WorldWideScience

Sample records for relative humidity temperature

  1. Effects of temperature and relative humidity on DNA methylation.

    Science.gov (United States)

    Bind, Marie-Abele; Zanobetti, Antonella; Gasparrini, Antonio; Peters, Annette; Coull, Brent; Baccarelli, Andrea; Tarantini, Letizia; Koutrakis, Petros; Vokonas, Pantel; Schwartz, Joel

    2014-07-01

    Previous studies have found relationships between DNA methylation and various environmental contaminant exposures. Associations with weather have not been examined. Because temperature and humidity are related to mortality even on non-extreme days, we hypothesized that temperature and relative humidity may affect methylation. We repeatedly measured methylation on long interspersed nuclear elements (LINE-1), Alu, and 9 candidate genes in blood samples from 777 elderly men participating in the Normative Aging Study (1999-2009). We assessed whether ambient temperature and relative humidity are related to methylation on LINE-1 and Alu, as well as on genes controlling coagulation, inflammation, cortisol, DNA repair, and metabolic pathway. We examined intermediate-term associations of temperature, relative humidity, and their interaction with methylation, using distributed lag models. Temperature or relative humidity levels were associated with methylation on tissue factor (F3), intercellular adhesion molecule 1 (ICAM-1), toll-like receptor 2 (TRL-2), carnitine O-acetyltransferase (CRAT), interferon gamma (IFN-γ), inducible nitric oxide synthase (iNOS), and glucocorticoid receptor, LINE-1, and Alu. For instance, a 5°C increase in 3-week average temperature in ICAM-1 methylation was associated with a 9% increase (95% confidence interval: 3% to 15%), whereas a 10% increase in 3-week average relative humidity was associated with a 5% decrease (-8% to -1%). The relative humidity association with ICAM-1 methylation was stronger on hot days than mild days. DNA methylation in blood cells may reflect biological effects of temperature and relative humidity. Temperature and relative humidity may also interact to produce stronger effects.

  2. Analysis of air temperature and relative humidity: study of microclimates

    OpenAIRE

    Elis Dener Lima Alves; Marcelo Sacardi Biudes

    2012-01-01

    Understanding the variability of climate elements in time and space is fundamental to the knowledge of the dynamics of microclimate. Thus, the objective was to analyze the variability of air temperature and relative humidity on the Cuiabá campus of the Federal University of Mato Grosso, and, through the clustering technique, to analyze the formation of groups to propose a zoning microclimate in the area study. To this end, collection data of air temperature and relative humidity at 15 points ...

  3. Effect of Temperature and Relative Humidity on the Growth of ...

    African Journals Online (AJOL)

    The effects of temperature and relative humidity on the growth of Helminthosporium fulvum were investigated. Various temperature regimes of 10oC, 15oC, 20oC, 25oC, 30oC, 35oC and 40¢ªC were used to determine the temperature effect on the growth of H. fulvum. Maximum growth of H. fulvum was obtained at 25¢ªC ...

  4. Statistical analysis of the effects of relative humidity and temperature ...

    African Journals Online (AJOL)

    Meteorological data from the Department of Satellite Application Facility on Climate Monitoring (CMSAF), DWD Germany have been used to study and investigate the effect of relative humidity and temperature on refractivity in twenty six locations grouped into for climatic regions aloft Nigeria (Coastal, Guinea savannah, ...

  5. Effect of Temperature and Relative Humidity on the Growth of ...

    African Journals Online (AJOL)

    were used to determine the temperature effect on the growth of H. fulvum. Maximum growth of H. ... The fungus showed maximum growth at 92.5 and 100% relative humidity. .... recommended that fruits and vegetables should be stored at low ...

  6. Temperature and relative humidity dependence of radiochromic film dosimeter response to gamma electron radiation

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Puhl, J.M.; Miller, A.

    1995-01-01

    on some earlier studies, their response functions have been reported to be dependent on the temperature and relative humidity during irradiation. The present study investigates differences in response over practical ranges of temperature, relative humidity, dose, and for different recent batches of films...... humidity) and should be calibrated under environmental conditions (temperature) at which they will be used routinely....

  7. Temperature-dependent deliquescence relative humidities and water activities using humidity controlled thermogravimetric analysis with application to malonic acid.

    Science.gov (United States)

    Beyer, Keith D; Schroeder, Jason R; Kissinger, Jared A

    2014-04-03

    We utilize a new experimental technique, humidity-controlled thermogravimetric analysis (HTGA), to determine temperature-dependent deliquescence relative humidities (DRH) and to determine the equilibrium concentration of a solution at a given temperature and relative humidity. To that end, we have investigated the malonic acid/water system determining the DRH and concentration/RH relationship in the temperature range 303-278 K. Excellent agreement is found with literature values for the DRH of malonic acid as a function of temperature and for the concentration/RH relationship at several temperatures. Thus, we extend the DRH and concentration/RH relationship to a broader temperature range and are using the HTGA experiments to investigate other organic acids.

  8. Effect of ambient temperature and relative humidity on interfacial temperature during early stages of drop evaporation.

    Science.gov (United States)

    Fukatani, Yuki; Orejon, Daniel; Kita, Yutaku; Takata, Yasuyuki; Kim, Jungho; Sefiane, Khellil

    2016-04-01

    Understanding drop evaporation mechanisms is important for many industrial, biological, and other applications. Drops of organic solvents undergoing evaporation have been found to display distinct thermal patterns, which in turn depend on the physical properties of the liquid, the substrate, and ambient conditions. These patterns have been reported previously to be bulk patterns from the solid-liquid to the liquid-gas drop interface. In the present work the effect of ambient temperature and humidity during the first stage of evaporation, i.e., pinned contact line, is studied paying special attention to the thermal information retrieved at the liquid-gas interface through IR thermography. This is coupled with drop profile monitoring to experimentally investigate the effect of ambient temperature and relative humidity on the drop interfacial thermal patterns and the evaporation rate. Results indicate that self-generated thermal patterns are enhanced by an increase in ambient temperature and/or a decrease in humidity. The more active thermal patterns observed at high ambient temperatures are explained in light of a greater temperature difference generated between the apex and the edge of the drop due to greater evaporative cooling. On the other hand, the presence of water humidity in the atmosphere is found to decrease the temperature difference along the drop interface due to the heat of adsorption, absorption and/or that of condensation of water onto the ethanol drops. The control, i.e., enhancement or suppression, of these thermal patterns at the drop interface by means of ambient temperature and relative humidity is quantified and reported.

  9. In-situ Air Temperature and Relative Humidity in Greenbelt, MD, 2013-2015

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set describes the temperature and relative humidity at 12 locations around Goddard Space Flight Center in Greenbelt MD at 15 minute intervals between...

  10. models of hourly dry bulb temperature and relative humidity of key

    African Journals Online (AJOL)

    user

    3: Worst cases of MFE for Dry bulb temperature and Relative humidity. Fig. 4: Best cases of ... the Second Joint International Conference of. University of Ilorin, Ilorin, Nigeria and University ... Erbs, D. G., “Models and Applications for Weather.

  11. Effect of the irradiation temperature and relative humidity on PVG dosifilm

    International Nuclear Information System (INIS)

    Jia Haishun; Chen Wenxiu; Shen Yuxin

    1999-01-01

    The effect of environmental factors, such as irradiation temperature and relative humidity, on the PVG dosifilm irradiated by EB was tested. Experiments show that the temperature coefficient of irradiated PVG dosifilm was 0.008 deg. C -1 from 20 deg. C to 55 deg. C, and the humidity coefficient was 0.006 per r.h. (%) from r.h. 0% to 76%. The PVG dosifilm can be used as a routine dosimeter for dose measurement for low-energy EB processing. The absorbed dose values for various irradiation temperature and humidity can be corrected based on experimental data. (author)

  12. Crystallization speed of salbutamol as a function of relative humidity and temperature.

    Science.gov (United States)

    Zellnitz, Sarah; Narygina, Olga; Resch, Christian; Schroettner, Hartmuth; Urbanetz, Nora Anne

    2015-07-15

    Spray dried salbutamol sulphate and salbutamol base particles are amorphous as a result of spray drying. As there is always the risk of recrystallization of amorphous material, the aim of this work is the evaluation of the temperature and humidity dependent recrystallization of spray dried salbutamol sulphate and base. Therefore in-situ Powder X-ray Diffraction (PXRD) studies of the crystallization process at various temperature (25 and 35 °C) and humidity (60%, 70%, 80%, 90% relative humidity) conditions were performed. It was shown that the crystallization speed of salbutamol sulphate and base is a non-linear function of both temperature and relative humidity. The higher the relative humidity the higher is the crystallization speed. At 60% relative humidity salbutamol base as well as salbutamol sulphate were found to be amorphous even after 12 h, however samples changed optically. At 70% and 90% RH recrystallization of salbutamol base is completed after 3 h and 30 min and recrystallization of salbutamol sulphate after 4h and 1h, respectively. Higher temperature (35 °C) also leads to increased crystallization speeds at all tested values of relative humidity. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Statistical analysis of the effects of relative humidity and temperature ...

    African Journals Online (AJOL)

    Isreal

    and temperature on radio refractivity over Nigeria using satellite data ... refractive index of air causes adverse effects such as multipath ... decreased power levels at the receiver and to increased ... the southern and central part of Nigeria.

  14. Recommended temperature and relative humidity for storage of ...

    African Journals Online (AJOL)

    SAM

    2014-03-12

    Mar 12, 2014 ... RED GINGER (Alpinia purpurata (Vieill.) Schum). Upon arrival at the treatment shed (packing house), the stems should be placed in clean water; this practice increases durability by helping to reduce the temperature of the same and facilitate cleaning. The remaining leaves should be removed. The leaves ...

  15. Effect of the temperature and relative humidity in dosemeters used for personnel monitoring

    International Nuclear Information System (INIS)

    Antonio Filho, J.

    1982-12-01

    The systematics of the combined effect of temperature and humidity on photographic dosimeters of the type Agfa-Gevaert, Kodak type II, III and the thermoluminescent dosimeters LiF:Mg,Ti (TLD-100, Harshaw), D-CaSO 4 :Dy-0,4 (Teledyne), e CaSO 4 :Dy+NaCl (IPEN), used in personal monitoring in Brazil was investigated, in the temperature range of 20 0 C to 50 0 C and relative humidity of 65% to 95%, in order to determine the best manner of utilization of these detectors in Brazilian climatic conditions. The dosimeters were studied in different forms of packing-sheet such as aluminezed paper and polyethylene. For the determination of the systematics, the dosimeters were irradiated in three conditions: before, during and after of storage in climatic chambers to a maximum period of 60 days. It was found that the dosimetric filmes and thermoluminescent dosimeter CaSO 4 :Dy+NaCl without protection, presented a high dependence to temperature and humidity, and when protected presented good results. Therefore, the best manner of utilization of these monitors in environments with relative humidity and temperature greater them 75% and 30 0 C respectively, is achieved with the protection of aluminized paper. The LiF:Mg,Ti and D+CaSO 4 :Dy-0,4 dosimeters can be utilized in their original form because they presented low dependence with humidity and temperature in the range studied. (Author) [pt

  16. Development of data logger for atmospheric pressure, temperature and relative humidity for gas-filled detector

    International Nuclear Information System (INIS)

    Sahu, S.; Sahu, P.K.; Bhuyan, M.R.; Biswas, S.; Mohanty, B.

    2014-01-01

    At IoP-NISER an initiative has been taken to build and test micro-pattern gas detector such as Gas Electron Multiplier (GEM) for several upcoming High-Energy Physics (HEP) experiment projects. Temperature (t), atmospheric pressure (p) and relative humidity (RH) monitor and recording is very important for gas filled detector development. A data logger to monitor and record the ambient parameters such as temperature, relative humidity and pressure has been developed. With this data logger continuous recording of t, p, RH and time stamp can be done with a programmable sampling interval. This data is necessary to correct the gain of a gas filled detector

  17. Relation of temperature and humidity to the risk of recurrent gout attacks.

    Science.gov (United States)

    Neogi, Tuhina; Chen, Clara; Niu, Jingbo; Chaisson, Christine; Hunter, David J; Choi, Hyon; Zhang, Yuqing

    2014-08-15

    Gout attack risk may be affected by weather (e.g., because of volume depletion). We therefore examined the association of temperature and humidity with the risk of recurrent gout attacks by conducting an internet-based case-crossover study in the United States (in 2003-2010) among subjects with a diagnosis of gout who had 1 or more attacks during 1 year of follow-up. We examined the association of temperature and humidity over the prior 48 hours with the risk of gout attacks using a time-stratified approach and conditional logistic regression. Among 632 subjects with gout, there was a significant dose-response relationship between mean temperature in the prior 48 hours and the risk of subsequent gout attack (P = 0.01 for linear trend). Higher temperatures were associated with approximately 40% higher risk of gout attack compared with moderate temperatures. There was a reverse J-shaped relationship between mean relative humidity and the risk of gout attacks (P = 0.03 for quadratic trend). The combination of high temperature and low humidity had the greatest association (odds ratio = 2.04, 95% confidence interval: 1.26, 3.30) compared with moderate temperature and relative humidity. Thus, high ambient temperature and possibly extremes of humidity were associated with an increased risk of gout attack, despite the likelihood that individuals are often in climate-controlled indoor environments. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Climate risk assessment in museums : degradation risks determined from temperature and relative humidity data

    NARCIS (Netherlands)

    Martens, M.H.J.

    2012-01-01

    The main subject of this thesis is the determination of climate risks to objects in museums on the basis of measured and/or simulated temperature and relative humidity data. The focus is on the quantification of climate related risks for the preservation quality of indoor climate in Dutch museums.

  19. Sporulation of Bremia lactucae affected by temperature, relative humidity, and wind in controlled conditions

    NARCIS (Netherlands)

    Su, H.; Bruggen, van A.H.C.; Subbarao, K.V.; Scherm, H.

    2004-01-01

    The effects of temperature (5 to 25degreesC), relative humidity (81 to 100%), wind speed (0 to 1.0 in s(-1)), and their interactions on sporulation of Bremia lactucae on lettuce cotyledons were investigated in controlled conditions. Sporulation was affected significantly (P <0.0001) by

  20. Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben

    1999-01-01

    This paper deals with autogenous deformation and autogenous relative humidity change (RH change) in hardening cement paste. Theoretical considerations and experimental data are presented, which elucidate the influence of temperature on these properties. This is an important subject in the control...

  1. Trends in mean maximum temperature, mean minimum temperature and mean relative humidity for Lautoka, Fiji during 2003 – 2013

    Directory of Open Access Journals (Sweden)

    Syed S. Ghani

    2017-12-01

    Full Text Available The current work observes the trends in Lautoka’s temperature and relative humidity during the period 2003 – 2013, which were analyzed using the recently updated data obtained from Fiji Meteorological Services (FMS. Four elements, mean maximum temperature, mean minimum temperature along with diurnal temperature range (DTR and mean relative humidity are investigated. From 2003–2013, the annual mean temperature has been enhanced between 0.02 and 0.080C. The heating is more in minimum temperature than in maximum temperature, resulting in a decrease of diurnal temperature range. The statistically significant increase was mostly seen during the summer months of December and January. Mean Relative Humidity has also increased from 3% to 8%. The bases of abnormal climate conditions are also studied. These bases were defined with temperature or humidity anomalies in their appropriate time sequences. These established the observed findings and exhibited that climate has been becoming gradually damper and heater throughout Lautoka during this period. While we are only at an initial phase in the probable inclinations of temperature changes, ecological reactions to recent climate change are already evidently noticeable. So it is proposed that it would be easier to identify climate alteration in a small island nation like Fiji.

  2. Statistical Modelling of Temperature and Moisture Uptake of Biochars Exposed to Selected Relative Humidity of Air

    Directory of Open Access Journals (Sweden)

    Luciane Bastistella

    2018-02-01

    Full Text Available New experimental techniques, as well as modern variants on known methods, have recently been employed to investigate the fundamental reactions underlying the oxidation of biochar. The purpose of this paper was to experimentally and statistically study how the relative humidity of air, mass, and particle size of four biochars influenced the adsorption of water and the increase in temperature. A random factorial design was employed using the intuitive statistical software Xlstat. A simple linear regression model and an analysis of variance with a pairwise comparison were performed. The experimental study was carried out on the wood of Quercus pubescens, Cyclobalanopsis glauca, Trigonostemon huangmosun, and Bambusa vulgaris, and involved five relative humidity conditions (22, 43, 75, 84, and 90%, two mass samples (0.1 and 1 g, and two particle sizes (powder and piece. Two response variables including water adsorption and temperature increase were analyzed and discussed. The temperature did not increase linearly with the adsorption of water. Temperature was modeled by nine explanatory variables, while water adsorption was modeled by eight. Five variables, including factors and their interactions, were found to be common to the two models. Sample mass and relative humidity influenced the two qualitative variables, while particle size and biochar type only influenced the temperature.

  3. Air temperature and relative humidity in Dome Fuji Station buildings, East Antarctic ice sheet, in 2003

    Directory of Open Access Journals (Sweden)

    Takao Kameda

    2008-06-01

    Full Text Available In order to clarify the living condition in Dome Fuji Station in 2003, air temperature and relative humidity in the station were measured. Thermocouples with data logger and a ventilated psychrometer were used for the measurements. Average air temperature from February 11, 2003 to January 14, 2004 (missing period: July 19 to August 17 in the Dome Fuji Station buildings were as follows: Generator room 24.7℃, Dining room 23.5℃, Observation room 21.1℃, Dormitory room 18.2℃, Corridor 18.2℃, Food storage 8.2℃ and Old ice coring site -51.3℃. Average outside air temperature (1.5m height from the snow surface during the period was -54.4℃. A remarkable increase of outside air temperature (+30℃ at maximum due to a blocking high event was observed from October 31, 2003 to November 10, 2003 at Dome Fuji, during which increase of air temperature from 5 to 8°C in the station buildings was recorded. Snow on the station buildings was partly melted and some of the melted water penetrated into the station. This was the only time snow melted during the wintering over party's stay at the station. Average relative humidity in the station buildings obtained using a small humidifier was about 25%; the relative humidity without using the humidifier ranged from 9.0 to 22.9%.

  4. The effect of temperature and relative humidity on survival of unfed hyalomma impeltatum (acarina: ixodidae)

    OpenAIRE

    Hagras, Ahmed E. E. [احمد الوزير هجرس; Babiker, A. A.; Khalil, G. M.

    1991-01-01

    This work investigates survival of unfed Hyalomma impeltatum in which 8089 larvae, 3946 nymphs, 2058 males and 2304 females held at different combinations of temperature (21, 25, 29 and 34°C) and relative humidity (RH) (32, 52, 75 and 97%) levels. Survival was significantly improved with rise in RH and fall in temperature in all stages. The magnitude of the effect of RH and temperature on survival varied significantly between stages. Changes in RH and temperature had a stronger impact on surv...

  5. Population growth and development of Liposcelis pearmani (Psocoptera: Liposcelididae) at constant temperatures and relative humidities.

    Science.gov (United States)

    Aminatou, B A; Gautam, S G; Opit, G P; Talley, J; Shakya, K

    2011-08-01

    Psocids of genus Liposcelis are now considered serious pests of stored products. We investigated the effects of eight temperatures (22.5, 25.0, 27.5, 30.0, 32.5, 35.0, 37.5, and 40.0°C) and four relative humidities (43, 55, 63, and 75%) on population growth and development of the psocid Liposcelis pearmani Lienhard. L. pearmani did not survive at 37.5 and 40.0°C, at all relative humidities tested; at 43% RH, at all temperatures tested; and at 55% RH, at 32.5 and 35°C. The greatest population growth was recorded at 32.5°C and 75% RH (32-fold growth). L. pearmani males have two to four nymphal instars, and the percentages of males with two, three, and four instars were 17, 63, and 20%, respectively. Female L. pearmani have two to five instars, and the percentages of females with two, three, four, and five instars were 5, 39, 55, and 1%, respectively. We developed temperature-dependent development equations for male and female eggs, individual nymphal, combined nymphal, and combined immature stages. Based on 30-d population growth, L. pearmani cannot survive at temperatures >35.0°C; does not thrive at low relative humidities (55%), at temperatures above 25°C; and has a high optimum relative humidity for population growth (75%). Therefore, we expect it to have a more limited distribution compared with other Liposcelis species. These data provide a better understanding of how temperature and RH may influence L. pearmani population dynamics and can be used in population growth models to help develop effective management strategies for this psocid, and to predict its occurrence.

  6. Estimating relations between temperature, relative humidity as independed variables and selected water quality parameters in Lake Manzala, Egypt

    Directory of Open Access Journals (Sweden)

    Gehan A.H. Sallam

    2018-03-01

    Full Text Available In Egypt, Lake Manzala is the largest and the most productive lake of northern coastal lakes. In this study, the continuous measurements data of the Real Time Water Quality Monitoring stations in Lake Manzala were statistically analyzed to measure the regional and seasonal variations of the selected water quality parameters in relation to the change of air temperature and relative humidity. Simple formulas are elaborated using the DataFit software to predict the selected water quality parameters of the Lake including pH, Dissolved Oxygen (DO, Electrical Conductivity (EC, Total Dissolved Solids (TDS, Turbidity, and Chlorophyll as a function of air temperature, relative humidity and quantities and qualities of the drainage water that discharge into the lake. An empirical positive relation was found between air temperature and the relative humidity and pH, EC and TDS and negative relation with DO. There is no significant effect on the other two parameters of turbidity and chlorophyll.

  7. INFLUENCE OF TEMPERATURE AND RELATIVE HUMIDITY ON THE STUDDED AGARICUS BLAZEI MURRILL MUSHROOM COMPOST

    Directory of Open Access Journals (Sweden)

    Sándor Rózsa

    2017-12-01

    Full Text Available Almond mushroom, Agaricus blazei Murrill, is the so-called secondary saprophyte, developing on partially processed substrate, in which microorganisms reduced complex ligno-cellulose compounds. Numerous authors have shown that due to the similar life cycle in the cultivation of almond mushroom technologies developed for white button mushroom may be applied. However, almond mushroom requires high temperature and high humidity as well as access to light to form fruiting bodies. In Brazil, due to the advantageous climatic conditions this species is frequently grown outdoors; however, in other countries - mainly due to its high temperature requirements - such cultivation system is risky and may only be successful during very warm summers. In this study, we analyzed four kind of compost studded by Agaricus blazei Murrill mushroom mycelium. We recorded every hour the air and compost temperature and the air relative humidity. The best studded compost was the classical, followed by synthetic and then by the mixt compost.

  8. Seasonal Variations of Indoor Microbial Exposures and Their Relation to Temperature, Relative Humidity, and Air Exchange Rate

    DEFF Research Database (Denmark)

    Frankel, Mika; Bekö, Gabriel; Timm, Michael

    2012-01-01

    with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total...... inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m3) and were lowest in winter (median, 26 CFU/m3). Indoor...... of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly...

  9. Static flexural properties of hedgehog spines conditioned in coupled temperature and relative humidity environments.

    Science.gov (United States)

    Kennedy, Emily B; Hsiung, Bor-Kai; Swift, Nathan B; Tan, Kwek-Tze

    2017-11-01

    Hedgehogs are agile climbers, scaling trees and plants to heights exceeding 10m while foraging insects. Hedgehog spines (a.k.a. quills) provide fall protection by absorbing shock and could offer insights for the design of lightweight, material-efficient, impact-resistant structures. There has been some study of flexural properties of hedgehog spines, but an understanding of how this keratinous biological material is affected by various temperature and relative humidity treatments, or how spine color (multicolored vs. white) affects mechanics, is lacking. To bridge this gap in the literature, we use three-point bending to analyze the effect of temperature, humidity, spine color, and their interactions on flexural strength and modulus of hedgehog spines. We also compare specific strength and stiffness of hedgehog spines to conventional engineered materials. We find hedgehog spine flexural properties can be finely tuned by modifying environmental conditioning parameters. White spines tend to be stronger and stiffer than multicolored spines. Finally, for most temperature and humidity conditioning parameters, hedgehog spines are ounce for ounce stronger than 201 stainless steel rods of the same diameter but as pliable as styrene rods with a slightly larger diameter. This unique combination of strength and elasticity makes hedgehog spines exemplary shock absorbers, and a suitable reference model for biomimicry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Coupled effects of the temperature and the relative humidity on gecko adhesion

    International Nuclear Information System (INIS)

    Peng, Zhilong; Yang, Yazheng; Chen, Shaohua

    2017-01-01

    To explain the inconsistent results of experiments on temperature-dependent gecko adhesion, a theoretical peeling model is established wherein a nano-thin film is adopted to simulate a gecko spatula. The model considers not only the respective effects of temperature and environmental humidity on the peel-off force but also the coupled effect of both factors. Increasing temperature is found to lead to a decreasing peel-off force if the environmental humidity is uncontrolled. However, if the environmental humidity is constant, the peel-off force is insensitive to the temperature and remains almost constant. The synthetic theoretical analysis demonstrates that the seemingly contradictory results of temperature-dependent gecko adhesion experiments are actually consistent under their respective experimental conditions. This inconsistency is mainly due to the environmental humidity, which varies with the changing temperature if it is not artificially controlled. The results cannot only reasonably explain the different experimental results for the effect of temperature on gecko adhesion but can also facilitate the design of temperature-controlled or humidity-controlled adhesion sensors by tuning the environmental humidity or temperature. (paper)

  11. Influence of relative humidity and temperature on quantity of electric charge of static protective clothing used in petrochemical industry

    International Nuclear Information System (INIS)

    Zhang, Yunpeng; Liu, Quanzhen; Liu, Baoquan; Li, Yipeng; Zhang, Tingting

    2013-01-01

    In this paper, the working principle of static protective clothing and its testing method of quantity of electric charge are introduced, and the influence of temperature and relative humidity on the quantity of electric charge (q e ) of static protective clothing is studied by measuring q e of different clothing samples. The result shows that temperature and relative humidity can influence q e of static protective clothing to some extent and the influence of relative humidity is bigger than that of temperature. According to experimental results, the relationship of q e and relative humidity and temperature was analysed, and the safety boundary of quantity of electric charge is discussed. In order to reduce the occurrence of electrostatic accidents and ensure safe production and operation of petrochemical industry, some suggestions on choosing and using of static protective clothing are given for guaranteeing its static protective performance.

  12. Influence of relative humidity and temperature on quantity of electric charge of static protective clothing used in petrochemical industry

    Science.gov (United States)

    Zhang, Yunpeng; Liu, Quanzhen; Liu, Baoquan; Li, Yipeng; Zhang, Tingting

    2013-03-01

    In this paper, the working principle of static protective clothing and its testing method of quantity of electric charge are introduced, and the influence of temperature and relative humidity on the quantity of electric charge (qe) of static protective clothing is studied by measuring qe of different clothing samples. The result shows that temperature and relative humidity can influence qe of static protective clothing to some extent and the influence of relative humidity is bigger than that of temperature. According to experimental results, the relationship of qe and relative humidity and temperature was analysed, and the safety boundary of quantity of electric charge is discussed. In order to reduce the occurrence of electrostatic accidents and ensure safe production and operation of petrochemical industry, some suggestions on choosing and using of static protective clothing are given for guaranteeing its static protective performance.

  13. Biases of the MET Temperature and Relative Humidity Sensor (HMP45) Report

    Energy Technology Data Exchange (ETDEWEB)

    Kyrouac, Jenni [Argonne National Lab. (ANL), Argonne, IL (United States); Theisen, Adam [Univ. of Oklahoma, Norman, OK (United States)

    2017-06-30

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Quality (DQ) Office was alerted to a potential bias in the surface meteorological instrumentation (MET) temperature when compared with a nearby Mesonet station. This led to an investigation into this problem that was expanded to include many of the other extended facilities (EF) and both the temperature and relative humidity (RH) variables. For this study, the Mesonet was used as the standard reference due to results that showed an increased accuracy in high-humidity environments along with the fact that the Mesonet had previous documented a problem with the HMP45C sensors. Some differences between the sites were taken into account during the analysis: 1. ARM MET sensors were upgraded from an HMP35 to an HMP45 throughout 2007 2. Mesonet switched to aspirated shields in 2009 – To mitigate the differences between aspirated and non-aspirated measurements, data were only analyzed when the wind speed was higher than 3 m/s. This reduced the uncertainty for the non-aspirated measurements from 1.51 ºC to 0.4 ºC. 3. ARM MET is mounted 0.5m higher than the Mesonet station (2.0m versus 1.5m) – This is assumed to have a negligible effect on the differences. 4. Sites were not co-located – For some locations, the distances between sites were as much as 45 km. As part of the investigation into the differences, the Mesonet had reported that the HMP45 sensors had a low-temperature bias in high-humidity environments. This was verified at two different sites where the ARM measurements were compared with the Mesonet measurements. The Mesonet provided redundant temperature measurements from two different sensors at each site. These measurements compared fairly well, while the ARM sensor showed a bias overnight when the humidities were higher. After reviewing the yearly average differences in the data and analyzing the RH data during fog events when we assume it should be

  14. Measurement of Temperature and Relative Humidity with Polymer Optical Fiber Sensors Based on the Induced Stress-Optic Effect

    Science.gov (United States)

    Pontes, Maria José

    2018-01-01

    This paper presents a system capable of measuring temperature and relative humidity with polymer optical fiber (POF) sensors. The sensors are based on variations of the Young’s and shear moduli of the POF with variations in temperature and relative humidity. The system comprises two POFs, each with a predefined torsion stress that resulted in a variation in the fiber refractive index due to the stress-optic effect. Because there is a correlation between stress and material properties, the variation in temperature and humidity causes a variation in the fiber’s stress, which leads to variations in the fiber refractive index. Only two photodiodes comprise the sensor interrogation, resulting in a simple and low-cost system capable of measuring humidity in the range of 5–97% and temperature in the range of 21–46 °C. The root mean squared errors (RMSEs) between the proposed sensors and the reference were 1.12 °C and 1.36% for the measurements of temperature and relative humidity, respectively. In addition, fiber etching resulted in a sensor with a 2 s response time for a relative humidity variation of 10%, which is one of the lowest recorded response times for intrinsic POF humidity sensors. PMID:29558387

  15. Calibration of Relative Humidity Devices in Low-pressure, Low-temperature CO2 Environment

    Science.gov (United States)

    Genzer, Maria; Polkko, Jouni; Nikkanen, Timo; Hieta, Maria; Harri, Ari-Matti

    2017-04-01

    Calibration of relative humidity devices requires in minimum two humidity points - dry (0%RH) and (near)saturation (95-100%RH) - over the expected operational temperature and pressure range of the device. In terrestrial applications these are relatively easy to achieve using for example N2 gas as dry medium, and water vapor saturation chambers for producing saturation and intermediate humidity points. But for example in applications intended for meteorological measurements on Mars there is a need to achieve at least dry and saturation points in low-temperature, low-pressure CO2 environment. We have developed a custom-made, small, relatively low-cost calibration chamber able to produce both dry points and saturation points in Martian range pressure CO2, in temperatures down to -70°C. The system utilizes a commercially available temperature chamber for temperature control, vacuum vessels and pumps. The main pressure vessel with the devices under test inside is placed inside the temperature chamber, and the pressure inside is controlled by pumps and manual valves and monitored with a commercial pressure reference with calibration traceable to national standards. Air, CO2, or if needed another gas like N2, is used for filling the vessel until the desired pressure is achieved. Another pressure vessel with a dedicated pressure pump is used as the saturation chamber. This vessel is placed in the room outside the temperature chamber, partly filled with water and used for achieving saturated water vapor in room-temperature low-pressure environment. The saturation chamber is connected to the main pressure vessel via valves. In this system dry point, low-pressure CO2 environment is achieved by filling the main pressure vessel with dry CO2 gas until the desired pressure is achieved. A constant flow of gas is maintained with the pump and valves and monitored with the pressure reference. The saturation point is then achieved by adding some water vapor from the saturation

  16. Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate.

    Science.gov (United States)

    Frankel, Mika; Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind; Madsen, Anne Mette

    2012-12-01

    Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m(3)) and were lowest in winter (median, 26 CFU/m(3)). Indoor bacteria peaked in spring (median, 2,165 CFU/m(3)) and were lowest in summer (median, 240 CFU/m(3)). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates.

  17. The effects of temperature, relative humidity, light, and resource quality on flight initiation in the red flour beetle, Tribolium castaneum.

    Science.gov (United States)

    Drury, Douglas W; Whitesell, Matthew E; Wade, Michael J

    2016-03-01

    We investigated the environmental conditions that induce a flight response in the red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae), including resource quality, temperature, relative humidity, and light. Over 72-h trial periods, we observed the proportion of individuals emigrating by flight to range from 0.0 in extreme heat or cold to 0.82 with starvation. Resource quality, presence of a light source, and temperature all directly influenced the initiation of the flight response. We did not detect any effect of relative humidity or sudden change in temperature on the incidence of flight. We discuss our findings in the context of Tribolium ecology and evolution.

  18. Temperature and Relative Humidity Vertical Profiles within Planetary Boundary Layer in Winter Urban Airshed

    Science.gov (United States)

    Bendl, Jan; Hovorka, Jan

    2017-12-01

    The planetary boundary layer is a dynamic system with turbulent flow where horizontal and vertical air mixing depends mainly on the weather conditions and geomorphology. Normally, air temperature from the Earth surface decreases with height but inversion situation may occur, mainly during winter. Pollutant dispersion is poor during inversions so air pollutant concentration can quickly rise, especially in urban closed valleys. Air pollution was evaluated by WHO as a human carcinogen (mostly by polycyclic aromatic hydrocarbons) and health effects are obvious. Knowledge about inversion layer height is important for estimation of the pollution impact and it can give us also information about the air pollution sources. Temperature and relative humidity vertical profiles complement ground measurements. Ground measurements were conducted to characterize comprehensively urban airshed in Svermov, residential district of the city of Kladno, about 30 km NW of Prague, from the 2nd Feb. to the 3rd of March 2016. The Svermov is an air pollution hot-spot for long time benzo[a]pyrene (B[a]P) limit exceedances, reaching the highest B[a]P annual concentration in Bohemia - west part of the Czech Republic. Since the Svermov sits in a shallow valley, frequent vertical temperature inversion in winter and low emission heights of pollution sources prevent pollutant dispersal off the valley. Such orography is common to numerous small settlements in the Czech Republic. Ground measurements at the sports field in the Svermov were complemented by temperature and humidity vertical profiles acquired by a Vaisala radiosonde positioned at tethered He-filled balloon. Total number of 53 series of vertical profiles up to the height of 300 m was conducted. Meteorology parameters were acquired with 4 Hz frequency. The measurements confirmed frequent early-morning and night formation of temperature inversion within boundary layer up to the height of 50 m. This rather shallow inversion had significant

  19. Synergistic interactions within disturbed habitats between temperature, relative humidity and UVB radiation on egg survival in a diadromous fish.

    Directory of Open Access Journals (Sweden)

    Michael J H Hickford

    Full Text Available Anthropogenic impacts, including urbanization, deforestation, farming, and livestock grazing have altered riparian margins worldwide. One effect of changes to riparian vegetation is that the ground-level light, temperature, and humidity environment has also been altered. Galaxias maculatus, one of the most widely distributed fishes of the southern hemisphere, lays eggs almost exclusively beneath riparian vegetation in tidally influenced reaches of rivers. We hypothesized that the survival of these eggs is greatly affected by the micro-environment afforded by vegetation, particularly relating to temperature, humidity and UVB radiation. We experimentally reduced riparian vegetation height and altered shading characteristics, tracked egg survival, and used small ground-level temperature, humidity and UVB sensors to relate survival to ground-level effects around egg masses. The ground-level physical environment was markedly different from the surrounding ambient conditions. Tall dense riparian vegetation modified ambient conditions to produce a buffered temperature regime with constant high relative humidity, generally above 90%, and negligible UVB radiation at ground-level. Where vegetation height was reduced, frequent high temperatures, low humidity, and high UVB irradiances reduced egg survival by up to 95%. Temperature effects on egg survival were probably indirect, through reduced humidity, because developing eggs are known to survive in a wide range of temperatures. In this study, it was remarkable how such small variations in relatively small sites could have such a large effect on egg survival. It appears that modifications to riparian vegetation and the associated changes in the physical conditions of egg laying sites are major mechanisms affecting egg survival. The impacts associated with vegetational changes through human-induced disturbances are complex yet potentially devastating. These effects are particularly important because they

  20. Temperature and relative humidity influence the ripening descriptors of Camembert-type cheeses throughout ripening.

    Science.gov (United States)

    Leclercq-Perlat, M-N; Sicard, M; Perrot, N; Trelea, I C; Picque, D; Corrieu, G

    2015-02-01

    Ripening descriptors are the main factors that determine consumers' preferences of soft cheeses. Six descriptors were defined to represent the sensory changes in Camembert cheeses: Penicillium camemberti appearance, cheese odor and rind color, creamy underrind thickness and consistency, and core hardness. To evaluate the effects of the main process parameters on these descriptors, Camembert cheeses were ripened under different temperatures (8, 12, and 16°C) and relative humidity (RH; 88, 92, and 98%). The sensory descriptors were highly dependent on the temperature and RH used throughout ripening in a ripening chamber. All sensory descriptor changes could be explained by microorganism growth, pH, carbon substrate metabolism, and cheese moisture, as well as by microbial enzymatic activities. On d 40, at 8°C and 88% RH, all sensory descriptors scored the worst: the cheese was too dry, its odor and its color were similar to those of the unripe cheese, the underrind was driest, and the core was hardest. At 16°C and 98% RH, the odor was strongly ammonia and the color was dark brown, and the creamy underrind represented the entire thickness of the cheese but was completely runny, descriptors indicative of an over ripened cheese. Statistical analysis showed that the best ripening conditions to achieve an optimum balance between cheese sensory qualities and marketability were 13±1°C and 94±1% RH. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Physical activity profile of 2014 FIFA World Cup players, with regard to different ranges of air temperature and relative humidity

    Science.gov (United States)

    Chmura, Paweł; Konefał, Marek; Andrzejewski, Marcin; Kosowski, Jakub; Rokita, Andrzej; Chmura, Jan

    2017-04-01

    The present study attempts to assess changes in soccer players' physical activity profiles under the simultaneous influence of the different combinations of ambient temperature and relative humidity characterising matches of the 2014 FIFA World Cup hosted by Brazil. The study material consisted of observations of 340 players representing 32 national teams taking part in the tournament. The measured indices included total distances covered; distances covered with low, moderate, or high intensity; numbers of sprints performed, and peak running speeds achieved. The analysis was carried out using FIFA official match data from the Castrol Performance Index system. Ultimately, consideration was given to a combination of three air temperature ranges, i.e. below 22 °C, 22-28 °C, and above 28 °C; and two relative humidity ranges below 60 % and above 60 %. The greatest average distance recorded (10.54 ± 0.91 km) covered by players at an air temperature below 22 °C and a relative humidity below 60 %, while the shortest (9.83 ± 1.08 km) characterised the same air temperature range, but conditions of relative humidity above 60 % ( p ≤ 0.001). Two-way ANOVA revealed significant differences ( p ≤ 0.001) in numbers of sprints performed by players, depending on whether the air temperature range was below 22 °C (40.48 ± 11.17) or above 28 °C (30.72 ± 9.40), but only where the relative humidity was at the same time below 60 %. Results presented indicate that the conditions most comfortable for physical activity on the part of players occur at 22 °C, and with relative humidity under 60 %.

  2. Observed changes in relative humidity and dew point temperature in coastal regions of Iran

    Science.gov (United States)

    Hosseinzadeh Talaee, P.; Sabziparvar, A. A.; Tabari, Hossein

    2012-12-01

    The analysis of trends in hydroclimatic parameters and assessment of their statistical significance have recently received a great concern to clarify whether or not there is an obvious climate change. In the current study, parametric linear regression and nonparametric Mann-Kendall tests were applied for detecting annual and seasonal trends in the relative humidity (RH) and dew point temperature ( T dew) time series at ten coastal weather stations in Iran during 1966-2005. The serial structure of the data was considered, and the significant serial correlations were eliminated using the trend-free pre-whitening method. The results showed that annual RH increased by 1.03 and 0.28 %/decade at the northern and southern coastal regions of the country, respectively, while annual T dew increased by 0.29 and 0.15°C per decade at the northern and southern regions, respectively. The significant trends were frequent in the T dew series, but they were observed only at 2 out of the 50 RH series. The results showed that the difference between the results of the parametric and nonparametric tests was small, although the parametric test detected larger significant trends in the RH and T dew time series. Furthermore, the differences between the results of the trend tests were not related to the normality of the statistical distribution.

  3. The influence of air temperature and relative humidity on dynamics of water potential in Betula pendula (Betulaceae trees

    Directory of Open Access Journals (Sweden)

    G. P. Тikhova

    2017-02-01

    Full Text Available Linear multiple models were developed to describe diurnal and seasonal dynamics of water potential (Ψ of the foliated shoots in the plants of Betula genus related to air temperature and relative humidity in the middle taiga (southern Karelia. The results of the study revealed unidirectional changes, but different effect strength of air temperature and relative humidity on Ψ of the foliated shoots of common silver birch (Betula pendula Roth and curly (Karelian birch (Betula pendula Roth var. carelica. It was shown that increasing air temperature 1°С results in similar decreasing of Ψ value equal to 0.037–0.038 MPa in both of the birches (p > 0.05. Since the diurnal air temperature range achieves 10–15 °С, the contribution of this factor may be up to 0.57 MPa. On the contrary, the contribution of relative air humidity to Ψ value differs significantly in distinct birch forms (p < 0.05. In this case the change range of Ψ value in silver birch and curly birch may be up to 0.46 (0.015 MPa/1 % RH and 0.52 МПа (0.017 MPa/1 % RH, respectively. The results indicate that curly birch responds to the increase of relative air humidity with higher magnification of Ψ in comparison with common silver birch.

  4. Influence of the relative humidity and the temperature on the in-vivo friction behaviour of human skin

    NARCIS (Netherlands)

    Klaassen, M.; Schipper, D. J.; Masen, M.A.

    2016-01-01

    Both temperature and relative humidity are known to influence the frictional behaviour of human skin. However, literature does not completely cover to what extent both parameters play a role. Measurements were conducted using an in-house built reciprocating tribometer inside an enclosure in which

  5. Modeling the effects of temperature and relative humidity on gas exchange of prickly pear cactus (Opuntia spp.) stems

    NARCIS (Netherlands)

    Guevara-Arauza, J.C.; Yahia, E.M.; Cedeno, L.; Tijskens, L.M.M.

    2006-01-01

    A model to estimate gas profile of modified atmosphere packaged (MAP) prickly pear cactus stems was developed and calibrated. The model describes the transient gas exchange taking in consideration the effect of temperature (T) and relative humidity (RH) on film permeability (FPgas), respiration rate

  6. Temperature and relative humidity influence the microbial and physicochemical characteristics of Camembert-type cheese ripening.

    Science.gov (United States)

    Leclercq-Perlat, M-N; Sicard, M; Trelea, I C; Picque, D; Corrieu, G

    2012-08-01

    To evaluate the effects of temperature and relative humidity (RH) on microbial and biochemical ripening kinetics, Camembert-type cheeses were prepared from pasteurized milk seeded with Kluyveromyces marxianus, Geotrichum candidum, Penicillium camemberti, and Brevibacterium aurantiacum. Microorganism growth and biochemical changes were studied under different ripening temperatures (8, 12, and 16°C) and RH (88, 92, and 98%). The central point runs (12°C, 92% RH) were both reproducible and repeatable, and for each microbial and biochemical parameter, 2 kinetic descriptors were defined. Temperature had significant effects on the growth of both K. marxianus and G. candidum, whereas RH did not affect it. Regardless of the temperature, at 98% RH the specific growth rate of P. camemberti spores was significantly higher [between 2 (8°C) and 106 times (16°C) higher]. However, at 16°C, the appearance of the rind was no longer suitable because mycelia were damaged. Brevibacterium aurantiacum growth depended on both temperature and RH. At 8°C under 88% RH, its growth was restricted (1.3 × 10(7) cfu/g), whereas at 16°C and 98% RH, its growth was favored, reaching 7.9 × 10(9) cfu/g, but the rind had a dark brown color after d 20. Temperature had a significant effect on carbon substrate consumption rates in the core as well as in the rind. In the rind, when temperature was 16°C rather than 8°C, the lactate consumption rate was approximately 2.9 times higher under 88% RH. Whatever the RH, temperature significantly affected the increase in rind pH (from 4.6 to 7.7 ± 0.2). At 8°C, an increase in rind pH was observed between d 6 and 9, whereas at 16°C, it was between d 2 and 3. Temperature and RH affected the increasing rate of the underrind thickness: at 16°C, half of the cheese thickness appeared ripened on d 14 (wrapping day). However, at 98% RH, the underrind was runny. In conclusion, some descriptors, such as yeast growth and the pH in the rind, depended solely on

  7. Ice nucleation onto Arizona test dust at cirrus temperatures: effect of temperature and aerosol size on onset relative humidity.

    Science.gov (United States)

    Kanji, Z A; Abbatt, J P D

    2010-01-21

    The University of Toronto Continuous Flow Diffusion Chamber (UT-CFDC) was used to study ice formation onto monodisperse Arizona Test Dust (ATD) particles. The onset relative humidity with respect to ice (RH(i)) was measured as a function of temperature in the range 251-223 K for 100 nm ATD particles. It was found that for 0.1% of the particles to freeze, water saturation was required at all temperatures except 223 K where particles activated at RH(i) below water saturation. At this temperature, where deposition mode freezing is occurring, we find that the larger the particle size, the lower the onset RH(i). We also demonstrate that the total number of particles present may influence the onset RH(i) observed. The surface area for ice activation, aerosol size, and temperature must all be considered when reporting onset values of ice formation onto ATD mineral dust particles. In addition, we calculate nucleation rates and contact angles of ice germs with ATD aerosols which indicate that there exists a range of active sites on the surface with different efficiencies for activating ice formation.

  8. High resolution dynamical downscaling of air temperature and relative humidity: performance assessment of WRF for Portugal

    Science.gov (United States)

    Menezes, Isilda; Pereira, Mário; Moreira, Demerval; Carvalheiro, Luís; Bugalho, Lourdes; Corte-Real, João

    2017-04-01

    Air temperature and relative humidity are two of the atmospheric variables with higher impact on human and natural systems, contributing to define the stress/comfortable conditions, affecting the productivity and health of the individuals as well as diminishing the resilience to other environmental hazards. Atmospheric regional models, driven by large scale forecasts from global circulation models, are the best way to reproduce such environmental conditions in high space-time resolution. This study is focused on the performance assessment of the WRF mesoscale model to perform high resolution dynamical downscaling for Portugal with three two-way nested grids, at 60 km, 20 km and 5 km horizontal resolution. The simulations of WRF models were produced with different initial and boundary forcing conditions. The NCEP-FNL Operational Global Analysis data available on 1-degree by 1-degree grid every six hours and ERA-Interim reanalyses dataset were used to drive the models. Two alternative configurations of the WRF model, including planetary boundary, layer schemes, microphysics, land-surface models, radiation schemes, were used and tested within the 5 km spatial resolution domain. Simulations of air temperature and relative humidity were produced for January and July of 2016 and compared with the observed datasets provided by the Instituto Português do Mar e da Atmosfera (IPMA) for 83 weather stations. Different performance measures of bias, precision, and accuracy were used, namely normalized bias, standard deviation, mean absolute error, root mean square error, bias of root mean square error as well as correlation based measures (e.g., coefficient of determination) and goodness of fit measures (index of agreement). Main conclusions from the obtained results reveal: (i) great similarity between the spatial patterns of the simulated and observed fields; (ii) only small differences between simulations produced with ERA-Interim and NCEP-FNL, in spite of some differences

  9. Health symptoms in relation to temperature, humidity, and self-reported perceptions of climate in New York City residential environments

    Science.gov (United States)

    Quinn, Ashlinn; Shaman, Jeffrey

    2017-07-01

    Little monitoring has been conducted of temperature and humidity inside homes despite the fact that these conditions may be relevant to health outcomes. Previous studies have observed associations between self-reported perceptions of the indoor environment and health. Here, we investigate associations between measured temperature and humidity, perceptions of indoor environmental conditions, and health symptoms in a sample of New York City apartments. We measured temperature and humidity in 40 New York City apartments during summer and winter seasons and collected survey data from the households' residents. Health outcomes of interest were (1) sleep quality, (2) symptoms of heat illness (summer season), and (3) symptoms of respiratory viral infection (winter season). Using mixed-effects logistic regression models, we investigated associations between the perceptions, symptoms, and measured conditions in each season. Perceptions of indoor temperature were significantly associated with measured temperature in both the summer and the winter, with a stronger association in the summer season. Sleep quality was inversely related to measured and perceived indoor temperature in the summer season only. Heat illness symptoms were associated with perceived, but not measured, temperature in the summer season. We did not find an association between any measured or perceived condition and cases of respiratory infection in the winter season. Although limited in size, the results of this study reveal that indoor temperature may impact sleep quality, and that thermal perceptions of the indoor environment may indicate vulnerability to heat illness. These are both important avenues for further investigation.

  10. A Note on the Spatio Temporal Variations in the Temperature and Relative Humidity over Akure, Ondo State, Nigeria

    Science.gov (United States)

    Eludoyin, A. O.; Akinbode, O. M.; Archibong, E. O.

    2007-07-01

    This study was carried out in one of the Administrative State Capitals in the southwestern part of Nigeria. Its aim is to serve as a baseline data for highlighting the effect of spatial distribution of settlements, population, and socioeconomic activities on urban air temperature and relative humidity. The main objective of the study is to assess the impact of urban growth on the microclimate of the administrative city. Temperature and relative humidity data from 1992 to 2001 were obtained from the three existing meteorological stations in Akure, the Administrative Capital of Ondo State, Nigeria, namely the Federal Ministry of Aviation, Akure Airport station (FMA), Federal University of Technology, Akure (FUTA) and the Federal School of Agriculture (SOA). Air temperature and relative humidity measurements along primary roads and in the built up areas were obtained from seventeen stations, using sling psychrometer. The data were subsequently analysed for spatial and temporal variations. The results obtained indicated that while the maximum, average and minimum temperatures showed significant annual variations, the spatial variations among the existing meteorological stations were not significant. The city is characterized by increasing annual mean temperatures whose maximum was significantly higher than that of Ondo town — another important town within the state. The annual mean temperatures ranged between 26.2°C and 30.4°C. Minimum and maximum temperatures varied from 12.3°C to 26°C and 22.5°C to 39.6°C, respectively while the relative humidity ranged between 27.5% and 98.2%. Urban `heat island' intensity was exhibited around central business district of the Oba market. 2007 American Institute of Physics

  11. Empirical model for estimating dengue incidence using temperature, rainfall, and relative humidity: a 19-year retrospective analysis in East Delhi.

    Science.gov (United States)

    Ramachandran, Vishnampettai G; Roy, Priyamvada; Das, Shukla; Mogha, Narendra Singh; Bansal, Ajay Kumar

    2016-01-01

    Aedes mosquitoes are responsible for transmitting the dengue virus. The mosquito lifecycle is known to be influenced by temperature, rainfall, and relative humidity. This retrospective study was planned to investigate whether climatic factors could be used to predict the occurrence of dengue in East Delhi. The number of monthly dengue cases reported over 19 years was obtained from the laboratory records of our institution. Monthly data of rainfall, temperature, and humidity collected from a local weather station were correlated with the number of monthly reported dengue cases. One-way analysis of variance was used to analyse whether the climatic parameters differed significantly among seasons. Four models were developed using negative binomial generalized linear model analysis. Monthly rainfall, temperature, humidity, were used as independent variables, and the number of dengue cases reported monthly was used as the dependent variable. The first model considered data from the same month, while the other three models involved incorporating data with a lag phase of 1, 2, and 3 months, respectively. The greatest number of cases was reported during the post-monsoon period each year. Temperature, rainfall, and humidity varied significantly across the pre-monsoon, monsoon, and post-monsoon periods. The best correlation between these three climatic factors and dengue occurrence was at a time lag of 2 months. This study found that temperature, rainfall, and relative humidity significantly affected dengue occurrence in East Delhi. This weather-based dengue empirical model can forecast potential outbreaks 2-month in advance, providing an early warning system for intensifying dengue control measures.

  12. Relative effects of temperature, light, and humidity on clinging behavior of metacercariae-infected ants

    DEFF Research Database (Denmark)

    Botnevik, C.F.; Malagocka, Joanna; Jensen, Annette Bruun

    2016-01-01

    The lancet fluke, Dicrocoelium dendriticum, is perhaps the best-known example of parasite manipulation of host behavior, which is manifested by a radically changed behavior that leaves infected ants attached to vegetation at times when transmission to an herbivore host is optimal. Despite...... the publicity surrounding this parasite, curiously little is known about factors inducing and maintaining behavioral changes in its ant intermediate host. This study examined the importance of 3 environmental factors on the clinging behavior of red wood ants, Formica polyctena , infected with D. dendriticum...... . This behavior, hypothesized to involve cramping of the mandibular muscles in a state of tetany, was observed in naturally infected F. polyctena under controlled temperature, light, and humidity conditions. We found that low temperature significantly stimulated and maintained tetany in infected ants while light...

  13. The influence of oxygen, partial vacuum, temperature, relative humidity combined with gamma radiation on the mosquito, Culex pipiens complex l. I. Effect of exposure to temperature and relative humidity alone.

    OpenAIRE

    Hafez, Mahmood [محمود حافظ; Abdel-Rahmen, A. M.; Osman, A. Z.; Wakid, A. M.; Hafez, M. K.

    1993-01-01

    The results revealed that a temperature of 10°C was the most effective temperature on pupal mortality of Culex pipiens complex L. followed by 32°C then 20 and 26°C. There was a gradual increase in pupal mortality with increasing the time of exposure to temperatures. The pupal mortality increased with decreasing the relative humidity levels at the same time of exposure. Exposure for short time periods did not affect significantly the pupal mortality. Increasing the exposure time increased m...

  14. Population Growth and Development of the Psocid Liposcelis fusciceps (Psocoptera: Liposcelididae) at Constant Temperatures and Relative Humidities.

    Science.gov (United States)

    Gautam, S G; Opit, G P; Shakya, K

    2016-02-01

    We investigated the effects of seven temperatures (22.5, 25.0, 27.5, 30.0, 32.5, 35.0, and 37.5°C) and four relative humidities (43, 55, 63, and 75%) on population growth and development of the psocid Liposcelis fusciceps Badonnel (Psocoptera: Liposcelididae). Results demonstrated that L. fusciceps did not survive at 43% RH, at all temperatures tested. At 55% RH, L. fusciceps did not survive at the highest three temperatures and no psocids survived at 37.5°C and 63% RH. The highest population growth was recorded at 30.0°C and 75% RH where populations increased 16-fold from an initial population of five females. L. fusciceps males have two to four nymphal instars, and the percentages of males with two, three, and four instars were 28, 70, and 2%, respectively. Female L. fusciceps have two to five instars, and the percentages of females with two, three, four, and five instars were 2, 33, 63, and 2%, respectively. The total developmental time for males was shorter than females. We developed temperature-dependent development equations for male and female eggs, individual nymphal, combined nymphal, and combined immature stages. Based on 30-d population growth, L. fusciceps can survive and multiply at a relative humidity of 55% at 22.5-30.0°C, but does better at 27.5-32.5°C and a higher relative humidity of 75%. Relative humidities of ≤ 63% and temperatures of ≥ 32.5°C are detrimental to L. fusciceps. These data provide a better understanding of L. fusciceps population dynamics and can be used to develop effective management strategies for this psocid. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Laboratory Studies of Temperature and Relative Humidity Dependence of Aerosol Nucleation during the TANGENT 2017 IOP Study

    Science.gov (United States)

    Ouyang, Q.; Tiszenkel, L.; Stangl, C. M.; Krasnomowitz, J.; Johnston, M. V.; Lee, S.

