WorldWideScience

Sample records for relative inertial navigation

  1. Inertial navigation without accelerometers

    Science.gov (United States)

    Boehm, M.

    The Kennedy-Thorndike (1932) experiment points to the feasibility of fiber-optic inertial velocimeters, to which state-of-the-art technology could furnish substantial sensitivity and accuracy improvements. Velocimeters of this type would obviate the use of both gyros and accelerometers, and allow inertial navigation to be conducted together with vehicle attitude control, through the derivation of rotation rates from the ratios of the three possible velocimeter pairs. An inertial navigator and reference system based on this approach would probably have both fewer components and simpler algorithms, due to the obviation of the first level of integration in classic inertial navigators.

  2. Theoretical Limits of Lunar Vision Aided Navigation with Inertial Navigation System

    Science.gov (United States)

    2015-03-26

    THEORETICAL LIMITS OF LUNAR VISION AIDED NAVIGATION WITH INERTIAL NAVIGATION SYSTEM THESIS David W. Jones, Capt, USAF AFIT-ENG-MS-15-M-020 DEPARTMENT...Government and is not subject to copyright protection in the United States. AFIT-ENG-MS-15-M-020 THEORETICAL LIMITS OF LUNAR VISION AIDED NAVIGATION WITH...DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-M-020 THEORETICAL LIMITS OF LUNAR VISION AIDED NAVIGATION WITH INERTIAL NAVIGATION SYSTEM THESIS David W. Jones

  3. Error Analysis of Inertial Navigation Systems Using Test Algorithms

    OpenAIRE

    Vaispacher, Tomáš; Bréda, Róbert; Adamčík, František

    2015-01-01

    Content of this contribution is an issue of inertial sensors errors, specification of inertial measurement units and generating of test signals for Inertial Navigation System (INS). Given the different levels of navigation tasks, part of this contribution is comparison of the actual types of Inertial Measurement Units. Considering this comparison, there is proposed the way of solving inertial sensors errors and their modelling for low – cost inertial navigation applications. The last part is ...

  4. Design Issues for MEMS-Based Pedestrian Inertial Navigation Systems

    Directory of Open Access Journals (Sweden)

    P. S. Marinushkin

    2015-01-01

    Full Text Available The paper describes design issues for MEMS-based pedestrian inertial navigation systems. By now the algorithms to estimate navigation parameters for strap-down inertial navigation systems on the basis of plural observations have been already well developed. At the same time mathematical and software processing of information in the case of pedestrian inertial navigation systems has its specificity, due to the peculiarities of their functioning and exploitation. Therefore, there is an urgent task to enhance existing fusion algorithms for use in pedestrian navigation systems. For this purpose the article analyzes the characteristics of the hardware composition and configuration of existing systems of this class. The paper shows advantages of various technical solutions. Relying on their main features it justifies a choice of the navigation system architecture and hardware composition enabling improvement of the estimation accuracy of user position as compared to the systems using only inertial sensors. The next point concerns the development of algorithms for complex processing of heterogeneous information. To increase an accuracy of the free running pedestrian inertial navigation system we propose an adaptive algorithm for joint processing of heterogeneous information based on the fusion of inertial info rmation with magnetometer measurements using EKF approach. Modeling of the algorithm was carried out using a specially developed functional prototype of pedestrian inertial navigation system, implemented as a hardware/software complex in Matlab environment. The functional prototype tests of the developed system demonstrated an improvement of the navigation parameters estimation compared to the systems based on inertial sensors only. It enables to draw a conclusion that the synthesized algorithm provides satisfactory accuracy for calculating the trajectory of motion even when using low-grade inertial MEMS sensors. The developed algorithm can be

  5. Using Inertial Sensors in Smartphones for Curriculum Experiments of Inertial Navigation Technology

    OpenAIRE

    Niu, Xiaoji; Wang, Qingjiang; Li, You; Li, Qingli; Liu, Jingnan

    2015-01-01

    Inertial technology has been used in a wide range of applications such as guidance, navigation, and motion tracking. However, there are few undergraduate courses that focus on the inertial technology. Traditional inertial navigation systems (INS) and relevant testing facilities are expensive and complicated in operation, which makes it inconvenient and risky to perform teaching experiments with such systems. To solve this issue, this paper proposes the idea of using smartphones, which are ubi...

  6. Real-time precision pedestrian navigation solution using Inertial Navigation System and Global Positioning System

    OpenAIRE

    Yong-Jin Yoon; King Ho Holden Li; Jiahe Steven Lee; Woo-Tae Park

    2015-01-01

    Global Positioning System and Inertial Navigation System can be used to determine position and velocity. A Global Positioning System module is able to accurately determine position without sensor drift, but its usage is limited in heavily urbanized environments and heavy vegetation. While high-cost tactical-grade Inertial Navigation System can determine position accurately, low-cost micro-electro-mechanical system Inertial Navigation System sensors are plagued by significant errors. Global Po...

  7. Using Inertial Sensors in Smartphones for Curriculum Experiments of Inertial Navigation Technology

    Directory of Open Access Journals (Sweden)

    Xiaoji Niu

    2015-03-01

    Full Text Available Inertial technology has been used in a wide range of applications such as guidance, navigation, and motion tracking. However, there are few undergraduate courses that focus on the inertial technology. Traditional inertial navigation systems (INS and relevant testing facilities are expensive and complicated in operation, which makes it inconvenient and risky to perform teaching experiments with such systems. To solve this issue, this paper proposes the idea of using smartphones, which are ubiquitous and commonly contain off-the-shelf inertial sensors, as the experimental devices. A series of curriculum experiments are designed, including the Allan variance test, the calibration test, the initial leveling test and the drift feature test. These experiments are well-selected and can be implemented simply with the smartphones and without any other specialized tools. The curriculum syllabus was designed and tentatively carried out on 14 undergraduate students with a science and engineering background. Feedback from the students show that the curriculum can help them gain a comprehensive understanding of the inertial technology such as calibration and modeling of the sensor errors, determination of the device attitude and accumulation of the sensor errors in the navigation algorithm. The use of inertial sensors in smartphones provides the students the first-hand experiences and intuitive feelings about the function of inertial sensors. Moreover, it can motivate students to utilize ubiquitous low-cost sensors in their future research.

  8. Integrated navigation method of a marine strapdown inertial navigation system using a star sensor

    International Nuclear Information System (INIS)

    Wang, Qiuying; Diao, Ming; Gao, Wei; Zhu, Minghong; Xiao, Shu

    2015-01-01

    This paper presents an integrated navigation method of the strapdown inertial navigation system (SINS) using a star sensor. According to the principle of SINS, its own navigation information contains an error that increases with time. Hence, the inertial attitude matrix from the star sensor is introduced as the reference information to correct the SINS increases error. For the integrated navigation method, the vehicle’s attitude can be obtained in two ways: one is calculated from SINS; the other, which we have called star sensor attitude, is obtained as the product between the SINS position and the inertial attitude matrix from the star sensor. Therefore, the SINS position error is introduced in the star sensor attitude error. Based on the characteristics of star sensor attitude error and the mathematical derivation, the SINS navigation errors can be obtained by the coupling calculation between the SINS attitude and the star sensor attitude. Unlike several current techniques, the navigation process of this method is non-radiating and invulnerable to jamming. The effectiveness of this approach was demonstrated by simulation and experimental study. The results show that this integrated navigation method can estimate the attitude error and the position error of SINS. Therefore, the SINS navigation accuracy is improved. (paper)

  9. Data Integration from GPS and Inertial Navigation Systems for Pedestrians in Urban Area

    OpenAIRE

    Krzysztof Bikonis; Jerzy Demkowicz

    2013-01-01

    The GPS system is widely used in navigation and the GPS receiver can offer long-term stable absolute positioning information. The overall system performance depends largely on the signal environments. The position obtained from GPS is often degraded due to obstruction and multipath effect caused by buildings, city infrastructure and vegetation, whereas, the current performance achieved by inertial navigation systems (INS) is still relatively poor due to the large inertial sensor errors. The c...

  10. Performance Improvement of Inertial Navigation System by Using Magnetometer with Vehicle Dynamic Constraints

    Directory of Open Access Journals (Sweden)

    Daehee Won

    2015-01-01

    Full Text Available A navigation algorithm is proposed to increase the inertial navigation performance of a ground vehicle using magnetic measurements and dynamic constraints. The navigation solutions are estimated based on inertial measurements such as acceleration and angular velocity measurements. To improve the inertial navigation performance, a three-axis magnetometer is used to provide the heading angle, and nonholonomic constraints (NHCs are introduced to increase the correlation between the velocity and the attitude equation. The NHCs provide a velocity feedback to the attitude, which makes the navigation solution more robust. Additionally, an acceleration-based roll and pitch estimation is applied to decrease the drift when the acceleration is within certain boundaries. The magnetometer and NHCs are combined with an extended Kalman filter. An experimental test was conducted to verify the proposed method, and a comprehensive analysis of the performance in terms of the position, velocity, and attitude showed that the navigation performance could be improved by using the magnetometer and NHCs. Moreover, the proposed method could improve the estimation performance for the position, velocity, and attitude without any additional hardware except an inertial sensor and magnetometer. Therefore, this method would be effective for ground vehicles, indoor navigation, mobile robots, vehicle navigation in urban canyons, or navigation in any global navigation satellite system-denied environment.

  11. Vision-aided inertial navigation system for robotic mobile mapping

    Science.gov (United States)

    Bayoud, Fadi; Skaloud, Jan

    2008-04-01

    A mapping system by vision-aided inertial navigation was developed for areas where GNSS signals are unreachable. In this framework, a methodology on the integration of vision and inertial sensors is presented, analysed and tested. The system employs the method of “SLAM: Simultaneous Localisation And Mapping” where the only external input available to the system at the beginning of the mapping mission is a number of features with known coordinates. SLAM is a term used in the robotics community to describe the problem of mapping the environment and at the same time using this map to determine the location of the mapping device. Differing from the robotics approach, the presented development stems from the frameworks of photogrammetry and kinematic geodesy that are merged in two filters that run in parallel: the Least-Squares Adjustment (LSA) for features coordinates determination and the Kalman filter (KF) for navigation correction. To test this approach, a mapping system-prototype comprising two CCD cameras and one Inertial Measurement Unit (IMU) is introduced. Conceptually, the outputs of the LSA photogrammetric resection are used as the external measurements for the KF that corrects the inertial navigation. The filtered position and orientation are subsequently employed in the photogrammetric intersection to map the surrounding features that are used as control points for the resection in the next epoch. We confirm empirically the dependency of navigation performance on the quality of the images and the number of tracked features, as well as on the geometry of the stereo-pair. Due to its autonomous nature, the SLAM's performance is further affected by the quality of IMU initialisation and the a-priory assumptions on error distribution. Using the example of the presented system we show that centimetre accuracy can be achieved in both navigation and mapping when the image geometry is optimal.

  12. A Visual-Aided Inertial Navigation and Mapping System

    Directory of Open Access Journals (Sweden)

    Rodrigo Munguía

    2016-05-01

    Full Text Available State estimation is a fundamental necessity for any application involving autonomous robots. This paper describes a visual-aided inertial navigation and mapping system for application to autonomous robots. The system, which relies on Kalman filtering, is designed to fuse the measurements obtained from a monocular camera, an inertial measurement unit (IMU and a position sensor (GPS. The estimated state consists of the full state of the vehicle: the position, orientation, their first derivatives and the parameter errors of the inertial sensors (i.e., the bias of gyroscopes and accelerometers. The system also provides the spatial locations of the visual features observed by the camera. The proposed scheme was designed by considering the limited resources commonly available in small mobile robots, while it is intended to be applied to cluttered environments in order to perform fully vision-based navigation in periods where the position sensor is not available. Moreover, the estimated map of visual features would be suitable for multiple tasks: i terrain analysis; ii three-dimensional (3D scene reconstruction; iii localization, detection or perception of obstacles and generating trajectories to navigate around these obstacles; and iv autonomous exploration. In this work, simulations and experiments with real data are presented in order to validate and demonstrate the performance of the proposal.

  13. A new systematic calibration method of ring laser gyroscope inertial navigation system

    Science.gov (United States)

    Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Xiong, Zhenyu; Long, Xingwu

    2016-10-01

    Inertial navigation system has been the core component of both military and civil navigation systems. Before the INS is put into application, it is supposed to be calibrated in the laboratory in order to compensate repeatability error caused by manufacturing. Discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed theories of error inspiration and separation in detail and presented a new systematic calibration method for ring laser gyroscope inertial navigation system. Error models and equations of calibrated Inertial Measurement Unit are given. Then proper rotation arrangement orders are depicted in order to establish the linear relationships between the change of velocity errors and calibrated parameter errors. Experiments have been set up to compare the systematic errors calculated by filtering calibration result with those obtained by discrete calibration result. The largest position error and velocity error of filtering calibration result are only 0.18 miles and 0.26m/s compared with 2 miles and 1.46m/s of discrete calibration result. These results have validated the new systematic calibration method and proved its importance for optimal design and accuracy improvement of calibration of mechanically dithered ring laser gyroscope inertial navigation system.

  14. Systems and Methods for Determining Inertial Navigation System Faults

    Science.gov (United States)

    Bharadwaj, Raj Mohan (Inventor); Bageshwar, Vibhor L. (Inventor); Kim, Kyusung (Inventor)

    2017-01-01

    An inertial navigation system (INS) includes a primary inertial navigation system (INS) unit configured to receive accelerometer measurements from an accelerometer and angular velocity measurements from a gyroscope. The primary INS unit is further configured to receive global navigation satellite system (GNSS) signals from a GNSS sensor and to determine a first set of kinematic state vectors based on the accelerometer measurements, the angular velocity measurements, and the GNSS signals. The INS further includes a secondary INS unit configured to receive the accelerometer measurements and the angular velocity measurements and to determine a second set of kinematic state vectors of the vehicle based on the accelerometer measurements and the angular velocity measurements. A health management system is configured to compare the first set of kinematic state vectors and the second set of kinematic state vectors to determine faults associated with the accelerometer or the gyroscope based on the comparison.

  15. Fusion of Inertial Navigation and Imagery Data, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovations of the Fusion of Inertial Navigation and Imagery Data are the application of the concept to the dynamic entry-interface through near-landing phases,...

  16. Overcoming urban GPS navigation challenges through the use of MEMS inertial sensors and proper verification of navigation system performance

    Science.gov (United States)

    Vinande, Eric T.

    This research proposes several means to overcome challenges in the urban environment to ground vehicle global positioning system (GPS) receiver navigation performance through the integration of external sensor information. The effects of narrowband radio frequency interference and signal attenuation, both common in the urban environment, are examined with respect to receiver signal tracking processes. Low-cost microelectromechanical systems (MEMS) inertial sensors, suitable for the consumer market, are the focus of receiver augmentation as they provide an independent measure of motion and are independent of vehicle systems. A method for estimating the mounting angles of an inertial sensor cluster utilizing typical urban driving maneuvers is developed and is able to provide angular measurements within two degrees of truth. The integration of GPS and MEMS inertial sensors is developed utilizing a full state navigation filter. Appropriate statistical methods are developed to evaluate the urban environment navigation improvement due to the addition of MEMS inertial sensors. A receiver evaluation metric that combines accuracy, availability, and maximum error measurements is presented and evaluated over several drive tests. Following a description of proper drive test techniques, record and playback systems are evaluated as the optimal way of testing multiple receivers and/or integrated navigation systems in the urban environment as they simplify vehicle testing requirements.

  17. Inertial Pocket Navigation System: Unaided 3D Positioning

    Directory of Open Access Journals (Sweden)

    Estefania Munoz Diaz

    2015-04-01

    Full Text Available Inertial navigation systems use dead-reckoning to estimate the pedestrian’s position. There are two types of pedestrian dead-reckoning, the strapdown algorithm and the step-and-heading approach. Unlike the strapdown algorithm, which consists of the double integration of the three orthogonal accelerometer readings, the step-and-heading approach lacks the vertical displacement estimation. We propose the first step-and-heading approach based on unaided inertial data solving 3D positioning. We present a step detector for steps up and down and a novel vertical displacement estimator. Our navigation system uses the sensor introduced in the front pocket of the trousers, a likely location of a smartphone. The proposed algorithms are based on the opening angle of the leg or pitch angle. We analyzed our step detector and compared it with the state-of-the-art, as well as our already proposed step length estimator. Lastly, we assessed our vertical displacement estimator in a real-world scenario. We found that our algorithms outperform the literature step and heading algorithms and solve 3D positioning using unaided inertial data. Additionally, we found that with the pitch angle, five activities are distinguishable: standing, sitting, walking, walking up stairs and walking down stairs. This information complements the pedestrian location and is of interest for applications, such as elderly care.

  18. Inertial Pocket Navigation System: Unaided 3D Positioning

    Science.gov (United States)

    Munoz Diaz, Estefania

    2015-01-01

    Inertial navigation systems use dead-reckoning to estimate the pedestrian's position. There are two types of pedestrian dead-reckoning, the strapdown algorithm and the step-and-heading approach. Unlike the strapdown algorithm, which consists of the double integration of the three orthogonal accelerometer readings, the step-and-heading approach lacks the vertical displacement estimation. We propose the first step-and-heading approach based on unaided inertial data solving 3D positioning. We present a step detector for steps up and down and a novel vertical displacement estimator. Our navigation system uses the sensor introduced in the front pocket of the trousers, a likely location of a smartphone. The proposed algorithms are based on the opening angle of the leg or pitch angle. We analyzed our step detector and compared it with the state-of-the-art, as well as our already proposed step length estimator. Lastly, we assessed our vertical displacement estimator in a real-world scenario. We found that our algorithms outperform the literature step and heading algorithms and solve 3D positioning using unaided inertial data. Additionally, we found that with the pitch angle, five activities are distinguishable: standing, sitting, walking, walking up stairs and walking down stairs. This information complements the pedestrian location and is of interest for applications, such as elderly care. PMID:25897501

  19. Enhanced Subsea Acoustically Aided Inertial Navigation

    DEFF Research Database (Denmark)

    Jørgensen, Martin Juhl

    time is expensive so lots of effort is put into cutting down on time spent on all tasks. Accuracy demanding tasks such as subsea construction and surveying are subject to strict quality control requirements taking up a lot of time. Offshore equipment is rugged and sturdy as the environmental conditions...... are harsh, likewise should the use of it be simple and robust to ensure that it actually works. The contributions of this thesis are all focused on enhancing accuracy and time efficiency while bearing operational reliability and complexity strongly in mind. The basis of inertial navigation, the inertial...... at desired survey points; the other uses a mapping sensor such as subsea lidar to simply map the area in question. Both approaches are shown to work in practice. Generating high resolution maps, as the latter approach, is how the author anticipates all subsea surveys will be conducted in the near future....

  20. Extended investigation into continuous laser scanning of underground mine workings by means of Landis inertial navigation system

    Science.gov (United States)

    Belyaev, E. N.

    2017-10-01

    The paper investigates the method of applying mobile scanning systems (MSSs) with inertial navigators in the underground conditions for carrying out the surveying tasks. The available mobile laser scanning systems cannot be used in the underground environment since Global Positioning System (GPS) signals cannot be received in mines. This signal not only is necessary for space positioning, but also operates as the main corrective signal for the primary navigation system - the inertial navigation system. The idea of the method described in this paper consists in using MSSs with a different correction of the inertial system than GPS is.

  1. A self-calibration method in single-axis rotational inertial navigation system with rotating mechanism

    Science.gov (United States)

    Chen, Yuanpei; Wang, Lingcao; Li, Kui

    2017-10-01

    Rotary inertial navigation modulation mechanism can greatly improve the inertial navigation system (INS) accuracy through the rotation. Based on the single-axis rotational inertial navigation system (RINS), a self-calibration method is put forward. The whole system is applied with the rotation modulation technique so that whole inertial measurement unit (IMU) of system can rotate around the motor shaft without any external input. In the process of modulation, some important errors can be decoupled. Coupled with the initial position information and attitude information of the system as the reference, the velocity errors and attitude errors in the rotation are used as measurement to perform Kalman filtering to estimate part of important errors of the system after which the errors can be compensated into the system. The simulation results show that the method can complete the self-calibration of the single-axis RINS in 15 minutes and estimate gyro drifts of three-axis, the installation error angle of the IMU and the scale factor error of the gyro on z-axis. The calibration accuracy of optic gyro drifts could be about 0.003°/h (1σ) as well as the scale factor error could be about 1 parts per million (1σ). The errors estimate reaches the system requirements which can effectively improve the longtime navigation accuracy of the vehicle or the boat.

  2. Data Integration from GPS and Inertial Navigation Systems for Pedestrians in Urban Area

    Directory of Open Access Journals (Sweden)

    Krzysztof Bikonis

    2013-09-01

    Full Text Available The GPS system is widely used in navigation and the GPS receiver can offer long-term stable absolute positioning information. The overall system performance depends largely on the signal environments. The position obtained from GPS is often degraded due to obstruction and multipath effect caused by buildings, city infrastructure and vegetation, whereas, the current performance achieved by inertial navigation systems (INS is still relatively poor due to the large inertial sensor errors. The complementary features of GPS and INS are the main reasons why integrated GPS/INS systems are becoming increasingly popular. GPS/INS systems offer a high data rate, high accuracy position and orientation that can work in all environments, particularly those where satellite availability is restricted. In the paper integration algorithm of GPS and INS systems data for pedestrians in urban area is presented. For data integration an Extended Kalman Filter (EKF algorithm is proposed. Complementary characteristics of GPS and INS with EKF can overcome the problem of huge INS drifts, GPS outages, dense multipath effect and other individual problems associated with these sensors.

  3. Analysis and Compensation of Modulation Angular Rate Error Based on Missile-Borne Rotation Semi-Strapdown Inertial Navigation System

    Directory of Open Access Journals (Sweden)

    Jiayu Zhang

    2018-05-01

    Full Text Available The Semi-Strapdown Inertial Navigation System (SSINS provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS inertial measurement unit (MIMU outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions.

  4. Hidden Markov Model-based Pedestrian Navigation System using MEMS Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Zhang Yingjun

    2015-02-01

    Full Text Available In this paper, a foot-mounted pedestrian navigation system using MEMS inertial sensors is implemented, where the zero-velocity detection is abstracted into a hidden Markov model with 4 states and 15 observations. Moreover, an observations extraction algorithm has been developed to extract observations from sensor outputs; sample sets are used to train and optimize the model parameters by the Baum-Welch algorithm. Finally, a navigation system is developed, and the performance of the pedestrian navigation system is evaluated using indoor and outdoor field tests, and the results show that position error is less than 3% of total distance travelled.

  5. Flight results of attitude matching between Space Shuttle and Inertial Upper Stage (IUS) navigation systems

    Science.gov (United States)

    Treder, Alfred J.; Meldahl, Keith L.

    The recorded histories of Shuttle/Orbiter attitude and Inertial Upper Stage (IUS) attitude have been analyzed for all joint flights of the IUS in the Orbiter. This database was studied to determine the behavior of relative alignment between the IUS and Shuttle navigation systems. It is found that the overall accuracy of physical alignment has a Shuttle Orbiter bias component less than 5 arcmin/axis and a short-term stability upper bound of 0.5 arcmin/axis, both at 1 sigma. Summaries of the experienced physical and inertial alginment offsets are shown in this paper, together with alignment variation data, illustrated with some flight histories. Also included is a table of candidate values for some error source groups in an Orbiter/IUS attitude errror model. Experience indicates that the Shuttle is much more accurate and stable as an orbiting launch platform than has so far been advertised. This information will be valuable for future Shuttle payloads, especially those (such as the Aeroassisted Flight Experiment) which carry their own inertial navigation systems, and which could update or initialize their attitude determination systems using the Shuttle as the reference.

  6. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments

    OpenAIRE

    Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha

    2015-01-01

    A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. Th...

  7. Time and Relative Distance Inertial Sensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Precise location information is critical for crewmembers for safe EVA Moon and Mars exploration. Current inertial navigation systems are too bulky, fragile, and...

  8. Modelling of Influence of Hypersonic Conditions on Gyroscopic Inertial Navigation Sensor Suspension

    Directory of Open Access Journals (Sweden)

    Korobiichuk Igor

    2017-06-01

    Full Text Available The upcoming hypersonic technologies pose a difficult task for air navigation systems. The article presents a designed model of elastic interaction of penetrating acoustic radiation with flat isotropic suspension elements of an inertial navigation sensor in the operational conditions of hypersonic flight. It has been shown that the acoustic transparency effect in the form of a spatial-frequency resonance becomes possible with simultaneous manifestation of the wave coincidence condition in the acoustic field and equality of the natural oscillation frequency of a finite-size plate and a forced oscillation frequency of an infinite plate. The effect can lead to additional measurement errors of the navigation system. Using the model, the worst and best case suspension oscillation frequencies can be determined, which will help during the design of a navigation system.

  9. A Dynamic Precision Evaluation Method for the Star Sensor in the Stellar-Inertial Navigation System.

    Science.gov (United States)

    Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang

    2017-06-28

    Integrating the advantages of INS (inertial navigation system) and the star sensor, the stellar-inertial navigation system has been used for a wide variety of applications. The star sensor is a high-precision attitude measurement instrument; therefore, determining how to validate its accuracy is critical in guaranteeing its practical precision. The dynamic precision evaluation of the star sensor is more difficult than a static precision evaluation because of dynamic reference values and other impacts. This paper proposes a dynamic precision verification method of star sensor with the aid of inertial navigation device to realize real-time attitude accuracy measurement. Based on the gold-standard reference generated by the star simulator, the altitude and azimuth angle errors of the star sensor are calculated for evaluation criteria. With the goal of diminishing the impacts of factors such as the sensors' drift and devices, the innovative aspect of this method is to employ static accuracy for comparison. If the dynamic results are as good as the static results, which have accuracy comparable to the single star sensor's precision, the practical precision of the star sensor is sufficiently high to meet the requirements of the system specification. The experiments demonstrate the feasibility and effectiveness of the proposed method.

  10. 3D-Calibration for IMU of the Strapdown Inertial Navigation Systems

    Directory of Open Access Journals (Sweden)

    Avrutov V.V.

    2017-01-01

    Full Text Available A new calibration method for Inertial Measurement Unit (IMU of Strapdown Iner-tial Navigation Systems was presented. IMU has been composed of accelerometers, gyroscopes and a circuit of signal processing. Normally, a rate transfer test and multi-position tests are us-ing for IMU calibration. The new calibration method is based on whole angle rotation or finite rotation. In fact it’s suggested to turn over IMU around three axes simultaneously. In order to solve the equation of calibration, it is necessary to provide an equality of a rank of basic matrix into degree of basic matrix. The results of simulated IMU data presented to demonstrate the performance of the new calibration method.

  11. Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration

    CERN Document Server

    Noureldin, Aboelmagd; Georgy, Jacques

    2013-01-01

    Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration is an introduction to the field of Integrated Navigation Systems. It serves as an excellent reference for working engineers as well as textbook for beginners and students new to the area. The book is easy to read and understand with minimum background knowledge. The authors explain the derivations in great detail. The intermediate steps are thoroughly explained so that a beginner can easily follow the material. The book shows a step-by-step implementation of navigation algorithms and provides all the necessary details. It provides detailed illustrations for an easy comprehension. The book also demonstrates real field experiments and in-vehicle road test results with professional discussions and analysis. This work is unique in discussing the different INS/GPS integration schemes in an easy to understand and straightforward way. Those schemes include loosely vs tightly coupled, open loop vs closed loop, and many more.

  12. Comparison of robust H∞ filter and Kalman filter for initial alignment of inertial navigation system

    Institute of Scientific and Technical Information of China (English)

    HAO Yan-ling; CHEN Ming-hui; LI Liang-jun; XU Bo

    2008-01-01

    There are many filtering methods that can be used for the initial alignment of an integrated inertial navigation system.This paper discussed the use of GPS,but focused on two kinds of filters for the initial alignment of an integrated strapdown inertial navigation system (SINS).One method is based on the Kalman filter (KF),and the other is based on the robust filter.Simulation results showed that the filter provides a quick transient response and a little more accurate estimate than KF,given substantial process noise or unknown noise statistics.So the robust filter is an effective and useful method for initial alignment of SINS.This research should make the use of SINS more popular,and is also a step for further research.

  13. Gravity Matching Aided Inertial Navigation Technique Based on Marginal Robust Unscented Kalman Filter

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2015-01-01

    Full Text Available This paper is concerned with the topic of gravity matching aided inertial navigation technology using Kalman filter. The dynamic state space model for Kalman filter is constructed as follows: the error equation of the inertial navigation system is employed as the process equation while the local gravity model based on 9-point surface interpolation is employed as the observation equation. The unscented Kalman filter is employed to address the nonlinearity of the observation equation. The filter is refined in two ways as follows. The marginalization technique is employed to explore the conditionally linear substructure to reduce the computational load; specifically, the number of the needed sigma points is reduced from 15 to 5 after this technique is used. A robust technique based on Chi-square test is employed to make the filter insensitive to the uncertainties in the above constructed observation model. Numerical simulation is carried out, and the efficacy of the proposed method is validated by the simulation results.

  14. Hybrid extended particle filter (HEPF) for integrated inertial navigation and global positioning systems

    International Nuclear Information System (INIS)

    Aggarwal, Priyanka; Syed, Zainab; El-Sheimy, Naser

    2009-01-01

    Navigation includes the integration of methodologies and systems for estimating time-varying position, velocity and attitude of moving objects. Navigation incorporating the integrated inertial navigation system (INS) and global positioning system (GPS) generally requires extensive evaluations of nonlinear equations involving double integration. Currently, integrated navigation systems are commonly implemented using the extended Kalman filter (EKF). The EKF assumes a linearized process, measurement models and Gaussian noise distributions. These assumptions are unrealistic for highly nonlinear systems like land vehicle navigation and may cause filter divergence. A particle filter (PF) is developed to enhance integrated INS/GPS system performance as it can easily deal with nonlinearity and non-Gaussian noises. In this paper, a hybrid extended particle filter (HEPF) is developed as an alternative to the well-known EKF to achieve better navigation data accuracy for low-cost microelectromechanical system sensors. The results show that the HEPF performs better than the EKF during GPS outages, especially when simulated outages are located in periods with high vehicle dynamics

  15. THERMAL PROTECTION AND THERMAL STABILIZATION OF FIBER-OPTICAL GYROSCOPE INCLUDED IN STRAPDOWN INERTIAL NAVIGATION SYSTEM

    Directory of Open Access Journals (Sweden)

    D. S. Gromov

    2014-03-01

    Full Text Available It is known, that temperature perturbations and thermal modes have significant influence on the accuracy of a fiber-optical gyroscope. Nowadays, thermal perturbations are among the main problems in the field of navigation accuracy. Review of existing methods for decrease of temperature influences on the accuracy of a strapdown inertial navigation system with fiberoptical gyros showed, that the usage of constructive and compensation methods only is insufficient and, therefore, thermostabilization is required. Reversible thermostabilization system is offered, its main executive elements are thermoelectric modules (Peltier’s modules, heat transfer from which is provided by heatsinks at work surfaces of modules. This variant of thermostabilization maintenance is considered; Peltier’s modules and temperature sensors for the system are chosen. Parameters of heatsinks for heat transfer intensification are calculated. Fans for necessary air circulation in the device are chosen and thickness of thermal isolation is calculated. Calculations of thermal modes of navigation system with thermostabilization are made in modern software Autodesk Simulation CFD. Comparison of results for present and previous researches and calculations shows essential decrease in gradients of temperature on gyro surfaces and better uniformity of temperature field in the whole device. Conclusions about efficiency of the given method usage in view of accuracy improvement of navigation system are made. Thermostabilization provision of a strapdown inertial navigation system with fiberoptical gyros is proved. Thermostabilization application in combination with compensational methods can reach a necessary accuracy of navigation system.

  16. High accuracy navigation information estimation for inertial system using the multi-model EKF fusing adams explicit formula applied to underwater gliders.

    Science.gov (United States)

    Huang, Haoqian; Chen, Xiyuan; Zhang, Bo; Wang, Jian

    2017-01-01

    The underwater navigation system, mainly consisting of MEMS inertial sensors, is a key technology for the wide application of underwater gliders and plays an important role in achieving high accuracy navigation and positioning for a long time of period. However, the navigation errors will accumulate over time because of the inherent errors of inertial sensors, especially for MEMS grade IMU (Inertial Measurement Unit) generally used in gliders. The dead reckoning module is added to compensate the errors. In the complicated underwater environment, the performance of MEMS sensors is degraded sharply and the errors will become much larger. It is difficult to establish the accurate and fixed error model for the inertial sensor. Therefore, it is very hard to improve the accuracy of navigation information calculated by sensors. In order to solve the problem mentioned, the more suitable filter which integrates the multi-model method with an EKF approach can be designed according to different error models to give the optimal estimation for the state. The key parameters of error models can be used to determine the corresponding filter. The Adams explicit formula which has an advantage of high precision prediction is simultaneously fused into the above filter to achieve the much more improvement in attitudes estimation accuracy. The proposed algorithm has been proved through theory analyses and has been tested by both vehicle experiments and lake trials. Results show that the proposed method has better accuracy and effectiveness in terms of attitudes estimation compared with other methods mentioned in the paper for inertial navigation applied to underwater gliders. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Fusion Based on Visible Light Positioning and Inertial Navigation Using Extended Kalman Filters.

    Science.gov (United States)

    Li, Zhitian; Feng, Lihui; Yang, Aiying

    2017-05-11

    With the rapid development of smart technology, the need for location-based services (LBS) increases every day. Since classical positioning technology such as GPS cannot satisfy the needs of indoor positioning, new indoor positioning technologies, such as Bluetooth, Wi-Fi, and Visible light communication (VLC), have already cut a figure. VLC positioning has been proposed because it has higher accuracy, costs less, and is easier to accomplish in comparison to the other indoor positioning technologies. However, the practicality of VLC positioning is limited since it is easily affected by multipath effects and the layout of LEDs. Thus, we propose a fusion positioning system based on extended Kalman filters, which can fuse the VLC position and the inertial navigation data. The accuracy of the fusion positioning system is in centimeters, which is better compared to the VLC-based positioning or inertial navigation alone. Furthermore, the fusion positioning system has high accuracy, saves energy, costs little, and is easy to install, making it a promising candidate for future indoor positioning applications.

  18. Wellbore inertial navigation system (WINS) software development and test results

    Energy Technology Data Exchange (ETDEWEB)

    Wardlaw, R. Jr.

    1982-09-01

    The structure and operation of the real-time software developed for the Wellbore Inertial Navigation System (WINS) application are described. The procedure and results of a field test held in a 7000-ft well in the Nevada Test Site are discussed. Calibration and instrumentation error compensation are outlined, as are design improvement areas requiring further test and development. Notes on Kalman filtering and complete program listings of the real-time software are included in the Appendices. Reference is made to a companion document which describes the downhole instrumentation package.

  19. DVL Velocity Aiding in the HUGIN 1000 Integrated Inertial Navigation System

    Directory of Open Access Journals (Sweden)

    Bjørn Jalving

    2004-10-01

    Full Text Available The RDI WHN-600 Doppler Velocity Log (DVL is a key navigation sensor for the HUG1N 1000 Autonomous Underwater Vehicle (AUV. HUGIN 1000 is designed for autonomous submerged operation for long periods of time. This is facilitated by a low drift velocity aided Inertial Navigation System (INS. Major factors determining the position error growth are the IMU and DVL error characteristics and the mission plan pattern_ For instance, low frequency DVL errors cause an approximately linear drift in a straight-line trajectory, while these errors tend to be cancelled out by a lawn mower pattern_ The paper focuses on the accuracy offered by the DVL. HUGIN 1000 is a permanent organic mine countermeasure (MCM capacity on the Royal Norwegian Navy MCM vessel KNM Karmoy. HUGIN 1000 will be part of the NATO force MCMFORNORTH in fall 2004.

  20. Development and Flight Test of a Robust Optical-Inertial Navigation System Using Low-Cost Sensors

    Science.gov (United States)

    2008-03-01

    for this test. Though, marketed as a GPS/INS, it was in fact used simply as an IMU for this test. The raw inertial measurement data (from the...Performance Evaluation of Low Cost MEMS-Based IMU Integrated With GPS for Land Vehicle Navigation Application. MS Thesis, UCGE Reports Number

  1. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments.

    Science.gov (United States)

    Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha

    2015-07-10

    A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies-INS and LiDAR SLAM-into one navigation frame with a loosely coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV) platform-NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment.

  2. Surface navigation on Mars with a Navigation Satellite

    Science.gov (United States)

    Vijayaraghavan, A.; Thurman, Sam W.; Kahn, Robert D.; Hastrup, Rolf C.

    Radiometric navigation data from the Deep Space Network (DSN) stations on the earth to transponders and other surface elements such as rovers and landers on Mars, can determine their positions to only within a kilometer in inertial space. The positional error is mostly in the z-component of the surface element parallel to the Martian spin-axis. However, with Doppler and differenced-Doppler data from a Navigation Satellite in orbit around Mars to two or more of such transponders on the planetary surface, their positions can be determined to within 15 meters (or 20 meters for one-way Doppler beacons on Mars) in inertial space. In this case, the transponders (or other vehicles) on Mars need not even be capable of directly communicating to the earth. When the Navigation Satellite data is complemented by radiometric observations from the DSN stations also, directly to the surface elements on Mars, their positions can be determined to within 3 meters in inertial space. The relative positions of such surface elements on Mars (relative to one another) in Mars-fixed coordinates, however, can be determined to within 5 meters from simply range and Doppler data from the DSN stations to the surface elements. These results are obtained from covariance studies assuming X-band data noise levels and data-arcs not exceeding 10 days. They are significant in the planning and deployment of a Mars-based navigation network necessary to support real-time operations during critical phases of manned exploration of Mars.

  3. Integrated INS/GPS Navigation from a Popular Perspective

    Science.gov (United States)

    Omerbashich, Mensur

    2002-01-01

    Inertial navigation, blended with other navigation aids, Global Positioning System (GPS) in particular, has gained significance due to enhanced navigation and inertial reference performance and dissimilarity for fault tolerance and anti-jamming. Relatively new concepts based upon using Differential GPS (DGPS) blended with Inertial (and visual) Navigation Sensors (INS) offer the possibility of low cost, autonomous aircraft landing. The FAA has decided to implement the system in a sophisticated form as a new standard navigation tool during this decade. There have been a number of new inertial sensor concepts in the recent past that emphasize increased accuracy of INS/GPS versus INS and reliability of navigation, as well as lower size and weight, and higher power, fault tolerance, and long life. The principles of GPS are not discussed; rather the attention is directed towards general concepts and comparative advantages. A short introduction to the problems faced in kinematics is presented. The intention is to relate the basic principles of kinematics to probably the most used navigation method in the future-INS/GPS. An example of the airborne INS is presented, with emphasis on how it works. The discussion of the error types and sources in navigation, and of the role of filters in optimal estimation of the errors then follows. The main question this paper is trying to answer is 'What are the benefits of the integration of INS and GPS and how is this, navigation concept of the future achieved in reality?' The main goal is to communicate the idea about what stands behind a modern navigation method.

  4. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments

    Directory of Open Access Journals (Sweden)

    Jian Tang

    2015-07-01

    Full Text Available A new scan that matches an aided Inertial Navigation System (INS with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR and Simultaneous Localization and Mapping (SLAM technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies—INS and LiDAR SLAM—into one navigation frame with a loosely coupled Extended Kalman Filter (EKF to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV platform—NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment.

  5. Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems

    Directory of Open Access Journals (Sweden)

    Ruonan Wu

    2016-12-01

    Full Text Available The gravity disturbance vector is one of the major error sources in high-precision and long-term inertial navigation applications. Specific to the inertial navigation systems (INSs with high-order horizontal damping networks, analyses of the error propagation show that the gravity-induced errors exist almost exclusively in the horizontal channels and are mostly caused by deflections of the vertical (DOV. Low-frequency components of the DOV propagate into the latitude and longitude errors at a ratio of 1:1 and time-varying fluctuations in the DOV excite Schuler oscillation. This paper presents two gravity compensation methods using the Earth Gravitational Model 2008 (EGM2008, namely, interpolation from the off-line database and computing gravity vectors directly using the spherical harmonic model. Particular attention is given to the error contribution of the gravity update interval and computing time delay. It is recommended for the marine navigation that a gravity vector should be calculated within 1 s and updated every 100 s at most. To meet this demand, the time duration of calculating the current gravity vector using EGM2008 has been reduced to less than 1 s by optimizing the calculation procedure. A few off-line experiments were conducted using the data of a shipborne INS collected during an actual sea test. With the aid of EGM2008, most of the low-frequency components of the position errors caused by the gravity disturbance vector have been removed and the Schuler oscillation has been attenuated effectively. In the rugged terrain, the horizontal position error could be reduced at best 48.85% of its regional maximum. The experimental results match with the theoretical analysis and indicate that EGM2008 is suitable for gravity compensation of the high-precision and long-term INSs.

  6. Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems.

    Science.gov (United States)

    Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Liu, Tianyi; Hu, Peida; Li, Haixia

    2016-12-18

    The gravity disturbance vector is one of the major error sources in high-precision and long-term inertial navigation applications. Specific to the inertial navigation systems (INSs) with high-order horizontal damping networks, analyses of the error propagation show that the gravity-induced errors exist almost exclusively in the horizontal channels and are mostly caused by deflections of the vertical (DOV). Low-frequency components of the DOV propagate into the latitude and longitude errors at a ratio of 1:1 and time-varying fluctuations in the DOV excite Schuler oscillation. This paper presents two gravity compensation methods using the Earth Gravitational Model 2008 (EGM2008), namely, interpolation from the off-line database and computing gravity vectors directly using the spherical harmonic model. Particular attention is given to the error contribution of the gravity update interval and computing time delay. It is recommended for the marine navigation that a gravity vector should be calculated within 1 s and updated every 100 s at most. To meet this demand, the time duration of calculating the current gravity vector using EGM2008 has been reduced to less than 1 s by optimizing the calculation procedure. A few off-line experiments were conducted using the data of a shipborne INS collected during an actual sea test. With the aid of EGM2008, most of the low-frequency components of the position errors caused by the gravity disturbance vector have been removed and the Schuler oscillation has been attenuated effectively. In the rugged terrain, the horizontal position error could be reduced at best 48.85% of its regional maximum. The experimental results match with the theoretical analysis and indicate that EGM2008 is suitable for gravity compensation of the high-precision and long-term INSs.

  7. Feature and Pose Constrained Visual Aided Inertial Navigation for Computationally Constrained Aerial Vehicles

    Science.gov (United States)

    Williams, Brian; Hudson, Nicolas; Tweddle, Brent; Brockers, Roland; Matthies, Larry

    2011-01-01

    A Feature and Pose Constrained Extended Kalman Filter (FPC-EKF) is developed for highly dynamic computationally constrained micro aerial vehicles. Vehicle localization is achieved using only a low performance inertial measurement unit and a single camera. The FPC-EKF framework augments the vehicle's state with both previous vehicle poses and critical environmental features, including vertical edges. This filter framework efficiently incorporates measurements from hundreds of opportunistic visual features to constrain the motion estimate, while allowing navigating and sustained tracking with respect to a few persistent features. In addition, vertical features in the environment are opportunistically used to provide global attitude references. Accurate pose estimation is demonstrated on a sequence including fast traversing, where visual features enter and exit the field-of-view quickly, as well as hover and ingress maneuvers where drift free navigation is achieved with respect to the environment.

  8. A Robust Method to Detect Zero Velocity for Improved 3D Personal Navigation Using Inertial Sensors

    Science.gov (United States)

    Xu, Zhengyi; Wei, Jianming; Zhang, Bo; Yang, Weijun

    2015-01-01

    This paper proposes a robust zero velocity (ZV) detector algorithm to accurately calculate stationary periods in a gait cycle. The proposed algorithm adopts an effective gait cycle segmentation method and introduces a Bayesian network (BN) model based on the measurements of inertial sensors and kinesiology knowledge to infer the ZV period. During the detected ZV period, an Extended Kalman Filter (EKF) is used to estimate the error states and calibrate the position error. The experiments reveal that the removal rate of ZV false detections by the proposed method increases 80% compared with traditional method at high walking speed. Furthermore, based on the detected ZV, the Personal Inertial Navigation System (PINS) algorithm aided by EKF performs better, especially in the altitude aspect. PMID:25831086

  9. Inertial Navigation System/Doppler Velocity Log (INS/DVL Fusion with Partial DVL Measurements

    Directory of Open Access Journals (Sweden)

    Asaf Tal

    2017-02-01

    Full Text Available The Technion autonomous underwater vehicle (TAUV is an ongoing project aiming to develop and produce a small AUV to carry on research missions, including payload dropping, and to demonstrate acoustic communication. Its navigation system is based on an inertial navigation system (INS aided by a Doppler velocity log (DVL, magnetometer, and pressure sensor (PS. In many INSs, such as the one used in TAUV, only the velocity vector (provided by the DVL can be used for aiding the INS, i.e., enabling only a loosely coupled integration approach. In cases of partial DVL measurements, such as failure to maintain bottom lock, the DVL cannot estimate the vehicle velocity. Thus, in partial DVL situations no velocity data can be integrated into the TAUV INS, and as a result its navigation solution will drift in time. To circumvent that problem, we propose a DVL-based vehicle velocity solution using the measured partial raw data of the DVL and additional information, thereby deriving an extended loosely coupled (ELC approach. The implementation of the ELC approach requires only software modification. In addition, we present the TAUV six degrees of freedom (6DOF simulation that includes all functional subsystems. Using this simulation, the proposed approach is evaluated and the benefit of using it is shown.

  10. Inertial Navigation System for India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD HEX) Mission

    Science.gov (United States)

    Umadevi, P.; Navas, A.; Karuturi, Kesavabrahmaji; Shukkoor, A. Abdul; Kumar, J. Krishna; Sreekumar, Sreejith; Basim, A. Mohammed

    2017-12-01

    This work presents the configuration of Inertial Navigation System (INS) used in India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) Program. In view of the specific features and requirements of the RLV-TD, specific improvements and modifications were required in the INS. A new system was designed, realised and qualified meeting the mission requirements of RLV-TD, at the same time taking advantage of the flight heritage attained in INS through various Launch vehicle Missions of the country. The new system has additional redundancy in acceleration channel, in-built inclinometer based bias update scheme for acceleration channels and sign conventions as employed in an aircraft. Data acquisition in micro cycle periodicity (10 ms) was incorporated which was required to provide rate and attitude information at higher sampling rate for ascent phase control. Provision was incorporated for acquisition of rate and acceleration data with high resolution for aerodynamic characterisation and parameter estimation. GPS aided navigation scheme was incorporated to meet the stringent accuracy requirements of the mission. Navigation system configuration for RLV-TD, specific features incorporated to meet the mission requirements, various tests carried out and performance during RLV-TD flight are highlighted.

  11. Vision/INS Integrated Navigation System for Poor Vision Navigation Environments

    Directory of Open Access Journals (Sweden)

    Youngsun Kim

    2016-10-01

    Full Text Available In order to improve the performance of an inertial navigation system, many aiding sensors can be used. Among these aiding sensors, a vision sensor is of particular note due to its benefits in terms of weight, cost, and power consumption. This paper proposes an inertial and vision integrated navigation method for poor vision navigation environments. The proposed method uses focal plane measurements of landmarks in order to provide position, velocity and attitude outputs even when the number of landmarks on the focal plane is not enough for navigation. In order to verify the proposed method, computer simulations and van tests are carried out. The results show that the proposed method gives accurate and reliable position, velocity and attitude outputs when the number of landmarks is insufficient.

  12. Using Posture Estimation to Enhance Personal Inertial Tracking

    Science.gov (United States)

    2016-06-01

    augment tracking during periods without GPS coverage. The goal of this research is to improve the current personal inertial navigation system by...solution is to use inertial navigation systems to augment tracking during periods without GPS coverage. The goal of this research is to improve the...For large items such as vehicles or aircraft, a Global Positioning System ( GPS ) is used to track the locations of friendly units and display these

  13. On-the-fly Locata/inertial navigation system integration for precise maritime application

    Science.gov (United States)

    Jiang, Wei; Li, Yong; Rizos, Chris

    2013-10-01

    The application of Global Navigation Satellite System (GNSS) technology has meant that marine navigators have greater access to a more consistent and accurate positioning capability than ever before. However, GNSS may not be able to meet all emerging navigation performance requirements for maritime applications with respect to service robustness, accuracy, integrity and availability. In particular, applications in port areas (for example automated docking) and in constricted waterways, have very stringent performance requirements. Even when an integrated inertial navigation system (INS)/GNSS device is used there may still be performance gaps. GNSS signals are easily blocked or interfered with, and sometimes the satellite geometry may not be good enough for high accuracy and high reliability applications. Furthermore, the INS accuracy degrades rapidly during GNSS outages. This paper investigates the use of a portable ground-based positioning system, known as ‘Locata’, which was integrated with an INS, to provide accurate navigation in a marine environment without reliance on GNSS signals. An ‘on-the-fly’ Locata resolution algorithm that takes advantage of geometry change via an extended Kalman filter is proposed in this paper. Single-differenced Locata carrier phase measurements are utilized to achieve accurate and reliable solutions. A ‘loosely coupled’ decentralized Locata/INS integration architecture based on the Kalman filter is used for data processing. In order to evaluate the system performance, a field trial was conducted on Sydney Harbour. A Locata network consisting of eight Locata transmitters was set up near the Sydney Harbour Bridge. The experiment demonstrated that the Locata on-the-fly (OTF) algorithm is effective and can improve the system accuracy in comparison with the conventional ‘known point initialization’ (KPI) method. After the OTF and KPI comparison, the OTF Locata/INS integration is then assessed further and its performance

  14. On-the-fly Locata/inertial navigation system integration for precise maritime application

    International Nuclear Information System (INIS)

    Jiang, Wei; Li, Yong; Rizos, Chris

    2013-01-01

    The application of Global Navigation Satellite System (GNSS) technology has meant that marine navigators have greater access to a more consistent and accurate positioning capability than ever before. However, GNSS may not be able to meet all emerging navigation performance requirements for maritime applications with respect to service robustness, accuracy, integrity and availability. In particular, applications in port areas (for example automated docking) and in constricted waterways, have very stringent performance requirements. Even when an integrated inertial navigation system (INS)/GNSS device is used there may still be performance gaps. GNSS signals are easily blocked or interfered with, and sometimes the satellite geometry may not be good enough for high accuracy and high reliability applications. Furthermore, the INS accuracy degrades rapidly during GNSS outages. This paper investigates the use of a portable ground-based positioning system, known as ‘Locata’, which was integrated with an INS, to provide accurate navigation in a marine environment without reliance on GNSS signals. An ‘on-the-fly’ Locata resolution algorithm that takes advantage of geometry change via an extended Kalman filter is proposed in this paper. Single-differenced Locata carrier phase measurements are utilized to achieve accurate and reliable solutions. A ‘loosely coupled’ decentralized Locata/INS integration architecture based on the Kalman filter is used for data processing. In order to evaluate the system performance, a field trial was conducted on Sydney Harbour. A Locata network consisting of eight Locata transmitters was set up near the Sydney Harbour Bridge. The experiment demonstrated that the Locata on-the-fly (OTF) algorithm is effective and can improve the system accuracy in comparison with the conventional ‘known point initialization’ (KPI) method. After the OTF and KPI comparison, the OTF Locata/INS integration is then assessed further and its performance

  15. Development of Fast Error Compensation Algorithm for Integrated Inertial-Satellite Navigation System of Small-size Unmanned Aerial Vehicles in Complex Environment

    Directory of Open Access Journals (Sweden)

    A. V. Fomichev

    2015-01-01

    Full Text Available In accordance with the structural features of small-size unmanned aerial vehicle (UAV, and considering the feasibility of this project, the article studies an integrated inertial-satellite navigation system (INS. The INS algorithm development is based on the method of indirect filtration and principle of loosely coupled combination of output data on UAV positions and velocity. Data on position and velocity are provided from the strapdown inertial navigation system (SINS and satellite navigation system (GPS. A difference between the output flows of measuring data on position and velocity provided from the SINS and GPS is used to evaluate SINS errors by means of the basic algorithm of Kalman filtering. Then the outputs of SINS are revised. The INS possesses the following advantages: a simpler mathematical model of Kalman filtering, high reliability, two independently operating navigation systems, and high redundancy of available navigation information.But in case of loosely coupled scheme, INS can meet the challenge of high precision and reliability of navigation only when the SINS and GPS operating conditions are normal all the time. The proposed INS is used with UAV moving in complex environment due to obstacles available, severe natural climatic conditions, etc. This case expects that it is impossible for UAV to receive successful GPS-signals frequently. In order to solve this problem, was developed an algorithm for rapid compensation for errors of INS information, which could effectively solve the problem of failure of the navigation system in case there are no GPS-signals .Since it is almost impossible to obtain the data of the real trajectory in practice, in the course of simulation in accordance with the kinematic model of the UAV and the complex environment of the terrain, the flight path generator is used to produce the flight path. The errors of positions and velocities are considered as an indicator of the INS effectiveness. The results

  16. INTEGRATION OF DISTRIBUTED INERTIAL NAVIGATION SYSTEMS BUILT AROUND FIBER-OPTIC AND MICROELECTROMECHANICAL SENSORS

    Directory of Open Access Journals (Sweden)

    A. V. Chernodarov

    2017-01-01

    Full Text Available The current state of airborne measuring-and-computing complexes (MCCs is characterized by the inclusion of distributed strapdown inertial navigation systems (SINSs as components of these complexes. This is associated with the necessity of the provision of navigational support not only for aircraft (Acft, but also for airborne Earth surface surveillance systems in which the SINSs are included as components. Among such systems are radar systems, video monitors, laser scanners (lidars, and other surveillance devices. At the same time, when the DSINSs are united into a single structure, new functional possibilities for such integrated navigation systems appear, namely: redundancy and mutual support of SINSs, and also an increase in MCC information reliability on this basis; mutual monitoring and mutual diagnosis of SINSs; optimization of DSINS structure for providing the required accuracy of navigation and attitude control under severe conditions of Acft operation. Such conditions are connected with Acft maneuvering, with a loss of the signals of satellite navigation systems (SNSs. The purpose of this paper is to study the capabilities of DSINS which are built around fiberoptic and micromechanical sensors when they are united into a closely connected information-measuring structure. In the solution of the problem formulated above, an object-oriented modular technology for the creation of integrated navigation systems was taken as a basis. The use of such a technology has permitted us to realize the new functional possibilities of the DSINSs, and also to take into account the following features of the construction and functioning of DSINSs as components of MCCs: need for mutual information exchange among DSINS modules via an MCC airborne top-level computing system; synchronization of measuring-and-computing procedures that are realized in the DSINS. In addition, due to restrictions on overall dimensions and weight, SINSs of surveillance systems are

  17. A Short Tutorial on Inertial Navigation System and Global Positioning System Integration

    Science.gov (United States)

    Smalling, Kyle M.; Eure, Kenneth W.

    2015-01-01

    The purpose of this document is to describe a simple method of integrating Inertial Navigation System (INS) information with Global Positioning System (GPS) information for an improved estimate of vehicle attitude and position. A simple two dimensional (2D) case is considered. The attitude estimates are derived from sensor data and used in the estimation of vehicle position and velocity through dead reckoning within the INS. The INS estimates are updated with GPS estimates using a Kalman filter. This tutorial is intended for the novice user with a focus on bringing the reader from raw sensor measurements to an integrated position and attitude estimate. An application is given using a remotely controlled ground vehicle operating in assumed 2D environment. The theory is developed first followed by an illustrative example.

  18. A Damping Grid Strapdown Inertial Navigation System Based on a Kalman Filter for Ships in Polar Regions.

    Science.gov (United States)

    Huang, Weiquan; Fang, Tao; Luo, Li; Zhao, Lin; Che, Fengzhu

    2017-07-03

    The grid strapdown inertial navigation system (SINS) used in polar navigation also includes three kinds of periodic oscillation errors as common SINS are based on a geographic coordinate system. Aiming ships which have the external information to conduct a system reset regularly, suppressing the Schuler periodic oscillation is an effective way to enhance navigation accuracy. The Kalman filter based on the grid SINS error model which applies to the ship is established in this paper. The errors of grid-level attitude angles can be accurately estimated when the external velocity contains constant error, and then correcting the errors of the grid-level attitude angles through feedback correction can effectively dampen the Schuler periodic oscillation. The simulation results show that with the aid of external reference velocity, the proposed external level damping algorithm based on the Kalman filter can suppress the Schuler periodic oscillation effectively. Compared with the traditional external level damping algorithm based on the damping network, the algorithm proposed in this paper can reduce the overshoot errors when the state of grid SINS is switched from the non-damping state to the damping state, and this effectively improves the navigation accuracy of the system.

  19. Zero velocity interval detection based on a continuous hidden Markov model in micro inertial pedestrian navigation

    Science.gov (United States)

    Sun, Wei; Ding, Wei; Yan, Huifang; Duan, Shunli

    2018-06-01

    Shoe-mounted pedestrian navigation systems based on micro inertial sensors rely on zero velocity updates to correct their positioning errors in time, which effectively makes determining the zero velocity interval play a key role during normal walking. However, as walking gaits are complicated, and vary from person to person, it is difficult to detect walking gaits with a fixed threshold method. This paper proposes a pedestrian gait classification method based on a hidden Markov model. Pedestrian gait data are collected with a micro inertial measurement unit installed at the instep. On the basis of analyzing the characteristics of the pedestrian walk, a single direction angular rate gyro output is used to classify gait features. The angular rate data are modeled into a univariate Gaussian mixture model with three components, and a four-state left–right continuous hidden Markov model (CHMM) is designed to classify the normal walking gait. The model parameters are trained and optimized using the Baum–Welch algorithm and then the sliding window Viterbi algorithm is used to decode the gait. Walking data are collected through eight subjects walking along the same route at three different speeds; the leave-one-subject-out cross validation method is conducted to test the model. Experimental results show that the proposed algorithm can accurately detect different walking gaits of zero velocity interval. The location experiment shows that the precision of CHMM-based pedestrian navigation improved by 40% when compared to the angular rate threshold method.

  20. A polar-region-adaptable systematic bias collaborative measurement method for shipboard redundant rotational inertial navigation systems

    Science.gov (United States)

    Wang, Lin; Wu, Wenqi; Wei, Guo; Lian, Junxiang; Yu, Ruihang

    2018-05-01

    The shipboard redundant rotational inertial navigation system (RINS) configuration, including a dual-axis RINS and a single-axis RINS, can satisfy the demand of marine INSs of especially high reliability as well as achieving trade-off between position accuracy and cost. Generally, the dual-axis RINS is the master INS, and the single-axis RINS is the hot backup INS for high reliability purposes. An integrity monitoring system performs a fault detection function to ensure sailing safety. However, improving the accuracy of the backup INS in case of master INS failure has not been given enough attention. Without the aid of any external information, a systematic bias collaborative measurement method based on an augmented Kalman filter is proposed for the redundant RINSs. Estimates of inertial sensor biases can be used by the built-in integrity monitoring system to monitor the RINS running condition. On the other hand, a position error prediction model is designed for the single-axis RINS to estimate the systematic error caused by its azimuth gyro bias. After position error compensation, the position information provided by the single-axis RINS still remains highly accurate, even if the integrity monitoring system detects a dual-axis RINS fault. Moreover, use of a grid frame as a navigation frame makes the proposed method applicable in any area, including the polar regions. Semi-physical simulation and experiments including sea trials verify the validity of the method.

