties indicate that the primary method of downslope transport is largely due to tree throw and faunal burrowing. Onset of slope instability at 40-30 ka appears to

  10. [Analysis of related factors of slope plant hyperspectral remote sensing].

    Science.gov (United States)

    Sun, Wei-Qi; Zhao, Yun-Sheng; Tu, Lin-Ling

    2014-09-01

    In the present paper, the slope gradient, aspect, detection zenith angle and plant types were analyzed. In order to strengthen the theoretical discussion, the research was under laboratory condition, and modeled uniform slope for slope plant. Through experiments we found that these factors indeed have influence on plant hyperspectral remote sensing. When choosing slope gradient as the variate, the blade reflection first increases and then decreases as the slope gradient changes from 0° to 36°; When keeping other factors constant, and only detection zenith angle increasing from 0° to 60°, the spectral characteristic of slope plants do not change significantly in visible light band, but decreases gradually in near infrared band; With only slope aspect changing, when the dome meets the light direction, the blade reflectance gets maximum, and when the dome meets the backlit direction, the blade reflectance gets minimum, furthermore, setting the line of vertical intersection of incidence plane and the dome as an axis, the reflectance on the axis's both sides shows symmetric distribution; In addition, spectral curves of different plant types have a lot differences between each other, which means that the plant types also affect hyperspectral remote sensing results of slope plants. This research breaks through the limitations of the traditional vertical remote sensing data collection and uses the multi-angle and hyperspectral information to analyze spectral characteristics of slope plants. So this research has theoretical significance to the development of quantitative remote sensing, and has application value to the plant remote sensing monitoring.

  11. Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy

    Science.gov (United States)

    Kilburn, Christopher R. J.; Petley, David N.

    2003-08-01

    Rapid, giant landslides, or sturzstroms, are among the most powerful natural hazards on Earth. They have minimum volumes of ˜10 6-10 7 m 3 and, normally preceded by prolonged intervals of accelerating creep, are produced by catastrophic and deep-seated slope collapse (loads ˜1-10 MPa). Conventional analyses attribute rapid collapse to unusual mechanisms, such as the vaporization of ground water during sliding. Here, catastrophic collapse is related to self-accelerating rock fracture, common in crustal rocks at loads ˜1-10 MPa and readily catalysed by circulating fluids. Fracturing produces an abrupt drop in resisting stress. Measured stress drops in crustal rock account for minimum sturzstrom volumes and rapid collapse accelerations. Fracturing also provides a physical basis for quantitatively forecasting catastrophic slope failure.

  12. Does Tibial Slope Affect Perception of Coronal Alignment on a Standing Anteroposterior Radiograph?

    Science.gov (United States)

    Schwartz, Adam J; Ravi, Bheeshma; Kransdorf, Mark J; Clarke, Henry D

    2017-07-01

    A standing anteroposterior (AP) radiograph is commonly used to evaluate coronal alignment following total knee arthroplasty (TKA). The impact of coronal alignment on TKA outcomes is controversial, perhaps due to variability in imaging and/or measurement technique. We sought to quantify the effect of image rotation and tibial slope on coronal alignment. Using a standard extramedullary tibial alignment guide, 3 cadaver legs were cut to accept a tibial tray at 0°, 3°, and 7° of slope. A computed tomography scan of the entire tibia was obtained for each specimen to confirm neutral coronal alignment. Images were then obtained at progressive 10° intervals of internal and external rotation up to 40° maximum in each direction. Images were then randomized and 5 blinded TKA surgeons were asked to determine coronal alignment. Continuous data values were transformed to categorical data (neutral [0], valgus [L], and varus [R]). Each 10° interval of external rotation of a 7° sloped tibial cut (or relative internal rotation of a tibial component viewed in the AP plane) resulted in perception of an additional 0.75° of varus. The slope of the proximal tibia bone cut should be taken into account when measuring coronal alignment on a standing AP radiograph. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. ASPECTS OF DRIP IRRIGATION ON SLOPES

    Directory of Open Access Journals (Sweden)

    Oprea Radu

    2010-01-01

    Full Text Available Nowadays, water and its supply raise problems of strategic importance, of great complexity, being considered one of the keys to sustainable human development. Drip irrigation consists in the slow and controlled administration of water in the area of the root system of the plants for the purposes of fulfilling their physiological needs and is considered to be one of the variants of localized irrigation. Water is distributed in a uniform and slow manner, drop by drop, in a quantity and with a frequency that depend on the needs of the plant, thanks to the exact regulation of the water flow rate and pressure, as well as to the activation of the irrigation based on the information recorded by the tensiometer with regard to soil humidity. This method enables the exact dosage of the water quantity necessary in the various evolution stages of the plant, thus eliminating losses. By applying the irrigation with 5 liters of water per linear meter, at a 7 days interval, in the month of august, for a vine cultivated on a slope, in layers covered with black film and irrigated via dropping, soil humidity immediately after irrigation reaches its highest level, but within the limits of active humidity, on the line of the irrigation band. Three days later, the water content of the soil in the layer is relatively uniform, and, after this interval, it is higher in the points situated at the basis of the film. This technology of cultivation on slopes favors the accumulation, in the soil, of the water resulted from heavy rains and reduces soil losses as a result of erosion.

  14. [Infiltration characteristics of soil water on loess slope land under intermittent and repetitive rainfall conditions].

    Science.gov (United States)

    Li, Yi; Shao, Ming-An

    2008-07-01

    Based on the experiments of controlled intermittent and repetitive rainfall on slope land, the infiltration and distribution characteristics of soil water on loess slope land were studied. The results showed that under the condition of intermittent rainfall, the cumulative runoff during two rainfall events increased linearly with time, and the wetting front also increased with time. In the interval of the two rainfall events, the wetting front increased slowly, and the infiltration rate was smaller on steeper slope than on flat surface. During the second rainfall event, there was an obvious decreasing trend of infiltration rate with time. The cumulative infiltration on 15 degrees slope land was larger than that of 25 degrees slope land, being 178 mm and 88 mm, respectively. Under the condition of repetitive rainfall, the initial infiltration rate during each rainfall event was relatively large, and during the first rainfall, both the infiltration rate and the cumulative infiltration at various stages were larger than those during the other three rainfall events. However, after the first rainfall, there were no obvious differences in the infiltration rate among the next three rainfall events. The more the rainfall event, the deeper the wetting front advanced.

  15. From special relativity to quantum mechanics through interval

    International Nuclear Information System (INIS)

    Malcor, R.

    1985-01-01

    Quantum mechanics is an optics with one more spatial dimension, the angle of phase. Wave-particle duality is nothing else than geometric tangent-point duality. The 'interval' of special relativity is proportional to the phase

  16. Decision Guide for Roof Slope Selection

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, T.R.

    1988-01-01

    This decision guide has been written for personnel who are responsible for the design, construction, and replacement of Air Force roofs. It provides the necessary information and analytical tools for making prudent and cost-effective decisions regarding the amount of slope to provide in various roofing situations. Because the expertise and experience of the decision makers will vary, the guide contains both basic slope-related concepts as well as more sophisticated technical data. This breadth of information enables the less experienced user to develop an understanding of roof slope issues before applying the more sophisticated analytical tools, while the experienced user can proceed directly to the technical sections. Although much of this guide is devoted to the analysis of costs, it is not a cost-estimating document. It does, however, provide the reader with the relative costs of a variety of roof slope options; and it shows how to determine the relative cost-effectiveness of different options. The selection of the proper roof slope coupled with good roof design, a quality installation, periodic inspection, and appropriate maintenance and repair will achieve the Air Force's objective of obtaining the best possible roofing value for its buildings.

  17. Natural Head Posture in the Setting of Sagittal Spinal Deformity: Validation of Chin-Brow Vertical Angle, Slope of Line of Sight, and McGregor's Slope With Health-Related Quality of Life.

    Science.gov (United States)

    Lafage, Renaud; Challier, Vincent; Liabaud, Barthelemy; Vira, Shaleen; Ferrero, Emmanuelle; Diebo, Bassel G; Liu, Shian; Vital, Jean-Marc; Mazda, Keyvan; Protopsaltis, Themistocles S; Errico, Thomas J; Schwab, Frank J; Lafage, Virginie

    2016-07-01

    The maintenance of horizontal gaze is an essential function of upright posture and global sagittal spinal alignment. Horizontal gaze is classically measured by the chin-brow vertical angle (CBVA), which is not readily measured on most lateral spine radiographs. To evaluate relations between CBVA and the slope of the line of sight, the slope of McGregor's line (McGS), and Oswestry Disability Index. Patients were identified from a single center database of 531 spine patients who underwent full-body EOS x-rays. Correlations between CBVA, the slope of the line of sight, and McGS were assessed. Using a quadratic regression with Oswestry Disability Index and CBVA, windows of low disability were identified. Comparison of sagittal spinopelvic parameters was carried out between patients with "ascending gaze" and "neutral position." Three hundred three patients were included (74% female, mean age 54.8 years, body mass index 26.6 ± 6.0 kg/m). CBVA strongly correlated with the slope of the line of sight (r = 0.996) and McGS (r = 0.862). Regression studies between Oswestry Disability Index and CBVA yielded a range of values corresponding to low disability (-4.7 degrees to 17.7 degrees). Similarly, a low disability range for the slope of the line of sight (-5.1 degrees to 18.5 degrees) and McGS (-5.7 degrees to 14.3 degrees) was computed. Patients with "ascending gaze" had a worse spinopelvic alignment than "neutral position" patients. The slope of the line of sight and McGS correlated strongly with CBVA and can be used as surrogate measures. The range of values for these measures corresponding to low disability was identified. These values can be used as a general guideline to assess alignment for diagnostic purposes. Cervical compensatory mechanism may modify the natural head position in sagittally misaligned patients. CBVA, chin-brow vertical angleHRQoL, health-related quality of lifeMcGS, slope of McGregor's lineODI, Oswestry Disability IndexSLs, slope of the line of sight.

  18. TOPSIS-based consensus model for group decision-making with incomplete interval fuzzy preference relations.

    Science.gov (United States)

    Liu, Fang; Zhang, Wei-Guo

    2014-08-01

    Due to the vagueness of real-world environments and the subjective nature of human judgments, it is natural for experts to estimate their judgements by using incomplete interval fuzzy preference relations. In this paper, based on the technique for order preference by similarity to ideal solution method, we present a consensus model for group decision-making (GDM) with incomplete interval fuzzy preference relations. To do this, we first define a new consistency measure for incomplete interval fuzzy preference relations. Second, a goal programming model is proposed to estimate the missing interval preference values and it is guided by the consistency property. Third, an ideal interval fuzzy preference relation is constructed by using the induced ordered weighted averaging operator, where the associated weights of characterizing the operator are based on the defined consistency measure. Fourth, a similarity degree between complete interval fuzzy preference relations and the ideal one is defined. The similarity degree is related to the associated weights, and used to aggregate the experts' preference relations in such a way that more importance is given to ones with the higher similarity degree. Finally, a new algorithm is given to solve the GDM problem with incomplete interval fuzzy preference relations, which is further applied to partnership selection in formation of virtual enterprises.

  19. Mapping on Slope Seepage Problem using Electrical Resistivity Imaging (ERI)

    Science.gov (United States)

    Hazreek, Z. A. M.; Nizam, Z. M.; Aziman, M.; Dan, M. F. Md; Shaylinda, M. Z. N.; Faizal, T. B. M.; Aishah, M. A. N.; Ambak, K.; Rosli, S.; Rais, Y.; Ashraf, M. I. M.; Alel, M. N. A.

    2018-04-01

    The stability of slope may influenced by several factors such as its geomaterial properties, geometry and environmental factors. Problematic slope due to seepage phenomenon will influenced the slope strength thus promoting to its failure. In the past, slope seepage mapping suffer from several limitation due to cost, time and data coverage. Conventional engineering tools to detect or mapped the seepage on slope experienced those problems involving large and high elevation of slope design. As a result, this study introduced geophysical tools for slope seepage mapping based on electrical resistivity method. Two spread lines of electrical resistivity imaging were performed on the slope crest using ABEM SAS 4000 equipment. Data acquisition configuration was based on long and short arrangement, schlumberger array and 2.5 m of equal electrode spacing interval. Raw data obtained from data acquisition was analyzed using RES2DINV software. Both of the resistivity results show that the slope studied consists of three different anomalies representing top soil (200 – 1000 Ωm), perched water (10 – 100 Ωm) and hard/dry layer (> 200 Ωm). It was found that seepage problem on slope studied was derived from perched water zones with electrical resistivity value of 10 – 100 Ωm. Perched water zone has been detected at 6 m depth from the ground level with varying thickness at 5 m and over. Resistivity results have shown some good similarity output with reference to borehole data, geological map and site observation thus verified the resistivity results interpretation. Hence, this study has shown that the electrical resistivity imaging was applicable in slope seepage mapping which consider efficient in term of cost, time, data coverage and sustainability.

  20. Dip-slope and Dip-slope Failures in Taiwan - a Review

    Science.gov (United States)

    Lee, C.

    2011-12-01

    Taiwan is famous for dip-slope and dip-slope slides. Dip-slopes exist at many places in the fold-and-thrust belt of Taiwan. Under active cutting of stream channels and man-made excavations, a dip-slope may become unstable and susceptible for mass sliding. Daylight of a bedding parallel clay seam is the most dangerous type for dip-slope sliding. Buckling or shear-off features may also happen at toe of a long dip-slope. Besides, a dip-slope is also dangerous for shallow debris slides, if the slope angle is between 25 to 45 degrees and the debris (colluvium or slope wash) is thick (>1m). These unstable slopes may slide during a triggering event, earthquake or typhoon storm; or even slide without a triggering event, like the 2010 Tapu case. Initial buckling feature had been found in the dip-slope of the Feitsui arch dam abutment after detailed explorations. Shear-off feature have also been found in dip-slope located in right bank of the Nahua reservoir after field investigation and drilling. The Chiufengerhshan slide may also be shear-off type. On the other hand, the Tapu, the Tsaoling slides and others are of direct slide type. The Neihoo Bishan slide is a shallow debris slide on dip-slope. All these cases demonstrate the four different types of dip-slope slide. The hazard of a dip-slope should be investigated to cover these possible types of failure. The existence of bedding parallel clay seams is critical for the stability of a dip-slope, either for direct slide or buckling or shear-off type of failure, and is a hot point during investigation. Because, the stability of a dip-slope is changing with time, therefore, detailed explorations to including weathering and erosion rates are also very necessary to ensure the long-term stability of a dip-slope.

  1. Power law behavior of RR-interval variability in healthy middle-aged persons, patients with recent acute myocardial infarction, and patients with heart transplants

    Science.gov (United States)

    Bigger, J. T. Jr; Steinman, R. C.; Rolnitzky, L. M.; Fleiss, J. L.; Albrecht, P.; Cohen, R. J.

    1996-01-01

    BACKGROUND. The purposes of the present study were (1) to establish normal values for the regression of log(power) on log(frequency) for, RR-interval fluctuations in healthy middle-aged persons, (2) to determine the effects of myocardial infarction on the regression of log(power) on log(frequency), (3) to determine the effect of cardiac denervation on the regression of log(power) on log(frequency), and (4) to assess the ability of power law regression parameters to predict death after myocardial infarction. METHODS AND RESULTS. We studied three groups: (1) 715 patients with recent myocardial infarction; (2) 274 healthy persons age and sex matched to the infarct sample; and (3) 19 patients with heart transplants. Twenty-four-hour RR-interval power spectra were computed using fast Fourier transforms and log(power) was regressed on log(frequency) between 10(-4) and 10(-2) Hz. There was a power law relation between log(power) and log(frequency). That is, the function described a descending straight line that had a slope of approximately -1 in healthy subjects. For the myocardial infarction group, the regression line for log(power) on log(frequency) was shifted downward and had a steeper negative slope (-1.15). The transplant (denervated) group showed a larger downward shift in the regression line and a much steeper negative slope (-2.08). The correlation between traditional power spectral bands and slope was weak, and that with log(power) at 10(-4) Hz was only moderate. Slope and log(power) at 10(-4) Hz were used to predict mortality and were compared with the predictive value of traditional power spectral bands. Slope and log(power) at 10(-4) Hz were excellent predictors of all-cause mortality or arrhythmic death. To optimize the prediction of death, we calculated a log(power) intercept that was uncorrelated with the slope of the power law regression line. We found that the combination of slope and zero-correlation log(power) was an outstanding predictor, with a

  2. Synergism Analysis of Bedding Slope with Piles and Anchor Cable Support under Sine Wave Vehicle Load

    Directory of Open Access Journals (Sweden)

    Li Dan-Feng

    2016-01-01

    Full Text Available Slope instability under dynamic load is the technical difficulty in the engineering; the evaluation of slope stability under dynamic load and the control of dynamic load is particularly important. In this paper, taking the right side slope of K27+140 m~380 m typical section (K27 slope for short in Chongqing Fuling-Fengdu-Shizhu expresses highway as an example to calculate and analyze. The K27 slope is under sinusoidal vehicle load and supported by anchor cable and antislide pile to resist downslide strength; at the same time, the combined effect of them is studied. Three-dimensional finite element methodology (FEM is used to simulate the bedding slope with piles and anchor cable support; furthermore, the eigenvalue can be obtained. In order to reduce error of the elastic boundary conditions caused by the reflection effect of wavelengths, the combination of Lysmer surface viscous boundary and traditional ground support boundaries is utilized to analyze and calculate the time-histories during bedding slope under dynamic load. The dynamic response of pile anchor support to resist sliding force is obtained. The concept of the pile anchor supporting coordinate interval is put forward. Furthermore, it is verified that the pile anchor supporting coordinate interval can be used to evaluate the stability of the slope under dynamic load and provide a new method for the control of the dynamic load.

  3. Wave run-up on sandbag slopes

    Directory of Open Access Journals (Sweden)

    Thamnoon Rasmeemasmuang

    2014-03-01

    Full Text Available On occasions, sandbag revetments are temporarily applied to armour sandy beaches from erosion. Nevertheless, an empirical formula to determine the wave run -up height on sandbag slopes has not been available heretofore. In this study a wave run-up formula which considers the roughness of slope surfaces is proposed for the case of sandbag slopes. A series of laboratory experiments on the wave run -up on smooth slopes and sandbag slopes were conducted in a regular-wave flume, leading to the finding of empirical parameters for the formula. The proposed empirical formula is applicable to wave steepness ranging from 0.01 to 0.14 and to the thickness of placed sandbags relative to the wave height ranging from 0.17 to 3.0. The study shows that the wave run-up height computed by the formula for the sandbag slopes is 26-40% lower than that computed by the formula for the smooth slopes.

  4. Relative index of inequality and slope index of inequality: a structured regression framework for estimation

    NARCIS (Netherlands)

    Moreno-Betancur, Margarita; Latouche, Aurélien; Menvielle, Gwenn; Kunst, Anton E.; Rey, Grégoire

    2015-01-01

    The relative index of inequality and the slope index of inequality are the two major indices used in epidemiologic studies for the measurement of socioeconomic inequalities in health. Yet the current definitions of these indices are not adapted to their main purpose, which is to provide summary

  5. Slope movements

    International Nuclear Information System (INIS)

    Wagner, P.

    2009-01-01

    On this poster some reasons of slope movements on the territory of the Slovak Republic are presented. Slope movements induced deterioration of land and forests, endangering of towns villages, and communications as well as hydro-engineering structures. Methods of preventing and stabilisation of slope movements are presented.

  6. Relation between Visual Acuity and Slope of Psychometric Function in Young Adults

    Directory of Open Access Journals (Sweden)

    Tomoki Tokutake

    2011-05-01

    Full Text Available Mita et al. (2010 devised a technique of comparing a visual acuity (VA change in an individual with more accurate VA than conventional VA tests by significant difference examined logarithmic (Log VA ± standard deviation (SD. Using this technique, in this study, we examined a relation between VA and the slope of the psychometric function in normal young subjects. Six occlusion foil conditions were employed (1.0, 0.8, 0.6, 0.4, 0.1 and without the foil under a full refractive correction. Ten normal young adults (22.8 years old on average who have no ophthalmologic disease except ametropia participated in the measurement. The experiment was carried out with the constant method, a series of ten Landolt rings were used and each ring was presented 20 times randomly in a measurement. A 5.6-inch type of liquid crystal display driven by a computer, which has 1,280×800 pixels spatial resolution, was used to present the stimulus. In the normal young adults, the slope of the psychometric function did not change as the VA change systematically, and there was almost no correlation between them (r = −0.103.

  7. Effects of grapevine root density and reinforcement on slopes prone to shallow slope instability

    Science.gov (United States)

    Meisina, Claudia; Bordoni, Massimiliano; Bischetti, Gianbattista; Vercesi, Alberto; Chiaradia, Enrico; Cislaghi, Alessio; Valentino, Roberto; Bittelli, Marco; Vergani, Chiara; Chersich, Silvia; Giuseppina Persichillo, Maria; Comolli, Roberto

    2016-04-01

    Slope erosion and shallow slope instabilities are the major factors of soil losses in cultivated steep terrains. These phenomena also cause loss of organic matter and plants nutrients, together with the partial or total destruction of the structures, such as the row tillage pattern of the vineyards, which allow for the plants cultivation. Vegetation has long been used as an effective tool to decrease the susceptibility of a slope to erosion and to shallow landslides. In particular, the scientific research focused on the role played by the plant roots, because the belowground biomass has the major control on the potential development of soil erosion and of shallow failures. Instead, a comprehensive study that analyzes the effects of the roots of agricultural plants on both soil erosion and slope instability has not been carried out yet. This aspect should be fundamental where sloped terrains are cultivated with plants of great economical relevance, as grapevine. To contribute to fill this gap, in this study the features of root density in the soil profile have been analyzed in slopes cultivated with vineyards, located on a sample hilly area of Oltrepò Pavese (northern Italy). In this area, the viticulture is the most important branch of the local economy. Moreover, several events of rainfall-induced slope erosion and shallow landslides have occurred in this area in the last 6 years, causing several economical damages linked to the destruction of the vineyards and the loss of high productivity soils. Grapevine root distribution have been measured in different test-site slopes, representative of the main geological, geomorphological, pedological, landslides distribution, agricultural features, in order to identify particular patterns on root density that can influence the development of slope instabilities. Roots have been sampled in each test-site for characterizing their strength, in terms of the relation between root diameter and root force at rupture. Root

  8. The general matching law describes choice on concurrent variable-interval schedules of wheel-running reinforcement.

    Science.gov (United States)

    Belke, T W; Belliveau, J

    2001-05-01

    Six male Wistar rats were exposed to concurrent variable-interval schedules of wheel-running reinforcement. The reinforcer associated with each alternative was the opportunity to run for 15 s, and the duration of the changeover delay was 1 s. Results suggested that time allocation was more sensitive to relative reinforcement rate than was response allocation. For time allocation, the mean slopes and intercepts were 0.82 and 0.008, respectively. In contrast, for response allocation, mean slopes and intercepts were 0.60 and 0.03, respectively. Correction for low response rates and high rates of changing over, however, increased slopes for response allocation to about equal those for time allocation. The results of the present study suggest that the two-operant form of the matching law can be extended to wheel-running reinforcement. 'I'he effects of a low overall response rate, a short Changeover delay, and long postreinforcement pausing on the assessment of matching in the present study are discussed.

  9. VT Lidar Slope (2 meter) - 2012 - Bennington County

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Bennington County 2012 2.0m and related SLOPE datasets. Created using ArcGIS "SLOPE"...

  10. On Front Slope Stability of Berm Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    2013-01-01

    The short communication presents application of the conventional Van der Meer stability formula for low-crested breakwaters for the prediction of front slope erosion of statically stable berm breakwaters with relatively high berms. The method is verified (Burcharth, 2008) by comparison...... with the reshaping of a large Norwegian breakwater exposed to the North Sea waves. As a motivation for applying the Van der Meer formula a discussion of design parameters related to berm breakwater stability formulae is given. Comparisons of front erosion predicted by the use of the Van der Meer formula with model...... test results including tests presented in Sigurdarson and Van der Meer (2011) are discussed. A proposal is presented for performance of new model tests with the purpose of developing more accurate formulae for the prediction of front slope erosion as a function of front slope, relative berm height...

  11. Slope-scale dynamic states of rockfalls

    Science.gov (United States)

    Agliardi, F.; Crosta, G. B.

    2009-04-01

    Rockfalls are common earth surface phenomena characterised by complex dynamics at the slope scale, depending on local block kinematics and slope geometry. We investigated the nature of this slope-scale dynamics by parametric 3D numerical modelling of rockfalls over synthetic slopes with different inclination, roughness and spatial resolution. Simulations were performed through an original code specifically designed for rockfall modeling, incorporating kinematic and hybrid algorithms with different damping functions available to model local energy loss by impact and pure rolling. Modelling results in terms of average velocity profiles suggest that three dynamic regimes (i.e. decelerating, steady-state and accelerating), previously recognized in the literature through laboratory experiments on granular flows, can set up at the slope scale depending on slope average inclination and roughness. Sharp changes in rock fall kinematics, including motion type and lateral dispersion of trajectories, are associated to the transition among different regimes. Associated threshold conditions, portrayed in "phase diagrams" as slope-roughness critical lines, were analysed depending on block size, impact/rebound angles, velocity and energy, and model spatial resolution. Motion in regime B (i.e. steady state) is governed by a slope-scale "viscous friction" with average velocity linearly related to the sine of slope inclination. This suggest an analogy between rockfall motion in regime B and newtonian flow, whereas in regime C (i.e. accelerating) an analogy with a dilatant flow was observed. Thus, although local behavior of single falling blocks is well described by rigid body dynamics, the slope scale dynamics of rockfalls seem to statistically approach that of granular media. Possible outcomes of these findings include a discussion of the transition from rockfall to granular flow, the evaluation of the reliability of predictive models, and the implementation of criteria for a

  12. Multiplicative Consistency for Interval Valued Reciprocal Preference Relations

    OpenAIRE

    Wu, Jian; Chiclana, Francisco

    2014-01-01

    The multiplicative consistency (MC) property of interval additive reciprocal preference relations (IARPRs) is explored, and then the consistency index is quantified by the multiplicative consistency estimated IARPR. The MC property is used to measure the level of consistency of the information provided by the experts and also to propose the consistency index induced ordered weighted averaging (CI-IOWA) operator. The novelty of this operator is that it aggregates individual IARPRs in such ...

  13. Means of Slope Retreat on the Na Pali Cliffs, Kauai, Hawaii

    Science.gov (United States)

    Osborn, G.; Sheardown, A.; Blay, C.

    2016-12-01

    The spectacular, 500 to 600 m high, deeply grooved escarpment referred to as the Na Pali cliffs, on the northwest coast of Kauai, requires a substrate competent enough to hold up high steep cliffs yet erodible enough to allow generation of wide, deep grooves. These opposing tendencies are afforded by weathering of originally strong basalt that keeps pace with erosion. The fluted cliffs maintain a rather consistent slope angle, generally 50-60°, whether they are close to the shoreline or have retreated some distance from it, indicating that the slopes are retreating parallel to themselves. Previous literature promotes groundwater sapping or waterfall-plunge-pool erosion as the chief means of valley-head retreat, but there is no evidence that either concept provides a general explanation for retreat of the fluted cliffs. The eroding cliffs maintain steepness because as much rock is eroded at the base as at the top, and transported sediment is washed completely out of the gully system. The thin-bedded basalts exposed in the steep flutes are decomposed into irregularly alternating fine sediment of low to moderate cohesion and thoroughly fractured beds or lenses of solid but chemically weathered rock, and covered with a veneer of sparse grass. Erosion proceeds by episodic removal of thin grass-covered surficial sheets of the weathering products. Some of this process may be facilitated by shallow mass movement, but probably most of the work is done by overland and channelized flow during intense rainstorms. The Na Pali coast experiences one-hour rainfalls of 2-2.5 inches (1 year recurrence interval) and 5-6 inches (100 year recurrence interval); experiments by others on basaltic soils in Molokai suggest such rain is more than enough to generate erosion-inducing overland flow. Between the deep grooves and the shoreline are slopes with lesser drainage densities and lesser slope angles. The rocks here are not distinguished from the rocks above in previous literature, and

  14. Mapping basin-wide subaquatic slope failure susceptibility as a tool to assess regional seismic and tsunami hazards

    Science.gov (United States)

    Strasser, Michael; Hilbe, Michael; Anselmetti, Flavio S.

    2010-05-01

    With increasing awareness of oceanic geohazards, submarine landslides are gaining wide attention because of their catastrophic impacts on both offshore infrastructures (e.g. pipelines, cables and platforms) and coastal areas (e.g. landslide-induced tsunamis). They also are of great interest because they can be directly related to primary trigger mechanisms including earthquakes, rapid sedimentation, gas release, glacial and tidal loading, wave action, or clathrate dissociation, many of which represent potential geohazards themselves. In active tectonic environments, for instance, subaquatic landslide deposits can be used to make inferences regarding the hazard derived from seismic activity. Enormous scientific and economic efforts are thus being undertaken to better determine and quantify causes and effects of natural hazards related to subaquatic landslides. In order to achieve this fundamental goal, the detailed study of past events, the assessment of their recurrence intervals and the quantitative reconstruction of magnitudes and intensities of both causal and subsequent processes and impacts are key requirements. Here we present data and results from a study using fjord-type Lake Lucerne in central Switzerland as a "model ocean" to test a new concept for the assessment of regional seismic and tsunami hazard by basin-wide mapping of critical slope stability conditions for subaquatic landslide initiation. Previously acquired high-resolution bathymetry and reflection seismic data as well as sedimentological and in situ geotechnical data, provide a comprehensive data base to investigate subaquatic landslides and related geohazards. Available data are implemented into a basin-wide slope model. In a Geographic Information System (GIS)-framework, a pseudo-static limit equilibrium infinite slope stability equation is solved for each model point representing reconstructed slope conditions at different times in the past, during which earthquake-triggered landslides

  15. The effects of trait and state affect on diurnal cortisol slope among children affected by parental HIV/AIDS in rural China.

    Science.gov (United States)

    Chen, Lihua; Chi, Peilian; Li, Xiaoming; Zilioli, Samuele; Zhao, Junfeng; Zhao, Guoxiang; Lin, Danhua

    2017-08-01

    Affect is believed to be one of the most prominent proximal psychological pathway through which more distal psychosocial factors influence physiology and ultimately health. The current study examines the relative contributions of trait affect and state affect to the hypothalamic-pituitary-adrenal axis activity, with particular focus on cortisol slope, in children affected by parental HIV/AIDS. A sample of 645 children (8-15 years old) affected by parental HIV/AIDS in rural China completed a multiple-day naturalistic salivary cortisol protocol. Trait and state affect, demographics, and psychosocial covariates were assessed via self-report. Hierarchical linear modeling was used for estimating the effects of trait affect and state affect on cortisol slope. Confidence intervals for indirect effects were estimated using the Monte Carlo method. Our results indicated that both trait and state negative affect (NA) predicted flatter (less "healthy") diurnal cortisol slopes. Subsequent analyses revealed that children's state NA mediated the effect of their trait NA on diurnal cortisol slope. The same relationships did not emerge for trait and state positive affect. These findings provide a rationale for future interventions that target NA as a modifiable antecedent of compromised health-related endocrine processes among children affected by parental HIV/AIDS.

  16. Slope stability analysis using limit equilibrium method in nonlinear criterion.

    Science.gov (United States)

    Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu

    2014-01-01

    In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σ ci , and the parameter of intact rock m i . There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σ ci is relatively small, the relation between F and σ ci is nonlinear, but when σ ci is relatively large, the relation is linear; with the increase of m i , F decreases first and then increases.

  17. Consideration on the relation between dynamic seismic motion and static seismic coefficient for the earthquake proof design of slope around nuclear power plant

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Kitahara, Yoshihiro; Hirata, Kazuta

    1986-01-01

    When the large cutting slopes are constructed closed to around nuclear power plants, it is important to evaluate the stability of the slopes during the strong earthquake. In the evaluation, it may be useful to clarify relationship between the static seismic coefficient and dynamic seismic force corresponded to the basic seismic motion which is specified for designing the nuclear power facilities. To investigate this relation some numerical analyses are conducted in this paper. As the results, it is found that dynamic forces considering the amplified responses of the slopes subjected to the basic seismic motion with a peak acceleration of 500 gals at the toe of the slopes, are approximately equal to static seismic force which generates in the slopes when the seismic coefficients of k = 0.3 is applied. (author)

  18. Sea-level related resedimentation processes on the northern slope of Little Bahama Bank (Middle Pleistocene to Holocene)

    DEFF Research Database (Denmark)

    Lantzsch, H.; Roth, S.; Reijmer, J.J.G.

    2007-01-01

    -slope depositional environment. The sediment composition indicates sea-level related deposition processes for the past 375000 years (marine isotope stages 1 to 11). The sediments consist of: (i) periplatform ooze (fine-grained particles of shallow-water and pelagic origin) with moderate variations in carbonate...

  19. VT Lidar Slope (1.6 meter) - 2012 - Addison County

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Addison County 2012 1.6m and related SLOPE datasets. Created using ArcGIS "SLOPE"...

  20. VT Lidar Slope (1.6 meter) - 2010 - Missisquoi Upper

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Missisquoi Upper 2010 1.6m and related SLOPE datasets. Created using ArcGIS "SLOPE"...

  1. Assessment of Slope Stability of Various Cut Slopes with Effects of Weathering by Using Slope Stability Probability Classification (SSPC)

    Science.gov (United States)

    Ersöz, Timur; Topal, Tamer

    2017-04-01

    Rocks containing pore spaces, fractures, joints, bedding planes and faults are prone to weathering due to temperature differences, wetting-drying, chemistry of solutions absorbed, and other physical and chemical agents. Especially cut slopes are very sensitive to weathering activities because of disturbed rock mass and topographical condition by excavation. During and right after an excavation process of a cut slope, weathering and erosion may act on this newly exposed rock material. These acting on the material may degrade and change its properties and the stability of the cut slope in its engineering lifetime. In this study, the effect of physical and chemical weathering agents on shear strength parameters of the rocks are investigated in order to observe the differences between weathered and unweathered rocks. Also, slope stability assessment of cut slopes affected by these weathering agents which may disturb the parameters like strength, cohesion, internal friction angle, unit weight, water absorption and porosity are studied. In order to compare the condition of the rock materials and analyze the slope stability, the parameters of weathered and fresh rock materials are found with in-situ tests such as Schmidt hammer and laboratory tests like uniaxial compressive strength, point load and direct shear. Moreover, slake durability and methylene blue tests are applied to investigate the response of the rock to weathering and presence of clays in rock materials, respectively. In addition to these studies, both rock strength parameters and any kind of failure mechanism are determined by probabilistic approach with the help of SSPC system. With these observations, the performances of the weathered and fresh zones of the cut slopes are evaluated and 2-D slope stability analysis are modeled with further recommendations for the cut slopes. Keywords: 2-D Modeling, Rock Strength, Slope Stability, SSPC, Weathering

  2. Development of a GIS-based failure investigation system for highway soil slopes

    Science.gov (United States)

    Ramanathan, Raghav; Aydilek, Ahmet H.; Tanyu, Burak F.

    2015-06-01

    A framework for preparation of an early warning system was developed for Maryland, using a GIS database and a collective overlay of maps that highlight highway slopes susceptible to soil slides or slope failures in advance through spatial and statistical analysis. Data for existing soil slope failures was collected from geotechnical reports and field visits. A total of 48 slope failures were recorded and analyzed. Six factors, including event precipitation, geological formation, land cover, slope history, slope angle, and elevation were considered to affect highway soil slope stability. The observed trends indicate that precipitation and poor surface or subsurface drainage conditions are principal factors causing slope failures. 96% of the failed slopes have an open drainage section. A majority of the failed slopes lie in regions with relatively high event precipitation ( P>200 mm). 90% of the existing failures are surficial erosion type failures, and only 1 out of the 42 slope failures is deep rotational type failure. More than half of the analyzed slope failures have occurred in regions having low density land cover. 46% of failures are on slopes with slope angles between 20° and 30°. Influx of more data relating to failed slopes should give rise to more trends, and thus the developed slope management system will aid the state highway engineers in prudential budget allocation and prioritizing different remediation projects based on the literature reviewed on the principles, concepts, techniques, and methodology for slope instability evaluation (Leshchinsky et al., 2015).

  3. The use of relative coupling intervals in horses during walk

    DEFF Research Database (Denmark)

    Olsen, Emil; Pfau, Thilo

    Walking speed varies between over-ground trials and a speed-independent gait-parameter does not exist for use in horses. We introduce relative (R) lateral (L) and diagonal (D) coupling intervals (CI) and hypothesize that both are independent of walking speed. Four horses were walked over 8 Kistler...

  4. Assessment of rock mass decay in artificial slopes

    NARCIS (Netherlands)

    Huisman, M.

    2006-01-01

    This research investigates the decay of rock masses underlying slopes, and seeks to quantify the relations of such decay with time and geotechnical parameters of the slope and rock mass. Decay can greatly affect the geotechnical properties of rocks within engineering timescales, and may induce a

  5. North Slope (Wahluke Slope) expedited response action cleanup plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi{sup 2} (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives.

  6. North Slope (Wahluke Slope) expedited response action cleanup plan

    International Nuclear Information System (INIS)

    1994-02-01

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi 2 (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives

  7. A development of an evaluation flow chart for seismic stability of rock slopes based on relations between safety factor and sliding failure

    International Nuclear Information System (INIS)

    Kawai, Tadashi; Ishimaru, Makoto

    2010-01-01

    Recently, it is necessary to assess quantitatively seismic safety of critical facilities against the earthquake- induced rock slope failure from the viewpoint of seismic PSA. Under these circumstances, it is needed to evaluate the seismic stability of surrounding slopes against extremely strong ground motions. In order to evaluate the seismic stability of surrounding slopes, the most conventional method is to compare safety factors on an expected sliding surface, which is calculated from the stability analysis based on the limit equilibrium concept, to a critical value which judges stability or instability. The method is very effective to examine whether or not the sliding surface is safe. However, it does not mean that the sliding surface falls whenever the safety factor becomes smaller than the critical value during an earthquake. Therefore the authors develop a new evaluation flow chart for the seismic stability of rock slopes based on relations between safety factor and sliding failure. Furthermore, the developed flow chart was validated by comparing two kinds of safety factors calculated from a centrifuge test result concerned with a rock slope. (author)

  8. Automatic approach to deriving fuzzy slope positions

    Science.gov (United States)

    Zhu, Liang-Jun; Zhu, A.-Xing; Qin, Cheng-Zhi; Liu, Jun-Zhi

    2018-03-01

    Fuzzy characterization of slope positions is important for geographic modeling. Most of the existing fuzzy classification-based methods for fuzzy characterization require extensive user intervention in data preparation and parameter setting, which is tedious and time-consuming. This paper presents an automatic approach to overcoming these limitations in the prototype-based inference method for deriving fuzzy membership value (or similarity) to slope positions. The key contribution is a procedure for finding the typical locations and setting the fuzzy inference parameters for each slope position type. Instead of being determined totally by users in the prototype-based inference method, in the proposed approach the typical locations and fuzzy inference parameters for each slope position type are automatically determined by a rule set based on prior domain knowledge and the frequency distributions of topographic attributes. Furthermore, the preparation of topographic attributes (e.g., slope gradient, curvature, and relative position index) is automated, so the proposed automatic approach has only one necessary input, i.e., the gridded digital elevation model of the study area. All compute-intensive algorithms in the proposed approach were speeded up by parallel computing. Two study cases were provided to demonstrate that this approach can properly, conveniently and quickly derive the fuzzy slope positions.

  9. Nonmonotonic and spatial-temporal dynamic slope effects on soil erosion during rainfall-runoff processes

    Science.gov (United States)

    Wu, Songbai; Yu, Minghui; Chen, Li

    2017-02-01

    The slope effect on flow erosivity and soil erosion still remains a controversial issue. This theoretical framework explained and quantified the direct slope effect by coupling the modified Green-Ampt equation accounting for slope effect on infiltration, 1-D kinematic wave overland flow routing model, and WEPP soil erosion model. The flow velocity, runoff rate, shear stress, interrill, and rill erosion were calculated on 0°-60° isotropic slopes with equal horizontal projective length. The results show that, for short-duration rainfall events, the flow erosivity and erosion amounts exhibit a bell-shaped trend which first increase with slope gradient, and then decrease after a critical slope angle. The critical slope angles increase significantly or even vanish with increasing rainfall duration but are nearly independent of the slope projective length. The soil critical shear stress, rainfall intensity, and temporal patterns have great influences on the slope effect trend, while the other soil erosion parameters, soil type, hydraulic conductivity, and antecedent soil moisture have minor impacts. Neglecting the slope effect on infiltration would generate smaller erosion and reduce critical slope angles. The relative slope effect on soil erosion in physically based model WEPP was compared to those in the empirical models USLE and RUSLE. The trends of relative slope effect were found quite different, but the difference may diminish with increasing rainfall duration. Finally, relatively smaller critical slope angles could be obtained with the equal slope length and the range of variation provides a possible explanation for the different critical slope angles reported in previous studies.

  10. Factors affecting seismic response of submarine slopes

    Directory of Open Access Journals (Sweden)

    G. Biscontin

    2006-01-01

    Full Text Available The response of submerged slopes on the continental shelf to seismic or storm loading has become an important element in the risk assessment for offshore structures and 'local' tsunami hazards worldwide. The geological profile of these slopes typically includes normally consolidated to lightly overconsolidated soft cohesive soils with layer thickness ranging from a few meters to hundreds of meters. The factor of safety obtained from pseudo-static analyses is not always a useful measure for evaluating the slope response, since values less than one do not necessarily imply slope failure with large movements of the soil mass. This paper addresses the relative importance of different factors affecting the response of submerged slopes during seismic loading. The analyses use a dynamic finite element code which includes a constitutive law describing the anisotropic stress-strain-strength behavior of normally consolidated to lightly overconsolidated clays. The model also incorporates anisotropic hardening to describe the effect of different shear strain and stress histories as well as bounding surface principles to provide realistic descriptions of the accumulation of the plastic strains and excess pore pressure during successive loading cycles. The paper presents results from parametric site response analyses on slope geometry and layering, soil material parameters, and input ground motion characteristics. The predicted maximum shear strains, permanent deformations, displacement time histories and maximum excess pore pressure development provide insight of slope performance during a seismic event.

  11. Advance in prediction of soil slope instabilities

    Science.gov (United States)

    Sigarán-Loría, C.; Hack, R.; Nieuwenhuis, J. D.

    2012-04-01

    Six generic soils (clays and sands) were systematically modeled with plane-strain finite elements (FE) at varying heights and inclinations. A dataset was generated in order to develop predictive relations of soil slope instabilities, in terms of co-seismic displacements (u), under strong motions with a linear multiple regression. For simplicity, the seismic loads are monochromatic artificial sinusoidal functions at four frequencies: 1, 2, 4, and 6 Hz, and the slope failure criterion used corresponds to near 10% Cartesian shear strains along a continuous region comparable to a slip surface. The generated dataset comprises variables from the slope geometry and site conditions: height, H, inclination, i, shear wave velocity from the upper 30 m, vs30, site period, Ts; as well as the input strong motion: yield acceleration, ay (equal to peak ground acceleration, PGA in this research), frequency, f; and in some cases moment magnitude, M, and Arias intensity, Ia, assumed from empirical correlations. Different datasets or scenarios were created: "Magnitude-independent", "Magnitude-dependent", and "Soil-dependent", and the data was statistically explored and analyzed with varying mathematical forms. Qualitative relations show that the permanent deformations are highly related to the soil class for the clay slopes, but not for the sand slopes. Furthermore, the slope height does not constrain the variability in the co-seismic displacements. The input frequency decreases the variability of the co-seismic displacements for the "Magnitude-dependent" and "Soil-dependent" datasets. The empirical models were developed with two and three predictors. For the sands it was not possible because they could not satisfy the constrains from the statistical method. For the clays, the best models with the smallest errors coincided with the simple general form of multiple regression with three predictors (e.g. near 0.16 and 0.21 standard error, S.E. and 0.75 and 0.55 R2 for the "M

  12. NADiA ProsVue prostate-specific antigen slope is an independent prognostic marker for identifying men at reduced risk of clinical recurrence of prostate cancer after radical prostatectomy.

    Science.gov (United States)

    Moul, Judd W; Lilja, Hans; Semmes, O John; Lance, Raymond S; Vessella, Robert L; Fleisher, Martin; Mazzola, Clarisse; Sarno, Mark J; Stevens, Barbara; Klem, Robert E; McDermed, Jonathan E; Triebell, Melissa T; Adams, Thomas H

    2012-12-01

    To validate the hypothesis that men displaying serum prostate-specific antigen (PSA) slopes ≤ 2.0 pg/mL/mo after prostatectomy, measured using a new immuno-polymerase chain reaction diagnostic test (NADiA ProsVue), have a reduced risk of clinical recurrence as determined by positive biopsy, imaging findings, or death from prostate cancer. From 4 clinical sites, we selected a cohort of 304 men who had been followed up for 17.6 years after prostatectomy for clinical recurrence. We assessed the prognostic value of a PSA slope cutpoint of 2.0 pg/mL/mo against established risk factors to identify men at low risk of clinical recurrence using uni- and multivariate Cox proportional hazards regression and Kaplan-Meier analyses. The univariate hazard ratio of a PSA slope >2.0 pg/mL/mo was 18.3 (95% confidence interval 10.6-31.8) compared with a slope ≤ 2.0 pg/mL/mo (P free survival interval was 4.8 years vs >10 years in the 2 groups (P <.0001). The multivariate hazard ratio for PSA slope with the covariates of preprostatectomy PSA, pathologic stage, and Gleason score was 9.8 (95% confidence interval 5.4-17.8), an 89.8% risk reduction for men with PSA slopes ≤ 2.0 pg/mL/mo (P <.0001). The Gleason score (<7 vs ≥ 7) was the only other significant predictor (hazard ratio 5.4, 95% confidence interval 2.1-13.8, P = .0004). Clinical recurrence after radical prostatectomy is difficult to predict using established risk factors. We have demonstrated that a NADiA ProsVue PSA slope of ≤ 2.0 pg/mL/mo after prostatectomy is prognostic for a reduced risk of prostate cancer recurrence and adds predictive power to the established risk factors. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. VT Data - Lidar Slope (0.7m) 2015, Windham County

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Windham County 2015 0.7m and related SLOPE datasets. Created using ArcGIS "SLOPE"...

  14. Eros: Shape, topography, and slope processes

    Science.gov (United States)

    Thomas, P.C.; Joseph, J.; Carcich, B.; Veverka, J.; Clark, B.E.; Bell, J.F.; Byrd, A.W.; Chomko, R.; Robinson, M.; Murchie, S.; Prockter, L.; Cheng, A.; Izenberg, N.; Malin, M.; Chapman, C.; McFadden, L.A.; Kirk, R.; Gaffey, M.; Lucey, P.G.

    2002-01-01

    Stereogrammetric measurement of the shape of Eros using images obtained by NEAR's Multispectral Imager provides a survey of the major topographic features and slope processes on this asteroid. This curved asteroid has radii ranging from 3.1 to 17.7 km and a volume of 2535 ?? 20 km3. The center of figure is within 52 m of the center of mass provided by the Navigation team; this minimal difference suggests that there are only modest variations in density or porosity within the asteroid. Three large depressions 10, 8, and 5.3 km across represent different stages of degradation of large impact craters. Slopes on horizontal scales of ???300 m are nearly all less than 35??, although locally scarps are much steeper. The area distribution of slopes is similar to those on Ida, Phobos, and Deimos. Regions that have slopes greater than 25?? have distinct brighter markings and have fewer large ejecta blocks than do flatter areas. The albedo patterns that suggest downslope transport of regolith have sharper boundaries than those on Phobos, Deimos, and Gaspra. The morphology of the albedo patterns, their lack of discrete sources, and their concentration on steeper slopes suggest transport mechanisms different from those on the previously well-observed small bodies, perhaps due to a reduced relative effectiveness of impact gardening on Eros. Regolith is also transported in talus cones and in connected, sinuous paths extending as much as 2 km, with some evident as relatively darker material. Talus material in at least one area is a discrete superposed unit, a feature not resolved on other small bodies. Flat-floored craters that apparently contain ponded material also suggest discrete units that are not well mixed by impacts. ?? 2002 Elsevier Science (USA).

  15. The slope-background for the near-peak regimen of photoemission spectra

    Energy Technology Data Exchange (ETDEWEB)

    Herrera-Gomez, A., E-mail: aherrera@qro.cinvestav.mx [CINVESTAV-Unidad Queretaro, Queretaro 76230 (Mexico); Bravo-Sanchez, M. [CINVESTAV-Unidad Queretaro, Queretaro 76230 (Mexico); Aguirre-Tostado, F.S. [Centro de Investigación en Materiales Avanzados, Chihuahua, Chihuahua 31109 (Mexico); Vazquez-Lepe, M.O. [Departamento de Ingeniería de Proyectos, Universidad de Guadalajara, Jalisco 44430 (Mexico)

    2013-08-15

    Highlights: •We propose a method that accounts for the change in the background slope of XPS data. •The slope-background can be derived from Tougaard–Sigmund's transport theory. •The total background is composed by Shirley–Sherwood and Tougaard type backgrounds. •The slope-background employs one parameter that can be related to REELS spectra. •The slope, in conjunction with the Shirley–Sherwood background, provides better fits. -- Abstract: Photoemission data typically exhibits a change on the intensity of the background between the two sides of the peaks. This step is usually very well reproduced by the Shirley–Sherwood background. Yet, the change on the slope of the background in the near-peak regime, although usually present, is not always as obvious to the eye. However, the intensity of the background signal associated with the evolution of its slope can be appreciable. The slope-background is designed to empirically reproduce the change on the slope. Resembling the non-iterative Shirley method, the proposed functional form relates the slope of the background to the integrated signal at higher electron kinetic energies. This form can be predicted under Tougaard–Sigmund's electron transport theory in the near-peak regime. To reproduce both the step and slope changes on the background, it is necessary to employ the slope-background in conjunction with the Shirley–Sherwood background under the active-background method. As it is shown for a series of materials, the application of the slope-background provides excellent fits, is transparent to the operator, and is much more independent of the fitting range than other background methods. The total area assessed through the combination of the slope and the Shirley–Sherwood backgrounds is larger than when only the Shirley–Sherwood background is employed, and smaller than when the Tougaard background is employed.

  16. 16 determination of posterior tibia slope and slope deterioration

    African Journals Online (AJOL)

    normal slope and mechanical axis of the knee (7). The slope is reported to deepen in osteoarthritis; meaning increased articular surface contact and increased tibial translation (8). Total knee replacement aims to restore the mechanical axis of the natural knee joint. This axis will be changed by an altered PTS; yet after.

  17. Convex Interval Games

    NARCIS (Netherlands)

    Alparslan-Gok, S.Z.; Brânzei, R.; Tijs, S.H.

    2008-01-01

    In this paper, convex interval games are introduced and some characterizations are given. Some economic situations leading to convex interval games are discussed. The Weber set and the Shapley value are defined for a suitable class of interval games and their relations with the interval core for

  18. GIS-based seismic shaking slope vulnerability map of Sicily (Central Mediterranean)

    Science.gov (United States)

    Nigro, Fabrizio; Arisco, Giuseppe; Perricone, Marcella; Renda, Pietro; Favara, Rocco

    2010-05-01

    Earthquakes often represent very dangerouses natural events in terms of human life and economic losses and their damage effects are amplified by the synchronous occurrence of seismically-induced ground-shaking failures in wide regions around the seismogenic source. In fact, the shaking associated with big earthquakes triggers extensive landsliding, sometimes at distances of more than 100 km from the epicenter. The active tectonics and the geomorphic/morphodinamic pattern of the regions affected by earthquakes contribute to the slopes instability tendency. In fact, earthquake-induced groun-motion loading determines inertial forces activation within slopes that, combined with the intrinsic pre-existing static forces, reduces the slope stability towards its failure. Basically, under zero-shear stress reversals conditions, a catastrophic failure will take place if the earthquake-induced shear displacement exceeds the critical level of undrained shear strength to a value equal to the gravitational shear stress. However, seismic stability analyses carried out for various infinite slopes by using the existing Newmark-like methods reveal that estimated permanent displacements smaller than the critical value should also be regarded as dangerous for the post-earthquake slope safety, in terms of human activities use. Earthquake-induced (often high-speed) landslides are among the most destructive phenomena related to slopes failure during earthquakes. In fact, damage from earthquake-induced landslides (and other ground-failures), sometimes exceeds the buildings/infrastructures damage directly related to ground-shaking for fault breaking. For this matter, several hearthquakes-related slope failures methods have been developed, for the evaluation of the combined hazard types represented by seismically ground-motion landslides. The methodologies of analysis of the engineering seismic risk related to the slopes instability processes is often achieved through the evaluation of the

  19. Slope Estimation from ICESat/GLAS

    Directory of Open Access Journals (Sweden)

    Craig Mahoney

    2014-10-01

    Full Text Available We present a novel technique to infer ground slope angle from waveform LiDAR, known as the independent slope method (ISM. The technique is applied to large footprint waveforms (\\(\\sim\\ mean diameter from the Ice, Cloud and Land Elevation Satellite (ICESat Geoscience Laser Altimeter System (GLAS to produce a slope dataset of near-global coverage at \\(0.5^{\\circ} \\times 0.5^{\\circ}\\ resolution. ISM slope estimates are compared against high resolution airborne LiDAR slope measurements for nine sites across three continents. ISM slope estimates compare better with the aircraft data (R\\(^{2}=0.87\\ and RMSE\\(=5.16^{\\circ}\\ than the Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM inferred slopes (R\\(^{2}=0.71\\ and RMSE\\(=8.69^{\\circ}\\ ISM slope estimates are concurrent with GLAS waveforms and can be used to correct biophysical parameters, such as tree height and biomass. They can also be fused with other DEMs, such as SRTM, to improve slope estimates.

  20. Simulating the seismic behaviour of soil slopes and embankments

    DEFF Research Database (Denmark)

    Zania, Varvara; Tsompanakis, Yiannis; Psarropoulos, Prodromos

    2010-01-01

    In the current study the clarification of the main assumptions, related to the two most commonly used methods of seismic slope stability analysis (pseudostatic and permanent deformation) is attempted. The seismic permanent displacements and the corresponding seismic coefficients were determined via...... parametric dynamic numerical analyses taking into account not only the main parameters dominating the seismic slope stability, but also the inherent assumptions of the applied approaches that affect the obtained results. The investigation conclude to a realistic procedure for seismic slope stability...

  1. Water Erosion in Different Slope Lengths on Bare Soil

    Directory of Open Access Journals (Sweden)

    Bárbara Bagio

    Full Text Available ABSTRACT Water erosion degrades the soil and contaminates the environment, and one influential factor on erosion is slope length. The aim of this study was to quantify losses of soil (SL and water (WL in a Humic Cambisol in a field experiment under natural rainfall conditions from July 4, 2014 to June 18, 2015 in individual events of 41 erosive rains in the Southern Plateau of Santa Catarina and to estimate soil losses through the USLE and RUSLE models. The treatments consisted of slope lengths of 11, 22, 33, and 44 m, with an average degree of slope of 8 %, on bare and uncropped soil that had been cultivated with corn prior to the study. At the end of the corn cycle, the stalk residue was removed from the surface, leaving the roots of the crop in the soil. Soil loss by water erosion is related linearly and positively to the increase in slope length in the span between 11 and 44 m. Soil losses were related to water losses and the Erosivity Index (EI30, while water losses were related to rain depth. Soil losses estimated by the USLE and RUSLE model showed lower values than the values observed experimentally in the field, especially the values estimated by the USLE. The values of factor L calculated for slope length of 11, 22, 33, and 44 m for the two versions (USLE and RUSLE of the soil loss prediction model showed satisfactory results in relation to the values of soil losses observed.

  2. Confidence interval procedures for Monte Carlo transport simulations

    International Nuclear Information System (INIS)

    Pederson, S.P.

    1997-01-01

    The problem of obtaining valid confidence intervals based on estimates from sampled distributions using Monte Carlo particle transport simulation codes such as MCNP is examined. Such intervals can cover the true parameter of interest at a lower than nominal rate if the sampled distribution is extremely right-skewed by large tallies. Modifications to the standard theory of confidence intervals are discussed and compared with some existing heuristics, including batched means normality tests. Two new types of diagnostics are introduced to assess whether the conditions of central limit theorem-type results are satisfied: the relative variance of the variance determines whether the sample size is sufficiently large, and estimators of the slope of the right tail of the distribution are used to indicate the number of moments that exist. A simulation study is conducted to quantify the relationship between various diagnostics and coverage rates and to find sample-based quantities useful in indicating when intervals are expected to be valid. Simulated tally distributions are chosen to emulate behavior seen in difficult particle transport problems. Measures of variation in the sample variance s 2 are found to be much more effective than existing methods in predicting when coverage will be near nominal rates. Batched means tests are found to be overly conservative in this regard. A simple but pathological MCNP problem is presented as an example of false convergence using existing heuristics. The new methods readily detect the false convergence and show that the results of the problem, which are a factor of 4 too small, should not be used. Recommendations are made for applying these techniques in practice, using the statistical output currently produced by MCNP

  3. Slope instability related to permafrost changes on Mexican volcanoes

    Science.gov (United States)

    Delgado Granados, Hugo; Molina, Victor Soto

    2015-04-01

    Permafrost is present above 4,500 meters at the three highest Mexican mountains, Citlaltépetl, Popocatépetl and Iztaccihuatl (5,675, 5,452 and 5,286m asl, respectively), all active volcanoes. During the rainy season in the central region of Mexico, the occurrence of small debris-flows in the ice-free parts of the mountains, as well as small lanslides is frequent. At Popocatépetl volcano, flows are mostly related to a combination of the eruptive activity and climatic factors. However, the volcanic activity is different at Citlaltépetl and Iztaccihuatl where there is no eruptive activity, but landslides have occurred in recent years on their steep slopes because its stability has been altered as a result of an increase in the air temperature which in turn has caused variations in the thickness of the active layer of permafrost, causing as a consequence, the increase of an even more unstable soil. Additionally, cracks in the rock walls are subject to an increasing hydrostatic pressure due to continuous daily freezing and thawing of seasonal water produced by a warmer and less solid precipitation accumulating in the cracks over time and in the unconsolidated potentially unstable material.

  4. Preliminary Slope Stability Study Using Slope/ W

    International Nuclear Information System (INIS)

    Nazran Harun; Mohd Abd Wahab Yusof; Kamarudin Samuding; Mohd Muzamil Mohd Hashim; Nurul Fairuz Diyana Bahrudin

    2014-01-01

    Analyzing the stability of earth structures is the oldest type of numerical analysis in geotechnical engineering. Limit equilibrium types of analyses for assessing the stability of earth slopes have been in use in geotechnical engineering for many decades. Modern limit equilibrium software is making it possible to handle ever-increasing complexity within an analysis. It is being considered as the potential method in dealing with complex stratigraphy, highly irregular pore-water pressure conditions, various linear and nonlinear shear strength models and almost any kind of slip surface shape. It allows rapid decision making by providing an early indication of the potential suitability of sites based on slope stability analysis. Hence, a preliminary slope stability study has been developed to improve the capacity of Malaysian Nuclear Agency (Nuclear Malaysia) in assessing potential sites for Borehole Disposal for Disused Sealed Radioactive Sources. The results showed that geometry of cross section A-A ' , B-B ' , C-C ' and D-D ' achieved the factor of safety not less than 1.4 and these are deemed acceptable. (author)

  5. Dynamic stability and failure modes of slopes in discontinuous rock mass

    International Nuclear Information System (INIS)

    Shimizu, Yasuhiro; Aydan, O.; Ichikawa, Yasuaki; Kawamoto, Toshikazu.

    1988-01-01

    The stability of rock slopes during earthquakes are of great concern in rock engineering works such as highway, dam, and nuclear power station constructions. As rock mass in nature is usually discontinuous, the stability of rock slopes will be geverned by the spatial distribution of discontinuities in relation with the geometry of slope and their mechanical properties rather than the rock element. The authors have carried out some model tests on discontinuous rock slopes using three different model tests techniques in order to investigate the dynamic behaviour and failure modes of the slopes in discontinuous rock mass. This paper describes the findings and observations made on model rock slopes with various discontinuity patterns and slope geometry. In addition some stability criterions are developed and the calculated results are compared with those of experiments. (author)

  6. Assessment and mapping of slope stability based on slope units: A ...

    Indian Academy of Sciences (India)

    Shallow landslide; infinite slope stability equation; return period precipitation; assessment; slope unit. ... 2010), logistic regression ... model to assess the hazard of shallow landslides ..... grating a fuzzy k-means classification and a Bayesian.

  7. A water balance study of four landfill cover designs varying in slope for semiarid regions

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Schofield, T.G.; Salazar, J.A.

    1997-01-01

    The goal of disposing of radioactive and hazardous waste in shallow landfills is to reduce risk to human health and to the environment by isolating contaminants until they no longer pose a hazard. In order to achieve this, the performance of a landfill cover design without an engineered barrier (Conventional Design) was compared with three designs containing either a hydraulic barrier (EPA Design) or a capillary barrier (Loam and Clay Loam Capillary Barrier Designs). Water balance parameters were measured since 1991 at six-hour intervals for four different landfill cover designs in 1.0- by 10.0-m plots with downhill slopes of 5, 10, 15, and 25%. Whereas runoff generally accounted for only 2-3% of the precipitation losses on these designs, similar values for evapotranspiration ranged from 86% to 91%, with increased evapotranspiration occurring with increases in slope. Consequently, interflow and seepage usually decreased with increasing slope for each landfill cover design. Seepage consisted of up to 10% of the precipitation on the Conventional Design, whereas the hydraulic barrier in the EPA Design effectively controlled seepage at all slopes, and both of the capillary designs worked effectively to eliminate seepage at the higher slopes

  8. Infiltration on sloping terrain and its role on runoff generation and slope stability

    Science.gov (United States)

    Loáiciga, Hugo A.; Johnson, J. Michael

    2018-06-01

    A modified Green-and-Ampt model is formulated to quantify infiltration on sloping terrain underlain by homogeneous soil wetted by surficial water application. This paper's theory for quantifying infiltration relies on the mathematical statement of the coupled partial differential equations (pdes) governing infiltration and runoff. These pdes are solved by employing an explicit finite-difference numerical method that yields the infiltration, the infiltration rate, the depth to the wetting front, the rate of runoff, and the depth of runoff everywhere on the slope during external wetting. Data inputs consist of a water application rate or the rainfall hyetograph of a storm of arbitrary duration, soil hydraulic characteristics and antecedent moisture, and the slope's hydraulic and geometric characteristics. The presented theory predicts the effect an advancing wetting front has on slope stability with respect to translational sliding. This paper's theory also develops the 1D pde governing suspended sediment transport and slope degradation caused by runoff influenced by infiltration. Three examples illustrate the application of the developed theory to calculate infiltration and runoff on a slope and their role on the stability of cohesive and cohesionless soils forming sloping terrain.

  9. Translating QT interval prolongation from conscious dogs to humans.

    Science.gov (United States)

    Dubois, Vincent F S; Smania, Giovanni; Yu, Huixin; Graf, Ramona; Chain, Anne S Y; Danhof, Meindert; Della Pasqua, Oscar

    2017-02-01

    In spite of screening procedures in early drug development, uncertainty remains about the propensity of new chemical entities (NCEs) to prolong the QT/QTc interval. The evaluation of proarrhythmic activity using a comprehensive in vitro proarrhythmia assay does not fully account for pharmacokinetic-pharmacodynamic (PKPD) differences in vivo. In the present study, we evaluated the correlation between drug-specific parameters describing QT interval prolongation in dogs and in humans. Using estimates of the drug-specific parameter, data on the slopes of the PKPD relationships of nine compounds with varying QT-prolonging effects (cisapride, sotalol, moxifloxacin, carabersat, GSK945237, SB237376 and GSK618334, and two anonymized NCEs) were analysed. Mean slope estimates varied between -0.98 ms μM -1 and 6.1 ms μM -1 in dogs and -10 ms μM -1 and 90 ms μM -1 in humans, indicating a wide range of effects on the QT interval. Linear regression techniques were then applied to characterize the correlation between the parameter estimates across species. For compounds without a mixed ion channel block, a correlation was observed between the drug-specific parameter in dogs and humans (y = -1.709 + 11.6x; R 2  = 0.989). These results show that per unit concentration, the drug effect on the QT interval in humans is 11.6-fold larger than in dogs. Together with information about the expected therapeutic exposure, the evidence of a correlation between the compound-specific parameter in dogs and in humans represents an opportunity for translating preclinical safety data before progression into the clinic. Whereas further investigation is required to establish the generalizability of our findings, this approach can be used with clinical trial simulations to predict the probability of QT prolongation in humans. © 2016 The British Pharmacological Society.

  10. Assessing slope stability in unplanned settlements in developing countries.

    Science.gov (United States)

    Anderson, Malcolm G; Holcombe, Liz; Renaud, Jean-Philippe

    2007-10-01

    Unplanned housing in developing countries is often located on steep slopes. Frequently no building code is enforced for such housing and mains water is provided with no drainage provision. Both of these factors can be particularly significant in terms of landslide risk if, as is so often the case, such slopes lack any planned drainage provision. There is thus a need to develop a model that facilitates the assessment of slope stability in an holistic context, incorporating a wide range of factors (including surface cover, soil water topographic convergence, slope loading and point source water leakage) in order that appropriate advice can be given as to the general controls on slope stability in such circumstances. This paper outlines a model configured for this specific purpose and describes an application to a site in St. Lucia, West Indies, where there is active slope movement in an unplanned housing development on relatively steep topography. The model findings are in accord with the nature of the current failure at the site, provide guidance as to the significance of slope drainage and correspond to inferences drawn from an application of resistance envelope methods to the site. In being able to scenario test a uniquely wide range of combinations of factors, the model structure is shown to be highly valuable in assessing dominant slope stability process controls in such complex environments.