    2017-12-01

    In this poster, we will present recent measurements of temperature and relative humidity dependence of aerosol nucleation of sulfuric acid under the conditions representative of the ground level to the free troposphere. Aerosol nucleation is critically dependent on temperature, but the current global aerosol models use nucleation algorithms that are independent of temperature and relative humidity due to the lack of experimental data. Thus, these models fail to simulate nucleation in a wide range of altitude and latitude conditions. We are currently conducting the Tandem Aerosol Nucleation and Growth Environment Tube (TANGENT) the intense observation period (IOP) experiments to investigate the aerosol nucleation and growth properties independently, during nucleation and growth. Nucleation takes place from sulfuric acid, water and some base compounds in a fast flow nucleation tube (FT-1). Nucleation precursors are detected with two chemical ionization mass spectrometers (CIMS) and newly nucleated particles are measured with a particle size magnifier (PSM) and a scanning mobility particle sizers (SMPS). Then these particles grow further in the second flow tube (FT-2) in the presence of oxidants of biogenic organic compounds. Chemical compositions of grown particles are further analyzed with a nano-aerosol mass spectrometer (NAMS). Our experimental results will provide a robust algorithm for aerosol nucleation and growth rates as a function of temperature and relative humidity.

  16. Effect of relative humidity and temperature control on in-cabin thermal comfort state: Thermodynamic and psychometric analyses

    International Nuclear Information System (INIS)

    Alahmer, A.; Omar, M.A.; Mayyas, A.; Dongri, Shan

    2011-01-01

    This manuscript discusses the effect of manipulating the Relative Humidity RH of in-cabin environment on the thermal comfort and human occupants' thermal sensation. The study uses thermodynamic and psychometric analyses, to incorporate the effect of changing RH along with the dry bulb temperature on human comfort. Specifically, the study computes the effect of changing the relative humidity on the amount of heat rejected from the passenger compartment and the effect of relative humidity on occupants comfort zone. A practical system implementation is also discussed in terms of an evaporative cooler design. The results show that changing the RH along with dry bulb temperature inside vehicular cabins can improve the air conditioning efficiency by reducing the heat removed while improving the Human comfort sensations as measured by the Predicted Mean Value PMV and the Predicted Percentage Dissatisfied PPD indices. - Highlights: → Investigates the effect of controlling the RH and dry bulb temperature on in-cabin thermal comfort and sensation. → Conducts the thermodynamic and psychometric analyses for changing the RH and temperature for in-cabin air conditioning. → Discusses a possible system implementation through an evaporative cooler design.

  17. Predicting Indian Summer Monsoon onset through variations of surface air temperature and relative humidity

    Science.gov (United States)

    Stolbova, Veronika; Surovyatkina, Elena; Kurths, Jurgen

    2015-04-01

    Indian Summer Monsoon (ISM) rainfall has an enormous effect on Indian agriculture, economy, and, as a consequence, life and prosperity of more than one billion people. Variability of the monsoonal rainfall and its onset have a huge influence on food production, agricultural planning and GDP of the country, which on 22% is determined by agriculture. Consequently, successful forecasting of the ISM onset is a big challenge and large efforts are being put into it. Here, we propose a novel approach for predictability of the ISM onset, based on critical transition theory. The ISM onset is defined as an abrupt transition from sporadious rainfall to spatially organized and temporally sustained rainfall. Taking this into account, we consider the ISM onset as is a critical transition from pre-monsoon to monsoon, which take place in time and also in space. It allows us to suggest that before the onset of ISM on the Indian subcontinent should be areas of critical behavior where indicators of the critical transitions can be detected through an analysis of observational data. First, we identify areas with such critical behavior. Second, we use detected areas as reference points for observation locations for the ISM onset prediction. Third, we derive a precursor for the ISM onset based on the analysis of surface air temperature and relative humidity variations in these reference points. Finally, we demonstrate the performance of this precursor on two observational data sets. The proposed approach allows to determine ISM onset in advance in 67% of all considered years. Our proposed approach is less effective during the anomalous years, which are associated with weak/strong monsoons, e.g. El-Nino, La-Nina or positive Indian Ocean Dipole events. The ISM onset is predicted for 23 out of 27 normal monsoon years (85%) during the past 6 decades. In the anomalous years, we show that time series analysis in both areas during the pre-monsoon period reveals indicators whether the

  18. Analysis of the system efficiency of an intermediate temperature proton exchange membrane fuel cell at elevated temperature and relative humidity conditions

    International Nuclear Information System (INIS)

    Jeon, Seung Won; Cha, Dowon; Kim, Hyung Soon; Kim, Yongchan

    2016-01-01

    Highlights: • System efficiency of PEMFC is evaluated at elevated temperature and humidity. • Operating parameters are optimized using response surface methodology. • The optimal operating parameters are T = 90.6 °C, RH = 100.0%, and ζ = 2.07. • The power output and system efficiency are 1.28 W and 15.8% at the optimum. • The system efficiency can be effectively improved by increasing relative humidity. - Abstract: Humidification of the membrane is very important in a proton exchange membrane fuel cell (PEMFC), to maintain high ionic conductivity. At an elevated temperature, a large amount of thermal energy is required for humidification because of the exponentially increased saturation vapor pressure. In this study, the system efficiency of a PEMFC was evaluated by considering the heat required for preheating/humidification and compression work. Three-dimensional steady-state simulations were conducted using Fluent 14 to simulate the electrochemical reactions. The operating conditions were optimized using response surface methodology by considering both the fuel cell output and system efficiency. In addition, the effects of operating parameters such as the temperature, relative humidity, and stoichiometric ratio were investigated. The system efficiency can be improved more effectively by increasing relative humidity rather than increasing operating temperature because the ionic conductivity of the membrane was strongly influenced by the relative humidity.

  19. Formaldehyde Emissions from Urea-Formaldehyde- and no-added-formaldehyde-Bonded particleboard as Influenced by Temperature and Relative Humidity

    Science.gov (United States)

    Charles R. Frihart; James M. Wescott; Timothy L. Chaffee; Kyle M. Gonner

    2012-01-01

    It is well documented that temperature and humidity can influence formaldehyde emissions from composite panels that are produced using urea-formaldehyde (UF)–type adhesives. This work investigates the effect of temperature and humidity on newer commercial California Air Resources Board (CARB) phase II–compliant particleboard produced with UF-type adhesives. These...

  20. Formaldehyde emissions from ULEF- and NAF-bonded commercial hardwood plywood as influenced by temperature and relative humidity

    Science.gov (United States)

    Charles R. Frihart; James M. Wescott; Michael J. Birkeland; Kyle M. Gonner

    2010-01-01

    It is well documented in the literature that temperature and humidity can influence formaldehyde emissions from composite panels that are produced using urea-formaldehyde (UF) adhesives. This work investigates the effect of temperature and humidity on newer, ultra-low emitting formaldehyde urea formaldehyde (ULEF-UF) and no-added formaldehyde (NAF) adhesives. A...

  1. Population growth and development of the psocid Liposcelis rufa (Psocoptera: Liposcelididae) at constant temperatures and relative humidities.

    Science.gov (United States)

    Gautam, S G; Opit, G P; Giles, K L

    2010-10-01

    We investigated the effects of eight temperatures (22.5, 25.0, 27.5, 30.0, 32.5, 35.0, 37.5, and 40.0 degrees C) and four relative humidities (43, 55, 63, and 75%) on population growth and development of the psocid Liposcelis rufa Broadhead (Psocoptera: Liposcelididae). L. rufa did not survive at 43% RH, at all temperatures tested; at 55% RH, at the highest four temperatures; and at 63% RH and 40.0 degrees C. The greatest population growth was recorded at 35.0 degrees C and 75% RH (73-fold growth). At 40.0 degrees C, L. rufa populations declined or barely grew. L. rufa males have two to four nymphal instars, and the percentages of males with two, three, and four instars were 31, 54, and 15%, respectively. Female L. rufa have two to five instars, and the percentages of females with two, three, four, and five instars were 2, 44, 42, and 12%, respectively. The life cycle was shorter for males than females. We developed temperature-dependent developmental equations for male and female eggs, individual nymphal, combined nymphal, and combined immature stages. The ability of L. rufa to reproduce at a relative humidity of 55% and temperatures of 22.5-30.0 degrees C and at relative humidities of 63-75% and temperatures of 22.5-37.5 degrees C, in addition to being able to survive at 40.0 degrees C, suggests that this species would be expected to have a broader distribution than other Liposcelis species. These data provide a better understanding of L. rufa population dynamics and can be used to help develop effective management strategies for this psocid.

  2. 7 CFR 28.301 - Measurement: humidity; temperature.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70° F. ...

  3. High temperature humidity sensing materials

    International Nuclear Information System (INIS)

    Tsai, P.P.; Tanase, S.; Greenblatt, M.

    1989-01-01

    This paper reports on new proton conducting materials prepared and characterized for potential applications in humidity sensing at temperatures higher than 100 degrees C by complex impedance or galvanic cell type techniques. Calcium metaphosphate, β-Ca(PO 3 ) 2 as a galvanic cell type sensor material yields reproducible signals in the range from 5 to 200 mm Hg water vapor pressure at 578 degrees C, with short response time (∼ 30 sec). Polycrystalline samples of α-Zr(HPO 4 ) 2 and KMo 3 P 5.8 Si 2 O 25 , and the gel converted ceramic, 0.10Li 2 O-0.25P 2 O 5 -0.65SiO 2 as impedance sensor materials show decreases in impedance with increasing humidity in the range from 9 mm Hg to 1 atm water vapor pressure at 179 degrees C

  4. VAB Temperature and Humidity Study

    Science.gov (United States)

    Lane, John E.; Youngquist, Robert C.; Muktarian, Edward; Nurge, Mark A.

    2014-01-01

    In 2012, 17 data loggers were placed in the VAB to measure temperature and humidity at 10-minute intervals over a one-year period. In 2013, the data loggers were replaced with an upgraded model and slight adjustments to their locations were made to reduce direct solar heating effects. The data acquired by the data loggers was compared to temperature data provided by three wind towers located around the building. It was found that the VAB acts as a large thermal filter, delaying and reducing the thermal oscillations occurring outside of the building. This filtering is typically more pronounced at higher locations in the building, probably because these locations have less thermal connection with the outside. We surmise that the lower elevations respond more to outside temperature variations because of air flow through the doors. Temperatures inside the VAB rarely exceed outdoor temperatures, only doing so when measurements are made directly on a surface with connection to the outside (such as a door or wall) or when solar radiation falls directly on the sensor. A thermal model is presented to yield approximate filter response times for various locations in the building. Appendix A contains historical thermal and humidity data from 1994 to 2009.

  5. Effects of relative humidity, temperature, and population density on production of cuticular hydrocarbons in housefly Musca domestica L.

    NARCIS (Netherlands)

    Noorman, N; Den Otter, CJ

    The production of cuticular hydrocarbons by both males and females of Musca domestica L. under very wet conditions (90% relative humidity) compared to the production at 50 and 20% relative humidity is delayed up to at least 3 days after emergence from the pupae. Eight days after emergence, however,

  6. The Relation Between Atmospheric Humidity and Temperature Trends for Stratospheric Water

    Science.gov (United States)

    Fueglistaler, S.; Liu, Y. S.; Flannaghan, T. J.; Haynes, P. H.; Dee, D. P.; Read, W. J.; Remsberg, E. E.; Thomason, L. W.; Hurst, D. F.; Lanzante, J. R.; hide

    2013-01-01

    We analyze the relation between atmospheric temperature and water vapor-a fundamental component of the global climate system-for stratospheric water vapor (SWV). We compare measurements of SWV (and methane where available) over the period 1980-2011 from NOAA balloon-borne frostpoint hygrometer (NOAA-FPH), SAGE II, Halogen Occultation Experiment (HALOE), Microwave Limb Sounder (MLS)/Aura, and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) to model predictions based on troposphere-to-stratosphere transport from ERA-Interim, and temperatures from ERA-Interim, Modern Era Retrospective-Analysis (MERRA), Climate Forecast System Reanalysis (CFSR), Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC), HadAT2, and RICHv1.5. All model predictions are dry biased. The interannual anomalies of the model predictions show periods of fairly regular oscillations, alternating with more quiescent periods and a few large-amplitude oscillations. They all agree well (correlation coefficients 0.9 and larger) with observations for higherfrequency variations (periods up to 2-3 years). Differences between SWV observations, and temperature data, respectively, render analysis of the model minus observation residual difficult. However, we find fairly well-defined periods of drifts in the residuals. For the 1980s, model predictions differ most, and only the calculation with ERA-Interim temperatures is roughly within observational uncertainties. All model predictions show a drying relative to HALOE in the 1990s, followed by a moistening in the early 2000s. Drifts to NOAA-FPH are similar (but stronger), whereas no drift is present against SAGE II. As a result, the model calculations have a less pronounced drop in SWV in 2000 than HALOE. From the mid-2000s onward, models and observations agree reasonably, and some differences can be traced to problems in the temperature data. These results indicate that both SWV and temperature data may still suffer

  7. An improvement of the retrieval of temperature and relative humidity profiles from a combination of active and passive remote sensing

    Science.gov (United States)

    Che, Yunfei; Ma, Shuqing; Xing, Fenghua; Li, Siteng; Dai, Yaru

    2018-03-01

    This paper focuses on an improvement of the retrieval of atmospheric temperature and relative humidity profiles through combining active and passive remote sensing. Ground-based microwave radiometer and millimeter-wavelength cloud radar were used to acquire the observations. Cloud base height and cloud thickness determinations from cloud radar were added into the atmospheric profile retrieval process, and a back-propagation neural network method was used as the retrieval tool. Because a substantial amount of data are required to train a neural network, and as microwave radiometer data are insufficient for this purpose, 8 years of radiosonde data from Beijing were used as the database. The monochromatic radiative transfer model was used to calculate the brightness temperatures in the same channels as the microwave radiometer. Parts of the cloud base heights and cloud thicknesses in the training data set were also estimated using the radiosonde data. The accuracy of the results was analyzed through a comparison with L-band sounding radar data and quantified using the mean bias, root-mean-square error (RMSE), and correlation coefficient. The statistical results showed that an inversion with cloud information was the optimal method. Compared with the inversion profiles without cloud information, the RMSE values after adding cloud information reduced to varying degrees for the vast majority of height layers. These reductions were particularly clear in layers with clouds. The maximum reduction in the RMSE for the temperature profile was 2.2 K, while that for the humidity profile was 16%.

  8. Population growth and development of the psocid Liposcelis brunnea (Psocoptera: Liposcelididae) at constant temperatures and relative humidities.

    Science.gov (United States)

    Opit, G P; Throne, J E

    2009-06-01

    We studied the effects of temperature and relative humidity on population growth and development of the psocid Liposcelis brunnea Motschulsky. L. brunnea did not survive at 43% RH, but populations increased from 22.5 to 32.5 degrees C and 55-75% RH. Interestingly, we found population growth was higher at 63% RH than at 75% RH, and the greatest population growth was recorded at 32.5 degrees C and 63% RH. At 35 degrees C, L. brunnea nymphal survivorship was 33%, and populations declined or barely grew. L. brunnea males have two to four nymphal instars, and the percentages of males with two, three, and four instars were 13, 82, and 5%, respectively. Female L. brunnea have three to five instars, and the percentages of females with three, four, and five instars were 18, 78, and 4%, respectively. The life cycle was shorter for males than females. We developed temperature-dependent development equations for male and female eggs, individual nymphal, combined nymphal, and combined immature stages and nymphal survivorship. The ability of L. brunnea to multiply rather rapidly at 55% RH may allow it to thrive under conditions of low relative humidity where other Liposcelis species may not. These data give us a better understanding of L. brunnea population dynamics and can be used to help develop effective management strategies for this psocid.

  9. Calibration of Relative Humidity Sensors using a Dew Point Generator

    OpenAIRE

    Brooks, Milo

    2010-01-01

    A relative humidity sensor can be calibrated using a dew point generator to continuously supply an air stream of known constant humidity and a temperature chamber to control the dew point and ambient temperature.

  10. Temperature, humidity and time. Combined effects on radiochromic film dosimeters

    DEFF Research Database (Denmark)

    Abdel-Fattah, A.A.; Miller, A.

    1996-01-01

    The effects of both relative humidity and temperature during irradiation on the dose response of FWT-60-00 and Riso B3 radiochromic film dosimeters have been investigated in the relative humidity (RH) range 11-94% and temperature range 20-60 degrees C for irradiation by Co-60 photons and 10-Me......V electrons. The results show that humidity and temperature cannot be treated as independent variables, rather there appears to be interdependence between absorbed dose, temperature, and humidity. Dose rate does not seem to play a significant role. The dependence of temperature during irradiation is +0.......25 +/- 0.1% per degrees C for the FWT-60-00 dosimeters and +0.5 +/- 0.1% per degrees C For Riso B3 dosimeters at temperatures between 20 and 50 degrees C and at relative humidities between 20 and 53%. At extreme conditions both with respect to temperature and to humidity, the dosimeters show much stronger...

  11. Effect of temperature and relative-humidity on the development of Liriomyza sativae Blanchard (Diptera: Agromyzidae) in Vigna unguiculata

    International Nuclear Information System (INIS)

    Lima, Tiago C. Costa; Geremias, Leandro D; Parra, Jose R.P.

    2009-01-01

    This research aimed to study the influence of temperature and relative-humidity (RH) on the development of Liriomyza sativae Blanchard during the egg-adult period, in cowpea, to provide essential information for future biological control projects against the pest. An inverse relation was observed between temperature increase in the range from 15 deg C to 32 deg C and development duration. Larval survival was not affected in the temperature range studied, while a high mortality of pupae was observed at 32 deg C (59.9%). RH did not affect the development time of the immature stages, although it influenced their survival. The lower developmental temperature threshold obtained for the egg-adult period was low (7.3 deg C) when compared with other species of Liriomyza, and was rather low for the larval stage (3.4 deg C ). Based on the thermal requirements for L. sativae, it was possible to estimate the occurrence of 24.5 annual generations at a melon producing region in state of Rio Grande do Norte, Brazil. For laboratory rearing aimed at biological control pest programs, the best rearing conditions are 30 deg C and 50% RH for the larval stage and 90% RH for the pupal stage. (author)

  12. [Effect of temperature and relative-humidity on the development of Liriomyza sativae Blanchard (Diptera: Agromyzidae) in Vigna unguiculata].

    Science.gov (United States)

    Lima, Tiago C Costa; Geremias, Leandro D; Parra, José R P

    2009-01-01

    This research aimed to study the influence of temperature and relative-humidity (RH) on the development of Liriomyza sativae Blanchard during the egg-adult period, in cowpea, to provide essential information for future biological control projects against the pest. An inverse relation was observed between temperature increase in the range from 15 degrees Celsius to 32 degrees Celsius and development duration. Larval survival was not affected in the temperature range studied, while a high mortality of pupae was observed at 32 degrees Celsius (59.9%). RH did not affect the development time of the immature stages, although it influenced their survival. The lower developmental temperature threshold obtained for the egg-adult period was low (7.3 degrees Celsius) when compared with other species of Liriomyza, and was rather low for the larval stage (3.4 degrees Celsius). Based on the thermal requirements for L. sativae, it was possible to estimate the occurrence of 24.5 annual generations at a melon producing region in state of Rio Grande do Norte, Brazil. For laboratory rearing aimed at biological control pest programs, the best rearing conditions are 30 degrees Celsius and 50% RH for the larval stage and 90% RH for the pupal stage.

  13. Lead Research and Development Activity for DOE's High Temperature, Low Relative Humidity Membrane Program (Topic 2)

    Energy Technology Data Exchange (ETDEWEB)

    James Fenton, PhD; Darlene Slattery, PhD; Nahid Mohajeri, PhD

    2012-09-05

    The Department of Energy’s High Temperature, Low Relative Humidity Membrane Program was begun in 2006 with the Florida Solar Energy Center (FSEC) as the lead organization. During the first three years of the program, FSEC was tasked with developing non-Nafion® proton exchange membranes with improved conductivity for fuel cells. Additionally, FSEC was responsible for developing protocols for the measurement of in-plane conductivity, providing conductivity measurements for the other funded teams, developing a method for through-plane conductivity and organizing and holding semiannual meetings of the High Temperature Membrane Working Group (HTMWG). The FSEC membrane research focused on the development of supported poly[perfluorosulfonic acid] (PFSA) – Teflon membranes and a hydrocarbon membrane, sulfonated poly(ether ether ketone). The fourth generation of the PFSA membrane (designated FSEC-4) came close to, but did not meet, the Go/No-Go milestone of 0.1 S/cm at 50% relative humidity at 120 °C. In-plane conductivity of membranes provided by the funded teams was measured and reported to the teams and DOE. Late in the third year of the program, DOE used this data and other factors to decide upon the teams to continue in the program. The teams that continued provided promising membranes to FSEC for development of membrane electrode assemblies (MEAs) that could be tested in an operating fuel cell. FSEC worked closely with each team to provide customized support. A logic flow chart was developed and discussed before MEA fabrication or any testing began. Of the five teams supported, by the end of the project, membranes from two of the teams were easily manufactured into MEAs and successfully characterized for performance. One of these teams exceeded performance targets, while the other requires further optimization. An additional team developed a membrane that shows great promise for significantly reducing membrane costs and increasing membrane lifetime.

  14. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    DEFF Research Database (Denmark)

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent

    2015-01-01

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, which are the two main environmental stress factors that promote potential-induced degradation (PID). This model was derived...

  15. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    DEFF Research Database (Denmark)

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent

    2015-01-01

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, the two main environmental stress factors that promote potential-induced degradation. This model was derived from module pow...

  16. PEM fuel cells operated at 0% relative humidity in the temperature range of 23-120 oC

    International Nuclear Information System (INIS)

    Zhang, Jianlu; Tang, Yanghua; Song, Chaojie; Cheng, Xuan; Zhang, Jiujun; Wang, Haijiang

    2007-01-01

    Operation of a proton exchange membrane (PEM) fuel cell without external humidification (or 0% relative humidity, abbreviated as 0% RH) of the reactant gases is highly desirable, because it can eliminate the gas humidification system and thus decrease the complexity of the PEM fuel cell system and increase the system volume power density (W/l) and weight power density (W/kg). In this investigation, a PEM fuel cell was operated in the temperature range of 23-120 o C, in particular in a high temperature PEM fuel cell operation range of 80-120 o C, with dry reactant gases, and the cell performance was examined according to varying operation parameters. An ac impedance method was used to compare the performance at 0% RH with that at 100% RH; the results suggested that the limited proton transfer process to the Pt catalysts, mainly in the inonomer within the membrane electrode assembly (MEA) could be responsible for the performance drop. It was demonstrated that operating a fuel cell using a commercially available membrane (Nafion (registered) 112) is feasible under certain conditions without external humidification. However, the cell performance at 0% RH decreased with increasing operation temperature and reactant gas flow rate and decreasing operation pressure

  17. Relative Humidity of 40% Inhibiting the Increase of Pulse Rate, Body Temperature, and Blood Lactic Acid During Exercise

    Directory of Open Access Journals (Sweden)

    Nengah Sandi

    2016-05-01

    Full Text Available Background: Excessive sweating of the body is a reaction to decrease the heat caused by prolonged exercise at high relative humidity (RH. This situation may cause an increase in pulse rate (PR, body temperature (BT, and blood lactic acid (BLA workout. Objective: This study aimed to prove that a RH of 40% better than a RH of 50% and 60% RH in inhibiting the increase of PR, BT, and BLA during exercise. Methods: The study was conducted on 54 samples randomly selected from the IKIP PGRI Bali students. The samples were divided into three groups, and each group was given cycling exercise with a load of 80 Watt for 2 x 30 minutes with rest between sets for five minutes. Group-1 of cycling at 40% of RH, Group-2 at a RH of 50%, and the Group-3 at a RH of 60%. Data PR, BT, and BLA taken before and during exercise. The mean difference between groups before and during exercise were analyzed by One-way Anova and a further test used Least Significant Difference (LSD. Significance used was α = 0.05. Results: The mean of PR during exercise was significantly different between groups with p = 0.045, the mean of BT during exercises was significantly different between groups with p = 0.006, and the mean of BLA during exercises was significantly different between groups with p = 0.005 (p <0.05. Also found that PR, BT, and BLA during exercise at 40% RH was lower than 50% RH and 60% RH (p <0.05. Conclusion: Thus, the RH of 40% was better than RH of 50% and 60 % in inhibiting the increase of PR, BT, and BLA during exercise. Therefore, when practiced in a closed room is expected at 40% relative humidity.

  18. Interactive effects of ambient temperature and light sources at high relative humidity on growth performance and blood physiological variables in broilers grown to 42 day of age

    Science.gov (United States)

    The interactive effects of ambient temperature and light sources at high relative humidity on growth performance and blood physiological reactions in broilers grown to 42 day of age were investigated. The experiment consisted of 2 levels (Moderate=21.1, High=26.7 °C) of temperatures and 2 light sour...

  19. Evaluation of a portable gas chromatograph with photoionization detector under variations of VOC concentration, temperature, and relative humidity.

    Science.gov (United States)

    Soo, Jhy-Charm; Lee, Eun Gyung; LeBouf, Ryan F; Kashon, Michael L; Chisholm, William; Harper, Martin

    2018-04-01

    The objective of this present study was to evaluate the performance of a portable gas chromatograph-photoionization detector (GC-PID), under various test conditions to determine if it could be used in occupational settings. A mixture of 7 volatile organic compounds (VOCs)-acetone, ethylbenzene, methyl isobutyl ketone, toluene, m-xylene, p-xylene, and o-xylene-was selected because its components are commonly present in paint manufacturing industries. A full-factorial combination of 4 concentration levels (exposure scenarios) of VOC mixtures, 3 different temperatures (25°C, 30°C, and 35°C), and 3 relative humidities (RHs; 25%, 50%, and 75%) was conducted in a full-size controlled environmental chamber. Three repetitions were conducted for each test condition allowing for estimation of accuracy. Time-weighted average exposure data were collected using solid sorbent tubes (Anasorb 747, SKC Inc.) as the reference sampling medium. Calibration curves of Frog-4000 using the dry gases showed R 2 > 0.99 for all analytes except for toluene (R 2 = 0.97). Frog-4000 estimates within a test condition showed good consistency for the performance of repeated measurement. However, there was ∼41-64% reduction in the analysis of polar acetone with 75% RH relative to collection at 25% RH. Although Frog-4000 results correlated well with solid sorbent tubes (r = 0.808-0.993, except for toluene) most of the combinations regardless of analyte did not meet the <25% accuracy criterion recommended by NIOSH. The effect of chromatographic co-elution can be seen with m, p-xylene when the results are compared to the sorbent tube sampling technique with GC-flame ionization detector. The results indicated an effect of humidity on the quantification of the polar compounds that might be attributed to the pre-concentrator placed in the selected GC-PID. Further investigation may resolve the humidity effect on sorbent trap with micro GC pre-concentrator when water vapor is present. Although this

  20. Temperature and Humidity Control in Livestock Stables

    DEFF Research Database (Denmark)

    Hansen, Michael; Andersen, Palle; Nielsen, Kirsten M.

    2010-01-01

    The paper describes temperature and humidity control of a livestock stable. It is important to have a correct air flow pattern in the livestock stable in order to achieve proper temperature and humidity control as well as to avoid draught. In the investigated livestock stable the air flow...

  1. Analysis of proton exchange membrane fuel cell polarization losses at elevated temperature 120 C and reduced relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hui; Kunz, H. Russell [Department of Chemical Engineering, University of Connecticut, Storrs, CT (United States); Fenton, James M. [Florida Solar Energy Center, University of Central Florida, Cocoa, FL (United States)

    2007-03-01

    Polarization losses of proton exchange membrane (PEM) fuel cells at 120 C and reduced relative humidity (RH) were analyzed. Reduced RH affects membrane and electrode ionic resistance, catalytic activity and oxygen transport. For a cell made of Nafion {sup registered} 112 membrane and electrodes that have 35 wt.% Nafion {sup registered} and 0.3 mg/cm{sup 2} platinum supported on carbon, membrane resistance at 20%RH was 0.407 {omega} cm{sup 2} and electrode resistance 0.203 {omega} cm{sup 2}, significantly higher than 0.092 and 0.041 {omega} cm{sup 2} at 100%RH, respectively. In the kinetically controlled region, 20%RH resulted in 96 mV more cathode activation loss than 100%RH. Compared to 100%, 20%RH also produced significant oxygen transport loss across the ionomer film in the electrode, 105 mV at 600 mA/cm{sup 2}. The significant increase in polarization losses at elevated temperature and reduced RH indicates the extreme importance of designing electrodes for high temperature PEM fuel cells since membrane development has always taken most emphasis. (author)

  2. INFLUENCE OF TEMPERATURE AND RELATIVE HUMIDITY ON GRAIN MOISTURE, GERMINATION AND VIGOUR OF THREE WHEAT CULTIVARS DURING ONE YEAR STORAGE

    Directory of Open Access Journals (Sweden)

    Ivica Strelec

    2010-12-01

    Full Text Available Changes in grain moisture, germination and vigour of three wheat cultivars packed in paper bags and stored for one year under four different conditions of environmental temperature and relative humidity (RH were investigated. During the first ninety days of storage significant reduction in grain moisture content of 4, 2.5 and 0.9 %, respectively, under 40 °C, 25 °C and 4 °C and RH of 45 % occurred. Subsequently grain moisture remained constant until the end of storage. Seeds of examined cultivars lost their germination ability and vigour only under elevated storage temperatures. Germination and vigour loss after one year of storage differed between cultivars being higher for seeds kept under 40°C, RH = 45% (35-85 % and 55-94 %, respectively, than under 25°C, RH = 45 % (10-20 % and 15-22 %, respectively. Obtained data indicate significant influence of storage conditions on moisture content, germination and vigour changes during storage of wheat seeds, as well as varietal dependence of seed viability.

  3. Study of the association of atmospheric temperature and relative humidity with bulk tank milk somatic cell count in dairy herds using Generalized additive mixed models.

    Science.gov (United States)

    Testa, Francesco; Marano, Giuseppe; Ambrogi, Federico; Boracchi, Patrizia; Casula, Antonio; Biganzoli, Elia; Moroni, Paolo

    2017-10-01

    Elevated bulk tank milk somatic cell count (BMSCC) has a negative impact on milk production, milk quality, and animal health. Seasonal increases in herd level somatic cell count (SCC) are commonly associated with elevated environmental temperature and humidity. The Temperature Humidity Index (THI) has been developed to measure general environmental stress in dairy cattle; however, additional work is needed to determine a specific effect of the heat stress index on herd-level SCC. Generalized Additive Model methods were used for a flexible exploration of the relationships between daily temperature, relative humidity, and bulk milk somatic cell count. The data consist of BMSCC and meteorological recordings collected between March 2009 and October 2011 of 10 dairy farms. The results indicate that, an average increase of 0.16% of BMSCC is expected for an increase of 1°C degree of temperature. A complex relationship was found for relative humidity. For example, increase of 0.099%, 0.037% and 0.020% are expected in correspondence to an increase of relative humidity from 50% to 51%, 80% to 81%; and 90% to 91%, respectively. Using this model, it will be possible to provide evidence-based advice to dairy farmers for the use of THI control charts created on the basis of our statistical model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Lara, Evelise G.; Oliveira, Arno Heeren de, E-mail: evelise.lara@gmail.com, E-mail: heeren@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Rocha, Zildete; Rios, Francisco Javier, E-mail: rochaz@cdtn.br, E-mail: javier@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The {sup 226}Ra, {sup 232}Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The {sup 226}Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to {sup 232}Th and U content. The soil permeability is 5.0 x 10{sup -12}, which is considered average. The {sup 226}Ra (22.2 ± 0.3 Bq.m{sup -3}); U content (73.4 ± 3.6 Bq.kg{sup -1}) and {sup 232}Th content (55.3 ± 4.0 Bq.kg{sup -1}) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg{sup -1}) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m{sup -3}) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m{sup -3}). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  5. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    International Nuclear Information System (INIS)

    Lara, Evelise G.; Oliveira, Arno Heeren de

    2015-01-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The 226 Ra, 232 Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The 226 Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to 232 Th and U content. The soil permeability is 5.0 x 10 -12 , which is considered average. The 226 Ra (22.2 ± 0.3 Bq.m -3 ); U content (73.4 ± 3.6 Bq.kg -1 ) and 232 Th content (55.3 ± 4.0 Bq.kg -1 ) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg -1 ) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m -3 ) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m -3 ). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  6. Mapping near-surface air temperature, pressure, relative humidity and wind speed over Mainland China with high spatiotemporal resolution

    Science.gov (United States)

    Li, Tao; Zheng, Xiaogu; Dai, Yongjiu; Yang, Chi; Chen, Zhuoqi; Zhang, Shupeng; Wu, Guocan; Wang, Zhonglei; Huang, Chengcheng; Shen, Yan; Liao, Rongwei

    2014-09-01

    As part of a joint effort to construct an atmospheric forcing dataset for mainland China with high spatiotemporal resolution, a new approach is proposed to construct gridded near-surface temperature, relative humidity, wind speed and surface pressure with a resolution of 1 km×1 km. The approach comprises two steps: (1) fit a partial thin-plate smoothing spline with orography and reanalysis data as explanatory variables to ground-based observations for estimating a trend surface; (2) apply a simple kriging procedure to the residual for trend surface correction. The proposed approach is applied to observations collected at approximately 700 stations over mainland China. The generated forcing fields are compared with the corresponding components of the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis dataset and the Princeton meteorological forcing dataset. The comparison shows that, both within the station network and within the resolutions of the two gridded datasets, the interpolation errors of the proposed approach are markedly smaller than the two gridded datasets.

  7. Laboratory setup for temperature and humidity measurements

    CERN Document Server

    Eimre, Kristjan

    2015-01-01

    In active particle detectors, the temperature and humidity conditions must be under constant monitoring and control, as even small deviations from the norm cause changes to detector characteristics and result in a loss of precision. To monitor the temperature and humidity, different kinds of sensors are used, which must be calibrated beforehand to ensure their accuracy. To calibrate the large number of sensors that are needed for the particle detectors and other laboratory work, a calibration system is needed. The purpose of the current work was to develop a laboratory setup for temperature and humidity sensor measurements and calibration.

  8. Relationship between relative humidity and the dew point ...

    African Journals Online (AJOL)

    This research was aimed at determining the relationship between relative humidity and the dew point temperature in Benin City, Edo State, Nigeria. The dew point temperature was approximated from the measured air temperature and relative humidity with the aid of a currently self-designed weather monitoring system.

  9. Effect of temperature and relative humidity on the development times and survival of Synopsyllus fonquerniei and Xenopsylla cheopis, the flea vectors of plague in Madagascar.

    Science.gov (United States)

    Kreppel, Katharina S; Telfer, Sandra; Rajerison, Minoarisoa; Morse, Andy; Baylis, Matthew

    2016-02-11

    Plague, a zoonosis caused by Yersinia pestis, is found in Asia, the Americas but mainly in Africa, with the island of Madagascar reporting almost one third of human cases worldwide. In the highlands of Madagascar, plague is transmitted predominantly by two flea species which coexist on the island, but differ in their distribution. The endemic flea, Synopsyllus fonquerniei, dominates flea communities on rats caught outdoors, while the cosmopolitan flea, Xenopsylla cheopis, is found mostly on rats caught in houses. Additionally S. fonquerniei seems restricted to areas above 800 m. Climatic constraints on the development of the two main vectors of plague could explain the differences in their distribution and the seasonal changes in their abundance. Here we present the first study on effects of temperature and relative humidity on the immature stages of both vector species. We examined the two species' temperature and humidity requirements under experimental conditions at five different temperatures and two relative humidities. By employing multivariate and survival analysis we established the impact of temperature and relative humidity on development times and survival for both species. Using degree-day analysis we then predicted the average developmental threshold for larvae to reach pupation and for pupae to complete development under each treatment. This analysis was undertaken separately for the two relative humidities and for the two species. Development times and time to death differed significantly, with the endemic S. fonquerniei taking on average 1.79 times longer to complete development and having a shorter time to death than X. cheopis under adverse conditions with high temperature and low humidity. Temperature had a significant effect on the development times of flea larvae and pupae. While humidity did not affect the development times of either species, it did influence the time of death of S. fonquerniei. Using degree-day analysis we estimated an

  10. Temperature, humidity and time., Combined effects on radiochromic film dosimeters

    International Nuclear Information System (INIS)

    Abdel-Fattah, A.A.; Miller, A.

    1996-01-01

    The effects of both relative humidity and temperature during irradiation on the dose response of FWT-60-00 and Riso B3 radiochromic film dosimeters have been investigated in the relative humidity (RH) range 11-94% and temperature range 20-60 o C for irradiation by 60 Co photons and 10-MeV electrons. The results show that humidity and temperature cannot be treated as independent variables, rather there appears to be interdependence between absorbed dose, temperature, and humidity. Dose rate does not seem to play a significant role. The dependence of temperature during irradiation is + 0.25 ± 0.1% per o C for the FWT-60-00 dosimeters and +0.5 ± 0.1% per o C for Riso B3 dosimeters at temperatures between 20 and 50 o C and at relative humidities between 20 and 53%. At extreme conditions both with respect to temperature and to humidity, the dosimeters show much stronger dependences. Whenever possible one should use dosimeters sealed in pouches under controlled intermediate humidity conditions (30-50%) or, if that is impractical, one should maintain conditions of calibration as close as possible to the conditions of use. Without that precaution, severe dosimetry errors may result. (author)

  11. Multiscale Model Simulations of Temperature and Relative Humidity for the License Application of the Proposed Yucca Mountain Repository

    Science.gov (United States)

    Buscheck, T.; Glascoe, L.; Sun, Y.; Gansemer, J.; Lee, K.

    2003-12-01

    For the proposed Yucca Mountain geologic repository for high-level nuclear waste, the planned method of disposal involves the emplacement of cylindrical packages containing the waste inside horizontal tunnels, called emplacement drifts, bored several hundred meters below the ground surface. The emplacement drifts reside in highly fractured, partially saturated volcanic tuff. An important phenomenological consideration for the licensing of the proposed repository at Yucca Mountain is the generation of decay heat by the emplaced waste and the consequences of this decay heat. Changes in temperature will affect the hydrologic and chemical environment at Yucca Mountain. A thermohydrologic-modeling tool is necessary to support the performance assessment of the Engineered Barrier System (EBS) of the proposed repository. This modeling tool must simultaneously account for processes occurring at a scale of a few tens of centimeters around individual waste packages, for processes occurring around the emplacement drifts themselves, and for processes occurring at the multi-kilometer scale of the mountain. Additionally, many other features must be considered including non-isothermal, multiphase-flow in fractured porous rock of variable liquid-phase saturation and thermal radiation and convection in open cavities. The Multiscale Thermohydrologic Model (MSTHM) calculates the following thermohydrologic (TH) variables: temperature, relative humidity, liquid-phase saturation, evaporation rate, air-mass fraction, gas-phase pressure, capillary pressure, and liquid- and gas-phase fluxes. The TH variables are determined as a function of position along each of the emplacement drifts in the repository and as a function of waste-package (WP) type. These variables are determined at various generic locations within the emplacement drifts, including the waste package and drip-shield surfaces and in the invert; they are also determined at various generic locations in the adjoining host rock

  12. Temperatura e umidade relativa na qualidade da tangerina "Montenegrina" armazenada Temperature and relative humidity during cold storage of 'Montenegrina' tangerine

    Directory of Open Access Journals (Sweden)

    Auri Brackmann

    2008-04-01

    Full Text Available O presente trabalho foi conduzido com o objetivo de avaliar o efeito da temperatura e da umidade relativa do ar (UR sobre a manutenção da qualidade de tangerinas durante o período de armazenamento refrigerado (AR. O delineamento experimental utilizado foi inteiramente casualizado, em esquema bifatorial, com oito repetições, contendo 15 frutos cada. Os tratamentos avaliados constituíram-se da combinação das temperaturas 2, 3 e 4°C, com UR do ar de 90 e 96%. Após oito e 12 semanas de armazenamento, mais três dias de exposição a 20°C, foram realizadas as seguintes análises: acidez total titulável (ATT, sólidos solúveis totais (SST, consistência dos frutos, incidência de podridões e suculência. De acordo com os resultados obtidos, os frutos armazenados a 3°C + UR do ar de 90% apresentaram ATT, SST e consistência mais elevada, após oito e 12 semanas de AR. A incidência de podridão foi significativamente superior nos tratamentos com alta UR do ar (96%. Injúrias provocadas pela baixa temperatura ocorreram em alguns frutos no tratamento a 2°C. Não se constatou diferença significativa na suculência entre os tratamentos em ambas as datas de avaliação. A temperatura de 3°C combinada com UR de 90% apresentou os melhores resultados na conservação de tangerinas "Montenegrina", que podem ser armazenadas por um período de até oito semanas.This research was conducted in order to evaluate the effect of temperature and relative humidity (RH on the quality of tangerines during cold storage. The experimental design was entirely randomized, in a bifatorial design with eight replications of 15 fruits. The treatments were the combination of three temperatures (2, 3 and 4oC and two RH levels (90 and 96%. Evaluations of quality were performed after 8 and 12 weeks of cold storage plus 3 days of shelf life at 20°C. The analyzed parameters were: total titratable acidity (TTA, total soluble solids (TSS, fruits consistency, rot

  13. Effect of temperature and relative humidity on the water vapour permeability and mechanical properties of cassava starch and soy protein concentrate based edible films.

    Science.gov (United States)

    Chinma, C E; Ariahu, C C; Alakali, J S

    2015-04-01

    The effect of temperature and relative humidity on the water vapour permeability (WVP) and mechanical properties of cassava starch and soy protein concentrate (SPC) based edible films containing 20 % glycerol level were studied. Tensile strength and elastic modulus of edible films increased with increase in temperature and decreased with increase in relative humidity, while elongation at break decreased. Water vapour permeability of the films increased (2.6-4.3 g.mm/m(2).day.kPa) with increase in temperature and relative humidity. The temperature dependence of water vapour permeation of cassava starch-soy protein concentrate films followed Arrhenius relationship. Activation energy (Ea) of water vapour permeation of cassava starch-soy protein concentrate edible films ranged from 1.9 to 5.3 kJ/mol (R (2)  ≥ 0.93) and increased with increase in SPC addition. The Ea values were lower for the bio-films than for polyvinylidene chloride, polypropylene and polyethylene which are an indication of low water vapour permeability of the developed biofilms compared to those synthetic films.

  14. Factors controlling upper tropospheric relative humidity

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2004-03-01

    Full Text Available Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003, clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold. Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous

  15. Factors controlling upper tropospheric relative humidity

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2004-03-01

    Full Text Available Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003, clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold.

    Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous

  16. Exploring the effects of symmetrical and asymmetrical relative humidity on the performance of H{sub 2}/air PEM fuel cell at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Mahmoud M.; Okajima, Takeoshi; Kitamura, Fusao; Ohsaka, Takeo [Department of Electronic Chemistry, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Hayase, Masahiko [Development Department, NF Co., 6-3-20 Tsunashima-higashi, Kohoku-ku, Yokohama 223-8508 (Japan)

    2007-02-10

    This article is dedicated to study the interlinked effects of symmetric relative humidity (RH), and asymmetric RH on the performance of H{sub 2}/air PEM fuel cell at different temperatures. The symmetric and asymmetric RH were achieved by setting the cathode relative humidity (RHC) and anode relative humidity (RHA) as equal and unequal values, respectively. The cell performance was evaluated by collecting polarization curves of the cell at different RH, RHC and RHA and at different cell temperatures (T{sub cell}). The polarization curves along with the measured internal cell resistance (membrane resistance) were discussed in the light of the present fuel cell theory. The results showed that symmetric relative humidity has different impacts depending on the cell temperature. While at RH of 35% the cell can show considerable performance at T{sub cell} = 70 C, it is not so at T{sub cell} = 90 C. At T{sub cell} = 70 C, the cell potential increases with RH at lower and medium current densities but decreases with RH at higher currents. This was attributed to the different controlling processes at higher and lower current densities. This trend at 70 C is completely destroyed at 90 C. Operating our PEM fuel cell at dry H{sub 2} gas conditions (RHA = 0%) is not detrimental as operating the cell at dry Air (O{sub 2}) conditions (RHC = 0%). At RHA = 0% and humidified air, water transport by back diffusion from the cathode to the anode at the employed experimental conditions can support reasonable rehydration of the membrane and catalysts. At RHA = 0, a possible minimum RHC for considerable cell operation is temperature dependent. At RHC = 0 conditions, the cell can operate only at RHA = 100% with a loss that depends on T{sub cell}. It was found that the internal cell resistance depends on RH, RHA, RHC and T{sub cell} and it is consistent with the observed cell performance. (author)

  17. circadian rhythm of calling behavior in the emei music frog (babina daunchina)is associated with habitat temperature and relative humidity

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    generally,the function of vocalizations made by male anurans are to attract females or defend resources.typically,males vocalize in choruses during one or more periods in a twenty-four-hour cycle,which varies,however,among species.nevertheless,the causal factors influencing circadian variations of calling patterns in anuran species are not clear.in this study,male chorus vocalizations were monitored in the emei music frog (babina daunchina)for 17 consecutive days during the breeding season,while its habitat air temperature and relative humidity in the course of experiments were measured as well.the results revealed that the circadian calling patterns were characterized by two periods of peak vocalization,which were observed from 0500 h to 0700 h and from 1300 h to 2000 h,while the lowest activity period was found from 2100 h to 2200 h.both calls/h and notes/h were positively correlated with air temperature and negatively with relative humidity.overall,our data indicate that the emei music frogs (b.daunchina)could regulate their vocal activities based on the changes of physical micro-environment (e.g.,temperature or humidity)to maximize reproductive success.

  18. Inorganic-based proton conductive composite membranes for elevated temperature and reduced relative humidity PEM fuel cells

    Science.gov (United States)

    Wang, Chunmei

    Proton exchange membrane (PEM) fuel cells are regarded as highly promising energy conversion systems for future transportation and stationary power generation and have been under intensive investigations for the last decade. Unfortunately, cutting edge PEM fuel cell design and components still do not allow economically commercial implementation of this technology. The main obstacles are high cost of proton conductive membranes, low-proton conductivity at low relative humidity (RH), and dehydration and degradation of polymer membranes at high temperatures. The objective of this study was to develop a systematic approach to design a high proton conductive composite membrane that can provide a conductivity of approximately 100 mS cm-1 under hot and dry conditions (120°C and 50% RH). The approach was based on fundamental and experimental studies of the proton conductivity of inorganic additives and composite membranes. We synthesized and investigated a variety of organic-inorganic Nafion-based composite membranes. In particular, we analyzed their fundamental properties, which included thermal stability, morphology, the interaction between inorganic network and Nafion clusters, and the effect of inorganic phase on the membrane conductivity. A wide range of inorganic materials was studied in advance in order to select the proton conductive inorganic additives for composite membranes. We developed a conductivity measurement method, with which the proton conductivity characteristics of solid acid materials, zirconium phosphates, sulfated zirconia (S-ZrO2), phosphosilicate gels, and Santa Barbara Amorphous silica (SBA-15) were discussed in detail. Composite membranes containing Nafion and different amounts of functionalized inorganic additives (sulfated inorganics such as S-ZrO2, SBA-15, Mobil Composition of Matter MCM-41, and S-SiO2, and phosphonated inorganic P-SiO2) were synthesized with different methods. We incorporated inorganic particles within Nafion clusters

  19. A CMOS smart temperature and humidity sensor with combined readout.

    Science.gov (United States)

    Eder, Clemens; Valente, Virgilio; Donaldson, Nick; Demosthenous, Andreas

    2014-09-16

    A fully-integrated complementary metal-oxide semiconductor (CMOS) sensor for combined temperature and humidity measurements is presented. The main purpose of the device is to monitor the hermeticity of micro-packages for implanted integrated circuits and to ensure their safe operation by monitoring the operating temperature and humidity on-chip. The smart sensor has two modes of operation, in which either the temperature or humidity is converted into a digital code representing a frequency ratio between two oscillators. This ratio is determined by the ratios of the timing capacitances and bias currents in both oscillators. The reference oscillator is biased by a current whose temperature dependency is complementary to the proportional to absolute temperature (PTAT) current. For the temperature measurement, this results in an exceptional normalized sensitivity of about 0.77%/°C at the accepted expense of reduced linearity. The humidity sensor is a capacitor, whose value varies linearly with relative humidity (RH) with a normalized sensitivity of 0.055%/% RH. For comparison, two versions of the humidity sensor with an area of either 0.2 mm2 or 1.2 mm2 were fabricated in a commercial 0.18 μm CMOS process. The on-chip readout electronics operate from a 5 V power supply and consume a current of approximately 85 µA.

  20. Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations

    International Nuclear Information System (INIS)

    Di Girolamo, Paolo; Behrendt, Andreas; Wulfmeyer, Volker

    2006-01-01

    The performance of a spaceborne temperature lidar based on the pure rotational Raman (RR) technique in the UV has been simulated. Results show that such a system deployed onboard a low-Earth-orbit satellite would provide global-scale clear-sky temperature measurements in the troposphere and lower stratosphere with precisions that satisfy World Meteorological Organization (WMO) threshold observational requirements for numerical weather prediction and climate research applications. Furthermore, nighttime temperature measurements would still be within the WMO threshold observational requirements in the presence of several cloud structures. The performance of aerosol extinction measurements from space, which can be carried out simultaneously with temperature measurements by RR lidar, is also assessed. Furthermore, we discuss simulations of relative humidity measurements from space obtained from RR temperature measurements and water-vapor data measured with the differential absorption lidar (DIAL) technique

  1. Effect of relative humidity on solar potential

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol

    2005-01-01

    In this study, the effect of relative humidity on solar potential is investigated using artificial neural-networks. Two different models are used to train the neural networks. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine-duration, and mean temperature) are used in the input layer of the network (Model 1). But, relative humidity values are added to one network in model (Model 2). In other words, the only difference between the models is relative humidity. New formulae based on meteorological and geographical data, have been developed to determine the solar energy potential in Turkey using the networks' weights for both models. Scaled conjugate gradient (SCG) and Levenberg-Marquardt (LM) learning algorithms and a logistic sigmoid transfer-function were used in the network. The best approach was obtained by the SCG algorithm with nine neurons for both models. Meteorological data for the four years, 2000-2003, for 18 cities (Artvin, Cesme, Bozkurt, Malkara, Florya, Tosya, Kizilcahamam, Yenisehir, Edremit, Gediz, Kangal, Solhan, Ergani, Selcuk, Milas, Seydisehir, Siverek and Kilis) spread over Turkey have been used as data in order to train the neural network. Solar radiation is in output layer. One month for each city was used as test data, and these months have not been used for training. The maximum mean absolute percentage errors (MAPEs) for Tosya are 2.770394% and 2.8597% for Models 1 and 2, respectively. The minimum MAPEs for Seydisehir are 1.055205% and 1.041% with R 2 (99.9862%, 99.9842%) for Models 1 and 2, respectively, in the SCG algorithm with nine neurons. The best value of R 2 for Models 1 and 2 are for Seydisehir. The minimum value of R 2 for Model 1 is 99.8855% for Tosya, and the value for Model 2 is 99.9001% for Yenisehir. Results show that the humidity has only a negligible effect upon the prediction of solar potential using artificial neural-networks

  2. Design and Development of a Relative Humidity and Room Temperature Measurement System with On Line Data Logging Feature for Monitoring the Fermentation Room of Tea Factory

    Directory of Open Access Journals (Sweden)

    Utpal SARMA

    2011-12-01

    Full Text Available The design and development of a Relative Humidity (RH and Room Temperature (RT monitoring system with on line data logging feature for monitoring fermentation room of a tea factory is presented in this paper. A capacitive RH sensor with on chip signal conditioner is taken as RH sensor and a temperature to digital converter (TDC is used for ambient temperature monitoring. An 8051 core microcontroller is the heart of the whole system which reads the digital equivalent of RH data with the help of a 12-bit Analog to Digital (A/D converter and synchronize TDC to get the ambient temperature. The online data logging is achieved with the help of RS-232C communication. Field performance is also studied by installing it in the fermentation room of a tea factory.

  3. Wireless sensor for temperature and humidity measurement

    Science.gov (United States)

    Drumea, Andrei; Svasta, Paul

    2010-11-01

    Temperature and humidity sensors have a broad range of applications, from heating and ventilation of houses to controlled drying of fruits, vegetables or meat in food industry. Modern sensors are integrated devices, usually MEMS, factory-calibrated and with digital output of measured parameters. They can have power down modes for reduced energy consumption. Such an integrated device allows the implementation of a battery powered wireless sensor when coupled with a low power microcontroller and a radio subsystem. A radio sensor can work independently or together with others in a radio network. Presented paper focuses mainly on measurement and construction aspects of sensors for temperature and humidity designed and implemented by authors; network aspects (communication between two or more sensors) are not analyzed.

  4. Effect of concentration, exposure time, temperature, and relative humidity on the toxicity of sulfur dioxide to the spores of Botrytis cinerea

    Energy Technology Data Exchange (ETDEWEB)

    Couey, H.M.; Uota, M.

    1961-12-01

    When spores of Botrytis cinerea are exposed to SO/sub 2/ gas, the subsequent reduction in spore germination is quantitatively proportional to the SO/sub 2/ concentration and the exposure time. The toxicity of SO/sub 2/ increases with increasing relative humidity. In an atmosphere of 96% RH, SO/sub 2/ is more than 20 times as effective as at 75% RH. The toxicity also increases about 1.5 times for each 10/sup 0/C rise in temperature between 0/sup 0/ and 30/sup 0/C. 8 references, 4 figures, 1 table.

  5. Mars Science Laboratory (MSL) - First Results of Relative Humidity Observations

    Science.gov (United States)

    Genzer, Maria; Harri, Ari-Matti; Kemppinen, Osku; Gómez-Elvira, Javier; Renno, Nilton; Savijärvi, Hannu; Schmidt, Walter; Polkko, Jouni; Rodríquez-Manfredi, Jose Antonio; de la Torre Juárez, Manuel; Mischna, Michael; Martín-Torres, Javier; Haukka, Harri; Paz Zorzano-Mier, Maria; Rafkin, Scott; Paton, Mark; MSL Science Team

    2013-04-01

    The Mars Science laboratory (MSL) called Curiosity made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity, and UV measurements. The REMS instrument suite is described at length in [1]. We concentrate on describing the first results from the REMS relative humidity observations and comparison of the measurements with modeling results. The REMS humidity device is provided by the Finnish Meteorological Institute. It is based on polymeric capacitive humidity sensors developed by Vaisala Inc. The humidity device makes use of one transducer electronics section placed in the vicinity of the three (3) humidity sensor heads. The humidity device is mounted on the REMS boom 2 providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The absolute accuracy of the humidity device is temperature dependent, and is of the order of 2% at the temperature range of -30 to -10 °C, and of the order of 10% at the temperature range of -80 to -60 °C. This enables the investigations of atmospheric humidity variations of both diurnal and seasonal scale. The humidity device measurements will have a lag, when a step-wise change in humidity is taking place. This lag effect is increasing with decreasing temperature, and it is of the order of a few hours at the temperature of -75 °C. To compensate for the lag effect we used an algorithm developed by Mäkinen [2]. The humidity observations were validated after tedious efforts. This was needed to compensate for the artifacts of the transducer electronics. The compensation process includes an assumption that the relative humidity at Mars in the temperature range of 0 to -30 °C is about zero. The

  6. On the distribution of relative humidity in cirrus clouds

    Directory of Open Access Journals (Sweden)

    P. Spichtinger

    2004-01-01

    Full Text Available We have analysed relative humidity statistics from measurements in cirrus clouds taken unintentionally during the Measurement of OZone by Airbus In-service airCraft project (MOZAIC. The shapes of the in-cloud humidity distributions change from nearly symmetric in relatively warm cirrus (warmer than −40°C to considerably positively skew (i.e. towards high humidities in colder clouds. These results are in agreement to findings obtained recently from the INterhemispheric differences in Cirrus properties from Anthropogenic emissions (INCA campaign (Ovarlez et al., 2002. We interprete the temperature dependence of the shapes of the humidity distributions as an effect of the length of time a cirrus cloud needs from formation to a mature equilibrium stage, where the humidity is close to saturation. The duration of this transitional period increases with decreasing temperature. Hence cold cirrus clouds are more often met in the transitional stage than warm clouds.