  1. Observability Analysis of a Matrix Kalman Filter-Based Navigation System Using Visual/Inertial/Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Guohu Feng

    2012-06-01

    Full Text Available A matrix Kalman filter (MKF has been implemented for an integrated navigation system using visual/inertial/magnetic sensors. The MKF rearranges the original nonlinear process model in a pseudo-linear process model. We employ the observability rank criterion based on Lie derivatives to verify the conditions under which the nonlinear system is observable. It has been proved that such observability conditions are: (a at least one degree of rotational freedom is excited, and (b at least two linearly independent horizontal lines and one vertical line are observed. Experimental results have validated the correctness of these observability conditions.

  2. Application of the spherical harmonic gravity model in high precision inertial navigation systems

    International Nuclear Information System (INIS)

    Wang, Jing; Yang, Gongliu; Zhou, Xiao; Li, Xiangyun

    2016-01-01

    The spherical harmonic gravity model (SHM) may, in general, be considered as a suitable alternative to the normal gravity model (NGM), because it represents the Earth’s gravitational field more accurately. However, the high-resolution SHM has never been used in current inertial navigation systems (INSs) due to its extremely complex expression. In this paper, the feasibility and accuracy of a truncated SHM are discussed for application in a real-time free-INS with a precision demand better than 0.8 nm h −1 . In particular, the time and space complexity are analyzed mathematically to verify the feasibility of the SHM. Also, a test on a typical navigation computer shows a storable range of cut-off degrees. To further evaluate the appropriate degree and accuracy of the truncated SHM, analyses of covariance and truncation error are proposed. Finally, a SHM of degree 12 is demonstrated to be the appropriate model for routine INSs in the precision range of 0.4–0.75 nm h −1 . Flight simulations and road tests show its outstanding performance over the traditional NGM. (paper)

  3. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    Science.gov (United States)

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode

  4. Orion Exploration Flight Test-1 Post-Flight Navigation Performance Assessment Relative to the Best Estimated Trajectory

    Science.gov (United States)

    Gay, Robert S.; Holt, Greg N.; Zanetti, Renato

    2016-01-01

    This paper details the post-flight navigation performance assessment of the Orion Exploration Flight Test-1 (EFT-1). Results of each flight phase are presented: Ground Align, Ascent, Orbit, and Entry Descent and Landing. This study examines the on-board Kalman Filter uncertainty along with state deviations relative to the Best Estimated Trajectory (BET). Overall the results show that the Orion Navigation System performed as well or better than expected. Specifically, the Global Positioning System (GPS) measurement availability was significantly better than anticipated at high altitudes. In addition, attitude estimation via processing GPS measurements along with Inertial Measurement Unit (IMU) data performed very well and maintained good attitude throughout the mission.

  5. An Effective Terrain Aided Navigation for Low-Cost Autonomous Underwater Vehicles.

    Science.gov (United States)

    Zhou, Ling; Cheng, Xianghong; Zhu, Yixian; Dai, Chenxi; Fu, Jinbo

    2017-03-25

    Terrain-aided navigation is a potentially powerful solution for obtaining submerged position fixes for autonomous underwater vehicles. The application of terrain-aided navigation with high-accuracy inertial navigation systems has demonstrated meter-level navigation accuracy in sea trials. However, available sensors may be limited depending on the type of the mission. Such limitations, especially for low-grade navigation sensors, not only degrade the accuracy of traditional navigation systems, but further impact the ability to successfully employ terrain-aided navigation. To address this problem, a tightly-coupled navigation is presented to successfully estimate the critical sensor errors by incorporating raw sensor data directly into an augmented navigation system. Furthermore, three-dimensional distance errors are calculated, providing measurement updates through the particle filter for absolute and bounded position error. The development of the terrain aided navigation system is elaborated for a vehicle equipped with a non-inertial-grade strapdown inertial navigation system, a 4-beam Doppler Velocity Log range sensor and a sonar altimeter. Using experimental data for navigation performance evaluation in areas with different terrain characteristics, the experiment results further show that the proposed method can be successfully applied to the low-cost AUVs and significantly improves navigation performance.

  6. Micro-system inertial sensing technology overview.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, James Joe

    2009-02-01

    The purpose of this report is to provide an overview of Micro-System technology as it applies to inertial sensing. Transduction methods are reviewed with capacitance and piezoresistive being the most often used in COTS Micro-electro-mechanical system (MEMS) inertial sensors. Optical transduction is the most recent transduction method having significant impact on improving sensor resolution. A few other methods are motioned which are in a R&D status to hopefully allow MEMS inertial sensors to become viable as a navigation grade sensor. The accelerometer, gyroscope and gravity gradiometer are the type of inertial sensors which are reviewed in this report. Their method of operation and a sampling of COTS sensors and grade are reviewed as well.

  7. Alignment and Calibration of Optical and Inertial Sensors Using Stellar Observations

    National Research Council Canada - National Science Library

    Veth, Mike; Raquet, John

    2007-01-01

    Aircraft navigation information (position, velocity, and attitude) can be determined using optical measurements from an imaging sensor pointed toward the ground combined with an inertial navigation system...

  8. Lightweight, Miniature Inertial Measurement System

    Science.gov (United States)

    Tang, Liang; Crassidis, Agamemnon

    2012-01-01

    A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.

  9. Spoofing Detection Using GNSS/INS/Odometer Coupling for Vehicular Navigation.

    Science.gov (United States)

    Broumandan, Ali; Lachapelle, Gérard

    2018-04-24

    Location information is one of the most vital information required to achieve intelligent and context-aware capability for various applications such as driverless cars. However, related security and privacy threats are a major holdback. With increasing focus on using Global Navigation Satellite Systems (GNSS) for autonomous navigation and related applications, it is important to provide robust navigation solutions, yet signal spoofing for illegal or covert transportation and misleading receiver timing is increasing and now frequent. Hence, detection and mitigation of spoofing attacks has become an important topic. Several contributions on spoofing detection have been made, focusing on different layers of a GNSS receiver. This paper focuses on spoofing detection utilizing self-contained sensors, namely inertial measurement units (IMUs) and vehicle odometer outputs. A spoofing detection approach based on a consistency check between GNSS and IMU/odometer mechanization is proposed. To detect a spoofing attack, the method analyses GNSS and IMU/odometer measurements independently during a pre-selected observation window and cross checks the solutions provided by GNSS and inertial navigation solution (INS)/odometer mechanization. The performance of the proposed method is verified in real vehicular environments. Mean spoofing detection time and detection performance in terms of receiver operation characteristics (ROC) in sub-urban and dense urban environments are evaluated.

  10. Spoofing Detection Using GNSS/INS/Odometer Coupling for Vehicular Navigation

    Directory of Open Access Journals (Sweden)

    Ali Broumandan

    2018-04-01

    Full Text Available Location information is one of the most vital information required to achieve intelligent and context-aware capability for various applications such as driverless cars. However, related security and privacy threats are a major holdback. With increasing focus on using Global Navigation Satellite Systems (GNSS for autonomous navigation and related applications, it is important to provide robust navigation solutions, yet signal spoofing for illegal or covert transportation and misleading receiver timing is increasing and now frequent. Hence, detection and mitigation of spoofing attacks has become an important topic. Several contributions on spoofing detection have been made, focusing on different layers of a GNSS receiver. This paper focuses on spoofing detection utilizing self-contained sensors, namely inertial measurement units (IMUs and vehicle odometer outputs. A spoofing detection approach based on a consistency check between GNSS and IMU/odometer mechanization is proposed. To detect a spoofing attack, the method analyses GNSS and IMU/odometer measurements independently during a pre-selected observation window and cross checks the solutions provided by GNSS and inertial navigation solution (INS/odometer mechanization. The performance of the proposed method is verified in real vehicular environments. Mean spoofing detection time and detection performance in terms of receiver operation characteristics (ROC in sub-urban and dense urban environments are evaluated.

  11. Implementation and Performance of a GPS/INS Tightly Coupled Assisted PLL Architecture Using MEMS Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Youssef Tawk

    2014-02-01

    Full Text Available The use of global navigation satellite system receivers for navigation still presents many challenges in urban canyon and indoor environments, where satellite availability is typically reduced and received signals are attenuated. To improve the navigation performance in such environments, several enhancement methods can be implemented. For instance, external aid provided through coupling with other sensors has proven to contribute substantially to enhancing navigation performance and robustness. Within this context, coupling a very simple GPS receiver with an Inertial Navigation System (INS based on low-cost micro-electro-mechanical systems (MEMS inertial sensors is considered in this paper. In particular, we propose a GPS/INS Tightly Coupled Assisted PLL (TCAPLL architecture, and present most of the associated challenges that need to be addressed when dealing with very-low-performance MEMS inertial sensors. In addition, we propose a data monitoring system in charge of checking the quality of the measurement flow in the architecture. The implementation of the TCAPLL is discussed in detail, and its performance under different scenarios is assessed. Finally, the architecture is evaluated through a test campaign using a vehicle that is driven in urban environments, with the purpose of highlighting the pros and cons of combining MEMS inertial sensors with GPS over GPS alone.

  12. Implementation and Performance of a GPS/INS Tightly Coupled Assisted PLL Architecture Using MEMS Inertial Sensors

    Science.gov (United States)

    Tawk, Youssef; Tomé, Phillip; Botteron, Cyril; Stebler, Yannick; Farine, Pierre-André

    2014-01-01

    The use of global navigation satellite system receivers for navigation still presents many challenges in urban canyon and indoor environments, where satellite availability is typically reduced and received signals are attenuated. To improve the navigation performance in such environments, several enhancement methods can be implemented. For instance, external aid provided through coupling with other sensors has proven to contribute substantially to enhancing navigation performance and robustness. Within this context, coupling a very simple GPS receiver with an Inertial Navigation System (INS) based on low-cost micro-electro-mechanical systems (MEMS) inertial sensors is considered in this paper. In particular, we propose a GPS/INS Tightly Coupled Assisted PLL (TCAPLL) architecture, and present most of the associated challenges that need to be addressed when dealing with very-low-performance MEMS inertial sensors. In addition, we propose a data monitoring system in charge of checking the quality of the measurement flow in the architecture. The implementation of the TCAPLL is discussed in detail, and its performance under different scenarios is assessed. Finally, the architecture is evaluated through a test campaign using a vehicle that is driven in urban environments, with the purpose of highlighting the pros and cons of combining MEMS inertial sensors with GPS over GPS alone. PMID:24569773

  13. An Application of UAV Attitude Estimation Using a Low-Cost Inertial Navigation System

    Science.gov (United States)

    Eure, Kenneth W.; Quach, Cuong Chi; Vazquez, Sixto L.; Hogge, Edward F.; Hill, Boyd L.

    2013-01-01

    Unmanned Aerial Vehicles (UAV) are playing an increasing role in aviation. Various methods exist for the computation of UAV attitude based on low cost microelectromechanical systems (MEMS) and Global Positioning System (GPS) receivers. There has been a recent increase in UAV autonomy as sensors are becoming more compact and onboard processing power has increased significantly. Correct UAV attitude estimation will play a critical role in navigation and separation assurance as UAVs share airspace with civil air traffic. This paper describes attitude estimation derived by post-processing data from a small low cost Inertial Navigation System (INS) recorded during the flight of a subscale commercial off the shelf (COTS) UAV. Two discrete time attitude estimation schemes are presented here in detail. The first is an adaptation of the Kalman Filter to accommodate nonlinear systems, the Extended Kalman Filter (EKF). The EKF returns quaternion estimates of the UAV attitude based on MEMS gyro, magnetometer, accelerometer, and pitot tube inputs. The second scheme is the complementary filter which is a simpler algorithm that splits the sensor frequency spectrum based on noise characteristics. The necessity to correct both filters for gravity measurement errors during turning maneuvers is demonstrated. It is shown that the proposed algorithms may be used to estimate UAV attitude. The effects of vibration on sensor measurements are discussed. Heuristic tuning comments pertaining to sensor filtering and gain selection to achieve acceptable performance during flight are given. Comparisons of attitude estimation performance are made between the EKF and the complementary filter.

  14. Radio/FADS/IMU integrated navigation for Mars entry

    Science.gov (United States)

    Jiang, Xiuqiang; Li, Shuang; Huang, Xiangyu

    2018-03-01

    Supposing future orbiting and landing collaborative exploration mission as the potential project background, this paper addresses the issue of Mars entry integrated navigation using radio beacon, flush air data sensing system (FADS), and inertial measurement unit (IMU). The range and Doppler information sensed from an orbiting radio beacon, the dynamic pressure and heating data sensed from flush air data sensing system, and acceleration and attitude angular rate outputs from an inertial measurement unit are integrated in an unscented Kalman filter to perform state estimation and suppress the system and measurement noise. Computer simulations show that the proposed integrated navigation scheme can enhance the navigation accuracy, which enables precise entry guidance for the given Mars orbiting and landing collaborative exploration mission.

  15. Navigation and Control of a Vehicle to the Parking Place Using Ins

    Directory of Open Access Journals (Sweden)

    Rastislav PIRNÍK

    2015-11-01

    Full Text Available This article discusses possibility of usage of the inertial navigation system for an autonomous navigation of a vehicle to the parking place inside intelligent parking house. Our research has shown that inertial navigation is suitable only for heading and attitude estimation. In order to achieve reliable and precise position estimation the additional odometer sensor is required. Article also describes control algorithm which can be used for steering control of the car according to pre-set waypoints. Waypoints have to be placed with respect to the dimensions and overall maneuverability of the vehicle.

  16. Ultrasound-Aided Pedestrian Dead Reckoning for Indoor Navigation

    NARCIS (Netherlands)

    Fischer, C.; Kavitha Muthukrishnan, K.; Hazas, M.; Gellersen, H.

    2008-01-01

    Ad hoc solutions for tracking and providing navigation support to emergency response teams is an important and safety-critical challenge. We propose a navigation system based on a combination of foot-mounted inertial sensors and ultrasound beacons. We evaluate experimentally the performance of our

  17. Error and Performance Analysis of MEMS-based Inertial Sensors with a Low-cost GPS Receiver

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2008-03-01

    Full Text Available Global Navigation Satellite Systems (GNSS, such as the Global Positioning System (GPS, have been widely utilized and their applications are becoming popular, not only in military or commercial applications, but also for everyday life. Although GPS measurements are the essential information for currently developed land vehicle navigation systems (LVNS, GPS signals are often unavailable or unreliable due to signal blockages under certain environments such as urban canyons. This situation must be compensated in order to provide continuous navigation solutions. To overcome the problems of unavailability and unreliability using GPS and to be cost and size effective as well, Micro Electro Mechanical Systems (MEMS based inertial sensor technology has been pushing for the development of low-cost integrated navigation systems for land vehicle navigation and guidance applications. This paper will analyze the characterization of MEMS based inertial sensors and the performance of an integrated system prototype of MEMS based inertial sensors, a low-cost GPS receiver and a digital compass. The influence of the stochastic variation of sensors will be assessed and modeled by two different methods, namely Gauss-Markov (GM and AutoRegressive (AR models, with GPS signal blockage of different lengths. Numerical results from kinematic testing have been used to assess the performance of different modeling schemes.

  18. Inertial navigation sensor integrated motion analysis for autonomous vehicle navigation

    Science.gov (United States)

    Roberts, Barry; Bhanu, Bir

    1992-01-01

    Recent work on INS integrated motion analysis is described. Results were obtained with a maximally passive system of obstacle detection (OD) for ground-based vehicles and rotorcraft. The OD approach involves motion analysis of imagery acquired by a passive sensor in the course of vehicle travel to generate range measurements to world points within the sensor FOV. INS data and scene analysis results are used to enhance interest point selection, the matching of the interest points, and the subsequent motion-based computations, tracking, and OD. The most important lesson learned from the research described here is that the incorporation of inertial data into the motion analysis program greatly improves the analysis and makes the process more robust.

  19. IMPLEMENTATION OF INTERTIAL NAVIGATION SYSTEM MODEL DURING AIRCRAFT TESTING

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The flight subset control is required during the aviation equipment test flights. In order to achieve this objective the complex consisting of strap down inertial navigation system (SINS and user equipment of satellite navigation systems (SNS can be used. Such combination needs to be used for error correction in positioning which is accumulated in SINS with time. This article shows the research results of the inertial navigation system (INS model. The results of the position- ing error calculation for various INS classes are given. Each of the examined INS has a different accumulated error for the same time lag. The methods of combining information of INS and SRNS are covered. The results obtained can be applied for upgrading the aircraft flight and navigation complexes. In particular, they can allow to continuously determine speed, coordinates, angular situation and repositioning rate of change of axes of the instrument frame.

  20. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units

    Directory of Open Access Journals (Sweden)

    Qingzhong Cai

    2016-06-01

    Full Text Available An inertial navigation system (INS has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10−6°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs using common turntables, has a great application potential in future atomic gyro INSs.

  1. Space Launch Systems Block 1B Preliminary Navigation System Design

    Science.gov (United States)

    Oliver, T. Emerson; Park, Thomas; Anzalone, Evan; Smith, Austin; Strickland, Dennis; Patrick, Sean

    2018-01-01

    NASA is currently building the Space Launch Systems (SLS) Block 1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. In parallel, NASA is also designing the Block 1B launch vehicle. The Block 1B vehicle is an evolution of the Block 1 vehicle and extends the capability of the NASA launch vehicle. This evolution replaces the Interim Cryogenic Propulsive Stage (ICPS) with the Exploration Upper Stage (EUS). As the vehicle evolves to provide greater lift capability, increased robustness for manned missions, and the capability to execute more demanding missions so must the SLS Integrated Navigation System evolved to support those missions. This paper describes the preliminary navigation systems design for the SLS Block 1B vehicle. The evolution of the navigation hard-ware and algorithms from an inertial-only navigation system for Block 1 ascent flight to a tightly coupled GPS-aided inertial navigation system for Block 1B is described. The Block 1 GN&C system has been designed to meet a LEO insertion target with a specified accuracy. The Block 1B vehicle navigation system is de-signed to support the Block 1 LEO target accuracy as well as trans-lunar or trans-planetary injection accuracy. Additionally, the Block 1B vehicle is designed to support human exploration and thus is designed to minimize the probability of Loss of Crew (LOC) through high-quality inertial instruments and robust algorithm design, including Fault Detection, Isolation, and Recovery (FDIR) logic.

  2. Invariant Observer-Based State Estimation for Micro-Aerial Vehicles in GPS-Denied Indoor Environments Using an RGB-D Camera and MEMS Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Dachuan Li

    2015-04-01

    Full Text Available This paper presents a non-linear state observer-based integrated navigation scheme for estimating the attitude, position and velocity of micro aerial vehicles (MAV operating in GPS-denied indoor environments, using the measurements from low-cost MEMS (micro electro-mechanical systems inertial sensors and an RGB-D camera. A robust RGB-D visual odometry (VO approach was developed to estimate the MAV’s relative motion by extracting and matching features captured by the RGB-D camera from the environment. The state observer of the RGB-D visual-aided inertial navigation was then designed based on the invariant observer theory for systems possessing symmetries. The motion estimates from the RGB-D VO were fused with inertial and magnetic measurements from the onboard MEMS sensors via the state observer, providing the MAV with accurate estimates of its full six degree-of-freedom states. Implementations on a quadrotor MAV and indoor flight test results demonstrate that the resulting state observer is effective in estimating the MAV’s states without relying on external navigation aids such as GPS. The properties of computational efficiency and simplicity in gain tuning make the proposed invariant observer-based navigation scheme appealing for actual MAV applications in indoor environments.

  3. Benefits of Combined GPS/GLONASS with Low-Cost MEMS IMUs for Vehicular Urban Navigation

    Directory of Open Access Journals (Sweden)

    Giovanni Pugliano

    2012-04-01

    Full Text Available The integration of Global Navigation Satellite Systems (GNSS with Inertial Navigation Systems (INS has been very actively researched for many years due to the complementary nature of the two systems. In particular, during the last few years the integration with micro-electromechanical system (MEMS inertial measurement units (IMUs has been investigated. In fact, recent advances in MEMS technology have made possible the development of a new generation of low cost inertial sensors characterized by small size and light weight, which represents an attractive option for mass-market applications such as vehicular and pedestrian navigation. However, whereas there has been much interest in the integration of GPS with a MEMS-based INS, few research studies have been conducted on expanding this application to the revitalized GLONASS system. This paper looks at the benefits of adding GLONASS to existing GPS/INS(MEMS systems using loose and tight integration strategies. The relative benefits of various constraints are also assessed. Results show that when satellite visibility is poor (approximately 50% solution availability the benefits of GLONASS are only seen with tight integration algorithms. For more benign environments, a loosely coupled GPS/GLONASS/INS system offers performance comparable to that of a tightly coupled GPS/INS system, but with reduced complexity and development time.

  4. Benefits of combined GPS/GLONASS with low-cost MEMS IMUs for vehicular urban navigation.

    Science.gov (United States)

    Angrisano, Antonio; Petovello, Mark; Pugliano, Giovanni

    2012-01-01

    The integration of Global Navigation Satellite Systems (GNSS) with Inertial Navigation Systems (INS) has been very actively researched for many years due to the complementary nature of the two systems. In particular, during the last few years the integration with micro-electromechanical system (MEMS) inertial measurement units (IMUs) has been investigated. In fact, recent advances in MEMS technology have made possible the development of a new generation of low cost inertial sensors characterized by small size and light weight, which represents an attractive option for mass-market applications such as vehicular and pedestrian navigation. However, whereas there has been much interest in the integration of GPS with a MEMS-based INS, few research studies have been conducted on expanding this application to the revitalized GLONASS system. This paper looks at the benefits of adding GLONASS to existing GPS/INS(MEMS) systems using loose and tight integration strategies. The relative benefits of various constraints are also assessed. Results show that when satellite visibility is poor (approximately 50% solution availability) the benefits of GLONASS are only seen with tight integration algorithms. For more benign environments, a loosely coupled GPS/GLONASS/INS system offers performance comparable to that of a tightly coupled GPS/INS system, but with reduced complexity and development time.

  5. PERFORMANCE CHARACTERISTIC MEMS-BASED IMUs FOR UAVs NAVIGATION

    Directory of Open Access Journals (Sweden)

    H. A. Mohamed

    2015-08-01

    Full Text Available Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK, and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS signal outage.

  6. Performance Characteristic Mems-Based IMUs for UAVs Navigation

    Science.gov (United States)

    Mohamed, H. A.; Hansen, J. M.; Elhabiby, M. M.; El-Sheimy, N.; Sesay, A. B.

    2015-08-01

    Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs) are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS) or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK), and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS) signal outage.

  7. Optimization of reliability centered predictive maintenance scheme for inertial navigation system

    International Nuclear Information System (INIS)

    Jiang, Xiuhong; Duan, Fuhai; Tian, Heng; Wei, Xuedong

    2015-01-01

    The goal of this study is to propose a reliability centered predictive maintenance scheme for a complex structure Inertial Navigation System (INS) with several redundant components. GO Methodology is applied to build the INS reliability analysis model—GO chart. Components Remaining Useful Life (RUL) and system reliability are updated dynamically based on the combination of components lifetime distribution function, stress samples, and the system GO chart. Considering the redundant design in INS, maintenance time is based not only on components RUL, but also (and mainly) on the timing of when system reliability fails to meet the set threshold. The definition of components maintenance priority balances three factors: components importance to system, risk degree, and detection difficulty. Maintenance Priority Number (MPN) is introduced, which may provide quantitative maintenance priority results for all components. A maintenance unit time cost model is built based on components MPN, components RUL predictive model and maintenance intervals for the optimization of maintenance scope. The proposed scheme can be applied to serve as the reference for INS maintenance. Finally, three numerical examples prove the proposed predictive maintenance scheme is feasible and effective. - Highlights: • A dynamic PdM with a rolling horizon is proposed for INS with redundant components. • GO Methodology is applied to build the system reliability analysis model. • A concept of MPN is proposed to quantify the maintenance sequence of components. • An optimization model is built to select the optimal group of maintenance components. • The optimization goal is minimizing the cost of maintaining system reliability

  8. Low Cost Integrated Navigation System for Unmanned Vessel

    Directory of Open Access Journals (Sweden)

    Yang Changsong

    2017-11-01

    Full Text Available Large errors of low-cost MEMS inertial measurement unit (MIMU lead to huge navigation errors, even wrong navigation information. An integrated navigation system for unmanned vessel is proposed. It consists of a low-cost MIMU and Doppler velocity sonar (DVS. This paper presents an integrated navigation method, to improve the performance of navigation system. The integrated navigation system is tested using simulation and semi-physical simulation experiments, whose results show that attitude, velocity and position accuracy has improved awfully, giving exactly accurate navigation results. By means of the combination of low-cost MIMU and DVS, the proposed system is able to overcome fast drift problems of the low cost IMU.

  9. Improved GPS-based Satellite Relative Navigation Using Femtosecond Laser Relative Distance Measurements

    Directory of Open Access Journals (Sweden)

    Hyungjik Oh

    2016-03-01

    Full Text Available This study developed an approach for improving Carrier-phase Differential Global Positioning System (CDGPS based realtime satellite relative navigation by applying laser baseline measurement data. The robustness against the space operational environment was considered, and a Synthetic Wavelength Interferometer (SWI algorithm based on a femtosecond laser measurement model was developed. The phase differences between two laser wavelengths were combined to measure precise distance. Generated laser data were used to improve estimation accuracy for the float ambiguity of CDGPS data. Relative navigation simulations in real-time were performed using the extended Kalman filter algorithm. The GPS and laser-combined relative navigation accuracy was compared with GPS-only relative navigation solutions to determine the impact of laser data on relative navigation. In numerical simulations, the success rate of integer ambiguity resolution increased when laser data was added to GPS data. The relative navigational errors also improved five-fold and two-fold, relative to the GPS-only error, for 250 m and 5 km initial relative distances, respectively. The methodology developed in this study is suitable for application to future satellite formation-flying missions.

  10. A novel redundant INS based on triple rotary inertial measurement units

    Science.gov (United States)

    Chen, Gang; Li, Kui; Wang, Wei; Li, Peng

    2016-10-01

    Accuracy and reliability are two key performances of inertial navigation system (INS). Rotation modulation (RM) can attenuate the bias of inertial sensors and make it possible for INS to achieve higher navigation accuracy with lower-class sensors. Therefore, the conflict between the accuracy and cost of INS can be eased. Traditional system redundancy and recently researched sensor redundancy are two primary means to improve the reliability of INS. However, how to make the best use of the redundant information from redundant sensors hasn’t been studied adequately, especially in rotational INS. This paper proposed a novel triple rotary unit strapdown inertial navigation system (TRUSINS), which combines RM and sensor redundancy design to enhance the accuracy and reliability of rotational INS. Each rotary unit independently rotates to modulate the errors of two gyros and two accelerometers. Three units can provide double sets of measurements along all three axes of body frame to constitute a couple of INSs which make TRUSINS redundant. Experiments and simulations based on a prototype which is made up of six fiber-optic gyros with drift stability of 0.05° h-1 show that TRUSINS can achieve positioning accuracy of about 0.256 n mile h-1, which is ten times better than that of a normal non-rotational INS with the same level inertial sensors. The theoretical analysis and the experimental results show that due to the advantage of the innovative structure, the designed fault detection and isolation (FDI) strategy can tolerate six sensor faults at most, and is proved to be effective and practical. Therefore, TRUSINS is particularly suitable and highly beneficial for the applications where high accuracy and high reliability is required.

  11. FLIGHT DEVELOPMENT OF A DISTRIBUTED INERTIAL SATELLITE MICRONAVIGATTION SYSTEM FOR SYNTHETIC - APERTURE RADAR

    Directory of Open Access Journals (Sweden)

    Alexander Vladimirovich Chernodarov

    2017-01-01

    Full Text Available The current state of the onboard systems is characterized by the integration of aviation and radio-electronic equipment systems for solving problems of navigation and control. These problems include micro-navigation of the anten- na phase center (APC of the radar during the review of the Earth's surface from aboard the aircraft. Increasing of the reso- lution of the radar station (RLS by hardware increasing the antenna size is not always possible due to restrictions on the aircraft onboard equipment weight and dimensions. Therefore the implementation of analytic extension of the radiation pattern by "gluing" the images, obtained by RLS on the aircraft motion trajectory is embodied. The estimations are con- verted into amendments to the signals of RLS with synthetic aperture RSA to compensate instabilities. The purpose of the research is building a theoretical basis and a practical implementation of procedures for evaluating the trajectory APS in- stabilities using a distributed system of inertial-satellite micro-navigation (DSMN taking into account the RSA flight oper- ations actual conditions. The technology of evaluation and compensation of RSA trajectory instabilities via DSMN is con- sidered. The implementation of this technology is based on the mutual support of inertial, satellite and radar systems. Syn- chronization procedures of inertial and satellite measurements in the evaluation of DSMN errors are proposed. The given results of DSMN flight testing justify the possibility and expediency to apply the proposed technology in order to improve the resolution of RSA. The compensation of aircraft trajectory instabilities in RSA signals can be provided by inertial- satellite micro-navigation system, taking into account the actual conditions of the RSA flight operations. The researches show that in order to achieve the required resolution of RSA it seems to be appropriate to define the rational balance be- tween accuracy DSMN characteristics

  12. A Rigorous Temperature-Dependent Stochastic Modelling and Testing for MEMS-Based Inertial Sensor Errors

    Directory of Open Access Journals (Sweden)

    Spiros Pagiatakis

    2009-10-01

    Full Text Available In this paper, we examine the effect of changing the temperature points on MEMS-based inertial sensor random error. We collect static data under different temperature points using a MEMS-based inertial sensor mounted inside a thermal chamber. Rigorous stochastic models, namely Autoregressive-based Gauss-Markov (AR-based GM models are developed to describe the random error behaviour. The proposed AR-based GM model is initially applied to short stationary inertial data to develop the stochastic model parameters (correlation times. It is shown that the stochastic model parameters of a MEMS-based inertial unit, namely the ADIS16364, are temperature dependent. In addition, field kinematic test data collected at about 17 °C are used to test the performance of the stochastic models at different temperature points in the filtering stage using Unscented Kalman Filter (UKF. It is shown that the stochastic model developed at 20 °C provides a more accurate inertial navigation solution than the ones obtained from the stochastic models developed at −40 °C, −20 °C, 0 °C, +40 °C, and +60 °C. The temperature dependence of the stochastic model is significant and should be considered at all times to obtain optimal navigation solution for MEMS-based INS/GPS integration.

  13. A Rigorous Temperature-Dependent Stochastic Modelling and Testing for MEMS-Based Inertial Sensor Errors.

    Science.gov (United States)

    El-Diasty, Mohammed; Pagiatakis, Spiros

    2009-01-01

    In this paper, we examine the effect of changing the temperature points on MEMS-based inertial sensor random error. We collect static data under different temperature points using a MEMS-based inertial sensor mounted inside a thermal chamber. Rigorous stochastic models, namely Autoregressive-based Gauss-Markov (AR-based GM) models are developed to describe the random error behaviour. The proposed AR-based GM model is initially applied to short stationary inertial data to develop the stochastic model parameters (correlation times). It is shown that the stochastic model parameters of a MEMS-based inertial unit, namely the ADIS16364, are temperature dependent. In addition, field kinematic test data collected at about 17 °C are used to test the performance of the stochastic models at different temperature points in the filtering stage using Unscented Kalman Filter (UKF). It is shown that the stochastic model developed at 20 °C provides a more accurate inertial navigation solution than the ones obtained from the stochastic models developed at -40 °C, -20 °C, 0 °C, +40 °C, and +60 °C. The temperature dependence of the stochastic model is significant and should be considered at all times to obtain optimal navigation solution for MEMS-based INS/GPS integration.

  14. Architectural elements of hybrid navigation systems for future space transportation

    Science.gov (United States)

    Trigo, Guilherme F.; Theil, Stephan

    2017-12-01

    The fundamental limitations of inertial navigation, currently employed by most launchers, have raised interest for GNSS-aided solutions. Combination of inertial measurements and GNSS outputs allows inertial calibration online, solving the issue of inertial drift. However, many challenges and design options unfold. In this work we analyse several architectural elements and design aspects of a hybrid GNSS/INS navigation system conceived for space transportation. The most fundamental architectural features such as coupling depth, modularity between filter and inertial propagation, and open-/closed-loop nature of the configuration, are discussed in the light of the envisaged application. Importance of the inertial propagation algorithm and sensor class in the overall system are investigated, being the handling of sensor errors and uncertainties that arise with lower grade sensory also considered. In terms of GNSS outputs we consider receiver solutions (position and velocity) and raw measurements (pseudorange, pseudorange-rate and time-difference carrier phase). Receiver clock error handling options and atmospheric error correction schemes for these measurements are analysed under flight conditions. System performance with different GNSS measurements is estimated through covariance analysis, being the differences between loose and tight coupling emphasized through partial outage simulation. Finally, we discuss options for filter algorithm robustness against non-linearities and system/measurement errors. A possible scheme for fault detection, isolation and recovery is also proposed.

  15. Architectural elements of hybrid navigation systems for future space transportation

    Science.gov (United States)

    Trigo, Guilherme F.; Theil, Stephan

    2018-06-01

    The fundamental limitations of inertial navigation, currently employed by most launchers, have raised interest for GNSS-aided solutions. Combination of inertial measurements and GNSS outputs allows inertial calibration online, solving the issue of inertial drift. However, many challenges and design options unfold. In this work we analyse several architectural elements and design aspects of a hybrid GNSS/INS navigation system conceived for space transportation. The most fundamental architectural features such as coupling depth, modularity between filter and inertial propagation, and open-/closed-loop nature of the configuration, are discussed in the light of the envisaged application. Importance of the inertial propagation algorithm and sensor class in the overall system are investigated, being the handling of sensor errors and uncertainties that arise with lower grade sensory also considered. In terms of GNSS outputs we consider receiver solutions (position and velocity) and raw measurements (pseudorange, pseudorange-rate and time-difference carrier phase). Receiver clock error handling options and atmospheric error correction schemes for these measurements are analysed under flight conditions. System performance with different GNSS measurements is estimated through covariance analysis, being the differences between loose and tight coupling emphasized through partial outage simulation. Finally, we discuss options for filter algorithm robustness against non-linearities and system/measurement errors. A possible scheme for fault detection, isolation and recovery is also proposed.

  16. Miniature Inertial and Augmentation Sensors for Integrated Inertial/GPS Based Navigation Applications

    Science.gov (United States)

    2010-03-01

    Magnetometer (Ref [23]) Until miniature atomic magnetometers transition from laboratory demonstration units to a mass produced product, fluxgate ...and/or magnetoresistive designs are a better suited magnetometer technology for a miniature navigation system. Figure 8 below shows the basic fluxgate ...is required to resolve magnetic field orientation. Fig 8. Fluxgate Magnetometer Schematic The PNI Sensor Corporation (Santa Rosa, CA

  17. A novel redundant INS based on triple rotary inertial measurement units

    International Nuclear Information System (INIS)

    Chen, Gang; Li, Kui; Wang, Wei; Li, Peng

    2016-01-01

    Accuracy and reliability are two key performances of inertial navigation system (INS). Rotation modulation (RM) can attenuate the bias of inertial sensors and make it possible for INS to achieve higher navigation accuracy with lower-class sensors. Therefore, the conflict between the accuracy and cost of INS can be eased. Traditional system redundancy and recently researched sensor redundancy are two primary means to improve the reliability of INS. However, how to make the best use of the redundant information from redundant sensors hasn’t been studied adequately, especially in rotational INS. This paper proposed a novel triple rotary unit strapdown inertial navigation system (TRUSINS), which combines RM and sensor redundancy design to enhance the accuracy and reliability of rotational INS. Each rotary unit independently rotates to modulate the errors of two gyros and two accelerometers. Three units can provide double sets of measurements along all three axes of body frame to constitute a couple of INSs which make TRUSINS redundant. Experiments and simulations based on a prototype which is made up of six fiber-optic gyros with drift stability of 0.05° h −1 show that TRUSINS can achieve positioning accuracy of about 0.256 n mile h −1 , which is ten times better than that of a normal non-rotational INS with the same level inertial sensors. The theoretical analysis and the experimental results show that due to the advantage of the innovative structure, the designed fault detection and isolation (FDI) strategy can tolerate six sensor faults at most, and is proved to be effective and practical. Therefore, TRUSINS is particularly suitable and highly beneficial for the applications where high accuracy and high reliability is required. (paper)

  18. Galileo spacecraft inertial sensors in-flight calibration design

    Science.gov (United States)

    Jahanshahi, M. H.; Lai, J. Y.

    1983-01-01

    The successful navigation of Galileo depends on accurate trajectory correction maneuvers (TCM's) performed during the mission. A set of Inertial Sensor (INS) units, comprised of gyros and accelerometers, mounted on the spacecraft, are utilized to control and monitor the performance of the TCM's. To provide the optimum performance, in-flight calibrations of INS are planned. These calibrations will take place on a regular basis. In this paper, a mathematical description is given of the data reduction technique used in analyzing a typical set of calibration data. The design of the calibration and the inertial sensor error models, necessary for the above analysis, are delineated in detail.

  19. Dragging of inertial frames.

    Science.gov (United States)

    Ciufolini, Ignazio

    2007-09-06

    The origin of inertia has intrigued scientists and philosophers for centuries. Inertial frames of reference permeate our daily life. The inertial and centrifugal forces, such as the pull and push that we feel when our vehicle accelerates, brakes and turns, arise because of changes in velocity relative to uniformly moving inertial frames. A classical interpretation ascribed these forces to acceleration relative to some absolute frame independent of the cosmological matter, whereas an opposite view related them to acceleration relative to all the masses and 'fixed stars' in the Universe. An echo and partial realization of the latter idea can be found in Einstein's general theory of relativity, which predicts that a spinning mass will 'drag' inertial frames along with it. Here I review the recent measurements of frame dragging using satellites orbiting Earth.

  20. Fuzzy adaptive integration scheme for low-cost SINS/GPS navigation system

    Science.gov (United States)

    Nourmohammadi, Hossein; Keighobadi, Jafar

    2018-01-01

    Due to weak stand-alone accuracy as well as poor run-to-run stability of micro-electro mechanical system (MEMS)-based inertial sensors, special approaches are required to integrate low-cost strap-down inertial navigation system (SINS) with global positioning system (GPS), particularly in long-term applications. This paper aims to enhance long-term performance of conventional SINS/GPS navigation systems using a fuzzy adaptive integration scheme. The main concept behind the proposed adaptive integration is the good performance of attitude-heading reference system (AHRS) in low-accelerated motions and its degradation in maneuvered or accelerated motions. Depending on vehicle maneuvers, gravity-based attitude angles can be intelligently utilized to improve orientation estimation in the SINS. Knowledge-based fuzzy inference system is developed for decision-making between the AHRS and the SINS according to vehicle maneuvering conditions. Inertial measurements are the main input data of the fuzzy system to determine the maneuvering level during the vehicle motions. Accordingly, appropriate weighting coefficients are produced to combine the SINS/GPS and the AHRS, efficiently. The assessment of the proposed integrated navigation system is conducted via real data in airborne tests.

  1. A novel angle computation and calibration algorithm of bio-inspired sky-light polarization navigation sensor.

    Science.gov (United States)

    Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao

    2014-09-15

    Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice.

  2. Enhanced Pedestrian Navigation Based on Course Angle Error Estimation Using Cascaded Kalman Filters.

    Science.gov (United States)

    Song, Jin Woo; Park, Chan Gook

    2018-04-21

    An enhanced pedestrian dead reckoning (PDR) based navigation algorithm, which uses two cascaded Kalman filters (TCKF) for the estimation of course angle and navigation errors, is proposed. The proposed algorithm uses a foot-mounted inertial measurement unit (IMU), waist-mounted magnetic sensors, and a zero velocity update (ZUPT) based inertial navigation technique with TCKF. The first stage filter estimates the course angle error of a human, which is closely related to the heading error of the IMU. In order to obtain the course measurements, the filter uses magnetic sensors and a position-trace based course angle. For preventing magnetic disturbance from contaminating the estimation, the magnetic sensors are attached to the waistband. Because the course angle error is mainly due to the heading error of the IMU, and the characteristic error of the heading angle is highly dependent on that of the course angle, the estimated course angle error is used as a measurement for estimating the heading error in the second stage filter. At the second stage, an inertial navigation system-extended Kalman filter-ZUPT (INS-EKF-ZUPT) method is adopted. As the heading error is estimated directly by using course-angle error measurements, the estimation accuracy for the heading and yaw gyro bias can be enhanced, compared with the ZUPT-only case, which eventually enhances the position accuracy more efficiently. The performance enhancements are verified via experiments, and the way-point position error for the proposed method is compared with those for the ZUPT-only case and with other cases that use ZUPT and various types of magnetic heading measurements. The results show that the position errors are reduced by a maximum of 90% compared with the conventional ZUPT based PDR algorithms.

  3. Sampling and Control Circuit Board for an Inertial Measurement Unit

    Science.gov (United States)

    Chelmins, David T (Inventor); Powis, Richard T., Jr. (Inventor); Sands, Obed (Inventor)

    2016-01-01

    A circuit board that serves as a control and sampling interface to an inertial measurement unit ("IMU") is provided. The circuit board is also configured to interface with a local oscillator and an external trigger pulse. The circuit board is further configured to receive the external trigger pulse from an external source that time aligns the local oscillator and initiates sampling of the inertial measurement device for data at precise time intervals based on pulses from the local oscillator. The sampled data may be synchronized by the circuit board with other sensors of a navigation system via the trigger pulse.

  4. Multi-Sensor SLAM Approach for Robot Navigation

    Directory of Open Access Journals (Sweden)

    Sid Ahmed BERRABAH

    2010-12-01

    Full Text Available o be able to operate and act successfully, the robot needs to know at any time where it is. This means the robot has to find out its location relative to the environment. This contribution introduces the increase of accuracy of mobile robot positioning in large outdoor environments based on data fusion from different sensors: camera, GPS, inertial navigation system (INS, and wheel encoders. The fusion is done in a Simultaneous Localization and Mapping (SLAM approach. The paper gives an overview on the proposed algorithm and discusses the obtained results.

  5. A novel visual-inertial monocular SLAM

    Science.gov (United States)

    Yue, Xiaofeng; Zhang, Wenjuan; Xu, Li; Liu, JiangGuo

    2018-02-01

    With the development of sensors and computer vision research community, cameras, which are accurate, compact, wellunderstood and most importantly cheap and ubiquitous today, have gradually been at the center of robot location. Simultaneous localization and mapping (SLAM) using visual features, which is a system getting motion information from image acquisition equipment and rebuild the structure in unknown environment. We provide an analysis of bioinspired flights in insects, employing a novel technique based on SLAM. Then combining visual and inertial measurements to get high accuracy and robustness. we present a novel tightly-coupled Visual-Inertial Simultaneous Localization and Mapping system which get a new attempt to address two challenges which are the initialization problem and the calibration problem. experimental results and analysis show the proposed approach has a more accurate quantitative simulation of insect navigation, which can reach the positioning accuracy of centimeter level.

  6. DEVELOPMENT OF A PEDESTRIAN INDOOR NAVIGATION SYSTEM BASED ON MULTI-SENSOR FUSION AND FUZZY LOGIC ESTIMATION ALGORITHMS

    Directory of Open Access Journals (Sweden)

    Y. C. Lai

    2015-05-01

    Full Text Available This paper presents a pedestrian indoor navigation system based on the multi-sensor fusion and fuzzy logic estimation algorithms. The proposed navigation system is a self-contained dead reckoning navigation that means no other outside signal is demanded. In order to achieve the self-contained capability, a portable and wearable inertial measure unit (IMU has been developed. Its adopted sensors are the low-cost inertial sensors, accelerometer and gyroscope, based on the micro electro-mechanical system (MEMS. There are two types of the IMU modules, handheld and waist-mounted. The low-cost MEMS sensors suffer from various errors due to the results of manufacturing imperfections and other effects. Therefore, a sensor calibration procedure based on the scalar calibration and the least squares methods has been induced in this study to improve the accuracy of the inertial sensors. With the calibrated data acquired from the inertial sensors, the step length and strength of the pedestrian are estimated by multi-sensor fusion and fuzzy logic estimation algorithms. The developed multi-sensor fusion algorithm provides the amount of the walking steps and the strength of each steps in real-time. Consequently, the estimated walking amount and strength per step are taken into the proposed fuzzy logic estimation algorithm to estimates the step lengths of the user. Since the walking length and direction are both the required information of the dead reckoning navigation, the walking direction is calculated by integrating the angular rate acquired by the gyroscope of the developed IMU module. Both the walking length and direction are calculated on the IMU module and transmit to a smartphone with Bluetooth to perform the dead reckoning navigation which is run on a self-developed APP. Due to the error accumulating of dead reckoning navigation, a particle filter and a pre-loaded map of indoor environment have been applied to the APP of the proposed navigation system

  7. Development of a Pedestrian Indoor Navigation System Based on Multi-Sensor Fusion and Fuzzy Logic Estimation Algorithms

    Science.gov (United States)

    Lai, Y. C.; Chang, C. C.; Tsai, C. M.; Lin, S. Y.; Huang, S. C.

    2015-05-01

    This paper presents a pedestrian indoor navigation system based on the multi-sensor fusion and fuzzy logic estimation algorithms. The proposed navigation system is a self-contained dead reckoning navigation that means no other outside signal is demanded. In order to achieve the self-contained capability, a portable and wearable inertial measure unit (IMU) has been developed. Its adopted sensors are the low-cost inertial sensors, accelerometer and gyroscope, based on the micro electro-mechanical system (MEMS). There are two types of the IMU modules, handheld and waist-mounted. The low-cost MEMS sensors suffer from various errors due to the results of manufacturing imperfections and other effects. Therefore, a sensor calibration procedure based on the scalar calibration and the least squares methods has been induced in this study to improve the accuracy of the inertial sensors. With the calibrated data acquired from the inertial sensors, the step length and strength of the pedestrian are estimated by multi-sensor fusion and fuzzy logic estimation algorithms. The developed multi-sensor fusion algorithm provides the amount of the walking steps and the strength of each steps in real-time. Consequently, the estimated walking amount and strength per step are taken into the proposed fuzzy logic estimation algorithm to estimates the step lengths of the user. Since the walking length and direction are both the required information of the dead reckoning navigation, the walking direction is calculated by integrating the angular rate acquired by the gyroscope of the developed IMU module. Both the walking length and direction are calculated on the IMU module and transmit to a smartphone with Bluetooth to perform the dead reckoning navigation which is run on a self-developed APP. Due to the error accumulating of dead reckoning navigation, a particle filter and a pre-loaded map of indoor environment have been applied to the APP of the proposed navigation system to extend its

  8. Differential GNSS and Vision-Based Tracking to Improve Navigation Performance in Cooperative Multi-UAV Systems

    Directory of Open Access Journals (Sweden)

    Amedeo Rodi Vetrella

    2016-12-01

    Full Text Available Autonomous navigation of micro-UAVs is typically based on the integration of low cost Global Navigation Satellite System (GNSS receivers and Micro-Electro-Mechanical Systems (MEMS-based inertial and magnetic sensors to stabilize and control the flight. The resulting navigation performance in terms of position and attitude accuracy may not suffice for other mission needs, such as the ones relevant to fine sensor pointing. In this framework, this paper presents a cooperative UAV navigation algorithm that allows a chief vehicle, equipped with inertial and magnetic sensors, a Global Positioning System (GPS receiver, and a vision system, to improve its navigation performance (in real time or in the post processing phase exploiting formation flying deputy vehicles equipped with GPS receivers. The focus is set on outdoor environments and the key concept is to exploit differential GPS among vehicles and vision-based tracking (DGPS/Vision to build a virtual additional navigation sensor whose information is then integrated in a sensor fusion algorithm based on an Extended Kalman Filter. The developed concept and processing architecture are described, with a focus on DGPS/Vision attitude determination algorithm. Performance assessment is carried out on the basis of both numerical simulations and flight tests. In the latter ones, navigation estimates derived from the DGPS/Vision approach are compared with those provided by the onboard autopilot system of a customized quadrotor. The analysis shows the potential of the developed approach, mainly deriving from the possibility to exploit magnetic- and inertial-independent accurate attitude information.

  9. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle

    Science.gov (United States)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. W.

    1993-01-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  10. SLS Block 1-B and Exploration Upper Stage Navigation System Design

    Science.gov (United States)

    Oliver, T. Emerson; Park, Thomas B.; Smith, Austin; Anzalone, Evan; Bernard, Bill; Strickland, Dennis; Geohagan, Kevin; Green, Melissa; Leggett, Jarred

    2018-01-01

    The SLS Block 1B vehicle is planned to extend NASA's heavy lift capability beyond the initial SLS Block 1 vehicle. The most noticeable change for this vehicle from SLS Block 1 is the swapping of the upper stage from the Interim Cryogenic Propulsion stage (ICPS), a modified Delta IV upper stage, to the more capable Exploration Upper Stage (EUS). As the vehicle evolves to provide greater lift capability and execute more demanding missions so must the SLS Integrated Navigation System to support those missions. The SLS Block 1 vehicle carries two independent navigation systems. The responsibility of the two systems is delineated between ascent and upper stage flight. The Block 1 navigation system is responsible for the phase of flight between the launch pad and insertion into Low-Earth Orbit (LEO). The upper stage system assumes the mission from LEO to payload separation. For the Block 1B vehicle, the two functions are combined into a single system intended to navigate from ground to payload insertion. Both are responsible for self-disposal once payload delivery is achieved. The evolution of the navigation hardware and algorithms from an inertial-only navigation system for Block 1 ascent flight to a tightly coupled GPS-aided inertial navigation system for Block 1-B is described. The Block 1 GN&C system has been designed to meet a LEO insertion target with a specified accuracy. The Block 1-B vehicle navigation system is designed to support the Block 1 LEO target accuracy as well as trans-lunar or trans-planetary injection accuracy. This is measured in terms of payload impact and stage disposal requirements. Additionally, the Block 1-B vehicle is designed to support human exploration and thus is designed to minimize the probability of Loss of Crew (LOC) through high-quality inertial instruments and Fault Detection, Isolation, and Recovery (FDIR) logic. The preliminary Block 1B integrated navigation system design is presented along with the challenges associated with

  11. Towards a Sign-Based Indoor Navigation System for People with Visual Impairments.

    Science.gov (United States)

    Rituerto, Alejandro; Fusco, Giovanni; Coughlan, James M

    2016-10-01

    Navigation is a challenging task for many travelers with visual impairments. While a variety of GPS-enabled tools can provide wayfinding assistance in outdoor settings, GPS provides no useful localization information indoors. A variety of indoor navigation tools are being developed, but most of them require potentially costly physical infrastructure to be installed and maintained, or else the creation of detailed visual models of the environment. We report development of a new smartphone-based navigation aid, which combines inertial sensing, computer vision and floor plan information to estimate the user's location with no additional physical infrastructure and requiring only the locations of signs relative to the floor plan. A formative study was conducted with three blind volunteer participants demonstrating the feasibility of the approach and highlighting the areas needing improvement.

  12. SINS/CNS Nonlinear Integrated Navigation Algorithm for Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Yong-jun Yu

    2015-01-01

    Full Text Available Celestial Navigation System (CNS has characteristics of accurate orientation and strong autonomy and has been widely used in Hypersonic Vehicle. Since the CNS location and orientation mainly depend upon the inertial reference that contains errors caused by gyro drifts and other error factors, traditional Strap-down Inertial Navigation System (SINS/CNS positioning algorithm setting the position error between SINS and CNS as measurement is not effective. The model of altitude azimuth, platform error angles, and horizontal position is designed, and the SINS/CNS tightly integrated algorithm is designed, in which CNS altitude azimuth is set as measurement information. GPF (Gaussian particle filter is introduced to solve the problem of nonlinear filtering. The results of simulation show that the precision of SINS/CNS algorithm which reaches 130 m using three stars is improved effectively.

  13. In-motion initial alignment and positioning with INS/CNS/ODO integrated navigation system for lunar rovers

    Science.gov (United States)

    Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang; Liu, Ming

    2017-06-01

    Many countries have been paying great attention to space exploration, especially about the Moon and the Mars. Autonomous and high-accuracy navigation systems are needed for probers and rovers to accomplish missions. Inertial navigation system (INS)/celestial navigation system (CNS) based navigation system has been used widely on the lunar rovers. Initialization is a particularly important step for navigation. This paper presents an in-motion alignment and positioning method for lunar rovers by INS/CNS/odometer integrated navigation. The method can estimate not only the position and attitude errors, but also the biases of the accelerometers and gyros using the standard Kalman filter. The differences between the platform star azimuth, elevation angles and the computed star azimuth, elevation angles, and the difference between the velocity measured by odometer and the velocity measured by inertial sensors are taken as measurements. The semi-physical experiments are implemented to demonstrate that the position error can reduce to 10 m and attitude error is within 2″ during 5 min. The experiment results prove that it is an effective and attractive initialization approach for lunar rovers.

  14. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle (STV)

    Science.gov (United States)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. Wayne

    1991-01-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  15. FPGA-based real-time embedded system for RISS/GPS integrated navigation.

    Science.gov (United States)

    Abdelfatah, Walid Farid; Georgy, Jacques; Iqbal, Umar; Noureldin, Aboelmagd

    2012-01-01

    Navigation algorithms integrating measurements from multi-sensor systems overcome the problems that arise from using GPS navigation systems in standalone mode. Algorithms which integrate the data from 2D low-cost reduced inertial sensor system (RISS), consisting of a gyroscope and an odometer or wheel encoders, along with a GPS receiver via a Kalman filter has proved to be worthy in providing a consistent and more reliable navigation solution compared to standalone GPS receivers. It has been also shown to be beneficial, especially in GPS-denied environments such as urban canyons and tunnels. The main objective of this paper is to narrow the idea-to-implementation gap that follows the algorithm development by realizing a low-cost real-time embedded navigation system capable of computing the data-fused positioning solution. The role of the developed system is to synchronize the measurements from the three sensors, relative to the pulse per second signal generated from the GPS, after which the navigation algorithm is applied to the synchronized measurements to compute the navigation solution in real-time. Employing a customizable soft-core processor on an FPGA in the kernel of the navigation system, provided the flexibility for communicating with the various sensors and the computation capability required by the Kalman filter integration algorithm.

  16. Special relativity of non-inertial motions: A complementary theory to Einstein's SR

    International Nuclear Information System (INIS)

    Mocanu, C.I.

    1999-01-01

    In order to describe physical reality a special (gravity-free) relativity is needed that is founded upon general non-uniform motions as they occur in our environment and hold for the non-inertial reference frame of our laboratory. Such a generalized form of special relativity can be build upon an extension, at relativistic velocities, of Maxwell-Hertz electrodynamics (MHE), which is valid for non-uniform motions, but at small velocities only. The new electromagnetic theory called (in honor to Hertz) Hertz's Relativistic Electrodynamics (HRE), is completely independent and built-up in a completely different way as regards Einstein's Special Relativity (ESR). HRE, a coordinate-free formulation does not need postulates, but confirms the constancy principle of speed of light in vacuum. All experiments of first and second order in v/c are correctly interpreted. To this theory a Hertzian kinematics and dynamics are associated. HRE with its corresponding mechanics forms Hertz's Special Relativity (HSR), as a complementary theory to ESR. According to the principle of complementarity and neglecting the gravitational effects, the Extended Special Relativity (ExSR) is a double faced theory which becomes either ESR, when the motion is inertial or HSR when the motion is non-inertial. The complementarity of both theories assumes that the two descriptions cannot be employed for the same motion, being mutually exclusive. Consequently, to every statement of one of the ExSR corresponds a complementary statement of the other ExSR. The completeness of ESR with HSR ensures an extended view over the relativity in our physical world. (author)

  17. Attitude and gyro bias estimation by the rotation of an inertial measurement unit

    International Nuclear Information System (INIS)

    Wu, Zheming; Sun, Zhenguo; Zhang, Wenzeng; Chen, Qiang

    2015-01-01

    In navigation applications, the presence of an unknown bias in the measurement of rate gyros is a key performance-limiting factor. In order to estimate the gyro bias and improve the accuracy of attitude measurement, we proposed a new method which uses the rotation of an inertial measurement unit, which is independent from rigid body motion. By actively changing the orientation of the inertial measurement unit (IMU), the proposed method generates sufficient relations between the gyro bias and tilt angle (roll and pitch) error via ridge body dynamics, and the gyro bias, including the bias that causes the heading error, can be estimated and compensated. The rotation inertial measurement unit method makes the gravity vector measured from the IMU continuously change in a body-fixed frame. By theoretically analyzing the mathematic model, the convergence of the attitude and gyro bias to the true values is proven. The proposed method provides a good attitude estimation using only measurements from an IMU, when other sensors such as magnetometers and GPS are unreliable. The performance of the proposed method is illustrated under realistic robotic motions and the results demonstrate an improvement in the accuracy of the attitude estimation. (paper)

  18. Polar Cooperative Navigation Algorithm for Multi-Unmanned Underwater Vehicles Considering Communication Delays

    Directory of Open Access Journals (Sweden)

    Zheping Yan

    2018-03-01

    Full Text Available To solve the navigation accuracy problems of multi-Unmanned Underwater Vehicles (multi-UUVs in the polar region, a polar cooperative navigation algorithm for multi-UUVs considering communication delays is proposed in this paper. UUVs are important pieces of equipment in ocean engineering for marine development. For UUVs to complete missions, precise navigation is necessary. It is difficult for UUVs to establish true headings because of the rapid convergence of Earth meridians and the severe polar environment. Based on the polar grid navigation algorithm, UUV navigation in the polar region can be accomplished with the Strapdown Inertial Navigation System (SINS in the grid frame. To save costs, a leader-follower type of system is introduced in this paper. The leader UUV helps the follower UUVs to achieve high navigation accuracy. Follower UUVs correct their own states based on the information sent by the leader UUV and the relative position measured by ultra-short baseline (USBL acoustic positioning. The underwater acoustic communication delay is quantized by the model. In this paper, considering underwater acoustic communication delay, the conventional adaptive Kalman filter (AKF is modified to adapt to polar cooperative navigation. The results demonstrate that the polar cooperative navigation algorithm for multi-UUVs that considers communication delays can effectively navigate the sailing of multi-UUVs in the polar region.

