WorldWideScience

Sample records for relative insulin deficiency

  1. Hyperglucagonemia during insulin deficiency accelerates protein catabolism

    International Nuclear Information System (INIS)

    Nair, K.S.; Halliday, D.; Matthews, D.E.; Welle, S.L.

    1987-01-01

    Hyperglucagonemia coexists with insulin deficiency or insulin resistance in many conditions where urinary nitrogen excretion is increased, but the precise role of glucagon in these conditions is controversial. The purpose of this study was to evaluate the effect of hyperglucagonemia on protein metabolism in insulin-deficient subjects. The authors used the stable isotope of an essential amino acid (L-[1- 13 C]leucine) as a tracer of in vivo protein metabolism. A combined deficiency of insulin and glucagon was induced by intravenous infusion of somatostatin. Hyperglucagonemia and hypoinsulinemia were induced by infusions of somatostatin and glucagon. When somatostatin alone was infused leucine flux increased, indicating a 6-17% increase in proteolysis. When somatostatin and glucagon were infused, leucine flux increased, indicating a 12-32% increase in proteolysis. The increase in leucine flux during the infusion of somatostatin and glucagon was higher than the increase during infusion of somatostatin alone. Somatostatin alone did not change leucine oxidation, whereas the somatostatin plus glucagon increased leucine oxidation 100%. They conclude that hyperglucagonemia accelerated proteolysis and leucine oxidation in insulin-deficient humans

  2. SOCS-1 deficiency does not prevent diet-induced insulin resistance

    DEFF Research Database (Denmark)

    Emanuelli, Brice; Macotela, Yazmin; Boucher, Jérémie

    2008-01-01

    Obesity is associated with inflammation and increased expression of suppressor of cytokine signaling (SOCS) proteins, which inhibit cytokine and insulin signaling. Thus, reducing SOCS expression could prevent the development of obesity-induced insulin resistance. Using SOCS-1 knockout mice, we...... investigated the contribution of SOCS-1 in the development of insulin resistance induced by a high-fat diet (HFD). SOCS-1 knockout mice on HFD gained 70% more weight, displayed a 2.3-fold increase in epididymal fat pads mass and increased hepatic lipid content. This was accompanied by increased mRNA expression...... of leptin and the macrophage marker CD68 in white adipose tissue and of SREBP1c and FAS in liver. HFD also induced hyperglycemia in SOCS-1 deficient mice with impairment of glucose and insulin tolerance tests. Thus, despite the role of SOCS proteins in obesity-related insulin resistance, SOCS-1 deficiency...

  3. The influence of puberty on vitamin D status in obese children and the possible relation between vitamin D deficiency and insulin resistance.

    Science.gov (United States)

    Gutiérrez Medina, Sonsoles; Gavela-Pérez, Teresa; Domínguez-Garrido, María Nieves; Gutiérrez-Moreno, Elisa; Rovira, Adela; Garcés, Carmen; Soriano-Guillén, Leandro

    2015-01-01

    Puberty can affect vitamin D levels. The goal of this study was to analyze the relation between vitamin D deficiency and puberty in obese Spanish children, along with the possible interrelation between vitamin D status and degree of insulin resistance. A cross-sectional study was carried out, in which clinical and biochemical data were gathered from 120 obese and 50 normal weight children between January 2011 and January 2013. Mean vitamin D levels were 19.5 and 31.6 ng/mL in obese pubertal and obese prepubertal children, respectively. About 75% of the obese pubertal subjects and 46% of the obese prepubertal subjects had vitamin D deficiency. Vitamin D levels were significantly lower in pubescent subjects compared with pre-pubescent subjects in summer, fall, and winter. There was no apparent relation between vitamin D levels and homeostasis model assessment index for insulin resistence (expressed in standard deviation score for sex and Tanner stage) in either puberty or pre-puberty. Puberty may be a risk factor for the vitamin D deficiency commonly found in the obese child population. This deficiency is not associated with higher insulin resistance in obese pubertal children compared with obese prepubertal children.

  4. Possible contribution of taurine to distorted glucagon secretion in intra-islet insulin deficiency: a metabolome analysis using a novel α-cell model of insulin-deficient diabetes.

    Directory of Open Access Journals (Sweden)

    Megumi Bessho

    Full Text Available Glycemic instability is a serious problem in patients with insulin-deficient diabetes, and it may be due in part to abnormal endogenous glucagon secretion. However, the intracellular metabolic mechanism(s involved in the aberrant glucagon response under the condition of insulin deficiency has not yet been elucidated. To investigate the metabolic traits that underlie the distortion of glucagon secretion under insulin deficient conditions, we generated an αTC1-6 cell line with stable knockdown of the insulin receptor (IRKD, i.e., an in vitro α-cell model for insulin-deficient diabetes, which exhibits an abnormal glucagon response to glucose. A comprehensive metabolomic analysis of the IRKD αTC1-6 cells (IRKD cells revealed some candidate metabolites whose levels differed markedly compared to those in control αTC1-6 cells, but also which could affect the glucagon release in IRKD cells. Of these candidates, taurine was remarkably increased in the IRKD cells and was identified as a stimulator of glucagon in αTC1-6 cells. Taurine also paradoxically exaggerated the glucagon secretion at a high glucose concentration in IRKD cells and islets with IRKD. These results indicate that the metabolic alterations induced by IRKD in α-cells, especially the increase of taurine, may lead to the distorted glucagon response in IRKD cells, suggesting the importance of taurine in the paradoxical glucagon response and the resultant glucose instability in insulin-deficient diabetes.

  5. Decreased autophosphorylation of EGF receptor in insulin-deficient diabetic rats

    International Nuclear Information System (INIS)

    Okamoto, M.; Kahn, C.R.; Maron, R.; White, M.F.

    1988-01-01

    The authors have previously reported that despite an increase in receptor concentration, there is a decrease in autophosphorylation and tyrosine kinase activity of the insulin receptor in insulin-deficient diabetic rats. To determine if other tyrosine kinases might be altered, they have studied the epidermal growth factor (EGF) receptor kinase in wheat germ agglutinin-purified, Triton X-100-solubilized liver membranes from streptozotocin (STZ)-induced diabetic rats and the insulin-deficient BB rat. They find that autophosphorylation of EGF receptor is decreased in proportion to the severity of the diabetic state in STZ rats with a maximal decrease of 67%. A similar decrease in autophosphorylation was observed in diabetic BB rats that was partially normalized by insulin treatment. Separation of tryptic phosphopeptides by reverse-phase high-performance liquid chromatography revealed a decrease in labeling at all sites of autophosphorylation. A parallel decrease in EGF receptor phosphorylation was also found by immunoblotting with an antiphosphotyrosine antibody. EGF receptor concentration, determined by Scatchard analysis of 125 I-labeled EGF binding, was decreased by 39% in the STZ rat and 27% in the diabetic BB rat. Thus autophosphorylation of EGF receptor, like that of the insulin receptor, is decreased in insulin-deficient rat liver. In the case of EGF receptor, this is due in part to a decrease in receptor number and in part to a decrease in the specific activity of the kinase

  6. Insulin deficiency exacerbates cerebral amyloidosis and behavioral deficits in an Alzheimer transgenic mouse model

    Directory of Open Access Journals (Sweden)

    Teng Wei-Ping

    2010-11-01

    Full Text Available Abstract Background Although increasing evidence has indicated that brain insulin dysfunction is a risk factor for Alzheimer disease (AD, the underlying mechanisms by which insulin deficiency may impact the development of AD are still obscure. Using a streptozotocin (STZ-induced insulin deficient diabetic AD transgenic mouse model, we evaluated the effect of insulin deficiency on AD-like behavior and neuropathology. Results Our data showed that administration of STZ increased the level of blood glucose and reduced the level of serum insulin, and further decreased the phosphorylation levels of insulin receptors, and increased the activities of glycogen synthase kinase-3α/β and c-Jun N-terminal kinase in the APP/PS1 mouse brain. We further showed that STZ treatment promoted the processing of amyloid-β (Aβ precursor protein resulting in increased Aβ generation, neuritic plaque formation, and spatial memory deficits in transgenic mice. Conclusions Our present data indicate that there is a close link between insulin deficient diabetes and cerebral amyloidosis in the pathogenesis of AD.

  7. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice.

    Science.gov (United States)

    Patti, M E; Sun, X J; Bruening, J C; Araki, E; Lipes, M A; White, M F; Kahn, C R

    1995-10-20

    Insulin receptor substrate-1 (IRS-1) is the major cytoplasmic substrate of the insulin and insulin-like growth factor (IGF)-1 receptors. Transgenic mice lacking IRS-1 are resistant to insulin and IGF-1, but exhibit significant residual insulin action which corresponds to the presence of an alternative high molecular weight substrate in liver and muscle. Recently, Sun et al. (Sun, X.-J., Wang, L.-M., Zhang, Y., Yenush, L. P., Myers, M. G., Jr., Glasheen, E., Lane, W.S., Pierce, J. H., and White, M. F. (1995) Nature 377, 173-177) purified and cloned 4PS, the major substrate of the IL-4 receptor-associated tyrosine kinase in myeloid cells, which has significant structural similarity to IRS-1. To determine if 4PS is the alternative substrate of the insulin receptor in IRS-1-deficient mice, we performed immunoprecipitation, immunoblotting, and phosphatidylinositol (PI) 3-kinase assays using specific antibodies to 4PS. Following insulin stimulation, 4PS is rapidly phosphorylated in liver and muscle, binds to the p85 subunit of PI 3-kinase, and activates the enzyme. Insulin stimulation also results in the association of 4PS with Grb 2 in both liver and muscle. In IRS-1-deficient mice, both the phosphorylation of 4PS and associated PI 3-kinase activity are enhanced, without an increase in protein expression. Immunodepletion of 4PS from liver and muscle homogenates removes most of the phosphotyrosine-associated PI 3-kinase activity in IRS-1-deficient mice. Thus, 4PS is the primary alternative substrate, i.e. IRS-2, which plays a major role in physiologic insulin signal transduction via both PI 3-kinase activation and Grb 2/Sos association. In IRS-1-deficient mice, 4PS/IRS-2 provides signal transduction to these two major pathways of insulin signaling.

  8. The effect of insulin deficiency on the plasma clearance and exchange of high-density-lipoprotein phosphatidylcholine in rats.

    Science.gov (United States)

    Martins, I J; Redgrave, T G

    1992-01-01

    Triolein/cholesteryl oleate/cholesterol/phosphatidylcholine emulsions designed to model the lipid composition of chylomicrons were injected intravenously into control and streptozotocin-treated insulin-deficient rats. As previously described for lymph chylomicrons, the emulsion triolein was hydrolysed and phosphatidylcholine was transferred to the plasma high-density lipoproteins (HDL). This mechanism was used to introduce a phospholipid label into HDL in vivo. The subsequent clearance of phospholipid radioactivity from the plasma of insulin-deficient rats was significantly slower than in controls (P less than 0.025). Plasma clearance was similarly slower in insulin-deficient rats after injection of HDL that was previously labelled with radioactive phospholipids. After injection, the phospholipid label redistributed rapidly between the large-particle fraction of plasma lipoproteins (very-low- and low-density lipoproteins), and the lighter and heavier fractions of HDL. Compared with control rats, in insulin-deficient rats less of the phospholipid label was distributed to the lighter HDL fraction and more to the heavier HDL fraction, and this difference was not due to changes in activity of lecithin: cholesterol acyltransferase or in the apparent activity of phospholipid transfer protein. In insulin-deficient rats the changes in HDL phospholipid clearance and exchange appeared to be secondary to the associated hypertriglyceridaemia and the related changes in distribution of phospholipids between classes of plasma lipoproteins. PMID:1536661

  9. Hormone-sensitive lipase deficiency suppresses insulin secretion from pancreatic islets of Lepob/ob mice

    International Nuclear Information System (INIS)

    Sekiya, Motohiro; Yahagi, Naoya; Tamura, Yoshiaki; Okazaki, Hiroaki; Igarashi, Masaki; Ohta, Keisuke; Takanashi, Mikio; Kumagai, Masayoshi; Takase, Satoru; Nishi, Makiko; Takeuchi, Yoshinori; Izumida, Yoshihiko; Kubota, Midori; Ohashi, Ken; Iizuka, Yoko; Yagyu, Hiroaki; Gotoda, Takanari; Nagai, Ryozo; Shimano, Hitoshi; Yamada, Nobuhiro

    2009-01-01

    It has long been a matter of debate whether the hormone-sensitive lipase (HSL)-mediated lipolysis in pancreatic β-cells can affect insulin secretion through the alteration of lipotoxicity. We generated mice lacking both leptin and HSL (Lep ob/ob /HSL -/- ) and explored the role of HSL in pancreatic β-cells in the setting of obesity. Lep ob/ob /HSL -/- developed elevated blood glucose levels and reduced plasma insulin levels compared with Lep ob/ob /HSL +/+ in a fed state, while the deficiency of HSL did not affect glucose homeostasis in Lep +/+ background. The deficiency of HSL exacerbated the accumulation of triglycerides in Lep ob/ob islets, leading to reduced glucose-stimulated insulin secretion. The deficiency of HSL also diminished the islet mass in Lep ob/ob mice due to decreased cell proliferation. In conclusion, HSL affects insulin secretary capacity especially in the setting of obesity.

  10. Vitamin C deficiency aggravates tumor necrosis factor α-induced insulin resistance.

    Science.gov (United States)

    Qing, Zhou; Xiao-Hui, Wu; Xi-Mei, Wu; Chao-Chun, Zou

    2018-06-15

    Chronic low-grade inflammation plays a major role in the development of insulin resistance. The potential role and underlying mechanism of vitamin C, an antioxidant and anti-inflammatory agent, was investigated in tumor necrosis factor-α (TNF-α)-induced insulin resistance. Gulonolactone oxidase knockout (Gulo -/- ) mice genetically unable to synthesize vitamin C were used to induce insulin resistance by continuously pumping small doses of TNF-α for seven days, and human liver hepatocellular carcinoma cells (HepG2 cells) were used to induce insulin resistance by treatment with TNF-α. Vitamin C deficiency aggravated TNF-α-induced insulin resistance in Gulo -/- mice, resulting in worse glucose tolerance test (GTT) results, higher fasting plasma insulin level, and the inactivation of the protein kinase B (AKT)/glycogen synthase kinase-3β (GSK3β) pathway in the liver. Vitamin C deficiency also worsened liver lipid accumulation and inflammation in TNF-α-treated Gulo -/- mice. In HepG2 cells, vitamin C reversed the TNF-α-induced reduction of glucose uptake and glycogen synthesis, which were mediated by increasing GLUT2 levels and the activation of the insulin receptor substrate (IRS-1)/AKT/GSK3β pathway. Furthermore, vitamin C inhibited the TNF-α-induced activation of not only the mitogen-activated protein kinase (MAPKs), but also nuclear factor-kappa B (NF-κB) signaling. Taken together, vitamin C is essential for preventing and improving insulin resistance, and the supplementing with vitamin C may be an effective therapeutic intervention for metabolic disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Vitamin D deficiency is associated with insulin resistance in nondiabetics and reduced insulin production in type 2 diabetics.

    Science.gov (United States)

    Esteghamati, A; Aryan, Z; Esteghamati, Ar; Nakhjavani, M

    2015-04-01

    It is not known whether the association of serum 25-hydroxyvitamin D [25(OH)D] with glycemic measurements of individuals without diabetes is similar to those with diabetes or not. This study is aimed to investigate the association of serum 25(OH)D with glycemic markers of diabetics, nondiabetics, and prediabetics. A case-control study was conducted on age and sex matched 1,195 patients with type 2 DM, 121 prediabetics, and 209 healthy controls. Anthropometric variables, lipid profile, glycemic measurements, and serum 25(OH)D levels were recorded. Serum insulin and C-peptide levels were also measured. All glycemic measurements were compared between diabetics and nondiabetics and prediabetics at different vitamin D status. Patients with DM had lower serum 25(OH)D compared to prediabetics and healthy controls. Endogenous insulin production in response to food intake and in fasting was significantly lower in vitamin D deficient patients with DM compared to those with serum 25(OH)D>40 ng/ml. Diabetic women with serum 25(OH)D40 ng/ml. Healthy individuals with serum 25(OH)D<20 ng/ml had signs of insulin resistance as estimated by significant increase of HOMA-IR, HbA1c, and fasting plasma glucose (FPG). In addition, we found that serum 25(OH)D was inversely associated with insulin resistance. Vitamin D deficiency is associated with insulin resistance in nondiabetics, which is independent of obesity. Furthermore, vitamin D deficiency is associated with reduced insulin production in type 2 diabetics, which was mainly observed in men. Accordingly, a gender disparity also exists in association of serum 25(OH)D with glycemic measurements. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Crif1 Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice

    Science.gov (United States)

    Ryu, Min Jeong; Kim, Soung Jung; Kim, Yong Kyung; Choi, Min Jeong; Tadi, Surendar; Lee, Min Hee; Lee, Seong Eun; Chung, Hyo Kyun; Jung, Saet Byel; Kim, Hyun-Jin; Jo, Young Suk; Kim, Koon Soon; Lee, Sang-Hee; Kim, Jin Man; Kweon, Gi Ryang; Park, Ki Cheol; Lee, Jung Uee; Kong, Young Yun; Lee, Chul-Ho; Chung, Jongkyeong; Shong, Minho

    2013-01-01

    Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance. PMID:23516375

  13. Thrombospondin1 deficiency reduces obesity-associated inflammation and improves insulin sensitivity in a diet-induced obese mouse model.

    Directory of Open Access Journals (Sweden)

    Yanzhang Li

    Full Text Available Obesity is prevalent worldwide and is associated with insulin resistance. Advanced studies suggest that obesity-associated low-grade chronic inflammation contributes to the development of insulin resistance and other metabolic complications. Thrombospondin 1 (TSP1 is a multifunctional extracellular matrix protein that is up-regulated in inflamed adipose tissue. A recent study suggests a positive correlation of TSP1 with obesity, adipose inflammation, and insulin resistance. However, the direct effect of TSP1 on obesity and insulin resistance is not known. Therefore, we investigated the role of TSP1 in mediating obesity-associated inflammation and insulin resistance by using TSP1 knockout mice.Male TSP1-/- mice and wild type littermate controls were fed a low-fat (LF or a high-fat (HF diet for 16 weeks. Throughout the study, body weight and fat mass increased similarly between the TSP1-/- mice and WT mice under HF feeding conditions, suggesting that TSP1 deficiency does not affect the development of obesity. However, obese TSP1-/- mice had improved glucose tolerance and increased insulin sensitivity compared to the obese wild type mice. Macrophage accumulation and inflammatory cytokine expression in adipose tissue were reduced in obese TSP1-/- mice. Consistent with the local decrease in pro-inflammatory cytokine levels, systemic inflammation was also decreased in the obese TSP1-/- mice. Furthermore, in vitro data demonstrated that TSP1 deficient macrophages had decreased mobility and a reduced inflammatory phenotype.TSP1 deficiency did not affect the development of high-fat diet induced obesity. However, TSP1 deficiency reduced macrophage accumulation in adipose tissue and protected against obesity related inflammation and insulin resistance. Our data demonstrate that TSP1 may play an important role in regulating macrophage function and mediating obesity-induced inflammation and insulin resistance. These data suggest that TSP1 may serve as a

  14. Hematopoietic Kit Deficiency, rather than Lack of Mast Cells, Protects Mice from Obesity and Insulin Resistance.

    Science.gov (United States)

    Gutierrez, Dario A; Muralidhar, Sathya; Feyerabend, Thorsten B; Herzig, Stephan; Rodewald, Hans-Reimer

    2015-05-05

    Obesity, insulin resistance, and related pathologies are associated with immune-mediated chronic inflammation. Kit mutant mice are protected from diet-induced obesity and associated co-morbidities, and this phenotype has previously been attributed to their lack of mast cells. We performed a comprehensive metabolic analysis of Kit-dependent Kit(W/Wv) and Kit-independent Cpa3(Cre/+) mast-cell-deficient mouse strains, employing diet-induced or genetic (Lep(Ob/Ob) background) models of obesity. Our results show that mast cell deficiency, in the absence of Kit mutations, plays no role in the regulation of weight gain or insulin resistance. Moreover, we provide evidence that the metabolic phenotype observed in Kit mutant mice, while independent of mast cells, is immune regulated. Our data underscore the value of definitive mast cell deficiency models to conclusively test the involvement of this enigmatic cell in immune-mediated pathologies and identify Kit as a key hematopoietic factor in the pathogenesis of metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Heterozygous deficiency of endoglin decreases insulin and hepatic triglyceride levels during high fat diet.

    Directory of Open Access Journals (Sweden)

    Daniel Beiroa

    Full Text Available Endoglin is a transmembrane auxiliary receptor for transforming growth factor-beta (TGF-beta that is predominantly expressed on proliferating endothelial cells. It plays a wide range of physiological roles but its importance on energy balance or insulin sensitivity has been unexplored. Endoglin deficient mice die during midgestation due to cardiovascular defects. Here we report for first time that heterozygous endoglin deficiency in mice decreases high fat diet-induced hepatic triglyceride content and insulin levels. Importantly, these effects are independent of changes in body weight or adiposity. At molecular level, we failed to detect relevant changes in the insulin signalling pathway at basal levels in liver, muscle or adipose tissues that could explain the insulin-dependent effect. However, we found decreased triglyceride content in the liver of endoglin heterozygous mice fed a high fat diet in comparison to their wild type littermates. Overall, our findings indicate that endoglin is a potentially important physiological mediator of insulin levels and hepatic lipid metabolism.

  16. Human conditions of insulin-like growth factor-I (IGF-I) deficiency

    Science.gov (United States)

    2012-01-01

    Insulin-like growth factor I (IGF-I) is a polypeptide hormone produced mainly by the liver in response to the endocrine GH stimulus, but it is also secreted by multiple tissues for autocrine/paracrine purposes. IGF-I is partly responsible for systemic GH activities although it possesses a wide number of own properties (anabolic, antioxidant, anti-inflammatory and cytoprotective actions). IGF-I is a closely regulated hormone. Consequently, its logical therapeutical applications seems to be limited to restore physiological circulating levels in order to recover the clinical consequences of IGF-I deficiency, conditions where, despite continuous discrepancies, IGF-I treatment has never been related to oncogenesis. Currently the best characterized conditions of IGF-I deficiency are Laron Syndrome, in children; liver cirrhosis, in adults; aging including age-related-cardiovascular and neurological diseases; and more recently, intrauterine growth restriction. The aim of this review is to summarize the increasing list of roles of IGF-I, both in physiological and pathological conditions, underlying that its potential therapeutical options seem to be limited to those proven states of local or systemic IGF-I deficiency as a replacement treatment, rather than increasing its level upper the normal range. PMID:23148873

  17. Human conditions of insulin-like growth factor-I (IGF-I deficiency

    Directory of Open Access Journals (Sweden)

    Puche Juan E

    2012-11-01

    Full Text Available Abstract Insulin-like growth factor I (IGF-I is a polypeptide hormone produced mainly by the liver in response to the endocrine GH stimulus, but it is also secreted by multiple tissues for autocrine/paracrine purposes. IGF-I is partly responsible for systemic GH activities although it possesses a wide number of own properties (anabolic, antioxidant, anti-inflammatory and cytoprotective actions. IGF-I is a closely regulated hormone. Consequently, its logical therapeutical applications seems to be limited to restore physiological circulating levels in order to recover the clinical consequences of IGF-I deficiency, conditions where, despite continuous discrepancies, IGF-I treatment has never been related to oncogenesis. Currently the best characterized conditions of IGF-I deficiency are Laron Syndrome, in children; liver cirrhosis, in adults; aging including age-related-cardiovascular and neurological diseases; and more recently, intrauterine growth restriction. The aim of this review is to summarize the increasing list of roles of IGF-I, both in physiological and pathological conditions, underlying that its potential therapeutical options seem to be limited to those proven states of local or systemic IGF-I deficiency as a replacement treatment, rather than increasing its level upper the normal range.

  18. Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Almind, K; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Since relative or absolute insulin deficiency and insulin insensitivity are involved in the aetiology of non-insulin-dependent diabetes mellitus (NIDDM), we examined whether patients with NIDDM exhibit genetic variability in the coding region of insulin receptor substrate-1 (IRS-1), a candidate...

  19. The effect of insulin deficiency on tau and neurofilament in the insulin knockout mouse

    International Nuclear Information System (INIS)

    Schechter, Ruben; Beju, Delia; Miller, Kenneth E.

    2005-01-01

    Complications of diabetes mellitus within the nervous system are peripheral and central neuropathy. In peripheral neuropathy, defects in neurofilament and microtubules have been demonstrated. In this study, we examined the effects of insulin deficiency within the brain in insulin knockout mice (I(-/-)). The I(-/-) exhibited hyperphosphorylation of tau, at threonine 231, and neurofilament. In addition, we showed hyperphosphorylation of c-Jun N-terminal kinase (JNK) and glycogen synthase kinase 3 β (GSK-3 β) at serine 9. Extracellular signal-regulated kinase 1 (ERK 1) showed decrease in phosphorylation, whereas ERK 2 showed no changes. Ultrastructural examination demonstrated swollen mitochondria, endoplasmic reticulum, and Golgi apparatus, and dispersion of the nuclear chromatin. Microtubules showed decrease in the number of intermicrotubule bridges and neurofilament presented as bunches. Thus, lack of insulin brain stimulation induces JNK hyperphosphorylation followed by hyperphosphorylation of tau and neurofilament, and ultrastructural cellular damage, that over time may induce decrease in cognition and learning disabilities

  20. The effect of insulin deficiency on tau and neurofilament in the insulin knockout mouse

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, Ruben [William K. Warren Medical Research Institute, University of Oklahoma Medical Health Science Center, Tulsa, OK 74107 (United States); Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Science, Tulsa, OK 74107 (United States); schechter@okstate edu, E-mail: ruben; Beju, Delia [William K. Warren Medical Research Institute, University of Oklahoma Medical Health Science Center, Tulsa, OK 74107 (United States); Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Science, Tulsa, OK 74107 (United States); Miller, Kenneth E [Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Science, Tulsa, OK 74107 (United States)

    2005-09-09

    Complications of diabetes mellitus within the nervous system are peripheral and central neuropathy. In peripheral neuropathy, defects in neurofilament and microtubules have been demonstrated. In this study, we examined the effects of insulin deficiency within the brain in insulin knockout mice (I(-/-)). The I(-/-) exhibited hyperphosphorylation of tau, at threonine 231, and neurofilament. In addition, we showed hyperphosphorylation of c-Jun N-terminal kinase (JNK) and glycogen synthase kinase 3 {beta} (GSK-3 {beta}) at serine 9. Extracellular signal-regulated kinase 1 (ERK 1) showed decrease in phosphorylation, whereas ERK 2 showed no changes. Ultrastructural examination demonstrated swollen mitochondria, endoplasmic reticulum, and Golgi apparatus, and dispersion of the nuclear chromatin. Microtubules showed decrease in the number of intermicrotubule bridges and neurofilament presented as bunches. Thus, lack of insulin brain stimulation induces JNK hyperphosphorylation followed by hyperphosphorylation of tau and neurofilament, and ultrastructural cellular damage, that over time may induce decrease in cognition and learning disabilities.

  1. Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse

    Science.gov (United States)

    Ning, Jie; Hong, Tao; Yang, Xuefeng; Mei, Shuang; Liu, Zhenqi; Liu, Hui-Yu

    2011-01-01

    The primary player that induces insulin resistance has not been established. Here, we studied whether or not fat can cause insulin resistance in the presence of insulin deficiency. Our results showed that high-fat diet (HFD) induced insulin resistance in C57BL/6 (B6) mice. The HFD-induced insulin resistance was prevented largely by the streptozotocin (STZ)-induced moderate insulin deficiency. The STZ-induced insulin deficiency prevented the HFD-induced ectopic fat accumulation and oxidative stress in liver and gastrocnemius. The STZ-induced insulin deficiency prevented the HFD- or insulin-induced increase in hepatic expression of long-chain acyl-CoA synthetases (ACSL), which are necessary for fatty acid activation. HFD increased mitochondrial contents of long-chain acyl-CoAs, whereas it decreased mitochondrial ADP/ATP ratio, and these HFD-induced changes were prevented by the STZ-induced insulin deficiency. In cultured hepatocytes, we observed that expressions of ACSL1 and -5 were stimulated by insulin signaling. Results in cultured cells also showed that blunting insulin signaling by the PI3K inhibitor LY-294002 prevented fat accumulation, oxidative stress, and insulin resistance induced by the prolonged exposure to either insulin or oleate plus sera that normally contain insulin. Finally, knockdown of the insulin receptor prevented the oxidative stress and insulin resistance induced by the prolonged exposure to insulin or oleate plus sera. Together, our results show that insulin and insulin signaling are required for fat induction of insulin resistance in mice and cultured mouse hepatocytes. PMID:21586696

  2. Age and body mass index-dependent relationship between correction of iron deficiency anemia and insulin resistance in non-diabetic premenopausal women

    International Nuclear Information System (INIS)

    Ozdemir, A.; Sevnic, C.; Selamaet, U.; Kamaci, B.; Atalay, S.

    2007-01-01

    No prospective studies have evaluated the effects of correction of iron deficiency anemia on insulin resistance in non-diabetic premenopausal women with iron deficiency anemia. All patients were treated with oral iron preparations. Insulin resistance was calculated with the Homeostasis Model Assessment formula. All patients were dichotomized by the median for age and BMI to assess how the relationship between iron deficiency anemia and insulin resistance was affected by the age and BMI. Although the fasting glucose levels did not change meaningfully, statistically significant decreases were found in fasting insulin levels following anemia treatment both in the younger age ( = 40 years) and the high BMI (>-27Kg/m) subgroups. Post-treatment fasting insulin levels were positively correlated both with BMI (r=0.386, P=0.004) and post-treatment hemoglobin levels. (r=0.285, P=0.036). Regression analysis revealed that the factors affecting post-treatment insulin levels were BMI (P=0.001) and post-treatment hemoglobin levels (p=0.030). Our results show that following he correction of iron deficiency anemia, insulin levels and HOMA scores decrease in younger and lean non-diabetic premenopausal women. (author)

  3. Vitamin D deficiency and insulin resistance as risk factors for dyslipidemia in obese children.

    Science.gov (United States)

    Erol, Meltem; Bostan Gayret, Özlem; Hamilçıkan, Şahin; Can, Emrah; Yiğit, Özgu L

    2017-04-01

    Dyslipidemia is one of the major complications of obesity; vitamin D deficiency and insulin resistance are attending metabolic complications in dyslipidemic obese children. Objective. To determine if vitamin D deficiency and insulin resistance are risk factors for dyslipidemia in obese children. This study was conducted in the Department of Pediatrics at Bagcilar Training and Research Hospital in Istanbul, Turkey between 2014 and 2015. Obese patients whose age range was 8-14 were included in the study. The serum triglyceride, total cholesterol, low-density lipoprotein cholesterol, highdensity lipoprotein cholesterol, fasting glucose, insulin, alanine aminotransferase, vitamin D levels were measured; a liver ultrasonography was performed. Homeostatic model assessment (HOMA-IR), was used to calculate insulin resistance. 108 obese children were included; 39 (36.11%) had dyslipidemia. The average fasting blood glucose (88.74 ± 7.58 vs. 95.31 ± 6.82; p= 0.0001), insulin level (14.71 ± 12.44 vs. 24.39 ± 15.02; p= 0.0001) and alanine aminotransferase level (23.45 ± 11.18 vs. 30.4 ± 18.95; p= 0.018) were significantly higher in the children with dyslipidemia. In the dyslipidemic obese children, the average hepatosteatosis rate and HOMA-IR level were higher; 28 (71.9%) had hepatosteatosis, 37 (94.87%) had insulin resistance; the vitamin D levels were dyslipidemia. Obese children in our region exhibit low vitamin D and increased HOMA-IR levels, which are efficient risk factors of dyslipidemia.

  4. Improved Insulin Sensitivity despite Increased Visceral Adiposity in Mice Deficient for the Immune Cell Transcription Factor T-bet

    Science.gov (United States)

    Stolarczyk, Emilie; Vong, Chi Teng; Perucha, Esperanza; Jackson, Ian; Cawthorne, Michael A.; Wargent, Edward T.; Powell, Nick; Canavan, James B.; Lord, Graham M.; Howard, Jane K.

    2013-01-01

    Summary Low-grade inflammation in fat is associated with insulin resistance, although the mechanisms are unclear. We report that mice deficient in the immune cell transcription factor T-bet have lower energy expenditure and increased visceral fat compared with wild-type mice, yet paradoxically are more insulin sensitive. This striking phenotype, present in young T-bet−/− mice, persisted with high-fat diet and increasing host age and was associated with altered immune cell numbers and cytokine secretion specifically in visceral adipose tissue. However, the favorable metabolic phenotype observed in T-bet-deficient hosts was lost in T-bet−/− mice also lacking adaptive immunity (T-bet−/−xRag2−/−), demonstrating that T-bet expression in the adaptive rather than the innate immune system impacts host glucose homeostasis. Indeed, adoptive transfer of T-bet-deficient, but not wild-type, CD4+ T cells to Rag2−/− mice improved insulin sensitivity. Our results reveal a role for T-bet in metabolic physiology and obesity-associated insulin resistance. PMID:23562076

  5. Zinc transporter 7 deficiency affects lipid synthesis in adipocytes by inhibiting insulin-dependent Akt activity and glucose uptake

    Science.gov (United States)

    Mice deficient for zinc transporter 7 (Znt7) are mildly zinc deficient, accompanied with low body weight gain and body fat accumulation. To investigate the underlying mechanism of Znt7 deficiency in body adiposity, we investigated fatty acid composition and insulin sensitivity in visceral (epididyma...

  6. MiR-150 deficiency ameliorated hepatosteatosis and insulin resistance in nonalcoholic fatty liver disease via targeting CASP8 and FADD-like apoptosis regulator.

    Science.gov (United States)

    Zhuge, Baozhong; Li, Guohong

    2017-12-16

    The prevalence of Non-alcoholic fatty liver diseases (NAFLD) increased rapidly in the world. However, the pathogenesis of is still unclear. Hepatic steatosis and insulin resistance are considered to be central to the pathophysiology of NAFLD. MicroRNAs are short non-coding RNAs and has been reported to be involved in pathogenesis of NAFLD and related metabolic diseases. Here, we investigated the mechanisms by which miR-150 regulate hepatic steatosis and insulin resistance in high fat diet (HFD) induced NAFLD model. The expression of miR-150 was up-regulated dramatically in both human NAFLD patients and HFD mice model, as well as in hepatocytes treated with oleic acid. miR-150 deficiency ameliorated the hepatic steatosis and insulin resistance significantly in NAFLD mice. miR-150 deficiency decreased the expression of genes related to fatty acid uptake, synthesis and gluconeogenesis, while increased the expression of genes related to fatty acid β-oxidation. Further, we identified that CFLAR is a direct downstream target of miR-150. Overexpression of miR-150 reduced both the mRNA and protein levels of CFLAR in vitro. And overexpression of miR-150 significantly inhibited the luciferase activity of CFLAR 3'-UTR, while the effect of miR-150 was blocked when the binding site of miR-150 within the CFLAR 3'-UTR was mutated. We also found that miR-150 deficiency decreased the expression of p-Jnk1 and p-Ask1, while the effect of miR-150 on steatosis and insulin signaling was blocked by CFLAR overexpression. In conclusion, our data indicated that miR-150 potentially contributes to the hepatic steatosis and insulin resistance in NAFLD. miR-150/CFLAR pathway may be a new therapeutic strategy against NAFLD. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Fine-mapping diabetes-related traits, including insulin resistance, in heterogeneous stock rats

    Science.gov (United States)

    Holl, Katie L.; Oreper, Daniel; Xie, Yuying; Tsaih, Shirng-Wern; Valdar, William

    2012-01-01

    Type 2 diabetes (T2D) is a disease of relative insulin deficiency resulting from both insulin resistance and beta cell failure. We have previously used heterogeneous stock (HS) rats to fine-map a locus for glucose tolerance. We show here that glucose intolerance in the founder strains of the HS colony is mediated by different mechanisms: insulin resistance in WKY and an insulin secretion defect in ACI, and we demonstrate a high degree of variability for measures of insulin resistance and insulin secretion in HS rats. As such, our goal was to use HS rats to fine-map several diabetes-related traits within a region on rat chromosome 1. We measured blood glucose and plasma insulin levels after a glucose tolerance test in 782 male HS rats. Using 97 SSLP markers, we genotyped a 68 Mb region on rat chromosome 1 previously implicated in glucose and insulin regulation. We used linkage disequilibrium mapping by mixed model regression with inferred descent to identify a region from 198.85 to 205.9 that contains one or more quantitative trait loci (QTL) for fasting insulin and a measure of insulin resistance, the quantitative insulin sensitivity check index. This region also encompasses loci identified for fasting glucose and Insulin_AUC (area under the curve). A separate <3 Mb QTL was identified for body weight. Using a novel penalized regression method we then estimated effects of alternative haplotype pairings under each locus. These studies highlight the utility of HS rats for fine-mapping genetic loci involved in the underlying causes of T2D. PMID:22947656

  8. A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet.

    Science.gov (United States)

    Raubenheimer, Peter J; Nyirenda, Moffat J; Walker, Brian R

    2006-07-01

    Liver fat accumulation is proposed to link obesity and insulin resistance. To dissect the role of liver fat in the insulin resistance of diet-induced obesity, we altered liver fat using a choline-deficient diet. C57Bl/6 mice were fed a low-fat (10% of calories) or high-fat (45% of calories) diet for 8 weeks; during the final 4 weeks, diets were either choline deficient or choline supplemented. In choline replete animals, high-fat feeding induced weight gain, elevated liver triglycerides (171%), hyperinsulinemia, and glucose intolerance. Choline deficiency did not affect body or adipose depot weights but amplified liver fat accumulation with high-fat diet (281%, P insulin (from 983 +/- 175 to 433 +/- 36 pmol/l, P phosphatidylcholine synthesis and of enzymes involved in free fatty acid esterification, without affecting those of de novo lipogenesis or fatty acid oxidation. We conclude that liver fat accumulation per se does not cause insulin resistance during high-fat feeding and that choline deficiency may shunt potentially toxic free fatty acids toward innocuous storage triglyceride in the liver.

  9. Do deficiencies in growth hormone and insulin-like growth factor-1 (IGF-1) shorten or prolong longevity?

    Science.gov (United States)

    Laron, Zvi

    2005-02-01

    Present knowledge on the effects of growth hormone (GH) and insulin-like growth factor-I (IGF-I) deficiency on aging and lifespan are controversial. Studying untreated patients with either isolated GH deficiency due to GH gene deletion, patients with multiple pituitary hormone deficiency due to PROP-1 gene mutation and patients with isolated IGF-I deficiency due to deletions or mutations of the GH receptor gene (Laron syndrome); it was found, that these patients despite signs of early aging (wrinkled skin, obesity, insulin resistance and osteopenia) have a long life span reaching ages of 80-90 years. Animal models of genetic GH deficiencies such as Snell mice (Pit-1 gene mutations) the Ames mice (PROP-1 gene mutation) and the Laron mice (GH receptor gene knock-out) have a statistically significant higher longevity compared to normal controls. On the contrary, mice transgenic for GH and acromegalic patients secreting high amounts of GH have premature death. Those data raise the question whether pharmacological GH administration to adults is deleterious, in contrast to policies advocating such therapies.

  10. Vitamin D deficiency: a new risk factor for type 2 diabetes?.

    Science.gov (United States)

    Mezza, T; Muscogiuri, G; Sorice, G P; Prioletta, A; Salomone, E; Pontecorvi, A; Giaccari, A

    2012-01-01

    Recent compelling evidence suggests a role of vitamin D deficiency in the pathogenesis of insulin resistance and insulin secretion derangements, with a consequent possible interference with type 2 diabetes mellitus. The mechanism of this link is incompletely understood. In fact, vitamin D deficiency is usually detected in obesity in which insulin resistance is also a common finding. The coexistence of insulin resistance and vitamin D deficiency has generated several hypotheses. Some cross-sectional and prospective studies have suggested that vitamin D deficiency may play a role in worsening insulin resistance; others have identified obesity as a risk factor predisposing individuals to exhibit both vitamin D deficiency and insulin resistance. The available data from intervention studies are largely confounded, and inadequate considerations of seasonal effects on 25(OH)D concentrations are also a common design flaw in many studies. On the contrary, there is strong evidence that obesity might cause both vitamin D deficiency and insulin resistance, leaving open the possibility that vitamin D and diabetes are not related at all. Although it might seem premature to draw firm conclusions on the role of vitamin D supplementation in reducing insulin resistance and preventing type 2 diabetes, this manuscript will review the circumstances leading to vitamin D deficiency and how such a deficiency can eventually independently affect insulin sensitivity. Copyright © 2012 S. Karger AG, Basel.

  11. PTP1B deficiency improves hypothalamic insulin sensitivity resulting in the attenuation of AgRP mRNA expression under high-fat diet conditions.

    Science.gov (United States)

    Sugiyama, Mariko; Banno, Ryoichi; Mizoguchi, Akira; Tominaga, Takashi; Tsunekawa, Taku; Onoue, Takeshi; Hagiwara, Daisuke; Ito, Yoshihiro; Morishita, Yoshiaki; Iwama, Shintaro; Goto, Motomitsu; Suga, Hidetaka; Arima, Hiroshi

    2017-06-17

    Hypothalamic insulin receptor signaling regulates energy balance and glucose homeostasis via agouti-related protein (AgRP). While protein tyrosine phosphatase 1B (PTP1B) is classically known to be a negative regulator of peripheral insulin signaling by dephosphorylating both insulin receptor β (IRβ) and insulin receptor substrate, the role of PTP1B in hypothalamic insulin signaling remains to be fully elucidated. In the present study, we investigated the role of PTP1B in hypothalamic insulin signaling using PTP1B deficient (KO) mice in vivo and ex vivo. For the in vivo study, hypothalamic insulin resistance induced by a high-fat diet (HFD) improved in KO mice compared to wild-type (WT) mice. Hypothalamic AgRP mRNA expression levels were also significantly decreased in KO mice independent of body weight changes. In an ex vivo study using hypothalamic organotypic cultures, insulin treatment significantly increased the phosphorylation of both IRβ and Akt in the hypothalamus of KO mice compared to WT mice, and also significantly decreased AgRP mRNA expression levels in KO mice. While incubation with inhibitors of phosphatidylinositol-3 kinase (PI3K) had no effect on basal levels of Akt phosphorylation, these suppressed insulin induction of Akt phosphorylation to almost basal levels in WT and KO mice. The inhibition of the PI3K-Akt pathway blocked the downregulation of AgRP mRNA expression in KO mice treated with insulin. These data suggest that PTP1B acts on the hypothalamic insulin signaling via the PI3K-Akt pathway. Together, our results suggest a deficiency of PTP1B improves hypothalamic insulin sensitivity resulting in the attenuation of AgRP mRNA expression under HFD conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Bimodal effect on pancreatic β-cells of secretory products from normal or insulin-resistant human skeletal muscle

    DEFF Research Database (Denmark)

    Bouzakri, Karim; Plomgaard, Peter; Berney, Thierry

    2011-01-01

    Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells.......Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells....

  13. Brain Insulin Resistance and Deficiency as Therapeutic Targets in Alzheimer's Disease

    Science.gov (United States)

    de la Monte, Suzanne M

    2012-01-01

    Alzheimer's disease [AD] is the most common cause of dementia in North America. Despite 30+ years of intense investigation, the field lacks consensus regarding the etiology and pathogenesis of sporadic AD, and therefore we still do not know the best strategies for treating and preventing this debilitating and costly disease. However, growing evidence supports the concept that AD is fundamentally a metabolic disease with substantial and progressive derangements in brain glucose utilization and responsiveness to insulin and insulin-like growth factor [IGF] stimulation. Moreover, AD is now recognized to be heterogeneous in nature, and not solely the end-product of aberrantly processed, misfolded, and aggregated oligomeric amyloid-beta peptides and hyperphosphorylated tau. Other factors, including impairments in energy metabolism, increased oxidative stress, inflammation, insulin and IGF resistance, and insulin/IGF deficiency in the brain should be incorporated into all equations used to develop diagnostic and therapeutic approaches to AD. Herein, the contributions of impaired insulin and IGF signaling to AD-associated neuronal loss, synaptic disconnection, tau hyperphosphorylation, amyloid-beta accumulation, and impaired energy metabolism are reviewed. In addition, we discuss current therapeutic strategies and suggest additional approaches based on the hypothesis that AD is principally a metabolic disease similar to diabetes mellitus. Ultimately, our ability to effectively detect, monitor, treat, and prevent AD will require more efficient, accurate and integrative diagnostic tools that utilize clinical, neuroimaging, biochemical, and molecular biomarker data. Finally, it is imperative that future therapeutic strategies for AD abandon the concept of uni-modal therapy in favor of multi-modal treatments that target distinct impairments at different levels within the brain insulin/IGF signaling cascades. PMID:22329651

  14. Vitamin D Deficiency in Obese Children and Its Relationship to Insulin Resistance and Adipokines

    Directory of Open Access Journals (Sweden)

    Christian L. Roth

    2011-01-01

    Full Text Available Low-serum concentrations of 25-hydroxyvitamin D [25(OHD] are associated with insulin resistance in adults. Less data are available in pediatric populations. Serum 25(OHD serum concentrations were assessed in 125 obese and 31 nonobese children (age 11.9±2.7 y, range 6–16 y, 49% male living in Bonn, Germany. The relationship between 25(OHD, measured by liquid chromatography-tandem mass spectrometry, and measures of insulin sensitivity and adipokines adiponectin and resistin were analyzed. Seventy-six % of subjects were 25(OHD deficient (<20 ng/mL. Higher insulin, homeostasis model assessment-insulin resistance (HOMA-IR r=−0.269, P=0.023, and hemoglobin A1c (HbA1c as well as lower quantitative insulin-sensitivity check index (QUICKI r=0.264, P=0.030 values were found in obese children with lower 25(OHD concentrations even after adjustment for gender, age, and body mass index. Furthermore, 25(OHD correlated significantly with adiponectin, but not with resistin. Our results suggest that hypovitaminosis D is a risk factor for developing insulin resistance independent of adiposity.

  15. The effects of feeding rats diets deficient in folic acid and related methyl donors on the blood pressure and glucose tolerance of the offspring.

    Science.gov (United States)

    Maloney, Christopher A; Hay, Susan M; Rees, William D

    2009-05-01

    In humans poor maternal folate status is associated with a decrease in infant birth weight. As low birth weight increases the risk of cardiovascular and metabolic disease in adults, an inadequate supply of folic acid in the mother's diet may increase the susceptibility of the offspring to disease. We have fed laboratory rats diets deficient in folic acid and the related methyl donors methionine and choline to examine the effects on growth, blood pressure and insulin action in the offspring. Poor folate status transiently increased fetal growth but did not produce a long-term change in body weight. There were, however, small changes in the hearts of the female offspring. When folate deficiency was combined with low intakes of methionine and choline, the kidneys of the male offspring were proportionately smaller, probably because of the limited availability of methionine. There was no effect on the blood pressure of either the male or female offspring. The pancreatic insulin content of fetuses from animals fed the folate-deficient diets were higher than those of the controls. Following an oral glucose challenge, there was a weak trend for glucose-stimulated insulin release to be increased in the offspring of dams fed the folate-deficient diet. The changes in insulin concentrations were, however, much smaller than the corresponding changes observed in the offspring of animals fed protein-deficient diets. These results suggest that folate deficiency during gestation causes modest changes to the insulin axis of the fetus.

  16. Effects of vitamin D supplementation on insulin sensitivity and androgen levels in vitamin-D-deficient polycystic ovary syndrome patients.

    Science.gov (United States)

    Karadağ, Cihan; Yoldemir, Tevfik; Yavuz, Dilek Gogas

    2018-02-01

    The aim of this study was to identify the effects of vitamin D supplementation on insulin sensitivity and androgen levels in vitamin-D-deficient polycystic ovary syndrome (PCOS) patients. Sixty-seven vitamin-D-deficient (25-hydroxyvitamin D [25(OH)D] levels below 20 ng/mL) PCOS patients and 54 vitamin-D-deficient non-PCOS volunteer subjects matched for age and body mass index were enrolled to this prospective study. All participants were given 50 000 IU/week cholecalciferol orally for 8 weeks and 1500 IU/day for 4 weeks. Insulin sensitivity was calculated with the Matsuda insulin sensitivity index (ISI) based on an oral glucose tolerance test. Matsuda ISI, gonadal hormones (estrogen, testosterone, androstenedione), and 25(OH)D levels were studied before and at the end of the 12th week of vitamin D load. After vitamin D supplementation, serum androstenedione levels had decreased significantly (P = 0.007) and Matsuda ISI values had increased significantly (P = 0.001) in the PCOS group but no significant changes were seen in those parameters in controls. We observed positive correlations between 25(OH)D levels and Matsuda ISI (r = 0.307; P < 0.01), and negative correlations between 25(OH)D levels and total testosterone (r = -0.306; P < 0.01) and androstenedione (r = -0.275; P < 0.01) levels in the PCOS group. Vitamin D supplementation increased insulin sensitivity and decreased androgen levels in vitamin-D-deficient women with PCOS but did not have any effect in vitamin-D-deficient non-PCOS women. These results may indicate the possible role of vitamin D in the complex pathogenesis of PCOS. © 2017 Japan Society of Obstetrics and Gynecology.

  17. Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Almind, K; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Since relative or absolute insulin deficiency and insulin insensitivity are involved in the aetiology of non-insulin-dependent diabetes mellitus (NIDDM), we examined whether patients with NIDDM exhibit genetic variability in the coding region of insulin receptor substrate-1 (IRS-1), a candidate...... with NIDDM and 3 of the controls were heterozygous at codon 972 for a polymorphism in which glycine was substituted with arginine. Moreover, at codon 513, 6 patients with NIDDM and 2 controls had a heterozygous polymorphism with a transition from alanine to proline. None of the polymorphism carriers had both...

  18. Chemokine-like receptor 1 deficiency does not affect the development of insulin resistance and nonalcoholic fatty liver disease in mice.

    Directory of Open Access Journals (Sweden)

    Nanda Gruben

    Full Text Available The adipokine chemerin and its receptor, chemokine-like receptor 1 (Cmklr1, are associated with insulin resistance and nonalcoholic fatty liver disease (NAFLD, which covers a broad spectrum of liver diseases, ranging from simple steatosis to nonalcoholic steatohepatitis (NASH. It is possible that chemerin and/or Cmklr1 exert their effects on these disorders through inflammation, but so far the data have been controversial. To gain further insight into this matter, we studied the effect of whole-body Cmklr1 deficiency on insulin resistance and NAFLD. In view of the primary role of macrophages in hepatic inflammation, we also transplanted bone marrow from Cmklr1 knock-out (Cmklr1-/- mice and wild type (WT mice into low-density lipoprotein receptor knock-out (Ldlr-/- mice, a mouse model for NASH. All mice were fed a high fat, high cholesterol diet containing 21% fat from milk butter and 0.2% cholesterol for 12 weeks. Insulin resistance was assessed by an oral glucose tolerance test, an insulin tolerance test, and by measurement of plasma glucose and insulin levels. Liver pathology was determined by measuring hepatic inflammation, fibrosis, lipid accumulation and the NAFLD activity score (NAS. Whole-body Cmklr1 deficiency did not affect body weight gain or food intake. In addition, we observed no differences between WT and Cmklr1-/- mice for hepatic inflammatory and fibrotic gene expression, immune cell infiltration, lipid accumulation or NAS. In line with this, we detected no differences in insulin resistance. In concordance with whole-body Cmklr1 deficiency, the absence of Cmklr1 in bone marrow-derived cells in Ldlr-/- mice did not affect their insulin resistance or liver pathology. Our results indicate that Cmklr1 is not involved in the pathogenesis of insulin resistance or NAFLD. Thus, we recommend that the associations reported between Cmklr1 and insulin resistance or NAFLD should be interpreted with caution.

  19. Effects of growth hormone and insulin-like growth factor 1 deficiency on ageing and longevity.

    Science.gov (United States)

    Laron, Zvi

    2002-01-01

    Present knowledge on the effects of growth hormone (GH)/insulin-like growth hormone (IGF)1 deficiency on ageing and lifespan are reviewed. Evidence is presented that isolated GH deficiency (IGHD), multiple pituitary hormone deficiencies (MPHD) including GH, as well as primary IGE1 deficiency (GH resistance, Laron syndrome) present signs of early ageing such as thin and wrinkled skin, obesity, hyperglycemia and osteoporosis. These changes do not seem to affect the lifespan, as patients reach old age. Animal models of genetic MPHD (Ames and Snell mice) and GH receptor knockout mice (primary IGF1 deficiency) also have a statistically significant higher longevity compared to normal controls. On the contrary, mice transgenic for GH and acromegalic patients secreting large amounts of GH have premature death. In conclusion longstanding GH/IGF1 deficiency affects several parameters of the ageing process without impairing lifespan, and as shown in animal models prolongs longevity. In contrast high GH/IGF1 levels accelerate death.

  20. Specific insulin and proinsulin secretion in glucokinase-deficient individuals

    Directory of Open Access Journals (Sweden)

    V.C. Pardini

    1999-04-01

    Full Text Available Glucokinase (GCK is an enzyme that regulates insulin secretion, keeping glucose levels within a narrow range. Mutations in the glucokinase gene cause a rare form of diabetes called maturity-onset diabetes of the young (MODY. An early onset (less than 25 years, autosomal dominant inheritance and low insulin secretion stimulated by glucose characterize MODY patients. Specific insulin and proinsulin were measured in serum by immunofluorimetric assays (IFMA during a 75-g oral glucose tolerance test (OGTT. Two kindreds (SA and LZ were studied and compared to non-diabetic unrelated individuals (control group 1 matched for age and body mass index (BMI. In one kindred, some of these subjects were also obese (BMI >26 kg/m2, and other family members also presented with obesity and/or late-onset NIDDM. The MODY patients were also compared to a group of five of their first-degree relatives with obesity and/or late-onset NIDDM. The proinsulin profile was different in members of the two MODY kindreds. Fasting proinsulin and the proinsulin/insulin ratio were similar in MODY members of kindred LZ and subjects from control group 1, but were significantly lower than in MODY members of kindred SA (P<0.02 and P<0.01, for proinsulin and proinsulin/insulin ratio, respectively. Moreover, MODY members of family SA had higher levels of proinsulin and proinsulin/insulin ratio, although not significantly different, when compared to their first-degree relatives and to subjects from control group 2. In conclusion, we observed variable degrees of proinsulin levels and proinsulin/insulin ratio in MODY members of two different kindreds. The higher values of these parameters found in MODY and non-MODY members of kindred SA is probably related to the obesity and late-onset NIDDM background present in this family.

  1. The associations between VDR BsmI polymorphisms and risk of vitamin D deficiency, obesity and insulin resistance in adolescents residing in a tropical country.

    Science.gov (United States)

    Rahmadhani, Rayinda; Zaharan, Nur Lisa; Mohamed, Zahurin; Moy, Foong Ming; Jalaludin, Muhammad Yazid

    2017-01-01

    The vitamin D receptor (VDR) gene is expressed abundantly in different tissues; including adipocytes and pancreatic beta cells. The rs1544410 or BsmI single nucleotide polymorphism (SNP) in the intronic region of the VDR gene has been previously associated with vitamin D levels, obesity and insulin resistance. This study was aimed to examine the association between BsmI polymorphism and risk of vitamin D deficiency, obesity and insulin resistance in adolescents living in a tropical country. Thirteen-year-old adolescents were recruited via multistage sampling from twenty-three randomly selected schools across the city of Kuala Lumpur, Malaysia (n = 941). Anthropometric measurements were obtained. Obesity was defined as body mass index higher than the 95th percentile of the WHO chart. Levels of fasting serum vitamin D (25-hydroxyvitamin D (25(OH)D)), glucose and insulin were measured. HOMA-IR was calculated as an indicator for insulin resistance. Genotyping was performed using the Sequenom MassARRAY platform (n = 807). The associations between BsmI and vitamin D, anthropometric parameters and HOMA-IR were examined using analysis of covariance and logistic regression. Those with AA genotype of BsmI had significantly lower levels of 25(OH)D (p = 0.001) compared to other genotypes. No significant differences was found across genotypes for obesity parameters. The AA genotype was associated with higher risk of vitamin D deficiency (p = 0.03) and insulin resistance (p = 0.03) compared to GG. The A allele was significantly associated with increased risk of vitamin D deficiency compared to G allele (adjusted odds ratio (OR) = 1.63 (95% Confidence Interval (CI) 1.03-2.59, p = 0.04). In those with concurrent vitamin D deficiency, having an A allele significantly increased their risk of having insulin resistance compared to G allele (adjusted OR = 2.66 (95% CI 1.36-5.19, p = 0.004). VDR BsmI polymorphism was significantly associated with vitamin D deficiency and insulin

  2. Vitamin D deficiency impairs glucose-stimulated insulin secretion and increases insulin resistance by reducing PPAR-γ expression in nonobese Type 2 diabetic rats.

    Science.gov (United States)

    Park, Sunmin; Kim, Da Sol; Kang, Suna

    2016-01-01

    Human studies have provided relatively strong associations of poor vitamin D status with Type 2 diabetes but do not explain the nature of the association. Here, we explored the physiological pathways that may explain how vitamin D status modulates energy, lipid and glucose metabolisms in nonobese Type 2 diabetic rats. Goto-Kakizaki (GK) rats were fed high-fat diets containing 25 (VD-low), 1000 (VD-normal) or 10,000 (VD-high) cholecalciferol-IU/kg diet for 8 weeks. Energy expenditure, insulin resistance, insulin secretory capacity and lipid metabolism were measured. Serum 25-OH-D levels, an index of vitamin D status, increased dose dependently with dietary vitamin D. VD-low resulted in less fat oxidation without a significant difference in energy expenditure and less lean body mass in the abdomen and legs comparison to the VD-normal group. In comparison to VD-low, VD-normal had lower serum triglycerides and intracellular fat accumulation in the liver and skeletal muscles which was associated with down-regulation of the mRNA expressions of sterol regulatory element binding protein-1c and fatty acid synthase and up-regulation of gene expressions of peroxisome proliferator-activated receptors (PPAR)-α and carnitine palmitoyltransferase-1. In euglycemic hyperinsulinemic clamp, whole-body and hepatic insulin resistance was exacerbated in the VD-low group but not in the VD-normal group, possibly through decreasing hepatic insulin signaling and PPAR-γ expression in the adipocytes. In 3T3-L1 adipocytes 1,25-(OH)2-D (10 nM) increased triglyceride accumulation by elevating PPAR-γ expression and treatment with a PPAR-γ antagonist blocked the triglyceride deposition induced by 1,25-(OH)2-D treatment. VD-low impaired glucose-stimulated insulin secretion in hyperglycemic clamp and decreased β-cell mass by decreasing β-cell proliferation. In conclusion, vitamin D deficiency resulted in the dysregulation of glucose metabolism in GK rats by simultaneously increasing insulin

  3. The effect of 30 months of low-dose replacement therapy with recombinant human growth hormone (rhGH) on insulin and C-peptide kinetics, insulin secretion, insulin sensitivity, glucose effectiveness, and body composition in GH-deficient adults

    DEFF Research Database (Denmark)

    Rosenfalck, A M; Maghsoudi, S; Fisker, S

    2000-01-01

    The aim of the present study was to evaluate the long-term (30 months) metabolic effects of recombinant human GH (rhGH) given in a mean dose of 6.7 microg/kg x day (= 1.6 IU/day), in 11 patients with adult GH deficiency. Glucose metabolism was evaluated by an oral glucose tolerance test and an iv...... (frequently sampled iv glucose tolerance test) glucose tolerance test, and body composition was estimated by dual-energy x-ray absorptiometry. Treatment with rhGH induced persistent favorable changes in body composition, with a 10% increase in lean body mass (P ... in glucose tolerance, beta-cell response was still inappropriate. Our conclusion is that long-term rhGH-replacement therapy in GH deficiency adults induced a significant deterioration in glucose tolerance, profound changes in kinetics of C-peptide, and insulin and prehepatic insulin secretion, despite...

  4. Hormone-sensitive lipase null mice exhibit signs of impaired insulin sensitivity whereas insulin secretion is intact

    DEFF Research Database (Denmark)

    Mulder, Hindrik; Sörhede-Winzell, Maria; Contreras, Juan Antonio

    2003-01-01

    of increased amounts of insulin. Impaired insulin sensitivity was further indicated by retarded glucose disposal during an insulin tolerance test. A euglycemic hyperinsulinemic clamp revealed that hepatic glucose production was insufficiently blocked by insulin in HSL null mice. In vitro, insulin......-stimulated glucose uptake into soleus muscle, and lipogenesis in adipocytes were moderately reduced, suggesting additional sites of insulin resistance. Morphometric analysis of pancreatic islets revealed a doubling of beta-cell mass in HSL null mice, which is consistent with an adaptation to insulin resistance....... Insulin secretion in vitro, examined by perifusion of isolated islets, was not impacted by HSL deficiency. Thus, HSL deficiency results in a moderate impairment of insulin sensitivity in multiple target tissues of the hormone but is compensated by hyperinsulinemia....

  5. Vitamin D supplementation has no effect on insulin sensitivity or secretion in vitamin D-deficient, overweight or obese adults: a randomized placebo-controlled trial.

    Science.gov (United States)

    Mousa, Aya; Naderpoor, Negar; de Courten, Maximilian Pj; Teede, Helena; Kellow, Nicole; Walker, Karen; Scragg, Robert; de Courten, Barbora

    2017-06-01

    Background: Vitamin D supplementation has been proposed as a potential strategy to prevent type 2 diabetes. Existing clinical trials have been limited by short duration, low doses of vitamin D, variability in participants' vitamin D-deficiency status, and the use of surrogate measures of body composition, insulin sensitivity, and insulin secretion. Objective: To address existing knowledge gaps, we conducted a double-blind, randomized, placebo-controlled trial to investigate whether vitamin D supplementation that is provided in a sufficient dose and duration to vitamin D-deficient individuals would improve insulin sensitivity or secretion as measured with the use of gold-standard methods. We hypothesized that vitamin D supplementation would improve insulin sensitivity and secretion compared with placebo. Design: Sixty-five overweight or obese, vitamin D-deficient (25-hydroxyvitamin D [25(OH)D] concentration ≤50 nmol/L) adults were randomly assigned to receive either a bolus oral dose of 100,000 IU cholecalciferol followed by 4000 IU cholecalciferol/d or a matching placebo for 16 wk. Before and after the intervention, participants received gold-standard assessments of body composition (via dual X-ray absorptiometry), insulin sensitivity (via hyperinsulinemic-euglycemic clamps), and insulin secretion [via intravenous-glucose-tolerance tests (IVGTTs)]. Results: Fifty-four participants completed the study [35 men and 19 women; mean ± SD age: 31.9 ± 8.5 y; body mass index (in kg/m 2 ): 30.9 ± 4.4]. 25(OH)D increased with vitamin D supplementation compared with placebo (57.0 ± 21.3 compared with 1.9 ± 15.1 nmol/L, respectively; P = 0.02). Vitamin D and placebo groups did not differ in change in insulin sensitivity (0.02 ± 2.0 compared with -0.03 ± 2.8 mg · kg -1 · min -1 , respectively; P = 0.9) or first-phase insulin secretion (-21 ± 212 compared with 24 ± 184 mU/L, respectively; P = 0.9). Results remained nonsignificant after adjustment for age, sex

  6. Impaired LDL receptor-related protein 1 translocation correlates with improved dyslipidemia and atherosclerosis in apoE-deficient mice.

    Directory of Open Access Journals (Sweden)

    Philip L S M Gordts

    Full Text Available OBJECTIVE: Determination of the in vivo significance of LDL receptor-related protein 1 (LRP1 dysfunction on lipid metabolism and atherosclerosis development in absence of its main ligand apoE. METHODS AND RESULTS: LRP1 knock-in mice carrying an inactivating mutation in the NPxYxxL motif were crossed with apoE-deficient mice. In the absence of apoE, relative to LRP1 wild-type animals, LRP1 mutated mice showed an increased clearance of postprandial lipids despite a compromised LRP1 endocytosis rate and inefficient insulin-mediated translocation of the receptor to the plasma membrane, likely due to inefficient slow recycling of the mutated receptor. Postprandial lipoprotein improvement was explained by increased hepatic clearance of triglyceride-rich remnant lipoproteins and accompanied by a compensatory 1.6-fold upregulation of LDLR expression in hepatocytes. One year-old apoE-deficient mice having the dysfunctional LRP1 revealed a 3-fold decrease in spontaneous atherosclerosis development and a 2-fold reduction in LDL-cholesterol levels. CONCLUSION: These findings demonstrate that the NPxYxxL motif in LRP1 is important for insulin-mediated translocation and slow perinuclear endosomal recycling. These LRP1 impairments correlated with reduced atherogenesis and cholesterol levels in apoE-deficient mice, likely via compensatory LDLR upregulation.

  7. Comparison of liraglutide plus basal insulin and basal-bolus insulin therapy (BBIT) for glycemic control, body weight stability, and treatment satisfaction in patients treated using BBIT for type 2 diabetes without severe insulin deficiency: A randomized prospective pilot study.

    Science.gov (United States)

    Yamamoto, Saki; Hayashi, Toshiyuki; Ohara, Makoto; Goto, Satoshi; Sato, Jun; Nagaike, Hiroe; Fukase, Ayako; Sato, Nobuko; Hiromura, Munenori; Tomoyasu, Masako; Nakanishi, Noriko; Lee, Soushou; Osamura, Anna; Yamamoto, Takeshi; Fukui, Tomoyasu; Hirano, Tsutomu

    2018-03-26

    We examined whether 0.9 mg/day liraglutide plus basal insulin (Lira-basal) is superior to basal-bolus insulin therapy (BBIT) for type 2 diabetes (T2DM) without severe insulin deficiency as determined by glucagon stimulation. Fifty patients receiving BBIT were enrolled in this 24-week, prospective, randomized, open-labeled study. After excluding subjects with fasting C-peptide immunoreactivity (CPR) basal (n = 12) or continued BBIT (n = 13). Primary endpoint was change in HbA1c. Secondary endpoints were changes in body weight (BW), 7-point self-monitored blood glucose (SMBG), and Diabetes Treatment Satisfaction Questionnaire status (DTSQs) scores. The Lira-basal group demonstrated reduced HbA1c, whereas the BBIT group showed no change. BW was reduced in the Lira-basal group but increased in the BBIT group. The Lira-basal group also exhibited significantly reduced pre-breakfast and pre-lunch SMBG. DTSQs scores improved in the Lira-basal group but not the BBIT group. Plasma lipids, liver function, and kidney function were not significantly changed in either group. Lira-basal therapy is superior to BBIT for T2DM without severe insulin deficiency. This study was registered with UMIN Clinical Trials Registry (UMIN000028313). Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. [Study on the relation between Pi-deficiency pattern and metabolic syndrome in patients with polycystic ovarian syndrome].

    Science.gov (United States)

    Wang, Xing-Juan; Jin, Hua-Liang; Liu, Ying

    2010-11-01

    To evaluate the relation between Pi-deficiency syndrome (PDS) pattern and metabolic syndrome (MS) in patients with polycystic ovarian syndrome (PCOS), for exploring their internal pathologic mechanism. Among the 102 PCOS patients, 22 complicated with MS (PCOS-MS) and 80 not complicated with MS (PCOS-NMS), the Chinese medicine syndrome pattern was differentiated as PDS in 50 patients and non-PDS in 52. The clinical data, in terms of fasting blood glucose (FBG), fasting insulin (FINS), waistline, body weight (BW), stature, blood pressure (BP), etc. was collected and compared and the relation between data was analyzed. Levels of FINS and homeostasis model of assessment for insulin resistence index (HOMA-IR), in PCOS-MS patients were significantly higher than those in PCOS-NMS patients, also higher in patients of PDS pattern than those of non-PDS pattern (P 0.05). PCOS patients of PDS pattern are the high-risk population of MS, which might be related with the insulin resistance. So, early treatment of PCOS, especially on patients of PDS pattern, is of important significance for preventing the complication, as MS, of the disease.

  9. PKB/Akt phosphorylation of ERRγ contributes to insulin-mediated inhibition of hepatic gluconeogenesis.

    Science.gov (United States)

    Kim, Don-Kyu; Kim, Yong-Hoon; Hynx, Debby; Wang, Yanning; Yang, Keum-Jin; Ryu, Dongryeol; Kim, Kyung Seok; Yoo, Eun-Kyung; Kim, Jeong-Sun; Koo, Seung-Hoi; Lee, In-Kyu; Chae, Ho-Zoon; Park, Jongsun; Lee, Chul-Ho; Biddinger, Sudha B; Hemmings, Brian A; Choi, Hueng-Sik

    2014-12-01

    Insulin resistance, a major contributor to the pathogenesis of type 2 diabetes, leads to increased hepatic glucose production (HGP) owing to an impaired ability of insulin to suppress hepatic gluconeogenesis. Nuclear receptor oestrogen-related receptor γ (ERRγ) is a major transcriptional regulator of hepatic gluconeogenesis. In this study, we investigated insulin-dependent post-translational modifications (PTMs) altering the transcriptional activity of ERRγ for the regulation of hepatic gluconeogenesis. We examined insulin-dependent phosphorylation and subcellular localisation of ERRγ in cultured cells and in the liver of C57/BL6, leptin receptor-deficient (db/db), liver-specific insulin receptor knockout (LIRKO) and protein kinase B (PKB) β-deficient (Pkbβ (-/-)) mice. To demonstrate the role of ERRγ in the inhibitory action of insulin on hepatic gluconeogenesis, we carried out an insulin tolerance test in C57/BL6 mice expressing wild-type or phosphorylation-deficient mutant ERRγ. We demonstrated that insulin suppressed the transcriptional activity of ERRγ by promoting PKB/Akt-mediated phosphorylation of ERRγ at S179 and by eliciting translocation of ERRγ from the nucleus to the cytoplasm through interaction with 14-3-3, impairing its ability to promote hepatic gluconeogenesis. In addition, db/db, LIRKO and Pkbβ (-/-) mice displayed enhanced ERRγ transcriptional activity due to a block in PKBβ-mediated ERRγ phosphorylation during refeeding. Finally, the phosphorylation-deficient mutant ERRγ S179A was resistant to the inhibitory action of insulin on HGP. These results suggest that ERRγ is a major contributor to insulin action in maintaining hepatic glucose homeostasis.

  10. Inhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice

    Science.gov (United States)

    González-Rodríguez, Águeda; Gutierrez, Jose A. Mas; Sanz-González, Silvia; Ros, Manuel; Burks, Deborah J.; Valverde, Ángela M.

    2010-01-01

    OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulation of liver metabolism, we used genetic and pharmacological approaches to study the effects of inhibiting PTP1B on hepatic insulin signaling and expression of gluconeogenic enzymes in IRS2−/− mice. RESEARCH DESIGN AND METHODS We analyzed glucose homeostasis and insulin signaling in liver and isolated hepatocytes from IRS2−/− and IRS2−/−/PTP1B−/− mice. Additionally, hepatic insulin signaling was assessed in control and IRS2−/− mice treated with resveratrol, an antioxidant present in red wine. RESULTS In livers of hyperglycemic IRS2−/− mice, the expression levels of PTP1B and its association with the insulin receptor (IR) were increased. The absence of PTP1B in the double-mutant mice restored hepatic IRS1-mediated phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 signaling. Moreover, resveratrol treatment of hyperglycemic IRS2−/− mice decreased hepatic PTP1B mRNA and inhibited PTP1B activity, thereby restoring IRS1-mediated PI 3-kinase/Akt/Foxo1 signaling and peripheral insulin sensitivity. CONCLUSIONS By regulating the phosphorylation state of IR, PTB1B determines sensitivity to insulin in liver and exerts a unique role in the interplay between IRS1 and IRS2 in the modulation of hepatic insulin action. PMID:20028942

  11. Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer's disease and correction by insulin.

    Science.gov (United States)

    Jolivalt, C G; Lee, C A; Beiswenger, K K; Smith, J L; Orlov, M; Torrance, M A; Masliah, E

    2008-11-15

    We have evaluated the effect of peripheral insulin deficiency on brain insulin pathway activity in a mouse model of type 1 diabetes, the parallels with Alzheimer's disease (AD), and the effect of treatment with insulin. Nine weeks of insulin-deficient diabetes significantly impaired the learning capacity of mice, significantly reduced insulin-degrading enzyme protein expression, and significantly reduced phosphorylation of the insulin-receptor and AKT. Phosphorylation of glycogen synthase kinase-3 (GSK3) was also significantly decreased, indicating increased GSK3 activity. This evidence of reduced insulin signaling was associated with a concomitant increase in tau phosphorylation and amyloid beta protein levels. Changes in phosphorylation levels of insulin receptor, GSK3, and tau were not observed in the brain of db/db mice, a model of type 2 diabetes, after a similar duration (8 weeks) of diabetes. Treatment with insulin from onset of diabetes partially restored the phosphorylation of insulin receptor and of GSK3, partially reduced the level of phosphorylated tau in the brain, and partially improved learning ability in insulin-deficient diabetic mice. Our data indicate that mice with systemic insulin deficiency display evidence of reduced insulin signaling pathway activity in the brain that is associated with biochemical and behavioral features of AD and that it can be corrected by insulin treatment.

  12. Injection related anxiety in insulin-treated diabetes.

    Science.gov (United States)

    Zambanini, A; Newson, R B; Maisey, M; Feher, M D

    1999-12-01

    The presence of injection related anxiety and phobia may influence compliance, glycaemic control and quality of life in patients with insulin-treated diabetes. Unselected consecutive, insulin-treated patients attending a diabetes clinic for follow-up, completed a standardised questionnaire providing an injection anxiety score (IAS) and general anxiety score (GAS). A total of 115 insulin-treated (80 Type 1 and 35 Type 2) diabetic patients completed the questionnaire. Injections had been avoided secondary to anxiety in 14% of cases and 42% expressed concern at having to inject more frequently. An IAS > or = 3 was seen in 28% of patients and of these, 66% injected insulin one to two times/day, 45% had avoided injections, and 70% would be bothered by more frequent injections. A significant correlation between IAS and GAS was seen (Kendall's tau-a 0.30, 95% CI 0.19-0.41, P < 0.001). GAS was significantly associated with both previous injection avoidance and expressed concern at increased injection frequency. No significant correlation was seen with HbA1c and injection or general anxiety scores. Symptoms relating to insulin injection anxiety and phobia have a high prevalence in an unselected group of diabetic patients requiring insulin injections and are associated with higher levels of general anxiety.

  13. Maternal vitamin D deficiency during pregnancy results in insulin resistance in rat offspring, which is associated with inflammation and Iκbα methylation.

    Science.gov (United States)

    Zhang, Huaqi; Chu, Xia; Huang, Yifan; Li, Gang; Wang, Yuxia; Li, Ying; Sun, Changhao

    2014-10-01

    We aimed to investigate the impact of maternal vitamin D deficiency during pregnancy on insulin resistance in male offspring and examine its mechanism. Pregnant Sprague-Dawley rats were maintained on a vitamin-D-free diet with ultraviolet-free light during pregnancy (early-VDD group). Insulin resistance in the male offspring was assessed by HOMA-IR, OGTT and euglycaemic clamp. NEFA, oxidative stress and inflammation levels were estimated as risk factors for insulin resistance. DNA methylation was examined by bisulfate sequencing PCR analysis. Luciferase reporter assay was performed to validate the effect of DNA methylation. The offspring in the early-VDD group had significantly higher fasting insulin and HOMA-IR levels, markedly reduced glucose tolerance and significantly lower tissue sensitivity to exogenous insulin at 16 weeks (all p insulin resistance in the offspring, which is associated with persistently increased inflammation. Persistently decreased Iκbα expression, potentially caused by changes in Iκbα methylation, plays an important role in persistent inflammation.

  14. The Effects of Calcium, Vitamins D and K co-Supplementation on Markers of Insulin Metabolism and Lipid Profiles in Vitamin D-Deficient Women with Polycystic Ovary Syndrome.

    Science.gov (United States)

    Karamali, Maryam; Ashrafi, Mahnaz; Razavi, Maryamalsadat; Jamilian, Mehri; Kashanian, Maryam; Akbari, Maryam; Asemi, Zatollah

    2017-05-01

    Data on the effects of calcium, vitamins D and K co-supplementation on markers of insulin metabolism and lipid profiles among vitamin D-deficient women with polycystic ovary syndrome (PCOS) are scarce. This study was done to determine the effects of calcium, vitamins D and K co-supplementation on markers of insulin metabolism and lipid profiles in vitamin D-deficient women with PCOS. This randomized double-blind, placebo-controlled trial was conducted among 55 vitamin D-deficient women diagnosed with PCOS aged 18-40 years old. Subjects were randomly assigned into 2 groups to intake either 500 mg calcium, 200 IU vitamin D and 90 µg vitamin K supplements (n=28) or placebo (n=27) twice a day for 8 weeks. After the 8-week intervention, compared with the placebo, joint calcium, vitamins D and K supplementation resulted in significant decreases in serum insulin concentrations (-1.9±3.5 vs. +1.8±6.6 µIU/mL, P=0.01), homeostasis model of assessment-estimated insulin resistance (-0.4±0.7 vs. +0.4±1.4, P=0.01), homeostasis model of assessment-estimated b cell function (-7.9±14.7 vs. +7.0±30.3, P=0.02) and a significant increase in quantitative insulin sensitivity check index (+0.01±0.01 vs. -0.008±0.03, P=0.01). In addition, significant decreases in serum triglycerides (-23.4±71.3 vs. +9.9±39.5 mg/dL, P=0.03) and VLDL-cholesterol levels (-4.7±14.3 vs. +2.0±7.9 mg/dL, P=0.03) was observed following supplementation with combined calcium, vitamins D and K compared with the placebo. Overall, calcium, vitamins D and K co-supplementation for 8 weeks among vitamin D-deficient women with PCOS had beneficial effects on markers of insulin metabolism, serum triglycerides and VLDL-cholesterol levels. © Georg Thieme Verlag KG Stuttgart · New York.

  15. A comparative study of age-related hearing loss in wild type and insulin-like growth factor I deficient mice

    Directory of Open Access Journals (Sweden)

    Raquel Riquelme

    2010-06-01

    Full Text Available Insulin-like growth factor-I (IGF-I belongs to the family of insulin-related peptides that fulfils a key role during the late development of the nervous system. Human IGF1 mutations cause profound deafness, poor growth and mental retardation. Accordingly, Igf1−/− null mice are dwarfs that have low survival rates, cochlear alterations and severe sensorineural deafness. Presbycusis (age-related hearing loss is a common disorder associated with aging that causes social and cognitive problems. Aging is also associated with a decrease in circulating IGF-I levels and this reduction has been related to cognitive and brain alterations, although there is no information as yet regarding the relationship between presbycusis and IGF-I biodisponibility. Here we present a longitudinal study of wild type Igf1+/+ and null Igf1−/− mice from 2 to 12 months of age comparing the temporal progression of several parameters: hearing, brain morphology, cochlear cytoarchitecture, insulin-related factors and IGF gene expression and IGF-I serum levels. Complementary invasive and non-invasive techniques were used, including auditory brainstem-evoked response (ABR recordings and in vivo MRI brain imaging. Igf1−/− null mice presented profound deafness at all the ages studied, without any obvious worsening of hearing parameters with aging. Igf1+/+ wild type mice suffered significant age-related hearing loss, their auditory thresholds and peak I latencies augmenting as they aged, in parallel with a decrease in the circulating levels of IGF-I. Accordingly, there was an age-related spiral ganglion degeneration in wild type mice that was not evident in the Igf1 null mice. However, the Igf1−/− null mice in turn developed a prematurely aged stria vascularis reminiscent of the diabetic strial phenotype. Our data indicate that IGF-I is required for the correct development and maintenance of hearing, supporting the idea that IGF-I-based therapies could contribute to

  16. The effect of insulin deficiency on the plasma clearance and exchange of high-density-lipoprotein phosphatidylcholine in rats.

    OpenAIRE

    Martins, I J; Redgrave, T G

    1992-01-01

    Triolein/cholesteryl oleate/cholesterol/phosphatidylcholine emulsions designed to model the lipid composition of chylomicrons were injected intravenously into control and streptozotocin-treated insulin-deficient rats. As previously described for lymph chylomicrons, the emulsion triolein was hydrolysed and phosphatidylcholine was transferred to the plasma high-density lipoproteins (HDL). This mechanism was used to introduce a phospholipid label into HDL in vivo. The subsequent clearance of pho...

  17. A longitudinal study of plasma insulin and glucagon in women with previous gestational diabetes

    DEFF Research Database (Denmark)

    Damm, P; Kühl, C; Hornnes, P

    1995-01-01

    OBJECTIVE: To investigate whether plasma insulin or glucagon predicts later development of diabetes in women with gestational diabetes mellitus (GDM). RESEARCH DESIGN AND METHODS: The subjects studied were 91 women with diet-treated GDM and 33 healthy women. Plasma insulin and glucagon during a 50...... at follow-up (2 had insulin-dependent diabetes mellitus, 13 had non-insulin-dependent diabetes mellitus, and 12 had impaired glucose tolerance). Compared with the control subjects, women with previous GDM had relatively impaired insulin secretion (decreased insulinogenic index and delayed peak insulin...... for subsequent development of overt diabetes (logistic regression analysis). CONCLUSIONS: Women who develop GDM have a relative insulin secretion deficiency, the severity of which is predictive for later development of diabetes. Furthermore, our data indicate that their relatively reduced beta-cell function may...

  18. Mitochondrial Dysfunction Contributes to Impaired Insulin Secretion in INS-1 Cells with Dominant-negative Mutations of HNF-1α and in HNF-1α-deficient Islets*

    OpenAIRE

    Pongratz, Rebecca L.; Kibbey, Richard G.; Kirkpatrick, Clare L.; Zhao, Xiaojian; Pontoglio, Marco; Yaniv, Moshe; Wollheim, Claes B.; Shulman, Gerald I.; Cline, Gary W.

    2009-01-01

    Maturity Onset Diabetes of the Young-type 3 (MODY-3) has been linked to mutations in the transcription factor hepatic nuclear factor (HNF)-1α, resulting in deficiency in glucose-stimulated insulin secretion. In INS-1 cells overexpressing doxycycline-inducible HNF-1α dominant-negative (DN-) gene mutations, and islets from Hnf-1α knock-out mice, insulin secretion was impaired in response to glucose (15 mm) and other nutrient secretagogues. Decreased rates of insulin secretion in response to glu...