  7. Is Obsidian Hydration Dating Affected by Relative Humidity?

    Science.gov (United States)

    Friedman, I.; Trembour, F.W.; Smith, G.I.; Smith, F.L.

    1994-01-01

    Experiments carried out under temperatures and relative humidities that approximate ambient conditions show that the rate of hydration of obsidian is a function of the relative humidity, as well as of previously established variables of temperature and obsidian chemical composition. Measurements of the relative humidity of soil at 25 sites and at depths of between 0.01 and 2 m below ground show that in most soil environments, at depths below about 0.25 m, the relative humidity is constant at 100%. We have found that the thickness of the hydrated layer developed on obsidian outcrops exposed to the sun and to relative humidities of 30-90% is similar to that formed on other portions of the outcrop that were shielded from the sun and exposed to a relative humidity of approximately 100%. Surface samples of obsidian exposed to solar heating should hydrate more rapidly than samples buried in the ground. However, the effect of the lower mean relative humidity experiences by surface samples tends to compensate for the elevated temperature, which may explain why obsidian hydration ages of surface samples usually approximate those derived from buried samples.

  8. The influence of temperature, relative humidity and rainfall on the occurrence of the Pine Wood Nematode in Góis Council, Portugal

    Science.gov (United States)

    Costa, M. E. G.; Rodrigues, M. A.

    2012-04-01

    In this work, we propose to investigate the influence of the pine wood nematode in the species pinus pinaster in Góis council and the way it affects the economic activity in this region. In order to do that we are going to analyse the influence of temperature, relative humidity and rainfall in the development of the vector insect of the pine wood nematode. In a first stage we are going to do a homogenisation of the series of temperature and rainfall, since they present a significant lack of data. For that we have chosen a reference station that allows us to determine the correlation coefficient to eliminate the lacks that are present in the other series. After that we are going to do the correlation with the number of nematode episodes that occurred and evaluate the area affected for a single year.

  9. Whey protein concentrate storage at elevated temperature and humidity

    Science.gov (United States)

    Dairy processors are finding new export markets for whey protein concentrate (WPC), a byproduct of cheesemaking, but they need to know if full-sized bags of this powder will withstand high temperature and relative humidity (RH) levels during unrefrigerated storage under tropical conditions. To answ...

  10. Determination of equilibrium humidities using temperature and humidity controlled X-ray diffraction (RH-XRD)

    International Nuclear Information System (INIS)

    Linnow, Kirsten; Steiger, Michael

    2007-01-01

    Confined growth of crystals in porous building materials is generally considered to be a major cause of damage. We report on the use of X-ray diffraction under controlled conditions of temperature and relative humidity (RH-XRD) for the investigation of potentially deleterious phase transition reactions. An improved procedure based on rate measurements is used for the accurate and reproducible determination of equilibrium humidities of deliquescence and hydration reactions. The deliquescence humidities of NaCl (75.4 ± 0.5% RH) and Ca(NO 3 ) 2 .4H 2 O (50.8 ± 0.7% RH) at 25 deg. C determined with this improved RH-XRD technique are in excellent agreement with available literature data. Measurement of the hydration of anhydrous Ca(NO 3 ) 2 to form Ca(NO 3 ) 2 .2H 2 O revealed an equilibrium humidity of 10.2 ± 0.3%, which is also in reasonable agreement with available data. In conclusion, dynamic X-ray diffraction measurements are an appropriate method for the accurate and precise determination of equilibrium humidities with a number of interesting future applications

  11. Dynamics of Penicillium camemberti growth quantified by real-time PCR on Camembert-type cheeses under different conditions of temperature and relative humidity.

    Science.gov (United States)

    Leclercq-Perlat, Marie-Noëlle; Picque, Daniel; Martin Del Campo Barba, Sandra Teresita; Monnet, Christophe

    2013-06-01

    Penicillium camemberti plays a major role in the flavor and appearance of Camembert-type cheeses. However, little is known about its mycelium growth kinetics during ripening. We monitored the growth of P. camemberti mycelium in Camembert-type cheeses using real-time PCR in 4 ripening runs, performed at 2 temperatures (8 and 16°C) and 2 relative humidities (88 and 98%). These findings were compared with P. camemberti quantification by spore concentration. During the first phase, the mycelium grew but no spores were produced, regardless of the ripening conditions. During the second phase, which began when lactose was depleted, the concentration of spores increased, especially in the cheeses ripened at 16°C. Sporulation was associated with a large decrease in the mycelial concentration in the cheeses ripened at 16°C and 98% relative humidity. It was hypothesized that lactose is the main energy source for the growth of P. camemberti mycelium at the beginning of ripening and that its depletion would trigger stress, resulting in sporulation. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.

    1999-01-01

    and experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6......Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations...

  13. Mars Science Laboratory relative humidity observations: Initial results.

    Science.gov (United States)

    Harri, A-M; Genzer, M; Kemppinen, O; Gomez-Elvira, J; Haberle, R; Polkko, J; Savijärvi, H; Rennó, N; Rodriguez-Manfredi, J A; Schmidt, W; Richardson, M; Siili, T; Paton, M; Torre-Juarez, M De La; Mäkinen, T; Newman, C; Rafkin, S; Mischna, M; Merikallio, S; Haukka, H; Martin-Torres, J; Komu, M; Zorzano, M-P; Peinado, V; Vazquez, L; Urqui, R

    2014-09-01

    The Mars Science Laboratory (MSL) made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity (REMS-H), and UV measurements. We concentrate on describing the REMS-H measurement performance and initial observations during the first 100 MSL sols as well as constraining the REMS-H results by comparing them with earlier observations and modeling results. The REMS-H device is based on polymeric capacitive humidity sensors developed by Vaisala Inc., and it makes use of transducer electronics section placed in the vicinity of the three humidity sensor heads. The humidity device is mounted on the REMS boom providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The final relative humidity results appear to be convincing and are aligned with earlier indirect observations of the total atmospheric precipitable water content. The water mixing ratio in the atmospheric surface layer appears to vary between 30 and 75 ppm. When assuming uniform mixing, the precipitable water content of the atmosphere is ranging from a few to six precipitable micrometers. Atmospheric water mixing ratio at Gale crater varies from 30 to 140 ppmMSL relative humidity observation provides good dataHighest detected relative humidity reading during first MSL 100 sols is RH75.

  14. Measurements of VOC/SVOC emission factors from burning incenses in an environmental test chamber: influence of temperature, relative humidity, and air exchange rate.

    Science.gov (United States)

    Manoukian, A; Buiron, D; Temime-Roussel, B; Wortham, H; Quivet, E

    2016-04-01

    This study investigates the influence of three environmental indoor parameters (i.e., temperature, relative humidity, and air exchange rate) on the emission of 13 volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) during incense burning. Experiments have been carried out using an environmental test chamber. Statistical results from a classical two-level full factorial design highlight the predominant effect of ventilation on emission factors. The higher the ventilation, the higher the emission factor. Moreover, thanks to these results, an estimation of the concentration range for the compounds under study can be calculated and allows a quick look of indoor pollution induced by incense combustion. Carcinogenic substances (i.e., benzene, benzo(a)pyrene, and formaldehyde) produced from the incense combustion would be predicted in typical living indoors conditions to reach instantaneous concentration levels close to or higher than air quality exposure threshold values.

  15. Efficiency of oxygen: absorbing sachets in different relative humidities and temperatures Eficiência de absorvedores de oxigênio sob diferentes umidades relativas e temperaturas

    Directory of Open Access Journals (Sweden)

    Renato Souza Cruz

    2007-12-01

    Full Text Available The main objective of this work was to evaluate the efficiency of oxygen - absorbing sachets at relative humidity of 75%, 80% and 85% and different temperatures, 10±2 ºC and 25±2 ºC. The experiment consisted in determining the O2 absorption under these conditions. A sachet was placed in desiccators with an internal air homogenization system. Aliquots of air were removed at pre-established time intervals and analyzed for oxygen content. The results showed that oxygen absorption by the sachet increased as the relative humidity increased for both temperature. Therefore the oxygen - absorbing sachets were most active under 25±2ºC and 85% relative humidity. At ambient condition (25±2ºC/75%RH the rate of oxygen absorbed was 50 mL/day and 18,5 mL/day for 10±2ºC. It was used a totally casualized design with three replicates.O objetivo principal deste trabalho foi avaliar a eficiência de sachês absorvedores de oxigênio a 75%, 80% e 85% de umidade relativa e diferentes temperaturas, 10±2 ºC e 25±2 ºC. O experimento consiste em determinar a absorção de O2 sob essas condições. Um sachê foi colocado dentro de um dessecador contendo um sistema de homogeneização do ar interno. Alíquotas de ar são retiradas dos dessecadores em intervalos de tempos pré-estabelecido e seu conteúdo de oxigênio analisado. Os resultados mostraram que a absorção de oxigênio pelos saches aumentaram com o aumento da temperatura para ambas as temperaturas. No entanto, os sachês mostraram uma maior eficiência para 85% de umidade relativa e 25±2ºC de temperatura. Na condição ambiente (25±2ºC/75%RH, a taxa de absorção dos sachês foi de 50 mL/dia e 18,5 mL/dia para 10±2ºC. O experimento foi conduzido com delineamento experimental inteiramente casualizado, com três repetições.

  16. The effect of environmental humidity and temperature on skin barrier function and dermatitis

    DEFF Research Database (Denmark)

    Engebretsen, K A; Johansen, J D; Kezic, S

    2016-01-01

    existing dermatoses. We searched the literature for studies that evaluated the mechanisms behind this phenomenon. Commonly used meteorological terms such as absolute humidity, relative humidity and dew point are explained. Furthermore, we review the negative effect of low humidity, low temperatures...

  17. Effects of temperature, relative humidity and moisture content on seed longevity of shrubby Russian thistle (Salsola vermiculata L.)

    NARCIS (Netherlands)

    Niane, A.A.; Struik, P.C.; Bishaw, Z.

    2013-01-01

    Salsola vermiculata is a highly palatable shrub and widely used in rangeland rehabilitation programs, but has short seed longevity. To identify the most cost effective storage method for S. vermiculata, experiments were carried out to test the effects of fruit bracts (wings), temperature regimes,

  18. Influence of oxygen, partial vacuum, temperature and relative humidity combined with gamma radiation on the mosquito, culex pipiens complex L

    International Nuclear Information System (INIS)

    Abdel-rahman, A.M.; Wakid, A.M.; Hafez, M.; Hafez, M.K.

    1992-01-01

    Treatment of pupae of culex pipiens L. With gamma radiation only (60 Gy) caused 47-57.83% decrease in adult emergence. Treatment with oxygen or partial vacuum (0.1 torr) for one hour caused insignificant decrease in adult emergence. This decrease became significant when the exposure time was prolonged to two hours. Exposure of pupae to 10 degree C for one or two hours or to 31% R.H. for 3 hours caused highly significant decrease in adult emergence. When radiation was combined with any of the factors applied, a pronounced decrease in adult emergence was recorded, especially when combined with 31% R.H. for 3 hours. In all treatments, females lived longer than males. Exposure of pupae to oxygen gas or 31% R.H. Only, prolonged the life span of the produced adults, while exposure to radiation, partial vacuum or low temperature only shortened it. This effect was also observed when gamma radiation was combined with these two factors. 4 fig.,1 tab

  19. Analysis of proton exchange membrane fuel cell polarization losses at elevated temperature 120 {sup o}C and reduced relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hui [Department of Chemical Engineering, University of Connecticut, Storrs, CT (United States)]. E-mail: huixu@lanl.gov; Kunz, H. Russell [Department of Chemical Engineering, University of Connecticut, Storrs, CT (United States); Fenton, James M. [Florida Solar Energy Center, University of Central Florida, Cocoa, FL (United States)

    2007-03-01

    Polarization losses of proton exchange membrane (PEM) fuel cells at 120 {sup o}C and reduced relative humidity (RH) were analyzed. Reduced RH affects membrane and electrode ionic resistance, catalytic activity and oxygen transport. For a cell made of Nafion (registered) 112 membrane and electrodes that have 35 wt.% Nafion (registered) and 0.3 mg/cm{sup 2} platinum supported on carbon, membrane resistance at 20%RH was 0.407 {omega} cm{sup 2} and electrode resistance 0.203 {omega} cm{sup 2}, significantly higher than 0.092 and 0.041 {omega} cm{sup 2} at 100%RH, respectively. In the kinetically controlled region, 20%RH resulted in 96 mV more cathode activation loss than 100%RH. Compared to 100%, 20%RH also produced significant oxygen transport loss across the ionomer film in the electrode, 105 mV at 600 mA/cm{sup 2}. The significant increase in polarization losses at elevated temperature and reduced RH indicates the extreme importance of designing electrodes for high temperature PEM fuel cells since membrane development has always taken most emphasis.

  20. PENGARUH SUHU DAN KELEMBABAN UDARA TERHADAP PERUBAHAN MUTU TABLET EFFERVESCEN SARI BUAH SELAMA PENYIMPANAN [Influence of Temperature and Relative Humidity on the Quality of Fruit Juice Effervescent Tablet During Storage

    Directory of Open Access Journals (Sweden)

    Ansar

    2011-06-01

    Full Text Available The aim of this research was to study the influence of temperature and relative humidity on the quality of the fruit juice effervescent tablet. Sample of the passion fruit effervescent tablet was prepared from passion fruit granular, aspartame, polyetilene glycol, citric acid, and sodium bicarbonate. Variable analyzed was dissolution rate of the tablet during storage. The results indicated that temperature and humidity significantly affect dissolution rate of the fruit juice effervescent tablet. The reason for the decrease in dissolution rate was because at high storage temperature (35oC, sodium bicarbonate was not stable. The bicarbonate amount gradually decreased because it reacted with citric acid. Consequently, when the tablet was dissolved, the reaction between sodium bicarbonate and citric acid was slow. At high relative humidity (85.5% of storage, the reaction occurred prior to the dissolution due to moisture intake.

  1. Embedded DAQ System Design for Temperature and Humidity Measurement

    Directory of Open Access Journals (Sweden)

    Tarique Rafique Memon

    2016-05-01

    Full Text Available In this work, we have proposed a cost effective DAQ (Data Acquisition system design useful for local industries by using user friendly LABVIEW (Laboratory Virtual Instrumentation Electronic Workbench. The proposed system can measure and control different industrial parameters which can be presented in graphical icon format. The system design is proposed for 8-channels, whereas tested and recorded for two parameters i.e. temperature and RH (Relative Humidity. Both parameters are set as per upper and lower limits and controlled using relays. Embedded system is developed using standard microcontroller to acquire and process the analog data and plug-in for further processing using serial interface with PC using LABVIEW. The designed system is capable of monitoring and recording the corresponding linkage between temperature and humidity in industrial unit's and indicates the abnormalities within the process and control those abnormalities through relays

  2. Embedded DAQ System Design for Temperature and Humidity Measurement

    International Nuclear Information System (INIS)

    Memon, T.R.

    2013-01-01

    In this work, we have proposed a cost effective DAQ (Data Acquisition) system design useful for local industries by using user friendly LABVIEW (Laboratory Virtual Instrumentation Electronic Workbench). The proposed system can measure and control different industrial parameters which can be presented in graphical icon format. The system design is proposed for 8-channels, whereas tested and recorded for two parameters i.e. temperature and RH (Relative Humidity). Both parameters are set as per upper and lower limits and controlled using relays. Embedded system is developed using standard microcontroller to acquire and process the analog data and plug-in for further processing using serial interface with PC using LABVIEW. The designed system is capable of monitoring and recording the corresponding linkage between temperature and humidity in industrial unit's and indicates the abnormalities within the process and control those abnormalities through relays. (author)

  3. A Trial Intercomparison of Humidity Generators at Extremes of Range Using Relative Humidity Transmitters

    Science.gov (United States)

    Stevens, M.; Benyon, R.; Bell, S. A.; Vicente, T.

    2008-10-01

    In order to effectively implement the Mutual Recognition Arrangement (MRA) of the International Committee for Weights and Measures (CIPM), national metrology institutes (NMIs) are required to support their claims of calibration and measurement capability (CMC) with a quality system compliant with ISO/IEC 17025, and with suitable evidence of participation in key or supplementary comparisons. The CMC review process, both at regional and inter-regional levels, uses criteria that combine the provisions mentioned above, together with additional evidence demonstrating scientific and technical competence of the institutes. For dew-point temperatures, there are key comparisons in progress under the Consultative Committee for Thermometry (CCT) and under the European regional metrology organisation (EUROMET), together with information available on past regional supplementary comparisons. However, for relative humidity there are, to date, no such comparisons available to support CMC entries. This paper presents and discusses the results of a preliminary investigation of the use of relative humidity and temperature transmitters in order to determine their suitability for the intercomparison of standard humidity generators in support of CMC claims for the calibration of relative humidity instruments. The results of a recent bilateral comparison between 2 NMIs at the extremes of the range up to 98%rh at 70 °C, and down to 1%rh at -40 °C are reported. Specific precautions and recommendations on the use of the devices as transfer standards are presented.

  4. A Model for Sclerotinia sclerotiorum Infection and Disease Development in Lettuce, Based on the Effects of Temperature, Relative Humidity and Ascospore Density

    Science.gov (United States)

    Clarkson, John P.; Fawcett, Laura; Anthony, Steven G.; Young, Caroline

    2014-01-01

    The plant pathogen Sclerotinia sclerotiorum can cause serious losses on lettuce crops worldwide and as for most other susceptible crops, control relies on the application of fungicides, which target airborne ascospores. However, the efficacy of this approach depends on accurate timing of these sprays, which could be improved by an understanding of the environmental conditions that are conducive to infection. A mathematical model for S. sclerotiorum infection and disease development on lettuce is presented here for the first time, based on quantifying the effects of temperature, relative humidity (RH) and ascospore density in multiple controlled environment experiments. It was observed that disease can develop on lettuce plants inoculated with dry ascospores in the absence of apparent leaf wetness (required for spore germination). To explain this, the model conceptualises an infection court area containing microsites (in leaf axils and close to the stem base) where conditions are conducive to infection, the size of which is modified by ambient RH. The model indicated that minimum, maximum and optimum temperatures for ascospore germination were 0.0, 29.9 and 21.7°C respectively and that maximum rates of disease development occurred at spore densities >87 spores cm−2. Disease development was much more rapid at 80–100% RH at 20°C, compared to 50–70% RH and resulted in a greater proportion of lettuce plants infected. Disease development was also more rapid at 15–27°C compared to 5–10°C (85% RH). The model was validated by a further series of independent controlled environment experiments where both RH and temperature were varied and generally simulated the pattern of disease development well. The implications of the results in terms of Sclerotinia disease forecasting are discussed. PMID:24736409

  5. A physically based analytical spatial air temperature and humidity model

    Science.gov (United States)

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2013-01-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat...

  6. Method for determining the footprint area of air temperature and relative humidity - doi: 10.4025/actascitechnol.v35i2.11791

    Directory of Open Access Journals (Sweden)

    Elis Dener Lima Alves

    2013-04-01

    Full Text Available Despite the numerous studies in the area of urban climatology, there is still a relevant gap in this area corresponding to the demarcation of the footprint area on a variable. Various authors arbitrarily delimit this area without a prior study, which leads to significant errors in the results. In recent years, a variety of models to estimate the footprint area was presented mainly with stochastic and analytical approaches, usually expensive. Thus this article aimed to develop a methodology based on geostatistics for inference of the footprint area for temperature and relative humidity. By using geostatistics it was possible to observe that the radius of footprint had a temporal variation (between times and days and spatial variation (between points, pointing out the great importance in assessing the footprint area. However, for a better analysis of this method we suggest to model the anisotropy in future studies, because the footprint area behaves like an ellipse with different radii at different directions. And for this, it is necessary to collect data with a regular distribution within a mesh.  

  7. Effect of temperature and relative humidity on stability following simulated gastro-intestinal digestion of microcapsules of Bordo grape skin phenolic extract produced with different carrier agents.

    Science.gov (United States)

    Kuck, Luiza Siede; Wesolowski, Júlia Lerina; Noreña, Caciano Pelayo Zapata

    2017-09-01

    The stability of microparticles of Bordo grape skin aqueous extract, produced by spray-drying and freeze-drying using polydextrose (5%) and partially hydrolyzed guar gum (5%), was evaluated under accelerated conditions (75 and 90% relative humidity, at 35, 45, and 55°C for 35days) and simulated gastrointestinal digestion. The temperature had a significant effect on the reduction of phenolics content, with retentions varying from 82.5 to 93.5%. The retention of total monomer anthocyanins were in the range of 3.9-42.3%. The antioxidant activity had a final retention of 38.5-59.5%. In the simulated gastrointestinal digestion, a maximum release was observed for the phenolic compounds in the intestinal phase (90.6% for the spray-dried powder and 94.9% for the freeze-dried powder), as well as the antioxidant activity (69.4% for the spray-dried powder and 67.8% for the freeze-dried powder). However, a reduction of monomeric anthocyanins was observed in the intestinal phase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    1998-01-01

    This report deals with gas phase hydration of pure cement clinker minerals at reduced relative humidities. This is an important subject in relation to modern high performance concrete which may self-desiccate during hydration. In addition the subject has relevance to storage stability where...... prehydration may occur. In the report both theoretical considerations and experimental data are presented. It is suggested that the initiation of hydration during water vapour exposure is nucleation controlled....

  9. A method for high accuracy determination of equilibrium relative humidity

    DEFF Research Database (Denmark)

    Jensen, O.M.

    2012-01-01

    This paper treats a new method for measuring equilibrium relative humidity and equilibrium dew-point temperature of a material sample. The developed measuring device is described – a Dew-point Meter – which by means of so-called Dynamic Dew-point Analysis permits quick and very accurate...

  10. Using relative humidity to predict spotfire probability on prescribed burns

    Science.gov (United States)

    John R. Weir

    2007-01-01

    Spotfires have and always will be a problem that burn bosses and fire crews will have to contend with on prescribed burns. Weather factors (temperature, wind speed and relative humidity) are the main variables burn bosses can use to predict and monitor prescribed fire behavior. At the Oklahoma State University Research Range, prescribed burns are conducted during...

  11. Relative humidity measurements with thermocouple psychrometer and capacitance sensors

    International Nuclear Information System (INIS)

    Mao, Naihsien.

    1991-01-01

    The relative humidity is one of the important hydrological parameters affecting waste package performance. Water potential of a system is defined as the amount of work required to reversibly and isothermally move an infinitesimal quantity of water from a pool of pure water to that system at the same elevation. The thermocouple psychrometer, which acts as a wet-dry bulb instrument based on the Peltier effect, is used to measure water potential. The thermocouple psychrometer works only for relative humidity greater than 94 percent. Other sensors must be used for drier conditions. Hence, the author also uses a Vaisala Humicap, which measures the capacitance change due to relative humidity change. The operation range of the Humicap (Model HMP 135Y) is from 0 to 100 percent relative humidity and up to 160C (320F) in temperature. A psychrometer has three thermocouple junctions. Two copper-constantan junctions serve as reference temperature junctions and the constantan-chromel junction is the sensing junction. Current is passed through the thermocouple causing cooling of the sensing junction by the Peltier effect. When the temperature of the junction is below the dew point, water will condense upon the junction from the air. The Peltier current is discontinued and the thermocouple output is recorded as the temperature of the thermocouple returns to ambient. The temperature changes rapidly toward the ambient temperature until it reaches the wet bulb depression temperature. At this point, evaporation of the water from the junction produces a cooling effect upon the junction that offsets the heat absorbed from the ambient surroundings. This continues until the water is depleted and the thermocouple temperature returns to the ambient temperature (Briscoe, 1984). The datalogger starts to take data roughly at the wet bulb depression temperature

  12. Ground calibration of DREAMS-H relative humidity device

    Science.gov (United States)

    Komu, M.; Genzer, M.; Nikkanen, T.; Schmidt, W.; Haukka, H.; Kemppinen, O.; Harri, A.-M.

    2014-04-01

    DREAMS (Dust Characterization, Risk Assessment and Environmental Analyzer on the Martian Surface) instrument suite is to be launched as part of ESA ExoMars 2016/Entry, Descent and Landing Demonstration Module (EDM). DREAMS consists of an environmental package for monitoring temperature, pressure, relative humidity, winds and dust opacity, as well as atmospheric electricity of Martian atmosphere. DREAMS instruments and scientific goals are described in [1]. Here we describe ground calibration of the relative humidity device, DREAMS-H, provided to DREAMS payload by Finnish Meteorological Institute and based on proprietary technology of Vaisala, Inc. Same kind of device is part of REMS instrument package onboard MSL Curiosity Rover [2][3].

  13. Sticky gecko feet: the role of temperature and humidity.

    Directory of Open Access Journals (Sweden)

    Peter H Niewiarowski

    Full Text Available Gecko adhesion is expected to be temperature insensitive over the range of temperatures typically experienced by geckos. Previous work is limited and equivocal on whether this expectation holds. We tested the temperature dependence of adhesion in Tokay and Day geckos and found that clinging ability at 12 degrees C was nearly double the clinging ability at 32 degrees C. However, rather than confirming a simple temperature effect, our data reveal a complex interaction between temperature and humidity that can drive differences in adhesion by as much as two-fold. Our findings have important implications for inferences about the mechanisms underlying the exceptional clinging capabilities of geckos, including whether performance of free-ranging animals is based solely on a dry adhesive model. An understanding of the relative contributions of van der Waals interactions and how humidity and temperature variation affects clinging capacities will be required to test hypotheses about the evolution of gecko toepads and is relevant to the design and manufacture of synthetic mimics.

  14. Sticky gecko feet: the role of temperature and humidity.

    Science.gov (United States)

    Niewiarowski, Peter H; Lopez, Stephanie; Ge, Liehui; Hagan, Emily; Dhinojwala, Ali

    2008-05-14

    Gecko adhesion is expected to be temperature insensitive over the range of temperatures typically experienced by geckos. Previous work is limited and equivocal on whether this expectation holds. We tested the temperature dependence of adhesion in Tokay and Day geckos and found that clinging ability at 12 degrees C was nearly double the clinging ability at 32 degrees C. However, rather than confirming a simple temperature effect, our data reveal a complex interaction between temperature and humidity that can drive differences in adhesion by as much as two-fold. Our findings have important implications for inferences about the mechanisms underlying the exceptional clinging capabilities of geckos, including whether performance of free-ranging animals is based solely on a dry adhesive model. An understanding of the relative contributions of van der Waals interactions and how humidity and temperature variation affects clinging capacities will be required to test hypotheses about the evolution of gecko toepads and is relevant to the design and manufacture of synthetic mimics.

  15. A molecular-scale study on the role of lactic acid in new particle formation: Influence of relative humidity and temperature

    Science.gov (United States)

    Li, Hao; Kupiainen-Määttä, Oona; Zhang, Haijie; Zhang, Xiuhui; Ge, Maofa

    2017-10-01

    It is well established that oxidation products of volatile organic compounds (VOCs) play a major role in atmospheric new-particle formation (NPF). However, the mechanism of their effect and the corresponding influence under various atmospheric conditions remain unclear. Meanwhile, considering the difficulty of experiment in determining the water content of the cluster and performing at low temperature, we combine Density Functional Theory (DFT) and Atmospheric Clusters Dynamic Code (ACDC) model to investigate a multicomponent system involving lactic acid (LA) and atmospheric nucleation precursors (sulfuric acid (SA), dimethylamine (DMA), water (W)) under a wide range of atmospheric conditions (relative humidity (RH) from 20% to 100%, temperature (T) from 220 K to 300 K). Conformational analysis shows that LA could enhance NPF in two direction due to its two highly oxidized function groups. Then, the results from ACDC simulation present a direct evidence of its enhancement effect on NPF when the concentration of LA is larger than 1010 molecules cm-3 . The corresponding enhancement strength presents a positive dependence on its concentrations and a negative dependence on RH and T, respectively. Besides, LA·nW (n = 0-1) reflect their enhancement effect on the cluster growth paths by acting as ;bridge;, which contributes to pure SA-DMA-W-based clusters by evaporating LA contained clusters. The corresponding contribution presents a positive dependence on the concentration of LA, RH and T, respectively. We hope our study could provide theoretical clues to better understand the characteristic of NPF in polluted area, where NPF commonly involves oxidized organics, sulfuric acid, amine and water.

  16. Measuring OVOCs and VOCs by PTR-MS in an urban roadside microenvironment of Hong Kong: relative humidity and temperature dependence, and field intercomparisons

    Science.gov (United States)

    Cui, Long; Zhang, Zhou; Huang, Yu; Lee, Shun Cheng; Blake, Donald Ray; Ho, Kin Fai; Wang, Bei; Gao, Yuan; Wang, Xin Ming; Kwok Keung Louie, Peter

    2016-12-01

    Volatile organic compound (VOC) control is an important issue of air quality management in Hong Kong because ozone formation is generally VOC limited. Several oxygenated volatile organic compound (OVOC) and VOC measurement techniques - namely, (1) offline 2,4-dinitrophenylhydrazine (DNPH) cartridge sampling followed by high-performance liquid chromatography (HPLC) analysis; (2) online gas chromatography (GC) with flame ionization detection (FID); and (3) offline canister sampling followed by GC with mass spectrometer detection (MSD), FID, and electron capture detection (ECD) - were applied during this study. For the first time, the proton transfer reaction-mass spectrometry (PTR-MS) technique was also introduced to measured OVOCs and VOCs in an urban roadside area of Hong Kong. The integrated effect of ambient relative humidity (RH) and temperature (T) on formaldehyde measurements by PTR-MS was explored in this study. A Poly 2-D regression was found to be the best nonlinear surface simulation (r = 0.97) of the experimental reaction rate coefficient ratio, ambient RH, and T for formaldehyde measurement. This correction method was found to be better than correcting formaldehyde concentrations directly via the absolute humidity of inlet sample, based on a 2-year field sampling campaign at Mong Kok (MK) in Hong Kong. For OVOC species, formaldehyde, acetaldehyde, acetone, and MEK showed good agreements between PTR-MS and DNPH-HPLC with slopes of 1.00, 1.10, 0.76, and 0.88, respectively, and correlation coefficients of 0.79, 0.75, 0.60, and 0.93, respectively. Overall, fair agreements were found between PTR-MS and online GC-FID for benzene (slope = 1.23, r = 0.95), toluene (slope = 1.01, r = 0.96) and C2-benzenes (slope = 1.02, r = 0.96) after correcting benzene and C2-benzenes levels which could be affected by fragments formed from ethylbenzene. For the intercomparisons between PTR-MS and offline canister measurements by GC-MSD/FID/ECD, benzene showed good agreement

  17. Midday depression of CO/sub 2/ assimilation in leaves of Arbutus unedo L. : diurnal changes in photosynthetic capacity related to changes in temperature and humidity

    Energy Technology Data Exchange (ETDEWEB)

    Raschke, K.; Resemann, A.

    1986-01-01

    Parts of the attached leaves of the sclerophyllous shrub Arbutus unedo were subjected to simulated mediterranean days. Gas exchange was recorded in order to recognize the causes of the midday depression in CO/sub 2/ assimilation. Depressions could be induced in part of a leaf: they were local responses. The CO/sub 2/-saturation curves of photosynthesis, determined during the morning and afternoon maxima of CO/sub 2/ assimilation and during the minimum at midday, established that depressions in CO/sub 2/ assimilation were in one-half of the investigated cases totally caused by reversible reductions in the photosynthetic capacity of the leaves, and in other half almost totally caused by such reductions. There was no correlation between the water loss with the degree of reduction of the photosynthetic capacity. However, depressions occurred if an apparent threshold in the water-vapor pressure difference between leaf and air was exceeded. In another set of experiments, leaves were subjected to variations in temperature and humidity independent of the time of the day, under otherwise constant conditions. Photosynthetic capacity and stomatal conductance proved to be almost insensitive to changes in temperature (in a range extending from 20 to 37/sup 0/C) as long as the water vapor-pressure difference was held constant. If it was not, the rate of photosynthesis began to decline with increasing temperature after a threshold water-vapor pressure difference was exceeded. The position of the resulting apparent temperature optimum of photosynthesis depended on the humidity of the air. The authors suggest that the ability of A. unedo to respond to a dry atmosphere with a reversible reduction of its photosynthetic capacity (by a still unknown mechanism) is the result of a co-evolution with the development of a strong stomatal sensitivity to changes in humidity. 26 references, 14 figures.

  18. Integrated CMOS dew point sensors for relative humidity measurement

    Science.gov (United States)

    Savalli, Nicolo; Baglio, Salvatore; Castorina, Salvatore; Sacco, Vincenzo; Tringali, Cristina

    2004-07-01

    This work deals with the development of integrated relative humidity dew point sensors realized by adopting standard CMOS technology for applications in various fields. The proposed system is composed by a suspended plate that is cooled by exploiting integrated Peltier cells. The cold junctions of the cells have been spread over the plate surface to improve the homogeneity of the temperature distribution over its surface, where cooling will cause the water condensation. The temperature at which water drops occur, named dew point temperature, is a function of the air humidity. Measurement of such dew point temperature and the ambient temperature allows to know the relative humidity. The detection of water drops is achieved by adopting a capacitive sensing strategy realized by interdigited fixed combs, composed by the upper layer of the adopted process. Such a capacitive sensor, together with its conditioning circuit, drives a trigger that stops the cooling of the plate and enables the reading of the dew point temperature. Temperature measurements are achieved by means of suitably integrated thermocouples. The analytical model of the proposed system has been developed and has been used to design a prototype device and to estimate its performances. In such a prototype, the thermoelectric cooler is composed by 56 Peltier cells, made by metal 1/poly 1 junctions. The plate has a square shape with 200 μm side, and it is realized by exploiting the oxide layers. Starting from the ambient temperature a temperature variation of ΔT = 15 K can be reached in 10 ms thus allowing to measure a relative humidity greater than 40%.

  19. Synthesis and Characterization of Nafion-SiO2 Composite Membranes as an Electrolyte for Medium Temperature and Low Relative Humidity

    Directory of Open Access Journals (Sweden)

    Mahreni Mahreni

    2011-12-01

    Full Text Available The weakness of the Nafion membrane as electrolyte of PEMFC associated with physical properties that is easy to shrink at temperatures above 80°C due to dehydration. Shrinkage will decrease the conductivity and membrane damage. Nafion-SiO2 composite membranes can improve membrane stability. The role of SiO2 in the Nafion clusters is as water absorbent cause the membrane remains wet at high temperatures and low humidity and conductivity remains high. The results showed the content of 2.8 wt% of SiO2 in the Nafion membrane, the conductivity of composite membrane is higher than the pure Nafion membrane that are 0.127 S cm-1 in dry conditions and 0.778 S cm-1 in wet conditions at room temperature. Compared with the pure Nafion membrane conductivity are 0.0661 S cm-1 and 0.448 S cm-1 respectively in dry and wet conditions.

  20. Autogenous Deformation and Change of the Relative Humidity in Silica Fume-Modified Cement Paste

    DEFF Research Database (Denmark)

    Jensen, Ole mejlhede; Hansen, Per Freiesleben

    1996-01-01

    Even during sealed curing and at a constant temperature a hardening cement paste will deform and the relative humidity within its pores will lower. This autogenous deformation and autogenous relative humidity change may be so significant that the cement paste cracks if the deformation is restrained....... This article focuses on the influence of silica fume addition on autogenous deformation and autogenous relative humidity change. Continuous measurement of autogenous deformation and autogenous relative humidity change for more than 1 year and 1« years, respectively, was performed. The investigations show...... thatsilica fume addition markedly increases the autogenous shrinkage as well as the autogenous relative humidity change....

  1. Trends in continental temperature and humidity directly linked to ocean warming.

    Science.gov (United States)

    Byrne, Michael P; O'Gorman, Paul A

    2018-05-08

    In recent decades, the land surface has warmed substantially more than the ocean surface, and relative humidity has fallen over land. Amplified warming and declining relative humidity over land are also dominant features of future climate projections, with implications for climate-change impacts. An emerging body of research has shown how constraints from atmospheric dynamics and moisture budgets are important for projected future land-ocean contrasts, but these ideas have not been used to investigate temperature and humidity records over recent decades. Here we show how both the temperature and humidity changes observed over land between 1979 and 2016 are linked to warming over neighboring oceans. A simple analytical theory, based on atmospheric dynamics and moisture transport, predicts equal changes in moist static energy over land and ocean and equal fractional changes in specific humidity over land and ocean. The theory is shown to be consistent with the observed trends in land temperature and humidity given the warming over ocean. Amplified land warming is needed for the increase in moist static energy over drier land to match that over ocean, and land relative humidity decreases because land specific humidity is linked via moisture transport to the weaker warming over ocean. However, there is considerable variability about the best-fit trend in land relative humidity that requires further investigation and which may be related to factors such as changes in atmospheric circulations and land-surface properties.

  2. Relative Humidity in the Tropopause Saturation Layer

    Science.gov (United States)

    Selkirk, H. B.; Schoeberl, M. R.; Pfister, L.; Thornberry, T. D.; Bui, T. V.

    2017-12-01

    The tropical tropopause separates two very different atmospheric regimes: the stable lower stratosphere where the air is both extremely dry and nearly always so, and a transition layer in the uppermost tropical troposphere, where humidity on average increases rapidly downward but can undergo substantial temporal fluctuations. The processes that control the humidity in this layer below the tropopause include convective detrainment (which can result in either a net hydration or dehydration), slow ascent, wave motions and advection. Together these determine the humidity of the air that eventually passes through the tropopause and into the stratosphere, and we refer to this layer as the tropopause saturation layer or TSL. We know from in situ water vapor observations such as Ticosonde's 12-year balloonsonde record at Costa Rica that layers of supersaturation are frequently observed in the TSL. While their frequency is greatest during the local rainy season from June through October, supersaturation is also observed in the boreal winter dry season when deep convection is well south of Costa Rica. In other words, local convection is not a necessary condition for the presence of supersaturation. Furthermore, there are indications from airborne measurements during the recent POSIDON campaign at Guam that if anything deep convection tends to `reset' the TSL locally to a state of just-saturation. Conversely, it may be that layers of supersaturation are the result of slow ascent. To explore these ideas we take Ticosonde water vapor observations from the TSL, stratify them on the basis of relative humidity and report on the differences in the the history of upstream convective influence between supersaturated parcels and those that are not.

  3. Temperature and Humidity Effects on Hospital Morbidity in Darwin, Australia.

    Science.gov (United States)

    Goldie, James; Sherwood, Steven C; Green, Donna; Alexander, Lisa

    2015-01-01

    Many studies have explored the relationship between temperature and health in the context of a changing climate, but few have considered the effects of humidity, particularly in tropical locations, on human health and well-being. To investigate this potential relationship, this study assessed the main and interacting effects of daily temperature and humidity on hospital admission rates for selected heat-relevant diagnoses in Darwin, Australia. Univariate and bivariate Poisson generalized linear models were used to find statistically significant predictors and the admission rates within bins of predictors were compared to explore nonlinear effects. The analysis indicated that nighttime humidity was the most statistically significant predictor (P < 0.001), followed by daytime temperature and average daily humidity (P < 0.05). There was no evidence of a significant interaction between them or other predictors. The nighttime humidity effect appeared to be strongly nonlinear: Hot days appeared to have higher admission rates when they were preceded by high nighttime humidity. From this analysis, we suggest that heat-health policies in tropical regions similar to Darwin need to accommodate the effects of temperature and humidity at different times of day. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. The Design of Temperature and Humidity Chamber Monitor and Controller

    OpenAIRE

    Tibebu, Simachew

    2016-01-01

    The temperature and humidity chamber, (climate chamber) is a device located at the Technobothnia Education and Research Center that simulates different climate conditions. The simulated environment is used to test the capabilities of electrical equipment in different temperature and humidity conditions. The climate chamber, among other things houses a dedicated computer, the control PC, and a control software running in it which together are responsible for running and control-ling these simu...

  5. The midday depression of CO2 assimilation in leaves of Arbutus unedo L.: diurnal changes in photosynthetic capacity related to changes in temperature and humidity.

    Science.gov (United States)

    Raschke, K; Resemann, A

    1986-09-01

    Parts of attached leaves of the sclerophyllous shrub Arbutus unedo were subjected to simulated mediterranean days. Gas exchange was recorded in order to recognize the causes of the midday depression in CO2 assimilation. Depressions could be induced in part of a leaf: they were local responses. The CO2-saturation curves of photosynthesis, determined during the morning and afternoon maxima of CO2 assimilation and during the minimum at midday, established that depressions in CO2 assimilation were in one-half of the investigated cases totally caused by reversible reductions in the photosynthetic capacity of the leaves, and in the other half almost totally caused by such reductions. An analysis of 37 daily courses showed that morning reductions and afternoon recoveries of stomatal conductance and rate of photosynthesis occurred simultaneously and in proportion to each other, with the result that the partial pressure of CO2 in the intercellular spaces remained more or less constant. Midday depressions occurred also in detached leaves standing in water. The initiation of a midday depression was not caused by a circadian rhythm, nor was high quantum flux or high temperature a requirement. There was no correlation between the rate of water loss from the leaves, or the amount of water lost, with the degree of reduction of the photosynthetic capacity. However, depressions occurred if an apparent threshold in the water-vapor pressure difference between leaf and air was exceeded. This critical value varied between about 20 and 30 mbar, depending on the leaf investigated. The dominating role of humidity in the induction of the midday depression was further demonstrated when leaf temperature was held constant and the vapor-pressure difference was made to follow the pattern of the mediterranean day: depressions occurred. Depressions however were hardly noticeable when the water-vapor pressure difference was held constant and leaf temperature was allowed to vary. In another set of

  6. Variations of relative humidity in relation to meningitis in Africa

    Science.gov (United States)

    Seefeldt, M. W.; Hopson, T. M.

    2011-12-01

    The meningitis belt is a region covering Sub-Saharan Africa from the Sahel of West Africa eastward to western Ethiopia. The region is prone to meningitis epidemics during the dry season extending from approximately January to May, depending on the region. Relative humidity has been found to be a critical environmental factor indicating the susceptibility of a region to meningitis epidemics. This study evaluates the variation of relative humidity across West Africa over 30 dry-seasons (1979 - 2009) using the NASA-MERRA dataset. The method of self-organizing maps is employed to characterize the changes in relative humidity patterns across the region within a given dry season as well as changes over the 30 years. A general pattern of changes in relative humidity is indicated as the rainbelt retreats to the south at the onset of the dry season and then returns to the region at the end of the dry season. Within each dry season there is a unique pattern. The climatological conditions of relative humidity at the onset of the dry season provide an indication of the moisture environment for the entire dry season. Year to year variation in the relative humidity patterns are found to be gradual. Future applications involve using the results from the SOM evaluation to be used for future decisions involving prevention of meningitis epidemics.

  7. The impact of humidity on evaporative cooling in small desert birds exposed to high air temperatures.

    Science.gov (United States)

    Gerson, Alexander R; Smith, Eric Krabbe; Smit, Ben; McKechnie, Andrew E; Wolf, Blair O

    2014-01-01

    Environmental temperatures that exceed body temperature (Tb) force endothermic animals to rely solely on evaporative cooling to dissipate heat. However, evaporative heat dissipation can be drastically reduced by environmental humidity, imposing a thermoregulatory challenge. The goal of this study was to investigate the effects of humidity on the thermoregulation of desert birds and to compare the sensitivity of cutaneous and respiratory evaporation to reduced vapor density gradients. Rates of evaporative water loss, metabolic rate, and Tb were measured in birds exposed to humidities ranging from ∼2 to 30 g H2O m(-3) (0%-100% relative humidity at 30°C) at air temperatures between 44° and 56°C. In sociable weavers, a species that dissipates heat primarily through panting, rates of evaporative water loss were inhibited by as much as 36% by high humidity at 48°C, and these birds showed a high degree of hyperthermia. At lower temperatures (40°-44°C), evaporative water loss was largely unaffected by humidity in this species. In Namaqua doves, which primarily use cutaneous evaporation, increasing humidity reduced rates of evaporative water loss, but overall rates of water loss were lower than those observed in sociable weavers. Our data suggest that cutaneous evaporation is more efficient than panting, requiring less water to maintain Tb at a given temperature, but panting appears less sensitive to humidity over the air temperature range investigated here.

  8. Effect of humidity and temperature on the survival of Listeria monocytogenes on surfaces.

    Science.gov (United States)

    Redfern, J; Verran, J

    2017-04-01

    Listeria monocytogenes is a pathogenic bacterium, with human disease and infection linked to dairy products, seafood, ready-to-eat meat and raw & undercooked meats. Stainless steel is the most common food preparation surface and therefore, it is important to understand how food storage conditions such as surface materials, temperature and relative humidity can affect survival of L. monocytogenes. In this study, survival of L. monocytogenes on stainless steel was investigated at three temperatures (4, 10 and 21°C), each approx. 11, 50 and 85% humidity. Results indicate that the lower the temperature, the more cells were recovered in all three humidity environments, while medium humidity enhances survival, irrespective of temperature. Lower humidity decreases recovery at all temperatures. These data support the guidance noted above that humidity control is important, and that lower humidity environments are less likely to support retention of viable L. monocytogenes on a stainless steel surface. Understanding survival of potential food-borne pathogens is essential for the safe production and preparation of food. While it has long been 'common knowledge' that relative humidity can affect the growth and survival of micro-organisms, this study systematically describes the survival of L. monocytogenes on stainless steel under varying humidity and temperatures for the first time. The outcomes from this paper will allow those involved with food manufacture and preparation to make informed judgement on environmental conditions relating to humidity control, which is lacking in the food standards guidelines. © 2017 The Society for Applied Microbiology.

  9. High Accuracy Acoustic Relative Humidity Measurement inDuct Flow with Air

    Directory of Open Access Journals (Sweden)

    Cees van der Geld

    2010-08-01

    Full Text Available An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  10. High accuracy acoustic relative humidity measurement in duct flow with air.

    Science.gov (United States)

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  11. Influence of fine water droplets to temperature and humidity

    Science.gov (United States)

    Hafidzal, M. H. M.; Hamzah, A.; Manaf, M. Z. A.; Saadun, M. N. A.; Zakaria, M. S.; Roslizar, A.; Jumaidin, R.

    2015-05-01

    Excessively dry air can cause dry skin, dry eyes and exacerbation of medical conditions. Therefore, many researches have been done in order to increase humidity in our environment. One of the ways is by using water droplets. Nowadays, it is well known in market stand fan equipped with water mister in order to increase the humidity of certain area. In this study, the same concept is applied to the ceiling fan. This study uses a model that combines a humidifier which functions as cooler, ceiling fan and scaled down model of house. The objective of this study is to analyze the influence of ceiling fan humidifier to the temperature and humidity in a house. The mechanism of this small model uses batteries as the power source, connected to the fan and the humidifier. The small water tank's function is to store and supply water to the humidifier. The humidifier is used to cool the room by changing water phase to fine water droplets. Fine water droplets are created from mechanism of the humidifier, which is by increasing the kinetic energy of water molecule using high frequency vibration that overcome the holding force between water molecules. Thus, the molecule of water will change to state of gas or mist. The fan is used to spread out the mist of water to surrounding of the room in order to enhance the humidity. Thermocouple and humidity meter are used to measure temperature and humidity in some period of times. The result shows that humidity increases and temperature decreases with time. This application of water droplet can be applied in the vehicles and engine in order to decrease the temperature.

  12. Influence of Temperature and Humidity on Bakelite Resistivity

    CERN Document Server

    Arnaldi, R; Barret, V; Bastid, N; Blanchard, G; Chiavassa, E; Cortese, P; Crochet, Philippe; Dellacasa, G; De Marco, N; Dupieux, P; Espagnon, B; Fargeix, J; Ferretti, A; Gallio, M; Lamoine, L; Luquin, Lionel; Manso, F; Mereu, P; Métivier, V; Musso, A; Oppedisano, C; Piccotti, A; Rahmani, A; Royer, L; Roig, O; Scalas, E; Scomparin, E; Vercellin, Ermanno

    1999-01-01

    Presentation made at RPC99 and submitted to Elsevier PreprintThe use of phenolic or melaminic bakelite as RPC electrodes is widespread. The electrode resistivity is an important parameter for the RPC performance. As recent studies have pointed out, the bakelite resistivity changes with temperature and is influenced by humidity. In order to gain a quantitative understanding on the influence of temperature and humidity on RPC electrodes, we assembled an apparatus to measure resistivity in well-controlled conditions. A detailed description of the experimental set-up as well as the first resistivity measurements for various laminates in different environmental conditions are presented.

  13. A physically based analytical spatial air temperature and humidity model

    Science.gov (United States)

    Yang, Yang; Endreny, Theodore A.; Nowak, David J.

    2013-09-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat storage based on semiempirical functions and generates spatially distributed estimates based on inputs of topography, land cover, and the weather data measured at a reference site. The model assumes that for all grids under the same mesoscale climate, grid air temperature and humidity are modified by local variation in absorbed solar radiation and the partitioning of sensible and latent heat. The model uses a reference grid site for time series meteorological data and the air temperature and humidity of any other grid can be obtained by solving the heat flux network equations. PASATH was coupled with the USDA iTree-Hydro water balance model to obtain evapotranspiration terms and run from 20 to 29 August 2010 at a 360 m by 360 m grid scale and hourly time step across a 285 km2 watershed including the urban area of Syracuse, NY. PASATH predictions were tested at nine urban weather stations representing variability in urban topography and land cover. The PASATH model predictive efficiency R2 ranged from 0.81 to 0.99 for air temperature and 0.77 to 0.97 for dew point temperature. PASATH is expected to have broad applications on environmental and ecological models.

  14. Comparison of Single-Point and Continuous Sampling Methods for Estimating Residential Indoor Temperature and Humidity.

    Science.gov (United States)

    Johnston, James D; Magnusson, Brianna M; Eggett, Dennis; Collingwood, Scott C; Bernhardt, Scott A

    2015-01-01

    Residential temperature and humidity are associated with multiple health effects. Studies commonly use single-point measures to estimate indoor temperature and humidity exposures, but there is little evidence to support this sampling strategy. This study evaluated the relationship between single-point and continuous monitoring of air temperature, apparent temperature, relative humidity, and absolute humidity over four exposure intervals (5-min, 30-min, 24-hr, and 12-days) in 9 northern Utah homes, from March-June 2012. Three homes were sampled twice, for a total of 12 observation periods. Continuous data-logged sampling was conducted in homes for 2-3 wks, and simultaneous single-point measures (n = 114) were collected using handheld thermo-hygrometers. Time-centered single-point measures were moderately correlated with short-term (30-min) data logger mean air temperature (r = 0.76, β = 0.74), apparent temperature (r = 0.79, β = 0.79), relative humidity (r = 0.70, β = 0.63), and absolute humidity (r = 0.80, β = 0.80). Data logger 12-day means were also moderately correlated with single-point air temperature (r = 0.64, β = 0.43) and apparent temperature (r = 0.64, β = 0.44), but were weakly correlated with single-point relative humidity (r = 0.53, β = 0.35) and absolute humidity (r = 0.52, β = 0.39). Of the single-point RH measures, 59 (51.8%) deviated more than ±5%, 21 (18.4%) deviated more than ±10%, and 6 (5.3%) deviated more than ±15% from data logger 12-day means. Where continuous indoor monitoring is not feasible, single-point sampling strategies should include multiple measures collected at prescribed time points based on local conditions.

  15. Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae)

    International Nuclear Information System (INIS)

    Costa, Ethiene Arruda Pedrosa de Almeida; Santos, Eloina Maria de Mendonca; Correia, Juliana Cavalcanti; Albuquerque, Cleide Maria Ribeiro de

    2010-01-01

    In short space of time increase in temperature and rainfall can affect vector populations and, consequently, the diseases for them transmitted. The present study analyzed the effect of small temperature and humidity variations on the fecundity, fertility and survival of Aedes aegypti. These parameters were analyzed using individual females at temperatures ranging from 23 to 27 deg C (mean 25 deg C); 28 to 32 deg C (mean 30 deg C) and 33 to 37 deg C (mean 35 deg C) associated to 60 +- 8% and 80 +- 6% relative humidity. Females responded to an increase in temperature by reducing egg production, oviposition time and changing oviposition patterns. At 25 deg C and 80% relative humidity, females survived two-fold more and produced 40% more eggs when compared to those kept at 35 deg C and 80% relative humidity. However, in 45% of females kept at 35 deg C and 60% relative humidity oviposition was inhibited and only 15% females laid more than 100 eggs, suggesting that the intensity of the temperature effect was influenced by humidity. Gradual reductions in egg fertility at 60% relative humidity were observed with the increase in temperature, although such effect was not found in the 80% relative humidity at 25 deg C and 30 deg C. These results suggest that the reduction in population densities recorded in tropical areas during seasons when temperatures reach over 35 deg C is likely to be strongly influenced by temperature and humidity, with a negative effect on several aspects of mosquito biology. (author)

  16. Semmes-Weinstein Monofilaments: Influence of Temperature, Humidity, and Age

    NARCIS (Netherlands)

    Haloua, Max H.; Sierevelt, Inger; Theuvenet, Willem J.

    2011-01-01

    Purpose: To determine whether the buckling force of Semmes-Weinstein monofilaments is influenced by changes in temperature, humidity, and aging. Methods: We tested 16 Semmes-Weinstein monofflaments from North Coast Medical, varying in age from new to 12 years old. From each kit, we used the

  17. A Correction Method for UAV Helicopter Airborne Temperature and Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Longqing Fan

    2017-01-01

    Full Text Available This paper presents a correction method for UAV helicopter airborne temperature and humidity including an error correction scheme and a bias-calibration scheme. As rotor downwash flow brings measurement error on helicopter airborne sensors inevitably, the error correction scheme constructs a model between the rotor induced velocity and temperature and humidity by building the heat balance equation for platinum resistor temperature sensor and the pressure correction term for humidity sensor. The induced velocity of a spatial point below the rotor disc plane can be calculated by the sum of the induced velocities excited by center line vortex, rotor disk vortex, and skew cylinder vortex based on the generalized vortex theory. In order to minimize the systematic biases, the bias-calibration scheme adopts a multiple linear regression to achieve a systematically consistent result with the tethered balloon profiles. Two temperature and humidity sensors were mounted on “Z-5” UAV helicopter in the field experiment. Overall, the result of applying the calibration method shows that the temperature and relative humidity obtained by UAV helicopter closely align with tethered balloon profiles in providing measurements of the temperature profiles and humidity profiles within marine atmospheric boundary layers.

  18. Physiological and subjective responses to low relative humidity.

    Science.gov (United States)

    Sunwoo, Yujin; Chou, Chinmei; Takeshita, Junko; Murakami, Motoko; Tochihara, Yutaka

    2006-01-01

    In order to investigate the influence of low relative humidity, we measured saccharin clearance time (SCT), frequency of blinking, heart rate (HR), blood pressure, hydration state of skin, transepidermal water loss (TEWL), recovery sebum level and skin temperature as physiological responses. We asked subjects to judge thermal, dryness and comfort sensations as subjective responses using a rating scale. Sixteen non-smoking healthy male students were selected. The pre-room conditions were maintained at an air temperature (Ta) of 25 degrees C and a relative humidity (RH) of 50%. The test room conditions were adjusted to provide a Ta of 25 degrees C and RH levels of 10%, 30% and 50%.RH had no effect on the activity of the sebaceous gland and on cardiovascular reactions like blood pressure and HR. However, it was obvious that low RH affects SCT, the dryness of the ocular mucosa and the stratum corneum of the skin and causes a decrease in mean skin temperature. Under 30% RH, the eyes and skin become dry, and under 10% RH the nasal mucous membrane becomes dry as well as the eyes and skin, and the mean skin temperature decreases. These findings suggested that to avoid dryness of the eyes and skin, it is necessary to maintain an RH greater than 30%, and to avoid dryness of the nasal mucous membrane, it is necessary to maintain an RH greater than 10%. Subjects felt cold immediately after a change in RH while they had only a slight perception of dryness at the change of humidity.

  19. Modeling of humidity-related reliability in enclosures with electronics

    DEFF Research Database (Denmark)

    Hygum, Morten Arnfeldt; Popok, Vladimir

    2015-01-01

    Reliability of electronics that operate outdoor is strongly affected by environmental factors such as temperature and humidity. Fluctuations of these parameters can lead to water condensation inside enclosures. Therefore, modelling of humidity distribution in a container with air and freely exposed...