  19. The inertial attitude augmentation for ambiguity resolution in SF/SE-GNSS attitude determination.

    Science.gov (United States)

    Zhu, Jiancheng; Hu, Xiaoping; Zhang, Jingyu; Li, Tao; Wang, Jinling; Wu, Meiping

    2014-06-26

    The Unaided Single Frequency/Single Epoch Global Navigation Satellite System (SF/SE GNSS) model is the most challenging scenario for ambiguity resolution in the GNSS attitude determination application. To improve the performance of SF/SE-GNSS ambiguity resolution without excessive cost, the Micro-Electro-Mechanical System Inertial Measurement Unit (MEMS-IMU) is a proper choice for the auxiliary sensor that carries out the inertial attitude augmentation. Firstly, based on the SF/SE-GNSS compass model, the Inertial Derived Baseline Vector (IDBV) is defined to connect the MEMS-IMU attitude measurement with the SF/SE-GNSS ambiguity search space, and the mechanism of inertial attitude augmentation is revealed from the perspective of geometry. Then, through the quantitative description of model strength by Ambiguity Dilution of Precision (ADOP), two ADOPs are specified for the unaided SF/SE-GNSS compass model and its inertial attitude augmentation counterparts, respectively, and a sufficient condition is proposed for augmenting the SF/SE-GNSS model strength with inertial attitude measurement. Finally, in the framework of an integer aperture estimator with fixed failure rate, the performance of SF/SE-GNSS ambiguity resolution with inertial attitude augmentation is analyzed when the model strength is varying from strong to weak. The simulation results show that, in the SF/SE-GNSS attitude determination application, MEMS-IMU can satisfy the requirements of ambiguity resolution with inertial attitude augmentation.

  20. The Inertial Attitude Augmentation for Ambiguity Resolution in SF/SE-GNSS Attitude Determination

    Science.gov (United States)

    Zhu, Jiancheng; Hu, Xiaoping; Zhang, Jingyu; Li, Tao; Wang, Jinling; Wu, Meiping

    2014-01-01

    The Unaided Single Frequency/Single Epoch Global Navigation Satellite System (SF/SE GNSS) model is the most challenging scenario for ambiguity resolution in the GNSS attitude determination application. To improve the performance of SF/SE-GNSS ambiguity resolution without excessive cost, the Micro-Electro-Mechanical System Inertial Measurement Unit (MEMS-IMU) is a proper choice for the auxiliary sensor that carries out the inertial attitude augmentation. Firstly, based on the SF/SE-GNSS compass model, the Inertial Derived Baseline Vector (IDBV) is defined to connect the MEMS-IMU attitude measurement with the SF/SE-GNSS ambiguity search space, and the mechanism of inertial attitude augmentation is revealed from the perspective of geometry. Then, through the quantitative description of model strength by Ambiguity Dilution of Precision (ADOP), two ADOPs are specified for the unaided SF/SE-GNSS compass model and its inertial attitude augmentation counterparts, respectively, and a sufficient condition is proposed for augmenting the SF/SE-GNSS model strength with inertial attitude measurement. Finally, in the framework of an integer aperture estimator with fixed failure rate, the performance of SF/SE-GNSS ambiguity resolution with inertial attitude augmentation is analyzed when the model strength is varying from strong to weak. The simulation results show that, in the SF/SE-GNSS attitude determination application, MEMS-IMU can satisfy the requirements of ambiguity resolution with inertial attitude augmentation. PMID:24971472

  1. Satellite Imagery Assisted Road-Based Visual Navigation System

    Science.gov (United States)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  2. INS integrated motion analysis for autonomous vehicle navigation

    Science.gov (United States)

    Roberts, Barry; Bazakos, Mike

    1991-01-01

    The use of inertial navigation system (INS) measurements to enhance the quality and robustness of motion analysis techniques used for obstacle detection is discussed with particular reference to autonomous vehicle navigation. The approach to obstacle detection used here employs motion analysis of imagery generated by a passive sensor. Motion analysis of imagery obtained during vehicle travel is used to generate range measurements to points within the field of view of the sensor, which can then be used to provide obstacle detection. Results obtained with an INS integrated motion analysis approach are reviewed.

  3. SLS Model Based Design: A Navigation Perspective

    Science.gov (United States)

    Oliver, T. Emerson; Anzalone, Evan; Park, Thomas; Geohagan, Kevin

    2018-01-01

    The SLS Program has implemented a Model-based Design (MBD) and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team is responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1B design, the additional GPS Receiver hardware model is managed as a DMM at the vehicle design level. This paper describes the models, and discusses the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the navigation components.

  4. Indoor Smartphone Navigation Using a Combination of Wi-Fi and Inertial Navigation with Intelligent Checkpoints

    Science.gov (United States)

    Hofer, H.; Retscher, G.

    2017-09-01

    For Wi-Fi positioning location fingerprinting is one of the most commonly employed localization technique. To achieve an acceptable level of positioning accuracy on the few meter level, i.e., to provide at least room resolution in buildings, such an approach is very labour consuming as it requires a high density of reference points. Thus, the novel approach developed aims at a significant reduction of workload for the training phase. The basic idea is to intelligently choose waypoints along possible users' trajectories in the indoor environment. These waypoints are termed intelligent checkpoints (iCPs) and serve as reference points for the fingerprinting localization approach. They are selected along the trajectories in such a way that they define a logical sequence with their ascending order. Thereby, the iCPs are located, for instance, at doors at entrances to buildings, rooms, along corridors, etc., or in low density along the trajectory to provide a suitable absolute user localization. Continuous positioning between these iCPs is obtained with the help of the smartphones' inertial sensors. While walking along a selected trajectory to the destination a dynamic recognition of the iCPs is performed and the drift of the inertial sensors is reduced as the iCP recognition serves as absolute position update. Conducted experiments in a multi-storey office building have shown that positioning accuracy of around 2.0 m are achievable which goes along with a reduction of workload by three quarter using this novel approach. The iCP concept and performance are presented and demonstrated in this paper.

  5. Application of inertial measuring unit in air navigation for ALS and DAP

    African Journals Online (AJOL)

    This article describes the inertial measuring device IMU, as well as its use in airborne laser scanning and digital aerial photography. This device is used during the operation of a scanning unit and an aerial photo camera. The structure of an additional connection for a digital video camera is proposed, which will record video ...

  6. Spin transport in non-inertial frame

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com

    2014-09-01

    The influence of acceleration and rotation on spintronic applications is theoretically investigated. In our formulation, considering a Dirac particle in a non-inertial frame, different spin related aspects are studied. The spin current appearing due to the inertial spin–orbit coupling (SOC) is enhanced by the interband mixing of the conduction and valence band states. Importantly, one can achieve a large spin current through the k{sup →}.p{sup →} method in this non-inertial frame. Furthermore, apart from the inertial SOC term due to acceleration, for a particular choice of the rotation frequency, a new kind of SOC term can be obtained from the spin rotation coupling (SRC). This new kind of SOC is of Dresselhaus type and controllable through the rotation frequency. In the field of spintronic applications, utilizing the inertial SOC and SRC induced SOC term, theoretical proposals for the inertial spin filter, inertial spin galvanic effect are demonstrated. Finally, one can tune the spin relaxation time in semiconductors by tuning the non-inertial parameters.

  7. On inertial range scaling laws

    International Nuclear Information System (INIS)

    Bowman, J.C.

    1994-12-01

    Inertial-range scaling laws for two- and three-dimensional turbulence are re-examined within a unified framework. A new correction to Kolmogorov's k -5/3 scaling is derived for the energy inertial range. A related modification is found to Kraichnan's logarithmically corrected two-dimensional enstrophy cascade law that removes its unexpected divergence at the injection wavenumber. The significance of these corrections is illustrated with steady-state energy spectra from recent high-resolution closure computations. The results also underscore the asymptotic nature of inertial-range scaling laws. Implications for conventional numerical simulations are discussed

  8. Improved artificial bee colony algorithm based gravity matching navigation method.

    Science.gov (United States)

    Gao, Wei; Zhao, Bo; Zhou, Guang Tao; Wang, Qiu Ying; Yu, Chun Yang

    2014-07-18

    Gravity matching navigation algorithm is one of the key technologies for gravity aided inertial navigation systems. With the development of intelligent algorithms, the powerful search ability of the Artificial Bee Colony (ABC) algorithm makes it possible to be applied to the gravity matching navigation field. However, existing search mechanisms of basic ABC algorithms cannot meet the need for high accuracy in gravity aided navigation. Firstly, proper modifications are proposed to improve the performance of the basic ABC algorithm. Secondly, a new search mechanism is presented in this paper which is based on an improved ABC algorithm using external speed information. At last, modified Hausdorff distance is introduced to screen the possible matching results. Both simulations and ocean experiments verify the feasibility of the method, and results show that the matching rate of the method is high enough to obtain a precise matching position.

  9. Autonomous Integrated Navigation for Indoor Robots Utilizing On-Line Iterated Extended Rauch-Tung-Striebel Smoothing

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2013-11-01

    Full Text Available In order to reduce the estimated errors of the inertial navigation system (INS/Wireless sensor network (WSN-integrated navigation for mobile robots indoors, this work proposes an on-line iterated extended Rauch-Tung-Striebel smoothing (IERTSS utilizing inertial measuring units (IMUs and an ultrasonic positioning system. In this mode, an iterated Extended Kalman filter (IEKF is used in forward data processing of the Extended Rauch-Tung-Striebel smoothing (ERTSS to improve the accuracy of the filtering output for the smoother. Furthermore, in order to achieve the on-line smoothing, IERTSS is embedded into the average filter. For verification, a real indoor test has been done to assess the performance of the proposed method. The results show that the proposed method is effective in reducing the errors compared with the conventional schemes.

  10. Laser-based Relative Navigation Using GPS Measurements for Spacecraft Formation Flying

    Science.gov (United States)

    Lee, Kwangwon; Oh, Hyungjik; Park, Han-Earl; Park, Sang-Young; Park, Chandeok

    2015-12-01

    This study presents a precise relative navigation algorithm using both laser and Global Positioning System (GPS) measurements in real time. The measurement model of the navigation algorithm between two spacecraft is comprised of relative distances measured by laser instruments and single differences of GPS pseudo-range measurements in spherical coordinates. Based on the measurement model, the Extended Kalman Filter (EKF) is applied to smooth the pseudo-range measurements and to obtain the relative navigation solution. While the navigation algorithm using only laser measurements might become inaccurate because of the limited accuracy of spacecraft attitude estimation when the distance between spacecraft is rather large, the proposed approach is able to provide an accurate solution even in such cases by employing the smoothed GPS pseudo-range measurements. Numerical simulations demonstrate that the errors of the proposed algorithm are reduced by more than about 12% compared to those of an algorithm using only laser measurements, as the accuracy of angular measurements is greater than 0.001° at relative distances greater than 30 km.

  11. Adaptive Monocular Visual-Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices.

    Science.gov (United States)

    Piao, Jin-Chun; Kim, Shin-Dug

    2017-11-07

    Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual-inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual-inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual-inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual-inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method.

  12. Adaptive Monocular Visual–Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices

    Directory of Open Access Journals (Sweden)

    Jin-Chun Piao

    2017-11-01

    Full Text Available Simultaneous localization and mapping (SLAM is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual–inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual–inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual–inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual–inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method.

  13. Adaptive Monocular Visual–Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices

    Science.gov (United States)

    Piao, Jin-Chun; Kim, Shin-Dug

    2017-01-01

    Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual–inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual–inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual–inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual–inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method. PMID:29112143

  14. Tightly coupled low cost 3D RISS/GPS integration using a mixture particle filter for vehicular navigation.

    Science.gov (United States)

    Georgy, Jacques; Noureldin, Aboelmagd

    2011-01-01

    Satellite navigation systems such as the global positioning system (GPS) are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS)-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF). Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF) was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D) reduced inertial sensors system (RISS) with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle's odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s) even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift, which are

  15. Tightly Coupled Low Cost 3D RISS/GPS Integration Using a Mixture Particle Filter for Vehicular Navigation

    Directory of Open Access Journals (Sweden)

    Jacques Georgy

    2011-04-01

    Full Text Available Satellite navigation systems such as the global positioning system (GPS are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF. Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D reduced inertial sensors system (RISS with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle’s odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift

  16. Inertial wave beams and inertial wave modes in a rotating cylinder with time-modulated rotation rate

    Science.gov (United States)

    Borcia, Ion D.; Ghasemi V., Abouzar; Harlander, Uwe

    2014-05-01

    Inertial gravity waves play an crucial role in atmospheres, oceans, and the fluid inside of planets and moons. In the atmosphere, the effect of rotation is neglected for small wavelength and the waves bear the character of internal gravity waves. For long waves, the hydrostatic assumption is made which in turn makes the atmosphere inelastic with respect to inertial motion. In contrast, in the Earth's interior, pure inertial waves are considered as an important fundamental part of the motion. Moreover, as the deep ocean is nearly homogeneous, there the inertial gravity waves bear the character of inertial waves. Excited at the oceans surface mainly due to weather systems the waves can propagate downward and influence the deep oceans motion. In the light of the aforesaid it is important to understand better fundamental inertial wave dynamics. We investigate inertial wave modes by experimental and numerical methods. Inertial modes are excited in a fluid filled rotating annulus by modulating the rotation rate of the outer cylinder and the upper and lower lids. This forcing leads to inertial wave beams emitted from the corner regions of the annulus due to periodic motions in the boundary layers (Klein et al., 2013). When the forcing frequency matches with the eigenfrequency of the rotating annulus the beam pattern amplitude is increasing, the beams broaden and mode structures can be observed (Borcia et al., 2013a). The eigenmodes are compared with analytical solutions of the corresponding inviscid problem (Borcia et al, 2013b). In particular for the pressure field a good agreement can be found. However, shear layers related to the excited wave beams are present for all frequencies. This becomes obvious in particular in the experimental visualizations that are done by using Kalliroscope particles, highlighting relative motion in the fluid. Comparing the eigenfrequencies we find that relative to the analytical frequencies, the experimental and numerical ones show a small

  17. The Additional Error of Inertial Sensors Induced by Hypersonic Flight Conditions.

    Science.gov (United States)

    Karachun, Volodimir; Mel'nick, Viktorij; Korobiichuk, Igor; Nowicki, Michał; Szewczyk, Roman; Kobzar, Svitlana

    2016-02-26

    The emergence of hypersonic technology pose a new challenge for inertial navigation sensors, widely used in aerospace industry. The main problems are: extremely high temperatures, vibration of the fuselage, penetrating acoustic radiation and shock N-waves. The nature of the additional errors of the gyroscopic inertial sensor with hydrostatic suspension components under operating conditions generated by forced precession of the movable part of the suspension due to diffraction phenomena in acoustic fields is explained. The cause of the disturbing moments in the form of the Coriolis inertia forces during the transition of the suspension surface into the category of impedance is revealed. The boundaries of occurrence of the features on the resonance wave match are described. The values of the "false" angular velocity as a result of the elastic-stress state of suspension in the acoustic fields are determined.

  18. Development and Flight Test of a Robust Optical-Inertial Navigation System Using Low-Cost Sensors

    National Research Council Canada - National Science Library

    Nielsen, Michael B

    2008-01-01

    .... This algorithm provides an alternative to the Global Positioning System (GPS) as a precision navigation source, enabling navigation in GPS denied environments, using low-cost sensors and equipment...

  19. Intelligent Behavioral Action Aiding for Improved Autonomous Image Navigation

    Science.gov (United States)

    2012-09-13

    odometry, SICK laser scanning unit ( Lidar ), Inertial Measurement Unit (IMU) and ultrasonic distance measurement system (Figure 32). The Lidar , IMU...2010, July) GPS world. [Online]. http://www.gpsworld.com/tech-talk- blog/gnss-independent-navigation-solution-using-integrated- lidar -data-11378 [4...Milford, David McKinnon, Michael Warren, Gordon Wyeth, and Ben Upcroft, "Feature-based Visual Odometry and Featureless Place Recognition for SLAM in

  20. Mechanical Energy Change in Inertial Reference Frames

    Science.gov (United States)

    Ghanbari, Saeed

    2016-01-01

    The mechanical energy change of a system in an inertial frame of reference equals work done by the total nonconservative force in the same frame. This relation is covariant under the Galilean transformations from inertial frame S to S', where S' moves with constant velocity relative to S. In the presence of nonconservative forces, such as normal…

  1. Star pattern recognition algorithm aided by inertial information

    Science.gov (United States)

    Liu, Bao; Wang, Ke-dong; Zhang, Chao

    2011-08-01

    Star pattern recognition is one of the key problems of the celestial navigation. The traditional star pattern recognition approaches, such as the triangle algorithm and the star angular distance algorithm, are a kind of all-sky matching method whose recognition speed is slow and recognition success rate is not high. Therefore, the real time and reliability of CNS (Celestial Navigation System) is reduced to some extent, especially for the maneuvering spacecraft. However, if the direction of the camera optical axis can be estimated by other navigation systems such as INS (Inertial Navigation System), the star pattern recognition can be fulfilled in the vicinity of the estimated direction of the optical axis. The benefits of the INS-aided star pattern recognition algorithm include at least the improved matching speed and the improved success rate. In this paper, the direction of the camera optical axis, the local matching sky, and the projection of stars on the image plane are estimated by the aiding of INS firstly. Then, the local star catalog for the star pattern recognition is established in real time dynamically. The star images extracted in the camera plane are matched in the local sky. Compared to the traditional all-sky star pattern recognition algorithms, the memory of storing the star catalog is reduced significantly. Finally, the INS-aided star pattern recognition algorithm is validated by simulations. The results of simulations show that the algorithm's computation time is reduced sharply and its matching success rate is improved greatly.

  2. Ultra-Wideband Tracking System Design for Relative Navigation

    Science.gov (United States)

    Ni, Jianjun David; Arndt, Dickey; Bgo, Phong; Dekome, Kent; Dusl, John

    2011-01-01

    This presentation briefly discusses a design effort for a prototype ultra-wideband (UWB) time-difference-of-arrival (TDOA) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being designed for use in localization and navigation of a rover in a GPS deprived environment for surface missions. In one application enabled by the UWB tracking, a robotic vehicle carrying equipments can autonomously follow a crewed rover from work site to work site such that resources can be carried from one landing mission to the next thereby saving up-mass. The UWB Systems Group at JSC has developed a UWB TDOA High Resolution Proximity Tracking System which can achieve sub-inch tracking accuracy of a target within the radius of the tracking baseline [1]. By extending the tracking capability beyond the radius of the tracking baseline, a tracking system is being designed to enable relative navigation between two vehicles for surface missions. A prototype UWB TDOA tracking system has been designed, implemented, tested, and proven feasible for relative navigation of robotic vehicles. Future work includes testing the system with the application code to increase the tracking update rate and evaluating the linear tracking baseline to improve the flexibility of antenna mounting on the following vehicle.

  3. Improved servo-controlled inertial clock for laboratory tests of general relativity

    International Nuclear Information System (INIS)

    Leyh, C.H.

    1984-01-01

    An inertial clock, consisting of a protected macroscopic rotor as the time base, was developed and tested preliminarily and partially by Cheung. This research offers considerable refinement of the equipment and the operating software, and includes serious testing of the experimental behavior. The inertial clock uses magnetic suspension to levitate a capped hollow cylindrical rotor (called the shroud rotor) within a vacuum chamber. A second rotor (called the proof rotor) is magnetically suspended within the shroud rotor. The shroud rotor is caused to corotate precisely with the rotating proof rotor by a microcomputer-controlled eddy current drive feedback servo loop. This produces a drag-free environment for the proof rotor which becomes the inertial timekeeper. In this way corotation effectively eliminates the residual gas drag on the proof rotor and the magnetic suspension bearing reduces bearing drag

  4. Quasiparticles of widely tuneable inertial mass: The dispersion relation of atomic Josephson vortices and related solitary waves

    Directory of Open Access Journals (Sweden)

    Sophie S. Shamailov, Joachim Brand

    2018-03-01

    Full Text Available Superconducting Josephson vortices have direct analogues in ultracold-atom physics as solitary-wave excitations of two-component superfluid Bose gases with linear coupling. Here we numerically extend the zero-velocity Josephson vortex solutions of the coupled Gross-Pitaevskii equations to non-zero velocities, thus obtaining the full dispersion relation. The inertial mass of the Josephson vortex obtained from the dispersion relation depends on the strength of linear coupling and has a simple pole divergence at a critical value where it changes sign while assuming large absolute values. Additional low-velocity quasiparticles with negative inertial mass emerge at finite momentum that are reminiscent of a dark soliton in one component with counter-flow in the other. In the limit of small linear coupling we compare the Josephson vortex solutions to sine-Gordon solitons and show that the correspondence between them is asymptotic, but significant differences appear at finite values of the coupling constant. Finally, for unequal and non-zero self- and cross-component nonlinearities, we find a new solitary-wave excitation branch. In its presence, both dark solitons and Josephson vortices are dynamically stable while the new excitations are unstable.

  5. Generalisation of the test theory of special relativity to non-inertial frames

    International Nuclear Information System (INIS)

    Abolghasem, G.H.; Khajehpour, M.R.H.; Mansouri, R.

    1989-01-01

    We present a generalised test theory of special relativity, using a non-inertial frame. Within the framework of the special theory of relativity the transport and Einstein synchronisations are equivalent on a rigidly rotating disc. But in any theory with a preferred frame, such an equivalence does not hold. The time difference resulting from the two synchronisation procedures is a measurable quantity within the reach of existing clock systems on the Earth. The final result contains a term which depends on the angular velocity of the rotating system, and hence measures an absolute effect. This term is of crucial importance in our test theory of special relativity. (Author)

  6. Map matching and heuristic elimination of gyro drift for personal navigation systems in GPS-denied conditions

    International Nuclear Information System (INIS)

    Aggarwal, Priyanka; Thomas, David; Ojeda, Lauro; Borenstein, Johann

    2011-01-01

    This paper introduces a method for the substantial reduction of heading errors in inertial navigation systems used under GPS-denied conditions. Presumably, the method is applicable for both vehicle-based and personal navigation systems, but experiments were performed only with a personal navigation system called 'personal dead reckoning' (PDR). In order to work under GPS-denied conditions, the PDR system uses a foot-mounted inertial measurement unit (IMU). However, gyro drift in this IMU can cause large heading errors after just a few minutes of walking. To reduce these errors, the map-matched heuristic drift elimination (MAPHDE) method was developed, which estimates gyro drift errors by comparing IMU-derived heading to the direction of the nearest street segment in a database of street maps. A heuristic component in this method provides tolerance to short deviations from walking along the street, such as when crossing streets or intersections. MAPHDE keeps heading errors almost at zero, and, as a result, position errors are dramatically reduced. In this paper, MAPHDE was used in a variety of outdoor walks, without any use of GPS. This paper explains the MAPHDE method in detail and presents experimental results

  7. Inertial-range spectrum of whistler turbulence

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2010-02-01

    Full Text Available We develop a theoretical model of an inertial-range energy spectrum for homogeneous whistler turbulence. The theory is a generalization of the Iroshnikov-Kraichnan concept of the inertial-range magnetohydrodynamic turbulence. In the model the dispersion relation is used to derive scaling laws for whistler waves at highly oblique propagation with respect to the mean magnetic field. The model predicts an energy spectrum for such whistler waves with a spectral index −2.5 in the perpendicular component of the wave vector and thus provides an interpretation about recent discoveries of the second inertial-range of magnetic energy spectra at high frequencies in the solar wind.

  8. Inertial Sensor-Based Gait Recognition: A Review

    Science.gov (United States)

    Sprager, Sebastijan; Juric, Matjaz B.

    2015-01-01

    With the recent development of microelectromechanical systems (MEMS), inertial sensors have become widely used in the research of wearable gait analysis due to several factors, such as being easy-to-use and low-cost. Considering the fact that each individual has a unique way of walking, inertial sensors can be applied to the problem of gait recognition where assessed gait can be interpreted as a biometric trait. Thus, inertial sensor-based gait recognition has a great potential to play an important role in many security-related applications. Since inertial sensors are included in smart devices that are nowadays present at every step, inertial sensor-based gait recognition has become very attractive and emerging field of research that has provided many interesting discoveries recently. This paper provides a thorough and systematic review of current state-of-the-art in this field of research. Review procedure has revealed that the latest advanced inertial sensor-based gait recognition approaches are able to sufficiently recognise the users when relying on inertial data obtained during gait by single commercially available smart device in controlled circumstances, including fixed placement and small variations in gait. Furthermore, these approaches have also revealed considerable breakthrough by realistic use in uncontrolled circumstances, showing great potential for their further development and wide applicability. PMID:26340634

  9. Influence of the whispering-gallery mode resonators shape on its inertial movement sensitivity

    Science.gov (United States)

    Filatov, Yuri V.; Kukaev, Alexander S.; Shalymov, Egor V.; Venediktov, Vladimir Yu.

    2018-01-01

    The optical whispering-gallery mode (WGM) resonators are axially symmetrical resonators with smooth edges, supporting the existence of the WGMs by the total internal reflection on the surface of the resonator. As of today, various types of such resonators have been developed, namely the ball shaped, tor shaped, bottle shaped, disk shaped, etc. The movement of WGM resonators in inertial space causes the changes in their shape. The result is a spectral shift of the WGMs. Optical methods allow to register this shift with high precision. It can be used in particular for the measurement of angular velocities in inertial orientation and navigation systems. However, different types of resonators react to the movement in different manners. In addition, their sensitivity to movement can be changed when changing the geometric parameters of these resonators. The work is devoted to investigation of these aspects.

  10. Hybrid Transverse Polar Navigation for High-Precision and Long-Term INSs.

    Science.gov (United States)

    Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Zhang, Rong; Hu, Peida; Li, Haixia

    2018-05-12

    Transverse navigation has been proposed to help inertial navigation systems (INSs) fill the gap of polar navigation ability. However, as the transverse system does not have the ability of navigate globally, a complicated switch between the transverse and the traditional algorithms is necessary when the system moves across the polar circles. To maintain the inner continuity and consistency of the core algorithm, a hybrid transverse polar navigation is proposed in this research based on a combination of Earth-fixed-frame mechanization and transverse-frame outputs. Furthermore, a thorough analysis of kinematic error characteristics, proper damping technology and corresponding long-term contributions of main error sources is conducted for the high-precision INSs. According to the analytical expressions of the long-term navigation errors in polar areas, the 24-h period symmetrical oscillation with a slowly divergent amplitude dominates the transverse horizontal position errors, and the first-order drift dominates the transverse azimuth error, which results from the gyro drift coefficients that occur in corresponding directions. Simulations are conducted to validate the theoretical analysis and the deduced analytical expressions. The results show that the proposed hybrid transverse navigation can ensure the same accuracy and oscillation characteristics in polar areas as the traditional algorithm in low and mid latitude regions.

  11. A New PDR Navigation Device for Challenging Urban Environments

    Directory of Open Access Journals (Sweden)

    Miguel Ortiz

    2017-01-01

    Full Text Available The motivations, the design, and some applications of the new Pedestrian Dead Reckoning (PDR navigation device, ULISS (Ubiquitous Localization with Inertial Sensors and Satellites, are presented in this paper. It is an original device conceived to follow the European recommendation of privacy by design to protect location data which opens new research toward self-contained pedestrian navigation approaches. Its application is presented with an enhanced PDR algorithm to estimate pedestrian’s footpaths in an autonomous manner irrespective of the handheld device carrying mode: texting or swinging. An analysis of real-time coding issues toward a demonstrator is also conducted. Indoor experiments, conducted with 3 persons, give a 5.8% mean positioning error over the 3 km travelled distances.

  12. A novel method of calibrating a MEMS inertial reference unit on a turntable under limited working conditions

    Science.gov (United States)

    Lu, Jiazhen; Liang, Shufang; Yang, Yanqiang

    2017-10-01

    Micro-electro-mechanical systems (MEMS) inertial measurement devices tend to be widely used in inertial navigation systems and have quickly emerged on the market due to their characteristics of low cost, high reliability and small size. Calibration is the most effective way to remove the deterministic error of an inertial reference unit (IRU), which in this paper consists of three orthogonally mounted MEMS gyros. However, common testing methods in the lab cannot predict the corresponding errors precisely when the turntable’s working condition is restricted. In this paper, the turntable can only provide a relatively small rotation angle. Moreover, the errors must be compensated exactly because of the great effect caused by the high angular velocity of the craft. To deal with this question, a new method is proposed to evaluate the MEMS IRU’s performance. In the calibration procedure, a one-axis table that can rotate a limited angle in the form of a sine function is utilized to provide the MEMS IRU’s angular velocity. A new algorithm based on Fourier series is designed to calculate the misalignment and scale factor errors. The proposed method is tested in a set of experiments, and the calibration results are compared to a traditional calibration method performed under normal working conditions to verify their correctness. In addition, a verification test in the given rotation speed is implemented for further demonstration.

  13. Absolute Navigation Performance of the Orion Exploration Fight Test 1

    Science.gov (United States)

    Zanetti, Renato; Holt, Greg; Gay, Robert; D'Souza, Christopher; Sud, Jastesh

    2016-01-01

    Launched in December 2014 atop a Delta IV Heavy from the Kennedy Space Center, the Orion vehicle's Exploration Flight Test-1 (EFT-1) successfully completed the objective to stress the system by placing the un-crewed vehicle on a high-energy parabolic trajectory replicating conditions similar to those that would be experienced when returning from an asteroid or a lunar mission. Unique challenges associated with designing the navigation system for EFT-1 are presented with an emphasis on how redundancy and robustness influenced the architecture. Two Inertial Measurement Units (IMUs), one GPS receiver and three barometric altimeters (BALTs) comprise the navigation sensor suite. The sensor data is multiplexed using conventional integration techniques and the state estimate is refined by the GPS pseudorange and deltarange measurements in an Extended Kalman Filter (EKF) that employs UDU factorization. The performance of the navigation system during flight is presented to substantiate the design.

  14. Performance Evaluation and Requirements Assessment for Gravity Gradient Referenced Navigation

    Directory of Open Access Journals (Sweden)

    Jisun Lee

    2015-07-01

    Full Text Available In this study, simulation tests for gravity gradient referenced navigation (GGRN are conducted to verify the effects of various factors such as database (DB and sensor errors, flight altitude, DB resolution, initial errors, and measurement update rates on the navigation performance. Based on the simulation results, requirements for GGRN are established for position determination with certain target accuracies. It is found that DB and sensor errors and flight altitude have strong effects on the navigation performance. In particular, a DB and sensor with accuracies of 0.1 E and 0.01 E, respectively, are required to determine the position more accurately than or at a level similar to the navigation performance of terrain referenced navigation (TRN. In most cases, the horizontal position error of GGRN is less than 100 m. However, the navigation performance of GGRN is similar to or worse than that of a pure inertial navigation system when the DB and sensor errors are 3 E or 5 E each and the flight altitude is 3000 m. Considering that the accuracy of currently available gradiometers is about 3 E or 5 E, GGRN does not show much advantage over TRN at present. However, GGRN is expected to exhibit much better performance in the near future when accurate DBs and gravity gradiometer are available.

  15. 77 FR 16860 - Certain GPS Navigation Products, Components Thereof, and Related Software; Termination of...

    Science.gov (United States)

    2012-03-22

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-783] Certain GPS Navigation Products, Components Thereof, and Related Software; Termination of Investigation on the Basis of Settlement AGENCY: U.S... GPS navigation products, components thereof, and related software, by reason of the infringement of...

  16. Intelligent personal navigator supported by knowledge-based systems for estimating dead reckoning navigation parameters

    Science.gov (United States)

    Moafipoor, Shahram

    Personal navigators (PN) have been studied for about a decade in different fields and applications, such as safety and rescue operations, security and emergency services, and police and military applications. The common goal of all these applications is to provide precise and reliable position, velocity, and heading information of each individual in various environments. In the PN system developed in this dissertation, the underlying assumption is that the system does not require pre-existing infrastructure to enable pedestrian navigation. To facilitate this capability, a multisensor system concept, based on the Global Positioning System (GPS), inertial navigation, barometer, magnetometer, and a human pedometry model has been developed. An important aspect of this design is to use the human body as navigation sensor to facilitate Dead Reckoning (DR) navigation in GPS-challenged environments. The system is designed predominantly for outdoor environments, where occasional loss of GPS lock may happen; however, testing and performance demonstration have been extended to indoor environments. DR navigation is based on a relative-measurement approach, with the key idea of integrating the incremental motion information in the form of step direction (SD) and step length (SL) over time. The foundation of the intelligent navigation system concept proposed here rests in exploiting the human locomotion pattern, as well as change of locomotion in varying environments. In this context, the term intelligent navigation represents the transition from the conventional point-to-point DR to dynamic navigation using the knowledge about the mechanism of the moving person. This approach increasingly relies on integrating knowledge-based systems (KBS) and artificial intelligence (AI) methodologies, including artificial neural networks (ANN) and fuzzy logic (FL). In addition, a general framework of the quality control for the real-time validation of the DR processing is proposed, based on a

  17. An adaptive deep-coupled GNSS/INS navigation system with hybrid pre-filter processing

    Science.gov (United States)

    Wu, Mouyan; Ding, Jicheng; Zhao, Lin; Kang, Yingyao; Luo, Zhibin

    2018-02-01

    The deep-coupling of a global navigation satellite system (GNSS) with an inertial navigation system (INS) can provide accurate and reliable navigation information. There are several kinds of deeply-coupled structures. These can be divided mainly into coherent and non-coherent pre-filter based structures, which have their own strong advantages and disadvantages, especially in accuracy and robustness. In this paper, the existing pre-filters of the deeply-coupled structures are analyzed and modified to improve them firstly. Then, an adaptive GNSS/INS deeply-coupled algorithm with hybrid pre-filters processing is proposed to combine the advantages of coherent and non-coherent structures. An adaptive hysteresis controller is designed to implement the hybrid pre-filters processing strategy. The simulation and vehicle test results show that the adaptive deeply-coupled algorithm with hybrid pre-filters processing can effectively improve navigation accuracy and robustness, especially in a GNSS-challenged environment.

  18. A dead reckoning localization system for mobile robots using inertial sensors and wheel revolution encoding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bong Su; Moon, Woo Sung; Seo, Woo Jin; Baek, Kwang Ryul [Pusan National University, Busan (Korea, Republic of)

    2011-11-15

    Inertial navigation systems (INS) are composed of inertial sensors, such as accelerometers and gyroscopes. An INS updates its orientation and position automatically; it has an acceptable stability over the short term, however this stability deteriorates over time. Odometry, used to estimate the position of a mobile robot, employs encoders attached to the robot's wheels. However, errors occur caused by the integrative nature of the rotating speed and the slippage between the wheel and the ground. In this paper, we discuss mobile robot position estimation without using external signals in indoor environments. In order to achieve optimal solutions, a Kalman filter that estimates the orientation and velocity of mobile robots has been designed. The proposed system combines INS and odometry and delivers more accurate position information than standalone odometry.

  19. Maximum Correntropy Unscented Kalman Filter for Ballistic Missile Navigation System based on SINS/CNS Deeply Integrated Mode.

    Science.gov (United States)

    Hou, Bowen; He, Zhangming; Li, Dong; Zhou, Haiyin; Wang, Jiongqi

    2018-05-27

    Strap-down inertial navigation system/celestial navigation system ( SINS/CNS) integrated navigation is a high precision navigation technique for ballistic missiles. The traditional navigation method has a divergence in the position error. A deeply integrated mode for SINS/CNS navigation system is proposed to improve the navigation accuracy of ballistic missile. The deeply integrated navigation principle is described and the observability of the navigation system is analyzed. The nonlinearity, as well as the large outliers and the Gaussian mixture noises, often exists during the actual navigation process, leading to the divergence phenomenon of the navigation filter. The new nonlinear Kalman filter on the basis of the maximum correntropy theory and unscented transformation, named the maximum correntropy unscented Kalman filter, is deduced, and the computational complexity is analyzed. The unscented transformation is used for restricting the nonlinearity of the system equation, and the maximum correntropy theory is used to deal with the non-Gaussian noises. Finally, numerical simulation illustrates the superiority of the proposed filter compared with the traditional unscented Kalman filter. The comparison results show that the large outliers and the influence of non-Gaussian noises for SINS/CNS deeply integrated navigation is significantly reduced through the proposed filter.

  20. GPS/MEMS IMU/Microprocessor Board for Navigation

    Science.gov (United States)

    Gender, Thomas K.; Chow, James; Ott, William E.

    2009-01-01

    A miniaturized instrumentation package comprising a (1) Global Positioning System (GPS) receiver, (2) an inertial measurement unit (IMU) consisting largely of surface-micromachined sensors of the microelectromechanical systems (MEMS) type, and (3) a microprocessor, all residing on a single circuit board, is part of the navigation system of a compact robotic spacecraft intended to be released from a larger spacecraft [e.g., the International Space Station (ISS)] for exterior visual inspection of the larger spacecraft. Variants of the package may also be useful in terrestrial collision-detection and -avoidance applications. The navigation solution obtained by integrating the IMU outputs is fed back to a correlator in the GPS receiver to aid in tracking GPS signals. The raw GPS and IMU data are blended in a Kalman filter to obtain an optimal navigation solution, which can be supplemented by range and velocity data obtained by use of (l) a stereoscopic pair of electronic cameras aboard the robotic spacecraft and/or (2) a laser dynamic range imager aboard the ISS. The novelty of the package lies mostly in those aspects of the design of the MEMS IMU that pertain to controlling mechanical resonances and stabilizing scale factors and biases.

  1. An Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database.

    Science.gov (United States)

    Li, Yan; Hu, Qingwu; Wu, Meng; Gao, Yang

    2016-01-28

    In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in environments with poor GPS. First, the framework of GRID-aided vision navigation is developed with sequence images from land-based mobile mapping systems that integrate multiple sensors. Second, a highly efficient GRID storage management model is established based on the linear index of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is presented to search and match a real-time image with the GRID. Subsequently, the image matched with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor platforms. Experimental results show that the proposed approach retrieves images efficiently and has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within 1500 m.

  2. Hybrid optical navigation by crater detection for lunar pin-point landing: trajectories from helicopter flight tests

    Science.gov (United States)

    Trigo, Guilherme F.; Maass, Bolko; Krüger, Hans; Theil, Stephan

    2018-01-01

    Accurate autonomous navigation capabilities are essential for future lunar robotic landing missions with a pin-point landing requirement, since in the absence of direct line of sight to ground control during critical approach and landing phases, or when facing long signal delays the herein before mentioned capability is needed to establish a guidance solution to reach the landing site reliably. This paper focuses on the processing and evaluation of data collected from flight tests that consisted of scaled descent scenarios where the unmanned helicopter of approximately 85 kg approached a landing site from altitudes of 50 m down to 1 m for a downrange distance of 200 m. Printed crater targets were distributed along the ground track and their detection provided earth-fixed measurements. The Crater Navigation (CNav) algorithm used to detect and match the crater targets is an unmodified method used for real lunar imagery. We analyze the absolute position and attitude solutions of CNav obtained and recorded during these flight tests, and investigate the attainable quality of vehicle pose estimation using both CNav and measurements from a tactical-grade inertial measurement unit. The navigation filter proposed for this end corrects and calibrates the high-rate inertial propagation with the less frequent crater navigation fixes through a closed-loop, loosely coupled hybrid setup. Finally, the attainable accuracy of the fused solution is evaluated by comparison with the on-board ground-truth solution of a dual-antenna high-grade GNSS receiver. It is shown that the CNav is an enabler for building autonomous navigation systems with high quality and suitability for exploration mission scenarios.

  3. Adaptive Iterated Extended Kalman Filter and Its Application to Autonomous Integrated Navigation for Indoor Robot

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2014-01-01

    Full Text Available As the core of the integrated navigation system, the data fusion algorithm should be designed seriously. In order to improve the accuracy of data fusion, this work proposed an adaptive iterated extended Kalman (AIEKF which used the noise statistics estimator in the iterated extended Kalman (IEKF, and then AIEKF is used to deal with the nonlinear problem in the inertial navigation systems (INS/wireless sensors networks (WSNs-integrated navigation system. Practical test has been done to evaluate the performance of the proposed method. The results show that the proposed method is effective to reduce the mean root-mean-square error (RMSE of position by about 92.53%, 67.93%, 55.97%, and 30.09% compared with the INS only, WSN, EKF, and IEKF.

  4. Dual-EKF-Based Real-Time Celestial Navigation for Lunar Rover

    Directory of Open Access Journals (Sweden)

    Li Xie

    2012-01-01

    Full Text Available A key requirement of lunar rover autonomous navigation is to acquire state information accurately in real-time during its motion and set up a gradual parameter-based nonlinear kinematics model for the rover. In this paper, we propose a dual-extended-Kalman-filter- (dual-EKF- based real-time celestial navigation (RCN method. The proposed method considers the rover position and velocity on the lunar surface as the system parameters and establishes a constant velocity (CV model. In addition, the attitude quaternion is considered as the system state, and the quaternion differential equation is established as the state equation, which incorporates the output of angular rate gyroscope. Therefore, the measurement equation can be established with sun direction vector from the sun sensor and speed observation from the speedometer. The gyro continuous output ensures the algorithm real-time operation. Finally, we use the dual-EKF method to solve the system equations. Simulation results show that the proposed method can acquire the rover position and heading information in real time and greatly improve the navigation accuracy. Our method overcomes the disadvantage of the cumulative error in inertial navigation.

  5. Improving Canada's Marine Navigation System through e-Navigation

    Directory of Open Access Journals (Sweden)

    Daniel Breton

    2016-06-01

    The conclusion proposed is that on-going work with key partners and stakeholders can be used as the primary mechanism to identify e-Navigation related innovation and needs, and to prioritize next steps. Moving forward in Canada, implementation of new e-navigation services will continue to be stakeholder driven, and used to drive improvements to Canada's marine navigation system.

  6. Maximum Correntropy Unscented Kalman Filter for Ballistic Missile Navigation System based on SINS/CNS Deeply Integrated Mode

    Directory of Open Access Journals (Sweden)

    Bowen Hou

    2018-05-01

    Full Text Available Strap-down inertial navigation system/celestial navigation system ( SINS/CNS integrated navigation is a high precision navigation technique for ballistic missiles. The traditional navigation method has a divergence in the position error. A deeply integrated mode for SINS/CNS navigation system is proposed to improve the navigation accuracy of ballistic missile. The deeply integrated navigation principle is described and the observability of the navigation system is analyzed. The nonlinearity, as well as the large outliers and the Gaussian mixture noises, often exists during the actual navigation process, leading to the divergence phenomenon of the navigation filter. The new nonlinear Kalman filter on the basis of the maximum correntropy theory and unscented transformation, named the maximum correntropy unscented Kalman filter, is deduced, and the computational complexity is analyzed. The unscented transformation is used for restricting the nonlinearity of the system equation, and the maximum correntropy theory is used to deal with the non-Gaussian noises. Finally, numerical simulation illustrates the superiority of the proposed filter compared with the traditional unscented Kalman filter. The comparison results show that the large outliers and the influence of non-Gaussian noises for SINS/CNS deeply integrated navigation is significantly reduced through the proposed filter.

  7. Systems Engineering Approach to Develop Guidance, Navigation and Control Algorithms for Unmanned Ground Vehicle

    Science.gov (United States)

    2016-09-01

    Global Positioning System HNA hybrid navigation algorithm HRI human-robot interface IED Improvised Explosive Device IMU inertial measurement unit...Potential Field Method R&D research and development RDT&E Research, development, test and evaluation RF radiofrequency RGB red, green and blue ROE...were radiofrequency (RF) controlled and pneumatically actuated upon receiving the wireless commands from the radio operator. The pairing of such an

  8. Inertial confinement fusion and related topics

    International Nuclear Information System (INIS)

    Starodub, A. N.

    2007-01-01

    The current state of different approaches (laser fusion, light and heavy ions, electron beam) to the realization of inertial confinement fusion is considered. From comparative analysis a conclusion is made that from the viewpoint of physics, technology, safety, and economics the most realistic way to future energetics is an electric power plant based on a hybrid fission-fusion reactor which consists of an external source of neutrons (based on laser fusion) and a subcritical two-cascade nuclear blanket, which yields the energy under the action of 14 MeV neutrons. The main topics on inertial confinement fusion such as the energy driver, the interaction between plasmas and driver beam, the target design are discussed. New concept of creation of a laser driver for IFE based on generation and amplification of radiation with controllable coherence is reported. The performed studies demonstrate that the laser based on generation and amplification of radiation with controllable coherence (CCR laser) has a number of advantages as compared to conventional schemes of lasers. The carried out experiments have shown a possibility of suppression of small-scale self-focusing, formation of laser radiation pulses with required characteristics, simplification of an optical scheme of the laser, good matching of laser-target system and achievement of homogeneous irradiation and high output laser energy density without using traditional correcting systems (phase plates, adaptive optics, space filters etc.). The results of the latest experiments to reach ultimate energy characteristics of the developed laser system are also reported. Recent results from the experiments aimed at studying of the physical processes in targets under illumination by the laser with controllable coherence of radiation are presented and discussed, especially such important laser-matter interaction phenomena as absorption and scattering of the laser radiation, the laser radiation harmonic generation, X

  9. Energy from inertial fusion

    International Nuclear Information System (INIS)

    1995-03-01

    This book contains 22 articles on inertial fusion energy (IFE) research and development written in the framework of an international collaboration of authors under the guidance of an advisory group on inertial fusion energy set up in 1991 to advise the IAEA. It describes the actual scientific, engineering and technological developments in the field of inertial confinement fusion (ICF). It also identifies ways in which international co-operation in ICF could be stimulated. The book is intended for a large audience and provides an introduction to inertial fusion energy and an overview of the various technologies needed for IFE power plants to be developed. It contains chapters on (i) the fundamentals of IFE; (ii) inertial confinement target physics; (iii) IFE power plant design principles (requirements for power plant drivers, solid state laser drivers, gas laser drivers, heavy ion drivers, and light ion drivers, target fabrication and positioning, reaction chamber systems, power generation and conditioning and radiation control, materials management and target materials recovery), (iv) special design issues (radiation damage in structural materials, induced radioactivity, laser driver- reaction chamber interfaces, ion beam driver-reaction chamber interfaces), (v) inertial fusion energy development strategy, (vi) safety and environmental impact, (vii) economics and other figures of merit; (viii) other uses of inertial fusion (both those involving and not involving implosions); and (ix) international activities. Refs, figs and tabs

  10. Transformations between inertial and linearly accelerated frames of reference

    International Nuclear Information System (INIS)

    Ashworth, D.G.

    1983-01-01

    Transformation equations between inertial and linearly accelerated frames of reference are derived and these transformation equations are shown to be compatible, where applicable, with those of special relativity. The physical nature of an accelerated frame of reference is unambiguously defined by means of an equation which relates the velocity of all points within the accelerated frame of reference to measurements made in an inertial frame of reference. (author)

  11. An improved particle filter and its application to an INS/GPS integrated navigation system in a serious noisy scenario

    International Nuclear Information System (INIS)

    Wang, Xuemei; Ni, Wenbo

    2016-01-01

    For loosely coupled INS/GPS integrated navigation systems with low-cost and low-accuracy microelectromechanical device inertial sensors, in order to obtain enough accuracy, a full-state nonlinear dynamic model rather than a linearized error model is much more preferable. Particle filters are particularly for nonlinear and non-Gaussian situations, but typical bootstrap particle filters (BPFs) and some improved particle filters (IPFs) such as auxiliary particle filters (APFs) and Gaussian particle filters (GPFs) cannot solve the mismatch between the importance function and the likelihood function very well. The predicted particles propagated through inertial navigation equations cannot be scattered with certainty within the effective range of current observation when there are large drift errors of the inertial sensors. Therefore, the current observation cannot play the correction role well and these particle filters are invalid to some extent. The proposed IPF firstly estimates the corresponding state bias errors according to the current observation and then corrects the bias errors of the predicted particles before determining the weights and resampling the particles. Simulations and practical experiments both show that the proposed IPF can effectively solve the mismatch between the importance function and the likelihood function of a BPF and compensate the accumulated errors of INSs very well. It has great robustness in a serious noisy scenario. (paper)

  12. Inertial frames and breakthrough propulsion physics

    Science.gov (United States)

    Millis, Marc G.

    2017-09-01

    The term ;Breakthrough Propulsion Physics; comes from the NASA project by that name which examined non-rocket space drives, gravity control, and faster-than-light travel. The focus here is on space drives and the related unsolved physics of inertial frames. A ;space drive; is a generic term encompassing any concept for using as-yet undiscovered physics to move a spacecraft instead of existing rockets, sails, or tethers. The collective state of the art spans mostly steps 1-3 of the scientific method: defining the problem, collecting data, and forming hypotheses. The key issues include (1) conservation of momentum, (2) absence of obvious reaction mass, and (3) the net-external thrusting requirement. Relevant open problems in physics include: (1) the sources and mechanisms of inertial frames, (2) coupling of gravitation to the other fundamental forces, and (3) the nature of the quantum vacuum. Rather than following the assumption that inertial frames are an immutable, intrinsic property of space, this paper revisits Mach's Principle, where it is posited that inertia is relative to the distant surrounding matter. This perspective allows conjectures that a space drive could impart reaction forces to that matter, via some as-yet undiscovered interaction with the inertial frame properties of space. Thought experiments are offered to begin a process to derive new hypotheses. It is unknown if this line of inquiry will be fruitful, but it is hoped that, by revisiting unsolved physics from a propulsion point of view, new insights will be gained.

  13. The use of x-ray pulsar-based navigation method for interplanetary flight

    Science.gov (United States)

    Yang, Bo; Guo, Xingcan; Yang, Yong

    2009-07-01

    As interplanetary missions are increasingly complex, the existing unique mature interplanetary navigation method mainly based on radiometric tracking techniques of Deep Space Network can not meet the rising demands of autonomous real-time navigation. This paper studied the applications for interplanetary flights of a new navigation technology under rapid development-the X-ray pulsar-based navigation for spacecraft (XPNAV), and valued its performance with a computer simulation. The XPNAV is an excellent autonomous real-time navigation method, and can provide comprehensive navigation information, including position, velocity, attitude, attitude rate and time. In the paper the fundamental principles and time transformation of the XPNAV were analyzed, and then the Delta-correction XPNAV blending the vehicles' trajectory dynamics with the pulse time-of-arrival differences at nominal and estimated spacecraft locations within an Unscented Kalman Filter (UKF) was discussed with a background mission of Mars Pathfinder during the heliocentric transferring orbit. The XPNAV has an intractable problem of integer pulse phase cycle ambiguities similar to the GPS carrier phase navigation. This article innovatively proposed the non-ambiguity assumption approach based on an analysis of the search space array method to resolve pulse phase cycle ambiguities between the nominal position and estimated position of the spacecraft. The simulation results show that the search space array method are computationally intensive and require long processing time when the position errors are large, and the non-ambiguity assumption method can solve ambiguity problem quickly and reliably. It is deemed that autonomous real-time integrated navigation system of the XPNAV blending with DSN, celestial navigation, inertial navigation and so on will be the development direction of interplanetary flight navigation system in the future.

  14. An Online Solution of LiDAR Scan Matching Aided Inertial Navigation System for Indoor Mobile Mapping

    Directory of Open Access Journals (Sweden)

    Xiaoji Niu

    2017-01-01

    Full Text Available Multisensors (LiDAR/IMU/CAMERA integrated Simultaneous Location and Mapping (SLAM technology for navigation and mobile mapping in a GNSS-denied environment, such as indoor areas, dense forests, or urban canyons, becomes a promising solution. An online (real-time version of such system can extremely extend its applications, especially for indoor mobile mapping. However, the real-time response issue of multisensors is a big challenge for an online SLAM system, due to the different sampling frequencies and processing time of different algorithms. In this paper, an online Extended Kalman Filter (EKF integrated algorithm of LiDAR scan matching and IMU mechanization for Unmanned Ground Vehicle (UGV indoor navigation system is introduced. Since LiDAR scan matching is considerably more time consuming than the IMU mechanism, the real-time synchronous issue is solved via a one-step-error-state-transition method in EKF. Stationary and dynamic field tests had been performed using a UGV platform along typical corridor of office building. Compared to the traditional sequential postprocessed EKF algorithm, the proposed method can significantly mitigate the time delay of navigation outputs under the premise of guaranteeing the positioning accuracy, which can be used as an online navigation solution for indoor mobile mapping.

  15. Low Cost Multisensor Kinematic Positioning and Navigation System with Linux/RTAI

    Directory of Open Access Journals (Sweden)

    Baoxin Hu

    2012-09-01

    Full Text Available Despite its popularity, the development of an embedded real-time multisensor kinematic positioning and navigation system discourages many researchers and developers due to its complicated hardware environment setup and time consuming device driver development. To address these issues, this paper proposed a multisensor kinematic positioning and navigation system built on Linux with Real Time Application Interface (RTAI, which can be constructed in a fast and economical manner upon popular hardware platforms. The authors designed, developed, evaluated and validated the application of Linux/RTAI in the proposed system for the integration of the low cost MEMS IMU and OEM GPS sensors. The developed system with Linux/RTAI as the core of a direct geo-referencing system provides not only an excellent hard real-time performance but also the conveniences for sensor hardware integration and real-time software development. A software framework is proposed in this paper for a universal kinematic positioning and navigation system with loosely-coupled integration architecture. In addition, general strategies of sensor time synchronization in a multisensor system are also discussed. The success of the loosely-coupled GPS-aided inertial navigation Kalman filter is represented via post-processed solutions from road tests.

  16. Magnetic, Acceleration Fields and Gyroscope Quaternion (MAGYQ-Based Attitude Estimation with Smartphone Sensors for Indoor Pedestrian Navigation

    Directory of Open Access Journals (Sweden)

    Valérie Renaudin

    2014-12-01

    Full Text Available The dependence of proposed pedestrian navigation solutions on a dedicated infrastructure is a limiting factor to the deployment of location based services. Consequently self-contained Pedestrian Dead-Reckoning (PDR approaches are gaining interest for autonomous navigation. Even if the quality of low cost inertial sensors and magnetometers has strongly improved, processing noisy sensor signals combined with high hand dynamics remains a challenge. Estimating accurate attitude angles for achieving long term positioning accuracy is targeted in this work. A new Magnetic, Acceleration fields and GYroscope Quaternion (MAGYQ-based attitude angles estimation filter is proposed and demonstrated with handheld sensors. It benefits from a gyroscope signal modelling in the quaternion set and two new opportunistic updates: magnetic angular rate update (MARU and acceleration gradient update (AGU. MAGYQ filter performances are assessed indoors, outdoors, with dynamic and static motion conditions. The heading error, using only the inertial solution, is found to be less than 10° after 1.5 km walking. The performance is also evaluated in the positioning domain with trajectories computed following a PDR strategy.

  17. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation.

    Science.gov (United States)

    Nitti, Davide O; Bovenga, Fabio; Chiaradia, Maria T; Greco, Mario; Pinelli, Gianpaolo

    2015-07-28

    This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  18. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation

    Directory of Open Access Journals (Sweden)

    Davide O. Nitti

    2015-07-01

    Full Text Available This study explores the potential of Synthetic Aperture Radar (SAR to aid Unmanned Aerial Vehicle (UAV navigation when Inertial Navigation System (INS measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE UAV class, which permits heavy and wide payloads (as required by SAR and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM. A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  19. Camera navigation and tissue manipulation : Are these laparoscopic skills related?

    NARCIS (Netherlands)

    Buzink, S.N.; Botden, S.M.B.I.; Heemskerk, J.; Goossens, R.H.M.; De Ridder, H.; Jakimowicz, J.J.

    2009-01-01

    Background: It is a tacit assumption that clinically based expertise in laparoscopic tissue manipulation entails skilfulness in angled laparoscope navigation. The main objective of this study was to investigate the relation between these skills. To this end, face and construct validity had to be

  20. Quad Rotorcraft Control Vision-Based Hovering and Navigation

    CERN Document Server

    García Carrillo, Luis Rodolfo; Lozano, Rogelio; Pégard, Claude

    2013-01-01

    Quad-Rotor Control develops original control methods for the navigation and hovering flight of an autonomous mini-quad-rotor robotic helicopter. These methods use an imaging system and a combination of inertial and altitude sensors to localize and guide the movement of the unmanned aerial vehicle relative to its immediate environment. The history, classification and applications of UAVs are introduced, followed by a description of modelling techniques for quad-rotors and the experimental platform itself. A control strategy for the improvement of attitude stabilization in quad-rotors is then proposed and tested in real-time experiments. The strategy, based on the use of low-cost components and with experimentally-established robustness, avoids drift in the UAV’s angular position by the addition of an internal control loop to each electronic speed controller ensuring that, during hovering flight, all four motors turn at almost the same speed. The quad-rotor’s Euler angles being very close to the origin, oth...

  1. An IMM-Aided ZUPT Methodology for an INS/DVL Integrated Navigation System.

    Science.gov (United States)

    Yao, Yiqing; Xu, Xiaosu; Xu, Xiang

    2017-09-05

    Inertial navigation system (INS)/Doppler velocity log (DVL) integration is the most common navigation solution for underwater vehicles. Due to the complex underwater environment, the velocity information provided by DVL always contains some errors. To improve navigation accuracy, zero velocity update (ZUPT) technology is considered, which is an effective algorithm for land vehicles to mitigate the navigation error during the pure INS mode. However, in contrast to ground vehicles, the ZUPT solution cannot be used directly for underwater vehicles because of the existence of the water current. In order to leverage the strengths of the ZUPT method and the INS/DVL solution, an interactive multiple model (IMM)-aided ZUPT methodology for the INS/DVL-integrated underwater navigation system is proposed. Both the INS/DVL and INS/ZUPT models are constructed and operated in parallel, with weights calculated according to their innovations and innovation covariance matrices. Simulations are conducted to evaluate the proposed algorithm. The results indicate that the IMM-aided ZUPT solution outperforms both the INS/DVL solution and the INS/ZUPT solution in the underwater environment, which can properly distinguish between the ZUPT and non-ZUPT conditions. In addition, during DVL outage, the effectiveness of the proposed algorithm is also verified.

  2. Inertial rotation measurement with atomic spins: From angular momentum conservation to quantum phase theory

    Science.gov (United States)

    Zhang, C.; Yuan, H.; Tang, Z.; Quan, W.; Fang, J. C.

    2016-12-01

    Rotation measurement in an inertial frame is an important technology for modern advanced navigation systems and fundamental physics research. Inertial rotation measurement with atomic spin has demonstrated potential in both high-precision applications and small-volume low-cost devices. After rapid development in the last few decades, atomic spin gyroscopes are considered a promising competitor to current conventional gyroscopes—from rate-grade to strategic-grade applications. Although it has been more than a century since the discovery of the relationship between atomic spin and mechanical rotation by Einstein [Naturwissenschaften, 3(19) (1915)], research on the coupling between spin and rotation is still a focus point. The semi-classical Larmor precession model is usually adopted to describe atomic spin gyroscope measurement principles. More recently, the geometric phase theory has provided a different view of the rotation measurement mechanism via atomic spin. The theory has been used to describe a gyroscope based on the nuclear spin ensembles in diamond. A comprehensive understanding of inertial rotation measurement principles based on atomic spin would be helpful for future applications. This work reviews different atomic spin gyroscopes and their rotation measurement principles with a historical overlook. In addition, the spin-rotation coupling mechanism in the context of the quantum phase theory is presented. The geometric phase is assumed to be the origin of the measurable rotation signal from atomic spins. In conclusion, with a complete understanding of inertial rotation measurements using atomic spin and advances in techniques, wide application of high-performance atomic spin gyroscopes is expected in the near future.

  3. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.

    Science.gov (United States)

    Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing

    2016-07-26

    This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches.