  11. IMPROVED LARGE-SCALE SLOPE ANALYSIS ON MARS BASED ON CORRELATION OF SLOPES DERIVED WITH DIFFERENT BASELINES

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2017-07-01

    Full Text Available The surface slopes of planetary bodies are important factors for exploration missions, such as landing site selection and rover manoeuvre. Generally, high-resolution digital elevation models (DEMs such as those generated from the HiRISE images on Mars are preferred to generate detailed slopes with a better fidelity of terrain features. Unfortunately, high-resolution datasets normally only cover small area and are not always available. While lower resolution datasets, such as MOLA, provide global coverage of the Martian surface. Slopes generated from the low-resolution DEM will be based on a large baseline and be smoothed from the real situation. In order to carry out slope analysis at large scale on Martian surface based low-resolution data such as MOLA data, while alleviating the smoothness problem of slopes due to its low resolution, this paper presents an amplifying function of slopes derived from low-resolution DEMs based on the relationships between DEM resolutions and slopes. First, slope maps are derived from the HiRISE DEM (meter-level resolution DEM generated from HiRISE images and a series of down-sampled HiRISE DEMs. The latter are used to simulate low-resolution DEMs. Then the high-resolution slope map is down- sampled to the same resolution with the slope map from the lower-resolution DEMs. Thus, a comparison can be conducted pixel-wise. For each pixel on the slope map derived from the lower-resolution DEM, it can reach the same value with the down-sampled HiRISE slope by multiplying an amplifying factor. Seven sets of HiRISE images with representative terrain types are used for correlation analysis. It shows that the relationship between the amplifying factors and the original MOLA slopes can be described by the exponential function. Verifications using other datasets show that after applying the proposed amplifying function, the updated slope maps give better representations of slopes on Martian surface compared with the original

  12. RMS slope of exponentially correlated surface roughness for radar applications

    DEFF Research Database (Denmark)

    Dierking, Wolfgang

    2000-01-01

    In radar signature analysis, the root mean square (RMS) surface slope is utilized to assess the relative contribution of multiple scattering effects. For an exponentially correlated surface, an effective RMS slope can be determined by truncating the high frequency tail of the roughness spectrum...

  13. Rock slope instabilities in Norway: First systematic hazard and risk classification of 22 unstable rock slopes

    Science.gov (United States)

    Böhme, Martina; Hermanns, Reginald L.; Oppikofer, Thierry; Penna, Ivanna

    2016-04-01

    Unstable rock slopes that can cause large failures of the rock-avalanche type have been mapped in Norway for almost two decades. Four sites have earlier been characterized as high-risk objects based on expertise of few researchers. This resulted in installing continuous monitoring systems and set-up of an early-warning system for those four sites. Other unstable rock slopes have not been ranked related to their hazard or risk. There are ca. 300 other sites known of which 70 sites were installed for periodic deformation measurements using multiple techniques (Global Navigation Satellite Systems, extensometers, measurement bolts, and others). In 2012 a systematic hazard and risk classification system for unstable rock slopes was established in Norway and the mapping approach adapted to that in 2013. Now, the first 22 sites were classified for hazard, consequences and risk using this classification system. The selection of the first group of sites to be classified was based on an assumed high hazard or risk and importance given to the sites by Norwegian media and the public. Nine of the classified 22 unstable rock slopes are large sites that deform inhomogeneously or are strongly broken up in individual blocks. This suggests that different failure scenarios are possible that need to be analyzed individually. A total of 35 failure scenarios for those nine unstable rock slopes were considered. The hazard analyses were based on 9 geological parameters defined in the classification system. The classification system will be presented based on the Gamanjunni unstable rock slope. This slope has a well developed back scarp that exposes 150 m preceding displacement. The lateral limits of the unstable slope are clearly visible in the morphology and InSAR displacement data. There have been no single structures observed that allow sliding kinematically. The lower extend of the displacing rock mass is clearly defined in InSAR data and by a zone of higher rock fall activity. Yearly

  14. Slippery Slope Arguments

    NARCIS (Netherlands)

    van der Burg, W.; Chadwick, R.F.

    1998-01-01

    Slippery slope arguments hold that one should not take some action (which in itself may be innocuous or even laudable) in order to prevent one from being dragged down a slope towards some clearly undesirable situation. Their typical purpose is to prevent changes in the status quo and, therefore,

  15. Origin and significance of high-grade phosphorite in a sediment core from the continental slope off Goa, India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Rao, Ch.M.; Thamban, M.; Natarajan, R.; Rao, B.R.

    A phosphorite crust was found at 380-390 cm depth interval of a sediment core collected from the topographic high occurring on the continental slope off Goa. This crust is fragile and grey to light brown in colour. Carbonate fluorapatite...

  16. Uncertainty of the Soil–Water Characteristic Curve and Its Effects on Slope Seepage and Stability Analysis under Conditions of Rainfall Using the Markov Chain Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Weiping Liu

    2017-10-01

    Full Text Available It is important to determine the soil–water characteristic curve (SWCC for analyzing slope seepage and stability under the conditions of rainfall. However, SWCCs exhibit high uncertainty because of complex influencing factors, which has not been previously considered in slope seepage and stability analysis under conditions of rainfall. This study aimed to evaluate the uncertainty of the SWCC and its effects on the seepage and stability analysis of an unsaturated soil slope under conditions of rainfall. The SWCC model parameters were treated as random variables. An uncertainty evaluation of the parameters was conducted based on the Bayesian approach and the Markov chain Monte Carlo (MCMC method. Observed data from granite residual soil were used to test the uncertainty of the SWCC. Then, different confidence intervals for the model parameters of the SWCC were constructed. The slope seepage and stability analysis under conditions of rainfall with the SWCC of different confidence intervals was investigated using finite element software (SEEP/W and SLOPE/W. The results demonstrated that SWCC uncertainty had significant effects on slope seepage and stability. In general, the larger the percentile value, the greater the reduction of negative pore-water pressure in the soil layer and the lower the safety factor of the slope. Uncertainties in the model parameters of the SWCC can lead to obvious errors in predicted pore-water pressure profiles and the estimated safety factor of the slope under conditions of rainfall.

  17. Investigations of slope stability

    Energy Technology Data Exchange (ETDEWEB)

    Nonveiller, E.

    1979-01-01

    The dynamics of slope slides and parameters for calculating slope stability is discussed. Two types of slides are outlined: rotation slide and translation slide. Slide dynamics are analyzed according to A. Heim. A calculation example of a slide which occurred at Vajont, Yugoslavia is presented. Calculation results differ from those presented by Ciabatti. For investigation of slope stability the calculation methods of A.W. Bishop (1955), N. Morgenstern and M. Maksimovic are discussed. 12 references

  18. Soil erosion processes on sloping land using REE tracer

    International Nuclear Information System (INIS)

    Shen Zhenzhou; Liu Puling; Yang Mingyi; Lian Zhenlong; Ju Tongjun; Yao Wenyi; Li Mian

    2007-01-01

    Sheet erosion is the main performance in the slope soil erosion process at the primary stage of natural rainfall. For three times of rainfall during experiment, the ratios of sheet erosion to total erosion account for 71%, 48% and 49% respectively, which showed that the sloping erosion was still at the primary stage from sheet erosion to rill erosion. With the rainfall going, the rill erosion amount increase. It showed that soil erosion was changing from sheet erosion to rill erosion. The sources of sediment from different sections of the plot were analyzed, and the results indicated that whatever the sheet erosion changed, the ratio erosion of upper part of surface soil was always lower than 10%. Sheet erosion came mainly from the lower section of surface soil. With the ratios to the amount of total rill erosion changes, the rill erosion amount of each section regularly changes too. The general conclusion is that when the rainfall ends, relative erosion of different slope element to the foot of slope is: 1 meter away accounts for 16%, 2-4 meters away is 6% and 5-9 meters away is 3%. The ratio of rill erosion amount of these three slope element is 5:2:1, which shows the rill erosion amount are mainly from the slope element of 4 meters from the foot of slope. (authors)

  19. Differential preparation intervals modulate repetition processes in task switching: an ERP study

    Directory of Open Access Journals (Sweden)

    Min eWang

    2016-02-01

    Full Text Available In task-switching paradigms, reaction times (RTs switch cost (SC and the neural correlates underlying the SC are affected by different preparation intervals. However, little is known about the effect of the preparation interval on the repetition processes in task-switching. To examine this effect we utilized a cued task-switching paradigm with long sequences of repeated trials. Response-stimulus intervals (RSI and cue-stimulus intervals (CSI were manipulated in short and long conditions. Electroencephalography (EEG and behavioral data were recorded. We found that with increasing repetitions, RTs were faster in the short CSI conditions, while P3 amplitudes decreased in the LS (long RSI and short CSI conditions. Positive correlations between RT benefit and P3 activation decrease (repeat 1 minus repeat 5, and between the slope of the RT and P3 regression lines were observed only in the LS condition. Our findings suggest that differential preparation intervals modulate repetition processes in task switching.

  20. Percent Agricultural Land Cover on Steep Slopes

    Data.gov (United States)

    U.S. Environmental Protection Agency — Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type....

  1. Discharge Coefficient of Rectangular Short-Crested Weir with Varying Slope Coefficients

    Directory of Open Access Journals (Sweden)

    Yuejun Chen

    2018-02-01

    Full Text Available Rectangular short-crested weirs are widely used for simple structure and high discharge capacity. As one of the most important and influential factors of discharge capacity, side slope can improve the hydraulic characteristics of weirs at special conditions. In order to systemically study the effects of upstream and downstream slope coefficients S1 and S2 on overflow discharge coefficient in a rectangular short-crested weir the Volume of Fluid (VOF method and the Renormalization Group (RNG κ-ε turbulence model are used. In this study, the slope coefficient ranges from V to 3H:1V and each model corresponds to five total energy heads of H0 ranging from 8.0 to 24.0 cm. Comparisons of discharge coefficients and free surface profiles between simulated and laboratory results display a good agreement. The simulated results show that the difference of discharge coefficients will decrease with upstream slopes and increase with downstream slopes as H0 increases. For a given H0, the discharge coefficient has a convex parabolic relation with S1 and a piecewise linearity relation with S2. The maximum discharge coefficient is always obtained at S2 = 0.8. There exists a difference between upstream and downstream slope coefficients in the influence range of free surface curvatures. Furthermore, a proposed discharge coefficient equation by nonlinear regression is a function of upstream and downstream slope coefficients.

  2. Aspect-Driven Changes in Slope Stability Due to Ecohydrologic Feedbacks

    Science.gov (United States)

    Poulos, M. J.; Pierce, J. L.; Flores, A. N.; Benner, S. G.; Smith, T. J.; McNamara, J. P.

    2009-12-01

    southwestern batholith, are most sensitive to aspect, with average northern slope angles of 29°, and southern slope angles of 21°. Initial assessment of ecohydrologic factors in Dry Creek finds that annual precipitation for the watershed ranges from 20-35 inches, forestation ranges from ~15% forested on south-facing slopes, to ~80% forested on north-facing slopes, and annual insolation on north-facing slopes is roughly three-fifths that for south-facing slopes. Furthermore, preliminary analysis of soil textures finds soils to contain 29-41% silt on north-facing slopes, and ~12% silt on south-facing slopes. Slope distributions from the Lochsa River basin in the northern Idaho Batholith had little contrast between slope angles; this basin, however, receives 30-70 inches of precipitation and has nearly-homogenous forest cover for all aspects. Ongoing study seeks to 1) use large-scale spatial analysis to correlate the influence of aspect on slope angles to changes in ecohydrologic conditions and 2) understand the spatial distribution and relative influence of processes that affect the weathering of slope materials, erosive processes that reduce slope angles, and cohesive forces that stabilize slopes (e.g. root strength, soil texture, and soil moisture).

  3. Alluvial cover controlling the width, slope and sinuosity of bedrock channels

    Science.gov (United States)

    Turowski, Jens Martin

    2018-02-01

    Bedrock channel slope and width are important parameters for setting bedload transport capacity and for stream-profile inversion to obtain tectonics information. Channel width and slope development are closely related to the problem of bedrock channel sinuosity. It is therefore likely that observations on bedrock channel meandering yields insights into the development of channel width and slope. Active meandering occurs when the bedrock channel walls are eroded, which also drives channel widening. Further, for a given drop in elevation, the more sinuous a channel is, the lower is its channel bed slope in comparison to a straight channel. It can thus be expected that studies of bedrock channel meandering give insights into width and slope adjustment and vice versa. The mechanisms by which bedrock channels actively meander have been debated since the beginning of modern geomorphic research in the 19th century, but a final consensus has not been reached. It has long been argued that whether a bedrock channel meanders actively or not is determined by the availability of sediment relative to transport capacity, a notion that has also been demonstrated in laboratory experiments. Here, this idea is taken up by postulating that the rate of change of both width and sinuosity over time is dependent on bed cover only. Based on the physics of erosion by bedload impacts, a scaling argument is developed to link bedrock channel width, slope and sinuosity to sediment supply, discharge and erodibility. This simple model built on sediment-flux-driven bedrock erosion concepts yields the observed scaling relationships of channel width and slope with discharge and erosion rate. Further, it explains why sinuosity evolves to a steady-state value and predicts the observed relations between sinuosity, erodibility and storm frequency, as has been observed for meandering bedrock rivers on Pacific Arc islands.

  4. Alluvial cover controlling the width, slope and sinuosity of bedrock channels

    Directory of Open Access Journals (Sweden)

    J. M. Turowski

    2018-02-01

    Full Text Available Bedrock channel slope and width are important parameters for setting bedload transport capacity and for stream-profile inversion to obtain tectonics information. Channel width and slope development are closely related to the problem of bedrock channel sinuosity. It is therefore likely that observations on bedrock channel meandering yields insights into the development of channel width and slope. Active meandering occurs when the bedrock channel walls are eroded, which also drives channel widening. Further, for a given drop in elevation, the more sinuous a channel is, the lower is its channel bed slope in comparison to a straight channel. It can thus be expected that studies of bedrock channel meandering give insights into width and slope adjustment and vice versa. The mechanisms by which bedrock channels actively meander have been debated since the beginning of modern geomorphic research in the 19th century, but a final consensus has not been reached. It has long been argued that whether a bedrock channel meanders actively or not is determined by the availability of sediment relative to transport capacity, a notion that has also been demonstrated in laboratory experiments. Here, this idea is taken up by postulating that the rate of change of both width and sinuosity over time is dependent on bed cover only. Based on the physics of erosion by bedload impacts, a scaling argument is developed to link bedrock channel width, slope and sinuosity to sediment supply, discharge and erodibility. This simple model built on sediment-flux-driven bedrock erosion concepts yields the observed scaling relationships of channel width and slope with discharge and erosion rate. Further, it explains why sinuosity evolves to a steady-state value and predicts the observed relations between sinuosity, erodibility and storm frequency, as has been observed for meandering bedrock rivers on Pacific Arc islands.

  5. An emerging methodology of slope hazard assessment for natural gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.J.; O' Neil, G.; Rizkalla, M. [TransCanada PipeLines Ltd., Calgary, AB (Canada)

    2000-07-01

    A new slope assessment methodology has been developed by TransCanada PipeLines Ltd. in an effort to switch from a reactive to a proactive hazard management approach and to optimize maintenance expenditure. The company operates 37,000 km of natural gas gathering and transmission pipelines, portions of which traverse slopes and stream crossings. The newly developed rainfall-ground movement model provides site-specific ground movement predictions for approximately 1100 slopes and establishes a risk-ranked list of slopes upon which maintenance decisions can be based. The input to the predictive model is derived from internal and public information regarding site conditions. This information serves as input to a pipe-soil interaction model to determine the probability of pipeline failure for each slope. The ground movement for this model is limited to creep-type which is typically less than 100 mm per year. Landslides are not addressed in this paper. A system-wide database has been constructed for slopes to prioritize the slope movement hazards. The slope information includes geotechnical data such as bedrock geology, surficial geology, slope details, precipitation and erosion potential. Information related to the pipeline includes the location, age, size, as well as design pressure and temperature. 13 refs., 2 figs.

  6. the Modeling of Hydraulic Jump Generated Partially on Sloping Apron

    Directory of Open Access Journals (Sweden)

    Shaker Abdulatif Jalil

    2017-12-01

    Full Text Available Modeling aims to characterize system behavior and achieve simulation close as possible of the reality. The rapid energy exchange in supercritical flow to generate quiet or subcritical flow in hydraulic jump phenomenon is important in design of hydraulic structures. Experimental and numerical modeling is done on type B hydraulic jump which starts first on sloping bed and its end on horizontal bed.  Four different apron slopes are used, for each one of these slopes the jump is generated on different locations by controlling the tail water depth.  Modelling validation is based on 120 experimental runs which they show that there is reliability. The air volume fraction which creates in through hydraulic jump varied between 0.18 and 0.28. While the energy exchanges process take place within 6.6, 6.1, 5.8, 5.5 of the average relative jump height for apron slopes of 0.18, 0.14, 0.10, 0.07 respectively. Within the limitations of this study, mathematical prediction model for relative hydraulic jump height is suggested.The model having an acceptable coefficient of determination.

  7. Submarine slope failures along the convergent continental margin of the Middle America Trench

    Science.gov (United States)

    Harders, Rieka; Ranero, CéSar R.; Weinrebe, Wilhelm; Behrmann, Jan H.

    2011-06-01

    We present the first comprehensive study of mass wasting processes in the continental slope of a convergent margin of a subduction zone where tectonic processes are dominated by subduction erosion. We have used multibeam bathymetry along ˜1300 km of the Middle America Trench of the Central America Subduction Zone and deep-towed side-scan sonar data. We found abundant evidence of large-scale slope failures that were mostly previously unmapped. The features are classified into a variety of slope failure types, creating an inventory of 147 slope failure structures. Their type distribution and abundance define a segmentation of the continental slope in six sectors. The segmentation in slope stability processes does not appear to be related to slope preconditioning due to changes in physical properties of sediment, presence/absence of gas hydrates, or apparent changes in the hydrogeological system. The segmentation appears to be better explained by changes in slope preconditioning due to variations in tectonic processes. The region is an optimal setting to study how tectonic processes related to variations in intensity of subduction erosion and changes in relief of the underthrusting plate affect mass wasting processes of the continental slope. The largest slope failures occur offshore Costa Rica. There, subducting ridges and seamounts produce failures with up to hundreds of meters high headwalls, with detachment planes that penetrate deep into the continental margin, in some cases reaching the plate boundary. Offshore northern Costa Rica a smooth oceanic seafloor underthrusts the least disturbed continental slope. Offshore Nicaragua, the ocean plate is ornamented with smaller seamounts and horst and graben topography of variable intensity. Here mass wasting structures are numerous and comparatively smaller, but when combined, they affect a large part of the margin segment. Farther north, offshore El Salvador and Guatemala the downgoing plate has no large seamounts but

  8. Conservation scenarios for olive farming on sloping land in de Mediterranean

    NARCIS (Netherlands)

    Fleskens, L.

    2007-01-01

    The future of olive farming on sloping land in the Mediterranean is uncertain. Sloping and Mountainous Olive Production Systems (SMOPS) that have been sustainable for ages have in a relatively short time frame witnessed major changes. Although remnants of many of these traditional landscapes still

  9. Coastal cliffs, rock-slope failures and Late Quaternary transgressions of the Black Sea along southern Crimea

    Science.gov (United States)

    Pánek, Tomáš; Lenart, Jan; Hradecký, Jan; Hercman, Helena; Braucher, Règis; Šilhán, Karel; Škarpich, Václav

    2018-02-01

    Rock-slope failures represent a significant hazard along global coastlines, but their chronology remains poorly documented. Here, we focus on the geomorphology and chronology of giant rockslides affecting the Crimean Mountains along the Black Sea coast. Geomorphic evidence suggests that high (>100 m) limestone cliffs flanking the southern slopes of the Crimean Mountains are scarps of rockslides nested within larger deep-seated gravitational slope deformations (DSGSDs). Such pervasive slope failures originated due to lateral spreading of intensively faulted Late Jurassic carbonate blocks moving atop weak/plastic Late Triassic flysch and tuff layers. By introducing a dating strategy relying on the combination of the uranium-thorium dating (U-Th) of exposed calcareous speleothems covering the landslide scarps with the 36Cl exposure dating of rock walls, we are able to approximate the time interval between the origin of incipient crevices and the final collapse of limestone blocks that exposed the cliff faces. For the three representative large-scale rockslides between the towns of Foros and Yalta, the initiation of the DSGSDs as evidenced by the widening of crevices and the onset of speleothem accumulation was >300 ka BP, but the recent cliff morphology along the coast is the result of Late Pleistocene/Holocene failures spanning ∼20-0.5 ka BP. The exposures of rockslide scarps occurred mostly at ∼20-15, ∼8, ∼5-4 and ∼2-0.5 ka, which substantially coincide with the last major Black Sea transgressions and/or more humid Holocene intervals. Our study suggests that before ultimate fast and/or catastrophic slope failures, the relaxation of rock massifs correlative with karstification, cracks opening, and incipient sliding lasted on the order of 104-105 years. Rapid Late Glacial/Holocene transgressions of the Black Sea likely represented the last impulse for the collapse of limestone blocks and the origin of giant rockslides, simultaneously affecting the majority

  10. The value of quantitative parameters of dynamic-enhanced MRI and the significance of the maximum linearity slope ratio in the differential diagnosis of benign and malignant breast lesions

    International Nuclear Information System (INIS)

    Ouyang Yi; Xie Chuanmiao; Wu Yaopan; Lv Yanchun; Ruan Chaomei; Zheng Lie; Peng Kangqiang; He Haoqiang; Chen Lin; Zhang Weizhang

    2008-01-01

    Objective: To find the effective quantitative parameters for the differentiation of the breast lesions using the post-processing of time-signal curve of 3D dynamic-enhanced MRI. Methods: Thirty patients with 35 lesions underwent 3D dynamic-enhanced MRI and the time-signal curve was deduced. The four quantitative parameters including SImax, PH, Slope and Slope R were analyzed in benign and malignant lesions of the breast. Independent samples t test and rank sum test were used for the statistics. Results: Seyenteen benign lesions and 18 malignant lesions were included in this study. The SImax (M) of benign and malignant lesions were 375.2 and 158.1, the 95% confidence intervals of SImax were 278.2- 506. 0 and 160.5--374. 8. The PH (M) of benign and malignant lesions were 114.4 and 87. 8, the 95% confidence intervals of PH were 73.7-196.5 and 71.3-162. 9. The Slope (M) of benign and malignant lesions were 22.3 x 10 -3 and 44.0 x 10 -3 , the 95% confidence intervals of Slope were 13.7 x 10 -3 - 41.1 x 10 -3 and 46.1 x 10 -3 -81.8 x 10 -3 . The Slopea (M) of benign and malignant lesions were 2.6 and 11.4, the 95% confidence intervals of Slopea were 1.9-3.4 and 9.8-14.5. There were no significant differences on SImax and PH between benign and malignant lesions (P>0.05). The significant differences existed on Slope (P<0.01) and Slopea (P <0.01) between benign and malignant lesions of the breast. Conclusion: Slopea is a very effective parameter in the differential diagnosis of breast lesions. (authors)

  11. Slope-velocity equilibrium and evolution of surface roughness on a stony hillslope

    Science.gov (United States)

    Nearing, Mark A.; Polyakov, Viktor O.; Nichols, Mary H.; Hernandez, Mariano; Li, Li; Zhao, Ying; Armendariz, Gerardo

    2017-06-01

    Slope-velocity equilibrium is hypothesized as a state that evolves naturally over time due to the interaction between overland flow and surface morphology, wherein steeper areas develop a relative increase in physical and hydraulic roughness such that flow velocity is a unique function of overland flow rate independent of slope gradient. This study tests this hypothesis under controlled conditions. Artificial rainfall was applied to 2 m by 6 m plots at 5, 12, and 20 % slope gradients. A series of simulations were made with two replications for each treatment with measurements of runoff rate, velocity, rock cover, and surface roughness. Velocities measured at the end of each experiment were a unique function of discharge rates, independent of slope gradient or rainfall intensity. Physical surface roughness was greater at steeper slopes. The data clearly showed that there was no unique hydraulic coefficient for a given slope, surface condition, or rainfall rate, with hydraulic roughness greater at steeper slopes and lower intensities. This study supports the hypothesis of slope-velocity equilibrium, implying that use of hydraulic equations, such as Chezy and Manning, in hillslope-scale runoff models is problematic because the coefficients vary with both slope and rainfall intensity.

  12. Slope of the Slope Derivative Surface used to characterize the complexity of the seafloor around St. John, USVI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope of slope was calculated from the bathymetry surface for each raster cell by applying the ArcGIS Spatial Analyst 'Slope' Tool to a previously created slope...

  13. The empirical slippery slope from voluntary to non-voluntary euthanasia.

    Science.gov (United States)

    Lewis, Penney

    2007-01-01

    This article examines the evidence for the empirical argument that there is a slippery slope between the legalization of voluntary and non-voluntary euthanasia. The main source of evidence in relation to this argument comes from the Netherlands. The argument is only effective against legalization if it is legalization which causes the slippery slope. Moreover, it is only effective if it is used comparatively-to show that the slope is more slippery in jurisdictions which have legalized voluntary euthanasia than it is in jurisdictions which have not done so. Both of these elements are examined comparatively.

  14. A study of three-dimensional gravity currents on a uniform slope

    Science.gov (United States)

    Ross, Andrew N.; Linden, P. F.; Dalziel, Stuart B.

    2002-02-01

    In many geophysical, environmental and industrial situations, a finite volume of fluid with a density different to the ambient is released on a sloping boundary. This leads to the formation of a gravity current travelling up, down and across the slope. We present novel laboratory experiments in which the dense fluid spreads both down-slope (and initially up-slope) and laterally across the slope. The position, shape and dilution of the current are determined through video and conductivity measurements for moderate slopes (5° to 20°). The entrainment coefficient for different slopes is calculated from the experimental results and is found to depend very little on the slope. The value agrees well with previously published values for entrainment into gravity currents on a horizontal surface. The experimental measurements are compared with previous shallow-water models and with a new wedge integral model developed and presented here. It is concluded that these simplified models do not capture all the significant features of the flow. In the models, the current takes the form of a wedge which travels down the slope, but the experiments show the formation of a more complicated current. It is found that the wedge integral model over-predicts the length and width of the gravity current but gives fair agreement with the measured densities in the head. The initial stages of the flow, during which time the wedge shape develops, are studied. It is found that although the influence of the slope is seen relatively quickly for moderate slopes, the time taken for the wedge to develop is much longer. The implications of these findings for safety analysis are briefly discussed.

  15. [Composition and stability of soil aggregates in hedgerow-crop slope land].

    Science.gov (United States)

    Pu, Yu-Lin; Lin, Chao-Wen; Xie, De-Ti; Wei, Chao-Fu; Ni, Jiu-Pai

    2013-01-01

    Based on a long-term experiment of using hedgerow to control soil and water loss, this paper studied the composition and stability of soil aggregates in a hedgerow-crop slope land. Compared with those under routine contour cropping, the contents of > 0.25 mm soil mechanical-stable and water-stable aggregates under the complex mode hedgerow-crop increased significantly by 13.3%-16.1% and 37.8% -55.6%, respectively. Under the complex mode, the contents of > 0.25 mm soil water-stable aggregates on each slope position increased obviously, and the status of > 0.25 mm soil water-stable aggregates being relatively rich at low slope and poor at top slope was improved. Planting hedgerow could significantly increase the mean mass diameter and geometric mean diameter of soil aggregates, decrease the fractal dimension of soil aggregates and the destruction rate of > 0.25 mm soil aggregates, and thus, increase the stability and erosion-resistance of soil aggregates in slope cropland. No significant effects of slope and hedgerow types were observed on the composition, stability and distribution of soil aggregates.

  16. Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.

  17. Analysis of unavailability related to demand failures as a function of the testing interval

    International Nuclear Information System (INIS)

    Carretero, J.A.; Pereira, M.B.; Perez Lobo, E.M.

    1998-01-01

    The unavailability related to the demand failure of a component is the sum of the contributions of the failures in demand and in waiting. An important point in PSAs is the calculation of unavailabilities of the basic events of demand failure. Several criteria are used for this, with the objective of simplifying said quantification. The information available from two nuclear power plants has been analysed, in order to determine the tendency in the models in demand and in waiting, as a function of the test intervals, the following conclusions were obtained: - There is a clear tendency for the possibility of failure in demand to increase as the interval between tests increases - The test intervals considered in PSAs are not always coherent with the estimates of real demand; this implies a penalty when using the in waiting model, due to the underlying conservatism Therefore, increasing the intervals between tests over time (a tendency studied in nuclear power plants)could cause demand due to tests to b e significantly less than that due to real actuations. This implies a need to apply test intervals based on historic demands and not on those due to historic tests, in order to avoid conservatism. (Author)

  18. Relative contributions of wind and water erosion to total soil loss and its effect on soil properties in sloping croplands of the Chinese Loess Plateau.

    Science.gov (United States)

    Tuo, Dengfeng; Xu, Mingxiang; Gao, Guangyao

    2018-08-15

    Wind and water erosion are two dominant types of erosion that lead to soil and nutrient losses. Wind and water erosion may occur simultaneously to varying extents in semi-arid regions. The contributions of wind and water erosion to total erosion and their effects on soil quality, however, remains elusive. We used cesium-137 ( 137 Cs) inventories to estimate the total soil erosion and used the Revised Universal Soil Loss Equation (RUSLE) to quantify water erosion in sloping croplands. Wind erosion was estimated from the subtraction of the two. We also used 137 Cs inventories to calculate total soil erosion and validate the relationships of the soil quality and erosion at different slope aspects and positions. The results showed that wind erosion (1460tkm -2 a -1 ) on northwest-facing slope was responsible for approximately 39.7% of the total soil loss, and water erosion (2216tkm -2 a -1 ) accounted for approximately 60.3%. The erosion rates were 58.8% higher on northwest- than on southeast-facing slopes. Northwest-facing slopes had lower soil organic carbon, total nitrogen, clay, and silt contents than southeast-facing slopes, and thus, the 137 Cs inventories were lower, and the total soil erosions were higher on the northwest-facing slopes. The variations in soil physicochemical properties were related to total soil erosion. The lowest 137 Cs inventories and nutrient contents were recorded at the upper positions on the northwest-facing slopes due to the successive occurrence of more severe wind and water erosion at the same site. The results indicated that wind and water could accelerate the spatial variability of erosion rate and soil properties and cause serious decreases in the nutrient contents in sloping fields. Our research could help researchers develop soil strategies to reduce soil erosion according to the dominant erosion type when it occurs in a hilly agricultural area. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The stability of locus equation slopes across stop consonant voicing/aspiration

    Science.gov (United States)

    Sussman, Harvey M.; Modarresi, Golnaz

    2004-05-01

    The consistency of locus equation slopes as phonetic descriptors of stop place in CV sequences across voiced and voiceless aspirated stops was explored in the speech of five male speakers of American English and two male speakers of Persian. Using traditional locus equation measurement sites for F2 onsets, voiceless labial and coronal stops had significantly lower locus equation slopes relative to their voiced counterparts, whereas velars failed to show voicing differences. When locus equations were derived using F2 onsets for voiced stops that were measured closer to the stop release burst, comparable to the protocol for measuring voiceless aspirated stops, no significant effects of voicing/aspiration on locus equation slopes were observed. This methodological factor, rather than an underlying phonetic-based explanation, provides a reasonable account for the observed flatter locus equation slopes of voiceless labial and coronal stops relative to voiced cognates reported in previous studies [Molis et al., J. Acoust. Soc. Am. 95, 2925 (1994); O. Engstrand and B. Lindblom, PHONUM 4, 101-104]. [Work supported by NIH.

  20. Percent Agricultural Land Cover on Steep Slopes (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type....

  1. Wind-driven export of Weddell Sea slope water

    Science.gov (United States)

    Meijers, A. J. S.; Meredith, M. P.; Abrahamsen, E. P.; Morales Maqueda, M. A.; Jones, D. C.; Naveira Garabato, A. C.

    2016-10-01

    The export of waters from the Weddell Gyre to lower latitudes is an integral component of the southern subpolar contribution to the three-dimensional oceanic circulation. Here we use more than 20 years of repeat hydrographic data on the continental slope on the northern tip of the Antarctic Peninsula and 5 years of bottom lander data on the slope at 1000 m to show the intermittent presence of a relatively cold, fresh, westward flowing current. This is often bottom-intensified between 600 and 2000 dbar with velocities of over 20 cm s-1, transporting an average of 1.5 ± 1.5 Sv. By comparison with hydrography on the continental slope within the Weddell Sea and modeled tracer release experiments we show that this slope current is an extension of the Antarctic Slope Current that has crossed the South Scotia Ridge west of Orkney Plateau. On monthly to interannual time scales the density of the slope current is negatively correlated (r > 0.6 with a significance of over 95%) with eastward wind stress over the northern Weddell Sea, but lagging it by 6-13 months. This relationship holds in both the high temporal resolution bottom lander time series and the 20+ year annual hydrographic occupations and agrees with Weddell Sea export variability observed further east. We compare several alternative hypotheses for this wind stress/export relationship and find that it is most consistent with wind-driven acceleration of the gyre boundary current, possibly modulated by eddy dynamics, and represents a mechanism by which climatic perturbations can be rapidly transmitted as fluctuations in the supply of intermediate-level waters to lower latitudes.

  2. Comparing Potential Unstable Sites and Stable Sites on Revegetated Cut-Slopes of Mountainous Terrain in Korea

    Directory of Open Access Journals (Sweden)

    Sung-Ho Kil

    2015-11-01

    Full Text Available This study employs a diverse set of variables to explain slope stabilization on stable versus failure-prone revegetated cut-slopes in Korea. A field survey was conducted at potential unstable sites and stable sites using 23 variables. Through a non-parametric test of the field survey results, 15 variables were identified as primary determinants of slope failure. Of these variables, one described physical characteristics (elapsed year; four variables described vegetation properties (plant community, vegetation coverage rate, number of trees, and number of herbs; and 10 variables represented soil properties (porosity, soil hardness, water content, sand ratio and silt ratio of soil texture, tensile strength, permeability coefficient, soil depth, soil acidity, salt concentration, and organic matter. Slope angle, which was mainly considered in previous studies, of variables in physical characteristics was not statistically selected as one of the 15 variables because most of sites were located on steep slopes. The vegetation community, vegetation coverage, and number of trees influence slope stabilization. Vegetation coverage is highly correlated with other soil and vegetation variables, making it a major indicator of slope stabilization. All soil variables were related to slope failure such that subsequent slope failure was related to the method of slope revegetation rather than the environmental condition of the slope. Slope failure did not occur in revegetated slopes that matched the characteristics of the surrounding landscape and contained a large number of native trees. Most soil and vegetation variables showed differing values for whether a revegetated slope is potentially unstable or stable.

  3. Observations and models of simple nocturnal slope flows

    International Nuclear Information System (INIS)

    Doran, J.C.; Horst, J.W.

    1983-01-01

    Measurements of simple nocturnal slope winds were taken on Rattlesnake Mountain, a nearly ideal two-dimensional ridge. Tower and tethered balloon instrumentation allowed the determination of the wind and temperature characteristics of the katabatic layer as well as the ambient conditions. Two cases were chosen for study; these were marked by well-defined surface-based temperature inversions and a low-level maximum in the downslope wind component. The downslope development of the slope flow could be determined from the tower measurements, and showed a progressive strenghtening of the katabatic layer. Hydraulic models developed by Manins and Sawford (1979a) and Briggs (1981) gave useful estimates of drainage layer depths, but were not otherwise applicable. A simple numerical model that relates the eddy diffusivity to the local turbulent kinetic energy was found to give good agreement with the observed wind and temperature profiles of the slope flows

  4. Cyclic settlement behavior of strip footings resting on reinforced layered sand slope

    Directory of Open Access Journals (Sweden)

    Mostafa A. El Sawwaf

    2012-10-01

    Full Text Available The paper presents a study of the behavior of model strip footings supported on a loose sandy slope and subjected to both monotonic and cyclic loads. The effects of the partial replacement of a compacted sand layer and the inclusion of geosynthetic reinforcement were investigated. Different combinations of the initial monotonic loads and the amplitude of cyclic loads were chosen to simulate structures in which loads change cyclically such as machine foundations. The affecting factors including the location of footing relative to the slope crest, the frequency of the cyclic load and the number of load cycles were studied. The cumulative cyclic settlement of the model footing supported on a loose sandy slope, un-reinforced and reinforced replaced sand deposits overlying the loose slope were obtained and compared. Test results indicate that the inclusion of soil reinforcement in the replaced sand not only significantly increases the stability of the sandy slope itself but also decreases much both the monotonic and cumulative cyclic settlements leading to an economic design of the footings. However, the efficiency of the sand–geogrid systems depends on the properties of the cyclic load and the location of the footing relative to the slope crest. Based on the test results, the variation of cumulative settlements with different parameters is presented and discussed.

  5. EFFECTS OF SLOPE SHAPES ON SOIL EROSION

    Directory of Open Access Journals (Sweden)

    Hüseyin ŞENSOY, Şahin PALTA

    2009-01-01

    Full Text Available Water is one of the most important erosive forces. A great number of factors also play a role in erosion process and slope characteristic is also one of them. The steepness and length of the slope are important factors for runoff and soil erosion. Another slope factor that has an effect on erosion is the shape of the slope. Generally, different erosion and runoff characteristics exist in different slopes which can be classified as uniform, concave, convex and complex shape. In this study, the effects of slope shape on erosion are stated and emphasized by taking similar researches into consideration.

  6. Rock slopes and reservoirs - lessons learned

    International Nuclear Information System (INIS)

    Moore, D.P.

    1999-01-01

    Lessons learned about slope stability in the course of four decades of monitoring, and in some cases stabilizing, slopes along British Columbia's hydroelectric reservoirs are discussed. The lessons are illustrated by short case histories of some of the more important slopes such as Little Chief Slide, Dutchman's Ridge, Downie Slide, Checkerboard Creek and Wahleach. Information derived from the monitoring and other investigations are compared with early interpretations of geology and slope performance. The comparison serves as an indicator of progress in slope stability determination and as a measure of the value of accumulated experience in terms of the potential consequences to safety and cost savings over the long life-span of hydroelectric projects.14 refs., 2 tabs., 15 figs

  7. Centrifuge model test of rock slope failure caused by seismic excitation. Plane failure of dip slope

    International Nuclear Information System (INIS)

    Ishimaru, Makoto; Kawai, Tadashi

    2008-01-01

    Recently, it is necessary to assess quantitatively seismic safety of critical facilities against the earthquake induced rock slope failure from the viewpoint of seismic PSA. Under these circumstances, it is essential to evaluate more accurately the possibilities of rock slope failure and the potential failure boundary, which are triggered by earthquake ground motions. The purpose of this study is to analyze dynamic failure characteristics of rock slopes by centrifuge model tests for verification and improvement of the analytical methods. We conducted a centrifuge model test using a dip slope model with discontinuities limitated by Teflon sheets. The centrifugal acceleration was 50G, and the acceleration amplitude of input sin waves increased gradually at every step. The test results were compared with safety factors of the stability analysis based on the limit equilibrium concept. Resultant conclusions are mainly as follows: (1) The slope model collapsed when it was excited by the sine wave of 400gal, which was converted to real field scale, (2) Artificial discontinuities were considerably concerned in the collapse, and the type of collapse was plane failure, (3) From response acceleration records observed at the slope model, we can say that tension cracks were generated near the top of the slope model during excitation, and that might be cause of the collapse, (4) By considering generation of the tension cracks in the stability analysis, correspondence of the analytical results and the experimental results improved. From the obtained results, we need to consider progressive failure in evaluating earthquake induced rock slope failure. (author)

  8. Effect of Angle of Attack on Slope Climbing Performance

    Science.gov (United States)

    Creager, Colin M.; Jones, Lucas; Smith, Lauren M.

    2017-01-01

    Ascending steep slopes is often a very difficult challenge for off-road vehicles, whether on Earth or on extraterrestrial bodies. This challenge is even greater if the surface consists of loose granular soil that does not provide much shear strength. This study investigated how the path at which a vehicle traverses a slope, specifically the angle that it is commanded to drive relative to the base of the hill (the angle of attack), can affect its performance. A vehicle was driven in loose sand at slope angles up to 15 degrees and angles of attack ranging from 10 to 90 degrees. A novel photogrammetry technique was implemented to both track vehicle motion and create a three-dimensional profile of the terrain. This allowed for true wheel sinkage measurements. The study showed that though low angles of attack result in lower wheel slip and sinkage, the efficiency of the vehicles uphill motion increased at higher angles of attack. For slopes up to 15 degrees, a 90 degree angle of attack provided the greatest likelihood of successful ascent.

  9. The Impact of Vegetative Slope on Water Flow and Pollutant Transport through Embankments

    Directory of Open Access Journals (Sweden)

    Liting Sheng

    2017-06-01

    Full Text Available Embankments are common structures along rivers or lakes in riparian zones in plain areas. They should have natural slopes instead of slopes covered by concrete or other hard materials, in order to rebuild sustainable ecosystems for riparian zones. This study was conducted to evaluate the effects of vegetative slopes on water flow and pollutant transport through the embankments. Three embankments with different slope treatments (a bare slope, a slope covered in centipede grass, a slope covered in tall fescue were examined, and three inflow applications of pollute water with different concentration of total nitrogen (TN and total phosphorus (TP used to simulate different agricultural non-point pollution levels. The results showed that the water flux rates of the three embankments were relatively stable under all inflow events, and almost all values were higher than 80%. The embankments with vegetative slopes had better nitrogen removal than the bare slope under all events, and the one with tall fescue slope was best, but the benefits of vegetative slopes decreased with increasing inflow concentration. Moreover, there were no significant differences between the embankments on phosphorus removal, for which the reductions were all high (above 90% with most loads remaining in the front third of embankment bodies. Overall, the embankments with vegetative slopes had positive effects on water exchange and reducing non-point pollutant into lake or river water, which provides a quantitative scientific basis for the actual layout of lakeshores.

  10. A unique mountainous vertical distribution patterns and related environmental interpretation-a case study on the northern slope of the ili river valley

    International Nuclear Information System (INIS)

    Tian, Z.P.; Wang, X.L.; Zhuang, L.

    2016-01-01

    Patterns of plant diversity and soil factors along the altitude gradient on the northern slope of Ili River Valley were examined. Plant and environment characteristics were surveyed from 1000-2200 m. There were a total of 155 vascular plant, 133 herbage, 18 shrub, and 7 tree species in 44 sampled plots. The plant richness of vegetation types generally showed a special pattern along altitude, with a bimodal change of plant species number at 100m intervals of altitude samples. The two belts of higher plant richness were in transient areas between vegetation types, the first in areas from low-mountain desert to forest, and the other from dry grass to coniferous forest. Matching the change of richness of plant species to environmental factors along altitude by GAM model and relation analysis revealed that the environmental factors controlling species richness and their patterns were the combined effects of soil salt and nutrition. Water was more important at lower altitude, and temperature at higher altitude, the role of the inversion layer at high altitude coniferous forest species diversity appearing to rise. Soil nutrition and salt also showed a similar distribution pattern of diversity. Especially, diversity index and soil salinity showed a strong correlation. This study provides insights into plant diversity conservation of ili River Valley in Tianshan Mountain. (author)

  11. Tiltmeter Indicates Sense of Slope

    Science.gov (United States)

    Lonborg, J. O.

    1985-01-01

    Tiltmeter indicates sense and magnitude of slope used in locations where incline not visible to operator. Use of direct rather than alternating current greatly simplifies design of instrument capable of indicating sense of slope.

  12. [Distribution of 137Cs and relative influencing factors on typical karst sloping land].

    Science.gov (United States)

    Zhang, Xiao-Nan; Wang, Ke-Lin; Zhang, Wei; Chen, Hong-Song; He, Xun-Yang; Zhang, Xin-Bao

    2009-11-01

    Based on the field survey and the analysis of a large number of soil samples, the distribution of 137 Cs and its influencing factors were studied using 137 Cs tracer technology on typical karst sloping land. The results indicate that the distribution of 137 Cs in soil profile in karst areas show the similar characteristics as that in non-karst areas, fitted an exponential pattern in forest soils and a uniform pattern in cultivated soils. In the sinkhole points in karst areas, 137 Cs exists in deep soil layers and its specific activity vary from 1.7 to 3.3 Bq/kg in soil layers above 45cm, suggesting the existing soil around karst sinkhole is mainly formed by the accumulation of erosion materials. The 137 Cs specific activity in the soil from two rock cracks are 16.8 Bq/kg and 37.6 Bq/kg respectively, which are much higher than that in the soil around the rock, this phenomenon indicates that bare rock is an important influencing factor for 137 Cs spatial movement. With the increment of altitude, the 137 Cs area activity exhibits an irregular fluctuation and evident spatial heterogeneity. On the forest land, the 137 Cs area activities which range from 299.4 to 1 592.6 Bq/m2 are highly positively correlated with the slope gradient and positively correlated with the altitude; while on the cultivated land, the 137 Cs area activities which range from 115.8 to 1478.6 Bq/m2 are negatively correlated with the slope gradient but negatively correlated with the altitude. Topography, geomorphology and human disturbance intensity are the key factors influencing 137 Cs spatial distribution.

  13. Overpressure, Flow Focusing, Compaction and Slope Stability on the continental slope: Insights from IODP Expedition 308

    Science.gov (United States)

    Flemings, P. B.

    2010-12-01

    Integrated Ocean Drilling Program Expepedition 308 used direct measurements of pore pressure, analysis of hydromechanical properties, and geological analysis to illuminate how sedimentation, flow focusing, overpressure, and slope stability couple beneath the seafloor on the deepwater continental slope in the Gulf of Mexico. We used pore pressure penetrometers to measure severe overpressures (60% of the difference between lithostatic stress and hydrostatic pressure) that extend from the seafloor for 100’s of meters. We ran uniaxial consolidation experiments on whole core and found that although permeability is relatively high near the seafloor, the sediments are highly compressible. As a result, the coefficient of consolidation (the hydraulic diffusivity) is remarkably constant over a large range of effective stresses. This behavior accounts for the high overpressure that begins near the seafloor and extends to depth. Forward modeling suggests that flow is driven laterally along a permeable unit called the Blue Unit. Calculations suggest that soon after deposition, lateral flow lowered the effective stress and triggered the submarine landslides that we observe. Later in the evolution of this system, overpressure may have pre-conditioned the slope to failure by earthquakes. Results from IODP Expedition 308 illustrate how pore pressure and sedimentation control the large-scale form of continental margins, how submarine landslides form, and provide strategies for designing stable drilling programs.

  14. Slope stability probability classification, Waikato Coal Measures, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, P.; Gillard, G.R.; Moore, T.A. [CRL Energy, PO Box 29-415, Christchurch (New Zealand); Campbell, R.N.; Fergusson, D.A. [Solid Energy North, Private Bag 502, Huntly (New Zealand)

    2001-01-01

    Ferm classified lithological units have been identified and described in the Waikato Coal Measures in open pits in the Waikato coal region. These lithological units have been classified geotechnically by mechanical tests and discontinuity measurements. Using these measurements slope stability probability classifications (SSPC) have been quantified based on an adaptation of Hack's [Slope Stability Probability Classification, ITC Delft Publication, Enschede, Netherlands, vol. 43, 1998, 273 pp.] SSPC system, which places less influence on rock quality designation and unconfined compressive strength than previous slope/rock mass rating systems. The Hack weathering susceptibility rating has been modified by using chemical index of alteration values determined from XRF major element analyses. Slaking is an important parameter in slope stability in the Waikato Coal Measures lithologies and hence, a non-subjective method of assessing slaking in relation to the chemical index of alteration has been introduced. Another major component of this adapted SSPC system is the inclusion of rock moisture content effects on slope stability. The main modifications of Hack's SSPC system are the introduction of rock intact strength derived from the modified Mohr-Coulomb failure criterion, which has been adapted for varying moisture content, weathering state and confining pressure. It is suggested that the subjectivity in assessing intact rock strength within broad bands in the initial SSPC system is a major weakness of the initial system. Initial results indicate a close relationship between rock mass strength values, calculated from rock mass friction angles and rock mass cohesion values derived from two established rock mass classification methods (modified Hoek-Brown failure criteria and MRMR) and the adapted SSPC system. The advantage of the modified SSPC system is that slope stability probabilities based on discontinuity-independent and discontinuity-dependent data and a

  15. Slope mass rating and kinematic analysis of slopes along the national highway-58 near Jonk, Rishikesh, India

    Directory of Open Access Journals (Sweden)

    Tariq Siddique

    2015-10-01

    Full Text Available The road network in the Himalayan terrain, connecting remote areas either in the valleys or on the hill slopes, plays a pivotal role in socio-economic development of India. The planning, development and even maintenance of road and rail networks in such precarious terrains are always a challenging task because of complexities posed by topography, geological structures, varied lithology and neotectonics. Increasing population and construction of roads have led to destabilisation of slopes, thus leading to mass wasting and movement, further aggravation due to recent events of cloud bursts and unprecedented flash floods. Vulnerability analysis of slopes is an important component for the “Landslide Hazard Assessment” and “Slope Mass Characterisation” guide planners to predict and choose suitable ways for construction of roads and other engineering structures. The problem of landslides along the national highway-58 (NH-58 from Rishikesh to Devprayag is a common scene. The slopes along the NH-58 between Jonk and Rishikesh were investigated, which experienced very heavy traffic especially from March to August due to pilgrimage to Kedarnath shrine. On the basis of slope mass rating (SMR investigation, the area falls in stable class, and landslide susceptibility score (LSS values also indicate that the slopes under investigation fall in low to moderate vulnerability to landslide. More attentions should be paid to the slopes to achieve greater safe and economic benefits along the highway.

  16. Circadian profile of QT interval and QT interval variability in 172 healthy volunteers

    DEFF Research Database (Denmark)

    Bonnemeier, Hendrik; Wiegand, Uwe K H; Braasch, Wiebke

    2003-01-01

    of sleep. QT and R-R intervals revealed a characteristic day-night-pattern. Diurnal profiles of QT interval variability exhibited a significant increase in the morning hours (6-9 AM; P ... lower at day- and nighttime. Aging was associated with an increase of QT interval mainly at daytime and a significant shift of the T wave apex towards the end of the T wave. The circadian profile of ventricular repolarization is strongly related to the mean R-R interval, however, there are significant...

  17. Numerical computation of homogeneous slope stability.

    Science.gov (United States)

    Xiao, Shuangshuang; Li, Kemin; Ding, Xiaohua; Liu, Tong

    2015-01-01

    To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS) to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM) and particle swarm optimization algorithm (PSO) to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759) were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS).

  18. Real time monitoring of slope condition for transmission tower safety in Kenyir, Malaysia

    Science.gov (United States)

    Omar, R. C.; Ismail, A.; Khalid, N. H. N.; Din, N. M.; Hussain, H.; Jamaludin, M. Z.; Abdullah, F.; Arazad, A. Z.; Yusop, H.

    2013-06-01

    The Malaysia national electricity grid traverses throughout the nation over urban and rural areas including mountainous terrain. A major number of the transmission towers have been in existence for over 40 years and some traversed through very remote and high altitude areas like the Titiwangsa range that forms the backbone of the Malay Peninsula. This paper describes the instrumentation and real time monitoring in a transmission tower site in Kenyir, a hilly terrain in the East Coast of Malaysia. The site itself which is between 300-500m above sea level is deep in the rainforest area of Kenyir. The site and surrounding areas has been identified with signs of slope failure. A design concern is the real time slope monitoring sensors reliability and data integrity from the remote area with potential interference to the electronics equipment from the power line. The monitoring system comprised of an automated system for collecting and reporting field monitoring data. The instruments collect readings and transmit real time through GSM to the monitoring office over designated intervals. This initiative is a part of a project on developing an early warning system for monitoring landslide hazards at selected transmission towers. This paper reviews the various instrumentation used and challenges faced and the output received for slope movement warnings.

  19. Real time monitoring of slope condition for transmission tower safety in Kenyir, Malaysia

    International Nuclear Information System (INIS)

    Omar, R C; Ismail, A; Khalid, N H N; Din, N M; Hussain, H; Jamaludin, M Z; Abdullah, F; Arazad, A Z; Yusop, H

    2013-01-01

    The Malaysia national electricity grid traverses throughout the nation over urban and rural areas including mountainous terrain. A major number of the transmission towers have been in existence for over 40 years and some traversed through very remote and high altitude areas like the Titiwangsa range that forms the backbone of the Malay Peninsula. This paper describes the instrumentation and real time monitoring in a transmission tower site in Kenyir, a hilly terrain in the East Coast of Malaysia. The site itself which is between 300–500m above sea level is deep in the rainforest area of Kenyir. The site and surrounding areas has been identified with signs of slope failure. A design concern is the real time slope monitoring sensors reliability and data integrity from the remote area with potential interference to the electronics equipment from the power line. The monitoring system comprised of an automated system for collecting and reporting field monitoring data. The instruments collect readings and transmit real time through GSM to the monitoring office over designated intervals. This initiative is a part of a project on developing an early warning system for monitoring landslide hazards at selected transmission towers. This paper reviews the various instrumentation used and challenges faced and the output received for slope movement warnings.

  20. Geometry and significance of stacked gullies on the northern California slope

    Science.gov (United States)

    Field, M.E.; Gardner, J.V.; Prior, D.B.

    1999-01-01

    Recent geophysical surveys off northern California reveal patterns of gullies on the sea floor and preserved within continental-slope deposits that represent both erosional and aggradational processes. These surveys, conducted as part of the STRATAFORM project, combined multibeam bathymetry and backscatter with high-resolution seismic profiles. These data provide a new basis for evaluating gully morphology, distribution, and their significance to slope sedimentation and evolution. The continental margin off northern California exhibits an upper slope that has undergone both progradation and aggradation. The slope surface, which dips at sea floor. These erosional gullies locally truncate individual reflectors, have small depositional levees, and exhibit greater relief than do overlying gullies exposed on the sea floor. The older subsurface gullies document a period of widespread, but minor, erosion and downslope transport, presumably from a large, proximal sediment source. The cycles of downcutting and gully excavation are a minor part of the stratigraphic section, and are likely related to the combined influence of lower sea levels and higher sediment yields. During aggradation of the slope depositional sequences, sediment was draped over the gully features, producing sediment layers that mimic the underlying gully form. Consequently, gully morphology and geometries were preserved and migrated upwards with time. The processes that produce aggraded gully drape also resulted in laterally continuous strata and were most likely related to a period when the sediment source was dispersed from a more distal (10s of km) source, such as during present conditions. The draped sequences also contain a few new gullies, which indicates that gullies can be initiated at all or most stages of slope growth.

  1. Linear chirped slope profile for spatial calibration in slope measuring deflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Siewert, F., E-mail: frank.siewert@helmholtz-berlin.de; Zeschke, T. [Helmholtz Zentrum Berlin für Materialien und Energie, Institut für Nanometer Optik und Technologie, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Arnold, T.; Paetzelt, H. [Leibnitz Institut für Oberflächen Modifizierung Leipzig e.V., IOM, Permoserstr. 15, 04318 Leipzig (Germany); Yashchuk, V. V. [Lawerence Berkeley National Laboratory, Advanced Light Source, 1 Cyclotron Road, Berkeley, California 94720 (United States)

    2016-05-15

    Slope measuring deflectometry is commonly used by the X-ray optics community to measure the long-spatial-wavelength surface figure error of optical components dedicated to guide and focus X-rays under grazing incidence condition at synchrotron and free electron laser beamlines. The best performing instruments of this kind are capable of absolute accuracy on the level of 30-50 nrad. However, the exact bandwidth of the measurements, determined at the higher spatial frequencies by the instrument’s spatial resolution, or more generally by the instrument’s modulation transfer function (MTF) is hard to determine. An MTF calibration method based on application of a test surface with a one-dimensional (1D) chirped height profile of constant amplitude was suggested in the past. In this work, we propose a new approach to designing the test surfaces with a 2D-chirped topography, specially optimized for MTF characterization of slope measuring instruments. The design of the developed MTF test samples based on the proposed linear chirped slope profiles (LCSPs) is free of the major drawback of the 1D chirped height profiles, where in the slope domain, the amplitude strongly increases with the local spatial frequency of the profile. We provide the details of fabrication of the LCSP samples. The results of first application of the developed test samples to measure the spatial resolution of the BESSY-NOM at different experimental arrangements are also presented and discussed.

  2. The experimental study of hydrodynamic characteristics of the overland flow on a slope with three-dimensional Geomat

    Science.gov (United States)

    Wang, Guang-yue; Sun, Guo-rui; Li, Jian-kang; Li, Jiong

    2018-02-01

    The hydrodynamic characteristics of the overland flow on a slope with a three-dimensional Geomat are studied for different rainfall intensities and slope gradients. The rainfall intensity is adjusted in the rainfall simulation system. It is shown that the velocity of the overland flow has a strong positive correlation with the slope length and the rainfall intensity, the scour depth decreases with the increase of the slope gradient for a given rainfall intensity, and the scour depth increases with the increase of the rainfall intensity for a given slope gradient, the overland flow starts with a transitional flow on the top and finishes with a turbulent flow on the bottom on the slope with the three-dimensional Geomat for different rainfall intensities and slope gradients, the resistance coefficient and the turbulent flow Reynolds number are in positively related logarithmic functions, the resistance coefficient and the slope gradient are in positively related power functions, and the trend becomes leveled with the increase of the rainfall intensity. This study provides some important theoretical insight for further studies of the hydrodynamic process of the erosion on the slope surface with a three-dimensional Geomat.

  3. Assessment of soil erosion and conservation on agricultural sloping lands using plot data in the semi-arid hilly loess region of China

    Directory of Open Access Journals (Sweden)

    T.X. Zhu

    2014-11-01

    New hydrological insights for the region: The results revealed that runoff per unit area slightly increased with slope angle on SSP, but reached a maximum at 15° and then decreased with slope angle on LSP. Soil loss per unit area increased with slope angle on both SSP and LSP. An average of 36.4% less runoff but only 3.6% less soil loss per unit area was produced on LSP than on SSP. The S factor calculated using the slope factor equations in USLE/RUSLE was significantly greater than that estimated from the measured soil loss on the plots. Rainstorms with recurrence intervals greater than 2 years were responsible for more than two thirds of the total soil and water loss. The effectiveness in reducing surface runoff by five types of conservation practices was mixed. However, all the conservation practices yielded much less soil loss than cropland.

  4. Item Strength Influences Source Confidence and Alters Source Memory zROC Slopes

    Science.gov (United States)

    Starns, Jeffrey J.; Ksander, John C.

    2016-01-01

    Increasing the number of study trials creates a crossover pattern in source memory zROC slopes; that is, the slope is either below or above 1 depending on which source receives stronger learning. This pattern can be produced if additional learning affects memory processes such as the relative contribution of recollection and familiarity to source…

  5. GEOSPATIAL DATA INTEGRATION FOR ASSESSING LANDSLIDE HAZARD ON ENGINEERED SLOPES

    Directory of Open Access Journals (Sweden)

    P. E. Miller

    2012-07-01

    Full Text Available Road and rail networks are essential components of national infrastructures, underpinning the economy, and facilitating the mobility of goods and the human workforce. Earthwork slopes such as cuttings and embankments are primary components, and their reliability is of fundamental importance. However, instability and failure can occur, through processes such as landslides. Monitoring the condition of earthworks is a costly and continuous process for network operators, and currently, geospatial data is largely underutilised. The research presented here addresses this by combining airborne laser scanning and multispectral aerial imagery to develop a methodology for assessing landslide hazard. This is based on the extraction of key slope stability variables from the remotely sensed data. The methodology is implemented through numerical modelling, which is parameterised with the slope stability information, simulated climate conditions, and geotechnical properties. This allows determination of slope stability (expressed through the factor of safety for a range of simulated scenarios. Regression analysis is then performed in order to develop a functional model relating slope stability to the input variables. The remotely sensed raster datasets are robustly re-sampled to two-dimensional cross-sections to facilitate meaningful interpretation of slope behaviour and mapping of landslide hazard. Results are stored in a geodatabase for spatial analysis within a GIS environment. For a test site located in England, UK, results have shown the utility of the approach in deriving practical hazard assessment information. Outcomes were compared to the network operator’s hazard grading data, and show general agreement. The utility of the slope information was also assessed with respect to auto-population of slope geometry, and found to deliver significant improvements over the network operator’s existing field-based approaches.

  6. The study on length and diameter ratio of nail as preliminary design for slope stabilization

    Science.gov (United States)

    Gunawan, Indra; Silmi Surjandari, Niken; Muslih Purwana, Yusep

    2017-11-01

    Soil nailing technology has been widely applied in practice for reinforced slope. The number of studies for the effective design of nail-reinforced slopes has also increased. However, most of the previous study was focused on a safety factor of the slope; the ratio of length and diameter itself has likely never been studied before. The aim of this study is to relate the length and diameter ratio of the nail with the safety factor of the 20 m height of sand slope in the various angle of friction and steepness of the slope. Simplified Bishop method was utilized to analyze the safety factor of the slope. This study is using data simulation to calculate the safety factor of the slope with soil nailing reinforcement. The results indicate that safety factor of slope stability increases with the increase of length and diameter ratio of the nail. At any angle of friction and steepness of the slope, certain effective length and diameter ratio was obtain. These results may be considered as a preliminary design for slope stabilization.

  7. Study on the response of unsaturated soil slope based on the effects of rainfall intensity and slope angle

    Science.gov (United States)

    Ismail, Mohd Ashraf Mohamad; Hamzah, Nur Hasliza

    2017-07-01

    Rainfall has been considered as the major cause of the slope failure. The mechanism leading to slope failures included the infiltration process, surface runoff, volumetric water content and pore-water pressure of the soil. This paper describes a study in which simulated rainfall events were used with 2-dimensional soil column to study the response of unsaturated soil behavior based on different slope angle. The 2-dimensional soil column is used in order to demonstrate the mechanism of the slope failure. These unsaturated soil were tested with four different slope (15°, 25°, 35° and 45°) and subjected to three different rainfall intensities (maximum, mean and minimum). The following key results were obtained: (1) the stability of unsaturated soil decrease as the rainwater infiltrates into the soil. Soil that initially in unsaturated state will start to reach saturated state when rainwater seeps into the soil. Infiltration of rainwater will reduce the matric suction in the soil. Matric suction acts in controlling soil shear strength. Reduction in matric suction affects the decrease in effective normal stress, which in turn diminishes the available shear strength to a point where equilibrium can no longer be sustained in the slope. (2) The infiltration rate of rainwater decreases while surface runoff increase when the soil nearly achieve saturated state. These situations cause the soil erosion and lead to slope failure. (3) The steepness of the soil is not a major factor but also contribute to slope failures. For steep slopes, rainwater that fall on the soil surface will become surface runoff within a short time compare to the water that infiltrate into the soil. While for gentle slopes, water that becomes surface runoff will move slowly and these increase the water that infiltrate into the soil.

  8. Some Characterizations of Convex Interval Games

    NARCIS (Netherlands)

    Brânzei, R.; Tijs, S.H.; Alparslan-Gok, S.Z.

    2008-01-01

    This paper focuses on new characterizations of convex interval games using the notions of exactness and superadditivity. We also relate big boss interval games with concave interval games and obtain characterizations of big boss interval games in terms of exactness and subadditivity.

  9. A modified risk evaluation method of slope failure in a heavy rain. For application to slopes in widespread area

    International Nuclear Information System (INIS)

    Suenaga, Hiroshi; Tanaka, Shiro; Kobayakawa, Hiroaki

    2015-01-01

    A risk evaluation method of slope failure has developed to combine gas-liquid two phase flow analysis as a rainfall infiltration analysis and elastic-plastic finite element analysis as a slope stability analysis and has applied to a slope field. This method, however, had a difficulty to apply to many slopes since it needed many parameters to calculate the risk of the slope failure. The method was simplified to lessen input parameters which included an inclination and length of a slope, a depth of bedrock and a rainfall pattern assuming that hydraulic properties and mechanical properties were similar for the same geological unit. The method was also modified to represent a water collection structure, a surface runoff, an existence of a forest road and a water level variation of a downward river / pond which could affect infiltration phenomena. Results of the simplification and the modification made it possible to enhance a prediction precision of the method and create a hazard map of slopes in widespread area. (author)

  10. Numerical Computation of Homogeneous Slope Stability

    Directory of Open Access Journals (Sweden)

    Shuangshuang Xiao

    2015-01-01

    Full Text Available To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM and particle swarm optimization algorithm (PSO to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759 were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS.

  11. Cross-slope Movement Patterns in Landslides

    Science.gov (United States)

    Petley, D.; Murphy, W.; Bulmer, M. H.; Keefer, D.