  20. The impact of relative humidity and atmospheric pressure on mortality in Guangzhou, China.

    Science.gov (United States)

    Ou, Chun Quan; Yang, Jun; Ou, Qiao Qun; Liu, Hua Zhang; Lin, Guo Zhen; Chen, Ping Yan; Qian, Jun; Guo, Yu Ming

    2014-12-01

    Although many studies have examined the effects of ambient temperatures on mortality, little evidence is on health impacts of atmospheric pressure and relative humidity. This study aimed to assess the impacts of atmospheric pressure and relative humidity on mortality in Guangzhou, China. This study included 213,737 registered deaths during 2003-2011 in Guangzhou, China. A quasi-Poisson regression with a distributed lag non-linear model was used to assess the effects of atmospheric pressure/relative humidity. We found significant effect of low atmospheric pressure/relative humidity on mortality. There was a 1.79% (95% confidence interval: 0.38%-3.22%) increase in non-accidental mortality and a 2.27% (0.07%-4.51%) increase in cardiovascular mortality comparing the 5th and 25th percentile of atmospheric pressure. A 3.97% (0.67%-7.39%) increase in cardiovascular mortality was also observed comparing the 5th and 25th percentile of relative humidity. Women were more vulnerable to decrease in atmospheric pressure and relative humidity than men. Age and education attainment were also potential effect modifiers. Furthermore, low atmospheric pressure and relative humidity increased temperature-related mortality. Both low atmospheric pressure and relative humidity are important risk factors of mortality. Our findings would be helpful to develop health risk assessment and climate policy interventions that would better protect vulnerable subgroups of the population. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  1. Prediction of concrete compressive strength considering humidity and temperature in the construction of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seung Hee; Jang, Kyung Pil [Department of Civil and Environmental Engineering, Myongji University, Yongin (Korea, Republic of); Bang, Jin-Wook [Department of Civil Engineering, Chungnam National University, Daejeon (Korea, Republic of); Lee, Jang Hwa [Structural Engineering Research Division, Korea Institute of Construction Technology (Korea, Republic of); Kim, Yun Yong, E-mail: yunkim@cnu.ac.kr [Structural Engineering Research Division, Korea Institute of Construction Technology (Korea, Republic of)

    2014-08-15

    Highlights: • Compressive strength tests for three concrete mixes were performed. • The parameters of the humidity-adjusted maturity function were determined. • Strength can be predicted considering temperature and relative humidity. - Abstract: This study proposes a method for predicting compressive strength developments in the early ages of concretes used in the construction of nuclear power plants. Three representative mixes with strengths of 6000 psi (41.4 MPa), 4500 psi (31.0 MPa), and 4000 psi (27.6 MPa) were selected and tested under various curing conditions; the temperature ranged from 10 to 40 °C, and the relative humidity from 40 to 100%. In order to consider not only the effect of the temperature but also that of humidity, an existing model, i.e. the humidity-adjusted maturity function, was adopted and the parameters used in the function were determined from the test results. A series of tests were also performed in the curing condition of a variable temperature and constant humidity, and a comparison between the measured and predicted strengths were made for the verification.

  2. Ambient temperature, humidity and hand, foot, and mouth disease: A systematic review and meta-analysis.

    Science.gov (United States)

    Cheng, Qiang; Bai, Lijun; Zhang, Yanwu; Zhang, Heng; Wang, Shusi; Xie, Mingyu; Zhao, Desheng; Su, Hong

    2018-06-01

    The relationship between ambient temperature, humidity and hand, foot, and mouth disease (HFMD) has been highlighted in East and Southeast Asia, which showed multiple different results. Therefore, our goal is to conduct a meta-analysis to further clarify this relationship and to quantify the size of these effects as well as the susceptible populations. PubMed, Web of science, and Cochrane library were searched up to November 22, 2017 for articles analyzing the relationships between ambient temperature, humidity and incidence of HFMD. We assessed sources of heterogeneity by study design (temperature measure and exposed time resolution), population vulnerability (national income level and regional climate) and evaluated pooled effect estimates for the subgroups identified in the heterogeneity analysis. We identified 11 studies with 19 estimates of the relationship between ambient temperature, humidity and incidence of HFMD. It was found that per 1°C increase in the temperature and per 1% increase in the relative humidity were both significantly associated with increased incidence of HFMD (temperature: IRR, 1.05; 95% CI, 1.02-1.08; relative humidity: IRR, 1.01; 95% CI, 1.00-1.02). Subgroup analysis showed that people living in subtropical and middle income areas had a higher risk of incidence of HFMD. Ambient temperature and humidity may increase the incidence of HFMD in Asia-Pacific regions. Further studies are needed to clarify the relationship between ambient temperature, humidity and incidence of HFMD in various settings with distinct climate, socioeconomic, and demographic features. Copyright © 2018. Published by Elsevier B.V.

  3. Low Loss Polycarbonate Polymer Optical Fiber for High Temperature FBG Humidity Sensing

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Markos, Christos

    2017-01-01

    We report the fabrication and characterization of a polycarbonate (PC) microstructured polymer optical fiber (mPOF) Bragg grating (FBG) humidity sensor that can operate beyond 100°C. The PC preform, from which the fiber was drawn, was produced using an improved casting approach to reduce...... the attenuation of the fiber. The fiber loss was found reduced by a factor of two compared to the latest reported PC mPOF [20], holding the low loss record in PC based fibers. PC mPOFBG was characterized to humidity and temperature, and a relative humidity (RH) sensitivity of 7.31± 0.13 pm/% RH in the range 10...

  4. Effect of relative humidity on growth of sodium oxide aerosols

    International Nuclear Information System (INIS)

    Sundarajan, A.R.; Mitragotri, D.S.; Mukunda Rao, S.R.

    1982-01-01

    Behavior of aerosol resulting from sodium fires in a closed vessel is investigated and the changes in the particle size distribution of the aerosol due to coagulation and humidity have been studied. The initial mass concentration is in the range of 80 -- 500 mg/m 3 and the relative humidity is varied between 50 to 98%. The initial size of the released aerosol is found to be 0.9 μm. Equilibrium diameters of particles growing in humid air have been computed for various humidity levels using water activity of sodium hydroxide. Both theoretical and experimental results have yielded growth ratios of about 3 at about 95% relative humidity. It is recommended that the computer codes dealing with aerosol coagulation behavior in reactor containment should include an appropriate humidity-growth function. (author)

  5. Evaluation of Temperature and Humidity Profiles of Unified Model and ECMWF Analyses Using GRUAN Radiosonde Observations

    Directory of Open Access Journals (Sweden)

    Young-Chan Noh

    2016-07-01

    Full Text Available Temperature and water vapor profiles from the Korea Meteorological Administration (KMA and the United Kingdom Met Office (UKMO Unified Model (UM data assimilation systems and from reanalysis fields from the European Centre for Medium-Range Weather Forecasts (ECMWF were assessed using collocated radiosonde observations from the Global Climate Observing System (GCOS Reference Upper-Air Network (GRUAN for January–December 2012. The motivation was to examine the overall performance of data assimilation outputs. The difference statistics of the collocated model outputs versus the radiosonde observations indicated a good agreement for the temperature, amongst datasets, while less agreement was found for the relative humidity. A comparison of the UM outputs from the UKMO and KMA revealed that they are similar to each other. The introduction of the new version of UM into the KMA in May 2012 resulted in an improved analysis performance, particularly for the moisture field. On the other hand, ECMWF reanalysis data showed slightly reduced performance for relative humidity compared with the UM, with a significant humid bias in the upper troposphere. ECMWF reanalysis temperature fields showed nearly the same performance as the two UM analyses. The root mean square differences (RMSDs of the relative humidity for the three models were larger for more humid conditions, suggesting that humidity forecasts are less reliable under these conditions.

  6. Systematic approach for the calibration of humidity sensitive polyimide recoated fibre Bragg gratings for measuring humidity and temperature and their application for measuring moisture absorption in polymers

    International Nuclear Information System (INIS)

    Young, T J; Lodeiro, M J; Gower, M R L; Sassi, M B

    2013-01-01

    This paper describes a systematic method for calibrating polyimide recoated fibre Bragg grating (FBG) optical fibres and the associated models used to measure temperature and relative humidity (RH) from 20 to 70 °C and 20% RH to 80% RH. The method was validated by comparing known values of temperature and RH with calculated values from two FBG sensors with different thicknesses of polyimide recoat. Results show good agreement, with a standard deviation error of 0.5 °C and 4.8% RH for temperature and humidity respectively. Drift in the measured wavelength was observed for both thicknesses of polyimide coating under the combined effect of elevated temperature and high humidity. This drift was reversed after a reduction in the humidity. Additional results are provided on the use of embedded polyimide recoated FBG optical fibres for measuring moisture ingress within polymers and composites. (paper)

  7. The Effects of the Heat and Moisture Exchanger on Humidity, Airway Temperature, and Core Body Temperature

    National Research Council Canada - National Science Library

    Delventhal, Mary

    1999-01-01

    Findings from several studies have demonstrated that the use of a heat and moisture exchanger increases airway humidity, which in turn increases mean airway temperature and prevents decreases in core body temperature...

  8. Improvement of lithium chloride dew-point hygrometer for direct reading and controlling of relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.Z.; Chu, Y.

    1986-01-01

    The lithium chloride dew-point hygrometer has many advantages over other types of hygrometers. However, it only reads and controls the dew-point temperature of air instead of the relative humidity, which is more important in industry, agriculture, food storage, and hygiene. This paper describes a new hygrometer which is based on the same principle as the lithium chloride dew-point hygrometer, but it can read and control the relative humidity directly. The instrument is quick in response and the ranges of temperature and relative humidity are quite large. Its accuracy is normally within 3% RH and its precision is within 2% RH.

  9. Design of indoor temperature and humidity detection system based on single chip microcomputer

    Science.gov (United States)

    Fu, Xiuwei; Fu, Li; Ma, Tianhui

    2018-03-01

    The indoor temperature and humidity detection system based on STC15F2K60S2 is designed in this paper. The temperature and humidity sensor DHT22 to monitor the indoor temperature and humidity are used, and the temperature and humidity data to the user's handheld device are wirelessly transmitted, when the temperature reaches or exceeds the user set the temperature alarm value, and the system sound and light alarm, to remind the user.

  10. Effect of relative humidity on migration of BP from paperboard into a food simulant

    DEFF Research Database (Denmark)

    Barnkob, Line Lundbæk; Petersen, Jens Højslev

    In the scientific literature it is obligatory to control and report the test time and temperature applied when testing migration but it is not current practice to either control or report the relative humidity (RH).......In the scientific literature it is obligatory to control and report the test time and temperature applied when testing migration but it is not current practice to either control or report the relative humidity (RH)....

  11. Mask humidity during CPAP: influence of ambient temperature, heated humidification and heated tubing.

    Science.gov (United States)

    Nilius, Georg; Domanski, Ulrike; Schroeder, Maik; Woehrle, Holger; Graml, Andrea; Franke, Karl-Josef

    2018-01-01

    Mucosal drying during continuous positive airway pressure (CPAP) therapy is problematic for many patients. This study assessed the influence of ambient relative humidity (rH) and air temperature (T) in winter and summer on mask humidity during CPAP, with and without mask leak, and with or without heated humidification ± heated tubing. CPAP (8 and 12 cmH 2 O) without humidification (no humidity [nH]), with heated humidification controlled by ambient temperature and humidity (heated humidity [HH]) and HH plus heated tubing climate line (CL), with and without leakage, were compared in 18 subjects with OSA during summer and winter. The absolute humidity (aH) and the T inside the mask during CPAP were significantly lower in winter versus summer under all applied conditions. Overall, absolute humidity differences between summer and winter were statistically significant in both HH and CL vs. nH ( p humidification or with standard HH. Clinically-relevant reductions in aH were documented during CPAP given under winter conditions. The addition of heated humidification, using a heated tube to avoid condensation is recommended to increase aH, which could be useful in CPAP users complaining of nose and throat symptoms.

  12. A Smart Gas Sensor Insensitive to Humidity and Temperature Variations

    International Nuclear Information System (INIS)

    Hajmirzaheydarali, Mohammadreza; Ghafarinia, Vahid

    2011-01-01

    The accuracy of the quantitative sensing of volatile organic compounds by chemoresistive gas sensors suffers from the fluctuations in the background atmospheric conditions. This is caused by the drift-like terms introduced in the responses by these instabilities, which should be identified and compensated. Here, a mathematical model is presented for a specific chemoresistive gas sensor, which facilitates these identification and compensation processes. The resistive gas sensor was considered as a multi-input-single-output system. Along with the steady state value of the measured sensor resistance, the ambient humidity and temperature are the inputs to the system, while the concentration level of the target gas is the output. The parameters of the model were calculated based on the experimental database. The model was simulated by the utilization of an artificial neural network. This was connected to the sensor and could deliver the correct contamination level upon receiving the measured gas response, ambient humidity and temperature.

  13. Remote monitor system of temperature and humidity based on internet

    International Nuclear Information System (INIS)

    Wu Ting; Fang Fang; Zeng Zhijie

    2006-01-01

    This paper introduces the system architecture and implement details of the remote and realtime monitor system of temperature and humidity. In this design, NiosII soft CPU core and peripheral's IP core are embedded in FPGA, while a MicroC/OS2 real-time operating system and lightweight IP protocol stack are porting thereon, to achieve a open system which hardware and software are all can be reconfigure. (authors)

  14. Exploiting the igloo principle and greenhouse effect to regulate humidity and temperature

    Directory of Open Access Journals (Sweden)

    Prabhu Karthick

    2006-01-01

    Full Text Available Background: Toxic epidermal necrolysis can be fatal and nursing care with careful monitoring of temperature and humidity can improve survival rate. We adapted the greenhouse and igloo principle using a common hood to monitor the temperature and humidity. Methods: A small heater with a regulator was placed in a mini hood and temperature was recorded inside the uncovered hood and hood covered with green cloth and aluminium foil separately. The regular hood was placed over a volunteer and the temperature was measured inside the open hood and hood covered with green cloth and aluminium foil separately. The relative humidity was also monitored using Zeal mercury dry - wet bulb hygrometer. Results: Temperature increase was most marked in the foil-covered hood followed by cloth-covered hood, both with the heater and the volunteer. Similarly, in the volunteer study, the humidity was best maintained inside the aluminium foil-covered hood. Conclusion: We recommend the use of regular hood with suitable cover to monitor the humidity and temperature of patients with toxic epidermal necrolysis.

  15. Radon measurements with charcoal canisters temperature and humidity considerations

    Directory of Open Access Journals (Sweden)

    Živanović Miloš Z.

    2016-01-01

    Full Text Available Radon testing by using open-faced charcoal canisters is a cheap and fast screening method. Many laboratories perform the sampling and measurements according to the United States Environmental Protection Agency method - EPA 520. According to this method, no corrections for temperature are applied and corrections for humidity are based on canister mass gain. The EPA method is practiced in the Vinča Institute of Nuclear Sciences with recycled canisters. In the course of measurements, it was established that the mass gain of the recycled canisters differs from mass gain measured by Environmental Protection Agency in an active atmosphere. In order to quantify and correct these discrepancies, in the laboratory, canisters were exposed for periods of 3 and 4 days between February 2015 and December 2015. Temperature and humidity were monitored continuously and mass gain measured. No significant correlation between mass gain and temperature was found. Based on Environmental Protection Agency calibration data, functional dependence of mass gain on humidity was determined, yielding Environmental Protection Agency mass gain curves. The results of mass gain measurements of recycled canisters were plotted against these curves and a discrepancy confirmed. After correcting the independent variable in the curve equation and calculating the corrected mass gain for recycled canisters, the agreement between measured mass gain and Environmental Protection Agency mass gain curves was attained. [Projekat Ministarstva nauke Republike Srbije, br. III43009: New Technologies for Monitoring and Protection of Environment from Harmful Chemical Substances and Radiation Impact

  16. Investigation of Comfort Temperature and Occupant Behavior in Japanese Houses during the Hot and Humid Season

    Directory of Open Access Journals (Sweden)

    Hom B. Rijal

    2014-08-01

    Full Text Available In order to clarify the comfort temperature and to investigate the behavioral adaptation in Japanese houses, we have conducted a thermal comfort survey and occupant behavior survey in 30 living rooms during the hot and humid season in the Kanto region of Japan. We collected 3991 votes from 52 subjects. The comfort temperature was predicted by Griffiths’ method. They are analyzed according to humidity levels and compared with the adaptive model. The logistic regression analysis was conducted in order to understand occupant behavior. The mean comfort temperature in naturally ventilated mode is 27.6 °C which is within the acceptable zone of the adaptive model. The comfort temperature is related with skin moisture sensation. The results showed that the residents adapt to the hot and humid environments by increasing the air movement using behavioral adaptation such as window opening and fan use.

  17. Effect of Firing Temperature on Humidity Sensing Properties of SnO2 Thick Film Resistor

    Directory of Open Access Journals (Sweden)

    R. Y. Borse

    2009-12-01

    Full Text Available Thick films of SnO2 were prepared using standard screen printing technique. The films were dried and fired at different temperatures. Tin-oxide is an n-type wide band gap semiconductor, whose resistance is described as a function of relative humidity. An increasing firing temperature on SnO2 film increases the sensitivity to humidity. The parameters such as sensitivity, response times and hysteresis of the SnO2 film sensors have been evaluated. The thick films were characterized by XRD, SEM and EDAX and grain size, composition of elements, relative phases are obtained.

  18. The Building America Indoor Temperature and Humidity Measurement Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Norton, Paul [Norton Energy Research & Development, Boulder, CO (United States)

    2014-02-01

    When modeling homes using simulation tools, the heating and cooling set points can have a significant impact on home energy use. Every four years, the Energy Information Administration (EIA) Residential Energy Consumption Survey (RECS) asks homeowners about their heating and cooling set points. Unfortunately, no temperature data is measured, and most of the time, the homeowner may be guessing at this number. Even one degree Fahrenheit difference in heating set point can make a 5% difference in heating energy use! So, the survey-based RECS data cannot be used as the definitive reference for the set point for the "average occupant" in simulations. The purpose of this document is to develop a protocol for collecting consistent data for heating/cooling set points and relative humidity so that an average set point can be determined for asset energy models in residential buildings. This document covers the decision making process for researchers to determine how many sensors should be placed in each home, where to put those sensors, and what kind of asset data should be taken while they are in the home. The authors attempted to design the protocols to maximize the value of this study and minimize the resources required to achieve that value.

  19. Building America Indoor Temperature and Humidity Measurement Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Engebrecht-Metzger, Cheryn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Norton, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-02-01

    When modeling homes using simulation tools, the heating and cooling set points can have a significant impact on home energy use. Every 4 years the Energy Information Administration (EIA) Residential Energy Consumption Survey (RECS) asks homeowners about their heating and cooling set points. Unfortunately, no temperature data is measured, and most of the time, the homeowner may be guessing at this number. Even one degree Fahrenheit difference in heating set point can make a 5% difference in heating energy use! So, the survey-based RECS data cannot be used as the definitive reference for the set point for the 'average occupant' in simulations. The purpose of this document is to develop a protocol for collecting consistent data for heating/cooling set points and relative humidity so that an average set point can be determined for asset energy models in residential buildings. This document covers the decision making process for researchers to determine how many sensors should be placed in each home, where to put those sensors, and what kind of asset data should be taken while they are in the home. The authors attempted to design the protocols to maximize the value of this study and minimize the resources required to achieve that value.

  20. Bacterial pleomorphism and competition in a relative humidity gradient

    NARCIS (Netherlands)

    de Goffau, Marcus C.; Yang, Xiaomei; van Dijl, Jan Maarten; Harmsen, Hermie J. M.

    The response of different bacterial species to reduced water availability was studied using a simple relative humidity gradient technique. Interestingly, distinct differences in morphology and growth patterns were observed between populations of the same species growing at different relative

  1. Temperature and humidity control in growing of greenhouse muskmelon

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Tetsuji; Nakamura, shin' ichi; Toda, Mikihiko; Ozawa, Akihito

    1986-12-25

    At the Shizuoka Agricultural Experiment Station, a control test of muskmelon was carried out wherein the controlled night temperature was automatically lowered by 2 or 4 /sup 0/C from the present temperature when the sunlight level was below the standard, and the humidity was controlled either individually or in combination with the temperature. Concerning the influence of temperature, no bad effect was observed in the constant early half of midnight temperature (18 /sup 0/C) section which was tested from the viewpoint of energy saving. For the test range of 22 - 18 /sup 0/C (winter growing) and 24 - 18 /sup 0/C (autumn growing), there was no significant difference on the fruit weight and shape;but the content of suger was found better in the complex modified temperature section of 22 - 18 /sup 0/C (winter growing) and 24 - 22 /sup 0/C (autumn growing). As for the humidity-added section, the fruit grew bigger, but the sugar content was significantly reduced. Optimal target value of control was estimated at 80 +-5 % daytime and 90 % night-time. (2 figs, 11 tabs, 10 refs

  2. Dynamic temperature and humidity environmental profiles: impact for future emergency and disaster preparedness and response.

    Science.gov (United States)

    Ferguson, William J; Louie, Richard F; Tang, Chloe S; Paw U, Kyaw Tha; Kost, Gerald J

    2014-02-01

    During disasters and complex emergencies, environmental conditions can adversely affect the performance of point-of-care (POC) testing. Knowledge of these conditions can help device developers and operators understand the significance of temperature and humidity limits necessary for use of POC devices. First responders will benefit from improved performance for on-site decision making. To create dynamic temperature and humidity profiles that can be used to assess the environmental robustness of POC devices, reagents, and other resources (eg, drugs), and thereby, to improve preparedness. Surface temperature and humidity data from the National Climatic Data Center (Asheville, North Carolina USA) was obtained, median hourly temperature and humidity were calculated, and then mathematically stretched profiles were created to include extreme highs and lows. Profiles were created for: (1) Banda Aceh, Indonesia at the time of the 2004 Tsunami; (2) New Orleans, Louisiana USA just before and after Hurricane Katrina made landfall in 2005; (3) Springfield, Massachusetts USA for an ambulance call during the month of January 2009; (4) Port-au-Prince, Haiti following the 2010 earthquake; (5) Sendai, Japan for the March 2011 earthquake and tsunami with comparison to the colder month of January 2011; (6) New York, New York USA after Hurricane Sandy made landfall in 2012; and (7) a 24-hour rescue from Hawaii USA to the Marshall Islands. Profiles were validated by randomly selecting 10 days and determining if (1) temperature and humidity points fell inside and (2) daily variations were encompassed. Mean kinetic temperatures (MKT) were also assessed for each profile. Profiles accurately modeled conditions during emergency and disaster events and enclosed 100% of maximum and minimum temperature and humidity points. Daily variations also were represented well with 88.6% (62/70) of temperature readings and 71.1% (54/70) of relative humidity readings falling within diurnal patterns. Days

  3. Precision temperature monitoring (PTM) and Humidity monitoring (HM) sensors of the CMS electromagnetic calorimeter

    CERN Multimedia

    2006-01-01

    A major aspect for the ECAL detector control is the monitoring of the system temperature and the verification that the required temperature stability of the crystal volume and the APDs, expected to be (18 ± 0.05)C, is achieved. The PTM is designed to read out thermistors, placed on both the front and back of the crystals, with a relative precision better than 0.01 C. In total there are ten sensors per supermodule. The humidity level in the electronics compartment is monitored by the HM system and consists of one humidity sensor per module.

  4. NOS CO-OPS Meteorological Data, Relative Humidity, 6-Minute

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has Relative Humidity data from NOAA NOS Center for Operational Oceanographic Products and Services (CO-OPS). WARNING: These preliminary data have not...

  5. Artificial Fruit: Postharvest Online Monitoring of Agricultural Food by Measuring Humidity and Temperature

    Science.gov (United States)

    Hübert, T.; Lang, C.

    2012-09-01

    An online monitoring of environmental and inherent product parameters is required during transportation and storage of fruit and vegetables to avoid quality degradation and spoilage. The control of transpiration losses is suggested as an indicator for fruit freshness by humidity measurements. For that purpose, an electronic sensor is surrounded by a wet porous fiber material which is in contact with the outer atmosphere. Transpiration reduces the water content of the porous material and thus also the internal water activity. The sensor system, known as "artificial fruit," measures the relative humidity and temperature inside the wet material. Humidity and temperature data are collected and transmitted on demand by a miniaturized radio communication unit. The decrease in the measured relative humidity has been calibrated against the mass loss of tomatoes under different external influencing parameters such as temperature, humidity, and air flow. Current battery life allows the sensor system, embedded in a fruit crate, to transmit data on transpiration losses via radio transmission for up to two weeks.

  6. Monitoring moisture content, temperature, and humidity in whole-tree pine chip piles

    Science.gov (United States)

    John Klepac; Dana Mitchell; Jason Thompson

    2015-01-01

    Two whole-tree chip piles were monitored for moisture content, temperature, and relative humidity from October 8th, 2010 to March 16th, 2011 at a location in south Alabama. Initial moisture content samples were collected immediately after chips were delivered to the study location on October 8th for Pile 1 and October 22nd for Pile 2. During pile construction, Lascar...

  7. Changes in volatile compounds in whey protein concentrate stored at elevated temperature and humidity

    Science.gov (United States)

    Whey protein concentrate (WPC) has been recommended for use in emergency aid programs, but it is often stored overseas without temperature and relative humidity (RH) control, which may cause it to be rejected because of yellowing, off-flavors, or clumping. Therefore, the volatile compounds present ...

  8. Experimental determination of the effect of temperature and humidity on the development of colour in Pinus radiata

    Directory of Open Access Journals (Sweden)

    M. McCurdy

    2005-06-01

    Full Text Available Experiments were undertaken to determine the effects of drying conditions (temperature and humidity on the development of kiln brown stain in radiata pine during drying. Eight schedules were tested with temperatures ranging from 50°C to 120°C and relative humidity from 14% to 67%. The variables measured were moisture content, color expressed using the CIELab color space, and nitrogen content. The experiments have shown that the kiln brown stain is influenced by drying temperature and drying time. The recommendation is therefore that low-temperature and low-humidity schedules be developed for controlling color development.

  9. Effect of temperature and relative-humidity on the development of Liriomyza sativae Blanchard (Diptera: Agromyzidae) in Vigna unguiculata; Efeito da temperatura e umidade relativa do ar no desenvolvimento de Liriomyza sativae Blanchard (Diptera: Agromyzidae) em Vigna unguiculata

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Tiago C. Costa; Geremias, Leandro D; Parra, Jose R.P. [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil)], e-mail: tcclima@esalq.usp.br, e-mail: geremias@esalq.usp.br, e-mail: jrpparra@esalq.usp.br

    2009-07-01

    This research aimed to study the influence of temperature and relative-humidity (RH) on the development of Liriomyza sativae Blanchard during the egg-adult period, in cowpea, to provide essential information for future biological control projects against the pest. An inverse relation was observed between temperature increase in the range from 15 deg C to 32 deg C and development duration. Larval survival was not affected in the temperature range studied, while a high mortality of pupae was observed at 32 deg C (59.9%). RH did not affect the development time of the immature stages, although it influenced their survival. The lower developmental temperature threshold obtained for the egg-adult period was low (7.3 deg C) when compared with other species of Liriomyza, and was rather low for the larval stage (3.4 deg C ). Based on the thermal requirements for L. sativae, it was possible to estimate the occurrence of 24.5 annual generations at a melon producing region in state of Rio Grande do Norte, Brazil. For laboratory rearing aimed at biological control pest programs, the best rearing conditions are 30 deg C and 50% RH for the larval stage and 90% RH for the pupal stage. (author)

  10. Sensor fabrication method for in situ temperature and humidity monitoring of light emitting diodes.

    Science.gov (United States)

    Lee, Chi-Yuan; Su, Ay; Liu, Yin-Chieh; Chan, Pin-Cheng; Lin, Chia-Hung

    2010-01-01

    In this work micro temperature and humidity sensors are fabricated to measure the junction temperature and humidity of light emitting diodes (LED). The junction temperature is frequently measured using thermal resistance measurement technology. The weakness of this method is that the timing of data capture is not regulated by any standard. This investigation develops a device that can stably and continually measure temperature and humidity. The device is light-weight and can monitor junction temperature and humidity in real time. Using micro-electro-mechanical systems (MEMS), this study minimizes the size of the micro temperature and humidity sensors, which are constructed on a stainless steel foil substrate (40 μm-thick SS-304). The micro temperature and humidity sensors can be fixed between the LED chip and frame. The sensitivities of the micro temperature and humidity sensors are 0.06±0.005 (Ω/°C) and 0.033 pF/%RH, respectively.

  11. Relative Humidity Sensing Properties Of Cu2O Doped ZnO Nanocomposite

    International Nuclear Information System (INIS)

    Pandey, N. K.; Tiwari, K.; Tripathi, A.; Roy, A.; Rai, A.; Awasthi, P.

    2009-01-01

    In this paper we report application of Cu 2 O doped ZnO composite prepared by solid state reaction route as humidity sensor. Pellet samples of ZnO-Cu 2 O nanocrystalline powders with 2, 5 and 10 weight% of Cu 2 O in ZnO have been prepared. Pellets have been annealed at temperatures of 200-500 deg. C and exposed to humidity. It is observed that as relative humidity increases, resistance of the pellet decreases for the humidity from 10% to 90%. Sample with 5% of Cu 2 O doped in ZnO and annealed at 500 deg. C shows best results with sensitivity of 1.50 MΩ/%RH. In this case the hysteresis is low and the reproducibility high, making it the suitable candidate for humidity sensing.

  12. Four-channel temperature and humidity microwave scanning radiometer

    Science.gov (United States)

    Xu, Pei-Yuan

    1994-06-01

    A compact four-channel microwave scanning radiometer for tropospheric remote sensing is being developed. A pair of 53.85 and 56.02 GHz and a pair of 23.87 and 31.65 GHz are adopted as temperature and humidity channels' frequencies respectively. For each pair of frequencies it has an offset reflector antenna and a Dicke-switching receiver. The pair of receivers is assembled in an enclosure, which is mounted on the rotating table of an azimuth mounting and the pair of antennas is connected with the rotating table of an azimuth mounting in the opposite side by a pair of elevation arms. Each antenna is composed of a 90 degree off-set paraboloid and a conical corrugated horn. Each antenna patterrn of four channels has nearly same HPBW, low side lobes, and low VSWR. The dual band humidity receiver is a time sharing type with 0.2K sensitivity at 1-sec integration time. The dual band temperature receiver is a band sharing type with 0.2K sensitivity at 10-sec integration time. The radiometer and observation are controlled by a single chip microcomputer to realize the unattended operation.

  13. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false NOX intake-air humidity and... NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you may correct NOX emissions for the effects of intake-air humidity or temperature. Use the NOX intake...

  14. A study of the water vapor sorption isotherms of hardened cement pastes: Possible pore structure changes at low relative humidity and the impact of temperature on isotherms

    DEFF Research Database (Denmark)

    Wu, Min; Johannesson, Björn; Geiker, Mette Rica

    2014-01-01

    cement paste samples and a model material MCM-41. The pronounced impact of temperature on desorption isotherms of cement based materials as reported in literature was not found in this investigation. The results suggest that the differences between the sorption isotherms measured at different...

  15. Daily indoor-to-outdoor temperature and humidity relationships: a sample across seasons and diverse climatic regions.

    Science.gov (United States)

    Nguyen, Jennifer L; Dockery, Douglas W

    2016-02-01

    The health consequences of heat and cold are usually evaluated based on associations with outdoor measurements collected at a nearby weather reporting station. However, people in the developed world spend little time outdoors, especially during extreme temperature events. We examined the association between indoor and outdoor temperature and humidity in a range of climates. We measured indoor temperature, apparent temperature, relative humidity, dew point, and specific humidity (a measure of moisture content in air) for one calendar year (2012) in a convenience sample of eight diverse locations ranging from the equatorial region (10 °N) to the Arctic (64 °N). We then compared the indoor conditions to outdoor values recorded at the nearest airport weather station. We found that the shape of the indoor-to-outdoor temperature and humidity relationships varied across seasons and locations. Indoor temperatures showed little variation across season and location. There was large variation in indoor relative humidity between seasons and between locations which was independent of outdoor airport measurements. On the other hand, indoor specific humidity, and to a lesser extent dew point, tracked with outdoor, airport measurements both seasonally and between climates, across a wide range of outdoor temperatures. These results suggest that, in general, outdoor measures of actual moisture content in air better capture indoor conditions than outdoor temperature and relative humidity. Therefore, in studies where water vapor is among the parameters of interest for examining weather-related health effects, outdoor measurements of actual moisture content can be more reliably used as a proxy for indoor exposure than the more commonly examined variables of temperature and relative humidity.

  16. Tack Measurements of Prepreg Tape at Variable Temperature and Humidity

    Science.gov (United States)

    Wohl, Christopher; Palmieri, Frank L.; Forghani, Alireza; Hickmott, Curtis; Bedayat, Houman; Coxon, Brian; Poursartip, Anoush; Grimsley, Brian

    2017-01-01

    NASA’s Advanced Composites Project has established the goal of achieving a 30 percent reduction in the timeline for certification of primary composite structures for application on commercial aircraft. Prepreg tack is one of several critical parameters affecting composite manufacturing by automated fiber placement (AFP). Tack plays a central role in the prevention of wrinkles and puckers that can occur during AFP, thus knowledge of tack variation arising from a myriad of manufacturing and environmental conditions is imperative for the prediction of defects during AFP. A full design of experiments was performed to experimentally characterize tack on 0.25-inch slit-tape tow IM7/8552-1 prepreg using probe tack testing. Several process parameters (contact force, contact time, retraction speed, and probe diameter) as well as environmental parameters (temperature and humidity) were varied such that the entire parameter space could be efficiently evaluated. Mid-point experimental conditions (i.e., parameters not at either extrema) were included to enable prediction of curvature in relationships and repeat measurements were performed to characterize experimental error. Collectively, these experiments enable determination of primary dependencies as well as multi-parameter relationships. Slit-tape tow samples were mounted to the bottom plate of a rheometer parallel plate fixture using a jig to prevent modification of the active area to be interrogated with the top plate, a polished stainless steel probe, during tack testing. The probe surface was slowly brought into contact with the pre-preg surface until a pre-determined normal force was achieved (2-30 newtons). After a specified dwell time (0.02-10 seconds), during which the probe substrate interaction was maintained under displacement control, the probe was retracted from the surface (0.1-50 millimeters per second). Initial results indicated a clear dependence of tack strength on several parameters, with a particularly

  17. Effects of ambient temperature, humidity, and other meteorological variables on hospital admissions for angina pectoris.

    Science.gov (United States)

    Abrignani, Maurizio G; Corrao, Salvatore; Biondo, Giovan B; Lombardo, Renzo M; Di Girolamo, Paola; Braschi, Annabella; Di Girolamo, Alberto; Novo, Salvatore

    2012-06-01

    Seasonal peaks in cardiovascular disease incidence have been widely reported, suggesting weather has a role. The aim of our study was to determine the influence of climatic variables on angina pectoris hospital admissions. We correlated the daily number of angina cases admitted to a western Sicilian hospital over a period of 12 years and local weather conditions (temperature, humidity, wind force and direction, precipitation, sunny hours and atmospheric pressure) on a day-to-day basis. A total of 2459 consecutive patients were admitted over the period 1987-1998 (1562 men, 867 women; M/F - 1:8). A seasonal variation was found with a noticeable winter peak. The results of Multivariate Poisson analysis showed a significant association between the daily number of angina hospital admission, temperature, and humidity. Significant incidence relative ratios (95% confidence intervals/measure unit) were, in males, 0.988 (0.980-0.996) (p = 0.004) for minimal temperature, 0.990 (0.984-0.996) (p = 0.001) for maximal humidity, and 1.002 (1.000-1.004) (p = 0.045) for minimal humidity. The corresponding values in females were 0.973 (0.951-0.995) (p < 0.017) for maximal temperature and 1.024 (1.001-1.048) (p = 0.037) for minimal temperature. Environmental temperature and humidity may play an important role in the pathogenesis of angina, although it seems different according to the gender. These data may help to understand the mechanisms that trigger ischemic events and to better organize hospital assistance throughout the year.

  18. Implications of drying temperature and humidity on the drying kinetics of seaweed

    Science.gov (United States)

    Ali, Majid Khan Majahar; Fudholi, Ahmad; Muthuvalu, M. S.; Sulaiman, Jumat; Yasir, Suhaimi Md

    2017-11-01

    A Low Temperature and Humidity Chamber Test tested in the Solar Energy Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia. Experiments are attempted to study the effect of drying air temperature and humidity on the drying kinetics of seaweed Kappaphycus species Striatum besides to develop a model to estimate the drying curves. Simple method using a excel software is used in the analysis of raw data obtained from the drying experiment. The values of the parameters a, n and the constant k for the models are determined using a plot of curve drying models. Three different drying models are compared with experiment data seaweed drying at 30, 40, 50 and 60°C and relative humidity 20, 30 and 40% for seaweed. The higher drying temperatures and low relative humidity effects the moisture content that will be rapidly reduced. The most suitable model is selected to best describe the drying behavior of seaweed. The values of the coefficient of determination (R2), mean bias error (MBE) and root mean square error (RMSE) are used to determine the goodness or the quality of the fit. The Page model is showed a better fit to drying seaweed. The results from this study crucial for solar dryer development on pilot scale in Malaysia.

  19. Effect of temperature and humidity on pathogenicity of native Beauveria bassiana isolate against Musca domestica L.

    Science.gov (United States)

    Mishra, Sapna; Kumar, Peeyush; Malik, Anushree

    2015-12-01

    Beauveria bassiana HQ917687 virulence to housefly larvae and adult was assessed at different relative humidity, RH (50, 75, 90, and 100 %) and temperature (15, 20, 25, 30, 35, 40, 45 °C) conditions at the fungal dose of 10(8) conidia/ml. Depending on the temperature and RH regime tested, difference in mortality rates of housefly adult and larvae were detected. During assay on adult housefly, 100 % mortality was achieved at RH, 90 and 100 % while the temperature of 30 °C showed maximum mortality at all the tested humidity conditions. Lethal time, LT50 was 2.9 days at 100 % RH. Larval mortality at different humidity conditions varied between 30 and 74 %, with maximum mortality at 100 % RH and 30 °C. Optimum temperature for B. bassiana virulence to housefly larvae was also found to be 30 °C. The interaction between temperature and RH revealed significant effect of RH at moderate temperature range (20-35 °C), while such an interaction was not observed at extreme temperatures. The results obtained in this study have useful implications in understanding the pathogen behavior under actual field conditions. This in turn may help devising suitable entomopathogen release schedules for maximum fungal infection.

  20. Single-Antenna Temperature- and Humidity-Sounding Microwave Receiver

    Science.gov (United States)

    Hoppe, Daniel J.; Pukala, David M.; Lambrigtsen, Bjorn H.; Soria, Mary M.; Owen, Heather R.; Tanner, Alan B.; Bruneau, Peter J.; Johnson, Alan K.; Kagaslahti, Pekka P.; Gaier, Todd C.

    2011-01-01

    For humidity and temperature sounding of Earth s atmosphere, a single-antenna/LNA (low-noise amplifier) is needed in place of two separate antennas for the two frequency bands. This results in significant mass and power savings for GeoSTAR that is comprised of hundreds of antennas per frequency channel. Furthermore, spatial anti-aliasing would reduce the number of horns. An anti-aliasing horn antenna will enable focusing the instrument field of view to the hurricane corridor by reducing spatial aliasing, and thus reduce the number of required horns by up to 50 percent. The single antenna/receiver assembly was designed and fabricated by a commercial vendor. The 118 183-GHz horn is based upon a profiled, smooth-wall design, and the OMT (orthomode transducer) on a quad-ridge design. At the input end, the OMT presents four ver y closely spaced ridges [0.0007 in. (18 m)]. The fabricated assembly contains a single horn antenna and low-noise broadband receiver front-end assembly for passive remote sensing of both temperature and humidity profiles in the Earth s atmosphere at 118 and 183 GHz. The wideband feed with dual polarization capability is the first broadband low noise MMIC receiver with the 118 to 183 GHz bandwidth. This technology will significantly reduce PATH/GeoSTAR mass and power while maintaining 90 percent of the measurement capabilities. This is required for a Mission-of-Opportunity on NOAA s GOES-R satellite now being developed, which in turn will make it possible to implement a Decadal-Survey mission for a fraction of the cost and much sooner than would otherwise be possible.

  1. High-temperature and high-humidity response of the Eberline Model PRS-2 and the Eberline Model NRD neutron detector

    International Nuclear Information System (INIS)

    McAtee, J.L.

    1981-03-01

    The high-humidity and high-temperature response of the Eberline Model PRS-2 portable scaler-ratemeter and the Eberline Model NRD neutron detector was studied in an environmental chamber. The BF 3 probe used in the NRD detector was found to produce count rate surges at temperatures > 50 0 C and at relative humidity > 50%. The PRS-2 scaler-ratemeter was found to be relatively insensitive to high temperatures and high humidity

  2. Effects of Temperature and Humidity on the Characterization of C-4 Explosive Threats

    Science.gov (United States)

    Miller, C. J.; Yoder, T. S.

    2012-06-01

    were examined using scanning electron microscopy and atomic force microscopy in an attempt to determine how the explosive was bound to the substrate. This is the second article in a series on the effects of temperature and relative humidity on trace explosive threats.

  3. Synergistic behaviour of nuclear radiation, temperature-humidity extremes and LOCA situation on safety and safety-related equipment in Indian nuclear power plants

    International Nuclear Information System (INIS)

    Kulkarni, R.D.; Bora, J.S.; Prakash, Ravi; Agarwal, Vivek; Sundersingh, V.P.

    2002-01-01

    Full text: The general philosophy for the instrumentation in nuclear power plants is based on the use of equipment/instruments which are capable of continuous satisfactory operation over a long period of time with minimum attention. Long term reliability under varying service conditions is of prime importance. The reliability of nuclear power plant depends on the reliability of safety and safety-related electronic instruments/ equipment used for performing the crucial tasks. The electrical and electronic systems/ circuits/ components of the equipment used in reactor safety systems (e.g. reactor protection system, emergency core cooling system, etc.) and reactor safety-related systems (e.g. reactor containment isolation and cooling system, reactor shutdown system, etc.) are responsible for safe and reliable operation of a nuclear power plant. The performance of reactor safety and safety-related equipment/instruments viz. pressure and differential pressure transmitter, amplifier for ion chamber, etc. has been evaluated under synergistic atmosphere including LOCA to find out the critical link in the circuits and subsequent modifications are suggested. The mathematical representation of the generated database has been done to estimate the life span of the instruments and accordingly the guidelines has been prepared for the operational staff to avoid the forced outage of the plant. All the details are included and mathematical models are presented to predict the future performances

  4. Decline in temperature and humidity increases the occurrence of influenza in cold climate

    Science.gov (United States)

    2014-01-01

    Background Both temperature and humidity may independently or jointly contribute to the risk of influenza infections. We examined the relations between the level and decrease of temperature, humidity and the risk of influenza A and B virus infections in a subarctic climate. Methods We conducted a case-crossover study among military conscripts (n = 892) seeking medical attention due to respiratory symptoms during their military training period and identified 66 influenza A and B cases by PCR or serology. Meteorological data such as measures of average and decline in ambient temperature and absolute humidity (AH) during the three preceding days of the onset (hazard period) and two reference periods, prior and after the onset were obtained. Results The average temperature preceding the influenza onset was −6.8 ± 5.6°C and AH 3.1 ± 1.3 g/m3. A decrease in both temperature and AH during the hazard period increased the occurrence of influenza so that a 1°C decrease in temperature and 0.5 g decrease per m3 in AH increased the estimated risk by 11% [OR 1.11 (1.03 to 1.20)] and 58% [OR 1.58 (1.28 to 1.96)], respectively. The occurrence of influenza infections was positively associated with both the average temperature [OR 1.10 per 1°C (95% confidence interval 1.02 to 1.19)] and AH [OR 1.25 per g/m3 (1.05 to 1.49)] during the hazard period prior to onset. Conclusion Our results demonstrate that a decrease rather than low temperature and humidity per se during the preceding three days increase the risk of influenza episodes in a cold climate. PMID:24678699

  5. Impact of heat stress on conception rate of dairy cows in the moderate climate considering different temperature-humidity index thresholds, periods relative to breeding, and heat load indices.

    Science.gov (United States)

    Schüller, L K; Burfeind, O; Heuwieser, W

    2014-05-01

    The objectives of this retrospective study were to investigate the relationship between temperature-humidity index (THI) and conception rate (CR) of lactating dairy cows, to estimate a threshold for this relationship, and to identify periods of exposure to heat stress relative to breeding in an area of moderate climate. In addition, we compared three different heat load indices related to CR: mean THI, maximum THI, and number of hours above the mean THI threshold. The THI threshold for the influence of heat stress on CR was 73. It was statistically chosen based on the observed relationship between the mean THI at the day of breeding and the resulting CR. Negative effects of heat stress, however, were already apparent at lower levels of THI, and 1 hour of mean THI of 73 or more decreased the CR significantly. The CR of lactating dairy cows was negatively affected by heat stress both before and after the day of breeding. The greatest negative impact of heat stress on CR was observed 21 to 1 day before breeding. When the mean THI was 73 or more in this period, CR decreased from 31% to 12%. Compared with the average maximum THI and the total number of hours above a threshold of more than or 9 hours, the mean THI was the most sensitive heat load index relating to CR. These results indicate that the CR of dairy cows raised in the moderate climates is highly affected by heat stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. High Temperature, Low Relative Humidity, Polymer-type Membranes Based on Disulfonated Poly(arylene ether) Block and Random Copolymers Optionally Incorporating Protonic Conducting Layered Water insoluble Zirconium Fillers

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, James E.; Baird, Donald G.

    2010-06-03

    hydrophobic segments. If, like in Nafion, connectivity is established between the hydrophilic domains in these multiblock copolymers, they will not need as much water, and hence will show much better protonic conductivity than the random copolymers (with similar degree of sulfonation, or IEC) at partially hydrated conditions. The goal of this research is to develop a material suitable for use as a polymer electrolyte membrane which by the year 2010 will meet all the performance requirements associated with fuel cell operation at high temperatures and low relative humidity, and will out-perform the present standard Nafion{reg_sign}. In particular, it is our objective to extend our previous research based on the use of thermally, oxidatively, and hydrolytically, ductile, high Tg ion containing polymers based on poly(arylene ethers) to the production of polymer electrolyte membranes which will meet all the performance requirements in addition to having an areal resistance of < 0.05 ohm-cm{sup 2} at a temperature of up to 120 C, relative humidity of 25 to 50%, and up to 2.5 atm total pressure. In many instances, our materials already out performs Nafion{reg_sign}, and it is expected that with some modification by either combining with conductive inorganic fillers and/or synthesizing as a block copolymer it will meet the performance criteria at high temperatures and low relative humidity. A key component in improving the performance of the membranes (and in particular proton conductivity) and meeting the cost requirements of $40/m{sup 2} is our development of a film casting process, which shows promise for generation of void free thin films of uniform thickness with controlled polymer alignment and configuration.

  7. The impact of temperature and humidity on perception and emission of indoor air pollutants

    DEFF Research Database (Denmark)

    Fang, Lei; Clausen, Geo; Fanger, Povl Ole

    1996-01-01

    Sensory response to air polluted by five building materials under different combinations of temperature and humidity in the ranges 18°C-28°C and 30%-70% was studied in the laboratory. The experiments were designed to study separately the impact of temperature and humidity on the perception of air...... polluted by materials, and on the emission of pollutants from the materials. At all tested pollution levels of the five materials, the air was perceived significantly less acceptable with increasing temperature and humidity, and the impact of temperature and humidity on perception decreased with increasing...... pollution level. A significant linear correlation between acceptability and enthalpy of the air was found to describe the influence of temperature and humidity on perception. The impact of temperature and humidity on sensory emission was less significant than the impact on perception; however, the sensory...

  8. Comparative proteomic analysis of the thermotolerant plant Portulaca oleracea acclimation to combined high temperature and humidity stress.

    Science.gov (United States)

    Yang, Yunqiang; Chen, Jinhui; Liu, Qi; Ben, Cécile; Todd, Christopher D; Shi, Jisen; Yang, Yongping; Hu, Xiangyang

    2012-07-06

    Elevated temperature and humidity are major environmental factors limiting crop yield and distribution. An understanding of the mechanisms underlying plant tolerance to high temperature and humidity may facilitate the development of cultivars adaptable to warm or humid regions. Under conditions of 90% humidity and 35 °C, the thermotolerant plant Portulaca oleracea exhibits excellent photosynthetic capability and relatively little oxidative damage. To determine the proteomic response that occurs in leaves of P. oleracea following exposure to high temperature and high humidity, a proteomic approach was performed to identify protein changes. A total of 51 differentially expressed proteins were detected and characterized functionally and structurally; these identified proteins were involved in various functional categories, mainly including material and energy metabolism, the antioxidant defense responses, protein destination and storage, and transcriptional regulation. The subset of antioxidant defense-related proteins demonstrated marked increases in activity with exposure to heat and humidity, which led to lower accumulations of H(2)O(2) and O(2)(-) in P. oleracea compared with the thermosensitive plant Arabidopsis thaliana. The quickly accumulations of proline content and heat-shock proteins, and depleting abscisic acid (ABA) via increasing ABA-8'-hydroxylase were also found in P. oleracea under stress conditions, that resulted into greater stomata conductance and respiration rates. On the basis of these findings, we propose that P. oleracea employs multiple strategies to enhance its adaptation to high-temperature and high-humidity conditions.

  9. Modelo de simulação da temperatura e umidade relativa do ar no interior de estufa plástica Simulation model of air temperature and relative humidity in to plastic greenhouses

    Directory of Open Access Journals (Sweden)

    Edilson Costa

    2004-04-01

    Full Text Available A simulação dos parâmetros climáticos de temperatura e umidade relativa do ar no interior de uma estufa plástica, por meio do balanço de energia, pode propiciar ao produtor uma ferramenta de auxílio na tomada de decisão. Nesse propósito, realizou-se uma simulação das condições no interior de estufa plástica, em função de parâmetros externos e internos a ela. A simulação revelou uma temperatura no interior da estufa plástica de 23,6 ºC, e os sensores revelaram um valor médio de 24,1 ºC para o período de cultivo da alface. Para a umidade relativa no interior da estufa plástica, o valor simulado foi de 61,6%, e o obtido com o auxílio de sensores foi de 66,0%. Os valores simulados apresentaram-se próximos dos valores obtidos pelos sensores, mostrando que o modelo pode ser usado para a estimativa da temperatura e umidade relativa do ar no interior da estufa plástica.Simulation of climatic parameters inside air temperature and relative humidity of plastic greenhouse, trough energy balance, allows to growers a good technical tool on the decision making to improve the performance of inside environments. A simulation of internal conditions based on external and internal parameters was evaluated. The results showed the inside mean temperature of 23.6 ºC in comparison with the experimental value of 24.1 ºC, for the cultivated period. The simulated relative humidity presented a value of 61.6% against 66.0% obtained by the sensors. The simulated values were closed to the values obtained by the sensors, which means that the model can be used to determine the internal conditions of plastic greenhouses.

  10. Hydration behaviour of synthetic saponite at variable relative humidity

    Indian Academy of Sciences (India)

    Hydration behaviour of synthetic saponite was examined by X-ray powder diffraction simulation at various relative humidities (RH). The basal spacing of the Ca-saponite increased stepwise with increase in RH. The (00) reflections observed reflect single or dual hydration states of smectite. Quasi-rational, intermediate, or ...

  11. Effects of relative humidity on banana fruit drop

    NARCIS (Netherlands)

    Saengpook, C.; Ketsa, S.; Doorn, van W.G.

    2007-01-01

    Commercial ripening of banana fruit occurs at high relative humidity (RH), which prevents browning of damaged skin areas. In experiments with ripening at high RH (94 ± 1%) the individual fruit (fingers) of `Sucrier¿ (Musa acuminata, AA Group) banana exhibited a high rate of drop. The falling off of

  12. Effect of varying relative humidity on the rancidity of cashew ...

    African Journals Online (AJOL)

    Post harvest deterioration by microbes due to improper storage condition is considered to be the major cause of spoilage and rancidity of most oil-bearing seeds like cashew nuts through lipolytic action of lipase enzyme. Roasted cashew nuts were subjected to four different storage conditions with different relative humidity ...

  13. Pressure and Relative Humidity Measurement Devices for Mars 2020 Rover

    Science.gov (United States)

    Hieta, M.; Genzer, M.; Nikkanen, T.; Haukka, H.; Harri, A.-M.; Polkko, J.; Rodriguez-Manfredi, J. A.

    2017-09-01

    One of the scientific payloads onboard the NASA Mars 2020 rover mission is Mars Environmental Dynamic Analyzer (MEDA): a set of environmental sensors for Mars surface weather measurements. Finnish Meteorological Institute (FMI) provides a pressure measurement device (MEDA PS) and a relative humidity measurement device (MEDA HS) for MEDA.

  14. Influence of relative humidity on tensile and compressive creep of ...

    African Journals Online (AJOL)

    This paper presents an experimental study on the influence of ambient relative humidity on tensile creep of plain concrete amended with Ground Granulated Blast - furnace Slag and compares it with its influence on compressive creep. Tensile and compressive creep tests were carried out on concrete specimens of 34.49 ...

  15. Results of the Phoenix Relative Humidity Sensor Recalibration

    Science.gov (United States)

    Martinez, G.; Fischer, E.; Renno, N. O.