  4. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems

    Directory of Open Access Journals (Sweden)

    Chien-Hao Tseng

    2016-07-01

    Full Text Available This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF and fuzzy logic adaptive system (FLAS for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF, unscented Kalman filter (UKF, and CKF approaches.

  5. Inertial Oscillations and the Galilean Transformation

    Science.gov (United States)

    Korotaev, G. K.

    2018-03-01

    This paper presents a general solution of shallow-water equations on the f-plane. The solution describes the generation of inertial oscillations by wind-pulse forcing over the background of currents arbitrarily changing in time and space in a homogeneous fluid. It is shown that the existence of such a complete solution of shallow-water equations on the f-plane is related to their invariance with respect to the generalized Galilean transformations. Examples of velocity hodographs of inertial oscillations developing over the background of a narrow jet are presented which explain the diversity in their forms.

  6. Inertial fusion: strategy and economic potential

    International Nuclear Information System (INIS)

    Nuckolls, J.H.

    1983-01-01

    Inertial fusion must demonstrate that the high target gains required for practical fusion energy can be achieved with driver energies not larger than a few megajoules. Before a multi-megajoule scale driver is constructed, inertial fusion must provide convincing experimental evidence that the required high target gains are feasible. This will be the principal objective of the NOVA laser experiments. Implosions will be conducted with scaled targets which are nearly hydrodynamically equivalent to the high gain target implosions. Experiments which demonstrate high target gains will be conducted in the early nineties when multi-megajoule drivers become available. Efficient drivers will also be demonstrated by this time period. Magnetic fusion may demonstrate high Q at about the same time as inertial fusion demonstrates high gain. Beyond demonstration of high performance fusion, economic considerations will predominate. Fusion energy will achieve full commercial success when it becomes cheaper than fission and coal. Analysis of the ultimate economic potential of inertial fusion suggests its costs may be reduced to half those of fission and coal. Relative cost escalation would increase this advantage. Fusions potential economic advantage derives from two fundamental properties: negligible fuel costs and high quality energy (which makes possible more efficient generation of electricity)

  7. Flight evaluations of approach/landing navigation sensor systems. MLS to kohokei hiko jikken. ; 1990 nendo no jikken gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    Flight test results of such navigation sensor systems as MLS (microwave landing system), GPS(global positioning system) and INS (inertial navigation system) on the Dornier-228 research aircraft in 1990 were reported, which tests have being promoted by National Aerospace Laboratory (NAL), Japan to develop unmanned approach/landing (A/L) navigation sensor systems for the future spaceplane HOPE. The measured data corresponding to a WGS84 (world geodetic system 1984) navigation coordinate system were evaluated, and the reference orbit was also prepared by laser tracker analysis. The navigation sensor systems such as MLS were evaluated on the basis of CMN (control motion noise) or PFE (path following error), and preliminary calculation was also conducted for a GPS-INS hybrid system. As experimental results, several data were gathered for each sensor system resulting in possible data comparison between the sensor systems, and the feasibility of the GPS-INS hybrid system was also confirmed. 35 refs., 49 figs., 22 tabs.

  8. Relative expressive power of navigational querying on graphs using transitive closure

    OpenAIRE

    Surinx, Dimitri; Fletcher, George H. L.; Gyssens, Marc; Leinders, Dirk; Van den Bussche, Jan; Van Gucht, Dirk; Vansummeren, Stijn; Wu, Yuqing

    2015-01-01

    Motivated by both established and new applications, we study navigational query languages for graphs (binary relations). The simplest language has only the two operators union and composition, together with the identity relation. We make more powerful languages by adding any of the following operators: intersection; set difference; projection; coprojection; converse; transitive closure; and the diversity relation. All these operators map binary relations to binary relations. We compare the ex...

  9. Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Thio, Francis Y.C.

    2008-01-01

    An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

  10. An Inertial Sensor-Based Method for Estimating the Athlete's Relative Joint Center Positions and Center of Mass Kinematics in Alpine Ski Racing

    Directory of Open Access Journals (Sweden)

    Benedikt Fasel

    2017-11-01

    Full Text Available For the purpose of gaining a deeper understanding of the relationship between external training load and health in competitive alpine skiing, an accurate and precise estimation of the athlete's kinematics is an essential methodological prerequisite. This study proposes an inertial sensor-based method to estimate the athlete's relative joint center positions and center of mass (CoM kinematics in alpine skiing. Eleven inertial sensors were fixed to the lower and upper limbs, trunk, and head. The relative positions of the ankle, knee, hip, shoulder, elbow, and wrist joint centers, as well as the athlete's CoM kinematics were validated against a marker-based optoelectronic motion capture system during indoor carpet skiing. For all joints centers analyzed, position accuracy (mean error was below 110 mm and precision (error standard deviation was below 30 mm. CoM position accuracy and precision were 25.7 and 6.7 mm, respectively. Both the accuracy and precision of the system to estimate the distance between the ankle of the outside leg and CoM (measure quantifying the skier's overall vertical motion were found to be below 11 mm. Some poorer accuracy and precision values (below 77 mm were observed for the athlete's fore-aft position (i.e., the projection of the outer ankle-CoM vector onto the line corresponding to the projection of ski's longitudinal axis on the snow surface. In addition, the system was found to be sensitive enough to distinguish between different types of turns (wide/narrow. Thus, the method proposed in this paper may also provide a useful, pervasive way to monitor and control adverse external loading patterns that occur during regular on-snow training. Moreover, as demonstrated earlier, such an approach might have a certain potential to quantify competition time, movement repetitions and/or the accelerations acting on the different segments of the human body. However, prior to getting feasible for applications in daily training

  11. An Inertial Sensor-Based Method for Estimating the Athlete's Relative Joint Center Positions and Center of Mass Kinematics in Alpine Ski Racing.

    Science.gov (United States)

    Fasel, Benedikt; Spörri, Jörg; Schütz, Pascal; Lorenzetti, Silvio; Aminian, Kamiar

    2017-01-01

    For the purpose of gaining a deeper understanding of the relationship between external training load and health in competitive alpine skiing, an accurate and precise estimation of the athlete's kinematics is an essential methodological prerequisite. This study proposes an inertial sensor-based method to estimate the athlete's relative joint center positions and center of mass (CoM) kinematics in alpine skiing. Eleven inertial sensors were fixed to the lower and upper limbs, trunk, and head. The relative positions of the ankle, knee, hip, shoulder, elbow, and wrist joint centers, as well as the athlete's CoM kinematics were validated against a marker-based optoelectronic motion capture system during indoor carpet skiing. For all joints centers analyzed, position accuracy (mean error) was below 110 mm and precision (error standard deviation) was below 30 mm. CoM position accuracy and precision were 25.7 and 6.7 mm, respectively. Both the accuracy and precision of the system to estimate the distance between the ankle of the outside leg and CoM (measure quantifying the skier's overall vertical motion) were found to be below 11 mm. Some poorer accuracy and precision values (below 77 mm) were observed for the athlete's fore-aft position (i.e., the projection of the outer ankle-CoM vector onto the line corresponding to the projection of ski's longitudinal axis on the snow surface). In addition, the system was found to be sensitive enough to distinguish between different types of turns (wide/narrow). Thus, the method proposed in this paper may also provide a useful, pervasive way to monitor and control adverse external loading patterns that occur during regular on-snow training. Moreover, as demonstrated earlier, such an approach might have a certain potential to quantify competition time, movement repetitions and/or the accelerations acting on the different segments of the human body. However, prior to getting feasible for applications in daily training, future studies

  12. Inertial-particle dynamics in turbulent flows: caustics, concentration fluctuations and random uncorrelated motion

    International Nuclear Information System (INIS)

    Gustavsson, K; Mehlig, B; Meneguz, E; Reeks, M

    2012-01-01

    We have performed numerical simulations of inertial particles in random model flows in the white-noise limit (at zero Kubo number, Ku = 0) and at finite Kubo numbers. Our results for the moments of relative inertial-particle velocities are in good agreement with recent theoretical results (Gustavsson and Mehlig 2011a) based on the formation of phase-space singularities in the inertial-particle dynamics (caustics). We discuss the relation between three recent approaches describing the dynamics and spatial distribution of inertial particles suspended in turbulent flows: caustic formation, real-space singularities of the deformation tensor and random uncorrelated motion. We discuss how the phase- and real-space singularities are related. Their formation is well understood in terms of a local theory. We summarise the implications for random uncorrelated motion. (paper)

  13. Target relative navigation results from hardware-in-the-loop tests using the sinplex navigation system

    NARCIS (Netherlands)

    Steffes, S.; Dumke, M.; Heise, D.; Sagliano, M.; Samaan, M.; Theil, S.; Boslooper, E.C.; Oosterling, J.A.J.; Schulte, J.; Skaborn, D.; Söderholm, S.; Conticello, S.; Esposito, M.; Yanson, Y.; Monna, B.; Stelwagen, F.; Visee, R.

    2014-01-01

    The goal of the SINPLEX project is to develop an innovative solution to significantly reduce the mass of the navigation subsystem for exploration missions which include landing and/or rendezvous and capture phases. The system mass is reduced while still maintaining good navigation performance as

  14. Inertial Measurement Units-Based Probe Vehicles: Automatic Calibration, Trajectory Estimation, and Context Detection

    KAUST Repository

    Mousa, Mustafa

    2017-12-06

    Most probe vehicle data is generated using satellite navigation systems, such as the Global Positioning System (GPS), Globalnaya navigatsionnaya sputnikovaya Sistema (GLONASS), or Galileo systems. However, because of their high cost, relatively high position uncertainty in cities, and low sampling rate, a large quantity of satellite positioning data is required to estimate traffic conditions accurately. To address this issue, we introduce a new type of traffic monitoring system based on inexpensive inertial measurement units (IMUs) as probe sensors. IMUs as traffic probes pose unique challenges in that they need to be precisely calibrated, do not generate absolute position measurements, and their position estimates are subject to accumulating errors. In this paper, we address each of these challenges and demonstrate that the IMUs can reliably be used as traffic probes. After discussing the sensing technique, we present an implementation of this system using a custom-designed hardware platform, and validate the system with experimental data.

  15. Inertial Measurement Units-Based Probe Vehicles: Automatic Calibration, Trajectory Estimation, and Context Detection

    KAUST Repository

    Mousa, Mustafa; Sharma, Kapil; Claudel, Christian G.

    2017-01-01

    Most probe vehicle data is generated using satellite navigation systems, such as the Global Positioning System (GPS), Globalnaya navigatsionnaya sputnikovaya Sistema (GLONASS), or Galileo systems. However, because of their high cost, relatively high position uncertainty in cities, and low sampling rate, a large quantity of satellite positioning data is required to estimate traffic conditions accurately. To address this issue, we introduce a new type of traffic monitoring system based on inexpensive inertial measurement units (IMUs) as probe sensors. IMUs as traffic probes pose unique challenges in that they need to be precisely calibrated, do not generate absolute position measurements, and their position estimates are subject to accumulating errors. In this paper, we address each of these challenges and demonstrate that the IMUs can reliably be used as traffic probes. After discussing the sensing technique, we present an implementation of this system using a custom-designed hardware platform, and validate the system with experimental data.

  16. An Implementation of Error Minimization Position Estimate in Wireless Inertial Measurement Unit using Modification ZUPT

    Directory of Open Access Journals (Sweden)

    Adytia Darmawan

    2016-12-01

    Full Text Available Position estimation using WIMU (Wireless Inertial Measurement Unit is one of emerging technology in the field of indoor positioning systems. WIMU can detect movement and does not depend on GPS signals. The position is then estimated using a modified ZUPT (Zero Velocity Update method that was using Filter Magnitude Acceleration (FMA, Variance Magnitude Acceleration (VMA and Angular Rate (AR estimation. Performance of this method was justified on a six-legged robot navigation system. Experimental result shows that the combination of VMA-AR gives the best position estimation.

  17. ATON (Autonomous Terrain-based Optical Navigation) for exploration missions: recent flight test results

    Science.gov (United States)

    Theil, S.; Ammann, N.; Andert, F.; Franz, T.; Krüger, H.; Lehner, H.; Lingenauber, M.; Lüdtke, D.; Maass, B.; Paproth, C.; Wohlfeil, J.

    2018-03-01

    Since 2010 the German Aerospace Center is working on the project Autonomous Terrain-based Optical Navigation (ATON). Its objective is the development of technologies which allow autonomous navigation of spacecraft in orbit around and during landing on celestial bodies like the Moon, planets, asteroids and comets. The project developed different image processing techniques and optical navigation methods as well as sensor data fusion. The setup—which is applicable to many exploration missions—consists of an inertial measurement unit, a laser altimeter, a star tracker and one or multiple navigation cameras. In the past years, several milestones have been achieved. It started with the setup of a simulation environment including the detailed simulation of camera images. This was continued by hardware-in-the-loop tests in the Testbed for Robotic Optical Navigation (TRON) where images were generated by real cameras in a simulated downscaled lunar landing scene. Data were recorded in helicopter flight tests and post-processed in real-time to increase maturity of the algorithms and to optimize the software. Recently, two more milestones have been achieved. In late 2016, the whole navigation system setup was flying on an unmanned helicopter while processing all sensor information onboard in real time. For the latest milestone the navigation system was tested in closed-loop on the unmanned helicopter. For that purpose the ATON navigation system provided the navigation state for the guidance and control of the unmanned helicopter replacing the GPS-based standard navigation system. The paper will give an introduction to the ATON project and its concept. The methods and algorithms of ATON are briefly described. The flight test results of the latest two milestones are presented and discussed.

  18. Theory of gravitational-inertial field of universe. 1

    International Nuclear Information System (INIS)

    Davtyan, O.K.

    1978-01-01

    A generalization of the real world tensor by the introduction of a inertial field tensor is proposed. On the basis of variational equations a system of more general covariant equations of the gravitational-inertial field is obtained. In the Einstein approximation these equations reduce to the field equations of Einstein. The solution of fundamental problems in the general theory of relativity by means of the new equations gives the same results as the solution by means of Einstein's equations. However, application of these equations to the cosmologic problem gives a result different from that obtained by Friedmann's theory. In particular, the solution gives the Hubble law as the law of motion of a free body in the inertial field - in contrast to Galileo-Newton's law. (author)

  19. Inertial confinement fusion: present status and future potential

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1984-01-01

    Power from inertial confinement fusion holds much promise for society. This paper points out many of the benefits relative to combustion of hydrocarbon fuels and fission power. Potential problems are also identified and put in perspective. The progress toward achieving inertial fusion power is described and results of recent work at the Lawrence Livermore National Laboratory are presented. Key phenomenological uncertainties are described and experimental goals for the Nova laser system are given. Several ICF reactor designs are discussed

  20. Image Dependent Relative Formation Navigation for Autonomous Aerial Refueling

    Science.gov (United States)

    2011-03-01

    and local variations of the Earth’s surface make a mathematical model difficult to create and use. The definition of an equipotential surface ...controlled with flight control surfaces attached to it. To refuel using this method, the receiver pilot flies the aircraft to within a defined refueling...I-frame would unnecessarily complicate aircraft navigation that, by definition, is limited to altitudes relatively close to the surface of the Earth

  1. Drift Reduction in Pedestrian Navigation System by Exploiting Motion Constraints and Magnetic Field

    Directory of Open Access Journals (Sweden)

    Muhammad Ilyas

    2016-09-01

    Full Text Available Pedestrian navigation systems (PNS using foot-mounted MEMS inertial sensors use zero-velocity updates (ZUPTs to reduce drift in navigation solutions and estimate inertial sensor errors. However, it is well known that ZUPTs cannot reduce all errors, especially as heading error is not observable. Hence, the position estimates tend to drift and even cyclic ZUPTs are applied in updated steps of the Extended Kalman Filter (EKF. This urges the use of other motion constraints for pedestrian gait and any other valuable heading reduction information that is available. In this paper, we exploit two more motion constraints scenarios of pedestrian gait: (1 walking along straight paths; (2 standing still for a long time. It is observed that these motion constraints (called “virtual sensor”, though considerably reducing drift in PNS, still need an absolute heading reference. One common absolute heading estimation sensor is the magnetometer, which senses the Earth’s magnetic field and, hence, the true heading angle can be calculated. However, magnetometers are susceptible to magnetic distortions, especially in indoor environments. In this work, an algorithm, called magnetic anomaly detection (MAD and compensation is designed by incorporating only healthy magnetometer data in the EKF updating step, to reduce drift in zero-velocity updated INS. Experiments are conducted in GPS-denied and magnetically distorted environments to validate the proposed algorithms.

  2. THE DEVELOPMENT OF NAVIGATION SYSTEMS IN CIVIL AVIATION

    Directory of Open Access Journals (Sweden)

    Anastasiya Sergeyevna Stepanenko

    2017-01-01

    Full Text Available The article describes the history of navigation systems formation, such as "Cicada" system, which at that time could compete with the US "Transit", European, Chinese Beidou navigation system and the Japanese Quasi-Zenit.The detailed information about improving the American GPS system, launched in 1978 and working till now is provided. The characteristics of GPS-III counterpart "Transit", which became the platform for creating such modern globalnavigation systems as GLONASS and GPS. The process of implementation of the GLONASS system in civil aviation, itssegments, functions and features are considered. The stages of GLONASS satellite system orbital grouping formation are analyzed. The author draws the analogy with the American GPS system, the GALILEO system, which has a number of additional advantages, are given. The author remarks the features of the European counterpart of the GALILEO global nav- igation system. One of the goals of this system is to provide a high-precision positioning system, which Europe can rely on regardless of the Russian GLONASS system, the US - GPS and the Chinese Beidou. GALILEO offers a unique global search and rescue function called SAR, with an important feedback function. The peculiarities of Chinese scientists’ navi- gation system, the Beidou satellite system, and the Japanese global Quasi-Zenith Satellite System are described.Global navigation systems development tendencies are considered. The author dwells upon the path to world satel- lite systems globalization, a good example of which is the trend towards GLONASS and Beidou unification. Most attention was paid to the latest development of Russian scientists’ autonomous navigation system SINS 2015, which is a strap-down inertial navigation system and allows you to navigate the aircraft without being connected to a global satellite system. The ways of navigation systems further development in Russia are determined. The two naturally opposite directions are

  3. Properties of gravi-inertial systems of reference

    International Nuclear Information System (INIS)

    Dozmorov, I.M.

    1977-01-01

    A number of papers of the author have been summarized devoted to gravi-inertial systems of reference in which the following problems are solved: a) analogs of inertial systems of reference (ISR), gravi-ISR, have been introduced into the general relativity the ory (GRT); b) using transformations between such ISR as symmetry transformation, obtained by variational methods are values with clear physical sense; c) using the gravi-ISR basis as the zero level of the deformation reading, the theory of elasticity in GRT has been constructed and someof its applications considered. The results are compared with those of other authors

  4. Inertial and interference effects in optical spectroscopy

    International Nuclear Information System (INIS)

    Karstens, W; Smith, D Y

    2015-01-01

    Interference between free-space and material components of the displacement current plays a key role in determining optical properties. This is illustrated by an analogy between the Lorentz optical model and a-c circuits. Phase shifts in material-polarization currents, which are inertial, relative to the non-inertial vacuum-polarization current cause interference in the total displacement current and, hence, variation in E-M wave propagation. If the displacement-current is reversed, forward propagation is inhibited yielding the semimetallic reflectivity exhibited by intrinsic silicon. Complete cancellation involves material currents offsetting free-space currents to form current-loops that correspond to plasmons. (paper)

  5. Principles and issues related to SBS-PCM based self-navigation of lasers on injected pellets

    Directory of Open Access Journals (Sweden)

    Kalal Milan

    2013-11-01

    Full Text Available Current status of recently proposed novel approach to inertial fusion energy technology, where phase conjugating mirrors generated by stimulated Brillouin scattering are employed to take care of automatic self-navigation of every individual laser beam on injected pellets, has been reviewed. This novel technology is of a particular importance to the direct drive schemes of pellets irradiation as assumed, e.g., in HiPER project. If successful also in its full scale realization, such an aiming scheme would greatly reduce the technical challenges of adjusting large and heavy optical elements on each shot in a system with a repetition rate of at least several Hertz. In the gradual step-by-step tuning of this technology, in this paper a close attention has been paid to the unconverted basic harmonic issue with a special Faraday isolator design proposed. However, a practical realization of this component in its simplest form might be somewhat difficult to achieve due to a suitable optical material shortage. Hence, a more elaborate scheme of this isolator which would make its realization much more realistic even for optical materials currently available has been examined and will be presented.

  6. Sensors integration for smartphone navigation: performances and future challenges

    Science.gov (United States)

    Aicardi, I.; Dabove, P.; Lingua, A.; Piras, M.

    2014-08-01

    Nowadays the modern smartphones include several sensors which are usually adopted in geomatic application, as digital camera, GNSS (Global Navigation Satellite System) receivers, inertial platform, RFID and Wi-Fi systems. In this paper the authors would like to testing the performances of internal sensors (Inertial Measurement Unit, IMU) of three modern smartphones (Samsung GalaxyS4, Samsung GalaxyS5 and iPhone4) compared to external mass-market IMU platform in order to verify their accuracy levels, in terms of positioning. Moreover, the Image Based Navigation (IBN) approach is also investigated: this approach can be very useful in hard-urban environment or for indoor positioning, as alternative to GNSS positioning. IBN allows to obtain a sub-metrical accuracy, but a special database of georeferenced images (Image DataBase, IDB) is needed, moreover it is necessary to use dedicated algorithm to resizing the images which are collected by smartphone, in order to share it with the server where is stored the IDB. Moreover, it is necessary to characterize smartphone camera lens in terms of focal length and lens distortions. The authors have developed an innovative method with respect to those available today, which has been tested in a covered area, adopting a special support where all sensors under testing have been installed. Geomatic instrument have been used to define the reference trajectory, with purpose to compare this one, with the path obtained with IBN solution. First results leads to have an horizontal and vertical accuracies better than 60 cm, respect to the reference trajectories. IBN method, sensors, test and result will be described in the paper.

  7. Inertial fusion experiments and theory

    International Nuclear Information System (INIS)

    Mima, Kunioki; Tikhonchuk, V.; Perlado, M.

    2011-01-01

    Inertial fusion research is approaching a critical milestone, namely the demonstration of ignition and burn. The world's largest high-power laser, the National Ignition Facility (NIF), is under operation at the Lawrence Livermore National Laboratory (LLNL), in the USA. Another ignition machine, Laser Mega Joule (LMJ), is under construction at the CEA/CESTA research centre in France. In relation to the National Ignition Campaign (NIC) at LLNL, worldwide studies on inertial fusion applications to energy production are growing. Advanced ignition schemes such as fast ignition, shock ignition and impact ignition, and the inertial fusion energy (IFE) technology are under development. In particular, the Fast Ignition Realization Experiment (FIREX) at the Institute of Laser Engineering (ILE), Osaka University, and the OMEGA-EP project at the Laboratory for Laser Energetics (LLE), University Rochester, and the HiPER project in the European Union (EU) for fast ignition and shock ignition are progressing. The IFE technology research and development are advanced in the frameworks of the HiPER project in EU and the LIFE project in the USA. Laser technology developments in the USA, EU, Japan and Korea were major highlights in the IAEA FEC 2010. In this paper, the status and prospects of IFE science and technology are described.

  8. Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths

    Directory of Open Access Journals (Sweden)

    Liv de Vries

    2017-09-01

    Full Text Available Brain structure and function are tightly correlated across all animals. While these relations are ultimately manifestations of differently wired neurons, many changes in neural circuit architecture lead to larger-scale alterations visible already at the level of brain regions. Locating such differences has served as a beacon for identifying brain areas that are strongly associated with the ecological needs of a species—thus guiding the way towards more detailed investigations of how brains underlie species-specific behaviors. Particularly in relation to sensory requirements, volume-differences in neural tissue between closely related species reflect evolutionary investments that correspond to sensory abilities. Likewise, memory-demands imposed by lifestyle have revealed similar adaptations in regions associated with learning. Whether this is also the case for species that differ in their navigational strategy is currently unknown. While the brain regions associated with navigational control in insects have been identified (central complex (CX, lateral complex (LX and anterior optic tubercles (AOTU, it remains unknown in what way evolutionary investments have been made to accommodate particularly demanding navigational strategies. We have thus generated average-shape atlases of navigation-related brain regions of a migratory and a non-migratory noctuid moth and used volumetric analysis to identify differences. We further compared the results to identical data from Monarch butterflies. Whereas we found differences in the size of the nodular unit of the AOTU, the LX and the protocerebral bridge (PB between the two moths, these did not unambiguously reflect migratory behavior across all three species. We conclude that navigational strategy, at least in the case of long-distance migration in lepidopteran insects, is not easily deductible from overall neuropil anatomy. This suggests that the adaptations needed to ensure successful migratory behavior

  9. Orion Exploration Flight Test-l (EFT -1) Absolute Navigation Design

    Science.gov (United States)

    Sud, Jastesh; Gay, Robert; Holt, Greg; Zanetti, Renato

    2014-01-01

    Scheduled to launch in September 2014 atop a Delta IV Heavy from the Kennedy Space Center, the Orion Multi-Purpose-Crew-Vehicle (MPCV's) maiden flight dubbed "Exploration Flight Test -1" (EFT-1) intends to stress the system by placing the uncrewed vehicle on a high-energy parabolic trajectory replicating conditions similar to those that would be experienced when returning from an asteroid or a lunar mission. Unique challenges associated with designing the navigation system for EFT-1 are presented in the narrative with an emphasis on how redundancy and robustness influenced the architecture. Two Inertial Measurement Units (IMUs), one GPS receiver and three barometric altimeters (BALTs) comprise the navigation sensor suite. The sensor data is multiplexed using conventional integration techniques and the state estimate is refined by the GPS pseudorange and deltarange measurements in an Extended Kalman Filter (EKF) that employs the UDUT decomposition approach. The design is substantiated by simulation results to show the expected performance.

  10. Near-inertial motions in the DeSoto Canyon during Hurricane Georges

    Science.gov (United States)

    Jordi, Antoni; Wang, Dong-Ping; Hamilton, Peter

    2016-09-01

    Hurricane Georges passed directly over an array of 13 moorings deployed in the DeSoto Canyon in the northern Gulf of Mexico on 27-28 September 1998. Current velocity data from the mooring array were analyzed together with a primitive-equation model simulation with realistic hurricane forcing, to characterize the generation and propagation of the hurricane-generated near-inertial waves. The model successfully reproduces the observed mean (sub-inertial) and near-inertial motions. The upper ocean response is strongly impacted by the canyon 'wall': a strong jet is formed along the slope, and the near-inertial motions on the shelf are rapidly suppressed. The model results moreover suggest that strong near-inertial waves in the mixed layer are mostly trapped in an energy flux recirculating gyre around the canyon. This gyre retains the near-inertial energy in the canyon region and enhances the transfer of near-inertial energy below the mixed layer. Additional simulations with idealized topographies show that the presence of a steep slope rather than the canyon is fundamental for the generation of this recirculating gyre. The near-inertial wave energy budget shows that during the study period the wind generated an input of 6.79 × 10-2 Wm-2 of which about 1/3, or 2.43 × 10-2 Wm-2, was transferred below the mixed layer. The horizontal energy flux into and out of the canyon region, in contrast, was relatively weak.

  11. A Smartphone Inertial Balance

    Science.gov (United States)

    Barrera-Garrido, Azael

    2017-01-01

    In order to measure the mass of an object in the absence of gravity, one useful tool for many decades has been the inertial balance. One of the simplest forms of inertial balance is made by two mass holders or pans joined together with two stiff metal plates, which act as springs.

  12. Simulating Navigation with Virtual 3d Geovisualizations - a Focus on Memory Related Factors

    Science.gov (United States)

    Lokka, I.; Çöltekin, A.

    2016-06-01

    The use of virtual environments (VE) for navigation-related studies, such as spatial cognition and path retrieval has been widely adopted in cognitive psychology and related fields. What motivates the use of VEs for such studies is that, as opposed to real-world, we can control for the confounding variables in simulated VEs. When simulating a geographic environment as a virtual world with the intention to train navigational memory in humans, an effective and efficient visual design is important to facilitate the amount of recall. However, it is not yet clear what amount of information should be included in such visual designs intended to facilitate remembering: there can be too little or too much of it. Besides the amount of information or level of detail, the types of visual features (`elements' in a visual scene) that should be included in the representations to create memorable scenes and paths must be defined. We analyzed the literature in cognitive psychology, geovisualization and information visualization, and identified the key factors for studying and evaluating geovisualization designs for their function to support and strengthen human navigational memory. The key factors we identified are: i) the individual abilities and age of the users, ii) the level of realism (LOR) included in the representations and iii) the context in which the navigation is performed, thus specific tasks within a case scenario. Here we present a concise literature review and our conceptual development for follow-up experiments.

  13. A Pedestrian Dead Reckoning System Integrating Low-Cost MEMS Inertial Sensors and GPS Receiver

    Directory of Open Access Journals (Sweden)

    Jin-feng Li

    2014-04-01

    Full Text Available The body-mounted inertial systems for pedestrian navigation do not require any preinstalled facilities and can run autonomously. The advantages over other technologies make it especially attractive for the applications such as first responders, military and consumer markets. The hardware platform integrating the low-cost, low-power and small-size MEMS (micro-electro-mechanical systems inertial sensors and GPS (global positioning system receiver is proposed. When the satellite signals are available, the location of the pedestrian is directly obtained from the GPS receiver. The inertial sensors are the complement of the GPS receiver in places where the GPS signals are not available, such as indoors, urban canyons and places under dense foliages. The height tracking is achieved by the barometer. The proposed PDR (pedestrian dead reckoning algorithm is real-timely implemented in the platform. The simple but effective step detection and step length estimation method are realized to reduce the computation and memory requirements on the microprocessor. A complementary filter is proposed to fuse the data from the accelerometer, gyroscope and digital compass for decreasing the heading error, which is the main error source in positioning. The reliability and accuracy of the proposed system is verified by field pedestrian walking tests in outdoors and indoors. The positioning error is less than 4% of the total traveled distance. The results indicate that the pedestrian dead reckoning system is able to provide satisfactory tracking performance.

  14. Indoor integrated navigation and synchronous data acquisition method for Android smartphone

    Science.gov (United States)

    Hu, Chunsheng; Wei, Wenjian; Qin, Shiqiao; Wang, Xingshu; Habib, Ayman; Wang, Ruisheng

    2015-08-01

    Smartphones are widely used at present. Most smartphones have cameras and kinds of sensors, such as gyroscope, accelerometer and magnet meter. Indoor navigation based on smartphone is very important and valuable. According to the features of the smartphone and indoor navigation, a new indoor integrated navigation method is proposed, which uses MEMS (Micro-Electro-Mechanical Systems) IMU (Inertial Measurement Unit), camera and magnet meter of smartphone. The proposed navigation method mainly involves data acquisition, camera calibration, image measurement, IMU calibration, initial alignment, strapdown integral, zero velocity update and integrated navigation. Synchronous data acquisition of the sensors (gyroscope, accelerometer and magnet meter) and the camera is the base of the indoor navigation on the smartphone. A camera data acquisition method is introduced, which uses the camera class of Android to record images and time of smartphone camera. Two kinds of sensor data acquisition methods are introduced and compared. The first method records sensor data and time with the SensorManager of Android. The second method realizes open, close, data receiving and saving functions in C language, and calls the sensor functions in Java language with JNI interface. A data acquisition software is developed with JDK (Java Development Kit), Android ADT (Android Development Tools) and NDK (Native Development Kit). The software can record camera data, sensor data and time at the same time. Data acquisition experiments have been done with the developed software and Sumsang Note 2 smartphone. The experimental results show that the first method of sensor data acquisition is convenient but lost the sensor data sometimes, the second method is much better in real-time performance and much less in data losing. A checkerboard image is recorded, and the corner points of the checkerboard are detected with the Harris method. The sensor data of gyroscope, accelerometer and magnet meter have

  15. Prospect for inertial fusion energy

    International Nuclear Information System (INIS)

    Yamanaka, C.

    1994-01-01

    This paper presents recent inertial fusion experiments at Osaka. The inertial fusion energy reactor used for these experiments was designed according to some principles based on environmental, social and safety considerations. (TEC). 1 fig., 1 ref

  16. Field Programmable Gate Array Based Parallel Strapdown Algorithm Design for Strapdown Inertial Navigation Systems

    Directory of Open Access Journals (Sweden)

    Long-Hua Ma

    2011-08-01

    Full Text Available A new generalized optimum strapdown algorithm with coning and sculling compensation is presented, in which the position, velocity and attitude updating operations are carried out based on the single-speed structure in which all computations are executed at a single updating rate that is sufficiently high to accurately account for high frequency angular rate and acceleration rectification effects. Different from existing algorithms, the updating rates of the coning and sculling compensations are unrelated with the number of the gyro incremental angle samples and the number of the accelerometer incremental velocity samples. When the output sampling rate of inertial sensors remains constant, this algorithm allows increasing the updating rate of the coning and sculling compensation, yet with more numbers of gyro incremental angle and accelerometer incremental velocity in order to improve the accuracy of system. Then, in order to implement the new strapdown algorithm in a single FPGA chip, the parallelization of the algorithm is designed and its computational complexity is analyzed. The performance of the proposed parallel strapdown algorithm is tested on the Xilinx ISE 12.3 software platform and the FPGA device XC6VLX550T hardware platform on the basis of some fighter data. It is shown that this parallel strapdown algorithm on the FPGA platform can greatly decrease the execution time of algorithm to meet the real-time and high precision requirements of system on the high dynamic environment, relative to the existing implemented on the DSP platform.

  17. A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model: Measurement of Earth's dragging of inertial frames.

    Science.gov (United States)

    Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C; Koenig, Rolf; Ries, John; Gurzadyan, Vahe; Matzner, Richard; Penrose, Roger; Sindoni, Giampiero; Paris, Claudio; Khachatryan, Harutyun; Mirzoyan, Sergey

    2016-01-01

    We present a test of general relativity, the measurement of the Earth's dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satellites together with the Earth gravity field model GGM05S produced by the space geodesy mission GRACE. We measure [Formula: see text], where [Formula: see text] is the Earth's dragging of inertial frames normalized to its general relativity value, 0.002 is the 1-sigma formal error and 0.05 is our preliminary estimate of systematic error mainly due to the uncertainties in the Earth gravity model GGM05S. Our result is in agreement with the prediction of general relativity.

  18. Modification of inertial oscillations by the mesoscale eddy field

    Science.gov (United States)

    Elipot, Shane; Lumpkin, Rick; Prieto, GermáN.

    2010-09-01

    The modification of near-surface near-inertial oscillations (NIOs) by the geostrophic vorticity is studied globally from an observational standpoint. Surface drifter are used to estimate NIO characteristics. Despite its spatial resolution limits, altimetry is used to estimate the geostrophic vorticity. Three characteristics of NIOs are considered: the relative frequency shift with respect to the local inertial frequency; the near-inertial variance; and the inverse excess bandwidth, which is interpreted as a decay time scale. The geostrophic mesoscale flow shifts the frequency of NIOs by approximately half its vorticity. Equatorward of 30°N and S, this effect is added to a global pattern of blue shift of NIOs. While the global pattern of near-inertial variance is interpretable in terms of wind forcing, it is also observed that the geostrophic vorticity organizes the near-inertial variance; it is maximum for near zero values of the Laplacian of the vorticity and decreases for nonzero values, albeit not as much for positive as for negative values. Because the Laplacian of vorticity and vorticity are anticorrelated in the altimeter data set, overall, more near-inertial variance is found in anticyclonic vorticity regions than in cyclonic regions. While this is compatible with anticyclones trapping NIOs, the organization of near-inertial variance by the Laplacian of vorticity is also in very good agreement with previous theoretical and numerical predictions. The inverse bandwidth is a decreasing function of the gradient of vorticity, which acts like the gradient of planetary vorticity to increase the decay of NIOs from the ocean surface. Because the altimetry data set captures the largest vorticity gradients in energetic mesoscale regions, it is also observed that NIOs decay faster in large geostrophic eddy kinetic energy regions.

  19. Economic potential of inertial fusion

    International Nuclear Information System (INIS)

    Nuckolls, J.H.

    1984-04-01

    Beyond the achievement of scientific feasibility, the key question for fusion energy is: does it have the economic potential to be significantly cheaper than fission and coal energy. If fusion has this high economic potential then there are compelling commercial and geopolitical incentives to accelerate the pace of the fusion program in the near term, and to install a global fusion energy system in the long term. Without this high economic potential, fusion's success depends on the failure of all alternatives, and there is no real incentive to accelerate the program. If my conjectures on the economic potential of inertial fusion are approximately correct, then inertial fusion energy's ultimate costs may be only half to two-thirds those of advanced fission and coal energy systems. Relative cost escalation is not assumed and could increase this advantage. Both magnetic and inertial approaches to fusion potentially have a two-fold economic advantage which derives from two fundamental properties: negligible fuel costs and high quality energy which makes possible more efficient generation of electricity. The wining approach to fusion may excel in three areas: electrical generating efficiency, minimum material costs, and adaptability to manufacture in automated factories. The winning approach must also rate highly in environmental potential, safety, availability factor, lifetime, small 0 and M costs, and no possibility of utility-disabling accidents

  20. Meta-image navigation augmenters for unmanned aircraft systems (MINA for UAS)

    Science.gov (United States)

    Òªelik, Koray; Somani, Arun K.; Schnaufer, Bernard; Hwang, Patrick Y.; McGraw, Gary A.; Nadke, Jeremy

    2013-05-01

    GPS is a critical sensor for Unmanned Aircraft Systems (UASs) due to its accuracy, global coverage and small hardware footprint, but is subject to denial due to signal blockage or RF interference. When GPS is unavailable, position, velocity and attitude (PVA) performance from other inertial and air data sensors is not sufficient, especially for small UASs. Recently, image-based navigation algorithms have been developed to address GPS outages for UASs, since most of these platforms already include a camera as standard equipage. Performing absolute navigation with real-time aerial images requires georeferenced data, either images or landmarks, as a reference. Georeferenced imagery is readily available today, but requires a large amount of storage, whereas collections of discrete landmarks are compact but must be generated by pre-processing. An alternative, compact source of georeferenced data having large coverage area is open source vector maps from which meta-objects can be extracted for matching against real-time acquired imagery. We have developed a novel, automated approach called MINA (Meta Image Navigation Augmenters), which is a synergy of machine-vision and machine-learning algorithms for map aided navigation. As opposed to existing image map matching algorithms, MINA utilizes publicly available open-source geo-referenced vector map data, such as OpenStreetMap, in conjunction with real-time optical imagery from an on-board, monocular camera to augment the UAS navigation computer when GPS is not available. The MINA approach has been experimentally validated with both actual flight data and flight simulation data and results are presented in the paper.

  1. A State-of-the-Art Survey of Indoor Positioning and Navigation Systems and Technologies

    Directory of Open Access Journals (Sweden)

    Wilson Sakpere

    2017-12-01

    Full Text Available The research and use of positioning and navigation technologies outdoors has seen a steady and exponential growth. Based on this success, there have been attempts to implement these technologies indoors, leading to numerous studies. Most of the algorithms, techniques and technologies used have been implemented outdoors. However, how they fare indoors is different altogether. Thus, several technologies have been proposed and implemented to improve positioning and navigation indoors. Among them are Infrared (IR, Ultrasound, Audible Sound, Magnetic, Optical and Vision, Radio Frequency (RF, Visible Light, Pedestrian Dead Reckoning (PDR/Inertial Navigation System (INS and Hybrid. The RF technologies include Bluetooth, Ultra-wideband (UWB, Wireless Sensor Network (WSN, Wireless Local Area Network (WLAN, Radio-Frequency Identification (RFID and Near Field Communication (NFC. In addition, positioning techniques applied in indoor positioning systems include the signal properties and positioning algorithms. The prevalent signal properties are Angle of Arrival (AOA, Time of Arrival (TOA, Time Difference of Arrival (TDOA and Received Signal Strength Indication (RSSI, while the positioning algorithms are Triangulation, Trilateration, Proximity and Scene Analysis/ Fingerprinting. This paper presents a state-of-the-art survey of indoor positioning and navigation systems and technologies, and their use in various scenarios. It analyses distinct positioning technology metrics such as accuracy, complexity, cost, privacy, scalability and usability. This paper has profound implications for future studies of positioning and navigation.

  2. Inertial fusion energy

    International Nuclear Information System (INIS)

    Decroisette, M.; Andre, M.; Bayer, C.; Juraszek, D.; Le Garrec, B.; Deutsch, C.; Migus, A.

    2005-01-01

    We first recall the scientific basis of inertial fusion and then describe a generic fusion reactor with the different components: the driver, the fusion chamber, the material treatment unit, the target factory and the turbines. We analyse the options proposed at the present time for the driver and for target irradiation scheme giving the state of art for each approach. We conclude by the presentation of LMJ (laser Megajoule) and NIF (national ignition facility) projects. These facilities aim to demonstrate the feasibility of laboratory DT ignition, first step toward Inertial Fusion Energy. (authors)

  3. Theory of gravitational-inertial field of universe. 2

    International Nuclear Information System (INIS)

    Davtyan, O.K.

    1978-01-01

    Application of the equations of the gravitational-inertial field to the problem of free motion in the inertial field (to the cosmologic problem) leads to results according to which (1) all Galaxies in the Universe 'disperse' from each other according to Hubble's law, (2) the 'dispersion' of bodies represents a free motion in the inertial field and Hubble's law represents a law of motion of free body in the inertial field, (3) for arbitrary mean distribution densities of space masses different from zero the space is Lobachevskian. All critical systems (with Schwarzschild radius) are specific because they exist in maximal-inertial and gravitational potentials. The Universe represents a critical system, it exists under the Schwarzschild radius. In high-potential inertial and gravitational fields the material mass in a static state or in motion with deceleration is subject to an inertial and gravitational 'annihilation'. At the maximal value of inertial and gravitational potentials (= c 2 ) the material mass is being completely 'evaporated' transforming into radiation mass. The latter is being concentrated in the 'horizon' of the critical system. All critical systems-black holes-represent geon systems, i.e. local formations of gravitational-electromagnetic radiations, held together by their own gravitational and inertial fields. The Universe, being a critical system, is 'wrapped' in a geon crown. (author)

  4. Inertial modes of rigidly rotating neutron stars in Cowling approximation

    International Nuclear Information System (INIS)

    Kastaun, Wolfgang

    2008-01-01

    In this article, we investigate inertial modes of rigidly rotating neutron stars, i.e. modes for which the Coriolis force is dominant. This is done using the assumption of a fixed spacetime (Cowling approximation). We present frequencies and eigenfunctions for a sequence of stars with a polytropic equation of state, covering a broad range of rotation rates. The modes were obtained with a nonlinear general relativistic hydrodynamic evolution code. We further show that the eigenequations for the oscillation modes can be written in a particularly simple form for the case of arbitrary fast but rigid rotation. Using these equations, we investigate some general characteristics of inertial modes, which are then compared to the numerically obtained eigenfunctions. In particular, we derive a rough analytical estimate for the frequency as a function of the number of nodes of the eigenfunction, and find that a similar empirical relation matches the numerical results with unexpected accuracy. We investigate the slow rotation limit of the eigenequations, obtaining two different sets of equations describing pressure and inertial modes. For the numerical computations we only considered axisymmetric modes, while the analytic part also covers nonaxisymmetric modes. The eigenfunctions suggest that the classification of inertial modes by the quantum numbers of the leading term of a spherical harmonic decomposition is artificial in the sense that the largest term is not strongly dominant, even in the slow rotation limit. The reason for the different structure of pressure and inertial modes is that the Coriolis force remains important in the slow rotation limit only for inertial modes. Accordingly, the scalar eigenequation we obtain in that limit is spherically symmetric for pressure modes, but not for inertial modes

  5. Prospects for developing attractive inertial fusion concepts

    International Nuclear Information System (INIS)

    Cornwall, T.; Bodner, S.; Herrmannsfeldt, W.B.; Hogan, W.; Storm, E.; VanDevender, J.P.

    1986-01-01

    The authors discuss the role of inertial fusion in relationship to defense activities as well as in relation to energy alternatives. Other general advantages to inertial fusion besides maintaining the system more cheaply and easily, are discussed such as certain designs and the use of very short wavelength with a very modest laser intensity. A discussion on the direct illumination approach is offered. The progress made in high-gain target physics and the potential for development of solid-state lasers as a potential multimegajoule driver and a potential high-rep-rate fusion driver are discussed. Designs for reaction chambers are examined, as is the heavy-ion fusion program. Light-ion accelerators are also discussed

  6. Formal safety assessment based on relative risks model in ship navigation

    Energy Technology Data Exchange (ETDEWEB)

    Hu Shenping [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: sphu@mmc.shmtu.edu.cn; Fang Quangen [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: qgfang@mmc.shmtu.edu.cn; Xia Haibo [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: hbxia@mmc.shmtu.edu.cn; Xi Yongtao [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: xiyt@mmc.shmtu.edu.cn

    2007-03-15

    Formal safety assessment (FSA) is a structured and systematic methodology aiming at enhancing maritime safety. It has been gradually and broadly used in the shipping industry nowadays around the world. On the basis of analysis and conclusion of FSA approach, this paper discusses quantitative risk assessment and generic risk model in FSA, especially frequency and severity criteria in ship navigation. Then it puts forward a new model based on relative risk assessment (MRRA). The model presents a risk-assessment approach based on fuzzy functions and takes five factors into account, including detailed information about accident characteristics. It has already been used for the assessment of pilotage safety in Shanghai harbor, China. Consequently, it can be proved that MRRA is a useful method to solve the problems in the risk assessment of ship navigation safety in practice.

  7. Formal safety assessment based on relative risks model in ship navigation

    International Nuclear Information System (INIS)

    Hu Shenping; Fang Quangen; Xia Haibo; Xi Yongtao

    2007-01-01

    Formal safety assessment (FSA) is a structured and systematic methodology aiming at enhancing maritime safety. It has been gradually and broadly used in the shipping industry nowadays around the world. On the basis of analysis and conclusion of FSA approach, this paper discusses quantitative risk assessment and generic risk model in FSA, especially frequency and severity criteria in ship navigation. Then it puts forward a new model based on relative risk assessment (MRRA). The model presents a risk-assessment approach based on fuzzy functions and takes five factors into account, including detailed information about accident characteristics. It has already been used for the assessment of pilotage safety in Shanghai harbor, China. Consequently, it can be proved that MRRA is a useful method to solve the problems in the risk assessment of ship navigation safety in practice

  8. Diagnostic measurements related to laser driven inertial confinement fusion

    International Nuclear Information System (INIS)

    Campbell, D.E.

    1979-01-01

    Scientists at the Lawrence Livermore Laboratory have been conducting laser driven inertial confinement fusion experiments for over five years. The first proof of the thermonuclear burn came at the Janus target irradiation facility in the spring of 1975. Since that time three succeedingly higher energy facilities have been constructed at Livermore, Cyclops, Argus and Shiva, where increased fusion efficiency has been demonstrated. A new facility, called Nova, is now in the construction phase and we are hopeful that scientific break even (energy released compared to incident laser energy on target) will be demonstrated here in early 1980's. Projected progress of the Livermore program is shown

  9. Doppler lidar sensor for precision navigation in GPS-deprived environment

    Science.gov (United States)

    Amzajerdian, F.; Pierrottet, D. F.; Hines, G. D.; Petway, L. B.; Barnes, B. W.

    2013-05-01

    Landing mission concepts that are being developed for exploration of solar system bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe, soft landing at the pre-designated sites. Data from the vehicle's Inertial Measurement Unit will not be sufficient due to significant drift error after extended travel time in space. Therefore, an onboard sensor is required to provide the necessary data for landing in the GPS-deprived environment of space. For this reason, NASA Langley Research Center has been developing an advanced Doppler lidar sensor capable of providing accurate and reliable data suitable for operation in the highly constrained environment of space. The Doppler lidar transmits three laser beams in different directions toward the ground. The signal from each beam provides the platform velocity and range to the ground along the laser line-of-sight (LOS). The six LOS measurements are then combined in order to determine the three components of the vehicle velocity vector, and to accurately measure altitude and attitude angles relative to the local ground. These measurements are used by an autonomous Guidance, Navigation, and Control system to accurately navigate the vehicle from a few kilometers above the ground to the designated location and to execute a gentle touchdown. A prototype version of our lidar sensor has been completed for a closed-loop demonstration onboard a rocket-powered terrestrial free-flyer vehicle.

  10. SLS Navigation Model-Based Design Approach

    Science.gov (United States)

    Oliver, T. Emerson; Anzalone, Evan; Geohagan, Kevin; Bernard, Bill; Park, Thomas

    2018-01-01

    The SLS Program chose to implement a Model-based Design and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team has been responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for the navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1-B design, the additional GPS Receiver hardware is managed as a DMM at the vehicle design level. This paper provides a discussion of the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the Navigation components. These include composing system requirements, requirements verification, model development, model verification and validation, and modeling and analysis approaches. The Model-based Design and Requirements approach does not reduce the effort associated with the design process versus previous processes used at Marshall Space Flight Center. Instead, the approach takes advantage of overlap between the requirements development and management process, and the design and analysis process by efficiently combining the control (i.e. the requirement) and the design mechanisms. The design mechanism is the representation of the component behavior and performance in design and analysis tools. The focus in the early design process shifts from the development and

  11. Inertial Sensor Self-Calibration in a Visually-Aided Navigation Approach for a Micro-AUV

    Directory of Open Access Journals (Sweden)

    Francisco Bonin-Font

    2015-01-01

    Full Text Available This paper presents a new solution for underwater observation, image recording, mapping and 3D reconstruction in shallow waters. The platform, designed as a research and testing tool, is based on a small underwater robot equipped with a MEMS-based IMU, two stereo cameras and a pressure sensor. The data given by the sensors are fused, adjusted and corrected in a multiplicative error state Kalman filter (MESKF, which returns a single vector with the pose and twist of the vehicle and the biases of the inertial sensors (the accelerometer and the gyroscope. The inclusion of these biases in the state vector permits their self-calibration and stabilization, improving the estimates of the robot orientation. Experiments in controlled underwater scenarios and in the sea have demonstrated a satisfactory performance and the capacity of the vehicle to operate in real environments and in real time.

  12. Relative navigation and attitude determination using a GPS/INS integrated system near the International Space Station

    Science.gov (United States)

    Um, Jaeyong

    2001-08-01

    The Space Integrated GPS/INS (SIGI) sensor is the primary navigation and attitude determination source for the International Space Station (ISS). The SIGI was successfully demonstrated on-orbit for the first time in the SIGI Orbital Attitude Readiness (SOAR) demonstration on the Space Shuttle Atlantis in May 2000. Numerous proximity operations near the ISS have been and will be performed over the lifetime of the Station. The development of an autonomous relative navigation system is needed to improve the safety and efficiency of vehicle operations near the ISS. A hardware simulation study was performed for the GPS-based relative navigation using the state vector difference approach and the interferometric approach in the absence of multipath. The interferometric approach, where the relative states are estimated directly, showed comparable results for a 1 km baseline. One of the most pressing current technical issues is the design of an autonomous relative navigation system in the proximity of the ISS, where GPS signals are blocked and maneuvers happen frequently. An integrated GPS/INS system is investigated for the possibility of a fully autonomous relative navigation system. Another application of GPS measurements is determination of the vehicle's orientation in space. This study used the SOAR experiment data to characterize the SICI's on-orbit performance for attitude determination. A cold start initialization algorithm was developed for integer ambiguity resolution in any initial orientation. The original algorithm that was used in the SIGI had an operational limitation in the integer ambiguity resolution, which was developed for terrestrial applications, and limited its effectiveness in space. The new algorithm was tested using the SOAR data and has been incorporated in the current SIGI flight software. The attitude estimation performance was examined using two different GPS/INS integration algorithms. The GPS/INS attitude solution using the SOAR data was as

  13. Inertial fusion commercial power plants

    International Nuclear Information System (INIS)

    Logan, B.G.

    1994-01-01

    This presentation discusses the motivation for inertial fusion energy, a brief synopsis of five recently-completed inertial fusion power plant designs, some general conclusions drawn from these studies, and an example of an IFE hydrogen synfuel plant to suggest that future fusion studies consider broadening fusion use to low-emission fuels production as well as electricity

  14. Inertial algorithms for the stationary Navier-Stokes equations

    NARCIS (Netherlands)

    Hou, Yanren; Mattheij, R.M.M.

    2003-01-01

    Several kind of new numerical schemes for the stationary Navier-Stokes equations based on the virtue of Inertial Manifold and Approximate Inertial Manifold, which we call them inertial algorithms in this paper, together with their error estimations are presented. All these algorithms are constructed

  15. Automated Driftmeter Fused with Inertial Navigation

    Science.gov (United States)

    2014-03-27

    dynamics matrix, Γc is an input matrix, δu is the unknown accelerometer and gyro biases vector, and w is a 38 Brownian motion vector (which quantifies...velocity over a flat and non-rotating Earth. Therefore, the only true dynamics of the simulated aircraft is the movement in the x direction. This... movement is due to the aircraft’s constant velocity, which directly relates to the true aircraft position. Therefore, the output of the Free INS is

  16. Inertial confinement fusion

    International Nuclear Information System (INIS)

    Nuckolls, J.H.; Wood, L.L.

    1988-01-01

    Edward Teller has been a strong proponent of harnessing nuclear explosions for peaceful purposes. There are two approaches: Plowshare, which utilizes macro- explosions, and inertial confinement fusion, which utilizes microexplosions. The development of practical fusion power plants is a principal goal of the inertial program. It is remarkable that Teller's original thermonuclear problem, how to make super high yield nuclear explosions, and the opposite problem, how to make ultra low yield nuclear explosions, may both be solved by Teller's radiation implosion scheme. This paper reports on the essential physics of these two thermonuclear domains, which are separated by nine orders of magnitude in yield, provided by Teller's similarity theorem and its exceptions. Higher density makes possible thermonuclear burn of smaller masses of fuel. The leverage is high: the scale of the explosion diminishes with the square of the increase in density. The extraordinary compressibility of matter, first noticed by Teller during the Los Alamos atomic bomb program, provides an almost incredible opportunity to harness fusion. The energy density of thermonuclear fuels isentropically compressed to super high-- -densities---even to ten thousand times solid density---is small compared to the energy density at thermonuclear ignition temperatures. In small masses of fuel imploded to these super high matter densities, the energy required to achieve ignition may be greatly reduced by exploiting thermonuclear propagation from a relatively small hot spot

  17. HyMoTrack: A Mobile AR Navigation System for Complex Indoor Environments.

    Science.gov (United States)

    Gerstweiler, Georg; Vonach, Emanuel; Kaufmann, Hannes

    2015-12-24

    Navigating in unknown big indoor environments with static 2D maps is a challenge, especially when time is a critical factor. In order to provide a mobile assistant, capable of supporting people while navigating in indoor locations, an accurate and reliable localization system is required in almost every corner of the building. We present a solution to this problem through a hybrid tracking system specifically designed for complex indoor spaces, which runs on mobile devices like smartphones or tablets. The developed algorithm only uses the available sensors built into standard mobile devices, especially the inertial sensors and the RGB camera. The combination of multiple optical tracking technologies, such as 2D natural features and features of more complex three-dimensional structures guarantees the robustness of the system. All processing is done locally and no network connection is needed. State-of-the-art indoor tracking approaches use mainly radio-frequency signals like Wi-Fi or Bluetooth for localizing a user. In contrast to these approaches, the main advantage of the developed system is the capability of delivering a continuous 3D position and orientation of the mobile device with centimeter accuracy. This makes it usable for localization and 3D augmentation purposes, e.g. navigation tasks or location-based information visualization.

  18. HyMoTrack: A Mobile AR Navigation System for Complex Indoor Environments

    Directory of Open Access Journals (Sweden)

    Georg Gerstweiler

    2015-12-01

    Full Text Available Navigating in unknown big indoor environments with static 2D maps is a challenge, especially when time is a critical factor. In order to provide a mobile assistant, capable of supporting people while navigating in indoor locations, an accurate and reliable localization system is required in almost every corner of the building. We present a solution to this problem through a hybrid tracking system specifically designed for complex indoor spaces, which runs on mobile devices like smartphones or tablets. The developed algorithm only uses the available sensors built into standard mobile devices, especially the inertial sensors and the RGB camera. The combination of multiple optical tracking technologies, such as 2D natural features and features of more complex three-dimensional structures guarantees the robustness of the system. All processing is done locally and no network connection is needed. State-of-the-art indoor tracking approaches use mainly radio-frequency signals like Wi-Fi or Bluetooth for localizing a user. In contrast to these approaches, the main advantage of the developed system is the capability of delivering a continuous 3D position and orientation of the mobile device with centimeter accuracy. This makes it usable for localization and 3D augmentation purposes, e.g. navigation tasks or location-based information visualization.

  19. Inertial Navigation System Aiding Using Vision

    Science.gov (United States)

    2013-03-01

    abp a + Cba d dt ( pa ) + d dt ( rbba ) (2.11) vb = d dt ( rbba ) + Cba (Ω a... abp a + va) (2.12) where ddt (r b ba) accounts for the relative velocity betwwen the a-frame and b-frame, CbaΩaabp a is the instantaneous velocity of p...frame. Taking another time derivative of Eq. 2.12 results in: d dt ( vb ) , ab = d2 dt2 rbba + d dt [ Cba (Ω a abp a + va) ] (2.13) = r̈bba + dCba

  20. A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation

    Science.gov (United States)

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2016-01-01

    The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms. PMID:27999361

  1. ULTOR(Registered TradeMark) Passive Pose and Position Engine For Spacecraft Relative Navigation

    Science.gov (United States)

    Hannah, S. Joel

    2008-01-01

    The ULTOR(Registered TradeMark) Passive Pose and Position Engine (P3E) technology, developed by Advanced Optical Systems, Inc (AOS), uses real-time image correlation to provide relative position and pose data for spacecraft guidance, navigation, and control. Potential data sources include a wide variety of sensors, including visible and infrared cameras. ULTOR(Registered TradeMark) P3E has been demonstrated on a number of host processing platforms. NASA is integrating ULTOR(Registerd TradeMark) P3E into its Relative Navigation System (RNS), which is being developed for the upcoming Hubble Space Telescope (HST) Servicing Mission 4 (SM4). During SM4 ULTOR(Registered TradeMark) P3E will perform realtime pose and position measurements during both the approach and departure phases of the mission. This paper describes the RNS implementation of ULTOR(Registered TradeMark) P3E, and presents results from NASA's hardware-in-the-loop simulation testing against the HST mockup.

  2. Usability Testing of Two Ambulatory EHR Navigators.

    Science.gov (United States)

    Hultman, Gretchen; Marquard, Jenna; Arsoniadis, Elliot; Mink, Pamela; Rizvi, Rubina; Ramer, Tim; Khairat, Saif; Fickau, Keri; Melton, Genevieve B

    2016-01-01

    Despite widespread electronic health record (EHR) adoption, poor EHR system usability continues to be a significant barrier to effective system use for end users. One key to addressing usability problems is to employ user testing and user-centered design. To understand if redesigning an EHR-based navigation tool with clinician input improved user performance and satisfaction. A usability evaluation was conducted to compare two versions of a redesigned ambulatory navigator. Participants completed tasks for five patient cases using the navigators, while employing a think-aloud protocol. The tasks were based on Meaningful Use (MU) requirements. The version of navigator did not affect perceived workload, and time to complete tasks was longer in the redesigned navigator. A relatively small portion of navigator content was used to complete the MU-related tasks, though navigation patterns were highly variable across participants for both navigators. Preferences for EHR navigation structures appeared to be individualized. This study demonstrates the importance of EHR usability assessments to evaluate group and individual performance of different interfaces and preferences for each design.