    2002-12-01

    There is growing evidence that there is a significant element of cross-slope movement in many large landslide systems. These movements may result in changing states of stress between landslide blocks that can establish complex displacement patterns. Such motions, which are not considered in traditional two-dimensional limit-equilibrium analyses, are important in the investigation of a variety of landslide types, such as those triggered by earthquakes. In addition, these movements may introduce considerable errors into the interpretation of strain patterns as derived from InSAR studies. Finally, even traditional interpretation techniques may lead to the amount of total displacement being underestimated. These observations suggest that a three dimensional form of analysis may be more appropriate for large landslide complexes. The significance of such cross-slope movements are being investigated using a detailed investigation of the Lishan landslide complex in Central Taiwan. This landslide system, which was reactivated in 1990 related to the construction of a hotel. The total recorded movements have been approximately 1.5 m over an area of sliding that is estimated to be 450 m wide and 200 m long. Extensive damage has been caused to roads and buildings within the town. Remediation work has resulted largely in the stabilization of the landslide complex. Detailed geomorphological mapping has revealed that the landslide complex is composed of two main components. The first, immediately upslope of the hotel construction site, is a relatively shallow earthflow. The second, which has formed a large headscarp upslope from the main road in the centre of the town, is a deeper translational slide. Both appear to have been reactivations of previous failures. While the displacement patterns of the earthflow indicate a relatively simple downslope movement, the vectors derived from kinematic analysis of surface features have indicated that the movement of the deeper

  12. NUTRITIONAL ASPECTS RELATED TO THE INTERVAL BETWEEN CALVES

    Directory of Open Access Journals (Sweden)

    G. H C. Guse

    2017-10-01

    Full Text Available It is known that the demand for products of bovine origin increases every day in the world, and Brazil, which has the largest commercial herd of cattle on the planet, does not stay behind when it comes to raising beef cattle and milk. Despite our efforts to offer the best product, we are faced with difficult challenges in the country when it comes to climate and soil. The tropical climate, with rainy and dry seasons, ends up greatly damaging the pastures, thus offering less quality nutrients to our herds. As a domino effect, with less nutrients, there is more stress on the animal, which implies a poor reproductive efficiency, which is a crucial factor for effective production. However, there are viable outputs to improve the statistics, and one of them is reducing the interval between calving in cows relating to nutritional aspects, the important theme that the work will address. The nutritional strategy used in the experiment was the supplementation before, during and after the synchronization protocols for IATF. It consisted in the supply of 5g / kg PV / animal / day, a multiple mixture containing 82% ground corn, 8% soybean meal, 4% protected fat (Megalac®, 3% protected urea , 2% calcium carbonate, 0.06% mineral core, 0.04% Sodium Chloride and 0.01% lasalocid sodium 15% (Taurotec®. Supplement delivery started 7 days prior to protocol (D0 and lasted up to 20 after TAI, totaling 38 days. It was observed that the results showed an increase in the pregnancy rate of the primiparas that were supplemented, especially those with ECC below 3 (on the scale of 1 to 5, the percentage variation in the increment was of 2.6 ( ECC ≥3 to 7.1 (ECC = 2.75, presenting lower values in multiparous women. It is evident that, with due planning, observing the moments of nutritional deficit, it is possible to improve the interval between deliveries, thus improving production.

  13. Measurement of Posterior Tibial Slope Using Magnetic Resonance Imaging.

    Science.gov (United States)

    Karimi, Elham; Norouzian, Mohsen; Birjandinejad, Ali; Zandi, Reza; Makhmalbaf, Hadi

    2017-11-01

    Posterior tibial slope (PTS) is an important factor in the knee joint biomechanics and one of the bone features, which affects knee joint stability. Posterior tibial slope has impact on flexion gap, knee joint stability and posterior femoral rollback that are related to wide range of knee motion. During high tibial osteotomy and total knee arthroplasty (TKA) surgery, proper retaining the mechanical and anatomical axis is important. The aim of this study was to evaluate the value of posterior tibial slope in medial and lateral compartments of tibial plateau and to assess the relationship among the slope with age, gender and other variables of tibial plateau surface. This descriptive study was conducted on 132 healthy knees (80 males and 52 females) with a mean age of 38.26±11.45 (20-60 years) at Imam Reza hospital in Mashhad, Iran. All patients, selected and enrolled for MRI in this study, were admitted for knee pain with uncertain clinical history. According to initial physical knee examinations the study subjects were reported healthy. The mean posterior tibial slope was 7.78± 2.48 degrees in the medial compartment and 6.85± 2.24 degrees in lateral compartment. No significant correlation was found between age and gender with posterior tibial slope ( P ≥0.05), but there was significant relationship among PTS with mediolateral width, plateau area and medial plateau. Comparison of different studies revealed that the PTS value in our study is different from other communities, which can be associated with genetic and racial factors. The results of our study are useful to PTS reconstruction in surgeries.

  14. Quantification of Urban Environment's Role in Slope Stability for Landslide Events.

    Science.gov (United States)

    Bozzolan, E.; Holcombe, E.; Wagener, T.; Pianosi, F.

    2017-12-01

    The combination of a rapid and unplanned urban development with a likely future climate change could significantly affect landslide occurrences in the humid tropics, where rainfall events of high intensity and duration are the dominant trigger for landslide risk. The attention of current landslide hazard studies is largely focussed on natural slope processes based on combinations of environmental factors, excluding the role of urbanisation on slope stability. This project aims to understand the relative influence of urbanisation features on local slope stability and to translate the findings to a wider region. Individual slopes are firstly analysed with the software CHASM, a physically based model which combines soil hydrology and slope stability assessment. Instead of relying on existing records, generally lacking for landslides, ranges of plausible preparatory (such as slope, cohesion, friction angles), triggering (rainfall) and aggravating factors (deforestation, house density and water network) are defined and possible combinations of these factors are created by sampling from those ranges. The influence of urban features on site hydrology and stability mechanisms are evaluated and then implemented in denser urban contexts, characteristic of unplanned settlements. The results of CHASMS can be transferred to regional maps in order to identify the areas belonging to the triggering combinations of factors previously found. In this way, areas susceptible to landslides can be detected not only in terms of natural factors but also in relation to the degree of urbanisation. Realistic scenarios can be extrapolated from the areas considered and then analysed again with CHASM. This permits to adapt (and improve) the initial variability ranges of the factors, creating a general-specific cycle able to identify the landslide susceptibility regions and outline a hazard map. Once the triggers are understood, possible consequences can be assessed and mitigation strategies can

  15. Characterization of Unstable Rock Slopes Through Passive Seismic Measurements

    Science.gov (United States)

    Kleinbrod, U.; Burjanek, J.; Fäh, D.

    2014-12-01

    Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. An analysis of ambient vibrations of unstable rock slopes might be a new alternative to the already existing methods, e.g. geotechnical displacement measurements. Systematic measurements have been performed recently in Switzerland to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. Each measurement setup included a reference station, which was installed on a stable part close to the instability. Recorded ground motion is highly directional in the unstable parts of the rock slope, and significantly amplified with respect to stable areas. These effects are strongest at certain frequencies, which were identified as eigenfrequencies of the unstable rock mass. In most cases the directions of maximum amplification are perpendicular to open cracks and in good agreement with the deformation directions obtained by geodetic measurements. Such unique signatures might improve our understanding of slope structure and stability. Thus we link observed vibration characteristics with available results of detailed geological characterization. This is supported by numerical modeling of seismic wave propagation in fractured media with complex topography.For example, a potential relation between eigenfrequencies and unstable rock mass volume is investigated.

  16. Slope of the mass function of low-mass stars

    International Nuclear Information System (INIS)

    Malkov, O.Yu.

    1987-01-01

    It is shown that the modern method of obtaining the initial mass function contains a number of a uncertainties that can have a significant effect on the slope of the function in the low-mass section (m < m**). The influence of changes of the mass-luminosity relation, the scale of bolometric corrections, and the luminosity function on the form of the mass function is considered. The effect of photometrically unresolved binaries is also discussed. Some quantitative estimates are made, and it is shown that the slope of the initial mass function in the low-mass section can vary in wide ranges

  17. ON THE UNIVERSALITY OF THE GLOBAL DENSITY SLOPE-ANISOTROPY INEQUALITY

    International Nuclear Information System (INIS)

    Van Hese, Emmanuel; Baes, Maarten; Dejonghe, Herwig

    2011-01-01

    Recently, some intriguing results have led to speculations whether the central density slope-velocity dispersion anisotropy inequality (An and Evans) actually holds at all radii for spherical dynamical systems. We extend these studies by providing a complete analysis of the global slope-anisotropy inequality for all spherical systems in which the augmented density is a separable function of radius and potential. We prove that these systems indeed satisfy the global inequality if their central anisotropy is β 0 ≤ 1/2. Furthermore, we present several systems with β 0 >1/2 for which the inequality does not hold, thus demonstrating that the global density slope-anisotropy inequality is not a universal property. This analysis is a significant step toward an understanding of the relation for general spherical systems.

  18. A Study on the Allowable Safety Factor of Cut-Slopes for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Soo; Yee, Eric [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    In this study, the issues of allowable safety factor design criteria for cut-slopes in nuclear facilities is derived through case analysis, a proposed construction work slope design criteria that provides relatively detailed conditions can be applied in case of the dry season and some unclear parts of slope design criteria be modified in case of the rainy season. This safety factor can be further subdivided into two; normal and earthquake factors, a factor of 1.5 is applied for normal conditions and a factor of 1.2 is applied for seismic conditions. This safety factor takes into consideration the effect of ground water and rainfall conditions. However, no criteria for the case of cut-slope in nuclear facilities and its response to seismic conditions is clearly defined, this can cause uncertainty in design. Therefore, this paper investigates the allowable safety factor for cut-slopes in nuclear facilities, reviews conditions of both local and international cut-slope models and finally suggests an alternative method of analysis. It is expected that the new design criteria adequately ensures the stability of the cut-slope to reflect clear conditions for both the supervising and design engineers.

  19. High slope waste dumps – a proven possibility

    Directory of Open Access Journals (Sweden)

    Igor Svrkota

    2013-11-01

    Full Text Available This paper is an overview of dumping operations on High Slope Waste Dump at Veliki Krivelj open pit copper mine, RTB Bor, Serbia. The High Slope Waste Dump in Bor is the highest single slope waste dump in the world with the slope height of 405 m. The paper gives the basics and limitations of the designed dumping technology, the redesigned technology, gives an overview of the 13 year long operation and gathered experiences and addresses the main issues of dumping operations in high slope conditions as well as the present condition of the High Slope Waste Dump.

  20. Arctic Submarine Slope Stability

    Science.gov (United States)

    Winkelmann, D.; Geissler, W.

    2010-12-01

    Submarine landsliding represents aside submarine earthquakes major natural hazard to coastal and sea-floor infrastructure as well as to coastal communities due to their ability to generate large-scale tsunamis with their socio-economic consequences. The investigation of submarine landslides, their conditions and trigger mechanisms, recurrence rates and potential impact remains an important task for the evaluation of risks in coastal management and offshore industrial activities. In the light of a changing globe with warming oceans and rising sea-level accompanied by increasing human population along coasts and enhanced near- and offshore activities, slope stability issues gain more importance than ever before. The Arctic exhibits the most rapid and drastic changes and is predicted to change even faster. Aside rising air temperatures, enhanced inflow of less cooled Atlantic water into the Arctic Ocean reduces sea-ice cover and warms the surroundings. Slope stability is challenged considering large areas of permafrost and hydrates. The Hinlopen/Yermak Megaslide (HYM) north of Svalbard is the first and so far only reported large-scale submarine landslide in the Arctic Ocean. The HYM exhibits the highest headwalls that have been found on siliciclastic margins. With more than 10.000 square kilometer areal extent and app. 2.400 cubic kilometer of involved sedimentary material, it is one of the largest exposed submarine slides worldwide. Geometry and age put this slide in a special position in discussing submarine slope stability on glaciated continental margins. The HYM occurred 30 ka ago, when the global sea-level dropped by app. 50 m within less than one millennium due to rapid onset of global glaciation. It probably caused a tsunami with circum-Arctic impact and wave heights exceeding 130 meters. The HYM affected the slope stability field in its neighbourhood by removal of support. Post-megaslide slope instability as expressed in creeping and smaller-scaled slides are

  1. Slope movements triggered by heavy rainfall, November 3–5, 1985, in Virginia and West Virginia, U.S.A.

    Science.gov (United States)

    Jacobson, Robert B.; Cron, Elizabeth D.; McGeehin, John P.

    1989-01-01

    Study of slope movements triggered by the storm of November 3–5, 1985, in the central Appalachian Mountains, U.S.A., has helped to define the meteorologic conditions leading to slope movements and the relative importance of land cover, bedrock, surficial geology, and geomorphology in slope movement location. This long-duration rainfall at moderate intensities triggered more than 1,000 slope movements in a 1,040-km2 study area. Most were shallow slips and slip-flows in thin colluvium and residuum on shale slopes. Locations of these failures were sensitive to land cover and slope aspect but were relatively insensitive to topographic setting. A few shallow slope movements were triggered by the same rainfall on interbedded limestone, shale, and sandstone. Several large debris slide-avalanches were triggered in sandstone regolith high on ridges in areas of the highest measured rainfall. Most of these sites were on slopes that dip 30 to 35° and lie parallel to bedding planes, presumably the sites of least stability.

  2. The slope of the oxygen pulse curve does not depend on the maximal heart rate in elite soccer players

    Directory of Open Access Journals (Sweden)

    Raphael Rodrigues Perim

    2011-01-01

    Full Text Available INTRODUCTION: It is unknown whether an extremely high heart rate can affect oxygen pulse profile during progressive maximal exercise in healthy subjects. OBJECTIVE: Our aim was to compare relative oxygen pulse (adjusted for body weight curves in athletes at their maximal heart rate during treadmill cardiopulmonary exercise testing. METHODS: A total of 180 elite soccer players were categorized in quartiles according to their maximum heart rate values (n = 45. Oxygen consumption, maximum heart rate and relative oxygen pulse curves in the extreme quartiles, Q1 and Q4, were compared at intervals corresponding to 10% of the total duration of a cardiopulmonary exercise testing. RESULTS: Oxygen consumption was similar among all subjects during cardiopulmonary exercise testing; however subjects in Q1 started to exhibit lower maximum heart rate values when 20% of the test was complete. Conversely, the relative oxygen pulse was higher in this group when cardiopulmonary exercise testing was 40% complete (p<.01. Although the slopes of the lines were similar (p = .25, the regression intercepts differed (p<.01 between Q1 and Q4. During the last two minutes of testing, a flat or decreasing oxygen pulse was identified in 20% of the soccer players, and this trend was similar between subjects in Q1 and Q4. CONCLUSION: Relative oxygen pulse curve slopes, which serve as an indirect and non-invasive surrogate for stroke volume, suggest that the stroke volume is similar in young and aerobically fit subjects regardless of the maximum heart rate reached.

  3. The Hydromechanics of Vegetation for Slope Stabilization

    Science.gov (United States)

    Mulyono, A.; Subardja, A.; Ekasari, I.; Lailati, M.; Sudirja, R.; Ningrum, W.

    2018-02-01

    Vegetation is one of the alternative technologies in the prevention of shallow landslide prevention that occurs mostly during the rainy season. The application of plant for slope stabilization is known as bioengineering. Knowledge of the vegetative contribution that can be considered in bioengineering was the hydrological and mechanical aspects (hydromechanical). Hydrological effect of the plant on slope stability is to reduce soil water content through transpiration, interception, and evapotranspiration. The mechanical impact of vegetation on slope stability is to stabilize the slope with mechanical reinforcement of soils through roots. Vegetation water consumption varies depending on the age and density, rainfall factors and soil types. Vegetation with high ability to absorb water from the soil and release into the atmosphere through a transpiration process will reduce the pore water stress and increase slope stability, and vegetation with deep root anchoring and strong root binding was potentially more significant to maintain the stability of the slope.

  4. Kinematic adaptations of the hindfoot, forefoot, and hallux during cross-slope walking.

    Science.gov (United States)

    Damavandi, Mohsen; Dixon, Philippe C; Pearsall, David J

    2010-07-01

    Despite cross-slope surfaces being a regular feature of our environment, little is known about segmental adaptations required to maintain both balance and forward locomotion. The purpose of this study was to determine kinematic adaptations of the foot segments in relation to transverse (cross-sloped) walking surfaces. Ten young adult males walked barefoot along an inclinable walkway (level, 0° and cross-slope, 10°). Kinematic adaptations of hindfoot with respect to tibia (HF/TB), forefoot with respect to hindfoot (FF/HF), and hallux with respect to forefoot (HX/FF) in level walking (LW), inclined walking up-slope (IWU), i.e., the foot at the higher elevation, and inclined walking down-slope (IWD), i.e., the foot at the lower elevation, were measured. Multivariate analysis of variance (MANOVA) for repeated measures was used to analyze the data. In the sagittal plane, the relative FF/HF and HX/FF plantar/dorsiflexion angles differed across conditions (p=0.024 and p=0.026, respectively). More importantly, numerous frontal plane alterations occurred. For the HF/TB angle, inversion of IWU and eversion of IWD was seen at heel-strike (p<0.001). This pattern reversed with IWU showing eversion and IWD inversion in early stance (p=0.024). For the FF/HF angle, significant differences were observed in mid-stance with IWD revealing inversion while IWU was everted (p<0.004). At toe-off, the pattern switched to eversion of IWD and inversion of IWU (p=0.032). The information obtained from this study enhances our understanding of the kinematics of the human foot in stance during level and cross-slope walking. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Internal waves and temperature fronts on slopes

    Directory of Open Access Journals (Sweden)

    S. A. Thorpe

    Full Text Available Time series measurements from an array of temperature miniloggers in a line at constant depth along the sloping boundary of a lake are used to describe the `internal surf zone' where internal waves interact with the sloping boundary. More small positive temperature time derivatives are recorded than negative, but there are more large negative values than positive, giving the overall distribution of temperature time derivatives a small negative skewness. This is consistent with the internal wave dynamics; fronts form during the up-slope phase of the motion, bringing cold water up the slope, and the return flow may become unstable, leading to small advecting billows and weak warm fronts. The data are analysed to detect `events', periods in which the temperature derivatives exceed a set threshold. The speed and distance travelled by `events' are described. The motion along the slope may be a consequence of (a instabilities advected by the flow (b internal waves propagating along-slope or (c internal waves approaching the slope from oblique directions. The propagation of several of the observed 'events' can only be explained by (c, evidence that the internal surf zone has some, but possibly not all, the characteristics of the conventional 'surface wave' surf zone, with waves steepening as they approach the slope at oblique angles.

    Key words. Oceanography: general (benthic boundary layers; limnology, Oceanography: physical (internal and inertial waves

  6. VARIABILITY OF ARABLE AND FOREST SOILS PROPERTIES ON ERODED SLOPES

    Directory of Open Access Journals (Sweden)

    Paweł Wiśniewski

    2014-10-01

    Full Text Available The basic method of reducing soil and land erosion is a change of land use, for example, from arable to forest. Particularly effective as a protective role – according to the Polish law – soil-protecting forests. The thesis presents differences in the deformation of the basic soil properties on moraine slopes, depending on land use. There has been presented the function and the efficiency of the soil-protecting forests in erosion control. The soil cross section transects and soil analysis displayed that soil-protecting forests are making an essential soil cover protection from degradation, inter alia, limiting the decrease of humus content, reduction of upper soil horizons and soil pedons layer. On the afforested slopes it was stated some clear changes of grain size and chemical properties of soils in relation to adjacent slopes agriculturally used.

  7. Editorial: Introduction to the Special Issue ;Slope Tectonics: Inherited Structures, Morphology of Deformation and Catastrophic Failure;

    Science.gov (United States)

    Hermanns, R. L.; Oppikofer, T.; Jaboyedoff, M.; Clague, J. J.; Scarascia-Mugnozza, G.

    2017-07-01

    The "Conference on Slope Tectonics" has become an international scientific meeting point to present and discuss a variety of topics related to slope deformation and the deposits of related failures. The first conference took place on February 15-16, 2008 at University of Lausanne (Switzerland). It was followed by a second conference on September 6-10, 2011, in Austria (organized by the Geological Survey of Austria) and a third on September 8-12, 2014, in Norway (organized by the Geological Survey of Norway). The two later events included field trips. It has become a tradition that selected papers from these conference are published - papers from the first conference were published by the Geological Society as Special Publication 351 (Jaboyedoff, 2011), and those from the second conference were published in a special issue of Tectonophysics (Baron and Jaboyedoff, 2013). This special issue of Geomorphology is a collection of papers presented at the Norwegian Conference on Slope Tectonics. This collection of papers focuses on the role of tectonics in gravitationally induced rock-slope instabilities. The slopes either deform over long periods as deep-seated gravitational slope deformation (DSGSD) or more rapidly as rockslides or rock avalanches. The reconstruction of slope deformation is an integral part of the studies captured in this special issue.

  8. Cooperative Three-Robot System for Traversing Steep Slopes

    Science.gov (United States)

    Stroupe, Ashley; Huntsberger, Terrance; Aghazarian, Hrand; Younse, Paulo; Garrett, Michael

    2009-01-01

    Teamed Robots for Exploration and Science in Steep Areas (TRESSA) is a system of three autonomous mobile robots that cooperate with each other to enable scientific exploration of steep terrain (slope angles up to 90 ). Originally intended for use in exploring steep slopes on Mars that are not accessible to lone wheeled robots (Mars Exploration Rovers), TRESSA and systems like TRESSA could also be used on Earth for performing rescues on steep slopes and for exploring steep slopes that are too remote or too dangerous to be explored by humans. TRESSA is modeled on safe human climbing of steep slopes, two key features of which are teamwork and safety tethers. Two of the autonomous robots, denoted Anchorbots, remain at the top of a slope; the third robot, denoted the Cliffbot, traverses the slope. The Cliffbot drives over the cliff edge supported by tethers, which are payed out from the Anchorbots (see figure). The Anchorbots autonomously control the tension in the tethers to counter the gravitational force on the Cliffbot. The tethers are payed out and reeled in as needed, keeping the body of the Cliffbot oriented approximately parallel to the local terrain surface and preventing wheel slip by controlling the speed of descent or ascent, thereby enabling the Cliffbot to drive freely up, down, or across the slope. Due to the interactive nature of the three-robot system, the robots must be very tightly coupled. To provide for this tight coupling, the TRESSA software architecture is built on a combination of (1) the multi-robot layered behavior-coordination architecture reported in "An Architecture for Controlling Multiple Robots" (NPO-30345), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 65, and (2) the real-time control architecture reported in "Robot Electronics Architecture" (NPO-41784), NASA Tech Briefs, Vol. 32, No. 1 (January 2008), page 28. The combination architecture makes it possible to keep the three robots synchronized and coordinated, to use data

  9. Numerical Modelling of Seismic Slope Stability

    Science.gov (United States)

    Bourdeau, Céline; Havenith, Hans-Balder; Fleurisson, Jean-Alain; Grandjean, Gilles

    Earthquake ground-motions recorded worldwide have shown that many morphological and geological structures (topography, sedimentary basin) are prone to amplify the seismic shaking (San Fernando, 1971 [Davis and West 1973] Irpinia, 1980 [Del Pezzo et al. 1983]). This phenomenon, called site effects, was again recently observed in El Salvador when, on the 13th of January 2001, the country was struck by a M = 7.6 earthquake. Indeed, while horizontal accelerations on a rock site at Berlin, 80 km from the epicentre, did not exceed 0.23 g, they reached 0.6 g at Armenia, 110 km from the epicentre. Armenia is located on a small hill underlaid by a few meters thick pyroclastic deposits. Both the local topography and the presence of surface layers are likely to have caused the observed amplification effects, which are supposed to have contributed to the triggering of some of the hundreds of landslides related to this seismic event (Murphy et al. 2002). In order to better characterize the way site effects may influence the triggering of landslides along slopes, 2D numerical elastic and elasto-plastic models were developed. Various geometrical, geological and seismic conditions were analysed and the dynamic behaviour of the slope under these con- ditions was studied in terms of creation and location of a sliding surface. Preliminary results suggest that the size of modelled slope failures is dependent on site effects.

  10. Stability calculation method of slope reinforced by prestressed anchor in process of excavation.

    Science.gov (United States)

    Li, Zhong; Wei, Jia; Yang, Jun

    2014-01-01

    This paper takes the effect of supporting structure and anchor on the slope stability of the excavation process into consideration; the stability calculation model is presented for the slope reinforced by prestressed anchor and grillage beam, and the dynamic search model of the critical slip surface also is put forward. The calculation model of the optimal stability solution of each anchor tension of the whole process is also given out, through which the real-time analysis and checking of slope stability in the process of excavation can be realized. The calculation examples indicate that the slope stability is changed with the dynamic change of the design parameters of anchor and grillage beam. So it is relatively more accurate and reasonable by using dynamic search model to determine the critical slip surface of the slope reinforced by prestressed anchor and grillage beam. Through the relationships of each anchor layout and the slope height of various stages of excavation, and the optimal stability solution of prestressed bolt tension design value in various excavation stages can be obtained. The arrangement of its prestressed anchor force reflects that the layout of the lower part of bolt and the calculation of slope reinforcement is in line with the actual. These indicate that the method is reasonable and practical.

  11. Runoff from armored slopes

    International Nuclear Information System (INIS)

    Codell, R.B.

    1986-01-01

    Models exist for calculating overland flow on hillsides but no models have been found which explicitly deal with runoff from armored slopes. Flow on armored slopes differs from overland flow, because substantial flow occurs beneath the surface of the rock layer at low runnoff, and both above and below the surface for high runoff. In addition to the lack of a suitable model, no estimates of the PMP exist for such small areas and for very short durations. This paper develops a model for calculating runoff from armored embankments. The model considers the effect of slope, drainage area and ''flow concentration'' caused by irregular grading or slumping. A rainfall-duration curve based on the PMP is presented which is suitable for very small drainage areas. The development of the runoff model and rainfall-duration curve is presented below, along with a demonstration of the model on the design of a hypothetical tailings embankment

  12. Two-sorted Point-Interval Temporal Logics

    DEFF Research Database (Denmark)

    Balbiani, Philippe; Goranko, Valentin; Sciavicco, Guido

    2011-01-01

    There are two natural and well-studied approaches to temporal ontology and reasoning: point-based and interval-based. Usually, interval-based temporal reasoning deals with points as particular, duration-less intervals. Here we develop explicitly two-sorted point-interval temporal logical framework...... whereby time instants (points) and time periods (intervals) are considered on a par, and the perspective can shift between them within the formal discourse. We focus on fragments involving only modal operators that correspond to the inter-sort relations between points and intervals. We analyze...

  13. Rock Mass Classification of Karstic Terrain in the Reservoir Slopes of Tekeze Hydropower Project

    Science.gov (United States)

    Hailemariam Gugsa, Trufat; Schneider, Jean Friedrich

    2010-05-01

    ), rock slope stability probability classification (SSPC) and geological strength index (GSI) are employed to classify the rock mass. The results are further compared with one another to delineate the instability conditions and produce an instability map of the reservoir slopes. Instability of the reservoir slopes is found to be mainly associated with daylighting discontinuities, thinly bedded/foliated slates, and karstified limestone. It is also noted that these features are mostly located in the regional gliding plane and shear zone, which are related with old slides scars. In general, the instabilities are found relatively far from the dam axis, in relatively less elevated and less steep slopes, which are going to be nearly covered by the impoundment; thus, they are normally expected to have less hazard in relation to the reservoir setting. Some minor failures will be generally expected during the reservoir filling.

  14. Radiological monitoring of northern slopes of Mogoltau

    International Nuclear Information System (INIS)

    Murtazaev, Kh.; Boboev, B.D.; Bolibekov, Sh.; Akhmedov, M.Z.

    2010-01-01

    Present article is devoted to radiological monitoring of northern slopes of Mogoltau. The physicochemical properties of water of northern slopes of Mogoltau were studied. The radiation monitoring of northern slopes of Mogoltau was carried out during several years under various weather conditions. The exposure rate of human settlements of northern part of Mogoltau was defined.

  15. Evolution of strain localization in variable-width three-dimensional unsaturated laboratory-scale cut slopes

    Science.gov (United States)

    Morse, Michael S.; Lu, Ning; Wayllace, Alexandra; Godt, Jonathan W.

    2017-01-01

    To experimentally validate a recently developed theory for predicting the stability of cut slopes under unsaturated conditions, the authors measured increasing strain localization in unsaturated slope cuts prior to abrupt failure. Cut slope width and moisture content were controlled and varied in a laboratory, and a sliding door that extended the height of the free face of the slope was lowered until the cut slope failed. A particle image velocimetry tool was used to quantify soil displacement in the x-y">x-y (horizontal) and x-z">x-z (vertical) planes, and strain was calculated from the displacement. Areas of maximum strain localization prior to failure were shown to coincide with the location of the eventual failure plane. Experimental failure heights agreed with the recently developed stability theory for unsaturated cut slopes (within 14.3% relative error) for a range of saturation and cut slope widths. A theoretical threshold for sidewall influence on cut slope failures was also proposed to quantify the relationship between normalized sidewall width and critical height. The proposed relationship was consistent with the cut slope experiment results, and is intended for consideration in future geotechnical experiment design. The experimental data of evolution of strain localization presented herein provide a physical basis from which future numerical models of strain localization can be validated.

  16. Stability of Slopes Reinforced with Truncated Piles

    Directory of Open Access Journals (Sweden)

    Shu-Wei Sun

    2016-01-01

    Full Text Available Piles are extensively used as a means of slope stabilization. A novel engineering technique of truncated piles that are unlike traditional piles is introduced in this paper. A simplified numerical method is proposed to analyze the stability of slopes stabilized with truncated piles based on the shear strength reduction method. The influential factors, which include pile diameter, pile spacing, depth of truncation, and existence of a weak layer, are systematically investigated from a practical point of view. The results show that an optimum ratio exists between the depth of truncation and the pile length above a slip surface, below which truncating behavior has no influence on the piled slope stability. This optimum ratio is bigger for slopes stabilized with more flexible piles and piles with larger spacing. Besides, truncated piles are more suitable for slopes with a thin weak layer than homogenous slopes. In practical engineering, the piles could be truncated reasonably while ensuring the reinforcement effect. The truncated part of piles can be filled with the surrounding soil and compacted to reduce costs by using fewer materials.

  17. Slope stability radar for monitoring mine walls

    Science.gov (United States)

    Reeves, Bryan; Noon, David A.; Stickley, Glen F.; Longstaff, Dennis

    2001-11-01

    Determining slope stability in a mining operation is an important task. This is especially true when the mine workings are close to a potentially unstable slope. A common technique to determine slope stability is to monitor the small precursory movements, which occur prior to collapse. The slope stability radar has been developed to remotely scan a rock slope to continuously monitor the spatial deformation of the face. Using differential radar interferometry, the system can detect deformation movements of a rough wall with sub-millimeter accuracy, and with high spatial and temporal resolution. The effects of atmospheric variations and spurious signals can be reduced via signal processing means. The advantage of radar over other monitoring techniques is that it provides full area coverage without the need for mounted reflectors or equipment on the wall. In addition, the radar waves adequately penetrate through rain, dust and smoke to give reliable measurements, twenty-four hours a day. The system has been trialed at three open-cut coal mines in Australia, which demonstrated the potential for real-time monitoring of slope stability during active mining operations.

  18. Time-dependent evolution of rock slopes by a multi-modelling approach

    Science.gov (United States)

    Bozzano, F.; Della Seta, M.; Martino, S.

    2016-06-01

    This paper presents a multi-modelling approach that incorporates contributions from morpho-evolutionary modelling, detailed engineering-geological modelling and time-dependent stress-strain numerical modelling to analyse the rheological evolution of a river valley slope over approximately 102 kyr. The slope is located in a transient, tectonically active landscape in southwestern Tyrrhenian Calabria (Italy), where gravitational processes drive failures in rock slopes. Constraints on the valley profile development were provided by a morpho-evolutionary model based on the correlation of marine and river strath terraces. Rock mass classes were identified through geomechanical parameters that were derived from engineering-geological surveys and outputs of a multi-sensor slope monitoring system. The rock mass classes were associated to lithotechnical units to obtain a high-resolution engineering-geological model along a cross section of the valley. Time-dependent stress-strain numerical modelling reproduced the main morpho-evolutionary stages of the valley slopes. The findings demonstrate that a complex combination of eustatism, uplift and Mass Rock Creep (MRC) deformations can lead to first-time failures of rock slopes when unstable conditions are encountered up to the generation of stress-controlled shear zones. The multi-modelling approach enabled us to determine that such complex combinations may have been sufficient for the first-time failure of the S. Giovanni slope at approximately 140 ka (MIS 7), even without invoking any trigger. Conversely, further reactivations of the landslide must be related to triggers such as earthquakes, rainfall and anthropogenic activities. This failure involved a portion of the slope where a plasticity zone resulted from mass rock creep that evolved with a maximum strain rate of 40% per thousand years, after the formation of a river strath terrace. This study demonstrates that the multi-modelling approach presented herein is a useful

  19. VT Data - Lidar Slope (0.7m) 2014, Chittenden Co., Lamoille Co., Orleans Co., Washington Co.

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Eastern VT 2014 0.7m and related SLOPE datasets. Created using ArcGIS "SLOPE" command...

  20. SOSlope: a new slope stability model for vegetated hillslopes

    Science.gov (United States)

    Cohen, D.; Schwarz, M.

    2016-12-01

    Roots contribute to increase soil strength but forces mobilized by roots depend on soil relative displacement. This effect is not included in models of slope stability. Here we present a new numerical model of shallow landslides for vegetated hillslopes that uses a strain-step loading approach for force redistributions within a soil mass including the effects of root strength in both tension and compression. The hillslope is discretized into a two-dimensional array of blocks connected by bonds. During a rainfall event the blocks's mass increases and the soil shear strength decreases. At each time step, we compute a factor of safety for each block. If the factor of safety of one or more blocks is less than one, those blocks are moved in the direction of the local active force by a predefined amount and the factor of safety is recalculated for all blocks. Because of the relative motion between blocks that have moved and those that remain stationary, mechanical bond forces between blocks that depend on relative displacement change, modifying the force balance. This relative motion triggers instantaneous force redistributions across the entire hillslope similar to a self-organized critical system. Looping over blocks and moving those that are unstable is repeated until all blocks are stable and the system reaches a new equilibrium, or, some blocks have failed causing a landslide. Spatial heterogeneity of vegetation is included by computing the root density and distribution as a function of distance form trees. A simple subsurface hydrological model based on dual permeability concepts is used to compute the temporal evolution of water content, pore-water pressure, suction stress, and soil shear strength. Simulations for a conceptual slope indicates that forces mobilized in tension and compression both contribute to the stability of the slope. However, the maximum tensional and compressional forces imparted by roots do not contribute simultaneously to the stability of

  1. Seismic monitoring of the unstable rock slope at Aaknes, Norway

    Science.gov (United States)

    Roth, M.; Blikra, L. H.

    2009-04-01

    The unstable rock slope at Aaknes has an estimated volume of about 70 million cubic meters, and parts of the slope are moving at a rate between 2-15 cm/year. Amongst many other direct monitoring systems we have installed a small-scale seismic network (8 three-component geophones over an area of 250 x 150 meters) in order to monitor microseismic events related to the movement of the slope. The network has been operational since November 2005 with only a few short-term outages. Seismic data are transferred in real-time from the site to NORSAR for automatic detection processing. The resulting detection lists and charts and the associated waveform are forwarded immediately to the early warning centre of the Municipality of Stranda. Furthermore, we make them available after a delay of about 10-15 minutes on our public project web page (http://www.norsar.no/pc-47-48-Latest-Data.aspx). Seismic monitoring provides independent and complementary data to the more direct monitoring systems at Aaknes. We observe increased seismic activity in periods of heavy rain fall or snow melt, when laser ranging data and extensometer readings indicate temporary acceleration phases of the slope. The seismic network is too small and the velocity structure is too heterogeneous in order to obtain reliable localizations of the microseismic events. In summer 2009 we plan to install a high-sensitive broadband seismometer (60 s - 100 Hz) in the middle of the unstable slope. This will allow us to better constrain the locations of the microseismic events and to investigate potential low-frequency signals associated with the slope movement.

  2. The great slippery-slope argument.

    Science.gov (United States)

    Burgess, J A

    1993-09-01

    Whenever some form of beneficent killing--for example, voluntary euthanasia--is advocated, the proposal is greeted with a flood of slippery-slope arguments warning of the dangers of a Nazi-style slide into genocide. This paper is an attempt systematically to evaluate arguments of this kind. Although there are slippery-slope arguments that are sound and convincing, typical formulations of the Nazi-invoking argument are found to be seriously deficient both in logical rigour and in the social history and psychology required as a scholarly underpinning. As an antidote, an attempt is made both to identify some of the likely causes of genocide and to isolate some of the more modest but legitimate fears that lie behind slippery-slope arguments of this kind.

  3. Numerical modelling of hydrologically-driven slope instability by means of porous media mechanics

    Science.gov (United States)

    Kakogiannou, Evanthia; Sanavia, Lorenzo; Lora, Marco; Schrefler, Bernhard

    2015-04-01

    Heavy rainfall can trigger slope failure which generally involves shallow soil deposit of different grading and origin usually in a state of partial saturation. In this case of slope instability, the behaviour of the soil slope is closely related not only to the distribution of pore-water pressure but also to the stress state during rainfall infiltration involving both mechanical and hydrological processes. In order to understand better these physical key processes, in this research work, the modelling of rainfall induced slope failure is considered as a coupled variably saturated hydro-mechanical problem. Therefore, the geometrically linear finite element code Comes-Geo for non-isothermal elasto-plastic multiphase solid porous materials is used, as developed by B.A. Schrefler and his co-workers. In this context, a detailed numerical analysis of an experimental slope stability test due to rainfall infiltration is presented. The main goals of this work are to understand the triggering mechanisms during the progressive failure, the effect of using different constitutive models of the mechanical soil behavior on the numerical results and the use of the second order work criterion on the detection of slope instability.

  4. Slope activity in Gale crater, Mars

    Science.gov (United States)

    Dundas, Colin M.; McEwen, Alfred S.

    2015-01-01

    High-resolution repeat imaging of Aeolis Mons, the central mound in Gale crater, reveals active slope processes within tens of kilometers of the Curiosity rover. At one location near the base of northeastern Aeolis Mons, dozens of transient narrow lineae were observed, resembling features (Recurring Slope Lineae) that are potentially due to liquid water. However, the lineae faded and have not recurred in subsequent Mars years. Other small-scale slope activity is common, but has different spatial and temporal characteristics. We have not identified confirmed RSL, which Rummel et al. (Rummel, J.D. et al. [2014]. Astrobiology 14, 887–968) recommended be treated as potential special regions for planetary protection. Repeat images acquired as Curiosity approaches the base of Aeolis Mons could detect changes due to active slope processes, which could enable the rover to examine recently exposed material.

  5. True 3D kinematic analysis for slope instability assessment in the Siq of Petra (Jordan), from high resolution TLS

    Science.gov (United States)

    Gigli, Giovanni; Margottini, Claudio; Spizzichino, Daniele; Ruther, Heinz; Casagli, Nicola

    2016-04-01

    Most classifications of mass movements in rock slopes use relatively simple, idealized geometries for the basal sliding surface, like planar sliding, wedge sliding, toppling or columnar failures. For small volumes, the real sliding surface can be often well described by such simple geometries. Extended and complex rock surfaces, however, can exhibit a large number of mass movements, also showing various kind of kinematisms. As a consequence, the real situation in large rock surfaces with a complicate geometry is generally very complex and a site depending analysis, such as fieldwork and compass, cannot be comprehensive of the real situation. Since the outstanding development of terrestrial laser scanner (TLS) in recent years, rock slopes can now be investigated and mapped through high resolution point clouds, reaching the resolution of few mm's and accuracy less than a cm in most advanced instruments, even from remote surveying. The availability of slope surface digital data can offer a unique chance to determine potential kinematisms in a wide distributed area for all the investigated geomorphological processes. More in detail the proposed method is based on the definition of least squares fitting planes on clusters of points extracted by moving a sampling cube on the point cloud. If the associated standard deviation is below a defined threshold, the cluster is considered valid. By applying geometric criteria it is possible to join all the clusters lying on the same surface; in this way discontinuity planes can be reconstructed, rock mass geometrical properties are calculated and, finally, potential kinematisms established. The Siq of Petra (Jordan), is a 1.2 km naturally formed gorge, with an irregular horizontal shape and a complex vertical slope, that represents the main entrance to Nabatean archaeological site. In the Siq, discontinuities of various type (bedding, joints, faults), mainly related to geomorphological evolution of the slope, lateral stress

  6. Manganese cycling and its implication on methane related processes in the Andaman continental slope sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Sujith, P.P.; Gonsalves, M.J.B.D.; Rajkumar, V.; Sheba, M.

    In the deep subsurface sediments of the Andaman continental slope, in situ methane generation/oxidation could be coupled to the cycling of Mn, as the fluid flow characterized by high methane and Mn could occur in accretionary wedge sediments...

  7. Storm-Induced Slope Failure Susceptibility Mapping

    Science.gov (United States)

    2018-01-01

    A pilot study was conducted to characterize and map the areas susceptible to slope failure using state-wide available data. The objective was to determine whether it would be possible to provide slope-failure susceptibility mapping that could be used...

  8. Vertical Distribution of Soil Organic Carbon Density in Relation to Land Use/Cover, Altitude and Slope Aspect in the Eastern Himalayas

    Directory of Open Access Journals (Sweden)

    Tshering Dorji

    2014-10-01

    Full Text Available In-depth understanding about the vertical distribution of soil organic carbon (SOC density is crucial for carbon (C accounting, C budgeting and designing appropriate C sequestration strategies. We examined the vertical distribution of SOC density under different land use/land cover (LULC types, altitudinal zones and aspect directions in a montane ecosystem of Bhutan. Sampling sites were located using conditioned Latin hypercube sampling (cLHS scheme. Soils were sampled based on genetic horizons. An equal-area spline function was fitted to interpolate the target values to predetermined depths. Linear mixed model was fitted followed by mean separation tests. The results show some significant effects of LULC, altitudinal zone and slope aspect on the vertical distribution of SOC density in the profiles. Based on the proportion of mean SOC density in the first 20 cm relative to the cumulative mean SOC density in the top meter, the SOC density under agricultural lands (34% was more homogeneously distributed down the profiles than forests (39%, grasslands (59% and shrublands (43%. Similarly, the SOC density under 3500–4000 m zone (35% was more uniformly distributed compared to 3000–3500 m zone (43% and 1769–2500 m and 2500–3000 m zones (41% each. Under different aspect directions, the north and east-facing slopes (38% each had more uniform distribution of SOC density than south (40% and west-facing slopes (49%.

  9. Arrhythmogenic drugs can amplify spatial heterogeneities in the electrical restitution in perfused guinea-pig heart: An evidence from assessments of monophasic action potential durations and JT intervals.

    Directory of Open Access Journals (Sweden)

    Oleg E Osadchii

    Full Text Available Non-uniform shortening of the action potential duration (APD90 in different myocardial regions upon heart rate acceleration can set abnormal repolarization gradients and promote arrhythmia. This study examined whether spatial heterogeneities in APD90 restitution can be amplified by drugs with clinically proved proarrhythmic potential (dofetilide, quinidine, procainamide, and flecainide and, if so, whether these effects can translate to the appropriate changes of the ECG metrics of ventricular repolarization, such as JT intervals. In isolated, perfused guinea-pig heart preparations, monophasic action potentials and volume-conducted ECG were recorded at progressively increased pacing rates. The APD90 measured at distinct ventricular sites, as well as the JTpeak and JTend values were plotted as a function of preceding diastolic interval, and the maximum slopes of the restitution curves were determined at baseline and upon drug administration. Dofetilide, quinidine, and procainamide reverse rate-dependently prolonged APD90 and steepened the restitution curve, with effects being greater at the endocardium than epicardium, and in the right ventricular (RV vs. the left ventricular (LV chamber. The restitution slope was increased to a greater extent for the JTend vs. the JTpeak interval. In contrast, flecainide reduced the APD90 restitution slope at LV epicardium without producing effect at LV endocardium and RV epicardium, and reduced the JTpeak restitution slope without changing the JTend restitution. Nevertheless, with all agents, these effects translated to the amplified epicardial-to-endocardial and the LV-to-RV non-uniformities in APD90 restitution, paralleled by the increased JTend vs. JTpeak difference in the restitution slope. In summary, these findings suggest that arrhythmic drug profiles are partly attributable to the accentuated regional heterogeneities in APD90 restitution, which can be indirectly determined through ECG assessments of the

  10. Arrhythmogenic drugs can amplify spatial heterogeneities in the electrical restitution in perfused guinea-pig heart: An evidence from assessments of monophasic action potential durations and JT intervals.

    Science.gov (United States)

    Osadchii, Oleg E

    2018-01-01

    Non-uniform shortening of the action potential duration (APD90) in different myocardial regions upon heart rate acceleration can set abnormal repolarization gradients and promote arrhythmia. This study examined whether spatial heterogeneities in APD90 restitution can be amplified by drugs with clinically proved proarrhythmic potential (dofetilide, quinidine, procainamide, and flecainide) and, if so, whether these effects can translate to the appropriate changes of the ECG metrics of ventricular repolarization, such as JT intervals. In isolated, perfused guinea-pig heart preparations, monophasic action potentials and volume-conducted ECG were recorded at progressively increased pacing rates. The APD90 measured at distinct ventricular sites, as well as the JTpeak and JTend values were plotted as a function of preceding diastolic interval, and the maximum slopes of the restitution curves were determined at baseline and upon drug administration. Dofetilide, quinidine, and procainamide reverse rate-dependently prolonged APD90 and steepened the restitution curve, with effects being greater at the endocardium than epicardium, and in the right ventricular (RV) vs. the left ventricular (LV) chamber. The restitution slope was increased to a greater extent for the JTend vs. the JTpeak interval. In contrast, flecainide reduced the APD90 restitution slope at LV epicardium without producing effect at LV endocardium and RV epicardium, and reduced the JTpeak restitution slope without changing the JTend restitution. Nevertheless, with all agents, these effects translated to the amplified epicardial-to-endocardial and the LV-to-RV non-uniformities in APD90 restitution, paralleled by the increased JTend vs. JTpeak difference in the restitution slope. In summary, these findings suggest that arrhythmic drug profiles are partly attributable to the accentuated regional heterogeneities in APD90 restitution, which can be indirectly determined through ECG assessments of the JTend vs. JTpeak

  11. Slope Estimation in Noisy Piecewise Linear Functions.

    Science.gov (United States)

    Ingle, Atul; Bucklew, James; Sethares, William; Varghese, Tomy

    2015-03-01

    This paper discusses the development of a slope estimation algorithm called MAPSlope for piecewise linear data that is corrupted by Gaussian noise. The number and locations of slope change points (also known as breakpoints) are assumed to be unknown a priori though it is assumed that the possible range of slope values lies within known bounds. A stochastic hidden Markov model that is general enough to encompass real world sources of piecewise linear data is used to model the transitions between slope values and the problem of slope estimation is addressed using a Bayesian maximum a posteriori approach. The set of possible slope values is discretized, enabling the design of a dynamic programming algorithm for posterior density maximization. Numerical simulations are used to justify choice of a reasonable number of quantization levels and also to analyze mean squared error performance of the proposed algorithm. An alternating maximization algorithm is proposed for estimation of unknown model parameters and a convergence result for the method is provided. Finally, results using data from political science, finance and medical imaging applications are presented to demonstrate the practical utility of this procedure.

  12. Interval selection with machine-dependent intervals

    OpenAIRE

    Bohmova K.; Disser Y.; Mihalak M.; Widmayer P.

    2013-01-01

    We study an offline interval scheduling problem where every job has exactly one associated interval on every machine. To schedule a set of jobs, exactly one of the intervals associated with each job must be selected, and the intervals selected on the same machine must not intersect.We show that deciding whether all jobs can be scheduled is NP-complete already in various simple cases. In particular, by showing the NP-completeness for the case when all the intervals associated with the same job...

  13. Hydrology of two slopes in subarctic Yukon, Canada

    Science.gov (United States)

    Carey, Sean K.; Woo, Ming-Ko

    1999-11-01

    Two subarctic forested slopes in central Wolf Creek basin, Yukon, were studied in 1996-1997 to determine the seasonal pattern of the hydrologic processes. A south-facing slope has a dense aspen forest on silty soils with seasonal frost only and a north-facing slope has open stands of black spruce and an organic layer on top of clay sediments with permafrost. Snowmelt is advanced by approximately one month on the south-facing slope due to greater radiation receipt. Meltwater infiltrates its seasonally frozen soil with low ice content, recharging the soil moisture reservoir but yielding no lateral surface or subsurface flow. Summer evaporation depletes this recharged moisture and any additional rainfall input, at the expense of surface or subsurface flow. The north-facing slope with an ice rich substrate hinders deep percolation. Snow meltwater is impounded within the organic layer to produce surface runoff in rills and gullies, and subsurface flow along pipes and within the matrix of the organic soil. During the summer, most subsurface flows are confined to the organic layer which has hydraulic conductivities orders of magnitudes larger than the underlying boulder-clay. Evaporation on the north-facing slope declines as both the frost table and the water table descend in the summer. A water balance of the two slopes demonstrates that vertical processes of infiltration and evaporation dominate moisture exchanges on the south-facing slope, whereas the retardation of deep drainage by frost and by clayey soil on the permafrost slope promotes a strong lateral flow component, principally within the organic layer. These results have the important implication that permafrost slopes and organic horizons are the principal controls on streamflow generation in subarctic catchments.

  14. Late Holocene Radiocarbon Variability in Northwest Atlantic Slope Waters

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, O; Edinger, E; Guilderson, T P; Ghaleb, B; Risk, M J; Scott, D B

    2008-08-15

    Deep-sea gorgonian corals secrete a 2-part skeleton of calcite, derived from dissolved inorganic carbon at depth, and gorgonin, derived from recently fixed and exported particulate organic matter. Radiocarbon contents of the calcite and gorgonin provide direct measures of seawater radiocarbon at depth and in the overlying surface waters, respectively. Using specimens collected from Northwest Atlantic slope waters, we generated radiocarbon records for surface and upper intermediate water layers spanning the pre- and post bomb-{sup 14}C eras. In Labrador Slope Water (LSW), convective mixing homogenizes the pre-bomb {Delta}{sup 14}C signature (-67 {+-} 4{per_thousand}) to at least 1000 m depth. Surface water bomb-{sup 14}C signals were lagged and damped (peaking at {approx} +45{per_thousand} in the early 1980s) relative to other regions of the northwest Atlantic, and intermediate water signals were damped further. Off southwest Nova Scotia, the vertical gradient in {Delta}{sup 14}C is much stronger. In surface water, pre-bomb {Delta}{sup 14}C averaged -75 {+-} 5{per_thousand}. At 250-475 m depth, prebomb {Delta}{sup 14}C oscillated quasi-decadally between -80 and -100{per_thousand}, likely reflecting interannual variability in the presence of Labrador Slope Water vs. Warm Slope Water (WSW). Finally, subfossil corals reveal no systematic changes in vertical {Delta}{sup 14}C gradients over the last 1200 years.

  15. Landslide risk assessment of a slope in Tijuana city, Mexico

    Directory of Open Access Journals (Sweden)

    Aldo Onel Oliva González

    2018-01-01

    Full Text Available Context: Risk reduction and prevention of disasters events produced by landslides on urban slopes, requires an integral assessment considering conditioning and triggering natural and human factors. Such an assessment is a valuable prevention and mitigation tool for communities under risk and also for authorities involved in the process. Method: In this research, a general methodology for the assessment of landslides on an urban slope was studied and applied, considering the relationship between hazard and physical vulnerability in the zone of study. Hazard was determined by probabilistic methods, whereas vulnerability of the exposed elements was obtained taking into account two kinds of buildings and their spatial distribution, their structural integrity state, their foundation depth and the unstable terrain probable mass volume. Results: Safety factors were obtained under allowable levels to warrant stability of the slope under study, and valuation factors of the qualitative analysis indicate that the slope is unstable and that requires urgent maintenance. This confirms and validates the high probability of occurrence in the zone, obtained from historic records. Conclusions: It was found that landslide risk in the slope is high due to the high probability of its occurrence, with three possible movement directions that may impact on several buildings located in the zone. Assessment constitutes a work tool for institutions and authorities related with risk reduction due to landslides, as a way of prevent and mitigate disaster prone events.

  16. Spatial distribution models of erosion on slopes cultivated with vineyards

    International Nuclear Information System (INIS)

    Armaez, J.; Ortigosa, L.; Ruiz-Falno, P.; Llorente, J. A.; Lasanta, T.

    2009-01-01

    Soils cultivated with vineyards have high rates of erosion. In the Mediterranean area, this is related to the environmental characteristics and the management of cultivation techniques. Indeed, in this region the rainfall intensity and the location of vineyards on slopes favour the erosive activity of runoff. The total area of vineyards in La Rioja (Spain) is currently almost 40,000 ha. Vineyards are located on hillsides between 400 and 60 m.a.s.l. Of the vineyards of La Rioja 81,7% are planted on slopes with a gradient between 3 degree centigrade and 9 degree centigrade. (Author) 5 refs.

  17. Research on the stability evaluation of slope

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In order to create the guideline corresponding to a new regulatory standard, such as criteria in the ground-slope stability evaluation method, we have conducted an analysis and discussion of the shaking table test results using a large slope model. As a result, it was found that in that phase of the vertical motion and the horizontal motion affects the amplification characteristics of the ground motion, need to be considered in assessing the safety of the slope and the influence of the phase difference amplification or local. We also conduct a study on countermeasure construction slope by shaking table test, the effect of the countermeasure construction of pile and anchors deterrence could be confirmed. Focusing on the new method can reproduce the behavior of large deformation and discontinuity, with respect to the advancement of slope analysis, we identify issues on the maintenance and code applicability of each analysis method. (author)

  18. A Hybrid FEM-ANN Approach for Slope Instability Prediction

    Science.gov (United States)

    Verma, A. K.; Singh, T. N.; Chauhan, Nikhil Kumar; Sarkar, K.

    2016-09-01

    Assessment of slope stability is one of the most critical aspects for the life of a slope. In any slope vulnerability appraisal, Factor Of Safety (FOS) is the widely accepted index to understand, how close or far a slope from the failure. In this work, an attempt has been made to simulate a road cut slope in a landslide prone area in Rudrapryag, Uttarakhand, India which lies near Himalayan geodynamic mountain belt. A combination of Finite Element Method (FEM) and Artificial Neural Network (ANN) has been adopted to predict FOS of the slope. In ANN, a three layer, feed- forward back-propagation neural network with one input layer and one hidden layer with three neurons and one output layer has been considered and trained using datasets generated from numerical analysis of the slope and validated with new set of field slope data. Mean absolute percentage error estimated as 1.04 with coefficient of correlation between the FOS of FEM and ANN as 0.973, which indicates that the system is very vigorous and fast to predict FOS for any slope.

  19. An alternative soil nailing system for slope stabilization: Akarpiles

    Science.gov (United States)

    Lim, Chun-Lan; Chan, Chee-Ming

    2017-11-01

    This research proposes an innovative solution for slope stabilization with less environmental footprint: AKARPILES. In Malaysia, landslide has become common civil and environmental problems that cause impacts to the economy, safety and environment. Therefore, effective slope stabilization method helps to improve the safety of public and protect the environment. This study focused on stabilizing surfacial slope failure. The idea of AKARPILES was generated from the tree roots system in slope stabilization. After the piles are installed in the slope and intercepting the slip plane, grout was pumped in and discharged through holes on the piles. The grout then filled the pores in the soil with random flow within the slip zone. SKW mixture was used to simulate the soil slope. There were two designs being proposed in this study and the prototypes were produced by a 3D printer. Trial mix of the grout was carried out to obtain the optimum mixing ratio of bentonite: cement: water. A series of tests were conducted on the single-pile-reinforced slope under vertical slope crest loading condition considering different slope gradients and nail designs. Parameters such as ultimate load, failure time and failure strain were recorded and compared. As comparison with the unreinforced slope, both designs of AKARPILES showed better but different performances in the model tests.

  20. Slope failure at Bukit Antarabangsa, Ampang, Selangor and its relationship to physical soil properties

    International Nuclear Information System (INIS)

    Muhammad Barzani Gasim; Sahibin Abd Rahim; Mohd Ekhwan Toriman; Diyana Ishnin

    2011-01-01

    Slope failure which occurred on 6 December 2008 at Bukit Antarabangsa, Ampang Selangor has caused mortalities and loss of properties whereas more than 20 houses were flattened. Prior to slope failure, it was heavily down poured for a few hours that increased the soil saturation and plasticity properties. A total of 10 soil samples were randomly taken from stable and unstable slopes to determine physical soil properties, infiltration rate and their relationship to rainfall pattern. Soils were analyzed in terms of their physical properties; five years (2005-2009) of daily rainfalls were analyzed to determine their relationship to infiltration rate at each sampling station. Infiltration rate is determined by using infiltrometer double ring. Analysis of physical soils properties shows that soil texture was dominated by sandy soil with relatively high percentage of sand. Values of clay dispersion coefficient were relatively stable to very stable from 0.013 % to 11.85 % and organic content from 1.38 % to 2.74 %. Range of porosity was from 50.12 % to 62.31 %, while the average levels of hydraulic conductivity was from level 2 to 5 or relatively slow to fast. Percentage of soil aggregate stability was from 5.12 % to 48.42 % and this value indicates that relative strength of soil mechanical pressure is inversely proportional to the percentage of water content. Soil plasticity value was high to very high but characterized by inactive colloids. Distribution of monthly rainfall was from 38 mm to 427 mm. The infiltration rate during sampling time was from 3.0 cm/ hr to 7.0 cm/ hr; but it was expected from 10.94 cm/ hr to 915.05 cm/ hr during slope failures. Overall, it was interpreted that physical soil properties was closely interrelated with slope stability, structure of sandy soil will enhanced soil porosity stage and enhance the infiltration process during heavy rainfall, and finally triggering of slope failure. (author)

  1. Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope

    OpenAIRE

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering t...

  2. Gravitational sliding of the Mt. Etna massif along a sloping basement

    Science.gov (United States)

    Murray, John B.; van Wyk de Vries, Benjamin; Pitty, Andy; Sargent, Phil; Wooller, Luke

    2018-04-01

    Geological field evidence and laboratory modelling indicate that volcanoes constructed on slopes slide downhill. If this happens on an active volcano, then the movement will distort deformation data and thus potentially compromise interpretation. Our recent GPS measurements demonstrate that the entire edifice of Mt. Etna is sliding to the ESE, the overall direction of slope of its complex, rough sedimentary basement. We report methods of discriminating the sliding vector from other deformation processes and of measuring its velocity, which averaged 14 mm year-1 during four intervals between 2001 and 2012. Though sliding of one sector of a volcano due to flank instability is widespread and well-known, this is the first time basement sliding of an entire active volcano has been directly observed. This is important because the geological record shows that such sliding volcanoes are prone to devastating sector collapse on the downslope side, and whole volcano migration should be taken into account when assessing future collapse hazard. It is also important in eruption forecasting, as the sliding vector needs to be allowed for when interpreting deformation events that take place above the sliding basement within the superstructure of the active volcano, as might occur with dyke intrusion or inflation/deflation episodes.

  3. Analysis of rainfall infiltration law in unsaturated soil slope.

    Science.gov (United States)

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θs - θr), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process.

  4. Soil erosion and management activities on forested slopes

    Science.gov (United States)

    Robert R. Ziemer

    1986-01-01

    Some of the most productive forests in the Western United States grow on marginally stable mountainous slopes, where disturbance increases the likelihood of erosion. Much of the public's concern about, and, consequently, most of the research on, erosion from these forested areas is related more to the degradation of stream resources by eroded material than to the...

  5. Slope-apron deposition in an ordovician arc-related setting: The Vuelta de Las Tolas Member (Suri Formation), Famatina Basin, northwest Argentina

    Science.gov (United States)

    Mangano, M.G.; Buatois, L.A.

    1997-01-01

    pyroclastic detritus suggest that their accumulation was contemporaneous with, or post-dated shallow-water or subaereal explosive volcanism. The Vuelta de Las Tolas Member tends to show an overall random facies patterns reflecting the strong influence of non-cyclical episodic processes related to arc volcanism and slope sedimentation. The scarcity of resident ichnofaunas and the presence of thick packages of uniform mudstones suggest deposition under oxygen-depleted conditions in a topographically confined, ponded sub-basin. Interbasinal correlations favor comparison with Middle Arenig slope-apron successions formed in the northern Puna Basin and suggest a southward prolongation of the Arenig volcanic arc.

  6. A method for determining average beach slope and beach slope variability for U.S. sandy coastlines

    Science.gov (United States)

    Doran, Kara S.; Long, Joseph W.; Overbeck, Jacquelyn R.

    2015-01-01

    The U.S. Geological Survey (USGS) National Assessment of Hurricane-Induced Coastal Erosion Hazards compares measurements of beach morphology with storm-induced total water levels to produce forecasts of coastal change for storms impacting the Gulf of Mexico and Atlantic coastlines of the United States. The wave-induced water level component (wave setup and swash) is estimated by using modeled offshore wave height and period and measured beach slope (from dune toe to shoreline) through the empirical parameterization of Stockdon and others (2006). Spatial and temporal variability in beach slope leads to corresponding variability in predicted wave setup and swash. For instance, seasonal and storm-induced changes in beach slope can lead to differences on the order of 1 meter (m) in wave-induced water level elevation, making accurate specification of this parameter and its associated uncertainty essential to skillful forecasts of coastal change. A method for calculating spatially and temporally averaged beach slopes is presented here along with a method for determining total uncertainty for each 200-m alongshore section of coastline.

  7. Experimental research on stability of covering blocks for sloping banks

    International Nuclear Information System (INIS)

    Okuno, Toshihiko

    1988-01-01

    In the case of constructing thermal and nuclear power stations facing open seas, usually the harbors for unloading fuel and others are constructed. In Japan, breakwaters are installed in the places of relatively shallow depth less than 20 m, and in such case, the sloping banks having the covering material of wave-controlling blocks made of concrete are mostly adopted as those are excellent in their function and economical efficiency, and are advantageous in the maintenance and management. Sloping banks are of such type that wave-controlling blocks cover the vertical front face of nonpermeating caissons, and the same type was adopted for breakwaters and others in Onagawa Nuclear Power Station, Tohoku Electric Power Co., Inc. As for the wave-controlling blocks, tetrapods and shake blocks were used. One of the most important problems in the design of sloping banks is how to estimate the stability of wave controlling blocks. In this paper, the results of the examination by hydraulic model experiment on the stability of covering blocks are reported, which are useful as the basic data for the rational and economical design of sloping banks. The experimental setup and a model bank, the generation of experimental waves and their characteristics, the experimental conditions and experimental method, and the results are reported. (Kako, I.)

  8. VT Data - Lidar Slope (0.7m) 2013, Rutland Co., Grand Isle Co., Addison Co., Washington Co.

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Rutland/GI Counties 2013 0.7m and related SLOPE datasets. Created using ArcGIS "SLOPE"...

  9. 30 CFR 77.1911 - Ventilation of slopes and shafts.

    Science.gov (United States)

    2010-07-01

    ... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1911 Ventilation of slopes and shafts. (a) All slopes and... connected to the slope or shaft opening with fireproof air ducts; (3) Designed to permit the reversal of the...

  10. [Mechanisms of grass in slope erosion control in Loess sandy soil region of Northwest China].

    Science.gov (United States)

    Zhao, Chun-Hong; Gao, Jian-En; Xu, Zhen

    2013-01-01

    By adopting the method of simulated precipitation and from the viewpoint of slope hydrodynamics, in combining with the analysis of soil resistance to erosion, a quantitative study was made on the mechanisms of grass in controlling the slope erosion in the cross area of wind-water erosion in Loess Plateau of Northwest China under different combinations of rainfall intensity and slope gradient, aimed to provide basis to reveal the mechanisms of vegetation in controlling soil erosion and to select appropriate vegetation for the soil and water conservation in Loess Plateau. The grass Astragalus adsurgens with the coverage about 40% could effectively control the slope erosion. This grass had an efficiency of more than 70% in reducing sediment, and the grass root had a greater effect than grass canopy. On bare slope and on the slopes with the grass plant or only the grass root playing effect, there existed a functional relation between the flow velocity on the slopes and the rainfall intensity and slope gradient (V = DJ(0.33 i 0.5), where V is flow velocity, D is the comprehensive coefficient which varies with different underlying surfaces, i is rainfall intensity, and J is slope gradient). Both the grass root and the grass canopy could markedly decrease the flow velocity on the slopes, and increase the slope resistance, but the effect of grass root in decreasing flow velocity was greater while the effect in increasing resistance was smaller than that of grass canopy. The effect of grass root in increasing slope resistance was mainly achieved by increasing the sediment grain resistance, while the effect of canopy was mainly achieved by increasing the slope form resistance and wave resistance. The evaluation of the soil resistance to erosion by using a conceptual model of sediment generation by overland flow indicated that the critical shear stress value of bare slope and of the slopes with the grass plant or only the grass root playing effect was 0.533, 1.672 and 0

  11. Intertidal beach slope predictions compared to field data

    NARCIS (Netherlands)

    Madsen, A.J.; Plant, N.G.

    2001-01-01

    This paper presents a test of a very simple model for predicting beach slope changes. The model assumes that these changes are a function of both the incident wave conditions and the beach slope itself. Following other studies, we hypothesized that the beach slope evolves towards an equilibrium

  12. US North Slope gas and Asian LNG markets

    Science.gov (United States)

    Attanasi, E.D.

    1994-01-01

    Prospects for export of liquified natural gas (LNG) from Alaska's North Slope are assessed. Projected market conditions to 2010 show that new LNG capacity beyond announced expansions will be needed to meet regional demand and that supplies will probably come from outside the region. The estimated delivered costs of likely suppliers show that Alaska North Slope gas will not be competitive. The alternative North Slope gas development strategies of transport and sale to the lower 48 states and use on the North Slope for either enhanced oil recovery or conversion to liquids are examined. The alternative options require delaying development until US gas prices increase, exhaustion of certain North Slope oil fields, or advances occur in gas to liquid fuels conversion technology. ?? 1995.