    2017-12-01

    We show results of the recalibration of the Thermal and Electrical Conductivity Probe (TECP) relative humidity (RH) sensor of the Phoenix Mars lander [Zent et al., 2009]. Due to uncertainties in its pre-flight calibration, which partially overlapped the environmental conditions found at the Phoenix landing site [Tamppari et al., 2010], only the raw, unprocessed output of the TECP RH sensor is available in NASA's Planetary Data System (PDS). The sensor's calibration was revised in 2016 to correct for inaccuracies at the lowest temperatures [Zent et al., 2016], but the new processed RH values were not posted in the PDS. We have been using a spare engineering unit of the TECP to recalibrate the sensor in the full range of Phoenix landing site conditions in the Michigan Mars Environmental Chamber (MMEC) [Fischer et al., 2016]. We compare raw output data of the engineering unit in the MMEC with that of the flight unit from the preflight calibration. We observed that the engineering unit's RH sensor output was shifted to higher values compared to the flight unit's output at the same conditions of temperature and humidity. Based on this shift, we use a translation function that fits the in-situ measurements of the flight unit into the engineering unit output space. To improve the accuracy of this function, we use additional observations corresponding to saturated conditions when near-surface fog was observed [Whiteway et al., 2009], as well as observations around noon when the RH is expected to be below 5%. The entire range of conditions observed on the Martian surface is covered in our recalibration. The raw output of the sensor is used to obtain a new calibration function. This allows us to obtain high-level RH data at Martian polar conditions. The recalibrated data will be posted in the PDS. REFERENCES: Fischer, E., et al. (2016), Astrobiology, 16, 12, doi: 10.1089/ast.2016.1525. Tamppari, L. K., et al. (2010), J. Geophys. Res., 115, E00E17, doi:10.1029/2009JE003415

  16. Mask humidity during CPAP: influence of ambient temperature, heated humidification and heated tubing

    Directory of Open Access Journals (Sweden)

    Nilius G

    2018-05-01

    Full Text Available Georg Nilius,1,2 Ulrike Domanski,1 Maik Schroeder,1 Holger Woehrle,3,4 Andrea Graml,4 Karl-Josef Franke,1,2 1Helios Klinik Hagen-Ambrock, Department of Pneumology, Hagen, Germany; 2Department of Internal Medicine, Witten-Herdecke University, Witten, Germany; 3Sleep and Ventilation Center Blaubeuren, Respiratory Center Ulm, Ulm, Germany; 4ResMed Science Center, ResMed Germany, Martinsried, Germany Purpose: Mucosal drying during continuous positive airway pressure (CPAP therapy is problematic for many patients. This study assessed the influence of ambient relative humidity (rH and air temperature (T in winter and summer on mask humidity during CPAP, with and without mask leak, and with or without heated humidification ± heated tubing. Methods: CPAP (8 and 12 cmH2O without humidification (no humidity [nH], with heated humidification controlled by ambient temperature and humidity (heated humidity [HH] and HH plus heated tubing climate line (CL, with and without leakage, were compared in 18 subjects with OSA during summer and winter. Results: The absolute humidity (aH and the T inside the mask during CPAP were significantly lower in winter versus summer under all applied conditions. Overall, absolute humidity differences between summer and winter were statistically significant in both HH and CL vs. nH (p < 0.05 in the presence and absence of mouth leak. There were no significant differences in aH between HH and CL. However, in-mask temperature during CL was higher (p < 0.05 and rH lower than during HH. In winter, CPAP with CL was more likely to keep rH constant at 80% than CPAP without humidification or with standard HH. Conclusion: Clinically-relevant reductions in aH were documented during CPAP given under winter conditions. The addition of heated humidification, using a heated tube to avoid condensation is recommended to increase aH, which could be useful in CPAP users complaining of nose and throat symptoms. Keywords: continuous positive

  17. Testing and ground calibration of DREAMS-H relative humidity device

    Science.gov (United States)

    Genzer, Maria; Hieta, Maria; Nikkanen, Timo; Schmidt, Walter; Kemppinen, Osku; Harri, Ari-Matti; Haukka, Harri

    2015-04-01

    DREAMS (Dust Characterization, Risk Assessment and Environmental Analyzer on the Martian Surface) instrument suite is to be launched as part of the ESA ExoMars 2016/Schiaparelli lander. DREAMS consists of an environmental package for monitoring temperature, pressure, relative humidity, winds and dust opacity, as well as atmospheric electricity of Martian atmosphere. The DREAMS instruments and scientific goals are described in [1]. Here we describe testing and ground calibration of the relative humidity device, DREAMS-H, provided to the DREAMS payload by the Finnish Meteorological Institute and based on proprietary technology of Vaisala, Inc. The same kind of device is part of the REMS instrument package onboard MSL Curiosity Rover [2][3]. DREAMS-H is based on Vaisala Humicap® technology adapted for use in Martian environment by the Finnish Meteorological Institute. The device is very small and lightweighed, with total mass less than 20 g and consuming only 15 mW of power. The Humicap® sensor heads contain an active polymer film that changes its capacitance as function of relative humidity, with 0% to 100% RH measurement range. The dynamic range of the device gets smaller with sensor temperature, being in -70°C approximately 30% of the dynamic range in 0°C [3]. Good-quality relative humidity measurements require knowing the temperature of the environment in which relative humidity is measured. An important part of DREAMS-H calibration was temperature calibration of Vaisala Thermocap® temperature sensors used for housekeeping temperature measurements of the DREAMS-H device. For this, several temperature points in the desired operational range were measured with 0.1°C accuracy traceable to national standards. The main part of humidity calibration of DREAMS-H flight models was done in subzero temperatures in a humidity generator of the Finnish Center of Metrology and Accreditation (MIKES). Several relative humidity points ranging from almost dry to almost wet

  18. Adaptive neuro-fuzzy inference system for temperature and humidity profile retrieval from microwave radiometer observations

    Science.gov (United States)

    Ramesh, K.; Kesarkar, A. P.; Bhate, J.; Venkat Ratnam, M.; Jayaraman, A.

    2015-01-01

    The retrieval of accurate profiles of temperature and water vapour is important for the study of atmospheric convection. Recent development in computational techniques motivated us to use adaptive techniques in the retrieval algorithms. In this work, we have used an adaptive neuro-fuzzy inference system (ANFIS) to retrieve profiles of temperature and humidity up to 10 km over the tropical station Gadanki (13.5° N, 79.2° E), India. ANFIS is trained by using observations of temperature and humidity measurements by co-located Meisei GPS radiosonde (henceforth referred to as radiosonde) and microwave brightness temperatures observed by radiometrics multichannel microwave radiometer MP3000 (MWR). ANFIS is trained by considering these observations during rainy and non-rainy days (ANFIS(RD + NRD)) and during non-rainy days only (ANFIS(NRD)). The comparison of ANFIS(RD + NRD) and ANFIS(NRD) profiles with independent radiosonde observations and profiles retrieved using multivariate linear regression (MVLR: RD + NRD and NRD) and artificial neural network (ANN) indicated that the errors in the ANFIS(RD + NRD) are less compared to other retrieval methods. The Pearson product movement correlation coefficient (r) between retrieved and observed profiles is more than 92% for temperature profiles for all techniques and more than 99% for the ANFIS(RD + NRD) technique Therefore this new techniques is relatively better for the retrieval of temperature profiles. The comparison of bias, mean absolute error (MAE), RMSE and symmetric mean absolute percentage error (SMAPE) of retrieved temperature and relative humidity (RH) profiles using ANN and ANFIS also indicated that profiles retrieved using ANFIS(RD + NRD) are significantly better compared to the ANN technique. The analysis of profiles concludes that retrieved profiles using ANFIS techniques have improved the temperature retrievals substantially; however, the retrieval of RH by all techniques considered in this paper (ANN, MVLR and

  19. Cluster size influence on the survivability of Rhipicephalus Boophilus microplus larvae under low relative humidity stress

    Science.gov (United States)

    Low relative humidity (RH) levels (=63%) have been previously shown to be a determining factor in the survival of southern cattle fever tick, Rhipicephalus microplus, larvae, regardless of temperature. Supporting this observation, large larval clusters can retain more water than isolated larvae. Th...

  20. High accuracy acoustic relative humidity measurement in duct flow with air

    NARCIS (Netherlands)

    Schaik, van W.; Grooten, M.H.M.; Wernaart, T.; Geld, van der C.W.M.

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and

  1. Effect of relative humidity on lipid oxidation in freezedried emulsions

    Directory of Open Access Journals (Sweden)

    Chinachoti, P.

    2000-10-01

    Full Text Available Oxidative stability was studied in a freeze-dried emulsion consisting of linoleic acid (LA, Tween-20, sucrose and maltodextrin in the presence of a catalyst (FeSO4/ascorbic acid. Changes in residual LA and conjugated dienes as a function of time were monitored at 0, 32, 43 and 75% relative humidities (RH. Based on GC analyses, LA oxidation was more significant in the surface fraction than the entrapped. The loss of surface oil upon storage may also be due to partial entrapment. However faster oxidation of the surface oil was confirmed by measurement of diene conjugation. Oxidation was more rapid at the lower relative humidities (0 and 32% RH and decreased with increasing RH. At high moisture, physical modifications in the sample were observed, including reduced porosity, structural collapse, reduction of the surface oil and coalescence of oil droplets triggered by sucrose crystallization. These may be responsible for the decreased oxidation. Sucrose crystallization at the higher humidities inhibited oxidation. In addition, while samples with similar glass transition temperature (Tg range behaved differently, samples with different glass transition range showed similar oxidative behaviour. Microstructural changes leading to oil entrapment and oil droplet coalescence were found to be significant, in this case.Se ha estudiado la estabilidad oxidativa en una emulsión liofilizada compuesta de ácido linoleico (LA, Tween-20, sacarosa y maltodextrina en presencia de un catalizador (FeSO4/ácido ascórbico. Los cambios en ácido linoleico remanente (LA y dienos conjugados en función del tiempo fueron monitorizados a humedades relativas (RH del 0, 32, 43 y 75%. Basado en análisis por cromatografía gaseosa, la oxidación de LA fue más significativa en la fracción superficial que en la encapsulada. La pérdida de aceite superficial con el almacenamiento puede deberse también al encapsulado parcial. Sin embargo, la más rápida oxidación del aceite

  2. Temperature and humidity effects on the corrosion of aluminium-base reactor fuel cladding materials during dry storage

    International Nuclear Information System (INIS)

    Peacock, H.B.; Sindelar, R.L.; Lam, P.S.

    2004-01-01

    The effect of temperature and relative humidity on the high temperature (up to 200 deg. C) corrosion of aluminum cladding alloys was investigated for dry storage of spent nuclear fuels. A dependency on alloy type and temperature was determined for saturated water vapor conditions. Models were developed to allow prediction of cladding behaviour of 1100, 5052, and 6061 aluminum alloys for up to 50+ years at 100% relative humidity. Calculations show that for a closed system, corrosion stops after all moisture and oxygen is used up during corrosion reactions with aluminum alloys. (author)

  3. The durability of waveguide fibers at cyclic change of loading, temperature and humidity

    International Nuclear Information System (INIS)

    Karimov, S.N.; Sultonov, U.; Shamsidinov, M.I.

    1992-01-01

    Present article is devoted to durability of waveguide fibers at cyclic change of loading, temperature and humidity. The mounting scheme and loading of sample is presented. The dependence of glass fiber durability on number of thermal cycles at various humidity rates was considered. The dependence of number of cycles on maximal loading at cyclic temperature change was studied.

  4. A new heat and moisture exchanger for laryngectomized patients: endotracheal temperature and humidity

    NARCIS (Netherlands)

    Scheenstra, R.J.; Muller, S.H.; Vincent, A.; Ackerstaff, A.H.; Jacobi, I.; Hilgers, F.J.M.

    2011-01-01

    Objective: To assess the endotracheal temperature and humidity and clinical effects of 2 models of a new heat and moisture exchanger (HME): Rplus, which has regular breathing resistance, and Lplus, which has lower breathing resistance. Methods: We measured endotracheal temperature and humidity in 10

  5. A new heat and moisture exchanger for laryngectomized patients: endotracheal temperature and humidity

    NARCIS (Netherlands)

    Scheenstra, Renske J.; Muller, Saar H.; Vincent, Andrew; Ackerstaff, Annemieke H.; Jacobi, Irene; Hilgers, Frans J. M.

    2011-01-01

    To assess the endotracheal temperature and humidity and clinical effects of 2 models of a new heat and moisture exchanger (HME): Rplus, which has regular breathing resistance, and Lplus, which has lower breathing resistance. We measured endotracheal temperature and humidity in 10 laryngectomized

  6. Synergistic effects of temperature and humidity on the symptoms of COPD patients

    Science.gov (United States)

    Mu, Zhe; Chen, Pei-Li; Geng, Fu-Hai; Ren, Lei; Gu, Wen-Chao; Ma, Jia-Yun; Peng, Li; Li, Qing-Yun

    2017-11-01

    This panel study investigates how temperature, humidity, and their interaction affect chronic obstructive pulmonary disease (COPD) patients' self-reported symptoms. One hundred and six COPD patients from Shanghai, China, were enrolled, and age, smoking status, St. George Respiratory Questionnaire (SGRQ) score, and lung function index were recorded at baseline. The participants were asked to record their indoor temperature, humidity, and symptoms on diary cards between January 2011 and June 2012. Altogether, 82 patients finished the study. There was a significant interactive effect between temperature and humidity ( p COPD patients. When the indoor humidity was low, moderate, and high, the indoor temperature ORs were 0.969 (95% CI 0.922 to 1.017), 0.977 (0.962 to 0.999), and 0.920 (95% CI 0.908 to 0.933), respectively. Low temperature was a risk factor for COPD patients, and high humidity enhanced its risk on COPD. The indoor temperature should be kept at least on average at 18.2 °C, while the humidity should be less than 70%. This study demonstrates that temperature and humidity were associated with COPD patients' symptoms, and high humidity would enhance the risk of COPD due to low temperature.

  7. Comparison of techniques for the measurement of skin temperature during exercise in a hot, humid environment

    Directory of Open Access Journals (Sweden)

    Brian K McFarlin

    2014-10-01

    Full Text Available Exercising or working in a hot, humid environment can results in the onset of heat-related illness when an individual’s temperature is not carefully monitored. The purpose of the present study was to compare three techniques (data loggers, thermal imaging, and wired electrodes for the measurement of peripheral (bicep and central (abdominal skin temperature. Young men and women (N=30 were recruited to complete the present study. The three skin temperature measurements were made at 0 and every 10-min during 40-min (60% VO 2 max of cycling in a hot (39±2°C, humid (45±5% RH environment. Data was statistically analyzed using the Bland-Altman method and correlation analysis. For abdominal skin temperature, the Bland-Altman limits of agreement indicated that data loggers (1.5 were a better index of wired than was thermal imaging (3.5, For the bicep skin temperature the limits of agreement was similar between data loggers (1.9 and thermal (1.9, suggesting the both were suitable measurements. We also found that when skin temperature exceeded 35ºC, we observed progressively better prediction between data loggers, thermal imaging, and wired skin sensors. This report describes the potential for the use of data loggers and thermal imaging to be used as alternative measures of skin temperature in exercising, human subjects

  8. Why alite stops hydrating below 80% relative humidity

    International Nuclear Information System (INIS)

    Flatt, Robert J.; Scherer, George W.; Bullard, Jeffrey W.

    2011-01-01

    It has been observed that the hydration of cement paste stops when the relative humidity drops below about 80%. A thermodynamic analysis shows that the capillary pressure exerted at that RH shifts the solubility of tricalcium silicate, so that it is in equilibrium with water. This is a reflection of the chemical shrinkage in this system: according to Le Chatelier's principle, since the volume of the products is less than that of the reactants, a negative (capillary) pressure opposes the reaction.

  9. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    Science.gov (United States)

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  10. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-01-01

    Full Text Available This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  11. Vapour pressure of ammonium chloride aerosol: Effect of temperature and humidity

    Science.gov (United States)

    Pio, Casimiro A.; Harrison, Roy M.

    The effect of relative humidity (RH) on the constant for dissociation of ammonium chloride into gaseous HCl and NH 3 has been estimated for different temperatures, using thermodynamic data. At RH over 75-85% the ammonium chloride aerosol exists in the liquid phase, with the dissociation constant two orders of magnitude lower at 98% RH than for solid aerosol at the same temperature. It is predicted that ammonium chloride aqueous aerosol forms predominantly in fogwater and cloud droplets, and in regions where local emissions of NH 3 are important.

  12. The influence of temperature and humidity on abundance and richness of Calliphoridae (Diptera

    Directory of Open Access Journals (Sweden)

    Rodrigo R. Azevedo

    2013-06-01

    Full Text Available The blowfly species are important components in necrophagous communities of the Neotropics. Besides being involved in the degradation of animal organic matter, they may serve as vectors for pathogens and parasites, and also cause primary and secondary myiasis. The occurrence pattern of these species is well defined, yet it is still not very clear which of these environmental factors determine the structure of the assemblies. This paper was developed to evaluate the influence of mean temperature and relative humidity variation in the abundance and richness of blowflies in the Brazilian southernmost state, Rio Grande do Sul, where temperature variation is well marked throughout the year. To evaluate this objective, WOT (Wind Oriented Trap were installed with beef liver as bait in three environments for 10 consecutive days in each month between July 2003 and June 2004. A total of 13,860 flies were collected distributed among 16 species with a higher frequency of Lucilia eximia (Wiedemann, 1819 and Chrysomya albiceps (Wiedemann, 1819. The mean temperature and relative humidity influence the richness of blowflies, with greater richness and abundance in late spring and early summer, whereas abundance was only influenced by temperature. Each species responded differently with respect to these variables, where L. eximia is not influenced by any of the two abiotic factors, despite the high abundance presented. This paper presents the results of the sensitivity for the presence or absence of species of Calliphoridae and on the variation of the abundance of these species under regime temperature changes and relative humidity with implications for public health and animal management.

  13. Roller compaction: Effect of relative humidity of lactose powder.

    Science.gov (United States)

    Omar, Chalak S; Dhenge, Ranjit M; Palzer, Stefan; Hounslow, Michael J; Salman, Agba D

    2016-09-01

    The effect of storage at different relative humidity conditions, for various types of lactose, on roller compaction behaviour was investigated. Three types of lactose were used in this study: anhydrous lactose (SuperTab21AN), spray dried lactose (SuperTab11SD) and α-lactose monohydrate 200M. These powders differ in their amorphous contents, due to different manufacturing processes. The powders were stored in a climatic chamber at different relative humidity values ranging from 10% to 80% RH. It was found that the roller compaction behaviour and ribbon properties were different for powders conditioned to different relative humidities. The amount of fines produced, which is undesirable in roller compaction, was found to be different at different relative humidity. The minimum amount of fines produced was found to be for powders conditioned at 20-40% RH. The maximum amount of fines was produced for powders conditioned at 80% RH. This was attributed to the decrease in powder flowability, as indicated by the flow function coefficient ffc and the angle of repose. Particle Image Velocimetry (PIV) was also applied to determine the velocity of primary particles during ribbon production, and it was found that the velocity of the powder during the roller compaction decreased with powders stored at high RH. This resulted in less powder being present in the compaction zone at the edges of the rollers, which resulted in ribbons with a smaller overall width. The relative humidity for the storage of powders has shown to have minimal effect on the ribbon tensile strength at low RH conditions (10-20%). The lowest tensile strength of ribbons produced from lactose 200M and SD was for powders conditioned at 80% RH, whereas, ribbons produced from lactose 21AN at the same condition of 80% RH showed the highest tensile strength. The storage RH range 20-40% was found to be an optimum condition for roll compacting three lactose powders, as it resulted in a minimum amount of fines in the

  14. Role of Temperature, Humidity and Rainfall on Influenza Transmission in Guatemala, El Salvador and Panama

    Science.gov (United States)

    Soebiyanto, Radina P.; Bonilla, Luis; Jara, Jorge; McCracken, John; Azziz?-Baumgartner, Eduardo; Widdowson, Marc-Alain; Kiang, Richard

    2012-01-01

    Worldwide, seasonal influenza causes about 500,000 deaths and 5 million severe illnesses per year. The environmental drivers of influenza transmission are poorly understood especially in the tropics. We aimed to identify meteorological factors for influenza transmission in tropical Central America. We gathered laboratory-confirmed influenza case-counts by week from Guatemala City, San Salvador Department (El Salvador) and Panama Province from 2006 to 2010. The average total cases per year were: 390 (Guatemala), 99 (San Salvador) and 129 (Panama). Meteorological factors including daily air temperature, rainfall, relative and absolute humidity (RH, AH) were obtained from ground stations, NASA satellites and land models. For these factors, we computed weekly averages and their deviation from the 5-yr means. We assessed the relationship between the number of influenza case-counts and the meteorological factors, including effects lagged by 1 to 4 weeks, using Poisson regression for each site. Our results showed influenza in San Salvador would increase by 1 case within a week of every 1 day with RH>75% (Relative Risk (RR)= 1.32, p=.001) and every 1C increase in minimum temperature (RR=1.29, p=.007) but it would decrease by 1 case for every 1mm-above mean weekly rainfall (RR=0.93,pGuatemala had 1 case increase for every 1C increase in minimum temperature in the previous week (RR=1.21, p<.001), and for every 1mm/day-above normal increase of rainfall rate (RR=1.03, p=.03) (model pseudo-R2=0.54). Our findings that cases increase with temperature and humidity differ from some temperate-zone studies. But they indicate that climate parameters such as humidity and temperature could be predictive of influenza activity and should be incorporated into country-specific influenza transmission models

  15. Sensor Fabrication Method for in Situ Temperature and Humidity Monitoring of Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Chi-Yuan Lee

    2010-04-01

    Full Text Available In this work micro temperature and humidity sensors are fabricated to measure the junction temperature and humidity of light emitting diodes (LED. The junction temperature is frequently measured using thermal resistance measurement technology. The weakness of this method is that the timing of data capture is not regulated by any standard. This investigation develops a device that can stably and continually measure temperature and humidity. The device is light-weight and can monitor junction temperature and humidity in real time. Using micro-electro-mechanical systems (MEMS, this study minimizes the size of the micro temperature and humidity sensors, which are constructed on a stainless steel foil substrate (40 μm-thick SS-304. The micro temperature and humidity sensors can be fixed between the LED chip and frame. The sensitivities of the micro temperature and humidity sensors are 0.06 ± 0.005 (Ω/°C and 0.033 pF/%RH, respectively.

  16. Wavelength properties of DCG holograms under the conditions of different temperature and humidity

    Science.gov (United States)

    Liu, Yujie; Li, Wenqiang; Ding, Quanxin; Yan, Zhanjun

    2014-12-01

    Holograms recorded in dichromated gelatin (DCG) are usually sealed with a glass plate cemented with an epoxy glue to protect the holograms from moisture in the environment. An investigation of the wavelength properties of sealed DCG holograms had been carried out paying attention to holograms which were exposed to different temperature and humidity environment in this work. The investigation had revealed that (a) exposing the sealed DCG holograms to high relative humidity (RH=98%) environment or immersing them in room-temperature water for 20 hours can not affect the holograms; (b) the sealed DCG holograms can be used at temperature below 50°C without showing undue detrimental effects regarding their optical properties; (c) the peak wavelength of sealed DCG holograms can cause blue shift of several nanometers at 70°C~85°C and the velocity of blue shift is proportional to the environmental temperature; (d) the holograms can be destroyed at 100° or above. The experimental results above will be analyzed and discussed in this paper. A method to improve the stability of sealed DCG holograms is proposed: baking the sealed DCG holograms at proper temperature (e.g., 85°C in this study).

  17. Temperature, Humidity and Energy Consumption Forecasting in the Poultry Hall Using Artificial Neural Networknetwork

    Directory of Open Access Journals (Sweden)

    N Gholamrezaei

    2017-10-01

    trainlm algorithm (Levenberg-Marquardt was used. To simulate temperature, humidity and energy consumption, networks were trained with two and three layers, respectively. Network with two layers with10 neurons in the hidden layer and one neuron in the output layer with (R² equal to 0.96 and (MSE equal to 0.00912, was given the best result for predicting temperature. For humidity electronic sensors, results showed that network with three layers with the 10 neurons in the first hidden layer, 20 neurons in the second hidden layer and one neuron in the output layer with (R² equal to 0.8 and (MSE equal to 0.00783 was the best for predicting humidity. Finally, network with two layers with 10 neurons in the first hidden layer, 10 neurons in the second hidden layer and one neuron in the output layer was selected as the optimal structure for predicting energy consumption. For this topology, (R² and MSE were determined to 0.98 and 0.00114, respectively. Linear and multivariate regression for the parameters affecting temperature, humidity and energy consumption of electronic sensors was determined by the STATGR software. Correlation coefficients indicated that parameters such as length, height and width of the electronic control sensors placed in the poultry hall justified 82% of the temperature changes, 61% of the humidity changes and 92% of the energy consumption changes. Therefore, comparing with correlation coefficients obtained from the neural network models, the highest correlation coefficient was related to energy parameter and the lowest correlation was linked to humidity parameter. Conclusions The results of the study indicated the high performance for predicting temperature, humidity and energy consumption. The networks hadthree inputs including length, width and height of electronic sensor positions and an output for temperature, humidity and energy consumption. For training networks the multiple layer perceptron (MLP with error back propagation learning algorithm (BP

  18. Morphological and Relative Humidity Sensing Properties of Pure ZnO Nanomaterial

    Directory of Open Access Journals (Sweden)

    N. K. Pandey

    2010-11-01

    Full Text Available In this paper we report the resistive type humidity sensing properties of pure ZnO nanomaterial prepared by solid-state reaction method. Pellets of pure ZnO nanocrystalline powder have been made with 10 weight % of glass powder at pressure of 260 MPa by hydraulic press machine for 3 hours. These pellets have been sintered at temperatures 200 °C - 500 °C in an electric muffle furnace for 3 hours at heating rate of 5°C/min. After sintering, these pellets have been exposed to humidity in a specially designed humidity chamber at room temperature. It has been observed that as relative humidity increases, resistance of the pellets decreases for entire range of humidity i.e. 10 % to 90 %. The sensing element of ZnO shows best results with sensitivity of 11.13 MΩ/%RH for the annealing temperature of 400 °C. This sensing element manifests lower hysteresis, less effect of aging and high reproducibility for annealing temperature 400 °C. SEM micrographs show that the sensing elements manifest porous structure with a network of pores that are expected to provide sites for humidity adsorption. The average grain size calculated from SEM micrograph is 236 nm. XRD pattern shows peaks of hexagonal zincite. As calculated from Scherer’s formula, the average crystalline size for this sensing element is 59.4 nm. For this sensing element, the values of activation energy from the Arrhenius plot is 0.041 eV for temperature range 200 °C - 400 °C and 0.393 eV for temperature range 400 °C - 500 °C. The adsorption of water molecules on the surface takes place via a dissociative chemisorption process leading to release of electrons. ZnO has electron vacancy. Hence, because of this reaction, the electrons are accumulated at the ZnO surface and consequently, the resistance of the sensing element decreases with increase in relative humidity.

  19. [An early warning method of cucumber downy mildew in solar greenhouse based on canopy temperature and humidity modeling].

    Science.gov (United States)

    Wang, Hui; Li, Mei-lan; Xu, Jian-ping; Chen, Mei-xiang; Li, Wen-yong; Li, Ming

    2015-10-01

    The greenhouse environmental parameters can be used to establish greenhouse nirco-climate model, which can combine with disease model for early warning, with aim of ecological controlling diseases to reduce pesticide usage, and protecting greenhouse ecological environment to ensure the agricultural product quality safety. Greenhouse canopy leaf temperature and air relative humidity, models were established using energy balance and moisture balance principle inside the greenhouse. The leaf temperature model considered radiation heat transfer between the greenhouse crops, wall, soil and cover, plus the heat exchange caused by indoor net radiation and crop transpiration. Furthermore, the water dynamic balance in the greenhouse including leaf transpiration, soil evaporation, cover and leaf water vapor condensation, was considered to develop a relative humidity model. The primary infection and latent period warning models for cucumber downy mildew (Pseudoperonospora cubensis) were validated using the results of the leaf temperature and relative humidity model, and then the estimated disease occurrence date of cucumber downy mildew was compared with actual disease occurrence date of field observation. Finally, the results were verified by the measured temperature and humidity data of September and October, 2014. The results showed that the root mean square deviations (RMSDs) of the measured and estimated leaf temperature were 0.016 and 0.024 °C, and the RMSDs of the measured and estimated air relative humidity were 0.15% and 0.13%, respectively. Combining the result of estimated temperature and humidity models, a cucumber disease early warning system was established to forecast the date of disease occurrence, which met with the real date. Thus, this work could provide the micro-environment data for the early warning system of cucumber diseases in solar greenhouses.

  20. Integrated passive and wireless sensor for magnetic fields, temperature and humidity

    KAUST Repository

    Li, Bodong

    2013-11-01

    This paper presents a surface acoustic wave-based passive and wireless sensor that can measure magnetic field, temperature and humidity. A thin film giant magnetoimpedance sensor, a thermally sensitive LiNbO3 substrate and a humidity sensitive hydrogel are integrated together with a surface acoustic wave transducer to realize the multifunctional sensor. The device is characterized using a network analyzer under sequentially changing humidity, temperature and magnetic field conditions. The first hand results show the sensor response to all three sensing parameters with small temperature interference on the magnetic signals. © 2013 IEEE.

  1. Integrated passive and wireless sensor for magnetic fields, temperature and humidity

    KAUST Repository

    Li, Bodong; Yassine, Omar; Kosel, Jü rgen

    2013-01-01

    This paper presents a surface acoustic wave-based passive and wireless sensor that can measure magnetic field, temperature and humidity. A thin film giant magnetoimpedance sensor, a thermally sensitive LiNbO3 substrate and a humidity sensitive hydrogel are integrated together with a surface acoustic wave transducer to realize the multifunctional sensor. The device is characterized using a network analyzer under sequentially changing humidity, temperature and magnetic field conditions. The first hand results show the sensor response to all three sensing parameters with small temperature interference on the magnetic signals. © 2013 IEEE.

  2. Inspired gas humidity and temperature during mechanical ventilation with the Stephanie ventilator.

    Science.gov (United States)

    Preo, Bianca L; Shadbolt, Bruce; Todd, David A

    2013-11-01

    To measure inspired gas humidity and temperature delivered by a Stephanie neonatal ventilator with variations in (i) circuit length; (ii) circuit insulation; (iii) proximal airway temperature probe (pATP) position; (iv) inspiratory temperature (offset); and (v) incubator temperatures. Using the Stephanie neonatal ventilator, inspired gas humidity and temperature were measured during mechanical ventilation at the distal inspiratory limb and 3 cm down the endotracheal tube. Measurements were made with a long or short circuit; with or without insulation of the inspiratory limb; proximal ATP (pATP) either within or external to the incubator; at two different inspiratory temperature (offset) of 37(-0.5) and 39(-2.0)°C; and at three different incubator temperatures of 32, 34.5, and 37°C. Long circuits produced significantly higher inspired humidity than short circuits at all incubator settings, while only at 32°C was the inspired temperature higher. In the long circuits, insulation further improved the inspired humidity especially at 39(-2.0)°C, while only at incubator temperatures of 32 and 37°C did insulation significantly improve inspired temperature. Positioning the pATP outside the incubator did not result in higher inspired humidity but did significantly improve inspired temperature. An inspiratory temperature (offset) of 39(-2.0)°C delivered significantly higher inspired humidity and temperature than the 37(-0.5)°C especially when insulated. Long insulated Stephanie circuits should be used for neonatal ventilation when the infant is nursed in an incubator. The recommended inspiratory temperature (offset) of 37(-0.5)°C produced inspired humidity and temperature below international standards, and we suggest an increase to 39(-2.0)°C. © 2013 John Wiley & Sons Ltd.

  3. Simultaneous measurement of temperature and humidity with microstructured polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Pedersen, Jens Kristian Mølgaard; Fasano, Andrea

    2017-01-01

    A microstructured polymer optical fiber (mPOF) Bragg grating sensor system for the simultaneous measurement of temperature and relative humidity (RH) has been developed and characterized. The sensing head is based on two in-line fiber Bragg gratings recorded in a mPOF. The sensor system has a root...... mean square deviation of 1.04 % RH and 0.8 °C in the range 10 to 90% RH and 20 to 80 °C. The proposed sensor system is easy to fabricate, cheap and compact....

  4. A mathematical correlation between variations in solar radiation parameters. 2. Global radiation, air temperature and specific humidity

    International Nuclear Information System (INIS)

    Njau, E.C.

    1988-06-01

    We derive from first principles, an equation which expresses global radiation as a function of specific humidity and air temperature at screen height. The practical validity of this equation is tested by using humidity, air temperature and global radiation data from Tanzania. It is shown that global radiation values calculated on the basis of the derived equation agree with measured radiation values to within ± 8% as long as the prevalent (horizontal) winds are either calm or light. It is noted that the equation is equally valid at times of strong horizontal winds provided that the temperature and humidity measuring site is sufficiently shielded from the winds. This implies that meteorological stations that are (for some unavoidable reasons) unable to stock pyranometers can still procure reasonable estimates of local global radiation as long as they can, at least, stock the relatively cheaper barometers and wet- and dry-bulb psychrometers. (author). 12 refs, 1 fig., 4 tabs

  5. Climate change scenarios of extreme temperatures and atmospheric humidity for Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tejeda-Martinez, A. [Departamento de Ciencias Atmosfericas, Universidad Veracruzana, Xalapa, Veracruz (Mexico)]. E-mail: atejeda@uv.mx; Conde-Alvarez, C. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Valencia-Treviso, L.E. [Departamento de Ciencias Atmosfericas, Universidad Veracruzana, Xalapa, Veracruz (Mexico)

    2008-10-15

    The following study explores climatic change scenarios of extreme temperature and atmospheric humidity for the 2020 and 2050 decades. They were created for Mexico through the GFDLR30, ECHAM4 and HadCM2 general circulation models. Base scenario conditions were associated with the normal climatological conditions for the period 1961-1990, with a database of 50 surface observatories. It was necessary to empirically estimate the missing data in approximately half of the pressure measurements. For the period 1961-1990, statistical models of the monthly means of maximum and minimum temperatures and atmospheric humidity (relative and specific) were obtained from the observed data of temperature, solar radiation and precipitation. Based on the simulations of the GFDLR30, ECHAM4 and HADCM2 models, a future scenario of monthly means of maximum and minimum temperatures and humidity in climatic change conditions was created. The results shown are for the representative months of winter (January) and summer (July). [Spanish] En este articulo se presentan escenarios de cambio climatico referidos a temperaturas extremas y humedad atmosferica para las decadas de 2020 y 2050. Fueron generados para Mexico a partir de los modelos de circulacion general GFDLR30, ECHAM4 y HADCM2. El escenario base corresponde a las normales climatologicas del periodo 1961-1990 para 50 observatorios de superficie. Para la mitad de ellos fue necesario estimar empiricamente la presion atmosferica a partir de la altitud y para la totalidad se obtuvieron modelos estadisticos de los promedios mensuales de temperaturas maxima y minima asi como de humedad atmosferica (relativa y especifica). Esos modelos estadisticos, combinados con las salidas de los modelos de circulacion general mencionados, produjeron escenarios futuros de medias mensuales de temperaturas extremas y de humedad bajo condiciones de cambio climatico. Se mostraran los resultados para un mes representativo del invierno (enero) y otro del verano

  6. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    International Nuclear Information System (INIS)

    Hongbin Zhao, H.; Yue, P.; Cao, L.

    2009-01-01

    A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT), and solar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  7. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    Directory of Open Access Journals (Sweden)

    Hongbin Zhao

    2009-01-01

    Full Text Available A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT, and sollar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  8. Testing the effects of temperature and humidity on printed passive UHF RFID tags on paper substrate

    Science.gov (United States)

    Linnea Merilampi, Sari; Virkki, Johanna; Ukkonen, Leena; Sydänheimo, Lauri

    2014-05-01

    This article is an interesting substrate material for environmental-friendly printable electronics. In this study, screen-printed RFID tags on paper substrate are examined. Their reliability was tested with low temperature, high temperature, slow temperature cycling, high temperature and high humidity and water dipping test. Environmental stresses affect the tag antenna impedance, losses and radiation characteristics due to their impact on the ink film and paper substrate. Low temperature, temperature cycling and high humidity did not have a radical effect on the measured parameters: threshold power, backscattered signal power or read range of the tags. However, the frequency response and the losses of the tags were slightly affected. Exposure to high temperature was found to even improve the tag performance due to the positive effect of high temperature on the ink film. The combined high humidity and high temperature had the most severe effect on the tag performance. The threshold power increased, backscattered power decreased and the read range was shortened. On the whole, the results showed that field use of these tags in high, low and changing temperature conditions and high humidity conditions is possible. Use of these tags in combined high-humidity and high-temperature conditions should be carefully considered.

  9. Experimental study of water absorption of electronic components and internal local temperature and humidity into electronic enclosure

    DEFF Research Database (Denmark)

    Conseil, Helene; Jellesen, Morten Stendahl; Ambat, Rajan

    2014-01-01

    Corrosion reliability of electronic products is a key factor for electronics industry, and today there is a large demand for performance reliability in large spans of temperature and humidity during day and night shifts. Corrosion failures are still seen due to the effects of temperature, humidity......, differential humidity, and temperature effects simulating day/night, and the use of desiccants....

  10. Using Relative Humidity Forecasts to Manage Meningitis in the Sahel

    Science.gov (United States)

    Pandya, R. E.; Adams-Forgor, A.; Akweogno, P.; Awine, T.; Dalaba, M.; Dukic, V.; Dumont, A.; Hayden, M.; Hodgson, A.; Hopson, T. M.; Hugonnet, S.; Yoksas, T. C.

    2012-12-01

    Meningitis epidemics in the Sahel occur quasi-regularly and with devastating impact. In 2008, for example, eighty-eight thousand people contracted meningitis and over five thousand died. Until very recently, the protection provided by the only available vaccine was so limited and short-lived that the only practical strategy for vaccination was reactive: waiting until an epidemic occurred in the region and then vaccinating in that region to prevent the epidemic's further growth. Even with that strategy, there were still times when demand outpaced available vaccine. While a new vaccine has recently been developed that is effective and inexpensive enough to be used more broadly and proactively, it is only effective against the strain of bacteria that causes the most common kind of bacterial meningitis. As a result, there will likely be continued need for reactive vaccination strategies. It is widely known that meningitis epidemics in the Sahel occur only in the dry season. Our project investigated this relationship, and several independent lines of evidence demonstrate a robust relationship between the onset of the rainy season, as marked by weekly average relative humidity above 40%, and the end of meningitis epidemics. These lines of evidence include statistical analysis of two years of weekly meningitis and weather data across the Sahel, cross-correlation of ten years of meningitis and weather data in the Upper East region of northern Ghana, and high-resolution weather simulations of past meningitis seasons to interpolate available weather data. We also adapted two techniques that have been successfully used in public health studies: generalized additive models, which have been used to relate air quality and health, and a linearized version of the compartmental epidemics model that has been used to understand MRSA. Based on these multiple lines of evidence, average weekly relative humidity forecast two weeks in advance appears consistently and strongly related to

  11. Diffusion through Pig Gastric Mucin: Effect of Relative Humidity.

    Directory of Open Access Journals (Sweden)

    Anna Runnsjö

    Full Text Available Mucus covers the epithelium found in all intestinal tracts, where it serves as an important protecting barrier, and pharmaceutical drugs administrated by the oral, rectal, vaginal, ocular, or nasal route need to penetrate the mucus in order to reach their targets. Furthermore, the diffusion in mucus as well as the viscosity of mucus in the eyes, nose and throat can change depending on the relative humidity of the surrounding air. In this study we have investigated how diffusion through gels of mucin, the main protein in mucus, is affected by changes in ambient relative humidity (i.e. water activity. Already a small decrease in water activity was found to give rise to a significant decrease in penetration rate through the mucin gel of the antibacterial drug metronidazole. We also show that a decrease in water activity leads to decreased diffusion rate in the mucin gel for the fluorophore fluorescein. This study shows that it is possible to alter transport rates of molecules through mucus by changing the water activity in the gel. It furthermore illustrates the importance of considering effects of the water activity in the mucosa during development of potential pharmaceuticals.

  12. Effect of vulcanization temperature and humidity on the properties of RTV silicone rubber

    Science.gov (United States)

    Wu, Xutao; Li, Xiuguang; Hao, Lu; Wen, Xishan; Lan, Lei; Yuan, Xiaoqing; Zhang, Qingping

    2017-06-01

    In order to study the difference in performance of room temperature vulcanized (RTV) silicone rubber in vulcanization environment with different temperature and humidity, static contact angle method, FTIR and TG is utilized to depict the properties of hydrophobicity, transfer of hydrophobicity, functional groups and thermal stability of RTV silicone rubber. It is found that different vulcanization conditions have effects on the characteristics of RTV silicone rubber, which shows that the hydrophobicity of RTV silicone rubber changes little with the vulcanization temperature but a slight increase with the vulcanization humidity. Temperature and humidity have obvious effects on the hydrophobicity transfer ability of RTV silicone rubber, which is better when vulcanization temperature is 5°C or vulcanization humidity is 95%. From the Fourier transform infrared spectroscopy, it can be concluded that humidity and temperature of vulcanization conditions have great effect on the functional groups of silicone rubber, and vulcanization conditions also have effect on thermal stability of RTV silicone rubber. When vulcanization temperature is 5°C or vulcanization humidity is 15% or 95%, the thermal stability of silicone rubber becomes worse.

  13. The rotational mobility of spin labels in wool creatine depending on temperature, humidity and deformation

    International Nuclear Information System (INIS)

    Bobodzhanov, P.Kh.; Yusupov, I.Kh.; Marupov, R.

    2001-01-01

    Present article is devoted to study of rotational mobility of spin labels in wool creatine depending on temperature, humidity and deformation. The experimental data of study of structure and molecular mobility of wool creatine modified by spin labels was considered.

  14. The design of multi temperature and humidity monitoring system for incubator

    Science.gov (United States)

    Yu, Junyu; Xu, Peng; Peng, Zitao; Qiang, Haonan; Shen, Xiaoyan

    2017-01-01

    Currently, there is only one monitor of the temperature and humidity in an incubator, which may cause inaccurate or unreliable data, and even endanger the life safety of the baby. In order to solve this problem,we designed a multi-point temperature and humidity monitoring system for incubators. The system uses the STC12C5A60S2 microcontrollers as the sender core chip which is connected to four AM2321 temperature and humidity sensors. We select STM32F103ZET6 core development board as the receiving end,cooperating with Zigbee wireless transmitting and receiving module to realize data acquisition and transmission. This design can realize remote real-time observation data on the computer by communicating with PC via Ethernet. Prototype tests show that the system can effectively collect and display the information of temperature and humidity of multiple incubators at the same time and there are four monitors in each incubator.

  15. Influence of temperature and humidity on carbon based printed flexible sensors

    KAUST Repository

    Nag, Anindya

    2018-03-02

    This paper presents the response of two different types of novel printed sensors towards the change in temperature and humidity. The electrodes of all the sensors were based on carbon materials. Followed by the design and fabrication of the sensors, the responses of the sensors were analyzed for different temperature and humidity conditions in an incubator. These results provide a podium to enhance the alternation of the fabrication procedure of carbon-based printed sensors.

  16. Influence of temperature and humidity on carbon based printed flexible sensors

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas; Kosel, Jü rgen

    2018-01-01

    This paper presents the response of two different types of novel printed sensors towards the change in temperature and humidity. The electrodes of all the sensors were based on carbon materials. Followed by the design and fabrication of the sensors, the responses of the sensors were analyzed for different temperature and humidity conditions in an incubator. These results provide a podium to enhance the alternation of the fabrication procedure of carbon-based printed sensors.

  17. Correlation analysis of Carbon Dioxide, Oxygen, Temperature and Humidity of Yadavaran Oil field in Khuzestan province

    Directory of Open Access Journals (Sweden)

    Mohammad velayatzadeh

    2018-02-01

    Full Text Available Background & Objective:Emission of Carbon dioxide in the atmosphere has an important role in increasing temperatures and, its higher concentration can effect on human health. Due to this issue, this study is aimed to measure the amount of the released carbon dioxide into the atmosphere in different part of Yadavaran Oil field and compare with international standards in 2017. Material & Methods:The present investigation was accomplished in Yadavaran oil field of Khuzestan province of Iran in 2017. In this study measurement of parameters including carbon dioxide, carbon monoxide, oxygen, relative humidity and temperature was done in 64 stations with 3 replications using ALTAIR 4X and Trotec BZ30. Data was analyzed by one-way ANOVA and Kolmogorov–Smirnov tests. Moreover, Correlation analysis was performed using Pearson and Spearman coefficients. Results:The results showed that concentration range of carbon dioxide and oxygen was 490-590 and 19-208ppm respectively. Also, the highest and lowest levels of carbon dioxide were 584.56±6.36 and 453.94±77.7 ppm in wet water camp and S10 wells (P 0.05 in the same order. Conclusion:Pearson and Spearman coefficient analysis showed no significant correlation between temperature, humidity, oxygen and carbon dioxide. According to the results, the concentration of carbon dioxide in different areas of the oil field of Yadavaran was acceptable.

  18. Retrieval of relative humidity from CSIR-NLC mobile LIDAR backscatter measurements

    CSIR Research Space (South Africa)

    Tesfaye, M

    2009-09-01

    Full Text Available data was collected over 23 hours. The above data sets were used to determine the retrieved relative humidity and compared with Irene (near to Pretoria) weather balloon humidity measurements. The results of the comparative study are presented...

  19. Physiological and subjective responses to low relative humidity in young and elderly men.

    Science.gov (United States)

    Sunwoo, Yujin; Chou, Chinmei; Takeshita, Junko; Murakami, Motoko; Tochihara, Yutaka

    2006-05-01

    In order to compare the physiological and the subjective responses to low relative humidity of elderly and young men, we measured saccharin clearance time (SCT), frequency of blinking, hydration state of the skin, transepidermal water loss (TEWL), sebum level recovery and skin temperatures as physiological responses. We asked subjects to evaluate thermal, dryness and comfort sensations as subjective responses using a rating scale. Eight non-smoking healthy male students (21.7+/-0.8 yr) and eight non-smoking healthy elderly men (71.1+/-4.1 yr) were selected. The pre-room conditions were maintained at an air temperature (Ta) of 25 degrees C and a relative humidity (RH) of 50%. The test-room conditions were adjusted to provide 25 degrees C Ta and RH levels of 10%, 30% and 50%. RH had no effect on the activity of the sebaceous gland or change of mean skin temperature. SCT of the elderly group under 10% RH was significantly longer than that of the young group. In particular, considering the SCT change, the nasal mucous membrane seems to be affected more in the elderly than in the young in low RH. Under 30% RH, the eyes and skin become dry, and under 10% RH the nasal mucous membrane becomes dry as well as the eyes and skin. These findings suggested that to avoid dryness of the eyes and skin, it is necessary to maintain greater than 30% RH, and to avoid dryness of the nasal mucous membrane, it is necessary to maintain greater than 10% RH. On the thermal sensation of the legs, at the lower humidity level, the elderly group felt cooler than the young group. On the dry sensation of the eyes and throat, the young group felt drier than the elderly group at the lower humidity levels. From the above results, the elderly group had difficulty in feeling dryness in the nasal mucous membrane despite being easily affected by low humidity. On the other hand, the young group felt the change of humidity sensitively despite not being severely affected by low humidity. Ocular mucosa and

  20. Effects of temperature and humidity during irradiation on the response of radiachromic film dosimeters

    International Nuclear Information System (INIS)

    Ningnoi, T.; Ehlermann, D.A.E.

    1994-01-01

    The effects of temperature and humidity during γ irradiation on the response of two types of film dosimeters (Far West radiochromic and GafChromic films) were studied in the dose range of 0.3-3 kGy. Both films show a significant effect of temperature and humidity and a simple correction function is proposed. This correction is usually between 5 and 10% for the range studied. For the GafChromic film, a colour change at temperatures above 50 o C was observed and, consequently, this system cannot be used at these temperatures. At lower temperatures down to -70 o C the sensitivity of both films is reduced and a simple correction is possible. In this study and for the dose ranges used, only a slight dependence on humidity was observed for both films from 0 to 60% r.h. Whereas the GafChromic film at humidities up to 90% r.h. shows only a moderate effect, the Far West film shows a considerable inconsistency for the dose range studied. A simple correction function may be applied for humidity effects, except for the Far West film above 60% r.h. where the effect of humidity is also dose dependent. (author)

  1. Identifying Changes in the Probability of High Temperature, High Humidity Heat Wave Events

    Science.gov (United States)

    Ballard, T.; Diffenbaugh, N. S.

    2016-12-01

    Understanding how heat waves will respond to climate change is critical for adequate planning and adaptation. While temperature is the primary determinant of heat wave severity, humidity has been shown to play a key role in heat wave intensity with direct links to human health and safety. Here we investigate the individual contributions of temperature and specific humidity to extreme heat wave conditions in recent decades. Using global NCEP-DOE Reanalysis II daily data, we identify regional variability in the joint probability distribution of humidity and temperature. We also identify a statistically significant positive trend in humidity over the eastern U.S. during heat wave events, leading to an increased probability of high humidity, high temperature events. The extent to which we can expect this trend to continue under climate change is complicated due to variability between CMIP5 models, in particular among projections of humidity. However, our results support the notion that heat wave dynamics are characterized by more than high temperatures alone, and understanding and quantifying the various components of the heat wave system is crucial for forecasting future impacts.

  2. Humidity May Modify the Relationship between Temperature and Cardiovascular Mortality in Zhejiang Province, China.

    Science.gov (United States)

    Zeng, Jie; Zhang, Xuehai; Yang, Jun; Bao, Junzhe; Xiang, Hao; Dear, Keith; Liu, Qiyong; Lin, Shao; Lawrence, Wayne R; Lin, Aihua; Huang, Cunrui

    2017-11-14

    Background : The evidence of increased mortality attributable to extreme temperatures is widely characterized in climate-health studies. However, few of these studies have examined the role of humidity on temperature-mortality association. We investigated the joint effect between temperature and humidity on cardiovascular disease (CVD) mortality in Zhejiang Province, China. Methods : We collected data on daily meteorological and CVD mortality from 11 cities in Zhejiang Province during 2010-2013. We first applied time-series Poisson regression analysis within the framework of distributed lag non-linear models to estimate the city-specific effect of temperature and humidity on CVD mortality, after controlling for temporal trends and potential confounding variables. We then applied a multivariate meta-analytical model to pool the effect estimates in the 11 cities to generate an overall provincial estimate. The joint effects between them were calculated by the attributable fraction (AF). The analyses were further stratified by gender, age group, education level, and location of cities. Results : In total, 120,544 CVD deaths were recorded in this study. The mean values of temperature and humidity were 17.6 °C and 72.3%. The joint effect between low temperature and high humidity had the greatest impact on the CVD death burden over a lag of 0-21 days with a significant AF of 31.36% (95% eCI: 14.79-38.41%), while in a condition of low temperature and low humidity with a significant AF of 16.74% (95% eCI: 0.89, 24.44). The AFs were higher at low temperature and high humidity in different subgroups. When considering the levels of humidity, the AFs were significant at low temperature and high humidity for males, youth, those with a low level of education, and coastal area people. Conclusions : The combination of low temperature and high humidity had the greatest impact on the CVD death burden in Zhejiang Province. This evidence has important implications for developing CVD

  3. Humidity May Modify the Relationship between Temperature and Cardiovascular Mortality in Zhejiang Province, China

    Science.gov (United States)

    Zeng, Jie; Zhang, Xuehai; Yang, Jun; Bao, Junzhe; Dear, Keith; Liu, Qiyong; Lin, Shao; Lin, Aihua; Huang, Cunrui

    2017-01-01

    Background: The evidence of increased mortality attributable to extreme temperatures is widely characterized in climate-health studies. However, few of these studies have examined the role of humidity on temperature-mortality association. We investigated the joint effect between temperature and humidity on cardiovascular disease (CVD) mortality in Zhejiang Province, China. Methods: We collected data on daily meteorological and CVD mortality from 11 cities in Zhejiang Province during 2010–2013. We first applied time-series Poisson regression analysis within the framework of distributed lag non-linear models to estimate the city-specific effect of temperature and humidity on CVD mortality, after controlling for temporal trends and potential confounding variables. We then applied a multivariate meta-analytical model to pool the effect estimates in the 11 cities to generate an overall provincial estimate. The joint effects between them were calculated by the attributable fraction (AF). The analyses were further stratified by gender, age group, education level, and location of cities. Results: In total, 120,544 CVD deaths were recorded in this study. The mean values of temperature and humidity were 17.6 °C and 72.3%. The joint effect between low temperature and high humidity had the greatest impact on the CVD death burden over a lag of 0–21 days with a significant AF of 31.36% (95% eCI: 14.79–38.41%), while in a condition of low temperature and low humidity with a significant AF of 16.74% (95% eCI: 0.89, 24.44). The AFs were higher at low temperature and high humidity in different subgroups. When considering the levels of humidity, the AFs were significant at low temperature and high humidity for males, youth, those with a low level of education, and coastal area people. Conclusions: The combination of low temperature and high humidity had the greatest impact on the CVD death burden in Zhejiang Province. This evidence has important implications for developing CVD

  4. Humidity May Modify the Relationship between Temperature and Cardiovascular Mortality in Zhejiang Province, China

    Directory of Open Access Journals (Sweden)

    Jie Zeng

    2017-11-01

    Full Text Available Background: The evidence of increased mortality attributable to extreme temperatures is widely characterized in climate-health studies. However, few of these studies have examined the role of humidity on temperature-mortality association. We investigated the joint effect between temperature and humidity on cardiovascular disease (CVD mortality in Zhejiang Province, China. Methods: We collected data on daily meteorological and CVD mortality from 11 cities in Zhejiang Province during 2010–2013. We first applied time-series Poisson regression analysis within the framework of distributed lag non-linear models to estimate the city-specific effect of temperature and humidity on CVD mortality, after controlling for temporal trends and potential confounding variables. We then applied a multivariate meta-analytical model to pool the effect estimates in the 11 cities to generate an overall provincial estimate. The joint effects between them were calculated by the attributable fraction (AF. The analyses were further stratified by gender, age group, education level, and location of cities. Results: In total, 120,544 CVD deaths were recorded in this study. The mean values of temperature and humidity were 17.6 °C and 72.3%. The joint effect between low temperature and high humidity had the greatest impact on the CVD death burden over a lag of 0–21 days with a significant AF of 31.36% (95% eCI: 14.79–38.41%, while in a condition of low temperature and low humidity with a significant AF of 16.74% (95% eCI: 0.89, 24.44. The AFs were higher at low temperature and high humidity in different subgroups. When considering the levels of humidity, the AFs were significant at low temperature and high humidity for males, youth, those with a low level of education, and coastal area people. Conclusions: The combination of low temperature and high humidity had the greatest impact on the CVD death burden in Zhejiang Province. This evidence has important implications

  5. [Evaluation of the influence of humidity and temperature on the drug stability by initial average rate experiment].

    Science.gov (United States)

    He, Ning; Sun, Hechun; Dai, Miaomiao

    2014-05-01

    To evaluate the influence of temperature and humidity on the drug stability by initial average rate experiment, and to obtained the kinetic parameters. The effect of concentration error, drug degradation extent, humidity and temperature numbers, humidity and temperature range, and average humidity and temperature on the accuracy and precision of kinetic parameters in the initial average rate experiment was explored. The stability of vitamin C, as a solid state model, was investigated by an initial average rate experiment. Under the same experimental conditions, the kinetic parameters obtained from this proposed method were comparable to those from classical isothermal experiment at constant humidity. The estimates were more accurate and precise by controlling the extent of drug degradation, changing humidity and temperature range, or by setting the average temperature closer to room temperature. Compared with isothermal experiments at constant humidity, our proposed method saves time, labor, and materials.

  6. Energy-Efficient Management of Mechanical Ventilation and Relative Humidity in Hot-Humid Climates

    Energy Technology Data Exchange (ETDEWEB)

    Withers, Jr., Charles R. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)

    2016-12-01

    In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split on seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.

  7. Comparison of axillary and rectal temperatures for healthy Beagles in a temperature- and humidity-controlled environment.

    Science.gov (United States)

    Mathis, Justin C; Campbell, Vicki L

    2015-07-01

    To compare axillary and rectal temperature measurements obtained with a digital thermometer for Beagles in a temperature- and humidity-controlled environment. 26 healthy Beagles (17 sexually intact males and 9 sexually intact females). Dogs were maintained in a temperature- and humidity-controlled environment for 56 days before rectal and axillary temperatures were measured. Axillary and rectal temperatures were obtained in triplicate for each dog by use of a single commercially available manufacturer-calibrated digital thermometer. Mean rectal and axillary temperatures of Beagles maintained in a temperature- and humidity-controlled environment were significantly different, with a median ± SD difference of 1.4° ± 0.15°C (range, 0.7° to 2.1°C). Mean rectal and axillary temperatures were 38.7°C (range, 37.6° to 39.5°C) and 37.2°C (range, 36.6° to 38.3°C), respectively. Results of this study indicated that the historical reference of a 0.55°C gradient between rectal and axillary temperatures that has been clinically used for veterinary patients was inaccurate for healthy Beagles in a temperature- and humidity-controlled environment. Rectal and axillary temperatures can be measured in veterinary patients. Reliable interpretation of axillary temperatures may accommodate patient comfort and reduce patient anxiety when serial measurement of temperatures is necessary. Further clinical studies will be needed.

  8. Inter-Laboratory Comparison for Calibration of Relative Humidity Devices Among Accredited Laboratories in Malaysia

    Science.gov (United States)

    Hussain, F.; Khairuddin, S.; Othman, H.

    2017-01-01

    An inter-laboratory comparison in relative humidity measurements among accredited laboratories has been coordinated by the National Metrology Institute of Malaysia. It was carried out to determine the performance of the participating laboratories. The objective of the comparison was to acknowledge the participating laboratories competencies and to verify the level of accuracies declared in their scope of accreditation, in accordance with the MS ISO/IEC 17025 accreditation. The measurement parameter involved was relative humidity for the range of 30-90 %rh at a nominal temperature of 50°C. Eight accredited laboratories participated in the inter-laboratory comparison. Two units of artifacts have been circulated among the participants as the transfer standards.