  3. A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model. Measurement of Earth's dragging of inertial frames

    Energy Technology Data Exchange (ETDEWEB)

    Ciufolini, Ignazio [Universita del Salento, Dipartimento Ingegneria dell' Innovazione, Lecce (Italy); Sapienza Universita di Roma, Scuola di Ingegneria Aerospaziale, Rome (Italy); Paolozzi, Antonio; Paris, Claudio [Sapienza Universita di Roma, Scuola di Ingegneria Aerospaziale, Rome (Italy); Museo della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome (Italy); Pavlis, Erricos C. [University of Maryland, Joint Center for Earth Systems Technology (JCET), Baltimore County (United States); Koenig, Rolf [GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam (Germany); Ries, John [University of Texas at Austin, Center for Space Research, Austin (United States); Gurzadyan, Vahe; Khachatryan, Harutyun; Mirzoyan, Sergey [Alikhanian National Laboratory and Yerevan State University, Center for Cosmology and Astrophysics, Yerevan (Armenia); Matzner, Richard [University of Texas at Austin, Theory Center, Austin (United States); Penrose, Roger [University of Oxford, Mathematical Institute, Oxford (United Kingdom); Sindoni, Giampiero [Sapienza Universita di Roma, DIAEE, Rome (Italy)

    2016-03-15

    We present a test of general relativity, the measurement of the Earth's dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satellites together with the Earth gravity field model GGM05S produced by the space geodesy mission GRACE. We measure μ = (0.994 ± 0.002) ± 0.05, where μ is the Earth's dragging of inertial frames normalized to its general relativity value, 0.002 is the 1-sigma formal error and 0.05 is our preliminary estimate of systematic error mainly due to the uncertainties in the Earth gravity model GGM05S. Our result is in agreement with the prediction of general relativity. (orig.)

  4. Empirical evidence for inertial mass anisotropy

    International Nuclear Information System (INIS)

    Heller, M.; Siemieniec, G.

    1985-01-01

    A several attempts at measuring the possible deviations from inertial mass isotropy caused by a non-uniform distribution of matter are reviewed. A simple model of the inertial mass anisotropy and the results of the currently performed measurements concerning this effect are presented. 34 refs. (author)

  5. On-body inertial sensor location recognition

    NARCIS (Netherlands)

    Weenk, D.; van Beijnum, Bernhard J.F.; Goaied, Salma; Baten, Christian T.M.; Hermens, Hermanus J.; Veltink, Petrus H.

    2015-01-01

    Introduction and past research: In previous work we presented an algorithm for automatically identifying the body segment to which an inertial sensor is attached during walking [1]. Using this method, the set-up of inertial motion capture systems becomes easier and attachment errors are avoided. The

  6. Theory of inertial waves in rotating fluids

    Science.gov (United States)

    Gelash, Andrey; L'vov, Victor; Zakharov, Vladimir

    2017-04-01

    The inertial waves emerge in the geophysical and astrophysical flows as a result of Earth rotation [1]. The linear theory of inertial waves is known well [2] while the influence of nonlinear effects of wave interactions are subject of many recent theoretical and experimental studies. The three-wave interactions which are allowed by inertial waves dispersion law (frequency is proportional to cosine of the angle between wave direction and axes of rotation) play an exceptional role. The recent studies on similar type of waves - internal waves, have demonstrated the possibility of formation of natural wave attractors in the ocean (see [3] and references herein). This wave focusing leads to the emergence of strong three-wave interactions and subsequent flows mixing. We believe that similar phenomena can take place for inertial waves in rotating flows. In this work we present theoretical study of three-wave and four-wave interactions for inertial waves. As the main theoretical tool we suggest the complete Hamiltonian formalism for inertial waves in rotating incompressible fluids [4]. We study three-wave decay instability and then present statistical description of inertial waves in the frame of Hamiltonian formalism. We obtain kinetic equation, anisotropic wave turbulence spectra and study the problem of parametric wave turbulence. These spectra were previously found in [5] by helicity decomposition method. Taking this into account we discuss the advantages of suggested Hamiltonian formalism and its future applications. Andrey Gelash thanks support of the RFBR (Grant No.16-31-60086 mol_a_dk) and Dr. E. Ermanyuk, Dr. I. Sibgatullin for the fruitful discussions. [1] Le Gal, P. Waves and instabilities in rotating and stratified flows, Fluid Dynamics in Physics, Engineering and Environmental Applications. Springer Berlin Heidelberg, 25-40, 2013. [2] Greenspan, H. P. The theory of rotating fluids. CUP Archive, 1968. [3] Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E

  7. Physics of inertial confinement pellets

    International Nuclear Information System (INIS)

    Mead, W.C.

    1979-01-01

    An overview of inertial confinement fusion pellet physics is given. A discussion is presented of current estimated ICF driver requirements and a couple of pellet examples. The physics of driver/plasma coupling for two drivers which are being considered, namely a laser driver and a heavy ion accelerator driver, is described. Progress towards inertial confinement fusion that has been made using laser drivers in target experiments to date is discussed

  8. Study of the Navigation Method for a Snake Robot Based on the Kinematics Model with MEMS IMU

    Science.gov (United States)

    Dou, Lihua; Su, Zhong; Liu, Ning

    2018-01-01

    A snake robot is a type of highly redundant mobile robot that significantly differs from a tracked robot, wheeled robot and legged robot. To address the issue of a snake robot performing self-localization in the application environment without assistant orientation, an autonomous navigation method is proposed based on the snake robot’s motion characteristic constraints. The method realized the autonomous navigation of the snake robot with non-nodes and an external assistant using its own Micro-Electromechanical-Systems (MEMS) Inertial-Measurement-Unit (IMU). First, it studies the snake robot’s motion characteristics, builds the kinematics model, and then analyses the motion constraint characteristics and motion error propagation properties. Second, it explores the snake robot’s navigation layout, proposes a constraint criterion and the fixed relationship, and makes zero-state constraints based on the motion features and control modes of a snake robot. Finally, it realizes autonomous navigation positioning based on the Extended-Kalman-Filter (EKF) position estimation method under the constraints of its motion characteristics. With the self-developed snake robot, the test verifies the proposed method, and the position error is less than 5% of Total-Traveled-Distance (TDD). In a short-distance environment, this method is able to meet the requirements of a snake robot in order to perform autonomous navigation and positioning in traditional applications and can be extended to other familiar multi-link robots. PMID:29547515

  9. Study of the Navigation Method for a Snake Robot Based on the Kinematics Model with MEMS IMU.

    Science.gov (United States)

    Zhao, Xu; Dou, Lihua; Su, Zhong; Liu, Ning

    2018-03-16

    A snake robot is a type of highly redundant mobile robot that significantly differs from a tracked robot, wheeled robot and legged robot. To address the issue of a snake robot performing self-localization in the application environment without assistant orientation, an autonomous navigation method is proposed based on the snake robot's motion characteristic constraints. The method realized the autonomous navigation of the snake robot with non-nodes and an external assistant using its own Micro-Electromechanical-Systems (MEMS) Inertial-Measurement-Unit (IMU). First, it studies the snake robot's motion characteristics, builds the kinematics model, and then analyses the motion constraint characteristics and motion error propagation properties. Second, it explores the snake robot's navigation layout, proposes a constraint criterion and the fixed relationship, and makes zero-state constraints based on the motion features and control modes of a snake robot. Finally, it realizes autonomous navigation positioning based on the Extended-Kalman-Filter (EKF) position estimation method under the constraints of its motion characteristics. With the self-developed snake robot, the test verifies the proposed method, and the position error is less than 5% of Total-Traveled-Distance (TDD). In a short-distance environment, this method is able to meet the requirements of a snake robot in order to perform autonomous navigation and positioning in traditional applications and can be extended to other familiar multi-link robots.

  10. Statistical Relations for Yield Degradation in Inertial Confinement Fusion

    Science.gov (United States)

    Woo, K. M.; Betti, R.; Patel, D.; Gopalaswamy, V.

    2017-10-01

    In inertial confinement fusion (ICF), the yield-over-clean (YOC) is a quantity commonly used to assess the performance of an implosion with respect to the degradation caused by asymmetries. The YOC also determines the Lawson parameter used to identify the onset of ignition and the level of alpha heating in ICF implosions. In this work, we show that the YOC is a unique function of the residual kinetic energy in the compressed shell (with respect to the 1-D case) regardless of the asymmetry spectrum. This result is derived using a simple model of the deceleration phase as well as through an extensive set of 3-D radiation-hydrodynamics simulations using the code DEC3D. The latter has been recently upgraded to include a 3-D spherical moving mesh, the HYPRE solver for 3-D radiation transport and piecewise-parabolic method for robust shock-capturing hydrodynamic simulations. DEC3D is used to build a synthetic single-mode database to study the behavior of yield degradation caused by Rayleigh-Taylor instabilities in the deceleration phase. The relation between YOC and residual kinetic energy is compared with the result in an adiabatic implosion model. The statistical expression of YOC is also applied to the ignition criterion in the presence of multidimensional nonuniformities. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  11. Mapping in inertial frames

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1989-05-01

    World space mapping in inertial frames is used to examine the Lorentz covariance of symmetry operations. It is found that the Galilean invariant concepts of simultaneity (S), parity (P), and time reversal symmetry (T) are not Lorentz covariant concepts for inertial observers. That is, just as the concept of simultaneity has no significance independent of the Lorentz inertial frame, likewise so are the concepts of parity and time reversal. However, the world parity (W) [i.e., the space-time reversal symmetry (P-T)] is a truly Lorentz covariant concept. Indeed, it is shown that only those mapping matrices M that commute with the Lorentz transformation matrix L (i.e., [M,L] = 0) are the ones that correspond to manifestly Lorentz covariant operations. This result is in accordance with the spirit of the world space Mach's principle. Since the Lorentz transformation is an orthogonal transformation while the Galilean transformation is not an orthogonal transformation, the formal relativistic space-time mapping theory used here does not have a corresponding non-relativistic counterpart. 12 refs

  12. Aircraft cybernetics

    Science.gov (United States)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  13. Effects of Traditional Versus Horizontal Inertial Flywheel Power Training on Common Sport-Related Tasks

    Directory of Open Access Journals (Sweden)

    de Hoyo Moisés

    2015-09-01

    Full Text Available This study aimed to analyze the effects of power training using traditional vertical resistance exercises versus direction specific horizontal inertial flywheel training on performance in common sport-related tasks. Twenty-three healthy and physically active males (age: 22.29 ± 2.45 years volunteered to participate in this study. Participants were allocated into either the traditional training (TT group where the half squat exercise on a smith machine was applied or the horizontal flywheel training (HFT group performing the front step exercise with an inertial flywheel. Training volume and intensity were matched between groups by repetitions (5-8 sets with 8 repetitions and relative intensity (the load that maximized power (Pmax over the period of six weeks. Speed (10 m and 20 m, countermovement jump height (CMJH, 20 m change of direction ability (COD and strength during a maximal voluntary isometric contraction (MVIC were assessed before and after the training program. The differences between groups and by time were assessed using a two-way analysis of variance with repeated measures, followed by paired t-tests. A significant group by time interaction (p=0.004 was found in the TT group demonstrating a significantly higher CMJH. Within-group analysis revealed statistically significant improvements in a 10 m sprint (TT: −0.17 0.27 s vs. HFT: −0.11 0.10 s, CMJH (TT: 4.92 2.58 cm vs. HFT: 1.55 2.44 cm and MVIC (TT: 62.87 79.71 N vs. HFT: 106.56 121.63 N in both groups (p < 0.05. However, significant differences only occurred in the 20 m sprint time in the TT group (−0.04 0.12 s; p = 0.04. In conclusion, the results suggest that TT at the maximal peak power load is more effective than HFT for counter movement jump height while both TT and HFT elicited significant improvements in 10 m sprint performance while only TT significantly improved 20 m sprint performance.

  14. Kalman滤波在导航中的应用研究%Applications of Kalman Filter in the Navigation

    Institute of Scientific and Technical Information of China (English)

    洪腾腾; 胡绍林

    2016-01-01

    随着导航技术日新月异的发展,Kalman滤波技术在导航领域中的应用也随处可见。本文围绕Kalman滤波技术在导航过程中的应用问题,从技术途径的几个方面进行系统分析,简要综述Kalman滤波技术在惯性导航、卫星导航和组合导航等方面应用的发展现状,并指出在导航领域应用Kalman滤波技术存在的若干技术难点,为改进和完善Kalman滤波技术在导航领域的应用提供了潜在的研究方向。%With the rapid development of science and technology, the Kalman filtering technology is widely used in navigation. In this paper, the application of the Kalman filteringtechnology in the navigation filed were analyzed. The research achievements in recent years were introduced. The application of Kalman filter in the inertial navigation systems, satellite navigation system and integrated navigation system were mainly introduced. At the same time, point out several technical difficulties. Finally, we provide the potential research direction to improve the application of the Kalman filter in navigation.

  15. Clock transport synchronisation and the dragging of inertial frames

    International Nuclear Information System (INIS)

    Rosenblum, Arnold

    1987-01-01

    It is shown that it is possible, by using the lack of synchronisation of clocks by clock transport synchronisation in circular orbits, to test for the dragging of inertial frames in Einstein's theory of general relativity. Possible experiments are discussed. (author)

  16. Blind MuseumTourer: A System for Self-Guided Tours in Museums and Blind Indoor Navigation

    Directory of Open Access Journals (Sweden)

    Apostolos Meliones

    2018-01-01

    Full Text Available Notably valuable efforts have focused on helping people with special needs. In this work, we build upon the experience from the BlindHelper smartphone outdoor pedestrian navigation app and present Blind MuseumTourer, a system for indoor interactive autonomous navigation for blind and visually impaired persons and groups (e.g., pupils, which has primarily addressed blind or visually impaired (BVI accessibility and self-guided tours in museums. A pilot prototype has been developed and is currently under evaluation at the Tactual Museum with the collaboration of the Lighthouse for the Blind of Greece. This paper describes the functionality of the application and evaluates candidate indoor location determination technologies, such as wireless local area network (WLAN and surface-mounted assistive tactile route indications combined with Bluetooth low energy (BLE beacons and inertial dead-reckoning functionality, to come up with a reliable and highly accurate indoor positioning system adopting the latter solution. The developed concepts, including map matching, a key concept for indoor navigation, apply in a similar way to other indoor guidance use cases involving complex indoor places, such as in hospitals, shopping malls, airports, train stations, public and municipality buildings, office buildings, university buildings, hotel resorts, passenger ships, etc. The presented Android application is effectively a Blind IndoorGuide system for accurate and reliable blind indoor navigation.

  17. Progress in high gain inertial confinement fusion

    International Nuclear Information System (INIS)

    Sun Jingwen

    2001-01-01

    The author reviews the progress in laboratory high gain inertial confinement fusion (ICF), including ICF capsule physics, high-energy-density science, inertial fusion energy, the National Ignition Facility (NIF) and its design of ignition targets and the peta watt laser breakthrough. High power laser, particle beam, and pulsed power facilities around the world have established the new laboratory field of high-energy- density plasma physics and have furthered development of inertial fusion. New capabilities such as those provided by high-brightness peta watt lasers have enabled the study of matter feasible in conditions previously unachievable on earth. Science and technology developed in inertial fusion research have found near-term commercial use and have enabled steady progress toward the goal of fusion ignition and high gain in the laboratory, and have opened up new fields of study for the 21 st century

  18. Sea ice inertial oscillations in the Arctic Basin

    Directory of Open Access Journals (Sweden)

    F. Gimbert

    2012-10-01

    Full Text Available An original method to quantify the amplitude of inertial motion of oceanic and ice drifters, through the introduction of a non-dimensional parameter M defined from a spectral analysis, is presented. A strong seasonal dependence of the magnitude of sea ice inertial oscillations is revealed, in agreement with the corresponding annual cycles of sea ice extent, concentration, thickness, advection velocity, and deformation rates. The spatial pattern of the magnitude of the sea ice inertial oscillations over the Arctic Basin is also in agreement with the sea ice thickness and concentration patterns. This argues for a strong interaction between the magnitude of inertial motion on one hand, the dissipation of energy through mechanical processes, and the cohesiveness of the cover on the other hand. Finally, a significant multi-annual evolution towards greater magnitudes of inertial oscillations in recent years, in both summer and winter, is reported, thus concomitant with reduced sea ice thickness, concentration and spatial extent.

  19. Using neuromorphic optical sensors for spacecraft absolute and relative navigation

    Science.gov (United States)

    Shake, Christopher M.

    We develop a novel attitude determination system (ADS) for use on nano spacecraft using neuromorphic optical sensors. The ADS intends to support nano-satellite operations by providing low-cost, low-mass, low-volume, low-power, and redundant attitude determination capabilities with quick and straightforward onboard programmability for real time spacecraft operations. The ADS is experimentally validated with commercial-off-the-shelf optical devices that perform sensing and image processing on the same circuit board and are biologically inspired by insects' vision systems, which measure optical flow while navigating in the environment. The firmware on the devices is modified to both perform the additional biologically inspired task of tracking objects and communicate with a PC/104 form-factor embedded computer running Real Time Application Interface Linux used on a spacecraft simulator. Algorithms are developed for operations using optical flow, point tracking, and hybrid modes with the sensors, and the performance of the system in all three modes is assessed using a spacecraft simulator in the Advanced Autonomous Multiple Spacecraft (ADAMUS) laboratory at Rensselaer. An existing relative state determination method is identified to be combined with the novel ADS to create a self-contained navigation system for nano spacecraft. The performance of the method is assessed in simulation and found not to match the results from its authors using only conditions and equations already published. An improved target inertia tensor method is proposed as an update to the existing relative state method, but found not to perform as expected, but is presented for others to build upon.

  20. Encoding and retrieval of landmark-related spatial cues during navigation: An fMRI study

    NARCIS (Netherlands)

    Wegman, J.B.T.; Tyborowska, A.B.; Janzen, G.

    2014-01-01

    To successfully navigate, humans can use different cues from their surroundings. Learning locations in an environment can be supported by parallel subsystems in the hippocampus and the striatum. We used fMRI to look at differences in the use of object-related spatial cues while 47 participants

  1. A High-Rate Virtual Instrument of Marine Vehicle Motions for Underwater Navigation and Ocean Remote Sensing

    CERN Document Server

    Gelin, Chrystel

    2013-01-01

    Dead-Reckoning aided with Doppler velocity measurement has been the most common method for underwater navigation for small vehicles. Unfortunately DR requires frequent position recalibrations and underwater vehicle navigation systems are limited to periodic position update when they surface. Finally standard Global Positioning System (GPS) receivers are unable to provide the rate or precision required when used on a small vessel. To overcome this, a low cost high rate motion measurement system for an Unmanned Surface Vehicle (USV) with underwater and oceanographic purposes is proposed. The proposed onboard system for the USV consists of an Inertial Measurement Unit (IMU) with accelerometers and rate gyros, a GPS receiver, a flux-gate compass, a roll and tilt sensor and an ADCP. Interfacing all the sensors proved rather challenging because of their different characteristics. The proposed data fusion technique integrates the sensors and develops an embeddable software package, using real time data fusion method...

  2. Inertial fusion with hypervelocity impact

    International Nuclear Information System (INIS)

    Olariu, S.

    1998-01-01

    The physics of the compression and ignition processes in inertial fusion is to a certain extent independent of the nature of the incident energy pulse. The present strategy in the field of inertial fusion is to study several alternatives of deposition of the incident energy, and, at the same time, of conducting studies with the aid of available incident laser pulses. In a future reactor based on inertial fusion, the laser beams may be replaced by ion beams, which have a better energy efficiency. The main projects in the field of inertial fusion are the National Ignition Facility (NIF) in USA, Laser Megajoule (LMJ) in France, Gekko XII in Japan and Iskra V in Russia. NIF will be constructed at Lawrence Livermore National Laboratory, in California. LMJ will be constructed near Bordeaux. In the conventional approach to inertial confinement fusion, both the high-density fuel mass and the hot central spot are supposed to be produced by the deposition of the driver energy in the outer layers of the fuel capsule. Alternatively, the driver energy could be used only to produce the radial compression of the fuel capsule to high densities but relatively low temperatures, while the ignition of fusion reactions in the compressed capsule should be effected by a synchronized hypervelocity impact. Using this arrangement, it was supposed that a 54 μm projectile is incident with a velocity of 3 x 10 6 m s -1 upon a large-yield deuterium-tritium target at rest. The collision of the incident projectile and of the large-yield target takes place inside a high-Z cavity. A laser or heavy-ion pulse is converted at the walls of the cavity into X-rays, which compresses the incident projectile and the large-yield target in high-density states. The laser pulse and the movement of the incident projectile are synchronized such that the collision should take place when the densities are the largest. The collision converts the kinetic energy of the incident projectile into thermal energy, the

  3. An Investigation Into the Feasibility of Using a Modern Gravity Gradient Instrument for Passive Aircraft Navigation and Terrain Avoidance

    Science.gov (United States)

    2009-03-01

    the research objectives for this study are presented. It should be noted that sensor cost was not considered for this study. Additionally, further...development costs ) for gravity compensation require- ments of its trident submarine inertial navigation systems and by the Air Force Geo- physics...52]: T (r, φ, λ) = GM ae Nmax∑ n=2 n∑ m=0 (a r )n+1 (Cnm cosmλ+ Snm sinmλ)P nm(cos φ) (31) 44 where r, φ, λ are the geocentric distance, lattitude and

  4. Sexual Orientation-Related Differences in Virtual Spatial Navigation and Spatial Search Strategies.

    Science.gov (United States)

    Rahman, Qazi; Sharp, Jonathan; McVeigh, Meadhbh; Ho, Man-Ling

    2017-07-01

    Spatial abilities are generally hypothesized to differ between men and women, and people with different sexual orientations. According to the cross-sex shift hypothesis, gay men are hypothesized to perform in the direction of heterosexual women and lesbian women in the direction of heterosexual men on cognitive tests. This study investigated sexual orientation differences in spatial navigation and strategy during a virtual Morris water maze task (VMWM). Forty-four heterosexual men, 43 heterosexual women, 39 gay men, and 34 lesbian/bisexual women (aged 18-54 years) navigated a desktop VMWM and completed measures of intelligence, handedness, and childhood gender nonconformity (CGN). We quantified spatial learning (hidden platform trials), probe trial performance, and cued navigation (visible platform trials). Spatial strategies during hidden and probe trials were classified into visual scanning, landmark use, thigmotaxis/circling, and enfilading. In general, heterosexual men scored better than women and gay men on some spatial learning and probe trial measures and used more visual scan strategies. However, some differences disappeared after controlling for age and estimated IQ (e.g., in visual scanning heterosexual men differed from women but not gay men). Heterosexual women did not differ from lesbian/bisexual women. For both sexes, visual scanning predicted probe trial performance. More feminine CGN scores were associated with lower performance among men and greater performance among women on specific spatial learning or probe trial measures. These results provide mixed evidence for the cross-sex shift hypothesis of sexual orientation-related differences in spatial cognition.

  5. On the construction of inertial manifolds under symmetry constraints II: O(2) constraint and inertial manifolds on thin domains

    International Nuclear Information System (INIS)

    Rodriguez-Bernal, A.

    1993-01-01

    On a model example, the Kuramoto-Velarde equation, which includes the Kuramoto-Sivashin-sky and the Cahn-Hilliard models, and under suitable and reasonable hypothesis, we show the dimension and determining modes of inertial manifolds for several classes of solutions. We also give bounds for the dimensions of inertial manifolds of the full system as a parameter is varied. The results are pointed out to be almost model-independent. The same ideas are also applied to a class of parabolic equations in higher space dimension, obtaining results about inertial manifolds on thin and small domains. (Author). 30 refs

  6. Local inertial oscillations in the surface ocean generated by time-varying winds

    Science.gov (United States)

    Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing

    2015-12-01

    A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.

  7. Towards Safe Navigation by Formalizing Navigation Rules

    Directory of Open Access Journals (Sweden)

    Arne Kreutzmann

    2013-06-01

    Full Text Available One crucial aspect of safe navigation is to obey all navigation regulations applicable, in particular the collision regulations issued by the International Maritime Organization (IMO Colregs. Therefore, decision support systems for navigation need to respect Colregs and this feature should be verifiably correct. We tackle compliancy of navigation regulations from a perspective of software verification. One common approach is to use formal logic, but it requires to bridge a wide gap between navigation concepts and simple logic. We introduce a novel domain specification language based on a spatio-temporal logic that allows us to overcome this gap. We are able to capture complex navigation concepts in an easily comprehensible representation that can direcly be utilized by various bridge systems and that allows for software verification.

  8. Visual navigation using edge curve matching for pinpoint planetary landing

    Science.gov (United States)

    Cui, Pingyuan; Gao, Xizhen; Zhu, Shengying; Shao, Wei

    2018-05-01

    Pinpoint landing is challenging for future Mars and asteroid exploration missions. Vision-based navigation scheme based on feature detection and matching is practical and can achieve the required precision. However, existing algorithms are computationally prohibitive and utilize poor-performance measurements, which pose great challenges for the application of visual navigation. This paper proposes an innovative visual navigation scheme using crater edge curves during descent and landing phase. In the algorithm, the edge curves of the craters tracked from two sequential images are utilized to determine the relative attitude and position of the lander through a normalized method. Then, considering error accumulation of relative navigation, a method is developed. That is to integrate the crater-based relative navigation method with crater-based absolute navigation method that identifies craters using a georeferenced database for continuous estimation of absolute states. In addition, expressions of the relative state estimate bias are derived. Novel necessary and sufficient observability criteria based on error analysis are provided to improve the navigation performance, which hold true for similar navigation systems. Simulation results demonstrate the effectiveness and high accuracy of the proposed navigation method.

  9. Study of the Navigation Method for a Snake Robot Based on the Kinematics Model with MEMS IMU

    Directory of Open Access Journals (Sweden)

    Xu Zhao

    2018-03-01

    Full Text Available A snake robot is a type of highly redundant mobile robot that significantly differs from a tracked robot, wheeled robot and legged robot. To address the issue of a snake robot performing self-localization in the application environment without assistant orientation, an autonomous navigation method is proposed based on the snake robot’s motion characteristic constraints. The method realized the autonomous navigation of the snake robot with non-nodes and an external assistant using its own Micro-Electromechanical-Systems (MEMS Inertial-Measurement-Unit (IMU. First, it studies the snake robot’s motion characteristics, builds the kinematics model, and then analyses the motion constraint characteristics and motion error propagation properties. Second, it explores the snake robot’s navigation layout, proposes a constraint criterion and the fixed relationship, and makes zero-state constraints based on the motion features and control modes of a snake robot. Finally, it realizes autonomous navigation positioning based on the Extended-Kalman-Filter (EKF position estimation method under the constraints of its motion characteristics. With the self-developed snake robot, the test verifies the proposed method, and the position error is less than 5% of Total-Traveled-Distance (TDD. In a short-distance environment, this method is able to meet the requirements of a snake robot in order to perform autonomous navigation and positioning in traditional applications and can be extended to other familiar multi-link robots.

  10. Hand Pose Estimation by Fusion of Inertial and Magnetic Sensing Aided by a Permanent Magnet.

    Science.gov (United States)

    Kortier, Henk G; Antonsson, Jacob; Schepers, H Martin; Gustafsson, Fredrik; Veltink, Peter H

    2015-09-01

    Tracking human body motions using inertial sensors has become a well-accepted method in ambulatory applications since the subject is not confined to a lab-bounded volume. However, a major drawback is the inability to estimate relative body positions over time because inertial sensor information only allows position tracking through strapdown integration, but does not provide any information about relative positions. In addition, strapdown integration inherently results in drift of the estimated position over time. We propose a novel method in which a permanent magnet combined with 3-D magnetometers and 3-D inertial sensors are used to estimate the global trunk orientation and relative pose of the hand with respect to the trunk. An Extended Kalman Filter is presented to fuse estimates obtained from inertial sensors with magnetic updates such that the position and orientation between the human hand and trunk as well as the global trunk orientation can be estimated robustly. This has been demonstrated in multiple experiments in which various hand tasks were performed. The most complex task in which simultaneous movements of both trunk and hand were performed resulted in an average rms position difference with an optical reference system of 19.7±2.2 mm whereas the relative trunk-hand and global trunk orientation error was 2.3±0.9 and 8.6±8.7 deg respectively.

  11. Near-inertial waves and deep ocean mixing

    Science.gov (United States)

    Shrira, V. I.; Townsend, W. A.

    2013-07-01

    For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves.

  12. Near-inertial waves and deep ocean mixing

    International Nuclear Information System (INIS)

    Shrira, V I; Townsend, W A

    2013-01-01

    For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves. (paper)

  13. On the generalized potential of inertial forces

    International Nuclear Information System (INIS)

    Siboni, S

    2009-01-01

    The generalized potential of the inertial forces acting on a holonomic system in an accelerated reference frame is derived in a way which admits a simple physical interpretation. It is shown that the generalized potential refers to all the inertial forces and, apart from the very special case of a uniformly rotating frame, it is impossible to distinguish a contribution to only the Coriolis force and a contribution pertaining to the residual, velocity-independent fictitious forces. Such an approach to the determination of the generalized potential of inertial forces may be helpful in introducing the topic of the generalized potential to advanced undergraduate and graduate students

  14. Spectral gaps, inertial manifolds and kinematic dynamos

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)]. E-mail: mnjmhd@am.uva.es

    2005-10-17

    Inertial manifolds are desirable objects when ones wishes a dynamical process to behave asymptotically as a finite-dimensional ones. Recently [Physica D 194 (2004) 297] these manifolds are constructed for the kinematic dynamo problem with time-periodic velocity. It turns out, however, that the conditions imposed on the fluid velocity to guarantee the existence of inertial manifolds are too demanding, in the sense that they imply that all the solutions tend exponentially to zero. The inertial manifolds are meaningful because they represent different decay rates, but the classical dynamos where the magnetic field is maintained or grows are not covered by this approach, at least until more refined estimates are found.

  15. Heavy ion accelerators for inertial fusion

    International Nuclear Information System (INIS)

    Rubbia, C.

    1992-01-01

    Particle accelerators are used for accelerating the elementary, stable and separable constituents of matters to relativistic speed. These beams are of fundamental interest in the study on the ultimate constituents of matters and their interaction. Particle accelerators are the most promising driver for the fusion power reactors based on inertial confinement. The principle of inertial confinement fusion, radiation driven indirect drive, the accelerator complex and so on are described. (K.I.)

  16. Micromachined Precision Inertial Instruments

    National Research Council Canada - National Science Library

    Najafi, Khalil

    2003-01-01

    This program focuses on developing inertial-grade micromachined accelerometers and gyroscopes and their associated electronics and packaging for use in a variety of military and commercial applications...

  17. Internally driven inertial waves in geodynamo simulations

    Science.gov (United States)

    Ranjan, A.; Davidson, P. A.; Christensen, U. R.; Wicht, J.

    2018-05-01

    Inertial waves are oscillations in a rotating fluid, such as the Earth's outer core, which result from the restoring action of the Coriolis force. In an earlier work, it was argued by Davidson that inertial waves launched near the equatorial regions could be important for the α2 dynamo mechanism, as they can maintain a helicity distribution which is negative (positive) in the north (south). Here, we identify such internally driven inertial waves, triggered by buoyant anomalies in the equatorial regions in a strongly forced geodynamo simulation. Using the time derivative of vertical velocity, ∂uz/∂t, as a diagnostic for traveling wave fronts, we find that the horizontal movement in the buoyancy field near the equator is well correlated with a corresponding movement of the fluid far from the equator. Moreover, the azimuthally averaged spectrum of ∂uz/∂t lies in the inertial wave frequency range. We also test the dispersion properties of the waves by computing the spectral energy as a function of frequency, ϖ, and the dispersion angle, θ. Our results suggest that the columnar flow in the rotation-dominated core, which is an important ingredient for the maintenance of a dipolar magnetic field, is maintained despite the chaotic evolution of the buoyancy field on a fast timescale by internally driven inertial waves.

  18. Spin-1/2 particles in non-inertial reference frames. Low- and high-energy approximations

    International Nuclear Information System (INIS)

    Singh, D.; Papini, G.

    2000-01-01

    Spin-1/2 particles can be used to study inertial and gravitational effects by means of interferometers, particle accelerators, and ultimately quantum systems. These studies require, in general, knowledge of the Hamiltonian and of the inertial and gravitational quantum phases. The procedure followed gives both in the low- and high-energy approximations. The latter affords a more consistent treatment of mass at high energies. The procedure is based on general relativity and on a solution of the Dirac equation that is exact to first-order in the metric deviation. Several previously known acceleration- and rotation-induced effects are rederived in a comprehensive, unified way. Several new effects involve spin, electromagnetic and inertial/gravitational fields in different combinations

  19. An Online Solution of LiDAR Scan Matching Aided Inertial Navigation System for Indoor Mobile Mapping

    OpenAIRE

    Niu, Xiaoji; Yu, Tong; Tang, Jian; Chang, Le

    2017-01-01

    Multisensors (LiDAR/IMU/CAMERA) integrated Simultaneous Location and Mapping (SLAM) technology for navigation and mobile mapping in a GNSS-denied environment, such as indoor areas, dense forests, or urban canyons, becomes a promising solution. An online (real-time) version of such system can extremely extend its applications, especially for indoor mobile mapping. However, the real-time response issue of multisensors is a big challenge for an online SLAM system, due to the different sampling f...

  20. Observations of inertial oscillations affected by mesoscale activity in the Northeast Atlantic Ocean

    Science.gov (United States)

    Aguiar-González, B.; Hormazábal, S.; Rodríguez-Santana, A.; Cisneros-Aguirre, J.; Martínez-Marrero, A.

    2012-04-01

    Observations of surface drifters launched over the continental slope of Portugal (Bay of Setúbal) are analyzed with the Rotary Wavelet Spectrum Method to study the contribution of mesoscale activity to near-inertial variability. Drifter data used here are part of the MREA04 (Maritime Rapid Environmental Assessment 2004) sea trial carried out by the NATO Undersea Research Centre (NURC) off the west coast of Portugal. Altimetry data from AVISO on a 1/3° Mercator grid are used to compute vertical relative vorticity (ζ) maps and track near-inertial variability along the drifter records. Subsequently, the local Coriolis (f) and effective Coriolis (feff = f + 1/2ζ) frequencies are estimated for every drifter position. In this work we take a special interest in the area of Cape St. Vicent where a remarkable blue shift of near-inertial oscillations is observed in association with a cyclonic eddy migrating northward along the Portuguese coast. Results of the Rotary Wavelet Method highlight the consistency of near-inertial variability observed in the drifter records with the subinertial geostrophic activity computed with altimetry data.

  1. Inertial objects in complex flows

    Science.gov (United States)

    Syed, Rayhan; Ho, George; Cavas, Samuel; Bao, Jialun; Yecko, Philip

    2017-11-01

    Chaotic Advection and Finite Time Lyapunov Exponents both describe stirring and transport in complex and time-dependent flows, but FTLE analysis has been largely limited to either purely kinematic flow models or high Reynolds number flow field data. The neglect of dynamic effects in FTLE and Lagrangian Coherent Structure studies has stymied detailed information about the role of pressure, Coriolis effects and object inertia. We present results of laboratory and numerical experiments on time-dependent and multi-gyre Stokes flows. In the lab, a time-dependent effectively two-dimensional low Re flow is used to distinguish transport properties of passive tracer from those of small paramagnetic spheres. Companion results of FTLE calculations for inertial particles in a time-dependent multi-gyre flow are presented, illustrating the critical roles of density, Stokes number and Coriolis forces on their transport. Results of Direct Numerical Simulations of fully resolved inertial objects (spheroids) immersed in a three dimensional (ABC) flow show the role of shape and finite size in inertial transport at small finite Re. We acknowledge support of NSF DMS-1418956.

  2. Dynamic analysis of nonlinear behaviour in inertial actuators

    International Nuclear Information System (INIS)

    Borgo, M Dal; Tehrani, M Ghandchi; Elliott, S J

    2016-01-01

    Inertial actuators are devices typically used to generate the control force on a vibrating structure. Generally, an inertial actuator comprises a proof-mass suspended in a magnetic field. The inertial force due to the moving mass is used to produce the secondary force needed to control the vibration of the primary structure. Inertial actuators can show nonlinear behaviour, such as stroke saturation when driven at high input voltages. If the input voltage is beyond their limit, they can hit the end stop of the actuator casing and saturate. In this paper, the force generated by an inertial actuator is measured experimentally and numerical simulations of a linear piecewise stiffness model are carried out and compared with the results of analytical methods. First, a numerical model for a symmetric bilinear stiffness is derived and a parametric study is carried out to investigate the change of the end stop stiffness. In addition, the variation of the amplitude of the excitation is considered and a comparison is made with the analytical solution using the harmonic balance method. Finally, experimental measurements are carried out and the results are compared with simulated data to establish the accuracy of the model. (paper)

  3. Internal swells in the tropics: Near-inertial wave energy fluxes and dissipation during CINDY

    Science.gov (United States)

    Soares, S. M.; Natarov, A.; Richards, K. J.

    2016-05-01

    A developing MJO event in the tropical Indian Ocean triggered wind disturbances that generated inertial oscillations in the surface mixed layer. Subsequent radiation of near-inertial waves below the mixed layer produced strong turbulence in the pycnocline. Linear plane wave dynamics and spectral analysis are used to explain these observations, with the ultimate goal of estimating the wave energy flux in relation to both the energy input by the wind and the dissipation by turbulence. The results indicate that the wave packets carry approximately 30-40% of the wind input of inertial kinetic energy, and propagate in an environment conducive to the occurrence of a critical level set up by a combination of vertical gradients in background relative vorticity and Doppler shifting of wave frequency. Turbulent kinetic energy dissipation measurements demonstrate that the waves lose energy as they propagate in the transition layer as well as in the pycnocline, where approaching this critical level may have dissipated approximately 20% of the wave packet energy in a single event. Our analysis, therefore, supports the notion that appreciable amounts of wind-induced inertial kinetic energy escape the surface boundary layer into the interior. However, a large fraction of wave energy is dissipated within the pycnocline, limiting its penetration into the abyssal ocean.

  4. Conservation laws in baroclinic inertial-symmetric instabilities

    Science.gov (United States)

    Grisouard, Nicolas; Fox, Morgan B.; Nijjer, Japinder

    2017-04-01

    Submesoscale oceanic density fronts are structures in geostrophic and hydrostatic balance, but are more prone to instabilities than mesoscale flows. As a consequence, they are believed to play a large role in air-sea exchanges, near-surface turbulence and dissipation of kinetic energy of geostrophically and hydrostatically balanced flows. We will present two-dimensional (x, z) Boussinesq numerical experiments of submesoscale baroclinic fronts on the f-plane. Instabilities of the mixed inertial and symmetric types (the actual name varies across the literature) develop, with the absence of along-front variations prohibiting geostrophic baroclinic instabilities. Two new salient facts emerge. First, contrary to pure inertial and/or pure symmetric instability, the potential energy budget is affected, the mixed instability extracting significant available potential energy from the front and dissipating it locally. Second, in the submesoscale regime, the growth rate of this mixed instability is sufficiently large that significant radiation of near-inertial internal waves occurs. Although energetically small compared to e.g. local dissipation within the front, this process might be a significant source of near-inertial energy in the ocean.

  5. Commercial applications of inertial confinement fusion

    International Nuclear Information System (INIS)

    Booth, L.A.; Frank, T.G.

    1977-05-01

    This report describes the fundamentals of inertial-confinement fusion, some laser-fusion reactor (LFR) concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation. In addition, other commercial energy-related applications, such as the production of fissionable fuels, of synthetic hydrocarbon-based fuels, and of process heat for a variety of uses, as well as the environmental and safety aspects of fusion energy, are discussed. Finally, the requirements for commercialization of laser fusion technologies are described

  6. Are OPERA neutrinos faster than light because of non-inertial reference frames?

    Science.gov (United States)

    Germanà, C.

    2012-02-01

    Context. Recent results from the OPERA experiment reported a neutrino beam traveling faster than light. The challenging experiment measured the neutrino time of flight (TOF) over a baseline from the CERN to the Gran Sasso site, concluding that the neutrino beam arrives ~60 ns earlier than a light ray would do. Because the result, if confirmed, has an enormous impact on science, it might be worth double-checking the time definitions with respect to the non-inertial system in which the neutrino travel time was measured. An observer with a clock measuring the proper time τ free of non-inertial effects is the one located at the solar system barycenter (SSB). Aims: Potential problems in the OPERA data analysis connected with the definition of the reference frame and time synchronization are emphasized. We aim to investigate the synchronization of non-inertial clocks on Earth by relating this time to the proper time of an inertial observer at SSB. Methods: The Tempo2 software was used to time-stamp events observed on the geoid with respect to the SSB inertial observer time. Results: Neutrino results from OPERA might carry the fingerprint of non-inertial effects because they are timed by terrestrial clocks. The CERN-Gran Sasso clock synchronization is accomplished by applying corrections that depend on special and general relativistic time dilation effects at the clocks, depending on the position of the clocks in the solar system gravitational well. As a consequence, TOF distributions are centered on values shorter by tens of nanoseconds than expected, integrating over a period from April to December, longer if otherwise. It is worth remarking that the OPERA runs have always been carried out from April/May to November. Conclusions: If the analysis by Tempo2 holds for the OPERA experiment, the excellent measurement by the OPERA collaboration will turn into a proof of the general relativity theory in a weak field approximation. The analysis presented here is falsifiable

  7. Industry's role in inertial fusion

    International Nuclear Information System (INIS)

    Glass, A.J.

    1983-01-01

    This paper is an address to the Tenth Symposium on Fusion Engineering. The speaker first addressed the subject of industry's role in inertial fusion three years earlier in 1980, outlining programs that included participation in the Shiva construction project, and the industrial participants' program set up in the laser fusion program to bring industrial scientists and engineers into the laboratory to work on laser fusion. The speaker is now the president of KMS Fusion, Inc., the primary industrial participant in the inertial fusion program. The outlook for fusion energy and the attitude of the federal government toward the fusion program is discussed

  8. The Relation between Navigation Strategy and Associative Memory: An Individual Differences Approach

    Science.gov (United States)

    Ngo, Chi T.; Weisberg, Steven M.; Newcombe, Nora S.; Olson, Ingrid R.

    2016-01-01

    Although the hippocampus is implicated in both spatial navigation and associative memory, very little is known about whether individual differences in the 2 domains covary. People who prefer to navigate using a hippocampal-dependent place strategy may show better performance on associative memory tasks than those who prefer a caudate-dependent…

  9. Time and Motion Study of a Community Patient Navigator

    Directory of Open Access Journals (Sweden)

    Sara S. Phillips

    2014-04-01

    Full Text Available Research on patient navigation has focused on validating the utility of navigators by defining their roles and analyzing their effects on patient outcomes, patient satisfaction, and cost effectiveness. Patient navigators are increasingly used outside the research context, and their roles without research responsibilities may look very different. This pilot study captured the activities of a community patient navigator for uninsured women with a positive screening test for breast cancer, using a time and motion approach over a period of three days. We followed the actions of this navigator minute by minute to assess the relative ratios of actions performed and to identify areas for time efficiency improvement to increase direct time with patients. This novel approach depicts the duties of a community patient navigator no longer fettered by navigation logs, research team meetings, surveys, and the consent process. We found that the community patient navigator was able to spend more time with patients in the clinical context relative to performing paperwork or logging communication with patients as a result of her lack of research responsibilities. By illuminating how community patient navigation functions as separate from the research setting, our results will inform future hiring and training of community patient navigators, system design and operations for improving the efficiency and efficacy of navigators, and our understanding of what community patient navigators do in the absence of research responsibilities.

  10. Inertial effects on heat transfer in superhydrophobic microchannels

    Science.gov (United States)

    Cowley, Adam; Maynes, Daniel; Crockett, Julie; Iverson, Brian; BYU Fluids Team

    2015-11-01

    This work numerically studies the effects of inertia on thermal transport in superhydrophbic microchannels. An infinite parallel plate channel comprised of structured superhydrophbic walls is considered. The structure of the superhydrophobic surfaces consists of square pillars organized in a square array aligned with the flow direction. Laminar, fully developed flow is explored. The flow is assumed to be non-wetting and have an idealized flat meniscus. A shear-free, adiabatic boundary condition is used at the liquid/gas interface, while a no-slip, constant heat flux condition is used at the liquid/solid interface. A wide range of Peclet numbers, relative channel spacing distances, and relative pillar sizes are considered. Results are presented in terms of Poiseuille number, Nusselt number, hydrodynamic slip length, and temperature jump length. Interestingly, the thermal transport is varied only slightly by inertial effects for a wide range of parameters explored and compares well with other analytical and numerical work that assumed Stokes flow. It is only for very small relative channel spacing and large Peclet number that inertial effects exert significant influence. Overall, the heat transfer is reduced for the superhydrophbic channels in comparison to classic smooth walled channels. This research was supported by the National Science Foundation (NSF) - United States (Grant No. CBET-1235881).

  11. Inertial range spectrum of field-aligned whistler turbulence

    DEFF Research Database (Denmark)

    Dwivedi, Navin Kumar; Singh, Shobhana

    2017-01-01

    the background magnetic field is exploited to derive the inertial range scaling laws corresponding to the electric field and magnetic field fluctuations. The model is based on the concept of Iroshnikov-Kraichnan inertial range magnetohydrodynamic turbulence. The present phenomenological turbulence scaling model...

  12. An on-line monitoring system for navigation equipment

    Science.gov (United States)

    Wang, Bo; Yang, Ping; Liu, Jing; Yang, Zhengbo; Liang, Fei

    2017-10-01

    Civil air navigation equipment is the most important infrastructure of Civil Aviation, which is closely related to flight safety. In addition to regular flight inspection, navigation equipment's patrol measuring, maintenance measuring, running measuring under special weather conditions are the important means of ensuring aviation flight safety. According to the safety maintenance requirements of Civil Aviation Air Traffic Control navigation equipment, this paper developed one on-line monitoring system with independent intellectual property rights for navigation equipment, the system breakthroughs the key technologies of measuring navigation equipment on-line including Instrument Landing System (ILS) and VHF Omni-directional Range (VOR), which also meets the requirements of navigation equipment ground measurement set by the ICAO DOC 8071, it provides technical means of the ground on-line measurement for navigation equipment, improves the safety of navigation equipment operation, and reduces the impact of measuring navigation equipment on airport operation.

  13. Dispersion of (light) inertial particles in stratified turbulence

    NARCIS (Netherlands)

    van Aartrijk, M.; Clercx, H.J.H.; Armenio, Vincenzo; Geurts, Bernardus J.; Fröhlich, Jochen

    2010-01-01

    We present a brief overview of a numerical study of the dispersion of particles in stably stratified turbulence. Three types of particles arc examined: fluid particles, light inertial particles ($\\rho_p/\\rho_f = \\mathcal{O}(1)$) and heavy inertial particles ($\\rho_p/\\rho_f \\gg 1$). Stratification

  14. The serious game HearHere for elderly with age-related vision loss : effectively training the skill to use auditory information for navigation

    NARCIS (Netherlands)

    Hartendorp, Mijk; Braad, Eelco; Van Sloten, Janke; Steyvers, Frank; Pinkster, Christiaan

    2017-01-01

    More and more people suffer from age-related eye conditions, e.g. Macular Degeneration. One of the problems experienced by these people is navigation. A strategy shown by many juvenile visually impaired persons (VIPs) is using auditory information for navigation. Therefore, it is important to train

  15. 77 FR 42704 - 36(b)(1) Arms Sales Notification

    Science.gov (United States)

    2012-07-20

    ... Systems with Inertial Navigation, 30 30mm Automatic Chain Guns, 8 Aircraft Ground Power Units, 52 AN/AVS-6... Inertial Navigation, 30 30mm Automatic Chain Guns, 8 Aircraft Ground Power Units, 52 AN/AVS-6 Night Vision...

  16. The vacuum in non-inertial systems

    International Nuclear Information System (INIS)

    Soto, F.; Cocho, G.; Villarreal, C.; Hacyan, S.; Sarmiento, A.

    1987-01-01

    A brief presentation of the attemps made by our group on understanding the physics of the thermal effects appearing in quantum field theory in the non-inertial frames or in curved spacetime is made. The idea of the vacuum field being directly responsible for the thermal effects in non-inertial frames is introduced and explored; the thermal distributions observed from a non-inertial frame are due to the Doppler distortion undergone by the vacuum field. To support this idea we use the results obtained by T.H. Boyer in stochastic field theory, and further on we develop a formalism which leads to consistent results. We also show that the thermal character of the denominators in the distributions, appearing in quantum field theory in non-inertia frames, is directly linked to the discreteness originated by confining the space where the field is being quantized. This confinement implies the absence of some long wave modes, which in turn implies a modification of the states density in phase space. (author)

  17. A computational platform for modeling and simulation of pipeline georeferencing systems

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, A.G.; Pellanda, P.C.; Gois, J.A. [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Roquette, P.; Pinto, M.; Durao, R. [Instituto de Pesquisas da Marinha (IPqM), Rio de Janeiro, RJ (Brazil); Silva, M.S.V.; Martins, W.F.; Camillo, L.M.; Sacsa, R.P.; Madeira, B. [Ministerio de Ciencia e Tecnologia (CT-PETRO2006MCT), Brasilia, DF (Brazil). Financiadora de Estudos e Projetos (FINEP). Plano Nacional de Ciencia e Tecnologia do Setor Petroleo e Gas Natural

    2009-07-01

    This work presents a computational platform for modeling and simulation of pipeline geo referencing systems, which was developed based on typical pipeline characteristics, on the dynamical modeling of Pipeline Inspection Gauge (PIG) and on the analysis and implementation of an inertial navigation algorithm. The software environment of PIG trajectory simulation and navigation allows the user, through a friendly interface, to carry-out evaluation tests of the inertial navigation system under different scenarios. Therefore, it is possible to define the required specifications of the pipeline geo referencing system components, such as: required precision of inertial sensors, characteristics of the navigation auxiliary system (GPS surveyed control points, odometers etc.), pipeline construction information to be considered in order to improve the trajectory estimation precision, and the signal processing techniques more suitable for the treatment of inertial sensors data. The simulation results are analyzed through the evaluation of several performance metrics usually considered in inertial navigation applications, and 2D and 3D plots of trajectory estimation error and of recovered trajectory in the three coordinates are made available to the user. This paper presents the simulation platform and its constituting modules and defines their functional characteristics and interrelationships.(author)

  18. The technology benefits of inertial confinement fusion research

    International Nuclear Information System (INIS)

    Powell, H.T.

    1999-01-01

    The development and demonstration of inertial fusion is incredibly challenging because it requires simultaneously controlling and precisely measuring parameters at extreme values in energy, space, and time. The challenges range from building megajoule (10 6 J) drivers that perform with percent-level precision to fabricating targets with submicron specifications to measuring target performance at micron scale (10 -6 m) with picosecond (10 -12 s) time resolution. Over the past 30 years in attempting to meet this challenge, the inertial fusion community around the world has invented new technologies in lasers, particle beams, pulse power drivers, diagnostics, target fabrication, and other areas. These technologies have found applications in diverse fields of industry and science. Moreover, simply assembling the teams with the background, experience, and personal drive to meet the challenging requirements of inertial fusion has led to spin-offs in unexpected directions, for example, in laser isotope separation, extreme ultraviolet lithography for microelectronics, compact and inexpensive radars, advanced laser materials processing, and medical technology. The experience of inertial fusion research and development of spinning off technologies has not been unique to any one laboratory or country but has been similar in main research centers in the US, Europe, and Japan. Strengthening and broadening the inertial fusion effort to focus on creating a new source of electrical power (inertial fusion energy [IFE]) that is economically competitive and environmentally benign will yield rich rewards in technology spin-offs. The additional challenges presented by IFE are to make drivers affordable, efficient, and long-lived while operating at a repetition rate of a few Hertz; to make fusion targets that perform consistently at high-fusion yield; and to create target chambers that can repetitively handle greater than 100-MJ yields while producing minimal radioactive by

  19. Uticaj mesta ugradnje inercijalnog mernog bloka i akcelerometara na grešku u određivanju pozicije aviona / Size effect of the inertial measurement unit and inside IMU accelerometers on aircraft position error

    Directory of Open Access Journals (Sweden)

    Slobodan Janićijević

    2003-03-01

    Full Text Available U ovom članku analiziran je uticaj mesta ugradnje inercijalnog mernog bloka (IMB u avionu i mesta ugradnje akcelerometara u IMB na tačnost određivanja pozicije pomoću bes-platformskog inercijalnog navigacijskog sistema (BINS. Pokazano je da se ovi uticaji ne mogu uvek zanemariti. Izračunata je ukupna greška u određivanju pozicije aviona ako se IMB ugrađuje van centra rotacije aviona, a akcelerometri van centra IMB. Predložena je optimalna orijentacija akcelerometara u IMB-u, kako bi se minimizirao uticaj ugradnje akcelerometara van centra IMB na tačnost određivanja pozicije aviona. Predložen je i način kompenzacije greške. / This paper analyzes the mounting offset size effect of the inertial measurement unit (IMU in aircraft and accelerometers mounting offset size effect in the IMU on the accuracy of strap down inertial navigation system (SDINS. It is also shown that these effects cannot be always neglected. The total size effect error for the IMU has been the computed. An accelerometers optimum orientation inside the IMU has been proposed to minimize size effects on the accuracy of navigation parameters. A manner to compensate these size effects has been proposed as well.

  20. Navigating ‘riskscapes’

    DEFF Research Database (Denmark)

    Gee, Stephanie; Skovdal, Morten

    2017-01-01

    This paper draws on interview data to examine how international health care workers navigated risk during the unprecedented Ebola outbreak in West Africa. It identifies the importance of place in risk perception, including how different spatial localities give rise to different feelings of threat...... or safety, some from the construction of physical boundaries, and others mediated through aspects of social relations, such as trust, communication and team dynamics. Referring to these spatial localities as ‘riskscapes’, the paper calls for greater recognition of the role of place in understanding risk...... perception, and how people navigate risk....

  1. Sex differences in navigation strategy and efficiency.

    Science.gov (United States)

    Boone, Alexander P; Gong, Xinyi; Hegarty, Mary

    2018-05-22

    Research on human navigation has indicated that males and females differ in self-reported navigation strategy as well as objective measures of navigation efficiency. In two experiments, we investigated sex differences in navigation strategy and efficiency using an objective measure of strategy, the dual-solution paradigm (DSP; Marchette, Bakker, & Shelton, 2011). Although navigation by shortcuts and learned routes were the primary strategies used in both experiments, as in previous research on the DSP, individuals also utilized route reversals and sometimes found the goal location as a result of wandering. Importantly, sex differences were found in measures of both route selection and navigation efficiency. In particular, males were more likely to take shortcuts and reached their goal location faster than females, while females were more likely to follow learned routes and wander. Self-report measures of strategy were only weakly correlated with objective measures of strategy, casting doubt on their usefulness. This research indicates that the sex difference in navigation efficiency is large, and only partially related to an individual's navigation strategy as measured by the dual-solution paradigm.

  2. The Performance Analysis of a Real-Time Integrated INS/GPS Vehicle Navigation System with Abnormal GPS Measurement Elimination

    Directory of Open Access Journals (Sweden)

    Jhen-Kai Liao

    2013-08-01

    Full Text Available The integration of an Inertial Navigation System (INS and the Global Positioning System (GPS is common in mobile mapping and navigation applications to seamlessly determine the position, velocity, and orientation of the mobile platform. In most INS/GPS integrated architectures, the GPS is considered to be an accurate reference with which to correct for the systematic errors of the inertial sensors, which are composed of biases, scale factors and drift. However, the GPS receiver may produce abnormal pseudo-range errors mainly caused by ionospheric delay, tropospheric delay and the multipath effect. These errors degrade the overall position accuracy of an integrated system that uses conventional INS/GPS integration strategies such as loosely coupled (LC and tightly coupled (TC schemes. Conventional tightly coupled INS/GPS integration schemes apply the Klobuchar model and the Hopfield model to reduce pseudo-range delays caused by ionospheric delay and tropospheric delay, respectively, but do not address the multipath problem. However, the multipath effect (from reflected GPS signals affects the position error far more significantly in a consumer-grade GPS receiver than in an expensive, geodetic-grade GPS receiver. To avoid this problem, a new integrated INS/GPS architecture is proposed. The proposed method is described and applied in a real-time integrated system with two integration strategies, namely, loosely coupled and tightly coupled schemes, respectively. To verify the effectiveness of the proposed method, field tests with various scenarios are conducted and the results are compared with a reliable reference system.

  3. Influence of gravity on inertial particle clustering in turbulence

    Science.gov (United States)

    Lu, J.; Nordsiek, H.; Saw, E. W.; Fugal, J. P.; Shaw, R. A.

    2008-11-01

    We report results from experiments aimed at studying inertial particles in homogeneous, isotropic turbulence, under the influence of gravitational settling. Conditions are selected to investigate the transition from negligible role of gravity to gravitationally dominated, as is expected to occur in atmospheric clouds. We measure droplet clustering, relative velocities, and the distribution of collision angles in this range. The experiments are carried out in a laboratory chamber with nearly homogeneous, isotropic turbulence. The turbulence is characterized using LDV and 2-frame holographic particle tracking velocimetry. We seed the flow with particles of various Stokes and Froude numbers and use digital holography to obtain 3D particle positions and velocities. From particle positions, we investigate the impact of gravity on inertial clustering through the calculation of the radial distribution function and we compare to computational results and other recent experiments.

  4. Accelerators for heavy ion inertial fusion: Progress and plans

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Friedman, A.; Herrmannsfeldt, W.B.