  13. Hydraulic properties for interrill erosion on steep slopes using a portable rainfall simulator

    Science.gov (United States)

    Shin, Seung Sook; Hwang, Yoonhee; Deog Park, Sang; Yun, Minu; Park, Sangyeon

    2017-04-01

    The hydraulic parameters for sheet flow on steep slopes have been not frequently measured because the shallow flow depth and slow flow velocity are difficult to measure. In this study hydraulic values of sheet flow were analyzed to evaluate interrill erosion on steep slopes. A portable rainfall simulator was used to conduct interrill erosion test. The kinetic energy of rainfall simulator was obtained by disdrometer being capable of measuring the drop size distribution and velocity of falling raindrops. The sheet flow velocity was determined by the taken time for a dye transferring fixed points using video images. Surface runoff discharge and sediment yield increased with increase of rainfall intensity and kinetic energy and slope steepness. Especially sediment yield was strongly correlated with sheet flow velocity. The maximum velocity of sheet flow was 2.3cm/s under rainfall intensity of 126.8mm/h and slope steepness of 53.2%. The sheet flow was laminar and subcritical flow as the flow Reynolds number and Froude number are respectively the ranges of 10 22 and 0.05 0.25. The roughness coefficient (Manning's n) for sheet flow on steep slopes was relatively large compared to them on the gentle slope. Keywords: Sheet flow velocity; Rainfall simulator; Interrill erosion; Steep slope This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2015R1C1A2A01055469).

  14. Deep-seated gravitational slope deformations near the Trans-Alaska Pipeline, east-central Alaska Range, Alaska, USA

    Science.gov (United States)

    Newman, S. D.; Clague, J. J.; Rabus, B.; Stead, D.

    2013-12-01

    Multiple, active, deep-seated gravitational slope deformations (DSGSD) are present near the Trans-Alaska Pipeline and Richardson Highway in the east-central Alaska Range, Alaska, USA. We documented spatial and temporal variations in rates of surface movement of the DSGSDs between 2003 and 2011 using RADARSAT-1 and RADARSAT-2 D-InSAR images. Deformation rates exceed 10 cm/month over very large areas (>1 km2) of many rock slopes. Recent climatic change and strong seismic shaking, especially during the 2002 M 7.9 Denali Fault earthquake, appear to have exacerbated slope deformation. We also mapped DSGSD geological and morphological characteristics using field- and GIS-based methods, and constructed a conceptual 2D distinct-element numerical model of one of the DSGSDs. Preliminary results indicate that large-scale buckling or kink-band slumping may be occurring. The DSGSDs are capable of generating long-runout landslides that might impact the Trans-Alaska Pipeline and Richardson Highway. They could also block tributary valleys, thereby impounding lakes that might drain suddenly. Wrapped 24-day RADARSAT-2 descending spotlight interferogram showing deformation north of Fels Glacier. The interferogram is partially transparent and is overlaid on a 2009 WorldView-1 panchromatic image. Acquisition interval: August 2 - August 26, 2011. UTM Zone 6N.

  15. The great slippery-slope argument.

    OpenAIRE

    Burgess, J A

    1993-01-01

    Whenever some form of beneficent killing--for example, voluntary euthanasia--is advocated, the proposal is greeted with a flood of slippery-slope arguments warning of the dangers of a Nazi-style slide into genocide. This paper is an attempt systematically to evaluate arguments of this kind. Although there are slippery-slope arguments that are sound and convincing, typical formulations of the Nazi-invoking argument are found to be seriously deficient both in logical rigour and in the social hi...

  16. DOWNWARD SLOPING DEMAND CURVES FOR STOCK AND LEVERAGE

    Directory of Open Access Journals (Sweden)

    Liem Pei Fun

    2006-01-01

    Full Text Available This research attempts to investigate the effect of downward sloping demand curves for stock on firms' financing decisions. For the same size of equity issuance, firms with steeper slope of demand curves for their stocks experience a larger price drop in their share price compare to their counterparts. As a consequence, firms with a steeper slope of demand curves are less likely to issue equity and hence they have higher leverage ratios. This research finds that the steeper the slope of demand curve for firm's stock, the higher the actual leverage of the firm. Furthermore, firms with a steeper slope of demand curves have higher target leverage ratios, signifying that these firms prefer debt to equity financing in order to avoid the adverse price impact of equity issuance on their share price.

  17. Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis.

    Science.gov (United States)

    Adam, Emma K; Quinn, Meghan E; Tavernier, Royette; McQuillan, Mollie T; Dahlke, Katie A; Gilbert, Kirsten E

    2017-09-01

    Changes in levels of the stress-sensitive hormone cortisol from morning to evening are referred to as diurnal cortisol slopes. Flatter diurnal cortisol slopes have been proposed as a mediator between chronic psychosocial stress and poor mental and physical health outcomes in past theory and research. Surprisingly, neither a systematic nor a meta-analytic review of associations between diurnal cortisol slopes and health has been conducted to date, despite extensive literature on the topic. The current systematic review and meta-analysis examined associations between diurnal cortisol slopes and physical and mental health outcomes. Analyses were based on 179 associations from 80 studies for the time period up to January 31, 2015. Results indicated a significant association between flatter diurnal cortisol slopes and poorer health across all studies (average effect size, r=0.147). Further, flatter diurnal cortisol slopes were associated with poorer health in 10 out of 12 subtypes of emotional and physical health outcomes examined. Among these subtypes, the effect size was largest for immune/inflammation outcomes (r=0.288). Potential moderators of the associations between diurnal cortisol slopes and health outcomes were examined, including type of slope measure and study quality indices. The possible roles of flatter slopes as either a marker or a mechanism for disease etiology are discussed. We argue that flatter diurnal cortisol slopes may both reflect and contribute to stress-related dysregulation of central and peripheral circadian mechanisms, with corresponding downstream effects on multiple aspects of biology, behavior, and health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Conceptualizations of Slope: A Review of State Standards

    Science.gov (United States)

    Stanton, Michael; Moore-Russo, Deborah

    2012-01-01

    Since slope is a fundamental topic that is embedded throughout the U.S. secondary school curriculum, this study examined standards documents for all 50 states to determine how they address the concept of slope. The study used eleven conceptualizations of slope as categories to classify the material in the documents. The findings indicate that all…

  19. Performance of the APS optical slope measuring system

    International Nuclear Information System (INIS)

    Qian, Jun; Sullivan, Joe; Erdmann, Mark; Khounsary, Ali; Assoufid, Lahsen

    2013-01-01

    An optical slope measuring system (OSMS) was recently brought into operation at the Advanced Photon Source of the Argonne National Laboratory. This system is equipped with a precision autocollimator and a very accurate mirror-based pentaprism on a scanning stage and kept in an environment-controlled enclosure. This system has the capability to measure precision optics with sub-microradian rms slope errors as documented with a series of tests demonstrating accuracy, stability, reliability and repeatability. Measurements of a flat mirror with 0.2 μrad rms slope error are presented which show that the variation of the slope profile measurements with the mirror setting at different locations along the scanning direction is only 60 nrad and the corresponding height error profile has 2 nm rms. -- Highlights: ► This is the first time to present the APS OSMS in publication. ► The APS OSMS is capable to measure flat and near flat mirrors with slope error <100 nrad rms. ► The accuracy of the slope error measurements of a 350 mm long mirror is less than 60 nrad rms

  20. The logarithmic slope in diffractive DIS

    International Nuclear Information System (INIS)

    Gay Ducati, M.B.; Goncalves, V.P.; Machado, M.V.T.

    2002-01-01

    The logarithmic slope of diffractive structure function is a potential observable to separate the hard and soft contributions in diffraction, allowing to disentangle the QCD dynamics at small-x region. In this paper we extend our previous analyzes and calculate the diffractive logarithmic slope for three current approaches in the literature: (i) the Bartels-Wusthoff model, based on perturbative QCD, (ii) the CKMT model, based on Regge theory and (iii) the Golec-Biernat-Wusthoff model which assumes that the saturation phenomena is present in the HERA kinematic region. We analyze the transition region of small to large momentum transfer and verify that future experimental results on the diffractive logarithmic slope could discriminate between these approaches

  1. Design of Rock Slope Reinforcement: An Himalayan Case Study

    Science.gov (United States)

    Tiwari, Gaurav; Latha, Gali Madhavi

    2016-06-01

    The stability analysis of the two abutment slopes of a railway bridge proposed at about 359 m above the ground level, crossing a river and connecting two hill faces in the Himalayas, India, is presented. The bridge is located in a zone of high seismic activity. The rock slopes are composed of a heavily jointed rock mass and the spacing, dip and dip direction of joint sets are varying at different locations. Geological mapping was carried out to characterize all discontinuities present along the slopes. Laboratory and field investigations were conducted to assess the geotechnical properties of the intact rock, rock mass and joint infill. Stability analyses of these rock slopes were carried out using numerical programmes. Loads from the foundations resting on the slopes and seismic accelerations estimated from site-specific ground response analysis were considered. The proposed slope profile with several berms between successive foundations was simulated in the numerical model. An equivalent continuum approach with Hoek and Brown failure criterion was initially used in a finite element model to assess the global stability of the slope abutments. In the second stage, finite element analysis of rock slopes with all joint sets with their orientations, spacing and properties explicitly incorporated into the numerical model was taken up using continuum with joints approach. It was observed that the continuum with joints approach was able to capture the local failures in some of the slope sections, which were verified using wedge failure analysis and stereographic projections. Based on the slope deformations and failure patterns observed from the numerical analyses, rock anchors were designed to achieve the target factors of safety against failure while keeping the deformations within the permissible limits. Detailed design of rock anchors and comparison of the stability of slopes with and without reinforcement are presented.

  2. Integrating concepts and skills: Slope and kinematics graphs

    Science.gov (United States)

    Tonelli, Edward P., Jr.

    The concept of force is a foundational idea in physics. To predict the results of applying forces to objects, a student must be able to interpret data representing changes in distance, time, speed, and acceleration. Comprehension of kinematics concepts requires students to interpret motion graphs, where rates of change are represented as slopes of line segments. Studies have shown that majorities of students who show proficiency with mathematical concepts fail accurately to interpret motion graphs. The primary aim of this study was to examine how students apply their knowledge of slope when interpreting kinematics graphs. To answer the research questions a mixed methods research design, which included a survey and interviews, was adopted. Ninety eight (N=98) high school students completed surveys which were quantitatively analyzed along with qualitative information collected from interviews of students (N=15) and teachers ( N=2). The study showed that students who recalled methods for calculating slopes and speeds calculated slopes accurately, but calculated speeds inaccurately. When comparing the slopes and speeds, most students resorted to calculating instead of visual inspection. Most students recalled and applied memorized rules. Students who calculated slopes and speeds inaccurately failed to recall methods of calculating slopes and speeds, but when comparing speeds, these students connected the concepts of distance and time to the line segments and the rates of change they represented. This study's findings will likely help mathematics and science educators to better assist their students to apply their knowledge of the definition of slope and skills in kinematics concepts.

  3. Facies-controlled reservoir properties in ramp-fan and slope-apron deposits, Miocene Puente Formation, Los Angeles basin

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, K.T.; Geving, R.L.; Suchecki, R.K.

    1989-03-01

    The Miocene Puente Formation in outcrops of the eastern Los Angeles basin is interpreted as a succession of slope-apron and ramp-fan deposits that accumulated in a prism-rise wedge. The principal depositional components of this dominantly base-of-slope and ramp system are ramp-fan channels and lobes, and slope-channel and slope-apron channel/interchannel deposits. Facies-specific textural, compositional, and diagenetic attributes observed in thin section assist in the classification of depositional facies. Specifically, occurrence of carbonate cement, clay mineralogy, and abundance of organic material vary as a function of component facies architecture of the depositional system. Slope and ramp-fan channel-fill sandstones are characterized by pervasive carbonate cements, including poikilotopic and fine-grained calcite, fine-grained and baroque dolomite, and minor siderite. Diagenetic clays predate carbonate cements, and dolomite predates coarser, void-filling calcite. Ramp-fan lobe and interchannel deposits are carbonate free but are rich in detrital clay and organic matter. Diagenetic clays include mixed-layer illite/smectite and kaolinite. Sediments deposited in slope-apron channel fill are virtually cement free except for small amounts of authigenic illite/smectite. Slope-apron interchannel deposits are characterized by high content of organic matter and clay-rich matrix. Potential reservoir characteristics, such as grain size, sorting, and abundance of depositional clay matrix, are related to the primary sedimentary properties of depositional architectural components in the ramp-fan and slope-apron system. Additional diagenetic modifications, without consideration of compaction, were controlled by precipitation reactions associated with fluid flow along pathways related to the depositional architectural framework.

  4. The concentration-discharge slope as a tool for water quality management.

    Science.gov (United States)

    Bieroza, M Z; Heathwaite, A L; Bechmann, M; Kyllmar, K; Jordan, P

    2018-07-15

    Recent technological breakthroughs of optical sensors and analysers have enabled matching the water quality measurement interval to the time scales of stream flow changes and led to an improved understanding of spatially and temporally heterogeneous sources and delivery pathways for many solutes and particulates. This new ability to match the chemograph with the hydrograph has promoted renewed interest in the concentration-discharge (c-q) relationship and its value in characterizing catchment storage, time lags and legacy effects for both weathering products and anthropogenic pollutants. In this paper we evaluated the stream c-q relationships for a number of water quality determinands (phosphorus, suspended sediments, nitrogen) in intensively managed agricultural catchments based on both high-frequency (sub-hourly) and long-term low-frequency (fortnightly-monthly) routine monitoring data. We used resampled high-frequency data to test the uncertainty in water quality parameters (e.g. mean, 95th percentile and load) derived from low-frequency sub-datasets. We showed that the uncertainty in water quality parameters increases with reduced sampling frequency as a function of the c-q slope. We also showed that different sources and delivery pathways control c-q relationship for different solutes and particulates. Secondly, we evaluated the variation in c-q slopes derived from the long-term low-frequency data for different determinands and catchments and showed strong chemostatic behaviour for phosphorus and nitrogen due to saturation and agricultural legacy effects. The c-q slope analysis can provide an effective tool to evaluate the current monitoring networks and the effectiveness of water management interventions. This research highlights how improved understanding of solute and particulate dynamics obtained with optical sensors and analysers can be used to understand patterns in long-term water quality time series, reduce the uncertainty in the monitoring data and to

  5. The Effect of Alongcoast Advection on Pacific Northwest Shelf and Slope Water Properties in Relation to Upwelling Variability

    Science.gov (United States)

    Stone, Hally B.; Banas, Neil S.; MacCready, Parker

    2018-01-01

    The Northern California Current System experiences highly variable seasonal upwelling in addition to larger basin-scale variability, both of which can significantly affect its water chemistry. Salinity and temperature fields from a 7 year ROMS hindcast model of this region (43°N-50°N), along with extensive particle tracking, were used to study interannual variability in water properties over both the upper slope and the midshelf bottom. Variation in slope water properties was an order of magnitude smaller than on the shelf. Furthermore, the primary relationship between temperature and salinity anomalies in midshelf bottom water consisted of variation in density (cold/salty versus warm/fresh), nearly orthogonal to the anomalies along density levels (cold/fresh versus warm/salty) observed on the upper slope. These midshelf anomalies were well-explained (R2 = 0.6) by the combination of interannual variability in local and remote alongshore wind stress, and depth of the California Undercurrent (CUC) core. Lagrangian analysis of upper slope and midshelf bottom water shows that both are affected simultaneously by large-scale alongcoast advection of water through the northern and southern boundaries. The amplitude of anomalies in bottom oxygen and dissolved inorganic carbon (DIC) on the shelf associated with upwelling variability are larger than those associated with typical variation in alongcoast advection, and are comparable to observed anomalies in this region. However, a large northern intrusion event in 2004 illustrates that particular, large-scale alongcoast advection anomalies can be just as effective as upwelling variability in changing shelf water properties on the interannual scale.

  6. Stability Analysis of Tunnel-Slope Coupling Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Tao Luo

    2015-07-01

    Full Text Available Subjects in tunnels, being constrained by terrain and routes, entrances and exits to tunnels, usually stay in the terrain with slopes. Thus, it is necessary to carry out stability analysis by treating the tunnel slope as an entity. In this study, based on the Janbu slices method, a model for the calculation of the stability of the original slope-tunnel-bank slope is established. The genetic algorithm is used to implement calculation variables, safety coefficient expression and fitness function design. The stability of the original slope-tunnel-bank slope under different conditions is calculated, after utilizing the secondary development function of the mathematical tool MATLAB for programming. We found that the bearing capacity of the original slopes is reduced as the tunnels are excavated and the safety coefficient is gradually decreased as loads of the embankment construction increased. After the embankment was constructed, the safety coefficient was 1.38, which is larger than the 1.3 value specified by China’s standards. Thus, the original slope-tunnel-bank slope would remain in a stable state.

  7. assessment of slope stability around gilgel gibe-ii hydroelectric

    African Journals Online (AJOL)

    preferred customer

    1 Gilgel-Gibe II Hydroelectric Project, Fofa Town, Ethiopia ... Key words/phrases: Factor of safety, plane failure, slope design, slope .... condition of potential unstable slopes along the road between Fofa town and Gilgel-Gibe Hydro- power II.

  8. Relation of oxygen uptake to work rate in prepubertal healthy children - reference for VO2/W-slope and effect on cardiorespiratory fitness assessment.

    Science.gov (United States)

    Tompuri, Tuomo; Lintu, Niina; Laitinen, Tomi; Lakka, Timo A

    2017-08-09

    Exercise testing by cycle ergometer allows to observe the interaction between oxygen uptake (VO 2 ) and workload (W), and VO 2 /W-slope can be used as a diagnostic tool. Respectively, peak oxygen uptake (VO 2 PEAK ) can be estimated by maximal workload. We aim to determine reference for VO 2 /W-slope among prepubertal children and define agreement between estimated and measured VO 2 PEAK . A total of 38 prepubertal children (20 girls) performed a maximal cycle ergometer test with respiratory gas analysis. VO 2 /W-slopes were computed using linear regression. Agreement analysis by Bland and Altman for estimated and measured VO 2 PEAK was carried out including limits of agreement (LA). Determinants for VO 2 /W-slopes and estimation bias were defined. VO2/W-slope was in both girls and boys ≥9·4 and did not change with exercise level, but the oxygen cost of exercise was higher among physically more active children. Estimated VO 2 PEAK had 6·4% coefficient of variation, and LA varied from 13% underestimation to 13% overestimation. Bias had a trend towards underestimation along lean mass proportional VO 2 PEAK . The primary determinant for estimation bias was VO2/W-slope (β = -0·65; PW-slope among healthy prepubertal children were similar to those published for adults and among adolescents. Estimated and measured VO 2 PEAK should not be considered to be interchangeable because of the variation in the relationship between VO 2 and W. On other hand, variation in the relationship between VO 2 and W enables that VO 2 /W-slope can be used as a diagnostic tool. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  9. Restitution slope is principally determined by steady-state action potential duration.

    Science.gov (United States)

    Shattock, Michael J; Park, Kyung Chan; Yang, Hsiang-Yu; Lee, Angela W C; Niederer, Steven; MacLeod, Kenneth T; Winter, James

    2017-06-01

    The steepness of the action potential duration (APD) restitution curve and local tissue refractoriness are both thought to play important roles in arrhythmogenesis. Despite this, there has been little recognition of the apparent association between steady-state APD and the slope of the restitution curve. The objective of this study was to test the hypothesis that restitution slope is determined by APD and to examine the relationship between restitution slope, refractoriness and susceptibility to VF. Experiments were conducted in isolated hearts and ventricular myocytes from adult guinea pigs and rabbits. Restitution curves were measured under control conditions and following intervention to prolong (clofilium, veratridine, bretylium, low [Ca]e, chronic transverse aortic constriction) or shorten (catecholamines, rapid pacing) ventricular APD. Despite markedly differing mechanisms of action, all interventions that prolonged the action potential led to a steepening of the restitution curve (and vice versa). Normalizing the restitution curve as a % of steady-state APD abolished the difference in restitution curves with all interventions. Effects on restitution were preserved when APD was modulated by current injection in myocytes pre-treated with the calcium chelator BAPTA-AM - to abolish the intracellular calcium transient. The non-linear relation between APD and the rate of repolarization of the action potential is shown to underpin the common influence of APD on the slope of the restitution curve. Susceptibility to VF was found to parallel changes in APD/refractoriness, rather than restitution slope. Steady-state APD is the principal determinant of the slope of the ventricular electrical restitution curve. In the absence of post-repolarization refractoriness, factors that prolong the action potential would be expected to steepen the restitution curve. However, concomitant changes in tissue refractoriness act to reduce susceptibility to sustained VF. Dependence on

  10. Model tests of geosynthetic reinforced slopes in a geotechnical centrifuge

    International Nuclear Information System (INIS)

    Aklik, P.

    2012-01-01

    Geosynthetic-reinforced slopes and walls became very popular in recent years because of their financial, technical, and ecological advantages. Centrifuge modelling is a powerful tool for physical modelling of reinforced slopes and offers the advantage to observe the failure mechanisms of the slopes. In order to replicate the gravity induced stresses of a prototype structure in a geometrically 1/N reduced model, it is necessary to test the model in a gravitational field N times larger than that of the prototype structure. In this dissertation, geotextile-reinforced slope models were tested in a geotechnical centrifuge to identify the possible failure mechanisms. Slope models were tested by varying slope inclination, tensile strengths of the geotextiles, and overlapping lengths. Photographs of the geotextile reinforced slope models in flight were taken with a digital camera and the soil deformations of geotextile reinforced slopes were evaluated with Particle Image Velocimetry (PIV). The experimental results showed that failure of the centrifuge models initiated at midheight of the slope, and occurred due to geotextile breakage instead of pullout. The location of the shear surface is independent of the tensile strength of the geotextile; it is dependent on the shear strength of the soil. It is logical to see that the required acceleration of the centrifuge at slope failure was decreased with increasing slope inclination. An important contribution to the stability of the slope models was provided by the overlapping of the geotextile layers. It has a secondary reinforcement effect when it was prolonged and passed through the shear surface. Moreover, the location of the shear surface observed with PIV analysis exactly matches the tears of the retrieved geotextiles measured carefully after the centrifuge testing. It is concluded that PIV is an efficient tool to instrument the slope failures in a geotechnical centrifuge.(author) [de

  11. A note on birth interval distributions

    International Nuclear Information System (INIS)

    Shrestha, G.

    1989-08-01

    A considerable amount of work has been done regarding the birth interval analysis in mathematical demography. This paper is prepared with the intention of reviewing some probability models related to interlive birth intervals proposed by different researchers. (author). 14 refs

  12. Stability of the slopes around nuclear power plants in earthquake

    International Nuclear Information System (INIS)

    Ito, Hiroshi

    1983-01-01

    The evaluation of the stability of the slopes around the buildings of nuclear power plants is important especially with respect to earthquakes. In this connection, the behavior of a slope up to its destruction and the phenomena of the destruction have been examined in the case of an earthquake by both experiment and numerical analysis. The purpose is to obtain the data for the establishment of a method for evaluating the seismic stability of a slope and of the slope design standards. The following results are described: the behavior of a slope and its destruction characteristics in the slope destruction experiment simulating the seismic coefficient method; the vibration of a slope and its destruction characteristics in vibration destruction experiment; the validity of the method of numerical simulation analysis and of stability evaluation for the slope destruction and the vibration destruction experiments, and quantitative destruction mechanism; the comparison of the various stability evaluation methods and the evaluation of seismic forces. (Mori, K.)

  13. Effects of High Intensity Interval versus Moderate Continuous Training on Markers of Ventilatory and Cardiac Efficiency in Coronary Heart Disease Patients

    Directory of Open Access Journals (Sweden)

    Gustavo G. Cardozo

    2015-01-01

    Full Text Available Background. We tested the hypothesis that high intensity interval training (HIIT would be more effective than moderate intensity continuous training (MIT to improve newly emerged markers of cardiorespiratory fitness in coronary heart disease (CHD patients, as the relationship between ventilation and carbon dioxide production (VE/VCO2 slope, oxygen uptake efficiency slope (OUES, and oxygen pulse (O2P. Methods. Seventy-one patients with optimized treatment were randomly assigned into HIIT (n=23, age = 56 ± 12 years, MIT (n=24, age = 62 ± 12 years, or nonexercise control group (CG (n=24, age = 64 ± 12 years. MIT performed 30 min of continuous aerobic exercise at 70–75% of maximal heart rate (HRmax, and HIIT performed 30 min sessions split in 2 min alternate bouts at 60%/90% HRmax (3 times/week for 16 weeks. Results. No differences among groups (before versus after were found for VE/VCO2 slope or OUES (P>0.05. After training the O2P slope increased in HIIT (22%, P0.05, while decreased in CG (−20%, P<0.05 becoming lower versus HIIT (P=0.03. Conclusion. HIIT was more effective than MIT for improving O2P slope in CHD patients, while VE/VCO2 slope and OUES were similarly improved by aerobic training regimens versus controls.

  14. Establishment of a paediatric age-related reference interval for the measurement of urinary total fractionated metanephrines.

    LENUS (Irish Health Repository)

    Griffin, Alison

    2012-02-01

    INTRODUCTION: Normetanephrine and metanephrine are intermediate metabolites of noradrenaline and adrenaline metabolism. To assess whether normetanephrine and metanephrine analysis may aid in the diagnosis of Neuroblastoma, a reference interval for these metabolites must first be established. AIM: The overall aim of this study was to establish a paediatric age-related reference interval for the measurement of total fractionated metanephrines. METHODS: A total of 267 urine samples were analysed following acid hydrolysis. This releases the metanephrines from their sulphate-bound metabolites. The samples were analysed using reverse phase high-performance liquid chromatography with electro-chemical detection on a Gilson automated sequential trace enrichment of dialysate sample system. RESULTS: Data were analysed using Minitab Release version 14. Outliers were removed using the Dixon\\/Reed one-third rule. Partitioning of the age groups was achieved using Harris and Boyd\\'s standard normal deviate test. Non-parametric analysis of the data was performed, followed by the establishment of the 2.5th and the 97.5th reference limits. CONCLUSIONS: The established reference intervals are described in Table 2.

  15. Air pocket removal from downward sloping pipes

    NARCIS (Netherlands)

    Pothof, I.W.M.; Clemens, F.H.L.R.

    2012-01-01

    Air-water flow is an undesired condition in water pipelines and hydropower tunnels. Water pipelines and wastewater pressure mains in particular are subject to air pocket accumulation in downward sloping reaches, such as inverted siphons or terrain slopes. Air pockets cause energy losses and an

  16. GIS/RS-based Rapid Reassessment for Slope Land Capability Classification

    Science.gov (United States)

    Chang, T. Y.; Chompuchan, C.

    2014-12-01

    Farmland resources in Taiwan are limited because about 73% is mountainous and slope land. Moreover, the rapid urbanization and dense population resulted in the highly developed flat area. Therefore, the utilization of slope land for agriculture is more needed. In 1976, "Slope Land Conservation and Utilization Act" was promulgated to regulate the slope land utilization. Consequently, slope land capability was categorized into Class I-IV according to 4 criteria, i.e., average land slope, effective soil depth, degree of soil erosion, and parent rock. The slope land capability Class I-VI are suitable for cultivation and pasture. Whereas, Class V should be used for forestry purpose and Class VI should be the conservation land which requires intensive conservation practices. The field survey was conducted to categorize each land unit as the classification scheme. The landowners may not allow to overuse land capability limitation. In the last decade, typhoons and landslides frequently devastated in Taiwan. The rapid post-disaster reassessment of the slope land capability classification is necessary. However, the large-scale disaster on slope land is the constraint of field investigation. This study focused on using satellite remote sensing and GIS as the rapid re-evaluation method. Chenyulan watershed in Nantou County, Taiwan was selected to be a case study area. Grid-based slope derivation, topographic wetness index (TWI) and USLE soil loss calculation were used to classify slope land capability. The results showed that GIS-based classification give an overall accuracy of 68.32%. In addition, the post-disaster areas of Typhoon Morakot in 2009, which interpreted by SPOT satellite imageries, were suggested to classify as the conservation lands. These tools perform better in the large coverage post-disaster update for slope land capability classification and reduce time-consuming, manpower and material resources to the field investigation.

  17. WHISPERS Project on the easternmost slope of the Ross Sea (Antarctica): preliminary results.

    Science.gov (United States)

    Olivo, E.; De Santis, L.; Bergamasco, A.; Colleoni, F.; Gales, J. A.; Florindo-Lopez, C.; Kim, S.; Kovacevic, V.; Rebesco, M.

    2017-12-01

    The advance and retreat of the West Antarctic Ice Sheet from the outer continental shelf and the oceanic circulation are the main causes of the depositional processes on the Ross Sea continental slope, at present time and during the most of the Cenozoic. Currently the Antarctic Bottom Water formation is directly linked to the relatively warm Circumpolar Deep Water that, encroaching the continental shelf, mixes with the colder Ross Sea Bottom Water. Detailed multibeam and geological surveys useful to locate and characterize peculiar morphological structures on the bottom are essential to study how the glacial and oceanographic processes interact with the seabed sediments. In the framework of the PNRA-WHISPERS project (XXXIIth Italian Antarctic expedition - January/March 2017), new multibeam bathymetric, sub-bottom chirp, were acquired from the easternmost margin of the Ross Sea, on the southeastern side of the Hayes Bank, usually covered by sea ice. We observed on the upper slope erosional features (incised gullies of likely glacial meltwater origin). A broad scar in the upper slope is characterized by an elongated SSW-NNE ridge (10 km long, 850-1200 m water depth, 2 km wide), that may be a remnants of previous glacial or debris flow deposits, eroded by meltwater outwash discharge at the beginning of grounding ice retreat and by RSBW cascading along the slope, as documented by Expandable Bathy-Thermograph and Acoustic Depth Current Profile data. Sub-bottom chirp profiles crossing this ridge show a very low amplitude reflective sea bed, supporting the hypothesis of its soft sediment nature, in good agreement with a very low acoustic velocity obtained by multichannel seismic data reprocessing. The occurrence of internal stratification on 2D multichannel seismic profiles would discount a gas-fluids related mud volcano origin. No sediment cores were collected, due to bad sea conditions and limited ship time, further data collection would be needed to fully understand

  18. Small scale tests on the progressive retreat of soil slopes

    Science.gov (United States)

    Voulgari, Chrysoula; Utili, Stefano; Castellanza, Riccardo

    2015-04-01

    In this paper, the influence due to the presence of cracks on the morphologic evolution of natural cliffs subject to progressive retreat induced by weathering is investigated through small scale laboratory tests. Weathering turns hard rocks into soft rocks that maintain the structure of the intact rocks, but are characterised by higher void ratios and reduced bond strengths; soft rocks are transformed into granular soils generally called residual soils. A number of landslides develop in slopes due to weathering which results in the progressive retrogression of the slope face and the further degradation within the weathering zone. Cracks, that are widely present, can be a result of weathering and they can cause a significant decrease in their stability, as they provide preferential flow channels which increase the soil permeability and decrease the soil strength. The geological models employed until now are mainly empirical. Several researchers have tried to study the stability of slopes through experimental procedures. Centrifuge modelling is widely used to investigate the failure of slopes. Small scale tests are also an important approach, in order to study the behaviour of a slope under certain conditions, such as the existence of water, as they allow the observation of the infiltration processes, the movement of the weathering front, deformation and failure. However, the deformation response of a slope subject to weathering is not yet thoroughly clarified. In this work, a set of experiments were conducted to investigate weathering induced successive landslides. Weathering was applied to the slope model by wetting the slope crest through a rainfall simulator device. The moisture content of the soil during the tests was monitored by soil moisture sensors that were buried inside the slope model. High resolution cameras were recording the behaviour of the slope model. GeoPIV was used to analyse the frames and obtain the deformations of the slope model during the

  19. Measuring and Modeling Root Distribution and Root Reinforcement in Forested Slopes for Slope Stability Calculations

    Science.gov (United States)

    Cohen, D.; Giadrossich, F.; Schwarz, M.; Vergani, C.

    2016-12-01

    Roots provide mechanical anchorage and reinforcement of soils on slopes. Roots also modify soil hydrological properties (soil moisture content, pore-water pressure, preferential flow paths) via subsurface flow path associated with root architecture, root density, and root-size distribution. Interactions of root-soil mechanical and hydrological processes are an important control of shallow landslide initiation during rainfall events and slope stability. Knowledge of root-distribution and root strength are key components to estimate slope stability in vegetated slopes and for the management of protection forest in steep mountainous area. We present data that show the importance of measuring root strength directly in the field and present methods for these measurements. These data indicate that the tensile force mobilized in roots depends on root elongation (a function of soil displacement), root size, and on whether roots break in tension of slip out of the soil. Measurements indicate that large lateral roots that cross tension cracks at the scarp are important for slope stability calculations owing to their large tensional resistance. These roots are often overlooked and when included, their strength is overestimated because extrapolated from measurements on small roots. We present planned field experiments that will measure directly the force held by roots of different sizes during the triggering of a shallow landslide by rainfall. These field data are then used in a model of root reinforcement based on fiber-bundle concepts that span different spacial scales, from a single root to the stand scale, and different time scales, from timber harvest to root decay. This model computes the strength of root bundles in tension and in compression and their effect on soil strength. Up-scaled to the stand the model yields the distribution of root reinforcement as a function of tree density, distance from tree, tree species and age with the objective of providing quantitative

  20. Effect of slope height and horizontal forces on the bearing capacity of strip footings near slopes in cohesionless soil

    DEFF Research Database (Denmark)

    Krabbenhøft, Sven; Damkilde, Lars; Krabbenhøft, Kristian

    2016-01-01

    , and in such cases the bearing capacity of the footing cannot be found using the existing methods. The present work comprises finite element based upper- and lower-bound calculations, using the geotechnical software OptumG2 to investigate the effect of the slope height and horizontal forces on the total bearing...... capacity, both without and with using superposition as presupposed in the traditional bearing capacity equation. The results for friction angles 30, 35 and 40 degrees, slope inclinations 1:2, 1:3 and 1:4, for selfweight and surcharge are given as charts showing the slope inclination factors suitable...

  1. Cardiac interbeat interval dynamics from childhood to senescence : comparison of conventional and new measures based on fractals and chaos theory

    Science.gov (United States)

    Pikkujamsa, S. M.; Makikallio, T. H.; Sourander, L. B.; Raiha, I. J.; Puukka, P.; Skytta, J.; Peng, C. K.; Goldberger, A. L.; Huikuri, H. V.

    1999-01-01

    BACKGROUND: New methods of R-R interval variability based on fractal scaling and nonlinear dynamics ("chaos theory") may give new insights into heart rate dynamics. The aims of this study were to (1) systematically characterize and quantify the effects of aging from early childhood to advanced age on 24-hour heart rate dynamics in healthy subjects; (2) compare age-related changes in conventional time- and frequency-domain measures with changes in newly derived measures based on fractal scaling and complexity (chaos) theory; and (3) further test the hypothesis that there is loss of complexity and altered fractal scaling of heart rate dynamics with advanced age. METHODS AND RESULTS: The relationship between age and cardiac interbeat (R-R) interval dynamics from childhood to senescence was studied in 114 healthy subjects (age range, 1 to 82 years) by measurement of the slope, beta, of the power-law regression line (log power-log frequency) of R-R interval variability (10(-4) to 10(-2) Hz), approximate entropy (ApEn), short-term (alpha(1)) and intermediate-term (alpha(2)) fractal scaling exponents obtained by detrended fluctuation analysis, and traditional time- and frequency-domain measures from 24-hour ECG recordings. Compared with young adults (60 years, n=29). CONCLUSIONS: Cardiac interbeat interval dynamics change markedly from childhood to old age in healthy subjects. Children show complexity and fractal correlation properties of R-R interval time series comparable to those of young adults, despite lower overall heart rate variability. Healthy aging is associated with R-R interval dynamics showing higher regularity and altered fractal scaling consistent with a loss of complex variability.

  2. Variance-in-Mean Effects of the Long Forward-Rate Slope

    DEFF Research Database (Denmark)

    Christiansen, Charlotte

    2005-01-01

    This paper contains an empirical analysis of the dependence of the long forward-rate slope on the long-rate variance. The long forward-rate slope and the long rate are described by a bivariate GARCH-in-mean model. In accordance with theory, a negative long-rate variance-in-mean effect for the long...... forward-rate slope is documented. Thus, the greater the long-rate variance, the steeper the long forward-rate curve slopes downward (the long forward-rate slope is negative). The variance-in-mean effect is both statistically and economically significant....

  3. Reorienting with terrain slope and landmarks.

    Science.gov (United States)

    Nardi, Daniele; Newcombe, Nora S; Shipley, Thomas F

    2013-02-01

    Orientation (or reorientation) is the first step in navigation, because establishing a spatial frame of reference is essential for a sense of location and heading direction. Recent research on nonhuman animals has revealed that the vertical component of an environment provides an important source of spatial information, in both terrestrial and aquatic settings. Nonetheless, humans show large individual and sex differences in the ability to use terrain slope for reorientation. To understand why some participants--mainly women--exhibit a difficulty with slope, we tested reorientation in a richer environment than had been used previously, including both a tilted floor and a set of distinct objects that could be used as landmarks. This environment allowed for the use of two different strategies for solving the task, one based on directional cues (slope gradient) and one based on positional cues (landmarks). Overall, rather than using both cues, participants tended to focus on just one. Although men and women did not differ significantly in their encoding of or reliance on the two strategies, men showed greater confidence in solving the reorientation task. These facts suggest that one possible cause of the female difficulty with slope might be a generally lower spatial confidence during reorientation.

  4. Filamentous fungal population and species diversity from the continental slope of Bay of Bengal, India

    Science.gov (United States)

    Das, Surajit; Lyla, Parameswari Somasundharan; Khan, Syed Ajmal

    2009-03-01

    Filamentous fungal diversity from the sediments of the continental slope of Bay of Bengal was studied. Sediment samples were collected during two voyages in 2004 and 2005. Filamentous fungal population from both the cruises showed a range of 5.17-59.51 CFU/g and 3.47-29.68 CFU/g, respectively. Totally 16 fungal genera were recorded from both the cruises. Aspergillus was found to be the dominant genus and the overall percentage occurrence was as follows: Deuteromycotina 74%, Ascomycotina 17%, Basidiomycotina 4% and non-sporulating 5%. Diversity indices were calculated and during both the cruises species richness ( d) varied from 0.912 to 3.622 and 1.443 to 4.588; evenness ( J') varied from 0.9183 to 1.000 and 0.8322 to 1.000 and Shannon-Wiener index ( H' log 2) varied from 0.9183 to 1.000 and 1.000 to 3.690. The higher diversity was found in Divipoint transect (northern Bay of Bengal). 95% confidence interval and ellipse showed that the stations were well lying within the funnel. Cluster analysis and MDS grouped the northern transects which showed higher diversity. BVSTEP resulted in isolation of 23 species which were most influential in the marine filamentous fungal diversity of the continental slope of Bay of Bengal. Thus, a lower population range and higher diversity of marine filamentous marine fungi in the sediments of the continental slope of Bay of Bengal was recorded.

  5. Slope instability in complex 3D topography promoted by convergent 3D groundwater flow

    Science.gov (United States)

    Reid, M. E.; Brien, D. L.

    2012-12-01

    Slope instability in complex topography is generally controlled by the interaction between gravitationally induced stresses, 3D strengths, and 3D pore-fluid pressure fields produced by flowing groundwater. As an example of this complexity, coastal bluffs sculpted by landsliding commonly exhibit a progression of undulating headlands and re-entrants. In this landscape, stresses differ between headlands and re-entrants and 3D groundwater flow varies from vertical rainfall infiltration to lateral groundwater flow on lower permeability layers with subsequent discharge at the curved bluff faces. In plan view, groundwater flow converges in the re-entrant regions. To investigate relative slope instability induced by undulating topography, we couple the USGS 3D limit-equilibrium slope-stability model, SCOOPS, with the USGS 3D groundwater flow model, MODFLOW. By rapidly analyzing the stability of millions of potential failures, the SCOOPS model can determine relative slope stability throughout the 3D domain underlying a digital elevation model (DEM), and it can utilize both fully 3D distributions of pore-water pressure and material strength. The two models are linked by first computing a groundwater-flow field in MODFLOW, and then computing stability in SCOOPS using the pore-pressure field derived from groundwater flow. Using these two models, our analyses of 60m high coastal bluffs in Seattle, Washington showed augmented instability in topographic re-entrants given recharge from a rainy season. Here, increased recharge led to elevated perched water tables with enhanced effects in the re-entrants owing to convergence of groundwater flow. Stability in these areas was reduced about 80% compared to equivalent dry conditions. To further isolate these effects, we examined groundwater flow and stability in hypothetical landscapes composed of uniform and equally spaced, oscillating headlands and re-entrants with differing amplitudes. The landscapes had a constant slope for both

  6. 30 CFR 56.3130 - Wall, bank, and slope stability.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Wall, bank, and slope stability. 56.3130... Mining Methods § 56.3130 Wall, bank, and slope stability. Mining methods shall be used that will maintain wall, bank, and slope stability in places where persons work or travel in performing their assigned...

  7. Slope stabilization guide for Minnesota local government engineers.

    Science.gov (United States)

    2017-06-01

    This user guide provides simple, costeffective methods for stabilizing locally maintained slopes along roadways in Minnesota. Eight slope stabilization techniques are presented that local government engineers can undertake using locally available ...

  8. Technical note: Instantaneous sampling intervals validated from continuous video observation for behavioral recording of feedlot lambs.

    Science.gov (United States)

    Pullin, A N; Pairis-Garcia, M D; Campbell, B J; Campler, M R; Proudfoot, K L

    2017-11-01

    When considering methodologies for collecting behavioral data, continuous sampling provides the most complete and accurate data set whereas instantaneous sampling can provide similar results and also increase the efficiency of data collection. However, instantaneous time intervals require validation to ensure accurate estimation of the data. Therefore, the objective of this study was to validate scan sampling intervals for lambs housed in a feedlot environment. Feeding, lying, standing, drinking, locomotion, and oral manipulation were measured on 18 crossbred lambs housed in an indoor feedlot facility for 14 h (0600-2000 h). Data from continuous sampling were compared with data from instantaneous scan sampling intervals of 5, 10, 15, and 20 min using a linear regression analysis. Three criteria determined if a time interval accurately estimated behaviors: 1) ≥ 0.90, 2) slope not statistically different from 1 ( > 0.05), and 3) intercept not statistically different from 0 ( > 0.05). Estimations for lying behavior were accurate up to 20-min intervals, whereas feeding and standing behaviors were accurate only at 5-min intervals (i.e., met all 3 regression criteria). Drinking, locomotion, and oral manipulation demonstrated poor associations () for all tested intervals. The results from this study suggest that a 5-min instantaneous sampling interval will accurately estimate lying, feeding, and standing behaviors for lambs housed in a feedlot, whereas continuous sampling is recommended for the remaining behaviors. This methodology will contribute toward the efficiency, accuracy, and transparency of future behavioral data collection in lamb behavior research.

  9. Determination Of Slope Instability Using Spatially Integrated Mapping Framework

    Science.gov (United States)

    Baharuddin, I. N. Z.; Omar, R. C.; Roslan, R.; Khalid, N. H. N.; Hanifah, M. I. M.

    2016-11-01

    The determination and identification of slope instability are often rely on data obtained from in-situ soil investigation work where it involves the logistic of machineries and manpower, thus these aspects may increase the cost especially for remote locations. Therefore a method, which is able to identify possible slope instability without frequent ground walkabout survey, is needed. This paper presents the method used in prediction of slope instability using spatial integrated mapping framework which applicable for remote areas such as tropical forest and natural hilly terrain. Spatial data such as geology, topography, land use map, slope angle and elevation were used in regional analysis during desktop study. Through this framework, the occurrence of slope instability was able to be identified and was validate using a confirmatory site- specific analysis.

  10. Parametric study on the effect of rainfall pattern to slope stability

    Directory of Open Access Journals (Sweden)

    Hakim Sagitaningrum Fathiyah

    2017-01-01

    Full Text Available Landslide in Indonesia usually occurs during the rainy seasons. Previous studies showed that rainfall infiltration has a great effect on the factor of safety (FS of slopes. This research focused on the effect of rainfall pattern on the FS of unsaturated slope with different slope angle i.e.: 30°, 45°, and 60°. Three different rainfall patterns, which are normal, advanced, and delayed were considered in the analysis. The effects of low or high hydraulic conductivity of the soil are also observed. The analyses were conducted with SEEP/W for the seepage and SLOPE/W for the slope stability. It is found that the lowest FS for gentle slope is reached under the application of advanced rainfall pattern and the lowest FS for steep slope is reached under the application of delayed rainfall pattern. Reduction of FS is known to be the largest for gentle slope rather than steep slope due to negative pore water pressure reduction and the rising of ground water level. The largest FS reduction caused by rainfall was achieved for gentle slope under advanced rainfall pattern.

  11. Role of slope on infiltration: A review

    Science.gov (United States)

    Morbidelli, Renato; Saltalippi, Carla; Flammini, Alessia; Govindaraju, Rao S.

    2018-02-01

    Partitioning of rainfall at the soil-atmosphere interface is important for both surface and subsurface hydrology, and influences many events of major hydrologic interest such as runoff generation, aquifer recharge, and transport of pollutants in surface waters as well as the vadose zone. This partitioning is achieved through the process of infiltration that has been widely investigated at the local scale, and more recently also at the field scale, by models that were designed for horizontal surfaces. However, infiltration, overland flows, and deep flows in most real situations are generated by rainfall over sloping surfaces that bring in additional effects. Therefore, existing models for local infiltration into homogeneous and layered soils and those as for field-scale infiltration, have to be adapted to account for the effects of surface slope. Various studies have investigated the role of surface slope on infiltration based on a theoretical formulations for the dynamics of infiltration, extensions of the Green-Ampt approach, and from laboratory and field experiments. However, conflicting results have been reported in the scientific literature on the role of surface slope on infiltration. We summarize the salient points from previous studies and provide plausible reasons for discrepancies in conclusions of previous authors, thus leading to a critical assessment of the current state of our understanding on this subject. We offer suggestions for future efforts to advance our knowledge of infiltration over sloping surfaces.

  12. How does slope form affect erosion in CATFLOW-SED?

    Science.gov (United States)

    Gabelmann, Petra; Wienhöfer, Jan; Zehe, Erwin

    2016-04-01

    Erosion is a severe environmental problem in agro-ecosystems with highly erodible loess soils. It is controlled by various factors, e.g. rainfall intensity, initial wetness conditions, soil type, land use and tillage practice. Furthermore slope form and gradient have been shown to influence erosion amounts to a large extent. Within the last fifty years, various erosion models have been developed to describe the erosion process, estimate erosion amounts and identify erosion-prone areas. These models differ in terms of complexity, the processes which are considered, and the data required for model calibration and they can be categorised into empirical or statistical, conceptual, and physically-based models. CATFLOW-SED is a process-based hydrology and erosion model that can operate on catchment and hillslope scales. Soil water dynamics are described by the Richards equation including effective approaches for preferential flow. Evapotranspiration is simulated using an approach based on the Penman-Monteith equation. The model simulates overland flow using the diffusion wave equation. Soil detachment is related to the attacking forces of rainfall and overland flow, and the erosion resistance of soil. Sediment transport capacity and sediment deposition are related to overland flow velocity using the equation of Engelund and Hansen and the sinking velocity of grain sizes respectively. We performed a study to analyse the erosion process on different virtual hillslopes, with varying slope gradient and slope form, using the CATFLOW-SED model. We explored the role of landform on erosion and sedimentation, particularly we look for forms that either maximise or minimise erosion. Results indicate the importance to performing the process implementation within physically meaningful limits and choose appropriate model parameters respectively.

  13. Slope Stability. CEGS Programs Publication Number 15.

    Science.gov (United States)

    Pestrong, Raymond

    Slope Stability is one in a series of single-topic problem modules intended for use in undergraduate and earth science courses. The module, also appropriate for use in undergraduate civil engineering and engineering geology courses, is a self-standing introduction to studies of slope stability. It has been designed to supplement standard…

  14. Slope Deformation Prediction Based on Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Lei JIA

    2013-07-01

    Full Text Available This paper principally studies the prediction of slope deformation based on Support Vector Machine (SVM. In the prediction process,explore how to reconstruct the phase space. The geological body’s displacement data obtained from chaotic time series are used as SVM’s training samples. Slope displacement caused by multivariable coupling is predicted by means of single variable. Results show that this model is of high fitting accuracy and generalization, and provides reference for deformation prediction in slope engineering.

  15. Evidence for submarine landslides and continental slope erosion related to fault reactivation during the last glaciation offshore eastern Canada

    Science.gov (United States)

    Saint-Ange, F.; Campbell, C.; MacKillop, K.; Mosher, D. C.; Piper, D. J.; Roger, J.

    2012-12-01

    Many studies have proposed that reactivation of dormant faults during deglaciation is a source of neotectonic activity in glaciated regions, but few have demonstrated the relationship to submarine landslides. In this study, seabed morphology and shallow geology of the outer continental margin adjacent to the Charlie Gibbs Fracture Zone off Newfoundland, Canada was investigated for evidence of this relationship. The glacial history and morphology of the margin suggest that the entire continental shelf in the area, coincident with major continental crustal lineaments, was ice-covered during the Last glacial cycle, and transverse troughs delineate the paleo-icestream drainage patterns. A recent investigation of Notre Dame Trough revealed the existence of large sediment failures on the shelf. The current study investigates complex seafloor erosion and widespread mass transport deposition (MTD) on the continental slope seaward of Notre Dame Trough, using recently-acquired high resolution seismic reflection data and piston cores. The new data reveal that a trough mouth fan (TMF) is present on the slope seaward of Notre Dame Trough. The Notre Dame TMF is characterized by a succession of stacked debris flows, but does not show a lobate shape in plan view like other classic TMFs. Instead, the Notre Dame TMF has abruptly-truncated margins suggesting post-depositional failure and erosion of the fan deposits. Seismic reflection data show that the locations of the failures along the TMF margin are coincident with a set of shallow faults; however the current dataset does not image the deeper portion of the faults. On the upper slope immediately south of the TMF, a narrow and deeply incised canyon is located along-trend with the Notre Dame Trough. The location of this canyon appears to be controlled by a fault. Downslope from this canyon, along the southern margin of the TMF, a 25 km wide, flat-floored, U-shaped valley was eroded into a succession of stacked MTD-filled channels

  16. Chaos on the interval

    CERN Document Server

    Ruette, Sylvie

    2017-01-01

    The aim of this book is to survey the relations between the various kinds of chaos and related notions for continuous interval maps from a topological point of view. The papers on this topic are numerous and widely scattered in the literature; some of them are little known, difficult to find, or originally published in Russian, Ukrainian, or Chinese. Dynamical systems given by the iteration of a continuous map on an interval have been broadly studied because they are simple but nevertheless exhibit complex behaviors. They also allow numerical simulations, which enabled the discovery of some chaotic phenomena. Moreover, the "most interesting" part of some higher-dimensional systems can be of lower dimension, which allows, in some cases, boiling it down to systems in dimension one. Some of the more recent developments such as distributional chaos, the relation between entropy and Li-Yorke chaos, sequence entropy, and maps with infinitely many branches are presented in book form for the first time. The author gi...

  17. Ramp-related incidents involving wheeled mobility device users during transit bus boarding/alighting.

    Science.gov (United States)

    Frost, Karen L; Bertocci, Gina; Smalley, Craig

    2015-05-01

    To estimate the prevalence of wheeled mobility device (WhMD) ramp-related incidents while boarding/alighting a public transit bus and to determine whether the frequency of incidents is less when the ramp slope meets the proposed Americans with Disabilities Act (ADA) maximum allowable limit of ≤9.5°. Observational study. Community public transportation. WhMD users (N=414) accessing a public transit bus equipped with an instrumented ramp. Not applicable. Prevalence of boarding/alighting incidents involving WhMD users and associated ramp slopes; factors affecting incidents. A total of 4.6% (n=35) of WhMD users experienced an incident while boarding/alighting a transit bus. Significantly more incidents occurred during boarding (6.3%, n=26) than during alighting (2.2%, n=9) (Pboard/alight when the ramp slope exceeded the proposed ADA maximum allowable ramp slope was 5.1 (95% confidence interval, 2.9-9.0; P9.5° and ramps deployed to street level are associated with a higher frequency of incidents and provision of assistance. Transit agencies should increase awareness among bus operators of the effect kneeling and deployment location (street/sidewalk) have on the ramp slope. In addition, ramp components and the built environment may contribute to incidents. When prescribing WhMDs, skills training must include ascending/descending ramps at slopes encountered during boarding/alighting to ensure safe and independent access to public transit buses. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. Effects of rye grass coverage on soil loss from loess slopes

    Directory of Open Access Journals (Sweden)

    Yuequn Dong

    2015-09-01

    Full Text Available Vegetative coverage is commonly used to reduce urban slope soil erosion. Laboratory experimental study on soil erosion under grass covered slopes is conventionally time and space consuming. In this study, a new method is suggested to study the influences of vegetation coverage on soil erosion from a sloped loess surface under three slope gradients of 5°, 15°, and 25°; four rye grass coverages of 0%, 25%, 50%, and 75%; and three rainfall intensities of 60, 90, and 120 mm/h with a silt-loamy loess soil. Rye grasses were planted in the field with the studied soil before being transplanted into a laboratory flume. Grass was allowed to resume growth for a period before the rain simulation experiment. Results showed that the grass cover reduced soil erosion by 63.90% to 92.75% and sediment transport rate by 80.59% to 96.17% under different slope gradients and rainfall intensities. The sediment concentration/sediment transport rate from bare slope was significantly higher than from a grass-covered slope. The sediment concentration/transport rate from grass-covered slopes decreased linearly with grass coverage and increased with rainfall intensity. The sediment concentration/transport rate from the bare slope increased as a power function of slope and reached the maximum value at the gradient of about 25°, whereas that from grass-covered slope increased linearly and at much lower levels. The results of this study can be used to estimate the effect of vegetation on soil erosion from loess slopes.

  19. Age of the Mars Global Northerly Slope: Evidence From Utopia Planitia

    Science.gov (United States)

    McGill, George E.

    2002-01-01

    Recent results from the Mars Orbiter Laser Altimeter (MOLA) experiment on Mars Global Surveyor (MGS) indicate that most of Mars is characterized by a very gentle, roughly northerly slope. Detailed mapping in north-central Arabia Terra combined with superposition relations and crater counts indicate that, in that region at least, this northerly slope must have been formed no later than Late Hesperian, with the most likely time of formation being Late Hesperian. Current research in Utopia Planitia intended as a test of extant models for the formation of giant polygons has turned up good evidence for a Late Hesperian age for the northerly tilt in this region as well, as will be discussed.

  20. Comparative organic geochemistry of Indian margin (Arabian Sea) sediments: Estuary to continental slope

    Digital Repository Service at National Institute of Oceanography (India)

    Cowie, G.; Mowbray, S.; Kurian, S.; Sarkar, A.; White, C.; Anderson, A.; Vergnaud, B.; Johnstone, G.; Brear, S.; Woulds, C.; Naqvi, S.W.A.; Kitazato, H.

    %) was found at slope sites within the OMZ of similar depth and near-identical bottom-water O2 concentrations. A strong re- lationship between %Corg and sediment grain size was seen for sediments within the OMZ, but lower relative Corg con- tents were found... by O2 availability, can explain the large ma- jority of %Corg variability when the shelf and slope are con- sidered as a whole. However, while O2 becomes the primary influence on %Corg for sediments below the OMZ, %Silt is the primary influence across...

  1. Unstable slope management program.

    Science.gov (United States)

    2009-08-01

    This Rapid Response Project gathered information on existing unstable slope management programs, with a : focus on asset management practices in the United States and overseas. On the basis of this study, the research : team summarized and recommende...

  2. Rock slope design guide.

    Science.gov (United States)

    2011-04-01

    This Manual is intended to provide guidance for the design of rock cut slopes, rockfall catchment, and : rockfall controls. Recommendations presented in this manual are based on research presented in Shakoor : and Admassu (2010) entitled Rock Slop...

  3. Rock Slope Design Criteria

    Science.gov (United States)

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary : rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, : and siltstones ...

  4. Newton slopes for Artin-Schreier-Witt towers

    DEFF Research Database (Denmark)

    Davis, Christopher; Wan, Daqing; Xiao, Liang

    2016-01-01

    We fix a monic polynomial f(x)∈Fq[x] over a finite field and consider the Artin-Schreier-Witt tower defined by f(x); this is a tower of curves ⋯→Cm→Cm−1→⋯→C0=A1, with total Galois group Zp. We study the Newton slopes of zeta functions of this tower of curves. This reduces to the study of the Newton...... slopes of L-functions associated to characters of the Galois group of this tower. We prove that, when the conductor of the character is large enough, the Newton slopes of the L-function form arithmetic progressions which are independent of the conductor of the character. As a corollary, we obtain...

  5. Preliminary Analysis of Slope Stability in Kuok and Surrounding Areas

    Directory of Open Access Journals (Sweden)

    Dewandra Bagus Eka Putra

    2016-12-01

    Full Text Available The level of slope influenced by the condition of the rocks beneath the surface. On high level of slopes, amount of surface runoff and water transport energy is also enlarged. This caused by greater gravity, in line with the surface tilt from the horizontal plane. In other words, topsoil eroded more and more. When the slope becomes twice as steep, then the amount of erosion per unit area be 2.0 - 2.5 times more. Kuok and surrounding area is the road access between the West Sumatra and Riau which plays an important role economies of both provinces. The purpose of this study is to map the locations that have fairly steep slopes and potential mode of landslides. Based on SRTM data obtained,  the roads in Kuok area has a minimum elevation of + 33 m and a maximum  + 217.329 m. Rugged road conditions with slope ranging from 24.08 ° to 44.68 ° causing this area having frequent landslides. The result of slope stability analysis in a slope near the Water Power Plant Koto Panjang, indicated that mode of active failure is toppling failure or rock fall and the potential zone of failure is in the center part of the slope.

  6. 3D modeling of surface quarries and deposits of mined materials and the monitoring of slopes

    Directory of Open Access Journals (Sweden)

    Ivan Maňas

    2007-06-01

    Full Text Available The application of computer technology by simulating opencast mining and deposits of raw materials. The mathematic principles of three-dimensional probabilistic models of raw materials deposits and a familiarization with the user interface software GEOLOGICKY MODEL. The principles of the simulation of opencast mines, generation intersections with models of raw materials deposits, computation of mining materials with the quality scaling,and the design of advanced mining with the software BANSKY MODEL.The monitoring the potential of dynamic movements’ of unstable slopes with the automatic total station and a following interpretation in general time intervals by means of the software MONITORING.

  7. Slope-Area Computation Program Graphical User Interface 1.0—A Preprocessing and Postprocessing Tool for Estimating Peak Flood Discharge Using the Slope-Area Method

    Science.gov (United States)

    Bradley, D. Nathan

    2012-01-01

    The slope-area method is a technique for estimating the peak discharge of a flood after the water has receded (Dalrymple and Benson, 1967). This type of discharge estimate is called an “indirect measurement” because it relies on evidence left behind by the flood, such as high-water marks (HWMs) on trees or buildings. These indicators of flood stage are combined with measurements of the cross-sectional geometry of the stream, estimates of channel roughness, and a mathematical model that balances the total energy of the flow between cross sections. This is in contrast to a “direct” measurement of discharge during the flood where cross-sectional area is measured and a current meter or acoustic equipment is used to measure the water velocity. When a direct discharge measurement cannot be made at a gage during high flows because of logistics or safety reasons, an indirect measurement of a peak discharge is useful for defining the high-flow section of the stage-discharge relation (rating curve) at the stream gage, resulting in more accurate computation of high flows. The Slope-Area Computation program (SAC; Fulford, 1994) is an implementation of the slope-area method that computes a peak-discharge estimate from inputs of water-surface slope (from surveyed HWMs), channel geometry, and estimated channel roughness. SAC is a command line program written in Fortran that reads input data from a formatted text file and prints results to another formatted text file. Preparing the input file can be time-consuming and prone to errors. This document describes the SAC graphical user interface (GUI), a crossplatform “wrapper” application that prepares the SAC input file, executes the program, and helps the user interpret the output. The SAC GUI is an update and enhancement of the slope-area method (SAM; Hortness, 2004; Berenbrock, 1996), an earlier spreadsheet tool used to aid field personnel in the completion of a slope-area measurement. The SAC GUI reads survey data

  8. Interval-based reconstruction for uncertainty quantification in PET

    Science.gov (United States)

    Kucharczak, Florentin; Loquin, Kevin; Buvat, Irène; Strauss, Olivier; Mariano-Goulart, Denis

    2018-02-01

    A new directed interval-based tomographic reconstruction algorithm, called non-additive interval based expectation maximization (NIBEM) is presented. It uses non-additive modeling of the forward operator that provides intervals instead of single-valued projections. The detailed approach is an extension of the maximum likelihood—expectation maximization algorithm based on intervals. The main motivation for this extension is that the resulting intervals have appealing properties for estimating the statistical uncertainty associated with the reconstructed activity values. After reviewing previously published theoretical concepts related to interval-based projectors, this paper describes the NIBEM algorithm and gives examples that highlight the properties and advantages of this interval valued reconstruction.

  9. Effects of slope smoothing in river channel modeling

    Science.gov (United States)

    Kim, Kyungmin; Liu, Frank; Hodges, Ben R.

    2017-04-01

    In extending dynamic river modeling with the 1D Saint-Venant equations from a single reach to a large watershed there are critical questions as to how much bathymetric knowledge is necessary and how it should be represented parsimoniously. The ideal model will include the detail necessary to provide realism, but not include extraneous detail that should not exert a control on a 1D (cross-section averaged) solution. In a Saint-Venant model, the overall complexity of the river channel morphometry is typically abstracted into metrics for the channel slope, cross-sectional area, hydraulic radius, and roughness. In stream segments where cross-section surveys are closely spaced, it is not uncommon to have sharp changes in slope or even negative values (where a positive slope is the downstream direction). However, solving river flow with the Saint-Venant equations requires a degree of smoothness in the equation parameters or the equation set with the directly measured channel slopes may not be Lipschitz continuous. The results of non-smoothness are typically extended computational time to converge solutions (or complete failure to converge) and/or numerical instabilities under transient conditions. We have investigated using cubic splines to smooth the bottom slope and ensure always positive reference slopes within a 1D model. This method has been implemented in the Simulation Program for River Networks (SPRNT) and is compared to the standard HEC-RAS river solver. It is shown that the reformulation of the reference slope is both in keeping with the underlying derivation of the Saint-Venant equations and provides practical numerical stability without altering the realism of the simulation. This research was supported in part by the National Science Foundation under grant number CCF-1331610.

  10. Constraining Depositional Slope From Sedimentary Structures in Sandy Braided Streams

    Science.gov (United States)

    Lynds, R. M.; Mohrig, D.; Heller, P. L.

    2003-12-01

    Determination of paleoslopes in ancient fluvial systems has potentially broad application to quantitatively constraining the history of tectonics and paleoclimate in continental sequences. Our method for calculating paleoslopes for sandy braided streams is based upon a simple physical model that establishes depositional skin-frictional shear stresses from assemblages of sedimentary structures and their associated grain size distributions. The addition of a skin-frictional shear stress, with a geometrically determined form-drag shear stress results in a total boundary shear stress which is directly related to water-surface slope averaged over an appropriate spatial scale. In order to apply this model to ancient fluvial systems, it is necessary to measure the following: coarsest suspended sediment size, finest grain size carried in bed load, flow depth, dune height, and dune length. In the rock record, suspended load and bed load can be accurately assessed by well-preserved suspended load deposits ("low-energy" ripples) and bed load deposits (dune foresets). This model predicts an average slope for the North Loup River near Taylor, Nebraska (modern case study) of 2.7 x 10-3. The measured reach-averaged water surface slope for the same reach of the river is 1.37 x 10-3. We suggest that it is possible to calculate the depositional slope of a sandy fluvial system by a factor of approximately two. Additionally, preliminary application of this model to the Lower Jurassic Kayenta Formation throughout the Colorado Plateau provides a promising and consistent evaluation of paleoslope in an ancient and well-preserved, sandy braided stream deposit.

  11. Infinite slope stability under steady unsaturated seepage conditions

    Science.gov (United States)

    Lu, Ning; Godt, Jonathan W.

    2008-01-01

    We present a generalized framework for the stability of infinite slopes under steady unsaturated seepage conditions. The analytical framework allows the water table to be located at any depth below the ground surface and variation of soil suction and moisture content above the water table under steady infiltration conditions. The framework also explicitly considers the effect of weathering and porosity increase near the ground surface on changes in the friction angle of the soil. The factor of safety is conceptualized as a function of the depth within the vadose zone and can be reduced to the classical analytical solution for subaerial infinite slopes in the saturated zone. Slope stability analyses with hypothetical sandy and silty soils are conducted to illustrate the effectiveness of the framework. These analyses indicate that for hillslopes of both sandy and silty soils, failure can occur above the water table under steady infiltration conditions, which is consistent with some field observations that cannot be predicted by the classical infinite slope theory. A case study of shallow slope failures of sandy colluvium on steep coastal hillslopes near Seattle, Washington, is presented to examine the predictive utility of the proposed framework.

  12. Surface drainage in leveled land: Implication of slope

    Directory of Open Access Journals (Sweden)

    Antoniony S. Winkler

    Full Text Available ABSTRACT In the lowlands of Rio Grande do Sul, land leveling is mostly carried out with no slope for the purpose of rice production. In this environment, soils with a low hydraulic conductivity are predominant owing to the presence of a practically impermeable B-horizon near the surface. Land leveling leads to soil accommodation resulting in the formation of depressions where water accumulates after heavy rainfalls, subsequently leading to problems with crops implanted in succession to rice, such as soybeans. The objective of this research was to quantify the areas and volumes of water accumulation in soil as a function of the slope of land leveling. Five typical leveled lowland areas were studied as a part of this research. The original areas presented slopes of 0, 0.20, 0.25, 0.28 and 0.40%, which were used to generate new digital elevation models with slopes between 0 and 0.5%. These newly generated digital models were used to map the depressions with surface water storage. In conclusion, land leveling with slopes higher than 0.1% is recommended to minimize problems with superficial water storage in rice fields.