  19. Tau hyperphosphorylation induces oligomeric insulin accumulation and insulin resistance in neurons.

    Science.gov (United States)

    Rodriguez-Rodriguez, Patricia; Sandebring-Matton, Anna; Merino-Serrais, Paula; Parrado-Fernandez, Cristina; Rabano, Alberto; Winblad, Bengt; Ávila, Jesús; Ferrer, Isidre; Cedazo-Minguez, Angel

    2017-12-01

    Insulin signalling deficiencies and insulin resistance have been directly linked to the progression of neurodegenerative disorders like Alzheimer's disease. However, to date little is known about the underlying molecular mechanisms or insulin state and distribution in the brain under pathological conditions. Here, we report that insulin is accumulated and retained as oligomers in hyperphosphorylated tau-bearing neurons in Alzheimer's disease and in several of the most prevalent human tauopathies. The intraneuronal accumulation of insulin is directly dependent on tau hyperphosphorylation, and follows the tauopathy progression. Furthermore, cells accumulating insulin show signs of insulin resistance and decreased insulin receptor levels. These results suggest that insulin retention in hyperphosphorylated tau-bearing neurons is a causative factor for the insulin resistance observed in tauopathies, and describe a novel neuropathological concept with important therapeutic implications. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance.

    Science.gov (United States)

    Pereira, Renata Oliveira; Tadinada, Satya M; Zasadny, Frederick M; Oliveira, Karen Jesus; Pires, Karla Maria Pereira; Olvera, Angela; Jeffers, Jennifer; Souvenir, Rhonda; Mcglauflin, Rose; Seei, Alec; Funari, Trevor; Sesaki, Hiromi; Potthoff, Matthew J; Adams, Christopher M; Anderson, Ethan J; Abel, E Dale

    2017-07-14

    Mitochondrial dynamics is a conserved process by which mitochondria undergo repeated cycles of fusion and fission, leading to exchange of mitochondrial genetic content, ions, metabolites, and proteins. Here, we examine the role of the mitochondrial fusion protein optic atrophy 1 (OPA1) in differentiated skeletal muscle by reducing OPA1 gene expression in an inducible manner. OPA1 deficiency in young mice results in non-lethal progressive mitochondrial dysfunction and loss of muscle mass. Mutant mice are resistant to age- and diet-induced weight gain and insulin resistance, by mechanisms that involve activation of ER stress and secretion of fibroblast growth factor 21 (FGF21) from skeletal muscle, resulting in increased metabolic rates and improved whole-body insulin sensitivity. OPA1-elicited mitochondrial dysfunction activates an integrated stress response that locally induces muscle atrophy, but via secretion of FGF21 acts distally to modulate whole-body metabolism. © 2017 The Authors.

  1. Design of insulin analogues for meal-related therapy.

    Science.gov (United States)

    Brange, J

    1993-01-01

    The human insulin in replacement therapy has a hexameric structure. Hexamerization of the insulin molecule facilitates biosynthesis and beta-cell storage of insulin, but is unnecessary for biologic activity and appears to contribute to delayed absorption of exogenous insulin from the subcutis. Insulin analogues with reduced self-association that are produced through recombinant DNA techniques have been shown to have in vivo activity comparable to that of human insulin and absorption kinetics characterized by higher and more constant rates of disappearance from the subcutaneous injection site. In preliminary studies in patients receiving insulin therapy, monomeric insulin analogues have been found to provide glycemic control in the postprandial period that is at least equivalent to that of human insulin. Findings in these studies suggest that the use of such analogues may provide meal-related insulin effects closer to those observed in the physiologic state by limiting excessive postprandial glucose excursions and decreasing the risk of late hypoglycemia. Banting and Best revolutionized diabetes therapy 70 years ago with the extraction of insulin from animal pancreas glands (J Lab Clin Med 7:464-472, 1922). Since that time, many refinements of the therapeutic properties of pharmaceutical preparations of the hormone have been introduced. Until recently, however, such advances have been limited to improvements in insulin purity, insulin species, and adjustment of the composition of the vehicle with respect to auxiliary substances and other additives. With the advent of recombinant DNA techniques, it has become possible to optimize the insulin molecule itself for purposes of replacement therapy.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Acupuncture Alters Expression of Insulin Signaling Related Molecules and Improves Insulin Resistance in OLETF Rats

    Directory of Open Access Journals (Sweden)

    Xin-Yu Huang

    2016-01-01

    Full Text Available To determine effect of acupuncture on insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF rats and to evaluate expression of insulin signaling components. Rats were divided into three groups: Sprague-Dawley (SD rats, OLETF rats, and acupuncture+OLETF rats. Acupuncture was subcutaneously applied to Neiguan (PC6, Zusanli (ST36, and Sanyinjiao (SP6; in contrast, acupuncture to Shenshu (BL23 was administered perpendicularly. For Neiguan (PC6 and Zusanli (ST36, needles were connected to an electroacupuncture (EA apparatus. Fasting blood glucose (FPG was measured by glucose oxidase method. Plasma fasting insulin (FINS and serum C peptide (C-P were determined by ELISA. Protein and mRNA expressions of insulin signaling molecules were determined by Western blot and real-time RT-PCR, respectively. OLETF rats exhibit increased levels of FPG, FINS, C-P, and homeostasis model assessment-estimated insulin resistance (HOMA-IR, which were effectively decreased by acupuncture treatment. mRNA expressions of several insulin signaling related molecules IRS1, IRS2, Akt2, aPKCζ, and GLUT4 were decreased in OLETF rats compared to SD controls. Expression of these molecules was restored back to normal levels upon acupuncture administration. PI3K-p85α was increased in OLETF rats; this increase was also reversed by acupuncture treatment. Acupuncture improves insulin resistance in OLETF rats, possibly via regulating expression of key insulin signaling related molecules.

  3. Despite higher body fat content, Ecuadorian subjects with Laron syndrome have less insulin resistance and lower incidence of diabetes than their relatives.

    Science.gov (United States)

    Guevara-Aguirre, Jaime; Procel, Patricio; Guevara, Carolina; Guevara-Aguirre, Marco; Rosado, Verónica; Teran, Enrique

    2016-06-01

    In the present pandemics of obesity and insulin resistant diabetes mellitus (DM), the specific contribution of etiological factors such as shifts in nutritional and exercise patterns, genetic and hormonal, is subject of ongoing research. Among the hormonal factors implicated, we selected obesity-driven insulin resistance for further evaluation. It is known that growth hormone (GH) has profound effects on carbohydrate metabolism. In consequence, we compared the effects of the lack of the counter-regulatory effects of GH, in a group of subjects with GH receptor deficiency (GHRD) due to a mutated GH receptor vs. that of their normal relatives. It was found that, despite their obesity, subjects with GHRD, have diminished incidence of diabetes, lower glucose and insulin concentrations, and lower values of indexes indicative of insulin resistance such as HOMA-IR. The GHRD subjects were also capable of appropriately handling glucose or mixed meal loads despite diminished insulin secretion. These observations allow us to suggest that the association of obesity with increased risk for diabetes appears to be dependent on intact growth hormone signaling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion

    DEFF Research Database (Denmark)

    Vozarova, B; Weyer, C; Hanson, K

    2001-01-01

    Plasma concentrations of interleukin-6 (IL-6), a proinflammatory cytokine produced and released in part by adipose tissue, are elevated in people with obesity and type 2 diabetes. Because recent studies suggest that markers of inflammation predict the development of type 2 diabetes, we examined w...... whether circulating plasma IL-6 concentrations were related to direct measures of insulin resistance and insulin secretory dysfunction in Pima Indians, a population with high rates of obesity and type 2 diabetes....

  5. Improvement in insulin sensitivity without concomitant changes in body composition and cardiovascular risk markers following fixed administration of a very low growth hormone (GH) dose in adults with severe GH deficiency

    NARCIS (Netherlands)

    Yuen, Kevin C. J.; Frystyk, Jan; White, Deborah K.; Twickler, Th B.; Koppeschaar, Hans P. F.; Harris, Philip E.; Fryklund, Linda; Murgatroyd, Peter R.; Dunger, David B.

    2005-01-01

    OBJECTIVE: Untreated GH-deficient adults are predisposed to insulin resistance and excess cardiovascular mortality. We showed previously that short-term treatment with a very low GH dose (LGH) enhanced insulin sensitivity in young healthy adults. The present study was therefore designed to explore

  6. Antibody-Mediated Extreme Insulin Resistance: A Report of Three Cases.

    Science.gov (United States)

    Kim, Han Na; Fesseha, Betiel; Anzaldi, Laura; Tsao, Allison; Galiatsatos, Panagis; Sidhaye, Aniket

    2018-01-01

    Type 2 diabetes mellitus is characterized by relative insulin deficiency and insulin resistance. Features suggesting severe insulin resistance include acanthosis nigricans, hyperandrogenism, weight loss, and recurrent hospital admissions for diabetic ketoacidosis. In rare circumstances, hyperglycemia persists despite administration of massive doses of insulin. In these cases, it is important to consider autoimmune etiologies for insulin resistance, such as type B insulin resistance and insulin antibody-mediated extreme insulin resistance, which carry high morbidity and mortality if untreated. Encouragingly, immunomodulatory regimens have recently been published that induce remission at high rates. We describe 3 cases of extreme insulin resistance mediated by anti-insulin receptor autoantibodies or insulin autoantibodies. All cases were effectively treated with an immunomodulatory regimen. Although cases of extreme insulin resistance are rare, it is important to be aware of autoimmune causes, recognize suggestive signs and symptoms, and pursue appropriate diagnostic evaluation. Prompt treatment with immunomodulators is key to restoring euglycemia in patients with autoimmune etiologies of insulin resistance. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Studies on lipids and fatty acids in rats with streptozotocin-induced insulin deficiency II. Incorporation of 1-(14)C-sodium acetate into lipids and fatty acids of liver slices and whole blood cells

    OpenAIRE

    三宅,寛治

    1988-01-01

    In order to study the lipid and fatty acid metabolism in the insulin deficient state, the in vitro incorporation of 1-(14)C-sodium acetate into major lipid fractions and fatty acids of liver slices and whole blood cells was determined. Rats were studied one week, one month and three months after insulin deficiency was induced by administration of streptozotocin.The net incorporation of (14)C into lipid fractions and total fatty acids of liver slices significantly decreased after one week. On ...

  8. Related Factors of Insulin Resistance in Korean Children: Adiposity and Maternal Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Kang-Sook Lee

    2011-12-01

    Full Text Available Increased adiposity and unhealthy lifestyle augment the risk for type 2 diabetes in children with familial predisposition. Insulin resistance (IR is an excellent clinical marker for identifying children at high risk for type 2 diabetes. This study was conducted to investigate parental, physiological, behavioral and socio-economic factors related to IR in Korean children. This study is a cross-sectional study using data from 111 children aged 7 years and their parents. Homeostasis model assessment of insulin resistance (HOMA-IR was calculated using fasting glucose and insulin level as a marker of IR. All children’s adiposity indices (r = 0.309–0.318, all P-value = 0.001 and maternal levels of fasting insulin (r = 0.285, P-value = 0.003 and HOMA-IR (r = 0.290, P-value = 0.002 were positively correlated with children’s HOMA-IR level. There was no statistical difference of children’s HOMA-IR level according to children’s lifestyle habits and socioeconomic status of families. An increase of 1 percentage point in body fat was related to 2.7% increase in children’s HOMA-IR (P-value < 0.001 and an increase of 1% of maternal level of HOMA-IR was related to 0.2% increase in children’s HOMA-IR (P-value = 0.002. This study shows that children’s adiposity and maternal IR are positively associated with children’s IR.

  9. Autocrine growth induced by the insulin-related factor in the insulin-independent teratoma cell line 1246-3A

    International Nuclear Information System (INIS)

    Yamada, Yukio; Serrero, G.

    1988-01-01

    An insulin-independent teratoma-derived cell line, called 1246-3A, has been isolated from the adipogenic cell line 1246, which stringently requires insulin for proliferation. The 1246-3A cell line, which can proliferate in the absence of exogenous insulin, produces in its conditioned medium a growth factor similar to pancreatic insulin by its biological and immunological properties. This factor, called insulin-related factor (IRF), was purified and iodinated to study its binding to cell surface receptors. 125 I-labeled IRF binding to intact 1246-3A cells is lower than to 1246 cells. Cell surface binding can be restored by culturing the 1246-3A cells in the presence of an anti-porcine insulin monoclonal antibody of by acid prewash of the cells prior to performing the binding. Scatchard analysis of binding indicates that IRF secreted by the 1246-3A cells partially occupies high-affinity binding sites on the producer cells. Moreover, insulin monoclonal antibody inhibits the proliferation of the IRF-producing 1246-3A cells, suggesting that these cells are dependent on the secreted IRF for growth in culture. The authors conclude that the insulin-related factor secreted by the insulin-independent 1246-3A cells stimulates their proliferation in an autocrine fashion

  10. Myostatin inhibition therapy for insulin-deficient type 1 diabetes.

    Science.gov (United States)

    Coleman, Samantha K; Rebalka, Irena A; D'Souza, Donna M; Deodhare, Namita; Desjardins, Eric M; Hawke, Thomas J

    2016-09-01

    While Type 1 Diabetes Mellitus (T1DM) is characterized by hypoinsulinemia and hyperglycemia, persons with T1DM also develop insulin resistance. Recent studies have demonstrated that insulin resistance in T1DM is a primary mediator of the micro and macrovascular complications that invariably develop in this chronic disease. Myostatin acts to attenuate muscle growth and has been demonstrated to be elevated in streptozotocin-induced diabetic models. We hypothesized that a reduction in mRNA expression of myostatin within a genetic T1DM mouse model would improve skeletal muscle health, resulting in a larger, more insulin sensitive muscle mass. To that end, Akita diabetic mice were crossed with Myostatin(Ln/Ln) mice to ultimately generate a novel mouse line. Our data support the hypothesis that decreased skeletal muscle expression of myostatin mRNA prevented the loss of muscle mass observed in T1DM. Furthermore, reductions in myostatin mRNA increased Glut1 and Glut4 protein expression and glucose uptake in response to an insulin tolerance test (ITT). These positive changes lead to significant reductions in resting blood glucose levels as well as pronounced reductions in associated diabetic symptoms, even in the absence of exogenous insulin. Taken together, this study provides a foundation for considering myostatin inhibition as an adjuvant therapy in T1DM as a means to improve insulin sensitivity and blood glucose management.

  11. Evaluation of insulin-like growth factor-1 and insulin like growth factor binding protein-3 in diagnosis of growth hormone deficiency in short-stature children

    International Nuclear Information System (INIS)

    Ali, A.; Hashim, R.; Khan, F.A.; Sattar, A.; Ijaz, A.; Manzoor, S.M.; Younas, M.

    2009-01-01

    Growth Hormone Deficiency (GHD) is conventionally diagnosed and confirmed by diminished peak Growth Hormone (GH) levels to provocative testing. Serum Insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) are under the influence of GH and reflect the spontaneous endogenous GH secretion. Owing to the absence of a circadian rhythm, it is possible to take individual measurements of IGF-1 and IGFBP-3 at any time of the day for evaluation of GH status instead of subjecting the individual to cumbersome provocative tests. Objectives of this study were to compare IGF-1 and IGFBP-3 assays with Exercise and L-Dopa stimulation tests in the diagnosis of growth hormone deficiency in short stature children using ITT as gold standard. Methods: This validation study was conducted at Department of Chemical Pathology and Endocrinology, AFIP, Rawalpindi, from November 2005 to October 2006. Fifty-two short stature children were included in the study. Basal samples for GH levels and simultaneous IGF-1 and IGFBP-3 measurements were obtained and afterwards all children were subjected to sequential exercise and LDopa stimulation tests. Insulin Tolerance Test (ITT) was performed one week later with all the necessary precautionary measures. On the basis of ITT results, children were divided into two groups, i.e., 31 growth hormone deficient and 21 Normal Variant Short Stature (NVSS). Results: The diagnostic value of exercise stimulation test remained highest with sensitivity 90.3%, specificity 76.0%, Positive Predictive Value (PPV) 84.84%, Negative Predictive Value (NPV) 84.2% and accuracy 84.6%. The conventional L-Dopa stimulation had sensitivity 96.7%, specificity 38.0%, PPV 69.7%, NPV 88.8 % and accuracy 73.0%. The serum IGF-1 and IGFBP-3 levels were positively correlated with post ITT peak GH levels (r= 0.527, r=0.464 respectively, both p<0.001). The diagnostic value of IGF-1 had sensitivity 83.87%, specificity 76.2%, PPV 83.87%, NPV 76.2% and

  12. The role of insulin and glucagon in experimental obstructive jaundice.

    Science.gov (United States)

    Chen, J S; Ker, C G; Sheen, P C

    1999-01-01

    The oxidative phosphorylation of liver mitochondria is regulated by the amount of portal insulin available to the hepatocytes. Thus, hepatic energy is mediated by the values of blood sugar and insulin. Insulin and glucagon are the main fuel homeostats in the liver. This study was performed to investigate the concept of energy mediated by glucose, during the process of obstructive jaundice and its recovery. Experimental Wistar rats were studied, with bile duct tied for 4, 7 and 14 days respectively. The serum concentration and relative tissue concentration of insulin and glucagon were measured. And the common bile duct was tied for 4, 7 and 14 days, then relieved by time sequences for 4, 7 and 14 days. Serum concentration and relative tissue concentration of insulin and glucagon were also measured. When the common bile duct was tied for 4, 7, and 14 days respectively, the serum concentration and relative tissue concentration of insulin declined (p jaundice, more fuel is demanded to make up for the energy deficiency. In spite of surgical or non-surgical relief of obstructive jaundice, the energy reserve is still not sufficiently recovered. The recovery of the hepatic energy reserve takes longer than we expected.

  13. Endothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice

    Science.gov (United States)

    Tanigaki, Keiji; Chambliss, Ken L.; Yuhanna, Ivan S.; Sacharidou, Anastasia; Ahmed, Mohamed; Atochin, Dmitriy N.; Huang, Paul L.

    2016-01-01

    Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB influences glucose homeostasis, using mice with elevated CRP expressing or lacking endothelial FcγRIIB. Whereas increased CRP caused insulin resistance in mice expressing endothelial FcγRIIB, mice deficient in the endothelial receptor were protected. The insulin resistance with endothelial FcγRIIB activation was due to impaired skeletal muscle glucose uptake caused by attenuated insulin delivery, and it was associated with blunted endothelial nitric oxide synthase (eNOS) activation in skeletal muscle. In culture, CRP suppressed endothelial cell insulin transcytosis via FcγRIIB activation and eNOS antagonism. Furthermore, in knock-in mice harboring constitutively active eNOS, elevated CRP did not invoke insulin resistance. Collectively these findings reveal that by inhibiting eNOS, endothelial FcγRIIB activation by CRP blunts insulin delivery to skeletal muscle to cause insulin resistance. Thus, a series of mechanisms in endothelium that impairs insulin movement has been identified that may contribute to type 2 diabetes pathogenesis. PMID:27207525

  14. Metabolic Effects of CX3CR1 Deficiency in Diet-Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Rachana Shah

    Full Text Available The fractalkine (CX3CL1-CX3CR1 chemokine system is associated with obesity-related inflammation and type 2 diabetes, but data on effects of Cx3cr1 deficiency on metabolic pathways is contradictory. We examined male C57BL/6 Cx3cr1-/- mice on chow and high-fat diet to determine the metabolic effects of Cx3cr1 deficiency. We found no difference in body weight and fat content or feeding and energy expenditure between Cx3cr1-/- and WT mice. Cx3cr1-/- mice had reduced glucose intolerance assessed by intraperitoneal glucose tolerance tests at chow and high-fat fed states, though there was no difference in glucose-stimulated insulin values. Cx3cr1-/- mice also had improved insulin sensitivity at hyperinsulinemic-euglycemic clamp, with higher glucose infusion rate, rate of disposal, and hepatic glucose production suppression compared to WT mice. Enhanced insulin signaling in response to acute intravenous insulin injection was demonstrated in Cx3cr1-/- by increased liver protein levels of phosphorylated AKT and GSK3β proteins. There were no differences in adipose tissue macrophage populations, circulating inflammatory monocytes, adipokines, lipids, or inflammatory markers. In conclusion, we demonstrate a moderate and reproducible protective effect of Cx3cr1 deficiency on glucose intolerance and insulin resistance.

  15. Effect of insulin-like growth factor-1 deficiency or administration on the occurrence of acne.

    Science.gov (United States)

    Ben-Amitai, D; Laron, Z

    2011-08-01

    The role of growth hormone, insulin, and insulin-like growth factor-1 (IGF-1) in the development of acne is incompletely understood. To study the effect of the absence of IGF-1 and its pharmacologic replacement on the occurrence of acne vulgaris. Laron syndrome (LS) is characterized by congenital IGF-1 deficiency. The study group consisted of 21 patients with classical LS, who underwent puberty: 13 (8 male, 5 female) untreated and under regular follow-up until age 20?48 years; and 8 (2 male, 6 female) treated with IGF-1 (70-200 μg/kg/day), including 6 adults (2 male, treated at age 14.5-29 years and 4 female, treated at age 30-37 years) and 2 adolescents (2 female, treated at age 3.5-16 years). The medical files were reviewed for occurrence of acne and the corresponding sex hormone levels, and the findings were compared between the treated and untreated patients. Puberty was delayed in all untreated patients. Only one patient had slight acne at age 22 years, when he reached full puberty. Among the 2 IGF-1 treated male patients, none acquired acne. Among the 6 treated female patients, 3 had signs of hyperandrogenism (oligo-amenorrhea) and acne during IGF-1 over-dosage. On reduction of the IGF-1 dose (to 50 μg/kg/day) or cessation of treatment, the acne disappeared in all 3 patients. This study demonstrates for the first time that serum IGF-1 deficiency prevents the occurrence of acne. The findings suggest that an interaction between IGF-1 and androgens is necessary for the development of acne. © 2010 The Authors. Journal of the European Academy of Dermatology and Venereology © 2010 European Academy of Dermatology and Venereology.

  16. Adult growth hormone deficiency

    Directory of Open Access Journals (Sweden)

    Vishal Gupta

    2011-01-01

    Full Text Available Adult growth hormone deficiency (AGHD is being recognized increasingly and has been thought to be associated with premature mortality. Pituitary tumors are the commonest cause for AGHD. Growth hormone deficiency (GHD has been associated with neuropsychiatric-cognitive, cardiovascular, neuromuscular, metabolic, and skeletal abnormalities. Most of these can be reversed with growth hormone therapy. The insulin tolerance test still remains the gold standard dynamic test to diagnose AGHD. Growth hormone is administered subcutaneously once a day, titrated to clinical symptoms, signs and IGF-1 (insulin like growth factor-1. It is generally well tolerated at the low-doses used in adults. Pegylated human growth hormone therapy is on the horizon, with a convenient once a week dosing.

  17. Central insulin-like growth factor-1 (IGF-1) restores whole-body insulin action in a model of age-related insulin resistance and IGF-1 decline.

    Science.gov (United States)

    Huffman, Derek M; Farias Quipildor, Gabriela; Mao, Kai; Zhang, Xueying; Wan, Junxiang; Apontes, Pasha; Cohen, Pinchas; Barzilai, Nir

    2016-02-01

    Low insulin-like growth factor-1 (IGF-1) signaling is associated with improved longevity, but is paradoxically linked with several age-related diseases in humans. Insulin-like growth factor-1 has proven to be particularly beneficial to the brain, where it confers protection against features of neuronal and cognitive decline. While aging is characterized by central insulin resistance in the face of hyperinsulinemia, the somatotropic axis markedly declines in older humans. Thus, we hypothesized that increasing IGF-1 in the brain may prove to be a novel therapeutic alternative to overcome central insulin resistance and restore whole-body insulin action in aging. Utilizing hyperinsulinemic-euglycemic clamps, we show that old insulin-resistant rats with age-related declines in IGF-1 level demonstrate markedly improved whole-body insulin action, when treated with central IGF-1, as compared to central vehicle or insulin (P IGF-1, but not insulin, suppressed hepatic glucose production and increased glucose disposal rates in aging rats (P IGF-1 action in the brain and periphery provides a 'balance' between its beneficial and detrimental actions. Therefore, we propose that strategies aimed at 'tipping the balance' of IGF-1 action centrally are the optimal approach to achieve healthy aging and longevity in humans. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. Expression of serum insulin-like growth factors, insulin-like growth factor-binding proteins, and the growth hormone-binding protein in heterozygote relatives of Ecuadorian growth hormone receptor deficient patients.

    Science.gov (United States)

    Fielder, P J; Guevara-Aguirre, J; Rosenbloom, A L; Carlsson, L; Hintz, R L; Rosenfeld, R G

    1992-04-01

    Recently, an isolated population of apparent GH-receptor deficient (GHRD) patients has been identified in the Loja province of southern Ecuador. These individuals presented many of the physical and biochemical phenotypes characteristic of Laron-Syndrome and are believed to have a defect in the GH-receptor gene. In this study, we have compared the biochemical phenotypes between the affected individuals and their parents, considered to be obligate heterozygotes for the disorder. Serum GH, insulin-like growth factor I and II (IGF-I and IGF-II) levels were measured by RIA Insulin-like growth factor binding proteins. (IGFBPs) were measured by Western ligand blotting (WLB) of serum samples, following separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and relative quantitation of serum IGFBPs was performed with a scanning laser densitometer. Serum GH-binding protein (GHBP) levels were measured with a ligand-mediated immunofunctional assay using a monoclonal antibody raised against the GHBP. These values were then compared to values obtained from normal, sex-matched adult Ecuadorian controls, to determine if the above parameters were abnormal in the heterozygotes. The serum IGF-I levels of the GHRD patients were less than 13% of control values for adults and 2% for children. However, the IGF-I levels of both the mothers and fathers were not significantly different from that of the control population. The serum IGF-II levels of the GHRD patients were approximately 20% of control values for adults and 12% for the children. The IGF-II levels of the mothers were reduced, but were not significantly different from that of the control population. However, IGF-II levels of the fathers were significantly lower than those of controls (64% of control male levels). WLB analysis of serum IGFBP levels of the affected subjects demonstrated increased IGFBP-2 and decreased IGFBP-3, suggesting an inverse relationship between these IGFBPs. The GHRD patients who had the

  19. Evaluation of left ventricular mass and function, lipid profile, and insulin resistance in Egyptian children with growth hormone deficiency: A single-center prospective case-control study

    Directory of Open Access Journals (Sweden)

    Kotb Abbass Metwalley

    2013-01-01

    Full Text Available Background: Growth hormone deficiency (GHD in adults is associated with a cluster of cardiovascular risk factors that may contribute to an increased mortality for cardiovascular disease. In children, relatively few studies have investigated the effect of GHD and replacement therapy on cardiac performance and metabolic abnormalities that may place them at a higher risk of cardiovascular disease (CVD at an early age. Aim: This study was aimed to assess the left ventricular function, lipid profile, and degree of insulin resistance in Egyptian children with GHD before and after 1 year of GH replacement therapy. Settings and Design: Prospective case-control study, single-center study. Materials and Methods: Thirty children with short stature due to GHD were studied in comparison to 20 healthy age- and sex-matched children. All subjects were subjected to history, clinical examination, auxological assessment, and echocardiography to assess the left ventricular function. Blood samples were collected for measuring IGF-1, lipid profile (Total, LDL, HDL cholesterol, triglyceride, and atherogenic index (AI, fasting blood sugar, and fasting insulin levels. In addition, basal and stimulated GH levels were measured in children with suspected GHD. Statistical Analysis Used: Student′s t-test was used for parametric data, and the Mann-Whitney U-test was used for non-parametric data. Results: Total, LDL cholesterol, triglyceride, AI, and insulin were significantly higher in children with GHD than in healthy controls at baseline. After 12 months of GH replacement therapy, total, LDL cholesterol, triglyceride, AI and insulin were significantly decreased, while homeostatic model assessment for insulin resistance index (HOMA-IR was significantly increased compared to both pre-treatment and control values. At baseline, the left ventricular mass (LVM and left ventricular mass index (LVMi were significantly lower in GHD children than in controls. After 12 months of GH

  20. The economic impact of insulin-related hypoglycemia in Denmark

    DEFF Research Database (Denmark)

    Hoskins, Nicki; Tikkanen, Christian Klyver; Pedersen-Bjergaard, Ulrik

    2017-01-01

    AIMS: To estimate the direct cost of hypoglycemia in insulin-treated adults with type 1 diabetes (T1DM) and type 2 diabetes (T2DM) in Denmark. MATERIALS AND METHODS: The Local Impact of Hypoglycemia Tool (LIHT) was used to estimate the costs associated with insulin-related hypoglycemia. Average...

  1. Adipokine zinc-α2-glycoprotein regulated by growth hormone and linked to insulin sensitivity.

    Science.gov (United States)

    Balaz, Miroslav; Ukropcova, Barbara; Kurdiova, Timea; Gajdosechova, Lucia; Vlcek, Miroslav; Janakova, Zuzana; Fedeles, Jozef; Pura, Mikulas; Gasperikova, Daniela; Smith, Steven R; Tkacova, Ruzena; Klimes, Iwar; Payer, Juraj; Wolfrum, Christian; Ukropec, Jozef

    2015-02-01

    Hypertrophic obesity is associated with impaired insulin sensitivity and lipid-mobilizing activity of zinc-α2-glycoprotein. Adipose tissue (AT) of growth hormone (GH) -deficient patients is characterized by extreme adipocyte hypertrophy due to defects in AT lipid metabolism. It was hypothesized that zinc-α2-glycoprotein is regulated by GH and mediates some of its beneficial effects in AT. AT from patients with GH deficiency and individuals with obesity-related GH deficit was obtained before and after 5-year and 24-month GH supplementation therapy. GH action was tested in primary human adipocytes. Relationships of GH and zinc-α2-glycoprotein with adipocyte size and insulin sensitivity were evaluated in nondiabetic patients with noncancerous cachexia and hypertrophic obesity. AT in GH-deficient adults displayed a substantial reduction of zinc-α2-glycoprotein. GH therapy normalized AT zinc-α2-glycoprotein. Obesity-related relative GH deficit was associated with almost 80% reduction of zinc-α2-glycoprotein mRNA in AT. GH increased zinc-α2-glycoprotein mRNA in both AT of obese men and primary human adipocytes. Interdependence of GH and zinc-α2-glycoprotein in regulating AT morphology and metabolic phenotype was evident from their relationship with adipocyte size and AT-specific and whole-body insulin sensitivity. The results demonstrate that GH is involved in regulation of AT zinc-α2-glycoprotein; however, the molecular mechanism linking GH and zinc-α2-glycoprotein in AT is yet unknown. © 2014 The Obesity Society.

  2. Bilirubin Increases Insulin Sensitivity in Leptin-Receptor Deficient and Diet-Induced Obese Mice Through Suppression of ER Stress and Chronic Inflammation

    Science.gov (United States)

    Dong, Huansheng; Huang, Hu; Yun, Xinxu; Kim, Do-sung; Yue, Yinan; Wu, Hongju; Sutter, Alton; Chavin, Kenneth D.; Otterbein, Leo E.; Adams, David B.; Kim, Young-Bum

    2014-01-01

    Obesity-induced endoplasmic reticulum (ER) stress causes chronic inflammation in adipose tissue and steatosis in the liver, and eventually leads to insulin resistance and type 2 diabetes (T2D). The goal of this study was to understand the mechanisms by which administration of bilirubin, a powerful antioxidant, reduces hyperglycemia and ameliorates obesity in leptin-receptor-deficient (db/db) and diet-induced obese (DIO) mouse models. db/db or DIO mice were injected with bilirubin or vehicle ip. Blood glucose and body weight were measured. Activation of insulin-signaling pathways, expression of inflammatory cytokines, and ER stress markers were measured in skeletal muscle, adipose tissue, and liver of mice. Bilirubin administration significantly reduced hyperglycemia and increased insulin sensitivity in db/db mice. Bilirubin treatment increased protein kinase B (PKB/Akt) phosphorylation in skeletal muscle and suppressed expression of ER stress markers, including the 78-kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein, X box binding protein (XBP-1), and activating transcription factor 4 in db/db mice. In DIO mice, bilirubin treatment significantly reduced body weight and increased insulin sensitivity. Moreover, bilirubin suppressed macrophage infiltration and proinflammatory cytokine expression, including TNF-α, IL-1β, and monocyte chemoattractant protein-1, in adipose tissue. In liver and adipose tissue of DIO mice, bilirubin ameliorated hepatic steatosis and reduced expression of GRP78 and C/EBP homologous protein. These results demonstrate that bilirubin administration improves hyperglycemia and obesity by increasing insulin sensitivity in both genetically engineered and DIO mice models. Bilirubin or bilirubin-increasing drugs might be useful as an insulin sensitizer for the treatment of obesity-induced insulin resistance and type 2 diabetes based on its profound anti-ER stress and antiinflammatory properties. PMID

  3. Radioimmunoassay of Plasma Insulin during Oral Glucose Tolerance Test in Thyrotoxicosis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hong Kyu; Koh, Chang Soon; Lee, Mun Ho [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1971-03-15

    Blood glucose and immunoreactive insulin (IRI) were measured during oral glucose tolerance test in 15 thyrotoxic patients and 8 normal controls, to study the glucose metabolism in thyrotoxicosis. Following were the results;1) In thyrotoxicosis, there is noticed late rise and late fall of plasma IRI during oral glucose tolerance test, like as phenomenon of mild diabetes mellitus. 2) When the thyrotoxic patients were divided into normal and abnormal responsive groups after the level of blood glucose by Wilkerson Criteria, no significant difference in plasma IRI levels were noticed between two groups. 3) This result may be interpreted as relative deficiency of insulin secretion from panaceas and suggest genetically related defects.

  4. Body composition and metabolic profile in adults with vitamin D deficiency

    Directory of Open Access Journals (Sweden)

    Liane Murari ROCHA

    Full Text Available ABSTRACT Objective: To investigate the body composition and metabolic profile in individuals in terms of different concentrations of serum vitamin D, ranging from deficiency to sufficiency. Methods: A cross-sectional study of 106 adults of both genders, who were divided into three groups according to vitamin D levels: deficiency: <20ng/mL; insufficiency: 20-29.9ng/mL; and sufficiency: 30-100ng/mL. Anthropometric evaluation included weight, height, and body circumferences. Fat mass and lean mass were assessed using the Tetrapolar bioelectrical impedance method. Clinical and biochemical evaluations were also carried out. Insulin resistance was estimated using the Homeostasis Model Assessment Insulin index. Results: The analysis showed that the main alterations in individuals in the vitamin D deficiency group were higher triglycerides, very low density lipoprotein - cholesterol, fasting blood glucose, insulin, glycated hemoglobin, body mass index, body fat percentage, lean mass percentage, waist circumference, and Homeostasis Model Assessment Insulin than those of the vitamin D sufficient group (p<0.05. Conclusion: It was found that vitamin D deficiency causes important body composition and metabolic changes, which may lead to diseases such as diabetes Mellitus and metabolic syndrome.

  5. Normal growth spurt and final height despite low levels of all forms of circulating insulin-like growth factor-I in a patient with acid-labile subunit deficiency

    DEFF Research Database (Denmark)

    Domené, Horacio M; Martínez, Alicia S; Frystyk, Jan

    2007-01-01

    BACKGROUND: In a recently described patient with acid-labile subunit (ALS) deficiency, the inability to form ternary complexes resulted in a marked reduction in circulating total insulin-like growth factor (IGF)-I, whereas skeletal growth was only marginally affected. To further study the role of...

  6. Effect of iron deficiency on the expression of insulin-like growth factor-II and its receptor in neuronal and glial cells.

    Science.gov (United States)

    Morales González, E; Contreras, I; Estrada, J A

    2014-09-01

    Many studies have demonstrated that iron deficiency modifies the normal function of the central nervous system and alters cognitive abilities. When cellular damage occurs in the central nervous system, neuroprotective mechanisms, such as the production of neurotrophic factors, are essential in order for nervous tissue to function correctly. Insulin-like growth factor II (IGF- II) is a neurotrophic factor that was recently shown to be involved in the normal functioning of cognitive processes in animal models. However, the impact of iron deficiency on the expression and function of this molecule has not yet been clarified. Mixed primary cell cultures from the central nervous system were collected to simulate iron deficiency using deferoxamine. The expression of IGF-I, IGF-II, IGF-IR, and IGF-IIR was determined with the western blot test. We observed increased expression of IGF-II, along with a corresponding decrease in the expression of IGF-IIR, in iron-deficient mixed primary cell cultures. We did not observe alterations in the expression of these proteins in isolated microglia or neuronal cultures under the same conditions. We did not detect differences in the expression of IGF-I and IGF-IR in iron-deficient cultures. In vitro iron deficiency increases the expression of IGF-II in mixed glial cell cultures, which may have a beneficial effect on brain tissue homeostasis in a situation in which iron availability is decreased. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  7. Genetics Home Reference: aromatase deficiency

    Science.gov (United States)

    ... to impaired female sexual development, unusual bone growth, insulin resistance, and other signs and symptoms of aromatase deficiency . In women who are pregnant with an affected fetus, excess androgens in the ...

  8. Insulin Detemir Is Transported From Blood to Cerebrospinal Fluid and Has Prolonged Central Anorectic Action Relative to NPH Insulin

    Science.gov (United States)

    Begg, Denovan P.; May, Aaron A.; Mul, Joram D.; Liu, Min; D’Alessio, David A.; Seeley, Randy J.

    2015-01-01

    Insulin detemir (DET) reduces glycemia comparably to other long-acting insulin formulations but causes less weight gain. Insulin signaling in the brain is catabolic, reducing food intake. We hypothesized that DET reduces weight gain, relative to other insulins, owing to increased transport into the central nervous system and/or increased catabolic action within the brain. Transport of DET and NPH insulin into the cerebrospinal fluid (CSF) was compared over several hours and after the administration of different doses peripherally in rats. DET and NPH had comparable saturable, receptor-mediated transport into the CSF. CSF insulin remained elevated significantly longer after intraperitoneal DET than after NPH. When administered acutely into the 3rd cerebral ventricle, both DET and NPH insulin reduced food intake and body weight at 24 h, and both food intake and body weight remained lower after DET than after NPH after 48 h. In direct comparison with another long-acting insulin, insulin glargine (GLAR), DET led to more prolonged increases in CSF insulin despite a shorter plasma half-life in both rats and mice. Additionally, peripheral DET administration reduced weight gain and increased CSF insulin compared with saline or GLAR in mice. Overall, these data support the hypothesis that DET has distinct effects on energy balance through enhanced and prolonged centrally mediated reduction of food intake. PMID:25667307

  9. Vitamin D inadequacy is widespread in Tunisian active boys and is related to diet but not to adiposity or insulin resistance

    Directory of Open Access Journals (Sweden)

    Ikram Bezrati

    2016-04-01

    Full Text Available Background: Vitamin D inadequacy is widespread in children and adolescents worldwide. The present study was undertaken to assess the vitamin D status in active children living in a sunny climate and to identify the main determinants of the serum concentration of 25-hydroxyvitamin D (25-OHD. Methods: This cross-sectional study included 225 children aged 7–15 years practicing sports in a football academy. Anthropometric measures were performed to calculate body mass index (BMI, fat mass, and maturity status. A nutritional enquiry was performed including 3-day food records and food frequency questionnaire. Plasma 25-OHD and insulin were assessed by immunoenzymatic methods ensuring categorization of vitamin D status and calculation of insulin sensitivity/resistance indexes. A logistic regression model was applied to identify predictors for vitamin D inadequacy. Results: Vitamin D deficiency (25-OHD<12 µg/L was observed in 40.9% of children and insufficiency (12<25-OHD<20 µg/L was observed in 44% of children. In a multivariate analysis, vitamin D deficiency and insufficiency were associated with a lower dietary intake of vitamin D, proteins, milk, red meat, fish, and eggs. However, no significant relationship was observed with maturation status, adiposity, or insulin resistance. Conclusions: Tunisian children and adolescents are exposed to a high risk of vitamin D inadequacy despite living in a sunny climate. Circulating 25-OHD concentrations are related to the intake of vitamin D food sources but not to maturation status or body composition. Ensuring sufficient and safe sun exposure and adequate vitamin D intake may prevent vitamin D inadequacy in children from sunny environments.

  10. Growth hormone deficiency and hyperthermia during exercise

    DEFF Research Database (Denmark)

    Juul, A; Hjortskov, N; Jepsen, Leif

    1995-01-01

    -deficiency may be at risk for developing hyperthermia. To pursue this, we performed a controlled study on sweating and body temperature regulation during exercise in the heat in 16 GH-treated GH-deficient patients with normalized insulin-like growth factor-I and insulin-like growth factor/binding protein-3 serum.......001]. Consequently, the core temperatures of the patients increased significantly after exercise compared with those of the CTs [38.3 C (0.10 C) (MPD) and 38.1 C (0.06 C) (isolated GH deficiency) vs. 37.5 C (0.2 C) (CTs) (P temperature increased significantly during exercise in the patients...... but remained unaltered in the CTs. Sweat secretion rates, as determined by the pilocarpine method, were significantly lower in the MPD patients [77 (SE +/- 10) mg/30 min] than in the CTs [115 (SE +/- 7) mg/30 min] (P

  11. Human milk insulin is related to maternal plasma insulin and BMI: but other components of human milk do not differ by BMI.

    Science.gov (United States)

    Young, B E; Patinkin, Z; Palmer, C; de la Houssaye, B; Barbour, L A; Hernandez, T; Friedman, J E; Krebs, N F

    2017-09-01

    The impact of maternal BMI and insulin sensitivity on bioactive components of human milk (HM) is not well understood. As the prevalence of obesity and diabetes rises, it is increasingly critical that we understand how maternal BMI and hormones associated with metabolic disease relate to concentrations of bioactive components in HM. This longitudinal cohort design followed 48 breastfeeding mothers through the first four months of lactation, collecting fasting morning HM samples at 2-weeks and 1, 2, 3 and 4-months, and fasting maternal blood at 2-weeks and 4-months. Insulin, glucose, adipokines leptin and adiponectin, appetite regulating hormone ghrelin, marker of oxidative stress 8OHdG and inflammatory cytokines (IL-6, IL-8, and TNF-a) were measured in HM and maternal plasma. A total of 26 normal weight (NW) (BMI=21.4±2.0 kg/m 2 ) and 22 overweight/obese (OW/Ob) (BMI=30.4±4.2 kg/m 2 ) were followed. Of all HM analytes measured, only insulin and leptin were different between groups - consistently higher in the OW/Ob group (leptin: P<0.001; insulin: P<0.03). HM insulin was 98% higher than maternal plasma insulin at 2-weeks and 32% higher at 4-months (P<0.001). Maternal fasting plasma insulin and HOMA-IR were positively related to HM insulin at 2-weeks (P<0.001, R 2 ⩾0.38, n=31), and 4-months (P⩽0.005, R 2 ⩾0.20, n=38). The concentrations of insulin in HM are higher than in maternal plasma and are related to maternal BMI and insulin sensitivity. With the exception of leptin, there were minimal other differences observed in HM composition across a wide range in maternal BMI.

  12. Neuronal LRP1 regulates glucose metabolism and insulin signaling in the brain.

    Science.gov (United States)

    Liu, Chia-Chen; Hu, Jin; Tsai, Chih-Wei; Yue, Mei; Melrose, Heather L; Kanekiyo, Takahisa; Bu, Guojun

    2015-04-08

    Alzheimer's disease (AD) is a neurological disorder characterized by profound memory loss and progressive dementia. Accumulating evidence suggests that Type 2 diabetes mellitus, a metabolic disorder characterized by insulin resistance and glucose intolerance, significantly increases the risk for developing AD. Whereas amyloid-β (Aβ) deposition and neurofibrillary tangles are major histological hallmarks of AD, impairment of cerebral glucose metabolism precedes these pathological changes during the early stage of AD and likely triggers or exacerbates AD pathology. However, the mechanisms linking disturbed insulin signaling/glucose metabolism and AD pathogenesis remain unclear. The low-density lipoprotein receptor-related protein 1 (LRP1), a major apolipoprotein E receptor, plays critical roles in lipoprotein metabolism, synaptic maintenance, and clearance of Aβ in the brain. Here, we demonstrate that LRP1 interacts with the insulin receptor β in the brain and regulates insulin signaling and glucose uptake. LRP1 deficiency in neurons leads to impaired insulin signaling as well as reduced levels of glucose transporters GLUT3 and GLUT4. Consequently, glucose uptake is reduced. By using an in vivo microdialysis technique sampling brain glucose concentration in freely moving mice, we further show that LRP1 deficiency in conditional knock-out mice resulted in glucose intolerance in the brain. We also found that hyperglycemia suppresses LRP1 expression, which further exacerbates insulin resistance, glucose intolerance, and AD pathology. As loss of LRP1 expression is seen in AD brains, our study provides novel insights into insulin resistance in AD. Our work also establishes new targets that can be explored for AD prevention or therapy. Copyright © 2015 the authors 0270-6474/15/355851-09$15.00/0.

  13. Laron syndrome (primary growth hormone insensitivity): a unique model to explore the effect of insulin-like growth factor 1 deficiency on human hair.

    Science.gov (United States)

    Lurie, R; Ben-Amitai, D; Laron, Z

    2004-01-01

    Classical Laron syndrome is a recessive disease of primary insulin-like growth factor 1 (IGF-1) deficiency and primary growth hormone insensitivity. Affected children have, among other defects, sparse hair growth and frontal recessions. The hair is thin and easy to pluck. Young adults have various degrees of alopecia, more pronounced in males. The aim of the present study was to investigate the effect of primary IGF-1 deficiency on hair structure. The study sample included 11 patients with Laron syndrome--5 children (2 untreated) and 6 adults (5 untreated). Hairs were examined by light and electron microscopy. The most significant structured defect, pili torti et canaliculi, was found in 2 young, untreated patients. Grooving, tapered hair and trichorrhexis nodosa were found in the remainder. IGF-1-treated patients had either none or significantly fewer pathological changes compared to the untreated patients. This is the first documentation of the role of primary IGF-1 deficiency on hair structure in human beings. Copyright 2004 S. Karger AG, Basel

  14. C1qTNF-related protein 1 improve insulin resistance by reducing phosphorylation of serine 1101 in insulin receptor substrate 1.

    Science.gov (United States)

    Xin, Yaping; Zhang, Dongming; Fu, Yanqin; Wang, Chongxian; Li, Qingju; Tian, Chenguang; Zhang, Suhe; Lyu, Xiaodong

    2017-08-30

    C1qTNF-related protein 1 (CTRP1) is independently associated with type 2 diabetes. However, the relationship between CTRP1 and insulin resistance is still not established. This study aimed to explore the role of CTRP1 under the situation of insulin resistance in adipose tissue. Plasma CTRP1 level was investigated in type 2 diabetic subjects (n = 35) and non-diabetic subjects (n = 35). The relationship between CTRP1 and phosphorylation of multi insulin receptor substrate 1 (IRS-1) serine (Ser) sites was further explored. Our data showed that Plasma CTRP1 was higher and negative correlation with insulin resistance in diabetic subjects (r = -0.283, p = 0.018). Glucose utilisation test revealed that the glucose utilisation rate of mature adipocytes was improved by CTRP1 in the presence of insulin. CTRP1 was not only related to IRS-1 protein, but also negatively correlated with IRS-1 Ser1101 phosphorylation (r = -0.398, p = 0.031). Furthermore, Phosphorylation levels of IRS-1 Ser1101 were significantly lower after incubation with 40 ng/mL CTRP1 in mature adipocytes than those with no intervention (p insulin resistance by reducing the phosphorylation of IRS-1 Ser1101, induced in the situation of insulin resistance as a feedback adipokine.

  15. Obesity as an Emerging Risk Factor for Iron Deficiency

    Directory of Open Access Journals (Sweden)

    Elmar Aigner

    2014-09-01

    Full Text Available Iron homeostasis is affected by obesity and obesity-related insulin resistance in a many-facetted fashion. On one hand, iron deficiency and anemia are frequent findings in subjects with progressed stages of obesity. This phenomenon has been well studied in obese adolescents, women and subjects undergoing bariatric surgery. On the other hand, hyperferritinemia with normal or mildly elevated transferrin saturation is observed in approximately one-third of patients with metabolic syndrome (MetS or nonalcoholic fatty liver disease (NAFLD. This constellation has been named the “dysmetabolic iron overload syndrome (DIOS”. Both elevated body iron stores and iron deficiency are detrimental to health and to the course of obesity-related conditions. Iron deficiency and anemia may impair mitochondrial and cellular energy homeostasis and further increase inactivity and fatigue of obese subjects. Obesity-associated inflammation is tightly linked to iron deficiency and involves impaired duodenal iron absorption associated with low expression of duodenal ferroportin (FPN along with elevated hepcidin concentrations. This review summarizes the current understanding of the dysregulation of iron homeostasis in obesity.

  16. Serum progranulin levels in relation to insulin resistance in childhood obesity.

    Science.gov (United States)

    Alissa, Eman M; Sutaih, Rima H; Kamfar, Hayat Z; Alagha, Abdulmoeen E; Marzouki, Zuhair M

    2017-11-27

    Progranulin is an adipokine that is involved in the inflammatory response, glucose metabolism, insulin resistance, and may therefore be involved in chronic subclinical inflammation associated with the pathogenesis of childhood obesity. We aimed to investigate the association of circulating progranulin levels with metabolic parameters in children and to assess the importance of progranulin as a biomarker for metabolic diseases. A total of 150 children were consecutively recruited from the Pediatric Nutrition Clinics at King Abdulaziz University Hospital in Jeddah, Saudi Arabia. Children were classified into four groups based on quartile for serum progranulin. Anthropometric variables were measured in all study subjects. Fasting blood samples were collected for measurement of blood glucose, insulin and lipid profile. Children within the upper quartile for serum progranulin concentration were heavier, more insulin resistant and had higher concentrations of serum total cholesterol, triglycerides, insulin and high sensitivity C reactive protein compared to those in the lower quartile. On correlation analysis, serum progranulin concentrations were significantly related to general and central adiposity, metabolic parameters, markers of inflammation and insulin resistance. Stepwise multiple regression showed that 26.6% of the variability in serum progranulin could be explained by measures of adiposity. The increased serum progranulin concentrations were closely related to measures of adiposity, metabolic parameters, inflammatory marker and insulin resistance indices, suggesting that progranulin may be an excellent biomarker for obesity in childhood.

  17. Insulin and the early bovine embryo

    OpenAIRE

    Laskowski, Denise

    2017-01-01

    Metabolic imbalance is a problem in the dairy industry because the metabolic demands of increased milk production can lead to decreased fertility, and more knowledge about improving the management and physical conditions of the cow (the links between fertility, nutrition, milking, and dry period) is needed. Insulin is an important hormone regulating the energy balance in the body, and insulin concentrations change in situations of energy deficiency or excess, both of which a...

  18. Selective Insulin Resistance in the Kidney

    Science.gov (United States)

    Horita, Shoko; Nakamura, Motonobu; Suzuki, Masashi; Satoh, Nobuhiko; Suzuki, Atsushi; Seki, George

    2016-01-01

    Insulin resistance has been characterized as attenuation of insulin sensitivity at target organs and tissues, such as muscle and fat tissues and the liver. The insulin signaling cascade is divided into major pathways such as the PI3K/Akt pathway and the MAPK/MEK pathway. In insulin resistance, however, these pathways are not equally impaired. For example, in the liver, inhibition of gluconeogenesis by the insulin receptor substrate (IRS) 2 pathway is impaired, while lipogenesis by the IRS1 pathway is preserved, thus causing hyperglycemia and hyperlipidemia. It has been recently suggested that selective impairment of insulin signaling cascades in insulin resistance also occurs in the kidney. In the renal proximal tubule, insulin signaling via IRS1 is inhibited, while insulin signaling via IRS2 is preserved. Insulin signaling via IRS2 continues to stimulate sodium reabsorption in the proximal tubule and causes sodium retention, edema, and hypertension. IRS1 signaling deficiency in the proximal tubule may impair IRS1-mediated inhibition of gluconeogenesis, which could induce hyperglycemia by preserving glucose production. In the glomerulus, the impairment of IRS1 signaling deteriorates the structure and function of podocyte and endothelial cells, possibly causing diabetic nephropathy. This paper mainly describes selective insulin resistance in the kidney, focusing on the proximal tubule. PMID:27247938

  19. Deficient hippocampal insulin signaling and augmented Tau phosphorylation is related to obesity- and age-induced peripheral insulin resistance: a study in Zucker rats

    Czech Academy of Sciences Publication Activity Database

    Špolcová, Andrea; Mikulášková, Barbora; Kršková, K.; Gajdošechová, L.; Zórad, Š.; Olszanecki, R.; Suski, M.; Bujak-Gizycka, B.; Železná, Blanka; Maletínská, Lenka

    2014-01-01

    Roč. 15, Sep 25 (2014), 111/1-111/8 ISSN 1471-2202 R&D Projects: GA ČR GAP303/12/0576; GA MŠk 7AMB12FR011 Institutional support: RVO:61388963 Keywords : Zucker fa/fa rats * insulin resistance * obesity * GSK-3 beta * Tau protein Subject RIV: CE - Biochemistry Impact factor: 2.665, year: 2014

  20. Insulin-like growth factor-I in growth and metabolism

    DEFF Research Database (Denmark)

    Backeljauw, P; Bang, P; Dunger, D B

    2010-01-01

    Deficiency of insulin-like growth factor-I (IGF-I) results in growth failure. A variety of molecular defects have been found to underlie severe primary IGF-I deficiency (IGFD), in which serum IGF-I concentrations are substantially decreased and fail to respond to GH therapy. Identification of more...

  1. Intrinsic factors rather than vitamin D deficiency are related to insulin resistance in lean women with polycystic ovary syndrome.

    Science.gov (United States)

    Sahin, S; Eroglu, M; Selcuk, S; Turkgeldi, L; Kozali, S; Davutoglu, S; Muhcu, M

    2014-10-01

    To investigate the correlation between insulin resistance (IR) and serum 25-OH-Vit D concentrations and hormonal parameters in lean women with polycystic ovary syndrome (PCOS). 50 lean women with PCOS and 40 body mass index (BMI) matched controls were compared in terms of fasting insulin and glucose, homeostatic model assessment insulin resistance (HOMA-IR), 25-OH-Vit D, high sensitivity C-reactive protein (hs-CRP), luteinizing hormone (LH), follicle-stimulating hormone (FSH), total testosterone, dehydroepiandrosterone sulfate (DHEA-S), total cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), triglycerides and Ferriman-Gallway (FG) scores. Correlation analyses were performed between HOMA-IR and metabolic and endocrine parameters. 30% of patients with PCOS demonstrated IR. Levels of 25-OH-Vit D, hsCRP, cholesterol, HDL, LDL, triglyceride and fasting glucose did not differ between the study and control groups. Fasting insulin, HOMA-IR, LH, total testosterone, and DHEA-S levels were higher in PCOS group. HOMA-IR was found to correlate with hs-CRP and total testosterone but not with 25-OH-Vit D levels in lean patients with PCOS. An association between 25-OH-Vit D levels and IR is not evident in lean women with PCOS. hs-CRP levels do not indicate to an increased risk of cardiovascular disease in this population of patients. Because a strong association between hyperinsulinemia and hyperandrogenism exists in lean women with PCOS, it is advisable for this population of patients to be screened for metabolic disturbances, especially in whom chronic anovulation and hyperandrogenism are observed together.

  2. Insulin signal transduction in skeletal muscle from glucose-intolerant relatives of type 2 diabetic patients [corrected

    DEFF Research Database (Denmark)

    Storgaard, H; Song, X M; Jensen, C B

    2001-01-01

    before and during a euglycemic-hyperinsulinemic clamp. IGT relatives were insulin-resistant in oxidative and nonoxidative pathways for glucose metabolism. In vivo insulin infusion increased skeletal muscle insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation (P = 0.01) and phosphatidylinositide......To determine whether defects in the insulin signal transduction cascade are present in skeletal muscle from prediabetic individuals, we excised biopsies from eight glucose-intolerant male first-degree relatives of patients with type 2 diabetes (IGT relatives) and nine matched control subjects...... 3-kinase (PI 3-kinase) activity (phosphotyrosine and IRS-1 associated) in control subjects (P increase in insulin action on IRS-1 tyrosine phosphorylation was lower in IGT relatives versus control subjects (P

  3. Stearoyl-CoA desaturase deficiency, hypercholesterolaemia, cholestasis and diabetes

    NARCIS (Netherlands)

    Attie, Alan D.; Flowers, Matthew T.; Flowers, Jessica B.; Groen, Albert K.; Kuipers, Folkert; Ntambi, James M.

    2007-01-01

    Previous studies have shown that mice deficient in Scd1 have a dramatically reduced level of liver triglyceride and an improvement in insulin sensitivity. The mice are lean and partially protected from obesity induced by leptin deficiency or high fat diets. These results predicted that Scd1(-/-)

  4. Deregulation of brain insulin signaling in Alzheimer's disease.

    Science.gov (United States)

    Chen, Yanxing; Deng, Yanqiu; Zhang, Baorong; Gong, Cheng-Xin

    2014-04-01

    Contrary to the previous belief that insulin does not act in the brain, studies in the last three decades have demonstrated important roles of insulin and insulin signal transduction in various functions of the central nervous system. Deregulated brain insulin signaling and its role in molecular pathogenesis have recently been reported in Alzheimer's disease (AD). In this article, we review the roles of brain insulin signaling in memory and cognition, the metabolism of amyloid β precursor protein, and tau phosphorylation. We further discuss deficiencies of brain insulin signaling and glucose metabolism, their roles in the development of AD, and recent studies that target the brain insulin signaling pathway for the treatment of AD. It is clear now that deregulation of brain insulin signaling plays an important role in the development of sporadic AD. The brain insulin signaling pathway also offers a promising therapeutic target for treating AD and probably other neurodegenerative disorders.

  5. Acute inhibition of central c-Jun N-terminal kinase restores hypothalamic insulin signalling and alleviates glucose intolerance in diabetic mice.

    Science.gov (United States)

    Benzler, J; Ganjam, G K; Legler, K; Stöhr, S; Krüger, M; Steger, J; Tups, A

    2013-05-01

    The hypothalamus has been identified as a main insulin target tissue for regulating normal body weight and glucose metabolism. Recent observations suggest that c-Jun-N-terminal kinase (JNK)-signalling plays a crucial role in the development of obesity and insulin resistance because neuronal JNK-1 ablation in the mouse prevented high-fat diet-induced obesity (DIO) and increased energy expenditure, as well as insulin sensitivity. In the present study, we investigated whether central JNK inhibition is associated with sensitisation of hypothalamic insulin signalling in mice fed a high-fat diet for 3 weeks and in leptin-deficient mice. We determined whether i.c.v. injection of a pharmacological JNK-inhibitor (SP600125) improved impaired glucose homeostasis. By immunohistochemistry, we first observed that JNK activity was increased in the arcuate nucleus (ARC) and the ventromedial hypothalamus (VMH) in both mouse models, relative to normoglycaemic controls. This suggests that up-regulation of JNK in these regions is associated with glucose intolerance and obesity, independent of leptin levels. Acute i.c.v. injection of SP600125 ameliorated glucose tolerance within 30 min in both leptin-deficient and DIO mice. Given the acute nature of i.c.v. injections, these effects cannot be attributed to changes in food intake or energy balance. In a hypothalamic cell line, and in the ARC and VMH of leptin-deficient mice, JNK inhibition by SP600125 consistently improved impaired insulin signalling. This was determined by a reduction of phospho-insulin receptor substrate-1 [IRS-1(Ser612)] protein in a hypothalamic cell line and a decline in the number of pIRS-1(Ser612) immunoreactive cells in the ARC and VMH. Serine 612 phosphorylation of IRS-1 is assumed to negatively regulate insulin signalling. In leptin-deficient mice, in both nuclei, central inhibition of JNK increased the number of cells immunoreactive for phospho-Akt (Ser473) and phospho-GSK-3β (Ser9), which are important

  6. The changes of serum leptin and insulin contents in elderly male patients with obesity-related hypertension

    International Nuclear Information System (INIS)

    Zhan Hao; Huang Daijuan; Yuan Bin; He Yong; Zhang Yongxue

    2004-01-01

    To study the contents of serum leptin and insulin in elderly male patients with obesity-related hypertension, the levels of serum leptin and insulin in 21 normotensive cases and 41 hypertensive cases of them were determined by RIA. The results showed that the levels of serum leptin and insulin between hypertensives and normotensives in the non-obese groups were not significantly different (P>0.05). Compared with normotensives, the levels of serum leptin and insulin of hypertensives in the obese groups remarkably increased 1.8μg/L and 2.7 mIU/L respectively (P<0.01). The levels of serum leptin and insulin in the patients with obesity - related hypertension were markedly higher than those in the patients with non-obesity-related hypertension and elevated 2.7μg/L and 4.7mIU/L (P<0.01) respectively. Insulin-sensitivity index (ISI) successively decreased in the groups of HBPOb, NBPOb, HBPNOb and NBPNOb (relative ISI 0.50, 0.68, 0.92, 1 respectively). It is concluded that leptin-resistance and insulin-resistance exist in male elderly patients with obesity-related hypertension

  7. The Role of Insulin-Like Growth Factor 1 in the Progression of Age-Related Hearing Loss

    Directory of Open Access Journals (Sweden)

    Lourdes Rodríguez-de la Rosa

    2017-12-01

    Full Text Available Aging is associated with impairment of sensorial functions and with the onset of neurodegenerative diseases. As pari passu circulating insulin-like growth factor 1 (IGF-1 bioavailability progressively decreases, we see a direct correlation with sensory impairment and cognitive performance in older humans. Age-related sensory loss is typically caused by the irreversible death of highly differentiated neurons and sensory receptor cells. Among sensory deficits, age-related hearing loss (ARHL, also named presbycusis, affects one third of the population over 65 years of age and is a major factor in the progression of cognitive problems in the elderly. The genetic and molecular bases of ARHL are largely unknown and only a few genes related to susceptibility to oxidative stress, excitotoxicity, and cell death have been identified. IGF-1 is known to be a neuroprotective agent that maintains cellular metabolism, activates growth, proliferation and differentiation, and limits cell death. Inborn IGF-1 deficiency leads to profound sensorineural hearing loss both in humans and mice. IGF-1 haploinsufficiency has also been shown to correlate with ARHL. There is not much information available on the effect of IGF-1 deficiency on other human sensory systems, but experimental models show a long-term impact on the retina. A secondary action of IGF-1 is the control of oxidative stress and inflammation, thus helping to resolve damage situations, acute or made chronic by aging. Here we will review the primary actions of IGF-1 in the auditory system and the underlying molecular mechanisms.

  8. Fanconi anemia links reactive oxygen species to insulin resistance and obesity.

    Science.gov (United States)

    Li, Jie; Sipple, Jared; Maynard, Suzette; Mehta, Parinda A; Rose, Susan R; Davies, Stella M; Pang, Qishen

    2012-10-15

    Insulin resistance is a hallmark of obesity and type 2 diabetes. Reactive oxygen species (ROS) have been proposed to play a causal role in insulin resistance. However, evidence linking ROS to insulin resistance in disease settings has been scant. Since both oxidative stress and diabetes have been observed in patients with the Fanconi anemia (FA), we sought to investigate the link between ROS and insulin resistance in this unique disease model. Mice deficient for the Fanconi anemia complementation group A (Fanca) or Fanconi anemia complementation group C (Fancc) gene seem to be diabetes-prone, as manifested by significant hyperglycemia and hyperinsulinemia, and rapid weight gain when fed with a high-fat diet. These phenotypic features of insulin resistance are characterized by two critical events in insulin signaling: a reduction in tyrosine phosphorylation of the insulin receptor (IR) and an increase in inhibitory serine phosphorylation of the IR substrate-1 in the liver, muscle, and fat tissues from the insulin-challenged FA mice. High levels of ROS, spontaneously accumulated or generated by tumor necrosis factor alpha in these insulin-sensitive tissues of FA mice, were shown to underlie the FA insulin resistance. Treatment of FA mice with the natural anti-oxidant Quercetin restores IR signaling and ameliorates the diabetes- and obesity-prone phenotypes. Finally, pairwise screen identifies protein-tyrosine phosphatase (PTP)-α and stress kinase double-stranded RNA-dependent protein kinase (PKR) that mediate the ROS effect on FA insulin resistance. These findings establish a pathogenic and mechanistic link between ROS and insulin resistance in a unique human disease setting. ROS accumulation contributes to the insulin resistance in FA deficiency by targeting both PTP-α and PKR.

  9. Kisspeptin levels in idiopathic hypogonadotropic hypogonadism diagnosed male patients and its relation with glucose-insulin dynamic.

    Science.gov (United States)

    Öztin, Hasan; Çağıltay, Eylem; Çağlayan, Sinan; Kaplan, Mustafa; Akpak, Yaşam Kemal; Karaca, Nilay; Tığlıoğlu, Mesut

    2016-12-01

    Male hypogonadism is defined as the deficiency of testosterone or sperm production synthesized by testicles or the deficiency of both. The reasons for hypogonadism may be primary, meaning testicular or secondary, meaning hypothalamohypophyseal. In hypogonadotropic hypogonadism (HH), there is indeficiency in gonadotropic hormones due to hypothalamic or hypophyseal reasons. Gonadotropin-releasing hormone (GnRH) is an important stimulant in releasing follicular stimulant hormone (FSH), mainly luteinizing hormone (LH). GnRH omitted is under the effect of many hormonal or stimulating factors. Kisspeptin is present in many places of the body, mostly in hypothalamic anteroventral periventricular nucleus and arcuate nucleus. Kisspeptin has a suppressor effect on the metastasis of many tumors such as breast cancer and malign melanoma metastases, and is called "metastin" for this reason. Kisspeptin is a strong stimulant of GnRH. In idiopathic hypogonadotropic hypogonadism (IHH) etiology, there is gonadotropic hormone release indeficiency which cannot be clearly described. A total of 30 male hypogonatropic hypogonadism diagnosed patients over 30 years of age who have applied to Haydarpasa Education Hospital Endocrinology and Metabolic Diseases Service were included in the study. Compared to the control group, the effect of kisspeptin on male patients with hypogonatropic hypogonadism and on insulin resistance developing in hypogonadism patients was investigated in our study. A statistically significant difference was detected between average kisspeptin measurements of the groups (p hypogonadism and has less effect on insulin resistance.

  10. Experimental Alcohol-Related Peripheral Neuropathy: Role of Insulin/IGF Resistance

    Directory of Open Access Journals (Sweden)

    James Gilchrist

    2012-08-01

    Full Text Available The mechanisms of alcohol-related peripheral neuropathy (ALPN are poorly understood. We hypothesize that, like alcohol-related liver and brain degeneration, ALPN may be mediated by combined effects of insulin/IGF resistance and oxidative stress. Adult male Long Evans rats were chronically pair-fed with diets containing 0% or 37% ethanol (caloric, and subjected to nerve conduction studies. Chronic ethanol feeding slowed nerve conduction in the tibial (p = 0.0021 motor nerve, and not plantar sensory nerve, but it did not affect amplitude. Histological studies of the sciatic nerve revealed reduced nerve fiber diameters with increased regenerative sprouts, and denervation myopathy in ethanol-fed rats. qRT-PCR analysis demonstrated reduced mRNA levels of insulin, IGF-1, and IGF-2 polypeptides, IGF-1 receptor, and IRS2, and ELISAs revealed reduced immunoreactivity for insulin and IGF-1 receptors, IRS-1, IRS-4, myelin-associated glycoprotein, and tau in sciatic nerves of ethanol-fed rats (all p < 0.05 or better. The findings suggest that ALPN is characterized by (1 slowed conduction velocity with demyelination, and a small component of axonal degeneration; (2 impaired trophic factor signaling due to insulin and IGF resistance; and (3 degeneration of myelin and axonal cytoskeletal proteins. Therefore, ALPN is likely mediated by molecular and signal transduction abnormalities similar to those identified in alcoholic liver and brain degeneration.

  11. Expression profiling analysis: Uncoupling protein 2 deficiency improves hepatic glucose, lipid profiles and insulin sensitivity in high-fat diet-fed mice by modulating expression of genes in peroxisome proliferator-activated receptor signaling pathway.

    Science.gov (United States)

    Zhou, Mei-Cen; Yu, Ping; Sun, Qi; Li, Yu-Xiu

    2016-03-01

    Uncoupling protein 2 (UCP2), which was an important mitochondrial inner membrane protein associated with glucose and lipid metabolism, widely expresses in all kinds of tissues including hepatocytes. The present study aimed to explore the impact of UCP2 deficiency on glucose and lipid metabolism, insulin sensitivity and its effect on the liver-associated signaling pathway by expression profiling analysis. Four-week-old male UCP2-/- mice and UCP2+/+ mice were randomly assigned to four groups: UCP2-/- on a high-fat diet, UCP2-/- on a normal chow diet, UCP2+/+ on a high-fat diet and UCP2+/+ on a normal chow diet. The differentially expressed genes in the four groups on the 16th week were identified by Affymetrix gene array. The results of intraperitoneal glucose tolerance test and insulin tolerance showed that blood glucose and β-cell function were improved in the UCP2-/- group on high-fat diet. Enhanced insulin sensitivity was observed in the UCP2-/- group. The differentially expressed genes were mapped to 23 pathways (P high-fat diet. The upregulation of genes in the PPAR signaling pathway could explain our finding that UCP2 deficiency ameliorated insulin sensitivity. The manipulation of UCP2 protein expression could represent a new strategy for the prevention and treatment of diabetes.

  12. Leptin rapidly improves glucose homeostasis in obese mice by increasing hypothalamic insulin sensitivity.

    Science.gov (United States)

    Koch, Christiane; Augustine, Rachael A; Steger, Juliane; Ganjam, Goutham K; Benzler, Jonas; Pracht, Corinna; Lowe, Chrishanthi; Schwartz, Michael W; Shepherd, Peter R; Anderson, Greg M; Grattan, David R; Tups, Alexander

    2010-12-01

    Obesity is associated with resistance to the actions of both leptin and insulin via mechanisms that remain incompletely understood. To investigate whether leptin resistance per se contributes to insulin resistance and impaired glucose homeostasis, we investigated the effect of acute leptin administration on glucose homeostasis in normal as well as leptin- or leptin receptor-deficient mice. In hyperglycemic, leptin-deficient Lep(ob/ob) mice, leptin acutely and potently improved glucose metabolism, before any change of body fat mass, via a mechanism involving the p110α and β isoforms of phosphatidylinositol-3-kinase (PI3K). Unlike insulin, however, the anti-diabetic effect of leptin occurred independently of phospho-AKT, a major downstream target of PI3K, and instead involved enhanced sensitivity of the hypothalamus to insulin action upstream of PI3K, through modulation of IRS1 (insulin receptor substrate 1) phosphorylation. These data suggest that leptin resistance, as occurs in obesity, reduces the hypothalamic response to insulin and thereby impairs peripheral glucose homeostasis, contributing to the development of type 2 diabetes.

  13. Liraglutide increases FGF-21 activity and insulin sensitivity in high fat diet and adiponectin knockdown induced insulin resistance.

    Directory of Open Access Journals (Sweden)

    Mengliu Yang

    Full Text Available BACKGROUND: Liraglutide is a glucagon-like peptide-1 analogue that stimulates insulin secretion and improves β-cell function. However, it is not clear whether liraglutide achieves its glucose lowering effect only by its known effects or whether other as yet unknown mechanisms are involved. The aim of this study was to examine the effects of liraglutide on Fibroblast growth factor-21 (FGF-21 activity in High-fat diet (HFD fed ApoE(-/- mice with adiponectin (Acrp30 knockdown. METHOD: HFD-fed ApoE(-/- mice were treated with adenovirus vectors expressing shAcrp30 to produce insulin resistance. Hyperinsulinemic-euglycemic clamp studies were performed to evaluate insulin sensitivity of the mouse model. QRT-PCR and Western blot were used to measure the mRNA and protein expression of the target genes. RESULTS: The combination of HFD, ApoE deficiency, and hypoadiponectinemia resulted in an additive effect on insulin resistance. FGF-21 mRNA expressions in both liver and adipose tissues were significantly increased while FGF-21 receptor 1 (FGFR-1 and β-Klotho mRNA levels in adipose tissue, as well as FGFR-1-3 and β-Klotho mRNA levels in liver were significantly decreased in this model. Liraglutide treatment markedly improved insulin resistance and increased FGF-21 expression in liver and FGFR-3 in adipose tissue, restored β-Klotho mRNA expression in adipose tissue as well as FGFR-1-3, β-Klotho levels and phosphorylation of FGFR1 up to the levels observed in control mice in liver. Liraglutide treatment also further increased FGF-21 proteins in liver and plasma. In addition, as shown by hyperinsulinemic-euglycemic clamp, liraglutide treatment also markedly improved glucose metabolism and insulin sensitivity in these animals. CONCLUSION: These findings demonstrate an additive effect of HFD, ApoE deficiency, and adiponectin knockdown on insulin resistance and unveil that the regulation of glucose metabolism and insulin sensitivity by liraglutide may be

  14. The Role of Insulin, Insulin Growth Factor, and Insulin-Degrading Enzyme in Brain Aging and Alzheimer's Disease

    OpenAIRE

    Messier, Claude; Teutenberg, Kevin

    2005-01-01

    Most brain insulin comes from the pancreas and is taken up by the brain by what appears to be a receptor-based carrier. Type 2 diabetes animal models associated with insulin resistance show reduced insulin brain uptake and content. Recent data point to changes in the insulin receptor cascade in obesity-related insulin resistance, suggesting that brain insulin receptors also become less sensitive to insulin, which could reduce synaptic plasticity. Insulin transport to the brain is reduced in a...

  15. Mechanisms linking brain insulin resistance to Alzheimer's disease

    Science.gov (United States)

    Matioli, Maria Niures P.S.; Nitrini, Ricardo

    2015-01-01

    Several studies have indicated that Diabetes Mellitus (DM) can increase the risk of developing Alzheimer's disease (AD). This review briefly describes current concepts in mechanisms linking DM and insulin resistance/deficiency to AD. Insulin/insulin-like growth factor (IGF) resistance can contribute to neurodegeneration by several mechanisms which involve: energy and metabolism deficits, impairment of Glucose transporter-4 function, oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, accumulation of AGEs, ROS and RNS with increased production of neuro-inflammation and activation of pro-apoptosis cascade. Impairment in insulin receptor function and increased expression and activation of insulin-degrading enzyme (IDE) have also been described. These processes compromise neuronal and glial function, with a reduction in neurotransmitter homeostasis. Insulin/IGF resistance causes the accumulation of AβPP-Aβ oligomeric fibrils or insoluble larger aggregated fibrils in the form of plaques that are neurotoxic. Additionally, there is production and accumulation of hyper-phosphorylated insoluble fibrillar tau which can exacerbate cytoskeletal collapse and synaptic disconnection. PMID:29213950

  16. Mechanisms linking brain insulin resistance to Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Maria Niures P.S. Matioli

    Full Text Available Several studies have indicated that Diabetes Mellitus (DM can increase the risk of developing Alzheimer's disease (AD. This review briefly describes current concepts in mechanisms linking DM and insulin resistance/deficiency to AD. Insulin/insulin-like growth factor (IGF resistance can contribute to neurodegeneration by several mechanisms which involve: energy and metabolism deficits, impairment of Glucose transporter-4 function, oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, accumulation of AGEs, ROS and RNS with increased production of neuro-inflammation and activation of pro-apoptosis cascade. Impairment in insulin receptor function and increased expression and activation of insulin-degrading enzyme (IDE have also been described. These processes compromise neuronal and glial function, with a reduction in neurotransmitter homeostasis. Insulin/IGF resistance causes the accumulation of AβPP-Aβ oligomeric fibrils or insoluble larger aggregated fibrils in the form of plaques that are neurotoxic. Additionally, there is production and accumulation of hyper-phosphorylated insoluble fibrillar tau which can exacerbate cytoskeletal collapse and synaptic disconnection.

  17. Deficiency in plasmacytoid dendritic cells and type I interferon signalling prevents diet-induced obesity and insulin resistance in mice.

    Science.gov (United States)

    Hannibal, Tine D; Schmidt-Christensen, Anja; Nilsson, Julia; Fransén-Pettersson, Nina; Hansen, Lisbeth; Holmberg, Dan

    2017-10-01

    Obesity is associated with glucose intolerance and insulin resistance and is closely linked to the increasing prevalence of type 2 diabetes. In mouse models of diet-induced obesity (DIO) and type 2 diabetes, an increased fat intake results in adipose tissue expansion and the secretion of proinflammatory cytokines. The innate immune system not only plays a crucial role in obesity-associated chronic low-grade inflammation but it is also proposed to play a role in modulating energy metabolism. However, little is known about how the modulation of metabolism by the immune system may promote increased adiposity in the early stages of increased dietary intake. Here we aimed to define the role of type I IFNs in DIO and insulin resistance. Mice lacking the receptor for IFN-α (IFNAR -/- ) and deficient in plasmacytoid dendritic cells (pDCs) (B6.E2-2 fl/fl .Itgax-cre) were fed a diet with a high fat content or normal chow. The mice were analysed in vivo and in vitro using cellular, biochemical and molecular approaches. We found that the development of obesity was inhibited by an inability to respond to type I IFNs. Furthermore, the development of obesity and insulin resistance in this model was associated with pDC recruitment to the fatty tissues and liver of obese mice (a 4.3-fold and 2.7-fold increase, respectively). Finally, we demonstrated that the depletion of pDCs protects mice from DIO and from developing obesity-associated metabolic complications. Our results provide genetic evidence that pDCs, via type I IFNs, regulate energy metabolism and promote the development of obesity.

  18. Ginseng Berry Extract Supplementation Improves Age-Related Decline of Insulin Signaling in Mice

    Directory of Open Access Journals (Sweden)

    Eunhui Seo

    2015-04-01

    Full Text Available The aim of this study was to evaluate the effects of ginseng berry extract on insulin sensitivity and associated molecular mechanisms in aged mice. C57BL/6 mice (15 months old were maintained on a regular diet (CON or a regular diet supplemented with 0.05% ginseng berry extract (GBD for 24 or 32 weeks. GBD-fed mice showed significantly lower serum insulin levels (p = 0.016 and insulin resistance scores (HOMA-IR (p = 0.012, suggesting that GBD improved insulin sensitivity. Pancreatic islet hypertrophy was also ameliorated in GBD-fed mice (p = 0.007. Protein levels of tyrosine phosphorylated insulin receptor substrate (IRS-1 (p = 0.047, and protein kinase B (AKT (p = 0.037, were up-regulated in the muscle of insulin-injected GBD-fed mice compared with CON-fed mice. The expressions of forkhead box protein O1 (FOXO1 (p = 0.036 and peroxisome proliferator-activated receptor gamma (PPARγ (p = 0.032, which are known as aging- and insulin resistance-related genes, were also increased in the muscle of GBD-fed mice. We conclude that ginseng berry extract consumption might increase activation of IRS-1 and AKT, contributing to the improvement of insulin sensitivity in aged mice.

  19. An ancestral role for the mitochondrial pyruvate carrier in glucose-stimulated insulin secretion

    Directory of Open Access Journals (Sweden)

    Kyle S. McCommis

    2016-08-01

    Full Text Available Objective: Transport of pyruvate into the mitochondrial matrix by the Mitochondrial Pyruvate Carrier (MPC is an important and rate-limiting step in its metabolism. In pancreatic β-cells, mitochondrial pyruvate metabolism is thought to be important for glucose sensing and glucose-stimulated insulin secretion. Methods: To evaluate the role that the MPC plays in maintaining systemic glucose homeostasis, we used genetically-engineered Drosophila and mice with loss of MPC activity in insulin-producing cells. Results: In both species, MPC deficiency results in elevated blood sugar concentrations and glucose intolerance accompanied by impaired glucose-stimulated insulin secretion. In mouse islets, β-cell MPC-deficiency resulted in decreased respiration with glucose, ATP-sensitive potassium (KATP channel hyperactivity, and impaired insulin release. Moreover, treatment of pancreas-specific MPC knockout mice with glibenclamide, a sulfonylurea KATP channel inhibitor, improved defects in islet insulin secretion and abnormalities in glucose homeostasis in vivo. Finally, using a recently-developed biosensor for MPC activity, we show that the MPC is rapidly stimulated by glucose treatment in INS-1 insulinoma cells suggesting that glucose sensing is coupled to mitochondrial pyruvate carrier activity. Conclusions: Altogether, these studies suggest that the MPC plays an important and ancestral role in insulin-secreting cells in mediating glucose sensing, regulating insulin secretion, and controlling systemic glycemia. Keywords: Stimulus-coupled secretion, Insulin, β-Cell, Diabetes, Pyruvate, Mitochondria, Drosophila

  20. Early intranasal insulin therapy halts progression of neurodegeneration: progress in Alzheimer’s disease therapeutics

    OpenAIRE

    de la Monte, Suzanne M.

    2012-01-01

    Evaluation of Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, et al. Intranasal Insulin Therapy for Alzheimer Disease and Amnestic Mild Cognitive Impairment: A Pilot Clinical Trial. Arch Neurol. 2011 Sep 12. Alzheimer’s disease is associated with brain insulin deficiency and insulin resistance, similar to the problems in diabetes. If insulin could be supplied to the brain in the early stages of Alzheimer’s, subsequent neurodegeneration might be prevented. ...

  1. Testosterone deficiency syndrome: cellular and molecular mechanism of action.

    Science.gov (United States)

    Carruthers, Malcolm

    2013-02-01

    There is virtually no correlation between what are generally accepted to be the symptoms of deficient androgen in men and levels of androgens as measured in the laboratory. Now that androgen deficiency is being shown to play a part in conditions as diverse as metabolic syndrome, diabetes, and coronary heart disease, a hypothesis is needed to explain this apparent discrepancy between measured androgen levels and our understanding of the symptoms of androgen deficiency. When the possible mechanisms for androgen actions are considered, one explanation emerges that androgen may act much like insulin in persons with type 2 diabetes mellitus: the degree of androgen resistance may be variable depending on the organs or systems considered. Therefore, the symptoms can result from altered or damaged synthesis of androgen synthesis or regulation, elevated androgen binding, a reduction in tissue response, or decreased as a result of polymorphism and aging. Genomic transcription and translation may also be affected. As with diabetes, in adult male androgen deficiency, it is suggested that the definition of androgen deficiency should be based on individual physiology, with the requirements of the individual at a particular stage of life setting the baseline against which any deficiency of androgens or androgen metabolites, either absolute or relative, is determined. This approach will affect the terminology, etiology, diagnosis, and treatment of androgen deficiency.

  2. [The role of inositol deficiency in the etiology of polycystic ovary syndrome disorders].

    Science.gov (United States)

    Jakimiuk, Artur J; Szamatowicz, Jacek

    2014-01-01

    Inositol acts as a second messenger in insulin signaling pathway Literature data suggest inositol deficiency in insulin-resistant women with the polycystic ovary syndrome. Supplementation of myo-inisitol decreases insulin resistance as it works as an insulin sensitizing agent. The positive role of myo-inositol in the treatment of polycystic ovary syndrome has been of increased evidence recently The present review presents the effects of myo-inositol on the ovarian, hormonal and metabolic parameters in women with PCOS.