  9. Influence of microenvironment pH, humidity, and temperature on the stability of polymorphic and amorphous forms of clopidogrel bisulfate

    DEFF Research Database (Denmark)

    Raijada, Dhara K; Singh, Saranjit; Bansal, Arvind K

    2010-01-01

    The effect of microenvironment pH, humidity, and temperature was evaluated on the stability of polymorphic and amorphous forms of clopidogrel bisulfate, when present alone or in combinations. Oxalic acid and sodium carbonate were used as solid stressors to create acidic and alkaline p...... more degradation than the individual forms above critical relative humidity (85% RH). Similar higher degradation was observed between 75% RH and 85% RH in case of acid-stressed samples. In alkaline microenvironment, all the samples showed identical decomposition attributed to conversion of bisulfate...

  10. Condições de temperatura, umidade relativa e atmosfera controlada para o armazenamento de cebolas da cultivar 'Crioula' Temperature, relative humidity and controlled atmosphere conditions to storage 'Crioula' onions

    Directory of Open Access Journals (Sweden)

    Auri Brackmann

    2010-08-01

    Full Text Available O objetivo deste trabalho foi de avaliar condições de armazenamento para ampliar o período de pós-colheita de cebola da cultivar 'Crioula'. Para tanto, foram executados três experimentos para avaliar o efeito da temperatura, umidade relativa (UR e atmosfera controlada (AC: experimento 1 (diferentes temperaturas: [1] -0,5°C, [2] 0,5°C, [3] 2°C, [4] 4°C, [5] 6°C e [6] 10°C; experimento 2 (níveis de UR: [1] 70%, [2] 80% e [3] 90%; e experimento 3 (condições de AC: [1] 21kPa O2+0,03kPa CO2, [2] 0,5kPa O2+0kPa CO2, [3] 1,0kPa O2+0kPa CO2, [4] 2,0kPa O2+0kPa CO2, [5] 1,0kPa O2+2,0kPa CO2 e [6]1,0kPa O2+4,0kPa CO2. O delineamento experimental utilizado foi o inteiramente casualizado. Após seis meses de armazenamento, foram realizadas as análises no momento da saída dos bulbos das câmaras e após 15 dias de exposição a 20°C. A brotação e a podridão foram inibidas na temperatura de 0,5°C, diferentemente das temperaturas iguais e superiores a 4°C, em que mais de 90% dos bulbos brotaram. As UR de 70 e 80% foram melhores, pois ocorreu menor brotação. O baixo oxigênio controlou a brotação dos bulbos, proporcionando maior número de bulbos comerciáveis após seis meses em AC e também após 15 dias de exposição a 20°C.The aim of this research was to evaluate conditions to maintain postharvest quality of 'Crioula' onions. Three experiments were done, evaluating the effect of temperature, relative humidity (RH and controlled atmosphere (CA: different temperatures: [1] -0.5°C, [2] 0.5°C, [3] 2°C, [4] 4°C, [5] 6°C and [6] 10°C. Levels of RH: [1] 70%, [2] 80% and [3] 90%; and different CA conditions: [1] 21kPa O2+0.03kPa CO2, [2] 0.5kPa O2+0kPa CO2, [3] 1.0kPa O2+0kPa CO2, [4] 2.0kPa O2+0kPa CO2, [5] 1.0kPa O2+2.0kPa CO2 and [6] O2 1.0kPa+4.0kPa CO2. The experimental design was completely randomized. Ripening and quality evaluations were carried out after six months of storage more fifteen days at 20°C. The sprout and rot

  11. Relative humidity and activity patterns of Ixodes scapularis (Acari: Ixodidae)

    Science.gov (United States)

    Berger, K.A.; Ginsberg, Howard S.; Gonzalez, L.; Mather, T.N.

    2014-01-01

    Laboratory studies have shown clear relationships between relative humidity (RH) and the activity and survival of Ixodes scapularis Say (blacklegged tick). However, field studies have produced conflicting results. We examined this relationship using weekly tick count totals and hourly RH observations at three field sites, stratified by latitude, within the state of Rhode Island. Records of nymphal tick abundance were compared with several RH-related variables (e.g., RH at time of sampling and mean weekly daytime RH). In total, 825 nymphs were sampled in 2009, a year of greater precipitation, with a weighted average leaf litter RH recorded at time of sampling of 85.22%. Alternatively, 649 nymphs were collected in 2010, a year of relatively low precipitation, and a weighted average RH recorded at time of sampling was 75.51%. Negative binomial regression analysis of tick count totals identified cumulative hours <82% RH threshold as a significant factor observed in both years (2009: P = 0.0037; 2010: P < 0.0001). Mean weekly daytime RH did not significantly predict tick activity in either year. However, mean weekly daytime RH recorded with 1-wk lag before sample date was a significant variable (P = 0.0016) in 2010. These results suggest a lag effect between moisture availability and patterns of tick activity and abundance. Differences in the relative importance of each RH variable between years may have been due to abnormally wet summer conditions in 2009.

  12. Influence of sample temperature and environmental humidity on measurements of benzene in ambient air by transportable GC-PID

    Directory of Open Access Journals (Sweden)

    C. Romero-Trigueros

    2017-10-01

    Full Text Available Calibration of in situ analysers of air pollutants is usually done with dry standards. In this paper, the influence of sample temperature and environmental humidity on benzene measurements by gas chromatography coupled with a photoionisation detector (GC-PID is studied. Two reference gas mixtures (40 and 5 µg m−3 nominal concentration benzene in air were subjected to two temperature cycles (20/5/20 °C and 20/35/20 °C and measured with two identical GC-PIDs. The change in sample temperature did not produce any significant change in readings. Regarding ambient humidity, the chromatographs were calibrated for benzene with dry gases and subjected to measure reference standards with humidity (20 and 80 % at 20 °C. When measuring a concentration of 0.5 µg m−3 benzene in air, the levels of humidity tested did not produce any significant interference in measurements taken with any of the analysers. However, when measuring a concentration of 40 µg m−3, biases in measurements of 18 and 21 % for each respective analyser were obtained when the relative humidity of the sample was 80 % at 20 °C. Further tests were carried out to study the nature of this interference. Results show that humidity interference depends on both the amount fractions of water vapour and benzene. If benzene concentrations in an area are close to its annual limit value (5 µg m−3, biases of 2.2 % can be expected when the absolute humidity is 8.6 g cm−3 – corresponding to a relative humidity of 50 % at 20 °C. This can be accounted for in the uncertainty budget of measurements with no need for corrections. If benzene concentrations are above the annual limit value, biases become higher. Thus, in these cases, actions should be taken to reduce the humidity interference, as an underestimation of benzene concentrations may cause a mismanagement of air quality in these situations.

  13. The effects of non-invasive respiratory support on oropharyngeal temperature and humidity: a neonatal manikin study.

    Science.gov (United States)

    Roberts, Calum T; Kortekaas, Rebecca; Dawson, Jennifer A; Manley, Brett J; Owen, Louise S; Davis, Peter G

    2016-05-01

    Heating and humidification of inspired gases is routine during neonatal non-invasive respiratory support. However, little is known about the temperature and humidity delivered to the upper airway. The International Standards Organization (ISO) specifies that for all patients with an artificial airway humidifiers should deliver ≥33 g/m(3) absolute humidity (AH). We assessed the oropharyngeal temperature and humidity during different non-invasive support modes in a neonatal manikin study. Six different modes of non-invasive respiratory support were applied at clinically relevant settings to a neonatal manikin, placed in a warmed and humidified neonatal incubator. Oropharyngeal temperature and relative humidity (RH) were assessed using a thermohygrometer. AH was subsequently calculated. Measured temperature and RH varied between devices. Bubble and ventilator continuous positive airway pressure (CPAP) produced temperatures >34°C and AH >38 g/m(3). Variable flow CPAP resulted in lower levels of AH than bubble or ventilator CPAP, and AH decreased with higher gas flow. High-flow (HF) therapy delivered by Optiflow Junior produced higher AH with higher gas flow, whereas with Vapotherm HF the converse was true. Different non-invasive devices deliver inspiratory gases of variable temperature and humidity. Most AH levels were above the ISO recommendation; however, with some HF and variable flow CPAP devices at higher gas flow this was not achieved. Clinicians should be aware of differences in the efficacy of heating and humidification when choosing modes of non-invasive respiratory support. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Searching for the best modeling specification for assessing the effects of temperature and humidity on health: a time series analysis in three European cities.

    Science.gov (United States)

    Rodopoulou, Sophia; Samoli, Evangelia; Analitis, Antonis; Atkinson, Richard W; de'Donato, Francesca K; Katsouyanni, Klea

    2015-11-01

    Epidemiological time series studies suggest daily temperature and humidity are associated with adverse health effects including increased mortality and hospital admissions. However, there is no consensus over which metric or lag best describes the relationships. We investigated which temperature and humidity model specification most adequately predicted mortality in three large European cities. Daily counts of all-cause mortality, minimum, maximum and mean temperature and relative humidity and apparent temperature (a composite measure of ambient and dew point temperature) were assembled for Athens, London, and Rome for 6 years between 1999 and 2005. City-specific Poisson regression models were fitted separately for warm (April-September) and cold (October-March) periods adjusting for seasonality, air pollution, and public holidays. We investigated goodness of model fit for each metric for delayed effects up to 13 days using three model fit criteria: sum of the partial autocorrelation function, AIC, and GCV. No uniformly best index for all cities and seasonal periods was observed. The effects of temperature were uniformly shown to be more prolonged during cold periods and the majority of models suggested separate temperature and humidity variables performed better than apparent temperature in predicting mortality. Our study suggests that the nature of the effects of temperature and humidity on mortality vary between cities for unknown reasons which require further investigation but may relate to city-specific population, socioeconomic, and environmental characteristics. This may have consequences on epidemiological studies and local temperature-related warning systems.

  15. High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar

    Science.gov (United States)

    Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin

    2010-05-01

    derive vertical profiles of aerosol backscatter ratio and aerosol extinction at 355 nm. Set of Stokes and anti-Stokes PRR lines are separated by the polychromator to derive temperature profiles. The humidity profiles have vertical resolution from 15 m (within the boundary layer) to 100-450 m (within the free troposphere), time resolution of 30 min and 5 km vertical range at daytime and 10 km at night-time. The aerosol backscatter ratio and extinction profiles have similar resolution with vertical range of approximately 10 km. The temperature profiles are derived from PRR lidar signals, simultaneously recorded in analog and photon counting mode, allowing vertical range of approximately 10 km. Vaisala RS-92 and Snow-White chilled mirror hygrometer radiosondes were used for calibration of the water vapor and temperature channels. Continuous temperature profiles were obtained and were coupled with the available water vapor mixing ratio profiles to obtain relative humidity time series. Lidar derived aerosol backscatter ratio profiles will be used for estimation of the boundary layer height and validation of NWP model results. Optical thickness time series are currently compared to independent measurements from a collocated sun photometer to assess the performance of the aerosol channel.

  16. Effect of Relative Humidity on Adsorption Breakthrough of CO2 on Activated Carbon Fibers

    Directory of Open Access Journals (Sweden)

    Yu-Chun Chiang

    2017-11-01

    Full Text Available Microporous activated carbon fibers (ACFs were developed for CO2 capture based on potassium hydroxide (KOH activation and tetraethylenepentamine (TEPA amination. The material properties of the modified ACFs were characterized using several techniques. The adsorption breakthrough curves of CO2 were measured and the effect of relative humidity in the carrier gas was determined. The KOH activation at high temperature generated additional pore networks and the intercalation of metallic K into the carbon matrix, leading to the production of mesopore and micropore volumes and providing access to the active sites in the micropores. However, this treatment also resulted in the loss of nitrogen functionalities. The TEPA amination has successfully introduced nitrogen functionalities onto the fiber surface, but its long-chain structure blocked parts of the micropores and, thus, made the available surface area and pore volume limited. Introduction of the power of time into the Wheeler equation was required to fit the data well. The relative humidity within the studied range had almost no effects on the breakthrough curves. It was expected that the concentration of CO2 was high enough so that the impact on CO2 adsorption capacity lessened due to increased relative humidity.

  17. EDITORIAL: Humidity sensors Humidity sensors

    Science.gov (United States)

    Regtien, Paul P. L.

    2012-01-01

    All matter is more or less hygroscopic. The moisture content varies with vapour concentration of the surrounding air and, as a consequence, most material properties change with humidity. Mechanical and thermal properties of many materials, such as the tensile strength of adhesives, stiffness of plastics, stoutness of building and packaging materials or the thermal resistivity of isolation materials, all decrease with increasing environmental humidity or cyclic humidity changes. The presence of water vapour may have a detrimental influence on many electrical constructions and systems exposed to humid air, from high-power systems to microcircuits. Water vapour penetrates through coatings, cable insulations and integrated-circuit packages, exerting a fatal influence on the performance of the enclosed systems. For these and many other applications, knowledge of the relationship between moisture content or humidity and material properties or system behaviour is indispensable. This requires hygrometers for process control or test and calibration chambers with high accuracy in the appropriate temperature and humidity range. Humidity measurement methods can roughly be categorized into four groups: water vapour removal (the mass before and after removal is measured); saturation (the air is brought to saturation and the `effort' to reach that state is measured); humidity-dependent parameters (measurement of properties of humid air with a known relation between a specific property and the vapour content, for instance the refractive index, electromagnetic spectrum and acoustic velocity); and absorption (based on the known relation between characteristic properties of non-hydrophobic materials and the amount of absorbed water from the gas to which these materials are exposed). The many basic principles to measure air humidity are described in, for instance, the extensive compilations by Wexler [1] and Sonntag [2]. Absorption-type hygrometers have small dimensions and can be

  18. Performance investigation on a multi-unit heat pump for simultaneous temperature and humidity control

    International Nuclear Information System (INIS)

    Fan, Hongming; Shao, Shuangquan; Tian, Changqing

    2014-01-01

    Highlights: • A multi-unit heat pump is proposed for simultaneous temperature and humidity control. • Condensation heat is non, partly or fully recovered for temperature regulation. • Highly integrated heat pump for residential cooling, dehumidification and heating. • High energy saving potential for all-year-round operation in wet and warm regions. - Abstract: A multi-unit heat pump is presented for simultaneous humidity and temperature control to improve the energy efficiency and the thermal comfort. Two parallel connected condensers are employed in the system, locating at the back of the indoor evaporator and the outdoor unit, respectively. The heat pump can operate in four modes, including heating, cooling and dehumidification without and/or with partial or total condensing heat recovery. The experimental investigation shows that the temperature control capacity is from 3.5 kW for cooling to 3.8 kW for heating with the cooling and heating efficiency higher than 3.5 kW kW −1 , and the dehumidification rate is about 2.0 kg h −1 with the efficiency about 2.0 kg h −1 kW −1 . The supply air temperature and humidity can be simultaneously regulated with high accuracy and high efficiency by adjusting the indoor and/or outdoor air volumes. It provides an integrated and effective solution for simultaneous indoor air temperature and humidity control for all-year-round operation in residential buildings

  19. A novel method for in-situ monitoring of local voltage, temperature and humidity distributions in fuel cells using flexible multi-functional micro sensors.

    Science.gov (United States)

    Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping

    2011-01-01

    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it.

  20. A Novel Method for In-Situ Monitoring of Local Voltage, Temperature and Humidity Distributions in Fuel Cells Using Flexible Multi-Functional Micro Sensors

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chang

    2011-01-01

    Full Text Available In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS. These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it.

  1. A Novel Method for In-Situ Monitoring of Local Voltage, Temperature and Humidity Distributions in Fuel Cells Using Flexible Multi-Functional Micro Sensors

    Science.gov (United States)

    Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping

    2011-01-01

    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it. PMID:22319361

  2. Room temperature humidity sensor based on polyaniline-tungsten disulfide composite

    Science.gov (United States)

    Manjunatha, S.; Chethan, B.; Ravikiran, Y. T.; Machappa, T.

    2018-05-01

    Polyaniline-tungsten disulfide (PANI-WS2) composite was synthesized using in situ polymerization technique by adding finely grinded powder of WS2 during the polymerization of aniline. Field emission scanning electron microscopy (FESEM) images showed the granular morphology with porous nature. Energy dispersive X-ray spectroscopy (EDX) confirmed the presence of carbon, nitrogen, chlorine of PANI, tungsten and sulfur elements of WS2. Humidity sensing property of the composite was investigated by plotting change in its resistance with different relative humidity environments ranging from 10 to 97% RH. Decrease in resistance of the composite was observed with increase in relative humidity. Maximum sensing response of the composite was found to be 88.46%. Response and recovery times of the composite at 97%RH were fair enough to fabricate a sensor based on it. Stability of the composite with respect to the humidity sensing behavior was observed to be unchanged even after two months.

  3. Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae); Impacto de pequenas variacoes de temperatura e umidade na atividade reprodutiva e sobrevivencia de Aedes aegypti (Diptera, Culicidae)

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Ethiene Arruda Pedrosa de Almeida; Santos, Eloina Maria de Mendonca; Correia, Juliana Cavalcanti; Albuquerque, Cleide Maria Ribeiro de, E-mail: cleide.ufpe@gmail.co [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Ciencias Biologicas. Dept. de Zoologia

    2010-07-01

    In short space of time increase in temperature and rainfall can affect vector populations and, consequently, the diseases for them transmitted. The present study analyzed the effect of small temperature and humidity variations on the fecundity, fertility and survival of Aedes aegypti. These parameters were analyzed using individual females at temperatures ranging from 23 to 27 deg C (mean 25 deg C); 28 to 32 deg C (mean 30 deg C) and 33 to 37 deg C (mean 35 deg C) associated to 60 +- 8% and 80 +- 6% relative humidity. Females responded to an increase in temperature by reducing egg production, oviposition time and changing oviposition patterns. At 25 deg C and 80% relative humidity, females survived two-fold more and produced 40% more eggs when compared to those kept at 35 deg C and 80% relative humidity. However, in 45% of females kept at 35 deg C and 60% relative humidity oviposition was inhibited and only 15% females laid more than 100 eggs, suggesting that the intensity of the temperature effect was influenced by humidity. Gradual reductions in egg fertility at 60% relative humidity were observed with the increase in temperature, although such effect was not found in the 80% relative humidity at 25 deg C and 30 deg C. These results suggest that the reduction in population densities recorded in tropical areas during seasons when temperatures reach over 35 deg C is likely to be strongly influenced by temperature and humidity, with a negative effect on several aspects of mosquito biology. (author)

  4. Electron energy distribution functions and transport coefficients relevant for air plasmas in the troposphere: impact of humidity and gas temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo-Vazquez, F J [Instituto de Astrofisica de Andalucia (IAA), CSIC, PO Box 3004, 18080 Granada (Spain); Donko, Z [Research Institute for Solid State Physics and Optics, H-1525 Budapest, PO Box, 49 (Hungary)

    2009-08-15

    A Boltzmann and Monte Carlo analysis of the electron energy distribution function (EEDF) and transport coefficients for air plasmas is presented for the conditions of the Earth troposphere where some transient luminous events (TLEs) such as blue jets, blue starters and gigantic jets have been observed. According to recent model results (Minschwaner et al 2004 J. Climate 17 1272) supported by the halogen occultation experiment, the relative humidity of the atmospheric air between 0 and 15 km can change between 15% and 100% depending on the altitude investigated and the ground temperature. The latter results cover a region of latitudes between -25 deg. S and +25 deg. N, that is, the Earth tropical region where lightning and TLE activity is quite high. The calculations shown here suggest that the relative humidity has a clear impact on the behaviour of the EEDF and magnitude of the transport coefficients of air plasmas at ground (0 km) and room temperature conditions (293 K). At higher altitudes (11 and 15 km), the influence of the relative humidity is negligible when the values of the gas temperature are assumed to be the 'natural' ones corresponding to those altitudes, that is, {approx}215 K (at 11 km) and {approx}198 K (at 15 km). However, it is found that a small enhancement (of maximum 100 K) in the background gas temperature (that could be reasonably associated with the TLE activity) would lead to a remarkable impact of the relative humidity on the EEDF and transport coefficients of air plasmas under the conditions of blue jets, blue starters and gigantic jets at 11 and 15 km. The latter effects are visible for relatively low reduced electric fields (E/N {<=} 25 Td) that could be controlling the afterglow kinetics of the air plasmas generated by TLEs. However, for much higher fields such as, for instance, 400 Td (representative of the fields in the streamer coronas and lightning leaders), the impact of increasing the relative humidity and gas

  5. Electron energy distribution functions and transport coefficients relevant for air plasmas in the troposphere: impact of humidity and gas temperature

    International Nuclear Information System (INIS)

    Gordillo-Vazquez, F J; Donko, Z

    2009-01-01

    A Boltzmann and Monte Carlo analysis of the electron energy distribution function (EEDF) and transport coefficients for air plasmas is presented for the conditions of the Earth troposphere where some transient luminous events (TLEs) such as blue jets, blue starters and gigantic jets have been observed. According to recent model results (Minschwaner et al 2004 J. Climate 17 1272) supported by the halogen occultation experiment, the relative humidity of the atmospheric air between 0 and 15 km can change between 15% and 100% depending on the altitude investigated and the ground temperature. The latter results cover a region of latitudes between -25 deg. S and +25 deg. N, that is, the Earth tropical region where lightning and TLE activity is quite high. The calculations shown here suggest that the relative humidity has a clear impact on the behaviour of the EEDF and magnitude of the transport coefficients of air plasmas at ground (0 km) and room temperature conditions (293 K). At higher altitudes (11 and 15 km), the influence of the relative humidity is negligible when the values of the gas temperature are assumed to be the 'natural' ones corresponding to those altitudes, that is, ∼215 K (at 11 km) and ∼198 K (at 15 km). However, it is found that a small enhancement (of maximum 100 K) in the background gas temperature (that could be reasonably associated with the TLE activity) would lead to a remarkable impact of the relative humidity on the EEDF and transport coefficients of air plasmas under the conditions of blue jets, blue starters and gigantic jets at 11 and 15 km. The latter effects are visible for relatively low reduced electric fields (E/N ≤ 25 Td) that could be controlling the afterglow kinetics of the air plasmas generated by TLEs. However, for much higher fields such as, for instance, 400 Td (representative of the fields in the streamer coronas and lightning leaders), the impact of increasing the relative humidity and gas temperature is only slightly

  6. Optical sensor for measuring humidity, strain and temperature

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to an optical sensor (100) adapted to measure at least three physical parameters, said optical sensor comprising a polymer-based optical waveguide structure comprising a first Bragg grating structure (101) being adapted to provide information about a first, a second...

  7. Mixing of secondary organic aerosols versus relative humidity

    Science.gov (United States)

    Ye, Qing; Robinson, Ellis Shipley; Ding, Xiang; Ye, Penglin

    2016-01-01

    Atmospheric aerosols exert a substantial influence on climate, ecosystems, visibility, and human health. Although secondary organic aerosols (SOA) dominate fine-particle mass, they comprise myriad compounds with uncertain sources, chemistry, and interactions. SOA formation involves absorption of vapors into particles, either because gas-phase chemistry produces low-volatility or semivolatile products that partition into particles or because more-volatile organics enter particles and react to form lower-volatility products. Thus, SOA formation involves both production of low-volatility compounds and their diffusion into particles. Most chemical transport models assume a single well-mixed phase of condensing organics and an instantaneous equilibrium between bulk gas and particle phases; however, direct observations constraining diffusion of semivolatile organics into particles containing SOA are scarce. Here we perform unique mixing experiments between SOA populations including semivolatile constituents using quantitative, single-particle mass spectrometry to probe any mass-transfer limitations in particles containing SOA. We show that, for several hours, particles containing SOA from toluene oxidation resist exchange of semivolatile constituents at low relative humidity (RH) but start to lose that resistance above 20% RH. Above 40% RH, the exchange of material remains constant up to 90% RH. We also show that dry particles containing SOA from α-pinene ozonolysis do not appear to resist exchange of semivolatile compounds. Our interpretation is that in-particle diffusion is not rate-limiting to mass transfer in these systems above 40% RH. To the extent that these systems are representative of ambient SOA, we conclude that diffusion limitations are likely not common under typical ambient boundary layer conditions. PMID:27791066

  8. Mixing of secondary organic aerosols versus relative humidity.

    Science.gov (United States)

    Ye, Qing; Robinson, Ellis Shipley; Ding, Xiang; Ye, Penglin; Sullivan, Ryan C; Donahue, Neil M

    2016-10-24

    Atmospheric aerosols exert a substantial influence on climate, ecosystems, visibility, and human health. Although secondary organic aerosols (SOA) dominate fine-particle mass, they comprise myriad compounds with uncertain sources, chemistry, and interactions. SOA formation involves absorption of vapors into particles, either because gas-phase chemistry produces low-volatility or semivolatile products that partition into particles or because more-volatile organics enter particles and react to form lower-volatility products. Thus, SOA formation involves both production of low-volatility compounds and their diffusion into particles. Most chemical transport models assume a single well-mixed phase of condensing organics and an instantaneous equilibrium between bulk gas and particle phases; however, direct observations constraining diffusion of semivolatile organics into particles containing SOA are scarce. Here we perform unique mixing experiments between SOA populations including semivolatile constituents using quantitative, single-particle mass spectrometry to probe any mass-transfer limitations in particles containing SOA. We show that, for several hours, particles containing SOA from toluene oxidation resist exchange of semivolatile constituents at low relative humidity (RH) but start to lose that resistance above 20% RH. Above 40% RH, the exchange of material remains constant up to 90% RH. We also show that dry particles containing SOA from α-pinene ozonolysis do not appear to resist exchange of semivolatile compounds. Our interpretation is that in-particle diffusion is not rate-limiting to mass transfer in these systems above 40% RH. To the extent that these systems are representative of ambient SOA, we conclude that diffusion limitations are likely not common under typical ambient boundary layer conditions.

  9. Endotracheal temperature and humidity measurements in laryngectomized patients: intra- and inter-patient variability

    NARCIS (Netherlands)

    Scheenstra, R.J.; Muller, S.H.; Vincent, A.; Sinaasappel, M.; Zuur, J.K.; Hilgers, F.J.M.

    2009-01-01

    This study assesses intra- and inter-patient variability in endotracheal climate (temperature and humidity) and effects of heat and moister exchangers (HME) in 16 laryngectomized individuals, measured repeatedly (N = 47). Inhalation Breath Length (IBL) was 1.35 s without HME and 1.05 s with HME (P <

  10. Endotracheal temperature and humidity measurements in laryngectomized patients: intra- and inter-patient variability

    NARCIS (Netherlands)

    Scheenstra, R. J.; Muller, S. H.; Vincent, A.; Sinaasappel, M.; Zuur, J. K.; Hilgers, Frans J. M.

    2009-01-01

    This study assesses intra- and inter-patient variability in endotracheal climate (temperature and humidity) and effects of heat and moister exchangers (HME) in 16 laryngectomized individuals, measured repeatedly (N = 47). Inhalation Breath Length (IBL) was 1.35 s without HME and 1.05 s with HME (P

  11. Measurements of Humidity and Temperature in the Marine Environment during the HEXOS Main Experiment

    NARCIS (Netherlands)

    Katsaros, K.B.; Cosmo, J. de; Lind, R.J.; Anderson, R.J.; Smith, S.D.; Kraan, R.; Oost, W.A.; Uhlig, K.; Mestayer, P.G.; Larsen, S.E.; Smith, M.H.; Leeuw, G. de

    1994-01-01

    Accurate measurement of fluctuations in temperature and humidity are needed for determination of the surface evaporation rate and the air-sea sensible heat flux using either the eddy correlation or inertial dissipation method for flux calculations. These measurements are difficult to make over the

  12. Physical and chemical changes in whey protein concentrate stored at elevated temperature and humidity

    Science.gov (United States)

    The chemistry of whey protein concentrate (WPC) under adverse storage conditions was monitored to provide information on shelf life in hot, humid areas. WPC34 (34.9 g protein/100 g) and WPC80 (76.8 g protein/100 g) were stored for up to 18 mo under ambient conditions and at elevated temperature and...

  13. A surface acoustic wave passive and wireless sensor for magnetic fields, temperature, and humidity

    KAUST Repository

    Li, Bodong; Yassine, Omar; Kosel, Jü rgen

    2015-01-01

    In this paper, we report an integrated single-chip surface acoustic wave sensor with the capability of measuring magnetic field, temperature, and humidity. The sensor is fabricated using a thermally sensitive LiNbO3 substrate, a humidity sensitive hydrogel coating, and a magnetic field sensitive impedance load. The sensor response to individually and simultaneously changing magnetic field, temperature and humidity is characterized by connecting a network analyzer directly to the sensor. Analytical models for each measurand are derived and used to compensate noise due to cross sensitivities. The results show that all three measurands can be monitored in parallel with sensitivities of 75 ppm/°C, 0.13 dB/%R.H. (at 50%R.H.), 0.18 dB/Oe and resolutions of 0.1 °C, 0.4%R.H., 1 Oe for temperature, humidity and magnetic field, respectively. A passive wireless measurement is also conducted on a current line using, which shows the sensors capability to measure both temperature and current signals simultaneously.

  14. Surface temperatures in the polar regions from Nimbus 7 temperature humidity infrared radiometer

    Science.gov (United States)

    Comiso, Josefino C.

    1994-01-01

    Monthly surface temperatures in the Arctic and Antarctic regions have been derived from the 11.5 micrometer thermal infrared channel of the Nimbus 7 temperature humidity infrared radiometer (THIR) for a whole year in 1979 and for a winter and a summer month from 1980 through 1985. The data set shows interannual variability and provides spatial details that allow identification of temperature patterns over sea ice and ice sheet surfaces. For example, the coldest spot in the southern hemisphere is observed to be consistently in the Antarctic plateau in the southern hemisphere, while that in the northern hemisphere is usually located in Greenland, or one of three other general areas: Siberia, the central Arctic, or the Canadian Archipelago. Also, in the southern hemisphere, the amplitude of the seasonal fluctuation of ice sheet temperatures is about 3 times that of sea ice, while in the northern hemisphere, the corresponding fluctuations for the two surfaces are about the same. The main sources of error in the retrieval are cloud and other atmospheric effects. These were minimized by first choosing the highest radiance value from the set of measurements during the day taken within a 30 km by 30 km grid of each daily map. Then the difference of daily maps was taken and where the difference is greater than a certain threshold (which in this case is 12 C), the data element is deleted. Overall, the monthly maps derived from the resulting daily maps are spatially and temporally consistent, are coherent with the topograph y of the Antarctic continent and the location of the sea ice edge, and are in qualitative agreement with climatological data. Quantitatively, THIR data are in good agreement with Antarctic ice sheet surface air temperature station data with a correlation coefficient of 0.997 and a standard deviation of 2.0 C. The absolute values are not as good over the sea ice edges, but a comparison with Russian 2-m drift station temperatures shows very high correlation

  15. Short term change in relative humidity during the festival of Diwali in India

    Science.gov (United States)

    Ganguly, Nandita D.

    2015-07-01

    The changes in humidity levels during the Diwali festivities have been examined over a period of 13 years at three Indian metro cities: Ahmedabad, New Delhi and Kolkata. A small short term increase in relative humidity even in the absence of transport of humid air from Arabian Sea and Bay of Bengal has been observed. The relative humidity levels were found to be exceeding the ambient levels during night and lying below the ambient levels during morning hours, indicating an increase in the survival rates of viruses responsible for the transmission of viral infections, as well as triggering immune-mediated illnesses such as asthma during Diwali.

  16. Composite polymer membranes for proton exchange membrane fuel cells operating at elevated temperatures and reduced humidities

    Science.gov (United States)

    Zhang, Tao

    Proton Exchange Membrane Fuel Cells (PEMFCs) are the leading candidate in the fuel cell technology due to the high power density, solid electrolyte, and low operational temperature. However, PEMFCs operating in the normal temperature range (60-80°C) face problems including poor carbon monoxide tolerance and heat rejection. The poisoning effect can be significantly relieved by operating the fuel cell at elevated temperature, which also improves the heat rejection and electrochemical kinetics. Low relative humidity (RH) operation is also desirable to simplify the reactant humidification system. However, at elevated temperatures, reduced RH PEMFC performance is seriously impaired due to irreversible water loss from presently employed state-of-the-art polymer membrane, Nafion. This thesis focuses on developing polymer electrolyte membranes with high water retention ability for operation in elevated temperature (110-150°C), reduced humidity (˜50%RH) PEMFCs. One approach is to alter Nafion by adding inorganic particles such as TiO2, SiO2, Zr(HPO 4)2, etc. While the presence of these materials in Nafion has proven beneficial, a reduction or no improvement in the PEMFC performance of Nafion/TiO2 and Nafion/Zr(HPO4)2 membranes is observed with reduced particle sizes or increased particle loadings in Nafion. It is concluded that the PEMFC performance enhancement associated with addition of these inorganic particles was not due to the particle hydrophilicity. Rather, the particle, partially located in the hydrophobic region of the membrane, benefits the cell performance by altering the membrane structure. Water transport properties of some Nafion composite membranes were investigated by NMR methods including pulsed field gradient spin echo diffusion, spin-lattice relaxation, and spectral measurements. Compared to unmodified Nafion, composite membranes materials exhibit longer longitudinal relaxation time constant T1. In addition to the Nafion material, sulfonated styrene

  17. Particle backscatter and relative humidity measured across cirrus clouds and comparison with microphysical cirrus modelling

    Directory of Open Access Journals (Sweden)

    M. Brabec

    2012-10-01

    Full Text Available Advanced measurement and modelling techniques are employed to estimate the partitioning of atmospheric water between the gas phase and the condensed phase in and around cirrus clouds, and thus to identify in-cloud and out-of-cloud supersaturations with respect to ice. In November 2008 the newly developed balloon-borne backscatter sonde COBALD (Compact Optical Backscatter and AerosoL Detector was flown 14 times together with a CFH (Cryogenic Frost point Hygrometer from Lindenberg, Germany (52° N, 14° E. The case discussed here in detail shows two cirrus layers with in-cloud relative humidities with respect to ice between 50% and 130%. Global operational analysis data of ECMWF (roughly 1° × 1° horizontal and 1 km vertical resolution, 6-hourly stored fields fail to represent ice water contents and relative humidities. Conversely, regional COSMO-7 forecasts (6.6 km × 6.6 km, 5-min stored fields capture the measured humidities and cloud positions remarkably well. The main difference between ECMWF and COSMO data is the resolution of small-scale vertical features responsible for cirrus formation. Nevertheless, ice water contents in COSMO-7 are still off by factors 2–10, likely reflecting limitations in COSMO's ice phase bulk scheme. Significant improvements can be achieved by comprehensive size-resolved microphysical and optical modelling along backward trajectories based on COSMO-7 wind and temperature fields, which allow accurate computation of humidities, homogeneous ice nucleation, resulting ice particle size distributions and backscatter ratios at the COBALD wavelengths. However, only by superimposing small-scale temperature fluctuations, which remain unresolved by the numerical weather prediction models, can we obtain a satisfying agreement with the observations and reconcile the measured in-cloud non-equilibrium humidities with conventional ice cloud microphysics. Conversely, the model-data comparison provides no evidence that additional

  18. SIZE DISTRIBUTION OF SEA-SALT EMISSIONS AS A FUNCTION OF RELATIVE HUMIDITY

    Science.gov (United States)

    This note presents a straightforward method to correct sea-salt-emission particle-size distributions according to local relative humidity. The proposed method covers a wide range of relative humidity (0.45 to 0.99) and its derivation incorporates recent laboratory results on sea-...

  19. The correlation between temperature and humidity with the population density of Aedes aegypti as dengue fever’s vector

    Science.gov (United States)

    Sintorini, M. M.

    2018-01-01

    The weather change in South East Asia have triggered the increase of dengue fever illness in Indonesia. Jakarta has been declared as one of dengue fever endemic region. This research aim to gain the dynamic of dengue fever incidents related to temperature, humidity and the population density of Aedes aegypti. This research implementated Design of Ecology Study. The samples were collected from April 2015 to March 2016, from houses located in the suburbs i.e. Pasar Minggu, Ciracas, Sunter Agung, Palmerah and Bendungan Hilir. The sampling based on Sampling Design Cluster and each suburb represents 153 samples. The research shows correlation between temperature (p value 0.000) and humidity (p value 0,000) with Aedes aegypti as dengue fever’s Vector. Therefore, an early warning system should be developed based on environmental factors to anticipate the spread of dengue fever.

  20. A new temperature and humidity dependent surface site density approach for deposition ice nucleation

    OpenAIRE

    I. Steinke; C. Hoose; O. Möhler; P. Connolly; T. Leisner

    2014-01-01

    Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol ...

  1. Experimental research on the indoor temperature and humidity fields in radiant ceiling air-conditioning system under natural ventilation

    Science.gov (United States)

    Huang, Tao; Xiang, Yutong; Wang, Yonghong

    2017-05-01

    In this paper, the indoor temperature and humidity fields of the air in a metal ceiling radiant panel air conditioning system with fresh air under natural ventilation were researched. The temperature and humidity distributions at different height and different position were compared. Through the computation analysis of partial pressure of water vapor, the self-recovery characteristics of humidity after the natural ventilation was discussed.

  2. An Inexpensive, Stable, and Accurate Relative Humidity Measurement Method for Challenging Environments.

    Science.gov (United States)

    Zhang, Wei; Ma, Hong; Yang, Simon X

    2016-03-18

    In this research, an improved psychrometer is developed to solve practical issues arising in the relative humidity measurement of challenging drying environments for meat manufacturing in agricultural and agri-food industries. The design in this research focused on the structure of the improved psychrometer, signal conversion, and calculation methods. The experimental results showed the effect of varying psychrometer structure on relative humidity measurement accuracy. An industrial application to dry-cured meat products demonstrated the effective performance of the improved psychrometer being used as a relative humidity measurement sensor in meat-drying rooms. In a drying environment for meat manufacturing, the achieved measurement accuracy for relative humidity using the improved psychrometer was ±0.6%. The system test results showed that the improved psychrometer can provide reliable and long-term stable relative humidity measurements with high accuracy in the drying system of meat products.

  3. Properties of ammonium ion-water clusters: analyses of structure evolution, noncovalent interactions, and temperature and humidity effects.

    Science.gov (United States)

    Pei, Shi-Tu; Jiang, Shuai; Liu, Yi-Rong; Huang, Teng; Xu, Kang-Ming; Wen, Hui; Zhu, Yu-Peng; Huang, Wei

    2015-03-26

    Although ammonium ion-water clusters are abundant in the biosphere, some information regarding these clusters, such as their growth route, the influence of temperature and humidity, and the concentrations of various hydrated clusters, is lacking. In this study, theoretical calculations are performed on ammonium ion-water clusters. These theoretical calculations are focused on determining the following characteristics: (1) the pattern of cluster growth; (2) the percentages of clusters of the same size at different temperatures and humidities; (3) the distributions of different isomers for the same size clusters at different temperatures; (4) the relative strengths of the noncovalent interactions for clusters of different sizes. The results suggest that the dipole moment may be very significant for the ammonium ion-water system, and some new stable isomers were found. The nucleation of ammonium ions and water molecules is favorable at low temperatures; thus, the clusters observed at high altitudes might not be present at low altitudes. High humidity can contribute to the formation of large ammonium ion-water clusters, whereas the formation of small clusters may be favorable under low-humidity conditions. The potential energy surfaces (PES) of these different sized clusters are complicated and differ according to the distribution of isomers at different temperatures. Some similar structures are observed between NH4(+)(H2O)n and M(H2O)n (where M represents an alkali metal ion or water molecule); when n = 8, the clusters begin to form the closed-cage geometry. As the cluster size increases, these interactions become progressively weaker. The successive binding energy at the DF-MP2-F12/VDZ-F12 level is better than that at the PW91PW91/6-311++G(3df, 3pd) level and is consistent with the experimentally determined values.

  4. Effect of low air velocities on thermal homeostasis and comfort during exercise at space station operational temperature and humidity

    Science.gov (United States)

    Beumer, Ronald J.

    1989-01-01

    The effectiveness of different low air velocities in maintaining thermal comfort and homeostasis during exercise at space station operational temperature and humidity was investigated. Five male subjects exercised on a treadmill for successive ten minute periods at 60, 71, and 83 percent of maximum oxygen consumption at each of four air velocities, 30, 50, 80, and 120 ft/min, at 22 C and 62 percent relative humidity. No consistent trends or statistically significant differences between air velocities were found in body weight loss, sweat accumulation, or changes in rectal, skin, and body temperatures. Occurrence of the smallest body weight loss at 120 ft/min, the largest sweat accumulation at 30 ft/min, and the smallest rise in rectal temperature and the greatest drop in skin temperature at 120 ft/min all suggested more efficient evaporative cooling at the highest velocity. Heat storage at all velocities was evidenced by increased rectal and body temperatures; skin temperatures declined or increased only slightly. Body and rectal temperature increases corresponded with increased perception of warmth and slight thermal discomfort as exercise progressed. At all air velocities, mean thermal perception never exceeded warm and mean discomfort, greatest at 30 ft/min, was categorized at worst as uncomfortable; sensation of thermal neutrality and comfort returned rapidly after cessation of exercise. Suggestions for further elucidation of the effects of low air velocities on thermal comfort and homeostasis include larger numbers of subjects, more extensive skin temperature measurements and more rigorous analysis of the data from this study.

  5. Incorporating residual temperature and specific humidity in predicting weather-dependent warm-season electricity consumption

    Science.gov (United States)

    Guan, Huade; Beecham, Simon; Xu, Hanqiu; Ingleton, Greg

    2017-02-01

    Climate warming and increasing variability challenges the electricity supply in warm seasons. A good quantitative representation of the relationship between warm-season electricity consumption and weather condition provides necessary information for long-term electricity planning and short-term electricity management. In this study, an extended version of cooling degree days (ECDD) is proposed for better characterisation of this relationship. The ECDD includes temperature, residual temperature and specific humidity effects. The residual temperature is introduced for the first time to reflect the building thermal inertia effect on electricity consumption. The study is based on the electricity consumption data of four multiple-street city blocks and three office buildings. It is found that the residual temperature effect is about 20% of the current-day temperature effect at the block scale, and increases with a large variation at the building scale. Investigation of this residual temperature effect provides insight to the influence of building designs and structures on electricity consumption. The specific humidity effect appears to be more important at the building scale than at the block scale. A building with high energy performance does not necessarily have low specific humidity dependence. The new ECDD better reflects the weather dependence of electricity consumption than the conventional CDD method.

  6. Cross-Sensitivity Of Aethalometer Measurements To Relative Humidity

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, A.; Baltensperger, U.; Weingartner, E.

    2005-03-01

    Absorptive light reduction by atmospheric aerosols is important with respect to their climate forcing. An instrument to measure light absorption is the aethalometer, which is routinely used to measure the attenuation of light transmitted through aerosol-laden fibre filters. Measurements have shown that the condensable gases require a correction for artefacts. We present the first corrections for hydrophobic Palas soot-laden filters for the whole humidity range, enhancing the accuracy of aethalometer datasets. (author)

  7. The effect of humidity and temperature on visual outcomes after myopic corneal laser refractive surgery

    Directory of Open Access Journals (Sweden)

    Hood CT

    2016-11-01

    Full Text Available Christopher T Hood,1 Roni M Shtein,1 Daniel Veldheer,1,2 Munira Hussain,1 Leslie M Niziol,1 David C Musch,1,3 Shahzad I Mian1 1Department of Ophthalmology and Visual Sciences, University of Michigan W.K. Kellogg Eye Center, Ann Arbor, MI, 2Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 3Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA Objective: To determine whether procedure room environmental conditions are associated with outcomes after myopic laser in situ keratomileusis (LASIK or laser-assisted keratomileusis (LASEK. Design: Retrospective chart review. Participants: Eight hundred sixty-three eyes of 458 consecutive patients at a university-based academic practice. Methods: We reviewed the medical records of consecutive patients who underwent LASIK or LASEK over a 3-year period. Linear mixed regression models were used to investigate the association of laser room temperature and humidity with the outcomes of visual acuity and postoperative manifest spherical equivalent refraction. Repeated measures logistic regression models were used for the outcomes of diffuse lamellar keratitis (DLK and need for enhancement surgery. Results: Subjects were on an average 38.6 years old at the time of surgery (standard deviation [SD] =10.3 and the average spherical equivalent refraction of eyes was 3.8 diopters (SD =2.03. Regression models did not reveal a significant association between temperature and uncorrected distance visual acuity (UDVA or corrected distance visual acuity (CDVA, or between humidity and UDVA (P>0.05 for all. However, increased humidity was associated with a small but statistically significant improvement in CDVA after LASIK at 1 day, 1 month, 3 months, and 1 year postoperatively (P<0.05 for all. There was no significant association between temperature and humidity and the need for enhancement, the incidence of DLK, or postoperative manifest refraction. Conclusion: While increased laser

  8. Temperature and humidity dependence of air fluorescence yield measured by AIRFLY

    International Nuclear Information System (INIS)

    Ave, M.; Bohacova, M.; Buonomo, B.; Busca, N.; Cazon, L.; Chemerisov, S.D.; Conde, M.E.; Crowell, R.A.; Di Carlo, P.; Di Giulio, C.; Doubrava, M.; Esposito, A.; Facal, P.; Franchini, F.J.; Hoerandel, J.; Hrabovsky, M.; Iarlori, M.; Kasprzyk, T.E.; Keilhauer, B.

    2008-01-01

    The fluorescence detection of ultra high energy cosmic rays requires a detailed knowledge of the fluorescence light emission from nitrogen molecules over a wide range of atmospheric parameters, corresponding to altitudes typical of the cosmic ray shower development in the atmosphere. We have studied the temperature and humidity dependence of the fluorescence light spectrum excited by MeV electrons in air. Results for the 313.6, 337.1, 353.7 and 391.4 nm bands are reported in this paper. We found that the temperature and humidity dependence of the quenching process changes the fluorescence yield by a sizeable amount (up to 20% for the temperature dependence in the 391.4 nm band) and its effect must be included for a precise estimation of the energy of ultra high energy cosmic rays.

  9. The effect of relative humidity on germination of Sporangia of Phytophthora ramorum

    Science.gov (United States)

    Sporangia of three isolates of P. ramorum representing three different clonal lineages were subjected to relative humidity (RH) levels between 80 and 100% for exposure periods ranging from 1 to 24 h at 20°C in darkness. Airtight snap-lid plastic containers (21.5 x 14.5 x 5 cm) were used as humidity ...

  10. Role of season, temperature and humidity on the incidence of epistaxis in Alberta, Canada

    Science.gov (United States)

    2014-01-01

    Background Classical dogma holds that epistaxis is more common in winter months but there is significant variability reported in the literature. No study has yet examined the effect of season, humidity and temperature on epistaxis in a location with as severe weather extremes as seen in Alberta, Canada. The objective of the study is to evaluate for an effect of these meteorological factors on the incidence of epistaxis in Alberta. Method A retrospective review of consecutive adult patients presenting to the Emergency room (ER) in Edmonton and Calgary, Alberta over a three-year period was performed. Daily temperature and humidity data was recorded from the respective airports. Statistical analysis with Pearson’s correlation coefficient was performed. Results 4315 patients presented during the study period. Mean daily temperatures ranged from a low of -40°C to a high of +23°C. A significant negative correlation was found for mean monthly temperature with epistaxis (Pearson’s r = -0.835, p = 0.001). A significant correlation was also present for daily temperature and epistaxis presentation (Pearson’s r = -0.55, p = 0.018, range 1.8 to 2.2 events/day). No correlation was identified with humidity and no significant seasonal variation was present. Conclusions A negative correlation was found to exist for both daily and mean monthly temperature with rates of epistaxis. A seasonal variation was seen in Edmonton but not in Calgary. No correlation was found for humidity when compared to both presentation rates and admissions. PMID:24755112

  11. Use of personalized ventilation for improving health, comfort, and performance at high room temperature and humidity

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Skwarczynski, Mariusz; Kaczmarczyk, J.

    2013-01-01

    in five 4-h experiments in a climate chamber. Under the conditions with PV, the subjects were able to control the rate and direction of the supplied personalized flow of clean air. Subjective responses were collected through questionnaires. During all exposures, the subjects were occupied with tasks used......The effect of personalized ventilation (PV) on people's health, comfort, and performance in a warm and humid environment (26 and 28°C at 70% relative humidity) was studied and compared with their responses in a comfortable environment (23°C and 40% relative humidity). Thirty subjects participated...... to assess their performance. Objective measures of tear film stability, concentration of stress biomarkers in saliva, and eye blinking rate were taken. Using PV significantly improved the perceived air quality (PAQ) and thermal sensation and decreased the intensity of Sick Building Syndrome (SBS) symptoms...

  12. Evolution of temperature and humidity in an underground repository over the exploitation period

    International Nuclear Information System (INIS)

    Benet, L.V.; Tulita, C.; Calsyn, L.; Wendling, J.

    2012-01-01

    vapor fluxes in the air are solved on a 1 dimensional network mesh with an upwind scheme as temperatures in the host rock are solved on a 2 dimensional axisymmetrical mesh. Air and rock temperatures are coupled through an iterative process. Both the solid and air meshes extend step by step every 2 years as the opening of new storage modules occurs. Furthermore, imposed air-flow rate is adapted to supply the new network according to the updated exploitation phase. Specified flow rates depend on the exploitation phase of each storage disposal: work stage (15 m 3 /s), storage stage (10-15 m 3 /s) and time pending closure (1-3 m 3 /s). In the supply air shaft, the high flow rate (100-380 m 3 /s range) induces efficient heat exchanges with walls but without sensible effect on air temperature, while the 60 mbar aero-static pressure gain between surface and bottom levels induces a 5 C temperature raise in the air flowing down the shaft, all things otherwise being equal, and reduces relative humidity from 78 % to 58 % in yearly average. In the repository, on the contrary, thermal exchanges with walls, combined with the walls thermal inertia, have great effects on air characteristics, especially on seasonal variations, due to lower flow rates and the long distance of the gallery network. Smaller time pending variations end up all being absorbed during the air transfer through galleries. For example, in the Central Zone the walls absorb up to 95% of the hourly air temperature fluctuations. In the ILLLW zone, daily temperature fluctuations are absorbed up to 86% by reaching the last module after crossing the side galleries, 3.5 km from the supply shaft. Seasonal variations are less affected by heat exchanges with walls. They are absorbed up to 92% when leaving the storage modules, 0.5 km further away from the entrance shaft. Indeed, air temperature downstream the MAVL zone remains around 20 C all year long. The summer usually results in an increase in moisture in the repository as

  13. Mycotoxin production in wheat grains by different Aspergilli in relation to different relative humidities and storage periods.

    Science.gov (United States)

    Atalla, Mohamed Mabrouk; Hassanein, Naziha Mohamed; El-Beih, Ahmed Atef; Youssef, Youssef Abdel-ghany

    2003-02-01

    Four different Aspergilli (Aspergillus oryzae, A. parasiticus, A. terreus and A. versicolor) were grown on wheat grains underdifferent degrees of relative humidity 14, 50, 74, 80 and 90%. Samples of wheat grains were taken monthly for a period of six months and examined for mycotoxin production. A. oryzae was found to produce aflatoxins B1, B2, zearalenone, DON and T-2 toxins under elevated degrees of humidity and prolonged periods of storage. A. parasiticus produced aflatoxins B1, G1, NIV, DON and T-2 toxins in high concentrations during a period of not more than three months storage at 14% relative humidity; at an increased level of relative humidity of 74% ochratoxin A, zearalenone and sterigmatocystin were also produced at high levels. The isolate was drastic in toxin production. A. terrus produced toxins at 14% relative humidity (aflatoxin G2 and DON) at levels much higher than any other prevalent degrees of humidity. A. versicolor is highly sensitive to relative humidity and grain moisture content It produced aflatoxins B1, G1, NIV and DON at a relative humidity of 50% and another toxins (aflatoxin G2, ochratoxins A, B and zearalenone) at 74%. The microorganism can be considered a trichothecene producer under suitable relative humidity.

  14. Fiber Bragg Grating Measuring System for Simultaneous Monitoring of Temperature and Humidity in Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    Carlo Massaroni

    2017-04-01

    Full Text Available During mechanical ventilation, the humidification of the dry air delivered by the mechanical ventilator is recommended. Among several solutions, heated wire humidifiers (HWHs have gained large acceptance to be used in this field. The aim of this work is to fabricate a measuring system based on fiber Bragg grating (FBG for the simultaneous monitoring of gas relative humidity (RH and temperature, intended to be used for providing feedback to the HWHs’ control. This solution can be implemented using an array of two FBGs having a different center wavelength. Regarding RH monitoring, three sensors have been fabricated by coating an FBG with two different moisture-sensitive and biocompatible materials: the first two sensors were fabricated by coating the grating with a 3 mm × 3 mm layer of agar and agarose; to investigate the influence of the coating thickness to the sensor response, a third sensor was developed with a 5 mm × 5 mm layer of agar. The sensors have been assessed in a wide range of RH (up to 95% during both an ascending and a subsequent descending phase. Only the response of the 3 mm × 3 mm-coated sensors were fast enough to follow the RH changes, showing a mean sensitivity of about 0.14 nm/% (agar-coated and 0.12 nm/% (agarose-coated. The hysteresis error was about <10% in the two sensors. The contribution of temperature changes on these RH sensors was negligible. The temperature measurement was performed by a commercial FBG insensitive to RH changes. The small size of these FBG-based sensors, the use of biocompatible polymers, and the possibility to measure both temperature and RH by using the same fiber optic embedding an array of two FBGs make intriguing the use of this solution for application in the control of HWHs.

  15. Data set: 31 years of spatially distributed air temperature, humidity, precipitation amount and precipitation phase from a mountain catchment in the rain-snow transition zone

    Science.gov (United States)

    Thirty one years of spatially distributed air temperature, relative humidity, dew point temperature, precipitation amount, and precipitation phase data are presented for the Reynolds Creek Experimental Watershed. The data are spatially distributed over a 10m Lidar-derived digital elevation model at ...

  16. The interaction effects of temperature and humidity on emergency room visits for respiratory diseases in Beijing, China.

    Science.gov (United States)

    Su, Qin; Liu, Hongsheng; Yuan, Xiaoling; Xiao, Yan; Zhang, Xian; Sun, Rongju; Dang, Wei; Zhang, Jianbo; Qin, Yuhong; Men, Baozhong; Zhao, Xiaodong

    2014-11-01

    Few epidemiological studies have been reported as to whether there was any interactive effect between temperature and humidity on respiratory morbidity, especially in Asian countries. The present study used time-series analysis to explore the modification effects of humidity on the association between temperature and emergency room (ER) visits for respiratory, upper respiratory tract infection (URI), pneumonia, and bronchitis in Beijing between 2009 and 2011. Results showed that an obvious joint effect of temperature and humidity was revealed on ER visits for respiratory, URI, pneumonia, and bronchitis. Below temperature threshold, the temperature effect was stronger in low humidity level and presented a trend fall with humidity level increase. The effect estimates per 1 °C increase in temperature in low humidity level were -2.88 % (95 % confidence interval (CI) -3.08, -2.67) for all respiratory, -3.24 % (-3.59, -2.88) for URI, -1.48 % (-1.93, -1.03) for pneumonia, and -3.79 % (-4.37, -3.21) for bronchitis ER visits, respectively. However, above temperature threshold, temperature effect was greater in high humidity level and trending upward with humidity level increasing. In high humidity level, a 1 °C increase in temperature, the effect estimates were 1.84 % (1.55, 2.13) for all respiratory, 1.76 % (1.41, 2.11) for URI, and 7.48 % (4.41, 10.65) for bronchitis ER visits. But, there was no statistically significant for pneumonia. This suggests that the modifying effects of the humidity should be considered when analyzing health impacts of temperature.

  17. Core-shell microstructured nanocomposites for synergistic adjustment of environmental temperature and humidity

    Science.gov (United States)

    Zhang, Haiquan; Yuan, Yanping; Zhang, Nan; Sun, Qingrong; Cao, Xiaoling

    2016-11-01

    The adjustment of temperature and humidity is of great importance in a variety of fields. Composites that can perform both functions are prepared by mixing phase change materials (PCMs) with hygroscopic materials. However, the contact area between the adsorbent and humid air is inevitably decreased in such structures, which reduces the number of mass transfer channels for water vapor. An approach entailing the increase in the mass ratio of the adsorbent is presented here to improve the adsorption capacity. A core-shell CuSO4/polyethylene glycol (PEG) nanomaterial was developed to satisfy the conflicting requirements of temperature control and dehumidification. The results show that the equilibrium adsorption capacity of the PEG coating layer was enhanced by a factor of 188 compared with that of the pure PEG powder. The coating layer easily concentrates vapor, providing better adsorption properties for the composite. Furthermore, the volume modification of the CuSO4 matrix was reduced by 80% by the PEG coated layer, a factor that increases the stability of the composite. For the phase change process, the crystallization temperature of the coating layer was adjusted between 37.2 and 46.3 °C by interfacial tension. The core-shell CuSO4/PEG composite reported here provides a new general approach for the simultaneous control of temperature and humidity.