    1994-08-01

    The Heavy Ion Inertial Fusion Program is the principal part of the Inertial Fusion Energy Program in the Office of Fusion Energy of the U.S. Department of Energy. The emphasis of the Heavy Ion Program is the development of accelerators for fusion power production. Target physics research and some elements of fusion chamber development are supported in the much larger Inertial Confinement Fusion Program, a dual purpose (defense and energy) program in the Defense Programs part of the Department of Energy. The accelerator research program will establish feasibility through a sequence of scaled experiments that will demonstrate key physics and engineering issues at low cost compared to other fusion programs. This paper discusses progress in the accelerator program and outlines how the planned research will address the key economic issues of inertial fusion energy

  5. An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation

    Science.gov (United States)

    He, Changyu; Kazanzides, Peter; Sen, Hasan Tutkun; Kim, Sungmin; Liu, Yue

    2015-01-01

    Optical tracking provides relatively high accuracy over a large workspace but requires line-of-sight between the camera and the markers, which may be difficult to maintain in actual applications. In contrast, inertial sensing does not require line-of-sight but is subject to drift, which may cause large cumulative errors, especially during the measurement of position. To handle cases where some or all of the markers are occluded, this paper proposes an inertial and optical sensor fusion approach in which the bias of the inertial sensors is estimated when the optical tracker provides full six degree-of-freedom (6-DOF) pose information. As long as the position of at least one marker can be tracked by the optical system, the 3-DOF position can be combined with the orientation estimated from the inertial measurements to recover the full 6-DOF pose information. When all the markers are occluded, the position tracking relies on the inertial sensors that are bias-corrected by the optical tracking system. Experiments are performed with an augmented reality head-mounted display (ARHMD) that integrates an optical tracking system (OTS) and inertial measurement unit (IMU). Experimental results show that under partial occlusion conditions, the root mean square errors (RMSE) of orientation and position are 0.04° and 0.134 mm, and under total occlusion conditions for 1 s, the orientation and position RMSE are 0.022° and 0.22 mm, respectively. Thus, the proposed sensor fusion approach can provide reliable 6-DOF pose under long-term partial occlusion and short-term total occlusion conditions. PMID:26184191

  6. The Rayleigh-Taylor instability in inertial fusion, astrophysical plasma and flames

    International Nuclear Information System (INIS)

    Bychkov, V; Modestov, M; Akkerman, V; Eriksson, L-E

    2007-01-01

    Previous results are reviewed and new results are presented on the Rayleigh-Taylor instability in inertial confined fusion, flames and supernovae including gravitational and thermonuclear explosion mechanisms. The instability couples micro-scale plasma effects to large-scale hydrodynamic phenomena. In inertial fusion the instability reduces target compression. In supernovae the instability produces large-scale convection, which determines the fate of the star. The instability is often accompanied by mass flux through the unstable interface, which may have either a stabilizing or a destabilizing influence. Destabilization happens due to the Darrieus-Landau instability of a deflagration front. Still, it is unclear whether the instabilities lead to well-organized large-scale structures (bubbles) or to relatively isotropic turbulence (mixing layer)

  7. Work and Inertial Frames

    Science.gov (United States)

    Kaufman, Richard

    2017-12-01

    A fairly recent paper resolves a large discrepancy in the internal energy utilized to fire a cannon as calculated by two inertial observers. Earth and its small reaction velocity must be considered in the system so that the change in kinetic energy is calculated correctly. This paper uses a car in a similar scenario, but considers the work done by forces acting over distances. An analysis of the system must include all energy interactions, including the work done on the car and especially the (negative) work done on Earth in a moving reference frame. This shows the importance of considering the force on Earth and the distance Earth travels. For calculation of work in inertial reference frames, the center of mass perspective is shown to be useful. We also consider the energy requirements to efficiently accelerate a mass among interacting masses.

  8. Metrics for evaluating patient navigation during cancer diagnosis and treatment: crafting a policy-relevant research agenda for patient navigation in cancer care.

    Science.gov (United States)

    Guadagnolo, B Ashleigh; Dohan, Daniel; Raich, Peter

    2011-08-01

    Racial and ethnic minorities as well as other vulnerable populations experience disparate cancer-related health outcomes. Patient navigation is an emerging health care delivery innovation that offers promise in improving quality of cancer care delivery to these patients who experience unique health-access barriers. Metrics are needed to evaluate whether patient navigation can improve quality of care delivery, health outcomes, and overall value in health care during diagnosis and treatment of cancer. Information regarding the current state of the science examining patient navigation interventions was gathered via search of the published scientific literature. A focus group of providers, patient navigators, and health-policy experts was convened as part of the Patient Navigation Leadership Summit sponsored by the American Cancer Society. Key metrics were identified for assessing the efficacy of patient navigation in cancer diagnosis and treatment. Patient navigation data exist for all stages of cancer care; however, the literature is more robust for its implementation during prevention, screening, and early diagnostic workup of cancer. Relatively fewer data are reported for outcomes and efficacy of patient navigation during cancer treatment. Metrics are proposed for a policy-relevant research agenda to evaluate the efficacy of patient navigation in cancer diagnosis and treatment. Patient navigation is understudied with respect to its use in cancer diagnosis and treatment. Core metrics are defined to evaluate its efficacy in improving outcomes and mitigating health-access barriers. Copyright © 2011 American Cancer Society.

  9. Inertial fusion sciences and applications 99: state of the art 1999

    International Nuclear Information System (INIS)

    Labaune, Ch.; Hogan, W.J.; Tanaka, K.A.

    2000-01-01

    This book brings together the texts of the communications presented at the conference 'Inertial fusion sciences and applications' held in Paris in 1999. These proceedings are shared into five sessions: laser fusion physics, fusion with particle beams, fusion with implosions, inertial fusion energy, and experimental applications of inertial fusion. (J.S.)

  10. Development of a Web-Based Indoor Navigation System Using an Accelerometer and Gyroscope: A Case Study at The Faculty of Natural Sciences of Comenius University

    Science.gov (United States)

    Štefanička, Tomáš; Ďuračiová, Renata; Seres, Csaba

    2017-12-01

    As a complex of buildings, the Faculty of Natural Sciences of the Comenius University in Bratislava tends to be difficult to navigate in spite of its size. An indoor navigation application could potentially save a lot of time and frustration. There are currently numerous technologies used in indoor navigation systems. Some of them focus on a high degree of precision and require significant financial investment; others provide only static information about a current location. In this paper we focused on the determination of an approximate location using inertial measurement systems available on most smartphones, i.e., a gyroscope and an accelerometer. The actual position of the device was calculated using "a walk detection method" based on a delayed lack of motion. We have developed an indoor navigation application that relies solely on open source JavaScript libraries to visualize the interior of the building and calculate the shortest path utilizing Dijsktra's routing algorithm. The application logic is located on the client side, so the software is able to work offline. Our solution represents an accessible lowcost and platform-independent web application that can significantly improve navigation at the Faculty of Natural Sciences. Although our application has been developed on a specific building complex, it could be used in other interiors as well.

  11. Particle energization by inertial Alfven wave in auroral ionosphere

    Science.gov (United States)

    Kumar, S.

    2017-12-01

    The role of inertial Alfven wave in auroral acceleration region and in the inertial regime to energize the plasma particles is an interesting field and widely discussed observationally as well as theoretically in recent years. In this work, we present the density perturbations by inertial Alfvén wave (AW) in the auroral ionosphere. We obtain dynamical equations for inertial AW and fast mode of AW using two-fluid model and then solve them numerically in order to analyze the localized structures and cavity formation. The ponderomotive force due to the high frequency inertial AW changes the background density and is believed to be responsible for the wave localization or for the formation of density cavities in auroral ionosphere. These density cavities are believed to be the sites for particle energization. This perturbed density channel grow with time until the modulation instability acquires steady state. We find that the density cavities are accompanied by the high amplitude magnetic fields. The amplitude of the strongest density cavity is estimated as ˜ 0.26n0 (n0 is unperturbed plasma number density). The results presented here are found consistent with the observational studies using FAST spacecraft.

  12. Navigation in space by X-ray pulsars

    CERN Document Server

    Emadzadeh, Amir Abbas

    2011-01-01

    This book covers modeling of X-ray pulsar signals and explains how X-ray pulsar signals can be used to solve the relative navigation problem. It formulates the problem, proposes a recursive solution and analyzes different aspects of the navigation system.

  13. Interplanetary propulsion using inertial fusion

    International Nuclear Information System (INIS)

    Orth, C.D.; Hogan, W.J.; Hoffman, N.; Murray, K.; Klein, G.; Diaz, F.C.

    1987-01-01

    Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short-duration manned-mission performance exceeding other technologies. We are conducting a study to assess the systems aspects of inertial fusion as applied to such missions, based on the conceptual engine design of Hyde (1983) we describe the required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel. We give preliminary design details for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days. Specific mission performance results will be published elsewhere, after the study has been completed

  14. Encoding and retrieval of landmark-related spatial cues during navigation: an fMRI study.

    Science.gov (United States)

    Wegman, Joost; Tyborowska, Anna; Janzen, Gabriele

    2014-07-01

    To successfully navigate, humans can use different cues from their surroundings. Learning locations in an environment can be supported by parallel subsystems in the hippocampus and the striatum. We used fMRI to look at differences in the use of object-related spatial cues while 47 participants actively navigated in an open-field virtual environment. In each trial, participants navigated toward a target object. During encoding, three positional cues (columns) with directional cues (shadows) were available. During retrieval, the removed target had to be replaced while either two objects without shadows (objects trial) or one object with a shadow (shadow trial) were available. Participants were informed in blocks about which type of retrieval trial was most likely to occur, thereby modulating expectations of having to rely on a single landmark or on a configuration of landmarks. How the spatial learning systems in the hippocampus and caudate nucleus were involved in these landmark-based encoding and retrieval processes were investigated. Landmark configurations can create a geometry similar to boundaries in an environment. It was found that the hippocampus was involved in encoding when relying on configurations of landmarks, whereas the caudate nucleus was involved in encoding when relying on single landmarks. This might suggest that the observed hippocampal activation for configurations of objects is linked to a spatial representation observed with environmental boundaries. Retrieval based on configurations of landmarks activated regions associated with the spatial updation of object locations for reorientation. When only a single landmark was available during retrieval, regions associated with updating the location of oneself were activated. There was also evidence that good between-participant performance was predicted by right hippocampal activation. This study therefore sheds light on how the brain deals with changing demands on spatial processing related purely

  15. Pedestrian Dead Reckoning Navigation with the Help of A⁎-Based Routing Graphs in Large Unconstrained Spaces

    Directory of Open Access Journals (Sweden)

    F. Taia Alaoui

    2017-01-01

    Full Text Available An A⁎-based routing graph is proposed to assist PDR indoor and outdoor navigation with handheld devices. Measurements are provided by inertial and magnetic sensors together with a GNSS receiver. The novelty of this work lies in providing a realistic motion support that mitigates the absence of obstacles and enables the calibration of the PDR model even in large spaces where GNSS signal is unavailable. This motion support is exploited for both predicting positions and updating them using a particle filter. The navigation network is used to correct for the gyro drift, to adjust the step length model and to assess heading misalignment between the pedestrian’s walking direction and the pointing direction of the handheld device. Several datasets have been tested and results show that the proposed model ensures a seamless transition between outdoor and indoor environments and improves the positioning accuracy. The drift is almost cancelled thanks to heading correction in contrast with a drift of 8% for the nonaided PDR approach. The mean error of filtered positions ranges from 3 to 5 m.

  16. Navigating on handheld displays: Dynamic versus Static Keyhole Navigation

    NARCIS (Netherlands)

    Mehra, S.; Werkhoven, P.; Worring, M.

    2006-01-01

    Handheld displays leave little space for the visualization and navigation of spatial layouts representing rich information spaces. The most common navigation method for handheld displays is static peephole navigation: The peephole is static and we move the spatial layout behind it (scrolling). A

  17. Internal wave mixing in the Baltic Sea: Near-inertial waves in the absence of tides

    Science.gov (United States)

    van der Lee, E. M.; Umlauf, L.

    2011-10-01

    The dynamics of near-inertial motions, and their relation to mixing, is investigated here with an extensive data set, including turbulence and high-resolution velocity observations from two cruises conducted in 2008 (summer) and 2010 (winter) in the Bornholm Basin of the Baltic Sea. In the absence of tides, it is found that the basin-scale energetics are governed by inertial oscillations and low-mode near-inertial wave motions that are generated near the lateral slopes of the basin. These motions are shown to be associated with persistent narrow shear-bands, strongly correlated with bands of enhanced dissipation rates that are the major source of mixing inside the permanent halocline of the basin. In spite of different stratification, near-inertial wave structure, and atmospheric forcing during summer and winter conditions, respectively, the observed dissipation rates were found to scale with local shear and stratification in a nearly identical way. This scaling was different from the Gregg-Henyey-type models used for the open ocean, but largely consistent with the MacKinnon-Gregg scaling developed for the continental shelf.

  18. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-01-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion-source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at. (Auth.)

  19. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-07-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at

  20. A Study on the Storage Reliability of LSINS Based on Step-stress Accelerated Life Test

    Directory of Open Access Journals (Sweden)

    Teng Fei

    2015-01-01

    Full Text Available Based on the step-stress accelerated life test and the laser strap-down inertial navigation system, this paper studies the accelerated life model and the test method, provides the likelihood function, the likelihood equation and the two-order derivative when the stress level is k, evaluates the effectiveness of the method with the simulation test model established by MATLAB, applies the research findings in the storage reliability study of the XX laser strap-down inertial navigation system, and puts forward an effective evaluation method of the storage life of the inertial navigation system.

  1. IceBridge IMU L0 Raw Inertial Measurement Unit Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA IceBridge IMU L0 Raw Inertial Measurement Unit Data (IPUTI0) data set contains Inertial Measurement Unit (IMU) readings, including latitude, longitude,...

  2. Inertial Waves and Steady Flows in a Liquid Filled Librating Cylinder

    Science.gov (United States)

    Subbotin, Stanislav; Dyakova, Veronika

    2018-05-01

    The fluid flow in a non-uniformly rotating (librating) cylinder about a horizontal axis is experimentally studied. In the absence of librations the fluid performs a solid-body rotation together with the cavity. Librations lead to the appearance of steady zonal flow in the whole cylinder and the intensive steady toroidal flows near the cavity corners. If the frequency of librations is twice lower than the mean rotation rate the inertial waves are excited. The oscillating motion associated with the propagation of inertial wave in the fluid bulk leads to the appearance of an additional steady flow in the Stokes boundary layers on the cavity side wall. In this case the heavy particles of the visualizer are assembled on the side wall into ring structures. The patterns are determined by the structure of steady flow, which in turn depends on the number of reflections of inertial wave beams from the cavity side wall. For some frequencies, inertial waves experience spatial resonance, resulting in inertial modes, which are eigenmodes of the cavity geometry. The resonance of the inertial modes modifies the steady flow structure close to the boundary layer that is manifested in the direct rebuilding of patterns. It is shown that the intensity of zonal flow, as well as the intensity of steady flows excited by inertial waves, is proportional to the square of the amplitude of librations.

  3. 22 CFR 401.25 - Government brief regarding navigable waters.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Government brief regarding navigable waters. 401... PROCEDURE Applications § 401.25 Government brief regarding navigable waters. When in the opinion of the Commission it is desirable that a decision should be rendered which affects navigable waters in a manner or...

  4. Inertial effects in laser-driven ablation

    International Nuclear Information System (INIS)

    Harrach, R.J.; Szeoke, A.; Howard, W.M.

    1983-01-01

    The gasdynamic partial differential equations (PDE's) governing the motion of an ablatively accelerated target (rocket) contain an inertial force term that arises from acceleration of the reference frame in which the PDE's are written. We give a simple, intuitive description of this effect, and estimate its magnitude and parametric dependences by means of approximate analytical formulas inferred from our computer hydrocode calculations. Often this inertial term is negligible, but for problems in the areas of laser fusion and laser equation of state studies we find that it can substantially reduce the attainable hydrodynamic efficiency of acceleration and implosion

  5. Active Vibration Isolation Devices with Inertial Servo Actuators

    Science.gov (United States)

    Melik-Shakhnazarov, V. A.; Strelov, V. I.; Sofiyanchuk, D. V.; Tregubenko, A. A.

    2018-03-01

    The use of active vibration isolation devices (AVIDs) in aerospace engineering is subject to the following restrictions. First, the volume for installing additional devices is always limited in instrument racks and compartments. Secondly, in many cases, it is impossible to add supports for servo actuators for fundamental or design considerations. In the paper, it has been shown that this problem can be solved if the inertial servo actuators are used in AVIDs instead of reference actuators. A transfer function has been theoretically calculated for an AVID controlled by inertial actuators. It has been shown that the volume of a six-mode single-housing AVID with inertial actuators can be 2-2.5 times smaller than that of devices with support actuators.

  6. Inertial forces and the foundations of optical geometry

    International Nuclear Information System (INIS)

    Jonsson, Rickard

    2006-01-01

    Assuming a general timelike congruence of worldlines as a reference frame, we derive a covariant general formalism of inertial forces in general relativity. Inspired by the works of Abramowicz et al (see e.g. Abramowicz and Lasota 1997 Class. Quantum Grav. 14 A23-30), we also study conformal rescalings of spacetime and investigate how these affect the inertial force formalism. While many ways of describing spatial curvature of a trajectory have been discussed in papers prior to this, one particular prescription (which differs from the standard projected curvature when the reference congruence is shearing), appears novel. For the particular case of a hypersurface-forming congruence, using a suitable rescaling of spacetime, we show that a geodesic photon always follows a line that is spatially straight with respect to the new curvature measure. This fact is intimately connected to Fermat's principle, and allows for a certain generalization of the optical geometry as will be further pursued in a companion paper (Jonsson and Westman 2006 Class. Quantum Grav. 23 61). For the particular case when the shear tensor vanishes, we present the inertial force equation in a three-dimensional form (using the bold-face vector notation), and note how similar it is to its Newtonian counterpart. From the spatial curvature measures that we introduce, we derive corresponding covariant differentiations of a vector defined along a spacetime trajectory. This allows us to connect the formalism of this paper to that of Jantzen and co-workers (see e.g. Bini et al 1997 Int. J. Mod. Phys. D 6 143-98)

  7. A flexible cell concentrator using inertial focusing.

    Science.gov (United States)

    Tu, Chunglong; Zhou, Jian; Liang, Yitao; Huang, Bobo; Fang, Yifeng; Liang, Xiao; Ye, Xuesong

    2017-09-11

    Cell concentration adjustment is intensively implemented routinely both in research and clinical laboratories. Centrifuge is the most prevalent technique for tuning biosample concentration. But it suffers from a number of drawbacks, such as requirement of experienced operator, high cost, low resolution, variable reproducibility and induced damage to sample. Herein we report on a cost-efficient alternative using inertial microfluidics. While the majority of existing literatures concentrate on inertial focusing itself, we identify the substantial role of the outlet system played in the device performance that has long been underestimated. The resistances of the outlets virtually involve in defining the cutoff size of a given inertial filtration channel. Following the comprehensive exploration of the influence of outlet system, we designed an inertial device with selectable outlets. Using both commercial microparticles and cultured Hep G2 cells, we have successfully demonstrated the automated concentration modification and observed several key advantages of our device as compared with conventional centrifuge, such as significantly reduced cell loss (only 4.2% vs. ~40% of centrifuge), better preservation of cell viability and less processing time as well as the increased reproducibility due to absence of manual operation. Furthermore, our device shows high effectiveness for concentrated sample (e.g., 1.8 × 10 6 cells/ml) as well. We envision its promising applications in the circumstance where repetitive sample preparation is intensely employed.

  8. Time-domain representation of frequency dependent inertial forces on offshore structures

    DEFF Research Database (Denmark)

    Krenk, Steen

    2013-01-01

    dependence is then approximated by a rational function, corresponding to a set of ordinary differential equations in the time domain. The MacCamy-Fuchs solution leads to a representation of the inertial force coefficient as a complex function with argument mainly corresponding to a 'phase lead', in contrast...... history of the inertial force is determined by processing the stable part of the transformation by a forward time integration, followed by an integration in the negative time-direction to obtain the final inertial force time history. The differential equations of the local inertial force at a cross......The inertial wave force on a vertical cylinder decreases with decreasing wave length, when the wave length is less than about six times the diameter of the diameter of the cylinder. In structures with a largediameter component like mono-towers the resonance frequency of the structure is typically...

  9. A novel smart navigation system for intramedullary nailing in orthopedic surgery.

    Directory of Open Access Journals (Sweden)

    Jaesuk Choi

    Full Text Available This paper proposes a novel smart surgical navigation system for intramedullary nailing in orthopedic surgery. Using a handle-integrated laser guidance module, the system can target a drill insertion point onto skin, indicating an accurate target position to perpendicularly access an invisible distal hole. The proposed handle-integration-based fixation of the laser guidance module precisely defines the relative position of the module with respect to the distal hole. Consequently, unlike conventional systems, the proposed system can indicate the target insertion point without any help from bulky and costly external position-tracking equipment that is usually required for compensating disturbances generated by external impacts. After insertion, a correct drilling direction toward the distal hole is guided by real-time drilling angle measurement modules-one integrated with the nail handle and the other with the drill body. Each module contains a 9-axis inertial sensor and a Bluetooth communication device. These two modules work together to provide real-time drilling angle data, allowing calculation of the directional error toward the center of the distal hole in real time. The proposed system removes the need for fluoroscopy and provides a compact and cost-effective solution compared with conventional systems.

  10. Are the deficits in navigational abilities present in the Williams syndrome related to deficits in the backward inhibition?

    Directory of Open Access Journals (Sweden)

    Francesca eFoti

    2015-03-01

    Full Text Available Williams syndrome (WS is associated with a distinct profile of relatively proficient skills within the verbal domain compared to the severe impairment of visuo-spatial processing. Abnormalities in executive functions and deficits in planning ability and spatial working memory have been described. However, to date little is known about the influence of executive function deficits on navigational abilities in WS. This study aimed at analyzing in WS individuals a specific executive function, the backward inhibition (BI that allows individuals to flexibly adapt to continuously changing environments. A group of WS individuals and a mental age- and gender-matched group of typically developing (TD children were subjected to three task-switching experiments requiring visuospatial or verbal material to be processed. Results showed that WS individuals exhibited clear BI deficits during visuospatial task-switching paradigms and normal BI effect during verbal task-switching paradigm. Overall, the present results suggest that the BI involvement in updating environment representations during navigation may influence WS navigational abilities.

  11. Application of X-Ray Pulsar Navigation: A Characterization of the Earth Orbit Trade Space

    Science.gov (United States)

    Yu, Wayne Hong

    2016-01-01

    The potential for pulsars as a navigation source has been studied since their discovery in 1967. X-ray pulsar navigation (XNAV) is a celestial navigation system that uses the consistent timing nature of x-ray photons from millisecond pulsars (MSP) to perform space navigation. By comparing the detected arrival of x-ray photons to a reference database of expected pulsar light-curve timing models, one can infer a range and range rate measurement based on light time delay. Much of the challenge of XNAV comes from the faint signal, availability, and distant nature of pulsars. This is a study of potential pulsar XNAV measurements to measure extended Kalman filter (EKF) tracking performance with a wide trade space of bounded Earth orbits, using a simulation of existing x-ray detector space hardware. An example of an x-ray detector for XNAV is the NASA Station Explorer for X-ray Timing and Navigation (SEXTANT) mission, a technology demonstration of XNAV set to perform on the International Space Station (ISS) in late 2016early 2017. XNAV hardware implementation is driven by trajectory and environmental influences which add noise to the x-ray pulse signal. In a closed Earth orbit, the radiation environment can exponentially increase the signal noise from x-ray pulsar sources, decreasing the quality and frequency of measurements. The SEXTANT mission in particular improves on the signal to noise ratio by focusing an array of 56 x-ray silicon drift detectors at one pulsar target at a time. This reduces timing glitches and other timing noise contributions from ambient x-ray sources to within a 100 nanosecond resolution. This study also considers the SEXTANT scheduling challenges inherent in a single target observation. Finally, as the navigation sources are now relatively inertial targets, XNAV measurements are also subject to periods of occultation from various celestial bodies. This study focuses on the characterization of these drivers in closed Earth orbits and is not a

  12. Characteristics of inertial currents observed in offshore wave records

    Science.gov (United States)

    Gemmrich, J.; Garrett, C.

    2012-04-01

    It is well known that ambient currents can change the amplitude, direction and frequency of ocean surface waves. Regions with persistent strong currents, such as the Agulhas current off the east coast of South Africa, are known as areas of extreme waves, and wave height modulations of up to 50% observed in the shallow North Sea have been linked to tidal currents. In the open ocean, inertial currents, while intermittent, are typically the most energetic currents with speeds up to 0.5 m/s, and can interact with the surface wave field to create wave modulation, though this has not previously been reported. We use long records of significant wave heights from buoy observations in the northeast Pacific and show evidence of significant modulation at frequencies that are slightly higher than the local inertial frequency. Quite apart from the relevance to surface waves, this result can provide a consistent and independent measurement, over a wide range of latitudes, of the frequency blue-shift, the strength and intermittency of ocean surface inertial currents. Near-inertial waves constitute the most energetic portion of the internal wave band and play a significant role in deep ocean mixing. So far, observational data on near-surface inertial currents has tended to come from short records that do not permit the reliable determination of the frequency blue-shift, though this is an important factor affecting the energy flux from the surface into deeper waters. Long records from routine wave height observations are widely available and could help to shed new light globally on the blue-shift and on the characteristics of inertial currents.

  13. Status of inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1987-04-01

    The technology advancement to high-power beams has also given birth to new technologies. That class of Free Electron Lasers that employs rf linacs, synchrotrons, and storage rings - although the use the tools of High Energy Physics (HEP) - was developed well behind the kinetic energy frontier. The induction linac, however, is something of an exception; it was born directly from the needs of the magnetic fusion program, and was not motivated by a high-energy physics application. The heavy-ion approach to inertial fusion starts with picking from the rich menu of accelerator technologies those that have, ab initio, the essential ingredients needed for a power plant driver: multigap acceleration - which leads to reliability/lifetime; electrical efficiency; repetition rate; and beams that can be reliably focused over a suitably long distance. The report describes the programs underway in Heavy Ion Fusion Accelerator Research as well as listing expected advances in driver, target, and beam quality areas in the inertial fusion power program

  14. Mars rover local navigation and hazard avoidance

    Science.gov (United States)

    Wilcox, B. H.; Gennery, D. B.; Mishkin, A. H.

    1989-01-01

    A Mars rover sample return mission has been proposed for the late 1990's. Due to the long speed-of-light delays between earth and Mars, some autonomy on the rover is highly desirable. JPL has been conducting research in two possible modes of rover operation, Computer-Aided Remote Driving and Semiautonomous Navigation. A recently-completed research program used a half-scale testbed vehicle to explore several of the concepts in semiautonomous navigation. A new, full-scale vehicle with all computational and power resources on-board will be used in the coming year to demonstrate relatively fast semiautonomous navigation. The computational and power requirements for Mars rover local navigation and hazard avoidance are discussed.

  15. Coordinates system adapted to non-inertial frames in Minkowski spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Patricio; Dahia, F. [Universidade Federal de Campo Grande (UFCG), PB (Brazil)

    2011-07-01

    Full text: Static observers in curved spacetimes may interpret their proper acceleration as the opposite of a local gravitation Field (in the Newtonian sense). Based on this interpretation and the equivalence principle, we are led to investigate congruences of timelike curves in Minkowski spacetime whose acceleration field coincides with the acceleration field of static observers of curved spaces. The congruences give rise to non-inertial frames that are examined. Specifically we find, based on the locality principle, the embedding of simultaneity hypersurfaces adapted to the non-inertial frame in an explicit form for arbitrary acceleration fields. This work has motivated the fact that according to the principle of equivalence, it is expected that some physical features of gravity cam be mimicked by accelerated frames in Minkowski spacetime. The Rindler frame, which is adapted to a family of uniformly accelerated observers, is a famous example of a non-inertial system that simulates some characteristics of a black hole's geometry. This frame has been widely investigated in the literature and here we are going to start our discussion pointing out a peculiar aspect of the Rindler frame. It is related to the remarkable characteristic that the proper acceleration 'a' of Rindler observers, which is constant along their world lines, varies according to the law a = 1/ρ in relation to the observers, where ρ corresponds to the initial distance of the observers with respect to the origin of an inertial frame. This particular dependence of a ρ is connected to the behavior of static observers in Schwarzschild geometry in the vicinity of the horizon. Indeed, if ρ denotes the radial distance of an observer to the horizon, then, the proper acceleration the observers need in order to stay at rest in their position close to the horizon is proportional to 1/ρ. Therefore the Rindler congruence and the static Schwarzschild observers have the same acceleration field

  16. Coordinates system adapted to non-inertial frames in Minkowski spacetime

    International Nuclear Information System (INIS)

    Felix, Patricio; Dahia, F.

    2011-01-01

    Full text: Static observers in curved spacetimes may interpret their proper acceleration as the opposite of a local gravitation Field (in the Newtonian sense). Based on this interpretation and the equivalence principle, we are led to investigate congruences of timelike curves in Minkowski spacetime whose acceleration field coincides with the acceleration field of static observers of curved spaces. The congruences give rise to non-inertial frames that are examined. Specifically we find, based on the locality principle, the embedding of simultaneity hypersurfaces adapted to the non-inertial frame in an explicit form for arbitrary acceleration fields. This work has motivated the fact that according to the principle of equivalence, it is expected that some physical features of gravity cam be mimicked by accelerated frames in Minkowski spacetime. The Rindler frame, which is adapted to a family of uniformly accelerated observers, is a famous example of a non-inertial system that simulates some characteristics of a black hole's geometry. This frame has been widely investigated in the literature and here we are going to start our discussion pointing out a peculiar aspect of the Rindler frame. It is related to the remarkable characteristic that the proper acceleration 'a' of Rindler observers, which is constant along their world lines, varies according to the law a = 1/ρ in relation to the observers, where ρ corresponds to the initial distance of the observers with respect to the origin of an inertial frame. This particular dependence of a ρ is connected to the behavior of static observers in Schwarzschild geometry in the vicinity of the horizon. Indeed, if ρ denotes the radial distance of an observer to the horizon, then, the proper acceleration the observers need in order to stay at rest in their position close to the horizon is proportional to 1/ρ. Therefore the Rindler congruence and the static Schwarzschild observers have the same acceleration field a(ρ). However

  17. Performance-related increases in hippocampal N-acetylaspartate (NAA) induced by spatial navigation training are restricted to BDNF Val homozygotes.

    Science.gov (United States)

    Lövdén, Martin; Schaefer, Sabine; Noack, Hannes; Kanowski, Martin; Kaufmann, Jörn; Tempelmann, Claus; Bodammer, Nils Christian; Kühn, Simone; Heinze, Hans-Jochen; Lindenberger, Ulman; Düzel, Emrah; Bäckman, Lars

    2011-06-01

    Recent evidence indicates experience-dependent brain volume changes in humans, but the functional and histological nature of such changes is unknown. Here, we report that adult men performing a cognitively demanding spatial navigation task every other day over 4 months display increases in hippocampal N-acetylaspartate (NAA) as measured with magnetic resonance spectroscopy. Unlike measures of brain volume, changes in NAA are sensitive to metabolic and functional aspects of neural and glia tissue and unlikely to reflect changes in microvasculature. Training-induced changes in NAA were, however, absent in carriers of the Met substitution in the brain-derived neurotrophic factor (BDNF) gene, which is known to reduce activity-dependent secretion of BDNF. Among BDNF Val homozygotes, increases in NAA were strongly related to the degree of practice-related improvement in navigation performance and normalized to pretraining levels 4 months after the last training session. We conclude that changes in demands on spatial navigation can alter hippocampal NAA concentrations, confirming epidemiological studies suggesting that mental experience may have direct effects on neural integrity and cognitive performance. BDNF genotype moderates these plastic changes, in line with the contention that gene-context interactions shape the ontogeny of complex phenotypes.

  18. Fast inertial particle manipulation in oscillating flows

    Science.gov (United States)

    Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha

    2017-05-01

    It is demonstrated that micron-sized particles suspended in fluid near oscillating interfaces experience strong inertial displacements above and beyond the fluid streaming. Experiments with oscillating bubbles show rectified particle lift over extraordinarily short (millisecond) times. A quantitative model on both the oscillatory and the steady time scales describes the particle displacement relative to the fluid motion. The formalism yields analytical predictions confirming the observed scaling behavior with particle size and experimental control parameters. It applies to a large class of oscillatory flows with applications from particle trapping to size sorting.

  19. Progress in inertial fusion

    International Nuclear Information System (INIS)

    Hogan, W.; Storm, E.

    1985-10-01

    The requirements for high gain in inertial confinement are given in terms of target implosion requirements. Results of experimental studies of the laser/target interaction and of the dynamics of laser implosion. A report of the progress of advanced laser development is also presented. 3 refs., 8 figs., 1 tab

  20. Observability during planetary approach navigation

    Science.gov (United States)

    Bishop, Robert H.; Burkhart, P. Daniel; Thurman, Sam W.

    1993-01-01

    The objective of the research is to develop an analytic technique to predict the relative navigation capability of different Earth-based radio navigation measurements. In particular, the problem is to determine the relative ability of geocentric range and Doppler measurements to detect the effects of the target planet gravitational attraction on the spacecraft during the planetary approach and near-encounter mission phases. A complete solution to the two-dimensional problem has been developed. Relatively simple analytic formulas are obtained for range and Doppler measurements which describe the observability content of the measurement data along the approach trajectories. An observability measure is defined which is based on the observability matrix for nonlinear systems. The results show good agreement between the analytic observability analysis and the computational batch processing method.

  1. A three axis turntable's online initial state measurement method based on the high-accuracy laser gyro SINS

    Science.gov (United States)

    Gao, Chunfeng; Wei, Guo; Wang, Qi; Xiong, Zhenyu; Wang, Qun; Long, Xingwu

    2016-10-01

    As an indispensable equipment in inertial technology tests, the three-axis turntable is widely used in the calibration of various types inertial navigation systems (INS). In order to ensure the calibration accuracy of INS, we need to accurately measure the initial state of the turntable. However, the traditional measuring method needs a lot of exterior equipment (such as level instrument, north seeker, autocollimator, etc.), and the test processing is complex, low efficiency. Therefore, it is relatively difficult for the inertial measurement equipment manufacturers to realize the self-inspection of the turntable. Owing to the high precision attitude information provided by the laser gyro strapdown inertial navigation system (SINS) after fine alignment, we can use it as the attitude reference of initial state measurement of three-axis turntable. For the principle that the fixed rotation vector increment is not affected by measuring point, we use the laser gyro INS and the encoder of the turntable to provide the attitudes of turntable mounting plat. Through this way, the high accuracy measurement of perpendicularity error and initial attitude of the three-axis turntable has been achieved.

  2. Navigation through unknown and dynamic open spaces using topological notions

    Science.gov (United States)

    Miguel-Tomé, Sergio

    2018-04-01

    Until now, most algorithms used for navigation have had the purpose of directing system towards one point in space. However, humans communicate tasks by specifying spatial relations among elements or places. In addition, the environments in which humans develop their activities are extremely dynamic. The only option that allows for successful navigation in dynamic and unknown environments is making real-time decisions. Therefore, robots capable of collaborating closely with human beings must be able to make decisions based on the local information registered by the sensors and interpret and express spatial relations. Furthermore, when one person is asked to perform a task in an environment, this task is communicated given a category of goals so the person does not need to be supervised. Thus, two problems appear when one wants to create multifunctional robots: how to navigate in dynamic and unknown environments using spatial relations and how to accomplish this without supervision. In this article, a new architecture to address the two cited problems is presented, called the topological qualitative navigation architecture. In previous works, a qualitative heuristic called the heuristic of topological qualitative semantics (HTQS) has been developed to establish and identify spatial relations. However, that heuristic only allows for establishing one spatial relation with a specific object. In contrast, navigation requires a temporal sequence of goals with different objects. The new architecture attains continuous generation of goals and resolves them using HTQS. Thus, the new architecture achieves autonomous navigation in dynamic or unknown open environments.

  3. SGA-WZ: A New Strapdown Airborne Gravimeter

    Directory of Open Access Journals (Sweden)

    Kaidong Zhang

    2012-07-01

    Full Text Available Inertial navigation systems and gravimeters are now routinely used to map the regional gravitational quantities from an aircraft with mGal accuracy and a spatial resolution of a few kilometers. However, airborne gravimeter of this kind is limited by the inaccuracy of the inertial sensor performance, the integrated navigation technique and the kinematic acceleration determination. As the GPS technique developed, the vehicle acceleration determination is no longer the limiting factor in airborne gravity due to the cancellation of the common mode acceleration in differential mode. A new airborne gravimeter taking full advantage of the inertial navigation system is described with improved mechanical design, high precision time synchronization, better thermal control and optimized sensor modeling. Apart from the general usage, the Global Positioning System (GPS after differentiation is integrated to the inertial navigation system which provides not only more precise altitude information along with the navigation aiding, but also an effective way to calculate the vehicle acceleration. Design description and test results on the performance of the gyroscopes and accelerations will be emphasized. Analysis and discussion of the airborne field test results are also given.

  4. Hydrodynamic instabilities in inertial fusion

    International Nuclear Information System (INIS)

    Hoffman, N.M.

    1994-01-01

    This report discusses topics on hydrodynamics instabilities in inertial confinement: linear analysis of Rayleigh-Taylor instability; ablation-surface instability; bubble rise in late-stage Rayleigh-Taylor instability; and saturation and multimode interactions in intermediate-stage Rayleigh-Taylor instability

  5. Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets

    Science.gov (United States)

    Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric; Hansen, Stephanie B.; Jennings, Christopher; Kimmel, Mark W.; Knapp, Patrick; Lewis, Sean M.; Peterson, Kyle; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon E.; Slutz, Stephen A.; Sinars, Daniel B.; Smith, Ian C.; Speas, C. Shane; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

    2018-02-01

    The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.

  6. Activity Recognition Using Inertial Sensing for Healthcare, Wellbeing and Sports Applications: A Survey

    NARCIS (Netherlands)

    Avci, A.; Bosch, S.; Marin Perianu, Mihai; Marin Perianu, Raluca; Havinga, Paul J.M.

    This paper surveys the current research directions of activity recognition using inertial sensors, with potential application in healthcare, wellbeing and sports. The analysis of related work is organized according to the five main steps involved in the activity recognition process: preprocessing,

  7. Carrying Position Independent User Heading Estimation for Indoor Pedestrian Navigation with Smartphones

    Directory of Open Access Journals (Sweden)

    Zhi-An Deng

    2016-05-01

    Full Text Available This paper proposes a novel heading estimation approach for indoor pedestrian navigation using the built-in inertial sensors on a smartphone. Unlike previous approaches constraining the carrying position of a smartphone on the user’s body, our approach gives the user a larger freedom by implementing automatic recognition of the device carrying position and subsequent selection of an optimal strategy for heading estimation. We firstly predetermine the motion state by a decision tree using an accelerometer and a barometer. Then, to enable accurate and computational lightweight carrying position recognition, we combine a position classifier with a novel position transition detection algorithm, which may also be used to avoid the confusion between position transition and user turn during pedestrian walking. For a device placed in the trouser pockets or held in a swinging hand, the heading estimation is achieved by deploying a principal component analysis (PCA-based approach. For a device held in the hand or against the ear during a phone call, user heading is directly estimated by adding the yaw angle of the device to the related heading offset. Experimental results show that our approach can automatically detect carrying positions with high accuracy, and outperforms previous heading estimation approaches in terms of accuracy and applicability.

  8. Evaluation of the Inertial Response of Variable-Speed Wind Turbines Using Advanced Simulation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Scholbrock, Andrew K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Scholbrock, Andrew K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Xiao [Northeastern University; Gao, Wenzhong [University of Denver; Yan, Weihang [University of Denver; Wang, Jianhui [Northeastern University

    2017-08-09

    In this paper, we focus on the temporary frequency support effect provided by wind turbine generators (WTGs) through the inertial response. With the implemented inertial control methods, the WTG is capable of increasing its active power output by releasing parts of the stored kinetic energy when the frequency excursion occurs. The active power can be boosted temporarily above the maximum power points, but the rotor speed deceleration follows and an active power output deficiency occurs during the restoration of rotor kinetic energy. In this paper, we evaluate and compare the inertial response induced by two distinct inertial control methods using advanced simulation. In the first stage, the proposed inertial control methods are analyzed in offline simulation. Using an advanced wind turbine simulation program, FAST with TurbSim, the response of the researched wind turbine is comprehensively evaluated under turbulent wind conditions, and the impact on the turbine mechanical components are assessed. In the second stage, the inertial control is deployed on a real 600-kW wind turbine, the three-bladed Controls Advanced Research Turbine, which further verifies the inertial control through a hardware-in-the-loop simulation. Various inertial control methods can be effectively evaluated based on the proposed two-stage simulation platform, which combines the offline simulation and real-time hardware-in-the-loop simulation. The simulation results also provide insights in designing inertial control for WTGs.

  9. Inertial particle manipulation in microscale oscillatory flows

    Science.gov (United States)

    Agarwal, Siddhansh; Rallabandi, Bhargav; Raju, David; Hilgenfeldt, Sascha

    2017-11-01

    Recent work has shown that inertial effects in oscillating flows can be exploited for simultaneous transport and differential displacement of microparticles, enabling size sorting of such particles on extraordinarily short time scales. Generalizing previous theory efforts, we here derive a two-dimensional time-averaged version of the Maxey-Riley equation that includes the effect of an oscillating interface to model particle dynamics in such flows. Separating the steady transport time scale from the oscillatory time scale results in a simple and computationally efficient reduced model that preserves all slow-time features of the full unsteady Maxey-Riley simulations, including inertial particle displacement. Comparison is made not only to full simulations, but also to experiments using oscillating bubbles as the driving interfaces. In this case, the theory predicts either an attraction to or a repulsion from the bubble interface due to inertial effects, so that versatile particle manipulation is possible using differences in particle size, particle/fluid density contrast and streaming strength. We also demonstrate that these predictions are in agreement with experiments.

  10. 33 CFR 2.36 - Navigable waters of the United States, navigable waters, and territorial waters.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navigable waters of the United States, navigable waters, and territorial waters. 2.36 Section 2.36 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY GENERAL JURISDICTION Jurisdictional Terms § 2.36 Navigable waters...

  11. A hybrid data fusion method for GNSS/INS integration navigation system

    Science.gov (United States)

    Yang, Ling; Li, Bofeng; Shen, Yunzhong; Li, Haojun

    2017-04-01

    Although DGNSS is widely used and PPP-GNSS is nowadays a viable precise positioning technology option, the major disadvantage of GNSS still remains: signal blockage due to obstructions in urban and built up environments, and extreme power attenuation of the signals when operated indoors. The combination of GNSS with other sensors, such as a self-contained inertial navigation system (INS), provides an ideal position and attitude determination solution which can not only mitigate the weakness of GNSS, but also bound the INS error that otherwise would grow with time when the INS operates alone. However, the navigation accuracy provided by GNSS/INS strongly depends on the quality and geometry of the GNSS observations, the quality of the INS technology used, and the integration model applied. There are two main types of coupled schemes for integration systems: loosely coupled integration and tightly coupled integration. In loosely coupled integration, position measurements are taken from both systems and combined optimally, usually in a Kalman filter. Tightly coupled integration directly combines the raw pseudorange or carrier phase measurements of GNSS with inertial measurements in an extended Kalman filter. The latter technique improves the ability to resolve ambiguities, i.e. allows a quicker recovery from outage events such as a loss of signal under vegetation. In recent years, tightly coupled differential carrier phase GNSS/INS integration has become popular, because it has the advantage of providing accurate position information even when GPS measurements are rank-deficient in stand-alone processing and is theoretically optimal in a filtering sense, especially in urban navigation applications. However, the heavier computational burden and sensor communication usually complicate the tightly coupled integration and reduce the system efficiency, compared with the loosely coupled integration. In this paper, it has been proved that the loosely coupled and tightly

  12. Five years in the life of an inertial system operating in orbit

    Science.gov (United States)

    Harris, R. A.; Denhard, W. G.

    1978-01-01

    The paper describes the in-orbit performance of the gyroscopes and strapdown attitude reference system for the OAO-C (Copernicus) satellite, launched on Aug. 21, 1972. In order to fulfill NASA requirements, the inertial system had to: (1) operate for at least one year in orbit without failure, (2) maintain an inertial reference with an uncertainty of 50 microradians or less for at least one hour, and (3) control attitude changes with an accuracy of at least 30 parts per million. During the orbit period, the inertial system has demonstrated a capability for maintaining an inertial reference that is significantly better than these performance goals.

  13. Generation and measurement of multi megagauss fields in inertial ...

    Indian Academy of Sciences (India)

    We present here the development of a facility to generate high (multi megagauss) magnetic field of 4 to 5 s rise time, using inertial magnets. The facility includes a low inductance, high current capacitor bank (280 kJ/40 kV) and an inertial magnet, which is a copper disk machined to have a keyhole in it. As the high current ...

  14. Pattern recognition in cyclic and discrete skills performance from inertial measurement units

    NARCIS (Netherlands)

    Seifert, Ludovic; L'Hermette, Maxime; Komar, John; Orth, Dominic; Mell, Florian; Merriaux, Pierre; Grenet, Pierre; Caritu, Yanis; Hérault, Romain; Dovgalecs, Vladislavs; Davids, Keith

    2014-01-01

    The aim of this study is to compare and validate an Inertial Measurement Unit (IMU) relative to an optic system, and to propose methods for pattern recognition to capture behavioural dynamics during sport performance. IMU validation was conducted by comparing the motions of the two arms of a

  15. Engineering Inertial and Primary-Frequency Response for Distributed Energy Resources: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Guggilam, Swaroop [University of Minnesota; Dhople, Sairaj V [University of Minnesota; Chen, Yu C [University of British Columbia; Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-19

    We propose a framework to engineer synthetic-inertia and droop-control parameters for distributed energy resources (DERs) so that the system frequency in a network composed of DERs and synchronous generators conforms to prescribed transient and steady-state performance specifications. Our approach is grounded in a second-order lumped-parameter model that captures the dynamics of synchronous generators and frequency-responsive DERs endowed with inertial and droop control. A key feature of this reduced-order model is that its parameters can be related to those of the originating higher-order dynamical model. This allows one to systematically design the DER inertial and droop-control coefficients leveraging classical frequency-domain response characteristics of second-order systems. Time-domain simulations validate the accuracy of the model-reduction method and demonstrate how DER controllers can be designed to meet steady-state-regulation and transient-performance specifications.

  16. Ionosphere-related products for communication and navigation

    Science.gov (United States)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Carlson, H. C.; Gardner, L. C.; Scherliess, L.; Zhu, L.

    2011-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is developing and producing commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Ionosonde data from several dozen global stations is ingested every 15 minutes to improve the vertical profiles within GAIM. The global, CONUS, Europe, Asia, South America, and other regional sectors are run with a 15-minute cadence. These operational runs enable SWC to calculate and report the global radio high frequency (HF) signal strengths and near vertical incidence skywave (NVIS) maps used by amateur radio operators and emergency responders, especially during the Japan Great Earthquake and tsunami recovery period. SWC has established its first fully commercial enterprise called Q-up as a result of this activity. GPS uncertainty maps are produced by SWC to improve single-frequency GPS applications. SWC also provides the space weather smartphone app called SpaceWx for iPhone, iPad, iPod, and Android for professional users and public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example, as well as global NVIS maps. We describe upcoming improvements for moving space weather information through automated systems into final derivative products.

  17. Comparative advantage between traditional and smart navigation systems

    Science.gov (United States)

    Shin, Jeongkyu; Kim, Pan-Jun; Kim, Seunghwan

    2013-03-01

    The smart navigation system that refers to real-time traffic data is believed to be superior to traditional navigation systems. To verify this belief, we created an agent-based traffic model and examined the effect of changing market share of the traditional shortest-travel-time algorithm based navigation and the smart navigation system. We tested our model on the grid and actual metropolitan road network structures. The result reveals that the traditional navigation system have better performance than the smart one as the market share of the smart navigation system exceeds a critical value, which is contrary to conventional expectation. We suggest that the superiority inversion between agent groups is strongly related to the traffic weight function form, and is general. We also found that the relationship of market share, traffic flow density and travel time is determined by the combination of congestion avoidance behavior of the smartly navigated agents and the inefficiency of shortest-travel-time based navigated agents. Our results can be interpreted with the minority game and extended to the diverse topics of opinion dynamics. This work was supported by the Original Technology Research Program for Brain Science through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology(No. 2010-0018847).

  18. ACCURACY EVALUATION OF THE OBJECT LOCATION VISUALIZATION FOR GEO-INFORMATION AND DISPLAY SYSTEMS OF MANNED AIRCRAFTS NAVIGATION COMPLEXES

    Directory of Open Access Journals (Sweden)

    M. O. Kostishin

    2014-01-01

    Full Text Available The paper deals with the issue of accuracy estimating for the object location display in the geographic information systems and display systems of manned aircrafts navigation complexes. Application features of liquid crystal screens with a different number of vertical and horizontal pixels are considered at displaying of geographic information data on different scales. Estimation display of navigation parameters values on board the aircraft is done in two ways: a numeric value is directly displayed on the screen of multi-color indicator, and a silhouette of the object is formed on the screen on a substrate background, which is a graphical representation of area map in the flight zone. Various scales of area digital map display currently used in the aviation industry have been considered. Calculation results of one pixel scale interval, depending on the specifications of liquid crystal screen and zoom of the map display area on the multifunction digital display, are given. The paper contains experimental results of the accuracy evaluation for area position display of the aircraft based on the data from the satellite navigation system and inertial navigation system, obtained during the flight program run of the real object. On the basis of these calculations a family of graphs was created for precision error display of the object reference point position using the onboard indicators with liquid crystal screen with different screen resolutions (6 "×8", 7.2 "×9.6", 9"×12" for two map display scales (1:0 , 25 km, 1-2 km. These dependency graphs can be used both to assess the error value of object area position display in existing navigation systems and to calculate the error value in upgrading facilities.

  19. Use of the National Ignition Facility for the development of inertial fusion energy

    International Nuclear Information System (INIS)

    Tobin, M.; Logan, G.; Anderson, A.; De LaRubia Diaz, T.

    1994-06-01

    The primary purpose of the workshop was to gather input from the inertial confinement fusion (ICF) laboratories, private industry, and universities on the potential use of the NIF to conduct experiments in support of the development of IFE. To accomplish this, we asked the over 60 workshop participants to identify key credibility and development issues for IFE in four areas Target Physics --Issues related to the design and performance of targets for IFE; Chamber Dynamics -- Issues in IFE chambers resulting from the deposition of x-rays and debris; Inertial Fusion Power Technology -- Issues for energy conversion, tritium breeding and processing, and radiation shielding; interactions of neutrons with materials; and chamber design; Target System -- Issues related to automated, high-production-rate manufacture of low-cost targets for IFE, target handling and transport, target injection, tracking, and beam pointing. These topics are discussed in this report

  20. Near-inertial motions over a mid-Ocean Ridge; Effects of topography and hydrothermal plumes

    Science.gov (United States)

    Thomson, Richard E.; Roth, Sharon E.; Dymond, Jack

    1990-05-01

    motions in the superinertial band and may arise through critical-layer absorption of downward propagating waves as they encounter increased vertical shear in the background flow. The increased shear is most likely associated with buoyancy-induced flow formed by the extensive hydrothermal plume emanating from vent sites in the axial valley along the ridge crest, but it could also be related to bottom-trapped oscillations over the steep ridge topography. Near-inertial motions are estimated to have vertical coherence scales of the order of 10-100 m, while horizontal coherence scales exceed the 50-km separation between the mooring locations. Minimum vertical and horizontal coherences are found for the depth zone 1600-1800 m, while maximum correlation occurs for near-bottom motions immediately above the crest of the ridge. Weak near-inertial motions are observed within the 100-m-deep axial valley.

  1. Aging specifically impairs switching to an allocentric navigational strategy.

    Science.gov (United States)

    Harris, Mathew A; Wiener, Jan M; Wolbers, Thomas

    2012-01-01

    Navigation abilities decline with age, partly due to deficits in numerous component processes. Impaired switching between these various processes (i.e., switching navigational strategies) is also likely to contribute to age-related navigational impairments. We tested young and old participants on a virtual plus maze task (VPM), expecting older participants to exhibit a specific strategy switching deficit, despite unimpaired learning of allocentric (place) and egocentric (response) strategies following reversals within each strategy. Our initial results suggested that older participants performed worse during place trial blocks but not response trial blocks, as well as in trial blocks following a strategy switch but not those following a reversal. However, we then separated trial blocks by both strategy and change type, revealing that these initial results were due to a more specific deficit in switching to the place strategy. Place reversals and switches to response, as well as response reversals, were unaffected. We argue that this specific "switch-to-place" deficit could account for apparent impairments in both navigational strategy switching and allocentric processing and contributes more generally to age-related decline in navigation.

  2. Tanscranial Threshold of Inertial Cavitation Induced by Diagnosticc Ultrasound and Microbubbles

    NARCIS (Netherlands)

    Liu, J.; Gao, S.; Porter, T.R.; Everbach, C; Shi, W.; Vignon, F.; Powers, J.; Lof, J.; Turner, J.; Xie, F.

    2011-01-01

    Background: Inertial cavitation may cause hazardous bioeffects whileusing ultrasound and microbubble mediated thrombolysis. The purposeof this study was to investigate the influence of ultrasound pulselength and temporal bone on inertial cavitation thresholds within the brain utilizing transtemporal

  3. Inertial confinement: concept and early history

    International Nuclear Information System (INIS)

    Linhart, J.G.

    1986-01-01

    The concept of inertial confinement is linked to the general theme of energy compression and staging. It is shown how it arose from the ideas and experiments on dynamic pinches towards the end of the fifties and how the important key concept of a linear was further developed during the sixties. THe various attempts at driving linears to speeds in excess of 1 cm/μs are reviewed in chronological order, mentioning the important impetus given to this field by the consideration of laser as a driver. It is concluded that the field of inertial confinement fusion (ICF) is becoming ever richer in possibilities, and the understanding of the physics of high-energy density has reached now a satisfactory level

  4. Visual Inertial Navigation and Calibration

    OpenAIRE

    Skoglund, Martin A.

    2011-01-01

    Processing and interpretation of visual content is essential to many systems and applications. This requires knowledge of how the content is sensed and also what is sensed. Such knowledge is captured in models which, depending on the application, can be very advanced or simple. An application example is scene reconstruction using a camera; if a suitable model of the camera is known, then a model of the scene can be estimated from images acquired at different, unknown, locations, yet, the qual...

  5. The dynamics of small inertial particles in weakly stratified turbulence

    NARCIS (Netherlands)

    van Aartrijk, M.; Clercx, H.J.H.

    We present an overview of a numerical study on the small-scale dynamics and the large-scale dispersion of small inertial particles in stably stratified turbulence. Three types of particles are examined: fluid particles, light inertial particles (with particle-to-fluid density ratio 1Ͽp/Ͽf25) and

  6. On power flow suppression in straight elastic pipes by use of equally spaced eccentric inertial attachments

    DEFF Research Database (Denmark)

    Sorokin, Sergey; Holst-Jensen, Ole

    2012-01-01

    The paper addresses the power flow suppression in an elastic beam of the tubular cross section (a pipe) at relatively low excitation frequencies by deploying a small number of equally spaced inertial attachments. The methodology of boundary integral equations is used to obtain an exact solution...... of the problem in vibrations of this structure. The power flow analysis in a pipe with and without equally spaced eccentric inertial attachments is performed and the effect of suppression of the energy transmission is demonstrated theoretically. These results are put in the context of predictions from...

  7. 77 FR 42637 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments; Corrections

    Science.gov (United States)

    2012-07-20

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Parts 84 and 115 [Docket No. USCG-2012-0306] RIN 1625-AB86 Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments...), the Coast Guard published a final rule entitled ``Navigation and Navigable Waters; Technical...

  8. Decoherence and Multipartite Entanglement of Non-Inertial Observers

    International Nuclear Information System (INIS)

    Ramzan, M.

    2012-01-01

    The decoherence effect on multipartite entanglement in non-inertial frames is investigated. The GHZ state is considered to be shared between partners with one partner in the inertial frame whereas the other two are in accelerated frames. One-tangle and π-tangles are used to quantify the entanglement of the multipartite system influenced by phase damping and phase flip channels. It is seen that for the phase damping channel, entanglement sudden death (ESD) occurs for p > 0.5 in the infinite acceleration limit. On the other hand, in the case of the phase flip channel, ESD behavior occurs at p = 0.5. It is also seen that entanglement sudden birth (ESB) occurs in the case of phase flip channel just after ESD, i.e. p > 0.5. Furthermore, it is seen that the effect of the environment on multipartite entanglement is much stronger than that of the acceleration of non-inertial frames. (general)

  9. Validation of an Inertial Sensor System for Swing Analysis in Golf

    Directory of Open Access Journals (Sweden)

    Paul Lückemann

    2018-02-01

    Full Text Available Wearable inertial sensor systems are an upcoming tool for self-evaluation in sports, and can be used for swing analysis in golf. The aim of this work was to determine the validity and repeatability of an inertial sensor system attached to a player’s glove using a radar system as a reference. 20 subjects performed five full swings with each of three different clubs (wood, 7-iron, wedge. Clubhead speed was measured simultaneously by both sensor systems. Limits of Agreement were used to determine the accuracy and precision of the inertial sensor system. Results show that the inertial sensor system is quite accurate but with a lack of precision. Random error was quantified to approximately 17 km/h. The measurement error was dependent on the club type and was weakly negatively correlated to the magnitude of clubhead speed.

  10. Saturation of equatorial inertial instability

    NARCIS (Netherlands)

    Kloosterziel, R.C.; Orlandi, P.; Carnevale, G.F.

    2015-01-01

    Inertial instability in parallel shear flows and circular vortices in a uniformly rotating system ( $f$f-plane) redistributes absolute linear momentum or absolute angular momentum in such a way as to neutralize the instability. In previous studies we showed that, in the absence of other

  11. Inertial-confinement fusion with lasers

    International Nuclear Information System (INIS)

    Betti, R.; Hurricane, O. A.

    2016-01-01

    The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications to national security and basic sciences. The U.S. is arguably the world leader in the inertial con fment approach to fusion and has invested in large facilities to pursue it with the objective of establishing the science related to the safety and reliability of the stockpile of nuclear weapons. Even though significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion

  12. Benchmark Framework for Mobile Robots Navigation Algorithms

    Directory of Open Access Journals (Sweden)

    Nelson David Muñoz-Ceballos

    2014-01-01

    Full Text Available Despite the wide variety of studies and research on mobile robot systems, performance metrics are not often examined. This makes difficult to establish an objective comparison of achievements. In this paper, the navigation of an autonomous mobile robot is evaluated. Several metrics are described. These metrics, collectively, provide an indication of navigation quality, useful for comparing and analyzing navigation algorithms of mobile robots. This method is suggested as an educational tool, which allows the student to optimize the algorithms quality, relating to important aspectsof science, technology and engineering teaching, as energy consumption, optimization and design.

  13. Inertial effects in systems with magnetic charge

    Science.gov (United States)

    Armitage, N. P.

    2018-05-01

    This short article sets out some of the basic considerations that go into detecting the mass of quasiparticles with effective magnetic charge in solids. Effective magnetic charges may be appear as defects in particular magnetic textures. A magnetic monopole is a defect in this texture and as such these are not monopoles in the actual magnetic field B, but instead in the auxiliary field H. They may have particular properties expected for such quasiparticles such as magnetic charge and mass. This effective mass may-in principle-be detected in the same fashion that the mass is detected of other particles classically e.g. through their inertial response to time-dependent electromagnetic fields. I discuss this physics in the context of the "simple" case of the quantum spin ices, but aspects are broadly applicable. Based on extensions to Ryzkhin's model for classical spin ice, a hydrodynamic formulation can be given that takes into account inertial and entropic forces. Ultimately, a form for the susceptibility is obtained that is equivalent to the Rocard equation, which is a classic form used to account for inertial effects in the context of Debye-like relaxation.