  3. Growth hormone (GH) treatment increases serum insulin-like growth factor binding protein-3, bone isoenzyme alkaline phosphatase and forearm bone mineral content in young adults with GH deficiency of childhood onset

    DEFF Research Database (Denmark)

    Juul, A; Pedersen, S A; Sørensen, S

    1994-01-01

    Recent studies have demonstrated that growth hormone (GH)-deficient adults have a markedly decreased bone mineral content compared to healthy adults. However, there are conflicting results regarding the effects of GH treatment on bone mineral content in GH-deficient adults. Therefore, we evaluated...... the effect of GH treatment on a marker of bone formation (bone alkaline phosphatase), hepatic excretory function and distal forearm bone mineral content in GH-deficient adults. Growth hormone was administered subcutaneously in 21 adults (13 males and 8 females) with GH deficiency of childhood onset for 4...... months in a double-blind, placebo-controlled GH trial, while 13 of the patients then received further GH for an additional 14 months. Serum insulin-like growth factor I (IGF-I) increased significantly from 100 to 279 micrograms/l and IGF binding protein-3 (IGFBP-3) from 1930 to 3355 micrograms/l after 4...

  4. Excessive Refined Carbohydrates and Scarce Micronutrients Intakes Increase Inflammatory Mediators and Insulin Resistance in Prepubertal and Pubertal Obese Children Independently of Obesity

    Directory of Open Access Journals (Sweden)

    Mardia López-Alarcón

    2014-01-01

    Full Text Available Background. Low-grade inflammation is the link between obesity and insulin resistance. Because physiologic insulin resistance occurs at puberty, obese pubertal children are at higher risk for insulin resistance. Excessive diets in refined carbohydrates and saturated fats are risk factors for insulin resistance, but calcium, magnesium, vitamin-D, and the omega-3 fatty acids likely protect against inflammation and insulin resistance. Objective. To analyze interactions among dietary saturated fat, refined carbohydrates, calcium, magnesium, vitamin D, and omega-3 fatty acids on the risk of inflammation and insulin resistance in a sample of prepubertal and pubertal children. Methods. A sample of 229 children from Mexico City was analyzed in a cross-sectional design. Anthropometric measurements, 24 h recall questionnaires, and blood samples were obtained. Serum insulin, glucose, calcium, magnesium, 25-OHD3, C-reactive protein, leptin, adiponectin, and erythrocytes fatty acids were measured. Parametric and nonparametric statistics were used for analysis. Results. While mean macronutrients intake was excessive, micronutrients intake was deficient (P<0.01. Inflammation determinants were central obesity and magnesium-deficient diets. Determinants of insulin resistance were carbohydrates intake and circulating magnesium and adiponectin. Conclusions. Magnesium-deficient diets are determinants of inflammation, while high intake of refined carbohydrates is a risk factor for insulin resistance, independently of central adiposity.

  5. Mitochondrial Dysfunction Contributes to Impaired Insulin Secretion in INS-1 Cells with Dominant-negative Mutations of HNF-1α and in HNF-1α-deficient Islets*

    Science.gov (United States)

    Pongratz, Rebecca L.; Kibbey, Richard G.; Kirkpatrick, Clare L.; Zhao, Xiaojian; Pontoglio, Marco; Yaniv, Moshe; Wollheim, Claes B.; Shulman, Gerald I.; Cline, Gary W.

    2009-01-01

    Maturity Onset Diabetes of the Young-type 3 (MODY-3) has been linked to mutations in the transcription factor hepatic nuclear factor (HNF)-1α, resulting in deficiency in glucose-stimulated insulin secretion. In INS-1 cells overexpressing doxycycline-inducible HNF-1α dominant-negative (DN-) gene mutations, and islets from Hnf-1α knock-out mice, insulin secretion was impaired in response to glucose (15 mm) and other nutrient secretagogues. Decreased rates of insulin secretion in response to glutamine plus leucine and to methyl pyruvate, but not potassium depolarization, indicate defects specific to mitochondrial metabolism. To identify the biochemical mechanisms responsible for impaired insulin secretion, we used 31P NMR measured mitochondrial ATP synthesis (distinct from glycolytic ATP synthesis) together with oxygen consumption measurements to determine the efficiency of mitochondrial oxidative phosphorylation. Mitochondrial uncoupling was significantly higher in DN-HNF-1α cells, such that rates of ATP synthesis were decreased by approximately one-half in response to the secretagogues glucose, glutamine plus leucine, or pyruvate. In addition to closure of the ATP-sensitive K+ channels with mitochondrial ATP synthesis, mitochondrial production of second messengers through increased anaplerotic flux has been shown to be critical for coupling metabolism to insulin secretion. 13C-Isotopomer analysis and tandem mass spectrometry measurement of Krebs cycle intermediates revealed a negative impact of DN-HNF-1α and Hnf-1α knock-out on mitochondrial second messenger production with glucose but not amino acids. Taken together, these results indicate that, in addition to reduced glycolytic flux, uncoupling of mitochondrial oxidative phosphorylation contributes to impaired nutrient-stimulated insulin secretion with either mutations or loss of HNF-1α. PMID:19376774

  6. Impaired Insulin/IGF Signaling in Experimental Alcohol-Related Myopathy

    Directory of Open Access Journals (Sweden)

    Elizabeth Silbermann

    2012-08-01

    Full Text Available Alcohol-related myopathy (Alc-M is highly prevalent among heavy drinkers, although its pathogenesis is not well understood. We hypothesize that Alc-M is mediated by combined effects of insulin/IGF resistance and oxidative stress, similar to the effects of ethanol on liver and brain. We tested this hypothesis using an established model in which adult rats were pair-fed for 8 weeks with isocaloric diets containing 0% (N = 8 or 35.5% (N = 13 ethanol by caloric content. Gastrocnemius muscles were examined by histology, morphometrics, qRT-PCR analysis, and ELISAs. Chronic ethanol feeding reduced myofiber size and mRNA expression of IGF-1 polypeptide, insulin, IGF-1, and IGF-2 receptors, IRS-1, and IRS-2. Multiplex ELISAs demonstrated ethanol-associated inhibition of insulin, IRS-1, Akt, and p70S6K signaling, and increased activation of GSK-3β. In addition, ethanol-exposed muscles had increased 4-hydroxy-2-nonenal immunoreactivity, reflecting lipid peroxidation, and reduced levels of mitochondrial Complex IV, Complex V, and acetylcholinesterase. These results demonstrate that experimental Alc-M is associated with inhibition of insulin/IGF/IRS and downstream signaling that mediates metabolism and cell survival, similar to findings in alcoholic liver and brain degeneration. Moreover, the increased oxidative stress, which could be mediated by mitochondrial dysfunction, may have led to inhibition of acetylcholinesterase, which itself is sufficient to cause myofiber atrophy and degeneration.

  7. The insulin-like growth axis in patients with autoimmune thyrotoxicosis

    DEFF Research Database (Denmark)

    Zimmermann-Belsing, T; Juul, A; Juul Holst, J

    2004-01-01

    Hyperthyroidism is associated with altered growth hormone (GH) secretion. Many patients with thyroid dysfunction experience several poorly described complications such as symptoms and signs also seen in patients with growth hormone deficiency (GHD). We have therefore prospectively evaluated...... a possible relationship between the thyroid function, body composition, leptin levels and insulin-like growth factor (IGF) related peptides in patients with Graves' disease. DESIGN, PATIENTS, AND MEASUREMENTS: In a prospective group of 24 fasting female patients with Graves' disease (mean age (CI 95%): 40...

  8. The vitamin D metabolites 25(OH)D and 1,25(OH)2D are not related to either glucose metabolism or insulin action in obese women

    NARCIS (Netherlands)

    ter Horst, K. W.; Versteeg, R. I.; Gilijamse, P. W.; Ackermans, M. T.; Heijboer, A. C.; Romijn, J. A.; La Fleur, S. E.; Trinko, R.; DiLeone, R. J.; Serlie, M. J.

    2016-01-01

    Vitamin D deficiency has been proposed to be involved in obesity-induced metabolic disease. However, data on the relationship between 25-hydroxycholecalciferol (25(OH)D) and insulin resistance have been inconsistent, and few studies have investigated the active vitamin D metabolite,

  9. Deficiency of insulin-like growth factor 1 reduces vulnerability to chronic alcohol intake-induced cardiomyocyte mechanical dysfunction: role of AMPK.

    Science.gov (United States)

    Ge, Wei; Li, Qun; Turdi, Subat; Wang, Xiao-Ming; Ren, Jun

    2011-08-01

    Circulating insulin-like growth factor I (IGF-1) levels are closely associated with cardiac performance although the role of IGF-1 in alcoholic cardiac dysfunction is unknown. This study was designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on chronic alcohol-induced cardiomyocyte contractile and intracellular Ca(2+) dysfunction. Adult male C57 and LID mice were placed on a 4% alcohol diet for 15 weeks. Cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated including peak shortening (PS), maximal velocity of shortening/relengthening (±dL/dt), time-to-relengthening (TR(90) ), change in fura-fluorescence intensity (ΔFFI) and intracellular Ca(2+) decay. Levels of apoptotic regulators caspase-3, Bcl-2 and c-Jun NH2-terminal kinase (JNK), the ethanol metabolizing enzyme mitochondrial aldehyde dehydrogenase (ALDH2), as well as the cellular fuel gauge AMP-activated protein kinase (AMPK) were evaluated. Chronic alcohol intake enlarged myocyte cross-sectional area, reduced PS, ± dL/dt and ΔFFI as well as prolonged TR(90) and intracellular Ca(2+) decay, the effect of which was greatly attenuated by IGF-1 deficiency. The beneficial effect of LID against alcoholic cardiac mechanical defect was ablated by IGF-1 replenishment. Alcohol intake increased caspase-3 activity/expression although it down-regulated Bcl-2, ALDH2 and pAMPK without affecting JNK and AMPK. IGF-1 deficiency attenuated alcoholism-induced responses in all these proteins with the exception of Bcl-2. In addition, the AMPK agonist 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside abrogated short-term ethanol incubation-elicited cardiac mechanical dysfunction. Taken together, these data suggested that IGF-1 deficiency may reduce the sensitivity to ethanol-induced myocardial mechanical dysfunction. Our data further depicted a likely role of Caspase-3, ALDH2 and AMPK activation in IGF-1 deficiency induced 'desensitization' of alcoholic cardiomyopathy. © 2011 The

  10. Nasal insulin changes peripheral insulin sensitivity simultaneously with altered activity in homeostatic and reward-related human brain regions.

    Science.gov (United States)

    Heni, M; Kullmann, S; Ketterer, C; Guthoff, M; Linder, K; Wagner, R; Stingl, K T; Veit, R; Staiger, H; Häring, H-U; Preissl, H; Fritsche, A

    2012-06-01

    Impaired insulin sensitivity is a major factor leading to type 2 diabetes. Animal studies suggest that the brain is involved in the regulation of insulin sensitivity. We investigated whether insulin action in the human brain regulates peripheral insulin sensitivity and examined which brain areas are involved. Insulin and placebo were given intranasally. Plasma glucose, insulin and C-peptide were measured in 103 participants at 0, 30 and 60 min. A subgroup (n = 12) was also studied with functional MRI, and blood sampling at 0, 30 and 120 min. For each time-point, the HOMA of insulin resistance (HOMA-IR) was calculated as an inverse estimate of peripheral insulin sensitivity. Plasma insulin increased and subsequently decreased. This excursion was accompanied by slightly decreased plasma glucose, resulting in an initially increased HOMA-IR. At 1 h after insulin spray, the HOMA-IR subsequently decreased and remained lower up to 120 min. An increase in hypothalamic activity was observed, which correlated with the increased HOMA-IR at 30 min post-spray. Activity in the putamen, right insula and orbitofrontal cortex correlated with the decreased HOMA-IR at 120 min post-spray. Central insulin action in specific brain areas, including the hypothalamus, may time-dependently regulate peripheral insulin sensitivity. This introduces a potential novel mechanism for the regulation of peripheral insulin sensitivity and underlines the importance of cerebral insulin action for the whole organism.

  11. Closing anion gap without insulin in euglycaemic diabetic ketoacidosis

    Directory of Open Access Journals (Sweden)

    Resham Raj Poudel

    2017-01-01

    Full Text Available Euglycaemic diabetic ketoacidosis (euDKA occurs in patients with poor carbohydrate intake who continue to take insulin. For these patients are not truly in the insulin-deficient state, intravenous fluid resuscitation alone can correct the ketoacidosis without any risk of hypoglycaemia. Diagnosis of euDKA can be missed in inexperienced settings; therefore, calculating anion gap and measuring ketone levels should be practiced in every sick diabetic patient regardless of glucose levels.

  12. Insulin-Like Growth Factor I (IGF-1) Deficiency Ameliorates Sex Difference in Cardiac Contractile Function and Intracellular Ca2+ Homeostasis

    Science.gov (United States)

    Ceylan-Isik, Asli F.; Li, Qun; Ren, Jun

    2011-01-01

    Sex difference in cardiac contractile function exists which may contribute to the different prevalence in cardiovascular diseases between genders. However, the precise mechanisms of action behind sex difference in cardiac function are still elusive. Given that sex difference exists in insulin-like growth factor I (IGF-1) cascade, this study is designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on sex difference in cardiac function. Echocardiographic, cardiomyocyte contractile and intracellular Ca2+ properties were evaluated including ventricular geometry, fractional shortening, peak shortening, maximal velocity of shortening/relengthening (± dL/dt), time-to-peak shortening (TPS), time-to-90% relengthening (TR90), fura-fluorescence intensity (FFI) and intracellular Ca2+ clearance. Female C57 mice exhibited significantly higher plasma IGF-1 levels than their male counterpart. LID mice possessed comparably low IGF-1 levels in both sexes. Female C57 and LID mice displayed lower body, heart and liver weights compared to male counterparts. Echocardiographic analysis revealed larger LV mass in female C57 but not LID mice without sex difference in other cardiac geometric indices. Myocytes from female C57 mice exhibited reduced peak shortening, ± dL/dt, longer TPS, TR90 and intracellular Ca2+ clearance compared with males. Interestingly, this sex difference was greatly attenuated or abolished by IGF-1 deficiency. Female C57 mice displayed significantly decreased mRNA and protein levels of Na+-Ca2+ exchanger, SERCA2a and phosphorylated phospholamban as well as SERCA activity compared with male C57 mice. These sex differences in Ca2+ regulatory proteins were abolished or overtly attenuated by IGF-1 deficiency. In summary, our data suggested that IGF-1 deficiency may significantly attenuated or mitigate the sex difference in cardiomyocyte contractile function associated with intracellular Ca2+ regulation. PMID:21763763

  13. Insulin-like growth factor I (IGF-1) deficiency ameliorates sex difference in cardiac contractile function and intracellular Ca(2+) homeostasis.

    Science.gov (United States)

    Ceylan-Isik, Asli F; Li, Qun; Ren, Jun

    2011-10-10

    Sex difference in cardiac contractile function exists which may contribute to the different prevalence in cardiovascular diseases between genders. However, the precise mechanisms of action behind sex difference in cardiac function are still elusive. Given that sex difference exists in insulin-like growth factor I (IGF-1) cascade, this study is designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on sex difference in cardiac function. Echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated including ventricular geometry, fractional shortening, peak shortening, maximal velocity of shortening/relengthening (±dL/dt), time-to-peak shortening (TPS), time-to-90% relengthening (TR(90)), fura-fluorescence intensity (FFI) and intracellular Ca(2+) clearance. Female C57 mice exhibited significantly higher plasma IGF-1 levels than their male counterpart. LID mice possessed comparably low IGF-1 levels in both sexes. Female C57 and LID mice displayed lower body, heart and liver weights compared to male counterparts. Echocardiographic analysis revealed larger LV mass in female C57 but not LID mice without sex difference in other cardiac geometric indices. Myocytes from female C57 mice exhibited reduced peak shortening, ±dL/dt, longer TPS, TR(90) and intracellular Ca(2+) clearance compared with males. Interestingly, this sex difference was greatly attenuated or abolished by IGF-1 deficiency. Female C57 mice displayed significantly decreased mRNA and protein levels of Na(+)-Ca(2+) exchanger, SERCA2a and phosphorylated phospholamban as well as SERCA activity compared with male C57 mice. These sex differences in Ca(2+) regulatory proteins were abolished or overtly attenuated by IGF-1 deficiency. In summary, our data suggested that IGF-1 deficiency may significantly attenuated or mitigate the sex difference in cardiomyocyte contractile function associated with intracellular Ca(2+) regulation. Copyright © 2011 Elsevier Ireland

  14. Voluntary wheel running is beneficial to the amino acid profile of lysine-deficient rats.

    Science.gov (United States)

    Nagao, Kenji; Bannai, Makoto; Seki, Shinobu; Kawai, Nobuhiro; Mori, Masato; Takahashi, Michio

    2010-06-01

    Rats voluntarily run up to a dozen kilometers per night when their cages are equipped with a running wheel. Daily voluntary running is generally thought to enhance protein turnover. Thus, we sought to determine whether running worsens or improves protein degradation caused by a lysine-deficient diet and whether it changes the utilization of free amino acids released by proteolysis. Rats were fed a lysine-deficient diet and were given free access to a running wheel or remained sedentary (control) for 4 wk. Amino acid levels in plasma, muscle, and liver were measured together with plasma insulin levels and tissue weight. The lysine-deficient diet induced anorexia, skeletal muscle loss, and serine and threonine aminoacidemia, and it depleted plasma insulin and essential amino acids in skeletal muscle. Allowing rats to run voluntarily improved these symptoms; thus, voluntary wheel running made the rats less susceptible to dietary lysine deficiency. Amelioration of the declines in muscular leucine and plasma insulin observed in running rats could contribute to protein synthesis together with the enhanced availability of lysine and other essential amino acids in skeletal muscle. These results indicate that voluntary wheel running under lysine-deficient conditions does not enhance protein catabolism; on the contrary, it accelerates protein synthesis and contributes to the maintenance of muscle mass. The intense nocturnal voluntary running that characterizes rodents might be an adaptation of lysine-deficient grain eaters that allows them to maximize opportunities for food acquisition.

  15. Glycine Increases Insulin Sensitivity and Glutathione Biosynthesis and Protects against Oxidative Stress in a Model of Sucrose-Induced Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Mohammed El-Hafidi

    2018-01-01

    Full Text Available Oxidative stress and redox status play a central role in the link between insulin resistance (IR and lipotoxicity in metabolic syndrome. This mechanistic link may involve alterations in the glutathione redox state. We examined the effect of glycine supplementation to diet on glutathione biosynthesis, oxidative stress, IR, and insulin cell signaling in liver from sucrose-fed (SF rats characterized by IR and oxidative stress. Our hypothesis is that the correction of glutathione levels by glycine treatment leads to reduced oxidative stress, a mechanism associated with improved insulin signaling and IR. Glycine treatment decreases the levels of oxidative stress markers in liver from SF rats and increases the concentrations of glutathione (GSH and γ-glutamylcysteine and the amount of γ-glutamylcysteine synthetase (γ-GCS, a key enzyme of GSH biosynthesis in liver from SF rats. In liver from SF rats, glycine also decreases the insulin-induced phosphorylation of insulin receptor substrate-1 (ISR-1 in serine residue and increases the phosphorylation of insulin receptor β-subunit (IR-β in tyrosine residue. Thus, supplementing diets with glycine to correct GSH deficiency and to reduce oxidative stress provides significant metabolic benefits to SF rats by improving insulin sensitivity.

  16. An audit of the insulin-tolerance test in 255 patients with pituitary disease

    DEFF Research Database (Denmark)

    Lange, Martin; Svendsen, Ole L; Skakkebaek, Niels E

    2002-01-01

    The insulin-tolerance test (ITT) is currently considered to be the gold standard for evaluating adults suspected of GH deficiency (GHD). The aim of this study was to determine factors that may influence nadir blood glucose (BG) when using a mean insulin dose of 0.1 IU/kg body weight. Furthermore...

  17. Variants of Insulin-Signaling Inhibitor Genes in Type 2 Diabetes and Related Metabolic Abnormalities

    Directory of Open Access Journals (Sweden)

    Carlo de Lorenzo

    2013-01-01

    Full Text Available Insulin resistance has a central role in the pathogenesis of several metabolic diseases, including type 2 diabetes, obesity, glucose intolerance, metabolic syndrome, atherosclerosis, and cardiovascular diseases. Insulin resistance and related traits are likely to be caused by abnormalities in the genes encoding for proteins involved in the composite network of insulin-signaling; in this review we have focused our attention on genetic variants of insulin-signaling inhibitor molecules. These proteins interfere with different steps in insulin-signaling: ENPP1/PC-1 and the phosphatases PTP1B and PTPRF/LAR inhibit the insulin receptor activation; INPPL1/SHIP-2 hydrolyzes PI3-kinase products, hampering the phosphoinositide-mediated downstream signaling; and TRIB3 binds the serine-threonine kinase Akt, reducing its phosphorylation levels. While several variants have been described over the years for all these genes, solid evidence of an association with type 2 diabetes and related diseases seems to exist only for rs1044498 of the ENPP1 gene and for rs2295490 of the TRIB3 gene. However, overall the data recapitulated in this Review article may supply useful elements to interpret the results of novel, more technically advanced genetic studies; indeed it is becoming increasingly evident that genetic information on metabolic diseases should be interpreted taking into account the complex biological pathways underlying their pathogenesis.

  18. Neuronal Cbl Controls Biosynthesis of Insulin-Like Peptides in Drosophila melanogaster

    Science.gov (United States)

    Yu, Yue; Sun, Ying; He, Shengqi; Yan, Cheng; Rui, Liangyou; Li, Wenjun

    2012-01-01

    The Cbl family proteins function as both E3 ubiquitin ligases and adaptor proteins to regulate various cellular signaling events, including the insulin/insulin-like growth factor 1 (IGF1) and epidermal growth factor (EGF) pathways. These pathways play essential roles in growth, development, metabolism, and survival. Here we show that in Drosophila melanogaster, Drosophila Cbl (dCbl) regulates longevity and carbohydrate metabolism through downregulating the production of Drosophila insulin-like peptides (dILPs) in the brain. We found that dCbl was highly expressed in the brain and knockdown of the expression of dCbl specifically in neurons by RNA interference increased sensitivity to oxidative stress or starvation, decreased carbohydrate levels, and shortened life span. Insulin-producing neuron-specific knockdown of dCbl resulted in similar phenotypes. dCbl deficiency in either the brain or insulin-producing cells upregulated the expression of dilp genes, resulting in elevated activation of the dILP pathway, including phosphorylation of Drosophila Akt and Drosophila extracellular signal-regulated kinase (dERK). Genetic interaction analyses revealed that blocking Drosophila epidermal growth factor receptor (dEGFR)-dERK signaling in pan-neurons or insulin-producing cells by overexpressing a dominant-negative form of dEGFR abolished the effect of dCbl deficiency on the upregulation of dilp genes. Furthermore, knockdown of c-Cbl in INS-1 cells, a rat β-cell line, also increased insulin biosynthesis and glucose-stimulated secretion in an ERK-dependent manner. Collectively, these results suggest that neuronal dCbl regulates life span, stress responses, and metabolism by suppressing dILP production and the EGFR-ERK pathway mediates the dCbl action. Cbl suppression of insulin biosynthesis is evolutionarily conserved, raising the possibility that Cbl may similarly exert its physiological actions through regulating insulin production in β cells. PMID:22778134

  19. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.

    Science.gov (United States)

    Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-12-01

    Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.

  20. Pancreas-Specific Sirt1-Deficiency in Mice Compromises Beta-Cell Function without Development of Hyperglycemia.

    Science.gov (United States)

    Pinho, Andreia V; Bensellam, Mohammed; Wauters, Elke; Rees, Maxine; Giry-Laterriere, Marc; Mawson, Amanda; Ly, Le Quan; Biankin, Andrew V; Wu, Jianmin; Laybutt, D Ross; Rooman, Ilse

    2015-01-01

    Sirtuin 1 (Sirt1) has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear. This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1Cre; Sirt1ex4F/F mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas. We found that in the Pdx1Cre; Sirt1ex4F/F mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2a2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r) as well as a marked down regulation of endoplasmic reticulum (ER) chaperones that participate in the Unfolded Protein Response (UPR) pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP) cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas. This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncovered a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted.

  1. Pancreas-Specific Sirt1-Deficiency in Mice Compromises Beta-Cell Function without Development of Hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Andreia V Pinho

    Full Text Available Sirtuin 1 (Sirt1 has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear.This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1Cre; Sirt1ex4F/F mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas.We found that in the Pdx1Cre; Sirt1ex4F/F mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2a2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r as well as a marked down regulation of endoplasmic reticulum (ER chaperones that participate in the Unfolded Protein Response (UPR pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas.This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncovered a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted.

  2. Adiponectin and osteocalcin: relation to insulin sensitivity.

    Science.gov (United States)

    Zhang, Yanjun; Zhou, Peng; Kimondo, Julia Wanjiru

    2012-10-01

    Obesity and osteoporosis have grave consequences for human health, quality of life, and even the efficiency of the labor force. Interestingly, these diseases share several features including a genetic predisposition and a common progenitor cell. Recent findings show that high adipocyte count in bone marrow is directly related to bone loss, as fat cells replace osteoblasts resulting in reduced bone mineral density and increased propensity towards osteoporosis. This close relationship has a positive aspect, whereby higher osteocalcin levels results in increased adiponectin production while the presence of adiponectin influences osteoblast proliferation and differentiation in a positive way. We focus on how osteoblasts and adipocytes affect each other and ultimately insulin resistance through the hormones they produce. This approach to whole animal physiology is the main stay of Alternative Medicine. It is assumed that the body is linked together intricately, and treating one is equal to treating the whole body. As we go further into bone and adipocytes physiology, it is evident that these organs affect each other. Therefore, elucidation on the actions of fat on bone and vice versa will unravel the complex mechanism of insulin resistance.

  3. The role of insulin pump therapy for type 2 diabetes mellitus.

    Science.gov (United States)

    Landau, Zohar; Raz, Itamar; Wainstein, Julio; Bar-Dayan, Yosefa; Cahn, Avivit

    2017-01-01

    Many patients with type 2 diabetes fail to achieve adequate glucose control despite escalation of treatment and combinations of multiple therapies including insulin. Patients with long-standing type 2 diabetes often suffer from the combination of severe insulin deficiency in addition to insulin resistance, thereby requiring high doses of insulin delivered in multiple injections to attain adequate glycemic control. Insulin-pump therapy was first introduced in the 1970s as an approach to mimic physiological insulin delivery and attain normal glucose in patients with type 1 diabetes. The recent years have seen an increase in the use of this technology for patients with type 2 diabetes. This article summarizes the clinical studies evaluating insulin pump use in patients with type 2 diabetes and discusses the benefits and shortcomings of pump therapy in this population. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. The effect of vitamin D supplementation on insulin resistance, visceral fat and adiponectin in vitamin D deficient women with polycystic ovary syndrome: a randomized placebo-controlled trial.

    Science.gov (United States)

    Seyyed Abootorabi, Maryam; Ayremlou, Parvin; Behroozi-Lak, Tahereh; Nourisaeidlou, Sakineh

    2018-06-01

    Low plasma 25-hydroxy-vitamin D (25OHD) is associated with polycystic ovary syndrome (PCOS). Vitamin D deficiency may contribute to the development of insulin resistance, visceral fat and low level of adiponectin which are common feature in PCOS women. This study aimed to evaluate the effect of vitamin D supplementation on insulin resistance, visceral fat, and adiponectin in hypovitaminosis D women with polycystic ovary syndrome. In this randomized, placebo-controlled clinical trial, 44 PCOS women aged 20-38 years with plasma 25OHD D3 once weekly in the intervention group or placebo. The visceral adipose tissue, Insulin resistance (HOMA-IR), HOMA-B, QUICKI, and circulating adiponectin were compared before and after the intervention within groups using paired tests and the mean changes were analyzed between two groups by independent t-test. Of 44 eligible participates, 36 patients (81.8%) completed the study. After 8 week intervention, vitamin D supplementation compared to the placebo group significantly decreased fasting plasma glucose (FPG) (7.67 ± 7.66 versus 1.71 ± 7.50 mg/dL, p = .001) and significantly increased homeostasis model of assessment-estimated B cell function (HOMA-B) (129.76 ± 121.02 versus 48.32 ± 128.35, p = .014), Adiponectin (5.17 ± 8.09 versus -5.29 ± 8.64 mg/dL, p = .001), and serum vitamin D level (28.24 ± 6.47 versus 3.55 ± 4.25 ng/mL, p = .001). Vitamin D supplementation in vitamin D deficient women with PCOS, improved the FPG, HOMA-B, Adiponectin, and serum vitamin D level.

  5. Glucose-responsive insulin delivery for type 1 diabetes: The artificial pancreas story.

    Science.gov (United States)

    Bally, Lia; Thabit, Hood; Hovorka, Roman

    2018-06-15

    Insulin replacement therapy is integral to the management of type 1 diabetes, which is characterised by absolute insulin deficiency. Optimal glycaemic control, as assessed by glycated haemoglobin, and avoidance of hyper- and hypoglycaemic excursions have been shown to prevent diabetes-related complications. Insulin pump use has increased considerably over the past decade with beneficial effects on glycaemic control, quality of life and treatment satisfaction. The advent and progress of ambulatory glucose sensor technology has enabled continuous glucose monitoring based on real-time glucose levels to be integrated with insulin therapy. Low glucose and predictive low glucose suspend systems are currently used in clinical practice to mitigate against hypoglycaemia, and provide the first step towards feedback glucose control. The more advanced technology approach, an artificial pancreas or a closed-loop system, gradually increases and decreases insulin delivery in a glucose-responsive fashion to mitigate against hyper- and hypoglycaemia. Randomised outpatient clinical trials over the past 5 years have demonstrated the feasibility, safety and efficacy of the approach, and the recent FDA approval of the first single hormone closed-loop system establishes a new standard of care for people with type 1 diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effects of methionine deficiencies on plasma levels of thyroid hormones, insulin-like growth factors-I and -II, liver and body weights, and feed intake in growing chickens.

    Science.gov (United States)

    Carew, L B; McMurtry, J P; Alster, F A

    2003-12-01

    We showed previously that Met deficiency at 0.25% of the diet causes elevations in plasma triiodothyronine (T3) in broilers. In the present study, plasma levels of thyroid hormones as well as insulin-like growth factors (IGF)-I and -II were measured in chicks fed 3 deficient levels of total Met. Control (0.5%) and Met-deficient diets (0.4, 0.3, and 0.2%) were fed to male broilers from 8 to 22 d of age. Additional groups of control chicks were pair-fed with the Met-deficient ones. Chicks receiving 0.4% Met increased feed intake by 10% with no significant change in body weight. The more severe Met deficiencies of 0.3 and 0.2% caused graded reductions in feed intake and weight gain. However, corresponding pair-fed control chicks were significantly heavier. These changes suggest more marked alterations in metabolic processes with 0.3 and 0.2% Met than with 0.4% Met. Liver weights were heavier in chicks fed 0.3 and 0.2% Met but not 0.4%. Plasma T3 was higher in all deficient chicks compared with the free-fed control, which was significant only with 0.3% Met. However, with 0.3 and 0.2% Met, plasma T3 was significantly elevated compared to pair-fed controls. Plasma thyroxine (T4) was lower in all deficient groups, which was significant only with 0.2% Met, whereas no significant differences occurred between deficient chicks and their pair-fed controls. Plasma IGF-I levels were not significantly different, but they were consistently lower in deficient chicks and deserve further study. Plasma IGF-II was significantly less in chicks fed 0.2% Met compared to pair-fed controls suggesting that Met deficiency interferes with IGF-II metabolism. We concluded that a deficit of dietary Met altered plasma T3 and IGF-II levels, but the effect was dependent on the degree of deficiency.

  7. Growth hormone and IGF-1 deficiency exacerbate high-fat diet-induced endothelial impairment in obese Lewis dwarf rats: implications for vascular aging.

    Science.gov (United States)

    Bailey-Downs, Lora C; Sosnowska, Danuta; Toth, Peter; Mitschelen, Matthew; Gautam, Tripti; Henthorn, Jim C; Ballabh, Praveen; Koller, Akos; Farley, Julie A; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2012-06-01

    Previous studies suggest that the age-related decline in circulating growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels significantly contribute to vascular dysfunction in aging by impairing cellular oxidative stress resistance pathways. Obesity in elderly individuals is increasing at alarming rates, and there is evidence suggesting that elderly individuals are more vulnerable to the deleterious cardiovascular effects of obesity than younger individuals. However, the specific mechanisms through which aging, GH/IGF-1 deficiency, and obesity interact to promote the development of cardiovascular disease remain unclear. To test the hypothesis that low circulating GH/IGF-1 levels exacerbate the pro-oxidant and proinflammatory vascular effects of obesity, GH/IGF-1-deficient Lewis dwarf rats and heterozygous control rats were fed either a standard diet or a high-fat diet (HFD) for 7 months. Feeding an HFD resulted in similar relative weight gains and increases in body fat content in Lewis dwarf rats and control rats. HFD-fed Lewis dwarf rats exhibited a relative increase in blood glucose levels, lower insulin, and impaired glucose tolerance as compared with HFD-fed control rats. Analysis of serum cytokine expression signatures indicated that chronic GH/IGF-1 deficiency exacerbates HFD-induced inflammation. GH/IGF-1 deficiency also exacerbated HFD-induced endothelial dysfunction, oxidative stress, and expression of inflammatory markers (tumor necrosis factor-α, ICAM-1) in aortas of Lewis dwarf rats. Overall, our results are consistent with the available clinical and experimental evidence suggesting that GH/IGF-1 deficiency renders the cardiovascular system more vulnerable to the deleterious effects of obesity.

  8. Improved insulin sensitivity after exercise: focus on insulin signaling

    DEFF Research Database (Denmark)

    Frøsig, Christian; Richter, Erik

    2009-01-01

    After a single bout of exercise, the ability of insulin to stimulate glucose uptake is markedly improved locally in the previously active muscles. This makes exercise a potent stimulus counteracting insulin resistance characterizing type 2 diabetes (T2D). It is believed that at least part...... of the mechanism relates to an improved ability of insulin to stimulate translocation of glucose transporters (GLUT4) to the muscle membrane after exercise. How this is accomplished is still unclear; however, an obvious possibility is that exercise interacts with the insulin signaling pathway to GLUT4...... translocation allowing for a more potent insulin response. Parallel to unraveling of the insulin signaling cascade, this has been investigated within the past 25 years. Reviewing existing studies clearly indicates that improved insulin action can occur independent of interactions with proximal insulin signaling...

  9. Cerebral insulin, insulin signaling pathway, and brain angiogenesis.

    Science.gov (United States)

    Zeng, Yi; Zhang, Le; Hu, Zhiping

    2016-01-01

    Insulin performs unique non-metabolic functions within the brain. Broadly speaking, two major areas of these functions are those related to brain endothelial cells and the blood-brain barrier (BBB) function, and those related to behavioral effects, like cognition in disease states (Alzheimer's disease, AD) and in health. Recent studies showed that both these functions are associated with brain angiogenesis. These findings raise interesting questions such as how they are linked to each other and whether modifying brain angiogenesis by targeting certain insulin signaling pathways could be an effective strategy to treat dementia as in AD, or even to help secure healthy longevity. The two canonical downstream pathways involved in mediating the insulin signaling pathway, the phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinase (MAPK) cascades, in the brain are supposed to be similar to those in the periphery. PI3K and MAPK pathways play important roles in angiogenesis. Both are involved in stimulating hypoxia inducible factor (HIF) in angiogenesis and could be activated by the insulin signaling pathway. This suggests that PI3K and MAPK pathways might act as cross-talk between the insulin signaling pathway and the angiogenesis pathway in brain. But the cerebral insulin, insulin signaling pathway, and the detailed mechanism in the connection of insulin signaling pathway, brain angiogenesis pathway, and healthy aging or dementias are still mostly not clear and need further studies.

  10. Relation of Absolute or Relative Adiposity to Insulin Resistance, Retinol Binding Protein-4, Leptin, and Adiponectin in Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    You Lim Kim

    2012-12-01

    Full Text Available BackgroundCentral fat mass (CFM correlates with insulin resistance and increases the risk of type 2 diabetes and cardiovascular complications; however, peripheral fat mass (PFM is associated with insulin sensitivity. The aim of this study was to investigate the relation of absolute and relative regional adiposity to insulin resistance index and adipokines in type 2 diabetes.MethodsTotal of 83 overweighted-Korean women with type 2 diabetes were enrolled, and rate constants for plasma glucose disappearance (KITT and serum adipokines, such as retinol binding protein-4 (RBP4, leptin, and adiponectin, were measured. Using dual X-ray absorptiometry, trunk fat mass (in kilograms was defined as CFM, sum of fat mass on the lower extremities (in kilograms as PFM, and sum of CFM and PFM as total fat mass (TFM. PFM/TFM ratio, CFM/TFM ratio, and PFM/CFM ratio were defined as relative adiposity.ResultsMedian age was 55.9 years, mean body mass index 27.2 kg/m2, and mean HbA1c level 7.12±0.84%. KITT was positively associated with PMF/TFM ratio, PMF/CFM ratio, and negatively with CFM/TFM ratio, but was not associated with TFM, PFM, or CFM. RBP4 levels also had a significant relationship with PMF/TFM ratio and PMF/CFM ratio. Adiponectin, leptin, and apolipoprotein A levels were related to absolute adiposity, while only adiponectin to relative adiposity. In correlation analysis, KITT in type 2 diabetes was positively related with HbA1c, fasting glucose, RBP4, and free fatty acid.ConclusionThese results suggest that increased relative amount of peripheral fat mass may aggravate insulin resistance in type 2 diabetes.

  11. Increased insulin-like growth factor-1 in relation to cardiovascular function in polycystic ovary syndrome: friend or foe?

    Science.gov (United States)

    Desai, Namrata Ajaykumar; Patel, Snehal S

    2015-10-01

    The incidence of cardiovascular disease (CVD) in patients with polycystic ovary syndrome (PCOS) is very high and conventional risk factors only partially explain excessive risk of developing CVD in patients of PCOS. The pathophysiology of PCOS is very unique, and several hormonal and metabolic changes occur. Several observations suggest that serum IGF-1 levels decrease in insulin resistance, which results in IGF-1 deficiency. In patient of PCOS, close relationships have been demonstrated between insulin resistance and serum IGF-1 levels. Hyperinsulinemic insulin resistance results in a general augmentation of steroidogenesis and LH release in PCOS. The action of IGF-1 varies in different tissues possibly via autocrine or paracrine mechanisms. The increase or decrease in IGF-1 in different tissues results in differential outcomes. Several studies suggest that lowered circulating IGF-1 levels play important role in the initiation of the cardiac hypertrophic response which results in the risk of cardiovascular disease. While recent results suggests that individual with elevated IGF-1 is protected against cardiovascular disease. Thus IGF-1 shows versatile pleiotropic actions. This review provides a current perspective on increased level of IGF-1 in PCOS and also adds to the current controversy regarding the roles of IGF-1 in cardiovascular disease.

  12. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    International Nuclear Information System (INIS)

    Watanabe, Tomoyuki; Saotome, Masao; Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi; Funaki, Makoto; Hayashi, Hideharu

    2014-01-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ m ) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H 2 O 2 ), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ m depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H 2 O 2 -induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ m depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin-resistance. • Inhibition of DRP or ROS

  13. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tomoyuki [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Saotome, Masao, E-mail: msaotome@hama-med.ac.jp [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Funaki, Makoto [Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503 (Japan); Hayashi, Hideharu [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan)

    2014-05-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin

  14. Insulin secretion and insulin action in non-insulin-dependent diabetes mellitus: which defect is primary?

    Science.gov (United States)

    Reaven, G M

    1984-01-01

    Defects in both insulin secretion and insulin action exist in patients with non-insulin-dependent diabetes mellitus (NIDDM). The loss of the acute plasma insulin response to intravenous glucose is seen in patients with relatively mild degrees of fasting hyperglycemia, but patients with severe fasting hyperglycemia also demonstrate absolute hypoinsulinemia in response to an oral glucose challenge. In contrast, day-long circulating insulin levels are within normal limits even in severely hyperglycemic patients with NIDDM. The relationship between NIDDM and insulin action in NIDDM is less complex, and is a characteristic feature of the syndrome. This metabolic defect is independent of obesity, and the severity of the resistance to insulin-stimulated glucose uptake increases with magnitude of hyperglycemia. Control of hyperglycemia with exogenous insulin ameliorates the degree of insulin resistance, and reduction of insulin resistance with weight loss in obese patients with NIDDM leads to an enhanced insulin response. Since neither therapeutic intervention is capable of restoring all metabolic abnormalities to normal, these observations do not tell us which of these two defects is primarily responsible for the development of NIDDM. Similarly, the observation that most patients with impaired glucose tolerance are hyperinsulinemic and insulin resistant does not prove that insulin resistance is the primary defect in NIDDM. In conclusion, reduction in both insulin secretion and action is seen in patients with NIDDM, and the relationship between these two metabolic abnormalities is very complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Long-Term Follow-up of a Case with Proprotein Convertase 1/3 Deficiency: Transient Diabetes Mellitus with Intervening Diabetic Ketoacidosis During Growth Hormone Therapy.

    Science.gov (United States)

    Gönç, E. Nazlı; Özön, Alev; Alikaşifoğlu, Ayfer; Kandemir, Nurgün

    2017-09-01

    Proprotein convertase 1/3 (PC1/3) deficiency is a very rare disease characterized by severe intractable diarrhea in the first years of life, followed by obesity and several hormonal deficiencies later. Diabetes mellitus requiring insulin treatment and diabetic ketoacidosis have not been reported in this disorder. We herein present a girl with PC1/3 deficiency who has been followed from birth to 17 years of age. She developed deficiencies of all pituitary hormones over time as well as diabetes mellitus while receiving growth hormone (GH) therapy. She was complicated with diabetic ketoacidosis during dietary management of diabetes mellitus, thus insulin treatment was initiated. Insulin requirement to regulate hyperglycemia was short-lived. Repeat oral glucose tolerance test five years later was normal. The findings of this patient show that diabetes mellitus can develop at any time during follow-up of cases with proportein convertase 1/3 deficiency especially under GH therapy.

  16. Early intranasal insulin therapy halts progression of neurodegeneration: progress in Alzheimer's disease therapeutics.

    Science.gov (United States)

    de la Monte, Suzanne M

    Evaluation of Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, et al. Intranasal Insulin Therapy for Alzheimer Disease and Amnestic Mild Cognitive Impairment: A Pilot Clinical Trial. Arch Neurol . 2011 Sep 12. Alzheimer's disease is associated with brain insulin deficiency and insulin resistance, similar to the problems in diabetes. If insulin could be supplied to the brain in the early stages of Alzheimer's, subsequent neurodegeneration might be prevented. Administering systemic insulin to elderly non-diabetics poses unacceptable risks of inadvertant hypoglycemia. However, intranasal delivery directs the insulin into the brain, avoiding systemic side-effects. This pilot study demonstrates both efficacy and safety of using intranasal insulin to treat early Alzheimer's and mild cognitive impairment, i.e. the precursor to Alzheimer's. Significant improvements in learning, memory, and cognition occured within a few months, but without intranasal insulin, brain function continued to deteriorate in measurable degrees. Intranasal insulin therapy holds promise for halting progression of Alzheimer's disease.

  17. Vitamin B12 Deficiency in Relation to Functional Disabilities

    Directory of Open Access Journals (Sweden)

    Heather E. Rasmussen

    2013-11-01

    Full Text Available This study was designed to assess whether symptoms, functional measures, and reported disabilities were associated with vitamin B12 (B12 deficiency when defined in three ways. Participants, aged 60 or more years of age, in 1999–2002 National Health and Nutrition Examination Surveys (NHANES were categorized in relation to three previously used definitions of B12 deficiency: (1 serum B12 20 μmol/L; and (3 serum B12 0.21 μmol/L. Functional measures of peripheral neuropathy, balance, cognitive function, gait speed, along with self-reported disability (including activities of daily living were examined with standardized instruments by trained NHANES interviewers and technicians. Individuals identified as B12 deficient by definition 2 were more likely to manifest peripheral neuropathy OR (odds (95% confidence intervals, p value: 9.70 (2.24, 42.07, 0.004 and report greater total disability, 19.61 (6.22, 61.86 0.0001 after adjustments for age, sex, race, serum creatinine, and ferritin concentrations, smoking, diabetes, and peripheral artery disease. Smaller, but significantly increased, odds of peripheral neuropathy and total disability were also observed when definition 3 was applied. Functional measures and reported disabilities were associated with B12 deficiency definitions that include B12 biomarkers (homocysteine or methylmalonic acid. Further study of these definitions is needed to alert clinicians of possible subclinical B12 deficiency because functional decline amongst older adults may be correctable if the individual is B12 replete.

  18. Insulin sensitivity in relation to fat distribution and plasma adipocytokines among abusers of anabolic androgenic steroids

    DEFF Research Database (Denmark)

    Rasmussen, Jon Jarløv; Schou, Morten; Selmer, Christian

    2017-01-01

    Objective: Abuse of anabolic androgenic steroids (AAS) is prevalent among young men, but information regarding effects on insulin sensitivity and fat distribution is limited. The objective was to investigate insulin sensitivity in relation to fat distribution and adipocytokines among current...

  19. Exposure to excess insulin (glargine) induces type 2 diabetes mellitus in mice fed on a chow diet.

    Science.gov (United States)

    Yang, Xuefeng; Mei, Shuang; Gu, Haihua; Guo, Huailan; Zha, Longying; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Cao, Wenhong

    2014-06-01

    We have previously shown that insulin plays an important role in the nutrient-induced insulin resistance. In this study, we tested the hypothesis that chronic exposure to excess long-acting insulin (glargine) can cause typical type 2 diabetes mellitus (T2DM) in normal mice fed on a chow diet. C57BL/6 mice were treated with glargine once a day for 8 weeks, followed by evaluations of food intake, body weight, blood levels of glucose, insulin, lipids, and cytokines, insulin signaling, histology of pancreas, ectopic fat accumulation, oxidative stress level, and cholesterol content in mitochondria in tissues. Cholesterol content in mitochondria and its association with oxidative stress in cultured hepatocytes and β-cells were also examined. Results show that chronic exposure to glargine caused insulin resistance, hyperinsulinemia, and relative insulin deficiency (T2DM). Treatment with excess glargine led to loss of pancreatic islets, ectopic fat accumulation in liver, oxidative stress in liver and pancreas, and increased cholesterol content in mitochondria of liver and pancreas. Prolonged exposure of cultured primary hepatocytes and HIT-TI5 β-cells to insulin induced oxidative stress in a cholesterol synthesis-dependent manner. Together, our results show that chronic exposure to excess insulin can induce typical T2DM in normal mice fed on a chow diet. © 2014 The authors.

  20. The Proton-Activated Receptor GPR4 Modulates Glucose Homeostasis by Increasing Insulin Sensitivity

    Directory of Open Access Journals (Sweden)

    Luca Giudici

    2013-11-01

    Full Text Available Background: The proton-activated G protein-coupled receptor GPR4 is expressed in many tissues including white adipose tissue. GPR4 is activated by extracellular protons in the physiological pH range (i.e. pH 7.7 - 6.8 and is coupled to the production of cAMP. Methods: We examined mice lacking GPR4 and examined glucose tolerance and insulin sensitivity in young and aged mice as well as in mice fed with a high fat diet. Expression profiles of pro- and anti-inflammatory cytokines in white adipose tissue, liver and skeletal muscle was assessed. Results: Here we show that mice lacking GPR4 have an improved intraperitoneal glucose tolerance test and increased insulin sensitivity. Insulin levels were comparable but leptin levels were increased in GPR4 KO mice. Gpr4-/- showed altered expression of PPARα, IL-6, IL-10, TNFα, and TGF-1β in skeletal muscle, white adipose tissue, and liver. High fat diet abolished the differences in glucose tolerance and insulin sensitivity between Gpr4+/+ and Gpr4-/- mice. In contrast, in aged mice (12 months old, the positive effect of GPR4 deficiency on glucose tolerance and insulin sensitivity was maintained. Liver and adipose tissue showed no major differences in the mRNA expression of pro- and anti-inflammatory factors between aged mice of both genotypes. Conclusion: Thus, GPR4 deficiency improves glucose tolerance and insulin sensitivity. The effect may involve an altered balance between pro- and anti-inflammatory factors in insulin target tissues.

  1. Effect of Growth Hormone Deficiency on Brain Structure, Motor Function and Cognition

    Science.gov (United States)

    Webb, Emma A.; O'Reilly, Michelle A.; Clayden, Jonathan D.; Seunarine, Kiran K.; Chong, Wui K.; Dale, Naomi; Salt, Alison; Clark, Chris A.; Dattani, Mehul T.

    2012-01-01

    The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone less than 6.7 [micro]g/l) and idiopathic short stature (peak growth hormone greater than 10 [micro]g/l)…

  2. Diabetes, Obesity, and Other Insulin-Related Diseases | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute’s Urologic Oncology Branch seeks partners interested in collaborative research to co-develop small molecule epoxy-guaiane derivative englerin A and related compounds for diseases associated with insulin resistance.

  3. The Antidiabetic Mechanisms of Polyphenols Related to Increased Glucagon-Like Peptide-1 (GLP1 and Insulin Signaling

    Directory of Open Access Journals (Sweden)

    J. Abraham Domínguez Avila

    2017-05-01

    Full Text Available Type-2 diabetes mellitus (T2DM is an endocrine disease related to impaired/absent insulin signaling. Dietary habits can either promote or mitigate the onset and severity of T2DM. Diets rich in fruits and vegetables have been correlated with a decreased incidence of T2DM, apparently due to their high polyphenol content. Polyphenols are compounds of plant origin with several documented bioactivities related to health promotion. The present review describes the antidiabetic effects of polyphenols, specifically related to the secretion and effects of insulin and glucagon-like peptide 1 (GLP1, an enteric hormone that stimulates postprandial insulin secretion. The evidence suggests that polyphenols from various sources stimulate L-cells to secrete GLP1, increase its half-life by inhibiting dipeptidyl peptidase-4 (DPP4, stimulate β-cells to secrete insulin and stimulate the peripheral response to insulin, increasing the overall effects of the GLP1-insulin axis. The glucose-lowering potential of polyphenols has been evidenced in various acute and chronic models of healthy and diabetic organisms. Some polyphenols appear to exert their effects similarly to pharmaceutical antidiabetics; thus, rigorous clinical trials are needed to fully validate this claim. The broad diversity of polyphenols has not allowed for entirely describing their mechanisms of action, but the evidence advocates for their regular consumption.

  4. The role of endoplasmic reticulum stress in hippocampal insulin resistance.

    Science.gov (United States)

    Sims-Robinson, Catrina; Bakeman, Anna; Glasser, Rebecca; Boggs, Janet; Pacut, Crystal; Feldman, Eva L

    2016-03-01

    Metabolic syndrome, which includes hypertension, hyperglycemia, obesity, insulin resistance, and dyslipidemia, has a negative impact on cognitive health. Endoplasmic reticulum (ER) stress is activated during metabolic syndrome, however it is not known which factor associated with metabolic syndrome contributes to this stress. ER stress has been reported to play a role in the development of insulin resistance in peripheral tissues. The role of ER stress in the development of insulin resistance in hippocampal neurons is not known. In the current study, we investigated ER stress in the hippocampus of 3 different mouse models of metabolic syndrome: the C57BL6 mouse on a high fat (HF) diet; apolipoprotein E, leptin, and apolipoprotein B-48 deficient (ApoE 3KO) mice; and the low density lipoprotein receptor, leptin, and apolipoprotein B-48 deficient (LDLR 3KO) mice. We demonstrate that ER stress is activated in the hippocampus of HF mice, and for the first time, in ApoE 3KO mice, but not LDLR 3KO mice. The HF and ApoE 3KO mice are hyperglycemic; however, the LDLR 3KO mice have normal glycemia. This suggests that hyperglycemia may play a role in the activation of ER stress in the hippocampus. Similarly, we also demonstrate that impaired insulin signaling is only present in the HF and ApoE 3KO mice, which suggests that ER stress may play a role in insulin resistance in the hippocampus. To confirm this we pharmacologically induced ER stress with thapsigargin in human hippocampal neurons. We demonstrate for the first time that thapsigargin leads to ER stress and impaired insulin signaling in human hippocampal neurons. Our results may provide a potential mechanism that links metabolic syndrome and cognitive health. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Insulin, cognition, and dementia

    Science.gov (United States)

    Cholerton, Brenna; Baker, Laura D.; Craft, Suzanne

    2015-01-01

    Cognitive disorders of aging represent a serious threat to the social and economic welfare of current society. It is now widely recognized that pathology related to such conditions, particularly Alzheimer’s disease, likely begins years or decades prior to the onset of clinical dementia symptoms. This revelation has led researchers to consider candidate mechanisms precipitating the cascade of neuropathological events that eventually lead to clinical Alzheimer’s disease. Insulin, a hormone with potent effects in the brain, has recently received a great deal of attention for its potential beneficial and protective role in cognitive function. Insulin resistance, which refers to the reduced sensitivity of target tissues to the favorable effects of insulin, is related to multiple chronic conditions known to impact cognition and increase dementia risk. With insulin resistance-associated conditions reaching epidemic proportions, the prevalence of Alzheimer’s disease and other cognitive disorders will continue to rise exponentially. Fortunately, these chronic insulin-related conditions are amenable to pharmacological intervention. As a result, novel therapeutic strategies that focus on increasing insulin sensitivity in the brain may be an important target for protecting or treating cognitive decline. The following review will highlight our current understanding of the role of insulin in brain, potential mechanisms underlying the link between insulin resistance and dementia, and current experimental therapeutic strategies aimed at improving cognitive function via modifying the brain’s insulin sensitivity. PMID:24070815

  6. [Issues related to secondary osteoporosis associated with growth hormone deficiency in adulthood].

    Science.gov (United States)

    Kužma, Martin; Jackuliak, Peter; Killinger, Zdenko; Vaňuga, Peter; Payer, Juraj

    Growth hormone (GH) increases linear bone growth through complex hormonal reactions, mainly mediated by insulin like growth factor 1 (IGF1) that is produced mostly by hepatocytes under influence of GH and stimulates differentiation of epiphyseal prechondrocytes. IGF1 and GH play a key role in the linear bone growth after birth and regulation of bone remodelation during the entire lifespan. It is known that adult GH deficient (GHD) patients have decreased BMD and increased risk of low-impact fractures. Most data gathered thus far on the effect of GH replacement on bone status comprise the measurement of quantitative changes of bone mass. Some animal studies with GHD showed that the bone microarchitecture, measured using computed tomography methods, is significantly compromised and improve after GH replacement. However, human studies did not show significantly decreased bone microarchitecture, but limited methodological quality does not allow firm conclusions on this subject.Key words: bone mass - bone quality - fracture - growth hormone - IGF1.

  7. Sudden improvement of insulin sensitivity related to an endodontic treatment.

    Science.gov (United States)

    Schulze, A; Schönauer, M; Busse, M

    2007-12-01

    Inflammation contributes to the pathogenesis of diabetes. A reciprocal relationship exists between diabetes and chronic periodontitis. This report describes the effects of an acute focal dental inflammation and subsequent endodontic treatment on the required insulin dosage of a 70-year-old man who had moderately controlled diabetes. Following an exacerbation of a combined endodontic-periodontic (endo-perio) lesion of tooth #3, the patient noticed a sudden increase in his insulin demand. After 3 weeks, the required dosage was approximately 100% greater. In association with hyperglycemic incidents, he reported a prickling sensation in this tooth. The radiograph showed circular bone loss around the tooth. Just 1 day after the root-canal preparation, the insulin need decreased to approximately 50% of that required prior to treatment. Subsequently, an incision and systemic antibiotics were necessary because of the formation of a periodontal abscess. The insulin demand remained low despite this complication. Forty days after endodontic treatment, the insulin dosage was at a level comparable to that taken 4 weeks before the root-canal preparation. This clinical case revealed a highly relevant correlation between insulin resistance and a local dental inflammation. To avoid an increase in insulin resistance, it seems important to attend to radically non-vital teeth as well as any other dental inflammation in diabetic patients.

  8. Reduced Circulating Insulin Enhances Insulin Sensitivity in Old Mice and Extends Lifespan

    Directory of Open Access Journals (Sweden)

    Nicole M. Templeman

    2017-07-01

    Full Text Available The causal relationships between insulin levels, insulin resistance, and longevity are not fully elucidated. Genetic downregulation of insulin/insulin-like growth factor 1 (Igf1 signaling components can extend invertebrate and mammalian lifespan, but insulin resistance, a natural form of decreased insulin signaling, is associated with greater risk of age-related disease in mammals. We compared Ins2+/− mice to Ins2+/+ littermate controls, on a genetically stable Ins1 null background. Proteomic and transcriptomic analyses of livers from 25-week-old mice suggested potential for healthier aging and altered insulin sensitivity in Ins2+/− mice. Halving Ins2 lowered circulating insulin by 25%–34% in aged female mice, without altering Igf1 or circulating Igf1. Remarkably, decreased insulin led to lower fasting glucose and improved insulin sensitivity in aged mice. Moreover, lowered insulin caused significant lifespan extension, observed across two diverse diets. Our study indicates that elevated insulin contributes to age-dependent insulin resistance and that limiting basal insulin levels can extend lifespan.

  9. Reduced Circulating Insulin Enhances Insulin Sensitivity in Old Mice and Extends Lifespan.

    Science.gov (United States)

    Templeman, Nicole M; Flibotte, Stephane; Chik, Jenny H L; Sinha, Sunita; Lim, Gareth E; Foster, Leonard J; Nislow, Corey; Johnson, James D

    2017-07-11

    The causal relationships between insulin levels, insulin resistance, and longevity are not fully elucidated. Genetic downregulation of insulin/insulin-like growth factor 1 (Igf1) signaling components can extend invertebrate and mammalian lifespan, but insulin resistance, a natural form of decreased insulin signaling, is associated with greater risk of age-related disease in mammals. We compared Ins2 +/- mice to Ins2 +/+ littermate controls, on a genetically stable Ins1 null background. Proteomic and transcriptomic analyses of livers from 25-week-old mice suggested potential for healthier aging and altered insulin sensitivity in Ins2 +/- mice. Halving Ins2 lowered circulating insulin by 25%-34% in aged female mice, without altering Igf1 or circulating Igf1. Remarkably, decreased insulin led to lower fasting glucose and improved insulin sensitivity in aged mice. Moreover, lowered insulin caused significant lifespan extension, observed across two diverse diets. Our study indicates that elevated insulin contributes to age-dependent insulin resistance and that limiting basal insulin levels can extend lifespan. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. WJD 5th Anniversary Special Issues(1): Insulin Benefits of healthy adipose tissue in the treatment of diabetes

    Institute of Scientific and Technical Information of China (English)

    Subhadra; C; Gunawardana

    2014-01-01

    The major malfunction in diabetes mellitus is severe perturbation of glucose homeostasis caused by deficiency of insulin.Insulin deficiency is either absolute due to destruction or failure of pancreaticβcells,or relative due to decreased sensitivity of peripheral tissues to insulin.The primary lesion being related to insulin,treatments for diabetes focus on insulin replacement and/or increasing sensitivity to insulin.These therapies have their own limitations and complications,some of which can be life-threatening.For example,exogenous insulin administration can lead to fatal hypoglycemic episodes;islet/pancreas transplantation requires life-long immunosuppressive therapy;and anti-diabetic drugs have dangerous side effects including edema,heart failure and lactic acidosis.Thus the need remains for better safer long term treatments for diabetes.The ultimate goal in treating diabetes is to re-establish glucose homeostasis,preferably through endogenously generated hormones.Recent studies increasingly show that extra-pancreatic hormones,particularly those arising from adipose tissue,can compensate for insulin,or entirely replace the function of insulin under appropriate circumstances.Adipose tissue is a versatile endocrine organ that secretes a variety of hormones with far-reaching effects on overall metabolism.While unhealthy adipose tissue can exacerbate diabetes through limiting circulation and secreting of pro-inflammatory cytokines,healthy uninflamed adipose tissue secretes beneficial adipokines with hypoglycemic and anti-inflammatory properties,which can complement and/or compensate for the function of insulin.Administration of specific adipokines is known to alleviate both type 1 and 2 diabetes,and leptin mono-therapy is reported to reverse type 1 diabetes independent of insulin.Although specific adipokines may correct diabetes,administration of individual adipokines still carries risks similar to those of insulin monotherapy.Thus a better approach is to

  11. Skeletal Muscle Angiogenesis and Its Relation to Insulin Sensitivity

    DEFF Research Database (Denmark)

    Lindqvist, Anna Maria Charlotte K

    mediator of angiogenesis) are reduced in insulin resistant individuals. Exercise training can improve skeletal muscle capillarization and the angiogenic potential and physical activity has also been proven to enhance muscle insulin sensitivity. Increased skeletal muscle capillarization is associated......) or by overexpression of VEGF-A in the tibialis anterior muscle (transfection; study II) and the effect of the increased muscle capillarization on muscle insulin sensitivity was examined. In study I skeletal muscle specific angiogenesis was induced by administering an α1-adrenergic antagonist (prazosin) to healthy...

  12. Insulin and the PI3K/AKT Signaling Pathway Regulate Ribonuclease 7 Expression in the Human Urinary Tract

    Science.gov (United States)

    Eichler, Tad; Becknell, Brian; Easterling, Robert S.; Ingraham, Susan E.; Cohen, Daniel M.; Schwaderer, Andrew; Hains, David S.; Li, Birong; Cohen, Ariel; Metheny, Jackie; Trindandapani, Susheela; Spencer, John David

    2017-01-01

    Diabetes mellitus is a systemic disease associated with a deficiency of insulin production or action. Diabetic patients have an increased susceptibility to infection with the urinary tract being the most common site of infection. Recent studies suggest that Ribonuclease 7 (RNase 7) is a potent antimicrobial peptide that plays an important role in protecting the urinary tract from bacterial insult. The impact of diabetes on RNase 7 expression and function are unknown. Here, we investigate the effects of insulin on RNase 7. Using human urine specimens, we measured urinary RNase 7 concentrations in healthy control patients and insulin-deficient type 1 diabetics before and after starting insulin therapy. Compared to controls, diabetic patients had suppressed urinary RNase 7 concentrations, which increased with insulin. Using primary human urothelial cells, we explored the mechanisms by which insulin induces RNase 7. Insulin induces RNase 7 production via the phosphatidylinositide 3-kinase signaling pathway (PI3K/AKT) to shield urothelial cells from uropathogenic E. coli. In contrast, we show that uropathogenic E. coli suppresses PI3K/AKT and RNase 7. Together, these results indicate that insulin and PI3K/AKT signaling are essential for RNase 7 expression. They also suggest that increased infection risks in diabetic patients may be secondary to suppressed RNase 7 production. These data may provide unique insight into novel UTI therapeutic strategies in at risk populations. PMID:27401534

  13. Magnesium deficiency improves glucose homeostasis in the rat: studies in vivo and in isolated islets in vitro.

    Science.gov (United States)

    Reis, M A; Latorraca, M Q; Carneiro, E M; Boschero, A C; Saad, M J; Velloso, L A; Reyes, F G

    2001-05-01

    The serum mineral levels, glucose disappearance rate (kg), total area under the glucose (DeltaG) and insulin (DeltaI) curves, and static insulin secretion were compared among rats fed a Mg-deficient diet for 6 (DF-6) or 11 (DF-11) weeks, and rats fed a control diet for the same periods (CO-6 and CO-11 groups). No change in glucose homeostasis was observed among DF-6, CO-6 and CO-11 rats. DF-11 rats showed an elevated kg and a reduced DeltaG and DeltaI. For evaluating the effect of supplementation, rats fed a control or Mg-deficient diet for 6 weeks were then fed a Mg- supplemented diet for 5 weeks (SCO and SDF groups respectively). The serum Mg levels in SDF rats were similar to those in CO-11 and SCO rats, but higher than in the DF-11 group. SDF rats showed similar kg, DeltaG and DeltaI compared with the CO-11 and SCO groups. However, a significantly lower kg and higher DeltaG and DeltaI were observed in SDF compared with DF-11 rats. Basal and 8.3 mmol glucose/l-stimulated insulin secretion by islets from DF-11 rats were higher than by islets from CO-11 rats. These results indicate that moderate Mg depletion for a long period may increase the secretion and sensitivity to insulin, while Mg supplementation in formerly Mg-deficient rats may prevent the increase in sensitivity and secretion of insulin.

  14. Urinary catecholamines, plasma insulin and environmental factors in relation to body fat distribution.

    Science.gov (United States)

    Leonetti, D L; Bergstrom, R W; Shuman, W P; Wahl, P W; Jenner, D A; Harrison, G A; Fujimoto, W Y

    1991-05-01

    The relationship of body fat distribution to insulin and the catecholamines, hormones that affect lipolysis differentially by fat site, was examined within an environmental context, including factors of medication use, physical activity, dietary intake, educational attainment, and age. Four cross-sectional body fat areas (cm2) were determined by three computed tomography (CT) scans (subcutaneous chest fat at the level of the nipples, subcutaneous and intra-abdominal fat at the level of the umbilicus, and subcutaneous left mid-thigh fat) in 191 second-generation Japanese-American men aged 45-74 years. The site-specific fat measurements were first examined in relation to use of beta-adrenergic antagonists, then to fasting plasma insulin and C-peptide levels and to urinary epinephrine and norepinephrine levels from a 24-h urine collection made during usual daily activities. Greater fat stores in the intra-abdominal area, even after adjustment for body mass index (BMI, weight/height2) and presence of coronary heart disease, were found to be related to use of beta-adrenergic antagonists. In men taking no adrenergic antagonists (n = 157), after adjustment for BMI, truncal fat measurements of the chest (partial r = -0.16, P less than 0.05) and intra-abdominal area (partial r = -0.21, P less than 0.05) were found to be inversely related to epinephrine, and intra-abdominal fat (partial r = 0.25, P less than 0.01) alone was directly related to fasting plasma insulin. With respect to other environmental variables, the significant inverse relationship of intra-abdominal fat (adjusted for BMI) with physical activity (partial r = -0.17, P less than 0.05) and the significant difference in intra-abdominal fat by educational attainment (college 102.3 +/- 5.7 vs no college 115.7 +/- 6.1 cm2, P = 0.03) became non-significant with adjustment, using multiple regression analysis, for insulin in the case of physical activity and epinephrine in the case of educational attainment. Thus

  15. Relation between the insulin receptor number in cells, autophosphorylation and insulin-stimulated Ras.GTP formation

    NARCIS (Netherlands)

    Osterop, A.P.R.M.; Medema, R.H.; Bos, J.L.; Zon, G.C.M. van der; Moller, D.E.; Flier, J.S.; Möller, W.; Maassen, J.A.

    1992-01-01

    We showed previously that upon insulin stimulation of an insulin receptor overexpressing cell linme,o st of the p2lras warsa pidly converted into the GTP bound state (Burgering, B. M. T., Medema, R. H., Maassen, J. A., Van de Wetering, M. L., Van der Eb, A. J., McCormick, F., and Bos, J. L.

  16. Repopulation of the atrophied thymus in diabetic rats by insulin-like growth factor I

    International Nuclear Information System (INIS)

    Binz, K.; Joller, P.; Froesch, P.; Binz, H.; Zapf, J.; Froesch, E.R.

    1990-01-01

    Atrophy of the thymus is one of the consequences of severe insulin deficiency. The authors describe here that the weight and the architecture of the thymus of diabetic rats is restored towards normal not only by insulin but also by insulin-like growth factor I (IGF-I) treatment. In contrast to insulin, this effect of IGF-I occurs despite persisting hyperglycemia and adrenal hyperplasia. They also investigated the in vivo effect of IGF-I on replication and differentiation of thymocytes from streptozotocin-induced diabetic rats. Thymocytes from diabetic rats incorporated less [ 3 H]thymidine than did thymocytes from healthy rats. Insulin, as well as IGF-I treatment of diabetic rats increased [ 3 H]thymidine incorporation by thymocytes. Flow cytometry of thymocytes labeled with monoclonal antibodies revealed a decreased expression of the Thy-1 antigen in diabetic rats compared with control rats. In addition, a major deficiency of thymocytes expressing simultaneously the W3/25 and the Ox8 antigens was observed. These changes were restored towards normal by insulin as well as by IGF-I treatment. The antibody response to a T cell-dependent antigen (bovine serum albumin) was comparable in normal and diabetic rats. They conclude that IGF-I has important effects on the thymocyte number and the presence of CD4 + /CD8 + immature cells in the thymus of diabetic rats despite persisting hyperglycemia. However, helper T-cell function for antibody production appears to be preserved even in the severely diabetic state

  17. Light deficiency confers breast cancer risk by endocrine disorders.

    Science.gov (United States)

    Suba, Zsuzsanna

    2012-09-01

    North-America and northern European countries exhibit the highest incidence rate of breast cancer, whereas women in southern regions are relatively protected. Immigrants from low cancer incidence regions to high-incidence areas might exhibit similarly higher or excessive cancer risk as compared with the inhabitants of their adoptive country. Additional cancer risk may be conferred by incongruence between their biological characteristics and foreign environment. Many studies established the racial/ethnic disparities in the risk and nature of female breast cancer in United States between African-American and Caucasian women. Mammary tumors in black women are diagnosed at earlier age, and are associated with higher rate of mortality as compared with cancers of white cases. Results of studies on these ethnic/racial differences in breast cancer incidence suggest that excessive pigmentation of dark skinned women results in a relative light-deficiency. Poor light exposure may explain the deleterious metabolic and hormonal alterations; such as insulin resistance, deficiencies of estrogen, thyroxin and vitamin-D conferring excessive cancer risk. The more northern the location of an adoptive country the higher the cancer risk for dark skinned immigrants. Recognition of the deleterious systemic effects of darkness and excessive melatonin synthesis enables cancer protection treatment for people living in light-deficient environment. Recent patents provide new methods for the prevention of hormonal and metabolic abnormities.

  18. Hyperinsulinemic hypoglycemia associated with insulin antibodies caused by exogenous insulin analog

    Directory of Open Access Journals (Sweden)

    Chih-Ting Su

    2016-11-01

    Full Text Available Insulin antibodies (IA associated with exogenous insulin administration seldom caused hypoglycemia and had different characteristics from insulin autoantibodies (IAA found in insulin autoimmune syndrome (IAS, which was first described by Dr Hirata in 1970. The characteristic of IAS is the presence of insulin-binding autoantibodies and related fasting or late postprandial hypoglycemia. Here, we report a patient with type 1 diabetes mellitus under insulin glargine and insulin aspart treatment who developed recurrent spontaneous post-absorptive hyperinsulinemic hypoglycemia with the cause probably being insulin antibodies induced by exogenous injected insulin. Examinations of serial sera disclosed a high titre of insulin antibodies (33%, normal <5%, high insulin concentration (111.9 IU/mL and undetectable C-peptide when hypoglycemia occurred. An oral glucose tolerance test revealed persistent high serum levels of total insulin and undetectable C-peptide. Image studies of the pancreas were unremarkable, which excluded the diagnosis of insulinoma. The patient does not take any of the medications containing sulfhydryl compounds, which had been reported to cause IAS. After administering oral prednisolone for 3 weeks, hypoglycemic episodes markedly improved, and he was discharged smoothly.

  19. Sodium-glucose cotransporter 2 inhibitors with insulin in type 2 diabetes: Clinical perspectives

    Directory of Open Access Journals (Sweden)

    Mathew John

    2016-01-01

    Full Text Available The treatment of type 2 diabetes is a challenging problem. Most subjects with type 2 diabetes have progression of beta cell failure necessitating the addition of multiple antidiabetic agents and eventually use of insulin. Intensification of insulin leads to weight gain and increased risk of hypoglycemia. Sodium-glucose cotransporter 2 (SGLT2 inhibitors are a class of antihyperglycemic agents which act by blocking the SGLT2 in the proximal tubule of the kidney. They have potential benefits in terms of weight loss and reduction of blood pressure in addition to improvements in glycemic control. Further, one of the SGLT2 inhibitors, empagliflozin has proven benefits in reducing adverse cardiovascular (CV outcomes in a CV outcome trial. Adding SGLT2 inhibitors to insulin in subjects with type 2 diabetes produced favorable effects on glycemic control without the weight gain and hypoglycemic risks associated with insulin therapy. The general risks of increased genital mycotic infections, urinary tract infections, volume, and osmosis-related adverse effects in these subjects were similar to the pooled data of individual SGLT2 inhibitors. There are subsets of subjects with type 2 diabetes who may have insulin deficiency, beta cell autoimmunity, or is prone to diabetic ketoacidosis. In these subjects, SGLT2 inhibitors should be used with caution to prevent the rare risks of ketoacidosis.

  20. Age-related retinopathy in NRF2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Zhenyang Zhao

    2011-04-01

    Full Text Available Cumulative oxidative damage is implicated in the pathogenesis of age-related macular degeneration (AMD. Nuclear factor erythroid 2-related factor 2 (NRF2 is a transcription factor that plays key roles in retinal antioxidant and detoxification responses. The purposes of this study were to determine whether NRF2-deficient mice would develop AMD-like retinal pathology with aging and to explore the underlying mechanisms.Eyes of both wild type and Nrf2(-/- mice were examined in vivo by fundus photography and electroretinography (ERG. Structural changes of the outer retina in aged animals were examined by light and electron microscopy, and immunofluorescence labeling. Our results showed that Nrf2(-/- mice developed age-dependent degenerative pathology in the retinal pigment epithelium (RPE. Drusen-like deposits, accumulation of lipofuscin, spontaneous choroidal neovascularization (CNV and sub-RPE deposition of inflammatory proteins were present in Nrf2(-/- mice after 12 months. Accumulation of autophagy-related vacuoles and multivesicular bodies was identified by electron microscopy both within the RPE and in Bruch's membrane of aged Nrf2(-/- mice.Our data suggest that disruption of Nfe2l2 gene increased the vulnerability of outer retina to age-related degeneration. NRF2-deficient mice developed ocular pathology similar to cardinal features of human AMD and deregulated autophagy is likely a mechanistic link between oxidative injury and inflammation. The Nrf2(-/- mice can provide a novel model for mechanistic and translational research on AMD.

  1. Fasting and feeding variations of insulin requirements and insulin binding to erythrocytes at different times of the day in insulin dependent diabetics--assessed under the condition of glucose-controlled insulin infusion.

    Science.gov (United States)

    Hung, C T; Beyer, J; Schulz, G

    1986-07-01

    Nine insulin-dependent diabetic patients were examined for insulin requirement, counterregulatory hormones, and receptor binding during their connection to glucose-controlled insulin infusion system. They were of 103% ideal body weight. A diet of 45% carbohydrate, 20% protein and 35% fat was divided into three meals and three snacks averaging the daily calorie intake of 1859 kcal. Following an equilibrating phase of 14 hours after the connection to the glucose-controlled insulin infusion system the blood samples were taken at 0800, 1200 and 1800. The insulin infusion rate increased at 0300 in the early morning from 0.128 mU/kg/min to 0.221 mU/kg/min (P less than 0.02). The postprandial insulin infusion rate jumped from 0.7 U/h (0700-0800) to 7.5 U/h (0800-0900). The calorie related and carbohydrate related insulin demands after breakfast were also highest and declined after lunch respectively (1.16 uU/kg/min kj vs. 0.61 uU/kg/min kj, P less than 0.05 and 236 mU/g CHO vs. 129 mU/g CHO and 143 mU/g CHO). Of the counterregulatory hormones the cortisol showed a significant diurnal rhythm to insulin demands. The insulin tracer binding was higher at 0800 before breakfast than that at 1200 before lunch (P less than 0.05). The increased binding could be better attributed to receptor concentration change than to affinity change. The cause of insulin relative insensitivity in the morning could be due to altered liver response to the cortisol peak in type 1 diabetics. The preserved variation of insulin binding in our patients might be referred to feeding.

  2. Interaction of insulin-like growth factor-I and insulin resistance-related genetic variants with lifestyle factors on postmenopausal breast cancer risk.

    Science.gov (United States)

    Jung, Su Yon; Ho, Gloria; Rohan, Thomas; Strickler, Howard; Bea, Jennifer; Papp, Jeanette; Sobel, Eric; Zhang, Zuo-Feng; Crandall, Carolyn

    2017-07-01

    Genetic variants and traits in metabolic signaling pathways may interact with obesity, physical activity, and exogenous estrogen (E), influencing postmenopausal breast cancer risk, but these inter-related pathways are incompletely understood. We used 75 single-nucleotide polymorphisms (SNPs) in genes related to insulin-like growth factor-I (IGF-I)/insulin resistance (IR) traits and signaling pathways, and data from 1003 postmenopausal women in Women's Health Initiative Observation ancillary studies. Stratifying via obesity and lifestyle modifiers, we assessed the role of IGF-I/IR traits (fasting IGF-I, IGF-binding protein 3, insulin, glucose, and homeostatic model assessment-insulin resistance) in breast cancer risk as a mediator or influencing factor. Seven SNPs in IGF-I and INS genes were associated with breast cancer risk. These associations differed between non-obese/active and obese/inactive women and between exogenous E non-users and users. The mediation effects of IGF-I/IR traits on the relationship between these SNPs and cancer differed between strata, but only roughly 35% of the cancer risk due to the SNPs was mediated by traits. Similarly, carriers of 20 SNPs in PIK3R1, AKT1/2, and MAPK1 genes (signaling pathways-genetic variants) had different associations with breast cancer between strata, and the proportion of the SNP-cancer relationship explained by traits varied 45-50% between the strata. Our findings suggest that IGF-I/IR genetic variants interact with obesity and lifestyle factors, altering cancer risk partially through pathways other than IGF-I/IR traits. Unraveling gene-phenotype-lifestyle interactions will provide data on potential genetic targets in clinical trials for cancer prevention and intervention strategies to reduce breast cancer risk.

  3. Cluster Differentiating 36 (CD36) Deficiency Attenuates Obesity-Associated Oxidative Stress in the Heart.

    Science.gov (United States)

    Gharib, Mohamed; Tao, Huan; Fungwe, Thomas V; Hajri, Tahar

    2016-01-01

    Obesity is often associated with a state of oxidative stress and increased lipid deposition in the heart. More importantly, obesity increases lipid influx into the heart and induces excessive production of reactive oxygen species (ROS) leading to cell toxicity and metabolic dysfunction. Cluster differentiating 36 (CD36) protein is highly expressed in the heart and regulates lipid utilization but its role in obesity-associated oxidative stress is still not clear. The aim of this study was to determine the impact of CD36 deficiency on cardiac steatosis, oxidative stress and lipotoxicity associated with obesity. Studies were conducted in control (Lean), obese leptin-deficient (Lepob/ob) and leptin-CD36 double null (Lepob/obCD36-/-) mice. Compared to lean mice, cardiac steatosis, and fatty acid (FA) uptake and oxidation were increased in Lepob/ob mice, while glucose uptake and oxidation was reduced. Moreover, insulin resistance, oxidative stress markers and NADPH oxidase-dependent ROS production were markedly enhanced. This was associated with the induction of NADPH oxidase expression, and increased membrane-associated p47phox, p67phox and protein kinase C. Silencing CD36 in Lepob/ob mice prevented cardiac steatosis, increased insulin sensitivity and glucose utilization, but reduced FA uptake and oxidation. Moreover, CD36 deficiency reduced NADPH oxidase activity and decreased NADPH oxidase-dependent ROS production. In isolated cardiomyocytes, CD36 deficiency reduced palmitate-induced ROS production and normalized NADPH oxidase activity. CD36 deficiency prevented obesity-associated cardiac steatosis and insulin resistance, and reduced NADPH oxidase-dependent ROS production. The study demonstrates that CD36 regulates NADPH oxidase activity and mediates FA-induced oxidative stress.

  4. Uncoupling of Obesity from Insulin Resistance Through a Targeted Mutation in aP2, the Adipocyte Fatty Acid Binding Protein

    Science.gov (United States)

    Hotamisligil, Gokhan S.; Johnson, Randall S.; Distel, Robert J.; Ellis, Ramsey; Papaioannou, Virginia E.; Spiegelman, Bruce M.

    1996-11-01

    Fatty acid binding proteins (FABPs) are small cytoplasmic proteins that are expressed in a highly tissue-specific manner and bind to fatty acids such as oleic and retinoic acid. Mice with a null mutation in aP2, the gene encoding the adipocyte FABP, were developmentally and metabolically normal. The aP2-deficient mice developed dietary obesity but, unlike control mice, they did not develop insulin resistance or diabetes. Also unlike their obese wild-type counterparts, obese aP2-/- animals failed to express in adipose tissue tumor necrosis factor-α (TNF-α), a molecule implicated in obesity-related insulin resistance. These results indicate that aP2 is central to the pathway that links obesity to insulin resistance, possibly by linking fatty acid metabolism to expression of TNF-α.

  5. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice.

    Science.gov (United States)

    Liu, Jun-Li; Coschigano, Karen T; Robertson, Katie; Lipsett, Mark; Guo, Yubin; Kopchick, John J; Kumar, Ujendra; Liu, Ye Lauren

    2004-09-01

    Growth hormone, acting through its receptor (GHR), plays an important role in carbohydrate metabolism and in promoting postnatal growth. GHR gene-deficient (GHR(-/-)) mice exhibit severe growth retardation and proportionate dwarfism. To assess the physiological relevance of growth hormone actions, GHR(-/-) mice were used to investigate their phenotype in glucose metabolism and pancreatic islet function. Adult GHR(-/-) mice exhibited significant reductions in the levels of blood glucose and insulin, as well as insulin mRNA accumulation. Immunohistochemical analysis of pancreatic sections revealed normal distribution of the islets despite a significantly smaller size. The average size of the islets found in GHR(-/-) mice was only one-third of that in wild-type littermates. Total beta-cell mass was reduced 4.5-fold in GHR(-/-) mice, significantly more than their body size reduction. This reduction in pancreatic islet mass appears to be related to decreases in proliferation and cell growth. GHR(-/-) mice were different from the human Laron syndrome in serum insulin level, insulin responsiveness, and obesity. We conclude that growth hormone signaling is essential for maintaining pancreatic islet size, stimulating islet hormone production, and maintaining normal insulin sensitivity and glucose homeostasis.

  6. Insulin resistence and health-related quality of life in postmenopausal women.

    Science.gov (United States)

    Llaneza, Placido; González, Celestino; Fernandez-Iñarrea, Jose; Alonso, Ana; Arnott, Ignacio; Ferrer-Barriendos, Javier

    2009-04-01

    Health-related quality of life (HR-QOL) was similar between the menopausal women with and without Insulin Resistance (IR). However, when IR women with Metabolic Syndrome were considered, a higher level of problems on the HR-QOL global score was found and the difference was mainly due to Health and Sexuality domains.

  7. Novel covalently linked insulin dimer engineered to investigate the function of insulin dimerization

    DEFF Research Database (Denmark)

    Vinther, Tine N.; Norrman, Mathias; Strauss, Holger M.