  18. Development of relative humidity models by using optimized neural network structures

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-romero, A.; Ortega, J. F.; Juan, J. A.; Tarjuelo, J. M.; Moreno, M. A.

    2010-07-01

    Climate has always had a very important role in life on earth, as well as human activity and health. The influence of relative humidity (RH) in controlled environments (e.g. industrial processes in agro-food processing, cold storage of foods such as fruits, vegetables and meat, or controls in greenhouses) is very important. Relative humidity is a main factor in agricultural production and crop yield (due to the influence on crop water demand or the development and distribution of pests and diseases, for example). The main objective of this paper is to estimate RH [maximum (RHmax), average (RHave), and minimum (RHmin)] data in a specific area, being applied to the Region of Castilla-La Mancha (C-LM) in this case, from available data at thermo-pluviometric weather stations. In this paper Artificial neural networks (ANN) are used to generate RH considering maximum and minimum temperatures and extraterrestrial solar radiation data. Model validation and generation is based on data from the years 2000 to 2008 from 44 complete agroclimatic weather stations. Relative errors are estimated as 1) spatial errors of 11.30%, 6.80% and 10.27% and 2) temporal errors of 10.34%, 6.59% and 9.77% for RHmin, RHmax and RHave, respectively. The use of ANNs is interesting in generating climate parameters from available climate data. For determining optimal ANN structure in estimating RH values, model calibration and validation is necessary, considering spatial and temporal variability. (Author) 44 refs.

  19. Evaporation Kinetics of Laboratory Generated Secondary Organic Aerosols at Elevated Relative Humidity

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Jacqueline M.; Imre, D.; Beranek, Josef; Shrivastava, ManishKumar B.; Zelenyuk, Alla

    2015-01-06

    Secondary organic aerosols (SOA) dominate atmospheric organic aerosols that affect climate, air quality, and health. Recent studies indicate that, contrary to previously held assumptions, at low relative humidity (RH) these particles are semi-solid and evaporate orders of magnitude slower than expected. Elevated relative humidity has the potential to affect significantly formation, properties, and atmospheric evolution of SOA particles. Here we present a study of the effect of RH on the room-temperature evaporation kinetics of SOA particles formed by ozonolysis of α-pinene and limonene. Experiments were carried out on SOA particles generated, evaporated, and aged at 0%, 50% and 90% RH. We find that in all cases evaporation begins with a relatively fast phase, during which 30% to 70% of the particle mass evaporates in 2 hours, followed by a much slower evaporation rate. Evaporation kinetics at 0% and 50% RH are nearly the same, while at 90% RH a slightly larger fraction evaporates. In all cases, aging the particles prior to inducing evaporation reduces the evaporative losses, with aging at elevated RH leading to more significant effect. In all cases, SOA evaporation is nearly size-independent, providing direct evidence that oligomers play a crucial role in determining the evaporation kinetics.

  20. Temperature and humidity effects on the response of radiochromic dye films

    International Nuclear Information System (INIS)

    Chappas, W.J.

    1981-01-01

    The radiochromic dye films developed by Chalkley and McLaughlin are quickly becoming one of the principal methods for secondary dosimetry. Their useful dose and dose rate ranges, long-term color stability, small and flexible size, and ease of reading make them ideal for spatial dose distribution measurements in the complex targets often encountered in research and industry. At room temperature, however, their response is slow, often requiring several hours after irradiation for full color development. This work examines the effect of humidity on the film's time response and describes two methods for accelerating the film's color development. By keeping the film in a controlled humidity environment or through a simple heating technique, the film can be read in minutes instead of hours after irradiation. The results are shown to be identical to those of films stored for 24 hours at room temperature. (author)

  1. Automatic Supervision of Temperature, Humidity, and Luminance with an Assistant Personal Robot

    Directory of Open Access Journals (Sweden)

    Jordi Palacín

    2017-01-01

    Full Text Available Smart environments and Ambient Intelligence (AmI technologies are defining the future society where energy optimization and intelligent management are essential for a sustainable advance. Mobile robotics is also making an important contribution to this advance with the integration of sensors and intelligent processing algorithms. This paper presents the application of an Assistant Personal Robot (APR as an autonomous agent for temperature, humidity, and luminance supervision in human-frequented areas. The robot multiagent capabilities allow gathering sensor information while exploring or performing specific tasks and then verifying human comfortability levels. The proposed methodology creates information maps with the distribution of temperature, humidity, and luminance and interprets such information in terms of comfort and warns about corrective actuations if required.

  2. Temperature/Humidity Conditions in Stacked Flexible Intermediate Bulk Containers for Shelled Peanuts

    Science.gov (United States)

    Shelled peanuts are loaded into flexible intermediate bulk containers, or totes. After loading, the 1000-kg totes are placed directly into cold storage at 3ºC and 65% relative humidity until shipment to the customer domestically in the United States or internationally requiring transport overseas. ...

  3. IEC Quality Assurance Task Group 5: UV, Temperature, and Humidity (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.; Bath, J.; Kohl, M.; Shioda, T.

    2014-03-01

    Taskgroup 5 (TG5) is concerned with a comparative aging standard incorporating factors including ultraviolet radiation, temperature, and humidity. Separate experiments are being conducted in support of a test standard via the regional sub-groups in Asia, Europe, and the United States. The authors will describe the objectives and timeline for TG5 as well as providing an update on the experiments in progress.

  4. Impact of intraoperative temperature and humidity on healing of intestinal anastomoses.

    Science.gov (United States)

    Glatz, Torben; Boldt, Johannes; Timme, Sylvia; Kulemann, Birte; Seifert, Gabriel; Holzner, Philipp Anton; Chikhladze, Sophia; Grüneberger, Jodok Matthias; Küsters, Simon; Sick, Olivia; Höppner, Jens; Hopt, Ulrich Theodor; Marjanovic, Goran

    2014-04-01

    Clinical data indicate that laparoscopic surgery has a beneficial effect on intestinal wound healing and is associated with a lower incidence of anastomotic leakage. This observation is based on weak evidence, and little is known about the impact of intraoperative parameters during laparoscopic surgery, e.g., temperature and humidity. A small-bowel anastomosis was formed in rats inside an incubator, in an environment of stable humidity and temperature. Three groups of ten Wistar rats were operated: a control group (G1) in an open surgical environment and two groups (G2 and G3) in the incubator at a humidity of 60 % and a temperature of 30 and 37 °C (G2 and G3, respectively). After 4 days, bursting pressure and hydroxyproline concentration of the anastomosis were analyzed. The tissue was histologically examined. Serum levels of C-reactive-protein (CRP) were measured. No significant changes were seen in the evaluation of anastomotic stability. Bursting pressure was very similar among the groups. Hydroxyproline concentration in G3 (36.3 μg/g) was lower by trend (p = 0.072) than in G1 (51.7 μg/g) and G2 (46.4 μg/g). The histological evaluation showed similar results regarding necrosis, inflammatory cells, edema, and epithelization for all groups. G3 (2.56) showed a distinctly worse score for submucosal bridging (p = 0.061) than G1 (1.68). A highly significant increase (p = 0.008) in CRP was detected in G3 (598.96 ng/ml) compared to G1 (439.49 ng/ml) and G2 (460 ng/ml). A combination of high temperature and humidity during surgery induces an increased systemic inflammatory response and seems to be attenuating the early regeneration process in the anastomotic tissue.

  5. Recent Improvements in Retrieving Near-Surface Air Temperature and Humidity Using Microwave Remote Sensing

    Science.gov (United States)

    Roberts, J. Brent

    2010-01-01

    Detailed studies of the energy and water cycles require accurate estimation of the turbulent fluxes of moisture and heat across the atmosphere-ocean interface at regional to basin scale. Providing estimates of these latent and sensible heat fluxes over the global ocean necessitates the use of satellite or reanalysis-based estimates of near surface variables. Recent studies have shown that errors in the surface (10 meter)estimates of humidity and temperature are currently the largest sources of uncertainty in the production of turbulent fluxes from satellite observations. Therefore, emphasis has been placed on reducing the systematic errors in the retrieval of these parameters from microwave radiometers. This study discusses recent improvements in the retrieval of air temperature and humidity through improvements in the choice of algorithms (linear vs. nonlinear) and the choice of microwave sensors. Particular focus is placed on improvements using a neural network approach with a single sensor (Special Sensor Microwave/Imager) and the use of combined sensors from the NASA AQUA satellite platform. The latter algorithm utilizes the unique sampling available on AQUA from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A). Current estimates of uncertainty in the near-surface humidity and temperature from single and multi-sensor approaches are discussed and used to estimate errors in the turbulent fluxes.

  6. Dynamics of the temperature-humidity index in the Mediterranean basin

    Science.gov (United States)

    Segnalini, Maria; Nardone, Alessandro; Bernabucci, Umberto; Vitali, Andrea; Ronchi, Bruno; Lacetera, Nicola

    2011-03-01

    The study was aimed at describing the temperature humidity index (THI) dynamics over the Mediterranean basin for the period 1951-2007. The THI combines temperature and humidity into a single value, and may help to predict the effects of environmental warmth in farm animals. In particular, on the basis of THI values, numerous studies have been performed to establish thresholds for heat stress in dairy cows. The THI was calculated by using monthly mean values of temperature and humidity obtained from the National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis project. The analysis demonstrated a high degree of heterogeneity of THI patterns over the Mediterranean basin, a strong north-south gradient, and an overall warming during the study period, which was particularly marked during summer seasons. Results indicated that several areas of the basin present summer THI values which were unfavorable to cow welfare and productivity, and that risk of heat stress for cows is generally greater in the countries of the south coast of the basin. Furthermore, THI data from the summer 2003 revealed that severe positive anomalies may impact areas normally characterized by a favorable climate for animal production. In conclusion, THI dynamics should be taken into careful consideration by farmers and policy makers operating in Mediterranean countries when planning investments in the sector of animal production. The investments should at least partially be directed towards implementation of adaptation measures, which may help to alleviate the impact of hot on farm animals welfare, performance and health.

  7. Air temperature and humidity diversity in the Hornsund fjord area (Spitsbergen) in the period 1 July 2014 - 30 June 2015

    Science.gov (United States)

    Przybylak, Rajmund; Araźny, Andrzej; Wyszyński, Przemysław; Budzik, Tomasz; Wawrzyniak, Tomasz

    2016-04-01

    The article presents preliminary results of studies into the spatial diversity of air temperature and relative humidity (overground layer, 2 m a.g.l.) in the area of the Hornsund fjord (S Spitsbergen, approx. 77°N), based on data collected between 1 July 2014 and 30 June 2015. The Hornsund fjord runs latitudinal along approx. 40 km and its average width is about 10 km. Numerous glaciers flow into the fjord and the mountain ridges around it often exceed 700 m a.s.l. Data series obtained from 11 sites equipped with automatic weather stations (Vaisala, Campbell, Davis) or HOBO temperature and humidity sensors were used. Two sites (Hornsund HOR and the Hans Glacier HG4) have been operating for years, whereas 9 new ones (Bogstranda BOG, Fugleberget FUG, Gnålodden GNA, Gåshamnoyra GAS, Hyttevika HYT, Lisbetdalen LIS, Ostrogradskijfjella OST, Treskelodden TRE and Wilczekodden WIL) were established within the Polish-Norwegian AWAKE-2 project. Three of the sites (BOG, GAS and OST) were damaged by polar bears, hence their measurement series are shorter. A substantial spatial diversity was found in the air temperature and relative humidity in the area, mostly influenced by elevation, type of surface and distance from the Greenland Sea's open water. During the year (July 2014 - June 2015), the areas of HYT (-1.1°C) and WIL (-1.9°C) were the warmest. Both sites are located on the west coast of the fjord. The HYT demonstrates the most favourable temperature conditions, being orographically sheltered from the east and its cold and dry air masses. The coldest sites were the mountain-top site of FUG (-5.9°C) and the glacier-located HG4 (-4.3°C). The low temperature at FUG resulted from its elevation (568 m a.s.l.), whereas at HG4 (184 m a.s.l) the glaciated surface also added up to the result. In the analysed period, the annual course of air temperature in the area had a clear minimum in February, when the lowest mean monthly values ranged from -9.4°C at HYT to -15.1°C at

  8. Calibration and validation processes for relative humidity measurement by a Hygrochron iButton.

    Science.gov (United States)

    Shin, Mirim; Patton, Raymond; Mahar, Trevor; Ireland, Angus; Swan, Paul; Chow, Chin Moi

    2017-10-01

    Accurate relative humidity (RH) measurement is demanded in studies of thermal comfort. Thermal discomfort occurs when the near-to-skin temperature or RH is outside of the thermal comfort zone. The Hygrochron, a small wireless device which measures both temperature and RH, would be suitable and convenient in exercise or sleep studies. However, the RH measurement has not been validated. This paper has three parts. Part 1: In evaluating the sensor surface for RH detection, four Hygrochrons were placed on a wet paper towel. Two were placed on the towel with the protruding surface facing up and the other two facing down. The results showed that the Hygrochron with the protruding side was the sensor surface for detecting RH. Part 2: Twenty-seven Hygrochrons were calibrated in a humidity calibration chamber at a RH range from 40 to 90% at a constant temperature from 32 to 37°C. The mean bias was -1.08% between the Hygrochrons and the calibration chamber. The Hygrochron overestimated RH at the lower range (40-60%) and underestimated RH at the higher range (80-90%). The application of individual regression equations to each Hygrochron improved accuracy and reduced the mean bias to -0.002%. However, one Hygrochron showed outlier values that may be due to a manufacturing defect. Part 3: The reproducibility of Hygrochron for RH measurements was tested twice at the same condition of 35°C over a three-month interval. The intra-class coefficient was 0.996 to 1.000 with non-significant differences in the mean RH between test and re-test results (p=0.159). Hygrochrons are valid for RH measurements which show high reproducibility. It is recommended that Hygrochrons be calibrated over a range of desired RH and temperature prior to use to improve accuracy and detect any manufacturing defects. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Dependence of alpha radionuclide diffusion and deposition on relative air humidity

    International Nuclear Information System (INIS)

    Danis, A.; Ciubotariu, M.; Oncescu, M.; Mocsy, I.; Tomulescu, V.

    2000-01-01

    solid alpha radionuclides/aerosols were measured using a new alpha monitoring device which includes or not the paper filter for solid radionuclides/aerosols stopping and the CR-39 track detector. Such devices were fixed upright at different distances from the floor, in case of cellar and mine gallery and, for laboratory chamber, at different distances from the place of radon penetration. The alpha monitoring duration was established as a function of track density in detectors, so that the density would be measurable. The duration was within one week to two months. In order to visualize the trails of alpha particles registered during the alpha exposures, the CR-39 track detectors were etched in NaOH - 30%, for 7 hours at 70 deg. C. The temperature and humidity were measured at the beginning and at the end of the measurements. Some very interesting results on the alpha radionuclide/aerosol diffusion and deposition in cellar and mine gallery, were already obtained. So, due to the presence of some processes in which the dynamic component of aerosols had a great contribution, such as convection (advection) and diffusion, especially convective diffusion, the humidity had a diminished influence on the deposition of the solid alpha radionuclides/aerosols. At high relative humidities, of 85 - 96%, along the height of cellar and mine gallery, the solid alpha radionuclide/aerosol concentrations were found to be the same in the limits of statistical errors. At this humidity, physical-chemical processes such as heterogeneous nucleations and formation/wash of aerosols arose. Depending on the mass and composition of the aerosols with components soluble in water, the volume of aerosols increased, the density was changed and as a consequence, the deposition rate of aerosols was more diminished. The research is still in progress. (authors)

  10. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring.

    Science.gov (United States)

    Wei, Peng; Ning, Zhi; Ye, Sheng; Sun, Li; Yang, Fenhuan; Wong, Ka Chun; Westerdahl, Dane; Louie, Peter K K

    2018-01-23

    The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series) for carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO₂), and oxidants (O x ) were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO₂ and ozone on a newly introduced oxidant sensor.

  11. Diffusion coefficients for unattached decay products of thoron - dependence on ventilation and relative humidity

    International Nuclear Information System (INIS)

    Kotrappa, P.; Bhanti, D.P.; Raghunath, B.

    1976-01-01

    The results of a study of the diffusivity of unattached decay products of thoron with respect to air changes using a recently developed diffusion sampler are reported. The dependence of diffusivity of radon/thoron decay products on relative humidity has also been investigated by measurement of diffusion coefficients in an atmosphere where relative humidities varied from 5 to 90%. Results are shown tabulated. (U.K.)

  12. Experimental drying shrinkage of hardened cement pastes as a function of relative humidity

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Baroghel, V.B.

    1996-01-01

    The results of an experimental study concerning drying shrinkage measured as a function of relative humidity on thin specimens of mature hardened cement pastes are presented. The results obtained at two laboratories are compared.......The results of an experimental study concerning drying shrinkage measured as a function of relative humidity on thin specimens of mature hardened cement pastes are presented. The results obtained at two laboratories are compared....

  13. Relationship of the moisture content of Finnish wheat flour and relative humidity

    Directory of Open Access Journals (Sweden)

    Yu-Yen Linko

    1968-01-01

    Full Text Available Changes in the moisture content of Finnish commercial wheat flour stored at variable relative humidities, representing the conditions typical of flour storage in Finland, were investigated. It could be shown that flour of 15 % moisture at the time of packing tends to dry considerably during normal storage conditions. Owing to the hysteresis effect, the moisture content of once dried flour is not likely to reach detrimental levels during normal storage, even if the relative humidity would exceed the critical level of 75—80 % for short periods. Minimum warehouse relative humidity was observed during Januay, at which time flour moisture had decreased to 6.7 %. The equilibrium humidity for flour of 15 % original moisture content was found to be about 70 %.

  14. Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates.

    Science.gov (United States)

    Csavina, Janae; Field, Jason; Félix, Omar; Corral-Avitia, Alba Y; Sáez, A Eduardo; Betterton, Eric A

    2014-07-15

    Atmospheric particulate have deleterious impacts on human health. Predicting dust and aerosol emission and transport would be helpful to reduce harmful impacts but, despite numerous studies, prediction of dust events and contaminant transport in dust remains challenging. In this work, we show that relative humidity and wind speed are both determinants in atmospheric dust concentration. Observations of atmospheric dust concentrations in Green Valley, AZ, USA, and Juárez, Chihuahua, México, show that PM10 concentrations are not directly correlated with wind speed or relative humidity separately. However, selecting the data for high wind speeds (>4m/s at 10 m elevation), a definite trend is observed between dust concentration and relative humidity: dust concentration increases with relative humidity, reaching a maximum around 25% and it subsequently decreases with relative humidity. Models for dust storm forecasting may be improved by utilizing atmospheric humidity and wind speed as main drivers for dust generation and transport. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Tapered Fiber Coated with Hydroxyethyl Cellulose/Polyvinylidene Fluoride Composite for Relative Humidity Sensor

    Directory of Open Access Journals (Sweden)

    M. Z. Muhammad

    2013-01-01

    Full Text Available A simple relative humidity (RH sensor is demonstrated using a tapered fiber coated with hydroxyethyl cellulose/polyvinylidene fluoride (HEC/PVDF composite as a probe. This coating acts as an inner cladding whose refractive index decreases with the rise in humidity and thus allows more light to be transmitted in humid state. A difference of up to 0.89 dB of the transmitted optical power is observed when RH changes from 50% to 80% in case of the silica fiber probe. The proposed sensor has a sensitivity of about 0.0228 dB/%RH with a slope linearity of more than 99.91%. In case of the plastic optical fiber (POF probe, the output voltage of the sensor increases linearly with a sensitivity of 0.0231 mV/%RH and a linearity of more than 99.65% as the relative humidity increases from 55% to 80%.

  16. The effect of water contamination on the dew-point temperature scale realization with humidity generators

    Science.gov (United States)

    Vilbaste, M.; Heinonen, M.; Saks, O.; Leito, I.

    2013-08-01

    The purpose of this paper is to study the effect of contaminated water in the context of humidity generators. Investigation of different methods to determine the drop in dew-point temperature due to contamination and experiments on actual contamination rates are reported. Different methods for calculating the dew-point temperature effect from electrical conductivity and density measurements are studied with high-purity water and aqueous solutions of NaCl and LiCl. The outcomes of the calculation methods are compared with the results of direct humidity measurements. The results show that the often applied Raoult's law based calculation method is in good agreement with other methods. For studying actual contamination, water samples were kept in glass, plastic, copper and stainless-steel vessels for up to 13 months to investigate natural ionic and organic contamination in vessels with different wall materials. The amount of ionic contamination was found to be higher in copper and glass vessels than in stainless-steel and plastic vessels. The amount of organic contamination was found to be highest in the plastic vessel. In all the cases, however, the corresponding drop in dew-point temperature due to natural contamination was found to be below 0.1 mK. The largest rate of change of dew-point temperature was 26 µK/month. Thus, if proper cleanness is maintained in a humidity generator the effect of contamination of water in the saturator is insignificant compared with the major uncertainty components even in the most accurate generators today.

  17. A 6U CubeSat Constellation for Atmospheric Temperature and Humidity Sounding

    Science.gov (United States)

    Padmanabhan, Sharmila; Brown, Shannon; Kangaslahti, Pekka; Cofield, Richard; Russell, Damon; Stachnik, Robert; Steinkraus, Joel; Lim, Boon

    2013-01-01

    We are currently developing a 118/183 GHz sensor that will enable observations of temperature and precipitation profiles over land and ocean. The 118/183 GHz system is well suited for a CubeSat deployment as 10cm antenna aperture provides sufficiently small footprint sizes (is approx. 25km). This project will enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U CubeSat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters that are needed to improve prediction of extreme weather events. We will take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT'08) to enable low-mass and low-power high frequency airborne radiometers. The 35 nm InP enabling technology provides significant reduction in power consumption (Low Noise Amplifier + Mixer Block consumes 24 mW). In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder instrument on the 6U CubeSat. In addition, a summary of radiometer calibration and retrieval techniques of the temperature and humidity will be discussed. The successful demonstration of this instrument on the 6U CubeSat would pave the way for the development of a constellation consisting of suite of these instruments. The proposed constellation of these 6U CubeSat radiometers would allow sampling of tropospheric temperature and humidity with fine temporal (on the order of minutes) and spatial resolution (is approx. 25 km).

  18. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century

    Science.gov (United States)

    Coffel, Ethan D.; Horton, Radley M.; de Sherbinin, Alex

    2018-01-01

    As a result of global increases in both temperature and specific humidity, heat stress is projected to intensify throughout the 21st century. Some of the regions most susceptible to dangerous heat and humidity combinations are also among the most densely populated. Consequently, there is the potential for widespread exposure to wet bulb temperatures that approach and in some cases exceed postulated theoretical limits of human tolerance by mid- to late-century. We project that by 2080 the relative frequency of present-day extreme wet bulb temperature events could rise by a factor of 100-250 (approximately double the frequency change projected for temperature alone) in the tropics and parts of the mid-latitudes, areas which are projected to contain approximately half the world’s population. In addition, population exposure to wet bulb temperatures that exceed recent deadly heat waves may increase by a factor of five to ten, with 150-750 million person-days of exposure to wet bulb temperatures above those seen in today’s most severe heat waves by 2070-2080. Under RCP 8.5, exposure to wet bulb temperatures above 35 °C—the theoretical limit for human tolerance—could exceed a million person-days per year by 2080. Limiting emissions to follow RCP 4.5 entirely eliminates exposure to that extreme threshold. Some of the most affected regions, especially Northeast India and coastal West Africa, currently have scarce cooling infrastructure, relatively low adaptive capacity, and rapidly growing populations. In the coming decades heat stress may prove to be one of the most widely experienced and directly dangerous aspects of climate change, posing a severe threat to human health, energy infrastructure, and outdoor activities ranging from agricultural production to military training.

  19. High Temperature Oxidation Behavior of T91 Steel in Dry and Humid Condition

    Directory of Open Access Journals (Sweden)

    Yonghao Leong

    2016-09-01

    Full Text Available High temperature oxidation behavior of T91 ferritic/martensitic steel was examined over the temperature range of 500 to 700°C in dry and humid environments.  The weight gain result revealed that oxidation occurs at all range of temperatures and its rate is accelerated by increasing the temperature. The weight gain of the oxidized steel at 700°C in steam condition was six times bigger than the dry oxidation.. SEM/EDX of the cross-sectional image showed that under dry condition, a protective and steady growth of the chromium oxide (Cr2O3 layer was formed on the steel with the thickness of 2.39±0.34 µm. Meanwhile for the humid environment, it is found that the iron oxide layer, which consists of the hematite (Fe2O3 and magnetite (Fe3O4 was formed as the outer scale, and spinnel as inner scale. This result indicated that the oxidation behavior of T91 steel was affected by its oxidation environment. The existence of water vapor in steam condition may prevent the formation of chromium oxide as protective layer.

  20. Study and realization of a new humid air generator; towards the definition of a dew temperature reference; Etude et realisation d'un nouveau generateur d'air humide; vers la definition d'une reference en temperature de rosee

    Energy Technology Data Exchange (ETDEWEB)

    Blanquart, B.

    2001-03-01

    The air humidity is an important parameter for several biological and physico-chemical processes. The aim of this thesis is the direct determination of the dew temperature without any link with the gravimetric reference. This document presents the realization and adjusting of a new humid air generator for the -80 deg. C to +15 deg. C range and the uncertainty linked with the dew temperature of the humid air generated. The first chapter recalls the definitions of humid air related data and the principles of the apparatuses used for the measurement of air humidity. The second chapter deals with temperature measurements while chapter 3 describes the new humid air generator built around an 'ideal' cell based on the theoretical definition of the dew temperature. Technical constraints due to temperature measurement and to hygrometers calibration are progressively integrated and introduced and lead to the practical realization of the device. Differences between the ideal cell and the prototype are estimated using a theoretical approach of mass and heat exchanges coupled with experimental results obtained with a previous prototype. Chapter 4 presents a first status of the device uncertainties with some possibilities of reduction of these uncertainties. (J.S.)

  1. Sorption isotherms modeling approach of rice-based instant soup mix stored under controlled temperature and humidity

    Directory of Open Access Journals (Sweden)

    Yogender Singh

    2015-12-01

    Full Text Available Moisture sorption isotherms of rice-based instant soup mix at temperature range 15–45°C and relative humidity from 0.11 to 0.86 were determined using the standard gravimetric static method. The experimental sorption curves were fitted by five equations: Chung-Pfost, GAB, Henderson, Kuhn, and Oswin. The sorption isotherms of soup mix decreased with increasing temperature, exhibited type II behavior according to BET classification. The GAB, Henderson, Kuhn, and Oswin models were found to be the most suitable for describing the sorption curves. The isosteric heat of sorption of water was determined from the equilibrium data at different temperatures. It decreased as moisture content increased and was found to be a polynomial function of moisture content. The study has provided information and data useful in large-scale commercial production of soup and have great importance to combat the problem of protein-energy malnutrition in underdeveloped and developing countries.

  2. Medical Meteorology: the Relationship between Meteorological Parameters (Humidity, Rainfall, Wind, and Temperature) and Brucellosis in Zanjan Province

    OpenAIRE

    Yousefali Abedini; Nahideh Mohammadi; Koorosh Kamali; Mohsen Ahadnejad; Mehdi Azari

    2016-01-01

    Background: Brucellosis (Malta fever) is a major contagious zoonotic disease, with economic and public health importance. Methods To assess the effect of meteorological (temperature, rainfall, humidity, and wind) and climate parameters on incidence of brucellosis, brucellosis distribution and meteorological zoning maps of Zanjan Province were prepared using Inverse Distance Weighting (IDW) and Kriging technique in Arc GIS medium. Zoning maps of mean temperature, rainfall, humidity, and win...

  3. Experimental study on the effect of cathode flow humidity and temperature on the performance of PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    El-Emam, R.S.; Awad, M.M.; Hamed, A.M.; Tolba, M. [Mansoura Univ., Mansoura (Egypt). Dept. of Mechanical Engineering

    2009-07-01

    The fuel cell is an electrochemical energy conversion device that produces electricity directly from chemical energy, and the by-products are only water and heat. The fuel cell could provide a solution to a whole range of environmental challenges, such as global warming and harmful levels of local pollutants. One of the most promising alternative power generation methods is the proton exchange membrane fuel cell (PEMFC) because of its low operating temperature, relative tolerance for impurities, and high power-density. This paper presented an experimental study on the performance characteristics of a single unit of a PEMFC with an active area of 25 square centimetres using two different cell configurations. The test system was designed to control the temperature and the relative humidity of the cathode feeding gas. Oxygen and air were used as oxidizers, while dry hydrogen was the cell fuel. Two different cell configurations were assembled and integrated into the test stand. The paper described the experimental work and presented the results of the study. It was concluded that low oxygen relative humidity with the dry hydrogen caused membrane drying and ultimately resulted in a degradation of fuel cell power output and cell performance. 17 refs., 17 figs.

  4. International Space Station Temperature and Humidity Control Subsystem Verification for Node 1

    Science.gov (United States)

    Williams, David E.

    2007-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 THC subsystem design. The paper will also provide a discussion of the detailed Element Verification methodologies for nominal operation of the Node 1 THC subsystem operations utilized during the Qualification phase.

  5. Building Environment Analysis Based on Temperature and Humidity for Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Kwang-Ho Won

    2012-10-01

    Full Text Available In this paper, we propose a new HVAC (heating, ventilation, and air conditioning control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment.

  6. Building environment analysis based on temperature and humidity for smart energy systems.

    Science.gov (United States)

    Yun, Jaeseok; Won, Kwang-Ho

    2012-10-01

    In this paper, we propose a new HVAC (heating, ventilation, and air conditioning) control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment.

  7. High resolution vertical profiles of wind, temperature and humidity obtained by computer processing and digital filtering of radiosonde and radar tracking data from the ITCZ experiment of 1977

    Science.gov (United States)

    Danielson, E. F.; Hipskind, R. S.; Gaines, S. E.

    1980-01-01

    Results are presented from computer processing and digital filtering of radiosonde and radar tracking data obtained during the ITCZ experiment when coordinated measurements were taken daily over a 16 day period across the Panama Canal Zone. The temperature relative humidity and wind velocity profiles are discussed.

  8. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Peng Wei

    2018-01-01

    Full Text Available The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series for carbon monoxide (CO, nitric oxide (NO, nitrogen dioxide (NO2, and oxidants (Ox were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO2 and ozone on a newly introduced oxidant sensor.

  9. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring

    Science.gov (United States)

    Ning, Zhi; Ye, Sheng; Sun, Li; Yang, Fenhuan; Wong, Ka Chun; Westerdahl, Dane; Louie, Peter K. K.

    2018-01-01

    The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series) for carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), and oxidants (Ox) were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO2 and ozone on a newly introduced oxidant sensor. PMID:29360749

  10. Development of TGS2611 methane sensor and SHT11 humidity and temperature sensor for measuring greenhouse gas on peatlands in south kalimantan, indonesia

    Science.gov (United States)

    Sugriwan, I.; Soesanto, O.

    2017-05-01

    The research was focused on development of data acquisition system to monitor the content of methane, relative humidity and temperature on peatlands in South Kalimantan, Indonesia. Methane is one of greenhouse gases that emitted from peatlands; while humidity and temperature are important parameters of microclimate on peatlands. The content of methane, humidity and temperature are three parameters were monitored digitally, real time, continuously and automatically record by data acquisition systems that interfaced to the personal computer. The hardware of data acquisition system consists of power supply unit, TGS2611 methane gas sensor, SHT11 humidity and temperature sensors, voltage follower, ATMega8535 microcontroller, 16 × 2 LCD character and personal computer. ATMega8535 module is a device to manage all part in measuring instrument. The software which is responsible to take sensor data, calculate characteristic equation and send data to 16 × 2 LCD character are Basic Compiler. To interface between measuring instrument and personal computer is maintained by Delphi 7. The result of data acquisition showed on 16 × 2 LCD characters, PC monitor and database with developed by XAMPP. Methane, humidity, and temperature which release from peatlands are trapped by Closed-Chamber Measurement with dimension 60 × 50 × 40 cm3. TGS2611 methane gas sensor and SHT11 humidity and temperature sensor are calibrated to determine transfer function used to data communication between sensors and microcontroller and integrated into ATMega8535 Microcontroller. Calculation of RS and RL of TGS2611 methane gas sensor refer to data sheet and obtained respectively 1360 ohm and 905 ohm. The characteristic equation of TGS2611 satisfies equation VRL = 0.561 ln n - 2.2641 volt, with n is a various concentrations and VRL in volt. The microcontroller maintained the voltage signal than interfaced it to liquid crystal displays and personal computer (laptop) to display result of the measurement

  11. Development of TGS2611 methane sensor and SHT11 humidity and temperature sensor for measuring greenhouse gas on peatlands in South Kalimantan, indonesia

    International Nuclear Information System (INIS)

    Sugriwan, I; Soesanto, O

    2017-01-01

    The research was focused on development of data acquisition system to monitor the content of methane, relative humidity and temperature on peatlands in South Kalimantan, Indonesia. Methane is one of greenhouse gases that emitted from peatlands; while humidity and temperature are important parameters of microclimate on peatlands. The content of methane, humidity and temperature are three parameters were monitored digitally, real time, continuously and automatically record by data acquisition systems that interfaced to the personal computer. The hardware of data acquisition system consists of power supply unit, TGS2611 methane gas sensor, SHT11 humidity and temperature sensors, voltage follower, ATMega8535 microcontroller, 16 × 2 LCD character and personal computer. ATMega8535 module is a device to manage all part in measuring instrument. The software which is responsible to take sensor data, calculate characteristic equation and send data to 16 × 2 LCD character are Basic Compiler. To interface between measuring instrument and personal computer is maintained by Delphi 7. The result of data acquisition showed on 16 × 2 LCD characters, PC monitor and database with developed by XAMPP. Methane, humidity, and temperature which release from peatlands are trapped by Closed-Chamber Measurement with dimension 60 × 50 × 40 cm 3 . TGS2611 methane gas sensor and SHT11 humidity and temperature sensor are calibrated to determine transfer function used to data communication between sensors and microcontroller and integrated into ATMega8535 Microcontroller. Calculation of RS and RL of TGS2611 methane gas sensor refer to data sheet and obtained respectively 1360 ohm and 905 ohm. The characteristic equation of TGS2611 satisfies equation V RL = 0.561 ln n – 2.2641 volt, with n is a various concentrations and V RL in volt. The microcontroller maintained the voltage signal than interfaced it to liquid crystal displays and personal computer (laptop) to display result of the

  12. Laboratory observations of temperature and humidity dependencies of nucleation and growth rates of sub-3 nm particles

    Science.gov (United States)

    Yu, Huan; Dai, Liang; Zhao, Yi; Kanawade, Vijay P.; Tripathi, Sachchida N.; Ge, Xinlei; Chen, Mindong; Lee, Shan-Hu

    2017-02-01

    Temperature and relative humidity (RH) are the most important thermodynamic parameters in aerosol formation, yet laboratory studies of nucleation and growth dependencies on temperature and RH are lacking. Here we report the experimentally observed temperature and RH dependences of sulfuric acid aerosol nucleation and growth. Experiments were performed in a flow tube in the temperature range from 248 to 313 K, RH from 0.8% to 79%, and relative acidity (RA) of sulfuric acid from 6 × 10-5 to 0.38 (2 × 107-109 cm-3). The impurity levels of base compounds were determined to be NH3 nucleation at fixed sulfuric acid concentration but impede nucleation when RA is fixed. It is also shown that binary nucleation of sulfuric acid and water is negligible in planetary boundary layer temperature and sulfuric acid ranges. An empirical algorithm was derived to correlate the nucleation rate with RA, RH, and temperature together. Collision-limited condensation of free-sulfuric acid molecules fails to predict the observed growth rate in the sub-3 nm size range, as well as its dependence on temperature and RH. This suggests that evaporation, sulfuric acid hydration, and possible involvement of other ternary molecules should be considered for the sub-3 nm particle growth.

  13. Life cycle and reproductive patterns of Triatoma rubrovaria (Blanchard, 1843 (Hemiptera: Reduviidae under constant and fluctuating conditions of temperature and humidity

    Directory of Open Access Journals (Sweden)

    Damborsky Miryam P.

    2005-01-01

    Full Text Available The aim of this study was to evaluate the temperature and relative humidity influence in the life cycle, mortality and fecundity patterns of Triatoma rubrovaria. Four cohorts with 60 recently laid eggs each were conformed. The cohorts were divided into two groups. In the controlled conditions group insects were maintained in a dark climatic chamber under constant temperature and humidity, whereas triatomines of the ambiental temperature group were maintained at room temperature. Average incubation time was 15.6 days in the controlled conditions group and 19.1 days in the ambiental temperature. In group controlled conditions the time from egg to adult development lasted 10 months while group ambiental temperature took four months longer. Egg eclosion rate was 99.1% and 98.3% in controlled conditions and ambiental temperature, respectively. Total nymphal mortality in controlled conditions was 52.6% whereas in ambiental temperature was 51.8%. Mean number of eggs/female was 817.6 controlled conditions and 837.1 ambiental temperature. Fluctuating temperature and humidity promoted changes in the life cycle duration and in the reproductive performance of this species, although not in the species mortality.

  14. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    Science.gov (United States)

    Blakenship, Clay; Zavodsky, Bradley; Blackwell, William

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. Forecasts are against ERA reanalyses.

  15. Humidity Sensing in Drosophila.

    Science.gov (United States)

    Enjin, Anders; Zaharieva, Emanuela E; Frank, Dominic D; Mansourian, Suzan; Suh, Greg S B; Gallio, Marco; Stensmyr, Marcus C

    2016-05-23

    Environmental humidity influences the fitness and geographic distribution of all animals [1]. Insects in particular use humidity cues to navigate the environment, and previous work suggests the existence of specific sensory mechanisms to detect favorable humidity ranges [2-5]. Yet, the molecular and cellular basis of humidity sensing (hygrosensation) remains poorly understood. Here we describe genes and neurons necessary for hygrosensation in the vinegar fly Drosophila melanogaster. We find that members of the Drosophila genus display species-specific humidity preferences related to conditions in their native habitats. Using a simple behavioral assay, we find that the ionotropic receptors IR40a, IR93a, and IR25a are all required for humidity preference in D. melanogaster. Yet, whereas IR40a is selectively required for hygrosensory responses, IR93a and IR25a mediate both humidity and temperature preference. Consistent with this, the expression of IR93a and IR25a includes thermosensory neurons of the arista. In contrast, IR40a is excluded from the arista but is expressed (and required) in specialized neurons innervating pore-less sensilla of the sacculus, a unique invagination of the third antennal segment. Indeed, calcium imaging showed that IR40a neurons directly respond to changes in humidity, and IR40a knockdown or IR93a mutation reduced their responses to stimuli. Taken together, our results suggest that the preference for a specific humidity range depends on specialized sacculus neurons, and that the processing of environmental humidity can happen largely in parallel to that of temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The Phoenix TECP Relative Humidity Sensor: Revised Results

    Science.gov (United States)

    Zent, Aaron

    2014-01-01

    The original calibration function of the RH sensor on the Phoenix mission's Thermal and Electrical Conductivity Sensor (TECP), has been revised to correct the erroneously-published original calibration equation, to demonstrate the value of this unique data set, and to improve characterization of H2O exchange between the martian regolith and atmosphere. TECP returned two data streams, the temperature of the electronics analog board (Tb) and the digital 12-bit output of the RH sensor (DN), both of which are required to uniquely specify the H2O abundance. Because the original flight instrument calibration was performed against a pair of hygrometers that measured frost point (Tf), the revised calibration equation is also cast in terms of frost point. The choice of functional form for the calibration function is minimally constrained. A series of profiles across the calibration data cloud at constant DN and Tb does not reveal any evidence of a complex functional form. Therefore, a series of polynomials in both DN and Tb was investigated, along with several non-linear functions of DN and Tb.

  17. A vantage from space can detect earlier drought onset: an approach using relative humidity.

    Science.gov (United States)

    Farahmand, Alireza; AghaKouchak, Amir; Teixeira, Joao

    2015-02-25

    Each year, droughts cause significant economic and agricultural losses across the world. The early warning and onset detection of drought is of particular importance for effective agriculture and water resource management. Previous studies show that the Standard Precipitation Index (SPI), a measure of precipitation deficit, detects drought onset earlier than other indicators. Here we show that satellite-based near surface air relative humidity data can further improve drought onset detection and early warning. This paper introduces the Standardized Relative Humidity Index (SRHI) based on the NASA Atmospheric Infrared Sounder (AIRS) observations. The results indicate that the SRHI typically detects the drought onset earlier than the SPI. While the AIRS mission was not originally designed for drought monitoring, we show that its relative humidity data offers a new and unique avenue for drought monitoring and early warning. We conclude that the early warning aspects of SRHI may have merit for integration into current drought monitoring systems.

  18. Trailer temperature and humidity during winter transport of cattle in Canada and evaluation of indicators used to assess the welfare of cull beef cows before and after transport.

    Science.gov (United States)

    Goldhawk, C; Janzen, E; González, L A; Crowe, T; Kastelic, J; Kehler, C; Siemens, M; Ominski, K; Pajor, E; Schwartzkopf-Genswein, K S

    2015-07-01

    The current study evaluated 17 loads of cull beef cows transported in Canadian winter conditions to assess in-transit temperature and humidity, evaluation of events during loading and unloading, and animal condition and bruising. Regardless of the use of boards to block ventilation holes in trailers, temperatures were higher within trailers than at ambient locations during both travel and stationary periods (P cow transport may be related to pretransport animal condition and management of unloading.

  19. Effect of temperature and humidity on electrical properties of organic semiconductor orange dye films deposited from solution

    International Nuclear Information System (INIS)

    Karimov, K.S.; Babadzhanov, A.; Turaeva, M.A.; Marupov, R.; Ahmed, M.M.; Khalid, F.A.; Khan, M.N.; Zakaullah, Kh.; Moiz, S.A.

    2003-01-01

    In this study the effect of temperature and humidity on electrical properties of organic semiconductor orange dye (OD) have been examined. Thin films of OD (C/sub 17/H/sub 17/N/sub 5/O/sub 2/) were deposited from 10 wt. % aqueous solution on gold and conductive glass (SnO/sub 2/) substrates. The films were grown at room temperature under normal gravity conditions, i.e., 1 g and in a spin coater up to an angular speed of 1000 RPM. Two different types of structures: surface Ga/OD/Au and sandwich AVOD/SnO/sub 2/ were fabricated and their DC and low frequency AC characteristics were evaluated for the temperature range 30-70 deg. C at ambient humidity of 50-80 %. It was observed that the sandwich structure of OD films show rectification behavior whilst the conductivity of all devices are temperature and humidity dependent. Observed room temperature activation energy for OD films was 0.30 eV which showed an increase up to 0.51 eV as a function of temperature. It was found that certain sandwich structures are more sensitive to humidity than others and the observed resistance to humidity ratio for Au/OD/Au was 5.4 whereas for Au/OD/Ga samples it was 5.0. (author)

  20. Germination of tropical forage seeds stored for six years in ambient and controlled temperature and humidity conditions in Thailand

    Directory of Open Access Journals (Sweden)

    Michael D. Hare

    2018-01-01

    Full Text Available The germination performances of fresh seed lots were determined for 5 tropical forage species: Mulato II hybrid brachiaria [Urochloa ruziziensis (syn. Brachiaria ruziziensis x U. decumbens (syn. B. decumbens x U. brizantha (syn. B. brizantha], Mombasa guinea [Megathyrsus maximus (syn. Panicum maximum], Tanzania guinea [M. maximus (syn. P. maximum], Ubon paspalum (Paspalum atratum and Ubon stylo (Stylosanthes guianensis, stored under ambient conditions in Thailand (mean monthly temperatures 23‒34 ºC; mean monthly relative humidity 40‒92% or in a cool room (18‒20 ºC and 50% relative humidity for up to 6 years. The first paper of this study showed all seeds, except unscarified Ubon stylo seed, were dead after a single year of storage in ambient conditions. This second paper shows that cool-room storage extended seed viability, but performance varied considerably between species. Germination percentage under laboratory conditions declined to below 50%, after 3 years storage for Mombasa guinea seed and Tanzania guinea seed, 4 years for Ubon paspalum seed and 4‒5 years for Mulato II seed. Ubon stylo seed maintained high germination for 5 years, in both cool-room storage (96% and ambient-room storage (84%. Apparent embryo dormancy in acid-scarified Mulato II seed steadily increased with time in cool-storage and this seed had to be acid-scarified again each year at the time of germination testing to overcome dormancy. Physical dormancy of Mulato II seeds, imposed by the tightly bound lemma and palea in unscarified seed, was not overcome by length of time in cool-storage and these seeds had to be acid-scarified to induce germination. Hardseeded percentage in Ubon stylo seed remained high throughout the study and could be overcome only by acid-scarification. The difficulties of maintaining acceptable seed germination percentages when storing forage seeds in the humid tropics are discussed.

  1. Consistency of the national realization of dew-point temperature using NIS standard humidity generators

    Directory of Open Access Journals (Sweden)

    El-Galil Doaa Abd

    2017-01-01

    Full Text Available A comparison of two standard humidity generators (two-temperature (2-T and one-temperature (1-T generators that are developed by the National Institute for Standards (NIS has been performed using a transfer standard chilled-mirror hygrometer and measurement procedures to realize dew-point temperature Td in the range from −50 °C to 0 °C. The main objective of this comparison was to compare the realizations of dew-point temperature and to establish the level of consistency between the two generators. For a level of consistency between two measurements, it is expressed by the difference between the measured values, m1 − m2, and the expanded pair uncertainty of this difference Up [1]. The comparison measurements revealed dew-point temperature differences of 0.02 °C and 0.07 °C with expanded pair uncertainties of ±0.09 °C and ±0.15 °C.

  2. Measurement Uncertainty of Dew-Point Temperature in a Two-Pressure Humidity Generator

    Science.gov (United States)

    Martins, L. Lages; Ribeiro, A. Silva; Alves e Sousa, J.; Forbes, Alistair B.

    2012-09-01

    This article describes the measurement uncertainty evaluation of the dew-point temperature when using a two-pressure humidity generator as a reference standard. The estimation of the dew-point temperature involves the solution of a non-linear equation for which iterative solution techniques, such as the Newton-Raphson method, are required. Previous studies have already been carried out using the GUM method and the Monte Carlo method but have not discussed the impact of the approximate numerical method used to provide the temperature estimation. One of the aims of this article is to take this approximation into account. Following the guidelines presented in the GUM Supplement 1, two alternative approaches can be developed: the forward measurement uncertainty propagation by the Monte Carlo method when using the Newton-Raphson numerical procedure; and the inverse measurement uncertainty propagation by Bayesian inference, based on prior available information regarding the usual dispersion of values obtained by the calibration process. The measurement uncertainties obtained using these two methods can be compared with previous results. Other relevant issues concerning this research are the broad application to measurements that require hygrometric conditions obtained from two-pressure humidity generators and, also, the ability to provide a solution that can be applied to similar iterative models. The research also studied the factors influencing both the use of the Monte Carlo method (such as the seed value and the convergence parameter) and the inverse uncertainty propagation using Bayesian inference (such as the pre-assigned tolerance, prior estimate, and standard deviation) in terms of their accuracy and adequacy.

  3. Standard Test Methods for Photovoltaic Modules in Cyclic Temperature and Humidity Environments

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 These test methods provide procedures for stressing photovoltaic modules in simulated temperature and humidity environments. Environmental testing is used to simulate aging of module materials on an accelerated basis. 1.2 Three individual environmental test procedures are defined by these test methods: a thermal cycling procedure, a humidity-freeze cycling procedure, and an extended duration damp heat procedure. Electrical biasing is utilized during the thermal cycling procedure to simulate stresses that are known to occur in field-deployed modules. 1.3 These test methods define mounting methods for modules undergoing environmental testing, and specify parameters that must be recorded and reported. 1.4 These test methods do not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of these test methods. 1.5 Any of the individual environmental tests may be performed singly, or may be combined into a test sequence with other environmental or non-envir...

  4. Neutron diffraction for studying the influence of the relative humidity on the carbonation process of cement pastes

    International Nuclear Information System (INIS)

    Galan, I; Andrade, C; Castellote, M; Rebolledo, N; Sanchez, J; Toro, L; Puente, I; Campo, J; Fabelo, O

    2011-01-01

    The effect of humidity on hydrated cement carbonation has been studied by means of in-situ neutron diffraction measurements. The evolution of the main crystalline phases in the bulk of the sample, portlandite and calcite, has been monitored during the process. Data obtained from neutron diffraction allow the quantification of the phases involved. The results highlight the great influence of humidity on carbonation. At very low humidity there are almost no changes. Between 53 and 75% relative humidity, portlandite decrease and calcite increase data can be fitted to exponential decay functions. At very high humidity portlandite remains nearly constant while calcite increases slightly with time, almost linearly.

  5. Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Nielsen, Kristian; Stefani, Alessio

    2016-01-01

    The effect of humidity on annealing of poly (methyl methacrylate) (PMMA) based microstructured polymer optical fiber Bragg gratings (mPOFBGs) and the resulting humidity responsivity are investigated. Typically annealing of PMMA POFs is done in an oven without humidity control around 80°C...

  6. The Influence of Relative Humidity on Dielectric Barrier Discharge Plasma Flow Control Actuator Performance

    Science.gov (United States)

    Wicks, M.; Thomas, F. O.; Corke, T. C.; Patel, M.

    2012-11-01

    Dielectric barrier discharge (DBD) plasma actuators possess numerous advantages for flow control applications and have been the focus of several previous studies. Most work has been performed in relatively pristine laboratory settings. In actual flow control applications, however, it is essential to assess the impact of various environmental influences on actuator performance. As a first effort toward assessing a broad range of environmental effects on DBD actuator performance, the influence of relative humidity (RH) is considered. Actuator performance is quantified by force balance measurements of reactive thrust while RH is systematically varied via an ultrasonic humidifier. The DBD plasma actuator assembly, force balance, and ultrasonic humidifier are all contained inside a large, closed test chamber instrumented with RH and temperature sensors in order to accurately estimate the average RH at the actuator. Measurements of DBD actuator thrust as a function of RH for several different applied voltage regimes and dielectric materials and thicknesses are presented. Based on these results, several important design recommendations are made. This work was supported by Innovative Technology Applications Company (ITAC), LLC under a Small Business Innovation Research (SBIR) Phase II Contract No. N00014-11-C-0267 issued by the U.S. Department of the Navy.

  7. Rates of cuticular penetration of chelated Fe(III): role of humidity, concentration, adjuvants, temperature, and type of chelate.

    Science.gov (United States)

    Schönherr, Jörg; Fernández, Victoria; Schreiber, Lukas

    2005-06-01

    Time courses of cuticular penetration of FeCl3 and Fe(III) complexes of citric acid, EDTA, EDDHA (Sequestrene 138Fe), imidodisuccinic acid (IDHA), and ligninsulfonic acid (Natrel) were studied using astomatous cuticular membranes (CMs) isolated from Populus x canescens leaves. At 100% relative humidity, the Fe(III) chelates disappeared exponentially with time from the surface of the CMs; that is, penetration was a first-order process that can be described using rate constants or half-times of penetration (t(1/2)). Half-times ranged from 20 to 30 h. At 90% humidity, penetration rates were insignificant with the exception of Natrel, for which t(1/2) amounted to 58 h. Rate constants were independent of temperature (15, 25, and 35 degrees C). Permeability decreased with increasing Fe chelate concentration (IDHA and EDTA). At 100% humidity, half-times measured with FeIDHA were 11 h (2 mmol L(-1)), 17 h (10 mmol L(-1)) and 36 h (20 mmol L(-1)), respectively. In the presence of FeEDTA, penetration of CaCl2 was slowed greatly. Half-times for penetration of CaCl2, which were 1.9 h in the absence of FeEDTA, rose to 3.12 h in the presence of an equimolar concentration of EDTA and 13.3 h when the FeEDTA concentration was doubled. Hence, Fe chelates reduced permeability of CMs to CaCl2 and to the Fe chelates themselves. It is suggested that Fe chelates reduced the size of aqueous pores. This view is supported by the fact that rate constants for calcium salts were about 5 times higher than for Fe chelates with the same molecular weights. Adding Tween 20 (5 g L(-1)) as a humectant did not increase permeability to FeIDHA at 90% humidity and below, while addition of glycine betaine did. Penetration of FeCl3 applied at 5 g L(-1) (pH 1.5) was not a first order process as rate constants decreased rapidly with time. Only 2% of the dose penetrated during the first 2 h and less than that in the subsequent 8 h. Recovery was only 70%. This was attributed to the formation of insoluble Fe

  8. Consistency of the National Realization of Dew-Point Temperature Using Standard Humidity Generators

    Science.gov (United States)

    Benyon, R.; Vicente, T.

    2012-09-01

    The comparison of two high-range standard humidity generators used by Instituto Nacional de Técnica Aeroespacial to realize dew-point temperature in the range from -10 °C to +95 °C has been performed using state-of-the art transfer standards and measurement procedures, over their overlapping range from -10 °C to +75 °C. The aim of this study is to investigate the level of agreement between the two generators, to determine any bias, and to quantify the level of consistency of the two realizations. The measurement procedures adopted to minimize the effect of the influence factors due to the transfer standards are described, and the results are discussed in the context of the declared calibration and measurement capabilities (CMCs).

  9. Lessons Learned from the Node 1 Temperature and Humidity Control Subsystem Design

    Science.gov (United States)

    Williams, David E.

    2010-01-01

    Node 1 flew to the International Space Station (ISS) on Flight 2A during December 1998. To date the National Aeronautics and Space Administration (NASA) has learned a lot of lessons from this module based on its history of approximately two years of acceptance testing on the ground and currently its twelve years on-orbit. This paper will provide an overview of the ISS Environmental Control and Life Support (ECLS) design of the Node 1 Temperature and Humidity Control (THC) subsystem and it will document some of the lessons that have been learned to date for this subsystem and it will document some of the lessons that have been learned to date for these subsystems based on problems prelaunch, problems encountered on-orbit, and operational problems/concerns. It is hoped that documenting these lessons learned from ISS will help in preventing them in future Programs. 1

  10. Influence of relative humidity on radiosensitivity of Aspergillus flavus Link. infecting cocoa beans

    International Nuclear Information System (INIS)

    Amoako-Atta, B.; Odamtten, G.T.; Appiah, V.

    1981-01-01

    The first part of this paper deals with the moisture sorption isotherms of dried cocoa beans under different relative humidities of 55, 65, 75, 85 or 95%. The second part evaluates the effects of relative humidity (RH), initial moisture content (m.c.) of cocoa beans, and different radiation exposure doses (0, 250, 350, 450, 500 or 550 krad) on Aspergillus flavus spore inoculated cocoa beans kept in fixed RH environmental chamber of 75 or 85% RH post-irradiation for forty days. The results discussed suggest that the m.c. of beans increased from an initial level of 6.4% to 7, 7.8 and 8.9% at 55, 65, and 75% respectively, after a storage period of 6-8 days. However, beans stored under 85% or 95% RH continued to absorb moisture from their respective environments indefinitely during the 64-day storage period. Furthermore, the ambient relative humidity to which the beans are subjected before or after irradiation significantly affect the radiosensitivity of toxigenic A. flavus; the differences in such radiosensitivity are influenced by either the available moisture or the initial m.c. of the beans to the inoculum. The authors conclude from their study that high environmental RH increased the radio-resistance of A. flavus spores making it difficult to establish a radiation decontamination level of practical value under a tropical environment with high ambient relative humidity. (author)

  11. The role of absorbent building materials in moderating changes of relative humidity

    DEFF Research Database (Denmark)

    Padfield, Tim

    The problem studied in this work is, how porous, absorbent materials surroundning or placed in a room influence the relative humidity of the room. This is of interest in designing precautions and machinery to monitor the indoor climate in museums and dwelling rooms. - A novel technique for the in...