  13. New possibilities for slope stability assessment of spoil banks

    Energy Technology Data Exchange (ETDEWEB)

    Radl, A [Palivovy Kombinat, Vresova (Czechoslovakia)

    1991-03-01

    Discusses problems associated with slope stability of spoil banks consisting of sedimentary rocks from brown coal surface mining. Effects of rock physical properties on slope stability are analyzed: grain size distribution, compression strength, moisture content, angle of internal friction, etc. Mechanism of plastic slope deformation which occurs during a landslide is evaluated. Formulae for calculating slope stability considering stress distribution in a spoil bank (including all the main factors that influence stresses) are derived. Practical use of the gamma-gamma logging and logging schemes used in geodetic surveys of unstable spoil banks in Czechoslovakia (the Vintirov spoil bank in the Sokolov brown coal district) are discussed. 5 refs.

  14. 3D geodetic monitoring slope deformations

    Directory of Open Access Journals (Sweden)

    Weiss Gabriel

    1996-06-01

    Full Text Available For plenty of slope failures that can be found in Slovakia is necessary and very important their geodetic monitoring (because of their activity, reactivisations, checks. The paper gives new methodologies for these works, using 3D terrestrial survey technologies for measurements in convenient deformation networks. The design of an optimal type of deformation model for various kinds of landslides and their exact processing with an efficient testing procedure to determine the kinematics of the slope deformations are presented too.

  15. Direction of Auditory Pitch-Change Influences Visual Search for Slope From Graphs.

    Science.gov (United States)

    Parrott, Stacey; Guzman-Martinez, Emmanuel; Orte, Laura; Grabowecky, Marcia; Huntington, Mark D; Suzuki, Satoru

    2015-01-01

    Linear trend (slope) is important information conveyed by graphs. We investigated how sounds influenced slope detection in a visual search paradigm. Four bar graphs or scatter plots were presented on each trial. Participants looked for a positive-slope or a negative-slope target (in blocked trials), and responded to targets in a go or no-go fashion. For example, in a positive-slope-target block, the target graph displayed a positive slope while other graphs displayed negative slopes (a go trial), or all graphs displayed negative slopes (a no-go trial). When an ascending or descending sound was presented concurrently, ascending sounds slowed detection of negative-slope targets whereas descending sounds slowed detection of positive-slope targets. The sounds had no effect when they immediately preceded the visual search displays, suggesting that the results were due to crossmodal interaction rather than priming. The sounds also had no effect when targets were words describing slopes, such as "positive," "negative," "increasing," or "decreasing," suggesting that the results were unlikely due to semantic-level interactions. Manipulations of spatiotemporal similarity between sounds and graphs had little effect. These results suggest that ascending and descending sounds influence visual search for slope based on a general association between the direction of auditory pitch-change and visual linear trend.

  16. How hydrological factors initiate instability in a model sandy slope

    OpenAIRE

    Terajima, Tomomi; Miyahira, Ei-ichiro; Miyajima, Hiroyuki; Ochiai, Hirotaka; Hattori, Katsumi

    2013-01-01

    Knowledge of the mechanisms of rain-induced shallow landslides can improve the prediction of their occurrence and mitigate subsequent sediment disasters. Here, we examine an artificial slope's subsurface hydrology and propose a new slope stability analysis that includes seepage force and the down-slope transfer of excess shear forces. We measured pore water pressure and volumetric water content immediately prior to a shallow landslide on an artificial sandy slope of 32°: The direction of the ...

  17. Event-related potentials reflect impaired temporal interval learning following haloperidol administration.

    Science.gov (United States)

    Forster, Sarah E; Zirnheld, Patrick; Shekhar, Anantha; Steinhauer, Stuart R; O'Donnell, Brian F; Hetrick, William P

    2017-09-01

    Signals carried by the mesencephalic dopamine system and conveyed to anterior cingulate cortex are critically implicated in probabilistic reward learning and performance monitoring. A common evaluative mechanism purportedly subserves both functions, giving rise to homologous medial frontal negativities in feedback- and response-locked event-related brain potentials (the feedback-related negativity (FRN) and the error-related negativity (ERN), respectively), reflecting dopamine-dependent prediction error signals to unexpectedly negative events. Consistent with this model, the dopamine receptor antagonist, haloperidol, attenuates the ERN, but effects on FRN have not yet been evaluated. ERN and FRN were recorded during a temporal interval learning task (TILT) following randomized, double-blind administration of haloperidol (3 mg; n = 18), diphenhydramine (an active control for haloperidol; 25 mg; n = 20), or placebo (n = 21) to healthy controls. Centroparietal positivities, the Pe and feedback-locked P300, were also measured and correlations between ERP measures and behavioral indices of learning, overall accuracy, and post-error compensatory behavior were evaluated. We hypothesized that haloperidol would reduce ERN and FRN, but that ERN would uniquely track automatic, error-related performance adjustments, while FRN would be associated with learning and overall accuracy. As predicted, ERN was reduced by haloperidol and in those exhibiting less adaptive post-error performance; however, these effects were limited to ERNs following fast timing errors. In contrast, the FRN was not affected by drug condition, although increased FRN amplitude was associated with improved accuracy. Significant drug effects on centroparietal positivities were also absent. Our results support a functional and neurobiological dissociation between the ERN and FRN.

  18. Stability of sulfur slopes on Io

    Science.gov (United States)

    Clow, G. D.; Carr, M. H.

    1980-01-01

    The mechanical properties of elemental sulfur are such that the upper crust of Io cannot be primarily sulfur. For heat flows in the range 100-1000 ergs/sq cm sec sulfur becomes ductile within several hundred meters of the surface and would prevent the formation of calderas with depths greater than this. However, the one caldera for which precise depth data are available is 2 km deep, and this value may be typical. A study of the mechanical equilibrium of simple slopes shows that the depth to the zone of rapid ductile flow strongly controls the maximum heights for sulfur slopes. Sulfur scarps with heights greater than 1 km will fail for all heat flows greater than 180 ergs/sq cm sec and slope angles greater than 22.5 deg. The observed relief on Io is inconsistent with that anticipated for a predominantly sulfur crust. However, a silicate crust with several percent sulfur included satisfies both the mechanical constraints and the observed presence of sulfur on Io.

  19. Slope stability susceptibility evaluation parameter (SSEP) rating scheme - An approach for landslide hazard zonation

    Science.gov (United States)

    Raghuvanshi, Tarun Kumar; Ibrahim, Jemal; Ayalew, Dereje

    2014-11-01

    In this paper a new slope susceptibility evaluation parameter (SSEP) rating scheme is presented which is developed as an expert evaluation approach for landslide hazard zonation. The SSEP rating scheme is developed by considering intrinsic and external triggering parameters that are responsible for slope instability. The intrinsic parameters which are considered are; slope geometry, slope material (rock or soil type), structural discontinuities, landuse and landcover and groundwater. Besides, external triggering parameters such as, seismicity, rainfall and manmade activities are also considered. For SSEP empirical technique numerical ratings are assigned to each of the intrinsic and triggering parameters on the basis of logical judgments acquired from experience of studies of intrinsic and external triggering factors and their relative impact in inducing instability to the slope. Further, the distribution of maximum SSEP ratings is based on their relative order of importance in contributing instability to the slope. Finally, summation of all ratings for intrinsic and triggering parameter based on actual observation will provide the expected degree of landslide in a given land unit. This information may be utilized to develop a landslide hazard zonation map. The SSEP technique was applied in the area around Wurgessa Kebelle of North Wollo Zonal Administration, Amhara National Regional State in northern Ethiopia, some 490 km from Addis Ababa. The results obtained indicates that 8.33% of the area fall under Moderately hazard and 83.33% fall within High hazard whereas 8.34% of the area fall under Very high hazard. Further, in order to validate the LHZ map prepared during the study, active landslide activities and potential instability areas, delineated through inventory mapping was overlain on it. All active landslide activities and potential instability areas fall within very high and high hazard zone. Thus, the satisfactory agreement confirms the rationality of

  20. Towards a geophysical decision-support system for monitoring and managing unstable slopes

    Science.gov (United States)

    Chambers, J. E.; Meldrum, P.; Wilkinson, P. B.; Uhlemann, S.; Swift, R. T.; Inauen, C.; Gunn, D.; Kuras, O.; Whiteley, J.; Kendall, J. M.

    2017-12-01

    Conventional approaches for condition monitoring, such as walk over surveys, remote sensing or intrusive sampling, are often inadequate for predicting instabilities in natural and engineered slopes. Surface observations cannot detect the subsurface precursors to failure events; instead they can only identify failure once it has begun. On the other hand, intrusive investigations using boreholes only sample a very small volume of ground and hence small scale deterioration process in heterogeneous ground conditions can easily be missed. It is increasingly being recognised that geophysical techniques can complement conventional approaches by providing spatial subsurface information. Here we describe the development and testing of a new geophysical slope monitoring system. It is built around low-cost electrical resistivity tomography instrumentation, combined with integrated geotechnical logging capability, and coupled with data telemetry. An automated data processing and analysis workflow is being developed to streamline information delivery. The development of this approach has provided the basis of a decision-support tool for monitoring and managing unstable slopes. The hardware component of the system has been operational at a number of field sites associated with a range of natural and engineered slopes for up to two years. We report on the monitoring results from these sites, discuss the practicalities of installing and maintaining long-term geophysical monitoring infrastructure, and consider the requirements of a fully automated data processing and analysis workflow. We propose that the result of this development work is a practical decision-support tool that can provide near-real-time information relating to the internal condition of problematic slopes.

  1. North Slope, Alaska: Source rock distribution, richness, thermal maturity, and petroleum charge

    Science.gov (United States)

    Peters, K.E.; Magoon, L.B.; Bird, K.J.; Valin, Z.C.; Keller, M.A.

    2006-01-01

    Four key marine petroleum source rock units were identified, characterized, and mapped in the subsurface to better understand the origin and distribution of petroleum on the North Slope of Alaska. These marine source rocks, from oldest to youngest, include four intervals: (1) Middle-Upper Triassic Shublik Formation, (2) basal condensed section in the Jurassic-Lower Cretaceous Kingak Shale, (3) Cretaceous pebble shale unit, and (4) Cretaceous Hue Shale. Well logs for more than 60 wells and total organic carbon (TOC) and Rock-Eval pyrolysis analyses for 1183 samples in 125 well penetrations of the source rocks were used to map the present-day thickness of each source rock and the quantity (TOC), quality (hydrogen index), and thermal maturity (Tmax) of the organic matter. Based on assumptions related to carbon mass balance and regional distributions of TOC, the present-day source rock quantity and quality maps were used to determine the extent of fractional conversion of the kerogen to petroleum and to map the original TOC (TOCo) and the original hydrogen index (HIo) prior to thermal maturation. The quantity and quality of oil-prone organic matter in Shublik Formation source rock generally exceeded that of the other units prior to thermal maturation (commonly TOCo > 4 wt.% and HIo > 600 mg hydrocarbon/g TOC), although all are likely sources for at least some petroleum on the North Slope. We used Rock-Eval and hydrous pyrolysis methods to calculate expulsion factors and petroleum charge for each of the four source rocks in the study area. Without attempting to identify the correct methods, we conclude that calculations based on Rock-Eval pyrolysis overestimate expulsion factors and petroleum charge because low pressure and rapid removal of thermally cracked products by the carrier gas retards cross-linking and pyrobitumen formation that is otherwise favored by natural burial maturation. Expulsion factors and petroleum charge based on hydrous pyrolysis may also be high

  2. New knowledge on the temperature-entropy saturation boundary slope of working fluids

    International Nuclear Information System (INIS)

    Su, Wen; Zhao, Li; Deng, Shuai

    2017-01-01

    The slope of temperature-entropy saturation boundary of working fluids has a significant effect on the thermodynamic performance of cycle processes. However, for the working fluids used in cycles, few studies have been conducted to analyze the saturated slope from the molecular structure and mixture composition. Thus, in this contribution, an analytical expression on the slope of saturated curve is obtained based on the highly accurate Helmholtz energy equation. 14 pure working fluids and three typical binary mixtures are employed to analyze the influence of molecular groups and mixture compositions on the saturated slope, according to the correlated parameters of Helmholtz energy equation. Based on the calculated results, a preliminary trend is demonstrated that with an increase of the number of molecular groups, the positive liquid slope of pure fluids increases and the vapor slope appears positive sign in a narrow temperature range. Particularly, for the binary mixtures, the liquid slope is generally located between the corresponding pure fluids', while the vapor slope can be infinity by mixing dry and wet fluids ingeniously. It can be proved through the analysis of mixtures' saturated slope that three types of vapor slope could be obtained by regulating the mixture composition. - Highlights: • The saturated slope is derived from the Helmholtz function for working fluids. • The effect of molecular structure on the saturated slope is analyzed. • The variation of saturated slope with the mixture composition is investigated.

  3. Western Slope Colorado

    International Nuclear Information System (INIS)

    Epis, R.C.; Callender, J.F.

    1981-01-01

    A conference on the geology and geologic resources of the Western Slope of western Colorado and eastern Utah is presented. Fourteen papers from the conference have been abstracted and indexed for the Department of Energy's Energy Data Base. These papers covered such topics as uranium resources, oil shale deposits, coal resources, oil and gas resources, and geothermal resources of the area

  4. Nutrition therapy with high intensity interval training to improve prostate cancer-related fatigue in men on androgen deprivation therapy: a study protocol.

    Science.gov (United States)

    Baguley, Brenton J; Skinner, Tina L; Leveritt, Michael D; Wright, Olivia R L

    2017-01-03

    Cancer-related fatigue is one of the most prevalent, prolonged and distressing side effects of prostate cancer treatment with androgen deprivation therapy. Preliminary evidence suggests natural therapies such as nutrition therapy and structured exercise prescription can reduce symptoms of cancer-related fatigue. Men appear to change their habitual dietary patterns after prostate cancer diagnosis, yet prostate-specific dietary guidelines provide limited support for managing adverse side effects of treatment. The exercise literature has shown high intensity interval training can improve various aspects of health that are typically impaired with androgen deprivation therapy; however exercise at this intensity is yet to be conducted in men with prostate cancer. The purpose of this study is to examine the effects of nutrition therapy beyond the current healthy eating guidelines with high intensity interval training for managing cancer-related fatigue in men with prostate cancer treated with androgen deprivation therapy. This is a two-arm randomized control trial of 116 men with prostate cancer and survivors treated with androgen deprivation therapy. Participants will be randomized to either the intervention group i.e. nutrition therapy and high intensity interval training, or usual care. The intervention group will receive 20 weeks of individualized nutrition therapy from an Accredited Practising Dietitian, and high intensity interval training (from weeks 12-20 of the intervention) from an Accredited Exercise Physiologist. The usual care group will maintain their standard treatment regimen over the 20 weeks. Both groups will undertake primary and secondary outcome testing at baseline, week 8, 12, and 20; testing includes questionnaires of fatigue and quality of life, objective measures of body composition, muscular strength, cardiorespiratory fitness, biomarkers for disease progression, as well as dietary analysis. The primary outcomes for this trial are measures of

  5. Slope wavenumber spectrum models of capillary and capillary-gravity waves

    Institute of Scientific and Technical Information of China (English)

    贾永君; 张杰; 王岩峰

    2010-01-01

    Capillary and capillary-gravity waves possess a random character, and the slope wavenumber spectra of them can be used to represent mean distributions of wave energy with respect to spatial scale of variability. But simple and practical models of the slope wavenumber spectra have not been put forward so far. In this article, we address the accurate definition of the slope wavenumber spectra of water surface capillary and capillary-gravity waves. By combining the existing slope wavenumber models and using th...

  6. Natural disasters in the Shikoku district. 2. ; Slope failures and rockfalls. Shikoku ni okeru shizen saigai. 2. ; Dosha saigai

    Energy Technology Data Exchange (ETDEWEB)

    Yamagami, T [Tokushima Univ., Tokushima (Japan). Faculty of Engineering

    1991-09-25

    Although landslide, slope failure, debris flow, rock fall, etc. are included in disasters caused by earth and sand, this report focuses only on slope failures. It is very difficult to discuss various soil engineering problems concerning earth and sand disasters in the Shikoku district from dynamic aspect. Therefore, this report is made focusing on perfunctory classification. As regards slope failures, there are natural and embankment (artificial) slope failures, but only natural slope failures are discussed in this report. The numbers of annually investigated areas in 4 prefectures in the Shikoku district and frequencies of failures for each geological group are tabulated for explanation. Transverse shape figure, longitudinal section, slope of ground level, land form where surface water and ground water tend to concentrate, etc. can be considered as factors for the occurrence of landslides. The relationship between those topographical factors and the frequency of failure occurrence is investigated. Failure of cut slope and the relation between rainfall and slope failure are outlined. Examples of rock fall disasters are introduced to point out the difficulty in predicting the occurrence of rock falls. 12 refs., 2 figs., 7 tabs.

  7. Engineering and Design: Characterization and Measurement of Discontinuities in Rock Slopes

    National Research Council Canada - National Science Library

    1983-01-01

    This ETL provides guidance for characterizing and measuring rock discontinuities on natural slopes or slopes constructed in rock above reservoirs, darn abutments, or other types of constructed slopes...

  8. Drifter observations of the Hebrides slope current and nearby circulation patterns

    Directory of Open Access Journals (Sweden)

    M. Burrows

    1999-02-01

    Full Text Available The mean flow at and around the Hebrides and Shetland Shelf slope is measured with ARGOS tracked drifters. Forty-two drifters drogued at 50 m were deployed in three circles over the Hebrides slope at 56.15°N in two releases, one on 5th December, 1995 and the second on 5-9th May, 1996. The circles span a distance of some 20 km from water depths of 200 m to 1200 m. Drifters are initially advected poleward along-slope by the Hebrides slope current at between 0.05 and 0.70 m s-1 in a laterally constrained (25-50 km wide jet-like flow. Drifters released in winter remained in the slope current for over 2000 km whilst summer drifters were lost from the slope current beyond the Wyville-Thomson Ridge, a major topographic feature at 60°N. Dispersion from the slope region into deeper waters occurs at bathymetric irregularities, particularly at the Anton Dohrn Seamount close to which the slope current is found to bifurcate, both in summer and winter, and at the Wyville-Thomson Ridge where drifters move into the Faeroe Shetland Channel. Dispersion onto the continental shelf occurs sporadically along the Hebrides slope. The initial dispersion around the Hebrides slope is remarkably sensitive to initial position, most of the drifters released in shallower water moving onto the shelf, whilst those in 1000 m or more are mostly carried away from the slope into deeper water near the Anton Dohrn Seamount. The dispersion coefficients estimated in directions parallel and normal to the local direction of the 500 m contour, approximately the position of the slope current core, are approximately 8.8 × 103 m2 s-1 and 0.36 × 103 m2 s-1, respectively, during winter, and 11.4 × 103 m2 s-1 and 0.36 × 103 m2 s-1, respectively, during summer. At the slope there is a minimum in across-slope mean velocity, Reynolds stress, and across-slope eddy correlations. The mean across-slope velocity associated with mass flux is about 4 × 10-3 m s-1 shelfward across the shelf break

  9. Hydrological heterogeneity in Mediterranean reclaimed slopes: runoff and sediment yield at the patch and slope scales along a gradient of overland flow

    Directory of Open Access Journals (Sweden)

    L. Merino-Martín

    2012-05-01

    Full Text Available Hydrological heterogeneity is recognized as a fundamental ecosystem attribute in drylands controlling the flux of water and energy through landscapes. Therefore, mosaics of runoff and sediment source patches and sinks are frequently identified in these dry environments. There is a remarkable scarcity of studies about hydrological spatial heterogeneity in restored slopes, where ecological succession and overland flow are interacting. We conducted field research to study the hydrological role of patches and slopes along an "overland flow gradient" (gradient of overland flow routing through the slopes caused by different amounts of run-on coming from upslope in three reclaimed mining slopes of Mediterranean-continental climate. We found that runoff generation and routing in non-rilled slopes showed a pattern of source and sink areas of runoff. Such hydrological microenvironments were associated with seven vegetation patches (characterized by plant community types and cover. Two types of sink patches were identified: shrub Genista scorpius patches could be considered as "deep sinks", while patches where the graminoids Brachypodium retusum and Lolium perenne dominate were classified as "surface sinks" or "runoff splays". A variety of source patches were also identified spanning from "extreme sources" (Medicago sativa patches; equivalent to bare soil to "poor sources" (areas scattered by dwarf-shrubs of Thymus vulgaris or herbaceous tussocks of Dactylis glomerata. Finally, we identified the volume of overland flow routing along the slope as a major controlling factor of "hydrological diversity" (heterogeneity of hydrological behaviours quantified as Shannon diversity index: when overland flow increases at the slope scale hydrological diversity diminishes.

  10. Potential Risk Assessment of Mountain Torrent Disasters on Sloping Fields in China

    Science.gov (United States)

    GAO, X.

    2017-12-01

    China's sloping fields have the problems of low production and serious soil erosion, and mountain torrent disasters will bring more serious soil and water loss to traditional extensive exploitation of sloping field resources. In this paper, China's sloping fields were classified into three grades, such as slightly steep, steep and very steep grade. According to the geological hazards prevention and control regulation, the historical data of China's mountain torrent disasters were spatially interpolated and divided into five classes, such as extremely low, low, middle, high and extremely high level. And the risk level map of mountain torrents was finished in ArcGIS. By using overlaying analysis on sloping fields and risk level map, the potential risk regionalization map of sloping fields in various slope grades was obtained finally. The results shows that the very steep and steep sloping fields are mainly distributed in the first or second stage terraces in China. With the increase of hazard risk level, the area of sloping fields decreases rapidly and the sloping fields in extremely low and low risk levels of mountain torrents reach 98.9%. With the increase of slope grade, the area of sloping fields in various risk levels also declines sharply. The sloping fields take up approximately 60 65% and 26 30% in slightly steep and steep grade areas separately at different risk level. The risk regionalization map can provide effective information for returning farmland to forests or grassland and reducing water and soil erosion of sloping fields in the future.

  11. Slope stability and rockfall assessment of volcanic tuffs using RPAS with 2-D FEM slope modelling

    Science.gov (United States)

    Török, Ákos; Barsi, Árpád; Bögöly, Gyula; Lovas, Tamás; Somogyi, Árpád; Görög, Péter

    2018-02-01

    Steep, hardly accessible cliffs of rhyolite tuff in NE Hungary are prone to rockfalls, endangering visitors of a castle. Remote sensing techniques were employed to obtain data on terrain morphology and to provide slope geometry for assessing the stability of these rock walls. A RPAS (Remotely Piloted Aircraft System) was used to collect images which were processed by Pix4D mapper (structure from motion technology) to generate a point cloud and mesh. The georeferencing was made by Global Navigation Satellite System (GNSS) with the use of seven ground control points. The obtained digital surface model (DSM) was processed (vegetation removal) and the derived digital terrain model (DTM) allowed cross sections to be drawn and a joint system to be detected. Joint and discontinuity system was also verified by field measurements. On-site tests as well as laboratory tests provided additional engineering geological data for slope modelling. Stability of cliffs was assessed by 2-D FEM (finite element method). Global analyses of cross sections show that weak intercalating tuff layers may serve as potential slip surfaces. However, at present the greatest hazard is related to planar failure along ENE-WSW joints and to wedge failure. The paper demonstrates that RPAS is a rapid and useful tool for generating a reliable terrain model of hardly accessible cliff faces. It also emphasizes the efficiency of RPAS in rockfall hazard assessment in comparison with other remote sensing techniques such as terrestrial laser scanning (TLS).

  12. Importance of tibial slope for stability of the posterior cruciate ligament deficient knee.

    Science.gov (United States)

    Giffin, J Robert; Stabile, Kathryne J; Zantop, Thore; Vogrin, Tracy M; Woo, Savio L-Y; Harner, Christopher D

    2007-09-01

    observed. Under a 134-N A-P load, the osteotomy did not significantly affect total A-P translation when compared with the PCL-deficient knee. However, because of the anterior shift in resting position, there was a relative decrease in posterior tibial translation and increase in anterior tibial translation. Increasing tibial slope in a PCL-deficient knee reduces tibial sag by shifting the resting position of the tibia anteriorly. This sag is even further reduced when the knee is subjected to axial compressive loads. These data suggest that increasing tibial slope may be beneficial for patients with PCL-deficient knees.

  13. QRS slopes for assessment of myocardial damage in chronic chagasic patients

    International Nuclear Information System (INIS)

    Pueyo, E; Laciar, E; Anzuola, E; Laguna, P; Jane, R

    2007-01-01

    In this study the slopes of the QRS complex are evaluated for determination of the degree of myocardial damage in chronic chagasic patients. Previous studies have demonstrated the ability of the slope indices to reflect alterations in the conduction velocity of the cardiac impulse. Results obtained in the present study show that chronic chagasic patients have significantly flatter QRS slopes as compared to healthy subjects. Not only that but the extent of slope lessening turns out to be proportional to the degree of myocardial damage caused by the disease. Additionally, when incorporating the slope indices into a classification analysis together with other indices indicative of the presence of ventricular late potentials obtained from high resolution electrocardiography, results show that the percentages of correct classification increase up to 62.5%, which means eight points above the percentages obtained prior to incorporation of the slope indices. It can be concluded that QRS slopes have great potential for assessing the degree of severity associated with Chagas' disease

  14. Slope Stability of Geosynthetic Clay Liner Test Plots

    Science.gov (United States)

    Fourteen full-scale field test plots containing five types of geosynthetic clay liners (GCLs) were constructed on 2H:IV and 3H:IV slopes for the purpose of assessing slope stability. The test plots were designed to simulate typical final cover systems for landfill. Slides occurr...

  15. Physical modelling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopes.

    Science.gov (United States)

    McFall, Brian C; Fritz, Hermann M

    2016-04-01

    Tsunamis generated by landslides and volcanic island collapses account for some of the most catastrophic events recorded, yet critically important field data related to the landslide motion and tsunami evolution remain lacking. Landslide-generated tsunami source and propagation scenarios are physically modelled in a three-dimensional tsunami wave basin. A unique pneumatic landslide tsunami generator was deployed to simulate landslides with varying geometry and kinematics. The landslides were generated on a planar hill slope and divergent convex conical hill slope to study lateral hill slope effects on the wave characteristics. The leading wave crest amplitude generated on a planar hill slope is larger on average than the leading wave crest generated on a convex conical hill slope, whereas the leading wave trough and second wave crest amplitudes are smaller. Between 1% and 24% of the landslide kinetic energy is transferred into the wave train. Cobble landslides transfer on average 43% more kinetic energy into the wave train than corresponding gravel landslides. Predictive equations for the offshore propagating wave amplitudes, periods, celerities and lengths generated by landslides on planar and divergent convex conical hill slopes are derived, which allow an initial rapid tsunami hazard assessment.

  16. Adaptive slope compensation for high bandwidth digital current mode controller

    DEFF Research Database (Denmark)

    Taeed, Fazel; Nymand, Morten

    2015-01-01

    An adaptive slope compensation method for digital current mode control of dc-dc converters is proposed in this paper. The compensation slope is used for stabilizing the inner current loop in peak current mode control. In this method, the compensation slope is adapted with the variations...... in converter duty cycle. The adaptive slope compensation provides optimum controller operation in term of bandwidth over wide range of operating points. In this paper operation principle of the controller is discussed. The proposed controller is implemented in an FPGA to control a 100 W buck converter...

  17. Evaluation of the Slope of Amplitude Growth Function Changes of the Electrically Evoked Action Potential in Three Months after Receiving the Device in Children with Cochlear Implant

    Directory of Open Access Journals (Sweden)

    Ali Reza Pourjavid

    2012-04-01

    Full Text Available Objective: In neural response telemetry, intracochlear electrodes stimulate the auditory nerve and record the neural responses. The electrical stimulation is sent to the auditory nerve by an electrode and the resulted response, called electrically evoked compound action potential, is recorded by an adjacent electrode. The most important clinical applications of this test are evaluation and monitoring the intra and postoperative responses of auditory nerve and help to primary setting of speech processor. The aim of this study was evaluating the potential's slope of amplitude growth function changes three monthes after receiving the devise in pediatric cochlear implant recipients. Materials & Methods: This longitudinal study evaluated the potentials' slope of amplitude growth function changes in four given electrodes in four sessions after receiving the devise by approximately one month's intervals in all of the children who implanted in Amir Alam and Hazrat-e-Rasoul hospitals in 2007, July to December. Friedman test was used to analyse the results. Results: Electrically evoked compound action potential's mean slope of each electrode was more in later sessions relative to first session, while there was significant difference between the 1st and the other electrodes’ responses in every session (P<0.05. Conclusion: The reliabiliy of the responses results in more assurance of clinician to fit the speech processor for along time. Better responses in apical electrodes may lead to develope an effective coding strategy.

  18. Submarine slope failures due to pipe structure formation.

    Science.gov (United States)

    Elger, Judith; Berndt, Christian; Rüpke, Lars; Krastel, Sebastian; Gross, Felix; Geissler, Wolfram H

    2018-02-19

    There is a strong spatial correlation between submarine slope failures and the occurrence of gas hydrates. This has been attributed to the dynamic nature of gas hydrate systems and the potential reduction of slope stability due to bottom water warming or sea level drop. However, 30 years of research into this process found no solid supporting evidence. Here we present new reflection seismic data from the Arctic Ocean and numerical modelling results supporting a different link between hydrates and slope stability. Hydrates reduce sediment permeability and cause build-up of overpressure at the base of the gas hydrate stability zone. Resulting hydro-fracturing forms pipe structures as pathways for overpressured fluids to migrate upward. Where these pipe structures reach shallow permeable beds, this overpressure transfers laterally and destabilises the slope. This process reconciles the spatial correlation of submarine landslides and gas hydrate, and it is independent of environmental change and water depth.

  19. On Some Nonclassical Algebraic Properties of Interval-Valued Fuzzy Soft Sets

    Science.gov (United States)

    2014-01-01

    Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov's soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation =L. We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets. PMID:25143964

  20. On Some Nonclassical Algebraic Properties of Interval-Valued Fuzzy Soft Sets

    Directory of Open Access Journals (Sweden)

    Xiaoyan Liu

    2014-01-01

    Full Text Available Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov’s soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation =L. We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets.

  1. On some nonclassical algebraic properties of interval-valued fuzzy soft sets.

    Science.gov (United States)

    Liu, Xiaoyan; Feng, Feng; Zhang, Hui

    2014-01-01

    Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov's soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation = L . We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets.

  2. Drifter observations of the Hebrides slope current and nearby circulation patterns

    Directory of Open Access Journals (Sweden)

    M. Burrows

    Full Text Available The mean flow at and around the Hebrides and Shetland Shelf slope is measured with ARGOS tracked drifters. Forty-two drifters drogued at 50 m were deployed in three circles over the Hebrides slope at 56.15°N in two releases, one on 5th December, 1995 and the second on 5-9th May, 1996. The circles span a distance of some 20 km from water depths of 200 m to 1200 m. Drifters are initially advected poleward along-slope by the Hebrides slope current at between 0.05 and 0.70 m s-1 in a laterally constrained (25-50 km wide jet-like flow. Drifters released in winter remained in the slope current for over 2000 km whilst summer drifters were lost from the slope current beyond the Wyville-Thomson Ridge, a major topographic feature at 60°N. Dispersion from the slope region into deeper waters occurs at bathymetric irregularities, particularly at the Anton Dohrn Seamount close to which the slope current is found to bifurcate, both in summer and winter, and at the Wyville-Thomson Ridge where drifters move into the Faeroe Shetland Channel. Dispersion onto the continental shelf occurs sporadically along the Hebrides slope. The initial dispersion around the Hebrides slope is remarkably sensitive to initial position, most of the drifters released in shallower water moving onto the shelf, whilst those in 1000 m or more are mostly carried away from the slope into deeper water near the Anton Dohrn Seamount. The dispersion coefficients estimated in directions parallel and normal to the local direction of the 500 m contour, approximately the position of the slope current core, are approximately 8.8 × 103 m2 s-1 and 0.36 × 103 m2 s-1, respectively, during winter, and 11.4 × 103 m2 s-1 and 0.36 × 103 m2 s-1, respectively, during summer. At the slope there is a minimum in across-slope mean velocity, Reynolds stress, and

  3. Dynamic and Static Combination Analysis Method of Slope Stability Analysis during Earthquake

    OpenAIRE

    Liang Lu; Zongjian Wang; Xiaoyuan Huang; Bin Zheng; Katsuhiko Arai

    2014-01-01

    The results of laboratory model tests for simulating the slope failure due to vibration, including unreinforced slope and the slope reinforced by using geotextile, show that the slope failure occurs when a cumulative plastic displacement exceeds a certain critical value. To overcome the defects of conventional stability analysis, which evaluates the slope characteristics only by its strength parameters, a numerical procedure considering the stiffness and deformation of materials and geosynthe...

  4. A preliminary pit slope stability study Kvanefjeld, South Greenland

    International Nuclear Information System (INIS)

    Kalvig, P.

    1983-11-01

    On the basis of 1300 field measurements of joint planes, four individual structural regions have been outlined in the Kvanefjeld area. Potential failure planes and planes which are unlikely to be involved in slope failures are identified. Failures seem, not likely to occur on walls dipping SW or NE respectively, but may occur on walls dipping NM. The factors of safety for each region are calculated in order to determine the sensibility of the overall slope to different overall slope angles. The factors of safety does only exceed the required factor of safety of 1.5 in one of the structural regions. Changing the overall pit slope inclination from 55deg to 45deg improves the security, but even still not satisfactorily for two of the regions. At 45deg overall pit slope in parts of the pit implies additional 14.3 x 10 6 tonnes of non-mineralized material to be mined, thus resulting in a total mineralized- to non-mineralized material ratio about 1.0: 1.7. (author)

  5. Influences of Holocene sea level, regional tectonics, and fluvial, gravity and slope currents induced sedimentation on the regional geomorphology of the continental slope off northwestern India

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.; Almeida, F.

    the Holocene sea level. The Bombay high area has slope breaks between 400 and 600 m, whereas off Saurashtra steep breaks in the slope occur between 560 and 960 m depth. Further southwards, at the slope, elevations and depressions are present. Variations...

  6. Gluons from logarithmic slopes of F2 in the NLL approximation

    International Nuclear Information System (INIS)

    Golec-Biernat, K.

    1994-02-01

    We make a critical, next-to-leading order, study of the accuracy of the ''Prytz'' relation, which is frequently used to extract the gluon distribution at small x from the logarithmic slopes of the structure function F 2 . We find that the simple relation is not generally valid in the HERA regime, but show that it is a reasonable approximation for gluons which are sufficiency singular at small x. (author). 9 refs, 3 figs

  7. Some double sequence spaces of interval numbers defined by Orlicz function

    Directory of Open Access Journals (Sweden)

    Ayhan Esi

    2014-10-01

    Full Text Available In this paper we introduce some interval valued double sequence spaces defined by Orlicz function and study different properties of these spaces like inclusion relations, solidity, etc. We establish some inclusion relations among them. Also we introduce the concept of double statistical convergence for interval number sequences and give an inclusion relation between interval valued double sequence spaces.

  8. Slope stability and bearing capacity of landfills and simple on-site test methods.

    Science.gov (United States)

    Yamawaki, Atsushi; Doi, Yoichi; Omine, Kiyoshi

    2017-07-01

    This study discusses strength characteristics (slope stability, bearing capacity, etc.) of waste landfills through on-site tests that were carried out at 29 locations in 19 sites in Japan and three other countries, and proposes simple methods to test and assess the mechanical strength of landfills on site. Also, the possibility of using a landfill site was investigated by a full-scale eccentric loading test. As a result of this, landfills containing more than about 10 cm long plastics or other fibrous materials were found to be resilient and hard to yield. An on-site full scale test proved that no differential settlement occurs. The repose angle test proposed as a simple on-site test method has been confirmed to be a good indicator for slope stability assessment. The repose angle test suggested that landfills which have high, near-saturation water content have considerably poorer slope stability. The results of our repose angle test and the impact acceleration test were related to the internal friction angle and the cohesion, respectively. In addition to this, it was found that the air pore volume ratio measured by an on-site air pore volume ratio test is likely to be related to various strength parameters.

  9. Is there a distinct continental slope fauna in the Antarctic?

    Science.gov (United States)

    Kaiser, Stefanie; Griffiths, Huw J.; Barnes, David K. A.; Brandão, Simone N.; Brandt, Angelika; O'Brien, Philip E.

    2011-02-01

    The Antarctic continental slope spans the depths from the shelf break (usually between 500 and 1000 m) to ˜3000 m, is very steep, overlain by 'warm' (2-2.5 °C) Circumpolar Deep Water (CDW), and life there is poorly studied. This study investigates whether life on Antarctica's continental slope is essentially an extension of the shelf or the abyssal fauna, a transition zone between these or clearly distinct in its own right. Using data from several cruises to the Weddell Sea and Scotia Sea, including the ANDEEP (ANtarctic benthic DEEP-sea biodiversity, colonisation history and recent community patterns) I-III, BIOPEARL (BIOdiversity, Phylogeny, Evolution and Adaptive Radiation of Life in Antarctica) 1 and EASIZ (Ecology of the Antarctic Sea Ice Zone) II cruises as well as current databases (SOMBASE, SCAR-MarBIN), four different taxa were selected (i.e. cheilostome bryozoans, isopod and ostracod crustaceans and echinoid echinoderms) and two areas, the Weddell Sea and the Scotia Sea, to examine faunal composition, richness and affinities. The answer has important ramifications to the link between physical oceanography and ecology, and the potential of the slope to act as a refuge and resupply zone to the shelf during glaciations. Benthic samples were collected using Agassiz trawl, epibenthic sledge and Rauschert sled. By bathymetric definition, these data suggest that despite eurybathy in some of the groups examined and apparent similarity of physical conditions in the Antarctic, the shelf, slope and abyssal faunas were clearly separated in the Weddell Sea. However, no such separation of faunas was apparent in the Scotia Sea (except in echinoids). Using a geomorphological definition of the slope, shelf-slope-abyss similarity only changed significantly in the bryozoans. Our results did not support the presence of a homogenous and unique Antarctic slope fauna despite a high number of species being restricted to the slope. However, it remains the case that there may be

  10. HiRISE observations of Recurring Slope Lineae (RSL) during southern summer on Mars

    Science.gov (United States)

    Ojha, Lujendra; McEwen, Alfred; Dundas, Colin; Byrne, Shane; Mattson, Sarah; Wray, James; Masse, Marion; Schaefer, Ethan

    2014-01-01

    Recurring Slope Lineae (RSL) are active features on Mars that might require flowing water. Most examples observed through 2011 formed on steep, equator-facing slopes in the southern mid-latitudes. They form and grow during warm seasons and fade and often completely disappear during colder seasons, but recur over multiple Mars years. They are recognizable by their incremental growth, relatively low albedo and downhill orientation. We examined all images acquired by HiRISE during Ls 250–10° (slightly longer than southern summer, Ls 270–360°) of Mars years 30–31 (03/2011–10/2011), and supplemented our results with data from previous studies to better understand the geologic context and characteristics of RSL. We also confirmed candidate and likely sites from previous studies and discovered new RSL sites. We report 13 confirmed RSL sites, including the 7 in McEwen et al. (McEwen et al. [2011]. Science 333(6043), 740–743]. The observed seasonality, latitudinal and slope orientation preferences, and THEMIS bright- ness temperatures indicate that RSL require warm temperatures to form. We conclude that RSL are a unique phenomenon on Mars, clearly distinct from other slope processes that occur at high latitudes associated with seasonal CO2 frost, and episodic mass wasting on equatorial slopes. However, only 41% (82 out of 200) of the sites that present apparently suitable conditions for RSL formation (steep, equator-facing rocky slopes with bedrock exposure) in the southern mid-latitudes (28–60°S) contain any candidate RSL, with confirmed RSL present only in 7% (13 sites) of those locations. Significant variability in abundance, size and exact location of RSL is also observed at most sites, indicating additional controls such as availability of water or salts that might be playing a crucial role.

  11. INTRINSIC TOPOLOGY AND REFINEMENT OF HUTTON UNIT INTERVAL

    Institute of Scientific and Technical Information of China (English)

    王国俊; 徐罗山

    1992-01-01

    This paper introduces the theory of continuous lattices to the study of the Hutton unit interval I(L). some theorems related to I(L) are pithily proved. A kind of intrinsic topologies is applied to refining the topology of I(L),and a new fuzzy unit interval,called the H(λ) unit interval,is defined.Based on the H(λ) unit interval the H(λ)-complete regularity is introduced.Also,the theory of. H(λ)-stone-ech compactifications is established

  12. Western Ross Sea continental slope gravity currents

    Science.gov (United States)

    Gordon, Arnold L.; Orsi, Alejandro H.; Muench, Robin; Huber, Bruce A.; Zambianchi, Enrico; Visbeck, Martin

    2009-06-01

    Antarctic Bottom Water of the world ocean is derived from dense Shelf Water that is carried downslope by gravity currents at specific sites along the Antarctic margins. Data gathered by the AnSlope and CLIMA programs reveal the presence of energetic gravity currents that are formed over the western continental slope of the Ross Sea when High Salinity Shelf Water exits the shelf through Drygalski Trough. Joides Trough, immediately to the east, offers an additional escape route for less saline Shelf Water, while the Glomar Challenger Trough still farther east is a major pathway for export of the once supercooled low-salinity Ice Shelf Water that forms under the Ross Ice Shelf. The Drygalski Trough gravity currents increase in thickness from ˜100 to ˜400 m on proceeding downslope from ˜600 m (the shelf break) to 1200 m (upper slope) sea floor depth, while turning sharply to the west in response to the Coriolis force during their descent. The mean current pathway trends ˜35° downslope from isobaths. Benthic-layer current and thickness are correlated with the bottom water salinity, which exerts the primary control over the benthic-layer density. A 1-year time series of bottom-water current and hydrographic properties obtained on the slope near the 1000 m isobath indicates episodic pulses of Shelf Water export through Drygalski Trough. These cold (34.75) pulses correlate with strong downslope bottom flow. Extreme examples occurred during austral summer/fall 2003, comprising concentrated High Salinity Shelf Water (-1.9 °C; 34.79) and approaching 1.5 m s -1 at descent angles as large as ˜60° relative to the isobaths. Such events were most common during November-May, consistent with a northward shift in position of the dense Shelf Water during austral summer. The coldest, saltiest bottom water was measured from mid-April to mid-May 2003. The summer/fall export of High Salinity Shelf Water observed in 2004 was less than that seen in 2003. This difference, if real

  13. Robustness for slope stability modelling under deep uncertainty

    Science.gov (United States)

    Almeida, Susana; Holcombe, Liz; Pianosi, Francesca; Wagener, Thorsten

    2015-04-01

    Landslides can have large negative societal and economic impacts, such as loss of life and damage to infrastructure. However, the ability of slope stability assessment to guide management is limited by high levels of uncertainty in model predictions. Many of these uncertainties cannot be easily quantified, such as those linked to climate change and other future socio-economic conditions, restricting the usefulness of traditional decision analysis tools. Deep uncertainty can be managed more effectively by developing robust, but not necessarily optimal, policies that are expected to perform adequately under a wide range of future conditions. Robust strategies are particularly valuable when the consequences of taking a wrong decision are high as is often the case of when managing natural hazard risks such as landslides. In our work a physically based numerical model of hydrologically induced slope instability (the Combined Hydrology and Stability Model - CHASM) is applied together with robust decision making to evaluate the most important uncertainties (storm events, groundwater conditions, surface cover, slope geometry, material strata and geotechnical properties) affecting slope stability. Specifically, impacts of climate change on long-term slope stability are incorporated, accounting for the deep uncertainty in future climate projections. Our findings highlight the potential of robust decision making to aid decision support for landslide hazard reduction and risk management under conditions of deep uncertainty.

  14. The Relationship Between Lithology and Slope Morphology in the Tucson Mountains, Arizona.

    Directory of Open Access Journals (Sweden)

    Kamel Khanchoul

    2008-05-01

    Full Text Available The relationship between lithology and slope morphology is investigated at eight sites on granitic, andesitic, andsedimentary hillslopes in the Tucson Mountains, Arizona. Several methods are used in the study. Topographic profi lesare constructed. Skewness indices, slope length, and mean slope angles of the different slope profi les are computed andcompared with each other. Debris size analysis has permitted for some profi les, the determination of hillfront/piedmontjunctions. The nature and structural characteristics of the bedrock are the ones that determine the hillslope morphologyin this semi-arid region. There are, as a matter of fact, variations in profi les on the same bedrock nature but differentlyexposed. More precise morphologic studies have been also done in comparing the different lithologic pairs. They havepermitted to show some similarities in shapes. The granitic-andesitic slopes and andesiic-sedimentary slopes are thebest comparisons which show the relationship between lithology and slope morphology. The granitic-sedimentary sloperelationship is shown in the hillfront concavities, mountain front and piedmont mean slope angles.

  15. Application of distinct element method of toppling failure of slope

    International Nuclear Information System (INIS)

    Ishida, Tsuyoshi; Hibino, Satoshi; Kitahara, Yoshihiro; Ito, Hiroshi

    1984-01-01

    The authors have pointed out, in the latest report, that DEM (Distinct Element Method) seems to be a very helpful numerical method to examine the stability of fissured rock slopes, in which toppling failure would occur during earthquakes. In this report, the applicability of DEM for such rock slopes is examined through the following comparisons between theoretical results and DEM results, referring Voegele's works (1982): (1) Stability of one block on a slope. (2) Failure of a rock block column composed of 10 same size rectangular blocks. (3) Cable force required to make a slope stable. Through above 3 comparisons, it seems that DEM give the reasonable results. Considering that these problems may not be treated by the other numerical methods such as FEM and so on, so DEM seems to be a very useful method for fissured rock slope analysis. (author)

  16. Modal interval analysis new tools for numerical information

    CERN Document Server

    Sainz, Miguel A; Calm, Remei; Herrero, Pau; Jorba, Lambert; Vehi, Josep

    2014-01-01

    This book presents an innovative new approach to interval analysis. Modal Interval Analysis (MIA) is an attempt to go beyond the limitations of classic intervals in terms of their structural, algebraic and logical features. The starting point of MIA is quite simple: It consists in defining a modal interval that attaches a quantifier to a classical interval and in introducing the basic relation of inclusion between modal intervals by means of the inclusion of the sets of predicates they accept. This modal approach introduces interval extensions of the real continuous functions, identifies equivalences between logical formulas and interval inclusions, and provides the semantic theorems that justify these equivalences, along with guidelines for arriving at these inclusions. Applications of these equivalences in different areas illustrate the obtained results. The book also presents a new interval object: marks, which aspire to be a new form of numerical treatment of errors in measurements and computations.

  17. The contribution of particle swarm optimization to three-dimensional slope stability analysis.

    Science.gov (United States)

    Kalatehjari, Roohollah; Rashid, Ahmad Safuan A; Ali, Nazri; Hajihassani, Mohsen

    2014-01-01

    Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.

  18. Pile-Reinforcement Behavior of Cohesive Soil Slopes: Numerical Modeling and Centrifuge Testing

    Directory of Open Access Journals (Sweden)

    Liping Wang

    2013-01-01

    Full Text Available Centrifuge model tests were conducted on pile-reinforced and unreinforced cohesive soil slopes to investigate the fundamental behavior and reinforcement mechanism. A finite element analysis model was established and confirmed to be effective in capturing the primary behavior of pile-reinforced slopes by comparing its predictions with experimental results. Thus, a comprehensive understanding of the stress-deformation response was obtained by combining the numerical and physical simulations. The response of pile-reinforced slope was indicated to be significantly affected by pile spacing, pile location, restriction style of pile end, and inclination of slope. The piles have a significant effect on the behavior of reinforced slope, and the influencing area was described using a continuous surface, denoted as W-surface. The reinforcement mechanism was described using two basic concepts, compression effect and shear effect, respectively, referring to the piles increasing the compression strain and decreasing the shear strain of the slope in comparison with the unreinforced slope. The pile-soil interaction induces significant compression effect in the inner zone near the piles; this effect is transferred to the upper part of the slope, with the shear effect becoming prominent to prevent possible sliding of unreinforced slope.

  19. The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis

    Science.gov (United States)

    A Rashid, Ahmad Safuan; Ali, Nazri

    2014-01-01

    Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes. PMID:24991652

  20. The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis

    Directory of Open Access Journals (Sweden)

    Roohollah Kalatehjari

    2014-01-01

    Full Text Available Over the last few years, particle swarm optimization (PSO has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D slope stability analysis. This paper applied PSO in three-dimensional (3D slope stability problem to determine the critical slip surface (CSS of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.

  1. Analysis of the Fetch Dependency of the Slope of Wind-Water Waves

    OpenAIRE

    Proß, Christin

    2016-01-01

    In this thesis mean square slope has been calculated from slope images which were recorded by the Imaging Slope Gauge (ISG) at the annular wind-wave tank Aeolotron in Heidelberg. The calculations have been realized using three different methods, which are, (i) calculation of the variance, (ii) integration of the slope power spectrum and (iii) fitting the probability distribution function of slope with a model function. The resulting values have been compared to each other and t...

  2. Anatomy of the capsulolabral complex and rotator interval related to glenohumeral instability.

    Science.gov (United States)

    Itoigawa, Yoshiaki; Itoi, Eiji

    2016-02-01

    The glenohumeral joint with instability is a common diagnosis that often requires surgery. The aim of this review was to present an overview of the anatomy of the glenohumeral joint with emphasis on instability based on the current literature and to describe the detailed anatomy and anatomical variants of the glenohumeral joint associated with anterior and posterior shoulder instability. A review was performed using PubMed/MEDLINE using key words: Search terms were "glenohumeral", "shoulder instability", "cadaver", "rotator interval", "anatomy", and "anatomical study". During the last decade, the interest in both arthroscopic repair techniques and surgical anatomy of the glenohumeral ligament (superior, middle, and inferior), labrum, and rotator interval has increased. Understanding of the rotator interval and attachment of the inferior glenohumeral ligament on the glenoid or humeral head have evolved significantly. The knowledge of the detailed anatomy and anatomical variations is essential for the surgeon in order to understand the pathology, make a correct diagnosis of instability, and select proper treatment options. Proper understanding of anatomical variants can help us avoid misdiagnosis. Level of evidence V.

  3. Slope-Velocity-Equilibrium and evolution of surface roughness on a stony hillslope

    Science.gov (United States)

    Slope-velocity equilibrium is hypothesized as a state that evolves naturally over time due to the interaction between overland flow and bed morphology, wherein steeper areas develop a relative increase in physical and hydraulic roughness such that flow velocity is a unique function of overland flow ...

  4. Analysing hydro-mechanical behaviour of reinforced slopes through centrifuge modelling

    Science.gov (United States)

    Veenhof, Rick; Wu, Wei

    2017-04-01

    Every year, slope instability is causing casualties and damage to properties and the environment. The behaviour of slopes during and after these kind of events is complex and depends on meteorological conditions, slope geometry, hydro-mechanical soil properties, boundary conditions and the initial state of the soils. This study describes the effects of adding reinforcement, consisting of randomly distributed polyolefin monofilament fibres or Ryegrass (Lolium), on the behaviour of medium-fine sand in loose and medium dense conditions. Direct shear tests were performed on sand specimens with different void ratios, water content and fibre or root density, respectively. To simulate the stress state of real scale field situations, centrifuge model tests were conducted on sand specimens with different slope angles, thickness of the reinforced layer, fibre density, void ratio and water content. An increase in peak shear strength is observed in all reinforced cases. Centrifuge tests show that for slopes that are reinforced the period until failure is extended. The location of shear band formation and patch displacement behaviour indicate that the design of slope reinforcement has a significant effect on the failure behaviour. Future research will focus on the effect of plant water uptake on soil cohesion.

  5. Impact of Rain Water Infiltration on the Stability of Earth Slopes

    Directory of Open Access Journals (Sweden)

    Muhammad Farooq Ahmed

    2016-12-01

    Full Text Available Slope failure occurs very often in natural and man-made slopes which are subjected to frequent changes in ground water level, rapid drawdown, rainfall and earthquakes. The current study discusses the significance of water infiltration, pore water pressure and degree of saturation that affect the stability of earth slopes. Rainwater infiltration not only mechanically reduces the shear strength of a slope material, but also chemically alters the mineral composition of the soil matrix. It results in the alteration of macro structures which in turn decreases the factor of safety. A few case studies are discussed in this paper to quantitatively observe the variation in factor of safety (FOS of various earth slopes by changing the degree of saturation. The results showed that most of the earth slopes get failed or become critical when the degree of saturation approaches to 50 % or more.

  6. Different slopes of a mountain can determine the structure of ferns and lycophytes communities in a tropical forest of Brazil

    Directory of Open Access Journals (Sweden)

    FELIPE C. NETTESHEIM

    2014-03-01

    Full Text Available A community of Ferns and Lycophytes was investigated by comparing the occurrence of species on different slopes of a paleoisland in Southeastern Brazil. Our goal was to evaluate the hypothesis that slopes with different geographic orientations determine a differentiation of Atlantic Forest ferns and lycophytes community. We recorded these plants at slopes turned towards the continent and at slopes turned towards the open sea. Analysis consisted of a preliminary assessment on fern beta diversity, a Non Metric Multidimensional Scaling (NMDS and a Student t-test to confirm if sites sampling units ordination was different at each axis. We further used the Pearson coefficient to relate fern species to the differentiation pattern and again Student's t-test to determine if richness, plant cover and abundance varied between the two sites. There was a relatively low number of shared species between the two sites and ferns and lycophytes community variation was confirmed. Some species were detected as indicators of the community variation but we were unable to detect richness, plant cover or abundance differences. Despite the evidence of this variation between the slopes, further works are needed to evaluate which processes are contributing to determine this pattern.

  7. Magnitudes and slopes of real and imaginary amplitudes in the Coulomb interference region of pp and pbarp scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, Anderson Kendi; Ferreira, Erasmo; Kodama, Takeshi [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2011-07-01

    Full text: We use exact Derivative Dispersion Relations [?, ?] to investigate properties of the real and imaginary amplitudes in the forward region of pp and pbarp scattering. We emphasize that the effective slope in dσ/dt is formed by different exponential slopes in the real and imaginary amplitudes (called B{sub R} and B{sub I} ). For this purpose a more general treatment of the Coulomb phase is developed. The dσ/dt data in the range from 19 to 1800 GeV for low |t| are analysed in terms of the four quantities σ, ρ, B{sub I}, B{sub R} that are basic for dynamical models . The usual assumption that B{sub I} and B{sub R} are the same, with σ not depending strongly on t, does not agree with dispersion relations, for which B{sub R} > B{sub I} , and with the expectation that the first real zero approaches t=0 as the energy increases. Our work uses dispersion relations to disentangle the quantities that represent observables in terms of imaginary and real parts, intrinsically combined with the Coulomb contribution. To investigate real slopes we use new forms of dispersion relations [?]. With the difference between imaginary and real slopes , the future RHIC and LHC data will require the extended analysis with B{sub R} as a free quantity. We investigate in detail the region from 19 to 30 GeV where the real amplitude in pp scattering may vanish. The data for ρ are contradictory in this range. We investigate the meaning of the real slope B{sub R} in this region where the parameter ρ is very small, and construct coherent description of the data. In the high energy region we obtain scattering parameters for the RHIC and LHC experiments. (author)

  8. How Do Adults Perceive, Analyse and Measure Slope?

    Science.gov (United States)

    Duncan, Bruce; Chick, Helen

    2013-01-01

    Slope is a mathematical concept that is both fundamental to the study of advanced calculus and commonly perceived in everyday life. The measurement of steepness of terrain as a ratio is an example of an everyday application the concept of slope. In this study, a group of pre-service teachers were tested for their capacity to mathematize the…

  9. Stability of submarine slopes in the northern South China Sea: a numerical approach

    Science.gov (United States)

    Zhang, Liang; Luan, Xiwu

    2013-01-01

    Submarine landslides occur frequently on most continental margins. They are effective mechanisms of sediment transfer but also a geological hazard to seafloor installations. In this paper, submarine slope stability is evaluated using a 2D limit equilibrium method. Considerations of slope, sediment, and triggering force on the factor of safety (FOS) were calculated in drained and undrained ( Φ=0) cases. Results show that submarine slopes are stable when the slope is 13° with earthquake peak ground acceleration (PGA) of 0.5 g; whereas with a weak layer, a PGA of 0.2 g could trigger instability at slopes >10°, and >3° for PGA of 0.5 g. The northern slope of the South China Sea is geomorphologically stable under static conditions. However, because of the possibility of high PGA at the eastern margin of the South China Sea, submarine slides are likely on the Taiwan Bank slope and eastern part of the Dongsha slope. Therefore, submarine slides recognized in seismic profiles on the Taiwan Bank slope would be triggered by an earthquake, the most important factor for triggering submarine slides on the northern slope of the South China Sea. Considering the distribution of PGA, we consider the northern slope of the South China Sea to be stable, excluding the Taiwan Bank slope, which is tectonically active.

  10. VT Data - Lidar Slope (0.7m) 2016, Essex, Caledonia, Orange, and Windsor Counties

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Middle CT River subbasin 2016 0.7m and related SLOPE datasets. Created using ArcGIS...

  11. A conceptual approach to approximate tree root architecture in infinite slope models

    Science.gov (United States)

    Schmaltz, Elmar; Glade, Thomas

    2016-04-01

    Vegetation-related properties - particularly tree root distribution and coherent hydrologic and mechanical effects on the underlying soil mantle - are commonly not considered in infinite slope models. Indeed, from a geotechnical point of view, these effects appear to be difficult to be reproduced reliably in a physically-based modelling approach. The growth of a tree and the expansion of its root architecture are directly connected with both intrinsic properties such as species and age, and extrinsic factors like topography, availability of nutrients, climate and soil type. These parameters control four main issues of the tree root architecture: 1) Type of rooting; 2) maximum growing distance to the tree stem (radius r); 3) maximum growing depth (height h); and 4) potential deformation of the root system. Geometric solids are able to approximate the distribution of a tree root system. The objective of this paper is to investigate whether it is possible to implement root systems and the connected hydrological and mechanical attributes sufficiently in a 3-dimensional slope stability model. Hereby, a spatio-dynamic vegetation module should cope with the demands of performance, computation time and significance. However, in this presentation, we focus only on the distribution of roots. The assumption is that the horizontal root distribution around a tree stem on a 2-dimensional plane can be described by a circle with the stem located at the centroid and a distinct radius r that is dependent on age and species. We classified three main types of tree root systems and reproduced the species-age-related root distribution with three respective mathematical solids in a synthetic 3-dimensional hillslope ambience. Thus, two solids in an Euclidian space were distinguished to represent the three root systems: i) cylinders with radius r and height h, whilst the dimension of latter defines the shape of a taproot-system or a shallow-root-system respectively; ii) elliptic

  12. Slope stability and rockfall assessment of volcanic tuffs using RPAS with 2-D FEM slope modelling

    Directory of Open Access Journals (Sweden)

    Á. Török

    2018-02-01

    Full Text Available Steep, hardly accessible cliffs of rhyolite tuff in NE Hungary are prone to rockfalls, endangering visitors of a castle. Remote sensing techniques were employed to obtain data on terrain morphology and to provide slope geometry for assessing the stability of these rock walls. A RPAS (Remotely Piloted Aircraft System was used to collect images which were processed by Pix4D mapper (structure from motion technology to generate a point cloud and mesh. The georeferencing was made by Global Navigation Satellite System (GNSS with the use of seven ground control points. The obtained digital surface model (DSM was processed (vegetation removal and the derived digital terrain model (DTM allowed cross sections to be drawn and a joint system to be detected. Joint and discontinuity system was also verified by field measurements. On-site tests as well as laboratory tests provided additional engineering geological data for slope modelling. Stability of cliffs was assessed by 2-D FEM (finite element method. Global analyses of cross sections show that weak intercalating tuff layers may serve as potential slip surfaces. However, at present the greatest hazard is related to planar failure along ENE–WSW joints and to wedge failure. The paper demonstrates that RPAS is a rapid and useful tool for generating a reliable terrain model of hardly accessible cliff faces. It also emphasizes the efficiency of RPAS in rockfall hazard assessment in comparison with other remote sensing techniques such as terrestrial laser scanning (TLS.

  13. A simplified approach for slope stability analysis of uncontrolled waste dumps.

    Science.gov (United States)

    Turer, Dilek; Turer, Ahmet

    2011-02-01

    Slope stability analysis of municipal solid waste has always been problematic because of the heterogeneous nature of the waste materials. The requirement for large testing equipment in order to obtain representative samples has identified the need for simplified approaches to obtain the unit weight and shear strength parameters of the waste. In the present study, two of the most recently published approaches for determining the unit weight and shear strength parameters of the waste have been incorporated into a slope stability analysis using the Bishop method to prepare slope stability charts. The slope stability charts were prepared for uncontrolled waste dumps having no liner and leachate collection systems with pore pressure ratios of 0, 0.1, 0.2, 0.3, 0.4 and 0.5, considering the most critical slip surface passing through the toe of the slope. As the proposed slope stability charts were prepared by considering the change in unit weight as a function of height, they reflect field conditions better than accepting a constant unit weight approach in the stability analysis. They also streamline the selection of slope or height as a function of the desired factor of safety.

  14. The prognostic value of the QT interval and QT interval dispersion in all-cause and cardiac mortality and morbidity in a population of Danish citizens.

    Science.gov (United States)

    Elming, H; Holm, E; Jun, L; Torp-Pedersen, C; Køber, L; Kircshoff, M; Malik, M; Camm, J

    1998-09-01

    To evaluate the prognostic value of the QT interval and QT interval dispersion in total and in cardiovascular mortality, as well as in cardiac morbidity, in a general population. The QT interval was measured in all leads from a standard 12-lead ECG in a random sample of 1658 women and 1797 men aged 30-60 years. QT interval dispersion was calculated from the maximal difference between QT intervals in any two leads. All cause mortality over 13 years, and cardiovascular mortality as well as cardiac morbidity over 11 years, were the main outcome parameters. Subjects with a prolonged QT interval (430 ms or more) or prolonged QT interval dispersion (80 ms or more) were at higher risk of cardiovascular death and cardiac morbidity than subjects whose QT interval was less than 360 ms, or whose QT interval dispersion was less than 30 ms. Cardiovascular death relative risk ratios, adjusted for age, gender, myocardial infarct, angina pectoris, diabetes mellitus, arterial hypertension, smoking habits, serum cholesterol level, and heart rate were 2.9 for the QT interval (95% confidence interval 1.1-7.8) and 4.4 for QT interval dispersion (95% confidence interval 1.0-19-1). Fatal and non-fatal cardiac morbidity relative risk ratios were similar, at 2.7 (95% confidence interval 1.4-5.5) for the QT interval and 2.2 (95% confidence interval 1.1-4.0) for QT interval dispersion. Prolongation of the QT interval and QT interval dispersion independently affected the prognosis of cardiovascular mortality and cardiac fatal and non-fatal morbidity in a general population over 11 years.

  15. Relation of increased short-term variability of QT interval to congenital long-QT syndrome

    DEFF Research Database (Denmark)

    Hinterseer, Martin; Beckmann, Britt-Maria; Thomsen, Morten B

    2009-01-01

    Apart from clinical symptoms the diagnosis and risk stratification in long-QT syndrome (LQTS) is usually based on the surface electrocardiogram. Studies have indicated that not only prolongation of the QT interval but also an increased short-term variability of QT interval (STV(QT)) is a marker...... that an STV(QT) of 4.9 ms was the optimal cut-off value to predict mutation carriers. When incorporating an STV(QT) >4.9 ms for those whose QTc interval was within the normal limits, sensitivity to distinguish mutation carriers increased to 83% with a specificity of 68%, so that another 15 mutation carriers...

  16. Transport and transfer rates in the waters of the continental shelf and slope: SEEP

    International Nuclear Information System (INIS)

    Biscaye, P.E.; Anderson, R.F.

    1993-01-01

    The overall Shelf Edge Exchange Processes (SEEP) Program, which began in 1980 or 1981, had as its goal the testing of a hypothesis with respect to the fate of particulate matter formed in and introduced into the waters of the continental shelf adjacent to the northern east coast of the US, i.e., the MAB. The original hypothesis was that a large proportion of the particles in general, and of the particulate organic carbon (POC) in particular, was exported from the shelf, across the shelf/slope break and front, into the waters of, and, to some degree, deposited in the sediments of the continental slope. This hypothesis was based on budgets of organic carbon and lead-210 that did not account for a large proportion of those species in the waters or sediments of the shelf, and on a carbon-rich band of sediments centered on the slope at ∼1,000 m water depth. The results of the first SEEP experiment, south of New England and Long Island (SEEP-1) suggested, but did not prove, that there was only a relatively small proportion of the carbon which was exported from the shelf to the slope. The objective of the second experiment -- SEEP-2 -- done under the subject grant, was to tighten the experiment in terms of the kinds of data collected, and to focus it more on the shelf and only the upper slope, where shelf-derived particles were thought to be deposited

  17. A scoping review of the psychological responses to interval exercise: is interval exercise a viable alternative to traditional exercise?