    2012-01-01

    An ingenious system evolved to facilitate insulin binding to the insulin receptor as a monomer and at the same time ensure sufficient stability of insulin during storage. Insulin dimer is the cornerstone of this system. Insulin dimer is relatively weak, which ensures dissociation into monomers...... in the circulation, and it is stabilized by hexamer formation in the presence of zinc ions during storage in the pancreatic ß-cell. Due to the transient nature of insulin dimer, direct investigation of this important form is inherently difficult. To address the relationship between insulin oligomerization...... and insulin stability and function, we engineered a covalently linked insulin dimer in which two monomers were linked by a disulfide bond. The structure of this covalent dimer was identical to the self-association dimer of human insulin. Importantly, this covalent dimer was capable of further oligomerization...

  8. Evaluation of the association of vitamin D deficiency with gonadotropins and sex hormone in obese and non-obese women with polycystic ovary syndrome.

    Science.gov (United States)

    Velija-Ašimi, Zelija

    2014-02-01

    To evaluate the association of vitamin D (VD) deficiency with gonadotropins and sex hormone in obese and non-obese women with polycystic ovary syndrome (PCOS). Of the total of 140 women, thirty obese and thirty nonobese, aged 20-40 years, were included in the study. Inclusion criteria were the women with normal level of thyroid-stimulating hormone (TSH), prolactin (PRL), parathyroid hormone (PTH), and calcium, and those who had not received any medication or VD supplementation within the last 6 months. Serum 25- hydroxyvitamin D (25(OH)D), C-reactive protein (CRP), lipid profile, fasting serum glucose, basal insulin, homeostasis model analysis of insulin resistance (HOMA-IR) index, follicle-stimulating hormone (FSH), luteinizing hormone (LH), oestrogen, total testosterone, dehidroepiandrostendion-sulphat (DHEA-S), androstendione, and sex hormone binding globulin (SHBG) were determined at follicular phase. Body mass index (BMI), weight, waist, lipids, and CRP were significantly higher in obese than in non-obese PCOS women (p=0.000). Meanwhile, insulin and HOMA-IR were also higher in the obese PCOS (p less than 0.000), and so was the fasting glucose (p=0.004). Furthermore, obese PCOS showed significantly higher level of LH (p=0.012), but lower level of progesterone (p=0.001) and androstendione (p=0.006) than in non-obese PCOS. In total 68% of PCOS women had VD deficiency but without significant difference among groups according to BMI. There was no association of VD deficiency with gonadotropins and sex hormones except SHBG. Insulin resistance was a better independent risk factor for the presence of vitamin D deficiency than SHBG. The insulin resistance and vitamin D deficiency significantly predicted the obesity risk in PCOS women.

  9. Zinc Status Affects Glucose Homeostasis and Insulin Secretion in Patients with Thalassemia

    Directory of Open Access Journals (Sweden)

    Ellen B. Fung

    2015-06-01

    Full Text Available Up to 20% of adult patients with Thalassemia major (Thal live with diabetes, while 30% may be zinc deficient. The objective of this study was to explore the relationship between zinc status, impaired glucose tolerance and insulin sensitivity in Thal patients. Charts from thirty subjects (16 male, 27.8 ± 9.1 years with Thal were reviewed. Patients with low serum zinc had significantly lower fasting insulin, insulinogenic and oral disposition indexes (all p < 0.05 and elevated glucose response curve, following a standard 75 g oral load of glucose compared to those with normal serum zinc after controlling for baseline (group × time interaction p = 0.048. Longitudinal data in five patients with a decline in serum zinc over a two year follow up period (−19.0 ± 9.6 μg/dL, showed consistent increases in fasting glucose (3.6 ± 3.2 mg/dL and insulin to glucose ratios at 120 min post glucose dose (p = 0.05. Taken together, these data suggest that the frequently present zinc deficiency in Thal patients is associated with decreased insulin secretion and reduced glucose disposal. Future zinc trials will require modeling of oral glucose tolerance test data and not simply measurement of static indices in order to understand the complexities of pancreatic function in the Thal patient.

  10. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance.

    Science.gov (United States)

    Nishimoto, Sachiko; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Murata, Chie; Kim-Kaneyama, Joo-Ri; Sato, Fukiko; Bando, Masahiro; Yagi, Shusuke; Soeki, Takeshi; Hayashi, Tetsuya; Imoto, Issei; Sakaue, Hiroshi; Shimabukuro, Michio; Sata, Masataka

    2016-03-01

    Obesity stimulates chronic inflammation in adipose tissue, which is associated with insulin resistance, although the underlying mechanism remains largely unknown. Here we showed that obesity-related adipocyte degeneration causes release of cell-free DNA (cfDNA), which promotes macrophage accumulation in adipose tissue via Toll-like receptor 9 (TLR9), originally known as a sensor of exogenous DNA fragments. Fat-fed obese wild-type mice showed increased release of cfDNA, as determined by the concentrations of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in plasma. cfDNA released from degenerated adipocytes promoted monocyte chemoattractant protein-1 (MCP-1) expression in wild-type macrophages, but not in TLR9-deficient (Tlr9 (-/-) ) macrophages. Fat-fed Tlr9 (-/-) mice demonstrated reduced macrophage accumulation and inflammation in adipose tissue and better insulin sensitivity compared with wild-type mice, whereas bone marrow reconstitution with wild-type bone marrow restored the attenuation of insulin resistance observed in fat-fed Tlr9 (-/-) mice. Administration of a TLR9 inhibitory oligonucleotide to fat-fed wild-type mice reduced the accumulation of macrophages in adipose tissue and improved insulin resistance. Furthermore, in humans, plasma ssDNA level was significantly higher in patients with computed tomography-determined visceral obesity and was associated with homeostasis model assessment of insulin resistance (HOMA-IR), which is the index of insulin resistance. Our study may provide a novel mechanism for the development of sterile inflammation in adipose tissue and a potential therapeutic target for insulin resistance.

  11. Insulin-resistance HCV infection-related affects vascular stiffness in normotensives.

    Science.gov (United States)

    Perticone, Maria; Maio, Raffaele; Tassone, Eliezer Joseph; Tripepi, Giovanni; Di Cello, Serena; Miceli, Sofia; Caroleo, Benedetto; Sciacqua, Angela; Licata, Anna; Sesti, Giorgio; Perticone, Francesco

    2015-01-01

    BACKGROUND AND AIMS. Arterial stiffness evaluated as pulse wave velocity, is an early marker of vascular damage and an independent predictor for cardiovascular events. We investigated if the insulin resistance/hyperinsulinemia chronic hepatitis C virus infection-related could influence arterial stiffness. METHODS. We enrolled 260 outpatients matched for age, body mass index, gender, ethnicity: 52 with never-treated uncomplicated chronic hepatitis C virus infection (HCV(+)), 104 never-treated hypertensives (HT) and 104 healthy subjects (NT). Pulse wave velocity was evaluated by a validated system employing high-fidelity applanation tonometry. We also measured: fasting plasma glucose and insulin, total, LDL- and HDL-cholesterol, triglyceride, creatinine, e-GFR-EPI, HOMA, quantitative HCV-RNA. RESULTS. HCV(+) patients with respect to NT had an increased pulse wave velocity (7.9 ± 2.1 vs 6.4 ± 2.1 m/s; P direct correlation between HOMA and pulse wave velocity in HCV(+) patients, similar to that observed in hypertensives. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Clinical implications of vitamin D deficiency

    Directory of Open Access Journals (Sweden)

    Beata Matyjaszek-Matuszek

    2015-06-01

    Full Text Available Vitamin D deficiency is a common medical problem worldwide and its prevalence rises along with latitude, obesity, sedentary lifestyle, limited sunlight exposure and aging. A great body of evidence has shown that patients with vitamin D deficiency have increased cardiovascular risks and total mortality. Conversely, the presence of comorbidities progressive with age such as abdominal obesity, insulin resistance, type 2 diabetes and hypertension places the patients at an increased risk of vitamin D deficiency. The multidirectional effect of vitamin D deficiency is present in different phases of the aging process. Based on the literature review, the risk factors for vitamin D insufficiency most often found in post-menopausal women include limited sun exposure and time spent outdoors, inadequate dietary vitamin D intake, winter season and increased age. Vitamin D supplementation in this group might offer prevention of falls and fractures and may be beneficial for cardiovascular health, what may be especially important in osteoporotic and elderly populations. Prevention and treatment processes involve education regarding sunlight exposure and pharmacological cholecalciferol supplementation according to the recommendations for Central Europe. This manuscript reviews the role of vitamin D and its deficiency and considers their clinical implications, with particular regard to peri- and postmenopausal women.

  13. Insulin and the Lung

    DEFF Research Database (Denmark)

    Singh, Suchita; Prakash, Y S; Linneberg, Allan

    2013-01-01

    , molecular understanding is necessary. Insulin resistance is a strong, independent risk factor for asthma development, but it is unknown whether a direct effect of insulin on the lung is involved. This review summarizes current knowledge regarding the effect of insulin on cellular components of the lung...... and highlights the molecular consequences of insulin-related metabolic signaling cascades that could adversely affect lung structure and function. Examples include airway smooth muscle proliferation and contractility and regulatory signaling networks that are associated with asthma. These aspects of insulin...

  14. Long-term deficiency of circulating and hippocampal insulin-like growth factor I induces depressive behavior in adult mice: A potential model of geriatric depression

    Science.gov (United States)

    Mitschelen, Matthew; Yan, Han; Farley, Julie A.; Warrington, Junie P.; Han, Song; Hereñú, Claudia B.; Csiszar, Anna; Ungvari, Zoltan; Bailey-Downs, Lora C.; Bass, Caroline E.; Sonntag, William E.

    2011-01-01

    Numerous studies support the hypothesis that deficiency of insulin-like growth factor I (IGF-1) in adults contributes to depression, but direct evidence is limited. Many psychological and pro-cognitive effects have been attributed to IGF-1, but appropriate animal models of adult-onset IGF-1 deficiency are lacking. In this study, we use a viral-mediated Cre-loxP system to knockout the Igf1 gene in either the liver, neurons of the CA1 region of the hippocampus, or both. Knockout of liver Igf1 reduced serum IGF-1 levels by 40% and hippocampal IGF-1 levels by 26%. Knockout of Igf1 in CA1 reduced hippocampal IGF-1 levels by 13%. The most severe reduction in hippocampal IGF-1 occurred in the group with knockouts in both liver and CA1 (36% reduction), and was associated with a 3.5-fold increase in immobility in the forced swim test. Reduction of either circulating or hippocampal IGF-1 levels did not alter anxiety measured in an open field and elevated plus maze, nor locomotion in the open field. Furthermore, local compensation for deficiencies in circulating IGF-1 did not occur in the hippocampus, nor were serum levels of IGF-1 upregulated in response to the moderate decline of hippocampal IGF-1 caused by the knockouts in CA1. We conclude that adult-onset IGF-1 deficiency alone is sufficient to induce a depressive phenotype in mice. Furthermore, our results suggest that individuals with low brain levels of IGF-1 are at increased risk for depression and these behavioral effects are not ameliorated by increased local IGF-1 production or transport. Our study supports the hypothesis that the natural IGF-1 decline in aging humans may contribute to geriatric depression. PMID:21524689

  15. Insulin effect on [14C]-valine incorporation and its relation to hexokinase activity in developing brain

    International Nuclear Information System (INIS)

    Pal, N.; Bessman, S.P.

    1988-01-01

    Using minced brain cortex from fetal and postnatal rats, we studied the incorporation of [ 14 C]-valine into protein in the presence of insulin. We also assayed the particle bound and soluble hexokinase in these tissues. Insulin significantly stimulated the incorporation of [ 14 C]-valine into brain proteins from fetal stage upto 2 days of life. After this period the insulin effect was minimal, with no effect by day 5. The particle bound (40,000g pellet) brain hexokinase, on the other hand, remained low till about 2 days of life and then increased to almost adult level by 5 days. Our results show that there is an inverse relation between this anabolic effect of insulin and the particle bound hexokinase activity in the cortex of developing rat brain

  16. Insulin structure and stability.

    Science.gov (United States)

    Brange, J; Langkjoer, L

    1993-01-01

    Insulin is composed of 51 amino acids in two peptide chains (A and B) linked by two disulfide bonds. The three-dimensional structure of the insulin molecule (insulin monomer), essentially the same in solution and in solid phase, exists in two main conformations. These differ in the extent of helix in the B chain which is governed by the presence of phenol or its derivatives. In acid and neutral solutions, in concentrations relevant for pharmaceutical formulation, the insulin monomer assembles to dimers and at neutral pH, in the presence of zinc ions, further to hexamers. Many crystalline modifications of insulin have been identified but only those with the hexamer as the basic unit are utilized in preparations for therapy. The insulin hexamer forms a relatively stable unit but some flexibility remains within the individual molecules. The intrinsic flexibility at the ends of the B chain plays an important role in governing the physical and chemical stability of insulin. A variety of chemical changes of the primary structure (yielding insulin derivatives), and physical modifications of the secondary to quaternary structures (resulting in "denaturation," aggregation, and precipitation) are known to affect insulin and insulin preparations during storage and use (Fig. 8). The tendency of insulin to undergo structural transformation resulting in aggregation and formation of insoluble insulin fibrils has been one of the most intriguing and widely studied phenomena in relation to insulin stability. Although the exact mechanism of fibril formation is still obscure, it is now clear that the initial step is an exposure of certain hydrophobic residues, normally buried in the three-dimensional structure, to the surface of the insulin monomer. This requires displacement of the COOH-terminal B-chain residues from their normal position which can only be accomplished via monomerization of the insulin. Therefore, most methods stabilizing insulin against fibrillation share the

  17. CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion.

    Science.gov (United States)

    Zheng, Hongzhi; Fu, Jingqi; Xue, Peng; Zhao, Rui; Dong, Jian; Liu, Dianxin; Yamamoto, Masayuki; Tong, Qingchun; Teng, Weiping; Qu, Weidong; Zhang, Qiang; Andersen, Melvin E; Pi, Jingbo

    2015-04-01

    The inability of pancreatic β-cells to secrete sufficient insulin in response to glucose stimulation is a major contributing factor to the development of type 2 diabetes (T2D). We investigated both the in vitro and in vivo effects of deficiency of nuclear factor-erythroid 2-related factor 1 (Nrf1) in β-cells on β-cell function and glucose homeostasis. Silencing of Nrf1 in β-cells leads to a pre-T2D phenotype with disrupted glucose metabolism and impaired insulin secretion. Specifically, MIN6 β-cells with stable knockdown of Nrf1 (Nrf1-KD) and isolated islets from β-cell-specific Nrf1-knockout [Nrf1(b)-KO] mice displayed impaired glucose responsiveness, including elevated basal insulin release and decreased glucose-stimulated insulin secretion (GSIS). Nrf1(b)-KO mice exhibited severe fasting hyperinsulinemia, reduced GSIS, and glucose intolerance. Silencing of Nrf1 in MIN6 cells resulted in oxidative stress and altered glucose metabolism, with increases in both glucose uptake and aerobic glycolysis, which is associated with the elevated basal insulin release and reduced glucose responsiveness. The elevated glycolysis and reduced glucose responsiveness due to Nrf1 silencing likely result from altered expression of glucose metabolic enzymes, with induction of high-affinity hexokinase 1 and suppression of low-affinity glucokinase. Our study demonstrated a novel role of Nrf1 in regulating glucose metabolism and insulin secretion in β-cells and characterized Nrf1 as a key transcription factor that regulates the coupling of glycolysis and mitochondrial metabolism and GSIS. Nrf1 plays critical roles in regulating glucose metabolism, mitochondrial function, and insulin secretion, suggesting that Nrf1 may be a novel target to improve the function of insulin-secreting β-cells.

  18. Growth hormone deficiency and central hypogonadism in retired professional football players

    Directory of Open Access Journals (Sweden)

    Gábor László Kovács

    2016-12-01

    Full Text Available Purpose: The aim of this cross-sectional study was to evaluate the possible impact of multiple mild head traumas sustained during a long-term football career on the presence of central hypogonadism and growth hormone (GH deficiency. Methods: Twenty-seven retired, former professional male football players were investigated. All subjects were assessed for serum levels of insulin-like growth factor (IGF-1, luteinizing hormone (LH and total testosterone (TT. Quality of life was quantified using the Assessment of Growth Hormone Deficiency in Adults (QoL-AGHDA questionnaire. Results: Subjects had a median age of 48.0 (42.0 – 53.0 years and a median football career of 29.0 years (22.0 – 32.0. One subject had central hypogonadism and none had growth hormone deficiency. Nine subjects reported sport-related head injuries. We found a negative correlation between sport-related head injuries and serum LH (p = -0.459, P = 0.016. Subjects with a history of sport-related head injury had a median LH of 3.3 U/L (2.7 – 3.6, while those without a history of sport-related head injury had a median LH of 4.1 (U/L (3.6 – 5.7, P = 0.017. However, there were no differences in other hormones between the two groups. Moreover, we did not find any correlation between the duration of the player’s career nor their field position with hormone profiles or QoL-AGHDA. Conclusion: Although retired footfall players with a history of sport-related head injury had lower LH levels, we did not find strong evidence of an increased prevalence of central hypogonadism or GH deficiency in these patients. Our results suggest that a long-term football career, which includes headings and repetitive mild head traumas, does not damage the most vulnerable anterior pituitary cells.

  19. Histidine augments the suppression of hepatic glucose production by central insulin action.

    Science.gov (United States)

    Kimura, Kumi; Nakamura, Yusuke; Inaba, Yuka; Matsumoto, Michihiro; Kido, Yoshiaki; Asahara, Shun-Ichiro; Matsuda, Tomokazu; Watanabe, Hiroshi; Maeda, Akifumi; Inagaki, Fuyuhiko; Mukai, Chisato; Takeda, Kiyoshi; Akira, Shizuo; Ota, Tsuguhito; Nakabayashi, Hajime; Kaneko, Shuichi; Kasuga, Masato; Inoue, Hiroshi

    2013-07-01

    Glucose intolerance in type 2 diabetes is related to enhanced hepatic glucose production (HGP) due to the increased expression of hepatic gluconeogenic enzymes. Previously, we revealed that hepatic STAT3 decreases the expression of hepatic gluconeogenic enzymes and suppresses HGP. Here, we show that increased plasma histidine results in hepatic STAT3 activation. Intravenous and intracerebroventricular (ICV) administration of histidine-activated hepatic STAT3 reduced G6Pase protein and mRNA levels and augmented HGP suppression by insulin. This suppression of hepatic gluconeogenesis by histidine was abolished by hepatic STAT3 deficiency or hepatic Kupffer cell depletion. Inhibition of HGP by histidine was also blocked by ICV administration of a histamine H1 receptor antagonist. Therefore, histidine activates hepatic STAT3 and suppresses HGP via central histamine action. Hepatic STAT3 phosphorylation after histidine ICV administration was attenuated in histamine H1 receptor knockout (Hrh1KO) mice but not in neuron-specific insulin receptor knockout (NIRKO) mice. Conversely, hepatic STAT3 phosphorylation after insulin ICV administration was attenuated in NIRKO but not in Hrh1KO mice. These findings suggest that central histidine action is independent of central insulin action, while both have additive effects on HGP suppression. Our results indicate that central histidine/histamine-mediated suppression of HGP is a potential target for the treatment of type 2 diabetes.

  20. Paternal Insulin-like Growth Factor 2 (Igf2 Regulates Stem Cell Activity During Adulthood

    Directory of Open Access Journals (Sweden)

    Vilma Barroca

    2017-02-01

    Full Text Available Insulin-like Growth Factor 2 (IGF2 belongs to the IGF/Insulin pathway, a highly conserved evolutionarily network that regulates growth, aging and lifespan. Igf2 is highly expressed in the embryo and in cancer cells. During mouse development, Igf2 is expressed in all sites where hematopoietic stem cells (HSC successively expand, then its expression drops at weaning and becomes undetectable when adult HSC have reached their niches in bones and start to self-renew. In the present study, we aim to discover the role of IGF2 during adulthood. We show that Igf2 is specifically expressed in adult HSC and we analyze HSC from adult mice deficient in Igf2 transcripts. We demonstrate that Igf2 deficiency avoids the age-related attrition of the HSC pool and that Igf2 is necessary for tissue homeostasis and regeneration. Our study reveals that the expression level of Igf2 is critical to maintain the balance between stem cell self-renewal and differentiation, presumably by regulating the interaction between HSC and their niche. Our data have major clinical interest for transplantation: understanding the changes in adult stem cells and their environments will improve the efficacy of regenerative medicine and impact health- and life-span.

  1. Insulin-resistance and lipids metabolism in women at menopause

    Directory of Open Access Journals (Sweden)

    Marina Dmitrуina Gresko

    2018-01-01

    Full Text Available The article describes lipid metabolism in women during premenopausal and considered their relationship with the level of insulin sensitivity and abdominal obesity. Examined 20 women aged 46-48 years, with fixed transition to pre-menopause on the bases of menstrual cycle dysfunction or amenorrhea during a year as well as a decrease of visualized follicular reserve according to the results of ultrasonic examination of the organs of the small pelvis, were involved into investigation. Body mass increase with abdominal obese formation and disorders of the lipid metabolism against a background of insulin resistance is observed in women during pre-menopause against a background of sexual hormones deficiency.

  2. Diminished hepatic insulin removal in obesity

    International Nuclear Information System (INIS)

    Cano, I.; Salvador, J.; Rodriguez, R.; Arraiza, M.C.; Goena, M.; Barberia, J.J.; Moncada, E.

    1986-01-01

    Peripheral insulin and C-peptide levels during oral glucose load were measured in 20 obese and 23 normal weight nondiabetic subjects. The fasting C-peptide to insulin molar ratios (Cp/I), as well as the relation between incremental areas of the two polypeptides (ACp-AI)/ACp, were used as relative measures of the hepatic insulin extraction (HIE). The insulin and C-peptide basal levels as well as incremental areas under plasma curves were higher in the obese subjects (P<0.001). HIE was lower in obeses than in controls assessed in the fasting state (P<0.05), as well as after glucose load (P<0.001). Nevertheless, obeses and controls with similar insulin fasting levels showed identical hepatic insulin extraction in fasting or after glucose load. HIE was independent of obesity degree, but was related to insulin basal levels (r=-0.60, P<0.01). This study suggests the hypothesis that the decreased hepatic insulin extraction in obeses is a result of the chronically increased insulin delivery to the liver and is not a consequence of obesity, although a contributory role cannot be ruled out

  3. Diminished hepatic insulin removal in obesity

    Energy Technology Data Exchange (ETDEWEB)

    Cano, I; Salvador, J; Rodriguez, R; Arraiza, M C; Goena, M; Barberia, J J; Moncada, E

    1986-01-01

    Peripheral insulin and C-peptide levels during oral glucose load were measured in 20 obese and 23 normal weight nondiabetic subjects. The fasting C-peptide to insulin molar ratios (Cp/I), as well as the relation between incremental areas of the two polypeptides (ACp-AI)/ACp, were used as relative measures of the hepatic insulin extraction (HIE). The insulin and C-peptide basal levels as well as incremental areas under plasma curves were higher in the obese subjects (P<0.001). HIE was lower in obeses than in controls assessed in the fasting state (P<0.05), as well as after glucose load (P<0.001). Nevertheless, obeses and controls with similar insulin fasting levels showed identical hepatic insulin extraction in fasting or after glucose load. HIE was independent of obesity degree, but was related to insulin basal levels (r=-0.60, P<0.01). This study suggests the hypothesis that the decreased hepatic insulin extraction in obeses is a result of the chronically increased insulin delivery to the liver and is not a consequence of obesity, although a contributory role cannot be ruled out.

  4. Microcirculatory Improvement Induced by Laparoscopic Sleeve Gastrectomy Is Related to Insulin Sensitivity Retrieval.

    Science.gov (United States)

    Ministrini, Stefano; Fattori, Chiara; Ricci, Maria Anastasia; Bianconi, Vanessa; Paltriccia, Rita; Boni, Marcello; Paganelli, Maria Teresa; Vaudo, Gaetano; Lupattelli, Graziana; Pasqualini, Leonella

    2018-05-12

    Microvascular dysfunction is a potential factor explaining the association of obesity, insulin resistance, and vascular damage in morbidly obese subjects. The purpose of the study was to evaluate possible determinants of microcirculatory improvement 1 year after laparoscopic sleeve gastrectomy (LSG) intervention. Thirty-seven morbidly obese subjects eligible for bariatric surgery were included in the study. Post-occlusive reactive hyperemia (PORH) of the forearm skin was measured as area of hyperemia (AH) by laser-Doppler flowmetry before LSG and after a 1-year follow-up. After intervention, we observed a significant reduction in BMI, HOMA index, HbA1c, and a significant increase of AH in all patients after surgery; this variation was significant only in those patients having insulin resistance or prediabetes/diabetes. Although significant correlation between the increase of AH and the reduction of both BMI, HOMA index, and HbA1c was observed, BMI was the only independent predictor of AH variation after LSG at the linear regression analysis. Our study shows that LSG intervention is correlated with a significant improvement in the microvascular function of morbidly obese subjects; this improvement seems to be related to the baseline degree of insulin-resistance and to the retrieval of insulin-sensitivity post-intervention.

  5. Clinical significance of changes of serum true insulin and proinsulin levels in relations of patients with type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Tian Xiaoping; Huang Huijian; Huang Haibo; Wu Yan; He Haoming

    2004-01-01

    Objective: To explore the degree of insulin resistance and β-cell secretory function impairment in close (1st degree) relations of patients with type 2 diabetes (DMII). Methods: Serum true insulin (TI), pro-insulin (PI), immunoreactive insulin (IRI) levels at fasting and after oral 75g glucose loading were determined in: 1) patients with DM 2, n=65 2)relations of DM 2 patients with impaired glucose tolerance (IGT), n=34 3) relations of DM 2 patients with normal glucose tolerance (NGT), n=66 and 4) controls, n=48. HOMA-IR and HOMA-β cell secretory indices were calculated from the data. Results: Fasting serum PI levels were significantly higher in DM 2 patients, relations with IGT and NGT than those in the controls (t=2.38, t=2.16, t=1.95, P 1 C percentages were significantly higher in DM 2 patients and IGT, NGT groups than those in controls (t=3.67, t=2.45, t=1.97, P 1 C percentage, fasting TI and IRI levels. Conclusion: Insulin resistance was already obvious in those relations of DM 2 patients with normal glucose tolerance and β-cell secretory function impairment was also present. Early intervention in these subjects might be beneficial. (authors)

  6. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine are related to insulin sensitivity and respond to acute exercise in humans.

    Science.gov (United States)

    Newsom, Sean A; Brozinick, Joseph T; Kiseljak-Vassiliades, Katja; Strauss, Allison N; Bacon, Samantha D; Kerege, Anna A; Bui, Hai Hoang; Sanders, Phil; Siddall, Parker; Wei, Tao; Thomas, Melissa; Kuo, Ming Shang; Nemkov, Travis; D'Alessandro, Angelo; Hansen, Kirk C; Perreault, Leigh; Bergman, Bryan C

    2016-06-01

    Several recent reports indicate that the balance of skeletal muscle phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is a key determinant of muscle contractile function and metabolism. The purpose of this study was to determine relationships between skeletal muscle PC, PE and insulin sensitivity, and whether PC and PE are dynamically regulated in response to acute exercise in humans. Insulin sensitivity was measured via intravenous glucose tolerance in sedentary obese adults (OB; n = 14), individuals with type 2 diabetes (T2D; n = 15), and endurance-trained athletes (ATH; n = 15). Vastus lateralis muscle biopsies were obtained at rest, immediately after 90 min of cycle ergometry at 50% maximal oxygen consumption (V̇o2 max), and 2-h postexercise (recovery). Skeletal muscle PC and PE were measured via infusion-based mass spectrometry/mass spectrometry analysis. ATH had greater levels of muscle PC and PE compared with OB and T2D (P insulin sensitivity (both P insulin sensitivity among the entire cohort (r = -0.43, P = 0.01). Muscle PC and PE were altered by exercise, particularly after 2 h of recovery, in a highly group-specific manner. However, muscle PC:PE ratio remained unchanged in all groups. In summary, total muscle PC and PE are positively related to insulin sensitivity while PC:PE ratio is inversely related to insulin sensitivity in humans. A single session of exercise significantly alters skeletal muscle PC and PE levels, but not PC:PE ratio. Copyright © 2016 the American Physiological Society.

  7. [Comparison between basal insulin glargine and NPH insulin in patients with diabetes type 1 on conventional intensive insulin therapy].

    Science.gov (United States)

    Pesić, Milica; Zivić, Sasa; Radenković, Sasa; Velojić, Milena; Dimić, Dragan; Antić, Slobodan

    2007-04-01

    Insulin glargine is a long-acting insulin analog that mimics normal basal insulin secretion without pronounced peaks. The aim of this study was to compare insulin glargine with isophane insulin (NPH insulin) for basal insulin supply in patients with type 1 diabetes. A total of 48 type 1 diabetics on long term conventional intensive insulin therapy (IT) were randomized to three different regimens of basal insulin substitution: 1. continuation of NPH insulin once daily at bedtime with more intensive selfmonitoring (n = 15); 2. NPH insulin twice daily (n = 15); 3. insulin glargine once daily (n = 18). Meal time insulin aspart was continued in all groups. Fasting blood glucose (FBG) was lower in the glargine group (7.30+/-0.98 mmol/1) than in the twice daily NPH group (7.47+/-1.06 mmol/1), but without significant difference. FBG was significantly higher in the once daily NPH group (8.44+/-0.85 mmol/l; p < 0.05). HbAlc after 3 months did not change in the once daily NPH group, but decreased in the glargine group (from 7.72+/-0.86% to 6.87+/-0.50%), as well as in the twice daily NPH group (from 7.80+/-0.83% to 7.01+/-0.63%). Total daily insulin doses were similar in all groups but only in the glargine group there was an increase of basal and decrease of meal related insulin doses. The frequency of mild hypoglycemia was significantly lower in the glargine group (6.56+/-2.09) than in both NPH groups (9.0+/-1.65 in twice daily NPH group and 8.13+/-1.30 in other NPH group) (episodes/patients-month, p < 0.05). Basal insulin supplementation in type 1 diabetes mellitus with either twice daily NPH insulin or glargine can result in similar glycemic control when combined with meal time insulin aspart. However, with glargine regimen FBG, HbAlc and frequency of hypoglycemic event are lower. These facts contribute to better patients satisfaction with insulin glargine versus NPH insulin in IIT in type 1 diabetics.

  8. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    International Nuclear Information System (INIS)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-01-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  9. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  10. Maternal insulin resistance, triglycerides and cord blood insulin in relation to post-natal weight trajectories and body composition in the offspring up to 2 years.

    Science.gov (United States)

    Brunner, S; Schmid, D; Hüttinger, K; Much, D; Heimberg, E; Sedlmeier, E-M; Brüderl, M; Kratzsch, J; Bader, B L; Amann-Gassner, U; Hauner, H

    2013-12-01

    The intrauterine metabolic environment might have a programming effect on offspring body composition. We aimed to explore associations of maternal variables of glucose and lipid metabolism during pregnancy, as well as cord blood insulin, with infant growth and body composition up to 2 years post-partum. Data of pregnant women and their infants came from a randomized controlled trial designed to investigate the impact of nutritional fatty acids on adipose tissue development in the offspring. Of the 208 pregnant women enrolled, 118 infants were examined at 2 years. In the present analysis, maternal fasting plasma insulin, homeostasis model assessment of insulin resistance and serum triglycerides measured during pregnancy, as well as insulin in umbilical cord plasma, were related to infant growth and body composition assessed by skinfold thickness measurements and abdominal ultrasonography up to 2 years of age. Maternal homeostasis model assessment of insulin resistance at the 32nd week of gestation was significantly inversely associated with infant lean body mass at birth, whereas the change in serum triglycerides during pregnancy was positively associated with ponderal index at 4 months, but not at later time points. Cord plasma insulin correlated positively with birthweight and neonatal fat mass and was inversely associated with body weight gain up to 2 years after multiple adjustments. Subsequent stratification by gender revealed that this relationship with weight gain was stronger, and significant only in girls. Cord blood insulin is inversely associated with subsequent infant weight gain up to 2 years and this seems to be more pronounced in girls. © 2013 The Authors. Diabetic Medicine © 2013 Diabetes UK.

  11. Transgenic neuronal expression of proopiomelanocortin attenuates hyperphagic response to fasting and reverses metabolic impairments in leptin-deficient obese mice.

    Science.gov (United States)

    Mizuno, Tooru M; Kelley, Kevin A; Pasinetti, Giulio M; Roberts, James L; Mobbs, Charles V

    2003-11-01

    Hypothalamic proopiomelanocortin (POMC) gene expression is reduced in many forms of obesity and diabetes, particularly in those attributable to deficiencies in leptin or its receptor. To assess the functional significance of POMC in mediating metabolic phenotypes associated with leptin deficiency, leptin-deficient mice bearing a transgene expressing the POMC gene under control of the neuron-specific enolase promoter were produced. The POMC transgene attenuated fasting-induced hyperphagia in wild-type mice. Furthermore, the POMC transgene partially reversed obesity, hyperphagia, and hypothermia and effectively normalized hyperglycemia, glucosuria, glucose intolerance, and insulin resistance in leptin-deficient mice. Effects of the POMC transgene on glucose homeostasis were independent of the partial correction of hyperphagia and obesity. Furthermore, the POMC transgene normalized the profile of hepatic and adipose gene expression associated with gluconeogenesis, glucose output, and insulin sensitivity. These results indicate that central POMC is a key modulator of glucose homeostasis and that agonists of POMC products may provide effective therapy in treating impairments in glucose homeostasis when hypothalamic POMC expression is reduced, as occurs with leptin deficiency, hypothalamic damage, and aging.

  12. Partial deletion of eNOS gene causes hyperinsulinemic state, unbalance of cardiac insulin signaling pathways and coronary dysfunction independently of high fat diet.

    Directory of Open Access Journals (Sweden)

    Cecilia Vecoli

    Full Text Available Abnormalities in eNOS gene, possibly interacting with high fat diet (HFD, affect peripheral vascular function and glucose metabolism. The relative role of eNOS gene, HFD and metabolic derangement on coronary function has not been fully elucidated. We test whether eNOS gene deficiency per se or in association with HFD modulates coronary function through mechanisms involving molecular pathways related to insulin signaling. Wild type (WT, eNOS-/- and eNOS+/- mice were studied. WT and eNOS+/- mice were fed with either standard or HF diet for 16 weeks and compared with standard diet fed eNOS-/-. Glucose and insulin tolerance tests were performed during the last week of diet. Coronary resistance (CR was measured at baseline and during infusions of acetylcholine (Ach or sodium-nitroprusside (SNP to evaluate endothelium-dependent or independent vasodilation, in the Langendorff isolated hearts. Cardiac expression of Akt and ERK genes as evaluation of two major insulin-regulated signaling pathways involved in the control of vascular tone were assessed by western blot. HFD-fed mice developed an overt diabetic state. Conversely, chow-fed genetically modified mice (in particular eNOS-/- showed a metabolic pattern characterized by normoglycemia and hyperinsulinemia with a limited degree of insulin resistance. CR was significantly higher in animals with eNOS gene deletions than in WT, independently of diet. Percent decrease in CR, during Ach infusion, was significantly lower in both eNOS-/- and eNOS+/- mice than in WT, independently of diet. SNP reduced CR in all groups except eNOS-/-. The cardiac ERK1-2/Akt ratio, increased in animals with eNOS gene deletions compared with WT, independently of diet. These results suggest that the eNOS genetic deficiency, associated or not with HFD, has a relevant effect on coronary vascular function, possibly mediated by increase in blood insulin levels and unbalance in insulin-dependent signaling in coronary vessels

  13. Novel covalently linked insulin dimer engineered to investigate the function of insulin dimerization.

    Directory of Open Access Journals (Sweden)

    Tine N Vinther

    Full Text Available An ingenious system evolved to facilitate insulin binding to the insulin receptor as a monomer and at the same time ensure sufficient stability of insulin during storage. Insulin dimer is the cornerstone of this system. Insulin dimer is relatively weak, which ensures dissociation into monomers in the circulation, and it is stabilized by hexamer formation in the presence of zinc ions during storage in the pancreatic β-cell. Due to the transient nature of insulin dimer, direct investigation of this important form is inherently difficult. To address the relationship between insulin oligomerization and insulin stability and function, we engineered a covalently linked insulin dimer in which two monomers were linked by a disulfide bond. The structure of this covalent dimer was identical to the self-association dimer of human insulin. Importantly, this covalent dimer was capable of further oligomerization to form the structural equivalent of the classical hexamer. The covalently linked dimer neither bound to the insulin receptor, nor induced a metabolic response in vitro. However, it was extremely thermodynamically stable and did not form amyloid fibrils when subjected to mechanical stress, underlining the importance of oligomerization for insulin stability.

  14. Insulin Sensitivity Determines Effects of Insulin and Meal Ingestion on Systemic Vascular Resistance in Healthy Subjects.

    Science.gov (United States)

    Woerdeman, Jorn; Meijer, Rick I; Eringa, Etto C; Hoekstra, Trynke; Smulders, Yvo M; Serné, Erik H

    2016-01-01

    In addition to insulin's metabolic actions, insulin can dilate arterioles which increase blood flow to metabolically active tissues. This effect is blunted in insulin-resistant subjects. Insulin's effect on SVR, determined by resistance arterioles, has, however, rarely been examined directly. We determined the effects of both hyperinsulinemia and a mixed meal on SVR and its relationship with insulin sensitivity. Thirty-seven lean and obese women underwent a hyperinsulinemic-euglycemic clamp, and 24 obese volunteers underwent a mixed-meal test. SVR was assessed using CPP before and during hyperinsulinemia as well as before and 60 and 120 minutes after a meal. SVR decreased significantly during hyperinsulinemia (-13%; p Insulin decreased SVR more strongly in insulin-sensitive individuals (standardized β: -0.44; p = 0.01). In addition, SVR at 60 minutes after meal ingestion was inversely related to the Matsuda index (β: -0.39; p = 0.04) and the change in postprandial SVR was directly related to postprandial glycemia (β: 0.53; p insulin resistance. This suggests that resistance to insulin-induced vasodilatation contributes to regulation of vascular resistance. © 2015 John Wiley & Sons Ltd.

  15. Evidence for altered transport of insulin across the blood-brain barrier in insulin-resistant humans.

    Science.gov (United States)

    Heni, Martin; Schöpfer, Patricia; Peter, Andreas; Sartorius, Tina; Fritsche, Andreas; Synofzik, Matthis; Häring, Hans-Ulrich; Maetzler, Walter; Hennige, Anita M

    2014-08-01

    Eating behavior, body weight regulation, peripheral glucose metabolism, and cognitive function depend on adequate insulin action in the brain, and recent studies in humans suggested that impaired insulin action in the brain emerges upon fat intake, obesity, and genetic variants. As insulin enters into the brain in a receptor-mediated fashion, we hypothesized that whole-body insulin sensitivity might affect the transport of insulin into the brain and contribute to the aversive effect of insulin resistance in the central nervous system. In this study, we aimed to determine the ratio of insulin in the cerebrospinal fluid and serum to whole-body insulin sensitivity. Healthy human subjects participated in an oral glucose tolerance test to determine whole-body insulin sensitivity and underwent lumbar puncture. Blood and CSF concentrations of insulin were significantly correlated. The CSF/serum ratio for insulin was significantly associated with whole body insulin sensitivity with reduced insulin transported into the CSF in insulin-resistant subjects. Together, our data suggest that transport of insulin into the CSF relates to peripheral insulin sensitivity and impairs insulin action in the brain. This underlines the need for sensitizing measures in insulin-resistant subjects.

  16. The Hayflick Limit and Age-Related Adaptive Immune Deficiency.

    Science.gov (United States)

    Gill, Zoe; Nieuwoudt, Martin; Ndifon, Wilfred

    2018-01-01

    The adaptive immune system (AIS) acquires significant deficiency during chronological ageing, making older individuals more susceptible to infections and less responsive to vaccines compared to younger individuals. At the cellular level, one of the most striking features of this ageing-related immune deficiency is the dramatic loss of T-cell diversity that occurs in elderly humans. After the age of 70 years, there is a sharp decline in the diversity of naïve T cells, including a >10-fold decrease in the CD4+ compartment and a >100-fold decrease in the CD8+ compartment. Such changes are detrimental because the AIS relies on a diverse naïve T-cell pool to respond to novel pathogens. Recent work suggests that this collapse of naïve T-cell diversity results from T cells reaching the Hayflick limit and being eliminated through both antigen-dependent and -independent pathways. The progressive attrition of telomeres is the molecular mechanism that underlies this Hayflick limit. Therefore, we propose that by measuring the telomere lengths of T cells with high resolution, it is possible to develop a unique biomarker of immune deficiency, potentially much better correlated with individual susceptibility to diseases compared to chronological age alone. © 2017 S. Karger AG, Basel.

  17. Gene expression in skeletal muscle biopsies from people with type 2 diabetes and relatives: differential regulation of insulin signaling pathways.

    Directory of Open Access Journals (Sweden)

    Jane Palsgaard

    Full Text Available BACKGROUND: Gene expression alterations have previously been associated with type 2 diabetes, however whether these changes are primary causes or secondary effects of type 2 diabetes is not known. As healthy first degree relatives of people with type 2 diabetes have an increased risk of developing type 2 diabetes, they provide a good model in the search for primary causes of the disease. METHODS/PRINCIPAL FINDINGS: We determined gene expression profiles in skeletal muscle biopsies from Caucasian males with type 2 diabetes, healthy first degree relatives, and healthy controls. Gene expression was measured using Affymetrix Human Genome U133 Plus 2.0 Arrays covering the entire human genome. These arrays have not previously been used for this type of study. We show for the first time that genes involved in insulin signaling are significantly upregulated in first degree relatives and significantly downregulated in people with type 2 diabetes. On the individual gene level, 11 genes showed altered expression levels in first degree relatives compared to controls, among others KIF1B and GDF8 (myostatin. LDHB was found to have a decreased expression in both groups compared to controls. CONCLUSIONS/SIGNIFICANCE: We hypothesize that increased expression of insulin signaling molecules in first degree relatives of people with type 2 diabetes, work in concert with increased levels of insulin as a compensatory mechanism, counter-acting otherwise reduced insulin signaling activity, protecting these individuals from severe insulin resistance. This compensation is lost in people with type 2 diabetes where expression of insulin signaling molecules is reduced.

  18. Acute thiamine deficiency and refeeding syndrome: Similar findings but different pathogenesis.

    Science.gov (United States)

    Maiorana, Arianna; Vergine, Gianluca; Coletti, Valentina; Luciani, Matteo; Rizzo, Cristiano; Emma, Francesco; Dionisi-Vici, Carlo

    2014-01-01

    Refeeding syndrome can occur in several contexts of relative malnutrition in which an overaggressive nutritional support is started. The consequences are life threatening with multiorgan impairment, and severe electrolyte imbalances. During refeeding, glucose-involved insulin secretion causes abrupt reverse of lipolysis and a switch from catabolism to anabolism. This creates a sudden cellular demand for electrolytes (phosphate, potassium, and magnesium) necessary for synthesis of adenosine triphosphate, glucose transport, and other synthesis reactions, resulting in decreased serum levels. Laboratory findings and multiorgan impairment similar to refeeding syndrome also are observed in acute thiamine deficiency. The aim of this study was to determine whether thiamine deficiency was responsible for the electrolyte imbalance caused by tubular electrolyte losses. We describe two patients with leukemia who developed acute thiamine deficiency with an electrolyte pattern suggestive of refeeding syndrome, severe lactic acidosis, and evidence of proximal renal tubular dysfunction. A single thiamine administration led to rapid resolution of the tubular dysfunction and normalization of acidosis and electrolyte imbalance. This demonstrated that thiamine deficiency was responsible for the electrolyte imbalance, caused by tubular electrolyte losses. Our study indicates that, despite sharing many laboratory similarities, refeeding syndrome and acute thiamine deficiency should be viewed as separate entities in which the electrolyte abnormalities reported in cases of refeeding syndrome with thiamine deficiency and refractory lactic acidosis may be due to renal tubular losses instead of a shifting from extracellular to intracellular compartments. In oncologic and malnourished patients, individuals at particular risk for developing refeeding syndrome, in the presence of these biochemical abnormalities, acute thiamine deficiency should be suspected and treated because it promptly

  19. Dipeptidyl peptidase-4 impairs insulin signaling and promotes lipid accumulation in hepatocytes

    International Nuclear Information System (INIS)

    Rufinatscha, Kerstin; Radlinger, Bernhard; Dobner, Jochen; Folie, Sabrina; Bon, Claudia; Profanter, Elisabeth; Ress, Claudia; Salzmann, Karin; Staudacher, Gabriele; Tilg, Herbert; Kaser, Susanne

    2017-01-01

    Dipeptidyl-peptidase 4 [DPP-4) has evolved into an important target in diabetes therapy due to its role in incretin hormone metabolism. In contrast to its systemic effects, cellular functions of membranous DPP-4 are less clear. Here we studied the role of DPP-4 in hepatic energy metabolism. In order to distinguish systemic from cellular effects we established a cell culture model of DPP-4 knockdown in human hepatoma cell line HepG2. DPP-4 suppression was associated with increased basal glycogen content due to enhanced insulin signaling as shown by increased phosphorylation of insulin-receptor substrate 1 (IRS-1), protein kinase B/Akt and mitogen-activated protein kinases (MAPK)/ERK, respectively. Additionally, glucose-6-phosphatase cDNA expression was significantly decreased in DPP-4 deficiency. Reduced triglyceride content in DPP-4 knockdown cells was paralleled by enhanced expressions of peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase −1 (CPT-1) while sterol regulatory element-binding protein 1c (SREBP-1c) expression was significantly decreased. Our data suggest that hepatic DPP-4 induces a selective pathway of insulin resistance with reduced glycogen storage, enhanced glucose output and increased lipid accumulation in the liver. Hepatic DPP-4 might be a novel target in fatty liver disease in patients with glucose intolerance. - Highlights: • DPP-IV knockdown results in increased insulin signaling in hepatocytes. • Increased fatty acid oxidation and decreased lipogenesis result in reduced hepatic triglyceride content in DPP-IV deficiency. • Hepatic DPP-IV induces a selective pathway of insulin resistance with increased triglyceride accumulation in the liver.

  20. The complement anaphylatoxin C5a receptor contributes to obese adipose tissue inflammation and insulin resistance.

    Science.gov (United States)

    Phieler, Julia; Chung, Kyoung-Jin; Chatzigeorgiou, Antonios; Klotzsche-von Ameln, Anne; Garcia-Martin, Ruben; Sprott, David; Moisidou, Maria; Tzanavari, Theodora; Ludwig, Barbara; Baraban, Elena; Ehrhart-Bornstein, Monika; Bornstein, Stefan R; Mziaut, Hassan; Solimena, Michele; Karalis, Katia P; Economopoulou, Matina; Lambris, John D; Chavakis, Triantafyllos

    2013-10-15

    Obese adipose tissue (AT) inflammation contributes critically to development of insulin resistance. The complement anaphylatoxin C5a receptor (C5aR) has been implicated in inflammatory processes and as regulator of macrophage activation and polarization. However, the role of C5aR in obesity and AT inflammation has not been addressed. We engaged the model of diet-induced obesity and found that expression of C5aR was significantly upregulated in the obese AT, compared with lean AT. In addition, C5a was present in obese AT in the proximity of macrophage-rich crownlike structures. C5aR-sufficient and -deficient mice were fed a high-fat diet (HFD) or a normal diet (ND). C5aR deficiency was associated with increased AT weight upon ND feeding in males, but not in females, and with increased adipocyte size upon ND and HFD conditions in males. However, obese C5aR(-/-) mice displayed improved systemic and AT insulin sensitivity. Improved AT insulin sensitivity in C5aR(-/-) mice was associated with reduced accumulation of total and proinflammatory M1 macrophages in the obese AT, increased expression of IL-10, and decreased AT fibrosis. In contrast, no difference in β cell mass was observed owing to C5aR deficiency under an HFD. These results suggest that C5aR contributes to macrophage accumulation and M1 polarization in the obese AT and thereby to AT dysfunction and development of AT insulin resistance.

  1. Flexibility in insulin prescription

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2016-01-01

    Full Text Available This communication explores the concept of flexibility, a propos insulin preparations and insulin regimes used in the management of type 2 diabetes. The flexibility of an insulin regime or preparation is defined as their ability to be injected at variable times, with variable injection-meal time gaps, in a dose frequency and quantum determined by shared decision making, with a minimal requirement of glucose monitoring and health professional consultation, with no compromise on safety, efficiency and tolerability. The relative flexibility of various basal, prandial and dual action insulins, as well as intensive regimes, is compared. The biopsychosocial model of health is used to assess the utility of different insulins while encouraging a philosophy of flexible insulin usage.

  2. Psychological insulin resistance in type 2 diabetes patients regarding oral antidiabetes treatment, subcutaneous insulin injections, or inhaled insulin.

    Science.gov (United States)

    Petrak, Frank; Herpertz, Stephan; Stridde, Elmar; Pfützner, Andreas

    2013-08-01

    "Psychological insulin resistance" (PIR) is an obstacle to insulin treatment in type 2 diabetes, and patients' expectations regarding alternative ways of insulin delivery are poorly understood. PIR and beliefs regarding treatment alternatives were analyzed in patients with type 2 diabetes (n=532; mean glycated hemoglobin, 68±12 mmol/mol [8.34±1.5%]) comparing oral antidiabetes treatment, subcutaneous insulin injections, or inhaled insulin. Questionnaires were used to assess barriers to insulin treatment (BIT), generic and diabetes-specific quality of life (Short Form 36 and Problem Areas in Diabetes, German version), diabetes knowledge, locus of control (Questionnaire for the Assessment of Diabetes-Specific Locus of Control, in German), coping styles (Freiburg Questionnaire of Illness Coping, 15-Items Short Form), self-esteem (Rosenberg Self-Esteem Scale, German version), and mental disorders (Patient Health Questionnaire, German version). Patients discussed treatment optimization options with a physician and were asked to make a choice about future diabetes therapy options in a two-step treatment choice scenario. Step 1 included oral antidiabetes drugs or subcutaneous insulin injection (SCI). Step 2 included an additional treatment alternative of inhaled insulin (INH). Subgroups were analyzed according to their treatment choice. Most patients perceived their own diabetes-related behavior as active, problem-focused, internally controlled, and oriented toward their doctors' recommendations, although their diabetes knowledge was limited. In Step 1, rejection of the recommended insulin was 82%, and in Step 2, it was 57%. Fear of hypoglycemia was the most important barrier to insulin treatment. Patients choosing INH (versus SCI) scored higher regarding fear of injection, expected hardship from insulin therapy, and BIT-Sumscore. The acceptance of insulin is very low in type 2 diabetes patients. The option to inhale insulin increases the acceptability for some but

  3. Mitochondrial Pyruvate Carrier 2 Hypomorphism in Mice Leads to Defects in Glucose-Stimulated Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Patrick A. Vigueira

    2014-06-01

    Full Text Available Carrier-facilitated pyruvate transport across the inner mitochondrial membrane plays an essential role in anabolic and catabolic intermediary metabolism. Mitochondrial pyruvate carrier 2 (Mpc2 is believed to be a component of the complex that facilitates mitochondrial pyruvate import. Complete MPC2 deficiency resulted in embryonic lethality in mice. However, a second mouse line expressing an N-terminal truncated MPC2 protein (Mpc2Δ16 was viable but exhibited a reduced capacity for mitochondrial pyruvate oxidation. Metabolic studies demonstrated exaggerated blood lactate concentrations after pyruvate, glucose, or insulin challenge in Mpc2Δ16 mice. Additionally, compared with wild-type controls, Mpc2Δ16 mice exhibited normal insulin sensitivity but elevated blood glucose after bolus pyruvate or glucose injection. This was attributable to reduced glucose-stimulated insulin secretion and was corrected by sulfonylurea KATP channel inhibitor administration. Collectively, these data are consistent with a role for MPC2 in mitochondrial pyruvate import and suggest that Mpc2 deficiency results in defective pancreatic β cell glucose sensing.

  4. Comparison between basal insulin glargine and NPH insulin in patients with diabetes type 1 on conventional intensive insulin therapy

    Directory of Open Access Journals (Sweden)

    Pešić Milica

    2007-01-01

    Full Text Available Background/Aim. Insulin glargine is a long-acting insulin analog that mimics normal basal insulin secretion without pronounced peaks. The aim of this study was to compare insulin glargine with isophane insulin (NPH insulin for basal insulin supply in patients with type 1 diabetes. Methods. A total of 48 type 1 diabetics on long term conventional intensive insulin therapy (IIT were randomized to three different regimens of basal insulin substitution: 1. continuation of NPH insulin once daily at bedtime with more intensive selfmonitoring (n = 15; 2. NPH insulin twice daily (n = 15; 3. insulin glargine once daily (n = 18. Meal time insulin aspart was continued in all groups. Results. Fasting blood glucose (FBG was lower in the glargine group (7.30±0.98 mmol/l than in the twice daily NPH group (7.47±1.06 mmol/l, but without significant difference. FBG was significantly higher in the once daily NPH group (8.44±0.85 mmol/l; p < 0.05. HbA1c after 3 months did not change in the once daily NPH group, but decreased in the glargine group (from 7.72±0.86% to 6.87±0.50%, as well as in the twice daily NPH group (from 7.80±0.83% to 7.01±0.63%. Total daily insulin doses were similar in all groups but only in the glargine group there was an increase of basal and decrease of meal related insulin doses. The frequency of mild hypoglycemia was significantly lower in the glargine group (6.56±2.09 than in both NPH groups (9.0±1.65 in twice daily NPH group and 8.13±1.30 in other NPH group (episodes/patients-month, p < 0.05. Conclusion. Basal insulin supplementation in type 1 diabetes mellitus with either twice daily NPH insulin or glargine can result in similar glycemic control when combined with meal time insulin aspart. However, with glargine regimen FBG, HbA1c and frequency of hypoglycemic event are lower. These facts contribute to better patients satisfaction with insulin glargine versus NPH insulin in IIT in type 1 diabetics.

  5. Serum Insulin, Glucose, Indices of Insulin Resistance, and Risk of Lung Cancer.

    Science.gov (United States)

    Argirion, Ilona; Weinstein, Stephanie J; Männistö, Satu; Albanes, Demetrius; Mondul, Alison M

    2017-10-01

    Background: Although insulin may increase the risk of some cancers, few studies have examined fasting serum insulin and lung cancer risk. Methods: We examined serum insulin, glucose, and indices of insulin resistance [insulin:glucose molar ratio and homeostasis model assessment of insulin resistance (HOMA-IR)] and lung cancer risk using a case-cohort study within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study of Finnish men. A total of 196 cases and 395 subcohort members were included. Insulin and glucose were measured in fasting serum collected 5 to 12 years before diagnosis. Cox proportional hazards models were utilized to estimate the relative risk of lung cancer. Results: The average time between blood collection and lung cancer was 9.6 years. Fasting serum insulin levels were 8.7% higher in subcohort members than cases. After multivariable adjustment, men in the fourth quartile of insulin had a significantly higher risk of lung cancer than those in the first quartile [HR = 2.10; 95% confidence interval (CI), 1.12-3.94]. A similar relationship was seen with HOMA-IR (HR = 1.83; 95% CI, 0.99-3.38). Risk was not strongly associated with glucose or the insulin:glucose molar ratio ( P trend = 0.55 and P trend = 0.27, respectively). Conclusions: Higher fasting serum insulin concentrations, as well as the presence of insulin resistance, appear to be associated with an elevated risk of lung cancer development. Impact: Although insulin is hypothesized to increase risk of some cancers, insulin and lung cancer remain understudied. Higher insulin levels and insulin resistance were associated with increased lung cancer risk. Although smoking cessation is the best method of lung cancer prevention, other lifestyle changes that affect insulin concentrations and sensitivity may reduce lung cancer risk. Cancer Epidemiol Biomarkers Prev; 26(10); 1519-24. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. Growth hormone treatment during pregnancy in a growth hormone-deficient woman

    DEFF Research Database (Denmark)

    Müller, J; Starup, J; Christiansen, J S

    1995-01-01

    Information on the course and outcome of pregnancies in growth hormone (GH)-deficient patients is sparse, and GH treatment during pregnancy in such women has not been described previously. We have studied fetal growth and serum levels of GH, insulin-like growth factor I (IGF-I) and IGF binding...

  7. Loss-of-function myostatin mutation increases insulin sensitivity and browning of white fat in Meishan pigs.

    Science.gov (United States)

    Cai, Chunbo; Qian, Lili; Jiang, Shengwang; Sun, Youde; Wang, Qingqing; Ma, Dezun; Xiao, Gaojun; Li, Biao; Xie, Shanshan; Gao, Ting; Chen, Yaoxing; Liu, Jie; An, Xiaorong; Cui, Wentao; Li, Kui

    2017-05-23

    Myostatin-deficient mice showed a remarkable hypertrophy of skeletal muscle, with a decreased fat mass and enhanced insulin sensitivity. Currently, it is unclear if the inhibition of myostatin could be used as an approach to treat human obesity and insulin resistance. In this study, we investigated if the inhibition of porcine myostatin has any effect on fat deposition and insulin sensitivity using genetically engineered Meishan pigs containing a myostatin loss-of-function mutation (Mstn -/- ). Our results indicated that, when compared with wild-type pigs, the amount of subcutaneous fat and leaf fat of Mstn -/- pigs were significantly decreased mainly due to the browning of subcutaneous adipose tissue. Additionally, the serum insulin level decreased and the insulin sensitivity increased significantly in Mstn -/- pigs. Moreover, we found a significant increase in levels of insulin receptor and insulin receptor substrate proteins in skeletal muscle of Mstn -/- pigs, which then activating the insulin signaling pathway. Irisin-mediated regulation is not the only pathway for the activation of insulin signal in Mstn -/- skeletal muscle. This study provides valuable insight for the treatment of human obesity and diabetes mellitus.

  8. Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice.

    Directory of Open Access Journals (Sweden)

    Andréa M Caricilli

    2011-12-01

    Full Text Available Environmental factors and host genetics interact to control the gut microbiota, which may have a role in the development of obesity and insulin resistance. TLR2-deficient mice, under germ-free conditions, are protected from diet-induced insulin resistance. It is possible that the presence of gut microbiota could reverse the phenotype of an animal, inducing insulin resistance in an animal genetically determined to have increased insulin sensitivity, such as the TLR2 KO mice. In the present study, we investigated the influence of gut microbiota on metabolic parameters, glucose tolerance, insulin sensitivity, and signaling of TLR2-deficient mice. We investigated the gut microbiota (by metagenomics, the metabolic characteristics, and insulin signaling in TLR2 knockout (KO mice in a non-germ free facility. Results showed that the loss of TLR2 in conventionalized mice results in a phenotype reminiscent of metabolic syndrome, characterized by differences in the gut microbiota, with a 3-fold increase in Firmicutes and a slight increase in Bacteroidetes compared with controls. These changes in gut microbiota were accompanied by an increase in LPS absorption, subclinical inflammation, insulin resistance, glucose intolerance, and later, obesity. In addition, this sequence of events was reproduced in WT mice by microbiota transplantation and was also reversed by antibiotics. At the molecular level the mechanism was unique, with activation of TLR4 associated with ER stress and JNK activation, but no activation of the IKKβ-IκB-NFκB pathway. Our data also showed that in TLR2 KO mice there was a reduction in regulatory T cell in visceral fat, suggesting that this modulation may also contribute to the insulin resistance of these animals. Our results emphasize the role of microbiota in the complex network of molecular and cellular interactions that link genotype to phenotype and have potential implications for common human disorders involving obesity, diabetes

  9. Insulin resistance in type 1 (insulin-dependent) diabetes: dissimilarities for glucose and intermediary metabolites

    NARCIS (Netherlands)

    Nijs, H. G.; Radder, J. K.; Poorthuis, B. J.; Krans, H. M.

    1990-01-01

    To study insulin action on intermediary metabolism in relation to glucose disposal in Type 1 (insulin-dependent) diabetes, 29 patients and 15 control subjects underwent sequential euglycemic clamps (insulin infusion rates 0.5, 1.0, 2.0 and 5.0 mU.kg-1.min-1 in 2 hour periods). Dose-response curves

  10. Treatment of Type 1 and Type 2 Diabetes Mellitus with Insulin Detemir, a Long-Acting Insulin Analog

    Directory of Open Access Journals (Sweden)

    Jason R. Young

    2010-01-01

    Full Text Available Insulin detemir is a long-acting basal insulin approved for use in patients with type 1 (T1DM or type 2 diabetes (T2DM. Insulin detemir has demonstrated equivalent glycemic control and hypoglycemic risk when compared to insulin glargine, and insulin detemir has generally but not consistently demonstrated less weight gain than insulin glargine in T2DM. The benefits of basal insulin analogs relative to NPH insulin are well recognized, including less FBG variability, lower risk of hypoglycemia, and less weight gain specifically with insulin detemir. However, NPH insulin continues to be widely prescribed, which may be due in part to economic considerations. While NPH insulin generally costs less per prescription, insulin detemir has been shown to be cost effective compared to NPH insulin as well as insulin glargine. Therefore, insulin detemir is an effective option from both clinical and economic perspectives for patients with T1DM or T2DM who require basal insulin to achieve glycemic control.

  11. Glucose intolerance, insulin resistance and cardiovascular risk factors in first degree relatives of women with polycystic ovary syndrome.

    Science.gov (United States)

    Yilmaz, Murat; Bukan, Neslihan; Ersoy, Reyhan; Karakoç, Ayhan; Yetkin, Ilhan; Ayvaz, Göksun; Cakir, Nuri; Arslan, Metin

    2005-09-01

    The aim of the present study was to evaluate insulin resistance (IR), glucose tolerance status and cardiovascular risk factors in first degree relatives of patients with polycystic ovary syndrome (PCOS). A total of 120 family members [Mothers(PCOS) (n = 40), Fathers(PCOS) (n = 38), Sisters(PCOS) (n = 25) and Brothers(PCOS) (n = 17)] of 55 patients with PCOS and 75 unrelated healthy control subjects without a family history of diabetes or PCOS (four age- and weight-matched subgroups, i.e. Control(Mothers), Control(Fathers), Control(Sisters) and Control(Brothers)) were studied. IR was assessed by homeostatic model assessment (HOMA IR), log HOMA, insulin sensivity index (ISI), the quantitative insulin sensitivity check index (QUICKI) and area under the curve for insulin during the oral glucose tolerance test (AUCI, AUCG) in with normal glucose tolerance (NGT) subjects and controls. Serum adiponectin, resistin, homocysteine and lipid levels were measured. The prevalence of any degree of glucose intolerance was 40% in Mothers(PCOS) and 52% in Fathers(PCOS). In total, six (15%) glucose tolerance disorders were identified in the Control(Mothers) and Control(Fathers) in first degree relatives of control subjects. The first degree relatives of PCOS patients had significantly higher serum fasting insulin, HOMA-IR, Log HOMA and AUCI levels in all subgroups than the control subjects. The control subjects had significantly elevated QUCKI, ISI levels and serum adiponectin levels compared to the first degree relatives of PCOS subjects in all subgroups. The serum Hcy and resistin levels increased significantly in both Fathers(PCOS) and Mothers(PCOS) groups but not Brothers(PCOS) and Sister(PCOS). The results of the present study support the finding that the first degree relatives of PCOS patients carry an increased risk of cardiovascular disease, as do PCOS patients.

  12. Adipokines and their relation to maternal energy substrate production, insulin resistance and fetal size.

    Science.gov (United States)

    Ahlsson, Fredrik; Diderholm, Barbro; Ewald, Uwe; Jonsson, Björn; Forslund, Anders; Stridsberg, Mats; Gustafsson, Jan

    2013-05-01

    The role of adipokines in the regulation of energy substrate production in non-diabetic pregnant women has not been elucidated. We hypothesize that serum concentrations of adiponectin are related to fetal growth via maternal fat mass, insulin resistance and glucose production, and further, that serum levels of leptin are associated with lipolysis and that this also influences fetal growth. Hence, we investigated the relationship between adipokines, energy substrate production, insulin resistance, body composition and fetal weight in non-diabetic pregnant women in late gestation. Twenty pregnant women with normal glucose tolerance were investigated at 36 weeks of gestation at Uppsala University Hospital. Levels of adipokines were related to rates of glucose production and lipolysis, maternal body composition, insulin resistance, resting energy expenditure and estimated fetal weights. Rates of glucose production and lipolysis were estimated by stable isotope dilution technique. Median (range) rate of glucose production was 805 (653-1337) μmol/min and that of glycerol production, reflecting lipolysis, was 214 (110-576) μmol/min. HOMA insulin resistance averaged 1.5 ± 0.75 and estimated fetal weights ranged between 2670 and 4175 g (-0.2 to 2.7 SDS). Mean concentration of adiponectin was 7.2 ± 2.5mg/L and median level of leptin was 47.1 (9.9-58.0) μg/L. Adiponectin concentrations (7.2 ± 2.5mg/L) correlated inversely with maternal fat mass, insulin resistance, glucose production and fetal weight, r=-0.50, pinsulin resistance, r=0.76, pinsulin resistance as well as endogenous glucose production rates indicate that low levels of adiponectin in obese pregnant women may represent one mechanism behind increased fetal size. Maternal levels of leptin are linked to maternal fat mass and its metabolic consequences, but the data indicate that leptin lacks a regulatory role with regard to maternal lipolysis in late pregnancy. Copyright © 2012 Elsevier Ireland Ltd. All rights

  13. Prediction of the outcome of growth hormone provocative testing in short children by measurement of serum levels of insulin-like growth factor I and insulin-like growth factor binding protein 3

    DEFF Research Database (Denmark)

    Juul, A; Skakkebaek, N E

    1997-01-01

    Serum levels of insulin-like growth factor I (IGF-I) and insulin-like growth factor binding protein 3 (IGFBP-3) reflect the secretion of endogenous growth hormone (GH) in healthy children and exhibit little diurnal variation, which makes them potential candidates for screening of GH deficiency (GHD......). We evaluated serum IGF-I and IGFBP-3 levels in relation to the outcome of GH provocative testing in 203 children and adolescents (111 boys and 92 girls) in whom GHD was suspected. A total of 1030 children served as control subjects. In children less than 10 years of age, IGF-I levels were below...... with a normal GH response (specificity 97.9%). Consequently the predictive value of a positive test result in prepubertal children was 88.8% for IGF-I and 90% for IGFBP-3. In children and adolescents between 10 and 20 years of age, IGF-I levels were below the cutoff limit in 34 of 46 children with GHD...

  14. Insulin resistance, insulin response, and obesity as indicators of metabolic risk

    DEFF Research Database (Denmark)

    Ferrannini, Ele; Balkau, Beverley; Coppack, Simon W

    2007-01-01

    CONTEXT: Insulin resistance (IR) and obesity, especially abdominal obesity, are regarded as central pathophysiological features of a cluster of cardiovascular risk factors (CVRFs), but their relative roles remain undefined. Moreover, the differential impact of IR viz. insulin response has not been...... evaluated. OBJECTIVE: The objective of this study was to dissect out the impact of obesity, abdominal obesity, and IR/insulin response on CVRF. DESIGN: This was a cross-sectional study. SETTING: The study was conducted at 21 research centers in Europe. SUBJECTS: The study included a cohort of 1308......-cholesterol, and lower high-density lipoprotein-cholesterol, and insulin response to higher heart rate, blood pressure and fasting glucose, and the same dyslipidemic profile as IR (P

  15. Paternal Insulin-like Growth Factor 2 (Igf2) Regulates Stem Cell Activity During Adulthood.

    Science.gov (United States)

    Barroca, Vilma; Lewandowski, Daniel; Jaracz-Ros, Agnieszka; Hardouin, Sylvie-Nathalie

    2017-02-01

    Insulin-like Growth Factor 2 (IGF2) belongs to the IGF/Insulin pathway, a highly conserved evolutionarily network that regulates growth, aging and lifespan. Igf2 is highly expressed in the embryo and in cancer cells. During mouse development, Igf2 is expressed in all sites where hematopoietic stem cells (HSC) successively expand, then its expression drops at weaning and becomes undetectable when adult HSC have reached their niches in bones and start to self-renew. In the present study, we aim to discover the role of IGF2 during adulthood. We show that Igf2 is specifically expressed in adult HSC and we analyze HSC from adult mice deficient in Igf2 transcripts. We demonstrate that Igf2 deficiency avoids the age-related attrition of the HSC pool and that Igf2 is necessary for tissue homeostasis and regeneration. Our study reveals that the expression level of Igf2 is critical to maintain the balance between stem cell self-renewal and differentiation, presumably by regulating the interaction between HSC and their niche. Our data have major clinical interest for transplantation: understanding the changes in adult stem cells and their environments will improve the efficacy of regenerative medicine and impact health- and life-span. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Genetic variants and traits related to insulin-like growth factor-I and insulin resistance and their interaction with lifestyles on postmenopausal colorectal cancer risk.

    Directory of Open Access Journals (Sweden)

    Su Yon Jung

    Full Text Available Genetic variants and traits in metabolic signaling pathways may interact with lifestyle factors such as obesity, physical activity, and exogenous estrogen (E, influencing postmenopausal colorectal cancer (CRC risk, but these interrelated pathways are not fully understood. In this case-cohort study, we examined 33 single-nucleotide polymorphisms (SNPs in genes related to insulin-like growth factor-I (IGF-I/ insulin resistance (IR traits and signaling pathways, using data from 704 postmenopausal women in Women's Health Initiative Observation ancillary studies. Stratifying by the lifestyle modifiers, we assessed the effects of IGF-I/IR traits (fasting total and free IGF-I, IGF binding protein-3, insulin, glucose, and homeostatic model assessment-insulin resistance on CRC risk as a mediator or influencing factor. Six SNPs in the INS, IGF-I, and IGFBP3 genes were associated with CRC risk, and those associations differed between non-obese/active and obese/inactive women and between E nonusers and users. Roughly 30% of the cancer risk due to the SNP was mediated by IGF-I/IR traits. Likewise, carriers of 11 SNPs in the IRS1 and AKT1/2 genes (signaling pathway-related genetic variants had different associations with CRC risk between strata, and the proportion of the SNP-cancer association explained by traits varied from 30% to 50%. Our findings suggest that IGF-I/IR genetic variants interact with obesity, physical activity, and exogenous E, altering postmenopausal CRC risk, through IGF-I/IR traits, but also through different pathways. Unraveling gene-phenotype-lifestyle interactions will provide data on potential genetic targets in clinical trials for cancer prevention and intervention strategies to reduce CRC risk.

  17. Different Criteria for the Definition of Insulin Resistance and Its Relation with Dyslipidemia in Overweight and Obese Children and Adolescents

    Science.gov (United States)

    de Mello, Elza Daniel

    2018-01-01

    Purpose to compare cut off points corrected for age and gender (COOP) with fixed cut off points (FCOP) for fasting plasma insulin and Homeostatic model assessment-insulin resistance (HOMA-IR) for the diagnosis of IR in obese children and adolescents and their correlation with dyslipidemia. Methods A multicenter, cross-sectional study including 383 subjects aged 7 to 18 years, evaluating fasting blood glucose, plasma insulin, and lipid profile. Subjects with high insulin levels and/or HOMA-IR were considered as having IR, based on two defining criteria: FCOP or CCOP. The frequency of metabolic abnormalities, the presence of IR, and the presence of dyslipidemia in relation to FCOP or CCOP were analyzed using Fisher and Mann-Whitney exact tests. Results Using HOMA-IR, IR was diagnosed in 155 (40.5%) and 215 (56.1%) patients and, using fasting insulin, 150 (39.2%) and 221 (57.7%), respectively applying FCOP and CCOP. The use of CCOP resulted in lower insulin and HOMA-IR values than FCOP. Dyslipidemia was not related to FCOP or CCOP. Blood glucose remained within normal limits in all patients with IR. There was no difference in the frequency of IR identified by plasma insulin or HOMA-IR, both for FCOP and CCOP. Conclusion The CCOP of plasma insulin or of HOMA-IR detected more cases of IR as compared to the FCOP, but were not associated with the frequency of dyslipidemia. As blood glucose has almost no fluctuation in this age group, even in the presence of IR, fasting plasma insulin detected the same cases of IR that would be detected by HOMA-IR. PMID:29383306

  18. Status of serum adiponectin related to insulin resistance in prediabetics

    International Nuclear Information System (INIS)

    Ahsan, S.; Ahmed, S.D.H.; Nauman, K

    2014-01-01

    Obejctive: To find the status of serum adiponectin in individuals progressing towards Type 2 diabetes mellitus and compare it with normal glucose tolerant subjects to determine the stage where alteration of adiponectin occurred. Methods: The cross-sectional study was carried out at the Department of Biochemistry, Jinnah Postgraduate Medical Centre, Karachi, during January to August 2008. Subjects were invited through various diabetes screening camps. A total of 608 subjects >30 years of age without prior history of diabetes were screened through fasting plasma glucose and 2-hour oral glucose tolerance test. Forty randomly selected pre-diabetic subjects and 40 age and gender-matched subjects were included in the study. Anthropometric measurements were done. Serum insulin and adiponectin were estimated by enzyme-linked immunosorbent assay. Homeostasis model assessment of insulin resistance (HOMA-IR) was used to calculate insulin resistance mathematically. Result: Mean fasting and two-hour plasma glucose, body mass index, waist, hip circumference and blood pressure were significantly raised in pre-diabetics compared to those with normal glucose tolerance. Adiponectin was significantly decreased, while insulin and HOMA-IR were raised significantly in the pre-diabetics. Adiponectin showed significant negative correlation with body mass index (r=-0.31, p=0.005), fasting plasma glucose (r=-0.24, p= 0.032), 2-hour plasma glucose (r=-0.42, p<0.0001)), insulin (r-0.43, p<0.0001) and HOMA-IR (r= -0.43, p<0.0001) and remained significant after adjustment of body mass index, gender and insulin level in pre-diabetics. Conclusion: Adiponectin estimation may help in earlier identification of impending diabetes. However, casual link between adiponectin and pre-diabetes remained unexplored due to the study design and small sample size that warrants longitudinal large-scale studies. (author)

  19. Plasma resistin, adiponectin and leptin levels in relation to insulin resistance

    International Nuclear Information System (INIS)

    Shousha, M.A.; Soliman, S.E.T.

    2010-01-01

    Adipose tissue regulates insulin sensitivity via the circulating adipo cytokines, adiponectin, resistin and leptin. The objective of this study was to compare the levels of resistin, adiponectin and leptin in lean and obese subjects and determine the relationship between circulating adipocytokines and insulin resistance. We examined plasma levels of resistin, adiponectin and leptin in 20 lean subjects with mean body mass index (BMI) of 24, and, 36 nondiabetic obese individuals with mean BMI 34. Insulin resistance was assessed using the homeostasis model assessment ratio (HOMA-R) formula derived from fasting insulin and glucose levels. Resistin levels were not significantly different between the two groups but were significantly higher in women compared with men, 30.4±6.5 vs. 14.4±2.9 mg/l, P<0.01. Resistin did not correlate with BMI but did significantly correlate with HOMA-R, P < 0.01, and this correlation remained significant after adjustment for gender and BMI. Adiponectin levels were significantly reduced in obese compared with lean subjects, P < 0.005 and higher in women, P< 0.001. Adiponectin levels showed significant correlation with HOMA-R and this correlation remained significant after adjustment for gender and BMI. Leptin levels were significantly higher in obese subjects and women and correlated with resistin, but, didn't correlate with HOMA-R. In this small group of patients we demonstrated that insulin resistance correlated most strongly and reciprocally with adiponectin levels. Significant correlation between resistin levels and insulin resistance was also observed. Although a similar trend was apparent for leptin, the correlation with insulin resistance did not achieve statistical significance

  20. Effect on Insulin-Stimulated Release of D-Chiro-Inositol-Containing Inositolphosphoglycan Mediator during Weight Loss in Obese Women with and without Polycystic Ovary Syndrome

    OpenAIRE

    Cheang, Kai I.; Sistrun, Sakita N.; Morel, Kelley S.; Nestler, John E.

    2016-01-01

    Background. A deficiency of D-chiro-inositol-inositolphosphoglycan mediator (DCI-IPG) may contribute to insulin resistance in polycystic ovary syndrome (PCOS). Whether the relationship between impaired DCI-IPG release and insulin resistance is specific to PCOS rather than obesity is unknown. We assessed insulin-released DCI-IPG and its relationship to insulin sensitivity at baseline and after weight loss in obese women with and without PCOS. Methods. Obese PCOS (n = 16) and normal (n = 15) wo...

  1. Meal-induced platelet activation in diabetes mellitus type 1 or type 2 is related to postprandial insulin rather than glucose levels.

    Science.gov (United States)

    Spectre, Galia; Stålesen, Ragnhild; Östenson, Claes-Göran; Hjemdahl, Paul

    2016-05-01

    Postprandial platelet activation was related to postprandial insulin rather than glucose levels in a previous meal insulin study in type 2 diabetes mellitus (T2DM). We therefore compared postprandial platelet activation in type 1 (T1DM) patients without insulin secretion and T2DM patients with high postprandial insulin levels. Patients with T1DM (n=11) and T2DM (n=12) were studied before and 90min after a standardized meal without premeal insulin. Five T1DM patients volunteered for a restudy with their regular premeal insulin. Platelet activation was assessed by flow cytometry, with and without the thromboxane analogue U46619 or ADP, and by whole blood aggregometry (Multiplate®). Effects of insulin (100μU/mL) in vitro were also studied. Before the meal, glucose, insulin and platelet activation markers other than platelet-leukocyte aggregates (PLAs) were similar in T1DM and T2DM; PLAs were higher in T1DM. Postprandial glucose levels increased more markedly in T1DM (to 22.1±1.4 vs. 11.2±0.6mmol/L) while insulin levels increased only in T2DM (from 24.4±4.4 to 68.8±12.3μU/mL). Platelet P-selectin expression, fibrinogen binding and PLA formation stimulated by U46619 were markedly enhanced (approximately doubled) and whole blood aggregation stimulated by U46619 was increased (pinsulin in T1DM patients showed postprandial platelet activation when postprandial insulin levels increased. In vitro insulin mildly activated platelets in both groups. Postprandial platelet activation via the thromboxane pathway is related to postprandial hyperinsulinemia and not to postprandial hyperglycaemia in patients with diabetes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Poor zinc status is associated with increased risk of insulin resistance in Spanish children.

    Science.gov (United States)

    Ortega, R M; Rodríguez-Rodríguez, E; Aparicio, A; Jiménez, A I; López-Sobaler, A M; González-Rodríguez, L G; Andrés, P

    2012-02-01

    Zn plays a key role in the synthesis and action of insulin. The aim of the present work was to determine whether a poorer Zn status was associated with insulin resistance in a group of 357 Spanish schoolchildren. Zn intake was determined by using a 3 d food record (i.e. Sunday to Tuesday). The body weight, height and waist and hip circumferences of all subjects were recorded and fasting plasma glucose, insulin and Zn concentrations were determined. Insulin resistance was determined using the homoeostasis model assessment (HOMA) marker. Children (11·5 %) with Zn deficiency (serum Zn concentration 3·16 made a significantly smaller contribution to the coverage of those recommended (59·7 (sd 14·7) %) than observed in children with lower HOMA values (73·6 (sd 18·2) %; P health and nutritional status of these children, and thus contribute to diminish problems of insulin resistance.

  3. Role of myotonic dystrophy protein kinase (DMPK in glucose homeostasis and muscle insulin action.

    Directory of Open Access Journals (Sweden)

    Esther Llagostera

    2007-11-01

    Full Text Available Myotonic dystrophy 1 (DM1 is caused by a CTG expansion in the 3'-unstranslated region of the DMPK gene, which encodes a serine/threonine protein kinase. One of the common clinical features of DM1 patients is insulin resistance, which has been associated with a pathogenic effect of the repeat expansions. Here we show that DMPK itself is a positive modulator of insulin action. DMPK-deficient (dmpk-/- mice exhibit impaired insulin signaling in muscle tissues but not in adipocytes and liver, tissues in which DMPK is not expressed. Dmpk-/- mice display metabolic derangements such as abnormal glucose tolerance, reduced glucose uptake and impaired insulin-dependent GLUT4 trafficking in muscle. Using DMPK mutants, we show that DMPK is required for a correct intracellular trafficking of insulin and IGF-1 receptors, providing a mechanism to explain the molecular and metabolic phenotype of dmpk-/- mice. Taken together, these findings indicate that reduced DMPK expression may directly influence the onset of insulin-resistance in DM1 patients and point to dmpk as a new candidate gene for susceptibility to type 2-diabetes.

  4. INSULIN IN THE BRAIN: ITS PATHOPHYSIOLOGICAL IMPLICATIONS FOR STATES RELATED WITH CENTRAL INSULIN RESISTANCE, TYPE 2 DIABETES AND ALZHEIMER’S DISEASE

    Directory of Open Access Journals (Sweden)

    ENRIQUE eBLÁZQUEZ

    2014-10-01

    Full Text Available Although the brain has been considered an insulin-insensitive organ, recent reports on the location of insulin and its receptors in the brain have introduced new ways of considering this hormone responsible for several functions. The origin of insulin in the brain has been explained from peripheral or central sources, or both. Regardless of whether insulin is of peripheral origin or produced in the brain, this hormone may act through its own receptors present in the brain. The molecular events through which insulin functions in the brain are the same as those operating in the periphery. However, certain insulin actions are different in the CNS, such as hormone-induced glucose uptake due to a low insulin-sensitive GLUT-4 activity, and because of the predominant presence of GLUT-1 and GLUT-3. In addition, insulin in the brain contributes to the control of nutrient homeostasis, reproduction, cognition and memory, as well as to neurotrophic, neuromodulatory, and neuroprotective effects. Alterations of these functional activities may contribute to the manifestation of several clinical entities, such as central insulin resistance, type 2 diabetes (T2DM and Alzheimer’s disease (AD. A close association between T2DM and AD has been reported, to the extent that AD is twice more frequent in diabetic patients, and some authors have proposed the name type 3 diabetes for this association. There are links between AD and type 2 diabetes mellitus (T2DM through mitochondrial alterations and oxidative stress, altered energy and glucose metabolism, cholesterol modifications, dysfunctional protein OGlcNAcylation, formation of amyloid plaques, altered Aβ metabolism, and tau hyperphosphorylation. Advances in the knowledge of preclinical AD and T2DM may be a major stimulus for the development of treatment for preventing the pathogenic events of

  5. Investigation of vitamin D status and its correlation with insulin resistance in a Chinese population.

    Science.gov (United States)

    Han, Bing; Wang, Xiaojin; Wang, Ningjian; Li, Qin; Chen, Yi; Zhu, Chunfang; Chen, Yingchao; Xia, Fangzhen; Pu, Xiaoqi; Cang, Zhen; Zhu, Chaoxia; Lu, Meng; Meng, Ying; Guo, Hui; Chen, Chi; Tu, Weiping; Li, Bin; Hu, Ling; Wang, Bingshun; Lu, Yingli

    2017-06-01

    Although many studies worldwide have focused on the relationship between vitamin D and insulin resistance, results remain controversial. Furthermore, concentrations of serum 25-hydroxyvitamin D (25(OH)D) in the Chinese population are unclear. We aimed to investigate vitamin D status and its correlation with insulin resistance among a Chinese adult population. Serum 25(OH)D, fasting blood glucose, fasting insulin, glycated Hb (HbA1c) and other metabolic parameters were assessed. Neck circumference, waist circumference, hip circumference, weight and height were also measured. Lifestyle factors including smoking and drinking status were obtained. Diabetes mellitus was diagnosed by HbA1c according to the 2010 American Diabetes Association criteria. Eastern China. Of 7200 residents included, 6597 individuals were ultimately analysed. We enrolled 2813 males (mean age 52·7 (sd 13·5) years) and 3784 females (52·3 (sd 13·5) years); mean serum 25(OH)D concentration was 43·1 (sd 11·6) and 39·6 (sd 9·8) nmol/l, respectively. Additionally, 83·3 % of participants were 25(OH)D deficient. A significant difference in 25(OH)D was observed between males and females in winter and spring (Pinsulin resistance (HOMA-IR) in the overweight and pre-diabetic populations. After adjusting for several variables, 25(OH)D was significantly associated with HOMA-IR in winter. When 25(OH)D values were categorized into quartiles, HOMA-IR was significantly associated with decreasing 25(OH)D. The majority of the Chinese population was vitamin D deficient and this deficiency was negatively associated with insulin resistance, particularly in the overweight and pre-diabetic populations. Moreover, these associations might be more evident in the winter.