  14. Radar and electronic navigation

    CERN Document Server

    Sonnenberg, G J

    2013-01-01

    Radar and Electronic Navigation, Sixth Edition discusses radar in marine navigation, underwater navigational aids, direction finding, the Decca navigator system, and the Omega system. The book also describes the Loran system for position fixing, the navy navigation satellite system, and the global positioning system (GPS). It reviews the principles, operation, presentations, specifications, and uses of radar. It also describes GPS, a real time position-fixing system in three dimensions (longitude, latitude, altitude), plus velocity information with Universal Time Coordinated (UTC). It is accur

  15. [Potential of using inertial sensors in high level sports].

    Science.gov (United States)

    Ruzova, T K; Andreev, D A; Shchukin, A I

    2013-01-01

    The article thoroughly covers development of wireless inertial sensors technology in medicine. The authors describe main criteria of diagnostic value of inertial sensors, advantages and prospects of using these systems in sports medicine, in comparison with other conventional methods of biomechanical examination in sports medicine. The results obtained necessitate further development of this approach, specifically creation of algorithms and methods of biomechanic examination of highly qualified athletes in high achievements sports.

  16. High performance inertial fusion targets

    International Nuclear Information System (INIS)

    Nuckolls, J.H.; Bangerter, R.O.; Lindl, J.D.; Mead, W.C.; Pan, Y.L.

    1977-01-01

    Inertial confinement fusion (ICF) designs are considered which may have very high gains (approximately 1000) and low power requirements (<100 TW) for input energies of approximately one megajoule. These include targets having very low density shells, ultra thin shells, central ignitors, magnetic insulation, and non-ablative acceleration

  17. Centrifuges and inertial shear forces

    NARCIS (Netherlands)

    Loon, van J.J.W.A.; Folgering, H.T.E.; Bouten, C.V.C.; Smit, T.H.

    2004-01-01

    Centrifuges are often used in biological studies for 1xg control samples in space flight microgravity experiments as well as in ground based research. Using centrifugation as a tool to generate an Earth like acceleration introduces unwanted inertial shear forces to the sample. Depending on the

  18. Repetitive pulsed power technology for inertial-confinement fusion

    International Nuclear Information System (INIS)

    Prestwich, K.R.; Buttram, M.T.

    1983-01-01

    The pulsed power requirements for inertial-confinement fusion reactors are defined for ion-beam and laser drivers. Several megajoule beams with 100's of terrawatt peak powers must be delivered to the reactor chamber 1 to 10 times per second. Ion-beam drivers are relatively efficient requiring less energy storage in the pulsed-power system but more time compression in the power flow chain than gas lasers. These high peak powers imply very large numbers of components for conventional pulse-power systems. A new design that significantly reduces the number of components is presented

  19. Modeling hydrodynamic instabilities of double ablation fronts in inertial confinement fusion

    International Nuclear Information System (INIS)

    Yanez, C.; Sanz, J.; Olazabal-Loume, M.; Ibanez, L. F.

    2013-01-01

    A linear Rayleigh-Taylor instability theory of double ablation (DA) fronts is developed for direct-drive inertial confinement fusion. Two approaches are discussed: an analytical discontinuity model for the radiation dominated regime of very steep DA front structure, and a numerical self-consistent model that covers more general hydrodynamic profiles behaviours. Dispersion relation results are compared to 2D simulations. (authors)

  20. Inertial cavitation threshold of nested microbubbles.

    Science.gov (United States)

    Wallace, N; Dicker, S; Lewin, Peter; Wrenn, S P

    2015-04-01

    Cavitation of ultrasound contrast agents (UCAs) promotes both beneficial and detrimental bioeffects in vivo (Radhakrishnan et al., 2013) [1]. The ability to determine the inertial cavitation threshold of UCA microbubbles has potential application in contrast imaging, development of therapeutic agents, and evaluation of localized effects on the body (Ammi et al., 2006) [2]. This study evaluates a novel UCA and its inertial cavitation behavior as determined by a home built cavitation detection system. Two 2.25 MHz transducers are placed at a 90° angle to one another where one transducer is driven by a high voltage pulser and the other transducer receives the signal from the oscillating microbubble. The sample chamber is placed in the overlap of the focal region of the two transducers where the microbubbles are exposed to a pulser signal consisting of 600 pulse trains per experiment at a pulse repetition frequency of 5 Hz where each train has four pulses of four cycles. The formulation being analyzed is comprised of an SF6 microbubble coated by a DSPC PEG-3000 monolayer nested within a poly-lactic acid (PLA) spherical shell. The effect of varying shell diameters and microbubble concentration on cavitation threshold profile for peak negative pressures ranging from 50 kPa to 2 MPa are presented and discussed in this paper. The nesting shell decreases inertial cavitation events from 97.96% for an un-nested microbubble to 19.09% for the same microbubbles nested within a 2.53 μm shell. As shell diameter decreases, the percentage of inertially cavitating microbubbles also decreases. For nesting formulations with average outer capsule diameters of 20.52, 14.95, 9.95, 5.55, 2.53, and 1.95 μm, the percentage of sample destroyed at 1 MPa was 51.02, 38.94, 33.25, 25.27, 19.09, and 5.37% respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Historic overview of inertial confinement fusion: What have we learned

    International Nuclear Information System (INIS)

    Glass, A.J.

    1986-01-01

    Although laser fusion has been the subject of research since the early 1960s, it has only been intensively studied for about 14 years. During that time, substantive advances have been made in our understanding of the complex physics of laser-heated plasmas, in the development of sophisticated diagnostic instrumentation, and in the technology of fusion targets and inertial fusion drivers. These advances will be reviewed. Of equal importance are the lessons learned in the economic and political arenas. These lessons may be of greater significance for scientific endeavors in other fields of research. The economic and political issues surrounding inertial fusion research will be discussed. Possible future directions for inertial fusion development will be presented

  2. Lunar Navigator - A Miniature, Fully Autonomous, Lunar Navigation, Surveyor, and Range Finder System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm will use existing hardware and software from related programs to create a prototype Lunar Navigation Sensor (LNS) early in Phase II, such that most of the...

  3. INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm.

    Science.gov (United States)

    Gao, Yanbin; Liu, Shifei; Atia, Mohamed M; Noureldin, Aboelmagd

    2015-09-15

    This paper takes advantage of the complementary characteristics of Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) to provide periodic corrections to Inertial Navigation System (INS) alternatively in different environmental conditions. In open sky, where GPS signals are available and LiDAR measurements are sparse, GPS is integrated with INS. Meanwhile, in confined outdoor environments and indoors, where GPS is unreliable or unavailable and LiDAR measurements are rich, LiDAR replaces GPS to integrate with INS. This paper also proposes an innovative hybrid scan matching algorithm that combines the feature-based scan matching method and Iterative Closest Point (ICP) based scan matching method. The algorithm can work and transit between two modes depending on the number of matched line features over two scans, thus achieving efficiency and robustness concurrently. Two integration schemes of INS and LiDAR with hybrid scan matching algorithm are implemented and compared. Real experiments are performed on an Unmanned Ground Vehicle (UGV) for both outdoor and indoor environments. Experimental results show that the multi-sensor integrated system can remain sub-meter navigation accuracy during the whole trajectory.

  4. Near-Inertial Surface Currents and their influence on Surface Dispersion in the Northeastern Gulf of Mexico near the Deepwater Horizon Oil Spill

    Science.gov (United States)

    Gough, M.; Reniers, A.; MacMahan, J. H.; Howden, S. D.

    2014-12-01

    The continental shelf along the northeastern Gulf of Mexico is transected by the critical latitude (30°N) for inertial motions. At this latitude the inertial period is 24 hours and diurnal surface current oscillations can amplify due to resonance with diurnal wind and tidal forcing. Tidal amplitudes are relatively small in this region although K1 tidal currents can be strong over the shelf west of the DeSoto Canyon where the K1 tide propagates onshore as a Sverdrup wave. Other sources of diurnal motions include internal tidal currents, Poincaré waves, and basin resonance. It is therefore very difficult to separate inertial wind-driven motions from other diurnal motions. Spatiotemporal surface currents were measured using hourly 6 km resolution HF radar data collected in June 2010 during the Deepwater Horizon oil spill and July 2012 during the Grand Lagrangian Deployment (GLAD). Surface currents were also measured using GLAD GPS-tracked drifters. NDBC buoy wind data were used to determine wind-forcing, and OSU Tidal Inversion Software (OTIS) were used to predict tidal currents. The relative spatiotemporal influence of diurnal wind and tidal forcing on diurnal surface current oscillations is determined through a series of comparative analyses: phase and amplitude of bandpassed timeseries, wavelet analyses, wind-driven inertial oscillation calculations, and tidal current predictions. The wind-driven inertial ocean response is calculated by applying a simple "slab" model where wind-forcing is allowed to excite a layer of low-density water riding over high density water. The spatial variance of diurnal motions are found to be correlated with satellite turbidity imagery indicating that stratification influences the sea surface inertial response to wind-forcing. Surface dispersion is found to be minimized in regions of high diurnal variance suggesting that mean surface transport is restricted in regions of inertial motions associated with stratification.

  5. High performance inertial fusion targets

    International Nuclear Information System (INIS)

    Nuckolls, J.H.; Bangerter, R.O.; Lindl, J.D.; Mead, W.C.; Pan, Y.L.

    1978-01-01

    Inertial confinement fusion (ICF) target designs are considered which may have very high gains (approximately 1000) and low power requirements (< 100 TW) for input energies of approximately one megajoule. These include targets having very low density shells, ultra thin shells, central ignitors, magnetic insulation, and non-ablative acceleration

  6. A navigator-based rigid body motion correction for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ullisch, Marcus Goerge

    2012-01-01

    A novel three-dimensional navigator k-space trajectory for rigid body motion detection for Magnetic Resonance Imaging (MRI) - the Lissajous navigator - was developed and quantitatively compared to the existing spherical navigator trajectory [1]. The spherical navigator cannot sample the complete spherical surface due to slew rate limitations of the scanner hardware. By utilizing a two dimensional Lissajous figure which is projected onto the spherical surface, the Lissajous navigator overcomes this limitation. The complete sampling of the sphere consequently leads to rotation estimates with higher and more isotropic accuracy. Simulations and phantom measurements were performed for both navigators. Both simulations and measurements show a significantly higher overall accuracy of the Lissajous navigator and a higher isotropy of the rotation estimates. Measured under identical conditions with identical postprocessing, the measured mean absolute error of the rotation estimates for the Lissajous navigator was 38% lower (0.3 ) than for the spherical navigator (0.5 ). The maximum error of the Lissajous navigator was reduced by 48% relative to the spherical navigator. The Lissajous navigator delivers higher accuracy of rotation estimation and a higher degree of isotropy than the spherical navigator with no evident drawbacks; these are two decisive advantages, especially for high-resolution anatomical imaging.

  7. A navigator-based rigid body motion correction for magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ullisch, Marcus Goerge

    2012-01-24

    A novel three-dimensional navigator k-space trajectory for rigid body motion detection for Magnetic Resonance Imaging (MRI) - the Lissajous navigator - was developed and quantitatively compared to the existing spherical navigator trajectory [1]. The spherical navigator cannot sample the complete spherical surface due to slew rate limitations of the scanner hardware. By utilizing a two dimensional Lissajous figure which is projected onto the spherical surface, the Lissajous navigator overcomes this limitation. The complete sampling of the sphere consequently leads to rotation estimates with higher and more isotropic accuracy. Simulations and phantom measurements were performed for both navigators. Both simulations and measurements show a significantly higher overall accuracy of the Lissajous navigator and a higher isotropy of the rotation estimates. Measured under identical conditions with identical postprocessing, the measured mean absolute error of the rotation estimates for the Lissajous navigator was 38% lower (0.3 ) than for the spherical navigator (0.5 ). The maximum error of the Lissajous navigator was reduced by 48% relative to the spherical navigator. The Lissajous navigator delivers higher accuracy of rotation estimation and a higher degree of isotropy than the spherical navigator with no evident drawbacks; these are two decisive advantages, especially for high-resolution anatomical imaging.

  8. Airports and Navigation Aids Database System -

    Data.gov (United States)

    Department of Transportation — Airport and Navigation Aids Database System is the repository of aeronautical data related to airports, runways, lighting, NAVAID and their components, obstacles, no...

  9. Concept of AHRS Algorithm Designed for Platform Independent Imu Attitude Alignment

    Science.gov (United States)

    Tomaszewski, Dariusz; Rapiński, Jacek; Pelc-Mieczkowska, Renata

    2017-12-01

    Nowadays, along with the advancement of technology one can notice the rapid development of various types of navigation systems. So far the most popular satellite navigation, is now supported by positioning results calculated with use of other measurement system. The method and manner of integration will depend directly on the destination of system being developed. To increase the frequency of readings and improve the operation of outdoor navigation systems, one will support satellite navigation systems (GPS, GLONASS ect.) with inertial navigation. Such method of navigation consists of several steps. The first stage is the determination of initial orientation of inertial measurement unit, called INS alignment. During this process, on the basis of acceleration and the angular velocity readings, values of Euler angles (pitch, roll, yaw) are calculated allowing for unambiguous orientation of the sensor coordinate system relative to external coordinate system. The following study presents the concept of AHRS (Attitude and heading reference system) algorithm, allowing to define the Euler angles.The study were conducted with the use of readings from low-cost MEMS cell phone sensors. Subsequently the results of the study were analyzed to determine the accuracy of featured algorithm. On the basis of performed experiments the legitimacy of developed algorithm was stated.

  10. Precision Landing and Hazard Avoidance Doman

    Science.gov (United States)

    Robertson, Edward A.; Carson, John M., III

    2016-01-01

    The Precision Landing and Hazard Avoidance (PL&HA) domain addresses the development, integration, testing, and spaceflight infusion of sensing, processing, and GN&C functions critical to the success and safety of future human and robotic exploration missions. PL&HA sensors also have applications to other mission events, such as rendezvous and docking. Autonomous PL&HA builds upon the core GN&C capabilities developed to enable soft, controlled landings on the Moon, Mars, and other solar system bodies. Through the addition of a Terrain Relative Navigation (TRN) function, precision landing within tens of meters of a map-based target is possible. The addition of a 3-D terrain mapping lidar sensor improves the probability of a safe landing via autonomous, real-time Hazard Detection and Avoidance (HDA). PL&HA significantly improves the probability of mission success and enhances access to sites of scientific interest located in challenging terrain. PL&HA can also utilize external navigation aids, such as navigation satellites and surface beacons. Advanced Lidar Sensors High precision ranging, velocimetry, and 3-D terrain mapping Terrain Relative Navigation (TRN) TRN compares onboard reconnaissance data with real-time terrain imaging data to update the S/C position estimate Hazard Detection and Avoidance (HDA) Generates a high-resolution, 3-D terrain map in real-time during the approach trajectory to identify safe landing targets Inertial Navigation During Terminal Descent High precision surface relative sensors enable accurate inertial navigation during terminal descent and a tightly controlled touchdown within meters of the selected safe landing target.

  11. Unmanned Ground Vehicle Navigation and Coverage Hole Patching in Wireless Sensor Networks

    Science.gov (United States)

    Zhang, Guyu

    2013-01-01

    This dissertation presents a study of an Unmanned Ground Vehicle (UGV) navigation and coverage hole patching in coordinate-free and localization-free Wireless Sensor Networks (WSNs). Navigation and coverage maintenance are related problems since coverage hole patching requires effective navigation in the sensor network environment. A…

  12. Aerobasics–An Introduction to Aeronautics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 4. Aerobasics-An Introduction to Aeronautics - Air Navigation ... Keywords. Dead reckoning; celestial navigation; radio aids to navigation; instrument landing system (ILS); inertial navigation system (INS); global positioning system (GPS).

  13. A Survey of LIDAR Technology and Its Use in Spacecraft Relative Navigation

    Science.gov (United States)

    Christian, John A.; Cryan, Scott P.

    2013-01-01

    This paper provides a survey of modern LIght Detection And Ranging (LIDAR) sensors from a perspective of how they can be used for spacecraft relative navigation. In addition to LIDAR technology commonly used in space applications today (e.g. scanning, flash), this paper reviews emerging LIDAR technologies gaining traction in other non-aerospace fields. The discussion will include an overview of sensor operating principles and specific pros/cons for each type of LIDAR. This paper provides a comprehensive review of LIDAR technology as applied specifically to spacecraft relative navigation. HE problem of orbital rendezvous and docking has been a consistent challenge for complex space missions since before the Gemini 8 spacecraft performed the first successful on-orbit docking of two spacecraft in 1966. Over the years, a great deal of effort has been devoted to advancing technology associated with all aspects of the rendezvous, proximity operations, and docking (RPOD) flight phase. After years of perfecting the art of crewed rendezvous with the Gemini, Apollo, and Space Shuttle programs, NASA began investigating the problem of autonomous rendezvous and docking (AR&D) to support a host of different mission applications. Some of these applications include autonomous resupply of the International Space Station (ISS), robotic servicing/refueling of existing orbital assets, and on-orbit assembly.1 The push towards a robust AR&D capability has led to an intensified interest in a number of different sensors capable of providing insight into the relative state of two spacecraft. The present work focuses on exploring the state-of-the-art in one of these sensors - LIght Detection And Ranging (LIDAR) sensors. It should be noted that the military community frequently uses the acronym LADAR (LAser Detection And Ranging) to refer to what this paper calls LIDARs. A LIDAR is an active remote sensing device that is typically used in space applications to obtain the range to one or more

  14. The history and hopes of inertial confinement

    International Nuclear Information System (INIS)

    Linhart, J.G.

    1987-01-01

    The development of the concept of inertial confinement is followed through its several incarnations starting from hammer and anvil, tamping of chemical explosives to Veksler's idea of collective and impact acceleration. The application of inertial confinement to the controlled nuclear fusion appears as a natural extension of these previous applications. The early association with the research on macroparticle-acceleration is also mentioned. Follows a brief description of the development of ideas on liner-acceleration, including those linked with a rocket-propulsion, or as it is known today-ablation. The recent trends in liner-acceleration, energy-compression and energy-staging are mentioned, as well as the hopes and fears connected with reactor projects

  15. Autonomous vision-based navigation for proximity operations around binary asteroids

    Science.gov (United States)

    Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo

    2018-06-01

    Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.

  16. Hydrodynamic instabilities in inertial confinement fusion

    International Nuclear Information System (INIS)

    Freeman, J.R.

    1977-01-01

    Inertial confinement fusion targets generally consist of hollow high-density spheres filled with low density thermonuclear fuel. Targets driven ablatively by electrons, ions, or lasers are potentially unstable during the initial acceleration phase. Later in time, the relatively low density fuel decelerates the dense inner portion of the sphere (termed the pusher), permitting unstable growth at the fuel-pusher interface. The instabilities are of the Rayleigh-Taylor variety, modified by thermal and viscous diffusion and convection. These problems have been analyzed by many in recent years using both linearized perturbation methods and direct numerical simulation. Examples of two-dimensional simulations of the fuel-pusher instability in electron beam fusion targets will be presented, along with a review of possible stabilization mechanisms

  17. 33 CFR 66.05-100 - Designation of navigable waters as State waters for private aids to navigation.

    Science.gov (United States)

    2010-07-01

    ... as State waters for private aids to navigation. 66.05-100 Section 66.05-100 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION State Aids to Navigation § 66.05-100 Designation of navigable waters as State waters for private aids to...

  18. Spatial navigation by congenitally blind individuals.

    Science.gov (United States)

    Schinazi, Victor R; Thrash, Tyler; Chebat, Daniel-Robert

    2016-01-01

    Spatial navigation in the absence of vision has been investigated from a variety of perspectives and disciplines. These different approaches have progressed our understanding of spatial knowledge acquisition by blind individuals, including their abilities, strategies, and corresponding mental representations. In this review, we propose a framework for investigating differences in spatial knowledge acquisition by blind and sighted people consisting of three longitudinal models (i.e., convergent, cumulative, and persistent). Recent advances in neuroscience and technological devices have provided novel insights into the different neural mechanisms underlying spatial navigation by blind and sighted people and the potential for functional reorganization. Despite these advances, there is still a lack of consensus regarding the extent to which locomotion and wayfinding depend on amodal spatial representations. This challenge largely stems from methodological limitations such as heterogeneity in the blind population and terminological ambiguity related to the concept of cognitive maps. Coupled with an over-reliance on potential technological solutions, the field has diffused into theoretical and applied branches that do not always communicate. Here, we review research on navigation by congenitally blind individuals with an emphasis on behavioral and neuroscientific evidence, as well as the potential of technological assistance. Throughout the article, we emphasize the need to disentangle strategy choice and performance when discussing the navigation abilities of the blind population. For further resources related to this article, please visit the WIREs website. © 2015 The Authors. WIREs Cognitive Science published by Wiley Periodicals, Inc.

  19. The UAV take-off and landing system used for small areas of mobile vehicles

    Science.gov (United States)

    Ren, Tian-Yu; Duanmu, Qing-Duo; Wu, Bo-Qi

    2018-03-01

    In order to realize an UAV formation cluster system based on the current GPS and the fault and insufficiency of Beidou integrated navigation system in strong jamming environment. Due to the impact of the compass on the plane crash, navigation system error caused by the mobile area to help reduce the need for large landing sites and not in the small fast moving area to achieve the reality of the landing. By using Strapdown inertial and all-optical system to form Composite UAV flight control system, the photoelectric composite strapdown inertial coupling is realized, and through the laser and microwave telemetry link compound communication mechanism, using all-optical strapdown inertial and visual navigation system to solve the deviation of take-off and landing caused by electromagnetic interference, all-optical bidirectional data link realizes two-way position correction of landing site and aircraft, thus achieves the accurate recovery of UAV formation cluster in the mobile narrow area which the traditional navigation system can't realize. This system is a set of efficient unmanned aerial vehicle Group Take-off/descending system, which is suitable for many tasks, and not only realizes the reliable continuous navigation under the complex electromagnetic interference environment, moreover, the intelligent flight and Take-off and landing of unmanned aerial vehicles relative to the fast moving and small recovery sites in complex electromagnetic interference environment can not only improve the safe operation rate of unmanned aerial vehicle, but also guarantee the operation safety of the aircraft, and the more has important social value for the application foreground of the aircraft.

  20. Unified theory of dislocation motion including thermal activation and inertial effects

    International Nuclear Information System (INIS)

    Isaac, R.D.; Granato, A.V.

    1979-01-01

    Transition-state rate theory has generally been used to explain the temperature dependence of the flow stress of a crystal. However, the existence of a change in the flow stress during the superconducting transition indicates the presence of inertial effects in which dislocations overcome obstacles mechanically rather than thermally. It is shown here that the thermally activated and the inertial overcoming of obstacles are not unrelated but can both be derived from principles of stochastic motion. This leads to a theory of dislocation motion that includes both thermal activation and inertial effects. It is also shown that a distribution of activation energies must be considered to account for the experimental data

  1. INCLINATION AND VIBRATION MEASUREMENT BY INERTIAL SENSING FOR STRUCTURAL HEALTH MONITORING

    Science.gov (United States)

    Sugisaki, Koichi; Abe, Masato; Koshimizu, Satoru

    To develop a practical health monitoring system, inertial sensing which can readily be done for wide variety of situations is useful. However inertial sensors are measuring inclination and acceleration in reference to gravity. Therefore inclination are influence by acceleration and vice versa caused measuring errors. Especially, errors are more affected at low-frequency band which is important to estimate displacement. In this study, to establish correcting theory for inertial sensing and to develop method to estimate parameters for some structural system. And conducted a field test targeted at the real railway bridge to verify the effectiveness of the proposed method using response records of the pier under passing train load.

  2. High-accuracy self-calibration method for dual-axis rotation-modulating RLG-INS

    Science.gov (United States)

    Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Long, Xingwu

    2017-05-01

    Inertial navigation system has been the core component of both military and civil navigation systems. Dual-axis rotation modulation can completely eliminate the inertial elements constant errors of the three axes to improve the system accuracy. But the error caused by the misalignment angles and the scale factor error cannot be eliminated through dual-axis rotation modulation. And discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed the effect of calibration error during one modulated period and presented a new systematic self-calibration method for dual-axis rotation-modulating RLG-INS. Procedure for self-calibration of dual-axis rotation-modulating RLG-INS has been designed. The results of self-calibration simulation experiment proved that: this scheme can estimate all the errors in the calibration error model, the calibration precision of the inertial sensors scale factor error is less than 1ppm and the misalignment is less than 5″. These results have validated the systematic self-calibration method and proved its importance for accuracy improvement of dual -axis rotation inertial navigation system with mechanically dithered ring laser gyroscope.

  3. Inertial Confinement Fusion at Los Alamos

    International Nuclear Information System (INIS)

    Cartwright, D.C.

    1989-09-01

    This report discusses the following topics on inertial confinement fusion: distribution of electron-beam energy in KrF laser media; electron collision processes in KrF laser media; Krf laser kinetics; and properties of the KrF laser medium

  4. Navigation Problems in Blind-to-Blind Pedestrians Tele-assistance Navigation

    OpenAIRE

    Balata , Jan; Mikovec , Zdenek; Maly , Ivo

    2015-01-01

    International audience; We raise a question whether it is possible to build a large-scale navigation system for blind pedestrians where a blind person navigates another blind person remotely by mobile phone. We have conducted an experiment, in which we observed blind people navigating each other in a city center in 19 sessions. We focused on problems in the navigator’s attempts to direct the traveler to the destination. We observed 96 problems in total, classified them on the basis of the typ...

  5. Introducing navigation during melanoma-related sentinel lymph node procedures in the head-and-neck region.

    Science.gov (United States)

    KleinJan, Gijs H; Karakullukçu, Baris; Klop, W Martin C; Engelen, Thijs; van den Berg, Nynke S; van Leeuwen, Fijs W B

    2017-08-17

    Intraoperative sentinel node (SN) identification in patients with head-and-neck malignancies can be challenging due to unexpected drainage patterns and anatomical complexity. Here, intraoperative navigation-based guidance technologies may provide outcome. In this study, gamma camera-based freehandSPECT was evaluated in combination with the hybrid tracer ICG- 99m Tc-nanocolloid. Eight patients with melanoma located in the head-and-neck area were included. Indocyanine green (ICG)- 99m Tc-nanocolloid was injected preoperatively, whereafter lymphoscintigraphy and SPECT/CT imaging were performed in order to define the location of the SN(s). FreehandSPECT scans were generated in the operation room using a portable gamma camera. For lesion localization during surgery, freehandSPECT scans were projected in an augmented reality video-view that was used to spatially position a gamma-ray detection probe. Intraoperative fluorescence imaging was used to confirm the accuracy of the navigation-based approach and identify the exact location of the SNs. Preoperatively, 15 SNs were identified, of which 14 were identified using freehandSPECT. Navigation towards these nodes using the freehandSPECT approach was successful in 13 nodes. Fluorescence imaging provided optical confirmation of the navigation accuracy in all patients. In addition, fluorescence imaging allowed for the identification of (clustered) SNs that could not be identified based on navigation alone. The use of gamma camera-based freehandSPECT aids intraoperative lesion identification and, with that, supports the transition from pre- to intraoperative imaging via augmented reality display and directional guidance.

  6. Inertial Symmetry Breaking

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Christopher T.

    2018-03-19

    We review and expand upon recent work demonstrating that Weyl invariant theories can be broken "inertially," which does not depend upon a potential. This can be understood in a general way by the "current algebra" of these theories, independently of specific Lagrangians. Maintaining the exact Weyl invariance in a renormalized quantum theory can be accomplished by renormalization conditions that refer back to the VEV's of fields in the action. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential that breaks a U(1) symmetry together,with scale invariance.

  7. Inertial Confinement Fusion at Los Alamos

    International Nuclear Information System (INIS)

    Cartwright, D.C.

    1989-09-01

    This report discusses the following topics on Inertial Confinement Fusion: ICF contributions to science and technology; target fabrication; laser-target interaction; KrF laser development; advanced KrF lasers; KrF laser technology; and plasma physics for light-ion program

  8. Calibration of the inertial consistency index to assess road safety on horizontal curves of two-lane rural roads.

    Science.gov (United States)

    Llopis-Castelló, David; Camacho-Torregrosa, Francisco Javier; García, Alfredo

    2018-05-26

    One of every four road fatalities occurs on horizontal curves of two-lane rural roads. To this regard, many studies have been undertaken to analyze the crash risk on this road element. Most of them were based on the concept of geometric design consistency, which can be defined as how drivers' expectancies and road behavior relate. However, none of these studies included a variable which represents and estimates drivers' expectancies. This research presents a new local consistency model based on the Inertial Consistency Index (ICI). This consistency parameter is defined as the difference between the inertial operating speed, which represents drivers' expectations, and the operating speed, which represents road behavior. The inertial operating speed was defined as the weighted average operating speed of the preceding road section. In this way, different lengths, periods of time, and weighting distributions were studied to identify how the inertial operating speed should be calculated. As a result, drivers' expectancies should be estimated considering 15 s along the segment and a linear weighting distribution. This was consistent with drivers' expectancies acquirement process, which is closely related to Short-Term Memory. A Safety Performance Function was proposed to predict the number of crashes on a horizontal curve and consistency thresholds were defined based on the ICI. To this regard, the crash rate increased as the ICI increased. Finally, the proposed consistency model was compared with previous models. As a conclusion, the new Inertial Consistency Index allowed a more accurate estimation of the number of crashes and a better assessment of the consistency level on horizontal curves. Therefore, highway engineers have a new tool to identify where road crashes are more likely to occur during the design stage of both new two-lane rural roads and improvements of existing highways. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Pathways to Energy from Inertial Fusion. An Integrated Approach. Report of a Coordinated Research Project 2006-2010

    International Nuclear Information System (INIS)

    2013-04-01

    The IAEA has continuously demonstrated its commitment to supporting the development of safe and environmentally clean nuclear fusion energy. Statistics show that at the current rate of energy consumption, fusion energy would remain an inexhaustible energy source for humankind for millions of years. Furthermore, some of the existing and foreseen risks - such as nuclear waste disposal and rising greenhouse gas emissions from the use of fossil fuels - can also be reduced. In the quest for fusion energy, two main lines of research and development are currently being pursued worldwide, namely the inertial and the magnetic confinement fusion concepts. For both approaches, the IAEA has conducted coordinated research activities focusing on specific physics and technological issues relevant the establishment of the knowledge base and foundation for the design and construction of fusion power plants. This report describes the recent research and technological developments and challenges in inertial fusion energy within the framework of such a coordinated research effort. The coordinated research project on Pathways to Energy from Inertial Fusion: An Integrated Approach was initiated in 2006 and concluded in 2010. The project involved experts and institutions from 16 Member States, addressing issues relevant to advancing inertial fusion energy research and development in its practical applications. The key topics addressed include: (i) high repetition rate, low cost, high efficiency ignition drivers; (ii) beam-matter/beam-plasma interaction related to inertial fusion target physics; (iii) target fusion chamber coupling and interface; and (iv) integrated inertial fusion power plant design. Participants in this coordinated research project have contributed 17 detailed research and technology progress reports of work performed at national and international levels. This report compiles all these reports while highlighting the various achievements.

  10. Inertial forces and physics teaching

    International Nuclear Information System (INIS)

    Oliva Martinez, J.M.; Pontes Pedrajas, A.

    1996-01-01

    An epistemological and didactic analysis about inertial forces and the role of validity of Newton's Laws seen from several reference systems is performed. On the basis of considerations fulfilled, a discussion about the necessity of introducing these topics in the curriculum of physics teaching at different levels is also carried out. (Author) 21 refs

  11. Liquid aerosol filtration by fibrous filters in interception and inertial regimes; Filtration des aerosols liquides par les filtres a fibres en regimes d`interception et d`inertie

    Energy Technology Data Exchange (ETDEWEB)

    Gougeon, R

    1994-09-26

    In most previous studies of aerosol filtration, attention is focused on the maximum penetrating particle size region where the predominant mechanisms for collection are brownian diffusion and interception. In contrary the inertial regime remains poorly understood. Therefore, the aim of this study was to improve understanding of the behaviour of fibrous filters with liquid aerosols ar high frontal velocities both in the stationary and nonstationary filtration. Stationary filtration is first investigated. Experiments are done with special filters called `formettes` which have well defined structural characteristics. Precise results obtained with those filters allow us to select two relations quoted in the literature in order to describe the diffusion and the interception and to determine an empirical correlation describing the inertial impaction. Then this correlation with an industrial filter. In the second part, the evolution of the performances of fibrous filters loaded with liquid aerosols is studied experimentally and theoretically. We show that, in the inertial regime the filter efficiency first decreases and then increases rapidly with the loading rate. This increase is particularly important at high frontal velocities and with big particles. Macroscopic observations of high loaded filters show that the liquid is located in the fibre`s intersections to form big flat surfaces. A tentative of describing the evolution of the filter efficiency in modifying our stationary filtration model in order to take into account those liquid surfaces in the filter gives encouraging results. (authors). 92 refs., 93 figs., 11 tabs., 4 appends.

  12. Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound.

    Science.gov (United States)

    Suo, Dingjie; Govind, Bala; Zhang, Shengqi; Jing, Yun

    2018-03-01

    Through the introduction of multi-frequency sonication in High Intensity Focused Ultrasound (HIFU), enhancement of efficiency has been noted in several applications including thrombolysis, tissue ablation, sonochemistry, and sonoluminescence. One key experimental observation is that multi-frequency ultrasound can help lower the inertial cavitation threshold, thereby improving the power efficiency. However, this has not been well corroborated by the theory. In this paper, a numerical investigation on the inertial cavitation threshold of microbubbles (MBs) under multi-frequency ultrasound irradiation is conducted. The relationships between the cavitation threshold and MB size at various frequencies and in different media are investigated. The results of single-, dual and triple frequency sonication show reduced inertial cavitation thresholds by introducing additional frequencies which is consistent with previous experimental work. In addition, no significant difference is observed between dual frequency sonication with various frequency differences. This study, not only reaffirms the benefit of using multi-frequency ultrasound for various applications, but also provides a possible route for optimizing ultrasound excitations for initiating inertial cavitation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Inertial thermonuclear fusion by laser

    International Nuclear Information System (INIS)

    Watteau, J.P.

    1993-12-01

    The principles of deuterium tritium (DT) magnetic or inertial thermonuclear fusion are given. Even if results would be better with heavy ions beams, most of the results on fusion are obtained with laser beams. Technical and theoretical aspects of the laser fusion are presented with an extrapolation to the future fusion reactor. (A.B.). 34 refs., 17 figs

  14. Paediatric patient navigation models of care in Canada: An environmental scan.

    Science.gov (United States)

    Luke, Alison; Doucet, Shelley; Azar, Rima

    2018-05-01

    (1) To provide other organizations with useful information when implementing paediatric navigation programs and (2) to inform the implementation of a navigation care centre in New Brunswick for children with complex health conditions. This environmental scan consisted of a literature review of published and grey literature for paediatric patient navigation programs across Canada. Additional programs were found following discussions with program coordinators and navigators. Interviews were conducted with key staff from each program and included questions related to patient condition; target population and location; method delivery; navigator background; and navigator roles. Data analysis included analysis of interviews and identification of common themes across the different programs. We interviewed staff from 19 paediatric navigation programs across Canada. Programs varied across a number of different themes, including: condition and disease type, program location (e.g., hospital or clinic), navigator background (e.g., registered nurse or peer/lay navigator) and method of delivery (e.g., phone or face-to-face). Overall, navigator roles are similar across all programs, including advocacy, education, support and assistance in accessing resources from both within and outside the health care system. This scan offers a road map of Canadian paediatric navigation programs. Knowledge learned from this scan will inform stakeholders who are either involved in the delivery of paediatric patient navigation programs or planning to implement such a program. Specifically, our scan informed the development of a navigation centre for children with complex health conditions in New Brunswick.

  15. Orion Optical Navigation Progress Toward Exploration: Mission 1

    Science.gov (United States)

    Holt, Greg N.; D'Souza, Christopher N.; Saley, David

    2018-01-01

    /Camera interlock angles. Accurate attitude information is provided by the star trackers during each pass. Figure 1 shows the various phases of lunar return navigation when the vehicle is in autonomous operation with lost ground communication. The midcourse maneuvers are placed to control the entry interface conditions to the desired corridor for safe landing. The general form of optical navigation on Orion is where still images of the Moon or Earth are processed to find the apparent angular diameter and centroid in the camera focal plane. This raw data is transformed into range and bearing angle measurements using planetary data and precise star tracker inertial attitude. The measurements are then sent to the main flight computer's Kalman filter to update the onboard state vector. The images are, of course, collected over an arc to converge the state and estimate velocity. The same basic technique was used by Apollo to satisfy loss-of-comm, but Apollo used manual crew sightings with a vehicle-integral sextant instead of autonomously processing optical imagery. The software development is past its Critical Design Review, and is progressing through test and certification for human rating. In support of this, a hardware-in-the-loop test rig was developed in the Johnson Space Center Electro-Optics Lab to exercise the OpNav system prior to integrated testing on the Orion vehicle. Figure 2 shows the rig, which the test team has dubbed OCILOT (Orion Camera In the Loop Optical Testbed). Analysis performed to date shows a delivery that satisfies an allowable entry corridor as shown in Figure 3.

  16. GPS/INS Sensor Fusion Using GPS Wind up Model

    Science.gov (United States)

    Williamson, Walton R. (Inventor)

    2013-01-01

    A method of stabilizing an inertial navigation system (INS), includes the steps of: receiving data from an inertial navigation system; and receiving a finite number of carrier phase observables using at least one GPS receiver from a plurality of GPS satellites; calculating a phase wind up correction; correcting at least one of the finite number of carrier phase observables using the phase wind up correction; and calculating a corrected IMU attitude or velocity or position using the corrected at least one of the finite number of carrier phase observables; and performing a step selected from the steps consisting of recording, reporting, or providing the corrected IMU attitude or velocity or position to another process that uses the corrected IMU attitude or velocity or position. A GPS stabilized inertial navigation system apparatus is also described.

  17. Inertial Gait Phase Detection for control of a drop foot stimulator: Inertial sensing for gait phase detection

    NARCIS (Netherlands)

    Kotiadis, D.; Hermens, Hermanus J.; Veltink, Petrus H.

    An Inertial Gait Phase Detection system was developed to replace heel switches and footswitches currently being used for the triggering of drop foot stimulators. A series of four algorithms utilising accelerometers and gyroscopes individually and in combination were tested and initial results are

  18. Indoor wayfinding and navigation

    CERN Document Server

    2015-01-01

    Due to the widespread use of navigation systems for wayfinding and navigation in the outdoors, researchers have devoted their efforts in recent years to designing navigation systems that can be used indoors. This book is a comprehensive guide to designing and building indoor wayfinding and navigation systems. It covers all types of feasible sensors (for example, Wi-Fi, A-GPS), discussing the level of accuracy, the types of map data needed, the data sources, and the techniques for providing routes and directions within structures.

  19. Control algorithms for autonomous robot navigation

    International Nuclear Information System (INIS)

    Jorgensen, C.C.

    1985-01-01

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced

  20. Mooring observations of the near-inertial wave wake of Hurricane Ida (2009)

    Science.gov (United States)

    Pallàs-Sanz, Enric; Candela, Julio; Sheinbaum, Julio; Ochoa, José

    2016-12-01

    The near-inertial wave wake of Hurricane Ida is examined of the basis of horizontal velocity observations acquired from 7 moorings instrumented with acoustic Doppler current profilers deployed across the shelf break, slope, and at the abyssal plain of the Yucatan Peninsula, from 130 m to ∼3300 m. During the forced stage, background mean-flow consisted on a dominant cyclonic circulation of ∼100 km of diameter intensified toward the Yucatan's shelf (topographic constraint) and bounded by anticyclonic vorticity northeastward (north 25° N). In the low frequency band, subinertial signals of ∈ [5.5-7.5] day period propagating along the Yucatan shelf break. After the passage of Hurricane Ida, energetic near-inertial oscillations spread away from the storm's track over cyclonic vorticity. The wave's Eulerian frequency increases shoreward and toward the Yucatan's shelf. After Ida's passage, mooring data show a contrasting velocity response: semi-diurnal and diurnal tides are enhanced at the shelf break of the Yucatan Peninsula and near-inertial oscillations at the slope and abyssal plain. The near-inertial kinetic energy is largest to the right of the storm track because of the asymmetric wind-stress and amplified due to vorticity trapping near z =-500 m, which is a proxy of the base of the mesoscale structure and where the mean-flow is nearly zero. The blue frequency shifted wave wake propagates downward at ∼57-70 m day-1 and horizontally at 23-28 km day-1 leading a downward vertical energy flux of [1.3-1.6] × 10-2 W m-2. This represents a 7-9% of the total wind power input to near-inertial oscillations that, ultimately, became available for interior ocean mixing. The results suggest that the most energetic wave packet propagated poleward and downward from a broad upwelling region located near the Hurricane's track. The vertical structure of the near-inertial kinetic energy is described as a sum of the first 12 standing vertical modes and as vertically

  1. Inertial Sensor Technology for Elite Swimming Performance Analysis: A Systematic Review

    Science.gov (United States)

    Mooney, Robert; Corley, Gavin; Godfrey, Alan; Quinlan, Leo R; ÓLaighin, Gearóid

    2015-01-01

    Technical evaluation of swimming performance is an essential factor of elite athletic preparation. Novel methods of analysis, incorporating body worn inertial sensors (i.e., Microelectromechanical systems, or MEMS, accelerometers and gyroscopes), have received much attention recently from both research and commercial communities as an alternative to video-based approaches. This technology may allow for improved analysis of stroke mechanics, race performance and energy expenditure, as well as real-time feedback to the coach, potentially enabling more efficient, competitive and quantitative coaching. The aim of this paper is to provide a systematic review of the literature related to the use of inertial sensors for the technical analysis of swimming performance. This paper focuses on providing an evaluation of the accuracy of different feature detection algorithms described in the literature for the analysis of different phases of swimming, specifically starts, turns and free-swimming. The consequences associated with different sensor attachment locations are also considered for both single and multiple sensor configurations. Additional information such as this should help practitioners to select the most appropriate systems and methods for extracting the key performance related parameters that are important to them for analysing their swimmers’ performance and may serve to inform both applied and research practices. PMID:26712760

  2. X-ray sources by Z-pinch for inertial confinement fusion

    International Nuclear Information System (INIS)

    Akiyama, Hidenori; Katsuki, Sunao; Lisitsyn, Igor

    1999-01-01

    Inertial confinement nuclear fusion driven by X-ray from Z-pinch plasmas has been developed. Recently, extremely high X-ray power (290 TW) and energy (1.8 MJ) were produced in fast Z-pinch implosions on the Z accelerator (Sandia National Laboratories). Wire arrays are used to produce the initial plasma. The X-ray from Z-pinch plasmas produced by pulsed power has great potential as a driver of inertial confinement nuclear fusion. (author)

  3. Developing inertial fusion energy - Where do we go from here?

    International Nuclear Information System (INIS)

    Meier, W.R.; Logan, G.

    1996-01-01

    Development of inertial fusion energy (IFE) will require continued R ampersand D in target physics, driver technology, target production and delivery systems, and chamber technologies. It will also require the integration of these technologies in tests and engineering demonstrations of increasing capability and complexity. Development needs in each of these areas are discussed. It is shown how IFE development will leverage off the DOE Defense Programs funded inertial confinement fusion (ICF) work

  4. Monitoring of zebra mussels in the Shannon-Boyle navigation, other

    OpenAIRE

    Minchin, D.; Lucy, F.; Sullivan, M.

    2002-01-01

    The zebra mussel (Dreissena polymorpha) population has been closely monitored in Ireland following its discovery in 1997. The species has spread from lower Lough Derg, where it was first introduced, to most of the navigable areas of the Shannon and other interconnected navigable waters. This study took place in the summers of 2000 and 2001 and investigated the relative abundance and biomass of zebra mussels found in the main navigations of the Shannon and elsewhere in rivers, canals and lakes...

  5. Inertial fusion energy; L'energie de fusion inertielle

    Energy Technology Data Exchange (ETDEWEB)

    Decroisette, M.; Andre, M.; Bayer, C.; Juraszek, D. [CEA Bruyeres-le-Chatel, Dir. des Systemes d' Information (CEA/DIF), 91 (France); Le Garrec, B. [CEA Centre d' Etudes Scientifiques et Techniques d' Aquitaine, 33 - Le Barp (France); Deutsch, C. [Paris-11 Univ., 91 - Orsay (France); Migus, A. [Institut d' Optique Centre scientifique, 91 - Orsay (France)

    2005-07-01

    We first recall the scientific basis of inertial fusion and then describe a generic fusion reactor with the different components: the driver, the fusion chamber, the material treatment unit, the target factory and the turbines. We analyse the options proposed at the present time for the driver and for target irradiation scheme giving the state of art for each approach. We conclude by the presentation of LMJ (laser Megajoule) and NIF (national ignition facility) projects. These facilities aim to demonstrate the feasibility of laboratory DT ignition, first step toward Inertial Fusion Energy. (authors)

  6. A Leapfrog Navigation System

    Science.gov (United States)

    Opshaug, Guttorm Ringstad

    There are times and places where conventional navigation systems, such as the Global Positioning System (GPS), are unavailable due to anything from temporary signal occultations to lack of navigation system infrastructure altogether. The goal of the Leapfrog Navigation System (LNS) is to provide localized positioning services for such cases. The concept behind leapfrog navigation is to advance a group of navigation units teamwise into an area of interest. In a practical 2-D case, leapfrogging assumes known initial positions of at least two currently stationary navigation units. Two or more mobile units can then start to advance into the area of interest. The positions of the mobiles are constantly being calculated based on cross-range distance measurements to the stationary units, as well as cross-ranges among the mobiles themselves. At some point the mobile units stop, and the stationary units are released to move. This second team of units (now mobile) can then overtake the first team (now stationary) and travel even further towards the common goal of the group. Since there always is one stationary team, the position of any unit can be referenced back to the initial positions. Thus, LNS provides absolute positioning. I developed navigation algorithms needed to solve leapfrog positions based on cross-range measurements. I used statistical tools to predict how position errors would grow as a function of navigation unit geometry, cross-range measurement accuracy and previous position errors. Using this knowledge I predicted that a 4-unit Leapfrog Navigation System using 100 m baselines and 200 m leap distances could travel almost 15 km before accumulating absolute position errors of 10 m (1sigma). Finally, I built a prototype leapfrog navigation system using 4 GPS transceiver ranging units. I placed the 4 units in the vertices a 10m x 10m square, and leapfrogged the group 20 meters forwards, and then back again (40 m total travel). Average horizontal RMS position

  7. Loose and Tight GNSS/INS Integrations: Comparison of Performance Assessed in Real Urban Scenarios

    OpenAIRE

    Falco, Gianluca; Pini, Marco; Marucco, Gianluca

    2017-01-01

    Global Navigation Satellite Systems (GNSSs) remain the principal mean of positioning in many applications and systems, but in several types of environment, the performance of standalone receivers is degraded. Although many works show the benefits of the integration between GNSS and Inertial Navigation Systems (INSs), tightly-coupled architectures are mainly implemented in professional devices and are based on high-grade Inertial Measurement Units (IMUs). This paper investigates the performanc...

  8. Heavy-ion accelerator research for inertial fusion

    International Nuclear Information System (INIS)

    1987-08-01

    Thermonuclear fusion offers a most attractive long-term solution to the problem of future energy supplies: The fuel is virtually inexhaustible and the fusion reaction is notably free of long-lived radioactive by-products. Also, because the fuel is in the form of a plasma, there is no solid fuel core that could melt down. The DOE supports two major fusion research programs to exploit these virtues, one based on magnetic confinement and a second on inertial confinement. One part of the program aimed at inertial fusion is known as Heavy Ion Fusion Accelerator Research, or HIFAR. In this booklet, the aim is to place this effort in the context of fusion research generally, to review the brief history of heavy-ion fusion, and to describe the current status of the HIFAR program

  9. Automatic identification of inertial sensor placement on human body segments during walking

    NARCIS (Netherlands)

    Weenk, D.; van Beijnum, Bernhard J.F.; Baten, Christian T.M.; Hermens, Hermanus J.; Veltink, Petrus H.

    2013-01-01

    We present a novel method for the automatic identification of inertial sensors on human body segments during walking. This method allows the user to place (wireless) inertial sensors on arbitrary body segments. Next, the user walks for just a few seconds and the segment to which each sensor is

  10. Physics of Non-Inertial Reference Frames

    International Nuclear Information System (INIS)

    Kamalov, Timur F.

    2010-01-01

    Physics of non-inertial reference frames is a generalizing of Newton's laws to any reference frames. It is the system of general axioms for classical and quantum mechanics. The first, Kinematics Principle reads: the kinematic state of a body free of forces conserves and equal in absolute value to an invariant of the observer's reference frame. The second, Dynamics Principle extended Newton's second law to non-inertial reference frames and also contains additional variables there are higher derivatives of coordinates. Dynamics Principle reads: a force induces a change in the kinematic state of the body and is proportional to the rate of its change. It is mean that if the kinematic invariant of the reference frame is n-th derivative with respect the time, then the dynamics of a body being affected by the force F is described by the 2n-th differential equation. The third, Statics Principle reads: the sum of all forces acting a body at rest is equal to zero.

  11. Optimal motion planning using navigation measure

    Science.gov (United States)

    Vaidya, Umesh

    2018-05-01

    We introduce navigation measure as a new tool to solve the motion planning problem in the presence of static obstacles. Existence of navigation measure guarantees collision-free convergence at the final destination set beginning with almost every initial condition with respect to the Lebesgue measure. Navigation measure can be viewed as a dual to the navigation function. While the navigation function has its minimum at the final destination set and peaks at the obstacle set, navigation measure takes the maximum value at the destination set and is zero at the obstacle set. A linear programming formalism is proposed for the construction of navigation measure. Set-oriented numerical methods are utilised to obtain finite dimensional approximation of this navigation measure. Application of the proposed navigation measure-based theoretical and computational framework is demonstrated for a motion planning problem in a complex fluid flow.

  12. Observed near-inertial kinetic energy in the northwestern South China Sea

    Science.gov (United States)

    Chen, Gengxin; Xue, Huijie; Wang, Dongxiao; Xie, Qiang

    2013-10-01

    Based on more than 3 years of moored current-meter records, this study examined seasonal variability of near-inertial kinetic energy (NIKE) as well as all large (greater than one standard deviation from the mean) NIKE events related to storms and eddies in the northwestern South China Sea. The NIKE in the subsurface layer (30-450 m) exhibited obvious seasonal variability with larger values in autumn (herein defined as August, September, and October). All large NIKE events during the observation period were generated by passing storms. Most of the NIKE events had an e-folding timescale longer than 7 d. The phase velocity, vertical wavelength, and frequency shift of these events were examined. The maximum NIKE, induced by typhoon "Neoguri," was observed in April 2008. Normal mode analysis suggested that the combined effects of the first four modes determined the vertical distribution of NIKE with higher NIKE below 70 m but lower NIKE from 30 to 70 m. Another near-inertial oscillation event observed in August 2007 had the longest e-folding timescale of 13.5 d. Moreover, the NIKE propagated both upward and downward during this event. A ray-tracing model indicated that the smaller Brunt-Väisälä frequency and the stronger vertical shear of horizontal currents in an anticyclonic eddy and the near-inertial wave with larger horizontal scale facilitated the unusual propagation of the NIKE and the long decay timescale. Although the NIKE originated from wind, the water column structure affected by diverse oceanographic processes contributed substantially to its complex propagation and distribution.

  13. SU-F-P-42: “To Navigate, Or Not to Navigate: HDR BT in Recurrent Spine Lesions”

    Energy Technology Data Exchange (ETDEWEB)

    Voros, L; Cohen, G; Zaider, M; Yamada, Y [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2016-06-15

    Purpose: We compare the accuracy of HDR catheter placement for paraspinal lesions using O-arm CBCT imaging combined with StealthStation navigation and traditional fluoroscopically guided catheter placement. Methods: CT and MRI scans were acquired pre-treatment to outline the lesions and design treatment plans (pre-plans) to meet dosimetric constrains. The pre-planned catheter trajectories were transferred into the StealthStation Navigation system prior to the surgery. The StealthStation is an infra red (IR) optical navigation system used for guidance of surgical instruments. An intraoperative CBCT scan (O-arm) was acquired with reference IR optical fiducials anchored onto the patient and registered with the preplan image study to guide surgical instruments in relation to the patients’ anatomy and to place the brachytherapy catheters along the pre-planned trajectories. The final treatment plan was generated based on a 2nd intraoperative CBCT scan reflecting achieved implant geometry. The 2nd CBCT was later registered with the initial CT scan to compare the preplanned dwell positions with actual dwell positions (catheter placements). Similar workflow was used in placement of 8 catheters (1 patient) without navigation, but under fluoroscopy guidance in an interventional radiology suite. Results: A total of 18 catheters (3 patients) were placed using navigation assisted surgery. Average displacement of 0.66 cm (STD=0.37cm) was observed between the pre-plan source positions and actual source positions in the 3 dimensional space. This translates into an average 0.38 cm positioning error in one direction including registration errors, digitization errors, and the surgeons ability to follow the planned trajectory. In comparison, average displacement of non-navigated catheters was 0.50 cm (STD=0.22cm). Conclusion: Spinal lesion HDR brachytherapy planning is a difficult task. Catheter placement has a direct impact on target coverage and dose to critical structures. While

  14. Global exponential stability of inertial memristor-based neural networks with time-varying delays and impulses.

    Science.gov (United States)

    Zhang, Wei; Huang, Tingwen; He, Xing; Li, Chuandong

    2017-11-01

    In this study, we investigate the global exponential stability of inertial memristor-based neural networks with impulses and time-varying delays. We construct inertial memristor-based neural networks based on the characteristics of the inertial neural networks and memristor. Impulses with and without delays are considered when modeling the inertial neural networks simultaneously, which are of great practical significance in the current study. Some sufficient conditions are derived under the framework of the Lyapunov stability method, as well as an extended Halanay differential inequality and a new delay impulsive differential inequality, which depend on impulses with and without delays, in order to guarantee the global exponential stability of the inertial memristor-based neural networks. Finally, two numerical examples are provided to illustrate the efficiency of the proposed methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Measuring upper limb function in children with hemiparesis with 3D inertial sensors.

    Science.gov (United States)

    Newman, Christopher J; Bruchez, Roselyn; Roches, Sylvie; Jequier Gygax, Marine; Duc, Cyntia; Dadashi, Farzin; Massé, Fabien; Aminian, Kamiar

    2017-12-01

    Upper limb assessments in children with hemiparesis rely on clinical measurements, which despite standardization are prone to error. Recently, 3D movement analysis using optoelectronic setups has been used to measure upper limb movement, but generalization is hindered by time and cost. Body worn inertial sensors may provide a simple, cost-effective alternative. We instrumented a subset of 30 participants in a mirror therapy clinical trial at baseline, post-treatment, and follow-up clinical assessments, with wireless inertial sensors positioned on the arms and trunk to monitor motion during reaching tasks. Inertial sensor measurements distinguished paretic and non-paretic limbs with significant differences (P < 0.01) in movement duration, power, range of angular velocity, elevation, and smoothness (normalized jerk index and spectral arc length). Inertial sensor measurements correlated with functional clinical tests (Melbourne Assessment 2); movement duration and complexity (Higuchi fractal dimension) showed moderate to strong negative correlations with clinical measures of amplitude, accuracy, and fluency. Inertial sensor measurements reliably identify paresis and correlate with clinical measurements; they can therefore provide a complementary dimension of assessment in clinical practice and during clinical trials aimed at improving upper limb function.

  16. Control of a laser inertial confinement fusion-fission power plant

    Science.gov (United States)

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  17. The development and validation of using inertial sensors to monitor postural change in resistance exercise.

    Science.gov (United States)

    Gleadhill, Sam; Lee, James Bruce; James, Daniel

    2016-05-03

    This research presented and validated a method of assessing postural changes during resistance exercise using inertial sensors. A simple lifting task was broken down to a series of well-defined tasks, which could be examined and measured in a controlled environment. The purpose of this research was to determine whether timing measures obtained from inertial sensor accelerometer outputs are able to provide accurate, quantifiable information of resistance exercise movement patterns. The aim was to complete a timing measure validation of inertial sensor outputs. Eleven participants completed five repetitions of 15 different deadlift variations. Participants were monitored with inertial sensors and an infrared three dimensional motion capture system. Validation was undertaken using a Will Hopkins Typical Error of the Estimate, with a Pearson׳s correlation and a Bland Altman Limits of Agreement analysis. Statistical validation measured the timing agreement during deadlifts, from inertial sensor outputs and the motion capture system. Timing validation results demonstrated a Pearson׳s correlation of 0.9997, with trivial standardised error (0.026) and standardised bias (0.002). Inertial sensors can now be used in practical settings with as much confidence as motion capture systems, for accelerometer timing measurements of resistance exercise. This research provides foundations for inertial sensors to be applied for qualitative activity recognition of resistance exercise and safe lifting practices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Frequency Support of PMSG-WTG Based on Improved Inertial Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Wang, X.; Gao, W.; Kang, M.; Hwang, M.; Kang, Y.; Gevorgian, Vahan; Muljadi, Eduard

    2016-03-15

    With increasing integrations of large-scale systems based on permanent magnet synchronous generator wind turbine generators (PMSG-WTGs), the overall inertial response of a power system will tend to deteriorate as a result of the decoupling of rotor speed and grid frequency through the power converter as well as the scheduled retirement of conventional synchronous generators. Thus, PMSG-WTGs can provide value to an electric grid by contributing to the system's inertial response by utilizing the inherent kinetic energy stored in their rotating masses and fast power control. In this work, an improved inertial control method based on the maximum power point tracking operation curve is introduced to enhance the overall frequency support capability of PMSG-WTGs in the case of large supply-demand imbalances. Moreover, this method is implemented in the CART2-PMSG integrated model in MATLAB/Simulink to investigate its impact on the wind turbine's structural loads during the inertial response process. Simulation results indicate that the proposed method can effectively reduce the frequency nadir, arrest the rate of change of frequency, and mitigate the secondary frequency drop while imposing no negative impact on the major mechanical components of the wind turbine.

  19. Tremor analysis by decomposition of acceleration into gravity and inertial acceleration using inertial measurement unit

    Czech Academy of Sciences Publication Activity Database

    Šprdlík, Otakar; Hurák, Z.; Hoskovcová, M.; Ulmanová, O.; Růžička, E.