    Science.gov (United States)

    Stork, Matthew J; Banfield, Laura E; Gibala, Martin J; Martin Ginis, Kathleen A

    2017-12-01

    While considerable evidence suggests that interval exercise confers numerous physiological adaptations linked to improved health, its psychological consequences and behavioural implications are less clear and the subject of intense debate. The purpose of this scoping review was to catalogue studies investigating the psychological responses to interval exercise in order to identify what psychological outcomes have been assessed, the research methods used, and the results. A secondary objective was to identify research issues and gaps. Forty-two published articles met the review inclusion/exclusion criteria. These studies involved 1258 participants drawn from various active/inactive and healthy/unhealthy populations, and 55 interval exercise protocols (69% high-intensity interval training [HIIT], 27% sprint interval training [SIT], and 4% body-weight interval training [BWIT]). Affect and enjoyment were the most frequently studied psychological outcomes. Post-exercise assessments indicate that overall, enjoyment of, and preferences for interval exercise are equal or greater than for continuous exercise, and participants can hold relatively positive social cognitions regarding interval exercise. Although several methodological issues (e.g., inconsistent use of terminology, measures and protocols) and gaps (e.g., data on adherence and real-world protocols) require attention, from a psychological perspective, the emerging data support the viability of interval exercise as an alternative to continuous exercise.

  18. The prognostic value of the QT interval and QT interval dispersion in all-cause and cardiac mortality and morbidity in a population of Danish citizens

    DEFF Research Database (Denmark)

    Elming, H; Holm, E; Jun, L

    1998-01-01

    with a prolonged QT interval (430 ms or more) or prolonged QT interval dispersion (80 ms or more) were at higher risk of cardiovascular death and cardiac morbidity than subjects whose QT interval was less than 360 ms, or whose QT interval dispersion was less than 30 ms. Cardiovascular death relative risk ratios...

  19. Influence of flow on thawing of underwater slopes and the pace ...

    African Journals Online (AJOL)

    ... hydraulic laboratory of department of architecture & civil engineering RUDN University was performed studies of destruction of underwater and above-water coastal slopes in conditions simulating permafrost, depending on the soil type, the initial slope, and the slope angle. It was shown by authors, the speed of erosion of ...

  20. Slope failure investigation management system.

    Science.gov (United States)

    2013-03-01

    Highway slopes are exposed to a variety of environmental and climatic conditions, such as deforestation, cycles of : freezing and thawing weather, and heavy storms. Over time, these climatic conditions, in combination with other : factors such as geo...

  1. Application of distinct element method to toppling failure of slopes

    International Nuclear Information System (INIS)

    Ishida, Tsuyoshi; Hibino, Satoshi; Kitahara, Yoshihiro; Asai, Yoshiyuki.

    1985-01-01

    Recently, the stability of slopes during earthquakes has become to be an important engineering problem, especially in case of the earthquake-proof design of nuclear power plants. But, for fissured rock slopes, some problems are remained unresolved, because they can not be treated as continua. The authors have been investigating toppling failure of slopes, from a point of view which regards a fissured rock mass as an assemblage of rigid blocks. DEM (Distinct Element Method) proposed by Cundall (1974) seems to be very helpful to such a investigation. So, in this paper, the applicability of DEM to toppling failure of slopes is examined through the comparison between DEM results and theoretical or experimental results using 3 simple models. (author)

  2. Slope earthquake stability

    CERN Document Server

    Changwei, Yang; Jing, Lian; Wenying, Yu; Jianjing, Zhang

    2017-01-01

    This book begins with the dynamic characteristics of the covering layerbedrock type slope, containing monitoring data of the seismic array, shaking table tests, numerical analysis and theoretical derivation. Then it focuses on the landslide mechanism and assessment method. It also proposes a model that assessing the hazard area based on the field investigations. Many questions, exercises and solutions are given. Researchers and engineers in the field of Geotechnical Engineering and Anti-seismic Engineering can benefit from it.

  3. Geosynthetic clay liners - slope stability field study

    International Nuclear Information System (INIS)

    Carson, D.A.; Daniel, D.E.; Koerner, R.M.; Bonaparte, R.

    1997-01-01

    A field research project was developed to examine the internal shear performance of geosynthetic clay liners (GCLs). Several combinations of cross sections were assembled using GCL materials that were available at the time of project initiation. The cross sections utilized were intended to simulate landfill cover applications. Thirteen (13) resulting test plots were constructed on two different slope angles, and each plot is instrumented for physical displacement and soil moisture characteristics. Test plots were constructed in a manner that dictated the shear plane in the clay portion of the GCL product. The project purpose is to assess field performance and to verify design parameters associated with the application of GCLs in waste containment applications. Interim research data shows that test slopes on 2H:1V show global deformation, but little internal shear evidence, and the 3H:1V slopes show little deformation at approximately 650 days. The research is ongoing, and this paper presents the most recent information available from the project

  4. DESIGN INFORMATION REPORT: PROTECTION OF WASTEWATER LAGOON INTERIOR SLOPES

    Science.gov (United States)

    A problem common to many wastewater treatment and storage lagoons is erosion of the interior slopes. Erosion may be caused by surface runoff and wind-induced wave action. The soils that compose the steep interior slopes of lagoons are especially susceptible to erosion and slumpin...

  5. The quadruped robot adaptive control in trotting gait walking on slopes

    Science.gov (United States)

    Zhang, Shulong; Ma, Hongxu; Yang, Yu; Wang, Jian

    2017-10-01

    The quadruped robot can be decomposed into a planar seven-link closed kinematic chain in the direction of supporting line and a linear inverted pendulum in normal direction of supporting line. The ground slope can be estimated by using the body attitude information and supporting legs length. The slope degree is used in feedback, to achieve the point of quadruped robot adaptive control walking on slopes. The simulation results verify that the quadruped robot can achieves steady locomotion on the slope with the control strategy proposed in this passage.

  6. True Volumes of Slope Failure Estimated From a Quaternary Mass-Transport Deposit in the Northern South China Sea

    Science.gov (United States)

    Sun, Qiliang; Alves, Tiago M.; Lu, Xiangyang; Chen, Chuanxu; Xie, Xinong

    2018-03-01

    Submarine slope failure can mobilize large amounts of seafloor sediment, as shown in varied offshore locations around the world. Submarine landslide volumes are usually estimated by mapping their tops and bases on seismic data. However, two essential components of the total volume of failed sediments are overlooked in most estimates: (a) the volume of subseismic turbidites generated during slope failure and (b) the volume of shear compaction occurring during the emplacement of failed sediment. In this study, the true volume of a large submarine landslide in the northern South China Sea is estimated using seismic, multibeam bathymetry and Ocean Drilling Program/Integrated Ocean Drilling Program well data. The submarine landslide was evacuated on the continental slope and deposited in an ocean basin connected to the slope through a narrow moat. This particular character of the sea floor provides an opportunity to estimate the amount of strata remobilized by slope instability. The imaged volume of the studied landslide is 1035 ± 64 km3, 406 ± 28 km3 on the slope and 629 ± 36 km3 in the ocean basin. The volume of subseismic turbidites is 86 km3 (median value), and the volume of shear compaction is 100 km3, which are 8.6% and 9.7% of the landslide volume imaged on seismic data, respectively. This study highlights that the original volume of the failed sediments is significantly larger than that estimated using seismic and bathymetric data. Volume loss related to the generation of landslide-related turbidites and shear compaction must be considered when estimating the total volume of failed strata in the submarine realm.

  7. ST segment/heart rate slope as a predictor of coronary artery disease: comparison with quantitative thallium imaging and conventional ST segment criteria

    International Nuclear Information System (INIS)

    Finkelhor, R.S.; Newhouse, K.E.; Vrobel, T.R.; Miron, S.D.; Bahler, R.C.

    1986-01-01

    The ST segment shift relative to exercise-induced increments in heart rate, the ST/heart rate slope (ST/HR slope), has been proposed as a more accurate ECG criterion for diagnosing significant coronary artery disease (CAD). Its clinical utility, with the use of a standard treadmill protocol, was compared with quantitative stress thallium (TI) and standard treadmill criteria in 64 unselected patients who underwent coronary angiography. The overall diagnostic accuracy of the ST/HR slope was an improvement over TI and conventional ST criteria (81%, 67%, and 69%). For patients failing to reach 85% of their age-predicted maximal heart rate, its diagnostic accuracy was comparable with TI (77% and 74%). Its sensitivity in patients without prior myocardial infarctions was equivalent to that of thallium (91% and 95%). The ST/HR slope was directly related to the angiographic severity (Gensini score) of CAD in patients without a prior infarction (r = 0.61, p less than 0.001). The ST/HR slope was an improved ECG criterion for diagnosing CAD and compared favorably with TI imaging

  8. The coupled response to slope-dependent basal melting

    Science.gov (United States)

    Little, C. M.; Goldberg, D. N.; Sergienko, O. V.; Gnanadesikan, A.

    2009-12-01

    Ice shelf basal melting is likely to be strongly controlled by basal slope. If ice shelves steepen in response to intensified melting, it suggests instability in the coupled ice-ocean system. The dynamic response of ice shelves governs what stable morphologies are possible, and thus the influence of melting on buttressing and grounding line migration. Simulations performed using a 3-D ocean model indicate that a simple form of slope-dependent melting is robust under more complex oceanographic conditions. Here we utilize this parameterization to investigate the shape and grounding line evolution of ice shelves, using a shallow-shelf approximation-based model that includes lateral drag. The distribution of melting substantially affects the shape and aspect ratio of unbuttressed ice shelves. Slope-dependent melting thins the ice shelf near the grounding line, reducing velocities throughout the shelf. Sharp ice thickness gradients evolve at high melting rates, yet grounding lines remain static. In foredeepened, buttressed ice shelves, changes in grounding line flux allow two additional options: stable or unstable retreat. Under some conditions, slope-dependent melting results in stable configurations even at high melt rates.

  9. Seismic stability analysis of rock slopes by yield design theory using the generalized Hoek-Brown criterion

    Directory of Open Access Journals (Sweden)

    Belghali Mounir

    2018-01-01

    Full Text Available The stability of rock slope is studied using the kinematic approach of yield design theory, under the condition of plane strain and by considering the last version of the Hoek-Brown failure criterion. This criterion, which is suitable to intact rock or rock mass highly fractured regarded as isotropic and homogeneous, is widely accepted by the rock mechanics community and has been applied in numerous projects around the world. The failure mechanism used to implement the kinematic approach is a log-spiral rotational mechanism. The stability analysis is carried out under the effects of gravity forces and a surcharge applied along the upper plateau of the slope. To take account of the effects of forces developed in the rock mass during the passage of a seismic wave, the conventional pseudo-static method is adopted. This method is often used in slope stability study for its simplicity and efficiency to simulate the seismic forces. The results found are compared with published numerical solutions obtained from other approaches. The comparison showed that the results are almost equal. The maximum error found is less than 1%, indicating that this approach is effective for analyzing the stability of rock slopes. The relevance of the approach demonstrated, investigations are undertaken to study the influence of some parameters on the stability of the slope. These parameters relate to the mechanical strength of the rock, slope geometry and loading.

  10. Cosine and sine operators related to orthogonal polynomial sets on the interval [-1, 1

    International Nuclear Information System (INIS)

    Appl, Thomas; Schiller, Diethard H

    2005-01-01

    The quantization of phase is still an open problem. In the approach of Susskind and Glogower, the so-called cosine and sine operators play a fundamental role. Their eigenstates in the Fock representation are related to the Chebyshev polynomials of the second kind. Here we introduce more general cosine and sine operators whose eigenfunctions in the Fock basis are related in a similar way to arbitrary orthogonal polynomial sets on the interval [-1, 1]. To each polynomial set defined in terms of a weight function there corresponds a pair of cosine and sine operators. Depending on the symmetry of the weight function, we distinguish generalized or extended operators. Their eigenstates are used to define cosine and sine representations and probability distributions. We also consider the arccosine and arcsine operators and use their eigenstates to define cosine-phase and sine-phase distributions, respectively. Specific, numerical and graphical results are given for the classical orthogonal polynomials and for particular Fock and coherent states

  11. Cold-seep carbonates of the middle and lower continental slope, northern Gulf of Mexico

    Science.gov (United States)

    Roberts, Harry H.; Feng, Dong; Joye, Samantha B.

    2010-11-01

    Authigenic carbonates from cold seeps on the middle and lower continental slope of the northern Gulf of Mexico (GOM) exhibit a wide range of mineralogical and stable isotopic compositions. These carbonates consist of concretions and nodules in surface sediments, hardgrounds of crusts and isolated slabs, and mounded buildups of blocks and slabs of up to over 10 meters in relief above the surrounding seafloor. Mineralogically, the carbonates are dominated by high-Mg calcite (HMC) and aragonite. However, low levels (oil, seawater CO2, and 13C-enriched residual CO2 from methanogenesis. A similarly large variability in δ18O values (2.5 to 6.7‰ PDB) demonstrates the geochemical complexity of the slope, with some samples pointing toward an 18O-enriched oxygen source that is possibly related to advection of 18O-enriched formation water and/or to the decomposition of gas hydrate. A considerable range of mineralogical and isotopic variations in cold-seep carbonate composition was noted even within individual study sites. However, common trends occur across multiple geographic areas. This situation suggests that local controls on fluid and gas flux, types of seep hydrocarbons, the presence or absence of gas hydrate in the near-surface sediment, and chemosynthetic communities, as well as the temporal evolution of the local hydrocarbon reservoir, all may play a part in determining carbonate mineralogy and isotope geochemistry. The carbon isotope data clearly indicate that between-site variation is greater than within-site variation. Seep carbonates formed on the middle and lower continental slope of the GOM do not appear to be substantially different from those found on the upper slope (<1000-m water depth). The highly variable fluids and gases that leave their geochemical imprints on seep carbonate of the middle and lower continental slope are similar to their outer shelf and upper slope counterparts.

  12. Posterior Slope of the Tibia Plateau in Malaysian Patients Undergoing Total Knee Replacement

    Directory of Open Access Journals (Sweden)

    R Yoga

    2009-05-01

    Full Text Available The posterior slope of the tibial plateau is an important feature to preserve during knee replacement. The correct slope aids in the amount of flexion and determines if the knee will be loose on flexion. This is a study on the posterior tibial plateau slope based on preoperative and postoperative radiographs of 100 consecutive patients who had total knee replacements. The average posterior slope of the tibia plateau was 10.1 degrees. There is a tendency for patients with higher pre-operative posterior tibial plateau slope to have higher post-operative posterior tibial plate slope.

  13. The 3D Visualization of Slope Terrain in Sun Moon Lake.

    Science.gov (United States)

    Deng, F.; Gwo-shyn, S.; Pei-Kun, L.

    2015-12-01

    By doing topographical surveys in a reservoir, we can calculate siltation volume in the period of two measurements. It becomes basic requirement to provide more precise siltation value especially when the differential GPS positioning method and the multi-beams echo sounders have been prevailed; however, there are two problems making the result become challenging when doing the siltation-survey in reservoir. They are both relative with the difficulty in keeping survey accuracy to the area of side slope around the boundary of reservoir. Firstly, the efficiency or accuracy of horizontal positioning using the DGPS may decrease because of the satellite-blocking effect when the surveying ship nears the bank especially in the canyon type of reservoir. Secondly, measurement can only be acquired in the area covered by water using the echo sounder, such that the measuring data of side slope area above water surface are lack to decrease the accuracy or seriously affect the calculation of reservoir water volume. This research is to hold the terrain accuracy when measuring the reservoir side slope and the Sun Moon Lake Reservoir in central Taiwan is chosen as the experimental location. Sun Moon Lake is the most popular place for tourists in Taiwan and also the most important reservoir of the electricity facilities. Furthermore, it owns the biggest pumped-storage hydroelectricity in Asia. The water in the lake is self-contained, and its water supply has been input through two underground tunnels, such that a deposit fan is formed when the muds were settled down from the silty water of the Cho-Shui Shi. Three kinds of survey are conducted in this experiment. First, a close-range photogrammetry, around the border of the Sun Moon Lake is made, or it takes shoots along the bank using a camera linked with a computer running the software Pix4D. The result can provide the DTM data to the side slope above the water level. Second, the bathymetrical data can be obtained by sweeping the

  14. Parturition in gilts: duration of farrowing, birth intervals and placenta expulsion in relation to maternal, piglet and placental traits

    NARCIS (Netherlands)

    Rens, van B.T.T.M.; Lende, van der T.

    2004-01-01

    Large White×Meishan F2 crossbred gilts (n=57) were observed continuously during farrowing while the placentae of their offspring were labeled in order to examine the duration of farrowing and placenta expulsion in relation to maternal-, piglet- and placental traits and the duration of birth interval

  15. Coupling a 1D Dual-permeability Model with an Infinite Slope Stability Approach to Quantify the Influence of Preferential Flow on Slope Stability

    NARCIS (Netherlands)

    Shao, W.; Bogaard, T.A.; Su, Y.; Bakker, M.

    2016-01-01

    In this study, a 1D hydro-mechanical model was developed by coupling a dual-permeability model with an infinite slope stability approach to investigate the influence of preferential flow on pressure propagation and slope stability. The dual-permeability model used two modified Darcy-Richards

  16. Saturated and unsaturated stability analysis of slope subjected to rainfall infiltration

    Directory of Open Access Journals (Sweden)

    Gofar Nurly

    2017-01-01

    Full Text Available This paper presents results of saturated and unsaturated stability analysis of typical residual slopes subjected to rainfall infiltration corresponds to 50 years rainfall return period. The slope angles considered were 45° and 70°. The saturated stability analyses were carried out for original and critical ground water level commonly considered by practicing engineer. The analyses were conducted using limit equilibrium method. Unsaturated stability analyses used combination of coupled stress–pore-water pressure analysis to evaluate the effect of rainfall infiltration on the deformation and transient pore-water pressure on slope stability. Slope stability analyses were performed at some times during and after rainfall infiltration. Results show that the critical condition for slope made by sandy material was at the end of rainfall while for clayey material was at some specified times after the rainfall ceased. Unsaturated stability analysis on sandy soil gives higher factor of safety because the soil never reached saturation. Transient analysis using unsaturated soil concept could predict more critical condition of delayed failure of slopes made up of clayey soil.

  17. QT interval prolongation related to psychoactive drug treatment: a comparison of monotherapy versus polytherapy

    Directory of Open Access Journals (Sweden)

    Piccinelli Marco

    2005-01-01

    Full Text Available Abstract Background Several antipsychotic agents are known to prolong the QT interval in a dose dependent manner. Corrected QT interval (QTc exceeding a threshold value of 450 ms may be associated with an increased risk of life threatening arrhythmias. Antipsychotic agents are often given in combination with other psychotropic drugs, such as antidepressants, that may also contribute to QT prolongation. This observational study compares the effects observed on QT interval between antipsychotic monotherapy and psychoactive polytherapy, which included an additional antidepressant or lithium treatment. Method We examined two groups of hospitalized women with Schizophrenia, Bipolar Disorder and Schizoaffective Disorder in a naturalistic setting. Group 1 was composed of nineteen hospitalized women treated with antipsychotic monotherapy (either haloperidol, olanzapine, risperidone or clozapine and Group 2 was composed of nineteen hospitalized women treated with an antipsychotic (either haloperidol, olanzapine, risperidone or quetiapine with an additional antidepressant (citalopram, escitalopram, sertraline, paroxetine, fluvoxamine, mirtazapine, venlafaxine or clomipramine or lithium. An Electrocardiogram (ECG was carried out before the beginning of the treatment for both groups and at a second time after four days of therapy at full dosage, when blood was also drawn for determination of serum levels of the antipsychotic. Statistical analysis included repeated measures ANOVA, Fisher Exact Test and Indipendent T Test. Results Mean QTc intervals significantly increased in Group 2 (24 ± 21 ms however this was not the case in Group 1 (-1 ± 30 ms (Repeated measures ANOVA p Conclusions No significant prolongation of the QT interval was found following monotherapy with an antipsychotic agent, while combination of these drugs with antidepressants caused a significant QT prolongation. Careful monitoring of the QT interval is suggested in patients taking a

  18. Submarine slope failures in the Beaufort Sea; Influence of gas hydrate decomposition

    Science.gov (United States)

    Grozic, J. L.; Dallimore, S.

    2012-12-01

    The continental shelf of the Beaufort Sea is composed of complex of marine and non-marine sequences of clay, silt, and sand. In many areas of the shelf these sediments contain occurrences of ice-bonded permafrost and associated pressure and temperature conditions that are conducive to the occurrence of methane gas hydrates. This complex environment is undergoing dramatic warming, where changes in sea level, ocean bottom temperatures, and geothermal regimes are inducing permafrost thawing and gas hydrate decomposition. Decomposition is inferred to be occurring at the base and top of the gas hydrate stability zone, which will cause sediment weakening and the generation of excess water and free gas. In such settings, the overlying permafrost cap may act as a permeability barrier, which could result in significant excess pore pressures and reduction in sediment stability. The shelf to slope transition is thought to be an area of extensive regional instability with acoustic records indicating there is upwards of 500 km of slumps and glides extending over the entire Beaufort margin. Some of these slide regions are coincident with up-dip limit of the permafrost gas hydrate stability zone. In this paper, a two dimensional model of the Beaufort shelf was constructed to examine the influence of gas hydrate decomposition on slope stability. The model relies on available data on the Beaufort sediments generated from offshore hydrocarbon exploration in the 1980s and 90s, as well as knowledge available from multidisciplinary marine research programs conducted in the outer shelf area. The slope stability model investigates the influence of marine transgression and ocean bottom warming by coupling soil deformation with hydrate dissociation during undrained conditions. By combining mechanical and thermal loading of the sediment, a more accurate indication of slope stability was obtained. The stability analysis results indicate a relatively low factor of safety for the Beaufort

  19. Interval MULTIMOORA method with target values of attributes based on interval distance and preference degree: biomaterials selection

    Science.gov (United States)

    Hafezalkotob, Arian; Hafezalkotob, Ashkan

    2017-06-01

    A target-based MADM method covers beneficial and non-beneficial attributes besides target values for some attributes. Such techniques are considered as the comprehensive forms of MADM approaches. Target-based MADM methods can also be used in traditional decision-making problems in which beneficial and non-beneficial attributes only exist. In many practical selection problems, some attributes have given target values. The values of decision matrix and target-based attributes can be provided as intervals in some of such problems. Some target-based decision-making methods have recently been developed; however, a research gap exists in the area of MADM techniques with target-based attributes under uncertainty of information. We extend the MULTIMOORA method for solving practical material selection problems in which material properties and their target values are given as interval numbers. We employ various concepts of interval computations to reduce degeneration of uncertain data. In this regard, we use interval arithmetic and introduce innovative formula for interval distance of interval numbers to create interval target-based normalization technique. Furthermore, we use a pairwise preference matrix based on the concept of degree of preference of interval numbers to calculate the maximum, minimum, and ranking of these numbers. Two decision-making problems regarding biomaterials selection of hip and knee prostheses are discussed. Preference degree-based ranking lists for subordinate parts of the extended MULTIMOORA method are generated by calculating the relative degrees of preference for the arranged assessment values of the biomaterials. The resultant rankings for the problem are compared with the outcomes of other target-based models in the literature.

  20. Reclamation of slopes left after surface mining

    Energy Technology Data Exchange (ETDEWEB)

    Zmitko, J [Banske Projekty, Teplice (Czech Republic)

    1993-03-01

    Discusses land reclamation of abandoned slopes from brown coal surface mining in the North Bohemian brown coal basin in the Czech Republic. Problems associated with reclamation of landslide areas in two former coal mines are evaluated: the Otokar mine in Kostany (mining from 1956 to 1966) and the CSM mine in Pozorka (mining from 1955 to 1967). Land reclamation was introduced 25 years after damage occurred. The following aspects are analyzed: hydrogeologic conditions, range of landslides, types of rocks in landslide areas, water conditions, methods for stabilizing slopes, safety aspects.

  1. Restricted Interval Valued Neutrosophic Sets and Restricted Interval Valued Neutrosophic Topological Spaces

    Directory of Open Access Journals (Sweden)

    Anjan Mukherjee

    2016-08-01

    Full Text Available In this paper we introduce the concept of restricted interval valued neutrosophic sets (RIVNS in short. Some basic operations and properties of RIVNS are discussed. The concept of restricted interval valued neutrosophic topology is also introduced together with restricted interval valued neutrosophic finer and restricted interval valued neutrosophic coarser topology. We also define restricted interval valued neutrosophic interior and closer of a restricted interval valued neutrosophic set. Some theorems and examples are cites. Restricted interval valued neutrosophic subspace topology is also studied.

  2. A more general model for the analysis of the rock slope stability

    Indian Academy of Sciences (India)

    slope stability analysis, the joint surfaces are assumed to be continuous along the potential ... of rock slope stability has many applications in the design of rock slopes, roofs and walls of .... cases the wedge failure analysis can be applied.

  3. Effect of rainfall on the reliability of an infinite slope

    OpenAIRE

    Yuan, J.; Papaioannou, I.; Mok, C. M.; Straub, D.

    2014-01-01

    Rainfall is one of the most common factors triggering landslides, since infiltration of water into the soil has a significant impact on pore water pressure buildup that affects slope stability. In this study, the influence of the wetting front development on the reliability of an infinite slope is analyzed. The failure condition of the slope is expressed in terms of the factor of safety. Rainfall infiltration is simulated by a time-dependent model, based on the Green and Ampt assumptions. The...

  4. Discussion on the Safety Factors of Slopes Recommended for Small Dams

    Directory of Open Access Journals (Sweden)

    Jan Vrubel

    2017-01-01

    Full Text Available The design and assessment of the slope stability of small embankment dams is usually not carried out using slope stability calculations but rather by the comparison of proposed or existing dam slopes with those recommended by technical standards or guidelines. Practical experience shows that in many cases the slopes of small dams are steeper than those recommended. However, most of such steeper slopes at existing dams do not exhibit any visible signs of instability, defects or sliding. For the dam owner and also for dam stability engineers, the safety of the slope, expressed e.g. via a factor of safety, is crucial. The aim of this study is to evaluate the safety margin provided by recommended slopes. The factor of safety was evaluated for several dam shape and layout variants via the shear strength reduction method using PLAXIS software. The study covers various dam geometries, dam core and shoulder positions and parameter values of utilised soils. Three load cases were considered: one with a steady state seepage condition and two with different reservoir water level drawdown velocities – standard and critical. As numerous older small dams lack a drainage system, variants with and without a toe drain were assessed. Calculated factors of safety were compared with required values specified by national standards and guidelines.

  5. Mountain permafrost, glacier thinning, and slope stability - a perspective from British Columbia (and Alaska)

    Science.gov (United States)

    Geertsema, Marten

    2016-04-01

    The association of landslides with thinning glaciers and mapped, or measured, mountain permafrost is increasing. Glacier thinning debuttresses slopes and promotes joint expansion. It is relatively easy to map. Permafrost, a thermal condition, is generally not visually detectible, and is difficult to map. Much mountain permafrost may have been overlooked in hazard analysis. Identifying, and characterizing mountain permafrost, and its influence on slope instability is crucial for hazard and risk analysis in mountainous terrain. Rock falls in mountains can be the initial event in process chains. They can transform into rock avalanches, debris flows or dam burst floods, travelling many kilometres, placing infrastructure and settlements at risk.

  6. Experimental study on slope sliding and debris flow evolution with and without barrier

    Directory of Open Access Journals (Sweden)

    Ji-kun Zhao

    2015-01-01

    Full Text Available A constitutive model on the evolution of debris flow with and without a barrier was established based on the theory of the Bingham model. A certain area of the Laoshan Mountain in Nanjing, Jiangsu Province, in China was chosen for experimental study, and the slope sliding and debris flow detection system was utilized. The change curve of the soil moisture content was attained, demonstrating that the moisture content of the shallow soil layer increases faster than that of the deep soil layer, and that the growth rate of the soil moisture content of the steep slope is large under the first weak rainfall, and that of the gentle slope is significantly affected by the second heavy rainfall. For the steep slope, slope sliding first occurs on the upper slope surface under heavy rainfall and further develops along the top platform and lower slope surface, while under weak rainfall the soil moisture content at the lower part of the slope first increases because of the high runoff velocity, meaning that failure occurring there is more serious. When a barrier was placed at a high position on a slope, debris flow was separated and distributed early and had less ability to carry solids, and the variation of the greatest depth of erosion pits on soil slopes was not significant.

  7. Ambient vibration characterization and monitoring of a rock slope close to collapse

    Science.gov (United States)

    Burjánek, Jan; Gischig, Valentin; Moore, Jeffrey R.; Fäh, Donat

    2018-01-01

    We analyse the ambient vibration response of Alpe di Roscioro (AdR), an incipient rock slope failure located above the village Preonzo in southern Switzerland. Following a major failure in May 2012 (volume ˜210 000 m3), the remaining unstable rock mass (˜140 000 m3) remains highly fractured and disrupted, and has been the subject of intensive monitoring. We deployed a small-aperture seismic array at the site shortly after the 2012 failure. The measured seismic response exhibited strong directional amplification (factors up to 35 at 3.5 Hz), higher than previously recorded on rock slopes. The dominant direction of ground motion was found to be parallel to the predominant direction of deformation and perpendicular to open fractures, reflecting subsurface structure of the slope. We then equipped the site with two semi-permanent seismic stations to monitor the seismic response with the goal of identifying changes caused by internal damage that may precede subsequent failure. Although failure has not yet occurred, our data reveal important variations in the seismic response. Amplification factors and resonant frequencies exhibit seasonal trends related (both directly and inversely) to temperature changes and are sensitive to freezing periods (resonant frequencies increase with temperature and during freezing). We attribute these effects to thermal expansion driving microcrack closure, in addition to ice formation, which increase fracture and bulk rock stiffness. We find the site response at AdR is linear over the measured range of weak input motions spanning two orders of magnitude. Our results further develop and refine ambient vibration methods used in rock slope hazard assessment.

  8. Kinematic Reconstruction of a Deep-Seated Gravitational Slope Deformation by Geomorphic Analyses

    Directory of Open Access Journals (Sweden)

    Stefano Morelli

    2018-01-01

    Full Text Available On 4 November 2010, a deep-seated gravitational slope deformation (North Italy reactivated with sudden ground movement. A 450,000 m2 mountainous area moved some metres downslope, but the undeniable signs were only connected to the triggering of a debris flow from the bulging area’s detrital cover and the presence of a continuous perimeter fracture near the crown area. Based on two detailed LiDAR surveys (2 m × 2 m performed just a few days before and after the event, a quantitative topographic analysis was performed in a GIS environment, integrating morphometric terrain parameters (slope, aspect, surface roughness, hill shade, and curvature. The DEMs analysis highlighted some morphological changes related to deeper as well as shallow movements. Both global and sectorial displacements were widely verified and discussed, finally inferring that the geometry, persistence, and layout of all movements properly justify each current morphostructure, which has the shape of a typical Sackung-type structure with impulsive kinematics. Moreover, a targeted field survey allowed specific clues to be found that confirmed the global deduced dynamics of the slope deformation. Finally, thanks to a ground-based interferometric radar system (GB-InSAR that was installed a few days after the reactivation, the residual deep-seated gravitational slope deformation (DSGSD movements were also monitored. In the landslide lower bulging area, a localized material progression of small entities was observed for some months after the parossistic event, indicating a slow dissipation of forces in sectors more distant from the crown area.

  9. Comparison of slope stability in two Brazilian municipal landfills.

    Science.gov (United States)

    Gharabaghi, B; Singh, M K; Inkratas, C; Fleming, I R; McBean, E

    2008-01-01

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use "generic" published shear strength envelopes for municipal waste. Application of the slope stability

  10. Soil slips and debris flows on terraced slopes

    Science.gov (United States)

    Crosta, G. B.; Dal Negro, P.; Frattini, P.

    Terraces cover large areas along the flanks of many alpine and prealpine valleys. Soil slips and soil slips-debris flows are recurrent phenomena along terraced slopes. These landslides cause damages to people, settlements and cultivations. This study investigates the processes related to the triggering of soil slip-debris flows in these settings, analysing those occurred in Valtellina (Central Alps, Italy) on November 2000 after heavy prolonged rainfalls. 260 landslides have been recognised, mostly along the northern valley flank. About 200 soil slips and slumps occurred in terraced areas and a third of them evolved into debris flows. Field work allowed to recognise the settings at soil slip-debris flow source areas. Landslides affected up to 2.5 m of glacial, fluvioglacial and anthropically reworked deposits overlying metamorphic basement. Laboratory and in situ tests allowed to characterise the geotechnical and hydraulic properties of the terrains involved in the initial failure. Several stratigraphic and hydrogeologic factors have been individuated as significant in determining instabilities on terraced slopes. They are the vertical changes of physical soil properties, the presence of buried hollows where groundwater convergence occurs, the rising up of perched groundwater tables, the overflow and lateral infiltration from superficial drainage network, the runoff concentration by means of pathways and the insufficient drainage of retaining walls.

  11. High resolution data acquisition

    Science.gov (United States)

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  12. Geologic context of recurring slope lineae in Melas and Coprates Chasmata, Mars

    Science.gov (United States)

    Chojnacki, Matthew; McEwen, Alfred; Dundas, Colin M.; Ojha, Lujendra; Urso, Anna; Sutton, Sarah

    2016-01-01

    One of the major Mars discoveries of recent years is the existence of recurring slope lineae (RSL), which suggests that liquid water occurs on or near the surface of Mars today. These dark and narrow features emerge from steep, rocky exposures and incrementally grow, fade, and reform on a seasonal basis and are detected in images from the High Resolution Imaging Science Experiment camera. RSL are known to occur at scattered midlatitude and equatorial sites with little spatial connection to one another. One major exception is the steep, low-albedo slopes of Melas and Coprates Chasmata, in Valles Marineris where RSL are detected among diverse geologic surfaces (e.g., bedrock and talus) and landforms (e.g., inselbergs and landslides). New images show topographic changes including sediment deposition on active RSL slopes. Midwall locations in Coprates and Melas appear to have more areally extensively abundant RSL and related fans as compared with other RSL sites found on Mars. Water budget estimates for regional RSL are on the order of 105 to 106 m3 of fluid, for depths of 10 to 100mm, and suggest that a significant amount of near-surface watermight be present. Many RSL are concentrated near local topographic highs, such as ridge crests or peaks, which is challenging to explain via groundwater or ice without a recharge mechanism. Collectively, results provide additional support for the notion that significant amounts of near-surface water can be found on Mars today and suggest that a widespread mechanism, possibly related to the atmosphere, is recharging RSL sources.

  13. Forecasting slope failures from space-based synthetic aperture radar (SAR) measurements

    Science.gov (United States)

    Wasowski, J.; Bovenga, F.; Nutricato, R.; Nitti, D. O.; Chiaradia, M. T.; Tijani, K.; Morea, A.

    2017-12-01

    New space-borne radar sensors enable multi-scale monitoring of potentially unstable slopes thanks to wide-area coverage (tens of thousands km2), regular long-term image acquisition schedule with increasing re-visit frequency (weekly to daily), and high measurement precision (mm). In particular, the recent radar satellite missions e.g., COSMO-SkyMed (CSK), Sentinel-1 (S-1) and improved multi-temporal interferometry (MTI) processing techniques allow timely delivery of information on slow ground surface displacements. Here we use two case study examples to show that it is possible to capture pre-failure slope strains through long-term MTI-based monitoring. The first case is a retrospective investigation of a huge 500ML m3 landslide, which occurred in Sept. 2016 in a large, active open-cast coal mine in central Europe. We processed over 100 S-1 images acquired since Fall 2014. The MTI results showed that the slope that failed had been unstable at least since 2014. Importantly, we detected consistent displacement trends and trend changes, which can be used for slope failure forecasting. Specifically, we documented significant acceleration in slope surface displacement in the two months preceding the catastrophic failure. The second case of retrospectively captured pre-failure slope strains regards our earlier study of a small 50 m long landslide, which occurred on Jan. 2014 and caused the derailment of a train on the railway line connecting NW Italy to France. We processed 56 CSK images acquired from Fall 2008 to Spring 2014. The MTI results revealed pre-failure displacements of the engineering structures on the slope subsequently affected by the 2014 slide. The analysis of the MTI time series further showed that the displacements had been occurring since 2009. This information could have been used to forewarn the railway authority about the slope instability hazard. The above examples indicate that more frequent and consistent image acquisitions by the new radar

  14. Assessment of slope stability and remedial measures around Gilgel ...

    African Journals Online (AJOL)

    A road constructed from Fofa town to Gilgel Gibe-II powerhouse in south-western Ethiopia passes through an extremely rugged terrain characterized by steep hill slopes and deep valleys. The present study has been carried out to identify potentially unstable slope sections and to work out proper remedial measures. In order ...

  15. Comparing interval estimates for small sample ordinal CFA models.

    Science.gov (United States)

    Natesan, Prathiba

    2015-01-01

    Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading

  16. Bioavailability of D-methionine relative to L-methionine for nursery pigs using the slope-ratio assay

    Directory of Open Access Journals (Sweden)

    Changsu Kong

    2016-09-01

    Full Text Available This experiment was conducted to determine the bioavailability of D-methionine (Met relative to L-Met for nursery pigs using the slope-ratio assay. A total of 50 crossbred barrows with an initial BW of 13.5 kg (SD = 1.0 were used in an N balance study. A Met-deficient basal diet (BD was formulated to contain an adequate amount of all amino acids (AA for 10–20 kg pigs except for Met. The two reference diets were prepared by supplementing the BD with 0.4 or 0.8 g L-Met/kg at the expense of corn starch, and an equivalent concentration of D-Met was added to the BD for the two test diets. The pigs were adapted to the experimental diets for 5 d and then total but separated collection of feces and urine was conducted for 4 d according to the marker-to-marker procedure. Nitrogen intakes were similar across the treatments. Fecal N output was not affected by Met supplementation regardless of source and consequently apparent N digestibility did not change. Conversely, there was a negative linear response (P < 0.01 to Met supplementation with both Met isomers in urinary N output, which resulted in increased retained N (g/4 d and N retention (% of intake. No quadratic response was observed in any of the N balance criteria. The estimated bioavailability of D-Met relative to L-Met from urinary N output (g/4 d and N retention (% of intake as dependent variables using supplemental Met intake (g/4 d as an independent variable were 87.6% and 89.6%, respectively; however, approximately 95% of the fiducial limits for the relative bioavailability estimates included 100%. In conclusion, with an absence of statistical significance, the present study indicated that the mean relative bioequivalence of D- to L-Met was 87.6% based on urinary N output or 89.6% based on N retention.

  17. Determination of slope failure using 2-D resistivity method

    Science.gov (United States)

    Muztaza, Nordiana Mohd; Saad, Rosli; Ismail, Nur Azwin; Bery, Andy Anderson

    2017-07-01

    Landslides and slope failure may give negative economic effects including the cost to repair structures, loss of property value and medical costs in the event of injury. To avoid landslide, slope failure and disturbance of the ecosystem, good and detailed planning must be done when developing hilly area. Slope failure classification and various factors contributing to the instability using 2-D resistivity survey conducted in Selangor, Malaysia are described. The study on landslide and slope failure was conducted at Site A and Site B, Selangor using 2-D resistivity method. The implications of the anticipated ground conditions as well as the field observation of the actual conditions are discussed. Nine 2-D resistivity survey lines were conducted in Site A and six 2-D resistivity survey lines with 5 m minimum electrode spacing using Pole-dipole array were performed in Site B. The data were processed using Res2Dinv and Surfer10 software to evaluate the subsurface characteristics. 2-D resistivity results from both locations show that the study areas consist of two main zones. The first zone is alluvium or highly weathered with the resistivity of 100-1000 Ωm at 20-70 m depth. This zone consists of saturated area (1-100 Ωm) and boulders with resistivity value of 1200-3000 Ωm. The second zone with resistivity values of > 3000 Ωm was interpreted as granitic bedrock. The study area was characterized by saturated zones, highly weathered zone, highly contain of sand and boulders that will trigger slope failure in the survey area. Based on the results obtained from the study findings, it can be concluded that 2-D resistivity method is useful method in determination of slope failure.

  18. [Effects of slopes on nitrogen transport along with runoff from sloping plots on a lateritic red soil amended with sewage sludge].

    Science.gov (United States)

    Chen, Yan-Hui; Chen, Ming-Hua; Wang, Guo; Chen, Wen-Xiang; Yang, Shun-Cheng; Chai, Peng

    2010-10-01

    The effects of different slopes on nitrogen transport along with runoff from sloping plots amended with sewage sludge on a lateritic red soil were studied under simulated rainfall conditions. When the sludge was broadcasted and mixed with surface soils (BM), the MTN (total nitrogen of mixing sample), STN (total nitrogen of settled sample), TPN (total particulate nitrogen), TSN (total suspended nitrogen), TDN (total dissolved nitrogen) and NH4(+) -N concentrations and nitrogen loss amounts in runoff of all treatments were highest at 1 day or 18 days after application. The highest concentrations and the loss amounts of MTN and STN in the slope runoff for the BM treatment increased with slope degree, showing increasing pollution risks to the surface waters. The STN concentration and loss amounts from the 25 degrees plots were 126.1 mg x L(-1) and 1788.6 mg x m(-2), respectively, being 4.6 times and 5.8 times of the corresponding values from the 10 degrees plots, respectively. Then the concentrations and the loss amounts of nitrogen (except NO3(-) -N) from the BM plots diminished rapidly first and then tended to be stable with dwindling differences between the slopes. The loss of MTN and STN in early runoff (1 day and 18 days) accounted for 68.6% -73.4% and 62.3% -66.7% of the cumulative loss amounts during the experimental period for all the broadcasted treatments. Runoff loss coefficients of MTN increased in the order of 20 degrees > 25 degrees > 15 degrees > 10 degrees. Nitrogen was largely lost in dissolved species while large portion of NH4(+) -N was lost with particulates.

  19. Conceptual model for reinforced grass on inner dike slopes

    NARCIS (Netherlands)

    Verhagen, H.J.; ComCoast

    2005-01-01

    A desk study has been carried out in order to develop a conceptual model for the erosion of inner dike slopes with reinforced grass cover. Based on the results the following can be concluded: The presence of a geosynthetic in a grass slope can be taken into account in the EPM method by increasing

  20. After the slippery slope: Dutch experiences on regulating active euthanasia.

    Science.gov (United States)

    Boer, Theo A

    2003-01-01

    "When a country legalizes active euthanasia, it puts itself on a slippery slope from where it may well go further downward." If true, this is a forceful argument in the battle of those who try to prevent euthanasia from becoming legal. The force of any slippery slope argument, however, is by definition limited by its reference to future developments which cannot empirically be sustained. Experience in the Netherlands--where a law regulating active euthanasia was accepted in April 2001--may shed light on the strengths as well as the weaknesses of the slippery slope argument in the context of the euthanasia debate. This paper consists of three parts. First, it clarifies the Dutch legislation on euthanasia and explains the cultural context in which it originated. Second, it looks at the argument of the slippery slope. A logical and an empirical version are distinguished, and the latter, though philosophically less interesting, proves to be most relevant in the discussion on euthanasia. Thirdly, it addresses the question whether Dutch experiences in the process of legalizing euthanasia justify the fear of the slippery slope. The conclusion is that Dutch experiences justify some caution.

  1. Physical Analysis Work for Slope Stability at Shah Alam, Selangor

    Science.gov (United States)

    Ishak, M. F.; Zaini, M. S. I.

    2018-04-01

    Slope stability analysis is performed to assess the equilibrium conditions and the safe design of a human-made or natural slope to find the endangered areas. Investigation of potential failure and determination of the slope sensitivity with regard to safety, reliability and economics were parts of this study. Ground anchor is designed to support a structure in this study. Ground anchor were implemented at the Mechanically Stabilized Earth (MSE) wall along Anak Persiaran Jubli Perak to overcome the further cracking of pavement parking, concrete deck and building of the Apartments. A result from the laboratory testing of soil sample such as index test and shear strength test were applied to the Slope/W software with regard to the ground anchors that were implemented. The ground anchors were implemented to increase the value of the factor of safety (FOS) of the MSE Wall. The value of the factor of safety (FOS) before implementing the ground anchor was 0.800 and after the ground anchor was implemented the value increase to 1.555. The increase percentage of factor of safety by implementing on stability of slope was 94.38%.

  2. Precision Tiltmeter as a Reference for Slope MeasuringInstruments

    Energy Technology Data Exchange (ETDEWEB)

    Kirschman, Jonathan L.; Domning, Edward E.; Morrison, Gregory Y.; Smith, Brian V.; Yashchuk, Valeriy V.

    2007-08-01

    The next generation of synchrotrons and free electron lasers require extremely high-performance x-ray optical systems for proper focusing. The necessary optics cannot be fabricated without the use of precise optical metrology instrumentation. In particular, the Long Trace Profiler (LTP) based on the pencil-beam interferometer is a valuable tool for low-spatial-frequency slope measurement with x-ray optics. The limitations of such a device are set by the amount of systematic errors and noise. A significant improvement of LTP performance was the addition of an optical reference channel, which allowed to partially account for systematic errors associated with wiggling and wobbling of the LTP carriage. However, the optical reference is affected by changing optical path length, non-homogeneous optics, and air turbulence. In the present work, we experimentally investigate the questions related to the use of a precision tiltmeter as a reference channel. Dependence of the tiltmeter performance on horizontal acceleration, temperature drift, motion regime, and kinematical scheme of the translation stage has been investigated. It is shown that at an appropriate experimental arrangement, the tiltmeter provides a slope reference for the LTP system with accuracy on the level of 0.1 {micro}rad (rms).

  3. Precision Tiltmeter as a Reference for Slope Measuring Instruments

    International Nuclear Information System (INIS)

    Kirschman, Jonathan L.; Domning, Edward E.; Morrison, Gregory Y.; Smith, Brian V.; Yashchuk, Valeriy V.

    2007-01-01

    The next generation of synchrotrons and free electron lasers require extremely high-performance x-ray optical systems for proper focusing. The necessary optics cannot be fabricated without the use of precise optical metrology instrumentation. In particular, the Long Trace Profiler (LTP) based on the pencil-beam interferometer is a valuable tool for low-spatial-frequency slope measurement with x-ray optics. The limitations of such a device are set by the amount of systematic errors and noise. A significant improvement of LTP performance was the addition of an optical reference channel, which allowed to partially account for systematic errors associated with wiggling and wobbling of the LTP carriage. However, the optical reference is affected by changing optical path length, non-homogeneous optics, and air turbulence. In the present work, we experimentally investigate the questions related to the use of a precision tiltmeter as a reference channel. Dependence of the tiltmeter performance on horizontal acceleration, temperature drift, motion regime, and kinematical scheme of the translation stage has been investigated. It is shown that at an appropriate experimental arrangement, the tiltmeter provides a slope reference for the LTP system with accuracy on the level of 0.1 (micro)rad (rms)

  4. Slope failures in surface mines, methods of studying landslides

    Energy Technology Data Exchange (ETDEWEB)

    Flisiak, J; Korman, S; Mazurek, J

    1977-01-01

    This paper presents a review of methods of measuring landslide fissures, displacement of ground surface points in the landslide area and of points inside the landslide. An analysis of the landslide process is given, stressing various stages and phases of a landslide. Studies carried out by the Institute of Mining Geomechanics of the Technical University of Mining and Metallurgy in Cracow are evaluated. The studies concentrated on the final state of slopes in brown coal surface mines after a landslide occurs. The necessity of developing an apparatus for continuous recording of displacements of points on a landslide surface is stressed. An apparatus developed by the Institute and used for continuous measuring and recording of displacements is described. The apparatus is used to measure displacements of points during the initial phase of a landslide and during the phase of the largest displacements. The principle of the system consists in locating a number of observation points on the ground and a slope. The points are connected among themselves by flexible connectors. The connectors are equipped with potentiometric transmitters which transform the relative displacements into electric pulses. These pulses are recorded by a conventional recording apparatus. (55 refs.) (In Polish)

  5. The continental slope current system between Cape Verde and the Canary Islands

    Directory of Open Access Journals (Sweden)

    Jesús Peña-Izquierdo

    2012-08-01

    Full Text Available We use hydrographic, velocity and drifter data from a cruise carried out in November 2008 to describe the continental slope current system in the upper thermocline (down to 600 m between Cape Verde and the Canary Islands. The major feature in the region is the Cape Verde Frontal Zone (CVFZ, separating waters from tropical (southern and subtropical (northern origin. The CVFZ is found to intersect the slope north of Cape Blanc, between 22°N and 23°N, but we find that southern waters are predominant over the slope as far north as 24°N. South of Cape Blanc (21.25°N the Poleward Undercurrent (PUC is a prominent northward jet (50 km wide, reaching down to 300 m and indistinguishable from the surface Mauritanian Current. North of Cape Blanc the upwelling front is found far offshore, opening a near-slope northward path to the PUC. Nevertheless, the northward PUC transport decreases from 2.8 Sv at 18°N to 1.7 Sv at 24°N, with about 1 Sv recirculating ofshore just south of Cape Blanc, in agreement with the trajectory of subsurface drifters. South of the CVFZ there is an abrupt thermohaline transition at σϴ=26.85 kg m–3, which indicates the lower limit of the relatively pure (low salt and high oxygen content South Atlantic Central Water (SACW variety that coexists with the dominant locally-diluted (salinity increases through mixing with North Atlantic Central Water but oxygen diminishes because of enhanced remineralization Cape Verde (SACWcv variety. At 16°N about 70% of the PUC transport corresponds to the SACW variety but but this is transformed into 40% SACWcv at 24°N. However, between Cape Verde and Cape Blanc and in the 26.85 < σϴ < 27.1 layer, we measure up to 0.8 Sv of SACWcv being transported south. The results strongly endorse the idea that the slope current system plays a major role in tropical-subtropical water-mass exchange.

  6. Tracing the source of emerging seepage water at failure slope downstream, Kampung Bharu Bukit Tinggi, Bentong, Pahang

    International Nuclear Information System (INIS)

    Lakam Mejus; Wan Zakaria Wan Mohd Tahir; Md Shahid Ayub; Jeremy Andy; Johari Latif

    2006-01-01

    This paper discusses method and monitoring result of the source of seepage water emerging (mud flow) at downstream toe of the failure slope at Kampung Bharu Bukit Tinggi, Bentong Pahang. In this investigation, a saline-tracer experiment was conducted by injecting its solution into a drain at an upstream section (old road to Janda Baik town) where a pipeline was found leaking in the vicinity of the roadside and flowing towards hill slopes. Some parts of flowing water was left undetected and seeped through the soil on its way to downstream area. Seepage water downstream was monitored by using a conductivity sensor hooked up to a CR10X data logger and optical back scattering conductivity probes. From the result, it is believed that the source of seepage water is related to the water from the leaking pipeline upstream. The travelling time for the leaking water to reach downstream slope failure was within 16-17 hours. Based on this preliminary investigation, one can conclude that seepage water is one of the main contributing factors that cause slope failure in the vicinity of the investigated hill slopes. Further investigation to understand the failure mechanism at this place by conducting multi-experimental approaches in different seasons, particularly during continuous rain storms. (Author)

  7. Effects of slope on the formation of dunes in dilute, turbulent pyroclastic currents: May 18th, 1980 Mt. St. Helens eruption

    Science.gov (United States)

    Bendana, Sylvana; Brand, Brittany D.; Self, Stephen

    2014-05-01

    The flanks of Mt St Helens volcano (MSH) are draped with thin, cross-stratified and stratified pyroclastic density current (PDC) deposits. These are known as the proximal bedded deposits produced during the May 18th, 1980 eruption of MSH. While the concentrated portions of the afternoon PDCs followed deep topographic drainages down the steep flanks of the volcano, the dilute overriding cloud partially decoupled to develop fully dilute, turbulent PDCs on the flanks of the volcano (Beeson, D.L. 1988. Proximal Flank Facies of the May 18, 1980 Ignimbrite: Mt. St. Helens, Washington.). The deposits along the flank thus vary greatly from those found in the pumice plain, which are generally thick, massive, poorly-sorted, block-rich deposits associated with the more concentrated portions of the flow (Brand et al, accepted. Dynamics of pyroclastic density currents: Conditions that promote substrate erosion and self-channelization - Mount St Helens, Washington (USA). JVGR). We explore the influence of topography on the formation of these dilute currents and influence of slope on the currents transport and depositional mechanisms. The deposits on steeper slopes (>15°) are fines depleted relative to the proximal bedded deposits on shallower slopes (<15°). Bedform amplitude and wavelength increase with increasing slope, as does the occurrence of regressive dunes. Increasing slope causes an increase in flow velocity and thus an increase in flow turbulence. The fines depleted deposits suggest that fine ash elutriation is more efficient in flows with stronger turbulence. The longer wavelength and amplitudes suggest that bedform morphology is directly related to flow velocity, an important finding since the controls on bedform wavelength and amplitude in density stratified flows remains poorly constrained. The occurrence of regressive dunes, often interpreted as high flow-regime bedforms, on steeper slopes relative to progressive dunes on shallower slopes further attests to the

  8. Overnight changes in the slope of sleep slow waves during infancy.

    Science.gov (United States)

    Fattinger, Sara; Jenni, Oskar G; Schmitt, Bernhard; Achermann, Peter; Huber, Reto

    2014-02-01

    Slow wave activity (SWA, 0.5-4.5 Hz) is a well-established marker for sleep pressure in adults. Recent studies have shown that increasing sleep pressure is reflected by an increased synchronized firing pattern of cortical neurons, which can be measured by the slope of sleep slow waves. Thus we aimed at investigating whether the slope of sleep slow waves might provide an alternative marker to study the homeostatic regulation of sleep during early human development. All-night sleep electroencephalography (EEG) was recorded longitudinally at 2, 4, 6, and 9 months after birth. Home recording. 11 healthy full-term infants (5 male, 6 female). None. The slope of sleep slow waves increased with age. At all ages the slope decreased from the first to the last hour of non rapid-eye-movement (NREM) sleep, even when controlling for amplitude differences (P why the steepest slope was found in the occipital derivation. Our results provide evidence that the homeostatic regulation of sleep develops early in human infants.

  9. Temporal behavior of deep-seated gravitational slope deformations: A review

    Czech Academy of Sciences Publication Activity Database

    Pánek, T.; Klimeš, Jan

    2016-01-01

    Roč. 156, MAY (2016), s. 14-38 ISSN 0012-8252 Institutional support: RVO:67985891 Keywords : deep-seated gravitational slope deformations * catastrophic slope failures * deformation rates * dating * monitoring Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 7.051, year: 2016

  10. Propositional interval neighborhood logics: Expressiveness, decidability, and undecidable extensions

    DEFF Research Database (Denmark)

    Bresolin, Davide; Goranko, Valentin; Montanari, Angelo

    2009-01-01

    In this paper, we investigate the expressiveness of the variety of propositional interval neighborhood logics (PNL), we establish their decidability on linearly ordered domains and some important subclasses, and we prove the undecidability of a number of extensions of PNL with additional modalities...... over interval relations. All together, we show that PNL form a quite expressive and nearly maximal decidable fragment of Halpern–Shoham’s interval logic HS....

  11. [Community structure of soil fauna in Eucalyptus grandis plantations at different slope locations].

    Science.gov (United States)

    Zhao, Yu; Zhong, Yu; Zhang, Jian; Yang, Wan-qin

    2010-09-01

    To understand the effects of slope location on the community structure of soil fauna in Eucalyptus grandis plantation, an investigation was made on the soil fauna in 3 E. grandis plantations at different slope locations in the hilly area of Sichuan Province from January to October 2009. A total of 39,2762 individuals were observed, belonging to 146 groups, 7 phyla, 16 classes, and 31 orders. The community composition, trophic group, diversity, and seasonal dynamics of soil fauna in the plantations all varied with slope. The abundance of macro-fauna, xeric meso- and micro-fauna, saprophagous macro-fauna, and omnivorous xeric meso- and micro-fauna increased with the decrease of slope, indicating that soil fauna had sensitive responses to the soil environmental factors affected by slope. Significant differences in the diversity of soil saprophagous macro-fauna and hygrophilous meso- and micro-fauna were observed at different slope locations, suggesting that these two faunal groups could be used as the indicators of the habitat heterogeneity of E. grandis plantations at different slope. Overall, slope location had definite effects on the community structure and distribution of soil fauna in the E. grandis plantations, but the effects were not statistically significant.

  12. Near-field Oblique Remote Sensing of Stream Water-surface Elevation, Slope, and Surface Velocity

    Science.gov (United States)

    Minear, J. T.; Kinzel, P. J.; Nelson, J. M.; McDonald, R.; Wright, S. A.

    2014-12-01

    A major challenge for estimating discharges during flood events or in steep channels is the difficulty and hazard inherent in obtaining in-stream measurements. One possible solution is to use near-field remote sensing to obtain simultaneous water-surface elevations, slope, and surface velocities. In this test case, we utilized Terrestrial Laser Scanning (TLS) to remotely measure water-surface elevations and slope in combination with surface velocities estimated from particle image velocimetry (PIV) obtained by video-camera and/or infrared camera. We tested this method at several sites in New Mexico and Colorado using independent validation data consisting of in-channel measurements from survey-grade GPS and Acoustic Doppler Current Profiler (ADCP) instruments. Preliminary results indicate that for relatively turbid or steep streams, TLS collects tens of thousands of water-surface elevations and slopes in minutes, much faster than conventional means and at relatively high precision, at least as good as continuous survey-grade GPS measurements. Estimated surface velocities from this technique are within 15% of measured velocity magnitudes and within 10 degrees from the measured velocity direction (using extrapolation from the shallowest bin of the ADCP measurements). Accurately aligning the PIV results into Cartesian coordinates appears to be one of the main sources of error, primarily due to the sensitivity at these shallow oblique look angles and the low numbers of stationary objects for rectification. Combining remotely-sensed water-surface elevations, slope, and surface velocities produces simultaneous velocity measurements from a large number of locations in the channel and is more spatially extensive than traditional velocity measurements. These factors make this technique useful for improving estimates of flow measurements during flood flows and in steep channels while also decreasing the difficulty and hazard associated with making measurements in these

  13. [Effects of rainfall intensity on rainfall infiltration and redistribution in soil on Loess slope land].

    Science.gov (United States)

    Li, Yi; Shao, Ming'an

    2006-12-01

    With simulation test, this paper studied the patterns of rainfall infiltration and redistribution in soil on typical Loess slope land, and analyzed the quantitative relations between the infiltration and redistribution and the movement of soil water and mass, with rainfall intensity as the main affecting factor. The results showed that rainfall intensity had significant effects on the rainfall infiltration and water redistribution in soil, and the microcosmic movement of soil water. The larger the rainfall intensity, the deeper the wetting front of rainfall infiltration and redistribution was, and the wetting front of soil water redistribution had a slower increase velocity than that of rainfall infiltration. The power function of the wetting front with time, and also with rainfall intensity, was fitted well. There was also a quantitative relation between the wetting front of rainfall redistribution and the duration of rainfall. The larger the rainfall intensity, the higher the initial and steady infiltration rates were, and the cumulative infiltration increased faster with time. Moreover, the larger the rainfall intensity, the smaller the wetting front difference was at the top and the end of the slope. With the larger rainfall intensity, both the difference of soil water content and its descending trend between soil layers became more obvious during the redistribution process on slope land.

  14. Antarctic Ice Sheet Slope and Aspect Based on Icesat's Repeat Orbit Measurement

    Science.gov (United States)

    Yuan, L.; Li, F.; Zhang, S.; Xie, S.; Xiao, F.; Zhu, T.; Zhang, Y.

    2017-09-01

    Accurate information of ice sheet surface slope is essential for estimating elevation change by satellite altimetry measurement. A study is carried out to recover surface slope of Antarctic ice sheet from Ice, Cloud and land Elevation Satellite (ICESat) elevation measurements based on repeat orbits. ICESat provides repeat ground tracks within 200 meters in cross-track direction and 170 meters in along-track direction for most areas of Antarctic ice sheet. Both cross-track and along-track surface slopes could be obtained by adjacent repeat ground tracks. Combining those measurements yields a surface slope model with resolution of approximately 200 meters. An algorithm considering elevation change is developed to estimate the surface slope of Antarctic ice sheet. Three Antarctic Digital Elevation Models (DEMs) were used to calculate surface slopes. The surface slopes from DEMs are compared with estimates by using in situ GPS data in Dome A, the summit of Antarctic ice sheet. Our results reveal an average surface slope difference of 0.02 degree in Dome A. High resolution remote sensing images are also used in comparing the results derived from other DEMs and this paper. The comparison implies that our results have a slightly better coherence with GPS observation than results from DEMs, but our results provide more details and perform higher accuracy in coastal areas because of the higher resolution for ICESat measurements. Ice divides are estimated based on the aspect, and are weakly consistent with ice divides from other method in coastal regions.

  15. A new design equation for drained stability of conical slopes in cohesive-frictional soils

    Directory of Open Access Journals (Sweden)

    Boonchai Ukritchon

    2018-04-01

    Full Text Available New plasticity solutions to the drained stability of conical slopes in homogeneous cohesive-frictional soils were investigated by axisymmetric finite element limit analysis. Three parameters were studied, i.e. excavated height ratios, slope inclination angles, and soil friction angles. The influences of these parameters on the stability factor and predicted failure mechanism of conical slopes were discussed. A new design equation developed from a nonlinear regression of the lower bound solution was proposed for drained stability analyses of a conical slope in practice. Numerical examples were given to demonstrate a practical application of the proposed equation to stability evaluations of conical slopes with both associated and non-associated flow rules. Keywords: Limit analysis, Slope stability, Conical slope, Unsupported excavation, Cohesive-frictional soils

  16. A Note on Inclusion Intervals of Matrix Singular Values

    Directory of Open Access Journals (Sweden)

    Shu-Yu Cui

    2012-01-01

    Full Text Available We establish an inclusion relation between two known inclusion intervals of matrix singular values in some special case. In addition, based on the use of positive scale vectors, a known inclusion interval of matrix singular values is also improved.

  17. Interval Size and Phrase Position: A Comparison between German and Chinese Folksongs

    Directory of Open Access Journals (Sweden)

    Daniel Shanahan

    2012-09-01

    Full Text Available It is well known that the pitch of the voice tends to decline over the course of a spoken utterance. Ladd (2008 showed that there is also a tendency for the pitch range of spoken utterances to shrink as the pitch of the voice declines. Motivated by this work, two studies are reported that test for the existence of “late phrase compression” in music where the interval size tends to decline toward the end of a phrase. A study of 39,863 phrases from notated Germanic folksongs shows the predicted decline in interval size. However, a second study of 10,985 phrases from Chinese folksongs shows a reverse relationship. In fact, the interval behaviors in Chinese and Germanic folksongs provide marked contrasts: Chinese phrases are dominated by relatively large intervals, but begin with small intervals and end with medium-small intervals. Germanic phrases are dominated by relatively medium intervals, but begin with large intervals and end with small intervals. In short, late phrase interval compression is not evident cross-culturally.

  18. Influences of geological parameters to probabilistic assessment of slope stability of embankment

    Science.gov (United States)

    Nguyen, Qui T.; Le, Tuan D.; Konečný, Petr

    2018-04-01

    This article considers influences of geological parameters to slope stability of the embankment in probabilistic analysis using SLOPE/W computational system. Stability of a simple slope is evaluated with and without pore–water pressure on the basis of variation of soil properties. Normal distributions of unit weight, cohesion and internal friction angle are assumed. Monte Carlo simulation technique is employed to perform analysis of critical slip surface. Sensitivity analysis is performed to observe the variation of the geological parameters and their effects on safety factors of the slope stability.

  19. Rapid storage and retrieval of genomic intervals from a relational database system using nested containment lists.

    Science.gov (United States)

    Wiley, Laura K; Sivley, R Michael; Bush, William S

    2013-01-01

    Efficient storage and retrieval of genomic annotations based on range intervals is necessary, given the amount of data produced by next-generation sequencing studies. The indexing strategies of relational database systems (such as MySQL) greatly inhibit their use in genomic annotation tasks. This has led to the development of stand-alone applications that are dependent on flat-file libraries. In this work, we introduce MyNCList, an implementation of the NCList data structure within a MySQL database. MyNCList enables the storage, update and rapid retrieval of genomic annotations from the convenience of a relational database system. Range-based annotations of 1 million variants are retrieved in under a minute, making this approach feasible for whole-genome annotation tasks. Database URL: https://github.com/bushlab/mynclist.

  20. Analysis of local slopes at the InSight landing site on Mars

    Science.gov (United States)

    Fergason, Robin L.; Kirk, Randolph L.; Cushing, Glen; Galuszka, Donna M.; Golombek, Matthew P.; Hare, Trent M.; Howington-Kraus, Elpitha; Kipp, Devin M; Redding, Bonnie L.

    2017-01-01

    To evaluate the topography of the surface within the InSight candidate landing ellipses, we generated Digital Terrain Models (DTMs) at lander scales and those appropriate for entry, descent, and landing simulations, along with orthoimages of both images in each stereopair, and adirectional slope images. These products were used to assess the distribution of slopes for each candidate ellipse and terrain type in the landing site region, paying particular attention to how these slopes impact InSight landing and engineering safety, and results are reported here. Overall, this region has extremely low slopes at 1-meter baseline scales and meets the safety constraints of the InSight lander. The majority of the landing ellipse has a mean slope at 1-meter baselines of 3.2°. In addition, a mosaic of HRSC, CTX, and HiRISE DTMs within the final landing ellipse (ellipse 9) was generated to support entry, descent, and landing simulations and evaluations. Several methods were tested to generate this mosaic and the NASA Ames Stereo Pipeline program dem_mosaic produced the best results. For the HRSC-CTX-HiRISE DTM mosaic, more than 99 % of the mosaic has slopes less than 15°, and the introduction of artificially high slopes along image seams was minimized.