  6. Concentrated insulins: the new basal insulins

    Directory of Open Access Journals (Sweden)

    Lamos EM

    2016-03-01

    Full Text Available Elizabeth M Lamos,1 Lisa M Younk,2 Stephen N Davis3 1Division of Endocrinology, Diabetes and Nutrition, 2Department of Medicine, University of Maryland School of Medicine, 3Department of Medicine, University of Maryland Medical Center, Baltimore, MD, USA Introduction: Insulin therapy plays a critical role in the treatment of type 1 and type 2 diabetes mellitus. However, there is still a need to find basal insulins with 24-hour coverage and reduced risk of hypoglycemia. Additionally, with increasing obesity and insulin resistance, the ability to provide clinically necessary high doses of insulin at low volume is also needed. Areas covered: This review highlights the published reports of the pharmacokinetic (PK and glucodynamic properties of concentrated insulins: Humulin-R U500, insulin degludec U200, and insulin glargine U300, describes the clinical efficacy, risk of hypoglycemic, and metabolic changes observed, and finally, discusses observations about the complexity of introducing a new generation of concentrated insulins to the therapeutic market. Conclusion: Humulin-R U500 has a similar onset but longer duration of action compared with U100 regular insulin. Insulin glargine U300 has differential PK/pharmacodynamic effects when compared with insulin glargine U100. In noninferiority studies, glycemic control with degludec U200 and glargine U300 is similar to insulin glargine U100 and nocturnal hypoglycemia is reduced. Concentrated formulations appear to behave as separate molecular entities when compared with earlier U100 insulin analog compounds. In the review of available published data, newer concentrated basal insulins may offer an advantage in terms of reduced intraindividual variability as well as reducing the injection burden in individuals requiring high-dose and large volume insulin therapy. Understanding the PK and pharmacodynamic properties of this new generation of insulins is critical to safe dosing, dispensing, and administration

  7. Diabetic retinopathy in two patients with congenital IGF-I deficiency (Laron syndrome).

    Science.gov (United States)

    Laron, Zvi; Weinberger, Dov

    2004-07-01

    Animal and clinical studies have shown that excessive amounts of growth hormone or insulin-like growth factor-I (IGF-I) promote the development of diabetes and diabetic retinopathy. Forthwith, we present two patients with congenital IGF-I deficiency who developed type II diabetes and subsequently retinopathy. Eighteen adult patients with classical Laron syndrome (8 males, 10 females, aged 20-62 years) were followed by us since childhood or underwent fundus photography with a Nikon NF 505 instrument. Three had been treated in childhood with IGF-I, the rest were never treated, including the two patients reported. Two never-treated patients were diagnosed with type II diabetes (DM) at ages 39 and 41 respectively. There was no diabetes in the families. Oral treatment was followed by insulin injections. Metabolic control was not optimal and one patient developed proliferative diabetic retinopathy, necessitating laser surgery. He also has nephropathy and severe neuropathy. The other patient has background diabetic retinopathy and has developed, progressively, exudates, microaneurisms, hemorrhages and clinically significant macular edema. He also has subacute ischemic heart disease. Our findings show that congenital IGF-I deficiency, similar to excess, causes vascular complications of DM, denoting also that vascular endothelial growth factor can induce neovascularization in the presence of congenital IGF-I deficiency.

  8. Counter-regulatory hormone responses to spontaneous hypoglycaemia during treatment with insulin Aspart or human soluble insulin

    DEFF Research Database (Denmark)

    Brock Jacobsen, I; Vind, B F; Korsholm, Lars

    2011-01-01

    examined in a randomized, double-blinded cross-over study for two periods of 8 weeks. Sixteen patients with type 1 diabetes were subjected to three daily injections of human soluble insulin or Aspart in addition to Neutral Protamine Hagedorn (NPH) insulin twice daily. Each intervention period was followed......-regulatory responses regarding growth hormone, glucagon and ghrelin whereas no differences were found in relation to free fatty acid, cortisol, insulin-like growth factor (IGF)-I, IGF-II and IGF-binding proteins 1 and 2. Treatment with insulin Aspart resulted in well-defined peaks in serum insulin concentrations...... elicited a slightly different physiological response to spontaneous hypoglycaemia compared with human insulin. Keywords hypoglycaemia counter-regulation, insulin Aspart, type 1 diabetes....

  9. Lipoprotein(a) is not related to markers of insulin resistance in pregnancy.

    Science.gov (United States)

    Todoric, Jelena; Handisurya, Ammon; Leitner, Karoline; Harreiter, Juergen; Hoermann, Gregor; Kautzky-Willer, Alexandra

    2013-10-01

    Dyslipidemia, a major risk factor for cardiovascular disease is a common finding in patients with type 2 diabetes and among women with gestational diabetes. Elevated levels of lipoprotein(a) [Lp(a)] are linked to increased risk of cardiovascular disease. However, its relationship with insulin resistance, type 2 diabetes and gestational diabetes is controversial and unproven. Here we aimed to clarify whether Lp(a) levels are associated with insulin sensitivity in pregnancy. Sixty-four women with gestational diabetes and 165 with normal glucose tolerance were enrolled in the study. Fasting Lp(a) serum levels were measured in all women at 24-28 weeks of gestation. In pregnancy, there was no significant difference in serum Lp(a) concentrations between the two groups. Its level did not correlate with markers of insulin resistance (HOMA-IR), insulin sensitivity (HOMA-S%), pancreatic beta-cell function (HOMA-B%) and insulin sensitivity in dynamic conditions (OGIS). In addition, fasting glucose and insulin levels and those throughout an oral glucose tolerance test were independent of Lp(a) concentrations in our study group. Lp(a) levels in pregnant women do not differ with respect to the presence or absence of gestational diabetes. Although influenced by some components of the lipid profile, such as triglycerides and HDL-C, insulin resistance in pregnancy is not affected by Lp(a).

  10. Over-stimulation of insulin/IGF-1 signaling by western diet may promote diseases of civilization: lessons learnt from laron syndrome

    OpenAIRE

    Schmitz Gerd; John Swen; Melnik Bodo C

    2011-01-01

    Abstract The insulin/insulin-like growth factor-1 (IGF-1) pathway drives an evolutionarily conserved network that regulates lifespan and longevity. Individuals with Laron syndrome who carry mutations in the growth hormone receptor (GHR) gene that lead to severe congenital IGF-1 deficiency with decreased insulin/IGF-1 signaling (IIS) exhibit reduced prevalence rates of acne, diabetes and cancer. Western diet with high intake of hyperglycemic carbohydrates and insulinotropic dairy over-stimulat...

  11. Association between insulin resistance and low relative appendicular skeletal muscle mass: evidence from a cohort study in community-dwelling older men and women participants.

    Science.gov (United States)

    Alemán-Mateo, Heliodoro; López Teros, Miriam T; Ramírez, Fátima A; Astiazarán-García, Humberto

    2014-07-01

    It has been hypothesized that insulin resistance plays a role in the development of the loss of skeletal muscle; however, no cohort studies on insulin resistance and low relative appendicular skeletal muscle mass (ASM) have been published to date. Thus, we examined whether insulin resistance is associated with low relative ASM after a 4.6-year follow-up period among apparently healthy older men and women participants. This is a combined retrospective-prospective cohort study, which includes 147 community-dwelling older men and women participants. ASM was measured by dual-energy x-ray absorptiometry at baseline and follow-up. Participants with a relative change in ASM below the sex-specific 15th value were classified as the low relative ASM group. Homeostatic model assessment was used to quantify insulin resistance. Logistic regression calculated odds ratios and 95% confidence intervals for development of low relative ASM, adjusted for covariates. The loss of ASM in the low relative ASM and normal groups was -1.8kg and -0.35kg, respectively (p ≤ .05). The low relative ASM group was older and had higher insulin and homeostatic model assessment of insulin resistance values at baseline. The risk of developing low relative ASM at 4.6-year follow-up was 2.9 times higher (95% CI, 1.00-7.8; p = .04) among the participants with homeostatic model assessment of insulin resistance levels more than 2.3. After adjusting for age, the risk increased to 3.9 times higher (95% CI, 1.3-11.5; p = .03). Insulin resistance was associated with low relative ASM at 4.6-year follow-up after accounting for several covariates in a cohort of apparently healthy, well-functioning young older men and women. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Health-Related Quality of Life, Treatment Satisfaction, and Costs Associated With Intraperitoneal Versus Subcutaneous Insulin Administration in Type 1 Diabetes

    NARCIS (Netherlands)

    Logtenberg, Susan J.; Kleefstra, Nanne; Houweling, Sebastiaan T.; Groenier, Klaas H.; Gans, Reinold O.; Bilo, Henk J.

    OBJECTIVE - To investigate the effects of continuous intraperitoneal insulin infusion (CIPII) compared with subcutaneous insulin on health-related quality of life (HRQOL) and treatment satisfaction, and to perform a cost analysis in type 1 diabetes. RESEARCH DESIGN AND METHODS - We used an

  13. Visceral fat dominant distribution in male type 2 diabetic patients is closely related to hepatic insulin resistance, irrespective of body type

    Directory of Open Access Journals (Sweden)

    Miyazaki Yoshinori

    2009-08-01

    Full Text Available Abstract Background All previous studies that investigated the association between abdominal fat distribution and insulin resistance evaluated subcutaneous and visceral fat area and/or volume, but these values were not related to the body type of each subject. In the present study we have examined the association between abdominal fat distribution and peripheral (muscle/hepatic sensitivity to insulin using the visceral to abdominal subcutaneous fat area ratio (VF/SF ratio in male patients with type 2 diabetes mellitus. This ratio defines the predominancy of visceral or subcutaneous abdominal adiposity, independent of the body type of each individual. Methods Thirty-six type 2 diabetic male patients underwent a euglycemic insulin clamp (insulin infusion rate = 40 mU/m2·min with 3-3H-glucose to measure insulin-mediated total body (primarily reflects muscle glucose disposal (TGD and suppression of endogenous (primarily reflects liver glucose production (EGP in response to a physiologic increase in plasma insulin concentration. Abdominal subcutaneous (SF and intraabdominal visceral fat (VF areas were quantitated with magnetic resonance imaging (MRI at the level of L4–5. Results TGD and TGD divided by steady state plasma insulin concentration during the insulin clamp (TGD/SSPI correlated inversely with body mass index (BMI, total fat mass (FM measured by 3H2O, SF and VF areas, while VF/SF ratio displayed no significant relationship with TGD or TGD/SSPI. In contrast, EGP and the product of EGP and SSPI during the insulin clamp (an index hepatic insulin resistance correlated positively with VF/SF ratio, but not with BMI, FM, VF or SF. Conclusion We conclude that, independent of the individual's body type, visceral fat dominant accumulation as opposed to subcutaneous fat accumulation is associated with hepatic insulin resistance, whereas peripheral (muscle insulin resistance is more closely related to general obesity (i.e. higher BMI and total FM

  14. Protean manifestations of vitamin D deficiency, part 3: association with cardiovascular disease and disorders of the central and peripheral nervous systems.

    Science.gov (United States)

    Bell, David S H

    2011-05-01

    Vitamin D deficiency is associated with the risk factors of inflammation, insulin resistance and endothelial dysfunction, and left ventricular hypertrophy. As a result there is an increase in cardiovascular events (CVEs) associated with vitamin D deficiency. Vitamin D deficiency itself or secondary hyperparathyroidism or both may be responsible for the increase in CVEs. Correction of vitamin D deficiency may decrease the incidence of CVEs. Vitamin D deficiency is also associated with Alzheimer disease, schizophrenia, depression, and chronic pain and muscle weakness. Vitamin D deficiency is early treated with oral vitamin D supplements which may improve the manifestations of the diseases associated with vitamin D deficiency.

  15. Vitamin D Deficiency in Community-Dwelling Elderly Is Not Associated with Age-Related Macular Degeneration.

    Science.gov (United States)

    Cougnard-Grégoire, Audrey; Merle, Bénédicte M J; Korobelnik, Jean-Francois; Rougier, Marie-Bénédicte; Delyfer, Marie-Noëlle; Féart, Catherine; Le Goff, Mélanie; Dartigues, Jean-François; Barberger-Gateau, Pascale; Delcourt, Cécile

    2015-08-01

    Elderly persons are at elevated risk of vitamin D deficiency, which is involved in various health problems. However, its relation with age-related macular degeneration (AMD) is debated. We investigated factors associated with plasma 25-hydroxyvitamin D [25(OH)D] deficiency and the associations between plasma 25(OH)D concentrations and AMD in elderly subjects. Antioxydants, Lipides Essentiels, Nutrition et maladies OculaiRes (ALIENOR) is a population-based study on eye diseases performed in elderly residents of Bordeaux, France. Plasma 25(OH)D concentrations were assessed from blood samples and categorized as D status were examined with multinomial logistic regression analysis. Associations between AMD and plasma 25(OH)D status were estimated using generalized estimating equation logistic regressions. Six hundred ninety-seven subjects with complete data were included. The prevalence of plasma 25(OH)D deficiency and insufficiency were 27.3% and 55.9%, respectively. In multivariate analysis, 25(OH)D deficiency was significantly associated with older age (P = 0.0007), females (P = 0.0007), absence of physical activity (P = 0.01), absence of vitamin D supplementation (P D insufficiency or deficiency (OR: 0.71, P = 0.12; OR: 0.73, P = 0.23, respectively) or with late AMD (OR: 1.04, P = 0.93; OR: 0.74, P = 0.59, respectively). These findings underline the very high prevalence of plasma 25(OH)D deficiency in this elderly population but do not support a specific role for vitamin D in AMD. © 2015 American Society for Nutrition.

  16. Sex-Related Differences in the Effects of the Mediterranean Diet on Glucose and Insulin Homeostasis

    Directory of Open Access Journals (Sweden)

    Alexandra Bédard

    2014-01-01

    Full Text Available Objective. To document sex differences in the impact of the Mediterranean diet (MedDiet on glucose/insulin homeostasis and to verify whether these sex-related effects were associated with changes in nonesterified fatty acids (NEFA. Methods. All foods were provided to 38 men and 32 premenopausal women (24–53 y during 4 weeks. Variables were measured during a 180 min OGTT before and after the MedDiet. Results. A sex-by-time interaction for plasma insulin iAUC was found (men: −17.8%, P=0.02; women: +9.4%, P=0.63; P for sex-by-time interaction = 0.005. A sex-by-time interaction was also observed for insulin sensitivity (Cederholm index, P=0.03, for which only men experienced improvements (men: +8.1%, P=0.047; women: −5.9%, P=0.94. No sex difference was observed for glucose and C-peptide responses. Trends toward a decrease in NEFA AUC (P=0.06 and an increase in NEFA suppression rate (P=0.06 were noted, with no sex difference. Changes in NEFA were not associated with change in insulin sensitivity. Conclusions. Results suggest that the more favorable changes in glucose/insulin homeostasis observed in men compared to women in response to the MedDiet are not explained by sex differences in NEFA response. This clinical trial is registered with clinicaltrials.gov NCT01293344.

  17. Sex-Related Differences in the Effects of the Mediterranean Diet on Glucose and Insulin Homeostasis

    Science.gov (United States)

    Bédard, Alexandra; Corneau, Louise; Lamarche, Benoît; Dodin, Sylvie; Lemieux, Simone

    2014-01-01

    Objective. To document sex differences in the impact of the Mediterranean diet (MedDiet) on glucose/insulin homeostasis and to verify whether these sex-related effects were associated with changes in nonesterified fatty acids (NEFA). Methods. All foods were provided to 38 men and 32 premenopausal women (24–53 y) during 4 weeks. Variables were measured during a 180 min OGTT before and after the MedDiet. Results. A sex-by-time interaction for plasma insulin iAUC was found (men: −17.8%, P = 0.02; women: +9.4%, P = 0.63; P for sex-by-time interaction = 0.005). A sex-by-time interaction was also observed for insulin sensitivity (Cederholm index, P = 0.03), for which only men experienced improvements (men: +8.1%, P = 0.047; women: −5.9%, P = 0.94). No sex difference was observed for glucose and C-peptide responses. Trends toward a decrease in NEFA AUC (P = 0.06) and an increase in NEFA suppression rate (P = 0.06) were noted, with no sex difference. Changes in NEFA were not associated with change in insulin sensitivity. Conclusions. Results suggest that the more favorable changes in glucose/insulin homeostasis observed in men compared to women in response to the MedDiet are not explained by sex differences in NEFA response. This clinical trial is registered with clinicaltrials.gov NCT01293344. PMID:25371817

  18. Metabolic impact of adult-onset, isolated, growth hormone deficiency (AOiGHD due to destruction of pituitary somatotropes.

    Directory of Open Access Journals (Sweden)

    Raul M Luque

    2011-01-01

    Full Text Available Growth hormone (GH inhibits fat accumulation and promotes protein accretion, therefore the fall in GH observed with weight gain and normal aging may contribute to metabolic dysfunction. To directly test this hypothesis a novel mouse model of adult onset-isolated GH deficiency (AOiGHD was generated by cross breeding rat GH promoter-driven Cre recombinase mice (Cre with inducible diphtheria toxin receptor mice (iDTR and treating adult Cre(+/-,iDTR(+/- offspring with DT to selectively destroy the somatotrope population of the anterior pituitary gland, leading to a reduction in circulating GH and IGF-I levels. DT-treated Cre(-/-,iDTR(+/- mice were used as GH-intact controls. AOiGHD improved whole body insulin sensitivity in both low-fat and high-fat fed mice. Consistent with improved insulin sensitivity, indirect calorimetry revealed AOiGHD mice preferentially utilized carbohydrates for energy metabolism, as compared to GH-intact controls. In high-fat, but not low-fat fed AOiGHD mice, fat mass increased, hepatic lipids decreased and glucose clearance and insulin output were impaired. These results suggest the age-related decline in GH helps to preserve systemic insulin sensitivity, and in the context of moderate caloric intake, prevents the deterioration in metabolic function. However, in the context of excess caloric intake, low GH leads to impaired insulin output, and thereby could contribute to the development of diabetes.

  19. Effect of potassium and hypomagnesemia on insulin in the bovine

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, D.E.; Madsen, F.C.; Miller, J.K.; Hansard, S.L.

    1976-01-01

    Grass tetany in cattle has been associated with the consumption of early spring forages high in potassium (K) and low in magnesium (Mg). Alterations in serum Mg and K may affect intermediary carbohydrate metabolism, resulting in hypoglycemia and ketosis that often accompany grass tetany. We investigated these interrelationships by infusing potassium chloride (KCl) intravenously in normal (plasma Mg greater than 2.1 mg/100 ml) and Mg-deficient (plasma Mg less than .7 mg/100 ml) 9-month-old Holstein bull calves and intraruminally into nonpregnant, nonlactating Holstein cows. Plasma levels of both K and immunoreactive insulin (IRI) were elevated (P less than .01) by 1.14, 2, and 3 percent KCl (51, 64, and 135 mg K/kg) in calves and by 550 g KCl (440 mg K/kg body weight) in cows. Plasma K was lower (P less than .01) and IRI higher (P less than .01) in Mg-deficient calves than in normal calves during 2 percent KCl infusion. These results suggest that prolonged elevation of K and insulin in ruminants could lead to a series of metabolic disturbances that may play an important role in the etiology of grass tetany.

  20. TLR4 and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Jane J. Kim

    2010-01-01

    Full Text Available Chronic inflammation is a key feature of insulin resistance and obesity. Toll-Like Receptor 4 (TLR4, involved in modulating innate immunity, is an important mediator of insulin resistance and its comorbidities. TLR4 contributes to the development of insulin resistance and inflammation through its activation by elevated exogenous ligands (e.g., dietary fatty acids and enteric lipopolysaccharide and endogenous ligands (e.g., free fatty acids which are elevated in obese states. TLR4, expressed in insulin target tissues, activates proinflammatory kinases JNK, IKK, and p38 that impair insulin signal transduction directly through inhibitory phosphorylation of insulin receptor substrate (IRS on serine residues. TLR4 activation also leads to increased transcription of pro-inflammatory genes, resulting in elevation of cytokine, chemokine, reactive oxygen species, and eicosanoid levels that promote further insulin-desensitization within the target cell itself and in other cells via paracrine and systemic effects. Increased understanding of cell type-specific TLR4-mediated effects on insulin action present the opportunity and challenge of developing related therapeutic approaches for improving insulin sensitivity while preserving innate immunity.

  1. Insulin radioimmunoassay kit (125I) using polyethyleneglycol (PEG) and a double antibody separation method

    International Nuclear Information System (INIS)

    Borza, Virginia; Chariton, Delfina; Neacsu, Elena

    1997-01-01

    Insulin is a polypeptide hormone formed from proinsulin in the b-cells of the islets of Langerhans in the pancreas. It has a widespread effect on carbohydrate, lipid and protein metabolism. Diabetes mellitus is the result of an insulin deficiency brought about either by insufficient insulin secretion or by rapid insulin catabolism. The determination of the insulin level is important for differential etiologic diagnosis and subsequent therapy and prognosis. Insulin radioimmunoassay kit provides a sensitive, precise and specific assay for insulin concentration in serum. Standard and insulin in the patient sample compete with tracer for binding sites on an insulin antibody. The antigen-antibody combination, which forms during incubation time, will be separated from free insulin by different methods. The separation technique using the double antibody technique combined with Polyethyleneglycol (PEG) is presented. The results are compared with the separation method using PEG alone and with double antibody technique. Antiserum to insulin was produced in rats immunized with porcine insulin, while rabbits immunized with rat-g globulin were used as a source for the second antibody.The tested PEG was PEG 6000. The best results were obtained using the double antibody at a 1/50 dilution combined with 7.5 PEG solutions. The time for precipitating the antibody bound fraction by this technique was established to be 30 minutes. The results obtained using this method as separation technique for insulin - antibody complex were better than those obtained using the double antibody techniques or PEG as precipitating agent alone. (authors)

  2. Pathological consequences of C-peptide deficiency ininsulin-dependent diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    Ahmad Ghorbani; Reza Shafiee-Nick

    2015-01-01

    Diabetes is associated with several complicationssuch as retinopathy, nephropathy, neuropathy andcardiovascular diseases. Currently, insulin is the mainused medication for management of insulin-dependentdiabetes mellitus (type-1 diabetes). In this metabolicsyndrome, in addition to decrease of endogenous insulin,the plasma level of connecting peptide (C-peptide) is alsoreduced due to beta cell destruction. Studies in the pastdecade have shown that C-peptide is much more than abyproduct of insulin biosynthesis and possess differentbiological activities. Therefore, it may be possible thatC-peptide deficiency be involved, at least in part, in thedevelopment of different complications of diabetes. It hasbeen shown that a small level of remaining C-peptide isassociated with significant metabolic benefit. The purposeof this review is to describe beneficial effects of C-peptidereplacement on pathological features associated withinsulin-dependent diabetes. Also, experimental andclinical findings on the effects of C-peptide on wholebodyglucose utilization, adipose tissue metabolism andtissues blood flow are summarized and discussed. Thehypoglycemic, antilipolytic and vasodilator effects ofC-peptide suggest that it may contribute to fine-tuningof the tissues metabolism under different physiologic orpathologic conditions. Therefore, C-peptide replacementtogether with the classic insulin therapy may prevent,retard, or ameliorate diabetic complications in patientswith type-1 diabetes.

  3. Molecular mechanisms of insulin resistance | Pillay | South African ...

    African Journals Online (AJOL)

    This review discusses recent advances in understanding of the structure and function of the insulin receptor and insulin action, and how these relate to the clinical aspects of insulin resistance associated with non-insulin-dependent diabetes and other disorders. Improved understanding of the molecular basis of insulin ...

  4. The Effects of Sinapic Acid on the Development of Metabolic Disorders Induced by Estrogen Deficiency in Rats

    Directory of Open Access Journals (Sweden)

    Maria Zych

    2018-01-01

    Full Text Available Sinapic acid is a natural phenolic acid found in fruits, vegetables, and cereals, exerting numerous pharmacological effects. The aim of the study was to investigate the influence of sinapic acid on biochemical parameters related to glucose and lipid metabolism, as well as markers of antioxidant abilities and parameters of oxidative damage in the blood serum in estrogen-deficient rats. The study was performed on 3-month-old female Wistar rats, divided into 5 groups, including sham-operated control rats, ovariectomized control rats, and ovariectomized rats administered orally with estradiol (0.2 mg/kg or sinapic acid (5 and 25 mg/kg for 28 days. The levels of estradiol, progesterone, interleukin 18, insulin, glucose, fructosamine, lipids, and enzymatic and nonenzymatic antioxidants (superoxide dismutase, catalase, and glutathione; total antioxidant capacity; and oxidative damage parameters (thiobarbituric acid-reactive substances, protein carbonyl groups, and advanced oxidation protein products were determined in the serum. Estradiol counteracted the carbohydrate and cholesterol metabolism disorders induced by estrogen deficiency. Sinapic acid increased the serum estradiol concentration; decreased insulin resistance and the triglyceride and total cholesterol concentrations; and favorably affected the parameters of antioxidant abilities (reduced glutathione, superoxide dismutase and oxidative damage (advanced oxidation protein products.

  5. Insulin and insulin-like growth factor receptors and responses

    International Nuclear Information System (INIS)

    Roth, R.A.; Steele-Perkins, G.; Hari, J.; Stover, C.; Pierce, S.; Turner, J.; Edman, J.C.; Rutter, W.J.

    1988-01-01

    Insulin is a member of a family of structurally related hormones with diverse physiological functions. In humans, the best-characterized members of this family include insulin, insulin-like growth factor (IGF)-I, and IGF-II. Each of these three polypeptide hormones has its own distinct receptor. The structures of each of these receptors have now been deduced from analyses of isolated cDNA clones. To study further the responses mediated through these three different receptors, the authors have been studying cells expressing the proteins encoded by these three cDNAs. The isolated cDNAs have been transfected into Chinese hamster ovary (CHO) cells, and the resulting transfected cell lines have been characterized as to the ligand-binding activities and signal-transducing activities of the expressed proteins

  6. Gamma Amino Butyric Acid Attenuates Liver and Kidney Damage Associated with Insulin Alteration in γ-Irradiated and Streptozotocin-Treated Rats

    International Nuclear Information System (INIS)

    Saada, H.N.; Eltahawy, N.A.; Hammad, A.S.; Morcos, N.Y.S.

    2016-01-01

    Gamma aminobutyric acid (GABA) is one of the inhibitory neurotransmitters that may have the ability to relive the intensity of stress. The aim of the current study was to evaluate the role of γ-amino butyric acid (GABA) in modulating insulin disturbance associated with liver and kidney damage in γ-irradiated and streptozotocin-treated rats. Irradiation was performed by whole body exposure to 6 Gy from a Cs-137 source. Streptozotocin (STZ) was administered in a single intraperitoneal dose (60 mg/kg body weight). GABA (200 mg/Kg body weight/day) was administered daily via gavages during 3 weeks to γ-irradiated and STZ-treated-rats. The results obtained showed that γ-irradiation induced hyperglycemia, hyperinsulinaemia and insulin resistance (similar to type 2 Diabetes), while STZ-treatment produced hyperglycemia, insulin deficiency with no insulin resistance detected (similar to type 1 Diabetes). In both cases, significant increases of alanine amino transferase (ALT) and aspartate amino transferase (AST) activities, urea and creatinine levels were recorded in the serum. These changes were associated with oxidative damage to the liver and kidney tissues notified by significant decreases of superoxide dismutase (SOD ), catalase and glutathione peroxidase ( GSH-Px) activities in parallel to significant increases of malondialdehyde (MDA) and advanced oxidation protein products ( AOPP) levels. The administration of GABA to irradiated as well as STZ-treated rats regulated insulin and glucose levels, minimized oxidative stress and reduced the severity of liver and kidney damage. It could be concluded that GABA could be a useful adjunct to reduce some metabolic complications associated with insulin deficiency and insulin resistance

  7. Defining the Adipose Tissue Proteome of Dairy Cows to Reveal Biomarkers Related to Peripartum Insulin Resistance and Metabolic Status.

    Science.gov (United States)

    Zachut, Maya

    2015-07-02

    Adipose tissue is a central regulator of metabolism in dairy cows; however, little is known about the association between various proteins in adipose tissue and the metabolic status of peripartum cows. Therefore, the objectives were to (1) examine total protein expression in adipose tissue of dairy cows and (2) identify biomarkers in adipose that are linked to insulin resistance and to cows' metabolic status. Adipose tissue biopsies were obtained from eight multiparous cows at -17 and +4 days relative to parturition. Proteins were analyzed by intensity-based, label-free, quantitative shotgun proteomics (nanoLC-MS/MS). Cows were divided into groups with insulin-resistant (IR) and insulin-sensitive (IS) adipose according to protein kinase B phosphorylation following insulin stimulation. Cows with IR adipose lost more body weight postpartum compared with IS cows. Differential expression of 143 out of 586 proteins was detected in prepartum versus postpartum adipose. Comparing IR to IS adipose revealed differential expression of 18.9% of the proteins; those related to lipolysis (hormone-sensitive lipase, perilipin, monoglycerol lipase) were increased in IR adipose. In conclusion, we found novel biomarkers related to IR in adipose and to metabolic status that could be used to characterize high-yielding dairy cows that are better adapted to peripartum metabolic stress.

  8. Ablation of ghrelin receptor in leptin-deficient ob/ob mice has paradoxical effects on glucose homeostasis when compared with ablation of ghrelin in ob/ob mice

    Science.gov (United States)

    The orexigenic hormone ghrelin is important in diabetes because it has an inhibitory effect on insulin secretion. Ghrelin ablation in leptin-deficient ob/ob (Ghrelin(-/-):ob/ob) mice increases insulin secretion and improves hyperglycemia. The physiologically relevant ghrelin receptor is the growth ...

  9. Comparison of subcutaneous soluble human insulin and insulin analogues (AspB9, GluB27; AspB10; AspB28) on meal-related plasma glucose excursions in type I diabetic subjects.

    Science.gov (United States)

    Kang, S; Creagh, F M; Peters, J R; Brange, J; Vølund, A; Owens, D R

    1991-07-01

    To compare postprandial glucose excursions and plasma free insulin-analogue levels after subcutaneous injection of three novel human insulin analogues (AspB10; AspB9, GluB27; and AspB28) with those after injection of soluble human insulin (Actrapid HM U-100). Six male subjects with insulin-dependent diabetes, at least 1 wk apart and after an overnight fast and basal insulin infusion, received 72 nmol (approximately 12 U) s.c. of soluble human insulin 30 min before, or 72 nmol of each of the three analogues immediately before, a standard 500-kcal meal. Mean basal glucoses were similar on the 4 study days. Compared to human insulin (6.3 +/- 0.8 mM), mean +/- SE peak incremental glucose rises were similar after analogues AspB10 (5.4 +/- 0.8 mM) and AspB9, GluB27 (5.4 +/- 0.7 mM) and significantly lower after analogue AspB28 (3.6 +/- 1.2 mM, P less than 0.02). Relative to soluble human insulin (100% +/- SE21), incremental areas under the glucose curve between 0 and 240 min were 79% +/- 34 (AspB10, NS), 70% +/- 29 (AspB9, GluB27, NS), and 43% +/- 23 (AspB28, P less than 0.02). Basal plasma free insulin levels were similar on the 4 study days. Plasma free insulin-analogue levels rose rapidly to peak 30 min after injection at 308 +/- 44 pM (AspB10); 1231 +/- 190 pM (AspB9, GluB27) and 414 +/- 42 pM (AspB28) and were significantly higher than corresponding (i.e., 30 min postmeal) plasma free insulin levels of 157 +/- 15 pM (P less than 0.02 in each case). Plasma profiles of the insulin analogues were more physiological than that of human insulin after subcutaneous injection. All three analogues given immediately before the meal are at least as effective as soluble human insulin given 30 min earlier. These analogues are promising potential candidates for short-acting insulins of the future.

  10. A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance

    Science.gov (United States)

    Newgard, Christopher B; An, Jie; Bain, James R; Muehlbauer, Michael J; Stevens, Robert D; Lien, Lillian F; Haqq, Andrea M; Shah, Svati H.; Arlotto, Michelle; Slentz, Cris A; Rochon, James; Gallup, Dianne; Ilkayeva, Olga; Wenner, Brett R; Yancy, William E; Eisenson, Howard; Musante, Gerald; Surwit, Richard; Millington, David S; Butler, Mark D; Svetkey, Laura P

    2009-01-01

    Summary Metabolomic profiling of obese versus lean humans reveals a branched-chain amino acid (BCAA)-related metabolite signature that is suggestive of increased catabolism of BCAA and correlated with insulin resistance. To test its impact on metabolic homeostasis, we fed rats on high-fat (HF), HF with supplemented BCAA (HF/BCAA) or standard chow (SC) diets. Despite having reduced food intake and weight gain equivalent to the SC group, HF/BCAA rats were equally insulin resistant as HF rats. Pair-feeding of HF diet to match the HF/BCAA animals or BCAA addition to SC diet did not cause insulin resistance. Insulin resistance induced by HF/BCAA feeding was accompanied by chronic phosphorylation of mTOR, JNK, and IRS1(ser307), accumulation of multiple acylcarnitines in muscle, and was reversed by the mTOR inhibitor, rapamycin. Our findings show that in the context of a poor dietary pattern that includes high fat consumption, BCAA contributes to development of obesity-associated insulin resistance. PMID:19356713

  11. Fasting insulin has a stronger association with an adverse cardiometabolic risk profile than insulin resistance: the RISC study

    DEFF Research Database (Denmark)

    de Rooij, Susanne R; Dekker, Jacqueline M; Kozakova, Michaela

    2009-01-01

    OBJECTIVE: Fasting insulin concentrations are often used as a surrogate measure of insulin resistance. We investigated the relative contributions of fasting insulin and insulin resistance to cardiometabolic risk and preclinical atherosclerosis. DESIGN AND METHODS: The Relationship between Insulin...... of the metabolic syndrome in 1177 participants. Carotid artery intima media thickness (IMT) was measured by ultrasound to assess preclinical atherosclerosis. RESULTS: Fasting insulin was correlated with all elements of the metabolic syndrome. Insulin sensitivity (M/I) was correlated with most elements. The odds...... ratio for the metabolic syndrome of those in the highest quartile of fasting insulin compared with those in the lower quartiles was 5.4 (95% confidence interval (CI) 2.8-10.3, adjusted for insulin sensitivity) in men and 5.1 (2.6-9.9) in women. The odds ratio for metabolic syndrome of those with insulin...

  12. Intermittent hypoxia increases insulin resistance in genetically obese mice.

    Science.gov (United States)

    Polotsky, Vsevolod Y; Li, Jianguo; Punjabi, Naresh M; Rubin, Arnon E; Smith, Philip L; Schwartz, Alan R; O'Donnell, Christopher P

    2003-10-01

    Obstructive sleep apnoea, a syndrome that leads to recurrent intermittent hypoxia, is associated with insulin resistance in obese individuals, but the mechanisms underlying this association remain unknown. We utilized a mouse model to examine the effects of intermittent hypoxia on insulin resistance in lean C57BL/6J mice and leptin-deficient obese (C57BL/6J-Lepob) mice. In lean mice, exposure to intermittent hypoxia for 5 days (short term) resulted in a decrease in fasting blood glucose levels (from 173 +/- 11 mg dl-1 on day 0 to 138 +/- 10 mg dl-1 on day 5, P obese mice, short-term intermittent hypoxia led to a decrease in blood glucose levels accompanied by a 607 +/- 136 % (P intermittent hypoxia was completely abolished by prior leptin infusion. Obese mice exposed to intermittent hypoxia for 12 weeks (long term) developed a time-dependent increase in fasting serum insulin levels (from 3.6 +/- 1.1 ng ml-1 at baseline to 9.8 +/- 1.8 ng ml-1 at week 12, P intermittent hypoxia is dependent on the disruption of leptin pathways.

  13. The physiology of functional hypothalamic amenorrhea associated with energy deficiency in exercising women and in women with anorexia nervosa.

    Science.gov (United States)

    Allaway, Heather C M; Southmayd, Emily A; De Souza, Mary Jane

    2016-02-01

    An energy deficiency is the result of inadequate energy intake relative to high energy expenditure. Often observed with the development of an energy deficiency is a high drive for thinness, dietary restraint, and weight and shape concerns in association with eating behaviors. At a basic physiologic level, a chronic energy deficiency promotes compensatory mechanisms to conserve fuel for vital physiologic function. Alterations have been documented in resting energy expenditure (REE) and metabolic hormones. Observed metabolic alterations include nutritionally acquired growth hormone resistance and reduced insulin-like growth factor-1 (IGF-1) concentrations; hypercortisolemia; increased ghrelin, peptide YY, and adiponectin; and decreased leptin, triiodothyronine, and kisspeptin. The cumulative effect of the energetic and metabolic alterations is a suppression of the hypothalamic-pituitary-ovarian axis. Gonadotropin releasing hormone secretion is decreased with consequent suppression of luteinizing hormone and follicle stimulating hormone release. Alterations in hypothalamic-pituitary secretion alters the production of estrogen and progesterone resulting in subclinical or clinical menstrual dysfunction.

  14. Insulin and insulin-like growth factor-1 increased in preterm neonates following massage therapy.

    Science.gov (United States)

    Field, Tiffany; Diego, Miguel; Hernandez-Reif, Maria; Dieter, John N I; Kumar, Adarsh M; Schanberg, Saul; Kuhn, Cynthia

    2008-12-01

    To determine if massage therapy increased serum insulin and insulin-like growth factor-1 (IGF-1) in preterm neonates. Forty-two preterm neonates who averaged 34.6 weeks (M = 29.5 wk gestational age; M birth weight = 1237 g) and were in the "grower" (step-down) nursery were randomly assigned to a massage therapy group (body stroking and passive limb movements for three, 15-minute periods per day for 5 days) or a control group that received the standard nursery care without massage therapy. On Days 1 and 5, the serum collected by clinical heelsticks was also assayed for insulin and IGF-1, and weight gain and kilocalories consumed were recorded daily. Despite similar formula intake, the massaged preterm neonates showed greater increases during the 5-day period in (1) weight gain; (2) serum levels of insulin; and (3) IGF-1. Increased weight gain was significantly correlated with insulin and IGF-1. Previous data suggested that preterm infant weight gain following massage therapy related to increased vagal activity, which suggests decreased stress and gastric motility, which may contribute to more efficient food absorption. The data from this study suggest for the first time that weight gain was also related to increased serum insulin and IGF-1 levels following massage therapy. Preterm infants who received massage therapy not only showed greater weight gain but also a greater increase in serum insulin and IGF-1 levels, suggesting that massage therapy might be prescribed for all growing neonates.

  15. [Differences in dynamics of insulin and insulin-like growth I (IGF-I) receptors internalization in isolated rat hepatocytes].

    Science.gov (United States)

    Kolychev, A P; Ternovskaya, E E; Arsenieva, A V; Shapkina, E V

    2013-01-01

    Insulin and IGF-I are two related peptides performing in the mammalian body functionally different roles of the metabolic and growth hormones, respectively. Internalization of the insulin-receptor complex (IRC) is the most important chain of mechanism of the action of hormone. To elucidate differences in the main stages of internalization of the two related hormones, the internalization dynamics of 125I-insulin and 125I-IGF-I was traced in isolated rat hepatocytes at 37 and 12 degrees C. There were established marked differences in the process of internalization of labeled hormones, which is stimulated by insulin and IGF-I. At 37 degrees C the insulin-stimulated internalization, unlike the process initiated by IGF-I, did not reach the maximal level for 1 h of incubation. However, essential differences in the internalization course of these two related peptide were obvious at the temperature of 12 degrees C. The internalization level of insulin receptors at 12 degrees C decreased by one third in spite of a significant increase of the insulin receptor binding on the hepatocytes plasma membrane. At 12 degrees C a slight decrease of the proportion of intracellular 125I-IGF-I correlated with a decrease in the 125I-IGF-I binding to receptors on the cell membrane. Internalization of IGF-I receptors was not affected by low temperature, as neither its level, nor the rate changed at 12 degrees C. The paradoxical decrease of the insulin-stimulated internalization at low temperature seems to represent a peculiar "inhibition mechanism" of immersion of IRC into the cell, which leads to accumulation of the complexes on the cell surface and possibly to a readjustment of the insulin biological activity. The resistance of internalization of the IGF-I receptor to cold seems to be related to the more ancient origin of this mechanism in the poikilothermal vertebrates.

  16. Leptin recruits Creb-regulated transcriptional coactivator 1 to improve hyperglycemia in insulin-deficient diabetes

    Directory of Open Access Journals (Sweden)

    Geun Hyang Kim

    2015-03-01

    Conclusions: Our study reveals that Crtc1 functions as a conduit for leptin's glucoregulatory actions in insulin-dependent diabetes. This study also highlights a new role for Crtc1 in modulating peripheral glucose metabolism.

  17. [Plasma IL-18 levels are related to insulin and are modulated by IL-18 gene polymorphisms].

    Science.gov (United States)

    Martinez-Hervas, Sergio; Martínez-Barquero, Vanesa; Nuñez Savall, Ester; Lendínez, Verónica; Olivares, Laura; Benito, Esther; Real, Jose T; Chaves, F Javier; Ascaso, Juan F

    2015-01-01

    Atherosclerosis is an inflammatory chronic disease influenced by multiple factors. Different prospective studies have shown that plasmatic levels of inflammatory markers were related to atherosclerosis and cardiovascular disease. To evaluate whether plasmatic levels of interleukin 18 (IL-18) are modulated by SNPs (single nucleotide polymorphisms) of the IL 18 gene and its possible association with insulin levels and other cardiovascular risk factors. 746 individuals were studied for a period of two years by opportunistic selection in the metropolitan area of Valencia. Parameters of lipid and glucose metabolism were analyzed by standard methodology. IL-18 was measured by ELISA. Individuals with insulin resistance showed significant higher levels of IL-18. IL 18 was significantly correlated with insulin levels and other cardiovascular risk factors. The CC genotype of the rs1834481 SNP was significantly associated with lower levels of IL-18. However, the GG genotype of the rs7559479 was associated with significant higher levels of IL-18. IL-18 is associated with insulin resistance and other cardiovascular risk factors, being those levels genetically regulated. Copyright © 2015 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  18. Links between Vitamin D Deficiency and Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Ioana Mozos

    2015-01-01

    Full Text Available The aim of the present paper was to review the most important mechanisms explaining the possible association of vitamin D deficiency and cardiovascular diseases, focusing on recent experimental and clinical data. Low vitamin D levels favor atherosclerosis enabling vascular inflammation, endothelial dysfunction, formation of foam cells, and proliferation of smooth muscle cells. The antihypertensive properties of vitamin D include suppression of the renin-angiotensin-aldosterone system, renoprotective effects, direct effects on endothelial cells and calcium metabolism, inhibition of growth of vascular smooth muscle cells, prevention of secondary hyperparathyroidism, and beneficial effects on cardiovascular risk factors. Vitamin D is also involved in glycemic control, lipid metabolism, insulin secretion, and sensitivity, explaining the association between vitamin D deficiency and metabolic syndrome. Vitamin D deficit was associated in some studies with the number of affected coronary arteries, postinfarction complications, inflammatory cytokines and cardiac remodeling in patients with myocardial infarction, direct electromechanical effects and inflammation in atrial fibrillation, and neuroprotective effects in stroke. In peripheral arterial disease, vitamin D status was related to the decline of the functional performance, severity, atherosclerosis and inflammatory markers, arterial stiffness, vascular calcifications, and arterial aging. Vitamin D supplementation should further consider additional factors, such as phosphates, parathormone, renin, and fibroblast growth factor 23 levels.

  19. Effects of Biotin Deficiency on Biotinylated Proteins and Biotin-Related Genes in the Rat Brain.

    Science.gov (United States)

    Yuasa, Masahiro; Aoyama, Yuki; Shimada, Ryoko; Sawamura, Hiromi; Ebara, Shuhei; Negoro, Munetaka; Fukui, Toru; Watanabe, Toshiaki

    2016-01-01

    Biotin is a water-soluble vitamin that functions as a cofactor for biotin-dependent carboxylases. The biochemical and physiological roles of biotin in brain regions have not yet been investigated sufficiently in vivo. Thus, in order to clarify the function of biotin in the brain, we herein examined biotin contents, biotinylated protein expression (e.g. holocarboxylases), and biotin-related gene expression in the brain of biotin-deficient rats. Three-week-old male Wistar rats were divided into a control group, biotin-deficient group, and pair-fed group. Rats were fed experimental diets from 3 wk old for 8 wk, and the cortex, hippocampus, striatum, hypothalamus, and cerebellum were then collected. In the biotin-deficient group, the maintenance of total biotin and holocarboxylases, increases in the bound form of biotin and biotinidase activity, and the expression of an unknown biotinylated protein were observed in the cortex. In other regions, total and free biotin contents decreased, holocarboxylase expression was maintained, and bound biotin and biotinidase activity remained unchanged. Biotin-related gene (pyruvate carboxylase, sodium-dependent multivitamin transporter, holocarboxylase synthetase, and biotinidase) expression in the cortex and hippocampus also remained unchanged among the dietary groups. These results suggest that biotin may be related to cortex functions by binding protein, and the effects of a biotin deficiency and the importance of biotin differ among the different brain regions.

  20. Growth Hormone Deficiency in a Patient with Becker Muscular Dystrophy: A Pediatric Case Report

    Directory of Open Access Journals (Sweden)

    Valeria Calcaterra

    2013-01-01

    Full Text Available Objective. To describe a biochemical growth hormone (GH deficiency and to evaluate therapeutic result in a six-year-old male with Becker muscular dystrophy (BMD. Methods. GH peak was evaluated after response to arginine and insulin. Bone age was evaluated according to Greulich and Pyle method. Results. The GH-supplementary therapy was very effective in terms of growth gain. Conclusion. The possibility of a growth hormone deficiency and treatment with GH in patients with BMD cannot be excluded, especially considering the good therapeutic response.

  1. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    Science.gov (United States)

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  2. Vitamin B12 deficiency might be related to sarcopenia in older adults.

    Science.gov (United States)

    Bulut, Esra Ates; Soysal, Pinar; Aydin, Ali Ekrem; Dokuzlar, Ozge; Kocyigit, Suleyman Emre; Isik, Ahmet Turan

    2017-09-01

    Sarcopenia and dynapenia are related to repeated falls, mobility restriction, depression, frailty, increased mortality and morbidity. The aim of this study is to evaluate the relationship between vitamin B12 deficiency and sarcopenia in older adults. 403 patients, who attended to outpatient clinic and underwent comprehensive geriatric assessment, were included study. All cases' skeletal muscle mass (SMM), walking speed and hand grip strength were recorded by bioimpedance, 4meter walking test and hand dynamometer respectively. The diagnosis of sarcopenia was defined according to the criteria of the European Working Group on Sarcopenia in Older People. Sarcopenia was accepted low SMM with low handgrip strength or low physical performance. Dynapenia was defined as handgrip strength sarcopenia and dynapenia was 24.8% and 32.0%, respectively. In the patients with sarcopenia, mean age, osteoporosis and frailty were higher, and MMSE, and instrumental ADL scores were lower than the patients without sarcopenia (psarcopenia and dynapenia were 31.6% and 35.4%, respectively, in patients with vitamin B12 levels Sarcopenia, which results in lots of negative clinical outcomes in older adults, might be related to vitamin B12 deficiency. Therefore, these patients should be periodically examined for vitamin B12 deficiency due to the potential negative clinical outcomes such as sarcopenia in older adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Nutrigenomic effects of edible bird’s nest on insulin signaling in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Hou ZP

    2015-08-01

    Full Text Available Zhiping Hou,1,2 Mustapha Umar Imam,1 Maznah Ismail,1,3 Der Jiun Ooi,1 Aini Ideris,4 Rozi Mahmud5 1Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia; 2Department of Pathology, Chengde Medical University, Chengde, People’s Republic of China; 3Department of Nutrition and Dietetics, Universiti Putra Malaysia, Serdang, Malaysia; 4Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia; 5Department of Imaging, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia Abstract: Estrogen deficiency alters quality of life during menopause. Hormone replacement therapy has been used to improve quality of life and prevent complications, but side effects limit its use. In this study, we evaluated the use of edible bird’s nest (EBN for prevention of cardiometabolic problems in rats with ovariectomy-induced menopause. Ovariectomized female rats were fed for 12 weeks with normal rat chow, EBN, or estrogen and compared with normal non-ovariectomized rats. Metabolic indices (insulin, estrogen, superoxide dismutase, malondialdehyde, oral glucose tolerance test, and lipid profile were measured at the end of the experiment from serum and liver tissue homogenate, and transcriptional levels of hepatic insulin signaling genes were measured. The results showed that ovariectomy worsened metabolic indices and disrupted the normal transcriptional pattern of hepatic insulin signaling genes. EBN improved the metabolic indices and also produced transcriptional changes in hepatic insulin signaling genes that tended toward enhanced insulin sensitivity, and glucose and lipid homeostasis, even better than estrogen. The data suggest that EBN could meliorate estrogen deficiency-associated increase in risk of cardiometabolic disease in rats, and may in fact be useful as a functional food for the prevention of such a problem in

  4. FoxO6 Integrates Insulin Signaling With Gluconeogenesis in the Liver

    Science.gov (United States)

    Kim, Dae Hyun; Perdomo, German; Zhang, Ting; Slusher, Sandra; Lee, Sojin; Phillips, Brett E.; Fan, Yong; Giannoukakis, Nick; Gramignoli, Roberto; Strom, Stephen; Ringquist, Steven; Dong, H. Henry

    2011-01-01

    OBJECTIVE Excessive endogenous glucose production contributes to fasting hyperglycemia in diabetes. This effect stems from inept insulin suppression of hepatic gluconeogenesis. To understand the underlying mechanisms, we studied the ability of forkhead box O6 (FoxO6) to mediate insulin action on hepatic gluconeogenesis and its contribution to glucose metabolism. RESEARCH DESIGN AND METHODS We characterized FoxO6 in glucose metabolism in cultured hepatocytes and in rodent models of dietary obesity, insulin resistance, or insulin-deficient diabetes. We determined the effect of FoxO6 on hepatic gluconeogenesis in genetically modified mice with FoxO6 gain- versus loss-of-function and in diabetic db/db mice with selective FoxO6 ablation in the liver. RESULTS FoxO6 integrates insulin signaling to hepatic gluconeogenesis. In mice, elevated FoxO6 activity in the liver augments gluconeogenesis, raising fasting blood glucose levels, and hepatic FoxO6 depletion suppresses gluconeogenesis, resulting in fasting hypoglycemia. FoxO6 stimulates gluconeogenesis, which is counteracted by insulin. Insulin inhibits FoxO6 activity via a distinct mechanism by inducing its phosphorylation and disabling its transcriptional activity, without altering its subcellular distribution in hepatocytes. FoxO6 becomes deregulated in the insulin-resistant liver, accounting for its unbridled activity in promoting gluconeogenesis and correlating with the pathogenesis of fasting hyperglycemia in diabetes. These metabolic abnormalities, along with fasting hyperglycemia, are reversible by selective inhibition of hepatic FoxO6 activity in diabetic mice. CONCLUSIONS Our data uncover a FoxO6-dependent pathway by which the liver orchestrates insulin regulation of gluconeogenesis, providing the proof-of-concept that selective FoxO6 inhibition is beneficial for curbing excessive hepatic glucose production and improving glycemic control in diabetes. PMID:21940782

  5. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    International Nuclear Information System (INIS)

    Naidoo, C.

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, 125 I-insulin binding to the solubilized erythrocyte membrane receptor and 125 I-insulin binding to fibroblasts in culture

  6. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, C

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, /sup 125/I-insulin binding to the solubilized erythrocyte membrane receptor and /sup 125/I-insulin binding to fibroblasts in culture.

  7. Uncooked rice of relatively low gelatinization degree resulted in lower metabolic glucose and insulin responses compared with cooked rice in female college students.

    Science.gov (United States)

    Jung, Eun Young; Suh, Hyung Joo; Hong, Wan Soo; Kim, Dong Geon; Hong, Yang Hee; Hong, In Sun; Chang, Un Jae

    2009-07-01

    Cooking processes that gelatinize granules or disrupt structure might increase the glucose and insulin responses because a disruption of the structure of starch by gelatinization increases its availability for digestion and absorption in the small intestine. We hypothesized that the uncooked form of rice, which has a relatively low degree of gelatinization even though in powder form, would result in lower metabolic glucose and insulin responses compared with cooked rice (CR). To assess the effects of the gelatinization of rice on metabolic response of glucose and insulin, we investigated the glucose and insulin responses to 3 rice meals of different gelatinization degree in female college students (n = 12): CR (76.9% gelatinized), uncooked rice powder (UP; 3.5% gelatinized), and uncooked freeze-dried rice powder (UFP; 5.4% gelatinized). Uncooked rice powders (UP and UFP) induced lower glucose and insulin responses compared with CR. The relatively low gelatinization degree of UPs resulted in low metabolic responses in terms of the glycemic index (CR: 72.4% vs UP: 49.7%, UFP: 59.8%) and insulin index (CR: 94.8% vs UP: 74.4%, UFP: 68.0%). In summary, UPs that were less gelatinized than CR induced low postprandial glucose and insulin responses.

  8. Differences in homeostatic model assessment (HOMA) values and insulin levels after vitamin D supplementation in healthy men: a double-blind randomized controlled trial.

    Science.gov (United States)

    Tepper, S; Shahar, D R; Geva, D; Ish-Shalom, S

    2016-06-01

    Vitamin D is thought to play a role in glucose metabolism. The aim of the present study was to determine the effect of vitamin D supplementation on markers of insulin sensitivity and inflammation in men without diabetes with vitamin D deficiency/insufficiency. In this 1-year double-blind randomized controlled trial, 130 men aged 20-65 years (mean age 47.52 ± 11.84 years) with serum 25-hydroxyvitamin D levels HOMA-IR) values between groups. Levels of insulin and HOMA-IR values remained steady during the study period in the treatment group but increased by 16% in the control group (p = 0.038 and p = 0.048, respectively). Vitamin D supplementation administered for 12 months in healthy men maintained insulin levels and HOMA-IR values relative to the increase in the control group. Further studies are needed to establish the long-term effect of vitamin D supplementation on the risk of diabetes. © 2016 John Wiley & Sons Ltd.

  9. Autophagy downregulation contributes to insulin resistance mediated injury in insulin receptor knockout podocytes in vitro

    Directory of Open Access Journals (Sweden)

    Ying Xu

    2016-04-01

    Full Text Available It is unknown whether autophagy activity is altered in insulin resistant podocytes and whether autophagy could be a therapeutic target for diabetic nephropathy (DN. Here we used shRNA transfection to knockdown the insulin receptor (IR gene in cultured human immortalized podocytes as an in vitro insulin resistant model. Autophagy related proteins LC3, Beclin, and p62 as well as nephrin, a podocyte injury marker, were assessed using western blot and immunofluorescence staining. Our results show that autophagy is suppressed when podocytes lose insulin sensitivity and that treatment of rapamycin, an mTOR specific inhibitor, could attenuate insulin resistance induced podocytes injury via autophagy activation. The present study deepens our understanding of the role of autophagy in the pathogenesis of DN.

  10. Insulin sensitivity and insulin secretion at birth in intrauterine growth retarded infants.

    Science.gov (United States)

    Setia, Sajita; Sridhar, M G; Bhat, Vishnu; Chaturvedula, Lata; Vinayagamoorti, R; John, Mathew

    2006-06-01

    To study insulin sensitivity, secretion and relation of insulin levels with birth weight and ponderal index in intrauterine growth retarded (IUGR) infants at birth. We studied 30 IUGR and 30 healthy newborns born at term by vaginal delivery in Jipmer, Pondicherry, India. Cord blood was collected at the time of delivery for measurement of plasma glucose and insulin. When compared with healthy newborns, IUGR newborns had lower plasma glucose levels (mean 2.3+/-0.98 versus 4.1+/-0.51 mmol/L, p<0.001); lower plasma insulin levels (mean 4.5+/-2.64 versus 11.03+/-1.68 microU/L, p<0.001); higher insulin sensitivity calculated using G/I ratio (mean 11.6+/-5.1 versus 6.7+/-0.31, p<0.001), HOMA IS (mean 5.5+/-6.0 versus 0.53+/-0.15, p<0.001), and QUICKI (mean 0.47+/-0.12 versus 0.34+/-0.02, p<0.001); and decreased pancreatic beta-cell function test measured as I/G (mean 0.10+/-0.037 versus 0.15+/-0.006, p<0.001). A positive correlation was identified between insulin levels and birth weight in both the healthy control group (r2 = 0.17, p = 0.024) and IUGR group (r2 = 0.13, p = 0.048). However correlation of insulin levels with ponderal index was much more confident in both healthy control (r2 = 0.90, p<0.001) and IUGR groups (r2 = 0.28, p = 0.003). Insulin status correlated both with birth weight and ponderal index more confidently in control group than in IUGR group. At birth, IUGR infants are hypoglycaemic, hypoinsulinaemic and display increased insulin sensitivity and decreased pancreatic beta-cell function. Insulin levels correlate with ponderal index much more confidently than with birth weight.

  11. Insulin resistance and protein energy metabolism in patients with advanced chronic kidney disease.

    Science.gov (United States)

    Siew, Edward D; Ikizler, Talat Alp

    2010-01-01

    Insulin resistance (IR), the reciprocal of insulin sensitivity is a known complication of advanced chronic kidney disease (CKD) and is associated with a number of metabolic derangements. The complex metabolic abnormalities observed in CKD such as vitamin D deficiency, obesity, metabolic acidosis, inflammation, and accumulation of "uremic toxins" are believed to contribute to the etiology of IR and acquired defects in the insulin-receptor signaling pathway in this patient population. Only a few investigations have explored the validity of commonly used assessment methods in comparison to gold standard hyperinsulinemic hyperglycemic clamp technique in CKD patients. An important consequence of insulin resistance is its role in the pathogenesis of protein energy wasting, a state of metabolic derangement characterized by loss of somatic and visceral protein stores not entirely accounted for by inadequate nutrient intake. In the general population, insulin resistance has been associated with accelerated protein catabolism. Among end-stage renal disease (ESRD) patients, enhanced muscle protein breakdown has been observed in patients with Type II diabetes compared to ESRD patients without diabetes. In the absence of diabetes mellitus (DM) or severe obesity, insulin resistance is detectable in dialysis patients and strongly associated with increased muscle protein breakdown, primarily mediated by the ubiquitin-proteasome pathway. Recent epidemiological data indicate a survival advantage and better nutritional status in insulin-free Type II DM patients treated with insulin sensitizer thiazolidinediones. Given the high prevalence of protein energy wasting in ESRD and its unequivocal association with adverse clinical outcomes, insulin resistance may represent an important modifiable target for intervention in the ESRD population.

  12. Levels of insulin, insulin-like growth factor-I and thyroid hormones in relation to the body condition score changes in periparturient dairy cows

    Directory of Open Access Journals (Sweden)

    Fratrić Natalija

    2013-01-01

    Full Text Available The objective of this study was to determine the levels of insulin, insulin like growth factor I (IGF-I and thyroid hormones in relation to the body condition score (BCS of periparturient dairy cows. The study was carried out on twenty Holstein-Friesian dairy cows with average milk production of 7000 L/305 days in the previous lactation, parity ranging from 2-4. All cows were BCS scored during the early dry period, 7±3 days before and after parturition. Based on the BCS at the early dry period, cows were divided in two groups: cows with high BCS (3.75- 4.25, HBCS, n=10, and cows with moderate BCS (2.75-3.75, MBCS, n=10. Blood samples were taken at the time of BCS evaluation. Concentrations of insulin, IGF-I, triiodothyroinine (T3 and thyroxine (T4 were determined by radioimmunoassay (RIA, INEP-Zemun, Serbia. Statistical differences between mean values were determined using Student t-test (p0.05. IGF-I level in HBCS cows at days 7±3 before calving was significantly higher (16.28±3.07:11.76±2.28, p<0.01, with a reverse relationship after calving (3.77±1.64:8.46±2.37, p<0.01. Insulin level was significantly lower at 7±3 days before calving in HBCS cows (16.26±4.60:20.18±4.96mIU/L, p<0.05. Thyroid hormones levels were significantly lower in HBCS group et all examined periods. [Projekat Ministarstva nauke Republike Srbije, br. III 46002 i br. 31003

  13. Chronic Latent Magnesium Deficiency in Obesity Decreases Positive Effects of Vitamin D on Cardiometabolic Risk Indicators.

    Science.gov (United States)

    Stokic, Edita; Romani, Andrea; Ilincic, Branislava; Kupusinac, Aleksandar; Stosic, Zoran; Isenovic, Esma R

    2017-08-21

    Obesity and micronutrient deficiencies contribute to the risk of cardiometabolic diseases such are type 2 diabetes mellitus and cardiovascular disease (CVD). We examined the frequency of concomitant deficit of magnesium (Mg) and vitamin D in obese patients and evaluated the connection of these combined deficiencies with indicators of cardiometabolic risk in non-diabetic subjects. Non-diabetic middle aged adults (n = 80; mean age 36 ± 4 years, 52% women) were recruited based on weight/adiposity parameters [i.e. body mass index (BMI) and body fat percentage (FAT%)]. Cardiometabolic risk indicators [insulin resistance (Homeostatic Model Assessment for insulin resistance (HOMA-IR)) and CVD risk (Framingham risk score for predicting 10-year CVD)], Mg status [i.e. total serum Mg concentration (TMg), chronic latent Mg deficiency (CLMD) - 0.75-0.85 mmol/L], vitamin D status [i.e. serum concentration of 25-hydroxyvitamin D (25(OH)D), vitamin D deficiency <50 nmol/l] were assessed. Among obese subjects 36% presented a combination of vitamin D deficiency and CLMD. In all studied patients, 25(OH)D and TMg levels both, individually and combined, showed a negative linear correlation with HOMA-IR and CVD risk. In subjects with CLMD (TMg ˂0.85 mmol/L), a negative linear coefficient was found between 25(OH)D and, HOMA-IR and CVD risk, compared with subjects with normal TMg status (TMg ≥0.85 mmol/L). CLMD and vitamin D deficiency may commonly be present in obese non-diabetic subjects. Individually and combined, both deficiencies predispose non-diabetic patients to increased risk of cardiometabolic diseases. Maintaining normal Mg status may improve the beneficial effects of vitamin D on cardiometabolic risk indicators. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Insulin therapy for type 2 diabetes - are we there yet? The d-Nav® story.

    Science.gov (United States)

    Hodish, I

    2018-01-01

    Insulin replacement therapy is mostly used by patients with type 2 diabetes who become insulin deficient and have failed other therapeutic options. They comprise about a quarter of those with diabetes, endures the majority of the complications and consumes the majority of the resources. Adequate insulin replacement therapy can prevent complications and reduce expenses, as long as therapy goals are achieved and maintained. Sadly, these therapy goals are seldom achieved and outcomes have not improved for decades despite advances in pharmacotherapy and technology. There is a growing recognition that the low success rate of insulin therapy results from intra-individual and inter-individual variations in insulin requirements. Total insulin requirements per day vary considerably between patients and constantly change without achieving a steady state. Thus, the key element in effective insulin therapy is unremitting and frequent dosage adjustments that can overcome those dynamics. In practice, insulin adjustments are done sporadically during outpatient clinic. Due to time constraints, providers are not able to deliver appropriate insulin dosage optimization. The d-Nav® Insulin Guidance Service has been developed to provide appropriate insulinization in insulin users without increasing the burden on healthcare systems. It relies on dedicated clinicians and a spectrum of technological solutions. Patients are provided with a handheld device called d-Nav® which advises them what dose of insulin to administer during each injection and automatically adjust insulin dosage when needed. The d-Nav care specialists periodically follow-up with users through telephone calls and in-person consultations to bestow user confidence, correct usage errors, triage, and identify uncharacteristic clinical courses. The following review provide details about the service and its clinical outcomes.

  15. Iontophoresis of monomeric insulin analogues in vitro: effects of insulin charge and skin pretreatment.

    Science.gov (United States)

    Langkjaer, L; Brange, J; Grodsky, G M; Guy, R H

    1998-01-23

    The aim of this study was to investigate the influence of association state and net charge of human insulin analogues on the rate of iontophoretic transport across hairless mouse skin, and the effect of different skin pretreatments on said transport. No insulin flux was observed with anodal delivery probably because of degradation at the Ag/AgCl anode. The flux during cathodal iontophoresis through intact skin was insignificant for human hexameric insulin, and only low and variable fluxes were observed for monomeric insulins. Using stripped skin on the other hand, the fluxes of monomeric insulins with two extra negative charges were 50-100 times higher than that of hexameric human insulin. Introducing three additional charges led to a further 2-3-fold increase in flux. Wiping the skin gently with absolute alcohol prior to iontophoresis resulted in a 1000-fold increase in transdermal transport of insulin relative to that across untreated skin, i.e. to almost the same level as stripping the skin. The alcohol pretreatment reduced the electrical resistance of the skin, presumably by lipid extraction. In conclusion, monomeric insulin analogues with at least two extra negative charges can be iontophoretically delivered across hairless mouse skin, whereas insignificant flux is observed with human, hexameric insulin. Wiping the skin with absolute alcohol prior to iontophoresis gave substantially improved transdermal transport of monomeric insulins resulting in clinically relevant delivery rates for basal treatment.

  16. Insulin Resistance of Puberty.

    Science.gov (United States)

    Kelsey, Megan M; Zeitler, Philip S

    2016-07-01

    Puberty is a time of considerable metabolic and hormonal change. Notably, puberty is associated with a marked decrease in insulin sensitivity, on par with that seen during pregnancy. In otherwise healthy youth, there is a nadir in insulin sensitivity in mid-puberty, and then it recovers at puberty completion. However, there is evidence that insulin resistance (IR) does not resolve in youth who are obese going into puberty and may result in increased cardiometabolic risk. Little is known about the underlying pathophysiology of IR in puberty, and how it might contribute to increased disease risk (e.g., type 2 diabetes). In this review, we have outlined what is known about the IR in puberty in terms of pattern, potential underlying mechanisms and other mediating factors. We also outline other potentially related metabolic changes that occur during puberty, and effects of underlying insulin resistant states (e.g., obesity) on pubertal changes in insulin sensitivity.

  17. A Calcium-Deficient Diet in Rat Dams during Gestation Decreases HOMA-β% in 3 Generations of Offspring.

    Science.gov (United States)

    Takaya, Junji; Yamanouchi, Sohsaku; Tanabe, Yuko; Kaneko, Kazunari

    2016-01-01

    Prenatal malnutrition can affect the phenotype of offspring by altering epigenetic regulation. Calcium (Ca) plays an important role in the pathogenesis of insulin resistance syndrome. We hypothesized that a Ca-deficient diet during pregnancy would alter insulin resistance and secretion in more than 1 generation of offspring. Female Wistar rats consumed either a Ca-deficient or a control diet ad libitum from 3 weeks before conception to 21 days after parturition and were mated with control males. Randomly selected F1 and F2 females were mated with males of each generation on postnatal day 70. The F1 and F2 dams were fed a control diet ad libitum during pregnancy and lactation. All offspring were fed a control diet starting at the time of weaning and were sacrificed on day 180. HOMA-β% decreased in F1 through F3, and levels in F2 and F3 males and females were significantly lower than in controls. The mean levels of insulin and HOMA-IR were higher in F1 males but lower in F3 males than in control males. The HOMA-IR did not differ between any of the female offspring and controls. Maternal Ca restriction during pregnancy and/or lactation influences insulin secretion in 3 generations of offspring. © 2017 S. Karger AG, Basel.

  18. Population-based cross-sectional study on insulin resistance and insulin-secretory capacity in Japanese school children.

    Science.gov (United States)

    Nishimura, Rimei; Sano, Hironari; Onda, Yoshiko; Tsujino, Daisuke; Ando, Kiyotaka; Ebara, Futoshi; Matsudaira, Toru; Ishikawa, Shinichiro; Sakamoto, Takuya; Tajima, Naoko; Utsunomiya, Kazunori

    2017-09-01

    Little information is available regarding the status of insulin resistance (IR) and insulin deficiency (ID), as well as their relationship with obesity in children using the homeostasis model assessment (HOMA) in a population-based setting. The study included a total of 445 ninth-grade children participating in health check-up programs implemented in Tsunan Town, Niigata, Japan (boys/girls, 252/193 [participation rates: 98.1/95.5%]). HOMA of insulin resistance ≥2.5 was defined as IR, and HOMA of β-cell function insulin resistance, HOMA of β-cell function, Disposition Index and body mass index in boys were 1.2 (0.8-1.7), 64 (44-93), 52 (43-64) and 19.2 (18.0-20.7) kg/m 2 , respectively, vs 1.5 (1.0-2.0), 86 (63-120), 60 (50-74) and 20.4 (18.9-22.0) kg/m 2 , respectively, in girls. The HOMA of insulin resistance, HOMA of β-cell function and Disposition Index values were significantly higher in the girls (P = 0.002, P < 0.001 and P < 0.001, respectively). Those with IR accounted for a significantly higher proportion of girls than boys (15.5/8.7%; P = 0.027); those with obesity accounted for 9.9/10.7% (boys/girls); and those with IR and obesity accounted for 2.4/4.7%. Those with ID accounted for a significantly higher proportion of boys than girls (20.6/8.8%; P = 0.001), whereas those with ID and obesity accounted for a very small proportion of either group (0.4/0.5%). The presence of IR was higher among the girls. In contrast, ID was more frequent among the boys. The infrequent presence of ID among children might support the presence of non-obese type 2 diabetes adults in Japan. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  19. Iron deficiency and cognitive functions

    Directory of Open Access Journals (Sweden)

    Jáuregui-Lobera I

    2014-11-01

    Full Text Available Ignacio Jáuregui-Lobera Department of Nutrition and Bromatology, Pablo de Olavide University, Seville, Spain Abstract: Micronutrient deficiencies, especially those related to iodine and iron, are linked to different cognitive impairments, as well as to potential long-term behavioral changes. Among the cognitive impairments caused by iron deficiency, those referring to attention span, intelligence, and sensory perception functions are mainly cited, as well as those associated with emotions and behavior, often directly related to the presence of iron deficiency anemia. In addition, iron deficiency without anemia may cause cognitive disturbances. At present, the prevalence of iron deficiency and iron deficiency anemia is 2%–6% among European children. Given the importance of iron deficiency relative to proper cognitive development and the alterations that can persist through adulthood as a result of this deficiency, the objective of this study was to review the current state of knowledge about this health problem. The relevance of iron deficiency and iron deficiency anemia, the distinction between the cognitive consequences of iron deficiency and those affecting specifically cognitive development, and the debate about the utility of iron supplements are the most relevant and controversial topics. Despite there being methodological differences among studies, there is some evidence that iron supplementation improves cognitive functions. Nevertheless, this must be confirmed by means of adequate follow-up studies among different groups. Keywords: iron deficiency, anemia, cognitive functions, supplementation

  20. Recombinant DNA derived monomeric insulin analogue: comparison with soluble human insulin in normal subjects.

    Science.gov (United States)

    Vora, J P; Owens, D R; Dolben, J; Atiea, J A; Dean, J D; Kang, S; Burch, A; Brange, J

    1988-11-12

    To compare the rate of absorption from subcutaneous tissue and the resulting hypoglycaemic effect of iodine-125 labelled soluble human insulin and a monomeric insulin analogue derived by recombinant DNA technology. Single blind randomised comparison of equimolar doses of 125I labelled soluble human insulin and insulin analogue. Study in normal people at a diabetes research unit and a university department of medical physics. Seven healthy male volunteers aged 20-39 not receiving any other drugs. After an overnight fast and a basal period of one hour two doses (0.05 and 0.1 U/kg) of 125I labelled soluble human insulin and insulin analogue were injected subcutaneously into the anterior abdominal wall on four separate days. To find a fast acting insulin for meal related requirements in insulin dependent diabetics. MEASUREMENTS and main results--Residual radioactivity at the injection site was measured continuously for the first two hours after injection of the 125I labelled preparations and thereafter for five minutes simultaneously with blood sampling. Frequent venous blood samples were obtained over six hours for determination of plasma immunoreactive insulin, insulin analogue, glucose, and glucagon values. Time to 50% of initial radioactivity at the injection site for the insulin analogue compared with soluble insulin was 61 v 135 minutes (p less than 0.05) with 0.05 U/kg and 67 v 145 minutes (p less than 0.001) with 0.1 U/kg. Concentrations in plasma increased faster after the insulin analogue compared with soluble insulin, resulting in higher plasma concentrations between 10 and 150 minutes (0.001 less than p less than 0.05) after 0.05 U/kg and between 40 and 360 minutes (0.001 less than p less than 0.05) after 0.1 U/kg. The hypoglycaemic response to insulin analogue was a plasma glucose nadir at 60 minutes with both doses compared with 90 and 120 minutes with soluble insulin at 0.5 and 0.1 U/kg respectively. The response of glucagon substantiated the earlier and

  1. Is further evaluation for growth hormone (GH) deficiency necessary in fibromyalgia patients with low serum insulin-like growth factor (IGF)-I levels?

    Science.gov (United States)

    Yuen, Kevin C J; Bennett, Robert M; Hryciw, Cheryl A; Cook, Marie B; Rhoads, Sharon A; Cook, David M

    2007-02-01

    Fibromyalgia (FM) is characterized by diffuse pain, fatigue, and sleep disturbances; symptoms that resemble the adult growth hormone (GH) deficiency syndrome. Many FM patients have low serum GH levels, with a hypothesized aetiology of dysregulated GH/insulin-like growth factor (IGF)-I axis. The aim of this study was to assess the GH reserve in FM patients with low serum IGF-I levels using the GH-releasing hormone (GHRH)-arginine test. We retrospectively reviewed the GHRH-arginine data of 77 FM patients with low serum IGF-I levels referred to our tertiary unit over a 4-year period. Of the 77 FM patients, 13 patients (17%) failed the GHRH-arginine test. Further evaluation with pituitary imaging revealed normal pituitary glands (n=7), coincident microadenomas (n=4), empty sella (n=1) and pituitary cyst (n=1), and relevant medical histories such as previous head injury (n=4), Sheehan's syndrome (n=1), and whiplash injury (n=1). In contrast, the remaining 64 patients (83%) that responded to the GHRH-arginine test demonstrated higher peak GH levels compared to age and BMI-matched controls (n=24). Our data shows that a subpopulation of FM patients with low serum IGF-I levels will fail the GHRH-arginine test. We, thus, recommend that the GH reserve of these patients should be evaluated further, as GH replacement may potentially improve the symptomatology of those with true GH deficiency. Additionally, the increased GH response rates to GHRH-arginine stimulation in the majority of FM patients with low serum IGF-I levels further supports the hypothesis of a dysregulated GH/IGF-I axis in the pathophysiology of FM.

  2. Sedentary lifestyle and its relation to cardiovascular risk factors, insulin resistance and inflammatory profile.

    Science.gov (United States)

    León-Latre, Montserrat; Moreno-Franco, Belén; Andrés-Esteban, Eva M; Ledesma, Marta; Laclaustra, Martín; Alcalde, Víctor; Peñalvo, José L; Ordovás, José M; Casasnovas, José A

    2014-06-01

    To analyze the association between sitting time and biomarkers of insulin resistance and inflammation in a sample of healthy male workers. Cross-sectional study carried out in a sample of 929 volunteers belonging to the Aragon Workers' Health Study cohort. Sociodemographic, anthropometric, pharmacological and laboratory data were collected: lipids-total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, apolipoproteins A-1 and B-100, lipoprotein (a)-, insulin resistance-glucose, glycated hemoglobin, homeostasis model assessment of insulin resistance, insulin, and triglyceride/high-density lipoprotein cholesterol ratio-, and inflammatory profile-C-reactive protein and leukocytes. Information on sitting time and physical activity was assessed using a questionnaire. Sedentary behavior was analyzed in terms of prevalences and medians, according to tertiles, using a multivariate model (crude and adjusted linear regression) with biomarkers of inflammation and insulin resistance. The most sedentary individuals had higher body mass index, greater waist circumference, and higher systolic blood pressure, with a significant upward trend in each tertile. Likewise, they had a worse lipid profile with a higher C-reactive protein level, homeostasis model assessment of insulin resistance index, triglyceride/high-density lipoprotein cholesterol ratio, and insulin concentration. In the multivariate analysis, we observed a significant association between the latter parameters and sitting time in hours (log C-reactive protein [β = 0.07], log homeostasis model assessment of insulin resistance index [β = 0.05], triglyceride/high-density lipoprotein cholesterol ratio [β = 0.23], and insulin [β = 0.44]), which remained after adjustment for metabolic equivalents-h/week. Workers who spend more time sitting show a worse inflammatory and insulin resistance profile independently of the physical activity performed. Copyright © 2013

  3. Treatment with N- and C-Terminal Peptides of Parathyroid Hormone-Related Protein Partly Compensate the Skeletal Abnormalities in IGF-I Deficient Mice

    Science.gov (United States)

    Portal-Núñez, Sergio; Murillo-Cuesta, Silvia; Lozano, Daniel; Cediel, Rafael; Esbrit, Pedro

    2014-01-01

    Insulin-like growth factor-I (IGF-I) deficiency causes growth delay, and IGF-I has been shown to partially mediate bone anabolism by parathyroid hormone (PTH). PTH-related protein (PTHrP) is abundant in bone, and has osteogenic features by poorly defined mechanisms. We here examined the capacity of PTHrP (1–36) and PTHrP (107–111) (osteostatin) to reverse the skeletal alterations associated with IGF-I deficiency. Igf1-null mice and their wild type littermates were treated with each PTHrP peptide (80 µg/Kg/every other day/2 weeks; 2 males and 4 females for each genotype) or saline vehicle (3 males and 3 females for each genotype). We found that treatment with either PTHrP peptide ameliorated trabecular structure in the femur in both genotypes. However, these peptides were ineffective in normalizing the altered cortical structure at this bone site in Igf1-null mice. An aberrant gene expression of factors associated with osteoblast differentiation and function, namely runx2, osteoprotegerin/receptor activator of NF-κB ligand ratio, Wnt3a , cyclin D1, connexin 43, catalase and Gadd45, as well as in osteocyte sclerostin, was found in the long bones of Igf1-null mice. These mice also displayed a lower amount of trabecular osteoblasts and osteoclasts in the tibial metaphysis than those in wild type mice. These alterations in Igf1-null mice were only partially corrected by each PTHrP peptide treatment. The skeletal expression of Igf2, Igf1 receptor and Irs2 was increased in Igf1-null mice, and this compensatory profile was further improved by treatment with each PTHrP peptide related to ERK1/2 and FoxM1 activation. In vitro, PTHrP (1–36) and osteostatin were effective in promoting bone marrow stromal cell mineralization in normal mice but not in IGF-I-deficient mice. Collectively, these findings indicate that PTHrP (1–36) and osteostatin can exert several osteogenic actions even in the absence of IGF-I in the mouse bone. PMID:24503961

  4. Degludec insulin: A novel basal insulin

    OpenAIRE

    Kalra, Sanjay; Unnikrishnan, Ambika Gopalakrishnan; Baruah, Manash; Kalra, Bharti

    2011-01-01

    This paper reviews a novel insulin analogue, degludec, which has the potential to emerge as an ideal basal insulin. It reviews the limitations of existing basal insulin and analogues, and highlights the need for a newer molecule. The paper discusses the potential advantages of degludec, while reviewing its pharmacologic and clinical studies done so far. The paper assesses the potential role of insulin degludec and degludec plus in clinical diabetes practice.

  5. Leptin Increases Striatal Dopamine D2 Receptor Binding in Leptin-Deficient Obese (ob/ob) Mice

    Energy Technology Data Exchange (ETDEWEB)

    Pfaffly, J.; Michaelides, M.; Wang, G-J.; Pessin, J.E.; Volkow, N.D.; Thanos, P.K.

    2010-06-01

    Peripheral and central leptin administration have been shown to mediate central dopamine (DA) signaling. Leptin-receptor deficient rodents show decreased DA D2 receptor (D2R) binding in striatum and unique DA profiles compared to controls. Leptin-deficient mice show increased DA activity in reward-related brain regions. The objective of this study was to examine whether basal D2R-binding differences contribute to the phenotypic behaviors of leptin-deficient ob/ob mice, and whether D2R binding is altered in response to peripheral leptin treatment in these mice. Leptin decreased body weight, food intake, and plasma insulin concentration in ob/ob mice but not in wild-type mice. Basal striatal D2R binding (measured with autoradiography [{sup 3}H] spiperone) did not differ between ob/ob and wild-type mice but the response to leptin did. In wild-type mice, leptin decreased striatal D2R binding, whereas, in ob/ob mice, leptin increased D2R binding. Our findings provide further evidence that leptin modulates D2R expression in striatum and that these effects are genotype/phenotype dependent.

  6. Insulin and leptin relations in obesity: a multimedia approach.

    Science.gov (United States)

    Yokaichiya, Daniela K; Galembeck, Eduardo; Torres, Bayardo B; Da Silva, José Antônio; de Araujo, Daniele R

    2008-09-01

    Obesity has been recognized as a worldwide public health problem. It significantly increases the chances of developing several diseases, including Type II diabetes. The roles of insulin and leptin in obesity involve reactions that can be better understood when they are presented step by step. The aim of this work was to design software with data from some of the most recent publications on obesity, especially those concerning the roles of insulin and leptin in this metabolic disturbance. The most notable characteristic of this software is the use of animations representing the cellular response together with the presentation of recently discovered mechanisms on the participation of insulin and leptin in processes leading to obesity. The software was field tested in the Biochemistry of Nutrition web-based course. After using the software and discussing its contents in chatrooms, students were asked to answer an evaluation survey about the whole activity and the usefulness of the software within the learning process. The teaching assistants (TA) evaluated the software as a tool to help in the teaching process. The students' and TAs' satisfaction was very evident and encouraged us to move forward with the software development and to improve the use of this kind of educational tool in biochemistry classes.