    2011-01-01

    Roč. 6, č. 3 (2011), s. 269-289 ISSN 1746-8094 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10750506 Keywords : Tremor * Accelerometer * Inertial measurementunit * Gravitational artifact * Regression * Tremor ratingscale Subject RIV: BC - Control Systems Theory Impact factor: 1.000, year: 2011 http://library.utia.cas.cz/separaty/2011/TR/sprdlik-0350248.pdf

  20. Experimental results on advanced inertial fusion schemes obtained within the HiPER project

    International Nuclear Information System (INIS)

    Batani, Dimitri; Santos, Jorge J.; Schurtz, Guy; Hulin, Sebastien; Ribeyre, Xavier; Nicolai, Philippe; Vauzour, Benjamin; Dorchies, Fabien; Gizzi, Leonida A.; Koester, Petra; Labate, Luca; Honrubia, Javier; Antonelli, Luca; Morace, Alessio; Volpe, Luca; Nazarov, Wiger; Pasley, John; Richetta, Maria; Lancaster, Kate; Spindloe, Christopher; Tolley, Martin; Neely, David; Kozlova, Michaela; Nejdl, Jaroslav; Rus, Bedrich; Wolowski, Jerzy; Badziak, Jan

    2012-01-01

    This paper presents the results of experiments conducted within the Work Package 10 (fusion experimental programme) of the HiPER project. The aim of these experiments was to study the physics relevant for advanced ignition schemes for inertial confinement fusion, i.e. the fast ignition and the shock ignition. Such schemes allow to achieve a higher fusion gain compared to the indirect drive approach adopted in the National Ignition Facility in United States, which is important for the future inertial fusion energy reactors and for realising the inertial fusion with smaller facilities. (authors)

  1. Energy production by means of inertially confined plasmas

    International Nuclear Information System (INIS)

    Hoernqvist, N.; Witalis, E.

    1984-01-01

    An account is given, about the general but rather intricate physical principles which are fundamental for the ignition, propagation and burning of some listed energy-producing nuclear fusion reactions. Further, the theory is extended to describe the necessary but high performance combination studied or proposed to be achieved by the radiation sources (drivers) in order to bring about, in particular, the increase density of the nuclear fuel by means of a radiation-driven ablative compression. The analysis is extended by conditions and limitations also for technical and economic reasons. This leads to the identification followed by discussions of five critical parameters, each of which is a necessary condition to obtain inertial fusion. In the sequel, components and assemblies for inertial fusion are described, i.e. drivers (lasers, light ions, x-radiation, heavy ions), the structure and properties of fuel pellets and reactor proposals. Special regard is given to known or anticipated limitations of technical, physical or economic nature. A brief description is given about progress and present situation for magnetic confinement fusion. This provides a background of an attempt for a comparison with inertial fusion. It is then claimed that none of these two main-line techiques of fusion research can at present be regarded or expected to be more likely to succeed in providing economic fusion energy production. In the summary recommendations are given about theoretical studies in combination with close observations of the general and international progress of research. An experimental effort, however, is considered as too much of an expensive venture, in particular with regard to present uncertainties in judging techniques involving accelerator-generated heavy ions and x-ray generation methods for driving the implosion processes of inertial fusion. (Author)

  2. Index of light ion inertial confinement fusion publications and presentations January 1989 through December 1993

    International Nuclear Information System (INIS)

    Sweeney, M.A.

    1995-11-01

    This report lists publications and presentations that are related to inertial confinement fusion and were authored or coauthored by Sandians in the Pulsed Power Sciences Center from 1989 through 1993. The 661 publications and presentations are categorized into the following general topics: (1) reviews, (2) ion sources, (3) ion diodes, (4) plasma opening switches, (5) ion beam transport, (6) targets and deposition physics, (7) advanced driver and pulsed power technology development, (8) diagnostics, and (9) code development. Research in these areas is arranged by topic in chronological order, with the early efforts under each topic presented first. The work is also categorized alphabetically by first author. A list of acronyms, abbreviations, and definitions of use in understanding light ion inertial confinement fusion research is also included

  3. Inertial fusion and energy production

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1982-01-01

    Inertial-confinement fusion (ICF) is a technology for releasing nuclear energy from the fusion of light nuclei. For energy production, the most reactive hydrogen isotopes (deuterium (D) and tritium (T)) are commonly considered. The energy aplication requires the compression of a few milligrams of a DT mixture to great density, approximately 1000 times its liquid-state density, and to a high temperature, nearly 100 million 0 K. Under these conditions, efficient nuclear-fusion reactions occur, which can result in over 30% burn-up of the fusion fuel. The high density and temperature can be achieved by focusing very powerful laser or ion beams onto the target. The resultant ablation of the outer layers of the target compresses the fuel in the target, DT ignition occurs, and burn-up of the fuel results as the thermonuclear burn wave propagates outward. The DT-fuel burn-up occurs in about 199 picoseconds. On this short time scale, inertial forces are sufficiently strong to prevent target disassembly before fuel burn-up occurs. The energy released by the DT fusion is projected to be several hundred times greater than the energy delivered by the driver. The present statuds of ICF technology is described

  4. Vision Based Autonomous Robot Navigation Algorithms and Implementations

    CERN Document Server

    Chatterjee, Amitava; Nirmal Singh, N

    2013-01-01

    This book is devoted to the theory and development of autonomous navigation of mobile robots using computer vision based sensing mechanism. The conventional robot navigation systems, utilizing traditional sensors like ultrasonic, IR, GPS, laser sensors etc., suffer several drawbacks related to either the physical limitations of the sensor or incur high cost. Vision sensing has emerged as a popular alternative where cameras can be used to reduce the overall cost, maintaining high degree of intelligence, flexibility and robustness. This book includes a detailed description of several new approaches for real life vision based autonomous navigation algorithms and SLAM. It presents the concept of how subgoal based goal-driven navigation can be carried out using vision sensing. The development concept of vision based robots for path/line tracking using fuzzy logic is presented, as well as how a low-cost robot can be indigenously developed in the laboratory with microcontroller based sensor systems. The book descri...

  5. Initial Alignment for SINS Based on Pseudo-Earth Frame in Polar Regions.

    Science.gov (United States)

    Gao, Yanbin; Liu, Meng; Li, Guangchun; Guang, Xingxing

    2017-06-16

    An accurate initial alignment must be required for inertial navigation system (INS). The performance of initial alignment directly affects the following navigation accuracy. However, the rapid convergence of meridians and the small horizontalcomponent of rotation of Earth make the traditional alignment methods ineffective in polar regions. In this paper, from the perspective of global inertial navigation, a novel alignment algorithm based on pseudo-Earth frame and backward process is proposed to implement the initial alignment in polar regions. Considering that an accurate coarse alignment of azimuth is difficult to obtain in polar regions, the dynamic error modeling with large azimuth misalignment angle is designed. At the end of alignment phase, the strapdown attitude matrix relative to local geographic frame is obtained without influence of position errors and cumbersome computation. As a result, it would be more convenient to access the following polar navigation system. Then, it is also expected to unify the polar alignment algorithm as much as possible, thereby further unifying the form of external reference information. Finally, semi-physical static simulation and in-motion tests with large azimuth misalignment angle assisted by unscented Kalman filter (UKF) validate the effectiveness of the proposed method.

  6. Inertial-confinement-fusion targets

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1981-01-01

    Inertial confinement fusion (ICF) targets are made as simple flat discs, as hollow shells or as complicated multilayer structures. Many techniques have been devised for producing the targets. Glass and metal shells are made by using drop and bubble techniques. Solid hydrogen shells are also produced by adapting old methods to the solution of modern problems. Some of these techniques, problems and solutions are discussed. In addition, the applications of many of the techniques to fabrication of ICF targets is presented

  7. Juvenile Osprey Navigation during Trans-Oceanic Migration.

    Directory of Open Access Journals (Sweden)

    Travis W Horton

    Full Text Available To compensate for drift, an animal migrating through air or sea must be able to navigate. Although some species of bird, fish, insect, mammal, and reptile are capable of drift compensation, our understanding of the spatial reference frame, and associated coordinate space, in which these navigational behaviors occur remains limited. Using high resolution satellite-monitored GPS track data, we show that juvenile ospreys (Pandion haliaetus are capable of non-stop constant course movements over open ocean spanning distances in excess of 1500 km despite the perturbing effects of winds and the lack of obvious landmarks. These results are best explained by extreme navigational precision in an exogenous spatio-temporal reference frame, such as positional orientation relative to Earth's magnetic field and pacing relative to an exogenous mechanism of keeping time. Given the age (<1 year-old of these birds and knowledge of their hatching site locations, we were able to transform Enhanced Magnetic Model coordinate locations such that the origin of the magnetic coordinate space corresponded with each bird's nest. Our analyses show that trans-oceanic juvenile osprey movements are consistent with bicoordinate positional orientation in transformed magnetic coordinate or geographic space. Through integration of movement and meteorological data, we propose a new theoretical framework, chord and clock navigation, capable of explaining the precise spatial orientation and temporal pacing performed by juvenile ospreys during their long-distance migrations over open ocean.

  8. Guidance and navigation for rendezvous with an uncooperative target

    Science.gov (United States)

    Telaar, J.; Schlaile, C.; Sommer, J.

    2018-06-01

    This paper presents a guidance strategy for a rendezvous with an uncooperative target. In the applied design reference mission, a spiral approach is commanded ensuring a collision-free relative orbit due to e/i-vector separation. The dimensions of the relative orbit are successively reduced by Δv commands which at the same time improve the observability of the relative state. The navigation is based on line-of-sight measurements. The relative state is estimated by an extended Kalman filter (EKF). The performance of this guidance and navigation strategy is demonstrated by extensive Monte Carlo simulations taking into account all major uncertainties like measurement errors, Δv execution errors, and differential drag.

  9. Long-range forces affecting equilibrium inertial focusing behavior in straight high aspect ratio microfluidic channels

    Energy Technology Data Exchange (ETDEWEB)

    Reece, Amy E.; Oakey, John, E-mail: joakey@uwyo.edu [Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071 (United States)

    2016-04-15

    The controlled and directed focusing of particles within flowing fluids is a problem of fundamental and technological significance. Microfluidic inertial focusing provides passive and precise lateral and longitudinal alignment of small particles without the need for external actuation or sheath fluid. The benefits of inertial focusing have quickly enabled the development of miniaturized flow cytometers, size-selective sorting devices, and other high-throughput particle screening tools. Straight channel inertial focusing device design requires knowledge of fluid properties and particle-channel size ratio. Equilibrium behavior of inertially focused particles has been extensively characterized and the constitutive phenomena described by scaling relationships for straight channels of square and rectangular cross section. In concentrated particle suspensions, however, long-range hydrodynamic repulsions give rise to complex particle ordering that, while interesting and potentially useful, can also dramatically diminish the technique’s effectiveness for high-throughput particle handling applications. We have empirically investigated particle focusing behavior within channels of increasing aspect ratio and have identified three scaling regimes that produce varying degrees of geometrical ordering between focused particles. To explore the limits of inertial particle focusing and identify the origins of these long-range interparticle forces, we have explored equilibrium focusing behavior as a function of channel geometry and particle concentration. Experimental results for highly concentrated particle solutions identify equilibrium thresholds for focusing that scale weakly with concentration and strongly with channel geometry. Balancing geometry mediated inertial forces with estimates for interparticle repulsive forces now provide a complete picture of pattern formation among concentrated inertially focused particles and enhance our understanding of the fundamental limits

  10. Present status of inertial confinement fusion in Japan

    International Nuclear Information System (INIS)

    Yamanaka, Chiyoe

    1984-01-01

    The Japanese inertial fusion program has made important progress towards implosion fusion process and the technical development required for realizing the breakeven of inertial fusion energy. The key issues for the ICF research are the development of a high power driver, the pertinent pellet design for implosion by a super computer code, and the diagnostics of implosion process with high space and time resolution. The Institute of Laser Engineering (ILE), Osaka University, is the central laboratory for ICF research in Japan. The ILE Osaka has advanced the Kongo Project aiming at the breakeven of inertial fusion since 1980, and as the first phase, the Gekko 12 Nd glass laser of 20 kJ having 12 beams was constructed. The ILE has also the Lekko 8 CO 2 laser and the Reiden 4 light ion beam machine. In the second phase, a 100 kJ class driver will be provided. At the ILE, rare gas halide lasers such as KrF and ArF have been investigated. Laser plasma coupling, the scaling law for implosion pressure, the invention of a new type target ''Cannonball'', and the development of computer codes are described. Also the activities in universities, government laboratories and industrial companies are reported. (Kako, I.)

  11. Entanglement concentration for two-mode Gaussian states in non-inertial frames

    International Nuclear Information System (INIS)

    Di Noia, Maurizio; Giraldi, Filippo; Petruccione, Francesco

    2017-01-01

    Entanglement creation and concentration by means of a beam splitter (BS) is analysed for a generic two-mode bipartite Gaussian state in a relativistic framework. The total correlations, the purity and the entanglement in terms of logarithmic negativity are analytically studied for observers in an inertial state and in a non-inertial state of uniform acceleration. The dependence of entanglement on the BS transmissivity due to the Unruh effect is analysed in the case when one or both observers undergo uniform acceleration. Due to the Unruh effect, depending on the initial Gaussian state parameters and observed accelerations, the best condition for entanglement generation limited to the two modes of the observers in their regions is not always a balanced beam splitter, as it is for the inertial case. (paper)

  12. Consistency of the Mach principle and the gravitational-to-inertial mass equivalence principle

    International Nuclear Information System (INIS)

    Granada, Kh.K.; Chubykalo, A.E.

    1990-01-01

    Kinematics of the system, composed of two bodies, interacting with each other according to inverse-square law, was investigated. It is shown that the Mach principle, earlier rejected by the general relativity theory, can be used as an alternative for the absolute space concept, if it is proposed, that distant star background dictates both inertial and gravitational mass of a body

  13. Improving Multisensor Positioning of Land Vehicles with Integrated Visual Odometry for Next-Generation Self-Driving Cars

    Directory of Open Access Journals (Sweden)

    Muhammed Tahsin Rahman

    2018-01-01

    Full Text Available For their complete realization, autonomous vehicles (AVs fundamentally rely on the Global Navigation Satellite System (GNSS to provide positioning and navigation information. However, in area such as urban cores, parking lots, and under dense foliage, which are all commonly frequented by AVs, GNSS signals suffer from blockage, interference, and multipath. These effects cause high levels of errors and long durations of service discontinuity that mar the performance of current systems. The prevalence of vision and low-cost inertial sensors provides an attractive opportunity to further increase the positioning and navigation accuracy in such GNSS-challenged environments. This paper presents enhancements to existing multisensor integration systems utilizing the inertial navigation system (INS to aid in Visual Odometry (VO outlier feature rejection. A scheme called Aided Visual Odometry (AVO is developed and integrated with a high performance mechanization architecture utilizing vehicle motion and orientation sensors. The resulting solution exhibits improved state covariance convergence and navigation accuracy, while reducing computational complexity. Experimental verification of the proposed solution is illustrated through three real road trajectories, over two different land vehicles, and using two low-cost inertial measurement units (IMUs.

  14. Sensorimotor Adaptation Following Exposure to Ambiguous Inertial Motion Cues

    Science.gov (United States)

    Wood, S. J.; Clement, G. R.; Rupert, A. H.; Reschke, M. F.; Harm, D. L.; Guedry, F. E.

    2007-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. Adaptive changes in how inertial cues from the otolith system are integrated with other sensory information lead to perceptual and postural disturbances upon return to Earth s gravity. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of tilt-translation disturbances during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation during tilt and translation motion.

  15. Navigation Tools and Equipment and How They Have Improved Aviation Safety

    OpenAIRE

    Sulaiman D. S Alsahli FadalahassanALfadala

    2017-01-01

    This paper highlights the impact of navigation tools and equipment, such as the GPS, navigation radar, and other communications tools, which aid in ensuring aviation safety. It emphasizes the need for aviation safety and how these navigation methods are of great help to reduce the hazards and clearly indicate the problems related to the aircraft, aircraft traffic management, weather disturbances, among others. It also recommends how these tools and equipment must be further developed to promo...

  16. Environmental layout complexity affects neural activity during navigation in humans.

    Science.gov (United States)

    Slone, Edward; Burles, Ford; Iaria, Giuseppe

    2016-05-01

    Navigating large-scale surroundings is a fundamental ability. In humans, it is commonly assumed that navigational performance is affected by individual differences, such as age, sex, and cognitive strategies adopted for orientation. We recently showed that the layout of the environment itself also influences how well people are able to find their way within it, yet it remains unclear whether differences in environmental complexity are associated with changes in brain activity during navigation. We used functional magnetic resonance imaging to investigate how the brain responds to a change in environmental complexity by asking participants to perform a navigation task in two large-scale virtual environments that differed solely in interconnection density, a measure of complexity defined as the average number of directional choices at decision points. The results showed that navigation in the simpler, less interconnected environment was faster and more accurate relative to the complex environment, and such performance was associated with increased activity in a number of brain areas (i.e. precuneus, retrosplenial cortex, and hippocampus) known to be involved in mental imagery, navigation, and memory. These findings provide novel evidence that environmental complexity not only affects navigational behaviour, but also modulates activity in brain regions that are important for successful orientation and navigation. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Absolute orbit determination using line-of-sight vector measurements between formation flying spacecraft

    Science.gov (United States)

    Ou, Yangwei; Zhang, Hongbo; Li, Bin

    2018-04-01

    The purpose of this paper is to show that absolute orbit determination can be achieved based on spacecraft formation. The relative position vectors expressed in the inertial frame are used as measurements. In this scheme, the optical camera is applied to measure the relative line-of-sight (LOS) angles, i.e., the azimuth and elevation. The LIDAR (Light radio Detecting And Ranging) or radar is used to measure the range and we assume that high-accuracy inertial attitude is available. When more deputies are included in the formation, the formation configuration is optimized from the perspective of the Fisher information theory. Considering the limitation on the field of view (FOV) of cameras, the visibility of spacecraft and the installation of cameras are investigated. In simulations, an extended Kalman filter (EKF) is used to estimate the position and velocity. The results show that the navigation accuracy can be enhanced by using more deputies and the installation of cameras significantly affects the navigation performance.

  18. Relative contribution of allothetic and idiothetic navigation to place avoidance on stable and rotating arenas in darkness

    Czech Academy of Sciences Publication Activity Database

    Stuchlík, Aleš; Bureš, Jan

    2002-01-01

    Roč. 128, č. 2 (2002), s. 179-188 ISSN 0166-4328 R&D Projects: GA ČR GA309/00/1656 Institutional research plan: CEZ:AV0Z5011922 Keywords : allothetic navigation * idiothetic navigation * place avoidance Subject RIV: AN - Psychology Impact factor: 2.791, year: 2002

  19. Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing.

    Science.gov (United States)

    Sabatini, Angelo Maria

    2011-01-01

    User-worn sensing units composed of inertial and magnetic sensors are becoming increasingly popular in various domains, including biomedical engineering, robotics, virtual reality, where they can also be applied for real-time tracking of the orientation of human body parts in the three-dimensional (3D) space. Although they are a promising choice as wearable sensors under many respects, the inertial and magnetic sensors currently in use offer measuring performance that are critical in order to achieve and maintain accurate 3D-orientation estimates, anytime and anywhere. This paper reviews the main sensor fusion and filtering techniques proposed for accurate inertial/magnetic orientation tracking of human body parts; it also gives useful recipes for their actual implementation.

  20. Lunar Navigation Architecture Design Considerations

    Science.gov (United States)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  1. Far-field dynamic behavior of a half-space under an inertial strip foundation subjected to a time-harmonic force

    Directory of Open Access Journals (Sweden)

    M. Dehestani

    Full Text Available Recent research works demonstrated that the interaction between the loads and the carrying structure's boundary which is related to the inertia of the load is an influential factor on the dynamic response of the structure. Although effects of the inertia in moving loads were considered in many works, very few papers can be found on the inertial effects of the stationary loads on structures. In this paper, an elastodynamic formulation was employed to investigate the dynamic response of a homogeneous isotropic elastic half-space under an inertial strip foundation subjected to a time-harmonic force. Fourier integral transformation was used to solve the system of Poisson-type partial differential equation considering the boundary conditions and the inertial effects. Steepest descent method was employed to obtain the approximate far-field displacements and stresses. A numerical example is presented to illustrate the methodology and typical results.

  2. Review of fall risk assessment in geriatric populations using inertial sensors

    OpenAIRE

    Howcroft, Jennifer; Kofman, Jonathan; Lemaire, Edward D

    2013-01-01

    Background Falls are a prevalent issue in the geriatric population and can result in damaging physical and psychological consequences. Fall risk assessment can provide information to enable appropriate interventions for those at risk of falling. Wearable inertial-sensor-based systems can provide quantitative measures indicative of fall risk in the geriatric population. Methods Forty studies that used inertial sensors to evaluate geriatric fall risk were reviewed and pertinent methodological f...

  3. Hohlraum manufacture for inertial confinement fusion

    International Nuclear Information System (INIS)

    Foreman, L.R.; Gobby, P.; Bartos, J.

    1994-01-01

    Hohlraums are an integral part of indirect drive targets for Inertial Confinement Fusion (ICF) research. Hohlraums are made by an electroforming process that combines elements of micromachining and coating technology. The authors describe how these target element are made and extension of the method that allow fabrication of other, more complex target components

  4. E-navigation Services for Non-SOLAS Ships

    Directory of Open Access Journals (Sweden)

    Kwang An

    2016-06-01

    Full Text Available It is clearly understood that the main benefits of e-navigation are improved safety and better protection of the environment through the promotion of standards of navigational system and a reduction in human error. In order to meet the expectations on the benefit of e-navigation, e-navigation services should be more focused on non-SOLAS ships. The purpose of this paper is to present necessary e-navigation services for non-SOLAS ships in order to prevent marine accidents in Korean coastal waters. To meet the objectives of the study, an examination on the present navigation and communication system for non-SOLAS ships was performed. Based on the IMO's e-navigation Strategy Implementation Plan (SIP and Korea's national SIP for e-navigation, future trends for the development and implementation of e-navigation were discussed. Consequently, Electronic Navigational Chart (ENC download and ENC up-date service, ENC streaming service, route support service and communication support service based on Maritime Cloud were presented as essential e-navigation services for non-SOLAS ships. This study will help for the planning and designing of the Korean e-navigation system. It is expected that the further researches on the navigation support systems based on e-navigation will be carried out in order to implement the essential e-navigation services for non-SOLAS ships.

  5. Tracking 3D Moving Objects Based on GPS/IMU Navigation Solution, Laser Scanner Point Cloud and GIS Data

    Directory of Open Access Journals (Sweden)

    Siavash Hosseinyalamdary

    2015-07-01

    Full Text Available Monitoring vehicular road traffic is a key component of any autonomous driving platform. Detecting moving objects, and tracking them, is crucial to navigating around objects and predicting their locations and trajectories. Laser sensors provide an excellent observation of the area around vehicles, but the point cloud of objects may be noisy, occluded, and prone to different errors. Consequently, object tracking is an open problem, especially for low-quality point clouds. This paper describes a pipeline to integrate various sensor data and prior information, such as a Geospatial Information System (GIS map, to segment and track moving objects in a scene. We show that even a low-quality GIS map, such as OpenStreetMap (OSM, can improve the tracking accuracy, as well as decrease processing time. A bank of Kalman filters is used to track moving objects in a scene. In addition, we apply non-holonomic constraint to provide a better orientation estimation of moving objects. The results show that moving objects can be correctly detected, and accurately tracked, over time, based on modest quality Light Detection And Ranging (LiDAR data, a coarse GIS map, and a fairly accurate Global Positioning System (GPS and Inertial Measurement Unit (IMU navigation solution.

  6. DRIFT-FREE INDOOR NAVIGATION USING SIMULTANEOUS LOCALIZATION AND MAPPING OF THE AMBIENT HETEROGENEOUS MAGNETIC FIELD

    Directory of Open Access Journals (Sweden)

    J. C. K. Chow

    2017-09-01

    Full Text Available In the absence of external reference position information (e.g. surveyed targets or Global Navigation Satellite Systems Simultaneous Localization and Mapping (SLAM has proven to be an effective method for indoor navigation. The positioning drift can be reduced with regular loop-closures and global relaxation as the backend, thus achieving a good balance between exploration and exploitation. Although vision-based systems like laser scanners are typically deployed for SLAM, these sensors are heavy, energy inefficient, and expensive, making them unattractive for wearables or smartphone applications. However, the concept of SLAM can be extended to non-optical systems such as magnetometers. Instead of matching features such as walls and furniture using some variation of the Iterative Closest Point algorithm, the local magnetic field can be matched to provide loop-closure and global trajectory updates in a Gaussian Process (GP SLAM framework. With a MEMS-based inertial measurement unit providing a continuous trajectory, and the matching of locally distinct magnetic field maps, experimental results in this paper show that a drift-free navigation solution in an indoor environment with millimetre-level accuracy can be achieved. The GP-SLAM approach presented can be formulated as a maximum a posteriori estimation problem and it can naturally perform loop-detection, feature-to-feature distance minimization, global trajectory optimization, and magnetic field map estimation simultaneously. Spatially continuous features (i.e. smooth magnetic field signatures are used instead of discrete feature correspondences (e.g. point-to-point as in conventional vision-based SLAM. These position updates from the ambient magnetic field also provide enough information for calibrating the accelerometer bias and gyroscope bias in-use. The only restriction for this method is the need for magnetic disturbances (which is typically not an issue for indoor environments; however

  7. Drift-Free Indoor Navigation Using Simultaneous Localization and Mapping of the Ambient Heterogeneous Magnetic Field

    Science.gov (United States)

    Chow, J. C. K.

    2017-09-01

    In the absence of external reference position information (e.g. surveyed targets or Global Navigation Satellite Systems) Simultaneous Localization and Mapping (SLAM) has proven to be an effective method for indoor navigation. The positioning drift can be reduced with regular loop-closures and global relaxation as the backend, thus achieving a good balance between exploration and exploitation. Although vision-based systems like laser scanners are typically deployed for SLAM, these sensors are heavy, energy inefficient, and expensive, making them unattractive for wearables or smartphone applications. However, the concept of SLAM can be extended to non-optical systems such as magnetometers. Instead of matching features such as walls and furniture using some variation of the Iterative Closest Point algorithm, the local magnetic field can be matched to provide loop-closure and global trajectory updates in a Gaussian Process (GP) SLAM framework. With a MEMS-based inertial measurement unit providing a continuous trajectory, and the matching of locally distinct magnetic field maps, experimental results in this paper show that a drift-free navigation solution in an indoor environment with millimetre-level accuracy can be achieved. The GP-SLAM approach presented can be formulated as a maximum a posteriori estimation problem and it can naturally perform loop-detection, feature-to-feature distance minimization, global trajectory optimization, and magnetic field map estimation simultaneously. Spatially continuous features (i.e. smooth magnetic field signatures) are used instead of discrete feature correspondences (e.g. point-to-point) as in conventional vision-based SLAM. These position updates from the ambient magnetic field also provide enough information for calibrating the accelerometer bias and gyroscope bias in-use. The only restriction for this method is the need for magnetic disturbances (which is typically not an issue for indoor environments); however, no assumptions

  8. Gravito-Inertial Force Resolution in Perception of Synchronized Tilt and Translation

    Science.gov (United States)

    Wood, Scott J.; Holly, Jan; Zhang, Guen-Lu

    2011-01-01

    Natural movements in the sagittal plane involve pitch tilt relative to gravity combined with translation motion. The Gravito-Inertial Force (GIF) resolution hypothesis states that the resultant force on the body is perceptually resolved into tilt and translation consistently with the laws of physics. The purpose of this study was to test this hypothesis for human perception during combined tilt and translation motion. EXPERIMENTAL METHODS: Twelve subjects provided verbal reports during 0.3 Hz motion in the dark with 4 types of tilt and/or translation motion: 1) pitch tilt about an interaural axis at +/-10deg or +/-20deg, 2) fore-aft translation with acceleration equivalent to +/-10deg or +/-20deg, 3) combined "in phase" tilt and translation motion resulting in acceleration equivalent to +/-20deg, and 4) "out of phase" tilt and translation motion that maintained the resultant gravito-inertial force aligned with the longitudinal body axis. The amplitude of perceived pitch tilt and translation at the head were obtained during separate trials. MODELING METHODS: Three-dimensional mathematical modeling was performed to test the GIF-resolution hypothesis using a dynamical model. The model encoded GIF-resolution using the standard vector equation, and used an internal model of motion parameters, including gravity. Differential equations conveyed time-varying predictions. The six motion profiles were tested, resulting in predicted perceived amplitude of tilt and translation for each. RESULTS: The modeling results exhibited the same pattern as the experimental results. Most importantly, both modeling and experimental results showed greater perceived tilt during the "in phase" profile than the "out of phase" profile, and greater perceived tilt during combined "in phase" motion than during pure tilt of the same amplitude. However, the model did not predict as much perceived translation as reported by subjects during pure tilt. CONCLUSION: Human perception is consistent with

  9. Self-similarity in the inertial region of wall turbulence.

    Science.gov (United States)

    Klewicki, J; Philip, J; Marusic, I; Chauhan, K; Morrill-Winter, C

    2014-12-01

    The inverse of the von Kármán constant κ is the leading coefficient in the equation describing the logarithmic mean velocity profile in wall bounded turbulent flows. Klewicki [J. Fluid Mech. 718, 596 (2013)] connects the asymptotic value of κ with an emerging condition of dynamic self-similarity on an interior inertial domain that contains a geometrically self-similar hierarchy of scaling layers. A number of properties associated with the asymptotic value of κ are revealed. This is accomplished using a framework that retains connection to invariance properties admitted by the mean statement of dynamics. The development leads toward, but terminates short of, analytically determining a value for κ. It is shown that if adjacent layers on the hierarchy (or their adjacent positions) adhere to the same self-similarity that is analytically shown to exist between any given layer and its position, then κ≡Φ(-2)=0.381966..., where Φ=(1+√5)/2 is the golden ratio. A number of measures, derived specifically from an analysis of the mean momentum equation, are subsequently used to empirically explore the veracity and implications of κ=Φ(-2). Consistent with the differential transformations underlying an invariant form admitted by the governing mean equation, it is demonstrated that the value of κ arises from two geometric features associated with the inertial turbulent motions responsible for momentum transport. One nominally pertains to the shape of the relevant motions as quantified by their area coverage in any given wall-parallel plane, and the other pertains to the changing size of these motions in the wall-normal direction. In accord with self-similar mean dynamics, these two features remain invariant across the inertial domain. Data from direct numerical simulations and higher Reynolds number experiments are presented and discussed relative to the self-similar geometric structure indicated by the analysis, and in particular the special form of self

  10. Indoor navigation by image recognition

    Science.gov (United States)

    Choi, Io Teng; Leong, Chi Chong; Hong, Ka Wo; Pun, Chi-Man

    2017-07-01

    With the progress of smartphones hardware, it is simple on smartphone using image recognition technique such as face detection. In addition, indoor navigation system development is much slower than outdoor navigation system. Hence, this research proves a usage of image recognition technique for navigation in indoor environment. In this paper, we introduced an indoor navigation application that uses the indoor environment features to locate user's location and a route calculating algorithm to generate an appropriate path for user. The application is implemented on Android smartphone rather than iPhone. Yet, the application design can also be applied on iOS because the design is implemented without using special features only for Android. We found that digital navigation system provides better and clearer location information than paper map. Also, the indoor environment is ideal for Image recognition processing. Hence, the results motivate us to design an indoor navigation system using image recognition.

  11. Absolute Navigation Information Estimation for Micro Planetary Rovers

    Directory of Open Access Journals (Sweden)

    Muhammad Ilyas

    2016-03-01

    Full Text Available This paper provides algorithms to estimate absolute navigation information, e.g., absolute attitude and position, by using low power, weight and volume Microelectromechanical Systems-type (MEMS sensors that are suitable for micro planetary rovers. Planetary rovers appear to be easily navigable robots due to their extreme slow speed and rotation but, unfortunately, the sensor suites available for terrestrial robots are not always available for planetary rover navigation. This makes them difficult to navigate in a completely unexplored, harsh and complex environment. Whereas the relative attitude and position can be tracked in a similar way as for ground robots, absolute navigation information, unlike in terrestrial applications, is difficult to obtain for a remote celestial body, such as Mars or the Moon. In this paper, an algorithm called the EASI algorithm (Estimation of Attitude using Sun sensor and Inclinometer is presented to estimate the absolute attitude using a MEMS-type sun sensor and inclinometer, only. Moreover, the output of the EASI algorithm is fused with MEMS gyros to produce more accurate and reliable attitude estimates. An absolute position estimation algorithm has also been presented based on these on-board sensors. Experimental results demonstrate the viability of the proposed algorithms and the sensor suite for low-cost and low-weight micro planetary rovers.

  12. Inertial reference frames and gravitational forces

    International Nuclear Information System (INIS)

    Santavy, I.

    1981-01-01

    The connection between different definitions of inertial, i.e. fundamental, reference frames and the corresponding characterisation of gravitational fields by gravitational forces are considered from the point of view of their possible interpretation in university introductory courses. The introduction of a special class of reference frames, denoted 'mixed reference frames' is proposed and discussed. (author)

  13. Navigation integrity monitoring and obstacle detection for enhanced-vision systems

    Science.gov (United States)

    Korn, Bernd; Doehler, Hans-Ullrich; Hecker, Peter

    2001-08-01

    Typically, Enhanced Vision (EV) systems consist of two main parts, sensor vision and synthetic vision. Synthetic vision usually generates a virtual out-the-window view using databases and accurate navigation data, e. g. provided by differential GPS (DGPS). The reliability of the synthetic vision highly depends on both, the accuracy of the used database and the integrity of the navigation data. But especially in GPS based systems, the integrity of the navigation can't be guaranteed. Furthermore, only objects that are stored in the database can be displayed to the pilot. Consequently, unexpected obstacles are invisible and this might cause severe problems. Therefore, additional information has to be extracted from sensor data to overcome these problems. In particular, the sensor data analysis has to identify obstacles and has to monitor the integrity of databases and navigation. Furthermore, if a lack of integrity arises, navigation data, e.g. the relative position of runway and aircraft, has to be extracted directly from the sensor data. The main contribution of this paper is about the realization of these three sensor data analysis tasks within our EV system, which uses the HiVision 35 GHz MMW radar of EADS, Ulm as the primary EV sensor. For the integrity monitoring, objects extracted from radar images are registered with both database objects and objects (e. g. other aircrafts) transmitted via data link. This results in a classification into known and unknown radar image objects and consequently, in a validation of the integrity of database and navigation. Furthermore, special runway structures are searched for in the radar image where they should appear. The outcome of this runway check contributes to the integrity analysis, too. Concurrent to this investigation a radar image based navigation is performed without using neither precision navigation nor detailed database information to determine the aircraft's position relative to the runway. The performance of our

  14. A SCHEMA FOR EXTRACTION OF INDOOR PEDESTRIAN NAVIGATION GRID NETWORK FROM FLOOR PLANS

    Directory of Open Access Journals (Sweden)

    L. Niu

    2016-06-01

    Full Text Available The requirement of the indoor navigation related tasks such emergency evacuation calls for efficient solutions for handling data sources. Therefore, the navigation grid extraction from existing floor plans draws attentions. To this, we have to thoroughly analyse the source data, such as Autocad dxf files. Then, we could establish a sounding navigation solution, which firstly complements the basic navigation rectangle boundaries, secondly subdivides these rectangles and finally generates accessible networks with these refined rectangles. Test files are introduced to validate the whole workflow and evaluate the solution performance. In conclusion, we have achieved the preliminary step of forming up accessible network from the navigation grids.

  15. a Schema for Extraction of Indoor Pedestrian Navigation Grid Network from Floor Plans

    Science.gov (United States)

    Niu, Lei; Song, Yiquan

    2016-06-01

    The requirement of the indoor navigation related tasks such emergency evacuation calls for efficient solutions for handling data sources. Therefore, the navigation grid extraction from existing floor plans draws attentions. To this, we have to thoroughly analyse the source data, such as Autocad dxf files. Then, we could establish a sounding navigation solution, which firstly complements the basic navigation rectangle boundaries, secondly subdivides these rectangles and finally generates accessible networks with these refined rectangles. Test files are introduced to validate the whole workflow and evaluate the solution performance. In conclusion, we have achieved the preliminary step of forming up accessible network from the navigation grids.

  16. Inertial fusion with heavy ion beams

    International Nuclear Information System (INIS)

    Bock, R.; Hofmann, I.; Arnold, R.

    1984-01-01

    The underlying principle of inertial confinement is the irradiation of a small pellet filled with DT-fuel by laser or particle beams in order to compress the fuel and ignite it. As 'drivers' for this process large laser installations and light-ion devices have been built since then and the results obtained during the past few years have increased our confidence, that the ignition conditions might be reached. Further conditions, however, have to be fulfilled for operating a power plant. In particular, the driver needs to have enough efficiency to be economical, and for a continuous energy production a high repetition rate and availability is required. It is less than ten years since it was realized that heavy ion beams might be a promising candidate for achieving inertial confinement fusion (ICF). Due to the evolution of high-energy and heavy-ion physics during the past 25 years, accelerators have attained a high technical and technological standard and an excellent operational reliability. Nevertheless, the heavy ion driver for a fusion power plant requires beam specifications exceeding those of existing accelerators considerably. (Auth.)

  17. Navigation Lights - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic Navigational charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  18. Miniaturized inertial impactor for personal airborne particulate monitoring: Prototyping

    Science.gov (United States)

    Pasini, Silvia; Bianchi, Elena; Dubini, Gabriele; Cortelezzi, Luca

    2017-11-01

    Computational fluid dynamic (CFD) simulations allowed us to conceive and design a miniaturized inertial impactor able to collect fine airborne particulate matter (PM10, PM2.5 and PM1). We created, by 3D printing, a prototype of the impactor. We first performed a set of experiments by applying a suction pump to the outlets and sampling the airborne particulate of our laboratory. The analysis of the slide showed a collection of a large number of particles, spanning a wide range of sizes, organized in a narrow band located below the exit of the nozzle. In order to show that our miniaturized inertial impactor can be truly used as a personal air-quality monitor, we performed a second set of experiments where the suction needed to produce the airflow through the impactor is generated by a human being inhaling through the outlets of the prototype. To guarantee a number of particles sufficient to perform a quantitative characterization, we collected particles performing ten consecutive deep inhalations. Finally, the potentiality for realistic applications of our miniaturized inertial impactor used in combination with a miniaturized single-particle detector will be discussed. CARIPLO Fundation - project MINUTE (Grant No. 2011-2118).

  19. Nuclear diagnostics for inertial confinement fusion implosions

    International Nuclear Information System (INIS)

    Murphy, T.J.

    1997-01-01

    This abstract contains viewgraphs on nuclear diagnostic techniques for inertial confinement fusion implosions. The viewgraphs contain information on: reactions of interest in ICF; advantages and disadvantages of these methods; the properties nuclear techniques can measure; and some specifics on the detectors used

  20. The scientific benefits of inertially confined fusion research

    International Nuclear Information System (INIS)

    Key, M

    1999-01-01

    A striking feature of 25 years of research into inertially confined fusion (ICF) and inertial fusion energy (IFE) has been its significant impact in other fields of science. Most ICF facilities worldwide are now being used in part to support a wider portfolio of research than simply ICF. Reasons for this trend include the high intrinsic interest of the new science coupled with the relative ease and low marginal cost of adapting the facilities particularly lasers, to carry out experiments with goals other than ICF. The availability at ICF laboratories of sophisticated theory and modeling capability and advanced diagnostics has given added impetus. The expertise of ICF specialists has also triggered more lateral scientific spin-offs leading for example to new types of lasers and to related developments in basic science. In a generic sense, the facilities developed for ICF have made possible study of new regimes of the properties of matter at extremely high-energy density and the interaction of ultraintense light with matter. This general opportunity has been exploited in numerous and diverse specific lines of research. Examples elaborated below include laboratory simulation of astrophysical phenomena; studies of the equation of state (EOS) of matter under conditions relevant to the interior of planets and stars; development of uniquely intense sources of extreme ultraviolet (EUV) to hard x-ray emission, notably the x-ray laser; understanding of the physics of strong field interaction of light and matter; and related new phenomena such as laser-induced nuclear processes and high-field-electron accelerators. Some of these developments have potential themselves for further scientific exploitation such as the scientific use of advanced light sources. There are also avenues for commercial exploitation, for example the use of laser plasma sources in EUV lithography. Past scientific progress is summarized here and projections are made for new science that may flow from the

  1. Effects of forcing time scale on the simulated turbulent flows and turbulent collision statistics of inertial particles

    International Nuclear Information System (INIS)

    Rosa, B.; Parishani, H.; Ayala, O.; Wang, L.-P.

    2015-01-01

    In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope [“An examination of forcing in direct numerical simulations of turbulence,” Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynolds number of 30 and less. We then study the effects of forcing time scale on the kinematic collision statistics of inertial particles. We show that the radial distribution function and the radial relative velocity may depend on the forcing time scale when it becomes comparable to the eddy turnover time. This dependence, however, can be largely explained in terms of altered flow Reynolds number and the changing range of flow length scales present in the turbulent flow. We argue that removing this dependence is important when studying the Reynolds number dependence of the turbulent collision statistics. The results are also compared to those based on a deterministic forcing scheme to better understand the role of large-scale forcing, relative to that of the small-scale turbulence, on turbulent collision of inertial particles. To further elucidate the correlation between the altered flow structures and dynamics of inertial particles, a conditional analysis has been performed, showing that the regions of higher collision rate of inertial particles are well correlated with the regions of lower vorticity. Regions of higher concentration of pairs at contact are found to be highly correlated with the region of high energy dissipation rate

  2. Magnetic and inertial CTR: present status and outlook

    International Nuclear Information System (INIS)

    Wood, L.

    1975-01-01

    Some of the successes of controlled fusion research in both inertial confinement and magnetic confinement are described. The possibilities of scaled-up experiments are also discussed with respect to cost and economics

  3. MicroASC instrument onboard Juno spacecraft utilizing inertially controlled imaging

    DEFF Research Database (Denmark)

    Pedersen, David Arge Klevang; Jørgensen, Andreas Härstedt; Benn, Mathias

    2016-01-01

    This contribution describes the post-processing of the raw image data acquired by the microASC instrument during the Earth-fly-by of the Juno spacecraft. The images show a unique view of the Earth and Moon system as seen from afar. The procedure utilizes attitude measurements and inter......-calibration of the Camera Head Units of the microASC system to trigger the image capturing. The triggering is synchronized with the inertial attitude and rotational phase of the sensor acquiring the images. This is essentially works as inertially controlled imaging facilitating image acquisition from unexplored...

  4. Inertial fusion results from Nova and implication for the future of ICF

    International Nuclear Information System (INIS)

    Kilkenny, J.D.; Cable, M.D.; Campbell, E.M.

    1988-10-01

    A key objective of the US Inertial Confinement Fusion Program is to obtain high yield (100-1000 MJ) implosions in a laboratory environment. This requires high grain from an inertial fusion target from a driver capable of delivering about 10 MJ. Recent results have been sufficiently encouraging that the US Department of Energy is planning for such a capability called the Laboratory Microfusion Facility (LMF). In the past two years, we have conducted implosion-related experiments with approximately 20 kJ of 0.35-μm laser light in 1-ns temporally flat-topped pulses. These experiments were done with the Nova laser, the primary US facility devoted to radiatively driven inertial confinement fusion. Our results show that we can accurately model a significant fraction of the phenomena required to obtain the fuel conditions needed for high gain. Both the x-ray conversion efficiency and the growth of Rayleigh-Taylor hydrodynamic instabilities are shown to be at acceptable levels. Targets designed so that the shape of the stagnated fuel can be imaged show that the x-ray drive in our hohlraums can be made isotropic to better than 3%. With this optimized drive and temporally unshaped laser pulses many critical implosion parameters are measured on targets designed for higher density. Good agreement is obtained with one-dimensional simulations. Maximum compressions of between 20--30 in radius are measured with a variety of diagnostics. Improvements in the driver technology are demonstrated; we anticipate operation of Nova at the 50-kJ level at 3ω. 18 refs., 6 figs., 1 tab

  5. Magnetic and inertial fusion status and development plans

    International Nuclear Information System (INIS)

    Correll, D.; Storm, E.

    1987-01-01

    Controlled fusion, pursued by investigators in both the magnetic and inertial confinement research programs, continues to be a strong candidate as an intrinsically safe and virtually inexhaustible long-term energy source. We describe the status of magnetic and inertial confinement fusion in terms of the accomplishments made by the research programs for each concept. The improvement in plasma parameters (most frequently discussed in terms of the Tn tau product of ion temperature, T, density, n, and confinement time, tau) can be linked with the construction and operation of experimental facilities. The scientific progress exhibited by larger scale fusion experiments within the US, such as Princeton Plasma Physics Laboratory's Fusion Test Reactor for magnetic studies and Lawrence Livermore National Laboratory's Nova laser for inertial studies, has been optimized by the theoretical advances in plasma and computational physics. Both TFTR and Nova have exhibited ion temperatures in excess of 10 keV at confinement parameters of n tau near 10 13 cm -3 . sec. At slightly lower temperatures (near a few keV), the value of n tau has exceeded 10 14 cm -3 . sec in both devices. Near-term development plans in fusion research include experiments within the US, Europe, and Japan to improve the plasma performance to reach conditions where the rate of fusion energy production equals or exceeds the heating power incident upon the plasma. 9 refs., 7 figs

  6. Semiotic resources for navigation

    DEFF Research Database (Denmark)

    Due, Brian Lystgaard; Lange, Simon Bierring

    2018-01-01

    This paper describes two typical semiotic resources blind people use when navigating in urban areas. Everyone makes use of a variety of interpretive semiotic resources and senses when navigating. For sighted individuals, this especially involves sight. Blind people, however, must rely on everything...... else than sight, thereby substituting sight with other modalities and distributing the navigational work to other semiotic resources. Based on a large corpus of fieldwork among blind people in Denmark, undertaking observations, interviews, and video recordings of their naturally occurring practices...... of walking and navigating, this paper shows how two prototypical types of semiotic resources function as helpful cognitive extensions: the guide dog and the white cane. This paper takes its theoretical and methodological perspective from EMCA multimodal interaction analysis....

  7. Spanwise vorticity and wall normal velocity structure in the inertial region of turbulent boundary layers

    Science.gov (United States)

    Cuevas Bautista, Juan Carlos; Morrill-Winter, Caleb; White, Christopher; Chini, Gregory; Klewicki, Joseph

    2017-11-01

    The Reynolds shear stress gradient is a leading order mechanism on the inertial domain of turbulent wall-flows. This quantity can be described relative to the sum of two velocity-vorticity correlations, vωz and wωy . Recent studies suggest that the first of these correlates with the step-like structure of the instantaneous streamwise velocity profile on the inertial layer. This structure is comprised of large zones of uniform momentum segregated by slender regions of concentrated vorticity. In this talk we study the contributions of the v and ωz motions to the vorticity transport (vωz) mechanism through the use of experimental data at large friction Reynolds numbers, δ+. The primary contributions to v and ωz were estimated by identifying the peak wavelengths of their streamwise spectra. The magnitudes of these peaks are of the same order, and are shown to exhibit a weak δ+ dependence. The peak wavelengths of v, however, exhibit a strong wall-distance (y) dependence, while the peak wavelengths of ωz show only a weak y dependence, and remain almost O (√{δ+}) in size throughout the inertial domain. This research was partially supported by the National Science Foundation and partially supported by the Australian Research Council.

  8. Vertical Jump Height Estimation Algorithm Based on Takeoff and Landing Identification Via Foot-Worn Inertial Sensing.

    Science.gov (United States)

    Wang, Jianren; Xu, Junkai; Shull, Peter B

    2018-03-01

    Vertical jump height is widely used for assessing motor development, functional ability, and motor capacity. Traditional methods for estimating vertical jump height rely on force plates or optical marker-based motion capture systems limiting assessment to people with access to specialized laboratories. Current wearable designs need to be attached to the skin or strapped to an appendage which can potentially be uncomfortable and inconvenient to use. This paper presents a novel algorithm for estimating vertical jump height based on foot-worn inertial sensors. Twenty healthy subjects performed countermovement jumping trials and maximum jump height was determined via inertial sensors located above the toe and under the heel and was compared with the gold standard maximum jump height estimation via optical marker-based motion capture. Average vertical jump height estimation errors from inertial sensing at the toe and heel were -2.2±2.1 cm and -0.4±3.8 cm, respectively. Vertical jump height estimation with the presented algorithm via inertial sensing showed excellent reliability at the toe (ICC(2,1)=0.98) and heel (ICC(2,1)=0.97). There was no significant bias in the inertial sensing at the toe, but proportional bias (b=1.22) and fixed bias (a=-10.23cm) were detected in inertial sensing at the heel. These results indicate that the presented algorithm could be applied to foot-worn inertial sensors to estimate maximum jump height enabling assessment outside of traditional laboratory settings, and to avoid bias errors, the toe may be a more suitable location for inertial sensor placement than the heel.

  9. 33 CFR 401.54 - Interference with navigation aids.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Interference with navigation aids. 401.54 Section 401.54 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION... with navigation aids. (a) Aids to navigation shall not be interfered with or used as moorings. (b) No...

  10. Effective Inertial Frame in an Atom Interferometric Test of the Equivalence Principle

    Science.gov (United States)

    Overstreet, Chris; Asenbaum, Peter; Kovachy, Tim; Notermans, Remy; Hogan, Jason M.; Kasevich, Mark A.

    2018-05-01

    In an ideal test of the equivalence principle, the test masses fall in a common inertial frame. A real experiment is affected by gravity gradients, which introduce systematic errors by coupling to initial kinematic differences between the test masses. Here we demonstrate a method that reduces the sensitivity of a dual-species atom interferometer to initial kinematics by using a frequency shift of the mirror pulse to create an effective inertial frame for both atomic species. Using this method, we suppress the gravity-gradient-induced dependence of the differential phase on initial kinematic differences by 2 orders of magnitude and precisely measure these differences. We realize a relative precision of Δ g /g ≈6 ×10-11 per shot, which improves on the best previous result for a dual-species atom interferometer by more than 3 orders of magnitude. By reducing gravity gradient systematic errors to one part in 1 013 , these results pave the way for an atomic test of the equivalence principle at an accuracy comparable with state-of-the-art classical tests.

  11. Inertial sensor-based methods in walking speed estimation: a systematic review.

    Science.gov (United States)

    Yang, Shuozhi; Li, Qingguo

    2012-01-01

    Self-selected walking speed is an important measure of ambulation ability used in various clinical gait experiments. Inertial sensors, i.e., accelerometers and gyroscopes, have been gradually introduced to estimate walking speed. This research area has attracted a lot of attention for the past two decades, and the trend is continuing due to the improvement of performance and decrease in cost of the miniature inertial sensors. With the intention of understanding the state of the art of current development in this area, a systematic review on the exiting methods was done in the following electronic engines/databases: PubMed, ISI Web of Knowledge, SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings focusing on inertial sensor based walking speed estimation were fully reviewed. The existing methods were categorized by sensor specification, sensor attachment location, experimental design, and walking speed estimation algorithm.

  12. Inertial Sensor-Based Methods in Walking Speed Estimation: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Qingguo Li

    2012-05-01

    Full Text Available Self-selected walking speed is an important measure of ambulation ability used in various clinical gait experiments. Inertial sensors, i.e., accelerometers and gyroscopes, have been gradually introduced to estimate walking speed. This research area has attracted a lot of attention for the past two decades, and the trend is continuing due to the improvement of performance and decrease in cost of the miniature inertial sensors. With the intention of understanding the state of the art of current development in this area, a systematic review on the exiting methods was done in the following electronic engines/databases: PubMed, ISI Web of Knowledge, SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings focusing on inertial sensor based walking speed estimation were fully reviewed. The existing methods were categorized by sensor specification, sensor attachment location, experimental design, and walking speed estimation algorithm.

  13. Assessing hopping developmental level in childhood using wearable inertial sensor devices.

    Science.gov (United States)

    Masci, Ilaria; Vannozzi, Giuseppe; Getchell, Nancy; Cappozzo, Aurelio

    2012-07-01

    Assessing movement skills is a fundamental issue in motor development. Current process-oriented assessments, such as developmental sequences, are based on subjective judgments; if paired with quantitative assessments, a better understanding of movement performance and developmental change could be obtained. Our purpose was to examine the use of inertial sensors to evaluate developmental differences in hopping over distance. Forty children executed the task wearing the inertial sensor and relevant time durations and 3D accelerations were obtained. Subjects were also categorized in different developmental levels according to the hopping developmental sequence. Results indicated that some time and kinematic parameters changed with some developmental levels, possibly as a function of anthropometry and previous motor experience. We concluded that, since inertial sensors were suitable in describing hopping performance and sensitive to developmental changes, this technology is promising as an in-field and user-independent motor development assessment tool.

  14. VISION-AIDED CONTEXT-AWARE FRAMEWORK FOR PERSONAL NAVIGATION SERVICES

    Directory of Open Access Journals (Sweden)

    S. Saeedi

    2012-07-01

    Full Text Available The ubiquity of mobile devices (such as smartphones and tablet-PCs has encouraged the use of location-based services (LBS that are relevant to the current location and context of a mobile user. The main challenge of LBS is to find a pervasive and accurate personal navigation system (PNS in different situations of a mobile user. In this paper, we propose a method of personal navigation for pedestrians that allows a user to freely move in outdoor environments. This system aims at detection of the context information which is useful for improving personal navigation. The context information for a PNS consists of user activity modes (e.g. walking, stationary, driving, and etc. and the mobile device orientation and placement with respect to the user. After detecting the context information, a low-cost integrated positioning algorithm has been employed to estimate pedestrian navigation parameters. The method is based on the integration of the relative user’s motion (changes of velocity and heading angle estimation based on the video image matching and absolute position information provided by GPS. A Kalman filter (KF has been used to improve the navigation solution when the user is walking and the phone is in his/her hand. The Experimental results demonstrate the capabilities of this method for outdoor personal navigation systems.

  15. Olfaction Contributes to Pelagic Navigation in a Coastal Shark.

    Science.gov (United States)

    Nosal, Andrew P; Chao, Yi; Farrara, John D; Chai, Fei; Hastings, Philip A

    2016-01-01

    How animals navigate the constantly moving and visually uniform pelagic realm, often along straight paths between distant sites, is an enduring mystery. The mechanisms enabling pelagic navigation in cartilaginous fishes are particularly understudied. We used shoreward navigation by leopard sharks (Triakis semifasciata) as a model system to test whether olfaction contributes to pelagic navigation. Leopard sharks were captured alongshore, transported 9 km offshore, released, and acoustically tracked for approximately 4 h each until the transmitter released. Eleven sharks were rendered anosmic (nares occluded with cotton wool soaked in petroleum jelly); fifteen were sham controls. Mean swimming depth was 28.7 m. On average, tracks of control sharks ended 62.6% closer to shore, following relatively straight paths that were significantly directed over spatial scales exceeding 1600 m. In contrast, tracks of anosmic sharks ended 37.2% closer to shore, following significantly more tortuous paths that approximated correlated random walks. These results held after swimming paths were adjusted for current drift. This is the first study to demonstrate experimentally that olfaction contributes to pelagic navigation in sharks, likely mediated by chemical gradients as has been hypothesized for birds. Given the similarities between the fluid three-dimensional chemical atmosphere and ocean, further research comparing swimming and flying animals may lead to a unifying paradigm explaining their extraordinary navigational abilities.

  16. Status of the US inertial fusion program and the National Ignition Facility

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1997-01-01

    Research programs supported by the United States Office of Inertial Fusion and the NIF are summarized. The US inertial fusion program has developed an approach to high energy density physics and fusion ignition in the laboratory relying on the current physics basis of capsule drive by lasers and on the National Ignition Facility which is under construction. (AIP) copyright 1997 American Institute of Physics

  17. Navigational efficiency in a biased and correlated random walk model of individual animal movement.

    Science.gov (United States)

    Bailey, Joseph D; Wallis, Jamie; Codling, Edward A

    2018-01-01

    Understanding how an individual animal is able to navigate through its environment is a key question in movement ecology that can give insight into observed movement patterns and the mechanisms behind them. Efficiency of navigation is important for behavioral processes at a range of different spatio-temporal scales, including foraging and migration. Random walk models provide a standard framework for modeling individual animal movement and navigation. Here we consider a vector-weighted biased and correlated random walk (BCRW) model for directed movement (taxis), where external navigation cues are balanced with forward persistence. We derive a mathematical approximation of the expected navigational efficiency for any BCRW of this form and confirm the model predictions using simulations. We demonstrate how the navigational efficiency is related to the weighting given to forward persistence and external navigation cues, and highlight the counter-intuitive result that for low (but realistic) levels of error on forward persistence, a higher navigational efficiency is achieved by giving more weighting to this indirect navigation cue rather than direct navigational cues. We discuss and interpret the relevance of these results for understanding animal movement and navigation strategies. © 2017 by the Ecological Society of America.

  18. Temporal and spatial strategies in an active place avoidance task on Carousel: a study of effects of stability of arena rotation speed in rats

    Czech Academy of Sciences Publication Activity Database

    Bahník, Štěpán; Stuchlík, Aleš

    2015-01-01

    Roč. 3, Sep 22 (2015), e1257 ISSN 2167-8359 R&D Projects: GA MŠk(CZ) LH14053 Institutional support: RVO:67985823 Keywords : spatial navigation * interval timing * substratal idiothetic navigation * inertial idiothetic navigation * rats Subject RIV: FH - Neurology Impact factor: 2.183, year: 2015

  19. 77 FR 9899 - 36(b)(1) Arms Sales Notification

    Science.gov (United States)

    2012-02-21

    ... support, and other related elements of program support. (iv) Military Department: Air Force (SAC, Amd 12...) variant that includes a DSU-40 Laser Sensor. The GBU-54 uses global position system aided inertial navigation and/or laser detection to guide to threat targets. The Laser sensor enhances the standard JDAM's...

  20. Horizontal distribution of near-inertial waves in the western Gulf of Mexico: Eulerian vs Lagrangian.

    Science.gov (United States)

    Pallas Sanz, E.; García-Carrillo, P.; Garcia Gomez, B. I.; Lilly, J. M.; Perez-Brunius, P.

    2016-02-01

    The time-average horizontal distribution of the near-inertial waves (NIWs) on the western Gulf of Mexico (GoM) is investigated using horizontal velocity data obtained from Lagrangian trajectories of 200 surface drifters drogued at 50m and deployed between September 2008 and September 2012. Preliminary results suggest maximum time-averaged near-inertial circle radius of 2.6km located in the southern Campeche bay near [22N,95W]; implying an inertial velocity of about 0.14m/s. Similar conclusions are delineated using horizontal velocity data obtained from 21 moorings deployed in the western GoM during the same time period. Maximum near-inertial kinetic energy and clockwise spectral energy is found in the mooring LNK3500 located at 21.850N and 94.028W. Maximum inertial circles measured with mooring data, however, are of about 1.6km leading to inertial currents of 0.087m/s, approximately a 40% smaller. This discrepancy seems to be due to the different depth level of the measurements and the bandwidth used to extract the near-inertial oscillations from the total flow. The time-average horizontal distributions of wind work computed from Lagrangian and Eulerian data are compared and they are not consistent with the time-averaged NIW field. The differences are not well understood but we speculate they may be due to the different time scales of wind fluctuations in the northwestern GoM compared to those observed in the Bay of Campeche, together with the change of sign of the background vorticity in the region; being negative (anticyclonic) in the northern GoM and positive (cyclonic) in the Bay of Campeche.