  1. Effect of bottom slope on the nonlinear triad interactions in shallow water

    Science.gov (United States)

    Chen, Hongzhou; Tang, Xiaocheng; Zhang, Ri; Gao, Junliang

    2018-05-01

    This paper aims at investigating the effect of bottom slope to the nonlinear triad interactions for irregular waves propagating in shallow water. The physical experiments are conducted in a wave flume with respect to the transformation of waves propagating on three bottom slopes ( β = 1/15, 1/30, and 1/45). Irregular waves with different type of breaking that are mechanically generated based on JONSWAP spectra are used for the test. The obviously different variations of spectra measured on each bottom reveal a crucial role of slope effect in the energy transfer between harmonics. The wavelet-based bispectrum were used to examine the bottom slope effect on the nonlinear triad interactions. Results show that the different bottom slopes which waves are propagated on will cause a significant discrepancy of triad interactions. Then, the discussions on the summed bicoherence which denote the distribution of phase coupling on each frequency further clarify the effect of bottom slope. Furthermore, the summed of the real and imaginary parts of bispectrum which could reflect the intensity of frequency components participating in the wave skewness and asymmetry were also investigated. Results indicate that the value of these parameters will increase as the bottom slope gets steeper.

  2. Direct observations of the Antarctic Slope Current transport at 113°E

    Science.gov (United States)

    Peña-Molino, B.; McCartney, M. S.; Rintoul, S. R.

    2016-10-01

    The Antarctic Slope Current (ASC), defined here as the region of westward flow along the continental slope off Antarctica, forms the southern limb of the subpolar gyres. It regulates the exchange of water across the shelf break and provides a path for interbasin westward transport. Despite its significance, the ASC remains largely unobserved around most of the Antarctic continent. Here we present direct velocity observations from a 17 month current meter moored array deployed across the continental slope between the 1000 and the 4200 m isobaths, in the southeastern Indian Ocean near 113°E. The observed time-mean flow consists of a surface-intensified jet associated with the Antarctic Slope Front (ASF) and a broader bottom-intensified westward flow that extends out to approximately the 4000 m isobath and is strongest along the upper slope. The time-mean transport of the ASC is -29.2 Sv. Fluctuations in the transport are large, typically exceeding the mean by a factor of 2. They are mainly due to changes in the northward extent of the current over the lower slope. However, seasonal changes in the wind also drive variations in the transport of the ASF and the flow in the upper slope. Both mean and variability are largely barotropic, thus invisible to traditional geostrophic methods.

  3. Interesting insights into instability of slopes and rock fall in the morphodynamic Himalayan terrane

    Science.gov (United States)

    Singh, T. N.; Vishal, V.; Pradhan, S. P.

    2015-12-01

    Himalayan mountain ranges are tectonically and seismically very active and experience many disastrous events with time due to slope failure. Frequent failures of rock cut slopes cause obstruction in traffic and often lead to fatalities. In recent years, the number of tragedies has increased when associated with regional phenomena such at the Kedarnath tragedy of 2013 and the Gorkha earthquake of 2015. The influence of such phenomena on the stability of slopes along important national highways and key settlement areas only raise the risk to lives and property. We conducted a multi-approach investigation for some key slopes along the National Highway 58 in Uttarakhand Himalaya, India. A very detailed field work was conducted to identify the unstable slopes and those with some history of failure. The pertinent geomechanical characteristics of the representative rock samples were determined in the laboratory. Based on the structural data, kinematic analysis was carried out. Finally the slopes were simulated using FDM based simulator, Flac/Slope for analysing the health of the slopes and Rockfall 4.0 to investigate the phenomenon of rockfall along the Highway. It was found that few slopes were weak due to the inherent weak rock materials while few slopes made up of high strength rocks were effectively weak due to prone-to-failure orientation of the joints. Quantification of bounce-height of rock blocks during fall, their energy, velocity and displacement along the slope was also done. Using 3-D simulations, few critically-stable slopes that appear to be stable, were identified. Little ground movement could be capable of triggering a large scale failure in the area. Slopes in the studied region are under threat to failure and need immediate proper planning using the suggested remedial measures.

  4. Green technologies for reducing slope erosion.

    Science.gov (United States)

    2010-01-01

    As climate change alters precipitation patterns, departments of transportation will increasingly face the problem of : slope failures, which already cost California millions of dollars in repair work annually. Caltrans hopes to prevent : these failur...

  5. Application of FBG Sensing Technology in Stability Analysis of Geogrid-Reinforced Slope.

    Science.gov (United States)

    Sun, Yijie; Xu, Hongzhong; Gu, Peng; Hu, Wenjie

    2017-03-15

    By installing FBG sensors on the geogrids, smart geogrids can both reinforce and monitor the stability for geogrid-reinforced slopes. In this paper, a geogrid-reinforced sand slope model test is conducted in the laboratory and fiber Bragg grating (FBG) sensing technology is used to measure the strain distribution of the geogrid. Based on the model test, the performance of the reinforced soil slope is simulated by finite element software Midas-GTS, and the stability of the reinforced soil slope is analyzed by strength reduction method. The relationship between the geogrid strain and the factor of safety is set up. The results indicate that the measured strain and calculated results agree very well. The geogrid strain measured by FBG sensor can be applied to evaluate the stability of geogrid-reinforced sand slopes.

  6. Impact of weathering on slope stability in soft rock mass

    Directory of Open Access Journals (Sweden)

    Predrag Miščević

    2014-06-01

    Full Text Available Weathering of soft rocks is usually considered as an important factor in various fields such as geology, engineering geology, mineralogy, soil and rock mechanics, and geomorphology. The problem of stability over time should be considered for slopes excavated in soft rocks, in case they are not protected against weathering processes. In addition to disintegration of material on slope surface, the weathering also results in shear strength reduction in the interior of the slope. Principal processes in association with weathering are discussed with the examples of marl hosted on flysch formations near Split, Croatia.

  7. Soil-atmosphere interaction in unsaturated cut slopes

    Directory of Open Access Journals (Sweden)

    Tsiampousi Aikaterini

    2016-01-01

    Full Text Available Interaction between atmosphere and soil has only recently attracted significant interest. Soil-atmosphere interaction takes place under dynamic climatic conditions, which vary throughout the year and are expected to suffer considerable alterations due to climate change. However, Geotechnical Analysis has traditionally been limited to simplistic approaches, where winter and summer pore water pressure profiles are prescribed. Geotechnical Structures, such as cut slopes, are known to be prone to large irreversible displacements under the combined effect of water uptake by a complex vegetation root system and precipitation. If such processes take place in an unsaturated material the complexity of the problem renders the use of numerical analysis essential. In this paper soil-atmosphere interaction in cut slopes is studied using advanced, fully coupled partially saturated finite element analyses. The effect of rainfall and evapotranspiration is modelled through sophisticated boundary conditions, applying actual meteorological data on a monthly basis. Stages of low and high water demand vegetation are considered for a period of several years, before simulating the effect of vegetation removal. The analysis results are presented with regard to the serviceability and stability of the cut slope.

  8. Effects of Rainfall Characteristics on the Stability of Tropical Residual Soil Slope

    Directory of Open Access Journals (Sweden)

    Rahardjo Harianto

    2016-01-01

    Full Text Available Global climate change has a significant impact on rainfall characteristics, sea water level and groundwater table. Changes in rainfall characteristics may affect stability of slopes and have severe impacts on sustainable urban living. Information on the intensity, frequency and duration of rainfall is often required by geotechnical engineers for performing slope stability analyses. Many seepage analyses are commonly performed using the most extreme rainfall possible which is uneconomical in designing a slope repair or slope failure preventive measure. In this study, the historical rainfall data were analyzed and investigated to understand the characteristics of rainfall in Singapore. The frequency distribution method was used to estimate future rainfall characteristics in Singapore. New intensity-duration-frequency (IDF curves for rainfall in Singapore were developed for six different durations (10, 20, 30 min and 1, 2 and 24 h and six frequencies (2, 5, 10, 25, 50 and 100 years. The new IDF curves were used in the seepage and slope stability analyses to determine the variation of factor of safety of residual soil slopes under different rainfall intensities in Singapore.

  9. Observations of seasonal exchange in the Celtic Sea slope region from underwater gilders

    Science.gov (United States)

    Porter, Marie; Inall, Mark; Smeed, David; Palmer, Matthew; Dumont, Estelle; Aleynik, Dmitry

    2015-04-01

    Between June 2012 and January 2013, four underwater gliders, profiling to a maximum depth of 1000m, occupied a transect between 47.6°N, 10.3°W and 48.4°N, 9.3°W, perpendicular to the Celtic Sea continental slope. Due to the significant and well-documented internal tide activity in this region and the relatively slow through-water speed of gliders it is first demonstrated that the chosen sampling methodology minimised aliasing of the internal tide. Gliders were flown along a repeat transect and care was taken to ensure that each location was sampled at a different phase of the tide on repeat occupations. Through monthly averaging of the transect data, the effects of the internal tide are minimised and the lower frequency processes made visible. In this presentation we highlight the importance of the lower frequency variability in contributing to cross-slope exchange. Analysis of monthly averaged glider transect data suggests two distinct regimes; 1) Summer, June - October, when the surface water was temperature stratified and, 2) Winter, from October to January, when the seasonal thermocline was mixed down to below the depth of the shelf break (200 m). During the stratified summer months a well-defined shelf break salinity front limits the exchange of water between the ocean and the shelf, preventing the spread of the more saline, sub-surface ocean water (centred at ~150m) onto the shelf. Nevertheless, some cross-slope flow is identified during these months: an intermediate depth salinity minimum (centred at ~600m) is observed to upwell (from 600m to 200-300m) up the slope, sometimes continuing onto the shelf. As the stratification is eroded during the winter months, subsurface upwelling switches to downwelling, and the intermediate depth salinity minimum (~600m) retreats away from the slope region removing it as a potential source of oceanic water on the shelf. Downwelling near to the slope does however allow for an intrusion of the shallower high salinity

  10. Evidence of rock slope breathing using ground-based InSAR

    Science.gov (United States)

    Rouyet, Line; Kristensen, Lene; Derron, Marc-Henri; Michoud, Clément; Blikra, Lars Harald; Jaboyedoff, Michel; Lauknes, Tom Rune

    2017-07-01

    Ground-Based Interferometric Synthetic Aperture Radar (GB-InSAR) campaigns were performed in summer 2011 and 2012 in the Romsdalen valley (Møre & Romsdal county, western Norway) in order to assess displacements on Mannen/Børa rock slope. Located 1 km northwest, a second GB-InSAR system continuously monitors the large Mannen rockslide. The availability of two GB-InSAR positions creates a wide coverage of the rock slope, including a slight dataset overlap valuable for validation. A phenomenon of rock slope breathing is detected in a remote and hard-to-access area in mid-slope. Millimetric upward displacements are recorded in August 2011. Analysis of 2012 GB-InSAR campaign, combined with the large dataset from the continuous station, shows that the slope is affected by inflation/deflation phenomenon between 5 and 10 mm along the line-of-sight. The pattern is not homogenous in time and inversions of movement have a seasonal recurrence. These seasonal changes are confirmed by satellite InSAR observations and can possibly be caused by hydrogeological variations. In addition, combination of GB-InSAR results, in situ measurements and satellite InSAR analyses contributes to a better overview of movement distribution over the whole area.

  11. Significance of the actual nonlinear slope geometry for catastrophic failure in submarine landslides.

    Science.gov (United States)

    Puzrin, Alexander M; Gray, Thomas E; Hill, Andrew J

    2015-03-08

    A simple approach to slope stability analysis of naturally occurring, mild nonlinear slopes is proposed through extension of shear band propagation (SBP) theory. An initial weak zone appears in the steepest part of the slope where the combined action of gravity and seismic loads overcomes the degraded peak shear resistance of the soil. If the length of this steepest part is larger than the critical length, the shear band will propagate into the quasi-stable parts of the slope, where the gravitational and seismically induced shear stresses are smaller than the peak but larger than the residual shear strength of the soil. Growth of a shear band is strongly dependent on the shape of the slope, seismic parameters and the strength of soil and less dependent on the slope inclination and the sensitivity of clay. For the slope surface with faster changing inclination, the criterion is more sensitive to the changes of the parameters. Accounting for the actual nonlinear slope geometry eliminates the main challenge of the SBP approach-determination of the length of the initial weak zone, because the slope geometry can be readily obtained from submarine site investigations. It also helps to identify conditions for the early arrest of the shear band, before failure in the sliding layer or a change in loading or excess pore water pressures occurs. The difference in the size of a landslide predicted by limiting equilibrium and SBP approaches can reach orders of magnitude, potentially providing an explanation for the immense dimensions of many observed submarine landslides that may be caused by local factors acting over a limited portion of the slope.

  12. Timing of multiple overlapping intervals : How many clocks do we have?

    NARCIS (Netherlands)

    van Rijn, Hedderik; Taatgen, Niels A.

    2008-01-01

    Humans perceive and reproduce short intervals of time (e.g. 1-60 s) relatively accurately, and are capable of timing multiple overlapping intervals if these intervals are presented in different modalities [e.g., Rousseau, L., & Rousseau, RL (1996). Stop-reaction time and the internal clock.

  13. Programming with Intervals

    Science.gov (United States)

    Matsakis, Nicholas D.; Gross, Thomas R.

    Intervals are a new, higher-level primitive for parallel programming with which programmers directly construct the program schedule. Programs using intervals can be statically analyzed to ensure that they do not deadlock or contain data races. In this paper, we demonstrate the flexibility of intervals by showing how to use them to emulate common parallel control-flow constructs like barriers and signals, as well as higher-level patterns such as bounded-buffer producer-consumer. We have implemented intervals as a publicly available library for Java and Scala.

  14. Long-Term Drainage from the Riprap Side Slope of a Surface Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuanfang

    2017-07-01

    Surface barriers designed to isolate underground nuclear waste in place are expected to function for at least 1000 years. To achieve this long design life, such barriers need to be protected with side slopes against wind- and water-induced erosion and damage by natural or human activities. However, the side slopes are usually constructed with materials coarser than the barrier. Their hydrological characteristics must be understood so that any drainage from them is considered in the barrier design and will not compromise the barrier function. The Prototype Hanford Barrier, an evapotranspiration-capillary (ETC) barrier, was constructed in 1994 at the Hanford Site in southeastern Washington state, with a gravel side slope and a riprap side slope. The soil water content in the gravel side slope and drainage from both side slopes have been monitored since the completion of construction. The monitoring results show that under natural precipitation the annual drainage rates from the two types of side slopes were very similar and about 5 times the typical recharge from local soil with natural vegetation and 40 times the barrier design criterion. The higher recharge from the side slopes results in some of the drainage migrating laterally to the region beneath the ETC barrier. This edge effect of the enhanced drainage was evaluated for a period of 1000 years by numerical simulation. The edge effect was quantified by the amount of water across the barrier edges and the affecting distance of the barrier edges. These results indicate that design features can be adjusted to reduce the edge effect when necessary.

  15. Efficiency of subsoiling depth according to the slope of the land

    Directory of Open Access Journals (Sweden)

    Daniel Pena Pereira

    2012-12-01

    Full Text Available The effectiveness of subsoiling by measuring the depths achieved in different classes of slope of a forest plantation was evaluated. This operation was made with a fertilizer trawling subsoiler with a single smooth parabolic rod depending on seven groups of slope and the maximum lateral inclination of the tractor to perform the subsoiling. It was determined the number and breadth of slope classes by Sturges formula. Data were assessed by regression analysis for data with repetition at 5% significance level. The proposed regression model was adequate to describe the values given that it presented significant result for the F test. For the adjustment of the regression equation, the coefficient of determination was 78.95%, representing the the depth values that are explained by the slope. Thus, it can be said that the depth of subsoiling decreases as the steepness of the ground increases and is a limiter for the quality of the mechanized soil preparation. The results demonstrate that slopes up to 40% allowed the operation of subsoiling to reach the minimum depth of 0.50 m for forest cultivation.

  16. Sedimentary record of subsidence pulse at the Triassic/Jurassic boundary interval in the Slovenian Basin (eastern Southern Alps

    Directory of Open Access Journals (Sweden)

    Rožič Boštjan

    2017-08-01

    Full Text Available In the Alpine Realm the Early Jurassic is characterized by the disintegration and partial drowning of vast platform areas. In the eastern part of the Southern Alps (present-day NW Slovenia, the Julian Carbonate Platform and the adjacent, E-W extending Slovenian Basin underwent partial disintegration, drowning and deepening from the Pliensbachian on, whereas only nominal environmental changes developed on the large Dinaric (Friuli, Adriatic Carbonate Platform to the south (structurally part of the Dinarides. These events, however, were preceded by an earlier - and as yet undocumented extensional event - that took place near the Triassic/Jurassic boundary. This paper provides evidence of an accelerated subsidence from four selected areas within the Slovenian Basin, which show a trend of eastwardly-decreasing deformation. In the westernmost (Mrzli vrh section - the Upper Triassic platform-margin - massive dolomite is overlain by the earliest Jurassic toe-of-slope carbonate resediments and further, by basin-plain micritic limestone. Further east (Perbla and Liščak sections the Triassic-Jurassic transition interval is marked by an increase in resedimented carbonates. We relate this to the increasing inclination and segmentation of the slope and adjacent basin floor. The easternmost (Mt. Porezen area shows a rather monotonous, latest Triassic-Early Jurassic basinal sedimentation. However, changes in the thickness of the Hettangian-Pliensbachian Krikov Formation point to a tilting of tectonic blocks within the basin area. Lateral facies changes at the base of the formation indicate that the tilting occurred at and/or shortly after the Triassic/Jurassic boundary

  17. Sedimentary record of subsidence pulse at the Triassic/Jurassic boundary interval in the Slovenian Basin (eastern Southern Alps)

    Science.gov (United States)

    Rožič, Boštjan; Jurkovšek, Tea Kolar; Rožič, Petra Žvab; Gale, Luka

    2017-08-01

    In the Alpine Realm the Early Jurassic is characterized by the disintegration and partial drowning of vast platform areas. In the eastern part of the Southern Alps (present-day NW Slovenia), the Julian Carbonate Platform and the adjacent, E-W extending Slovenian Basin underwent partial disintegration, drowning and deepening from the Pliensbachian on, whereas only nominal environmental changes developed on the large Dinaric (Friuli, Adriatic) Carbonate Platform to the south (structurally part of the Dinarides). These events, however, were preceded by an earlier - and as yet undocumented extensional event - that took place near the Triassic/Jurassic boundary. This paper provides evidence of an accelerated subsidence from four selected areas within the Slovenian Basin, which show a trend of eastwardly-decreasing deformation. In the westernmost (Mrzli vrh) section - the Upper Triassic platform-margin - massive dolomite is overlain by the earliest Jurassic toe-of-slope carbonate resediments and further, by basin-plain micritic limestone. Further east (Perbla and Liščak sections) the Triassic-Jurassic transition interval is marked by an increase in resedimented carbonates. We relate this to the increasing inclination and segmentation of the slope and adjacent basin floor. The easternmost (Mt. Porezen) area shows a rather monotonous, latest Triassic-Early Jurassic basinal sedimentation. However, changes in the thickness of the Hettangian-Pliensbachian Krikov Formation point to a tilting of tectonic blocks within the basin area. Lateral facies changes at the base of the formation indicate that the tilting occurred at and/or shortly after the Triassic/Jurassic boundary

  18. MGN V RDRS 5 GLOBAL DATA RECORD SLOPE V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the Magellan Global Slope Data Record (GSDR). The surface meter-scale slopes are derived by fitting altimeter echoes from the fan-beam...

  19. Multi-objective reliability redundancy allocation in an interval environment using particle swarm optimization

    International Nuclear Information System (INIS)

    Zhang, Enze; Chen, Qingwei

    2016-01-01

    Most of the existing works addressing reliability redundancy allocation problems are based on the assumption of fixed reliabilities of components. In real-life situations, however, the reliabilities of individual components may be imprecise, most often given as intervals, under different operating or environmental conditions. This paper deals with reliability redundancy allocation problems modeled in an interval environment. An interval multi-objective optimization problem is formulated from the original crisp one, where system reliability and cost are simultaneously considered. To render the multi-objective particle swarm optimization (MOPSO) algorithm capable of dealing with interval multi-objective optimization problems, a dominance relation for interval-valued functions is defined with the help of our newly proposed order relations of interval-valued numbers. Then, the crowding distance is extended to the multi-objective interval-valued case. Finally, the effectiveness of the proposed approach has been demonstrated through two numerical examples and a case study of supervisory control and data acquisition (SCADA) system in water resource management. - Highlights: • We model the reliability redundancy allocation problem in an interval environment. • We apply the particle swarm optimization directly on the interval values. • A dominance relation for interval-valued multi-objective functions is defined. • The crowding distance metric is extended to handle imprecise objective functions.

  20. Spatial variability in channel and slope morphology within the Ardennes Massif, and its link with tectonics

    Science.gov (United States)

    Sougnez, N.; Vanacker, V.

    2010-09-01

    Geomorphic processes that produce and transport sediment, and incise river valleys are complex; and often difficult to quantify over longer timescales of 103 to 105 years. Morphometric indices that describe the topography of hill slopes, valleys and river channels have commonly been used to compare morphological characteristics between catchments and to relate them to hydrological and erosion processes. This work focuses on a wide range of slope and river channel morphometric indices to study their behavior and strength in regions affected by low to moderate tectonic activity. We selected 10 catchments of about 150 to 250 km2 across the Ardennes Massif that cover various tectonic domains with uplift rates ranging from about 0.06 to 0.20 mm year-1 since mid-Pleistocene times. The morphometric analysis indicates that the slope and channel morphology of third-order catchments is not yet in topographic steady-state, and exhibits clear convexities in slope and river profiles. Our data indicate that the fluvial system is the main driver of topographic evolution and that the spatial pattern of uplift rates is reflected in the distribution of channel steepness and convexity. The spatial variation that we observe in slope and channel morphology between the 10 third-order catchments suggests that the response of the fluvial system was strongly diachronous, and that a transient signal of adjustment is migrating from the Meuse valley towards the Ardennian headwaters.

  1. Slope Monitoring using Total Station: What are the Challenges and ...

    African Journals Online (AJOL)

    Afeni

    implications of incorrect use or negligence during slope monitoring surveys ... Data collection, processing and the presentation of results in a concise format ..... There are several software packages on the market for total station error propagation, ..... Thomas, H.G., 2011, Slope stability prism monitoring: A guide for practising ...

  2. Title Qualitative stability assessment of cut slopes along the national ...

    Indian Academy of Sciences (India)

    64

    Qualitative stability assessment of cut slopes along the national highway- 05 around Jhakri area, .... The rock types in the area are augen migmatite, biotite gneiss, quartz ..... slopes using quantified method (Sonmez and Ulusay 1999, 2002). Finally a .... through numerical simulation is suggested by many researchers. 1. 2. 3.

  3. Toe-of-slope of a Cretaceous carbonate platform in outcrop, seismic model and offshore seismic data (Apulia, Italy)

    Science.gov (United States)

    Bracco Gartner, Guido; Morsilli, Michele; Schlager, Wolfgang; Bosellini, Alfonso

    Synthetic seismic models of outcrops in the Early Cretaceous slope of a carbonate platform on the Gargano Promontory (southern Italy) were compared to an offshore seismic section south of the Promontory. Outcrops of the same age on the promontory have the same sequence stratigraphic characteristics as their offshore equivalent, and are the only areas where the transition from platform to basin of Early Cretaceous is exposed on land. Two adjacent outcrop areas were combined into one seismic-scale lithologic model with the aid of photo mosaics, measured sections, and biostratigraphic data. Velocity, density, and porosity measurements on spot samples were used to construct the impedance model. Seismic models were generated by vertical incidence and finite difference programs. The results indicate that the reflections in the seismic model are controlled by the impedance contrast between low porous intervals rich in debris from the platform and highly porous intervals of pelagic lime mudstone, nearly devoid of debris. Finite difference seismic display showed best resemblance with the real seismic data, especially by mapping a drowning unconformity.

  4. Consequentialism and the slippery slope: a response to Clark.

    Science.gov (United States)

    Hughes, J

    2000-01-01

    Michael Clark has recently argued that the slippery slope argument against voluntary euthanasia is 'entirely consequentialist' and that its use to justify continued prohibition of voluntary euthanasia involves a failure to treat patients who request assistance in ending their lives as ends in themselves. This article argues that in fact the slippery slope is consistent with most forms of deontology, and that it need not involve any violation of the principle that people should be treated as ends, depending upon how that principle is construed. It is concluded that supporters of voluntary euthanasia cannot dismiss the slippery slope argument on the basis of deontological principles but must take seriously the consequences that it postulates and engage in factual argument about their likely extent and about the likely effectiveness of any proposed safeguards.

  5. On the Antarctic Slope Front and Current crossing of the South Scotia Ridge

    Science.gov (United States)

    Orsi, A. H.; Palmer, M.; Gomis, D.; Flexas, M. M.; Kim, Y.-S.; Jordà, G.; Wiederwohl, C.; Álvarez, M.

    2012-04-01

    To unveil the contorted path followed by the Antarctic Slope Current connecting the Weddell and Scotia Seas, hydrographic stations with unprecedented spatial resolution were occupied on a series of sections across the slope and multiple channels in the double-pronged western portion of the South Scotia Ridge. Fieldwork consisted of two cruises from the ESASSI (January 2008) and ACROSS (February 2009) programs, the Spanish and USA/Argentina components of the International Polar Year core project SASSI (Synoptic Antarctic Shelf-Slope Interaction study). In this region the Antarctic Slope Current can be located by the pronounced in-shore deepening of isopycnals over the continental slope, rendering the strong subsurface temperature and salinity gradients characteristic of the Antarctic Slope Front. Before reaching the gaps in the southern Ridge near 51°W and 50°W, the ASC carries about 3 Sv of upper layer waters, but it splits into shallow and deep branches upon turning north through these two gaps. The shallower branch enters the Hesperides Trough at 51°W, then shows a tight cyclonic loop back to that longitude roughly following the slope's 700-m isobath, and turns again westward through a similar gap in the northern Ridge. In the Scotia Sea the westward-flowing Antarctic Slope Current is found as far west as the Elephant Island along slightly deeper levels of slope (1100 m) before it is blocked by the Antarctic Circumpolar Current south of the Shackleton Fracture Zone (56°W). The deeper branch of the ASC in the Powell Basin crosses the southern Ridge near 50°W and roughly follows the 1600-m isobath before entering the Scotia Sea through the Hesperides Gap farther to the east (49°W). Thereafter the deeper waters carried westward by this branch become undistinguishable from those circulating farther offshore. Repeat cross-slope sections at both southern and northern flanks of the South Scotia Ridge showed significant temporal variability in the characteristics

  6. Excess mortality among male unskilled and semi-skilled workers. A negative slope with age

    DEFF Research Database (Denmark)

    Lynge, E; Jeune, B

    1983-01-01

    Mortality for male unskilled and semi-skilled workers in Denmark, Norway, and England and Wales is 40-50%--about the average for all men with equivalent economic status in the younger age groups, but declines towards the average at pensionable age. The negative slope of the graph for relative...

  7. Event- and interval-based measurement of stuttering: a review.

    Science.gov (United States)

    Valente, Ana Rita S; Jesus, Luis M T; Hall, Andreia; Leahy, Margaret

    2015-01-01

    Event- and interval-based measurements are two different ways of computing frequency of stuttering. Interval-based methodology emerged as an alternative measure to overcome problems associated with reproducibility in the event-based methodology. No review has been made to study the effect of methodological factors in interval-based absolute reliability data or to compute the agreement between the two methodologies in terms of inter-judge, intra-judge and accuracy (i.e., correspondence between raters' scores and an established criterion). To provide a review related to reproducibility of event-based and time-interval measurement, and to verify the effect of methodological factors (training, experience, interval duration, sample presentation order and judgment conditions) on agreement of time-interval measurement; in addition, to determine if it is possible to quantify the agreement between the two methodologies The first two authors searched for articles on ERIC, MEDLINE, PubMed, B-on, CENTRAL and Dissertation Abstracts during January-February 2013 and retrieved 495 articles. Forty-eight articles were selected for review. Content tables were constructed with the main findings. Articles related to event-based measurements revealed values of inter- and intra-judge greater than 0.70 and agreement percentages beyond 80%. The articles related to time-interval measures revealed that, in general, judges with more experience with stuttering presented significantly higher levels of intra- and inter-judge agreement. Inter- and intra-judge values were beyond the references for high reproducibility values for both methodologies. Accuracy (regarding the closeness of raters' judgements with an established criterion), intra- and inter-judge agreement were higher for trained groups when compared with non-trained groups. Sample presentation order and audio/video conditions did not result in differences in inter- or intra-judge results. A duration of 5 s for an interval appears to be

  8. Fetal Growth in Pregnancies Conceived after Gastric Bypass Surgery in Relation to Surgery-to-Conception Interval

    DEFF Research Database (Denmark)

    Nørgaard, Lone Nikoline; Gjerris, Anne Cathrine Roslev; Kirkegaard, Ida

    2014-01-01

    Medicine Database). Main outcome measures were early and late fetal growth in relation to time from bariatric surgery to conception of the pregnancy. Early fetal growth was expressed as "Fetal Growth Index": the ratio between the estimated number of days from first trimester ultrasound to second trimester......OBJECTIVE: To describe early and late fetal growth in pregnancies conceived after gastric bypass surgery in relation to time from surgery to conception of pregnancy. METHODS: National cohort study on 387 Danish women, who had laparoscopic or open gastric bypass surgery prior to a singleton...... ultrasound biometries and the actual calender time elapsed in days. Late fetal growth was expressed as the observed versus expected birthweight according to gestational age (GA). RESULTS: The surgery-to-conception interval ranged from 3 to 1851 days with a mean value of 502 (SD, 351) days. The mean "fetal...

  9. Slope Monitoring using Total Station: What are the Challenges and ...

    African Journals Online (AJOL)

    ... survey perspective on the typical problems that can be expected during slope monitoring using total station (also known as prism monitoring) and second, to suggest ways of mitigating such problems. The aim is to create awareness of the implications of incorrect use or negligence during slope monitoring surveys utilising ...

  10. Displacement of Pile-Reinforced Slopes with a Weak Layer Subjected to Seismic Loads

    Directory of Open Access Journals (Sweden)

    Haizuo Zhou

    2016-01-01

    Full Text Available The presence of a weak layer in a slope requires special attention because it has a negative impact on slope stability. However, limited insight into the seismic stability of slopes with a weak layer exists. In this study, the seismic stability of a pile-reinforced slope with a weak thin layer is investigated. Based on the limit analysis theory, a translational failure mechanism for an earth slope is developed. The rotational rigid blocks in the previous rotational-translational failure mechanism are replaced by continuous deformation regions, which consist of a sequence of n rigid triangles. The predicted static factor of safety and collapse mechanism in two typical examples of slopes with a weak layer compare well with the results obtained from the available literature and by using the Discontinuity Layout Optimization (DLO technique. The lateral forces provided by the stabilizing piles are evaluated using the theory of plastic deformation. An analytical solution for estimating the critical yield acceleration coefficient for the pile-reinforced slopes is derived. Based on the proposed translational failure mechanism and the corresponding critical yield acceleration coefficient, Newmark’s analytical procedure is employed to evaluate the cumulative displacement. Considering different real earthquake acceleration records as input motion, the effect of stabilizing piles and varying the spacing of piles on the cumulative displacement of slopes with a weak layer is investigated.

  11. Using three-dimensional plant root architecture in models of shallow-slope stability.

    Science.gov (United States)

    Danjon, Frédéric; Barker, David H; Drexhage, Michael; Stokes, Alexia

    2008-05-01

    The contribution of vegetation to shallow-slope stability is of major importance in landslide-prone regions. However, existing slope stability models use only limited plant root architectural parameters. This study aims to provide a chain of tools useful for determining the contribution of tree roots to soil reinforcement. Three-dimensional digitizing in situ was used to obtain accurate root system architecture data for mature Quercus alba in two forest stands. These data were used as input to tools developed, which analyse the spatial position of roots, topology and geometry. The contribution of roots to soil reinforcement was determined by calculating additional soil cohesion using the limit equilibrium model, and the factor of safety (FOS) using an existing slope stability model, Slip4Ex. Existing models may incorrectly estimate the additional soil cohesion provided by roots, as the spatial position of roots crossing the potential slip surface is usually not taken into account. However, most soil reinforcement by roots occurs close to the tree stem and is negligible at a distance >1.0 m from the tree, and therefore global values of FOS for a slope do not take into account local slippage along the slope. Within a forest stand on a landslide-prone slope, soil fixation by roots can be minimal between uniform rows of trees, leading to local soil slippage. Therefore, staggered rows of trees would improve overall slope stability, as trees would arrest the downward movement of soil. The chain of tools consisting of both software (free for non-commercial use) and functions available from the first author will enable a more accurate description and use of root architectural parameters in standard slope stability analyses.

  12. Scenario Studies on Effects of Soil Infiltration Rates, Land Slope, and Furrow Irrigation Characteristics on Furrow Irrigation-Induced Erosion.

    Science.gov (United States)

    Dibal, Jibrin M; Ramalan, A A; Mudiare, O J; Igbadun, H E

    2014-01-01

    Furrow irrigation proceeds under several soil-water-furrow hydraulics interaction dynamics. The soil erosion consequences from such interactions in furrow irrigation in Samaru had remained uncertain. A furrow irrigation-induced erosion (FIIE) model was used to simulate the potential severity of soil erosion in irrigated furrows due to interactive effects of infiltration rates, land slope, and some furrow irrigation characteristics under different scenarios. The furrow irrigation characteristics considered were furrow lengths, widths, and stream sizes. The model itself was developed using the dimensional analysis approach. The scenarios studied were the interactive effects of furrow lengths, furrow widths, and slopes steepness; infiltration rates and furrow lengths; and stream sizes, furrow lengths, and slopes steepness on potential furrow irrigation-induced erosion, respectively. The severity of FIIE was found to relate somewhat linearly with slope and stream size, and inversely with furrow lengths and furrow width. The worst soil erosion (378.05 t/ha/yr) was found as a result of the interactive effects of 0.65 m furrow width, 50 m furrow length, and 0.25% slope steepness; and the least soil erosion (0.013 t/ha/yr) was induced by the combined effects of 0.5 l/s, 200 m furrow length, and 0.05% slope steepness. Evidently considering longer furrows in furrow irrigation designs would be a better alternative of averting excessive FIIE.

  13. New Inner Product Quasilinear Spaces on Interval Numbers

    Directory of Open Access Journals (Sweden)

    Hacer Bozkurt

    2016-01-01

    Full Text Available Primarily we examine the new example of quasilinear spaces, namely, “IRn interval space.” We obtain some new theorems and results related to this new quasilinear space. After giving some new notions of quasilinear dependence-independence and basis on quasilinear functional analysis, we obtain some results on IRn interval space related to these concepts. Secondly, we present Is,Ic0,Il∞, and Il2 quasilinear spaces and we research some algebraic properties of these spaces. We obtain some new results and provide an important contribution to the improvement of quasilinear functional analysis.

  14. Numerical simulation of excavation and supporting of pit slope of the pump room in XNPC

    International Nuclear Information System (INIS)

    Hu Mengqian; Zhu Xiuyun; Ji Zhonghua; Lu Yu; Sun Feng

    2014-01-01

    The research simulates the excavation and supporting of pit slope of the pump room in XNPC. According to the designing of excavation and supporting plan of slope, the numerical simulation of excavation and supporting of pit slope is conducted using the ANSYS finite element numerical simulation software. The simulation results show that, the displacement and stress caused by the excavation of above stage slope and pit slope are both small after taking some measures, including deep mixing pile reinforcement, retaining piles and prestressed anchor cable. Thus the slope is steady. (authors)

  15. A new GTD slope diffraction coefficient for plane wave illumination of a wedge

    DEFF Research Database (Denmark)

    Lumholt, Michael; Breinbjerg, Olav

    1997-01-01

    Two wedge problems including slope diffraction are solved: one in which the incident field is a non-uniform plane wave, and one in which it is an inhomogeneous plane wave. The two solutions lead to the same GTD slope diffraction coefficient. This coefficient reveals the existence of a coupling...... effect between a transverse magnetic (or transverse electric) incident plane wave and the transverse electric (or transverse magnetic) slope-diffracted field. The coupling effect is not described by the existing GTD slope diffraction coefficient...

  16. A platform for proactive, risk-based slope asset management, phase II.

    Science.gov (United States)

    2015-03-01

    The lidar visualization technique developed by this project enables highway managers to understand changes in slope characteristics : along highways. This change detection and analysis can be the basis of informed decisions for slope inspection and r...

  17. Parametric study on the effect of rainfall pattern to slope stability

    OpenAIRE

    Hakim Sagitaningrum Fathiyah; Bahsan Erly

    2017-01-01

    Landslide in Indonesia usually occurs during the rainy seasons. Previous studies showed that rainfall infiltration has a great effect on the factor of safety (FS) of slopes. This research focused on the effect of rainfall pattern on the FS of unsaturated slope with different slope angle i.e.: 30°, 45°, and 60°. Three different rainfall patterns, which are normal, advanced, and delayed were considered in the analysis. The effects of low or high hydraulic conductivity of the soil are also obser...

  18. Acidic Barren Slope Profiling using Electrical Resistivity Imaging (ERI) at Ayer Hitam area Johor, Malaysia

    Science.gov (United States)

    Azhar, A. T. S.; Hazreek, Z. A. M.; Aziman, M.; Haimi, D. S.; Hafiz, Z. M.

    2016-04-01

    Recently, non-destructive method such as the electrical resistivity technique has become increasingly popular in engineering, environmental, mining and archeological studies nowadays. This method was popular in subsurface profiling due to its ability to replicate the images of the subsurface indirectly. The soil slope found in Batu Pahat, specifically in Ayer Hitam, is known to be problematic due to its barren condition. This location is believed to contain futile soil due to its difficulty in supporting the growth of vegetations. In the past, acidic barren slope assessment using non-destructive method was rarely being used due to several reasons related to the equipment and knowledge constraints. Hence, this study performed an electrical resistivity imaging using ABEM Terrameter LS in order to investigate the acidic barren slope conditions. Field data acquisition was based on Schlumberger and Wenner arrays while RES2DINV software was used to analyze and generate a 2-D model of the problematic subsurface profile. Based on electrical resistivity results, it was found that the acidic barren slope studied consists of two main zones representing residual soil (electrical resistivity value = 10 - 600 Ωm) and shale (electrical resistivity value = 20 - 2000 Ωm). The results of resistivity value were correlated with the physical mapping and the in situ mackintosh probe test for verification purposes. It was found that the maximum depth of the mackintosh probe test was 1.8 m due to its ground penetration limitation. However, the results of the resistivity section managed to achieve greater depth up to 40 m. Hence, the correlation between electrical resistivity and mackintosh probe results can only be performed at certain depth of the acidic barren slope profile in contrast with the physical mapping which able to define the whole section of the barren soil slope structure. Finally, a good match of electrical resistivity results calibrated with mackintosh and physical

  19. Effect of hydraulic hysteresis on the stability of infinite slopes under steady infiltration

    Science.gov (United States)

    Chen, Pan; Mirus, Benjamin B.; Lu, Ning; Godt, Jonathan W.

    2017-01-01

    Hydraulic hysteresis, including capillary soil water retention (SWR), air entrapment SWR, and hydraulic conductivity, is a common phenomenon in unsaturated soils. However, the influence of hydraulic hysteresis on suction stress, and subsequently slope stability, is generally ignored. This paper examines the influence of each of these three types of hysteresis on slope stability using an infinite slope stability analysis under steady infiltration conditions. First, hypothetical slopes for representative silty and sandy soils are examined. Then a monitored hillslope in the San Francisco Bay Area, California is assessed, using observed rainfall conditions and measured hydraulic and geotechnical properties of the colluvial soil. Results show that profiles of suction stress and the corresponding factor of safety are generally strongly affected by hydraulic hysteresis. Results suggest that each of the three types of hydraulic hysteresis may play a major role in the occurrence of slope failure, indicating that ignoring hydraulic hysteresis will likely lead to underestimates of failure potential and hence to inaccurate slope stability analysis.

  20. After the Slippery Slope: Dutch Experiences on Regulating Active Euthanasia

    NARCIS (Netherlands)

    Boer, Th.A.

    2003-01-01

    “When a country legalizes active euthanasia, it puts itself on a slippery slope from where it may well go further downward.” If true, this is a forceful argument in the battle of those who try to prevent euthanasia from becoming legal. The force of any slippery-slope argument, however, is by

  1. The Influence of Slope and Shelf Contour Currents On The Growth Pattern of A Cold-water Coral Mound Population Along The Margins of The Rockall Trough

    Science.gov (United States)

    Readman, P. W.; O'Reilly, B. M.; Shannon, P. M.; Jacob, A. W. B.

    The importance of bottom currents along the shelf and slope regions of northeast At- lantic basin margins in controlling sediment transport patterns and the development of carbonate mound ecosystems is now well recognised. The detailed structure of one such large carbonate mound population has been resolved along the western margin of the Porupine Bank west of Ireland with deep-tow (TOBI) sidescan. The mounds which comprise the population are circular to elliptical in shape, 50 - 850 m across and up to about 200 m high. Large scale sedimentary bedforms at 800 m water depth are inferred from backscatter zonation produced by strong NE-flowing contour currents. Streamlining effects control the shape of the mounds as they become more elliptical as their size increases. The frequency distribution follows a general power law which is determined by the biological growth rate of the mounds and the rate at which they colonise the substrate. At first bottom currents aid mound growth until they become so large that hydraulic drag forces retard their growth. In the recent past (late Pleistocene to present) if the number of mounds colonising the slope has increased exponentially with time while their growth rate slowed in response to fluid form drag forces, the observed population curve can be recovered. A model for evolution of the population predicts that these increased forces slow biological growth and cause a sharp fall-off in the number of mounds, also in agreement with observation. Correlation with late Pleistocene and Holocene climatic change suggests that the population is either very robust and relatively insensitive to major environmental change along the continental slope such as a change in current regime, or that the factors controlling its develop- ment were stable over large time intervals. This project was undertaken on behalf of the Irish Petroleum Infrastructure Programme.

  2. Evaluation of the instability problems in rock slopes surrounding historical Safranbolu by kinematic analysis

    Directory of Open Access Journals (Sweden)

    İnan Keskin

    2017-10-01

    Full Text Available Safranbolu which has high probability for slope-induced disasters is a very worthwhile settlement for our country and also for the world with its historical and cultural heritage. Finding out potential hazards that may affect the wealth of this world heritage city is very crucial. The historic Safranbolu is surrounded by very steep rock slopes, and occasionally instability occurs in the rock mass that forms these slopes. The rock blocks that are relaesed in various causes and shapes can damage the historic town living spaces by creating a source for the rock fallings and moving down the slope in these very steep slopes. The rock slopes were evaluated by kinematic analysis in order to reduce the mentioned damages and to reveal potential hazards. In the study, characteristics of mass that causes rock fallings are analysed, kinematic controlled instability types are determined considering the obtained data and characteristic of slopes.

  3. Effect of variations in rainfall intensity on slope stability in Singapore

    Directory of Open Access Journals (Sweden)

    Christofer Kristo

    2017-12-01

    Full Text Available Numerous scientific evidence has given credence to the true existence and deleterious impacts of climate change. One aspect of climate change is the variations in rainfall patterns, which affect the flux boundary condition across ground surface. A possible disastrous consequence of this change is the occurrence of rainfall-induced slope failures. This paper aims to investigate the variations in rainfall patterns in Singapore and its effect on slope stability. Singapore's historical rainfall data from Seletar and Paya Lebar weather stations for the period of 1985–2009 were obtained and analysed by duration using linear regression. A general increasing trend was observed in both weather stations, with a possible shift to longer duration rainfall events, despite being statistically insignificant according to the Mann-Kendall test. Using the derived trends, projected rainfall intensities in 2050 and 2100 were used in the seepage and slope stability analyses performed on a typical residual soil slope in Singapore. A significant reduction in factor of safety was observed in the next 50 years, with only a marginal decrease in factor of safety in the subsequent 50 years. This indicates a possible detrimental effect of variations in rainfall patterns on slope stability in Singapore, especially in the next 50 years. The statistical analyses on rainfall data from Seletar and Paya Lebar weather stations for the period of 1985–2009 indicated that rainfall intensity tend to increase over the years, with a possible shift to longer duration rainfall events in the future. The stability analyses showed a significant decrease in factor of safety from 2003 to 2050 due to increase in rainfall intensity, suggesting that a climate change might have existed beyond 2009 with possibly detrimental effects to slope stability. Keywords: Climate change, Rainfall, Seepage, Slope stability

  4. Slope Stability Estimation of the Kościuszko Mound in Cracow

    Science.gov (United States)

    Wrana, Bogumił; Pietrzak, Natalia

    2015-06-01

    In the paper, the slope stability problem of the Kościuszko Mound in Cracow, Poland is considered. The slope stability analysis was performed using Plaxis FEM program. The outer surface of the mound has complex geometry. The slope of the cone is not uniform in all directions, on the surface of the cone are pedestrian paths. Due to its complicated geometry it was impossible to do computing by Plaxis input pre-procesor. The initial element mesh was generated using Autodesk Autocad 3D and next it was updated by Plaxis program. The soil parameters were adopted in accordance with the detailed geological soil testing performed in 2012. Calculating model includes geogrids. The upper part was covered by MacMat geogrid, while the lower part of the Mound was reinforced using Terramesh Matt geogrid. The slope analysis was performed by successives reduction of φ /c parameters. The total multiplayer ΣMsf is used to define the value of the soil strength parameters. The article presents the results of slope stability before and after the rainfall during 33 days of precipitation in flood of 2010.

  5. "A Comparison of Several Methods in a Rock Slope Stability ...

    African Journals Online (AJOL)

    This researchuses the mentioned methods and principles in the stability analysis of some rock slopes in an open pit mine in Syria, that is Khneifees phosphate mine. The importance of this researchis that it shows the role of kinematical analysis in minimizing efforts when verifying the safety of rock slopes in site, and when ...

  6. Paleomagnetism and rock magnetism from sediments along a continental shelf-to-slope transect in the NW Barents Sea: Implications for geomagnetic and depositional changes during the past 15 thousand years

    Science.gov (United States)

    Caricchi, C.; Lucchi, R. G.; Sagnotti, L.; Macrì, P.; Morigi, C.; Melis, R.; Caffau, M.; Rebesco, M.; Hanebuth, T. J. J.

    2018-01-01

    Paleomagnetic and rock magnetic data were measured on glaciomarine silty-clay successions along an E-W sediment-core transect across the continental shelf and slope of the Kveithola paleo-ice stream system (south of Svalbard, north-western Barents Sea), representing a stratigraphic interval spanning the last deglaciation and the Holocene. The records indicate that magnetite is the main magnetic mineral and that magnetic minerals are distinctly less abundant on the shelf than at the continental slope. The paleomagnetic properties allow for the reconstruction of a well-defined characteristic remanent magnetization (ChRM) throughout the sedimentary successions. The stratigraphic trends of rock magnetic and paleomagnetic parameters are used for a shelf-slope core correlation and sediment facies analysis is applied for depositional processes reconstruction. The new paleomagnetic records compare to the PSV and RPI variation predicted for the core sites by a simulation using the global geomagnetic field variation models SHA.DIF.14k and CALS7K.2 and closest PSV and RPI regional stack curves. The elaborated dataset, corroborated by available 14C ages, provides a fundamental chronological framework to constrain the coupling of shelf-slope sedimentary processes and environmental changes in the NW Barents Sea region during and after deglaciation.

  7. The Effect of Rainfall Patterns on the Mechanisms of Shallow Slope Failure

    Directory of Open Access Journals (Sweden)

    Muhammad Suradi

    2014-04-01

    Full Text Available This paper examines how rainfall patterns affect the mechanisms of shallow slope failure. Numerical modelling, utilising the commercial software SVFlux and SVSlope, was carried out for a coupled analysis of rainfall-induced slope seepage and instability, with reference to a shallow landslide took place in Jabiru, Northern Territory (NT Australia in 2007. Rainfall events were varied in terms of pattern in this analysis. The results revealed that slopes are sensitive to rainfall pattern when the rainfall intensity has a high degree of fluctuation at around the same value as that of saturated hydraulic conductivity. Average rainfall intensity at the beginning of a rainfall period plays a primary role in determining the rate of decrease in initial factor of safety (Fi towards minimum factor of safety (Fmin. The effect of rainfall events on the slope instability is attributed to the amount of rainwater infiltration into slope associated with rainfall pattern.

  8. Postural Stability Margins as a Function of Support Surface Slopes.

    Science.gov (United States)

    Dutt-Mazumder, Aviroop; Slobounov, Seymon M; Challis, John Henry; Newell, Karl Maxim

    2016-01-01

    This investigation examined the effects of slope of the surface of support (35°, 30°, 20°, 10° Facing(Toe) Down, 0° Flat and 10°, 20°, 25° Facing (Toe) Up) and postural orientation on the margins of postural stability in quiet standing of young adults. The findings showed that the center of pressure-CoP (displacement, area and length) had least motion at the baseline (0° Flat) platform condition that progressively increased as a function of platform angle in both facing up and down directions. The virtual time to collision (VTC) dynamics revealed that the spatio-temporal margins to the functional stability boundary were progressively smaller and the VTC time series also more regular (SampEn-Sample Entropy) as slope angle increased. Surface slope induces a restricted stability region with lower dimension VTC dynamics that is more constrained when postural orientation is facing down the slope. These findings provide further evidence that VTC acts as a control variable in standing posture that is influenced by the emergent dynamics of the individual-environment-task interaction.

  9. Distance and slope constraints: adaptation and variability in golf putting.

    Science.gov (United States)

    Dias, Gonçalo; Couceiro, Micael S; Barreiros, João; Clemente, Filipe M; Mendes, Rui; Martins, Fernando M

    2014-07-01

    The main objective of this study is to understand the adaptation to external constraints and the effects of variability in a golf putting task. We describe the adaptation of relevant variables of golf putting to the distance to the hole and to the addition of a slope. The sample consisted of 10 adult male (33.80 ± 11.89 years), volunteers, right handed and highly skilled golfers with an average handicap of 10.82. Each player performed 30 putts at distances of 2, 3 and 4 meters (90 trials in Condition 1). The participants also performed 90 trials, at the same distances, with a constraint imposed by a slope (Condition 2). The results indicate that the players change some parameters to adjust to the task constraints, namely the duration of the backswing phase, the speed of the club head and the acceleration at the moment of impact with the ball. The effects of different golf putting distances in the no-slope condition on different kinematic variables suggest a linear adjustment to distance variation that was not observed when in the slope condition.

  10. Robotic fish tracking method based on suboptimal interval Kalman filter

    Science.gov (United States)

    Tong, Xiaohong; Tang, Chao

    2017-11-01

    Autonomous Underwater Vehicle (AUV) research focused on tracking and positioning, precise guidance and return to dock and other fields. The robotic fish of AUV has become a hot application in intelligent education, civil and military etc. In nonlinear tracking analysis of robotic fish, which was found that the interval Kalman filter algorithm contains all possible filter results, but the range is wide, relatively conservative, and the interval data vector is uncertain before implementation. This paper proposes a ptimization algorithm of suboptimal interval Kalman filter. Suboptimal interval Kalman filter scheme used the interval inverse matrix with its worst inverse instead, is more approximate nonlinear state equation and measurement equation than the standard interval Kalman filter, increases the accuracy of the nominal dynamic system model, improves the speed and precision of tracking system. Monte-Carlo simulation results show that the optimal trajectory of sub optimal interval Kalman filter algorithm is better than that of the interval Kalman filter method and the standard method of the filter.

  11. Blasting methods for heterogeneous rocks in hillside open-pit mines with high and steep slopes

    Science.gov (United States)

    Chen, Y. J.; Chang, Z. G.; Chao, X. H.; Zhao, J. F.

    2017-06-01

    In the arid desert areas in Xinjiang, most limestone quarries are hillside open-pit mines (OPMs) where the limestone is hard, heterogeneous, and fractured, and can be easily broken into large blocks by blasting. This study tried to find effective technical methods for blasting heterogeneous rocks in such quarries based on an investigation into existing problems encountered in actual mining at Hongshun Limestone Quarry in Xinjiang. This study provided blasting schemes for hillside OPMs with different heights and slopes. These schemes involve the use of vertical deep holes, oblique shallow holes, and downslope hole-by-hole sublevel or simultaneous detonation techniques. In each bench, the detonations of holes in a detonation unit occur at intervals of 25-50 milliseconds. The research findings can offer technical guidance on how to blast heterogeneous rocks in hillside limestone quarries.

  12. Culture of Sharing: North Slope Leaders Forge Trail into Future

    Science.gov (United States)

    Patkotak, Elise Sereni

    2010-01-01

    To create a strong local economy, the community needs a workforce. In Native communities, the workforce should be grounded in the local culture and values. On the North Slope of Alaska, this has long been a goal of leaders. To achieve this goal, North Slope leaders came together February 2010 in Barrow, Alaska, for the "Tumitchiat"…

  13. Scenarios to prioritize observing activities on the North Slope, Alaska in the context of resource development, climate change and socio-economic uncertainties

    Science.gov (United States)

    Lee, O. A.; Eicken, H.; Payne, J. F.; Lassuy, D.

    2014-12-01

    The North Slope of Alaska is experiencing rapid changes in response to interacting climate and socioeconomic drivers. The North Slope Science Initiative (NSSI) is using scenarios as a tool to identify plausible, spatially explicit future states of resource extraction activities on the North Slope and adjacent seas through the year 2040. The objective of the scenarios process is to strategically assess research and monitoring needs on the North Slope. The participatory scenarios process involved stakeholder input (including Federal, State, local, academic, industry and non-profit representatives) to identify key drivers of change related to resource extraction activities on the North Slope. While climate change was identified as a key driver in the biophysical system, economic drivers related to oil and gas development were also important. Expert-reviewed informational materials were developed to help stakeholders obtain baseline knowledge and stimulate discussions about interactions between drivers, knowledge gaps and uncertainties. Map-based scenario products will allow mission-oriented agencies to jointly explore where to prioritize research investments and address risk in a complex, changing environment. Scenarios consider multidecadal timescales. However, tracking of indicator variables derived from scenarios can lead to important insights about the trajectory of the North Slope social-environmental system and inform management decisions to reduce risk on much shorter timescales. The inclusion of stakeholders helps provide a broad spectrum of expert viewpoints necessary for considering the range of plausible scenarios. A well-defined focal question, transparency in the participation process and continued outreach about the utility and limitations of scenarios are also important components of the scenarios process.

  14. Diversity of tree vegetation on different slopes in Sangkulirang – Mangkalihat exokarst area

    Science.gov (United States)

    Suwasono, R. A.; Matius, P.; Sutedjo

    2018-04-01

    The Karst ecosystem in East Kalimantan is predominantly located in the Sangkulirang-Mangkalihat covering an area of 1,867,676 hectares. The exokarst are all features that may be found on a surface karst landscape. The objective of this study was to determine the diversity of tree vegetation (diameters >10 cm) on different slopes. Six study locations were selected as replications where each location consisted of the different of slopes. The sample plot was set up 15 plots in each location on quadrants of 10 m x 10 m. 538 individuals had been found in the study sites consisting of 163 species, 100 genera and 43 family. The Dipterocarpaceae was dominant on slopes and the upper ridges, while Shorea sp. has dominated on the upper ridges. The highest diversity index (H’) of 4.04were found on the slopes and valley while the Species Richness Index (R) and Evenness Index (e) were high in all three slopes. The highest Similarity Index (ISs) of41.06was in the slopes and valley, while the highest Decimilarity Index (ID) of 67.30were in the slopes and upper ridges. Meanwhile, the overall diversity of species in the Sangkulirang-Mangkalihat exokarst area is high.

  15. Erosion protection Phytoreinforcement of SCARP steep slopes of the holy virgin’s DITCH

    Directory of Open Access Journals (Sweden)

    Darchiya Valentina Ivanovna

    2015-09-01

    Full Text Available Erosion protection landscaping embedment of steep subsoil slopes is a time-sensitive issue of road construction and planning of recreational area that are often fit on a challenging picturesque terrain unsuitable for site development. The article provides the results of a 4-year experiment on landscaping and plant fixing of up to 4.5 m soil slopes with 1:1 and 2:1 grades; the experiment was carried out by the MGSU on the territory of a convent in the south of the Nizhniy Novgorod region. The site has slopes oriented towards all cardinals. At some places the slopes are bedimmed by trees. All these factors create a wide range of geo-ecological conditions for lawns. All the slopes are fixed with geo-fibrefill grids; slopes with 2:1 grade are strengthened by auxiliary grids made of reinforced metal bars, anchors and braces on the bottom of the Holy Moat. The paper recommends composition of grass plants as well as techniques to build up lawns suitable for various micro-climate conditions. It also advises the structure of multi-tier plant entity. The suggested methods are tested during a 3-year maintenance of slopes built for constant use.

  16. Instability risk assessment of construction waste pile slope based on fuzzy entropy

    Science.gov (United States)

    Ma, Yong; Xing, Huige; Yang, Mao; Nie, Tingting

    2018-05-01

    Considering the nature and characteristics of construction waste piles, this paper analyzed the factors affecting the stability of the slope of construction waste piles, and established the system of the assessment indexes for the slope failure risks of construction waste piles. Based on the basic principles and methods of fuzzy mathematics, the factor set and the remark set were established. The membership grade of continuous factor indexes is determined using the "ridge row distribution" function, while that for the discrete factor indexes was determined by the Delphi Method. For the weight of factors, the subjective weight was determined by the Analytic Hierarchy Process (AHP) and objective weight by the entropy weight method. And the distance function was introduced to determine the combination coefficient. This paper established a fuzzy comprehensive assessment model of slope failure risks of construction waste piles, and assessed pile slopes in the two dimensions of hazard and vulnerability. The root mean square of the hazard assessment result and vulnerability assessment result was the final assessment result. The paper then used a certain construction waste pile slope as the example for analysis, assessed the risks of the four stages of a landfill, verified the assessment model and analyzed the slope's failure risks and preventive measures against a slide.

  17. Linking slope stability and climate change: the Nordfjord region, western Norway, case study

    Science.gov (United States)

    Vasskog, K.; Waldmann, N.; Ariztegui, D.; Simpson, G.; Støren, E.; Chapron, E.; Nesje, A.

    2009-12-01

    Valleys, lakes and fjords are spectacular features of the Norwegian landscape and their sedimentary record recall past climatic, environmental and glacio-isostatic changes since the late glacial. A high resolution multi-proxy study is being performed on three lakes in western Norway combining different geophysical methods and sediment coring with the aim of reconstructing paleoclimate and to investigate how the frequency of hazardous events in this area has changed through time. A very high resolution reflection seismic profiling revealed a series of mass-wasting deposits. These events, which have also been studied in radiocarbon-dated cores, suggest a changing impact of slope instability on lake sedimentation since the late glacial. A specially tailored physically-based mathematical model allowed a numerical simulation of one of these mass wasting events and related tsunami, which occurred during a devastating rock avalanche in 1936 killing 74 persons. The outcome has been further validated against historical, marine and terrestrial information, providing a model that can be applied to comparable basins at various temporal and geographical scales. Detailed sedimentological and geochemical studies of selected cores allows characterizing the sedimentary record and to disentangle each mass wasting event. This combination of seismic, sedimentary and geophysical data permits to extend the record of mass wasting events beyond historical times. The geophysical and coring data retrieved from these lakes is a unique trace of paleo-slope stability generated by isostatic rebound and climate change, thus providing a continuous archive of slope stability beyond the historical record. The results of this study provide valuable information about the impact of climate change on slope stability and source-to-sink processes.

  18. Research on the Relationship between Landslide of Farming Terraces and the Intensity of Rainfall and Slope Angle Based on the Indoor Rainfall Slide Slope Model

    Directory of Open Access Journals (Sweden)

    Dongqin Chen

    2016-03-01

    Full Text Available Due to the increase of geographical disaster in China, it is necessary to study the formation mechanism to make a preparation for the future prevention of geological disasters and effectively reduce the unnecessary financial loss and casualties. We found there is a powerful connection between heavy rainfall and landslide slope. Thus, this article takes the accumulation of gravel soil as the research material to set up indoor rainfall and landslide model test. By comparing the rules of pore water pressure and soil pressure responding to different rainfall intensity and slope angle, we discussed over the effects of rainfall intensity and slope angle on the sliding of accumulation gravelly soil.

  19. Probability Distribution for Flowing Interval Spacing

    International Nuclear Information System (INIS)

    S. Kuzio

    2004-01-01

    determined from the data. In terms of repository performance, the results of this analysis may underestimate the effect of matrix diffusion processes in SZ transport models. Underestimation of matrix diffusion in the transport modeling would result in more rapid simulated migration of radionuclide mass to the accessible environment and correspondingly higher simulated dose to the reasonably maximally exposed individual in the Total System Performance Assessment-License Application (TSPA-LA) analyses. The flowing interval spacing is appropriate for use in the SZ site-scale transport abstraction model because the 500 m grid block size in the numerical transport model is more than an order of magnitude larger than the expected flowing interval spacing (BSC 2004 [DIRS 170042], Section 6.3.1). Therefore, the use of the developed flowing interval spacing parameter is limited to a numerical grid spacing that is at least an order of magnitude greater than the average flowing interval spacing to ensure a reasonable description of transport behavior in a grid. This analysis report supports several features, events, and processes (FEPs) and contributes to the characterization of the SZ as a natural barrier, which provides evidence related to the capability of the SZ to delay movement of radionuclides through the SZ to the accessible environment

  20. The Influence of Slope Breaks on Lava Flow Surface Disruption

    Science.gov (United States)

    Glaze, Lori S.; Baloga, Stephen M.; Fagents, Sarah A.; Wright, Robert

    2014-01-01

    Changes in the underlying slope of a lava flow impart a significant fraction of rotational energy beyond the slope break. The eddies, circulation and vortices caused by this rotational energy can disrupt the flow surface, having a significant impact on heat loss and thus the distance the flow can travel. A basic mechanics model is used to compute the rotational energy caused by a slope change. The gain in rotational energy is deposited into an eddy of radius R whose energy is dissipated as it travels downstream. A model of eddy friction with the ambient lava is used to compute the time-rate of energy dissipation. The key parameter of the dissipation rate is shown to be rho R(sup 2/)mu, where ? is the lava density and mu is the viscosity, which can vary by orders of magnitude for different flows. The potential spatial disruption of the lava flow surface is investigated by introducing steady-state models for the main flow beyond the steepening slope break. One model applies to slow-moving flows with both gravity and pressure as the driving forces. The other model applies to fast-moving, low-viscosity, turbulent flows. These models provide the flow velocity that establishes the downstream transport distance of disrupting eddies before they dissipate. The potential influence of slope breaks is discussed in connection with field studies of lava flows from the 1801 Hualalai and 1823 Keaiwa Kilauea, Hawaii, and 2004 Etna eruptions.

  1. Landform Degradation and Slope Processes on Io: The Galileo View

    Science.gov (United States)

    Moore, Jeffrey M.; Sullivan, Robert J.; Chuang, Frank C.; Head, James W., III; McEwen, Alfred S.; Milazzo, Moses P.; Nixon, Brian E.; Pappalardo, Robert T.; Schenk, Paul M.; Turtle, Elizabeth P.; hide

    2001-01-01

    The Galileo mission has revealed remarkable evidence of mass movement and landform degradation on Io. We recognize four major slope types observed on a number of intermediate resolution (250 m/pixel) images and several additional textures on very high resolution (10 m/pixel) images. Slopes and scarps on Io often show evidence of erosion, seen in the simplest form as alcove-carving slumps and slides at all scales. Many of the mass movement deposits on Io are probably mostly the consequence of block release and brittle slope failure. Sputtering plays no significant role. Sapping as envisioned by McCauley et al. remains viable. We speculate that alcove-lined canyons seen in one observation and lobed deposits seen along the bases of scarps in several locations may reflect the plastic deformation and 'glacial' flow of interstitial volatiles (e.g., SO2) heated by locally high geothermal energy to mobilize the volatile. The appearance of some slopes and near-slope surface textures seen in very high resolution images is consistent with erosion from sublimation-degradation. However, a suitable volatile (e.g., H2S) that can sublimate fast enough to alter Io's youthful surface has not been identified. Disaggregation from chemical decomposition of solid S2O and other polysulfur oxides may conceivably operate on Io. This mechanism could degrade landforms in a manner that resembles degradation from sublimation, and at a rate that can compete with resurfacing.

  2. A novel approach for enhancing green supply chain management using converged interval-valued triangular fuzzy numbers-grey relation analysis

    OpenAIRE

    Tseng, Ming-Lang; Lim, Ming; Wu, Kuo-Jui; Zhou, Li

    2017-01-01

    The existing literatures are lacking on the cost and benefit concerns, screening the measures and convergence of interval-valued triangular fuzzy numbers-grey relation analysis (IVTFN-GRA) weight together. Nonetheless, Green supply chain management is always suffering the linguistic preferences and system incomplete information in evaluation process to enhance the performance. Yet, those previous studies are merely based on un-converged weight results. Hence, this study proposed a hybrid meth...