  7. Patient safety and minimizing risk with insulin administration - role of insulin degludec.

    Science.gov (United States)

    Aye, Myint M; Atkin, Stephen L

    2014-01-01

    Diabetes is a lifelong condition requiring ongoing medical care and patient self-management. Exogenous insulin therapy is essential in type 1 diabetes and becomes a necessity in patients with longstanding type 2 diabetes who fail to achieve optimal control with lifestyle modification, oral agents, and glucagon-like peptide 1-based therapy. One of the risks that hinders insulin use is hypoglycemia. Optimal insulin therapy should therefore minimize the risk of hypoglycemia while improving glycemic control. Insulin degludec (IDeg) is a novel basal insulin that, following subcutaneous injection, assembles into a depot of soluble multihexamer chains. These subsequently release IDeg monomers that are absorbed at a slow and steady rate into the circulation, with the terminal half-life of IDeg being ~25 hours. Thus, it requires only once-daily dosing unlike other basal insulin preparations that often require twice-daily dosing. Despite its long half-life, once-daily IDeg does not cause accumulation of insulin in the circulation after reaching steady state. IDeg once a day will produce a steady-state profile with a lower peak:trough ratio than other basal insulins. In clinical trials, this profile translates into a lower frequency of nocturnal hypoglycemia compared with insulin glargine, as well as an ability to allow some flexibility in dose timing without compromising efficacy and safety. Indeed, a study that tested the extremes of dosing intervals of 8 and 40 hours showed no detriment in either glycemic control or hypoglycemic frequency versus insulin glargine given at the same time each day. While extreme flexibility in dose timing is not recommended, these findings are reassuring. This may be particularly beneficial to elderly patients, patients with learning difficulties, or others who have to rely on health-care professionals for their daily insulin injections. Further studies are required to confirm whether this might benefit adherence to treatment, reduce long

  8. Continuation of growth hormone therapy versus placebo in transition-phase patients with growth hormone deficiency

    DEFF Research Database (Denmark)

    Jørgensen, Jens; Nørrelund, Helene; Vahl, Nina

    2002-01-01

    In a placebo-controlled, parallel study of 18 patients with a mean age of 20 years who had confirmed growth hormone (GH) deficiency, we evaluated body composition, insulin sensitivity, and glucose turnover at baseline (when all were receiving GH replacement); after 12 months of continued GH therapy...

  9. AAS, growth hormone, and insulin abuse: psychological and neuroendocrine effects

    Directory of Open Access Journals (Sweden)

    Michael R Graham

    2008-06-01

    Full Text Available Michael R Graham1, Peter Evans2, Bruce Davies1, Julien S Baker11Health and Exercise Science Research Unit, Faculty of Health Sport and Science, University of Glamorgan, Pontypridd, Wales, United Kingdom; 2Royal Gwent Hospital, Newport, Gwent, United KingdomAbstract: The nontherapeutic use of prescription medicines by individuals involved in sport is increasing. Anabolic-androgenic steroids (AAS are the most widely abused drug. Much of our knowledge of the psychological and physiological effects of human growth hormone (hGH and insulin has been learned from deficiency states. As a consequence of the Internet revolution, previously unobtainable and expensive designer drugs, particularly recombinant human growth hormone (rhGH and insulin, have become freely available at ridiculously discounted prices from countries such as China and are being abused. These drugs have various physiological and psychological effects and medical personnel must become aware that such prescription medicine abuse appears to be used not only for performance and cosmetic reasons, but as a consequence of psychological pre-morbidity.Keywords: AAS, cosmesis, growth hormone, insulin, performance, strength

  10. NHE1 deficiency in liver: Implications for non-alcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Vikram, E-mail: prasadvm@ucmail.uc.edu [Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine (United States); Chirra, Shivani [Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine (United States); Kohli, Rohit [Department of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital, University of Cincinnati, Cincinnati, OH 45267 (United States); Shull, Gary E. [Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine (United States)

    2014-07-25

    Highlights: • FXR, PGC1α and PPARγ levels are upregulated in NHE1 deficient livers. • NHE1 deficiency downregulates expression of pro-lipogenic genes in liver. • Chronic exposure to high-fat diet upregulates hepatic NHE1 expression. • Loss of NHE1 better preserves hepatic insulin signaling in high-fat diet-fed mice. - Abstract: Non-alcoholic fatty liver disease NAFLD is closely associated with the dysregulation of lipid homeostasis. Diet-induced hepatic steatosis, which can initiate NAFLD progression, has been shown to be dramatically reduced in mice lacking the electroneutral Na{sup +}/H{sup +} exchanger NHE1 (Slc9a1). In this study, we investigated if NHE1 deficiency had effects in liver that could contribute to the apparent protection against aberrant lipid accumulation. RT-PCR and immunoblot analyses of wild-type and NHE1-null livers revealed an expression profile that strongly suggested attenuation of both de novo lipogenesis and hepatic stellate cell activation, which is implicated in liver fibrosis. This included upregulation of the farnesoid X receptor FXR, peroxisome proliferator-activated receptor PPARγ, its co-activator PGC1α, and sestrin 2, an antioxidant protein involved in hepatic metabolic homeostasis. Furthermore, expression levels of the pro-lipogenic liver X receptor LXRα, and acetyl CoA carboxylases 1 and 2 were downregulated. These changes were associated with evidence of reduced cellular stress, which persisted even upon exposure to a high-fat diet, and the better preservation of insulin signaling, as evidenced by protein kinase B/Akt phosphorylation (Ser473). These results indicate that NHE1 deficiency may protect against NAFLD pathogenesis, which is significant given the availability of highly specific NHE1 inhibitors.

  11. NHE1 deficiency in liver: Implications for non-alcoholic fatty liver disease

    International Nuclear Information System (INIS)

    Prasad, Vikram; Chirra, Shivani; Kohli, Rohit; Shull, Gary E.

    2014-01-01

    Highlights: • FXR, PGC1α and PPARγ levels are upregulated in NHE1 deficient livers. • NHE1 deficiency downregulates expression of pro-lipogenic genes in liver. • Chronic exposure to high-fat diet upregulates hepatic NHE1 expression. • Loss of NHE1 better preserves hepatic insulin signaling in high-fat diet-fed mice. - Abstract: Non-alcoholic fatty liver disease NAFLD is closely associated with the dysregulation of lipid homeostasis. Diet-induced hepatic steatosis, which can initiate NAFLD progression, has been shown to be dramatically reduced in mice lacking the electroneutral Na + /H + exchanger NHE1 (Slc9a1). In this study, we investigated if NHE1 deficiency had effects in liver that could contribute to the apparent protection against aberrant lipid accumulation. RT-PCR and immunoblot analyses of wild-type and NHE1-null livers revealed an expression profile that strongly suggested attenuation of both de novo lipogenesis and hepatic stellate cell activation, which is implicated in liver fibrosis. This included upregulation of the farnesoid X receptor FXR, peroxisome proliferator-activated receptor PPARγ, its co-activator PGC1α, and sestrin 2, an antioxidant protein involved in hepatic metabolic homeostasis. Furthermore, expression levels of the pro-lipogenic liver X receptor LXRα, and acetyl CoA carboxylases 1 and 2 were downregulated. These changes were associated with evidence of reduced cellular stress, which persisted even upon exposure to a high-fat diet, and the better preservation of insulin signaling, as evidenced by protein kinase B/Akt phosphorylation (Ser473). These results indicate that NHE1 deficiency may protect against NAFLD pathogenesis, which is significant given the availability of highly specific NHE1 inhibitors

  12. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice.

    Science.gov (United States)

    Xia, Bo; Cai, Guo He; Yang, Hao; Wang, Shu Pei; Mitchell, Grant A; Wu, Jiang Wei

    2017-12-01

    Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency.

  13. Insulin resistance in drug naive patients with multiple sclerosis

    OpenAIRE

    Kostić Smiljana; Kolić Ivana; Raičević Ranko; Stojanović Zvezdana; Kostić Dejan; Dinčić Evica

    2017-01-01

    Background/Aim. Due to the fact that there is a relatively small number of data related to systemic insulin abnormalities in the multiple sclerosis (MS), the main objective of our study was to determine whether a dysbalance of glucose and insulin metabolism exist in patients with natural course of MS. Our hypothesis was that the metabolic disorder that characterizes state of the insulin resistance (IR) and reduced insulin sensitivity (IS) in untreated patie...

  14. Regulation of skeletal muscle insulin action in relation to dietary fatty acids and gender

    DEFF Research Database (Denmark)

    Høeg, Louise Dalgas

    In the present thesis the aims were 1) to investigate whether insulin sensitivity was different between women and men and whether a lipid load induced insulin resistance to a similar extent in women and men, 2) to determine whether lipid-induced insulin resistance was due to energy surplus...

  15. Relationship of hypovitaminosis d and insulin resistance in patients with coronary heart disease and metabolic syndrome

    Directory of Open Access Journals (Sweden)

    V. F. Orlovsky

    2013-08-01

    Full Text Available BACKGROUND: Insulin resistance (IR - is one of the predictors of cardiovascular disease and progression of atherosclerosis, regardless of major classical risk factors. IR has become a global epidemic. Experimental data indicate that low concentration of vitamin D associated with IR, diabetes mellitus type 2, by reducing the sensitivity of peripheral tissues to insulin and dysfunction of β-pancreatic cells. Randomized studies showed that vitamin D supplements have a preventive role in the development of type 2 diabetes mellitus (DM. The present study aims to examine the association between serum vitamin D concentrations and indicators of carbohydrate metabolism, indexes of insulin resistance and insulin sensitivity in the patients with coronary artery disease. METHODS: This study included 135 patients with CHD stable angina pectoris class II – III. The mean age was 64,7±0,97 years, 40% were women (n = 54. Patients were divided into two groups: I – with isolated CHD (70 patients and II - CHD combined with MS (65 patients. MS was diagnosed according to the criteria of the International Diabetes Federation (IDF, 2005. The study did not include patients who received vitamin D2, D3 and multivitamins containing these vitamins for last 6 months, patients with malabsorption fat syndrome, acute and chronic liver disease, chronic renal failure, nephrotic syndrome, urolithiasis, and primary hyperparathyroidism. Also excluded from the study were patients with DM type 1 and type 2 taking glucose-lowering drugs. Serum 25(OHD and insulin were measured by enzyme immunoassay (25-OH Vitamin D Immunodiagnostics Systems Limited (UK; DRG (USA. RESULT: Vitamin D deficiency or insufficiency was present in 91,9 % of the tested patients. Among subnormal values prevailed insufficiency in 51,9 % (70 pers., deficit diagnosed in 40.0% of patients (54 pers.. Established that patients with CHD associated with MS have a significantly more pronounced hypovitaminosis D

  16. Monomeric insulins and their experimental and clinical implications.

    Science.gov (United States)

    Brange, J; Owens, D R; Kang, S; Vølund, A

    1990-09-01

    Due to the inherent pharmacokinetic properties of available insulins, normoglycemia is rarely, if ever, achieved in insulin-dependent diabetic patients without compromising their quality of life. Subcutaneous insulin absorption is influenced by many factors, among which the associated state of insulin (hexameric) in pharmaceutical formulation may be of importance. This review describes the development of a series of human insulin analogues with reduced tendency to self-association that, because of more rapid absorption, are better suited to meal-related therapy. DNA technology has made it possible to prepare insulins that remain dimeric or even monomeric at high concentration by introducing one or a few amino acid substitutions into human insulin. These analogues were characterized and used for elucidating the mechanisms involved in subcutaneous absorption and were investigated in preliminary clinical studies. Their relative receptor binding and in vitro potency (free-fat cell assay), ranging from 0.05 to 600% relative to human insulin, were strongly correlated (r = 0.97). In vivo, most of the analogues exhibited approximately 100% activity, explainable by a dominating receptor-mediated clearance. This was confirmed by clamp studies in which correlation between receptor binding and clearance was observed. Thus, an analogue with reduced binding and clearance gives higher circulating concentrations, counterbalancing the reduced potency at the cellular level. Absorption studies in pigs revealed a strong inverse correlation (r = 0.96) between the rate of subcutaneous absorption and the mean association state of the insulin analogues. These studies also demonstrated that monomeric insulins were absorbed three times faster than human insulin. In healthy subjects, rates of disappearance from subcutis were two to three times faster for dimeric and monomeric analogues than for human insulin. Concomitantly, a more rapid rise in plasma insulin concentration and an earlier

  17. MCPIP1 deficiency in mice results in severe anemia related to autoimmune mechanisms.

    Directory of Open Access Journals (Sweden)

    Zhou Zhou

    Full Text Available Autoimmune gastritis is an organ-specific autoimmune disease of the stomach associated with pernicious anemia. The previous work from us and other groups identified MCPIP1 as an essential factor controlling inflammation and immune homeostasis. MCPIP1(-/- developed severe anemia. However, the mechanisms underlying this phenotype remain unclear. In the present study, we found that MCPIP1 deficiency in mice resulted in severe anemia related to autoimmune mechanisms. Although MCPIP1 deficiency did not affect erythropoiesis per se, the erythropoiesis in MCPIP1(-/- bone marrow erythroblasts was significantly attenuated due to iron and vitamin B12 (VB12 deficiency, which was mainly resulted from autoimmunity-associated gastritis and parietal cell loss. Consistently, exogenous supplement of iron and VB12 greatly improved the anemia phenotype of MCPIP1(-/- mice. Finally, we have evidence suggesting that autoimmune hemolysis may also contribute to anemia phenotype of MCPIP1(-/- mice. Taken together, our study suggests that MCPIP1 deficiency in mice leads to the development of autoimmune gastritis and pernicious anemia. Thus, MCPIP1(-/- mice may be a good mouse model for investigating the pathogenesis of pernicious anemia and testing the efficacy of some potential drugs for treatment of this disease.

  18. Serum leptin and insulin tests in obesity

    International Nuclear Information System (INIS)

    Yang Yin; Jiang Xiaojin; Leng Xiumei

    2001-01-01

    Objective: To study the clinical significance and the relations of leptin and insulin on obesity group. Methods: Leptin and insulin were tested with radioimmunoassay (RIA) in pre-obesity group and obesity group respectively. Results: Serum leptin and insulin levels were significantly elevated in obesity group compare with the controls (P<0.01). Conclusion: Changing with insulin, the elevation of leptin in obesity group has been identified as an important agent of diabetes mellitus (DM)

  19. Limited Documentation and Treatment Quality of Glycemic Inpatient Care in Relation to Structural Deficits of Heterogeneous Insulin Charts at a Large University Hospital.

    Science.gov (United States)

    Kopanz, Julia; Lichtenegger, Katharina M; Sendlhofer, Gerald; Semlitsch, Barbara; Cuder, Gerald; Pak, Andreas; Pieber, Thomas R; Tax, Christa; Brunner, Gernot; Plank, Johannes

    2018-02-09

    Insulin charts represent a key component in the inpatient glycemic management process. The aim was to evaluate the quality of structure, documentation, and treatment of diabetic inpatient care to design a new standardized insulin chart for a large university hospital setting. Historically grown blank insulin charts in use at 39 general wards were collected and evaluated for quality structure features. Documentation and treatment quality were evaluated in a consecutive snapshot audit of filled-in charts. The primary end point was the percentage of charts with any medication error. Overall, 20 different blank insulin charts with variable designs and significant structural deficits were identified. A medication error occurred in 55% of the 102 audited filled-in insulin charts, consisting of prescription and management errors in 48% and 16%, respectively. Charts of insulin-treated patients had more medication errors relative to patients treated with oral medication (P international standards, a new insulin chart was developed to overcome these quality hurdles.

  20. Dual role of proapoptotic BAD in insulin secretion and beta cell survival.

    Science.gov (United States)

    Danial, Nika N; Walensky, Loren D; Zhang, Chen-Yu; Choi, Cheol Soo; Fisher, Jill K; Molina, Anthony J A; Datta, Sandeep Robert; Pitter, Kenneth L; Bird, Gregory H; Wikstrom, Jakob D; Deeney, Jude T; Robertson, Kirsten; Morash, Joel; Kulkarni, Ameya; Neschen, Susanne; Kim, Sheene; Greenberg, Michael E; Corkey, Barbara E; Shirihai, Orian S; Shulman, Gerald I; Lowell, Bradford B; Korsmeyer, Stanley J

    2008-02-01

    The proapoptotic BCL-2 family member BAD resides in a glucokinase-containing complex that regulates glucose-driven mitochondrial respiration. Here, we present genetic evidence of a physiologic role for BAD in glucose-stimulated insulin secretion by beta cells. This novel function of BAD is specifically dependent upon the phosphorylation of its BH3 sequence, previously defined as an essential death domain. We highlight the pharmacologic relevance of phosphorylated BAD BH3 by using cell-permeable, hydrocarbon-stapled BAD BH3 helices that target glucokinase, restore glucose-driven mitochondrial respiration and correct the insulin secretory response in Bad-deficient islets. Our studies uncover an alternative target and function for the BAD BH3 domain and emphasize the therapeutic potential of phosphorylated BAD BH3 mimetics in selectively restoring beta cell function. Furthermore, we show that BAD regulates the physiologic adaptation of beta cell mass during high-fat feeding. Our findings provide genetic proof of the bifunctional activities of BAD in both beta cell survival and insulin secretion.

  1. PPARγ transcriptionally regulates the expression of insulin-degrading enzyme in primary neurons

    International Nuclear Information System (INIS)

    Du, Jing; Zhang, Lang; Liu, Shubo; Zhang, Chi; Huang, Xiuqing; Li, Jian; Zhao, Nanming; Wang, Zhao

    2009-01-01

    Insulin-degrading enzyme (IDE) is a protease that has been demonstrated to play a key role in degrading both Aβ and insulin and deficient in IDE function is associated with Alzheimer's disease (AD) and type 2 diabetes mellitus (DM2) pathology. However, little is known about the cellular and molecular regulation of IDE expression. Here we show IDE levels are markedly decreased in DM2 patients and positively correlated with the peroxisome proliferator-activated receptor γ (PPARγ) levels. Further studies show that PPARγ plays an important role in regulating IDE expression in rat primary neurons through binding to a functional peroxisome proliferator-response element (PPRE) in IDE promoter and promoting IDE gene transcription. Finally, we demonstrate that PPARγ participates in the insulin-induced IDE expression in neurons. These results suggest that PPARγ transcriptionally induces IDE expression which provides a novel mechanism for the use of PPARγ agonists in both DM2 and AD therapies.

  2. Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation.

    Directory of Open Access Journals (Sweden)

    Nils Paulmann

    2009-10-01

    Full Text Available While serotonin (5-HT co-localization with insulin in granules of pancreatic beta-cells was demonstrated more than three decades ago, its physiological role in the etiology of diabetes is still unclear. We combined biochemical and electrophysiological analyses of mice selectively deficient in peripheral tryptophan hydroxylase (Tph1-/- and 5-HT to show that intracellular 5-HT regulates insulin secretion. We found that these mice are diabetic and have an impaired insulin secretion due to the lack of 5-HT in the pancreas. The pharmacological restoration of peripheral 5-HT levels rescued the impaired insulin secretion in vivo. These findings were further evidenced by patch clamp experiments with isolated Tph1-/- beta-cells, which clearly showed that the secretory defect is downstream of Ca(2+-signaling and can be rescued by direct intracellular application of 5-HT via the clamp pipette. In elucidating the underlying mechanism further, we demonstrate the covalent coupling of 5-HT by transglutaminases during insulin exocytosis to two key players in insulin secretion, the small GTPases Rab3a and Rab27a. This renders them constitutively active in a receptor-independent signaling mechanism we have recently termed serotonylation. Concordantly, an inhibition of such activating serotonylation in beta-cells abates insulin secretion. We also observed inactivation of serotonylated Rab3a by enhanced proteasomal degradation, which is in line with the inactivation of other serotonylated GTPases. Our results demonstrate that 5-HT regulates insulin secretion by serotonylation of GTPases within pancreatic beta-cells and suggest that intracellular 5-HT functions in various microenvironments via this mechanism in concert with the known receptor-mediated signaling.

  3. Insulin is Differentially Related to Cognitive Decline and Atrophy in Alzheimer’s Disease and Aging

    Science.gov (United States)

    Burns, Jeffrey M.; Honea, Robyn A.; Vidoni, Eric D.; Hutfles, Lewis; Brooks, William M.; Swerdlow, Russell H.

    2012-01-01

    We assessed the relationship of insulin resistance with cognitive decline and brain atrophy over two years in early Alzheimer’s disease (AD, n=48) and nondemented controls (n=61). Intravenous glucose tolerance tests were conducted at baseline to determine insulin area-under-the-curve (AUC). A standard battery of cognitive tasks and MRI were conducted at baseline and 2-year follow-up. In nondemented controls, higher baseline insulin AUC was associated with 2-year decline in global cognitive performance (beta=−0.36, p=0.005). In early AD, however, higher insulin AUC was associated with less decline in global cognitive performance (beta=0.26, p=0.06), slower global brain atrophy (beta=0.40, p=0.01) and less regional atrophy in the bilateral hippocampi and cingulate cortices. While insulin resistance is associated with cognitive decline in nondemented aging, higher peripheral insulin may have AD-specific benefits or insulin signaling may be affected by systemic physiologic changes associated with AD. PMID:21745566

  4. Insulin degludec versus insulin glargine in insulin-naive patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Zinman, Bernard; Philis-Tsimikas, Athena; Cariou, Bertrand

    2012-01-01

    To compare ultra-long-acting insulin degludec with glargine for efficacy and safety in insulin-naive patients with type 2 diabetes inadequately controlled with oral antidiabetic drugs (OADs).......To compare ultra-long-acting insulin degludec with glargine for efficacy and safety in insulin-naive patients with type 2 diabetes inadequately controlled with oral antidiabetic drugs (OADs)....

  5. Identification of adipokine clusters related to parameters of fat mass, insulin sensitivity and inflammation.

    Directory of Open Access Journals (Sweden)

    Gesine Flehmig

    Full Text Available In obesity, elevated fat mass and ectopic fat accumulation are associated with changes in adipokine secretion, which may link obesity to inflammation and the development of insulin resistance. However, relationships among individual adipokines and between adipokines and parameters of obesity, glucose metabolism or inflammation are largely unknown. Serum concentrations of 20 adipokines were measured in 141 Caucasian obese men (n = 67 and women (n = 74 with a wide range of body weight, glycemia and insulin sensitivity. Unbiased, distance-based hierarchical cluster analyses were performed to recognize patterns among adipokines and their relationship with parameters of obesity, glucose metabolism, insulin sensitivity and inflammation. We identified two major adipokine clusters related to either (1 body fat mass and inflammation (leptin, ANGPTL3, DLL1, chemerin, Nampt, resistin or insulin sensitivity/hyperglycemia, and lipid metabolism (vaspin, clusterin, glypican 4, progranulin, ANGPTL6, GPX3, RBP4, DLK1, SFRP5, BMP7, adiponectin, CTRP3 and 5, omentin. In addition, we found distinct adipokine clusters in subgroups of patients with or without type 2 diabetes (T2D. Logistic regression analyses revealed ANGPTL6, DLK1, Nampt and progranulin as strongest adipokine correlates of T2D in obese individuals. The panel of 20 adipokines predicted T2D compared to a combination of HbA1c, HOMA-IR and fasting plasma glucose with lower sensitivity (78% versus 91% and specificity (76% versus 94%. Therefore, adipokine patterns may currently not be clinically useful for the diagnosis of metabolic diseases. Whether adipokine patterns are relevant for the predictive assessment of intervention outcomes needs to be further investigated.

  6. Associations between Zinc Deficiency and Metabolic Abnormalities in Patients with Chronic Liver Disease

    Directory of Open Access Journals (Sweden)

    Takashi Himoto

    2018-01-01

    Full Text Available Zinc (Zn is an essential trace element which has favorable antioxidant, anti-inflammatory, and apoptotic effects. The liver mainly plays a crucial role in maintaining systemic Zn homeostasis. Therefore, the occurrence of chronic liver diseases, such as chronic hepatitis, liver cirrhosis, or fatty liver, results in the impairment of Zn metabolism, and subsequently Zn deficiency. Zn deficiency causes plenty of metabolic abnormalities, including insulin resistance, hepatic steatosis and hepatic encephalopathy. Inversely, metabolic abnormalities like hypoalbuminemia in patients with liver cirrhosis often result in Zn deficiency. Recent studies have revealed the putative mechanisms by which Zn deficiency evokes a variety of metabolic abnormalities in chronic liver disease. Zn supplementation has shown beneficial effects on such metabolic abnormalities in experimental models and actual patients with chronic liver disease. This review summarizes the pathogenesis of metabolic abnormalities deriving from Zn deficiency and the favorable effects of Zn administration in patients with chronic liver disease. In addition, we also highlight the interactions between Zn and other trace elements, vitamins, amino acids, or hormones in such patients.

  7. Recent advances in understanding and treating COPD related to α1-antitrypsin deficiency.

    Science.gov (United States)

    Henao, Maria Paula; Craig, Timothy J

    2016-12-01

    Alpha-1-antitrypsin deficiency (AATD) is an orphan disease that predisposes individuals to COPD and liver disease. The following is a comprehensive review of AATD from epidemiology to treatment for physicians who treat COPD or asthma. Areas covered: In this comprehensive review of alpha-1-antitrypsin deficiency, we describe the historical perspective, genetics, epidemiology, clinical presentation and symptoms, screening and diagnosis, and treatments of the condition. Expert commentary: The two most important directions for advancing the understanding of AATD involve improving detection of the condition, especially in asymptomatic patients, and advancing knowledge of treatments directed specifically at AATD-related conditions. With regard to treatment for AATD-related conditions, research must continue to explore the implications and importance of augmentation therapy as well as consider new implementations that may prove more successful taking into consideration not only factors of pulmonary function and liver health, but also product availability and financial viability.

  8. Insulin-Inducible SMILE Inhibits Hepatic Gluconeogenesis.

    Science.gov (United States)

    Lee, Ji-Min; Seo, Woo-Young; Han, Hye-Sook; Oh, Kyoung-Jin; Lee, Yong-Soo; Kim, Don-Kyu; Choi, Seri; Choi, Byeong Hun; Harris, Robert A; Lee, Chul-Ho; Koo, Seung-Hoi; Choi, Hueng-Sik

    2016-01-01

    The role of a glucagon/cAMP-dependent protein kinase-inducible coactivator PGC-1α signaling pathway is well characterized in hepatic gluconeogenesis. However, an opposing protein kinase B (PKB)/Akt-inducible corepressor signaling pathway is unknown. A previous report has demonstrated that small heterodimer partner-interacting leucine zipper protein (SMILE) regulates the nuclear receptors and transcriptional factors that control hepatic gluconeogenesis. Here, we show that hepatic SMILE expression was induced by feeding in normal mice but not in db/db and high-fat diet (HFD)-fed mice. Interestingly, SMILE expression was induced by insulin in mouse primary hepatocyte and liver. Hepatic SMILE expression was not altered by refeeding in liver-specific insulin receptor knockout (LIRKO) or PKB β-deficient (PKBβ(-/-)) mice. At the molecular level, SMILE inhibited hepatocyte nuclear factor 4-mediated transcriptional activity via direct competition with PGC-1α. Moreover, ablation of SMILE augmented gluconeogenesis and increased blood glucose levels in mice. Conversely, overexpression of SMILE reduced hepatic gluconeogenic gene expression and ameliorated hyperglycemia and glucose intolerance in db/db and HFD-fed mice. Therefore, SMILE is an insulin-inducible corepressor that suppresses hepatic gluconeogenesis. Small molecules that enhance SMILE expression would have potential for treating hyperglycemia in diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  9. Loss of regulator of G protein signaling 5 exacerbates obesity, hepatic steatosis, inflammation and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Wei Deng

    Full Text Available BACKGROUND: The effect of regulator of G protein signaling 5 (RGS5 on cardiac hypertrophy, atherosclerosis and angiogenesis has been well demonstrated, but the role in the development of obesity and insulin resistance remains completely unknown. We determined the effect of RGS5 deficiency on obesity, hepatic steatosis, inflammation and insulin resistance in mice fed either a normal-chow diet (NC or a high-fat diet (HF. METHODOLOGY/PRINCIPAL FINDINGS: Male, 8-week-old RGS5 knockout (KO and littermate control mice were fed an NC or an HF for 24 weeks and were phenotyped accordingly. RGS5 KO mice exhibited increased obesity, fat mass and ectopic lipid deposition in the liver compared with littermate control mice, regardless of diet. When fed an HF, RGS5 KO mice had a markedly exacerbated metabolic dysfunction and inflammatory state in the blood serum. Meanwhile, macrophage recruitment and inflammation were increased and these increases were associated with the significant activation of JNK, IκBα and NF-κBp65 in the adipose tissue, liver and skeletal muscle of RGS5 KO mice fed an HF relative to control mice. These exacerbated metabolic dysfunction and inflammation are accompanied with decreased systemic insulin sensitivity in the adipose tissue, liver and skeletal muscle of RGS5 KO mice, reflected by weakened Akt/GSK3β phosphorylation. CONCLUSIONS/SIGNIFICANCE: Our data suggest that loss of RGS5 exacerbates HF-induced obesity, hepatic steatosis, inflammation and insulin resistance.

  10. Context-dependent regulation of feeding behaviour by the insulin receptor, DAF-2, in Caenorhabditis elegans.

    Science.gov (United States)

    Dillon, James; Holden-Dye, Lindy; O'Connor, Vincent; Hopper, Neil A

    2016-06-01

    Insulin signalling plays a significant role in both developmental programmes and pathways modulating the neuronal signalling that controls adult behaviour. Here, we have investigated insulin signalling in food-associated behaviour in adult C. elegans by scoring locomotion and feeding on and off bacteria, the worm's food. This analysis used mutants (daf-2, daf-18) of the insulin signalling pathway, and we provide evidence for an acute role for insulin signalling in the adult nervous system distinct from its impact on developmental programmes. Insulin receptor daf-2 mutants move slower than wild type both on and off food and showed impaired locomotory responses to food deprivation. This latter behaviour is manifest as a failure to instigate dispersal following prolonged food deprivation and suggests a role for insulin signalling in this adaptive response. Insulin receptor daf-2 mutants are also deficient in pharyngeal pumping on food and off food. Pharmacological analysis showed the pharynx of daf-2 is selectively compromised in its response to 5-HT compared to the excitatory neuropeptide FLP-17. By comparing the adaptive pharyngeal behaviour in intact worms and isolated pharyngeal preparations, we determined that an insulin-dependent signal extrinsic to the pharyngeal system is involved in feeding adaptation. Hence, we suggest that reactive insulin signalling modulates both locomotory foraging and pharyngeal pumping as the animal adapts to the absence of food. We discuss this in the context of insulin signalling directing a shift in the sensitivity of neurotransmitter systems to regulate the worm's response to changes in food availability in the environment.

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... en español Iron-deficiency anemia is a common type of anemia that occurs if you do not ... iron-deficiency anemia and help rule out other types of anemia. Treatment will explain treatment-related complications ...

  12. Rasal2 deficiency reduces adipogenesis and occurrence of obesity-related disorders

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Zhu

    2017-06-01

    Full Text Available Objective: Identification of additional regulatory factors involved in the onset of obesity is important to understand the mechanisms underlying this prevailing disease and its associated metabolic disorders and to develop therapeutic strategies. Through isolation and analysis of a mutant, we aimed to uncover the function of a Ras-GAP gene, Rasal2 (Ras protein activator like 2, in the development of obesity and related metabolic disorders and to obtain valuable insights regarding the mechanism underlying the function. Methods: An obesity-based genetic screen was performed to identify an insertional mutation that disrupts the expression of Rasal2 (Rasal2PB/PB mice. Important metabolic parameters, such as fat mass and glucose tolerance, were measured in Rasal2PB/PB mice. The impact of Rasal2 on adipogenesis was evaluated in the mutant mice and in 3T3-L1 preadipocytes treated with Rasal2 siRNA. Ras and ERK activities were then evaluated in Rasal2-deficient preadipocytes or mice, and their functional relationships with Rasal2 on adipogenesis were investigated by employing Ras and MEK inhibitors. Results: Rasal2PB/PB mice showed drastic decrease in Rasal2 expression and a lean phenotype. The mutant mice displayed decreased adiposity and resistance to high-fat diet induced metabolic disorders. Further analysis indicated that Rasal2 deficiency leads to impaired adipogenesis in vivo and in vitro. Moreover, while Rasal2 deficiency resulted in increased activity of both Ras and ERK in preadipocytes, reducing Ras, but not ERK, suppressed the impaired adipogenesis. Conclusions: Rasal2 promotes adipogenesis, which may critically contribute to its role in the development of obesity and related metabolic disorders and may do so by repressing Ras activity in an ERK-independent manner. Keywords: Ras, ERK, Ras-GAP, Glucose tolerance, High-fat diet, Diabetes

  13. Vasoconstrictor role of cyclooxygenase-1-mediated prostacyclin synthesis in non-insulin-dependent diabetic mice induced by high-fat diet and streptozotocin.

    Science.gov (United States)

    Zhu, Ningxia; Liu, Bin; Luo, Wenhong; Zhang, Yingzhan; Li, Hui; Li, Shasha; Zhou, Yingbi

    2014-08-01

    This study tested the hypothesis that in diabetic arteries, cyclooxygenase (COX)-1 mediates endothelial prostacyclin (PGI2) synthesis, which evokes vasoconstrictor activity under the pathological condition. Non-insulin-dependent diabetes was induced to C57BL/6 mice and those with COX-1 deficiency (COX-1(-/-) mice) using a high-fat diet in combination with streptozotocin injection. In vitro analyses were performed 3 mo after. Results showed that in diabetic aortas, the endothelial muscarinic receptor agonist ACh evoked an endothelium-dependent production of the PGI2 metabolite 6-keto-PGF1α, which was abolished in COX-1(-/-) mice. Meanwhile, COX-1 deficiency or COX-1 inhibition prevented vasoconstrictor activity in diabetic abdominal aortas, resulting in enhanced relaxation evoked by ACh. In a similar manner, COX-1 deficiency increased the relaxation evoked by ACh in nitric oxide synthase-inhibited diabetic renal arteries. Also, in diabetic abdominal aortas and/or renal arteries, both PGI2 and the COX substrate arachidonic acid evoked contractions similar to those of nondiabetic mice. However, the contraction to arachidonic acid, but not that to PGI2, was abolished in vessels from COX-1(-/-) mice. Moreover, we found that 3 mo after streptozotocin injection, systemic blood pressure increased in diabetic C57BL/6 mice but not in diabetic COX-1(-/-) mice. These results explicitly demonstrate that in the given arteries from non-insulin-dependent diabetic mice, COX-1 remains a major contributor to the endothelial PGI2 synthesis that evokes vasoconstrictor activity under the pathological condition. Also, our data suggest that COX-1 deficiency prevents or attenuates diabetic hypertension in mice, although this could be related to the loss of COX-1-mediated activities derived from both vascular and nonvascular tissues. Copyright © 2014 the American Physiological Society.

  14. Novel Simple Insulin Delivery Device Reduces Barriers to Insulin Therapy in Type 2 Diabetes: Results From a Pilot Study

    OpenAIRE

    Hermanns, Norbert; Lilly, Leslie C.; Mader, Julia K.; Aberer, Felix; Ribitsch, Anja; Kojzar, Harald; Warner, Jay; Pieber, Thomas R.

    2015-01-01

    Background: The PaQ® insulin delivery system is a simple-to-use patch-on device that provides preset basal rates and bolus insulin on demand. In addition to feasibility of use, safety, and efficacy (reported elsewhere), this study analyzed the impact of PaQ on patient-reported outcomes, including barriers to insulin treatment, diabetes-related distress, and attitudes toward insulin therapy in patients with type 2 diabetes on a stable multiple daily injection (MDI) regimen. Methods: This singl...

  15. Novel Simple Insulin Delivery Device Reduces Barriers to Insulin Therapy in Type 2 Diabetes

    Science.gov (United States)

    Hermanns, Norbert; Lilly, Leslie C.; Mader, Julia K.; Aberer, Felix; Ribitsch, Anja; Kojzar, Harald; Warner, Jay; Pieber, Thomas R.

    2015-01-01

    Background: The PaQ® insulin delivery system is a simple-to-use patch-on device that provides preset basal rates and bolus insulin on demand. In addition to feasibility of use, safety, and efficacy (reported elsewhere), this study analyzed the impact of PaQ on patient-reported outcomes, including barriers to insulin treatment, diabetes-related distress, and attitudes toward insulin therapy in patients with type 2 diabetes on a stable multiple daily injection (MDI) regimen. Methods: This single-center, open-label, single-arm study comprised three 2-week periods: baseline (MDI), transition from MDI to PaQ, and PaQ treatment. Validated questionnaires were administered during the baseline and PaQ treatment periods: Barriers to Insulin Treatment questionnaire (BIT), Insulin Treatment Appraisal Scale (ITAS), and Problem Areas in Diabetes scale (PAID). Results: Eighteen patients (age 59 ± 5 years, diabetes duration 15 ± 7 years, 21% female, HbA1c 7.7 ± 0.7%) completed the questionnaires. There was a strong, significant effect of PaQ use in mean BIT total scores (difference [D] = −5.4 ± 0.7.7, P = .01, effect size [d] = 0.70). Patients perceived less stigmatization by insulin injection (D = −2.2 ± 6.2, P = .18, d = 0.35), increased positive outcome (D = 1.9 ± 6.6, P = .17, d = 0.29), and less fear of injections (1.3 ± 4.8, P = .55, d = 0.28). Mean change in ITAS scores after PaQ device use showed a nonsignificant improvement of 1.71 ± 5.63 but moderate effect size (d = 0.30, P = .14). No increase in PAID scores was seen. Conclusions: The results and moderate to large effects sizes suggest that PaQ device use has beneficial and clinically relevant effects to overcoming barriers to and negative appraisal of insulin treatment, without increasing other diabetes-related distress. PMID:25670847

  16. Insulin receptor-related receptor as an extracellular pH sensor involved in the regulation of acid-base balance.

    Science.gov (United States)

    Petrenko, Alexander G; Zozulya, Sergey A; Deyev, Igor E; Eladari, Dominique

    2013-10-01

    Recent studies of insulin receptor-related receptor (IRR) revealed its unusual property to activate upon extracellular application of mildly alkaline media, pH>7.9. The activation of IRR with hydroxyl anion has typical features of ligand-receptor interaction; it is specific, dose-dependent, involves the IRR extracellular domain and is accompanied by a major conformational change. IRR is a member of the insulin receptor minifamily and has been long viewed as an orphan receptor tyrosine kinase since no peptide or protein agonist of IRR was found. In the evolution, IRR is highly conserved since its divergence from the insulin and insulin-like growth factor receptors in amphibia. The latter two cannot be activated by alkali. Another major difference between them is that unlike ubiquitously expressed insulin and insulin-like growth factor receptors, IRR is found in specific sets of cells of only some tissues, most of them being exposed to extracorporeal liquids of extreme pH. In particular, largest concentrations of IRR are in beta-intercalated cells of the kidneys. The primary physiological function of these cells is to excrete excessive alkali as bicarbonate into urine. When IRR is removed genetically, animals loose the property to excrete bicarbonate upon experimentally induced alkalosis. In this review, we will discuss the available in vitro and in vivo data that support the hypothesis of IRR role as a physiological alkali sensor that regulates acid-base balance. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. The Effect of a Diet Moderately High in Protein and Fiber on Insulin Sensitivity Measured Using the Dynamic Insulin Sensitivity and Secretion Test (DISST

    Directory of Open Access Journals (Sweden)

    Lisa Te Morenga

    2017-11-01

    Full Text Available Evidence shows that weight loss improves insulin sensitivity but few studies have examined the effect of macronutrient composition independently of weight loss on direct measures of insulin sensitivity. We randomised 89 overweight or obese women to either a standard diet (StdD, that was intended to be low in fat and relatively high in carbohydrate (n = 42 or to a relatively high protein (up to 30% of energy, relatively high fibre (>30 g/day diet (HPHFib (n = 47 for 10 weeks. Advice regarding strict adherence to energy intake goals was not given. Insulin sensitivity and secretion was assessed by a novel method—the Dynamic Insulin Sensitivity and Secretion Test (DISST. Although there were significant improvements in body composition and most cardiometabolic risk factors on HPHFib, insulin sensitivity was reduced by 19.3% (95% CI: 31.8%, 4.5%; p = 0.013 in comparison with StdD. We conclude that the reduction in insulin sensitivity after a diet relatively high in both protein and fibre, despite cardiometabolic improvements, suggests insulin sensitivity may reflect metabolic adaptations to dietary composition for maintenance of glucose homeostasis, rather than impaired metabolism.

  18. Identification of De Novo Synthesized and Relatively Older Proteins

    OpenAIRE

    Jaleel, Abdul; Henderson, Gregory C.; Madden, Benjamin J.; Klaus, Katherine A.; Morse, Dawn M.; Gopala, Srinivas; Nair, K. Sreekumaran

    2010-01-01

    OBJECTIVE The accumulation of old and damaged proteins likely contributes to complications of diabetes, but currently no methodology is available to measure the relative age of a specific protein alongside assessment of posttranslational modifications (PTM). To accomplish our goal of studying the impact of insulin deficiency and hyperglycemia in type 1 diabetes upon accumulation of old damaged isoforms of plasma apolipoprotein A-1 (ApoA-1), we sought to develop a novel methodology, which is r...

  19. Calcineurin inhibitors acutely improve insulin sensitivity without affecting insulin secretion in healthy human volunteers

    DEFF Research Database (Denmark)

    Øzbay, Aygen; Møller, Niels; Juhl, Claus

    2012-01-01

    and tacrolimus has been attributed to both beta cell dysfunction and impaired insulin sensitivity. WHAT THIS STUDY ADDS: This is the first trial to investigate beta cell function and insulin sensitivity using gold standard methodology in healthy human volunteers treated with clinically relevant doses...... of ciclosporin and tacrolimus. We document that both drugs acutely increase insulin sensitivity, while first phase and pulsatile insulin secretion remain unaffected. This study demonstrates that ciclosporin and tacrolimus have similar acute effects on glucose metabolism in healthy humans. AIM The introduction...... of calcineurin inhibitors (CNIs) ciclosporin (CsA) and tacrolimus (Tac) has improved the outcome of organ transplants, but complications such as new onset diabetes mellitus after transplantation (NODAT) cause impairment of survival rates. The relative contribution of each CNI to the pathogenesis and development...

  20. Myeloid differentiation factor 88 (MyD88-deficiency increases risk of diabetes in mice.

    Directory of Open Access Journals (Sweden)

    Toru Hosoi

    Full Text Available BACKGROUND: Multiple lines of evidence suggest innate immune response pathways to be involved in the development of obesity-associated diabetes although the molecular mechanism underling the disease is unknown. Recent observations suggest that saturated fatty acids can act as a ligand for toll-like receptor (TLR 4, which is thought to mediate obesity-associated insulin resistance. Myeloid differentiation factor 88 (MyD88 is an adapter protein for TLR/IL-1 receptor signaling, which is involved in the activation of inflammatory pathways. To evaluate molecular mechanisms linking obesity-associated diabetes down-stream of TLR4, we investigated physiological role of MyD88 in high-fat diet (HFD-induced obesity. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we found MyD88-deficient mice fed a HFD had increased circulating levels of insulin, leptin and cholesterol, as well as liver dysfunction (increased induction of ALT levels, increased activation of JNK and cleavage of PARP, which were linked to the onset of severe diabetes. On the other hand, TNF-alpha would not be involved in HFD-induced diabetes in MyD88-deficient mice, because TNF-alpha level was attenuated in MyD88-deficient mice fed with HFD. CONCLUSIONS/SIGNIFICANCE: The present finding of an unexpected role for MyD88 in preventing diabetes may provide a potential novel target/strategy for treating metabolic syndrome.

  1. In HepG2 cells, coexisting carnitine deficiency masks important indicators of marginal biotin deficiency.

    Science.gov (United States)

    Bogusiewicz, Anna; Boysen, Gunnar; Mock, Donald M

    2015-01-01

    A large number of birth defects are related to nutrient deficiencies; concern that biotin deficiency is teratogenic in humans is reasonable. Surprisingly, studies indicate that increased urinary 3-hydroxyisovalerylcarnitine (3HIAc), a previously validated marker of biotin deficiency, is not a valid biomarker in pregnancy. In this study we hypothesized that coexisting carnitine deficiency can prevent the increase in 3HIAc due to biotin deficiency. We used a 2-factor nutrient depletion design to induce isolated and combined biotin and carnitine deficiency in HepG2 cells and then repleted cells with carnitine. To elucidate the metabolic pathogenesis, we quantitated intracellular and extracellular free carnitine, acylcarnitines, and acylcarnitine ratios using liquid chromatography-tandem mass spectrometry. Relative to biotin-sufficient, carnitine-sufficient cells, intracellular acetylcarnitine increased by 90%, propionylcarnitine more than doubled, and 3HIAc increased by >10-fold in biotin-deficient, carnitine-sufficient (BDCS) cells, consistent with a defensive mechanism in which biotin-deficient cells transesterify the acyl-coenzyme A (acyl-CoA) substrates of the biotin-dependent carboxylases to the related acylcarnitines. Likewise, in BDCS cells, the ratio of acetylcarnitine to malonylcarnitine and the ratio of propionylcarnitine to methylmalonylcarnitine both more than tripled, and the ratio of 3HIAc to 3-methylglutarylcarnitine (MGc) increased by >10-fold. In biotin-deficient, carnitine-deficient (BDCD) cells, the 3 substrate-derived acylcarnitines changed little, but the substrate:product ratios were masked to a lesser extent. Moreover, carnitine repletion unmasked biotin deficiency in BDCD cells as shown by increases in acetylcarnitine, propionylcarnitine, and 3HIAc (each increased by >50-fold). Likewise, ratios of acetylcarnitine:malonylcarnitine, propionylcarnitine:methylmalonylcarnitine, and 3HIAc:MGc all increased by >8-fold. Our findings provide strong

  2. Associations between genetic polymorphisms of insulin-like growth factor axis genes and risk for age-related macular degeneration

    Science.gov (United States)

    Purpose: Our objective was to investigate if insulin-like growth factor (IGF) axis genes affect the risk for age-related macular degeneration (AMD). Methods: 864 Caucasian non-diabetic participants from the Age-Related Eye Disease Study (AREDS) Genetic Repository were used in this case control st...

  3. Serum visfatin in relation to insulin resistance and markers of hyperandrogenism in lean and obese women with polycystic ovary syndrome.

    Science.gov (United States)

    Kowalska, Irina; Straczkowski, Marek; Nikolajuk, Agnieszka; Adamska, Agnieszka; Karczewska-Kupczewska, Monika; Otziomek, Elzbieta; Wolczynski, Slawomir; Gorska, Maria

    2007-07-01

    Visfatin, a protein secreted by adipose tissue, is suggested to play a role in pathogenesis of insulin resistance. In polycystic ovary syndrome (PCOS), insulin resistance might be involved in the development of endocrine and metabolic abnormalities. The aim of the study was to asses the relation between serum visfatin concentration and insulin sensitivity and markers of hyperandrogenism in lean and obese PCOS patients. The study group consisted of 70 women with PCOS (23 lean and 47 obese) and 45 healthy women (25 lean and 20 obese). Euglycemic hyperinsulinemic clamp and the measurements of serum visfatin, sex hormones were performed. The PCOS group had lower insulin sensitivity (P=0.00049) and higher serum visfatin (P=0.047) in comparison to the control group. The decrease in insulin sensitivity was present in both the lean (P=0.019) and obese (P=0.0077) PCOS subjects, whereas increase in serum visfatin was observed only in lean PCOS subjects (P=0.012). In the whole group, serum visfatin was negatively correlated with insulin sensitivity (r=-0.27, P=0.004). This relationship was also observed in the subgroup of lean (r=-0.30, P=0.038), but not obese women. Additionally, in lean women, visfatin was associated with serum testosterone (r=0.47, P=0.002) and free androgen index (r=0.48, P=0.002), independently of other potential confounding factors. Visfatin is associated with insulin resistance and markers of hyperandrogenism in lean PCOS patients.

  4. Insulin resistance in non-obese subjects is associated with activation of the JNK pathway and impaired insulin signaling in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Umesh B Masharani

    2011-05-01

    Full Text Available The pathogenesis of insulin resistance in the absence of obesity is unknown. In obesity, multiple stress kinases have been identified that impair the insulin signaling pathway via serine phosphorylation of key second messenger proteins. These stress kinases are activated through various mechanisms related to lipid oversupply locally in insulin target tissues and in various adipose depots.To explore whether specific stress kinases that have been implicated in the insulin resistance of obesity are potentially contributing to insulin resistance in non-obese individuals, twenty healthy, non-obese, normoglycemic subjects identified as insulin sensitive or resistant were studied. Vastus lateralis muscle biopsies obtained during euglycemic, hyperinsulinemic clamp were evaluated for insulin signaling and for activation of stress kinase pathways. Total and regional adipose stores and intramyocellular lipids (IMCL were assessed by DXA, MRI and (1H-MRS. In muscle of resistant subjects, phosphorylation of JNK was increased (1.36±0.23 vs. 0.78±0.10 OD units, P<0.05, while there was no evidence for activation of p38 MAPK or IKKβ. IRS-1 serine phosphorylation was increased (1.30±0.09 vs. 0.22±0.03 OD units, P<0.005 while insulin-stimulated tyrosine phosphorylation decreased (10.97±0.95 vs. 0.89±0.50 OD units, P<0.005. IMCL levels were twice as high in insulin resistant subjects (3.26±0.48 vs. 1.58±0.35% H(2O peak, P<0.05, who also displayed increased total fat and abdominal fat when compared to insulin sensitive controls.This is the first report demonstrating that insulin resistance in non-obese, normoglycemic subjects is associated with activation of the JNK pathway related to increased IMCL and higher total body and abdominal adipose stores. While JNK activation is consistent with a primary impact of muscle lipid accumulation on metabolic stress, further work is necessary to determine the relative contributions of the various mediators of impaired

  5. Effects of glucose, insulin, and insulin resistance on cerebral 18F-FDG distribution in cognitively normal older subjects

    Science.gov (United States)

    Onishi, Airin; Fujiwara, Yoshinori; Ishiwata, Kiichi; Ishii, Kenji

    2017-01-01

    Background Increasing plasma glucose levels and insulin resistance can alter the distribution pattern of fluorine-18-labeled fluorodeoxyglucose (18F-FDG) in the brain and relatively reduce 18F-FDG uptake in Alzheimer's disease (AD)-related hypometabolic regions, leading to the appearance of an AD-like pattern. However, its relationship with plasma insulin levels is unclear. We aimed to compare the effects of plasma glucose levels, plasma insulin levels and insulin resistance on the appearance of the AD-like pattern in 18F-FDG images. Methods Fifty-nine cognitively normal older subjects (age = 75.7 ± 6.4 years) underwent 18F-FDG positron emission tomography along with measurement of plasma glucose and insulin levels. As an index of insulin resistance, the Homeostasis model assessment of Insulin Resistance (HOMA-IR) was calculated. Results Plasma glucose levels, plasma insulin levels, and HOMA-IR were 102.2 ± 8.1 mg/dL, 4.1 ± 1.9 μU/mL, and 1.0 ± 0.5, respectively. Whole-brain voxelwise analysis showed a negative correlation of 18F-FDG uptake with plasma glucose levels in the precuneus and lateral parietotemporal regions (cluster-corrected p < 0.05), and no correlation with plasma insulin levels or HOMA-IR. In the significant cluster, 18F-FDG uptake decreased by approximately 4–5% when plasma glucose levels increased by 20 mg/dL. In the precuneus region, volume-of-interest analysis confirmed a negative correlation of 18F-FDG uptake with plasma glucose levels (r = -0.376, p = 0.002), and no correlation with plasma insulin levels (r = 0.156, p = 0.12) or HOMA-IR (r = 0.096, p = 0.24). Conclusion This study suggests that, of the three parameters, plasma glucose levels have the greatest effect on the appearance of the AD-like pattern in 18F-FDG images. PMID:28715453

  6. Effects of glucose, insulin, and insulin resistance on cerebral 18F-FDG distribution in cognitively normal older subjects.

    Directory of Open Access Journals (Sweden)

    Kenji Ishibashi

    Full Text Available Increasing plasma glucose levels and insulin resistance can alter the distribution pattern of fluorine-18-labeled fluorodeoxyglucose (18F-FDG in the brain and relatively reduce 18F-FDG uptake in Alzheimer's disease (AD-related hypometabolic regions, leading to the appearance of an AD-like pattern. However, its relationship with plasma insulin levels is unclear. We aimed to compare the effects of plasma glucose levels, plasma insulin levels and insulin resistance on the appearance of the AD-like pattern in 18F-FDG images.Fifty-nine cognitively normal older subjects (age = 75.7 ± 6.4 years underwent 18F-FDG positron emission tomography along with measurement of plasma glucose and insulin levels. As an index of insulin resistance, the Homeostasis model assessment of Insulin Resistance (HOMA-IR was calculated.Plasma glucose levels, plasma insulin levels, and HOMA-IR were 102.2 ± 8.1 mg/dL, 4.1 ± 1.9 μU/mL, and 1.0 ± 0.5, respectively. Whole-brain voxelwise analysis showed a negative correlation of 18F-FDG uptake with plasma glucose levels in the precuneus and lateral parietotemporal regions (cluster-corrected p < 0.05, and no correlation with plasma insulin levels or HOMA-IR. In the significant cluster, 18F-FDG uptake decreased by approximately 4-5% when plasma glucose levels increased by 20 mg/dL. In the precuneus region, volume-of-interest analysis confirmed a negative correlation of 18F-FDG uptake with plasma glucose levels (r = -0.376, p = 0.002, and no correlation with plasma insulin levels (r = 0.156, p = 0.12 or HOMA-IR (r = 0.096, p = 0.24.This study suggests that, of the three parameters, plasma glucose levels have the greatest effect on the appearance of the AD-like pattern in 18F-FDG images.

  7. Chemical stability of insulin. 5. Isolation, characterization and identification of insulin transformation products.

    Science.gov (United States)

    Brange, J; Hallund, O; Sørensen, E

    1992-01-01

    During storage of insulin formulated for therapy, minor amounts of various degradation and covalent di- and polymerization products are formed [1-3]. The main chemical transformation products were isolated from aged preparations and characterized chemically and biologically. The most prominent products formed in neutral medium were identified as a mixture of deamidation products hydrolyzed at residue B3, namely isoAsp B3 and Asp B3 derivatives. A hydrolysis product formed only in crystals of insulin zinc suspensions containing a surplus of zinc ions in the supernatant was identified as an A8-A9 cleavage product. The small amounts of covalent insulin dimers (CID) formed in all formulations were shown to be a heterogenous mixture of 5-6 different CIDs with a composition dependent on the pharmaceutical formulation. The chemical characteristics of the CIDs indicate that they are formed through a transamidation reaction mainly between the B-chain N-terminal and one of the four amide side-chains of the A chain. GlnA15, AsnA18 and, in particular, AsnA21 participate in the formation of such isopeptide links between two insulin molecules. The covalent insulin-protamine products (CIPP) formed during storage of NPH preparations presumably originate from a similar reaction between the protamine N-terminal with an amide in insulin. Covalent polymerization products, mainly formed during storage of amorphously suspended insulin at higher temperature, were shown to be due to disulfide interactions. Biological in vivo potencies relative to native insulin were less than 2% for the split-(A8-A9)-product and for the covalent disulfide exchange polymers, 4% for the CIPP, approximately 15% for the CIDs, whereas the B3 derivatives exhibited full potency. Rabbit immunization experiments revealed that none of the insulin transformation products had significantly increased immunogenicity in rabbits.

  8. RESISTENSI INSULIN TERKAIT OBESITAS: MEKANISME ENDOKRIN DAN INTRINSIK SEL

    OpenAIRE

    Mira Dewi

    2012-01-01

    The number of obese individuals worldwide has reached 2.1 billion and this will lead to explosion of obesity-related morbidity and mortality. Obese individuals will develop re­sistance to celluler action of insulin. The obesity related insulin resistance is the major risk factor of cardiovascular diseases and Type 2 Diabetes Mellitus, the disease which number has reached epidemic proportion. The association between obesity and insulin resistance seem to be cause and effect relation because s...

  9. Insulin sensitivity deteriorates after short-term lifestyle intervention in the insulin sensitive phenotype of obesity.

    Science.gov (United States)

    Gilardini, Luisa; Vallone, Luciana; Cottafava, Raffaella; Redaelli, Gabriella; Croci, Marina; Conti, Antonio; Pasqualinotto, Lucia; Invitti, Cecilia

    2012-01-01

    To investigate the effects of a 3-month lifestyle intervention on insulin sensitivity and its related cardiometabolic factors in obese patients. Anthropometry, body composition, oral glucose tolerance test, lipids, alanine aminotransferase, insulin sensitivity (insulinogenic index (ISI), homeostasis model assessment, β-cell performance (disposition index)) were evaluated in 263 obese women and 93 obese men before and after 3 months of hypocaloric low fat/high protein diet associated with physical activity 30 min/day. Patients were divided into 3 groups according to the intervention-induced ISI changes: group 1 (decrease), group 2 (stability) and group 3 (increase). Insulin sensitivity and the disposition index were significantly higher before the intervention in group 1 than in group 3. BMI, waist circumference, and fat mass significantly decreased in groups 1 and 3 in both sexes. β-cell performance decreased in group 1 and increased in group 3. Metabolic variables improved in group 3, whereas glucose levels increased in women of group 1. The post-intervention insulin sensitivity was lower in group 1 than in group 3. Lifestyle intervention induces changes in insulin sensitivity and metabolic factors that depend on the pre-intervention degree of insulin sensitivity. Weight loss leads to metabolic benefits in insulin-resistant, obese patients, whereas it may paradoxically worsen the metabolic conditions in the insulin-sensitive phenotype of obesity. Copyright © 2012 S. Karger GmbH, Freiburg.

  10. A controlled study on serum insulin-like growth factor-I and urinary excretion of growth hormone in fibromyalgia

    DEFF Research Database (Denmark)

    Jacobsen, S; Main, K; Danneskiold-Samsøe, B

    1995-01-01

    OBJECTIVE. It has been hypothesized that secretory deficiencies of growth hormone may play a pathophysiological role in fibromyalgia (FM). Our objective was thus to evaluate the secretion of growth hormone in FM. METHODS. The 24-h urinary growth hormone excretion and serum levels of insulin...

  11. Insulin receptors

    International Nuclear Information System (INIS)

    Kahn, C.R.; Harrison, L.C.

    1988-01-01

    This book contains the proceedings on insulin receptors. Part A: Methods for the study of structure and function. Topics covered include: Method for purification and labeling of insulin receptors, the insulin receptor kinase, and insulin receptors on special tissues

  12. Does DNA Methylation of PPARGC1A Influence Insulin Action in First Degree Relatives of Patients with Type 2 Diabetes?

    DEFF Research Database (Denmark)

    Gillberg, Linn; Jacobsen, Stine; Ribel-Madsen, Rasmus

    2013-01-01

    and in muscle from individuals at risk of T2D. This study aimed to investigate DNA promoter methylation and gene expression of PPARGC1A in skeletal muscle from first degree relatives (FDR) of T2D patients, and to determine the association with insulin action as well as the influence of family relation. We...... genetic regulation to play a role. No significant effect of familiality on DNA methylation was found. Taken together, increased DNA methylation of the PPARGC1A promoter is unlikely to play a major causal role for the development of insulin resistance in FDR of patients with T2D....... included 124 Danish FDR of T2D patients from 46 different families. Skeletal muscle biopsies were excised from vastus lateralis and insulin action was assessed by oral glucose tolerance tests. DNA methylation and mRNA expression levels were measured using bisulfite sequencing and quantitative real-time PCR...

  13. Relative effectiveness of insulin pump treatment over multiple daily injections and structured education during flexible intensive insulin treatment for type 1 diabetes: cluster randomised trial (REPOSE).

    Science.gov (United States)

    2017-03-30

    Objective  To compare the effectiveness of insulin pumps with multiple daily injections for adults with type 1 diabetes, with both groups receiving equivalent training in flexible insulin treatment. Design  Pragmatic, multicentre, open label, parallel group, cluster randomised controlled trial (Relative Effectiveness of Pumps Over MDI and Structured Education (REPOSE) trial). Setting  Eight secondary care centres in England and Scotland. Participants  Adults with type 1 diabetes who were willing to undertake intensive insulin treatment, with no preference for pumps or multiple daily injections. Participants were allocated a place on established group training courses that taught flexible intensive insulin treatment ("dose adjustment for normal eating," DAFNE). The course groups (the clusters) were then randomly allocated in pairs to either pump or multiple daily injections. Interventions  Participants attended training in flexible insulin treatment (using insulin analogues) structured around the use of pump or injections, followed for two years. Main outcome measures  The primary outcomes were a change in glycated haemoglobin (HbA1c) values (%) at two years in participants with baseline HbA1c value of ≥7.5% (58 mmol/mol), and the proportion of participants achieving an HbA1c value of intention to treat analysis, of which 235 (119 pump and 116 injection) had baseline HbA1c values of ≥7.5%. Glycaemic control and rates of severe hypoglycaemia improved in both groups. The mean change in HbA1c at two years was -0.85% with pump treatment and -0.42% with multiple daily injections. Adjusting for course, centre, age, sex, and accounting for missing values, the difference was -0.24% (-2.7 mmol/mol) in favour of pump users (95% confidence interval -0.53 to 0.05, P=0.10). Most psychosocial measures showed no difference, but pump users showed greater improvement in treatment satisfaction and some quality of life domains (dietary freedom and daily hassle) at 12 and 24

  14. β1-adrenergic receptor stimulation by agonist Compound 49b restores insulin receptor signal transduction in vivo

    Science.gov (United States)

    Jiang, Youde; Zhang, Qiuhua; Ye, Eun-Ah

    2014-01-01

    Purpose Determine whether Compound 49b treatment ameliorates retinal changes due to the lack of β2-adrenergic receptor signaling. Methods Using retinas from 3-month-old β2-adrenergic receptor-deficient mice, we treated mice with our novel β1-/β2-adrenergic receptor agonist, Compound 49b, to assess the effects of adrenergic agonists acting only on β1-adrenergic receptors due to the absence of β2-adrenergic receptors. Western blotting or enzyme-linked immunosorbent assay (ELISA) analyses were performed for β1- and β2-adrenergic receptors, as well as key insulin resistance proteins, including TNF-α, SOCS3, IRS-1Ser307, and IRTyr960. Analyses were also performed on key anti- and proapoptotic proteins: Akt, Bcl-xL, Bax, and caspase 3. Electroretinogram analyses were conducted to assess functional changes, while histological assessment was conducted for changes in retinal thickness. Results A 2-month treatment of β2-adrenergic receptor-deficient mice with daily eye drops of 1 mM Compound 49b, a novel β1- and β2-adrenergic receptor agonist, reversed the changes in insulin resistance markers (TNF-α and SOCS3) observed in untreated β2-adrenergic receptor-deficient mice, and concomitantly increased morphological integrity (retinal thickness) and functional responses (electroretinogram amplitude). These results suggest that stimulating β1-adrenergic receptors on retinal endothelial cells or Müller cells can compensate for the loss of β2-adrenergic receptor signaling on Müller cells, restore insulin signal transduction, reduce retinal apoptosis, and enhance retinal function. Conclusions Since our previous studies with β1-adrenergic receptor knockout mice confirmed that the reverse also occurs (β2-adrenergic receptor stimulation can compensate for the loss of β1-adrenergic receptor activity), it appears that increased activity in either of these pathways alone is sufficient to block insulin resistance–based retinal cell apoptosis. PMID:24966659

  15. Ribosomal protein mutations induce autophagy through S6 kinase inhibition of the insulin pathway.

    Directory of Open Access Journals (Sweden)

    Harry F Heijnen

    Full Text Available Mutations affecting the ribosome lead to several diseases known as ribosomopathies, with phenotypes that include growth defects, cytopenia, and bone marrow failure. Diamond-Blackfan anemia (DBA, for example, is a pure red cell aplasia linked to the mutation of ribosomal protein (RP genes. Here we show the knock-down of the DBA-linked RPS19 gene induces the cellular self-digestion process of autophagy, a pathway critical for proper hematopoiesis. We also observe an increase of autophagy in cells derived from DBA patients, in CD34+ erythrocyte progenitor cells with RPS19 knock down, in the red blood cells of zebrafish embryos with RP-deficiency, and in cells from patients with Shwachman-Diamond syndrome (SDS. The loss of RPs in all these models results in a marked increase in S6 kinase phosphorylation that we find is triggered by an increase in reactive oxygen species (ROS. We show that this increase in S6 kinase phosphorylation inhibits the insulin pathway and AKT phosphorylation activity through a mechanism reminiscent of insulin resistance. While stimulating RP-deficient cells with insulin reduces autophagy, antioxidant treatment reduces S6 kinase phosphorylation, autophagy, and stabilization of the p53 tumor suppressor. Our data suggest that RP loss promotes the aberrant activation of both S6 kinase and p53 by increasing intracellular ROS levels. The deregulation of these signaling pathways is likely playing a major role in the pathophysiology of ribosomopathies.

  16. Diagnostic criteria for sarcopenia relate differently to insulin resistance

    NARCIS (Netherlands)

    Bijlsma, A.Y.; Meskers, C.G.M.; van Heemst, D.; Westendorp, R.G.J.; Craen, A.J.M.; Maier, A.B.

    2013-01-01

    Skeletal muscle is important in insulinstimulated glucose uptake. Sarcopenia is, therefore, a possible risk factor for insulin resistance. Currently, different diagnostic criteria for sarcopenia include low muscle mass, muscle strength, and walking speed. We assessed these muscle characteristics in

  17. Reconstitution of the NF1 GAP-related domain in NF1-deficient human Schwann cells

    International Nuclear Information System (INIS)

    Thomas, Stacey L.; Deadwyler, Gail D.; Tang, Jun; Stubbs, Evan B.; Muir, David; Hiatt, Kelly K.; Clapp, D. Wade; De Vries, George H.

    2006-01-01

    Schwann cells derived from peripheral nerve sheath tumors from individuals with Neurofibromatosis Type 1 (NF1) are deficient for the protein neurofibromin, which contains a GAP-related domain (NF1-GRD). Neurofibromin-deficient Schwann cells have increased Ras activation, increased proliferation in response to certain growth stimuli, increased angiogenic potential, and altered cell morphology. This study examined whether expression of functional NF1-GRD can reverse the transformed phenotype of neurofibromin-deficient Schwann cells from both benign and malignant peripheral nerve sheath tumors. We reconstituted the NF1-GRD using retroviral transduction and examined the effects on cell morphology, growth potential, and angiogenic potential. NF1-GRD reconstitution resulted in morphologic changes, a 16-33% reduction in Ras activation, and a 53% decrease in proliferation in neurofibromin-deficient Schwann cells. However, NF1-GRD reconstitution was not sufficient to decrease the in vitro angiogenic potential of the cells. This study demonstrates that reconstitution of the NF1-GRD can at least partially reverse the transformation of human NF1 tumor-derived Schwann cells

  18. Surfactant protein d deficiency in mice is associated with hyperphagia, altered fat deposition, insulin resistance, and increased Basal endotoxemia

    DEFF Research Database (Denmark)

    Stidsen, Jacob V; Khorooshi, Reza; Rahbek, Martin K U

    2012-01-01

    Pulmonary surfactant protein D (SP-D) is a host defence lectin of the innate immune system that enhances clearance of pathogens and modulates inflammatory responses. Recently it has been found that systemic SP-D is associated with metabolic disturbances and that SP-D deficient mice are mildly obese....... However, the mechanism behind SP-D's role in energy metabolism is not known.Here we report that SP-D deficient mice had significantly higher ad libitum energy intake compared to wild-type mice and unchanged energy expenditure. This resulted in accumulation but also redistribution of fat tissue. Blood...... pressure was unchanged. The change in energy intake was unrelated to the basal levels of hypothalamic Pro-opiomelanocortin (POMC) and Agouti-related peptide (AgRP) gene expression. Neither short time systemic, nor intracereberoventricular SP-D treatment altered the hypothalamic signalling or body weight...

  19. Insulin resistance and maximal oxygen uptake

    DEFF Research Database (Denmark)

    Seibaek, Marie; Vestergaard, Henrik; Burchardt, Hans

    2003-01-01

    BACKGROUND: Type 2 diabetes, coronary atherosclerosis, and physical fitness all correlate with insulin resistance, but the relative importance of each component is unknown. HYPOTHESIS: This study was undertaken to determine the relationship between insulin resistance, maximal oxygen uptake......, and the presence of either diabetes or ischemic heart disease. METHODS: The study population comprised 33 patients with and without diabetes and ischemic heart disease. Insulin resistance was measured by a hyperinsulinemic euglycemic clamp; maximal oxygen uptake was measured during a bicycle exercise test. RESULTS......: There was a strong correlation between maximal oxygen uptake and insulin-stimulated glucose uptake (r = 0.7, p = 0.001), and maximal oxygen uptake was the only factor of importance for determining insulin sensitivity in a model, which also included the presence of diabetes and ischemic heart disease. CONCLUSION...

  20. Association between vitamin deficiency and metabolic disorders related to obesity.

    Science.gov (United States)

    Thomas-Valdés, Samanta; Tostes, Maria das Graças V; Anunciação, Pamella C; da Silva, Bárbara P; Sant'Ana, Helena M Pinheiro

    2017-10-13

    Inappropriate food behavior contributes to obesity and leads to vitamin deficiency. This review discusses the nutritional status of water- and fat-soluble vitamins in obese subjects. We verified that most vitamins are deficient in obese individuals, especially the fat-soluble vitamins, folic acid, vitamin B 12 and vitamin C. However, some vitamins have been less evaluated in cases of obesity. The adipose tissue is considered a metabolic and endocrine organ, which in excess leads to changes in body homeostasis, as well as vitamin deficiency which can aggravate the pathological state. Therefore, the evaluation of vitamin status is of fundamental importance in obese individuals.

  1. Generation of insulin-producing human mesenchymal stem cells using recombinant adeno-associated virus.

    Science.gov (United States)

    Kim, Jeong Hwan; Park, Si-Nae; Suh, Hwal

    2007-02-28

    The purpose of current experiment is the generation of insulin-producing human mesenchymal stem cells as therapeutic source for the cure of type 1 diabetes. Type 1 diabetes is generally caused by insulin deficiency accompanied by the destruction of islet beta-cells. In various trials for the treatment of type 1 diabetes, cell-based gene therapy using stem cells is considered as one of the most useful candidate for the treatment. In this experiment, human mesenchymal stem cells were transduced with AAV which is containing furin-cleavable human preproinsulin gene to generate insulin-producing cells as surrogate beta-cells for the type 1 diabetes therapy. In the rAAV production procedure, rAAV was generated by transfection of AD293 cells. Human mesenchymal stems cells were transduced using rAAV with a various multiplicity of infection. Transduction of recombinant AAV was also tested using beta-galactosidse expression. Cell viability was determined by using MTT assay to evaluate the toxicity of the transduction procedure. Expression and production of Insulin were tested using reverse transcriptase-polymerase chain reaction and immunocytochemistry. Secretion of human insulin and C-peptide from the cells was assayed using enzyme-linked immunosorbent assay. Production of insulin and C-peptide from the test group represented a higher increase compared to the control group. In this study, we examined generation of insulin-producing cells from mesenchymal stem cells by genetic engineering for diabetes therapy. This work might be valuable to the field of tissue engineering for diabetes treatment.

  2. [Efficacy and safety of hormonal therapy with androgens (androgel) in men with erectile dysfunction, partial androgen deficiency of aging male and cardiovascular diseases].

    Science.gov (United States)

    Kalinchenko, S Iu; Vorslov, L O; Aglamazian, N L; Morgunov, L Iu

    2007-01-01

    Partial androgen deficiency of aging male (PADAM) manifests with sexual dysfunction and is associated with many diseases, primarily, cardiovascular. After the age of 30-40 a testosterone level falls 1-2% a year. The number of men with testosterone deficiency grows from 8% in 40-60-year-olds to 85% at the age over 80 years. Low testosterone correlates with such risk factors of cardiovascular diseases as dyslipidemia, atherosclerosis, low fibrinolysis, insulin resistance and abdominal obesity. Correction of androgenic deficiency can be conducted with the drug androgel which represents a new system of transdermal testosterone delivery. In contrast to vasoactive drugs, androgel affects pathogenetic mechanisms of erectile dysfunction and thus attenuates factors of cardiovascular risk. Androgel is used externally and is more effective than intramuscular and oral analogues. Also, the drug improves lipid spectrum. By activating lipolysis, testosterone reduces the amount of visceral fat thus lowering insulin resistance. A vasodilating effect of androgel positively influences cardiovascular system and penile vessels. The drug acts fast, is effective and safe. Therefore, it can be recommended for correction of erectile dysfunction in patients with old age androgen deficiency and concurrent cardiovascular diseases.

  3. Effect of physical training on insulin secretion and action in skeletal muscle and adipose tissue of first-degree relatives of type 2 diabetic patients

    DEFF Research Database (Denmark)

    Dela, Flemming; Stallknecht, Bente Merete

    2010-01-01

    in CON but not in FDR, whereas glucose-mediated GU increased (P groups. Adipose tissue GU was not affected by training, but it was higher (abdominal, P Training increased skeletal muscle lipolysis (P ...- to sevenfold. We conclude that insulin-secretory capacity is lower in FDR than in CON and that there is dissociation between training-induced changes in insulin secretion and insulin-mediated GU. Maximal GU rates are similar between groups and increases with physical training.......Physical training affects insulin secretion and action, but there is a paucity of data on the direct effects in skeletal muscle and adipose tissue and on the effect of training in first-degree relatives (FDR) of patients with type 2 diabetes. We studied insulin action at the whole body level...

  4. Site-Directed Mutagenesis of the Fibronectin Domains in Insulin Receptor-Related Receptor

    Directory of Open Access Journals (Sweden)

    Igor E. Deyev

    2017-11-01

    Full Text Available The orphan insulin receptor-related receptor (IRR, in contrast to its close homologs, the insulin receptor (IR and insulin-like growth factor receptor (IGF-IR can be activated by mildly alkaline extracellular medium. We have previously demonstrated that IRR activation is defined by its extracellular region, involves multiple domains, and shows positive cooperativity with two synergistic sites. By the analyses of point mutants and chimeras of IRR with IR in, we now address the role of the fibronectin type III (FnIII repeats in the IRR pH-sensing. The first activation site includes the intrinsically disordered subdomain ID (646–716 within the FnIII-2 domain at the C-terminus of IRR alpha subunit together with closely located residues L135, G188, R244, H318, and K319 of L1 and C domains of the second subunit. The second site involves residue T582 of FnIII-1 domain at the top of IRR lambda-shape pyramid together with M406, V407, and D408 from L2 domain within the second subunit. A possible importance of the IRR carbohydrate moiety for its activation was also assessed. IRR is normally less glycosylated than IR and IGF-IR. Swapping both FnIII-2 and FnIII-3 IRR domains with those of IR shifted beta-subunit mass from 68 kDa for IRR to about 100 kDa due to increased glycosylation and abolished the IRR pH response. However, mutations of four asparagine residues, potential glycosylation sites in chimera IRR with swapped FnIII-2/3 domains of IR, decreased the chimera glycosylation and resulted in a partial restoration of IRR pH-sensing activity, suggesting that the extensive glycosylation of FnIII-2/3 provides steric hindrance for the alkali-induced rearrangement of the IRR ectodomain.

  5. Combining insulins for optimal blood glucose control in type 1 and 2 diabetes: focus on insulin glulisine

    Directory of Open Access Journals (Sweden)

    Heather Ulrich

    2007-07-01

    Full Text Available Heather Ulrich1,4, Benjamin Snyder1,Satish K Garg1,2,31Barbara Davis Center for Childhood Diabetes; 2Department of Medicine; 3Pediatrics; 4Department of Clinical Pharmacy, School of Pharmacy, University of Colorado at Denver and Health Sciences Center, Denver, CO, USAAbstract: Normalization of blood glucose is essential for the prevention of diabetes mellitus (DM-related microvascular and macrovascular complications. Despite substantial literature to support the benefits of glucose lowering and clear treatment targets, glycemic control remains suboptimal for most people with DM in the United States. Pharmacokinetic limitations of conventional insulins have been a barrier to achieving treatment targets secondary to adverse effects such as hypoglycemia and weight gain. Recombinant DNA technology has allowed modification of the insulin molecule to produce insulin analogues that overcome these pharmacokinetic limitations. With time action profiles that more closely mimic physiologic insulin secretion, rapid acting insulin analogues (RAAs reduce post-prandial glucose excursions and hypoglycemia when compared to regular human insulin (RHI. Insulin glulisine (Apidra® is a rapid-acting insulin analogue created by substituting lysine for asparagine at position B3 and glutamic acid for lysine at position B29 on the B chain of human insulin. The quick absorption of insulin glulisine more closely reproduces physiologic first-phase insulin secretion and its rapid acting profile is maintained across patient subtypes. Clinical trials have demonstrated comparable or greater efficacy of insulin glulisine versus insulin lispro or RHI, respectively. Efficacy is maintained even when insulin glulisine is administered post-meal. In addition, glulisine appears to have a more rapid time action profile compared with insulin lispro across various body mass indexes (BMIs. The safety and tolerability profile of insulin glulisine is also comparable to that of insulin

  6. Estrogen and insulin transport through the blood-brain barrier.

    Science.gov (United States)

    May, Aaron A; Bedel, Nicholas D; Shen, Ling; Woods, Stephen C; Liu, Min

    2016-09-01

    Obesity is associated with insulin resistance and reduced transport of insulin through the blood-brain barrier (BBB). Reversal of high-fat diet-induced obesity (HFD-DIO) by dietary intervention improves the transport of insulin through the BBB and the sensitivity of insulin in the brain. Although both insulin and estrogen (E2), when given alone, reduce food intake and body weight via the brain, E2 actually renders the brain relatively insensitive to insulin's catabolic action. The objective of these studies was to determine if E2 influences the ability of insulin to be transported into the brain, since the receptors for both E2 and insulin are found in BBB endothelial cells. E2 (acute or chronic) was systemically administered to ovariectomized (OVX) female rats and male rats fed a chow or a high-fat diet. Food intake, body weight and other metabolic parameters were assessed along with insulin entry into the cerebrospinal fluid (CSF). Acute E2 treatment in OVX female and male rats reduced body weight and food intake, and chronic E2 treatment prevented or partially reversed high-fat diet-induced obesity. However, none of these conditions increased insulin transport into the CNS; rather, chronic E2 treatment was associated less-effective insulin transport into the CNS relative to weight-matched controls. Thus, the reduction of brain insulin sensitivity by E2 is unlikely to be mediated by increasing the amount of insulin entering the CNS. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Synthesis of cytochrome c oxidase 1 (SCO1) inhibits insulin sensitivity by decreasing copper levels in adipocytes.

    Science.gov (United States)

    Wei, Xiang-Bo; Guo, Liang; Liu, Yang; Zhou, Shui-Rong; Liu, Yuan; Dou, Xin; Du, Shao-Yue; Ding, Meng; Peng, Wan-Qiu; Qian, Shu-Wen; Huang, Hai-Yan; Tang, Qi-Qun

    2017-09-23

    Dysregulation of insulin signaling leads to type 2 diabetes mellitus (T2DM) and other metabolic disorders. Obesity is an important contributor to insulin resistance, and although the understanding of this relationship has improved in recent years, the mechanism of obesity-induced insulin resistance is not completely understood. Disorders of copper metabolism tend to accompany the development of obesity, which increases the risk of insulin resistance. Synthesis of cytochrome c oxidase 1 (SCO1) functions in the assembly of cytochrome c oxidase (COX) and cellular copper homeostasis. However, the role of SCO1 in the regulation of metabolism remains unknown. Here, we found that obese mice had higher expression of SCO1 and lower levels of copper in white adipose tissue (WAT) than did the control mice. Overexpression of SCO1 in adipocytes was associated with copper deficiency. Copper increased insulin sensitivity by decreasing the level of phosphatase and tensin homolog (PTEN) protein. Ectopic expression of SCO1 led to insulin resistance and was accompanied by a decrease in intracellular copper level, and addition of copper abolished the inhibitory effect of SCO1 on insulin sensitivity. Our results demonstrated a novel role of SCO1 in modulating insulin sensitivity via the regulation of copper concentration in WAT and suggested a potential therapeutic target for T2DM. Copyright © 2017. Published by Elsevier Inc.

  8. Dissociation between fat-induced in vivo insulin resistance and proximal insulin signaling in skeletal muscle in men at risk for type 2 diabetes

    DEFF Research Database (Denmark)

    Storgaard, Heidi; Jensen, Christine B; Björnholm, Marie

    2004-01-01

    The effect of short- (2 h) and long-term (24 h) low-grade Intralipid infusion on whole-body insulin action, cellular glucose metabolism, and proximal components of the insulin signal transduction cascade was studied in seven obese male glucose intolerant first degree relatives of type 2 diabetic...... h Intralipid infusion (0.4 ml.kg(-1).min(-1)). Insulin-stimulated glucose disposal decreased approximately 25% after short- and long-term fat infusion in both IGT relatives and controls. Glucose oxidation decreased and lipid oxidation increased after both short- and long-term fat infusion in both...... groups. Insulin-stimulated glucose oxidation was higher after long-term as compared with short-term fat infusion in control subjects. Short- or long-term infusion did not affect the absolute values of basal or insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation, tyrosine...

  9. Insulin signaling in various equine tissues under basal conditions and acute stimulation by intravenously injected insulin.

    Science.gov (United States)

    Warnken, Tobias; Brehm, Ralph; Feige, Karsten; Huber, Korinna

    2017-10-01

    The aim of the study was to analyze key proteins of the equine insulin signaling cascade and their extent of phosphorylation in biopsies from muscle tissue (MT), liver tissue (LT), and nuchal AT, subcutaneous AT, and retroperitoneal adipose tissues. This was investigated under unstimulated (B1) and intravenously insulin stimulated (B2) conditions, which were achieved by injection of insulin (0.1 IU/kg bodyweight) and glucose (150 mg/kg bodyweight). Twelve warmblood horses aged 15 ± 6.8 yr (yr), weighing 559 ± 79 kg, and with a mean body condition score of 4.7 ± 1.5 were included in the study. Key proteins of the insulin signaling cascade were semiquantitatively determined using Western blotting. Furthermore, modulation of the cascade was assessed. The basal expression of the proteins was only slightly influenced during the experimental period. Insulin induced a high extent of phosphorylation of insulin receptor in LT (P < 0.01) but not in MT. Protein kinase B and mechanistic target of rapamycin expressed a higher extent of phosphorylation in all tissues in B2 biopsies. Adenosine monophosphate protein kinase, as a component related to insulin signaling, expressed enhanced phosphorylation in MT (P < 0.05) and adipose tissues (nuchal AT P < 0.05; SCAT P < 0.01; retroperitoneal adipose tissue P < 0.05), but not in LT at B2. Tissue-specific variations in the acute response of insulin signaling to intravenously injected insulin were observed. In conclusion, insulin sensitivity in healthy horses is based on a complex concerted action of different tissues by their variations in the molecular response to insulin. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Expression of insulin receptor spliced variants and their functional correlates in muscle from patients with non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Hansen, Torben; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Due to alternative splicing of exon 11 of the receptor gene, the human insulin receptor exists in two forms, that have distinct tissue-specific expression and are functionally different. Needle biopsies obtained from vastus lateralis muscle from 20 patients with noninsulin-dependent diabetes...... kinase activity were examined in wheat germ agglutinin-purified insulin receptors isolated from muscle biopsies. Moreover, insulin-stimulated glucose disposal was studied by means of the euglycemic hyperinsulinemic clamp technique. No difference in the relative expression of spliced variants......, and tyrosine kinase activity toward the exogenous substrate poly(Glu-Tyr(4:1)). Furthermore, no significant relationship was demonstrated between the glucose disposal rate and the relative expression of insulin receptor splice variants. In conclusion, in skeletal muscle from both normal control subjects...

  11. In HepG2 Cells, Coexisting Carnitine Deficiency Masks Important Indicators of Marginal Biotin Deficiency123

    Science.gov (United States)

    Bogusiewicz, Anna; Boysen, Gunnar; Mock, Donald M

    2015-01-01

    Background: A large number of birth defects are related to nutrient deficiencies; concern that biotin deficiency is teratogenic in humans is reasonable. Surprisingly, studies indicate that increased urinary 3-hydroxyisovalerylcarnitine (3HIAc), a previously validated marker of biotin deficiency, is not a valid biomarker in pregnancy. Objective: In this study we hypothesized that coexisting carnitine deficiency can prevent the increase in 3HIAc due to biotin deficiency. Methods: We used a 2-factor nutrient depletion design to induce isolated and combined biotin and carnitine deficiency in HepG2 cells and then repleted cells with carnitine. To elucidate the metabolic pathogenesis, we quantitated intracellular and extracellular free carnitine, acylcarnitines, and acylcarnitine ratios using liquid chromatography–tandem mass spectrometry. Results: Relative to biotin-sufficient, carnitine-sufficient cells, intracellular acetylcarnitine increased by 90%, propionylcarnitine more than doubled, and 3HIAc increased by >10-fold in biotin-deficient, carnitine-sufficient (BDCS) cells, consistent with a defensive mechanism in which biotin-deficient cells transesterify the acyl-coenzyme A (acyl-CoA) substrates of the biotin-dependent carboxylases to the related acylcarnitines. Likewise, in BDCS cells, the ratio of acetylcarnitine to malonylcarnitine and the ratio of propionylcarnitine to methylmalonylcarnitine both more than tripled, and the ratio of 3HIAc to 3-methylglutarylcarnitine (MGc) increased by >10-fold. In biotin-deficient, carnitine-deficient (BDCD) cells, the 3 substrate-derived acylcarnitines changed little, but the substrate:product ratios were masked to a lesser extent. Moreover, carnitine repletion unmasked biotin deficiency in BDCD cells as shown by increases in acetylcarnitine, propionylcarnitine, and 3HIAc (each increased by >50-fold). Likewise, ratios of acetylcarnitine:malonylcarnitine, propionylcarnitine:methylmalonylcarnitine, and 3HIAc:MGc all increased

  12. The Relationship between Serum 25-Hydroxyvitamin D Concentration, Cardiorespiratory Fitness, and Insulin Resistance in Japanese Men

    Directory of Open Access Journals (Sweden)

    Xiaomin Sun

    2014-12-01

    Full Text Available Here, we aim to investigate the independent and combined associations of serum 25-hydroxyvitamin D (25(OHD and cardiorespiratory fitness (CRF with glucose metabolism. Fasting blood samples of 107 men aged 40–79 years were analyzed for 25(OHD, glucose, insulin, glycated hemoglobin, and lipid profile. Homeostasis model assessment of insulin resistance index (HOMA-IR was calculated from the fasting concentrations of glucose and insulin. Visceral fat area (VFA was determined by magnetic resonance imaging and CRF by measuring maximal oxygen uptake. Median 25(OHD concentration was 36.3 nmol/L, while the prevalence of 25(OHD deficiency was 74.8%. Participants with high CRF had significantly lower HOMA-IR, glycated hemoglobin, and insulin values than participants with low CRF (p < 0.05. Higher 25(OHD concentration was strongly correlated with lower HOMA-IR and insulin values independent of VFA (p < 0.01 but significantly affected by CRF. In the high CRF group, participants with higher 25(OHD concentration had lower HOMA-IR values than participants with low 25(OHD concentration (p < 0.05. Higher 25(OHD and CRF are crucial for reducing insulin resistance regardless of abdominal fat. In addition, higher 25(OHD concentration may strengthen the effect of CRF on reducing insulin resistance in middle-aged and elderly Japanese men with high CRF.

  13. Laron Dwarfism and Non-Insulin-Dependent Diabetes Mellitus in the Hnf-1α Knockout Mouse

    Science.gov (United States)

    Lee, Ying-Hue; Sauer, Brian; Gonzalez, Frank J.

    1998-01-01

    Mice deficient in hepatocyte nuclear factor 1 alpha (HNF-1α) were produced by use of the Cre-loxP recombination system. HNF-1α-null mice are viable but sterile and exhibit a phenotype reminiscent of both Laron-type dwarfism and non-insulin-dependent diabetes mellitus (NIDDM). In contrast to an earlier HNF-1α-null mouse line that had been produced by use of standard gene disruption methodology (M. Pontoglio, J. Barra, M. Hadchouel, A. Doyen, C. Kress, J. P. Bach, C. Babinet, and M. Yaniv, Cell 84:575–585, 1996), these mice exhibited no increased mortality and only minimal renal dysfunction during the first 6 months of development. Both dwarfism and NIDDM are most likely due to the loss of expression of insulin-like growth factor I (IGF-I) and lower levels of insulin, resulting in stunted growth and elevated serum glucose levels, respectively. These results confirm the functional significance of the HNF-1α regulatory elements that had previously been shown to reside in the promoter regions of both the IGF-I and the insulin genes. PMID:9566924

  14. Characterization of the growth of murine fibroblasts that express human insulin receptors. II. Interaction of insulin with other growth factors

    International Nuclear Information System (INIS)

    Randazzo, P.A.; Jarett, L.

    1990-01-01

    The effects of insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and insulin on DNA synthesis were studied in murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental NIH 3T3 cells. In NIH 3T3/HIR cells, individual growth factors in serum-free medium stimulated DNA synthesis with the following relative efficacies: insulin greater than or equal to 10% fetal calf serum greater than PDGF greater than IGF-1 much greater than EGF. In comparison, the relative efficacies of these factors in stimulating DNA synthesis by NIH 3T3 cells were 10% fetal calf serum greater than PDGF greater than EGF much greater than IGF-1 = insulin. In NIH 3T3/HIR cells, EGF was synergistic with 1-10 ng/ml insulin but not with 100 ng/ml insulin or more. Synergy of PDGF or IGF-1 with insulin was not detected. In the parental NIH 3T3 cells, insulin and IGF-1 were found to be synergistic with EGF (1 ng/ml), PDGF (100 ng/ml), and PDGF plus EGF. In NIH 3T3/HIR cells, the lack of interaction of insulin with other growth factors was also observed when the percentage of cells synthesizing DNA was examined. Despite insulin's inducing only 60% of NIH 3T3/HIR cells to incorporate thymidine, addition of PDGF, EGF, or PDGF plus EGF had no further effect. In contrast, combinations of growth factors resulted in 95% of the parental NIH 3T3 cells synthesizing DNA. The independence of insulin-stimulated DNA synthesis from other mitogens in the NIH 3T3/HIR cells is atypical for progression factor-stimulated DNA synthesis and is thought to be partly the result of insulin receptor expression in an inappropriate context or quantity

  15. High insulin-like growth factor-binding protein-1 (IGFBP-1) is associated with low relative muscle mass in older women

    DEFF Research Database (Denmark)

    Stilling, Frej; Wallenius, Sara; Michaëlsson, Karl

    2017-01-01

    . In the present study we investigate the association between serum IGFBP-1 and muscle mass. Design Cross-sectional analysis of 4908 women, between 55 and 85 years old, participating in the Swedish Mammography Cohort-Clinical. Methods We defined low relative muscle mass (LRMM) as an appendicular lean mass divided...... relative muscle mass. High IGFBP-1 may be a marker of a catabolic state.......Objective Skeletal muscles serve several important roles in maintaining good health. Insulin-like growth factor-1 (IGF-1) is a promoter of protein synthesis in skeletal muscle. Its binding protein, Insulin-like growth factor-binding protein-1 (IGFBP-1) can be one determinant of IGF-1 activity...

  16. Pharmacokinetics and metabolic effects of growth hormone injected subcutaneously in growth hormone deficient patients: thich versus abdomen

    DEFF Research Database (Denmark)

    Laursen, Torben; Jørgensen, Jens Otto Lunde; Christiansen, Jens Sandahl

    1994-01-01

    and IGFBP-3), glucose, insulin, non-esterified fatty acids (NEFA), glycerol, 3-hydroxybutyrate, alanine, lactate and glucagon were measured for 37 hours after GH injection (3 IU/m2 at 1900 hour). PATIENTS: Nine GH deficient patients (five males, four females). RESULTS: The mean (+/- SEM) thickness of the s...

  17. Evaluation of dose response effects related to nutritional diseases (mineral deficiencies) in ruminants

    International Nuclear Information System (INIS)

    Goksoy, K.; Gucus, A.I.; Morcol, T.

    1986-01-01

    Nutritional diseases (mineral deficiencies) of farm animals are one of the limiting factors in animal production in Turkey. Present knowledge of mineral deficiencies of farm animals is derived from the study of severe deficiency conditions. Examples in sheep are deficiencies of copper in the central area of the Black Sea region and of selenium in the interior of Anatolia. Phosphorus deficiency is becoming the most serious problem in cattle. Outbreaks of wool shedding in sheep in central Anatolia are also becoming more severe. It is also likely that moderate (borderline) mineral deficiencies exist on a large scale. A general overview of trace mineral deficiencies and recent studies carried out to diagnose and correct them with the aid of biochemical and radioisotopic parameters is presented and discussed. (author)

  18. Insulin signal transduction in skeletal muscle from glucose-intolerant relatives of type 2 diabetic patients [corrected

    DEFF Research Database (Denmark)

    Storgaard, H; Song, X M; Jensen, C B

    2001-01-01

    To determine whether defects in the insulin signal transduction cascade are present in skeletal muscle from prediabetic individuals, we excised biopsies from eight glucose-intolerant male first-degree relatives of patients with type 2 diabetes (IGT relatives) and nine matched control subjects...... phosphorylation in control subjects and IGT relatives, with a tendency for reduced phosphorylation in IGT relatives (P = 0.12). In conclusion, aberrant phosphorylation/activity of IRS-1, PI 3-kinase, and Akt is observed in skeletal muscle from relatives of patients with type 2 diabetes with IGT. However...... resistance in skeletal muscle from relatives of patients with type 2 diabetes....

  19. INSULIN-LIKE GROWTH FACTOR (IGF-1 IN CNS AND CEREBROVASCULAR AGING

    Directory of Open Access Journals (Sweden)

    William E Sonntag

    2013-07-01

    Full Text Available Insulin-like growth factor-1 (IGF-1 is an important anabolic hormone that decreases with age. In the past two decades extensive research has determined that the reduction in IGF-1 is an important component of the age-related decline in cognitive function in multiple species including humans. Deficiency in circulating IGF-1 results in impairment in processing speed and deficiencies in both spatial and working memory. Replacement of IGF-1 or factors that increase IGF-1 to old animals and humans reverses many of these cognitive deficits. Despite the overwhelming evidence for IGF-1 as an important neurotrophic agent, the specific mechanisms through which IGF-1 acts have remained elusive. Recent evidence indicates that IGF-1 is both produced by and has important actions on the cerebrovasculature as well as neurons and glia. Nevertheless, the specific regulation and actions of brain- and vascular-derived IGF-1 is poorly understood. The diverse effects of IGF-1 discovered thus far reveal a complex endocrine and paracrine system essential for integrating many of the functions necessary for brain health. Identification of the mechanisms of IGF-1 actions will undoubtedly provide critical insight into regulation of brain function in general and the causes of cognitive decline with age.

  20. Alteration of brain insulin and leptin signaling promotes energy homeostasis impairment and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Taouis Mohammed

    2011-09-01

    cerebrospinal fluid of AD patients is diminished. Taken together, these data clearly links deficiency of leptin and insulin signaling to both alterations of energy homeostasis control and predisposition to AD. Furthermore, environment changes leading to insulin and leptin-resistance may promote these defects, such as high fat diet.

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... also are hoping to determine which iron supplements work best to treat iron-deficiency anemia in children who do not consume the daily recommended amount of iron. Read less Participate in NHLBI Clinical Trials We lead or sponsor many studies related to iron-deficiency anemia. See if you ...

  2. The Association Between IGF-I and Insulin Resistance

    DEFF Research Database (Denmark)

    Friedrich, Nele; Thuesen, Betina; Jørgensen, Torben

    2012-01-01

    OBJECTIVEIGF-I has an almost 50% amino acid sequence homology with insulin and elicits nearly the same hypoglycemic response. Studies showed that low and high IGF-I levels are related to impaired glucose tolerance and to a higher risk of type 2 diabetes. The aim of the current study was to evaluate...... the association between IGF-I level and insulin resistance in a Danish general population.RESEARCH DESIGN AND METHODSIncluded were 3,354 adults, aged 19-72 years, from the cross-sectional Health2006 study. The homeostasis model assessment of insulin resistance (HOMA-IR) was used as the index to estimate insulin...... with intermediate (Q3) IGF-I levels. These associations remained statistically significant after the exclusion of subjects with type 2 diabetes and by using the updated computer HOMA2-IR model.CONCLUSIONSLow- and high-normal IGF-I levels are both related to insulin resistance. The biological mechanism...

  3. Cancer risk among insulin users: comparing analogues with human insulin in the CARING five-country cohort study.

    Science.gov (United States)

    But, Anna; De Bruin, Marie L; Bazelier, Marloes T; Hjellvik, Vidar; Andersen, Morten; Auvinen, Anssi; Starup-Linde, Jakob; Schmidt, Marjanka K; Furu, Kari; de Vries, Frank; Karlstad, Øystein; Ekström, Nils; Haukka, Jari

    2017-09-01

    The aim of this work was to investigate the relationship between use of certain insulins and risk for cancer, when addressing the limitations and biases involved in previous studies. National Health Registries from Denmark (1996-2010), Finland (1996-2011), Norway (2005-2010) and Sweden (2007-2012) and the UK Clinical Practice Research Datalink database (1987-2013) were used to conduct a cohort study on new insulin users (N = 327,112). By using a common data model and semi-aggregate approach, we pooled individual-level records from five cohorts and applied Poisson regression models. For each of ten cancer sites studied, we estimated the rate ratios (RRs) by duration (≤0.5, 0.5-1, 1-2, 2-3, 3-4, 4-5, 5-6 and >6 years) of cumulative exposure to insulin glargine or insulin detemir relative to that of human insulin. A total of 21,390 cancer cases occurred during a mean follow-up of 4.6 years. No trend with cumulative treatment time for insulin glargine relative to human insulin was observed in risk for any of the ten studied cancer types. Of the 136 associations tested in the main analysis, only a few increased and decreased risks were found: among women, a higher risk was observed for colorectal (RR 1.54, 95% CI 1.06, 2.25) and endometrial cancer (RR 1.78, 95% CI 1.07, 2.94) for ≤0.5 years of treatment and for malignant melanoma for 2-3 years (RR 1.92, 95% CI 1.02, 3.61) and 4-5 years (RR 3.55, 95% CI 1.68, 7.47]); among men, a lower risk was observed for pancreatic cancer for 2-3 years (RR 0.34, 95% CI 0.17, 0.66) and for liver cancer for 3-4 years (RR 0.36, 95% CI 0.14, 0.94) and >6 years (RR 0.22, 95% CI 0.05, 0.92). Comparisons of insulin detemir with human insulin also showed no consistent differences. The present multi-country study found no evidence of consistent differences in risk for ten cancers for insulin glargine or insulin detemir use compared with human insulin, at follow-up exceeding 5 years.

  4. Over-stimulation of insulin/IGF-1 signaling by western diet may promote diseases of civilization: lessons learnt from laron syndrome

    Directory of Open Access Journals (Sweden)

    Schmitz Gerd

    2011-06-01

    Full Text Available Abstract The insulin/insulin-like growth factor-1 (IGF-1 pathway drives an evolutionarily conserved network that regulates lifespan and longevity. Individuals with Laron syndrome who carry mutations in the growth hormone receptor (GHR gene that lead to severe congenital IGF-1 deficiency with decreased insulin/IGF-1 signaling (IIS exhibit reduced prevalence rates of acne, diabetes and cancer. Western diet with high intake of hyperglycemic carbohydrates and insulinotropic dairy over-stimulates IIS. The reduction of IIS in Laron subjects unmasks the potential role of persistent hyperactive IIS mediated by Western diet in the development of diseases of civilization and offers a rational perspective for dietary adjustments with less insulinotropic diets like the Paleolithic diet.

  5. Over-stimulation of insulin/IGF-1 signaling by western diet may promote diseases of civilization: lessons learnt from laron syndrome.

    Science.gov (United States)

    Melnik, Bodo C; John, Swen Malte; Schmitz, Gerd

    2011-06-24

    The insulin/insulin-like growth factor-1 (IGF-1) pathway drives an evolutionarily conserved network that regulates lifespan and longevity. Individuals with Laron syndrome who carry mutations in the growth hormone receptor (GHR) gene that lead to severe congenital IGF-1 deficiency with decreased insulin/IGF-1 signaling (IIS) exhibit reduced prevalence rates of acne, diabetes and cancer. Western diet with high intake of hyperglycemic carbohydrates and insulinotropic dairy over-stimulates IIS. The reduction of IIS in Laron subjects unmasks the potential role of persistent hyperactive IIS mediated by Western diet in the development of diseases of civilization and offers a rational perspective for dietary adjustments with less insulinotropic diets like the Paleolithic diet.

  6. Common variants related to serum uric acid concentrations are associated with glucose metabolism and insulin secretion in a Chinese population.

    Directory of Open Access Journals (Sweden)

    Xue Sun

    Full Text Available Elevated serum uric acid concentration is an independent risk factor and predictor of type 2 diabetes (T2D. Whether the uric acid-associated genes have an impact on T2D remains unclear. We aimed to investigate the effects of the uric acid-associated genes on the risk of T2D as well as glucose metabolism and insulin secretion.We recruited 2,199 normal glucose tolerance subjects from the Shanghai Diabetes Study I and II and 2,999 T2D patients from the inpatient database of Shanghai Diabetes Institute. Fifteen single nucleotide polymorphisms (SNPs mapped in or near 11 loci (PDZK1, GCKR, LRP2, SLC2A9, ABCG2, LRRC16A, SLC17A1, SLC17A3, SLC22A11, SLC22A12 and SF1 were genotyped and serum biochemical parameters related to uric acid and T2D were determined.SF1 rs606458 showed strong association to T2D in both males and females (p = 0.034 and 0.0008. In the males, LRRC16A was associated with 2-h insulin and insulin secretion (p = 0.009 and 0.009. SLC22A11 was correlated with HOMA-B and insulin secretion (p = 0.048 and 0.029. SLC2A9 rs3775948 was associated with 2-h glucose (p = 0.043. In the females, LRP2 rs2544390 and rs1333049 showed correlations with fasting insulin, HOMA-IR and insulin secretion (p = 0.028, 0.033 and 0.052 and p = 0.034, 0.047 and 0.038, respectively. SLC2A9 rs11722228 was correlated with 2-h glucose, 2-h insulin and insulin secretion (p = 0.024, 0.049 and 0.049, respectively.Our results indicated that the uric acid-associated genes have an impact on the risk of T2D, glucose metabolism and insulin secretion in a Chinese population.

  7. Mechanisms Underlying Testicular Damage and Dysfunction in Mice With Partial IGF-1 Deficiency and the Effectiveness of IGF-1 Replacement Therapy.

    Science.gov (United States)

    Castilla-Cortázar, Inma; Gago, Alberto; Muñoz, Úrsula; Ávila-Gallego, Elena; Guerra-Menéndez, Lucía; Sádaba, María Cruz; García-Magariño, Mariano; Olleros Santos-Ruiz, María; Aguirre, G A; Puche, Juan Enrique

    2015-12-01

    To determine whether insulin-like growth factor (IGF-1) deficiency can cause testicular damage and to examine changes of the testicular morphology and testicular function-related gene expression caused by IGF-1 deficiency. Therefore, this study aims to determine the benefits of low doses of IGF-1 and to explore the mechanisms underlying the IGF-1 replacement therapy. A murine model of IGF-1 deficiency was used to avoid any factor that could contribute to testicular damage. Testicular weight, score of histopathological damage, and gene expressions were studied in 3 experimental groups of mice: controls (wild-type Igf1(+/+)), heterozygous Igf1(+/-) with partial IGF-1 deficiency, and heterozygous Igf1(+/-) treated with IGF-1. Results show that the partial IGF-1 deficiency induced testicular damage and altered expression of genes involved in IGF-1 and growth hormone signaling and regulation, testicular hormonal function, extracellular matrix establishment and its regulation, angiogenesis, fibrogenesis, inflammation, and cytoprotection. In addition, proteins involved in tight junction expression were found to be reduced. However, low doses of IGF-1 restored the testicular damage and most of these parameters. IGF-1 deficiency caused the damage of the blood-testis barrier and testicular structure and induced the abnormal testicular function-related gene expressions. However, low doses of IGF-1 constitute an effective replacement therapy that restores the described testicular damage. Data herein show that (1) cytoprotective activities of IGF-1 seem to be mediated by heat shock proteins and that (2) connective tissue growth factor could play a relevant role together with IGF-1 in the extracellular matrix establishment. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. First living-related liver transplant to cure factor VII deficiency.

    Science.gov (United States)

    Mohan, Neelam; Karkra, Sakshi; Jolly, Anu S; Vohra, Vijay; Mohanka, Ravi; Rastogi, Amit; Soin, A S

    2015-09-01

    Congenital factor VII deficiency is an autosomal recessive serious disorder of blood coagulation with wide genotypic and phenotypic variations. The clinical presentation can vary from asymptomatic patients to patients with major bleedings in severe deficiency (factor VII factor VII. Treatment modalities include FFP and repeated recombinant factor VII infusions. We hereby report the first successful LRLT for factor VII deficiency in an infant, the first-ever youngest baby reported worldwide. A six-month-old male child presented with easy bruisability, ecchymotic patches, hematuria, and convulsions. CT of the head showed subdural hemorrhage, which was treated conservatively. He had markedly increased PT (120 s) with normal platelets, and aPTT with factor VII level factor VII level was 57%. A factor VII infusion plan for pre-, intra- and postoperative periods was formulated and TEG followed. Postoperatively, his factor VII started increasing from third day and was 38% on 24th day with PT factor VII deficiency. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Dietary patterns and the insulin resistance phenotype among non-diabetic adults

    Science.gov (United States)

    Background: Information on the relation between dietary patterns derived by cluster analysis and insulin resistance is scarce. Objective: To compare insulin resistance phenotypes, including waist circumference, body mass index, fasting and 2-hour post-challenge insulin, insulin sensitivity index (I...

  10. Insulin secretion and action in North Indian women during pregnancy

    DEFF Research Database (Denmark)

    Arora, G P; Almgren, P; Thaman, R G

    2017-01-01

    . RESULTS: Gestational diabetes defined using both criteria was associated with decreased insulin secretion compared with pregnant women with normal glucose tolerance. Women with gestational diabetes defined by the adapted GDM2013, but not GDM1999 criteria, were more insulin resistant than pregnant women......AIM: The relative roles(s) of impaired insulin secretion vs. insulin resistance in the development of gestational diabetes mellitus depend upon multiple risk factors and diagnostic criteria. Here, we explored their relative contribution to gestational diabetes as defined by the WHO 1999 (GDM1999...... independently associated with increased insulin resistance. CONCLUSIONS: Gestational diabetes risk factors influence insulin secretion and action in North Indian women in a differential manner. Gestational diabetes classified using the adapted GDM2013 compared with GDM1999 criteria is associated with more...

  11. Cancer risk among insulin users

    DEFF Research Database (Denmark)

    But, Anna; De Bruin, Marie L.; Bazelier, Marloes T.

    2017-01-01

    Aims/hypothesis: The aim of this work was to investigate the relationship between use of certain insulins and risk for cancer, when addressing the limitations and biases involved in previous studies. Methods: National Health Registries from Denmark (1996–2010), Finland (1996–2011), Norway (2005......–2010) and Sweden (2007–2012) and the UK Clinical Practice Research Datalink database (1987–2013) were used to conduct a cohort study on new insulin users (N = 327,112). By using a common data model and semi-aggregate approach, we pooled individual-level records from five cohorts and applied Poisson regression...... models. For each of ten cancer sites studied, we estimated the rate ratios (RRs) by duration (≤0.5, 0.5–1, 1–2, 2–3, 3–4, 4–5, 5–6 and >6 years) of cumulative exposure to insulin glargine or insulin detemir relative to that of human insulin. Results: A total of 21,390 cancer cases occurred during a mean...

  12. The Effect of Different Doses of Vitamin D Supplementation on Insulin Resistance in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Rastegar Hoseini

    2016-04-01

    Full Text Available Background and Aim: Type 2 diabetes mellitus (T2DM and vitamin D deficiency are both too common during menopause. Since the effect of different doses of vitamin D supplements on blood sugar, insulin concentration  and insulin resistance are unknown, the present study aimed at investigating the effects of different doses of the vitamin D supplements on visceral fat, blood sugar, insulin concentration,  and insulin resistance in ovariectomized rats. Materials and Methods: In this randomized experimental study, 32 female Wistar rats were divided into 4 equal groups  as follows: three groups . that received vitamin D supplements (high, moderate, and low dose and one control group. After 8 weeks of different doses of vitamin D supplementation plasma concentration of glucose, insulin and HOMA-IR were measured  in the three groups. The obtained data  was statistically analyzed by means of dependent t-test and ANOVA . at the significance level of P<0.05. Results: After a period of eight-week  intervention, body weight, BMI, waist circumference, visceral fat, insulin, blood glucose and HOMA-IR at high, moderate, and low doses of vitamin D supplementation were significantly lower than those in the control group (P<0.05. High dose of vitamin D compared with moderate and low doses significantly caused reduction in insulin, blood glucose, and HOMA-IR (P<0.001 for all three variables. Conclusion: The findings of the current study showed that a high dose of vitamin D causes significant improvements in FPG, insulin, and insulin resistance  evaluated by HOMA-IR. It was also found that adding vitamin D supplements can improve glucose control in menopause model of rats.

  13. The Barbados Insulin Matters (BIM study: Barriers to insulin therapy among a population-based sample of people with type 2 diabetes in the Caribbean island of Barbados

    Directory of Open Access Journals (Sweden)

    Charles G. Taylor, Jr.

    2017-06-01

    Conclusions: Multiple factors related to patient beliefs and attitudes need to be considered and addressed when initiating insulin in order to minimise psychological insulin resistance and delay. Patients using insulin had less negative perceptions than those not on insulin.

  14. Whole Body Vibration Retards Progression of Atherosclerosis via Insulin-Like Growth Factor 1 in Apolipoprotein E-Deficient Mice.

    Science.gov (United States)

    Wu, He; Zhang, Yibo; Yang, Xuan; Li, Xian; Shao, Zhenya; Zhou, Zipeng; Li, Yuanlong; Pan, Shuwen; Liu, Chang

    2018-01-01

    Whole body vibration (WBV) has a marked impact on lipid metabolism and the endocrine system, which is related to the progression of atherosclerosis (AS). To investigate the effects of WBV, we measured the atherosclerotic plaque area of apolipoprotein E-knockout (ApoE -/- ) AS mice, which were trained by WBV (15 Hz, 30 min) for 12 weeks. Simultaneously, serum levels of lipids, insulin-like growth factor 1 (IGF-1), insulin-like growth factor 1 receptor (IGF-1R), interleukin 6 (IL-6), and the mRNA and protein levels of the same in the aorta were compared between the control and WBV groups. The results indicated that WBV significantly reduced the atherosclerotic plaque area with lower very low-density lipoprotein (VLDL) and oxidized low-density lipoprotein (ox-LDL) in the blood. Moreover, the levels of IGF-1 in serum and expression of IL-6, IGF-1R, and p-IGF-1R protein in the mice aorta decreased significantly in the WBV group. In addition, we found that serum IGF-1 in mice increased to the highest concentration in 30 min after WBV for 10, 30, 60, and 120 minutes. These results suggested that appropriate WBV may delay the progression of AS, which was associated with acutely elevated serum IGF-1 and lower levels of IGF-1 and IL-6 in the aorta for long-term treatment.

  15. Growth hormone deficiency in children with brain tumors

    International Nuclear Information System (INIS)

    Shalet, S.M.; Beardwell, C.G.; Morris-Jones, P.; Bamford, F.N.; Ribeiro, G.G.; Pearson, D.

    1976-01-01

    Nine children with brain tumors are described who have received various combinations of treatment, including surgery, radiotherapy, and chemotherapy. Many of the children were noted to be of short stature. Endocrine assessment was carried out from 2 to 10 years after treatment. The combined results of insulin tolerance and Bovril stimulation tests show an impaired growth hormone response in six of the nine children. Bone age is retarded in all cases, and the present height is below the 10th percentile in five of the six. The cause of this growth hormone deficiency is obscure, but further studies are in progress

  16. Insulin Signaling, Resistance, and the Metabolic Syndrome: Insights from Mouse Models to Disease Mechanisms

    Science.gov (United States)

    Guo, Shaodong

    2014-01-01

    Insulin resistance is a major underlying mechanism for the “metabolic syndrome”, which is also known as insulin resistance syndrome. Metabolic syndrome is increasing at an alarming rate, becoming a major public and clinical problem worldwide. Metabolic syndrome is represented by a group of interrelated disorders, including obesity, hyperglycemia, hyperlipidemia, and hypertension. It is also a significant risk factor for cardiovascular disease and increased morbidity and mortality. Animal studies demonstrate that insulin and its signaling cascade normally control cell growth, metabolism and survival through activation of mitogen-activated protein kinases (MAPKs) and phosphotidylinositide-3-kinase (PI3K), of which activation of PI-3K-associated with insulin receptor substrate-1 and -2 (IRS1, 2) and subsequent Akt→Foxo1 phosphorylation cascade has a central role in control of nutrient homeostasis and organ survival. Inactivation of Akt and activation of Foxo1, through suppression IRS1 and IRS2 in different organs following hyperinsulinemia, metabolic inflammation, and over nutrition may provide the underlying mechanisms for metabolic syndrome in humans. Targeting the IRS→Akt→Foxo1 signaling cascade will likely provide a strategy for therapeutic intervention in the treatment of type 2 diabetes and its complications. This review discusses the basis of insulin signaling, insulin resistance in different mouse models, and how a deficiency of insulin signaling components in different organs contributes to the feature of the metabolic syndrome. Emphasis will be placed on the role of IRS1, IRS2, and associated signaling pathways that couple to Akt and the forkhead/winged helix transcription factor Foxo1. PMID:24281010

  17. Apolipoprotein C3 deficiency results in diet-induced obesity and aggravated insulin resistance in mice

    NARCIS (Netherlands)

    Duivenvoorden, Ilse; Teusink, Bas; Rensen, Patrick C.; Romijn, Johannes A.; Havekes, Louis M.; Voshol, Peter J.

    2005-01-01

    Our aim was to study whether the absence of apolipoprotein (apo) C3, a strong inhibitor of lipoprotein lipase (LPL), accelerates the development of obesity and consequently insulin resistance. Apoc3(-/-) mice and wild-type littermates were fed a high-fat (46 energy %) diet for 20 weeks. After 20

  18. Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells.

    Science.gov (United States)

    Prabakar, Kamalaveni R; Domínguez-Bendala, Juan; Molano, R Damaris; Pileggi, Antonello; Villate, Susana; Ricordi, Camillo; Inverardi, Luca

    2012-01-01

    We sought to assess the potential of human cord blood-derived mesenchymal stem cells (CB-MSCs) to derive insulin-producing, glucose-responsive cells. We show here that differentiation protocols based on stepwise culture conditions initially described for human embryonic stem cells (hESCs) lead to differentiation of cord blood-derived precursors towards a pancreatic endocrine phenotype, as assessed by marker expression and in vitro glucose-regulated insulin secretion. Transplantation of these cells in immune-deficient animals shows human C-peptide production in response to a glucose challenge. These data suggest that human cord blood may be a promising source for regenerative medicine approaches for the treatment of diabetes mellitus.

  19. A PGC-1α- and muscle fibre type-related decrease in markers of mitochondrial oxidative metabolism in skeletal muscle of humans with inherited insulin resistance

    DEFF Research Database (Denmark)

    Kristensen, Jonas Møller; Skov, Vibe; Petersson, Stine Juhl

    2014-01-01

    Insulin resistance in obesity and type 2 diabetes is related to abnormalities in mitochondrial oxidative phosphorylation (OxPhos) in skeletal muscle. We tested the hypothesis that mitochondrial oxidative metabolism is impaired in muscle of patients with inherited insulin resistance and defective...

  20. Lipid induced insulin resistance affects women less than men and is not accompanied by inflammation or impaired proximal insulin signaling

    DEFF Research Database (Denmark)

    Høeg, Louise D; Sjøberg, Kim Anker; Jeppesen, Jacob

    2011-01-01

    than men. We therefore hypothesized that women would be less prone to lipid induced insulin resistance. Research and design methods: Insulin sensitivity of whole body and leg glucose disposal was studied in 16 young well matched healthy men and women infused with intralipid or saline for 7h. Muscle...... ratio was decreased by intralipid. Conclusion: Intralipid infusion causes less insulin resistance of muscle glucose uptake in women than in men. This insulin resistance is not due to decreased canonical insulin signaling, accumulation of lipid intermediates, inflammation or direct inhibition of glucose......AbstractObjective: We have previously shown that overnight fasted women have higher insulin stimulated whole body and leg glucose uptake despite a higher intramyocellular triacylglycerol concentration than men. Women also express higher muscle mRNA levels of proteins related to lipid metabolism...

  1. Insulin sensitivity in relation to fat distribution and plasma adipocytokines among abusers of anabolic androgenic steroids.

    Science.gov (United States)

    Rasmussen, Jon Jarløv; Schou, Morten; Selmer, Christian; Johansen, Marie Louise; Gustafsson, Finn; Frystyk, Jan; Dela, Flemming; Faber, Jens; Kistorp, Caroline

    2017-09-01

    Abuse of anabolic androgenic steroids (AAS) is prevalent among young men, but information regarding effects on insulin sensitivity and fat distribution is limited. The objective was to investigate insulin sensitivity in relation to fat distribution and adipocytokines among current and former AAS abusers compared with controls. Cross-sectional study among men involved in recreational strength training. Current and former AAS abusers (n=37 and n=33) and controls (n=30) volunteered from the community. We assessed insulin sensitivity by Matsuda index (oral glucose tolerance test). Using overnight fasting blood samples, adiponectin and leptin were measured. Body composition and fat distribution, including visceral adipose tissue (VAT), were assessed by dual energy X-ray absorptiometry. Current and former AAS abusers displayed lower Matsuda index than controls (%-difference (95%CI) from controls, -26% (-45; -1) and -39% (-55; -18)). Testosterone was markedly higher among current AAS abusers and subnormal among former AAS abusers compared with controls. Current AAS abusers displayed higher mean VAT than controls (388 (17) vs 293 (12) cm 3 , P<.001) whereas body fat %, adiponectin and leptin concentrations were lower. In contrast, former AAS abusers showed highest leptin concentrations and body fat %. Multivariate linear regressions identified VAT as independent predictor of lower Matsuda index among current AAS abusers compared with controls; while body fat % independently predicted lower Matsuda index among former AAS abusers. Both current and former AAS abusers displayed lower insulin sensitivity which could be mediated by higher VAT and total body fat %, respectively. © 2017 John Wiley & Sons Ltd.

  2. Insulin resistance and cognitive performance in type 2 diabetes : The Maastricht study

    NARCIS (Netherlands)

    Geijselaers, Stefan L C; Sep, Simone J S; Schram, Miranda T; van Boxtel, Martin P J; Henry, Ronald M A; Verhey, Frans R J; Kroon, Abraham A; Schaper, Nicolaas C; Dagnelie, Pieter C; van der Kallen, Carla J H; Stehouwer, Coen D A; Biessels, Geert Jan

    AIMS: Type 2 diabetes, hyperinsulinemia, and insulin resistance are associated with cognitive impairment. Experimental studies indicate that insulin signaling in the brain is related to cognitive performance. Here we evaluated whether insulin-related variables contribute to the variance in cognitive

  3. RESISTENSI INSULIN TERKAIT OBESITAS: MEKANISME ENDOKRIN DAN INTRINSIK SEL

    Directory of Open Access Journals (Sweden)

    Mira Dewi

    2012-03-01

    Full Text Available 800x600 Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} The number of obese individuals worldwide has reached 2.1 billion and this will lead to explosion of obesity-related morbidity and mortality. Obese individuals will develop re­sistance to celluler action of insulin. The obesity related insulin resistance is the major risk factor of cardiovascular diseases and Type 2 Diabetes Mellitus, the disease which number has reached epidemic proportion. The association between obesity and insulin resistance seem to be cause and effect relation because studies on human and animal has indicated that the increase or decrease of body weight correlates with insulin sensitivity.  Among of many mechanisms proposed, the most often proposed mechanisms are endocrine and cell in­trinsik mechanism. The increase of fatty acid plasma concentration, dysregulation of adi­pokines and ectopic fat storage are proposed to be the endocrin mechanism that lead to obesity related insulin resistance while oxidative stress and mitochondria dysfunction are the cell intrinsic mechanisms that play role to the disease. Understanding the molecular mechanisms of obesity related insulin resistance will provide valuable information to search for interventions that help to prevent or treat Type 2 Diabetes Mellitus and cardiovascular diseases and its related pathologies. Keywords: Obesity, insulin resistance, fatty acid, adipokines, oxidative stress, mitochondria

  4. Subcutaneous insulin absorption explained by insulin's physicochemical properties. Evidence from absorption studies of soluble human insulin and insulin analogues in humans.

    Science.gov (United States)

    Kang, S; Brange, J; Burch, A; Vølund, A; Owens, D R

    1991-11-01

    To study the influence of molecular aggregation on rates of subcutaneous insulin absorption and to attempt to elucidate the mechanism of absorption of conventional soluble human insulin in humans. Seven healthy male volunteers aged 22-43 yr and not receiving any drugs comprised the study. This study consisted of a single-blind randomized comparison of equimolar dosages of 125I-labeled forms of soluble hexameric 2 Zn2+ human insulin and human insulin analogues with differing association states at pharmaceutical concentrations (AspB10, dimeric; AspB28, mixture of monomers and dimers; AspB9, GluB27, monomeric). After an overnight fast and a basal period of 1 h, 0.6 nmol/kg of either 125I-labeled human soluble insulin (Actrapid HM U-100) or 125I-labeled analogue was injected subcutaneously on 4 separate days 1 wk apart. Absorption was assessed by measurement of residual radioactivity at the injection site by external gamma-counting. The mean +/- SE initial fractional disappearance rates for the four preparations were 20.7 +/- 1.9 (hexameric soluble human insulin), 44.4 +/- 2.5 (dimeric analogue AspB10), 50.6 +/- 3.9 (analogue AspB28), and 67.4 +/- 7.4%/h (monomeric analogue AspB9, GluB27). Absorption of the dimeric analogue was significantly faster than that of hexameric human insulin (P less than 0.001); absorption of monomeric insulin analogue AspB9, GluB27 was significantly faster than that of dimeric analogue AspB10 (P less than 0.01). There was an inverse linear correlation between association state and the initial fractional disappearance rates (r = -0.98, P less than 0.02). Analysis of the disappearance data on a log linear scale showed that only the monomeric analogue had a monoexponential course throughout. Two phases in the rates of absorption were identified for the dimer and three for hexameric human insulin. The fractional disappearance rates (%/h) calculated by log linear regression analysis were monomer 73.3 +/- 6.8; dimer 44.4 +/- 2.5 from 0 to 2 h and

  5. MiR-155 Enhances Insulin Sensitivity by Coordinated Regulation of Multiple Genes in Mice

    Science.gov (United States)

    Lin, Taoyan; Lin, Xia; Chen, Li; Zeng, Hui; Han, Yanjiang; Wu, Lihong; Huang, Shun; Wang, Meng; Huang, Shenhao; Xie, Raoying; Liang, Liqi; Liu, Yu; Liu, Ruiyu; Zhang, Tingting; Li, Jing; Wang, Shengchun; Sun, Penghui; Huang, Wenhua; Yao, Kaitai; Xu, Kang; Du, Tao; Xiao, Dong

    2016-01-01

    miR-155 plays critical roles in numerous physiological and pathological processes, however, its function in the regulation of blood glucose homeostasis and insulin sensitivity and underlying mechanisms remain unknown. Here, we reveal that miR-155 levels are downregulated in serum from type 2 diabetes (T2D) patients, suggesting that miR-155 might be involved in blood glucose control and diabetes. Gain-of-function and loss-of-function studies in mice demonstrate that miR-155 has no effects on the pancreatic β-cell proliferation and function. Global transgenic overexpression of miR-155 in mice leads to hypoglycaemia, improved glucose tolerance and insulin sensitivity. Conversely, miR-155 deficiency in mice causes hyperglycemia, impaired glucose tolerance and insulin resistance. In addition, consistent with a positive regulatory role of miR-155 in glucose metabolism, miR-155 positively modulates glucose uptake in all cell types examined, while mice overexpressing miR-155 transgene show enhanced glycolysis, and insulin-stimulated AKT and IRS-1 phosphorylation in liver, adipose tissue or skeletal muscle. Furthermore, we reveal these aforementioned phenomena occur, at least partially, through miR-155-mediated repression of important negative regulators (i.e. C/EBPβ, HDAC4 and SOCS1) of insulin signaling. Taken together, these findings demonstrate, for the first time, that miR-155 is a positive regulator of insulin sensitivity with potential applications for diabetes treatment. PMID:27711113

  6. Insulin receptor internalization defect in an insulin-resistant mouse melanoma cell line

    International Nuclear Information System (INIS)

    Androlewicz, M.J.; Straus, D.S.; Brandenburg, D.F.

    1989-01-01

    Previous studies from this laboratory demonstrated that the PG19 mouse melanoma cell line does not exhibit a biological response to insulin, whereas melanoma x mouse embryo fibroblast hybrids do respond to insulin. To investigate the molecular basis of the insulin resistance of the PG19 melanoma cells, insulin receptors from the insulin-resistant melanoma cells and insulin-sensitive fibroblast x melanoma hybrid cells were analyzed by the technique of photoaffinity labeling using the photoprobe 125 I-NAPA-DP-insulin. Photolabeled insulin receptors from the two cell types have identical molecular weights as determined by SDS gel electrophoresis under reducing and nonreducing conditions, indicating that the receptors on the two cell lines are structurally similar. Insulin receptor internalization studies revealed that the hybrid cells internalize receptors to a high degree at 37 degree C, whereas the melanoma cells internalize receptors to a very low degree or not at all. The correlation between ability to internalize insulin receptors and sensitivity to insulin action in this system suggests that uptake of the insulin-receptor complex may be required for insulin action in these cells. Insulin receptors from the two cell lines autophosphorylate in a similar insulin-dependent manner both in vitro and in intact cells, indicating that insulin receptors on the melanoma and hybrid cells have functional tyrosine protein kinase activity. Therefore, the block in insulin action in the PG19 melanoma cells appears to reside at a step beyond insulin-stimulated receptor autophosphorylation

  7. Body fat related to daily physical activity and insulin concentrations in non-diabetic children

    DEFF Research Database (Denmark)

    Dencker, Magnus; Thorsson, Ola; Karlsson, Magnus K

    2007-01-01

    This study explored the associations between body fat versus daily physical activity and insulin concentrations in non-diabetic young children in a cross-sectional study of 172 children (93 boys and 79 girls) aged 8-11 years. Blood samples were analysed for serum insulin and daily physical activity......%). Body fat distribution was calculated as AFM/TBF. Body fat distribution was independently linked to both insulin concentrations and physical activity. In contrast, TBF, AFM, and BF% were linked to physical activity only and not to insulin concentrations. In conclusion in this population of non-diabetic...... was measured by accelerometers. Time spent performing vigorous activity was estimated from accelerometer data by using established cut-off points. Dual-energy x-ray absorptiometry (DXA) was used to quantify abdominal fat mass (AFM) and total body fat (TBF), also calculated as percentage of body weight (BF...

  8. The Cut-off Value of Blood Mercury Concentration in Relation to Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Seok-Hoon Lee

    2017-09-01

    Full Text Available Background : Increased blood mercury concentration is associated with inflammation, and chronic inflammation can cause insulin resistance. We examined the cut-off value of blood mercury in relation to an increased score on the homeostasis model assessment for insulin resistance (HOMA-IR. Methods : We used data from the Korean National Health and Nutrition Examination Survey (2008–2010. Relevant data from 5,184 subjects (2,523 men and 2,661 women were analyzed cross-sectionally. General linear analysis was performed to evaluate the relationship between HOMA-IR score and blood mercury concentration. In addition, we determined the cut-off value of blood mercury concentration in relation to increased HOMA-IR score (> 2.34 using an ROC curve. Results : The mean value of blood mercury concentration in men and women was 5.88 μg/L and 4.11 μg/L, respectively. In men, comparing to the first quartile, HOMA-IR score increased significantly in the third and fourth blood mercury quartiles. In women, however, the increase in HOMA-IR score was not significant. The cut-off value that best represented the association between increased HOMA-IR score and blood mercury concentration in men was found to be 4.71 μg/L. Conclusion : Blood mercury concentration was associated with increased HOMA-IR score in men, and the cut-off value of blood mercury concentration that was correlated with increased HOMA-IR score was around 4.71 μg/L.

  9. Receptor-isoform-selective insulin analogues give tissue-preferential effects

    DEFF Research Database (Denmark)

    Vienberg, Sara Gry; Bouman, Stephan D; Sørensen, Heidi

    2011-01-01

    The relative expression patterns of the two IR (insulin receptor) isoforms, +/- exon 11 (IR-B/IR-A respectively), are tissue-dependent. Therefore we have developed insulin analogues with different binding affinities for the two isoforms to test whether tissue-preferential biological effects can...... be attained. In rats and mice, IR-B is the most prominent isoform in the liver (> 95%) and fat (> 90%), whereas in muscles IR-A is the dominant isoform (> 95%). As a consequence, the insulin analogue INS-A, which has a higher relative affinity for human IR-A, had a higher relative potency [compared with HI...... (human insulin)] for glycogen synthesis in rat muscle strips (26%) than for glycogen accumulation in rat hepatocytes (5%) and for lipogenesis in rat adipocytes (4%). In contrast, the INS-B analogue, which has an increased affinity for human IR-B, had higher relative potencies (compared with HI...

  10. Altered Fetal Skeletal Muscle Nutrient Metabolism Following an Adverse In Utero Environment and the Modulation of Later Life Insulin Sensitivity

    Directory of Open Access Journals (Sweden)

    Kristyn Dunlop

    2015-02-01

    Full Text Available The importance of the in utero environment as a contributor to later life metabolic disease has been demonstrated in both human and animal studies. In this review, we consider how disruption of normal fetal growth may impact skeletal muscle metabolic development, ultimately leading to insulin resistance and decreased insulin sensitivity, a key precursor to later life metabolic disease. In cases of intrauterine growth restriction (IUGR associated with hypoxia, where the fetus fails to reach its full growth potential, low birth weight (LBW is often the outcome, and early in postnatal life, LBW individuals display modifications in the insulin-signaling pathway, a critical precursor to insulin resistance. In this review, we will present literature detailing the classical development of insulin resistance in IUGR, but also discuss how this impaired development, when challenged with a postnatal Western diet, may potentially contribute to the development of later life insulin resistance. Considering the important role of the skeletal muscle in insulin resistance pathogenesis, understanding the in utero programmed origins of skeletal muscle deficiencies in insulin sensitivity and how they may interact with an adverse postnatal environment, is an important step in highlighting potential therapeutic options for LBW offspring born of pregnancies characterized by placental insufficiency.

  11. Altered fetal skeletal muscle nutrient metabolism following an adverse in utero environment and the modulation of later life insulin sensitivity.

    Science.gov (United States)

    Dunlop, Kristyn; Cedrone, Megan; Staples, James F; Regnault, Timothy R H

    2015-02-12

    The importance of the in utero environment as a contributor to later life metabolic disease has been demonstrated in both human and animal studies. In this review, we consider how disruption of normal fetal growth may impact skeletal muscle metabolic development, ultimately leading to insulin resistance and decreased insulin sensitivity, a key precursor to later life metabolic disease. In cases of intrauterine growth restriction (IUGR) associated with hypoxia, where the fetus fails to reach its full growth potential, low birth weight (LBW) is often the outcome, and early in postnatal life, LBW individuals display modifications in the insulin-signaling pathway, a critical precursor to insulin resistance. In this review, we will present literature detailing the classical development of insulin resistance in IUGR, but also discuss how this impaired development, when challenged with a postnatal Western diet, may potentially contribute to the development of later life insulin resistance. Considering the important role of the skeletal muscle in insulin resistance pathogenesis, understanding the in utero programmed origins of skeletal muscle deficiencies in insulin sensitivity and how they may interact with an adverse postnatal environment, is an important step in highlighting potential therapeutic options for LBW offspring born of pregnancies characterized by placental insufficiency.

  12. Skin Tags and Acanthosis Nigricans in Patients with Hepatitis C Infection in Relation to Insulin Resistance and Insulin Like Growth Factor-1 Levels

    Science.gov (United States)

    El Safoury, Omar Soliman; Shaker, Olfat G; Fawzy, May Mohsen

    2012-01-01

    Background: Skin tags (ST) are papillomas commonly found in the neck, axillae of middle-aged and elderly people Aim: Insulin and insulin-like growth factor (IGF-1) levels are affected by hepatitis C virus (HCV) infection and both of them may be implicated in the etiopathogenesis of ST and acanthosis nigricans (AN) through their proliferative and differentiating properties. So, the aim of this work was to evaluate the impact of HCV infection on ST and AN through the estimation of insulin resistance and IGF-1. Materials and Methods: Participants were arranged into four groups: (ST +ve / HCV +ve) 23 subjects, (ST+ / HCV -ve) 19 subjects, (HCV -ve / ST-ve) 20 subjects and (ST-ve /HCV +ve) 22 subjects. Age, ST size, color, number, AN, fasting glucose, fasting insulin, insulin resistance, IGF-1, HCV-antibodies (Ab) were recorded. Results: The mean number of ST in Group 1 was half the number of ST in Group 2 (11.0±9.3 / 22.3±14.0) (P=0.005). The difference in insulin resistance between the same groups was non-significant (13.1±10.6 / 9.0±5.5) (P=0.441) while the difference in IGF-1 was statistically significant (218.6±46.2 /285.4±32.8) (P=0.002). The multivariate logistic regression for the variables revealed that insulin resistance is the only factor affecting the occurrence of ST (OR=1.096, P=0.023). Multivariate regression analysis for the variables showed that HCV was borderline but not a significant factor affecting the number of ST (Beta=-0.409, P=0.053). The number of patients with AN was doubled in Group 2 in comparison to Group 1 but this was non significant 3(13%) / 6(32%) (P=0.2800). Conclusion: HCV is associated with a significant decrease in the ST number and in the serum level of IGF-1 together with an obvious decrease in the occurrence of AN. Our results may point to the entrant effect of insulin resistance and IGF-1 in ST and AN development. The current study suggests the evaluation of IGF-1-lowering agents in the control of ST and AN especially in

  13. IGF-1 and insulin as growth hormones.

    Science.gov (United States)

    Laron, Zvi

    2004-01-01

    IGF-1 generated in the liver is the anabolic effector and linear growth promoting hormone of the pituitary growth hormone (GH). This is evidenced by dwarfism in states of congenital IGF-1 deficiency, Igf1 gene mutation/deletions or knockouts, and in Laron syndrome (LS), due to GH receptor gene mutations/deletions or IGF-1 receptor blocking. In a positive way, daily IGF-1 administration to stunted patients with LS or hGH gene deletion accelerates linear growth velocity. IGF-1 acts on the proliferative cells of the epiphyseal cartilage. IGF-1 also induces organ and tissue growth; its absence causing organomicria. Insulin shares a common ancestry with IGF-1 and with 45% amino acid homology, as well as very close relationships in the structure of its receptors and post-receptor cascade, also acts as a growth hormone. It has protein anabolic activity and stimulates IGF-1 synthesis. Pancreas agenesis causes short babies, and obese children with hyperinsulinism, with or without pituitary GH, have an accelerated growth rate and skeletal maturation; so do babies with macrosomia. Whether the insulin growth effect is direct, or mediated by IGF-1 or leptin is controversial.

  14. Is the sex hormone binding globulin related to preeclampsia independent of insulin resistance

    International Nuclear Information System (INIS)

    Rahmanian, M.; Salari, Z.; Mirmohammadkhani, M.; Ghorbani, R.

    2014-01-01

    Objective: To evaluate the association between Sex Hormone Binding Globulin and preeclampsia in Iranian women considering the probable confounding effect of insulin resistance. Methods: The case-control study was conducted at the Semnan University of Medical Sciences, Iran, and comprised pregnant women who received prenatal care at Amiralmomenin Hospital in 2011. Cases represented patients admitted because of preeclampsia, while controls were randomly selected eligible pregnant women without hypertension and/or proteinuria. Fasting blood sugar and insulin were assessed for all participants as well as their blood concentration of Sex Hormone Binding Globulin. The Homeostasis Model Assessment of Insulin Resistance Score was used. The correlation between dependant and independent variables was reported by crude and adjusted odds ratio applying logistic regression models. SPSS 16.0 was used for statistical analysis. Results: Of the 100 pregnant women in the study, 45(45%) were cases. Insulin resistance was found to be significantly more frequent in the cases compared to the controls (adjusted odds ratio=2.78; 95% Confidence Interval: 1.11, 6.90; p<0.01). There was a significant reverse correlation between level of Sex Hormone Binding Globulin in blood and being a case of preeclampsia (adjusted odds ratio=0.99; 95% Confidence Interval: 0.98, 1.00; p=0.04). Conclusion: Independent of insulin resistance, every 1nmol/l increase in Sex Hormone Binding Globulin, decreases the odds of preeclampsia by 1%, notifying Sex Hormone Binding Globulin as an important biomarker about its etiology and prediction. (author)

  15. Patients’ Knowledge of and Practices Relating to the Disposal of Used Insulin Needles

    Directory of Open Access Journals (Sweden)

    Kerri T. Musselman, PharmD

    2010-01-01

    Full Text Available Objective: To determine (1 how patients currently dispose of used insulin needles, (2 whether patients were educated about disposal of their used insulin needles, and (3 who educated patients about the disposal of their used insulin needles.Methods: A self-administered questionnaire was designed for this study. The survey assessed patient knowledge about disposal of used insulin needles and the patient-reported source and location of education about disposal techniques. The questionnaire was administered to a convenience sample of patients from four locations in Richmond, Virginia. Any patient who used insulin, was at least 18 years old, and was willing to complete the survey was eligible for inclusion.Results: Fifty responses were received with 40% indicating that education had been received on the disposal of used needles. From that 40%, nurses were identified as the source of education 60% of the time and pharmacists 25% of the time. Approximately 50% of the respondents reported disposing of used needles directly in the trash when at home. While away from home, 22% reported placing used needles in the trash, and 38% took them home for disposal.Conclusion: Patients are not consistently educated regarding the proper disposal of used needles. Health care practitioners should play a larger role in educating patients about the potential risks of inappropriate needle disposal and appropriate disposal methods. Future research is still needed to understand fully the magnitude of the problems associated with inappropriate needle disposal by patients.

  16. Stimuli sensitive polymethacrylic acid microparticles (PMAA)--oral insulin delivery.

    Science.gov (United States)

    Victor, Sunita Prem; Sharma, Chandra P

    2002-10-01

    This study investigated polymethacrylic acid (PMAA) microparticles for controlled release of Insulin in oral administration. The microparticles were characterised by scanning electron microscopy (SEM) for morphological studies. The swelling behaviour and drug release profile in various pH media were studied. The % swelling of gels was found to be inversely related to the amount of crosslinker added. Inclusion complex of betaCD and Insulin was studied using polyacrylamide gel electrophoresis (PAGE). Optimum complexation was obtained in the ratio 100 mg betaCD: 200 IU Insulin. The release pattern of Insulin from Insulin-betaCD complex encapsulated PMAA microparticles showed release of Insulin for more than seven hours.

  17. Topography of subnuclei of the hypothalamic paraventricular nucleus in rats and sensitivity of their neurons to insulin defficiency

    International Nuclear Information System (INIS)

    Goufman, E.I.

    1985-01-01

    This investigation was undertaken to study the reaction of paraventricular nuclei (PVN) subnuclei to insulin deficiency and to elevation of the blood glucose level under conditions of experimental alloxan diabetes. Experiments were carried out on 15 control and 15 experimental mature male Wistar rats. The state of the carbohydrate metabolism of the diabetic and control animals was judged by the blood glucose and radioimmune insulin levels. The results of these investigations show that both magnocellular and parvocellular neurons of PVN react to alloxan diabetes, which supports the hypothesis that PVN of the hypothalamus participates in the control of carbohydrate metabolism

  18. A model of insulin fibrils derived from the x-ray crystal structure of a monomeric insulin (despentapeptide insulin).

    Science.gov (United States)

    Brange, J; Dodson, G G; Edwards, D J; Holden, P H; Whittingham, J L

    1997-04-01

    The crystal structure of despentapeptide insulin, a monomeric insulin, has been refined at 1.3 A spacing and subsequently used to predict and model the organization in the insulin fibril. The model makes use of the contacts in the densely packed despentapeptide insulin crystal, and takes into account other experimental evidence, including binding studies with Congo red. The dimensions of this model fibril correspond well with those measured experimentally, and the monomer-monomer contacts within the fibril are in accordance with the known physical chemistry of insulin fibrils. Using this model, it may be possible to predict mutations in insulin that might alleviate problems associated with fibril formation during insulin therapy.

  19. Macrophage JAK2 deficiency protects against high-fat diet-induced inflammation.

    Science.gov (United States)

    Desai, Harsh R; Sivasubramaniyam, Tharini; Revelo, Xavier S; Schroer, Stephanie A; Luk, Cynthia T; Rikkala, Prashanth R; Metherel, Adam H; Dodington, David W; Park, Yoo Jin; Kim, Min Jeong; Rapps, Joshua A; Besla, Rickvinder; Robbins, Clinton S; Wagner, Kay-Uwe; Bazinet, Richard P; Winer, Daniel A; Woo, Minna

    2017-08-09

    During obesity, macrophages can infiltrate metabolic tissues, and contribute to chronic low-grade inflammation, and mediate insulin resistance and diabetes. Recent studies have elucidated the metabolic role of JAK2, a key mediator downstream of various cytokines and growth factors. Our study addresses the essential role of macrophage JAK2 in the pathogenesis to obesity-associated inflammation and insulin resistance. During high-fat diet (HFD) feeding, macrophage-specific JAK2 knockout (M-JAK2 -/- ) mice gained less body weight compared to wildtype littermate control (M-JAK2 +/+ ) mice and were protected from HFD-induced systemic insulin resistance. Histological analysis revealed smaller adipocytes and qPCR analysis showed upregulated expression of some adipogenesis markers in visceral adipose tissue (VAT) of HFD-fed M-JAK2 -/- mice. There were decreased crown-like structures in VAT along with reduced mRNA expression of some macrophage markers and chemokines in liver and VAT of HFD-fed M-JAK2 -/- mice. Peritoneal macrophages from M-JAK2 -/- mice and Jak2 knockdown in macrophage cell line RAW 264.7 also showed lower levels of chemokine expression and reduced phosphorylated STAT3. However, leptin-dependent effects on augmenting chemokine expression in RAW 264.7 cells did not require JAK2. Collectively, our findings show that macrophage JAK2 deficiency improves systemic insulin sensitivity and reduces inflammation in VAT and liver in response to metabolic stress.

  20. Short-term fasting promotes insulin expression in rat hypothalamus.

    Science.gov (United States)

    Dakic, Tamara B; Jevdjovic, Tanja V; Peric, Mina I; Bjelobaba, Ivana M; Markelic, Milica B; Milutinovic, Bojana S; Lakic, Iva V; Jasnic, Nebojsa I; Djordjevic, Jelena D; Vujovic, Predrag Z

    2017-07-01

    In the hypothalamus, insulin takes on many roles involved in energy homoeostasis. Therefore, the aim of this study was to examine hypothalamic insulin expression during the initial phase of the metabolic response to fasting. Hypothalamic insulin content was assessed by both radioimmunoassay and Western blot. The relative expression of insulin mRNA was examined by qPCR. Immunofluorescence and immunohistochemistry were used to determine the distribution of insulin immunopositivity in the hypothalamus. After 6-h fasting, both glucose and insulin levels were decreased in serum but not in the cerebrospinal fluid. Our study showed for the first time that, while the concentration of circulating glucose and insulin decreased, both insulin mRNA expression and insulin content in the hypothalamic parenchyma were increased after short-term fasting. Increased insulin immunopositivity was detected specifically in the neurons of the hypothalamic periventricular nucleus and in the ependymal cells of fasting animals. These novel findings point to the complexity of mechanisms regulating insulin expression in the CNS in general and in the hypothalamus in particular. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Insulin in Central Nervous System: More than Just a Peripheral Hormone

    Directory of Open Access Journals (Sweden)

    Ana I. Duarte

    2012-01-01

    Full Text Available Insulin signaling in central nervous system (CNS has emerged as a novel field of research since decreased brain insulin levels and/or signaling were associated to impaired learning, memory, and age-related neurodegenerative diseases. Thus, besides its well-known role in longevity, insulin may constitute a promising therapy against diabetes- and age-related neurodegenerative disorders. More interestingly, insulin has been also faced as the potential missing link between diabetes and aging in CNS, with Alzheimer's disease (AD considered as the “brain-type diabetes.” In fact, brain insulin has been shown to regulate both peripheral and central glucose metabolism, neurotransmission, learning, and memory and to be neuroprotective. And a future challenge will be to unravel the complex interactions between aging and diabetes, which, we believe, will allow the development of efficient preventive and therapeutic strategies to overcome age-related diseases and to prolong human “healthy” longevity. Herewith, we aim to integrate the metabolic, neuromodulatory, and neuroprotective roles of insulin in two age-related pathologies: diabetes and AD, both in terms of intracellular signaling and potential therapeutic approach.

  2. Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats.

    Science.gov (United States)

    Farese, R V; Standaert, M L; Yamada, K; Huang, L C; Zhang, C; Cooper, D R; Wang, Z; Yang, Y; Suzuki, S; Toyota, T

    1994-11-08

    Type II diabetic Goto-Kakizaki (GK) rats were insulin-resistant in euglycemic-hyperinsulinemic clamp studies. We therefore examined insulin signaling systems in control Wistar and diabetic GK rats. Glycerol-3-phosphate acyltransferase (G3PAT), which is activated by headgroup mediators released from glycosyl-phosphatidylinositol (GPI), was activated by insulin in intact and cell-free adipocyte preparations of control, but not diabetic, rats. A specific chiro-inositol-containing inositol phosphoglycan (IPG) mediator, prepared from beef liver, bypassed this defect and comparably activated G3PAT in cell-free adipocyte preparations of both diabetic GK and control rats. A myo-inositol-containing IPG mediator did not activate G3PAT. Relative to control adipocytes, labeling of GPI by [3H]glucosamine was diminished by 50% and insulin failed to stimulate GPI hydrolysis in GK adipocytes. In contrast to GPI-dependent G3PAT activation, insulin-stimulated hexose transport was intact in adipocytes and soleus and gastrocnemius muscles of the GK rat, as was insulin-induced activation of mitogen-activated protein kinase and protein kinase C. We conclude that (i) chiro-inositol-containing IPG mediator activates G3PAT during insulin action, (ii) diabetic GK rats have a defect in synthesizing or releasing functional chiro-inositol-containing IPG, and (iii) defective IPG-regulated intracellular glucose metabolism contributes importantly to insulin resistance in diabetic GK rats.

  3. Cardiometabolic risk factors and insulin resistance in obese children and adolescents: relation to puberty.

    Science.gov (United States)

    Tobisch, B; Blatniczky, L; Barkai, L

    2015-02-01

    The prevalence of obesity with concomitant increasing risk for having cardiometabolic diseases is rising in the childhood population. Insulin resistance has a key role in metabolic changes in these children. Insulin levels elevate as puberty commences in every individual. Children with increased risk for cardiometabolic diseases show significant differences in insulin levels even before the onset of puberty compared with those without risks. The pattern of appearance of dyslipidaemia also varies in children with risk factors even in the pre-pubertal group from those without risk. Children with metabolic syndrome display considerably pronounced changes in their metabolic parameters before the onset of puberty, which become more pronounced as puberty passes. Insulin resistance (IR) has a key role in the metabolic changes in obese children. In commencing puberty, the insulin levels elevate. It is not clear, however, how insulin levels develop if the metabolic syndrome appears. Metabolic changes were assessed in obese children before, during and after puberty to analyse the relationship between IR and puberty in subjects with and without metabolic syndrome. Three hundred thirty-four obese children (5-19 years) attended the study. The criteria of the International Diabetes Federation were used to assess the presence of cardiometabolic risks (CMRs). Subjects with increased CMR were compared with those without risk (nCMR). Pubertal staging, lipid levels, plasma glucose and insulin levels during oral glucose tolerance test were determined in each participant. IR was expressed by homeostasis model assessment (HOMA-IR) and the ratio of glucose and insulin areas under the curve (AUC-IR). Significantly higher AUC-IR were found in pre-pubertal CMR children compared with nCMR subjects (11.84 ± 1.03 vs. 8.00 ± 0.69; P puberty. HOMA-IR differs between CMR and nCMR only in post-puberty (6.03 ± 1.26 vs. 2.54 ± 0.23; P puberty. CMR is associated with increased

  4. Humanin: a novel central regulator of peripheral insulin action.

    Directory of Open Access Journals (Sweden)

    Radhika H Muzumdar

    2009-07-01

    Full Text Available Decline in insulin action is a metabolic feature of aging and is involved in the development of age-related diseases including Type 2 Diabetes Mellitus (T2DM and Alzheimer's disease (AD. A novel mitochondria-associated peptide, Humanin (HN, has a neuroprotective role against AD-related neurotoxicity. Considering the association between insulin resistance and AD, we investigated if HN influences insulin sensitivity.Using state of the art clamp technology, we examined the role of central and peripheral HN on insulin action. Continuous infusion of HN intra-cerebro-ventricularly significantly improved overall insulin sensitivity. The central effects of HN on insulin action were associated with activation of hypothalamic STAT-3 signaling; effects that were negated by co-inhibition of hypothalamic STAT-3. Peripheral intravenous infusions of novel and potent HN derivatives reproduced the insulin-sensitizing effects of central HN. Inhibition of hypothalamic STAT-3 completely negated the effects of IV HN analog on liver, suggesting that the hepatic actions of HN are centrally mediated. This is consistent with the lack of a direct effect of HN on primary hepatocytes. Furthermore, single treatment with a highly-potent HN analog significantly lowered blood glucose in Zucker diabetic fatty rats. Based upon the link of HN with two age-related diseases, we examined if there were age associated changes in HN levels. Indeed, the amount of detectable HN in hypothalamus, skeletal muscle, and cortex was decreased with age in rodents, and circulating levels of HN were decreased with age in humans and mice.We conclude that the decline in HN with age could play a role in the pathogenesis of age-related diseases including AD and T2DM. HN represents a novel link between T2DM and neurodegeneration and along with its analogues offers a potential therapeutic tool to improve insulin action and treat T2DM.

  5. Vitamin A and feeding statuses modulate the insulin-regulated gene expression in Zucker lean and fatty primary rat hepatocytes.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    Full Text Available Unattended hepatic insulin resistance predisposes individuals to dyslipidemia, type 2 diabetes and many other metabolic complications. The mechanism of hepatic insulin resistance at the gene expression level remains unrevealed. To examine the effects of vitamin A (VA, total energy intake and feeding conditions on the insulin-regulated gene expression in primary hepatocytes of Zucker lean (ZL and fatty (ZF rats, we analyze the expression levels of hepatic model genes in response to the treatments of insulin and retinoic acid (RA. We report that the insulin- and RA-regulated glucokinase, sterol regulatory element-binding protein-1c and cytosolic form of phosphoenolpyruvate carboxykinase expressions are impaired in hepatocytes of ZF rats fed chow or a VA sufficient (VAS diet ad libitum. The impairments are partially corrected when ZF rats are fed a VA deficient (VAD diet ad libitum or pair-fed a VAS diet to the intake of their VAD counterparts in non-fasting conditions. Interestingly in the pair-fed ZL and ZF rats, transient overeating on the last day of pair-feeding regimen changes the expression levels of some VA catabolic genes, and impairs the insulin- and RA-regulated gene expression in hepatocytes. These results demonstrate that VA and feeding statuses modulate the hepatic insulin sensitivity at the gene expression level.

  6. Combinatorial effects of zinc deficiency and arsenic exposure on zebrafish (Danio rerio development.

    Directory of Open Access Journals (Sweden)

    Laura M Beaver

    Full Text Available Zinc deficiency and chronic low level exposures to inorganic arsenic in drinking water are both significant public health concerns that affect millions of people including pregnant women. These two conditions can co-exist in the human population but little is known about their interaction, and in particular, whether zinc deficiency sensitizes individuals to arsenic exposure and toxicity, especially during critical windows of development. To address this, we utilized the Danio rerio (zebrafish model to test the hypothesis that parental zinc deficiency sensitizes the developing embryo to low-concentration arsenic toxicity, leading to altered developmental outcomes. Adult zebrafish were fed defined zinc deficient and zinc adequate diets and were spawned resulting in zinc adequate and zinc deficient embryos. The embryos were treated with environmentally relevant concentrations of 0, 50, and 500 ppb arsenic. Arsenic exposure significantly reduced the amount of zinc in the developing embryo by ~7%. The combination of zinc deficiency and low-level arsenic exposures did not sensitize the developing embryo to increased developmental malformations or mortality. The combination did cause a 40% decline in physical activity of the embryos, and this decline was significantly greater than what was observed with zinc deficiency or arsenic exposure alone. Significant changes in RNA expression of genes that regulate zinc homeostasis, response to oxidative stress and insulin production (including zip1, znt7, nrf2, ogg1, pax4, and insa were found in zinc deficient, or zinc deficiency and arsenic exposed embryos. Overall, the data suggests that the combination of zinc deficiency and arsenic exposure has harmful effects on the developing embryo and may increase the risk for developing chronic diseases like diabetes.

  7. Human and rodent muscle Na(+)-K(+)-ATPase in diabetes related to insulin, starvation, and training

    DEFF Research Database (Denmark)

    Schmidt, T A; Hasselbalch, S; Farrell, P A

    1994-01-01

    cerebral cortex Na(+)-K(+)-ATPase concentration as a result of diabetes, semistarvation, or insulin treatment. In human subjects, Na(+)-K(+)-ATPase concentration in vastus lateralis muscle biopsies was 17 and 22% greater (P dependent diabetes...... mellitus (n = 24) and insulin-dependent diabetes mellitus (n = 7) than in control subjects (n = 8). A positive linear correlation between muscle Na(+)-K(+)-ATPase and plasma insulin concentrations was observed (r = 0.50, P = 0.006; n = 29). Thus, insulin seems a regulator of muscle Na......(+)-K(+)-ATPase concentration, reduction of muscle Na(+)-K(+)-ATPase concentration with untreated diabetes bears similarities with undernourishment, and physical conditioning may ameliorate the muscle Na(+)-K(+)-ATPase concentration decrease induced by diabetes....

  8. Children with congenital limb deficiency in Norway: issues related to school life and health-related quality of life. A cross-sectional study.

    Science.gov (United States)

    Johansen, Heidi; Dammann, Brede; Øinæs Andersen, Liv; Andresen, Inger-Lise

    2016-09-01

    To describe clinical features, issues related to school life and health-related quality of life (HRQOL) for children with congenital limb deficiency (CLD) and compare these children to Norwegian school children on HRQOL. Cross-sectional study. In 2010, a postal questionnaire, designed for this study and the Paediatric Quality of Life Inventory (PedsQL), was sent to 154 eligible parents of children with CLD, aged 6-18 years and registered at TRS National Resource Centre for Rare Disorders in Norway. Response rate 44% (n = 67), median age 11 years, 42% were girls. Of the total group, 46 had unilateral upper limb deficiency (UULD) and 21 had multiple/lower limb deficiency (MLD/LLD). The most common UULD was below-elbow deficiency, of these, 65% used grip-improving devices, and 35% used prostheses. Children with UULD-reported PedsQL score similar to Norwegian schoolchildren (NSC). The MLD/LLD group was heterogeneous; most had below-elbow/knee deficiency. In this group, PedsQL scores were reduced for physical and social functioning compared with NSC. Compared with children with UULD, more children with MLD/LLD were restricted in participation because of pain and fewer participated in physical education with peers. Most children with CLD participated with their peers and managed well in everyday life. Children with MLD/LLD seemed to have more challenges than children with UULD. Approximately one-third of all the children had assistive devices and/or practical assistance in school. Implications for Rehabilitation Most children with upper-limb deficiency (UULD) in Norway manage well in everyday life and have HRQOL equal to other Norwegian children. Many choose grip-improving devices instead of prostheses. Their preferences should be respected and taken into account as the need for new assistive devices arise. For children with pronounced disabilities, access to, and use of, assistive devices, adaptions and practical assistance may be important for participation

  9. Natural history of insulin sensitivity and insulin secretion in the progression from normal glucose tolerance to impaired fasting glycemia and impaired glucose tolerance: the Inter99 study

    DEFF Research Database (Denmark)

    Faerch, Kristine; Vaag, Allan; Holst, Jens J

    2008-01-01

    of insulin sensitivity (HOMA-IS), early-phase insulin release (EPIR), and insulin secretion relative to insulin action (disposition index) were estimated. RESULTS: Five years before the pre-diabetes diagnoses (i-IFG, i-IGT, and IFG/IGT), ISI, HOMA-IS, EPIR, and disposition index were lower than...

  10. Anti-insulin antibody test

    Science.gov (United States)

    Insulin antibodies - serum; Insulin Ab test; Insulin resistance - insulin antibodies; Diabetes - insulin antibodies ... Normally, there are no antibodies against insulin in your blood. ... different laboratories. Some labs use different measurements or ...

  11. Insulin resistance in obesity can be reliably identified from fasting plasma insulin.

    Science.gov (United States)

    ter Horst, K W; Gilijamse, P W; Koopman, K E; de Weijer, B A; Brands, M; Kootte, R S; Romijn, J A; Ackermans, M T; Nieuwdorp, M; Soeters, M R; Serlie, M J

    2015-12-01

    Insulin resistance is the major contributor to cardiometabolic complications of obesity. We aimed to (1) establish cutoff points for insulin resistance from euglycemic hyperinsulinemic clamps (EHCs), (2) identify insulin-resistant obese subjects and (3) predict insulin resistance from routinely measured variables. We assembled data from non-obese (n=112) and obese (n=100) men who underwent two-step EHCs using [6,6-(2)H2]glucose as tracer (insulin infusion dose 20 and 60 mU m(-2) min(-1), respectively). Reference ranges for hepatic and peripheral insulin sensitivity were calculated from healthy non-obese men. Based on these reference values, obese men with preserved insulin sensitivity or insulin resistance were identified. Cutoff points for insulin-mediated suppression of endogenous glucose production (EGP) and insulin-stimulated glucose disappearance rate (Rd) were 46.5% and 37.3 μmol kg(-)(1) min(-)(1), respectively. Most obese men (78%) had EGP suppression within the reference range, whereas only 12% of obese men had Rd within the reference range. Obese men with Rd obese men in age, body mass index (BMI), body composition, fasting glucose or cholesterol, but did have higher fasting insulin (110±49 vs 63±29 pmol l(-1), Pobese men could be identified with good sensitivity (80%) and specificity (75%) from fasting insulin >74 pmol l(-1). Most obese men have hepatic insulin sensitivity within the range of non-obese controls, but below-normal peripheral insulin sensitivity, that is, insulin resistance. Fasting insulin (>74 pmol l(-1) with current insulin immunoassay) may be used for identification of insulin-resistant (or metabolically unhealthy) obese men in research and clinical settings.

  12. The relationship between maternal and fetal vitamin D, insulin resistance, and fetal growth.

    LENUS (Irish Health Repository)

    Walsh, Jennifer M

    2013-05-01

    Evidence for a role of vitamin D in maintaining normal glucose homeostasis is inconclusive. We sought to clarify the relationship between maternal and fetal insulin resistance and vitamin D status. This is a prospective cohort study of 60 caucasian pregnant women. Concentrations of 25-hydroxyvitamin D (25-OHD), glucose, insulin, and leptin were measured in early pregnancy and at 28 weeks. Ultrasound at 34 weeks assessed fetal anthropometry including abdominal wall width, a marker of fetal adiposity. At delivery birth weight was recorded and fetal 25-OHD, glucose, C-peptide, and leptin measured in cord blood. Insulin resistance was calculated using the Homeostasis Model Assessment (HOMA) equation. We found that those with lower 25-OHD in early pregnancy had higher HOMA indices at 28 weeks, (r = -.32, P = .02). No significant relationship existed between maternal or fetal leptin and 25-OHD, or between maternal or fetal 25-OHD and fetal anthropometry or birth weight. The incidence of vitamin D deficiency was high at each time point (15%-45%). These findings lend support to routine antenatal supplementation with vitamin D in at risk populations.

  13. New twist on neuronal insulin receptor signaling in health, disease, and therapeutics.

    Science.gov (United States)

    Wada, Akihiko; Yokoo, Hiroki; Yanagita, Toshihiko; Kobayashi, Hideyuki

    2005-10-01

    Long after the pioneering studies documenting the existence of insulin (year 1967) and insulin receptor (year 1978) in brain, the last decade has witnessed extraordinary progress in the understanding of brain region-specific multiple roles of insulin receptor signalings in health and disease. In the hypothalamus, insulin regulates food intake, body weight, peripheral fat deposition, hepatic gluconeogenesis, reproductive endocrine axis, and compensatory secretion of counter-regulatory hormones to hypoglycemia. In the hippocampus, insulin promotes learning and memory, independent of the glucoregulatory effect of insulin. Defective insulin receptor signalings are associated with the dementia in normal aging and patients with age-related neurodegenerative diseases (e.g., Alzheimer's disease); the cognitive impairment can be reversed with systemic administration of insulin in the euglycemic condition. Intranasal administration of insulin enhances memory and mood and decreases body weight in healthy humans, without causing hypoglycemia. In the hypothalamus, insulin-induced activation of the phosphoinositide 3-kinase pathway followed by opening of ATP-sensitive K+ channel has been shown to be related to multiple effects of insulin. However, the precise molecular mechanisms of insulin's pleiotropic effects still remain obscure. More importantly, much remains unknown about the quality control mechanisms ensuring correct conformational maturation of the insulin receptor, and the cellular mechanisms regulating density of cell surface functional insulin receptors.

  14. Quality control of insulin radioreceptor assay for human erythrocytes. Effect of ageing of mono-125I-Tyr-A14-insulin preparation

    International Nuclear Information System (INIS)

    Marttinen, A.; Pasternack, A.; Koivula, T.; Jokela, H.; Lehtinen, M.

    1984-01-01

    The quality control of insulin radioreceptor assay for human erythrocytes is based on the storage of erythrocyte preparations in Hepes buffer of pH 8.0, containing 10 g/l of albumin and 20 mmol/l of glucose. The change of erythrocytes into spherocytes and crenated cells reduces the apparent number of insulin receptors in a relatively constant way by less than 8% a week after 10 days of storage. At the same time the dissociation constants of the insulin-receptor complex increase rapidly. Thus the use of a preparation must be limited to controlling the determination of the insulin binding sites of erythrocytes, and not to the measurement of the affinities of the receptors. When mono- 125 I-Tyr-A14-insulin gets old, a slow decrease in the insulin binding sites can be measured, but the dissociation constants of the insulin receptor complex are not affected. (author)

  15. Absence of down-regulation of the insulin receptor by insulin. A possible mechanism of insulin resistance in the rat.

    OpenAIRE

    Walker, A P; Flint, D J

    1983-01-01

    Insulin resistance occurs in rat adipocytes during pregnancy and lactation despite increased or normal insulin binding respectively; this suggests that a post-receptor defect exists. The possibility has been examined that, although insulin binding occurs normally, internalization of insulin or its receptor may be impaired in these states. Insulin produced a dose-dependent reduction in the number of insulin receptors on adipocytes from virgin rats maintained in culture medium, probably due to ...

  16. Insulin action in women with polycystic ovary syndrome and its relation to gestational diabetes

    NARCIS (Netherlands)

    De Wilde, Marlieke A.; Goverde, Angelique J.; Veltman-Verhulst, Susanne M.; Eijkemans, Marinus J C; Franx, Arie; Fauser, Bart C J M; Koster, Maria P H

    2015-01-01

    STUDY QUESTION: How does insulin action change during pregnancy in women with polycystic ovary syndrome (PCOS) who develop gestational diabetes (GDM) compared with women with PCOS who do not? SUMMARY ANSWER: Women with PCOS who develop GDM already show disturbed insulin action early in pregnancy.

  17. Clinical use of the co-formulation of insulin degludec and insulin aspart

    DEFF Research Database (Denmark)

    Kumar, A; Awata, T; Bain, S C

    2016-01-01

    (HbA1c ) to current modern insulins, but with lower risk of nocturnal hypoglycaemia. In prior insulin users, glycaemic control was achieved with lower or equal insulin doses vs. other basal+meal-time or premix insulin regimens. In insulin-naïve patients with T2DM, IDegAsp can be started once or twice...... a simpler insulin regimen than other available basal-bolus or premix-based insulin regimens, with stable daytime basal coverage, a lower rate of hypoglycaemia and some flexibility in injection timing compared with premix insulins....

  18. Studies of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene in relation to insulin sensitivity among glucose tolerant caucasians

    DEFF Research Database (Denmark)

    Ek, J; Andersen, G; Urhammer, S A

    2001-01-01

    We examined whether the Pro12-Ala polymorphism of the human peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene was related to altered insulin sensitivity among glucose-tolerant subjects or a lower accumulated incidence or prevalence of IGT and Type II (non-insulin-dependent) dia......-insulin-dependent) diabetes mellitus among Scandinavian Caucasians....