  3. Fiber Bragg grating-based performance monitoring of a slope model subjected to seepage

    Science.gov (United States)

    Zhu, Hong-Hu; Shi, Bin; Yan, Jun-Fan; Zhang, Jie; Zhang, Cheng-Cheng; Wang, Bao-Jun

    2014-09-01

    In the past few years, fiber optic sensing technologies have played an increasingly important role in the health monitoring of civil infrastructures. These innovative sensing technologies have recently been successfully applied to the performance monitoring of a series of geotechnical structures. Fiber optic sensors have shown many unique advantages in comparison with conventional sensors, including immunity to electrical noise, higher precision and improved durability and embedding capabilities; fiber optic sensors are also smaller in size and lighter in weight. In order to explore the mechanism of seepage-induced slope instability, a small-scale 1 g model test of the soil slope has been performed in the laboratory. During the model’s construction, specially fabricated sensing fibers containing nine fiber Bragg grating (FBG) strain sensors connected in a series were horizontally and vertically embedded into the soil mass. The surcharge load was applied on the slope crest, and the groundwater level inside of the slope was subsequently varied using two water chambers installed besides the slope model. The fiber optic sensing data of the vertical and horizontal strains within the slope model were automatically recorded by an FBG interrogator and a computer during the test. The test results are presented and interpreted in detail. It is found that the gradually accumulated deformation of the slope model subjected to seepage can be accurately captured by the quasi-distributed FBG strain sensors. The test results also demonstrate that the slope stability is significantly affected by ground water seepage, which fits well with the results that were calculated using finite element and limit equilibrium methods. The relationship between the strain measurements and the safety factors is further analyzed, together with a discussion on the residual strains. The performance evaluation of a soil slope using fiber optic strain sensors is proved to be a potentially effective

  4. Fiber Bragg grating-based performance monitoring of a slope model subjected to seepage

    International Nuclear Information System (INIS)

    Zhu, Hong-Hu; Shi, Bin; Yan, Jun-Fan; Zhang, Cheng-Cheng; Wang, Bao-Jun; Zhang, Jie

    2014-01-01

    In the past few years, fiber optic sensing technologies have played an increasingly important role in the health monitoring of civil infrastructures. These innovative sensing technologies have recently been successfully applied to the performance monitoring of a series of geotechnical structures. Fiber optic sensors have shown many unique advantages in comparison with conventional sensors, including immunity to electrical noise, higher precision and improved durability and embedding capabilities; fiber optic sensors are also smaller in size and lighter in weight. In order to explore the mechanism of seepage-induced slope instability, a small-scale 1 g model test of the soil slope has been performed in the laboratory. During the model’s construction, specially fabricated sensing fibers containing nine fiber Bragg grating (FBG) strain sensors connected in a series were horizontally and vertically embedded into the soil mass. The surcharge load was applied on the slope crest, and the groundwater level inside of the slope was subsequently varied using two water chambers installed besides the slope model. The fiber optic sensing data of the vertical and horizontal strains within the slope model were automatically recorded by an FBG interrogator and a computer during the test. The test results are presented and interpreted in detail. It is found that the gradually accumulated deformation of the slope model subjected to seepage can be accurately captured by the quasi-distributed FBG strain sensors. The test results also demonstrate that the slope stability is significantly affected by ground water seepage, which fits well with the results that were calculated using finite element and limit equilibrium methods. The relationship between the strain measurements and the safety factors is further analyzed, together with a discussion on the residual strains. The performance evaluation of a soil slope using fiber optic strain sensors is proved to be a potentially effective

  5. Slope effects on SWAT modeling in a mountainous basin

    OpenAIRE

    Yacoub López, Cristina; Pérez Foguet, Agustí

    2013-01-01

    The soil and water assessment tool (SWAT) is a distributed basin model that includes the option of defining spatial discretization in terms of terrain slope. Influence of terrain slope in runoff results from mountain basins is a determining factor in its simulation results; however, its use as a criterion for basin discretization and for the parameter calibration has not yet been analyzed. In this study, this influence is analyzed for calibrations using two different cases. Ten discretization...

  6. Effect of tibial slope on the stability of the anterior cruciate ligament-deficient knee.

    Science.gov (United States)

    Voos, James E; Suero, Eduardo M; Citak, Musa; Petrigliano, Frank P; Bosscher, Marianne R F; Citak, Mustafa; Wickiewicz, Thomas L; Pearle, Andrew D

    2012-08-01

    We aimed to quantify the effect of changes in tibial slope on the magnitude of anterior tibial translation (ATT) in the anterior cruciate ligament (ACL)-deficient knee during the Lachman and mechanized pivot shift tests. We hypothesized that increased posterior tibial slope would increase the amount of ATT of an ACL-deficient knee, while leveling the slope of the tibial plateau would decrease the amount of ATT. Lachman and mechanized pivot shift tests were performed on hip-to-toe cadaveric specimens, and ATT of the lateral and the medial compartments was measured using navigation (n = 11). The ACL was then sectioned. Stability testing was repeated, and ATT was recorded. A proximal tibial osteotomy in the sagittal plane was then performed achieving either +5 or -5° of tibial slope variation after which stability testing was repeated (n = 10). Sectioning the ACL resulted in a significant increase in ATT in both the Lachman and mechanized pivot shift tests (P slope of the tibial plateau had no effect on ATT during the Lachman test (n.s.). During the mechanized pivot shift tests, a 5° increase in posterior slope resulted in a significant increase in ATT compared to the native knee (P slope reduced ATT to a level similar to that of the intact knee. Tibial slope changes did not affect the magnitude of translation during a Lachman test. However, large changes in tibial slope variation affected the magnitude of the pivot shift.

  7. A model for predicting embankment slope failures in clay-rich soils; A Louisiana example

    Science.gov (United States)

    Burns, S. F.

    2015-12-01

    A model for predicting embankment slope failures in clay-rich soils; A Louisiana example It is well known that smectite-rich soils significantly reduce the stability of slopes. The question is how much smectite in the soil causes slope failures. A study of over 100 sites in north and south Louisiana, USA, compared slopes that failed during a major El Nino winter (heavy rainfall) in 1982-1983 to similar slopes that did not fail. Soils in the slopes were tested for per cent clay, liquid limits, plasticity indices and semi-quantitative clay mineralogy. Slopes with the High Risk for failure (85-90% chance of failure in 8-15 years after construction) contained soils with a liquid limit > 54%, a plasticity index over 29%, and clay contents > 47%. Slopes with an Intermediate Risk (55-50% chance of failure in 8-15 years) contained soils with a liquid limit between 36-54%, plasticity index between 16-19%, and clay content between 32-47%. Slopes with a Low Risk chance of failure (soils with a liquid limit plasticity index soil characteristics before construction. If the soils fall into the Low Risk classification, construct the embankment normally. If the soils fall into the High Risk classification, one will need to use lime stabilization or heat treatments to prevent failures. Soils in the Intermediate Risk class will have to be evaluated on a case by case basis.

  8. Monitoring System for Slope Stability under Rainfall by using MEMS Acceleration Sensor IC tags

    International Nuclear Information System (INIS)

    Murakami, S; Dairaku, A; Komine, H; Saito, O; Sakai, N; Isizawa, T; Maruyama, I

    2013-01-01

    Real-time warning system for slope failure under rainfall is available to disaster prevention and mitigation. Monitoring of multi-point and wireless measurements is effective because it is difficult to conclude the most dangerous part in a slope. The purpose of this study is to propose a method of monitoring system with multi-point and wireless measurements for a slope stability using MEMS acceleration sensor IC tags. MEMS acceleration sensor IC tag is an acceleration sensor microminiaturized by a technology of Micro Electro Mechanical Systems on board IC tag. Especially, low cost of the sensor will yield to the realization of the system. In order to investigate the applicability of the proposed system, a large-scale model test of artificial slope subjected to rainfall has been performed. MEMS acceleration sensor IC tags has been located on the slope and ground acceleration caused by forced vibration has been measured until the model slope collapses. The experimental results show that the MEMS acceleration sensor IC tag is comfortably available under rainfall, the characteristics of ground accelerations varies with changing the condition of the slope subjected to rainfall, and the proposed method can be applied to a real-time monitoring system for slope failure under rainfall.

  9. Relative roughness controls on incipient sediment motion in steep channels

    Science.gov (United States)

    Prancevic, J.; Lamb, M. P.; Fuller, B. M.

    2012-12-01

    For over eight decades, researchers have noted an appreciable increase in the nondimensional shear stress (Shields number) at initiation of fluvial bedload transport with increasing bed slope. The precise cause of the trend, however, is obscured by the covariance of several factors with increased slope: a greater downstream component of the gravity acting on the grains and fluid, changes in bed morphology, increased grainsize relative to the channel width that may lead to grain bridging, and increased grainsize relative to flow depth (relative roughness) that may change flow hydraulics and particle buoyancy. Here, we report on ongoing laboratory experiments spanning a wide range of bed slopes (2% to 67%) designed to isolate these variables and determine the true cause of heightened critical Shields numbers on steep slopes. First, we eliminated bed morphology as a factor by using only planar beds. To investigate the effect of grain bridging, we used two different channel widths, representing width-to-grainsize ratios of 23:1 and 9:1. Finally, to separate the effects of slope from relative roughness, we compared incipient motion conditions for acrylic particles (submerged specific gravity of 0.15) to natural siliciclastic gravel (submerged specific gravity of 1.65). Different particle densities allowed us to explore incipient motion as a function of relative roughness, independent of channel slope, because lighter particles move at shallower flow depths than heavier ones of the same size. Results show that both materials exhibit a positive trend between bed slope and critical Shields number despite the existence of planar beds for all slopes. Furthermore, changing the grainsize-to-width ratio had a negligible effect on this trend. For all slopes, the critical Shields number for bedload transport was higher for the acrylic particles than for gravel, indicating that relative roughness has a strong control on incipient sediment motion independent of channel slope. These

  10. T(peak)T(end) interval in long QT syndrome

    DEFF Research Database (Denmark)

    Kanters, Jørgen Kim; Haarmark, Christian; Vedel-Larsen, Esben

    2008-01-01

    BACKGROUND: The T(peak)T(end) (T(p)T(e)) interval is believed to reflect the transmural dispersion of repolarization. Accordingly, it should be a risk factor in long QT syndrome (LQTS). The aim of the study was to determine the effect of genotype on T(p)T(e) interval and test whether it was relat...

  11. The Role of Higher Harmonics In Musical Interval Perception

    Science.gov (United States)

    Krantz, Richard; Douthett, Jack

    2011-10-01

    Using an alternative parameterization of the roughness curve we make direct use of critical band results to investigate the role of higher harmonics on the perception of tonal consonance. We scale the spectral amplitudes in the complex home tone and complex interval tone to simulate acoustic signals of constant energy. Our analysis reveals that even with a relatively small addition of higher harmonics the perfect fifth emerges as a consonant interval with more, musically important, just intervals emerging as consonant as more and more energy is shifted into higher frequencies.

  12. Retention interval affects visual short-term memory encoding.

    Science.gov (United States)

    Bankó, Eva M; Vidnyánszky, Zoltán

    2010-03-01

    Humans can efficiently store fine-detailed facial emotional information in visual short-term memory for several seconds. However, an unresolved question is whether the same neural mechanisms underlie high-fidelity short-term memory for emotional expressions at different retention intervals. Here we show that retention interval affects the neural processes of short-term memory encoding using a delayed facial emotion discrimination task. The early sensory P100 component of the event-related potentials (ERP) was larger in the 1-s interstimulus interval (ISI) condition than in the 6-s ISI condition, whereas the face-specific N170 component was larger in the longer ISI condition. Furthermore, the memory-related late P3b component of the ERP responses was also modulated by retention interval: it was reduced in the 1-s ISI as compared with the 6-s condition. The present findings cannot be explained based on differences in sensory processing demands or overall task difficulty because there was no difference in the stimulus information and subjects' performance between the two different ISI conditions. These results reveal that encoding processes underlying high-precision short-term memory for facial emotional expressions are modulated depending on whether information has to be stored for one or for several seconds.

  13. Chosen interval methods for solving linear interval systems with special type of matrix

    Science.gov (United States)

    Szyszka, Barbara

    2013-10-01

    The paper is devoted to chosen direct interval methods for solving linear interval systems with special type of matrix. This kind of matrix: band matrix with a parameter, from finite difference problem is obtained. Such linear systems occur while solving one dimensional wave equation (Partial Differential Equations of hyperbolic type) by using the central difference interval method of the second order. Interval methods are constructed so as the errors of method are enclosed in obtained results, therefore presented linear interval systems contain elements that determining the errors of difference method. The chosen direct algorithms have been applied for solving linear systems because they have no errors of method. All calculations were performed in floating-point interval arithmetic.

  14. Laboratory Experiments on Steady State Seepage-Induced Landslides Using Slope Models and Sensors

    Directory of Open Access Journals (Sweden)

    Sandra G. Catane

    2011-06-01

    Full Text Available A thorough understanding of the failure initiation process is crucial in the development of physicallybased early warning system for landslides and slope failures. Laboratory-scale slope models were constructed and subjected to instability through simulated groundwater infiltration. This is done by progressively increasing the water level in the upslope tank and allowing water to infiltrate laterally towards the toe of the slope. Physical changes in the slope models were recorded by tilt sensors and video cameras. When the model slope was destabilized, the chronology of events occurred in the following sequence: (1 bulging at the toe, (2 seepage at the toe, (3 initial failure of soil mass, (4 piping, (5 retrogressive failure, (6 formation of tension cracks and (7 major failure of soil mass. Tension cracks, piping and eventual failure are manifestations of differential settlements due to variations in void ratio. Finite element analysis indicates that instability and subsequent failures in the model slope were induced primarily by high hydraulic gradients in the toe area. Seepage, initial deformation and subsequent failures were manifested in the toe area prior to failure, providing a maximum of 36 min lead time. Similar lead times are expected in slopes of the same material as shown in many case studies of dam failure. The potential of having a longer lead time is high for natural slopes made of materials with higher shear strength thus evacuation is possible. The tilt sensors were able to detect the initial changes before visual changes manifested, indicating the importance of instrumental monitoring.

  15. Depolarization changes during acute myocardial ischemia by evaluation of QRS slopes: standard lead and vectorial approach.

    Science.gov (United States)

    Romero, Daniel; Ringborn, Michael; Laguna, Pablo; Pahlm, Olle; Pueyo, Esther

    2011-01-01

    Diagnosis and risk stratification of patients with acute coronary syndromes can be improved by adding information from the depolarization phase (QRS complex) to the conventionally used ST-T segment changes. In this study, ischemia-induced changes in the main three slopes of the QRS complex, upward ( ℑ(US)) and downward ( ℑ(DS) ) slopes of the R wave as well as the upward ( ℑ(TS)) slope of the terminal S wave, were evaluated as to represent a robust measure of pathological changes within the depolarization phase. From ECG recordings both in a resting state (control recordings) and during percutaneous coronary intervention (PCI)-induced transmural ischemia, we developed a method for quantification of ℑ(US), ℑ(DS), and ℑ(TS) that incorporates dynamic ECG normalization so as to improve the sensitivity in the detection of ischemia-induced changes. The same method was also applied on leads obtained by projection of QRS loops onto their dominant directions. We show that ℑ(US), ℑ(DS), and ℑ(TS) present high stability in the resting state, thus providing a stable reference for ischemia characterization. Maximum relative factors of change ( ℜ(ℑ)) during PCI were found in leads derived from the QRS loop, reaching 10.5 and 13.7 times their normal variations in the control for ℑ(US) and ℑ(DS), respectively. For standard leads, the relative factors of change were 6.01 and 9.31. The ℑ(TS) index presented a similar behavior to that of ℑ(DS). The timing for the occurrence of significant changes in ℑ(US) and ℑ(DS) varied with lead, ranging from 30 s to 2 min after initiation of coronary occlusion. In the present ischemia model, relative ℑ(DS) changes were smaller than ST changes in most leads, however with only modest correlation between the two indices, suggesting they present different information about the ischemic process. We conclude that QRS slopes offer a robust tool for evaluating depolarization changes during myocardial ischemia.

  16. Systematic of the slope-mass-correlations in diffractive dissociation reactions

    International Nuclear Information System (INIS)

    Antunes, A.C.B.; Santoro, A.F.S.; Souza, M.H.G.

    1984-01-01

    A set of several results of the Three Components Deck Model for Diffractive Dissociation Reactions is presented. News and recently published results are summarized to obtain a general overview of the model, its predictions and comparison with experimental results. Two kinds of correlations and amplitudes are given: The slope-mass cos theta sup(GJ) correlation and slope-mass partial wave. (Author) [pt

  17. Preharvest Interval Periods and their relation to fruit growth stages and pesticide formulations.

    Science.gov (United States)

    Alister, Claudio; Araya, Manuel; Becerra, Kevin; Saavedra, Jorge; Kogan, Marcelo

    2017-04-15

    The aim of this study was to evaluate the effect of pesticide formulations and fruit growth stages on the Pre-harvest Interval Period (PHI). Results showed that pesticide formulations did not affect the initial deposit and dissipation rate. However, the fruit growth stage at the application time showed a significant effect on the above-mentioned parameters. Fruit diameter increases in one millimeter pesticide dissipation rates were reduced in -0.033mgkg -1 day -1 (R 2 =0.87; p<0.001) for grapes and -0.014mgkg -1 day -1 (R 2 =0.85; p<0.001) for apples. The relation between solar radiation, air humidity and temperature, and pesticide dissipation rates were dependent on fruit type. PHI could change according to the application time, because of the initial amount of pesticide deposit in the fruits and change in the dissipation rates. Because Maximum Residue Level are becoming more restrictive, it is more important to consider the fruit growth stage effects on pesticide when performing dissipation studies to define PHI. Copyright © 2016. Published by Elsevier Ltd.

  18. Lava delta deformation as a proxy for submarine slope instability

    Science.gov (United States)

    Di Traglia, Federico; Nolesini, Teresa; Solari, Lorenzo; Ciampalini, Andrea; Frodella, William; Steri, Damiano; Allotta, Benedetto; Rindi, Andrea; Marini, Lorenzo; Monni, Niccolò; Galardi, Emanuele; Casagli, Nicola

    2018-04-01

    the 30 December 2002 landslide, which involved the lava delta and its surrounding areas. InSAR data provided the post-effusive deformation field after the 2007 and 2014 flank eruptions, whereas LEM results highlighted that the accumulation of lava flows on the prone-to-failure SdF submarine slope is the main cause of the detected lava delta deformation. Lava delta instability, measured also at Pico Island (Azores) and Kilauea volcano (Hawaii), is evidence of the broader spectrum of instability phenomena that take place in the coastal or submarine area of the flanks of the volcanoes. At Kilauea, past lava deltas have moved faster than the surrounding slope and the recorded movements relate only to the collapses of the deltas themselves, producing rapid mass wasting near the coasts. In contrast, at Stromboli and Pico, lava deltas move at the same velocity as the surrounding slope. In these cases, the displacement at lava deltas can be considered as a proxy for the deformation of submarine slides. There are very few studies dealing with lava delta deformation, thus, the analysis presented in this work will benefit the monitoring of submarine slopes in other prone-to-failure coastal or island volcanic systems which have the potential to generate tsunamis.

  19. Slope angle studies from multibeam sonar data on three seamounts in Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Kodagali, V.N.

    Slope angles are powerful morphometric tools. Slope angle studies in manganese nodule areas using the Multi Beam Sonar (MBS) data is useful to the mining geologist. A technique to convert depth grid generated from MBS data to slope angle values data...

  20. A multidisciplinary methodological approach for slope stability assessment of an area prone to shallow landslides

    Science.gov (United States)

    Bordoni, Massimiliano; Meisina, Claudia; Valentino, Roberto; Bittelli, Marco; Battista Bischetti, Gian; Vercesi, Alberto; Chersich, Silvia; Giuseppina Persichillo, Maria

    2016-04-01

    Rainfall-induced shallow landslides are widespread slope instabilities phenomena in several hilly and mountainous contexts all over the world. Due to their high density of diffusion also in small areas, they can provoke important damages to terrains, infrastructures, buildings, and, sometimes, loss of human lives. Shallow landslides affect superficial soils of limited thickness (generally lower than 2 m), located above weathered or not bedrock levels. Their triggering mechanism is strictly linked to the hydrological response of the soils to rainfall events. Thus, it becomes fundamental a comprehensive analysis of the soil properties which can influence the susceptibility of a slope to shallow landslides. In this study, a multidisciplinary approach was followed for the characterization of the soils and the individuation of the triggering conditions in an area particularly prone to shallow failures, for slope stability assessment. This area corresponded to the hilly sector of North-Eastern Oltrepò Pavese (Lombardy Region, Northern Italy), where the density of shallow landslides is really high, reaching more than 36 landslides per km2. The soils of the study area were analyzed through a multidisciplinary characterization, which took into account for the main geotechnical, mechanical and mineralogical parameters and also for the main pedological features of the materials. This approach allowed for identifying the main features and the horizons which could influence the soil behavior in relation to the conditions that are preparatory to shallow landslides development. In a test-site slope, representative of the main geomorphological, geological and landslides distribution characteristics typical of the study area, a continuous in time monitoring of meteorological (rainfall amount, air temperature, air humidity, atmospheric pressure, net solar radiation, wind speed and direction) and hydrological (soil water content, pore water pressure) parameters was implemented. In

  1. North Slope, Alaska ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and freshwater fish species for the North Slope of Alaska. Vector...

  2. Flood control project selection using an interval type-2 entropy weight with interval type-2 fuzzy TOPSIS

    Science.gov (United States)

    Zamri, Nurnadiah; Abdullah, Lazim

    2014-06-01

    Flood control project is a complex issue which takes economic, social, environment and technical attributes into account. Selection of the best flood control project requires the consideration of conflicting quantitative and qualitative evaluation criteria. When decision-makers' judgment are under uncertainty, it is relatively difficult for them to provide exact numerical values. The interval type-2 fuzzy set (IT2FS) is a strong tool which can deal with the uncertainty case of subjective, incomplete, and vague information. Besides, it helps to solve for some situations where the information about criteria weights for alternatives is completely unknown. Therefore, this paper is adopted the information interval type-2 entropy concept into the weighting process of interval type-2 fuzzy TOPSIS. This entropy weight is believed can effectively balance the influence of uncertainty factors in evaluating attribute. Then, a modified ranking value is proposed in line with the interval type-2 entropy weight. Quantitative and qualitative factors that normally linked with flood control project are considered for ranking. Data in form of interval type-2 linguistic variables were collected from three authorised personnel of three Malaysian Government agencies. Study is considered for the whole of Malaysia. From the analysis, it shows that diversion scheme yielded the highest closeness coefficient at 0.4807. A ranking can be drawn using the magnitude of closeness coefficient. It was indicated that the diversion scheme recorded the first rank among five causes.

  3. Slope shape effect on runoff and soil erosion under natural rainfall conditions

    OpenAIRE

    Sensoy H; Kara

    2014-01-01

    Slope is often non-uniform along the hillslope, with variations describing concave and convex shapes associated with natural hillslopes. This is because runoff generations vary significantly over short distances, with changes in surface alteration during or between flow events on different slope shapes. The aim of this research is to determine the effects of slope shapes on runoff and soil erosion. A field experiment was conducted from September 2007 to September 2009 on hillside field plots ...

  4. Limited Rationality and Its Quantification Through the Interval Number Judgments With Permutations.

    Science.gov (United States)

    Liu, Fang; Pedrycz, Witold; Zhang, Wei-Guo

    2017-12-01

    The relative importance of alternatives expressed in terms of interval numbers in the fuzzy analytic hierarchy process aims to capture the uncertainty experienced by decision makers (DMs) when making a series of comparisons. Under the assumption of full rationality, the judgements of DMs in the typical analytic hierarchy process could be consistent. However, since the uncertainty in articulating the opinions of DMs is unavoidable, the interval number judgements are associated with the limited rationality. In this paper, we investigate the concept of limited rationality by introducing interval multiplicative reciprocal comparison matrices. By analyzing the consistency of interval multiplicative reciprocal comparison matrices, it is observed that the interval number judgements are inconsistent. By considering the permutations of alternatives, the concepts of approximation-consistency and acceptable approximation-consistency of interval multiplicative reciprocal comparison matrices are proposed. The exchange method is designed to generate all the permutations. A novel method of determining the interval weight vector is proposed under the consideration of randomness in comparing alternatives, and a vector of interval weights is determined. A new algorithm of solving decision making problems with interval multiplicative reciprocal preference relations is provided. Two numerical examples are carried out to illustrate the proposed approach and offer a comparison with the methods available in the literature.

  5. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill

    International Nuclear Information System (INIS)

    Yu, L.; Batlle, F.

    2011-01-01

    Highlights: → A quasi-three-dimensional slope stability analysis method was proposed. → The proposed method is a good engineering tool for 3D slope stability analysis. → Factor of safety from 3D analysis is higher than from 2D analysis. → 3D analysis results are more sensitive to cohesion than 2D analysis. - Abstract: Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The 'equivalent' three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that

  6. Soil aggregation and slope stability related to soil density, root length, and mycorrhiza

    Science.gov (United States)

    Graf, Frank; Frei, Martin

    2013-04-01

    Eco-engineering measures combine the use of living plants and inert mechanical constructions to protect slopes against erosion and shallow mass movement. Whereas in geotechnical engineering several performance standards and guidelines for structural safety and serviceability of construction exist, there is a lack of comparable tools in the field of ecological restoration. Various indicators have been proposed, including the fractal dimension of soil particle size distribution, microbiological parameters, and soil aggregate stability. We present results of an soil aggregate stability investigation and compare them with literature data of the angle of internal friction ?' which is conventionally used in slope stability analysis and soil failure calculation. Aggregate stability tests were performed with samples of differently treated moraine, including soil at low (~15.5 kN/m³) and high (~19.0 kN/m³) dry unit weight, soil planted with Alnus incana (White Alder) as well as the combination of soil planted with alder and inoculated with the mycorrhizal fungus Melanogaster variegatus s.l. After a 20 weeks growth period in a greenhouse, a total of 100 samples was tested and evaluated. Positive correlations were found between the soil aggregate stability and the three variables dry unit weight, root length per soil volume, and degree of mycorrhization. Based on robust statistics it turned out that dry unit weight and mycorrhization degree were strongest correlated with soil aggregate stability. Compared to the non-inoculated control plants, mycorrhized White Alder produced significantly more roots and higher soil aggregate stability. Furthermore, the combined biological effect of plant roots and mycorrhizal mycelia on aggregate stability on soil with low density (~15.5 kN/m³) was comparable to the compaction effect of the pure soil from 15.5 to ~19.0 kN/m³. Literature data on the effect of vegetation on the angle of internal friction ?' of the same moraine showed

  7. The Alaska North Slope spill analysis

    International Nuclear Information System (INIS)

    Pearson, Leslie; Robertson, Tim L.; DeCola, Elise; Rosen, Ira

    2011-01-01

    This paper reports Alaska North Slope crude oil spills, provides information to help operators identify risks and presents recommendations for future risk reduction and mitigation measures that may reduce the frequency and severity of future spills from piping infrastructure integrity loss. The North Slope spills analysis project was conducted during 2010 by compiling available spill data, and analyzing the cause of past spills in wells and associated piping, flowlines, process centers with their associated piping and above ground storage tanks, and crude oil transmission pipelines. An expert panel, established to provide independent review of this analysis and the presented data, identified seven recommendations on measures, programs, and practices to monitor and address common causes of failures while considering information provided from regulators and operators. These recommendations must be evaluated by the State of Alaska which will consider implementation options to move forward. Based on the study observations, future analyses may show changes to some of the observed trends.

  8. Impact of Crack on Stability of Slope with Linearly Increasing Undrained Strength

    Directory of Open Access Journals (Sweden)

    Bing Li

    2018-01-01

    Full Text Available This paper presents a procedure for assessment of the impact of tension crack on stability of slope in clays with linearly increasing undrained strength. The procedure is based on the limit equilibrium method with variational extremization. The distribution of the normal stress over slip surface is mathematically obtained for slopes in clays with the linearly increasing undrained strength and then used to determine the tension crack for clays with zero tensile strength. The seismic effect is also included using the pseudostatic approach. Closed-form solutions to the minimum safety factor and the maximum crack depth can be derived and given in the form of chart for convenient use. The results demonstrate a significant effect of the tension crack on the stability of steep slopes, especially for strong seismic conditions. In this situation, neglecting the impact of tension crack in traditional ϕ=0 analyses may overestimate the slope safety. The most adverse location of the tension crack can be also determined and presented in the charts, which may be useful in designing reinforcements and remedial measures for slope stabilization.

  9. North Slope, Alaska ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for diving birds, gulls and terns, seabirds, shorebirds, and waterfowl for the North Slope of Alaska....

  10. Influence of filling-drawdown cycles of the Vajont reservoir on Mt. Toc slope stability

    Science.gov (United States)

    Paronuzzi, Paolo; Rigo, Elia; Bolla, Alberto

    2013-06-01

    In the present work, the 1963 Vajont landslide has been back-analyzed in detail to examine the influence of reservoir operations (filling and drawdown) on Mt. Toc slope stability. The combined seepage-slope stability analyses carried out show that the main destabilizing factor that favored the 1963 Vajont landslide was the reservoir-induced water table that formed as a consequence of rapid seepage inflow within the submerged toe of the slope — decrease in the factor of safety (FOS) up to 12% compared to the initial slope stability condition, i.e., in the absence of the Vajont reservoir. Rainfall would only have been a decisive factor if the initial stability condition of the Mt. Toc slope had already been very close to failure (decrease in FOS caused by heavy or prolonged rainfall is about 3-4%, for the worst case scenario analyzed). The permeability of the shear zone material occurring at the base of the prehistoric Vajont rockslide has been evaluated at 5 × 10- 4 m/s, and back-calculated values of the friction angles Φ range from 17.5° to 27.5°. When considering mountain reservoirs, slope failures can occur during both filling and drawdown phases. In the Vajont case, owing to the highly permeable materials of the shear zone, slope stability decreased during filling and increased during drawdown. Another displacement-dependent phenomenon of a mechanical nature - progressive failure of the NE landslide constraint - has to be considered to understand the slope collapse that occurred during the last drawdown (26 September-9 October 1963). The results of the combined seepage-slope stability models indicate that permeability of bank-forming material and filling-drawdown rates of reservoirs can strongly influence slope stability. Slow lowering of the reservoir level is a necessary measure to reduce the occurrence of very dangerous transient negative peaks of FOS.

  11. Recent slope failures in the Dolomites (Northeastern Italian Alps) in a context of climate change

    Science.gov (United States)

    Chiarle, Marta; Paranunzio, Roberta; Laio, Francesco; Nigrelli, Guido; Guzzetti, Fausto

    2014-05-01

    Climate change in the Greater Alpine Region is seriously affecting permafrost distribution, with relevant consequences on slope stability. In the Italian Alps, the number of failures from rockwalls at high elevation markedly increased in the last 20-30 years: the consistent temperature increase, which warmed twice than the global average, may have seriously influenced slope stability, in terms of glaciers retreat and permafrost degradation. Moreover, the growing number of tourists and activities in alpine regions (in particular in the Dolomites) made these areas particularly critical in relation to natural hazards. In this light, an integrated short-term geomorphological and climatic analysis was performed, in order to better comprehend the impact of main climate elements (especially temperature and precipitation) on slope failures in high mountain areas. In this contribution, we focus on three recent slope failures occurred at high elevation sites in the Dolomites (Northeastern Italian Alps), declared a UNESCO World Heritage Site in August 2009. We describe here three important rock falls occurred in the autumn 2013: 1) the Sorapiss rock fall, on 30 September 2013; 2) the Monte Civetta rock fall, on 16 November 2013; 3) the Monte Antelao rock fall, on 22 November 2013. The Monte Civetta rock fall damaged some climbing routes, while the other two landslides did not cause any damage or injury. Despite the limited volume involved, these three events represent an important warning sign in the context of ongoing climate change. Geomorphological information about the rock fall sites were combined with the climatic data acquired from the meteorological stations surrounding the slope failure areas. A short-term climatic analysis was performed, with the aim of understanding the role of the main climatic elements in the triggering of natural instability events in this area and in the Alps in general.

  12. Postural Stability Margins as a Function of Support Surface Slopes.

    Directory of Open Access Journals (Sweden)

    Aviroop Dutt-Mazumder

    Full Text Available This investigation examined the effects of slope of the surface of support (35°, 30°, 20°, 10° Facing(Toe Down, 0° Flat and 10°, 20°, 25° Facing (Toe Up and postural orientation on the margins of postural stability in quiet standing of young adults. The findings showed that the center of pressure-CoP (displacement, area and length had least motion at the baseline (0° Flat platform condition that progressively increased as a function of platform angle in both facing up and down directions. The virtual time to collision (VTC dynamics revealed that the spatio-temporal margins to the functional stability boundary were progressively smaller and the VTC time series also more regular (SampEn-Sample Entropy as slope angle increased. Surface slope induces a restricted stability region with lower dimension VTC dynamics that is more constrained when postural orientation is facing down the slope. These findings provide further evidence that VTC acts as a control variable in standing posture that is influenced by the emergent dynamics of the individual-environment-task interaction.

  13. Model slope infiltration experiments for shallow landslides early warning

    Science.gov (United States)

    Damiano, E.; Greco, R.; Guida, A.; Olivares, L.; Picarelli, L.

    2009-04-01

    Occurrence of fast landslides has become more and more dangerous during the last decades, due to the increased density of settlements, industrial plants and infrastructures. Such problem is particularly worrying in Campania (Southern Italy), where the fast population growth led a diffuse building activity without planning: indeed, recent flowslides caused hundreds of victims and heavy damages to buildings, roads and other infrastructures. Large mountainous areas in Campania are mantled by loose pyroclastic granular soils up to a depth of a few meters from top soil surface. These soils have usually a grain size that falls in the domain of silty sands, including pumice interbeds (gravelly sands), with saturated hydraulic conductivities up to the order of 10-1 cm/min. Such deposits often cover steep slopes, which stability is guaranteed by the apparent cohesion due to suction under unsaturated conditions, that are the most common conditions for these slopes [Olivares and Picarelli, 2001]. Whereas rainfall infiltration causes soil to approach saturation, suction vanishes and slope failure may occur. Besides soil physical properties, landslide triggering is influenced by several factors, such as rainfall intensity, soil initial moisture and suction, slope inclination, boundary conditions. Whereas slope failure occurs with soil close to being saturated, landslide may develop in form of fast and destructive flowslide. Calibration of reliable mathematical models of such a complex phenomenon requires availability of experimental observations of the major variables of interest, such as soil moisture and suction, soil deformation and displacements, pore water pressure, during the entire process of infiltration until slope failure. Due to the sudden trigger and extremely rapid propagation of such type of landslides, such data sets are rarely available for natural slopes where flowslides occurred. As a consequence landslide risk assessment and early warning in Campania rely on

  14. A nomogram for interpreting slope stability of fine-grained deposits in modern and ancient-marine environments.

    Science.gov (United States)

    Booth, J.S.; Sangrey, D.A.; Fugate, J.K.

    1985-01-01

    This nomogram was designed to aid in interpreting the causes of mass movement in modern and ancient settings, to provide a basis for evaluating and predicting slope stability under given conditions and to further the understanding of the relationships among the several key factors that control slope stability. Design of the nomogram is based on effective stress and combines consolidation theory as applicable to depositional environments with the infinite-slope model of slope-stability analysis. If infinite-slope conditions are assumed to exist, the effective overburden stress can be used to derive a factor of safety against static slope failure by using the angle of internal friction and the slope angle. -from Authors

  15. Right Propositional Neighborhood Logic over Natural Numbers with Integer Constraints for Interval Lengths

    DEFF Research Database (Denmark)

    Bresolin, Davide; Goranko, Valentin; Montanari, Angelo

    2009-01-01

    Interval temporal logics are based on interval structures over linearly (or partially) ordered domains, where time intervals, rather than time instants, are the primitive ontological entities. In this paper we introduce and study Right Propositional Neighborhood Logic over natural numbers...... with integer constraints for interval lengths, which is a propositional interval temporal logic featuring a modality for the 'right neighborhood' relation between intervals and explicit integer constraints for interval lengths. We prove that it has the bounded model property with respect to ultimately periodic...

  16. Large-area landslide susceptibility with optimized slope-units

    Science.gov (United States)

    Alvioli, Massimiliano; Marchesini, Ivan; Reichenbach, Paola; Rossi, Mauro; Ardizzone, Francesca; Fiorucci, Federica; Guzzetti, Fausto

    2017-04-01

    A Slope-Unit (SU) is a type of morphological terrain unit bounded by drainage and divide lines that maximize the within-unit homogeneity and the between-unit heterogeneity across distinct physical and geographical boundaries [1]. Compared to other terrain subdivisions, SU are morphological terrain unit well related to the natural (i.e., geological, geomorphological, hydrological) processes that shape and characterize natural slopes. This makes SU easily recognizable in the field or in topographic base maps, and well suited for environmental and geomorphological analysis, in particular for landslide susceptibility (LS) modelling. An optimal subdivision of an area into a set of SU depends on multiple factors: size and complexity of the study area, quality and resolution of the available terrain elevation data, purpose of the terrain subdivision, scale and resolution of the phenomena for which SU are delineated. We use the recently developed r.slopeunits software [2,3] for the automatic, parametric delineation of SU within the open source GRASS GIS based on terrain elevation data and a small number of user-defined parameters. The software provides subdivisions consisting of SU with different shapes and sizes, as a function of the input parameters. In this work, we describe a procedure for the optimal selection of the user parameters through the production of a large number of realizations of the LS model. We tested the software and the optimization procedure in a 2,000 km2 area in Umbria, Central Italy. For LS zonation we adopt a logistic regression model implemented in an well-known software [4,5], using about 50 independent variables. To select the optimal SU partition for LS zonation, we want to define a metric which is able to quantify simultaneously: (i) slope-unit internal homogeneity (ii) slope-unit external heterogeneity (iii) landslide susceptibility model performance. To this end, we define a comprehensive objective function S, as the product of three

  17. Investigating fluvial pattern and delta-planform geometry based on varying intervals of flood and interflood

    Science.gov (United States)

    Rambo, J. E.; Kim, W.; Miller, K.

    2017-12-01

    Physical modeling of a delta's evolution can represent how changing the intervals of flood and interflood can alter a delta's fluvial pattern and geometry. Here we present a set of six experimental runs in which sediment and water were discharged at constant rates over each experiment. During the "flood" period, both sediment and water were discharged at rates of 0.25 cm3/s and 15 ml/s respectively, and during the "interflood" period, only water was discharged at 7.5 ml/s. The flood periods were only run for 30 minutes to keep the total volume of sediment constant. Run 0 did not have an interflood period and therefore ran with constant sediment and water discharge for the duration of the experiment.The other five runs had either 5, 10, or 15-min intervals of flood with 5, 10, or 15-min intervals of interflood. The experimental results show that Run 0 had the smallest topset area. This is due to a lack of surface reworking that takes place during interflood periods. Run 1 had 15-minute intervals of flood and 15-minute intervals of interflood, and it had the largest topset area. Additionally, the experiments that had longer intervals of interflood than flood had more elongated delta geometries. Wetted fraction color maps were also created to plot channel locations during each run. The maps show that the runs with longer interflood durations had channels occurring predominantly down the middle with stronger incisions; these runs produced deltas with more elongated geometries. When the interflood duration was even longer, however, strong channels started to occur at multiple locations. This increased interflood period allowed for the entire area over the delta's surface to be reworked, thus reducing the downstream slope and allowing channels to be more mobile laterally. Physical modeling of a delta allows us to predict a delta's resulting geometry given a set of conditions. This insight is needed especially with delta's being the home to many populations of people and

  18. Parameterization experiments performed via synthetic mass movements prototypes generated by 3D slope stability simulator

    Science.gov (United States)

    Colangelo, Antonio C.

    2010-05-01

    The central purpose of this work is to perform a reverse procedure in the mass movement conventional parameterization approach. The idea is to generate a number of synthetic mass movements by means of the "slope stability simulator" (Colangelo, 2007), and compeer their morphological and physical properties with "real" conditions of effective mass movements. This device is an integrated part of "relief unity emulator" (rue), that permits generate synthetic mass movements in a synthetic slope environment. The "rue" was build upon fundamental geomorphological concepts. These devices operate with an integrated set of mechanical, geomorphic and hydrological models. The "slope stability simulator" device (sss) permits to perform a detailed slope stability analysis in a theoretical three dimensional space, by means of evaluation the spatial behavior of critical depths, gradients and saturation levels in the "potential rupture surfaces" inferred along a set of slope profiles, that compounds a synthetic slope unity. It's a meta-stable 4-dimensional object generated by means of "rue", that represents a sequence evolution of a generator profile applied here, was adapted the infinite slope model for slope. Any slope profiles were sliced by means of finite element solution like in Bishop method. For the synthetic slope systems generated, we assume that the potential rupture surface occurs at soil-regolith or soil-rock boundary in slope material. Sixteen variables were included in the "rue-sss" device that operates in an integrated manner. For each cell, the factor of safety was calculated considering the value of shear strength (cohesion and friction) of material, soil-regolith boundary depth, soil moisture level content, potential rupture surface gradient, slope surface gradient, top of subsurface flow gradient, apparent soil bulk density and vegetation surcharge. The slope soil was considered as cohesive material. The 16 variables incorporated in the models were analyzed for

  19. A Novel Way To Practice Slope.

    Science.gov (United States)

    Kennedy, Jane B.

    1997-01-01

    Presents examples of using a tic-tac-toe format to practice finding the slope and identifying parallel and perpendicular lines from various equation formats. Reports the successful use of this format as a review in both precalculus and calculus classes before students work with applications of analytic geometry. (JRH)

  20. Slope streaks on Mars: A new “wet” mechanism

    Science.gov (United States)

    Kreslavsky, Mikhail A.; Head, James W.

    2009-06-01

    Slope steaks are one of the most intriguing modern phenomena observed on Mars. They have been mostly interpreted as some specific type of granular flow. We propose another mechanism for slope streak formation on Mars. It involves natural seasonal formation of a modest amount of highly concentrated chloride brines within a seasonal thermal skin, and runaway propagation of percolation fronts. Given the current state of knowledge of temperature regimes and the composition and structure of the surface layer in the slope streak regions, this mechanism is consistent with the observational constraints; it requires an assumption that a significant part of the observed chlorine to be in form of calcium and ferric chloride, and a small part of the observed hydrogen to be in form of water ice. This "wet" mechanism has a number of appealing advantages in comparison to the widely accepted "dry" granular flow mechanism. Potential tests for the "wet" mechanism include better modeling of the temperature regime and observations of the seasonality of streak formation.

  1. Effect of Slope, Rainfall Intensity and Mulch on Erosion and Infiltration under Simulated Rain on Purple Soil of South-Western Sichuan Province, China

    Directory of Open Access Journals (Sweden)

    Muhammad Naeem Khan

    2016-11-01

    Full Text Available Purple soil is widely distributed in the hilly areas of the Sichuan basin, southwest China, and is highly susceptible to water erosion. The triggering of this process is related to slope, rainfall intensity and surface cover. Therefore, this study assesses the effects of different simulated rainfall intensities with different slopes on hydrological and erosional processes in un-mulched and mulched purple soils. Results show that the sediment and water losses increased with an increase of rainfall intensity and slope steepness. Generally, the slope contribution (Sc on water and sediment losses decreased with increasing rainfall intensity and slope steepness under both un-mulched and mulched soil. In un-mulched conditions, water losses were independent of slope steepness (Sc < 50% during the highest rainfall intensity. However, in mulched soil, the higher contributions of slope (Sc and rainfall (Rc were found for water and sediment losses, respectively, i.e., >50%, except during the increase in slope steepness from 15° to 25° under the highest rainfall intensity (120 mm·h−1. The effectiveness of mulch was more pronounced in reducing sediment losses (81%–100% compared with water losses (14%–100%. The conservation effectiveness of mulch both decreased and increased with slope steepness for water and sediment losses, respectively, under higher rainfall intensities. Water infiltration and recharge coefficient (RC decreased with an increase of slope steepness, while with an increase in rainfall intensity, the water infiltration and RC were increased and decreased, respectively, in both un-mulched and mulched soil. On the other hand, mulched soil maintained a significantly (α = 0.05 higher infiltration capacity and RC compared to that of the un-mulched soil.

  2. [Co-occurrence of soil fauna communities with changes in altitude on the northern slope of Changbai Mountain].

    Science.gov (United States)

    Tong, Fuchun; Jin, Zhedong; Wang, Qingli; Xiao, Yihua

    2003-10-01

    The co-occurrence of soil fauna communities at different altitudes may reflect at some extent the relationships among communities, their coexistence, and the replacement of species along the altitude gradient. The continuous or disjunctive distribution of different species along altitude gradient not only reflected the environment variation at altitude gradient, but also the biological and ecological spatiality as well as the adaptability of species. The northern slope of Changbai Moutain has not only a high diversity in soil fauna types and species, but also a high variation of diversity pattern along the altitude gradient, which is a perfect transect for the research of biodiversity and gradient patterns. From 550 m to 2,560 m on the northern slope of Changbai Mountain, twenty-two plots were investigated with an interval of 100 m in altitude. By using Jaccard index, the co-occurrence of soil fauna communities at different altitudes was analyzed. For the species of different life forms or for all the species as a whole, the co-occurrence of soil faunae between neighboring communities was the highest, except for that between different soil fauna types. The peak and valley values of the co-occurrence of soil fauna communities along altitude gradient were matched with their gradient patterns, and the co-occurrence of soil faunae at different layers or all of the soil fauna communities were decreased with increasing altitude difference.

  3. Recent and future warm extreme events and high-mountain slope stability.

    Science.gov (United States)

    Huggel, C; Salzmann, N; Allen, S; Caplan-Auerbach, J; Fischer, L; Haeberli, W; Larsen, C; Schneider, D; Wessels, R

    2010-05-28

    The number of large slope failures in some high-mountain regions such as the European Alps has increased during the past two to three decades. There is concern that recent climate change is driving this increase in slope failures, thus possibly further exacerbating the hazard in the future. Although the effects of a gradual temperature rise on glaciers and permafrost have been extensively studied, the impacts of short-term, unusually warm temperature increases on slope stability in high mountains remain largely unexplored. We describe several large slope failures in rock and ice in recent years in Alaska, New Zealand and the European Alps, and analyse weather patterns in the days and weeks before the failures. Although we did not find one general temperature pattern, all the failures were preceded by unusually warm periods; some happened immediately after temperatures suddenly dropped to freezing. We assessed the frequency of warm extremes in the future by analysing eight regional climate models from the recently completed European Union programme ENSEMBLES for the central Swiss Alps. The models show an increase in the higher frequency of high-temperature events for the period 2001-2050 compared with a 1951-2000 reference period. Warm events lasting 5, 10 and 30 days are projected to increase by about 1.5-4 times by 2050 and in some models by up to 10 times. Warm extremes can trigger large landslides in temperature-sensitive high mountains by enhancing the production of water by melt of snow and ice, and by rapid thaw. Although these processes reduce slope strength, they must be considered within the local geological, glaciological and topographic context of a slope.

  4. Mapping of slopes for the operation of agricultural harvesters in Bandeirantes Municipality (PR

    Directory of Open Access Journals (Sweden)

    Gustavo Rodrigues Gimenes

    2017-03-01

    Full Text Available The slope of terrain represents a risk factor for mechanized harvesting, leading to impediments or restrictions on agricultural operations, or even to machines toppling over in the field. Recently, the Digital Terrain Model (DTM has become widely adopted as one of the most viable techniques for obtaining slope and elevation. Therefore, this study aims to assess methods of acquiring DTMs to calculate the slope, and to determine the areas that are suitable and unsuitable for the operation of harvesters in the municipality of Bandeirantes (PR. Four methods were selected to produce DTMs for the construction of slope zoning maps applicable for harvester operations. The image sources included SRTM, ASTER GDEM, digitizing contour lines and kriging of spatial point data. After generating DTMs by the four different methods, the area suitable for the operation of harvesters was obtained based on the limits of operational slopes for harvesters in the literature. The high-resolution images, such as those obtained by scanning the contour lines and ASTER GDEM gave the best representation of the ground surface. Regardless of the method used to obtain the operational slopes, the municipality has a large area that is suitable for mechanized harvesting.

  5. Continental slope sea level and flow variability induced by lateral movements of the Gulf Stream in the Middle Atlantic Bight

    Science.gov (United States)

    Böhm, E.; Hopkins, T. S.; Pietrafesa, L. J.; Churchill, J. H.

    2006-08-01

    As described by [Csanady, G.T., Hamilton, P., 1988. Circulation of slope water. Continental Shelf Research 8, 565-624], the flow regime over the slope of the southern Middle Atlantic Bight (MAB) includes a current reversal in which southwestward flow over the upper and middle slope becomes entrained in the northeastward current adjacent to the Gulf Stream. In this paper we use satellite-derived data to quantify how lateral motions of the Gulf Stream impact this current system. In our analysis, the Gulf Stream’s thermal front is delineated using a two-year time series of sea surface temperature derived from NOAA/AVHRR satellite data. Lateral motions of the Gulf Stream are represented in terms of temporal variations of the area, east of 73°W, between the Gulf Stream thermal front and the shelf edge. Variations of slope water flow within this area are represented by anomalies of geostrophic velocity as derived from the time series of the sea level anomaly determined from TOPEX/POSEIDON satellite altimeter data. A strong statistical relationship is found between Gulf Stream displacements and parabathic flow over the continental slope. It is such that the southwestward flow over the slope is accelerated when the Gulf Stream is relatively far from the shelf edge, and is decelerated (and perhaps even reversed) when the Gulf Stream is close to the shelf edge. This relationship between Gulf Stream displacements and parabathic flow is also observed in numerical simulations produced by the Miami Isopycnic Coordinate Model. In qualitative terms, it is consistent with the notion that when the Gulf Stream is closer to the 200-m isobath, it is capable of entraining a larger fraction of shelf water masses. Alternatively, when the Gulf Stream is far from the shelf-break, more water is advected into the MAB slope region from the northeast. Analysis of the diabathic flow indicates that much of the cross-slope transport by which the southwestward flow entering the study region is

  6. Comparison study between traditional and finite element methods for slopes under heavy rainfall

    Directory of Open Access Journals (Sweden)

    M. Rabie

    2014-08-01

    Moreover, slope stability concerning rainfall and infiltration is analyzed. Specially, two kinds of infiltrations (saturated and unsaturated are considered. Many slopes become saturated during periods of intense rainfall or snowmelt, with the water table rising to the ground surface, and water flowing essentially parallel to the direction of the “slope” and “Influence” of the change in shear strength, density, pore-water pressure and seepage force in soil slices on the slope stability is explained. Finally, it is found that classical limit equilibrium methods are highly conservative compared to the finite element approach. For assessment the factor of safety for slope using the later technique, no assumption needs to be made in advance about the shape or location of the failure surface, slice side forces and their directions. This document outlines the capabilities of the finite element method in the analysis of slope stability problems.

  7. The effect of posterior tibial slope on simulated laxity tests in cruciate-retaining TKA

    NARCIS (Netherlands)

    Marra, Marco A.; Strzelczak, Marta; Heesterbeek, Petra J.C.; van de Groes, Sebastiaan; Janssen, Dennis; Koopman, Bart F.J.M.; Wymenga, Ate B.; Verdonschot, Nico

    2017-01-01

    INTRODUCTION: Tibial slope can affect the outcomes of Total Knee Arthroplasty (TKA). More posterior slope potentially helps releasing a too tight flexion gap and it is generally associated with a wider range of post-operative knee flexion. However, the mechanism by which tibial slope affects the

  8. Identification of atrial fibrillation using electrocardiographic RR-interval difference

    Science.gov (United States)

    Eliana, M.; Nuryani, N.

    2017-11-01

    Automated detection of atrial fibrillation (AF) is an interesting topic. It is an account of very dangerous, not only as a trigger of embolic stroke, but it’s also related to some else chronical disease. In this study, we analyse the presence of AF by determining irregularities of RR-interval. We utilize the interval comparison to measure the degree of irregularities of RR-interval in a defined segment. The series of RR-interval is segmented with the length of 10 of them. In this study, we use interval comparison for the method. We were comparing all of the intervals there each other. Then we put the threshold to define the low difference and high difference (δ). A segment is defined as AF or Normal Sinus by the number of high δ, so we put the tolerance (β) of high δ there. We have used this method to test the 23 patients data from MIT-BIH. Using the approach and the clinical data we find accuracy, sensitivity, and specificity of 84.98%, 91.99%, and 77.85% respectively.

  9. Pulling up the runaway: the effect of new evidence on euthanasia's slippery slope.

    Science.gov (United States)

    Ryan, C J

    1998-10-01

    The slippery slope argument has been the mainstay of many of those opposed to the legalisation of physician-assisted suicide and euthanasia. In this paper I re-examine the slippery slope in the light of two recent studies that examined the prevalence of medical decisions concerning the end of life in the Netherlands and in Australia. I argue that these two studies have robbed the slippery slope of the source of its power--its intuitive obviousness. Finally I propose that, contrary to the warnings of the slippery slope, the available evidence suggests that the legalisation of physician-assisted suicide might actually decrease the prevalence of non-voluntary and involuntary euthanasia.

  10. Effect of table top slope and height on body posture and muscular activity pattern.

    Science.gov (United States)

    Hassaïne, M; Hamaoui, A; Zanone, P-G

    2015-04-01

    The objective of this study was to assess the effect of table top slope and height on body posture and muscular activity pattern. Twelve asymptomatic participants performed a 5-min reading task while sitting, in six experimental conditions manipulating the table top slope (20° backward slope, no slope) and its height (low, medium, up). EMGs recordings were taken on 9 superficial muscles located at the trunk and shoulder level, and the angular positions of the head, trunk and pelvis were assessed using an inertial orientation system. Results revealed that the sloping table top was associated with a higher activity of deltoideus pars clavicularis (P<0.05) and a smaller flexion angle of the head (P<0.05). A tentative conclusion is that a sloping table top induces a more erect posture of the head and the neck, but entails an overload of the shoulder, which might be harmful on the long run. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Probabilistic approaches for geotechnical site characterization and slope stability analysis

    CERN Document Server

    Cao, Zijun; Li, Dianqing

    2017-01-01

    This is the first book to revisit geotechnical site characterization from a probabilistic point of view and provide rational tools to probabilistically characterize geotechnical properties and underground stratigraphy using limited information obtained from a specific site. This book not only provides new probabilistic approaches for geotechnical site characterization and slope stability analysis, but also tackles the difficulties in practical implementation of these approaches. In addition, this book also develops efficient Monte Carlo simulation approaches for slope stability analysis and implements these approaches in a commonly available spreadsheet environment. These approaches and the software package are readily available to geotechnical practitioners and alleviate them from reliability computational algorithms. The readers will find useful information for a non-specialist to determine project-specific statistics of geotechnical properties and to perform probabilistic analysis of slope stability.

  12. Mars Climate History: Insights From Impact Crater Wall Slope Statistics

    Science.gov (United States)

    Kreslavsky, Mikhail A.; Head, James W.

    2018-02-01

    We use the global distribution of the steepest slopes on crater walls derived from Mars Orbiter Laser Altimeter profile data to assess the magnitudes of degradational processes with latitude, altitude, and time. We independently confirm that Amazonian polar/high-latitude crater slope modification is substantial, but that craters in the low latitudes have essentially escaped significant slope modification since the Early Hesperian. We find that the total amount of crater wall degradation in the Late Noachian is very small in comparison to the circumpolar regions in the Late Amazonian, an observation that we interpret to mean that the Late Noachian climate was not characterized by persistent and continuous warm and wet conditions. A confirmed elevational zonality in degradation in the Early Hesperian is interpreted to mean that the atmosphere was denser than today.

  13. Optimal parallel algorithms for problems modeled by a family of intervals

    Science.gov (United States)

    Olariu, Stephan; Schwing, James L.; Zhang, Jingyuan

    1992-01-01

    A family of intervals on the real line provides a natural model for a vast number of scheduling and VLSI problems. Recently, a number of parallel algorithms to solve a variety of practical problems on such a family of intervals have been proposed in the literature. Computational tools are developed, and it is shown how they can be used for the purpose of devising cost-optimal parallel algorithms for a number of interval-related problems including finding a largest subset of pairwise nonoverlapping intervals, a minimum dominating subset of intervals, along with algorithms to compute the shortest path between a pair of intervals and, based on the shortest path, a parallel algorithm to find the center of the family of intervals. More precisely, with an arbitrary family of n intervals as input, all algorithms run in O(log n) time using O(n) processors in the EREW-PRAM model of computation.

  14. Phytoplankton biovolume is independent from the slope of the size spectrum in the oligotrophic atlantic ocean

    KAUST Repository

    Moreno-Ostos, Enrique

    2015-08-06

    Modelling the size-abundance spectrum of phytoplankton has proven to be a very useful tool for the analysis of physical-biological coupling and the vertical flux of carbon in oceanic ecosystems at different scales. A frequent observation relates high phytoplankton biovolume in productive regions with flatter spectrum slope and the opposite in oligotrophic ecosystems. Rather than this, the relationship between high biovolume phytoplankton assemblages and flatter size-abundance spectra does not correspond with measurements of the phytoplankton community in the Atlantic Ocean open waters. As part of the Malaspina Circunnavegation Expedition, sixty seven sampling stations within the Atlantic Ocean covering six oceanographic provinces, at different seasons, produced a complete set of phytoplankton size-spectra whose slope and biovolume did not show any obvious interrelation. In these oligotrophic sites, small (procaryotes) and medium-size (nanoplankton) cells are responsible for the most part of biovolume, and their response to environmental conditions does not apply to changes in the size-abundance spectrum slope as expected in richer, large-cell dominated ecosystems.

  15. A Model based Examination of Conditions for Ignition of Turbidity Currents on Slopes

    Science.gov (United States)

    Mehta, A. J.; Krishna, G.

    2009-12-01

    Turbidity currents form a major mechanism for the movement of sediment in the natural environment. Self-accelerating turbidity currents over continental slopes are of considerable scientific and engineering interest due to their role as agents for submarine sediment transportation from the shelf to the seabed. Such currents are called ignitive provided they eventually reach a catastrophic state as acceleration results in high sediment loads due to erosion of the sloping bed. A numerical model, which treats the fluid and the particles as two separate phases, is applied to investigate the effects of particle size, initial flow friction velocity and mild bed slope on the ignitive condition. Laboratory experimental data have been included as part of the analysis for qualitative comparison purposes. Ignition for the smallest of the three selected sizes (0.21mm) of medium sand typical of Florida beaches was found to depend on the initial conditions at the head of the slope as determined by the pressure gradient. Bed slope seemed to be of secondary importance. For the two sands with larger grain sizes (0.28mm and 0.35mm) the slope was found to play a more important role when compared to the initial pressure gradient. For a given pressure gradient, increasing the slope increased the likelihood of self-acceleration. It is concluded that in general ignition cannot be defined merely in terms of positive values of the velocity gradient and the sediment flux gradient along the slope. Depending on particle size the initial pressure gradient can also play a role. For the selected initial conditions (grain size, pressure gradient and bed slope), out of the 54 combinations tested, all except three satisfied the Knapp-Bagnold criterion for auto-suspension irrespective of whether the turbid current was ignitive or non-ignitive. In all 54 cases the current was found to erode the bed. Further use of the model will require accommodation of wider ranges of sediment size and bed density

  16. Slope Safety Factor Calculations With Non-Linear Yield Criterion Using Finite Elements

    DEFF Research Database (Denmark)

    Clausen, Johan; Damkilde, Lars

    2006-01-01

    The factor of safety for a slope is calculated with the finite element method using a non-linear yield criterion of the Hoek-Brown type. The parameters of the Hoek-Brown criterion are found from triaxial test data. Parameters of the linear Mohr-Coulomb criterion are calibrated to the same triaxial...... are carried out at much higher stress levels than present in a slope failure, this leads to the conclusion that the use of the non-linear criterion leads to a safer slope design...

  17. Asymmetric Effects of Subaerial and Subaqueous Basement Slopes on Self-Similar Morphology of Prograding Deltas

    Science.gov (United States)

    Lai, Steven Yueh Jen; Hsiao, Yung-Tai; Wu, Fu-Chun

    2017-12-01

    Deltas form over basements of various slope configurations. While the morphodynamics of prograding deltas over single-slope basements have been studied previously, our understanding of delta progradation over segmented basements is still limited. Here we use experimental and analytical approaches to investigate the deltaic morphologies developing over two-slope basements with unequal subaerial and subaqueous slopes. For each case considered, the scaled profiles of the evolving delta collapse to a single profile for constant water and sediment influxes, allowing us to use the analytical self-similar profiles to investigate the individual effects of subaerial/subaqueous slopes. Individually varying the subaerial/subaqueous slopes exerts asymmetric effects on the morphologies. Increasing the subaerial slope advances the entire delta; increasing the subaqueous slope advances the upstream boundary of the topset yet causes the downstream boundary to retreat. The delta front exhibits a first-retreat-then-advance migrating trend with increasing subaqueous slope. A decrease in subaerial topset length is always accompanied by an increase in subaqueous volume fraction, no matter which segment is steepened. Applications are presented for estimating shoreline retreat caused by steepening of basement slopes, and estimating subaqueous volume and delta front using the observed topset length. The results may have implications for real-world delta systems subjected to upstream tectonic uplift and/or downstream subsidence. Both scenarios would exhibit reduced topset lengths, which are indicative of the accompanied increases in subaqueous volume and signal tectonic uplift and/or subsidence that are at play. We highlight herein the importance of geometric controls on partitioning of sediment between subaerial and subaqueous delta components.

  18. Sedimentary dynamics and high-frequency sequence stratigraphy of the southwestern slope of Great Bahama Bank

    Science.gov (United States)

    Wunsch, Marco; Betzler, Christian; Eberli, Gregor P.; Lindhorst, Sebastian; Lüdmann, Thomas; Reijmer, John J. G.

    2018-01-01

    New geophysical data from the leeward slope of Great Bahama Bank show how contour currents shape the slope and induce re-sedimentation processes. Along slope segments with high current control, drift migration and current winnowing at the toe of slope form a deep moat. Here, the slope progradation is inhibited by large channel incisions and the accumulation of large mass transport complexes, triggered by current winnowing. In areas where the slope is bathed by weaker currents, the accumulation of mass transport complexes and channel incision is rather controlled by the position of the sea level. Large slope failures were triggered during the Mid-Pleistocene transition and Mid-Brunhes event, both periods characterized by changes in the cyclicity or the amplitude of sea-level fluctuations. Within the seismic stratigraphic framework of third order sequences, four sequences of higher order were identified in the succession of the upper Pleistocene. These higher order sequences also show clear differences in function of the slope exposure to contour currents. Two stochastic models emphasize the role of the contour currents and slope morphology in the facies distribution in the upper Pleistocene sequences. In areas of high current influence the interplay of erosional and depositional processes form a complex facies pattern with downslope and along strike facies alterations. In zones with lower current influence, major facies alternations occur predominately in downslope direction, and a layer-cake pattern characterizes the along strike direction. Therefore, this study highlights that contour currents are an underestimated driver for the sediment distribution and architecture of carbonate slopes.

  19. Age-related changes in physical and perceptual markers of recovery following high-intensity interval cycle exercise.

    Science.gov (United States)

    Borges, Nattai R; Reaburn, Peter R; Doering, Thomas M; Argus, Christos K; Driller, Matthew W

    2018-05-29

    The purpose of this study was to compare physical performance, perceptual and haematological markers of recovery in well-trained masters and young cyclists across 48 h following a bout of repeated high-intensity interval exercise. Nine masters (mean ± SD; age = 55.6 ± 5.0 years) and eight young (age = 25.9 ± 3.0 years) cyclists performed a high-intensity interval exercise session consisting of 6 × 30 s intervals at 175% peak power output with 4.5 min rest between efforts. Maximal voluntary contraction (MVC), 10 s sprint (10SST), 30-min time trial (30TT) performance, creatine kinase concentration (CK) and perceptual measures of motivation, total recovery, fatigue and muscle soreness were collected at baseline and at standardised time points across the 48 h recovery period. No significant group-time interactions were observed for performance of MVC, 10SST, 30TT and CK (P > 0.05). A significant reduction in 10SST peak power was found in both masters (P = 0.002) and young (P = 0.003) cyclists at 1 h post exercise, however, both groups physically recovered at similar rates. Neither group showed significant (P > 0.05) or practically meaningful increases in CK (%∆ < 10%). A significant age-related difference was found for perceptual fatigue (P = 0.01) and analysis of effect size (ES) showed that perceptual recovery was delayed with masters cyclists reporting lower motivation (ES ±90%CI = 0.69 ± 0.77, moderate), greater fatigue (ES = 0.75 ± 0.93, moderate) and muscle soreness (ES = 0.61 ± 0.70, moderate) after 48 h of recovery. The delay in perceived recovery may have negative effects on long-term participation to systematic training.

  20. Effect of Variations in Long-Duration Rainfall Intensity on Unsaturated Slope Stability

    Directory of Open Access Journals (Sweden)

    Hsin-Fu Yeh

    2018-04-01

    Full Text Available In recent years, many scientific methods have been used to prove that the Earth’s climate is changing. Climate change can affect rainfall patterns, which can in turn affect slope safety. Therefore, this study analyzed the effects of climate change on rainfall patterns from the perspective of rainfall intensity. This analysis was combined with numerical model analysis to examine the rainfall patterns of the Zengwen reservoir catchment area and its effects on slope stability. In this study, the Mann–Kendall test and the Theil–Sen estimator were used to analyze the rainfall records of rainfall stations at Da-Dong-Shan, Ma-To-Shan, and San-Jiao-Nan-Shan. The rainfall intensity of the Zengwen reservoir catchment area showed an increasing trend from 1990–2016. In addition, the analysis results of rainfall intensity trends were used for qualitative analysis of seepage and slope stability. The trend analysis result showed that in the future, from 2017–2100, if the amount of rainfall per hour continues to rise at about 0.1 mm per year, the amount of seepage will increase at the slope surface boundary and significantly change pore water pressure in the soil. As a result, the time of the occurrence of slope instability after the start of rainfall will decrease from 20 to 13 h, and the reduction in the safety coefficient will increase from 32 to 41%. Therefore, to decrease the effects of slope disasters on the safety of the Zengwen reservoir and its surrounding areas, changes in rainfall intensity trends should be considered for slope safety in this region. However, the results of trend analyses were weak and future research is needed using a wider range of precipitation data and detailed hydrological analysis to better predict rainfall pattern variations.