  19. Brain natriuretic peptide and insulin resistance in older adults.

    Science.gov (United States)

    Kim, F; Biggs, M L; Kizer, J R; Brutsaert, E F; de Filippi, C; Newman, A B; Kronmal, R A; Tracy, R P; Gottdiener, J S; Djoussé, L; de Boer, I H; Psaty, B M; Siscovick, D S; Mukamal, K J

    2017-02-01

    Higher levels of brain natriuretic peptide (BNP) have been associated with a decreased risk of diabetes in adults, but whether BNP is related to insulin resistance in older adults has not been established. N-terminal of the pro hormone brain natriuretic peptide (NT-pro BNP) was measured among Cardiovascular Health Study participants at the 1989-1990, 1992-1993 and 1996-1997 examinations. We calculated measures of insulin resistance [homeostatic model assessment of insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), Gutt index, Matsuda index] from fasting and 2-h concentrations of glucose and insulin among 3318 individuals with at least one measure of NT-proBNP and free of heart failure, coronary heart disease and chronic kidney disease, and not taking diabetes medication. We used generalized estimating equations to assess the cross-sectional association of NT-proBNP with measures of insulin resistance. Instrumental variable analysis with an allele score derived from nine genetic variants (single nucleotide polymorphisms) within or near the NPPA and NPPB loci was used to estimate an un-confounded association of NT-proBNP levels on insulin resistance. Lower NT-proBNP levels were associated with higher insulin resistance even after adjustment for BMI, waist circumference and other risk factors (P insulin resistance (P = 0.38; P = 0.01 for comparison with the association of measured levels of NT-proBNP). In older adults, lower NT-proBNP is associated with higher insulin resistance, even after adjustment for traditional risk factors. Because related genetic variants were not associated with insulin resistance, the causal nature of this association will require future study. © 2016 Diabetes UK.

  20. Identification and characterization of insulin receptors on foetal-mouse brain-cortical cells.

    OpenAIRE

    Van Schravendijk, C F; Hooghe-Peters, E L; De Meyts, P; Pipeleers, D G

    1984-01-01

    The occurrence of insulin receptors was investigated in freshly dissociated brain-cortical cells from mouse embryos. By analogy with classical insulin-binding cell types, binding of 125I-insulin to foetal brain-cortical cells was time- and pH-dependent, only partially reversible, and competed for by unlabelled insulin and closely related peptides. Desalanine-desasparagine-insulin, pig proinsulin, hagfish insulin and turkey insulin were respectively 2%, 4%, 2% and 200% as potent as bovine insu...

  1. Leptin deficiency-induced obesity affects the density of mast cells in abdominal fat depots and lymph nodes in mice

    Directory of Open Access Journals (Sweden)

    Altintas Mehmet M

    2012-02-01

    Full Text Available Abstract Background Mast cells are implicated in the pathogenesis of obesity and insulin resistance. Here, we explored the effects of leptin deficiency-induced obesity on the density of mast cells in metabolic (abdominal fat depots, skeletal muscle, and liver and lymphatic (abdominal lymph nodes, spleen, and thymus organs. Fourteen-week-old male leptin-deficient ob/ob mice and their controls fed a standard chow were studied. Tissue sections were stained with toluidine blue to determine the density of mast cells. CD117/c-kit protein expression analysis was also carried out. Furthermore, mast cells containing immunoreactive tumor necrosis factor-α (TNF-α, a proinflammatory cytokine involved in obesity-linked insulin resistance, were identified by immunostaining. Results ob/ob mice demonstrated adiposity and insulin resistance. In abdominal fat depots, mast cells were distributed differentially. While most prevalent in subcutaneous fat in controls, mast cells were most abundant in epididymal fat in ob/ob mice. Leptin deficiency-induced obesity was accompanied by a 20-fold increase in the density of mast cells in epididymal fat, but a 13-fold decrease in subcutaneous fat. This finding was confirmed by CD117/c-kit protein expression analysis. Furthermore, we found that a subset of mast cells in epididymal and subcutaneous fat were immunoreactive for TNF-α. The proportion of mast cells immunoreactive for TNF-α was higher in epididymal than in subcutaneous fat in both ob/ob and control mice. Mast cells were also distributed differentially in retroperitoneal, mesenteric, and inguinal lymph nodes. In both ob/ob mice and lean controls, mast cells were more prevalent in retroperitoneal than in mesenteric and inguinal lymph nodes. Leptin deficiency-induced obesity was accompanied by increased mast cell density in all lymph node stations examined. No significant difference in the density of mast cells in skeletal muscle, liver, spleen, and thymus was

  2. Effects of intranasal insulin on endogenous glucose production in insulin-resistant men.

    Science.gov (United States)

    Xiao, Changting; Dash, Satya; Stahel, Priska; Lewis, Gary F

    2018-03-14

    The effects of intranasal insulin on the regulation of endogenous glucose production (EGP) in individuals with insulin resistance were assessed in a single-blind, crossover study. Overweight or obese insulin-resistant men (n = 7; body mass index 35.4 ± 4.4 kg/m 2 , homeostatic model assessment of insulin resistance 5.6 ± 1.6) received intranasal spray of either 40 IU insulin lispro or placebo in 2 randomized visits. Acute systemic spillover of intranasal insulin into the circulation was matched with a 30-minute intravenous infusion of insulin lispro in the nasal placebo arm. EGP was assessed under conditions of a pancreatic clamp with a primed, constant infusion of glucose tracer. Under these experimental conditions, compared with placebo, intranasal administration of insulin did not significantly affect plasma glucose concentrations, EGP or glucose disposal in overweight/obese, insulin-resistant men, in contrast to our previous study, in which an equivalent dose of intranasal insulin significantly suppressed EGP in lean, insulin-sensitive men. Insulin resistance is probably associated with impairment in centrally mediated insulin suppression of EGP. © 2018 John Wiley & Sons Ltd.

  3. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance

    DEFF Research Database (Denmark)

    Højlund, Kurt

    2014-01-01

    . These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes...... described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance....... Type 2 diabetes, obesity and PCOS are characterized by pronounced defects in the insulin-stimulated glucose uptake, in particular glycogen synthesis and to a lesser extent glucose oxidation, and the ability of insulin to suppress lipid oxidation. In inherited insulin resistance, however, only insulin...

  4. Effects of combined calcium and vitamin D supplementation on insulin secretion, insulin sensitivity and β-cell function in multi-ethnic vitamin D-deficient adults at risk for type 2 diabetes: a pilot randomized, placebo-controlled trial.

    Directory of Open Access Journals (Sweden)

    Claudia Gagnon

    Full Text Available To examine whether combined vitamin D and calcium supplementation improves insulin sensitivity, insulin secretion, β-cell function, inflammation and metabolic markers.6-month randomized, placebo-controlled trial.Ninety-five adults with serum 25-hydroxyvitamin D [25(OHD] ≤55 nmol/L at risk of type 2 diabetes (with prediabetes or an AUSDRISK score ≥15 were randomized. Analyses included participants who completed the baseline and final visits (treatment n = 35; placebo n = 45.Daily calcium carbonate (1,200 mg and cholecalciferol [2,000-6,000 IU to target 25(OHD >75 nmol/L] or matching placebos for 6 months.Insulin sensitivity (HOMA2%S, Matsuda index, insulin secretion (insulinogenic index, area under the curve (AUC for C-peptide and β-cell function (Matsuda index x AUC for C-peptide derived from a 75 g 2-h OGTT; anthropometry; blood pressure; lipid profile; hs-CRP; TNF-α; IL-6; adiponectin; total and undercarboxylated osteocalcin.Participants were middle-aged adults (mean age 54 years; 69% Europid at risk of type 2 diabetes (48% with prediabetes. Compliance was >80% for calcium and vitamin D. Mean serum 25(OHD concentration increased from 48 to 95 nmol/L in the treatment group (91% achieved >75 nmol/L, but remained unchanged in controls. There were no significant changes in insulin sensitivity, insulin secretion and β-cell function, or in inflammatory and metabolic markers between or within the groups, before or after adjustment for potential confounders including waist circumference and season of recruitment. In a post hoc analysis restricted to participants with prediabetes, a significant beneficial effect of vitamin D and calcium supplementation on insulin sensitivity (HOMA%S and Matsuda was observed.Daily vitamin D and calcium supplementation for 6 months may not change OGTT-derived measures of insulin sensitivity, insulin secretion and β-cell function in multi-ethnic adults with low vitamin D status at risk of type 2 diabetes

  5. Serum Levels Of Free And Total Insulin-Like Growth Factor (IGF)-1 And IGF Binding Protein-3 In Normal And Growth Hormone Deficient Children

    International Nuclear Information System (INIS)

    Shousha, M.A.; Soliman, S.E.T.; Hafez, M.H.

    2006-01-01

    Serum levels of total insulin-like growth factor-1 (IGF-1) and IGF-binding protein-3 (IGFBP-3) reflect the endogenous GH secretion in healthy children, which makes them good diagnostic markers for screening growth hormone deficiency (GHD) in short children, although some controversy still exists. Only a minor fraction of the total IGF-1 circulates in its free form, which is believed to be the biologically active form. Serum levels of free IGF-1, total IGF-I and IGFBP-3 were measured in 144 healthy children (72 boys and 72 girls, aged from 0 to 16 years) and in 12 pre-pubertal GH deficient (GHD) children to study the correlation between the age and free IGF-1, total IGF-1 and IGFBP-3 levels. In healthy subjects (both sexes), serum free IGF-1, total IGF-1 and IGFBP-3 levels were low in infancy, increasing during puberty and declining thereafter. Free IGF-1 in serum occupied about 0.97-1.45 % of the total IGF-1 values, and the ratios of free IGF-1 to total IGF-1 were significantly increased in the pubertal age groups than in the pre-pubertal age groups. Serum levels of free IGF-1 showed significant positive correlation with those of total IGF-I and IGFBP-3. Serum free IGF-1, total IGF-1 and IGFBP-3 levels in patients with GHD were decreased significantly with increasing the degree of hypopituitarism. These observations suggest that the increase in serum free IGF-1 level during puberty was caused by a dramatic increase in total IGF-1 rather than IGFBP-3. Also, high levels of these hormones may play an important role in pubertal growth spurt and may become a useful tool for diagnosing GHD and predicting growth response to long term GH therapy

  6. Serum levels of free and total insulin-link growth factor (IGF)-1 and (IGF) binding protein-3 in normal and growth hormone deficient children

    International Nuclear Information System (INIS)

    Shousha, M.A.; Soliman, S.E.T.; Hafez, H.M.

    2008-01-01

    Serum levels of total insulin-like growth factor- 1 (IGF-1) and IGF-binding protein-3 (IGFBP-3) reflect endogenous GH secretion in healthy children, which makes them good diagnostic markers for screening GH deficiency (GHD) in short children, although some controversy still exists. Only a minor fraction of the total IGF-1 circulates in its free form, which is believed to be the biologically active form. Serum levels of free IGF-1, total IGF-I and IGFBP-3 were measured in 144 healthy children (72 boys and 72 girls, aged from 0 to 16 years) and in 12 prepubertal GH. deficient (GHD) children to study correlation between the age and free IGF-1, total IGF-1 and IGFBP-3 levels. In healthy subjects (both sexes), serum free IGF-1, total IGF-1 and IGFBP-3 levels were low in infancy, increasing during puberty and declining thereafter. Free IGF-1 in serum occupied about 0.97. 1.45 % of the total IGF-1 values, and the ratios of free IGF-1 to total IGF-1 were significantly increased in the pubertal age groups than in the prepubertal age groups. Serum levels of free IGF-1 showed significant positive correlation with those of total IGF-I and IGFBP-3. Serum free IGF-1, total IGF-1 and IGFBP-3 levels in patients with GHD decreased significantly with increasing degree of hypopituitarism. These observations suggest that the increase in serum free IGF-1 level during puberty was caused by a dramatic increase in total IGF-1 rather than IGFBP-3. Also, high levels of these hormones may play an important role in pubertal growth spurt and may become a useful tool for diagnosing GHD and predicting growth response to long term GH therapy

  7. Insulin secretion and action in North Indian women during pregnancy.

    Science.gov (United States)

    Arora, G P; Almgren, P; Thaman, R G; Pal, A; Groop, L; Vaag, A; Prasad, R B; Brøns, C

    2017-10-01

    The relative roles(s) of impaired insulin secretion vs. insulin resistance in the development of gestational diabetes mellitus depend upon multiple risk factors and diagnostic criteria. Here, we explored their relative contribution to gestational diabetes as defined by the WHO 1999 (GDM1999) and adapted WHO 2013 (GDM2013) criteria, excluding the 1-h glucose value, in a high-risk Indian population from Punjab. Insulin secretion (HOMA2-B) and insulin action (HOMA2-IR) were assessed in 4665 Indian women with or without gestational diabetes defined by the GDM1999 or adapted GDM2013 criteria. Gestational diabetes defined using both criteria was associated with decreased insulin secretion compared with pregnant women with normal glucose tolerance. Women with gestational diabetes defined by the adapted GDM2013, but not GDM1999 criteria, were more insulin resistant than pregnant women with normal glucose tolerance, and furthermore displayed lower insulin secretion than GDM1999 women. Urban habitat, illiteracy, high age and low BMI were independently associated with reduced insulin secretion, whereas Sikh religion, increasing age and BMI, as well as a family history of diabetes were independently associated with increased insulin resistance. Gestational diabetes risk factors influence insulin secretion and action in North Indian women in a differential manner. Gestational diabetes classified using the adapted GDM2013 compared with GDM1999 criteria is associated with more severe impairments of insulin secretion and action. © 2017 Diabetes UK.

  8. Delay of insulin initiation in patients with type 2 diabetes mellitus inadequately controlled with oral hypoglycemic agents (analysis of patient- and physician-related factors): A prospective observational DIPP-FACTOR study in Korea.

    Science.gov (United States)

    Kim, Sin Gon; Kim, Nam Hoon; Ku, Bon Jeong; Shon, Ho Sang; Kim, Doo Man; Park, Tae Sun; Kim, Yong-Seong; Kim, In Joo; Choi, Dong Seop

    2017-05-01

    To assess the time to initiation of insulin therapy, and concurrently investigate both patient- and physician-related factors associated with delaying insulin therapy in Korean patients with type 2 diabetes uncontrolled by oral hypoglycemic agents (OHAs). This prospective, observational disease registry study was carried out across 69 centers in Korea. Type 2 diabetes patients who had received two or more OHAs within the past 5 years, had a glycated hemoglobin ≥8% in the past 6 months and had not received insulin were included. Data recorded on data collection forms during a 12-month period were analyzed. Of 2168 patients enrolled, 1959 were evaluated and classified as the insulin-initiated or insulin-delayed group. Insulin was prescribed for just 20% of the patients during a 1-year follow-up period, and less than half (44.5%) of the patients who were taking two OHAs started insulin after 6 years. Patient-related factors for delay in insulin initiation included older age, shorter duration of diabetes and lower glycated hemoglobin. Physician-related factors included age (~50 to 1000) of patients consulted per month. Patient refusal (33.6%) and physicians' concerns of patient non-compliance (26.5%) were the major physician-reported reasons for delaying insulin therapy. Inconvenience of insulin therapy (51.6%) and fear of injection (48.2%) were the major reasons for patient refusal. Insulin initiation is delayed in patients with type 2 diabetes uncontrolled by two or more OHAs in Korea. Patient- and physician-related factors associated with this delay need to be addressed for better diabetes management. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  9. Whole Body Vibration Retards Progression of Atherosclerosis via Insulin-Like Growth Factor 1 in Apolipoprotein E-Deficient Mice

    Directory of Open Access Journals (Sweden)

    He Wu

    2018-01-01

    Full Text Available Whole body vibration (WBV has a marked impact on lipid metabolism and the endocrine system, which is related to the progression of atherosclerosis (AS. To investigate the effects of WBV, we measured the atherosclerotic plaque area of apolipoprotein E-knockout (ApoE−/− AS mice, which were trained by WBV (15 Hz, 30 min for 12 weeks. Simultaneously, serum levels of lipids, insulin-like growth factor 1 (IGF-1, insulin-like growth factor 1 receptor (IGF-1R, interleukin 6 (IL-6, and the mRNA and protein levels of the same in the aorta were compared between the control and WBV groups. The results indicated that WBV significantly reduced the atherosclerotic plaque area with lower very low-density lipoprotein (VLDL and oxidized low-density lipoprotein (ox-LDL in the blood. Moreover, the levels of IGF-1 in serum and expression of IL-6, IGF-1R, and p-IGF-1R protein in the mice aorta decreased significantly in the WBV group. In addition, we found that serum IGF-1 in mice increased to the highest concentration in 30 min after WBV for 10, 30, 60, and 120 minutes. These results suggested that appropriate WBV may delay the progression of AS, which was associated with acutely elevated serum IGF-1 and lower levels of IGF-1 and IL-6 in the aorta for long-term treatment.

  10. Trace element deficiency and its diagnosis by biochemical criteria

    International Nuclear Information System (INIS)

    Kirchgessner, M.; Grassmann, E.; Roth, H.P.; Spoerl, R.; Schnegg, A.

    1976-01-01

    The effect of trace element deficiency on growth of rats and dairy cows is demonstrated using zinc and nickel. The effect of copper deficiency on reproductive performance is shown to be associated with increased death rates of pregnant animals and their foetuses. For the diagnosis of suboptimum states of trace element supply, biochemical criteria are needed. The mere analysis of the trace element content of various body tissues may lead to falase diagnoses because of the often slow response to varying intake and because of interactions with other dietary ingredients affecting absorption and metabolic efficiency of utilization. Thus copper deficiency is associated with a decrease in the serum level of both copper and iron, despite adequate iron intake, and simultaneously with an accumulation of iron in the liver of the animal. Enzymes and hormones containing the essential trace element as an integral constituent may serve as biochemical criteria. A sensitive response to zinc intake is exhibited by the activity of the alkaline phosphatase of serum or bones, and by the activity of the pancreatic carboxypeptidase A, all of which show a significant reaction to deficient intake within two to four days, and perhaps by the biopotency of insulin. Ceruloplasmin responds to the supply of copper. Its biosynthesis in the liver is possible only from copper available for this purpose. Thus, the determination of ceruloplasmin may take account of at least part of the copper available to the body for metabolic functions. Among various criteria, the catalase activity in blood may provide additional information on the state of iron supply. Malate dehydrogenase and glucose-6-phosphate dehydrogenase respond to nickel-deficient intake. Nickel deficiency also involves anaemia due to disorders in iron absorption

  11. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct

    Science.gov (United States)

    Pavlov, Tengis S.; Ilatovskaya, Daria V.; Levchenko, Vladislav; Li, Lijun; Ecelbarger, Carolyn M.; Staruschenko, Alexander

    2013-01-01

    The epithelial sodium channel (ENaC) is one of the central effectors involved in regulation of salt and water homeostasis in the kidney. To study mechanisms of ENaC regulation, we generated knockout mice lacking the insulin receptor (InsR KO) specifically in the collecting duct principal cells. Single-channel analysis in freshly isolated split-open tubules demonstrated that the InsR-KO mice have significantly lower ENaC activity compared to their wild-type (C57BL/6J) littermates when animals were fed either normal or sodium-deficient diets. Immunohistochemical and Western blot assays demonstrated no significant changes in expression of ENaC subunits in InsR-KO mice compared to wild-type littermates. Insulin treatment caused greater ENaC activity in split-open tubules isolated from wild-type mice but did not have this effect in the InsR-KO mice. Thus, these results suggest that insulin increases ENaC activity via its own receptor affecting the channel open probability. To further determine the mechanism of the action of insulin on ENaC, we used mouse mpkCCDc14 principal cells. Insulin significantly augmented amiloride-sensitive transepithelial flux in these cells. Pretreatment of the mpkCCDc14 cells with phosphatidylinositol 3-kinase (LY294002; 10 μM) or mTOR (PP242; 100 nM) inhibitors precluded this effect. This study provides new information about the importance of insulin receptors expressed in collecting duct principal cells for ENaC activity.—Pavlov, T. S., Ilatovskaya, D. V., Levchenko, V., Li, L., Ecelbarger, C. M., Staruschenko, A. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct. PMID:23558339

  12. Insulin binding properties of normal and transformed human epidermal cultured keratinocytes

    International Nuclear Information System (INIS)

    Verrando, P.; Ortonne, J.P.

    1985-01-01

    Insulin binding to its receptors was studied in cultured normal and transformed (A431 line) human epidermal keratinocytes. The specific binding was a temperature-dependent, saturable process. Normal keratinocytes possess a mean value of about 80,000 receptors per cell. Fifteen hours exposure of the cells to insulin lowered their receptor number (about 65% loss in available sites); these reappeared when the hormone was removed from the culture medium. In the A431 epidermoid carcinoma cell line, there is a net decrease in insulin binding (84% of the initial bound/free hormone ratio in comparison with normal cells) essentially related to a loss in receptor affinity for insulin. Thus, cultured human keratinocytes which express insulin receptors may be a useful tool in understanding skin pathology related to insulin disorders

  13. Identifying and meeting the challenges of insulin therapy in type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Sorli C

    2014-07-01

    Full Text Available Christopher Sorli,1,* Michael K Heile2,*1Billings Clinic Research Center, Billings, MT, USA; 2The Family Medical Group Glenway, Cincinnati, OH, USA*Both authors contributed equally to this workAbstract: Type 2 diabetes mellitus (T2DM is a chronic illness that requires clinical recognition and treatment of the dual pathophysiologic entities of altered glycemic control and insulin resistance to reduce the risk of long-term micro- and macrovascular complications. Although insulin is one of the most effective and widely used therapeutic options in the management of diabetes, it is used by less than one-half of patients for whom it is recommended. Clinician-, patient-, and health care system-related challenges present numerous obstacles to insulin use in T2DM. Clinicians must remain informed about new insulin products, emerging technologies, and treatment options that have the potential to improve adherence to insulin therapy while optimizing glycemic control and mitigating the risks of therapy. Patient-related challenges may be overcome by actively listening to the patient's fears and concerns regarding insulin therapy and by educating patients about the importance, rationale, and evolving role of insulin in individualized self-treatment regimens. Enlisting the services of Certified Diabetes Educators and office personnel can help in addressing patient-related challenges. Self-management of diabetes requires improved patient awareness regarding the importance of lifestyle modifications, self-monitoring, and/or continuous glucose monitoring, improved methods of insulin delivery (eg, insulin pens, and the enhanced convenience and safety provided by insulin analogs. Health care system-related challenges may be improved through control of the rising cost of insulin therapy while making it available to patients. To increase the success rate of treatment of T2DM, the 2012 position statement from the American Diabetes Association and the European

  14. Fasting Ghrelin Levels Are Decreased in Obese Subjects and Are Significantly Related With Insulin Resistance and Body Mass Index

    Directory of Open Access Journals (Sweden)

    Dimitrios Papandreou

    2017-10-01

    CONCLUSION: Obese subjects have low fasting ghrelin levels that they are significantly related to insulin resistance and body mass index. More prospective studies are needed to establish the role of ghrelin in the pathogenesis of human obesity.

  15. Expression of insulin-like growth factor system components in colorectal tissue and its relation with serum IGF levels

    NARCIS (Netherlands)

    Vrieling, A.; Voskuil, D.W.; Bosma, A.; Majoor, D.M.; Doorn, van J.; Cats, A.; Depla, A.; Timmer, R.; Witteman, B.J.M.; Wesseling, J.; Kampman, E.; van't Veer, L.J.

    2009-01-01

    Context: The insulin-like growth factor (IGF)-system has been implicated in colorectal tumor carcinogenesis. Although both tumor expression levels and serum concentrations of IGF-system components are related to colorectal cancer risk, it is unknown whether IGF levels in tissue and serum are

  16. Expression of insulin-like growth factor system components in colorectal tissue and its relation with serum IGF levels.

    NARCIS (Netherlands)

    Vrieling, A.; Voskuil, D.W.; Bosma, A.; Majoor, D.M.; Doorn, J. van; Cats, A.; Depla, A.C.; Timmer, R.; Witteman, B.J.; Wesseling, J.; Kampman, E.; Veer, L.J. van 't

    2009-01-01

    CONTEXT: The insulin-like growth factor (IGF)-system has been implicated in colorectal tumor carcinogenesis. Although both tumor expression levels and serum concentrations of IGF-system components are related to colorectal cancer risk, it is unknown whether IGF levels in tissue and serum are

  17. Effect of adrenomedullin gene delivery on insulin resistance in type 2 diabetic rats

    Directory of Open Access Journals (Sweden)

    Hoda Y. Henein

    2011-01-01

    Full Text Available Type 2 diabetes mellitus is one of the common metabolic disorders that ultimately afflicts large number of individuals. Adrenomedullin (AM is a potent vasodilator peptide; previous studies reported development of insulin resistance in aged AM deficient mice. In this study, we employed a gene delivery approach to explore its potential role in insulin resistance. Four groups were included: control, diabetic, non-diabetic injected with the AM gene and diabetic injected with the AM gene. One week following gene delivery, serum glucose, insulin, triglycerides, leptin, adiponectin and corticosterone were measured as well as the insulin resistance index (HOMA-IR. Soleus muscle glucose uptake and RT-PCR of both AM and glucose transporter-4 (GLUT 4 gene expressions were assessed. A single tail vein injection of adrenomedullin gene in type 2 diabetic rats improved skeletal muscle insulin responsiveness with significant improvement of soleus muscle glucose uptake, HOMA-IR, serum glucose, insulin and triglycerides and significant increase in muscle GLUT 4 gene expression (P < 0.05 compared with the non-injected diabetic rats. The beneficial effects of AM gene delivery were accompanied by a significant increase in the serum level of adiponectin (2.95 ± 0.09 versus 2.33 ± 0.17 μg/ml in the non-injected diabetic group as well as a significant decrease in leptin and corticosterone levels (7.51 ± 0.51 and 262.88 ± 10.34 versus 10.63 ± 1.4 and 275.86 ± 11.19 ng/ml respectively in the non-injected diabetic group. The conclusion of the study is that AM gene delivery can improve insulin resistance and may have significant therapeutic applications in type 2 diabetes mellitus.

  18. Adiponectin release and insulin receptor targeting share trans-Golgi-dependent endosomal trafficking routes

    Directory of Open Access Journals (Sweden)

    Maria Rödiger

    2018-02-01

    Full Text Available Objective: Intracellular vesicle trafficking maintains cellular structures and functions. The assembly of cargo-laden vesicles at the trans-Golgi network is initiated by the ARF family of small GTPases. Here, we demonstrate the role of the trans-Golgi localized monomeric GTPase ARFRP1 in endosomal-mediated vesicle trafficking of mature adipocytes. Methods: Control (Arfrp1flox/flox and inducible fat-specific Arfrp1 knockout (Arfrp1iAT−/− mice were metabolically characterized. In vitro experiments on mature 3T3-L1 cells and primary mouse adipocytes were conducted to validate the impact of ARFRP1 on localization of adiponectin and the insulin receptor. Finally, secretion and transferrin-based uptake and recycling assays were performed with HeLa and HeLa M-C1 cells. Results: We identified the ARFRP1-based sorting machinery to be involved in vesicle trafficking relying on the endosomal compartment for cell surface delivery. Secretion of adiponectin from fat depots was selectively reduced in Arfrp1iAT−/− mice, and Arfrp1-depleted 3T3-L1 adipocytes revealed an accumulation of adiponectin in Rab11-positive endosomes. Plasma adiponectin deficiency of Arfrp1iAT−/− mice resulted in deteriorated hepatic insulin sensitivity, increased gluconeogenesis and elevated fasting blood glucose levels. Additionally, the insulin receptor, undergoing endocytic recycling after ligand binding, was less abundant at the plasma membrane of adipocytes lacking Arfrp1. This had detrimental effects on adipose insulin signaling, followed by insufficient suppression of basal lipolytic activity and impaired adipose tissue expansion. Conclusions: Our findings suggest that adiponectin secretion and insulin receptor surface targeting utilize the same post-Golgi trafficking pathways that are essential for an appropriate systemic insulin sensitivity and glucose homeostasis. Keywords: Adiponectin, ARFRP1, Exocytosis, Insulin receptor, trans-Golgi

  19. Weight-loss changes PPAR expression, reduces atherosclerosis and improves cardiovascular function in obese insulin-resistant mice

    Energy Technology Data Exchange (ETDEWEB)

    Verreth, Wim; Verhamme, Peter; Pelat, Michael; Ganame, Javier; Bielicki, John K.; Mertens, Ann; Quarck, Rozenn; Benhabiles, Nora; Marguerie, Gerard; Mackness, Bharti; Mackness, Mike; Ninio, Ewa; Herregods, Marie-Christine; Balligand, Jean-Luc; Holvoet, Paul

    2003-09-01

    Weight-loss in obese insulin-resistant, but not in insulin-sensitive, persons reduces CHD risk. It is not known to what extent changes in the adipose gene expression profile are important for reducing CHD risk. We studied the effect of diet restriction-induced weight-loss on gene expression in adipose tissue, atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia and insulin-resistance are associated with hypertension, impaired left ventricle function and accelerated atherosclerosis in those mice. Diet restriction during 12 weeks caused a 45% weight-loss and changes in the gene expression in adipose tissue of PPARa and PPAR? and of key genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress and inflammation, most of which are under the transcriptional control of PPARs. These changes were associated with increased insulin-sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. Thus, induction of PPARa and PPAR? in adipose tissue is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight-loss. Our observations point to the critical role of PPARs in the pathogenesis of cardiovascular features of the metabolic syndrome.

  20. The role of 25-hydroxyvitamin D deficiency in promoting insulin resistance and inflammation in patients with Chronic Kidney Disease: a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Johnson David W

    2009-12-01

    Full Text Available Abstract Background Approximately 50% of patients with stage 3 Chronic Kidney Disease are 25-hydroxyvitamin D insufficient, and this prevalence increases with falling glomerular filtration rate. Vitamin D is now recognised as having pleiotropic roles beyond bone and mineral homeostasis, with the vitamin D receptor and metabolising machinery identified in multiple tissues. Worryingly, recent observational data has highlighted an association between hypovitaminosis D and increased cardiovascular mortality, possibly mediated via vitamin D effects on insulin resistance and inflammation. The main hypothesis of this study is that oral Vitamin D supplementation will ameliorate insulin resistance in patients with Chronic Kidney Disease stage 3 when compared to placebo. Secondary hypotheses will test whether this is associated with decreased inflammation and bone/adipocyte-endocrine dysregulation. Methods/Design This study is a single-centre, double-blinded, randomised, placebo-controlled trial. Inclusion criteria include; estimated glomerular filtration rate 30-59 ml/min/1.73 m2; aged ≥18 on entry to study; and serum 25-hydroxyvitamin D levels Discussion To date, no randomised controlled trial has been performed in pre-dialysis CKD patients to study the correlation between vitamin D status with supplementation, insulin resistance and markers of adverse cardiovascular risk. We remain hopeful that cholecalciferol may be a safe intervention, with health benefits beyond those related to bone-mineral homeostasis. Trial registration Australian and New Zealand Clinical Trials Registry ACTRN12609000246280.

  1. Whole-blood viscosity and the insulin-resistance syndrome.

    Science.gov (United States)

    Høieggen, A; Fossum, E; Moan, A; Enger, E; Kjeldsen, S E

    1998-02-01

    In a previous study we found that elevated blood viscosity was linked to the insulin resistance syndrome, and we proposed that high blood viscosity may increase insulin resistance. That study was based on calculated viscosity. To determine whether directly measured whole-blood viscosity was related to the insulin-resistance syndrome in the same way as calculated viscosity had been found to be. Healthy young men were examined with the hyperinsulinemic isoglycemic glucose clamp technique, and we related insulin sensitivity (glucose disposal rate) to other metabolic parameters and to blood viscosity. We established a technique for direct measurement of whole-blood viscosity. There were statistically significant negative correlations between glucose disposal rate and whole-blood viscosity at low and high shear rates (r = -0.41, P = 0.007 for both, n = 42). Whole-blood viscosity was correlated positively (n = 15) to serum triglyceride (r = 0.54, P = 0.04) and total cholesterol (r = 0.52, P = 0.05), and negatively with high-density lipoprotein cholesterol (r = -0.53, P = 0.04) concentrations. Insulin sensitivity index was correlated positively to high-density lipoprotein cholesterol (r = 0.54, P = 0.04) and negatively to serum triglyceride (r = -0.69, P = 0.005) and to total cholesterol (r = -0.81, P = 0.0003) concentrations. The present results demonstrate for the first time that there is a negative relationship between directly measured whole-blood viscosity and insulin sensitivity as a part of the insulin-resistance syndrome. Whole-blood viscosity contributes to the total peripheral resistance, and these results support the hypothesis that insulin resistance has a hemodynamic basis.

  2. Diabetes mellitus, a complex and heterogeneous disease, and the role of insulin resistance as a determinant of diabetic kidney disease.

    Science.gov (United States)

    Karalliedde, Janaka; Gnudi, Luigi

    2016-02-01

    Diabetes mellitus (DM) is increasingly recognized as a heterogeneous condition. The individualization of care and treatment necessitates an understanding of the individual patient's pathophysiology of DM that underpins their DM classification and clinical presentation. Classical type-2 diabetes mellitus is due to a combination of insulin resistance and an insulin secretory defect. Type-1 diabetes is characterized by a near-absolute deficiency of insulin secretion. More recently, advances in genetics and a better appreciation of the atypical features of DM has resulted in more categories of diabetes. In the context of kidney disease, patients with DM and microalbuminuria are more insulin resistant, and insulin resistance may be a pathway that results in accelerated progression of diabetic kidney disease. This review summarizes the updated classification of DM, including more rarer categories and their associated renal manifestations that need to be considered in patients who present with atypical features. The benefits and limitations of the tests utilized to make a diagnosis of DM are discussed. We also review the putative pathways and mechanisms by which insulin resistance drives the progression of diabetic kidney disease. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  3. Postreceptor defects causing insulin resistance in normoinsulinemic non-insulin-dependent diabetes mellitus

    International Nuclear Information System (INIS)

    Bolinder, J.; Ostman, J.; Arner, P.

    1982-01-01

    The mechanisms of the diminished hypoglycemic response to insulin in non-insulin-dependent diabetes mellitus (NIDDM) with normal levels of circulating plasma insulin were investigated. Specific binding of mono- 125 I (Tyr A14)-insulin to isolated adipocytes and effects of insulin (5--10,000 microunits/ml) on glucose oxidation and lipolysis were determined simultaneously in subcutaneous adipose tissue of seven healthy subjects of normal weight and seven untreated NIDDM patients with normal plasma insulin levels. The two groups were matched for age, sex, and body weight. Insulin binding, measured in terms of receptor number and affinity, was normal in NIDDM, the total number of receptors averaging 350,000 per cell. Neither sensitivity nor the maximum antilipolytic effect of insulin was altered in NIDDM patients as compared with control subjects; the insulin concentration producing half the maximum effect (ED50) was 10 microunits/ml. As regards the effect of insulin on glucose oxidation, for the control subjects ED50 was 30 microunits/ml, whereas in NIDDM patients, insulin exerted no stimulatory effect. The results obtained suggest that the effect of insulin on glucose utilization in normoinsulinemic NIDDM may be diminished in spite of normal insulin binding to receptors. The resistance may be due solely to postreceptor defects, and does not involve antilipolysis

  4. Sustained beta-cell dysfunction but normalized islet mass in aged thrombospondin-1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Carl Johan Drott

    Full Text Available Pancreatic islet endothelial cells have in recent years been shown to support beta-cell mass and function by paracrine interactions. Recently, we identified an islets endothelial-specific glycoprotein, thrombospondin-1 (TSP-1, that showed to be of importance for islet angiogenesis and beta-cell function in young mice. The present study aimed to investigate long-term consequences for islet morphology and beta-cell function of TSP-1 deficiency. Islet and beta-cell mass were observed increased at 10-12 weeks of age in TSP-1 deficient mice, but were normalized before 16 weeks of age when compared to wild-type controls. Islet vascularity was normal in 10-12 and 16-week-old TSP-1 deficient animals, whereas islets of one-year-old animals lacking TSP-1 were hypervascular. Beta-cell dysfunction in TSP-1 deficient animals was present at similar magnitudes between 10-12 and 52 weeks of age, as evaluated by glucose tolerance tests. The insulin secretion capacity in vivo of islets in one-year-old TSP-1 deficient animals was only ∼15% of that in wild-type animals. Using a transplantation model, we reconstituted TSP-1 in adult TSP-deficient islets. In contrast to neonatal TSP-1 deficient islets that we previously reported to regain function after TSP-1 reconstitution, adult islets failed to recover. We conclude that TSP-1 deficiency in islets causes changing vascular and endocrine morphological alterations postnatally, but is coupled to a chronic beta-cell dysfunction. The beta-cell dysfunction induced by TSP-1 deficiency is irreversible if not substituted early in life.

  5. Differential effects of insulin injections and insulin infusions on levels ...

    African Journals Online (AJOL)

    Studies have shown that while injections of insulin cause an increase in fat mass, infusions of insulin increase fat mass. The aim of this paper was to test the hypothesis that if an increase in glycogen is an indicator of an impending increase in adipose mass, then insulin infusions should not increase glycogen, while insulin ...

  6. Negative appraisals of insulin therapy are common among adults with Type 2 diabetes using insulin: Results from Diabetes MILES - Australia cross-sectional survey

    DEFF Research Database (Denmark)

    Holmes-Truscott, E.; Holmes-Truscott, E.; Skinner, T. C.

    2015-01-01

    Aim: To identify insulin therapy appraisals among adults with Type 2 diabetes using insulin and how negative appraisals relate to clinical, self-care and psychosocial outcomes. Methods: Diabetes MILES - Australia 2011 was a national survey of adults with diabetes, focused on behavioural...... and psychosocial issues. Subgroup analyses were conducted on the responses of 273 adults with Type 2 diabetes using insulin (46% women; mean ± sd age: 59 ± 9 years; diabetes duration: 12 ± 7 years; years using insulin: 4 ± 4). They completed validated measures of insulin therapy appraisals (ITAS), depression (PHQ......; 51% that insulin causes weight gain; 39% that they have 'failed to manage' their diabetes. Those with the greatest and least 'ITAS negative' scores did not differ by diabetes duration or years using insulin, or by average number of insulin injections or blood glucose checks per day. Those with more...

  7. Novel simple insulin delivery device reduces barriers to insulin therapy in type 2 diabetes: results from a pilot study.

    Science.gov (United States)

    Hermanns, Norbert; Lilly, Leslie C; Mader, Julia K; Aberer, Felix; Ribitsch, Anja; Kojzar, Harald; Warner, Jay; Pieber, Thomas R

    2015-05-01

    The PaQ® insulin delivery system is a simple-to-use patch-on device that provides preset basal rates and bolus insulin on demand. In addition to feasibility of use, safety, and efficacy (reported elsewhere), this study analyzed the impact of PaQ on patient-reported outcomes, including barriers to insulin treatment, diabetes-related distress, and attitudes toward insulin therapy in patients with type 2 diabetes on a stable multiple daily injection (MDI) regimen. This single-center, open-label, single-arm study comprised three 2-week periods: baseline (MDI), transition from MDI to PaQ, and PaQ treatment. Validated questionnaires were administered during the baseline and PaQ treatment periods: Barriers to Insulin Treatment questionnaire (BIT), Insulin Treatment Appraisal Scale (ITAS), and Problem Areas in Diabetes scale (PAID). Eighteen patients (age 59 ± 5 years, diabetes duration 15 ± 7 years, 21% female, HbA1c 7.7 ± 0.7%) completed the questionnaires. There was a strong, significant effect of PaQ use in mean BIT total scores (difference [D] = -5.4 ± 0.7.7, P = .01, effect size [d] = 0.70). Patients perceived less stigmatization by insulin injection (D = -2.2 ± 6.2, P = .18, d = 0.35), increased positive outcome (D = 1.9 ± 6.6, P = .17, d = 0.29), and less fear of injections (1.3 ± 4.8, P = .55, d = 0.28). Mean change in ITAS scores after PaQ device use showed a nonsignificant improvement of 1.71 ± 5.63 but moderate effect size (d = 0.30, P = .14). No increase in PAID scores was seen. The results and moderate to large effects sizes suggest that PaQ device use has beneficial and clinically relevant effects to overcoming barriers to and negative appraisal of insulin treatment, without increasing other diabetes-related distress. © 2015 Diabetes Technology Society.

  8. The origins and drivers of insulin resistance.

    Science.gov (United States)

    Johnson, Andrew M F; Olefsky, Jerrold M

    2013-02-14

    Obesity-induced insulin resistance is the major determinant of metabolic syndrome, which precedes the development of type 2 diabetes mellitus and is thus the driving force behind the emerging diabetes epidemic. The precise causes of insulin resistance are varied, and the relative importance of each is a matter of ongoing research. Here, we offer a Perspective on the heterogeneous etiology of insulin resistance, focusing in particular on the role of inflammation, lipid metabolism, and the gastrointestinal microbiota. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Glucose metabolism in pigs expressing human genes under an insulin promoter.

    Science.gov (United States)

    Wijkstrom, Martin; Bottino, Rita; Iwase, Hayoto; Hara, Hidetaka; Ekser, Burcin; van der Windt, Dirk; Long, Cassandra; Toledo, Frederico G S; Phelps, Carol J; Trucco, Massimo; Cooper, David K C; Ayares, David

    2015-01-01

    Xenotransplantation of porcine islets can reverse diabetes in non-human primates. The remaining hurdles for clinical application include safe and effective T-cell-directed immunosuppression, but protection against the innate immune system and coagulation dysfunction may be more difficult to achieve. Islet-targeted genetic manipulation of islet-source pigs represents a powerful tool to protect against graft loss. However, whether these genetic alterations would impair islet function is unknown. On a background of α1,3-galactosyltransferase gene-knockout (GTKO)/human (h)CD46, additional genes (hCD39, human tissue factor pathway inhibitor, porcine CTLA4-Ig) were inserted in different combinations under an insulin promoter to promote expression in islets (confirmed by immunofluorescence). Seven pigs were tested for baseline and glucose/arginine-challenged levels of glucose, insulin, C-peptide, and glucagon. This preliminary study did not show definite evidence of β-cell deficiencies, even when three transgenes were expressed under the insulin promoter. Of seven animals, all were normoglycemic at fasting, and five of seven had normal glucose disposal rates after challenge. All animals exhibited insulin, C-peptide, and glucagon responses to both glucose and arginine challenge; however, significant interindividual variation was observed. Multiple islet-targeted transgenic expression was not associated with an overtly detrimental effect on islet function, suggesting that complex genetic constructs designed for islet protection warrants further testing in islet xenotransplantation models. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Economic benefits of improved insulin stability in insulin pumps.

    Science.gov (United States)

    Weiss, Richard C; van Amerongen, Derek; Bazalo, Gary; Aagren, Mark; Bouchard, Jonathan R

    2011-05-01

    Insulin pump users discard unused medication and infusion sets according to labeling and manufacturer's instructions. The stability labeling for insulin aspart (rDNA origin] (Novolog) was increased from two days to six. The associated savings was modeled from the perspective of a hypothetical one-million member health plan and the total United States population. The discarded insulin volume and the number of infusion sets used under a two-day stability scenario versus six were modeled. A mix of insulin pumps of various reservoir capacities with a range of daily insulin dosages was used. Average daily insulin dose was 65 units ranging from 10 to 150 units. Costs of discarded insulin aspart [rDNA origin] were calculated using WAC (Average Wholesale Price minus 16.67%). The cost of pump supplies was computed for the two-day scenario assuming a complete infusion set change, including reservoirs, every two days. Under the six-day scenario complete infusion sets were discarded every six days while cannulas at the insertion site were changed midway between complete changes. AWP of least expensive supplies was used to compute their costs. For the hypothetical health plan (1,182 pump users) the annual reduction in discarded insulin volume between scenarios was 19.8 million units. The corresponding cost reduction for the plan due to drug and supply savings was $3.4 million. From the U.S. population perspective, savings of over $1 billion were estimated. Using insulin that is stable for six days in pump reservoirs can yield substantial savings to health plans and other payers, including patients.

  11. Neutral insulin solutions physically stabilized by addition of Zn2+.

    Science.gov (United States)

    Brange, J; Havelund, S; Hommel, E; Sørensen, E; Kühl, C

    1986-01-01

    Commercial neutral insulin solutions, all of which contain 2-3 zinc atoms per hexameric unit of insulin, have a relatively limited physical stability when exposed to heat and movement, as for example in insulin infusion pumps. Physical stabilization of neutral insulin solutions has been obtained by addition of two extra Zn2+ per hexamer of insulin. This addition stabilizes porcine and human neutral solutions equally well and does not affect the chemical stability of the insulin. The stabilization is probably obtained by a further strengthening of the hexameric structure of insulin, so that the formation of insoluble insulin fibrils (via the dissociation into the insulin monomer or dimer) is impeded or prevented. The addition of an extra 2 Zn2+ has been shown to be without influence on the insulin immunogenicity in rabbits or on the rate of absorption after subcutaneous injection in diabetic patients. It is concluded that neutral insulin solution can be physically stabilized by addition of extra Zn2+ without affecting other qualities of the insulin preparation including chemical stability, immunogenicity, and duration of action after injection.

  12. Treatment of dwarfism with recombinant human insulin-like growth factor-1.

    Science.gov (United States)

    Ranke, Michael B; Wölfle, Joachim; Schnabel, Dirk; Bettendorf, Markus

    2009-10-01

    The growth hormone-IGF (insulin-like growth factor) system plays a central role in hormonal growth regulation. Recombinant human (rh) growth hormone (GH) has been available since the late 1980s for replacement therapy in GH-deficient patients and for the stimulation of growth in patients with short stature of various causes. Growth promotion by GH occurs in part indirectly through the induction of IGF-1 synthesis. In primary disturbances of IGF-1 production, short stature can only be treated with recombinant human IGF-1 (rhIGF-1). rhIGF-1 was recently approved for this indication but can also be used to treat other conditions. Selective review of the literature on IGF-1 therapy, based on a PubMed search. In children with severe primary IGF-1 deficiency (a rare condition whose prevalence is less than 1:10,000), the prognosis for final height is very poor (ca. 130 cm), and IGF-1 therapy is the appropriate form of pathophysiologically based treatment. There is no alternative treatment at present. The subcutaneous administration of IGF-1 twice daily in doses of 80 to 120 microg/kg accelerates growth and increases final height by 12 to 15 cm, according to current data. There is, however, a risk of hypoglycemia, as IGF-1 has an insulin-like effect. As treatment with IGF-1 is complex, this new medication should only be prescribed, for the time being, by experienced pediatric endocrinologists and diabetologists.

  13. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance.

    Science.gov (United States)

    Højlund, Kurt

    2014-07-01

    Type 2 diabetes, obesity and polycystic ovary syndrome (PCOS) are common metabolic disorders which are observed with increasing prevalences, and which are caused by a complex interplay between genetic and environmental factors, including increased calorie intake and physical inactivity. These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes and cardiovascular disease. In several studies, we have investigated insulin action on glucose and lipid metabolism, and at the molecular level, insulin signaling to glucose transport and glycogen synthesis in skeletal muscle from healthy individuals and in obesity, PCOS and type 2 diabetes. Moreover, we have described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance. Type 2 diabetes, obesity and PCOS are characterized by pronounced defects in the insulin-stimulated glucose uptake, in particular glycogen synthesis and to a lesser extent glucose oxidation, and the ability of insulin to suppress lipid oxidation. In inherited insulin resistance, however, only insulin action on glucose uptake and glycogen synthesis is impaired. This suggests that the defects in glucose and lipid oxidation in the common metabolic disorders are secondary to other factors. In young women with PCOS, the degree of insulin resistance was similar to that seen in middle-aged patients with type 2 diabetes. This supports the hypothesis of an unique pathogenesis of insulin resistance in PCOS. Insulin in physiological concentrations stimulates glucose uptake in human skeletal

  14. Transgenic Wuzhishan minipigs designed to express a dominant-negative porcine growth hormone receptor display small stature and a perturbed insulin/IGF-1 pathway.

    Science.gov (United States)

    Li, Feida; Li, Yong; Liu, Huan; Zhang, Xingju; Liu, Chuxin; Tian, Kai; Bolund, Lars; Dou, Hongwei; Yang, Wenxian; Yang, Huanming; Staunstrup, Nicklas Heine; Du, Yutao

    2015-12-01

    Growth hormone (GH) is an anabolic mitogen with widespread influence on cellular growth and differentiation as well as on glucose and lipid metabolism. GH binding to the growth hormone receptor (GHR) on hepatocytes prompts expression of insulin growth factor I (IGF-1) involved in nutritionally induced compensatory hyperplasia of pancreatic β-cell islets and insulin release. A prolonged hyperactivity of the IGF-1/insulin axis in the face of insulinotropic nutrition, on the other hand, can lead to collapse of the pancreatic islets and glucose intolerance. Individuals with Laron syndrome carry mutations in the GHR gene resulting in severe congenital IGF-1 deficiency and elevated GH serum levels leading to short stature as well as perturbed lipid and glucose metabolism. However, these individuals enjoy a reduced prevalence of acne, cancer and possibly diabetes. Minipigs have become important biomedical models for human conditions due to similarities in organ anatomy, physiology, and metabolism relative to humans. The purpose of this study was to generate transgenic Wuzhishan minipigs by handmade cloning with impaired systemic GHR activity and assess their growth profile and glucose metabolism. Transgenic minipigs featuring overexpression of a dominant-negative porcine GHR (GHR(dm)) presented postnatal growth retardation and proportionate dwarfism. Molecular changes included elevated GH serum levels and mild hyperglycemia. We believe that this model may prove valuable in the study of GH functions in relation to cancer, diabetes and longevity.

  15. Pregestational diabetes with extreme insulin resistance: use of U-500 insulin in pregnancy.

    Science.gov (United States)

    Zuckerwise, Lisa C; Werner, Erika F; Pettker, Christian M; McMahon-Brown, Erin K; Thung, Stephen F; Han, Christina S

    2012-08-01

    Increased insulin requirements in pregnancy can hinder attainment of glycemic control in diabetic patients. U-500 insulin is a concentrated form of regular insulin that can be a valuable tool in the treatment of patients with severe insulin resistance. A 24-year-old woman with pregestational diabetes mellitus experienced increasing insulin requirements during pregnancy, peaking at 650 units daily. The frequent, large-volume injections of standard-concentration insulin were poorly tolerated by the patient and resulted in nonadherence. She subsequently achieved glycemic control on thrice-daily U-500 insulin. Pregnancy exacerbates insulin resistance in diabetic patients, and these patients may require high doses of insulin. U-500 insulin is an effective alternative for patients with severe insulin resistance and should be considered for pregnant women with difficulty achieving glycemic control.

  16. Quality control of insulin radioreceptor assay for human erythrocytes. Effect of ageing of mono-/sup 125/I-Tyr-A14-insulin preparation

    Energy Technology Data Exchange (ETDEWEB)

    Marttinen, A; Pasternack, A [Tampere Univ. (Finland). Dept. of Clinical Sciences; Koivula, T; Jokela, H; Lehtinen, M [Tampere Univ. Central Hospital (Finland). Dept. of Clinical Chemistry

    1984-09-01

    The quality control of insulin radioreceptor assay for human erythrocytes is based on the storage of erythrocyte preparations in Hepes buffer of pH 8.0, containing 10 g/l of albumin and 20 mmol/l of glucose. The change of erythrocytes into spherocytes and crenated cells reduces the apparent number of insulin receptors in a relatively constant way by less than 8% a week after 10 days of storage. At the same time the dissociation constants of the insulin-receptor complex increase rapidly. Thus the use of a preparation must be limited to controlling the determination of the insulin binding sites of erythrocytes, and not to the measurement of the affinities of the receptors. When mono-/sup 125/I-Tyr-A14-insulin gets old, a slow decrease in the insulin binding sites can be measured, but the dissociation constants of the insulin receptor complex are not affected.

  17. Relationship between insulin resistance and plasma vitamin D in adults

    Directory of Open Access Journals (Sweden)

    Badawi A

    2014-07-01

    Full Text Available Alaa Badawi,1 Suzan Sayegh,2 Eman Sadoun,3 Mohamed Al-Thani,2 Paul Arora,4 Pierre S Haddad51Office of Biotechnology, Genomics and Population Health, Public Health Agency of Canada, Toronto, ON, Canada; 2Department of Public Health, 3Clinical Research Division, Supreme Council of Health, Doha, Qatar; 4Dalla Lana School of Public Health, University of Toronto, ON, Canada; 5Department of Pharmacology, Faculty of Medicine, University of Montreal, Montreal, QC, CanadaAbstract: A recent relationship between vitamin D deficiency and the risk of type 2 diabetes mellitus (T2DM and insulin resistance has been established through several studies. Research suggests a correlation between serum vitamin D and glycemic status measures. The aim of this study was to investigate the relationship between the plasma vitamin D levels (25[OH]D and the factors linked to insulin resistance in a representative sample of Canadians ranging in age from 16–79 years. Data were used from the Canadian Health Measures Survey where direct measures of health and wellness were reported from 1,928 subjects. These data were gathered from March 2007–February 2009 at 15 sites selected through a multistage sampling strategy. An inverse relationship between insulin resistance and plasma vitamin D level in both men and women was observed. This study provides additional evidence for the role of vitamin D in T2DM. If causally associated, the supplementation of vitamin D may help in preventing insulin resistance and subsequent T2DM.Keywords: HOMA-IR, plasma 25(OHD, diabetes

  18. Internalization and localization of basal insulin peglispro in cells.

    Science.gov (United States)

    Moyers, Julie S; Volk, Catherine B; Cao, Julia X C; Zhang, Chen; Ding, Liyun; Kiselyov, Vladislav V; Michael, M Dodson

    2017-10-15

    Basal insulin peglispro (BIL) is a novel, PEGylated insulin lispro that has a large hydrodynamic size compared with insulin lispro. It has a prolonged duration of action, which is related to a delay in insulin absorption and a reduction in clearance. Given the different physical properties of BIL compared with native insulin and insulin lispro, it is important to assess the cellular internalization characteristics of the molecule. Using immunofluorescent confocal imaging, we compared the cellular internalization and localization patterns of BIL, biosynthetic human insulin, and insulin lispro. We assessed the effects of BIL on internalization of the insulin receptor (IR) and studied cellular clearance of BIL. Co-localization studies using antibodies to either insulin or PEG, and the early endosomal marker EEA1 showed that the overall internalization and subcellular localization pattern of BIL was similar to that of human insulin and insulin lispro; all were rapidly internalized and co-localized with EEA1. During ligand washout for 4 h, concomitant loss of insulin, PEG methoxy group, and PEG backbone immunostaining was observed for BIL, similar to the loss of insulin immunostaining observed for insulin lispro and human insulin. Co-localization studies using an antibody to the lysosomal marker LAMP1 did not reveal evidence of lysosomal localization for insulin lispro, human insulin, BIL, or PEG using either insulin or PEG immunostaining reagents. BIL and human insulin both induced rapid phosphorylation and internalization of human IR. Our findings show that treatment of cells with BIL stimulates internalization and localization of IR to early endosomes. Both the insulin and PEG moieties of BIL undergo a dynamic cellular process of rapid internalization and transport to early endosomes followed by loss of cellular immunostaining in a manner similar to that of insulin lispro and human insulin. The rate of clearance for the insulin lispro portion of BIL was slower than

  19. Effects of glucose, insulin, and supernatant from pancreatic beta-cells on brain-pancreas relative protein in rat hippocampus

    NARCIS (Netherlands)

    Lin, Yan-Hua; Westenbroek, Christel; Tie, Lu; Liu, Ai-Hua; Yu, He-Ming; Ter Horst, Gert J.; Li, Xue-Jun

    2006-01-01

    Brain-pancreas relative protein (BPRP) is a novel protein that mainly expresses in brain and pancreas. In our previous study, we found that various stressors significantly decreased the expression of BPRP in pancreas in vivo, accompanied by changes in insulin and glucose levels, and that expression

  20. Studies on the production of insulin radio-immunoassay kit

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J R; Kim, T H; Kim, Y S [Korea Atomic Energy Research Inst., Seoul (Republic of Korea)

    1978-01-01

    Insulin was labelled with Iodine-125 in about 35% yield by applying the chloramine-T method. The specific activity of the labelled product was about 100 ..mu..Ci/ug. To use the labelled product for the radioimmunoassay of insulin, the well labelled fractions were selected through a starch gel electrophoresis autoradiography, elution, and subsequent incubations with insulin antibodies. The results of the standardizations using the well labelled insulin fractions for radioimmunoassay indicated that the ratio of the antibody bound (B) to the free (F) insulin-/sup 125/I is 0.2 to 1.6 in the standard insulin dose of up to 50 ..mu..U/ml, the relatively steep dose gradient. Kits were prepared and the stabilities were also checked.

  1. Relation of maternal vitamin D status with gestational diabetes ...

    African Journals Online (AJOL)

    Conclusion: Vitamin D deficiency, gestational diabetes and insulin resistance are interrelated. Severe vitamin D ... and bone homeostasis but also in various organs and ... whereas those with elevated glucose levels after the 50 gr OGTT but ...

  2. Comparison of two insulin assays for first-phase insulin release in type 1 diabetes prediction and prevention studies.

    Science.gov (United States)

    Mahon, Jeffrey L; Beam, Craig A; Marcovina, Santica M; Boulware, David C; Palmer, Jerry P; Winter, William E; Skyler, Jay S; Krischer, Jeffrey P

    2011-11-20

    Detection of below-threshold first-phase insulin release or FPIR (1+3 minute insulin concentrations during an intravenous glucose tolerance test [IVGTT]) is important in type 1 diabetes prediction and prevention studies including the TrialNet Oral Insulin Prevention Trial. We assessed whether an insulin immunoenzymometric assay (IEMA) could replace the less practical but current standard of a radioimmunoassay (RIA) for FPIR. One hundred thirty-three islet autoantibody positive relatives of persons with type 1 diabetes underwent 161 IVGTTs. Insulin concentrations were measured by both assays in 1056 paired samples. A rule classifying FPIR (below-threshold, above-threshold, uncertain) by the IEMA was derived and validated against FPIR by the RIA. The insulin IEMA-based rule accurately classified below- and above-threshold FPIRs by the RIA in 110/161 (68%) IVGTTs, but was uncertain in 51/161 (32%) tests for which FPIR by RIA is needed. An uncertain FPIR by the IEMA was more likely among below-threshold vs above-threshold FPIRs by the RIA (64% [30/47] vs. 18% [21/114], respectively; pTrialNet is limiting the insulin RIA for FPIR to the latter given the practical advantages of the more specific IEMA. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Lipid-induced insulin resistance does not impair insulin access to skeletal muscle

    Science.gov (United States)

    Richey, Joyce M.; Castro, Ana Valeria B.; Broussard, Josiane L.; Ionut, Viorica; Bergman, Richard N.

    2015-01-01

    Elevated plasma free fatty acids (FFA) induce insulin resistance in skeletal muscle. Previously, we have shown that experimental insulin resistance induced by lipid infusion prevents the dispersion of insulin through the muscle, and we hypothesized that this would lead to an impairment of insulin moving from the plasma to the muscle interstitium. Thus, we infused lipid into our anesthetized canine model and measured the appearance of insulin in the lymph as a means to sample muscle interstitium under hyperinsulinemic euglycemic clamp conditions. Although lipid infusion lowered the glucose infusion rate and induced both peripheral and hepatic insulin resistance, we were unable to detect an impairment of insulin access to the lymph. Interestingly, despite a significant, 10-fold increase in plasma FFA, we detected little to no increase in free fatty acids or triglycerides in the lymph after lipid infusion. Thus, we conclude that experimental insulin resistance induced by lipid infusion does not reduce insulin access to skeletal muscle under clamp conditions. This would suggest that the peripheral insulin resistance is likely due to reduced cellular sensitivity to insulin in this model, and yet we did not detect a change in the tissue microenvironment that could contribute to cellular insulin resistance. PMID:25852002

  4. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and metabolic syndrome.

    Science.gov (United States)

    Wimalawansa, Sunil J

    2018-01-01

    (G) relative paucity of rigorous clinical data on the effects of vitamin D sufficiency on non-calcium endpoints. Although a large number of observational studies support improving T2D, insulin resistance, obesity, and metabolic syndrome with vitamin D adequacy, there is a lack of conclusive evidence from randomized control clinical trials that, these disorders are prevented following optimization of serum levels of 25(OH)D. However, none of the currently conducted clinical studies would resolve these issues. Thus, specifically designed, new clinical studies are needed to be conducted in well-defined populations, following normalizing the serum vitamin D levels in vitamin D deficient prediabetes subjects, to test the hypothesis that hypovitaminosis D worsens these disorders and correction would alleviate it. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Leukocyte Adhesion Deficiency: Report of Two Family Related Newborn Infants

    Directory of Open Access Journals (Sweden)

    Zohreh Kavehmanesh

    2010-07-01

    Full Text Available "nLeukocyte adhesion deficiency type 1 (LAD 1 is an autosomal recessive hereditary disorder resulting from deficiency of CD18, characterized by recurrent bacterial infections. We report two consanguineous patients with Leukocyte adhesion deficiency type 1( LAD1. These two infant boy patients were referred to us, within a short period of time, with the complaints of recurrent infections at the age of 38 and 75 days -old, respectively. Parents of two patients were first cousins and their grandmothers also were first cousins. The history of delayed umbilical cord separation was shown in both patients. Patient 1 had history of omphalitis, conjunctivitis, skin lesion of groin area and abscess formation of vaccination site, and had infective wound of eye-lid at the last admission. Patient 2 had history of omphalitis and soft tissue infection of right wrist at the last admission. Laboratory findings showed marked leukocytosis and low CD18 levels (6.6% in Patient 1 and 2.4 % in Patient 2. In Patient 1 recurrent infections were treated with antibiotic regimens and received bone marrow transplantation but Patient 2 died because of septicemia, generalized edema, ascites and progression to acute renal failure at 4 months of age. Due to considerable rate of consanguineous marriages in parents of Leukocyte adhesion deficiency patients, sequence analysis especially for prenatal diagnosis in subsequent pregnancies and genetic counseling is recommended.

  6. Alternative translation initiation of Caveolin-2 desensitizes insulin signaling through dephosphorylation of insulin receptor by PTP1B and causes insulin resistance.

    Science.gov (United States)

    Kwon, Hayeong; Jang, Donghwan; Choi, Moonjeong; Lee, Jaewoong; Jeong, Kyuho; Pak, Yunbae

    2018-06-01

    Insulin resistance, defined as attenuated sensitivity responding to insulin, impairs insulin action. Direct causes and molecular mechanisms of insulin resistance have thus far remained elusive. Here we show that alternative translation initiation (ATI) of Caveolin-2 (Cav-2) regulates insulin sensitivity. Cav-2β isoform yielded by ATI desensitizes insulin receptor (IR) via dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), and subsequent endocytosis and lysosomal degradation of IR, causing insulin resistance. Blockage of Cav-2 ATI protects against insulin resistance by preventing Cav-2β-PTP1B-directed IR desensitization, thereby normalizing insulin sensitivity and glucose uptake. Our findings show that Cav-2β is a negative regulator of IR signaling, and identify a mechanism causing insulin resistance through control of insulin sensitivity via Cav-2 ATI. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Insulin and C peptide response, and antibody levels in hepatitis C related chronic liver disease

    International Nuclear Information System (INIS)

    Abbas, Z.; Tariq, N.; Iqbal, M.; Shah, M.A.

    2002-01-01

    Objective: Patients with cirrhosis due to hepatitis C (HC) have an increased prevalence of diabetes mellitus. The pathogenic mechanism by which HC predisposes to DM is not clear. The objective of this study was to determine the insulin and C-peptide response to 75 gram oral glucose load and measure anti phospholipid antibody levels in patients with chronic liver disease due to HC. Design: a prospective study. Place and duration of study: This study was conducted at the department of medicine, Jinnah postgraduate medical centre over period of three months. Subjects and methods: An analytical case control study was carried out on 37 patients (m-18,f=19); none of these patients had received interferon. They were divided into four groups: (a) HC cirrhosis with DM (n=9 ), (b) HC cirrhosis without DM (n=11), (c) hepatitis B (HB) cirrhosis without DM (n=7), (d) chronic hepatitis C without DM (n=10). Group C and D were taken as controls. Fasting blood samples were taken and repeated after 2 hours of 75 gram oral glucose load (2 h PG). Result: mean ages of group A,B,C and D were (yr +- SD) 51.3 +- 7.6,48.9 +- 2.4, 33.7 +-10.8 and 31.7 +- 8.8 respectively. There was no statistically significant difference in the age, Pugh score and body mass index of HC cirrhotic patients with and without DM. Patients of group A had higher fasting and 2 h PG glucose levels (P=0.003 and 0.000) and higher fasting insulin level (p=0.045). However, increments in insulin and c peptide levels 2 h PG were much less (p=0.048 and 0.003). HB cirrhotics without diabetes (group C behaved just like HC cirrhotic without diabetes (group B). Patients of group D had normal glucose tolerance and insulin and C peptide levels. All four groups had normal anti phospholipid antibody levels. Conclusion: Patients with cirrhosis due to HC nd HB show evidence of glucose intolerance in spite of hyperinsulinaemia probably due to insulin resistance. HC cirrhotics with diabetes have fasting hyperglycemia in spite of

  8. Conversion from insulin glargine U-100 to insulin glargine U-300 or insulin degludec and the impact on dosage requirements.

    Science.gov (United States)

    Pearson, Scott M; Trujillo, Jennifer M

    2018-04-01

    We wanted to determine whether basal insulin requirements change when patients transition from insulin glargine U-100 (Gla-100) to insulin glargine U-300 (Gla-300) or insulin degludec. This study involved subjects seen in the University of Colorado Health Endocrine Clinic who were transitioned from Gla-100 to either Gla-300 ( n = 95) or insulin degludec ( n = 39). The primary outcome was the difference between baseline Gla-100 dose and dose of Gla-300 or insulin degludec prescribed after first follow-up visit within 1-12 months. Secondary outcomes included changes in glycemic control and empiric dose conversion from Gla-100 to Gla-300 or insulin degludec on the day of transition. Wilcoxon rank sum tests evaluated changes in insulin doses, and paired t tests assessed changes in glycemic control using GraphPad statistical software. Median daily basal insulin dose increased for individuals transitioned from Gla-100 to Gla-300 from 30 [19-60 interquartile range (IQR)] units at baseline to 34.5 (19-70 IQR) units after follow up ( p = 0.01). For patients transitioned to insulin degludec, dose changes from baseline to follow up were not significantly different ( p = 0.56). At the time of transition, the prescribed dose of Gla-300 or insulin degludec did not significantly differ from the previous dose of Gla-100 ( p = 0.73 and 0.28, respectively), indicating that empiric dose adjustments were not routinely prescribed. Patients who transitioned from Gla-100 to Gla-300 had increased basal insulin requirements between visits, while basal insulin requirements for those transitioned from Gla-100 to insulin degludec were not significantly different.

  9. Reappraisal of serum insulin-like growth factor-I (IGF-1) measurement in the detection of isolated and combined growth hormone deficiency (GHD) during the transition period.

    Science.gov (United States)

    Boguszewski, Cesar L; Lacerda, Claudio Silva de; Lacerda Filho, Luiz de; Carvalho, Julienne A R de; Boguszewski, Margaret C S

    2013-12-01

    To evaluate the accuracy of serum IGF-1 in the detection of isolated (IGHD) or combined growth hormone deficiency (CGHD) at the transition phase. Forty nine patients with GHD during childhood [16 with IGHD (10 men) and 33 with CGHD (24 men); age 23.2 ± 3.5 yrs.] were submitted to an insulin tolerance test (ITT) with a GH peak IGF-1 measurements were evaluated in the basal sample of the ITT. Transition patients were reclassified as GH-sufficient (SGH; n = 12), IGHD (n = 7), or CGHD (n = 30). Five (31%) patients with IGHD and 32 (97%) with CGHD at childhood persisted with GHD at retesting. One patient with IGHD was reclassified as CGHD, whereas 3 patients with CGHD were reclassified as IGHD. Mean GH peak was 0.2 ± 0.3 µg/L in the CGHD, 1.3 ± 1.5 µg/L in the IGHD, and 18.1 ± 13.1 µg/L in the SGH group. Serum IGF-1 level was significantly higher in the SGH (272 ± 107 ng/mL) compared to IGHD (100.2 ± 110) and CGHD (48.7 ± 32.8) (p IGF-1 level, resulting in 97.3% sensitivity and 91.6% specificity in the detection of GHD at the transition period; the cutoff value of 110 ng/mL showed 94.5% sensitivity and 100% specificity. Mean IGF-1 values did not differ in IGHD or CGHD associated with one, two, three, or four additional pituitary deficiencies. IGF-1 measurement is accurate to replace ITT as initial diagnostic test for IGHD and CGHD detection at the transition phase.

  10. mRNA related to insulin family in human placenta

    International Nuclear Information System (INIS)

    Younes, M.A.; D'Agostino, J.B.; Frazier, M.L.; Besch, P.K.

    1986-01-01

    The authors have previously reported that human term placenta contains mRNA displaying sequence homology to a rat preproinsulin I cDNA clone (p119). When placental poly(A + ) RNA was analyzed for homology to p119 by RNA/DNA blot hybridization, prominent hybridization was observed which was found by densitometric analysis to be three-fold higher than control. To further characterize this insulin-like message, a cDNA library was generated (approx.7000 transformants) using normal term cesarean-sectioned tissue to prepare placental poly(A + ) RNA templates. Five hundred transformants were initially screened by colony hybridization using a 32 P-labeled rat preproinsulin I cDNA as probe. Of the ten initial positives obtained, three were found to be true positives based on Southern hybridization analyses of the recombinant plasmids. Using Taq I digested pBr322 as a size marker, the cDNAs were found to be approximately 300 bp in length. Preliminary DNA sequencing using the Sanger dideoxy chain termination method has revealed that one of these clones displays significant homology to the 5' region of human insulin-like growth factors I and II

  11. mRNA related to insulin family in human placenta

    Energy Technology Data Exchange (ETDEWEB)

    Younes, M.A.; D' Agostino, J.B.; Frazier, M.L.; Besch, P.K.

    1986-03-01

    The authors have previously reported that human term placenta contains mRNA displaying sequence homology to a rat preproinsulin I cDNA clone (p119). When placental poly(A/sup +/) RNA was analyzed for homology to p119 by RNA/DNA blot hybridization, prominent hybridization was observed which was found by densitometric analysis to be three-fold higher than control. To further characterize this insulin-like message, a cDNA library was generated (approx.7000 transformants) using normal term cesarean-sectioned tissue to prepare placental poly(A/sup +/) RNA templates. Five hundred transformants were initially screened by colony hybridization using a /sup 32/P-labeled rat preproinsulin I cDNA as probe. Of the ten initial positives obtained, three were found to be true positives based on Southern hybridization analyses of the recombinant plasmids. Using Taq I digested pBr322 as a size marker, the cDNAs were found to be approximately 300 bp in length. Preliminary DNA sequencing using the Sanger dideoxy chain termination method has revealed that one of these clones displays significant homology to the 5' region of human insulin-like growth factors I and II.

  12. ORIGINAL ARTICLES Barriers to initiating insulin therapy in patients ...

    African Journals Online (AJOL)

    Nicky

    opportunities for continuing medical education (CME) and poor patient ... related to insulin therapy, language barriers between doctor and patients, and fear of ..... of primary health care professionals regarding initiation of insulin in primary ...

  13. The IOC consensus statement: beyond the Female Athlete Triad--Relative Energy Deficiency in Sport (RED-S).

    Science.gov (United States)

    Mountjoy, Margo; Sundgot-Borgen, Jorunn; Burke, Louise; Carter, Susan; Constantini, Naama; Lebrun, Constance; Meyer, Nanna; Sherman, Roberta; Steffen, Kathrin; Budgett, Richard; Ljungqvist, Arne

    2014-04-01

    Protecting the health of the athlete is a goal of the International Olympic Committee (IOC). The IOC convened an expert panel to update the 2005 IOC Consensus Statement on the Female Athlete Triad. This Consensus Statement replaces the previous and provides guidelines to guide risk assessment, treatment and return-to-play decisions. The IOC expert working group introduces a broader, more comprehensive term for the condition previously known as 'Female Athlete Triad'. The term 'Relative Energy Deficiency in Sport' (RED-S), points to the complexity involved and the fact that male athletes are also affected. The syndrome of RED-S refers to impaired physiological function including, but not limited to, metabolic rate, menstrual function, bone health, immunity, protein synthesis, cardiovascular health caused by relative energy deficiency. The cause of this syndrome is energy deficiency relative to the balance between dietary energy intake and energy expenditure required for health and activities of daily living, growth and sporting activities. Psychological consequences can either precede RED-S or be the result of RED-S. The clinical phenomenon is not a 'triad' of the three entities of energy availability, menstrual function and bone health, but rather a syndrome that affects many aspects of physiological function, health and athletic performance. This Consensus Statement also recommends practical clinical models for the management of affected athletes. The 'Sport Risk Assessment and Return to Play Model' categorises the syndrome into three groups and translates these classifications into clinical recommendations.

  14. Mechanisms of action of brain insulin against neurodegenerative diseases.

    Science.gov (United States)

    Ramalingam, Mahesh; Kim, Sung-Jin

    2014-06-01

    Insulin, a pancreatic hormone, is best known for its peripheral effects on the metabolism of glucose, fats and proteins. There is a growing body of evidence linking insulin action in the brain to neurodegenerative diseases. Insulin present in central nervous system is a regulator of central glucose metabolism nevertheless this glucoregulation is not the main function of insulin in the brain. Brain is known to be specifically vulnerable to oxidative products relative to other organs and altered brain insulin signaling may cause or promote neurodegenerative diseases which invalidates and reduces the quality of life. Insulin located within the brain is mostly of pancreatic origin or is produced in the brain itself crosses the blood-brain barrier and enters the brain via a receptor-mediated active transport system. Brain Insulin, insulin receptor and insulin receptor substrate-mediated signaling pathways play important roles in the regulation of peripheral metabolism, feeding behavior, memory and maintenance of neural functions such as neuronal growth and differentiation, neuromodulation and neuroprotection. In the present review, we would like to summarize the novel biological and pathophysiological roles of neuronal insulin in neurodegenerative diseases and describe the main signaling pathways in use for therapeutic strategies in the use of insulin to the cerebral tissues and their biological applications to neurodegenerative diseases.

  15. Method for preventing and/or treating insulin resistance

    NARCIS (Netherlands)

    Nieuwdorp, M.; Vos, de W.M.

    2013-01-01

    The present invention describes use of Eubacterium hallii et rel. and/or Alcaligenes faecalis et rel., as well as pharmaceutical, food, or feed compositions comprising these bacteria, as a medicament, in particular for preventing and/or treating insulin resistance and/or insulin resistance-related

  16. Interaction of dipalmitoyl phosphatidylcholine (DPPC) liposomes and insulin

    Science.gov (United States)

    Mady, Mohsen M.; Elshemey, Wael M.

    2011-06-01

    Insulin, a peptide that has been used for decades in the treatment of diabetes, has well-defined properties and delivery requirements. Liposomes, which are lipid bilayer vesicles, have gained increasing attention as drug carriers which reduce the toxicity and increase the pharmacological activity of various drugs. The molecular interaction between (uncharged lipid) dipalmitoyl phosphatidylcholine (DPPC) liposomes and insulin has been characterized by using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The characteristic protein absorption band peaks, Amide I (at about 1660 cm-1) and Amide II band (at about 1546 cm-1) are potentially reduced in the liposome insulin complex. Wide-angle x-ray scattering measurements showed that the association of insulin with DPPC lipid of liposomes still maintains the characteristic DPPC diffraction peaks with almost no change in relative intensities or change in peak positions. The absence of any shift in protein peak positions after insulin being associated with DPPC liposomes indicates that insulin is successfully forming complex with DPPC liposomes with possibly no pronounced alterations in the structure of insulin molecule.

  17. Potential epigenetic biomarkers of obesity-related insulin resistance in human whole-blood.

    Science.gov (United States)

    Day, Samantha E; Coletta, Richard L; Kim, Joon Young; Garcia, Luis A; Campbell, Latoya E; Benjamin, Tonya R; Roust, Lori R; De Filippis, Elena A; Mandarino, Lawrence J; Coletta, Dawn K

    2017-04-03

    Obesity can increase the risk of complex metabolic diseases, including insulin resistance. Moreover, obesity can be caused by environmental and genetic factors. However, the epigenetic mechanisms of obesity are not well defined. Therefore, the identification of novel epigenetic biomarkers of obesity allows for a more complete understanding of the disease and its underlying insulin resistance. The aim of our study was to identify DNA methylation changes in whole-blood that were strongly associated with obesity and insulin resistance. Whole-blood was obtained from lean (n = 10; BMI = 23.6 ± 0.7 kg/m 2 ) and obese (n = 10; BMI = 34.4 ± 1.3 kg/m 2 ) participants in combination with euglycemic hyperinsulinemic clamps to assess insulin sensitivity. We performed reduced representation bisulfite sequencing on genomic DNA isolated from the blood. We identified 49 differentially methylated cytosines (DMCs; q obese compared with lean participants. We identified 2 sites (Chr.21:46,957,981 and Chr.21:46,957,915) in the 5' untranslated region of solute carrier family 19 member 1 (SLC19A1) with decreased methylation in obese participants (lean 0.73 ± 0.11 vs. obese 0.09 ± 0.05; lean 0.68 ± 0.10 vs. obese 0.09 ± 0.05, respectively). These 2 DMCs identified by obesity were also significantly predicted by insulin sensitivity (r = 0.68, P = 0.003; r = 0.66; P = 0.004). In addition, we performed a differentially methylated region (DMR) analysis and demonstrated a decrease in methylation of Chr.21:46,957,915-46,958,001 in SLC19A1 of -34.9% (70.4% lean vs. 35.5% obese). The decrease in whole-blood SLC19A1 methylation in our obese participants was similar to the change observed in skeletal muscle (Chr.21:46,957,981, lean 0.70 ± 0.09 vs. obese 0.31 ± 0.11 and Chr.21:46,957,915, lean 0.72 ± 0.11 vs. obese 0.31 ± 0.13). Pyrosequencing analysis further demonstrated a decrease in methylation at Chr.21:46,957,915 in both whole-blood (lean 0.71 ± 0.10 vs. obese 0.18 ± 0

  18. Insulin use, prescription patterns, regimens and costs.-a narrative from a developing country

    Directory of Open Access Journals (Sweden)

    Ogbera Anthonia O

    2012-12-01

    Full Text Available Abstract Background Achieving good glycemic control is of paramount importance in the reduction of diabetes mellitus (DM associated morbidity and mortality. Insulin plays a key role in the management of DM but unfortunately whilst some healthcare providers present insulin as a treatment of last resort , patients on insulin often have insulin related issues such as needle phobias, fear of hypoglycaemia, weight gain and in developing countries, costs. This Report aims at assessing insulin prescription pattern, insulin costs and issues associated with adherence. Methods This was a Cross-sectional observation Study whereby 160 patients with DM who were on insulin solely or in combination with oral hypoglycaemic agents were recruited over a 6 month period. Information obtained from the Study subjects pertained to their histories of DM, types of insulin, insulin costs, adherence issues and insulin delivery devices. Long and short term glycaemic control were determined and evaluated for possible relation to insulin adherence. Test statistics used were chi square, t test and binary regression. Results Insulin adherence was noted in 123-77% of the Study subjects and this was comparable between persons with type 1 DM and those with type 2 DM. The mean glycosylated haemoglobin values were significantly higher in those who admitted to non insulin adherence compared to those who adhered to their insulin regimen (9.7% (2.3 Vs 8.6% (2.1, p = 0.01. Reasons proffered by Respondents for non insulin adherence included high costs-15(41%, inconvenience −15 (41% and needle pain-7918%. A greater proportion of persons who self injected insulin adhered to insulin prescriptions compared to those who did not self inject and thus had better glycaemic control. Shorter duration of DM and older age were found to be predictors of adherence to insulin prescription. The monthly mean costs of insulin for those who earned an income was 5212.8 Nigerian naira which is

  19. Fructose induced neurogenic hypertension mediated by overactivation of p38 MAPK to impair insulin signaling transduction caused central insulin resistance.

    Science.gov (United States)

    Cheng, Pei-Wen; Lin, Yu-Te; Ho, Wen-Yu; Lu, Pei-Jung; Chen, Hsin-Hung; Lai, Chi-Cheng; Sun, Gwo-Ching; Yeh, Tung-Chen; Hsiao, Michael; Tseng, Ching-Jiunn; Liu, Chun-Peng

    2017-11-01

    Type 2 diabetes are at a high risk of complications related to hypertension, and reports have indicated that insulin levels may be associated with blood pressure (BP). Fructose intake has recently been reported to promote insulin resistance and superoxide formation. The aim of this study is to investigate whether fructose intake can enhance superoxide generation and impair insulin signaling in the NTS and subsequently elevate BP in rats with fructose-induced hypertension. Treatment with fructose for 4 weeks increased the BP, serum fasting insulin, glucose, homeostatic model assessment-insulin resistance, and triglyceride levels and reduced the serum direct high-density lipoprotein level in the fructose group. The Tempol treatment recovered the fructose-induced decrease in nitric oxide production in the NTS. Immunoblotting and immunofluorescence analyses further showed that fructose increased the p38- and fructose-induced phosphorylation of insulin receptor substrate 1 (IRS1 S307 ) and suppressed Akt S473 and neuronal nitric oxide synthase phosphorylation. Similarly, fructose was able to impair insulin sensitivity and increase insulin levels in the NTS. Fructose intake also increased the production of superoxide in the NTS. The results of this study suggest that fructose might induce central insulin resistance and elevate BP by enhancing superoxide production and activating p38 phosphorylation in the NTS. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Update on insulin treatment for dogs and cats: insulin dosing pens and more

    Directory of Open Access Journals (Sweden)

    Thompson A

    2015-04-01

    Full Text Available Ann Thompson,1 Patty Lathan,2 Linda Fleeman3 1School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia; 2College of Veterinary Medicine Mississippi State University, Starkville, MS, USA; 3Animal Diabetes Australia, Melbourne, VIC, Australia Abstract: Insulin therapy is still the primary therapy for all diabetic dogs and cats. Several insulin options are available for each species, including veterinary registered products and human insulin preparations. The insulin chosen depends on the individual patient's requirements. Intermediate-acting insulin is usually the first choice for dogs, and longer-acting insulin is the first choice for cats. Once the insulin type is chosen, the best method of insulin administration should be considered. Traditionally, insulin vials and syringes have been used, but insulin pen devices have recently entered the veterinary market. Pens have different handling requirements when compared with standard insulin vials including: storage out of the refrigerator for some insulin preparations once pen cartridges are in use; priming of the pen to ensure a full dose of insulin is administered; and holding the pen device in place for several seconds during the injection. Many different types of pen devices are available, with features such as half-unit dosing, large dials for visually impaired people, and memory that can display the last time and dose of insulin administered. Insulin pens come in both reusable and disposable options. Pens have several benefits over syringes, including improved dose accuracy, especially for low insulin doses. Keywords: diabetes, mellitus, canine, feline, NPH, glargine, porcine lente