  12. The relative influence of body characteristics on humid heat stress response

    NARCIS (Netherlands)

    Havenith, G.; Luttikholt, V. G.; Vrijkotte, T. G.

    1995-01-01

    The present study was designed to determine the relative importance of individual characteristics such as maximal oxygen uptake (VO2max), adiposity, DuBois body surface area (AD), surface to mass ratio (AD: mass) and body mass, for the individual's reaction to humid heat stress. For this purpose 27

  13. Measuring relative humidity in the radioactive environment of the IRRAD proton facility

    CERN Document Server

    Paerg, Marten

    2017-01-01

    The aim of the project was to obtain information on relative humidity conditions at different locations in the IRRAD proton facility. Due to high radiation levels inside the facility, different sensors had to be qualified and dedicated electronics had to be built to transfer the data of the sensors over long wires to a less radioactive area, where it could be collected.

  14. The effect of relative humidity on output performance of inclined and ...

    African Journals Online (AJOL)

    The set-up of 70 Watts solar panel was inclined stationary at 150 for maximum solar reception while the set-up of 80 Watts solar panel had automatic solar tracker for effective capturing of solar radiation. For 70 Watts solar panel, the maximum power output of 59.99 Watt was obtained when the relative humidity was 30%.

  15. Uncertainties in downscaled relative humidity for a semi-arid region ...

    Indian Academy of Sciences (India)

    variables are extracted from the (1) National Centers for Environmental Prediction ... and (2) simulations of the third generation Canadian Coupled Global Climate ... Ef, MAE and P. Cumulative distribution functions were prepared from the ... Climate change; downscaling; hydroclimatology; relative humidity; multi-step linear ...

  16. Effect of areal power density and relative humidity on corrosion resistant container performance

    International Nuclear Information System (INIS)

    Gansemer, J.D.

    1994-10-01

    The impact of the rewetting process on the performance of waste containers at the Yucca Mountain repository is analyzed. This paper explores the impact of the temperature-humidity relationships on pitting corrosion failure of stainless steel containers for different areal power densities (APDs)in the repository. It compares the likely performance of containers in a repository with a low APD, 55 Kw/acre, and a high APD, 110 kW/acre

  17. Influence of changes in humidity on dry temperature in GPS RO climatologies

    Directory of Open Access Journals (Sweden)

    J. Danzer

    2014-09-01

    Full Text Available Radio occultation (RO data are increasingly used in climate research. Accurate phase (change measurements of Global Positioning System (GPS signals are the basis for the retrieval of near-vertical profiles of bending angle, microwave refractivity, density, pressure, and temperature. If temperature is calculated from observed refractivity with the assumption that water vapor is zero, the product is called "dry temperature", which is commonly used to study earth's atmosphere, e.g., when analyzing temperature trends due to global warming. Dry temperature is a useful quantity, since it does not need additional background information in its retrieval. However, it can only be safely used as proxy for physical temperature, where moisture is negligible. The altitude region above which water vapor does not play a dominant role anymore, depends primarily on latitude and season. In this study we first investigated the influence of water vapor on dry temperature RO profiles. Hence, we analyzed the maximum altitude down to which monthly mean dry temperature profiles can be regarded as being equivalent to physical temperature. This was done by examining dry temperature to physical temperature differences of monthly mean analysis fields from the European Centre for Medium-Range Weather Forecasts (ECMWF, studied from 2006 until 2010. We introduced cutoff criteria, where maximum temperature differences of −0.1, −0.05, and −0.02 K were allowed (dry temperature is always lower than physical temperature, and computed the corresponding altitudes. As an example, a temperature difference of −0.05 K in the tropics was found at an altitude of about 14 km, while at higher northern latitudes in winter it was found at an altitude of about 9–10 km, in summer at about 11 km. Furthermore, regarding climate change, we expect an increase of absolute humidity in the atmosphere. This possible trend in water vapor could yield a wrongly interpreted dry temperature trend

  18. Temperature and Humidity Control in Air-Conditioned Buildings with lower Energy Demand and increased Indoor Air Quality

    DEFF Research Database (Denmark)

    Paul, Joachim; Martos, E. T.

    2003-01-01

    Air-conditioning is not only a matter of temperature control. Thermal comfort and good indoor air quality are mainly a matter of humidity. Human health and well being may suffer seriously from inadequate humidity and/or too low temperatures in a room. A case study involving supermarket air......%. For indoor air temperature and humidity control, the use of an ice slurry (´Binary Ice´)was compared to conventional chilled water. The use of Binary Ice instead of chilled water makes the air handling and air distribution installation much simpler, recirculation of air becomes obsolete, and a higher portion...... of ambient air can be supplied, thus improving the indoor air quality still further. Reheating of air is not necessary when using Binary Ice. The introduction of chilled air into a room requires a different type of air outlet, however. When using Binary Ice, energy savings are high for climates with low...

  19. Relative Humidity Sensor Based on No-Core Fiber Coated by Agarose-Gel Film

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2017-10-01

    Full Text Available A relative humidity (RH sensor based on single-mode–no-core–single-mode fiber (SNCS structure is proposed and experimentally demonstrated. The agarose gel is coated on the no-core fiber (NCF as the cladding, and multimode interference (MMI occurs in the SNCS structure. The transmission spectrum of the sensor is modulated at different ambient relative humidities due to the tunable refractive index property of the agarose gel film. The relative humidity can be measured by the wavelength shift and intensity variation of the dip in the transmission spectra. The humidity response of the sensors, coated with different concentrations and coating numbers of the agarose solution, were experimentally investigated. The wavelength and intensity sensitivity is obtained as −149 pm/%RH and −0.075 dB/%RH in the range of 30% RH to 75% RH, respectively. The rise and fall time is tested to be 4.8 s and 7.1 s, respectively. The proposed sensor has a great potential in real-time RH monitoring.

  20. Dehydration of Traditional Dried Instant Noodle (Mee Siput) Using Controlled Temperature & Humidity Dryer

    Science.gov (United States)

    Mamat, K. A.; Yusof, M. S.; Yusoff, Wan Fauziah Wan; Zulafif Rahim, M.; Hassan, S.; Rahman, M. Qusyairi. A.; Karim, M. A. Abd

    2017-05-01

    Drying process is an essential step to produce instant noodles. Yet, the industries especially Small and Medium Enterprises (SMEs), is seeking for an efficient method to dry the noodles. This paper discusses the performance of an invented drying system which employed heating and humidifying process. The drying system was tested using 30 kilogram of the raw noodle known as “Mee Siput”. Temperature controlled system were used in the study to control the temperature of the drying process and prevent the dried noodles from damage by maintaining the temperature of lower than 80°C. The analysis shows that the system was drastically decreased the humidity from 80% to 40% just after 200 minutes of the drying process. The complete dehydration time of noodle has also decreased to only 4 hours from 16 hours when using traditional drying system without sacrificed the good quality of the dried noodle. In overall, the invented system believed to increase the production capacity of the noodle, reduce cost of production which would highly beneficial for Small Medium Industries (SMEs) in Malaysia.

  1. Process of long-term tunnel instability by temperature and humidity variation in sedimentary rock

    International Nuclear Information System (INIS)

    Sawada, Masataka; Okada, Tetsuji; Nakata, Eiji

    2009-01-01

    It is concerned that tunnels in the sedimentary rock are seriously damaged during the long operation after excavation, while there are various plans to construct significant underground facilities such as a high-level radioactive waste disposal facility. A case history study on tunnel instability is important in order to assess and evaluate tunnel instability behavior. In this respect, an accelerated tunnel deformation test by removing tunnel supports was conducted. Instability of tunnel wall was observed before and after this test in the summer, when it is warm and humid in the test tunnel. Fiber optic sensing detected the instability. Scale of collapsed rock was evaluated from the variation of shape of tunnel cross-section measured by a 3-D lazar measurement tool. The maximum size of collapsed rock block is 1m in diameter. Surrounding sandstone has such a characteristic that crack growth is much faster and its strength decreases gradually in the condition of high relative humidity. Numerical simulation considering this decrease of rock strength reproduced the instable zone around the test tunnel. (author)

  2. Effect of the temperature-humidity index on body temperature and conception rate of lactating dairy cows in southwestern Japan.

    Science.gov (United States)

    Nabenishi, Hisashi; Ohta, Hiroshi; Nishimoto, Toshihumi; Morita, Tetsuo; Ashizawa, Koji; Tsuzuki, Yasuhiro

    2011-09-01

    In the present study, we investigated the relationship between the temperature-humidity index (THI) and the conception rate of lactating dairy cows in southwestern Japan, one of the hottest areas of the country. We also investigated the relationship between measurement of the vaginal temperature of lactating dairy cows as their core body temperature at one-hour intervals for 25 consecutive days in hot (August-September, n=6) and cool (January-February, n=5) periods and their THI. Furthermore, we discussed the above relationship using these vaginal temperatures, the conception rates and the THI. As a result, when the conception rates from day 2 to 0 before AI were classified into day 2, 1 and 0 groups by the six maximum THI values in each group (mTHI; 80), only the conception rate for the mTHI over 80 at 1 day before AI group was significantly lower (P80) was significantly lower (P80. There was a significant positive correlation (Ptemperature, but not during the cool period. When the mTHI reached 69, the vaginal temperature started to increase. As for the relationship between the conception rates and vaginal temperatures for all mTHI classes, in the mTHI>80 at 1 day before AI group, the vaginal temperature increased by 0.6 C from 38.7 C, resulting in a reduction of 11.6% in the conception rate from 40.5%. In conclusion, these results suggest that one of the causes of the fall in conception rate of lactating dairy cows during the summer season in southwestern Japan may be an increase in their core body temperature with a higher mTHI than the critical mTHI of 69 at 1 day before AI.

  3. Medical Meteorology: the Relationship between Meteorological Parameters (Humidity, Rainfall, Wind, and Temperature and Brucellosis in Zanjan Province

    Directory of Open Access Journals (Sweden)

    Yousefali Abedini

    2016-06-01

    Full Text Available Background: Brucellosis (Malta fever is a major contagious zoonotic disease, with economic and public health importance. Methods To assess the effect of meteorological (temperature, rainfall, humidity, and wind and climate parameters on incidence of brucellosis, brucellosis distribution and meteorological zoning maps of Zanjan Province were prepared using Inverse Distance Weighting (IDW and Kriging technique in Arc GIS medium. Zoning maps of mean temperature, rainfall, humidity, and wind were compared to brucellosis distribution maps. Results: Correlation test showed no relationship between the mean number of patients with brucellosis and any of the four meteorological parameters. Conclusion: It seems that in Zanjan province there is no correlation between brucellosis and meteorological parameters.

  4. Building America Case Study: Energy Efficient Management of Mechanical Ventilation and Relative Humidity in Hot-Humid Climates, Cocoa, Florida

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split on seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.

  5. Long-term Effects of Relative Humidity on Properties of Microwave Hardened Moulding Sand with Sodium Silicate

    Directory of Open Access Journals (Sweden)

    Stachowicz M.

    2017-09-01

    Full Text Available Moulding sands containing sodium silicate (water-glass belong to the group of porous mixture with low resistance to increased humidity. Thanks to hydrophilic properties of hardened or even overheated binder, possible is application of effective methods of hydrous reclamation consisting in its secondary hydration. For the same reason (hydrophilia of the binder, moulds and foundry cores made of high-silica moulding sands with sodium silicate are susceptible to the action of components of atmospheric air, including the contained steam. This paper presents results of a research on the effect of (relative humidity on mechanical and technological properties of microwave-hardened moulding mixtures. Specimens of the moulding sand containing 1.5 wt% of sodium water-glass with module 2.5 were subjected, in a laboratory climatic chamber, to long-term action of steam contained in the chamber atmosphere. Concentration of water in atmospheric air was stabilized for 28 days (672 h according to the relative humidity parameter that was ca. 40%, 60% and 80% at constant temperature 20 °C. In three cycles of the examinations, the specimens were taken out from the chamber every 7 days (168 h and their mechanical and technological parameters were determined. It was found on the grounds of laboratory measurements that moulds and cores hardened with microwaves are susceptible to action of atmospheric air and presence of water (as steam intensifies action of the air components on glassy film of sodium silicate. Microwave-hardened moulding sands containing sodium silicate may be stored on a long-term basis in strictly determined atmospheric conditions only, at reduced humidity. In spite of a negative effect of steam contained in the air, the examined moulding mixtures maintain a part of their mechanical and technological properties, so the moulds and foundry cores stored in specified, controlled conditions could be still used in manufacture.

  6. Assurance of MOZAIC/IAGOS relative humidity data quality by evaluating the Capacitive Hygrometer during airborne field studies

    Science.gov (United States)

    Neis, Patrick; Smit, Herman G. J.; Rohs, Susanne; Rolf, Christian; Krämer, Martina; Ebert, Volker; Buchholz, Bernhard; Bundke, Ulrich; Finger, Fanny; Klingebiel, Marcus; Petzold, Andreas

    2015-04-01

    Water vapour is a major parameter in weather prediction and climate research but the interaction between the water vapour in the upper troposphere and lowermost stratosphere (UT/LS) and tropopause dynamics are not well understood. A continuous measurement of upper tropospheric humidity (UTH) is difficult because the abundance of UTH is highly variable on spatial and temporal scales that cannot be resolved, neither by the global radiosondes network nor by satellites. Since 1994, data with high spatial and temporal resolution for relative humidity are provided by the in-situ measurements aboard civil passenger aircraft from the MOZAIC/IAGOS-programme (www.iagos.org). The data set emerging from this long-term observation effort builds the backbone of the ongoing in-situ UTH climatology and trend analyses. In order to assess the validity of the long-term water vapour data and its limitations, an analysis of the humidity data sets of two field campaigns is presented. The validation of applied measurement methods, i.e. the MOZAIC/IAGOS Capacitive Hygrometer, is valued on the basis of the aircraft campaigns CIRRUS-III (2006) and AIRTOSS-ICE (2013), where research-grade water vapour instruments were operated simultaneously to the MOZAIC/IAGOS Capacitive Hygrometers. The performance of the MOZAIC Capacitive Hygrometer (MCH; operated from 1994 to 2014 on MOZAIC aircraft) and the advanced IAGOS Capacitive Hygrometer (ICH; operated since 2011 on IAGOS aircraft) are explored in clear sky, in the vicinity of and inside cirrus clouds as a blind intercomparison to the research-grade water vapour instruments. From these intercomparisons the qualification of the Capacitive Hygrometer for the use in long-term observation programmes is successfully demonstrated and the continuation of high data quality is confirmed for the transition from MCH to ICH. In particular the Capacitive Hygrometer response time to changes in relative humidity could be determined for the full range of

  7. Multivariate analysis of effects of diurnal temperature and seasonal humidity variations by tropical savanna climate on the emissions of anthropogenic volatile organic compounds.

    Science.gov (United States)

    Liu, Chih-Chung; Chen, Wei-Hsiang; Yuan, Chung-Shin; Lin, Chitsan

    2014-02-01

    Volatile organic compounds (VOCs), particularly those from anthropogenic sources, have been of substantial concern. In this study, the influences of diurnal temperature and seasonal humidity variations by tropical savanna climate on the distributions of VOCs from stationary industrial sources were investigated by analyzing the concentrations during the daytime and nighttime in the dry and wet seasons and assessing the results by principal component analysis (PCA) and cluster analysis. Kaohsiung City in Southern Taiwan, known for its severe VOC pollution, was chosen as the location to be examined. In the results, the VOC concentrations were lower during the daytime and in the wet season, possibly attributed to the stronger photochemical reactions and increasing inhibition of VOC emissions and transports by elevating humidity levels. Certain compounds became appreciably more important at higher humidity, as these compounds were saturated hydrocarbons with relatively low molecular weights. The influence of diurnal temperature variation on VOC distribution behaviors seemed to be less important than and interacted with that of seasonal humidity variation. Heavier aromatic hydrocarbons with more complex structures and some aliphatic compounds were found to be the main species accounting for the maximum variances of the data observed at high humidity, and the distinct grouping of compounds implied a pronounced inherent characteristic of each cluster in the observed VOC distributions. Under the influence of diurnal temperature variation, selected VOCs that may have stronger photochemical resistances and/or longer lifetimes in the atmosphere were clustered with each other in the cluster analysis, whereas the other groups might consist of compounds with different levels of vulnerability to sunlight or high temperatures. These findings prove the complications in the current knowledge regarding the VOC contaminations and providing insight for managing the adverse impacts of

  8. Groundwater circulations within a tropical humid andesitic volcanic watershed using the temperature as a tracer

    Science.gov (United States)

    Selles, Adrien; Violette, Sophie; Hendrayana, Heru

    2014-05-01

    water temperature has been used as a tracer to understand the pattern of groundwater flow and to determine the mean recharge elevation for springs. Inferences from standard oxygen and hydrogen isotopic measurements are compared with temperature measurements made at the springs to confirm the recharge elevation estimation and whether groundwater circulates to shallow or deeper depths. The METIS model, coupling groundwater flow and heat transport simulations in 2D steady flow regime, has been used in order to confirm the findings of the temperature and mean flow rate analysis and to characterize the regional flow of the multi-layered aquifer system. This approach provides methodological insights into characterization of the groundwater pathway within complex porous media in tropical humid regions. This study enable us to provide guidance on the required level of model complexity as well as on the amount and type of observations data required.

  9. Cultivar Differences in Plant Transpiration Rate at High Relative Air Humidity Are Not Related to Genotypic Variation in Stomatal Responsiveness

    DEFF Research Database (Denmark)

    Gebraegziabher, Habtamu Giday; Kjær, Katrine Heinsvig; Ottosen, Carl-Otto

    2015-01-01

    Plants grown at high relative air humidity (RH) often show disturbed water relations due to less responsive stomata. The attenuation of stomatal responsiveness as a result of high RH during leaf expansion depends on the cultivar. We hypothesized that tolerant cultivars to high RH experience a low...

  10. Comparative transcriptome profiling of a thermal resistant vs. sensitive silkworm strain in response to high temperature under stressful humidity condition.

    Directory of Open Access Journals (Sweden)

    Wenfu Xiao

    Full Text Available Thermotolerance is important particularly for poikilotherms such as insects. Understanding the mechanisms by which insects respond to high temperatures can provide insights into their adaptation to the environment. Therefore, in this study, we performed a transcriptome analysis of two silkworm strains with significantly different resistance to heat as well as humidity; the thermo-resistant strain 7532 and the thermos-sensitive strain Knobbed. We identified in total 4,944 differentially expressed genes (DEGs using RNA-Seq. Among these, 4,390 were annotated and 554 were novel. Gene Ontology (GO analysis of 747 DEGs identified between RT_48h (Resistant strain with high-temperature Treatment for 48 hours and ST_48h (Sensitive strain with high-temperature Treatment for 48 hours showed significant enrichment of 12 GO terms including metabolic process, extracellular region and serine-type peptidase activity. Moreover, we discovered 12 DEGs that may contribute to the heat-humidity stress response in the silkworm. Our data clearly showed that 48h post-exposure may be a critical time point for silkworm to respond to high temperature and humidity. These results provide insights into the genes and biological processes involved in high temperature and humidity tolerance in the silkworm, and advance our understanding of thermal tolerance in insects.

  11. UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties

    Directory of Open Access Journals (Sweden)

    G. Masiello

    2009-11-01

    Full Text Available Raman lidar measurements performed in Potenza by the Raman lidar system BASIL in the presence of cirrus clouds are discussed. Measurements were performed on 6 September 2004 in the frame of the Italian phase of the EAQUATE Experiment.

    The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, and consequently relative humidity, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. BASIL is also capable to provide measurements of the particle backscatter and extinction coefficient, and consequently lidar ratio (at the time of these measurements, only at one wavelength, which are fundamental to infer geometrical and microphysical properties of clouds.

    A case study is discussed in order to assess the capability of Raman lidars to measure humidity in presence of cirrus clouds, both below and inside the cloud. While air inside the cloud layers is observed to be always under-saturated with respect to water, both ice super-saturation and under-saturation conditions are found inside these clouds. Upper tropospheric moistening is observed below the lower cloud layer.

    The synergic use of the data derived from the ground based Raman Lidar and of spectral radiances measured by the NAST-I Airborne Spectrometer allows the determination of the temporal evolution of the atmospheric cooling/heating rates due to the presence of the cirrus cloud.

    Lidar measurements beneath the cirrus cloud layer have been interpreted using a 1-D cirrus cloud model with explicit microphysics. The 1-D simulations indicate that sedimentation-moistening has contributed significantly to the moist anomaly, but other mechanisms are also contributing. This result supports the hypothesis that the observed mid-tropospheric humidification is a real feature which is

  12. Design of evaporative-cooling roof for decreasing air temperatures in buildings in the humid tropics

    Science.gov (United States)

    Kindangen, Jefrey I.; Umboh, Markus K.

    2017-03-01

    This subject points to assess the benefits of the evaporative-cooling roof, particularly for buildings with corrugated zinc roofs. In Manado, many buildings have roofed with corrugated zinc sheets; because this material is truly practical, easy and economical application. In general, to achieve thermal comfort in buildings in a humid tropical climate, people applying cross ventilation to cool the air in the room and avoid overheating. Cross ventilation is a very popular path to achieve thermal comfort; yet, at that place are other techniques that allow reducing the problem of excessive high temperature in the room in the constructions. This study emphasizes applications of the evaporative-cooling roof. Spraying water on the surface of the ceiling has been executed on the test cell and the reuse of water after being sprayed and cooled once more by applying a heat exchanger. Initial results indicate a reliable design and successfully meet the target as an effective evaporative-cooling roof technique. Application of water spraying automatic and cooling water installations can work optimally and can be an optimal model for the cooling roof as one of the green technologies. The role of heat exchangers can lower the temperature of the water from spraying the surface of the ceiling, which has become a hot, down an average of 0.77° C. The mass flow rate of the cooling water is approximately 1.106 kg/h and the rate of heat flow is around 515 Watt, depend on the site.

  13. Nucleation and Crystal Growth of Organic-Inorganic Lead Halide Perovskites under Different Relative Humidity.

    Science.gov (United States)

    Gao, Hao; Bao, Chunxiong; Li, Faming; Yu, Tao; Yang, Jie; Zhu, Weidong; Zhou, Xiaoxin; Fu, Gao; Zou, Zhigang

    2015-05-06

    Organic-inorganic lead halide perovskite compounds are very promising materials for high-efficiency perovskite solar cells. But how to fabricate high-quality perovksite films under controlled humidity conditions is still an important issue due to their sensitivity to moisture. In this study, we investigated the influence of ambient humidity on crystallization and surface morphology of one-step spin-coated perovskite films, as well as the performance of solar cells based on these perovskite films. On the basis of experimental analyses and thin film growth theory, we conclude that the influence of ambient humidity on nucleation at spin-coating stage is quite different from that on crystal growth at annealing stage. At the spin-coating stage, high nucleation density induced by high supersaturation prefers to appear under anhydrous circumstances, resulting in layer growth and high coverage of perovskite films. But at the annealing stage, the modest supersaturation benefits formation of perovskite films with good crystallinity. The films spin-coated under low relative humidity (RH) followed by annealing under high RH show an increase of crystallinity and improved performance of devices. Therefore, a mechanism of fast nucleation followed by modest crystal growth (high supersaturation at spin-coating stage and modest supersaturation at annealing stage) is suggested in the formation of high-quality perovskite films.

  14. THE INFLUENCE OF VARIABLE TEMPERATURE AND HUMIDITY ON THE PREDATION EFFICIENCY OF P. PERSIMILIS, N. CALIFORNICUS AND N. FALLACIS.

    Science.gov (United States)

    Audenaert, J; Vangansbeke, D; Verhoeven, R; De Clercq, P; Tirry, L; Gobin, B

    2014-01-01

    Predatory mites like Phytoseiulus persimilis Athias-Henriot, Neoseiulus californicus McGregor and N. fallacis (Garman) (Acari: Phytoseiidae) are essential in sustainable control strategies of the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) in warm greenhouse cultures to complement imited available pesticides and to tackle emerging resistance. However, in response to high energy prices, greenhouse plant breeders have recently changed their greenhouse steering strategies, allowing more variation in temperature and humidity. The impact of these variations on biological control agents is poorly understood. Therefore, we constructed functional response models to demonstrate the impact of realistic climate variations on predation efficiency. First, two temperature regimes were compared at constant humidity (70%) and photoperiod (16L:8D): DIF0 (constant temperature) and DIF15 (variable temperature with day-night difference of 15°C). At mean temperatures of 25°C, DIF15 had a negative influence on the predation efficiency of P. persimilis and N. californicus, as compared to DIF0. At low mean temperatures of 15°C, however, DIF15 showed a higher predation efficiency for P. persimilis and N. californicus. For N. fallacis no difference was observed at both 15°C and 25°C. Secondly, two humidity regimes were compared, at a mean temperature of 25°C (DIFO) and constant photoperiod (16L:8D): RHCTE (constant 70% humidity) and RHALT (alternating 40% L:70%D humidity). For P. persimilis and N. fallacis RHCTE resulted in a higher predation efficiency than RHALT, for N. californicus this effect was opposite. This shows that N. californicus is more adapted to dry climates as compared to the other predatory mites. We conclude that variable greenhouse climates clearly affect predation efficiency of P. persimilis, N. californicus and N. fallacis. To obtain optimal control efficiency, the choice of predatory mites (including dose and application frequency

  15. New Submersed Chamber for Calibration of Relative Humidity Instruments at HMI/FSB-LPM

    Science.gov (United States)

    Sestan, D.; Zvizdic, D.; Sariri, K.

    2018-02-01

    This paper gives a detailed description of a new chamber designed for calibration of relative humidity (RH) instruments at Laboratory for Process Measurement (HMI/FSB-LPM). To the present time, the calibrations of RH instruments at the HMI/FSB-LPM were done by comparison method using a climatic chamber of large volume and calibrated dew point hygrometer with an additional thermometer. Since 2010, HMI/FSB-LPM in cooperation with Centre for Metrology and Accreditation in Finland (MIKES) developed the two primary dew point generators which cover the dew point temperature range between - 70 {°}C and 60 {°}C. In order to utilize these facilities for calibrations of the RH instruments, the new chamber was designed, manufactured and installed in the existing system, aiming to extend its range and reduce the related calibration uncertainties. The chamber construction allows its use in a thermostatic bath of larger volume as well as in the climatic chambers. In the scope of this paper, performances of the new chamber were tested while it was submersed in a thermostated bath. The chamber can simultaneously accommodate up to three RH sensors. In order to keep the design of the chamber simple, only cylindrical RH sensors detachable from display units can be calibrated. Possible optimizations are also discussed, and improvements in the design proposed. By using the new chamber, HMI/FSB-LPM reduced the expanded calibration uncertainties (level of confidence 95 %, coverage factor k=2) from 0.6 %rh to 0.25 %rh at 30 %rh (23 {°}C), and from 0.8 %rh to 0.53 %rh at 70 %rh (23 {°}C).

  16. Impact of temperature and humidity on acceptability of indoor air quality during immediate and longer whole-body exposures

    DEFF Research Database (Denmark)

    Fang, Lei; Clausen, Geo; Fanger, Povl Ole

    1997-01-01

    Acceptability of clean air and air polluted by building materials was studied in climate chambers with different levels of air temperature and humidity in the ranges 18-28°C and 30-70%. The immediate acceptability after entering a chamber and the acceptability during a 20-minute whole-body exposu...

  17. A newly developed tool for intra-tracheal temperature and humidity assessment in laryngectomized individuals: the Airway Climate Explorer (ACE)

    NARCIS (Netherlands)

    Zuur, J.K.; Muller, S.H.; Jongh, F.H.C.; Horst, M.J. van der; Shehata, M.; Leeuwen, J. van; Sinaasappel, M.; Hilgers, F.J.M.

    2007-01-01

    The aim of this study is to develop a postlaryngectomy airway climate explorer (ACE) for assessment of intratracheal temperature and humidity and of influence of heat and moisture exchangers (HMEs). Engineering goals were within-device condensation prevention and fast response time characteristics.

  18. Assessment of tracheal temperature and humidity in laryngectomized individuals and the influence of heat and moisture exchangers on tracheal climate

    NARCIS (Netherlands)

    Zuur, J.K.; Muller, S.H.; Vincent, A.; Sinaasappel, M.; de Jongh, F.H.C.; Hilgers, F.J.M.

    2008-01-01

    Background The beneficial function of heat and moisture exchangers (HMEs) is undisputed, but knowledge of their effects on intra-airway temperature and humidity is scarce. The aim of this study was to evaluate the clinical applicability of a new airway climate explorer (ACE) and to assess the HME's

  19. IMPACT OF TROPICAL CONDITIONS ON THIN-LAYER CHROMATOGRAPHY IN ANALYTICAL TOXICOLOGY - HIGH-TEMPERATURES AND MODERATE HUMIDITIES

    NARCIS (Netherlands)

    DEZEEUW, RA; FRANKE, JP; DIK, E; TENDOLLE, W; KAM, BL

    The impact of high temperatures (24 to 39-degrees-C) and low to moderately high humidities (20 to 70%) on the applicability of TLC systems for drug identification was studied during a 6 month climatologic cycle in Burkina Faso (West Africa). In general, the Rf values as observed on the plates were

  20. Quantitative Ethylene Measurements with MOx Chemiresistive Sensors at Different Relative Air Humidities

    Directory of Open Access Journals (Sweden)

    Matic Krivec

    2015-11-01

    Full Text Available The sensitivity of two commercial metal oxide (MOx sensors to ethylene is tested at different relative humidities. One sensor (MiCS-5914 is based on tungsten oxide, the other (MQ-3 on tin oxide. Both sensors were found to be sensitive to ethylene concentrations down to 10 ppm. Both sensors have significant response times; however, the tungsten sensor is the faster one. Sensor models are developed that predict the concentration of ethylene given the sensor output and the relative humidity. The MQ-3 sensor model achieves an accuracy of ±9.2 ppm and the MiCS-5914 sensor model predicts concentration to ±7.0 ppm. Both sensors are more accurate for concentrations below 50 ppm, achieving ±6.7 ppm (MQ-3 and 5.7 ppm (MiCS-5914.

  1. Creep behavior of sweetgum OSB: effect of load level and relative humidity

    Science.gov (United States)

    J.H. Pu; R.C. Tang; Chung-Yun Hse

    1994-01-01

    Flexural creep behavior of laboratory-fabricated sweetgum oriented strandboard (OSB). under constnat (65% and 95%) and cyclic (65% 95% at a 96-hr. frequency) relative humidity (RH) conditions at 75 F (23.9 C) is presented. Two levels (4.5% and 6.5%) of resin content (RC) of phenol-formaldehyde were used in fabricating the test panels. Two load levels (20% and...

  2. Efficiency of producing anion and relative humidity of the indigenous woody plants in Jeju islands

    Science.gov (United States)

    Son, S.-G.; Kim, K.-J.; Kim, H.-J.; Kim, C.-M.; Byun, K.-O.

    2009-04-01

    This study is to evaluate the ability of interior plants to produce anion and relative humidity that can purify polluted indoor air. Four indigenous woody plants in Jeju islands such as Sarcandra glaber (Thunb.) Nakai, Illicium anisatum L, Cleyera japonica Thunb. and Ilex rotunda Thunb. were used. Sansevieria trifasciata cv. Laurentii was also used as a comparative plant. The amount of anion and increment of relative humidity produced by five species of indoor plants was assessed by anion measurement (ITC-201A)in a sealed acryl chamber (118Ã-118Ã-119.5cm). The highest amount of anion was 515 ea/cm3produced by I. rotunda. The amounts of anion were 293 ea/cm3, 273 ea/cm3, and 211 ea/cm3 in S. glaber, I. anisatum and C. japonica, respecively while it was 220 ea/cm3 in S. trifasciata. The increment of relative humidity was highest in I. anisatum as 27.4% while it was lowest in S. trifasciata as 14.0%. This result suggested that all four indigenous plants tested were more effective to purify the indoor polluted air than S. trifasciata. Key words: interior plant, S. glaber, I. anisatum, C. japonica, I. rotunda, indoor polluted air

  3. Nacre-like hybrid films: Structure, properties, and the effect of relative humidity.

    Science.gov (United States)

    Abba, Mohammed T; Hunger, Philipp M; Kalidindi, Surya R; Wegst, Ulrike G K

    2015-03-01

    Functional materials often are hybrids composed of biopolymers and mineral constituents. The arrangement and interactions of the constituents frequently lead to hierarchical structures with exceptional mechanical properties and multifunctionality. In this study, hybrid thin films with a nacre-like brick-and-mortar microstructure were fabricated in a straightforward and reproducible manner through manual shear casting using the biopolymer chitosan as the matrix material (mortar) and alumina platelets as the reinforcing particles (bricks). The ratio of inorganic to organic content was varied from 0% to 15% and the relative humidities from 36% to 75% to determine their effects on the mechanical properties. It was found that increasing the volume fraction of alumina from 0% to 15% results in a twofold increase in the modulus of the film, but decreases the tensile strength by up to 30%, when the volume fraction of alumina is higher than 5%. Additionally, this study quantifies and illustrates the critical role of the relative humidity on the mechanical properties of the hybrid film. Increasing the relative humidity from 36% to 75% decreases the modulus and strength by about 45% and triples the strain at failure. These results suggest that complex hybrid materials can be manufactured and tailor made for specific applications or environmental conditions. Copyright © 2015. Published by Elsevier Ltd.

  4. Bond Strength of Resin Composite to Dentin with Different Adhesive Systems: Influence of Relative Humidity and Application Time.

    Science.gov (United States)

    Amsler, Fabienne; Peutzfeldt, Anne; Lussi, Adrian; Flury, Simon

    2015-06-01

    To investigate the influence of relative humidity and application time on bond strength to dentin of different classes of adhesive systems. A total of 360 extracted human molars were ground to mid-coronal dentin. The dentin specimens were treated with one of six adhesive systems (Syntac Classic, OptiBond FL, Clearfil SE Bond, AdheSE, Xeno Select, or Scotchbond Universal), and resin composite (Filtek Z250) was applied to the treated dentin surface under four experimental conditions (45% relative humidity/application time according to manufacturers' instructions; 45% relative humidity/reduced application time; 85% relative humidity/application time according to manufacturers' instructions; 85% relative humidity/reduced application time). After storage (37°C, 100% humidity, 24 h), shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by Kruskal-Wallis tests and Mann-Whitney U-tests with Bonferroni-Holm correction for multiple testing (level of significance: α = 0.05). Increased relative humidity and reduced application time had no effect on SBS for Clearfil SE Bond and Scotchbond Universal (p = 1.00). For Syntac Classic, OptiBond FL, AdheSE, and Xeno Select there was no effect on SBS of reduced application time of the adhesive system (p ≥ 0.403). However, increased relative humidity significantly reduced SBS for Syntac Classic, OptiBond FL, and Xeno Select irrespective of application time (p ≤ 0.003), whereas for AdheSE, increased relative humidity significantly reduced SBS at recommended application time only (p = 0.002). Generally, increased relative humidity had a detrimental effect on SBS to dentin, but reduced application time had no effect.

  5. Temperature and Humidity Sensor Powered by an Individual Microbial Fuel Cell in a Power Management System

    Directory of Open Access Journals (Sweden)

    Qi Zheng

    2015-09-01

    Full Text Available Microbial fuel cells (MFCs are of increasing interest as bioelectrochemical systems for decomposing organic materials and converting chemical energy into electricity. The main challenge for this technology is that the low power and voltage of the devices restricts the use of MFCs in practical applications. In this paper, a power management system (PMS is developed to store the energy and export an increased voltage. The designed PMS successfully increases the low voltage generated by an individual MFC to a high potential of 5 V, capable of driving a wireless temperature and humidity sensor based on nRF24L01 data transmission modules. With the PMS, MFCs can intermittently power the sensor for data transmission to a remote receiver. It is concluded that even an individual MFC can supply the energy required to power the sensor and telemetry system with the designed PMS. The presented PMS can be widely used for unmanned environmental monitoring such as wild rivers, lakes, and adjacent water areas, and offers promise for further advances in MFC technology.

  6. Temperature and Humidity Sensor Powered by an Individual Microbial Fuel Cell in a Power Management System.

    Science.gov (United States)

    Zheng, Qi; Xiong, Lei; Mo, Bing; Lu, Weihong; Kim, Suki; Wang, Zhenyu

    2015-09-11

    Microbial fuel cells (MFCs) are of increasing interest as bioelectrochemical systems for decomposing organic materials and converting chemical energy into electricity. The main challenge for this technology is that the low power and voltage of the devices restricts the use of MFCs in practical applications. In this paper, a power management system (PMS) is developed to store the energy and export an increased voltage. The designed PMS successfully increases the low voltage generated by an individual MFC to a high potential of 5 V, capable of driving a wireless temperature and humidity sensor based on nRF24L01 data transmission modules. With the PMS, MFCs can intermittently power the sensor for data transmission to a remote receiver. It is concluded that even an individual MFC can supply the energy required to power the sensor and telemetry system with the designed PMS. The presented PMS can be widely used for unmanned environmental monitoring such as wild rivers, lakes, and adjacent water areas, and offers promise for further advances in MFC technology.

  7. Ozone decomposition kinetics on alumina: effects of ozone partial pressure, relative humidity and repeated oxidation cycles

    Directory of Open Access Journals (Sweden)

    R. C. Sullivan

    2004-01-01

    Full Text Available The room temperature kinetics of gas-phase ozone loss via heterogeneous interactions with thin alumina films has been studied in real-time using 254nm absorption spectroscopy to monitor ozone concentrations. The films were prepared from dispersions of fine alumina powder in methanol and their surface areas were determined by an in situ procedure using adsorption of krypton at 77K. The alumina was found to lose reactivity with increasing ozone exposure. However, some of the lost reactivity could be recovered over timescales of days in an environment free of water, ozone and carbon dioxide. From multiple exposures of ozone to the same film, it was found that the number of active sites is large, greater than 1.4x1014 active sites per cm2 of surface area or comparable to the total number of surface sites. The films maintain some reactivity at this point, which is consistent with there being some degree of active site regeneration during the experiment and with ozone loss being catalytic to some degree. The initial uptake coefficients on fresh films were found to be inversely dependent on the ozone concentration, varying from roughly 10-6 for ozone concentrations of 1014 molecules/cm3 to 10-5 at 1013 molecules/cm3. The initial uptake coefficients were not dependent on the relative humidity, up to 75%, within the precision of the experiment. The reaction mechanism is discussed, as well as the implications these results have for assessing the effect of mineral dust on atmospheric oxidant levels.

  8. PAIR INFLUENCE OF WIND SPEED AND MEAN RADIANT TEMPERATURE ON OUTDOOR THERMAL COMFORT OF HUMID TROPICAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Sangkertadi Sangkertadi

    2016-01-01

    Full Text Available The purposes of this article is to explore knowledge of outdoor thermal comfort in humid tropical environment for urban activities especially for people in walking activity, and those who stationary/seated with moderate action. It will be characterized the pair influence of wind speed and radiant temperature on the outdoor thermal comfort. Many of researchers stated that those two microclimate variables give significant role on outdoor thermal comfort in tropical humid area. Outdoor Tropical Comfort (OTC model was used for simulation in this study. The model output is comfort scale that refers on ASHRAE definition. The model consists of two regression equations with variables of air temperature, globe temperature, wind speed, humidity and body posture, for two types of activity: walking and seated. From the results it can be stated that there is significant role of wind speed to reduce mean radiant temperature and globe temperature, when the velocity is elevated from 0.5 m/s to 2 m/s. However, the wind has not play significant role when the speed is changed from 2 m/s to 3.5 m/s. The results of the study may inspire us to implement effectiveness of electrical-fan equipment for outdoor space in order to get optimum wind speed, coupled with optimum design of shading devices to minimize radiant temperature for thermal comfort.

  9. High relative humidity pre-harvest reduces post-harvest proliferation of Salmonella in tomatoes.

    Science.gov (United States)

    Devleesschauwer, Brecht; Marvasi, Massimiliano; Giurcanu, Mihai C; Hochmuth, George J; Speybroeck, Niko; Havelaar, Arie H; Teplitski, Max

    2017-09-01

    Outbreaks of human illness caused by enteric pathogens such as Salmonella are increasingly linked to the consumption of fruits and vegetables. Knowledge on the factors affecting Salmonella proliferation on fresh produce therefore becomes increasingly important to safeguard public health. Previous experiments showed a limited impact of pre-harvest production practices on Salmonella proliferation on tomatoes, but suggested a significant effect of harvest time. We explored the data from two previously published and one unpublished experiment using regression trees, which allowed overcoming the interpretational difficulties of classical statistical models with higher order interactions. We assessed the effect of harvest time by explicitly modeling the climatic conditions at harvest time and by performing confirmatory laboratory experiments. Across all datasets, regression trees confirmed the dominant effect of harvest time on Salmonella proliferation, with humidity-related factors emerging as the most important underlying climatic factors. High relative humidity the week prior to harvest was consistently associated with lower Salmonella proliferation. A controlled lab experiment confirmed that tomatoes containing their native epimicrobiota supported significantly lower Salmonella proliferation when incubated at higher humidity prior to inoculation. The complex interactions between environmental conditions and the native microbiota of the tomato crop remain to be fully understood. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Metabolic Heat Regenerated Temperature Swing Adsorption for CO2, Thermal and Humidity Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — MTSA technology specifically addresses the thermal, CO2 and humidity control challenges faced by Portable Life Support Systems (PLSS) to be used in NASA's...

  11. Transfer Efficiency of Bacteria and Viruses from Porous and Nonporous Fomites to Fingers under Different Relative Humidity Conditions

    Science.gov (United States)

    Gerba, Charles P.; Tamimi, Akrum H.; Kitajima, Masaaki; Maxwell, Sheri L.; Rose, Joan B.

    2013-01-01

    Fomites can serve as routes of transmission for both enteric and respiratory pathogens. The present study examined the effect of low and high relative humidity on fomite-to-finger transfer efficiency of five model organisms from several common inanimate surfaces (fomites). Nine fomites representing porous and nonporous surfaces of different compositions were studied. Escherichia coli, Staphylococcus aureus, Bacillus thuringiensis, MS2 coliphage, and poliovirus 1 were placed on fomites in 10-μl drops and allowed to dry for 30 min under low (15% to 32%) or high (40% to 65%) relative humidity. Fomite-to-finger transfers were performed using 1.0 kg/cm2 of pressure for 10 s. Transfer efficiencies were greater under high relative humidity for both porous and nonporous surfaces. Most organisms on average had greater transfer efficiencies under high relative humidity than under low relative humidity. Nonporous surfaces had a greater transfer efficiency (up to 57%) than porous surfaces (humidity, as well as under high relative humidity (nonporous, up to 79.5%; porous, <13.4%). Transfer efficiency also varied with fomite material and organism type. The data generated can be used in quantitative microbial risk assessment models to assess the risk of infection from fomite-transmitted human pathogens and the relative levels of exposure to different types of fomites and microorganisms. PMID:23851098

  12. Life table parameters of three Mirid Bug (Adelphocoris species (Hemiptera: Miridae under contrasted relative humidity regimes.

    Directory of Open Access Journals (Sweden)

    Hongsheng Pan

    Full Text Available The genus Adelphocoris (Hemiptera: Miridae is a group of important insect pests of Bt cotton in China. The three dominant species are A. lineolatus, A. suturalis, and A. fasciaticollis, and these species have different population dynamics. The causal factors for the differences in population dynamics have not been determined; one hypothesis is that humidity may be important for the growth of Adelphocoris populations. In the laboratory, the demographic parameters of the three Adelphocoris species were compared when the mirid bugs were subjected to various levels of relative humidity (40, 50, 60, 70 and 80% RH. Middle to high levels of RH (60, 70 and 80% were associated with higher egg and nymph survival rates and increased adult longevity and female fecundity. Lower humidity levels (40 and 50% RH had negative effects on the survival of nymphs, adult longevity and fecundity. The intrinsic rate of increase (rm, the net reproductive rate (R0 and the finite rate of increase (λ for each Adelphocoris species increased with increasing RH. Significant positive relationships were found between RH and the life table parameters, rm, R0 and λ for the three Adelphocoris species. These results will help to better understand the phenology of the three Adelphocoris species, and the information can be used in population growth models to optimize pest forecasting and management strategies for these key pests.

  13. A comparison of temperature and humidity effects on phosphor-converted LED packages and the prediction of remaining useful life with state estimation

    Energy Technology Data Exchange (ETDEWEB)

    Lall, Pradeep; Zhang, Hao; Davis, Lynn

    2016-05-31

    This paper focuses on the failure mechanisms and color stability of a commercially available high power LED under harsh environmental conditions. 3 groups of the same pc-HB warm white LED were used in the experiment. The first group was subjected to both high temperature and high relative humidity (85°C/85%RH) with a 350mA bias current. The second group was subjected to only temperature stress at 105°C with a 350mA bias current. The last group was subjected to extreme high temperature 175°C and high bias current (500mA). Samples were taken out from the chamber for both photometric and colorimetric analysis at periodic intervals to investigate the change of the optical parameters. The physics of failure due to the material degradation has been correlated with the change in the photometric and colorimetric parameters of the LED packages. At the end of the experiment, 6000 hours of data is projected forward with state estimation methods to compare with projections made with the TM-21 method. Experimental results shows that only optical parts degrades at high temperature conditions. However, at both high temperature and high relative humidity condition, the phosphor layer of the pc-LED can swell and the color stability of LEDs degrades significantly. Also, comparison between TM-21 method and state estimation method shows that state estimation can achieve the same goal with a relatively easy method.

  14. A new retrieval algorithm for tropospheric temperature, humidity and pressure profiling based on GNSS radio occultation data

    Science.gov (United States)

    Kirchengast, Gottfried; Li, Ying; Scherllin-Pirscher, Barbara; Schwärz, Marc; Schwarz, Jakob; Nielsen, Johannes K.

    2017-04-01

    The GNSS radio occultation (RO) technique is an important remote sensing technique for obtaining thermodynamic profiles of temperature, humidity, and pressure in the Earth's troposphere. However, due to refraction effects of both dry ambient air and water vapor in the troposphere, retrieval of accurate thermodynamic profiles at these lower altitudes is challenging and requires suitable background information in addition to the RO refractivity information. Here we introduce a new moist air retrieval algorithm aiming to improve the quality and robustness of retrieving temperature, humidity and pressure profiles in moist air tropospheric conditions. The new algorithm consists of four steps: (1) use of prescribed specific humidity and its uncertainty to retrieve temperature and its associated uncertainty; (2) use of prescribed temperature and its uncertainty to retrieve specific humidity and its associated uncertainty; (3) use of the previous results to estimate final temperature and specific humidity profiles through optimal estimation; (4) determination of air pressure and density profiles from the results obtained before. The new algorithm does not require elaborated matrix inversions which are otherwise widely used in 1D-Var retrieval algorithms, and it allows a transparent uncertainty propagation, whereby the uncertainties of prescribed variables are dynamically estimated accounting for their spatial and temporal variations. Estimated random uncertainties are calculated by constructing error covariance matrices from co-located ECMWF short-range forecast and corresponding analysis profiles. Systematic uncertainties are estimated by empirical modeling. The influence of regarding or disregarding vertical error correlations is quantified. The new scheme is implemented with static input uncertainty profiles in WEGC's current OPSv5.6 processing system and with full scope in WEGC's next-generation system, the Reference Occultation Processing System (rOPS). Results from

  15. Water sorption in wood and modified wood at high values of relative humidity

    DEFF Research Database (Denmark)

    Engelund, Emil Tang; Thygesen, Lisbeth Garbrecht; Hoffmeyer, Preben

    2010-01-01

    A theoretical study of the amount of moisture held in wood as capillary condensed water in the relative humidity (RH) range of 90–99.9% is carried out. The study is based on idealized geometries of the softwood structure related to micrographs. It is confined to structural elements such as bordered......, and different degrees of pit aspiration are assigned to earlywood and latewood. We suggest based on the results that capillary condensation makes only a very small contribution to the equilibrium moisture content. At 99.9% RH the contribution amounts to less than 0.0035 kg water per kg dry wood. This is in line...

  16. Hydration forces between aligned DNA helices undergoing B to A conformational change: In-situ X-ray fiber diffraction studies in a humidity and temperature controlled environment.

    Science.gov (United States)

    Case, Ryan; Schollmeyer, Hauke; Kohl, Phillip; Sirota, Eric B; Pynn, Roger; Ewert, Kai E; Safinya, Cyrus R; Li, Youli

    2017-12-01

    Hydration forces between DNA molecules in the A- and B-Form were studied using a newly developed technique enabling simultaneous in situ control of temperature and relative humidity. X-ray diffraction data were collected from oriented calf-thymus DNA fibers in the relative humidity range of 98%-70%, during which DNA undergoes the B- to A-form transition. Coexistence of both forms was observed over a finite humidity range at the transition. The change in DNA separation in response to variation in humidity, i.e. change of chemical potential, led to the derivation of a force-distance curve with a characteristic exponential decay constant of∼2Å for both A- and B-DNA. While previous osmotic stress measurements had yielded similar force-decay constants, they were limited to B-DNA with a surface separation (wall-to-wall distance) typically>5Å. The current investigation confirms that the hydration force remains dominant even in the dry A-DNA state and at surface separation down to∼1.5Å, within the first hydration shell. It is shown that the observed chemical potential difference between the A and B states could be attributed to the water layer inside the major and minor grooves of the A-DNA double helices, which can partially interpenetrate each other in the tightly packed A phase. The humidity-controlled X-ray diffraction method described here can be employed to perform direct force measurements on a broad range of biological structures such as membranes and filamentous protein networks. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Characterizing Arctic mixed-phase cloud structure and its relationship with humidity and temperature inversion using ARM NSA observations

    Science.gov (United States)

    Qiu, Shaoyue; Dong, Xiquan; Xi, Baike; Li, J.-L. F.

    2015-08-01

    In this study, the characteristics of the Arctic mixed-phase cloud (AMC) have been investigated using data collected at the Atmospheric Radiation Measurement North Slope Alaska site from October 2006 to September 2009. AMC has an annual occurrence frequency of 42.3%, which includes 18.7% of single-layered AMCs and 23.6% for multiple layers. Two cloud base heights (CBHs) are defined from ceilometer and micropulse lidar (MPL) measurements. For single-layered AMC, the ceilometer-derived CBH represents the base of the liquid-dominant layer near the cloud top, while MPL-derived CBH represents base of the lower ice-dominant layer. The annual mean CBHs from ceilometer and MPL measurements are 1.0 km and 0.6 km, respectively, with the largest difference ( 1.0 km) occurring from December to March and the smallest difference in September. The humidity inversion occurrence decreases with increasing humidity inversion intensity (stronger in summer than in winter). During the winter months, AMC occurrences increase from 15% to 35% when the inversion intensity increases from 0.1 to 0.9 g/kg. On the contrary, despite a higher frequency of strong humidity inversion in summer, AMC occurrences are nearly invariant for different inversion intensities. On average, humidity and temperature inversion frequencies of occurrence above an AMC are 5 and 8 times, respectively, as high as those below an AMC. The strong inversion occurrences for both humidity and temperature above an AMC provide the moisture sources from above for the formation and maintenance of AMCs. This result helps to reconcile the persistency of AMCs even when the Arctic surface is covered by snow and ice.

  18. Dynamic mechanical characterization with respect to temperature, humidity, frequency and strain in mPOFs made of different materials

    DEFF Research Database (Denmark)

    Leal-Junior, A.; Frizera, A.; Pontes, M. J.

    2018-01-01

    This paper presents a dynamic mechanical analysis (DMA) of polymer optical fibers (POFs) to obtain their Young modulus with respect to the variation of strain, temperature, humidity and frequency. The POFs tested are made of polymethyl methacrylate (PMMA), Topas grade 5013, Zeonex 480R...... and Polycarbonate (PC). In addition, a step index POF with a core composed of Topas 5013 and cladding of Zeonex 480R is also analyzed. Results show a tradeoffbetween the different fibers for different applications, where the Zeonex fiber shows the lowest Young modulus among the ones tested, which makes it suitable...... for high-sensitivity strain sensing applications. In addition, the fibers with Topas in their composition presented low temperature and humidity sensitivity, whereas PMMA fibers presented the highest Young modulus variation with different frequencies. The results presented here provide guidelines...

  19. International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Temperature and Humidity Control Subsystem

    Science.gov (United States)

    Williams, David E.

    2011-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.

  20. Vacuum FTIR Observation on the Dynamic Hygroscopicity of Aerosols under Pulsed Relative Humidity.

    Science.gov (United States)

    Leng, Chun-Bo; Pang, Shu-Feng; Zhang, Yun; Cai, Chen; Liu, Yong; Zhang, Yun-Hong

    2015-08-04

    A novel approach based on a combination of a pulse RH controlling system and a rapid scan vacuum FTIR spectrometer (PRHCS-RSVFTIR) was utilized to investigate dynamic hygroscopicity of two atmospheric aerosols: ammonium sulfate ((NH4)2SO4) and magnesium sulfate (MgSO4). In this approach, rapid-scan infrared spectra of water vapor and aerosols were obtained to determine relative humidity (RH) in sample cell and hygroscopic property of aerosols with a subsecond time resolution. Heterogeneous nucleation rates of (NH4)2SO4 were, for the first time, measured under low RH conditions (nucleation kinetics of liquid aerosols.

  1. Theory, Electro-Optical Design, Testing, and Calibration of a Prototype Atmospheric Supersaturation, Humidity, and Temperature Sensor.

    Science.gov (United States)

    1982-07-15

    Voltage versus Aspirated Dew Point 94 Hygrometer Reading in Degrees Celsius (10 Second Averages) Fig. (7.5)(b) Scatter Diagram - NCAR Lyman-Alpha...Hygrometer Output Voltage versus Aspirated Dew Point Hygrometer Reading in Degrees Celsius (10 Second Averages) Fig. (7.6) Ophir Air Temperature...goal thus translates to an absolute humidity accuracy of 1% of reading or better over a dynamic r-dnj(! ,(f i(jul. 4 uder. of magnitude. 29 - ITI VAP

  2. The Role of Temperature and Humidity on Seasonal Influenza in Tropical Areas: Guatemala, El Salvador and Panama, 2008-2013

    Science.gov (United States)

    Soebiyanto, Radina P.; Clara, Wilfrido; Jara, Jorge; Castillo, Leticia; Sorto, Oscar Rene; Marinero, Sidia; Antinori, Maria E. Barnett de; McCracken, John P.; Widdowson, Marc-Alain; Azziz-Baumgartner, Eduardo; hide

    2014-01-01

    Background: The role of meteorological factors on influenza transmission in the tropics is less defined than in the temperate regions. We assessed the association between influenza activity and temperature, specific humidity and rainfall in 6 study areas that included 11 departments or provinces within 3 tropical Central American countries: Guatemala, El Salvador and Panama. Method/ Findings: Logistic regression was used to model the weekly proportion of laboratory-confirmed influenza positive samples during 2008 to 2013 (excluding pandemic year 2009). Meteorological data was obtained from the Tropical Rainfall Measuring Mission satellite and the Global Land Data Assimilation System. We found that specific humidity was positively associated with influenza activity in El Salvador (Odds Ratio (OR) and 95% Confidence Interval of 1.18 (1.07-1.31) and 1.32 (1.08-1.63)) and Panama (OR = 1.44 (1.08-1.93) and 1.97 (1.34-2.93)), but negatively associated with influenza activity in Guatemala (OR = 0.72 (0.6-0.86) and 0.79 (0.69-0.91)). Temperature was negatively associated with influenza in El Salvador's west-central departments (OR = 0.80 (0.7-0.91)) whilst rainfall was positively associated with influenza in Guatemala's central departments (OR = 1.05 (1.01-1.09)) and Panama province (OR = 1.10 (1.05-1.14)). In 4 out of the 6 locations, specific humidity had the highest contribution to the model as compared to temperature and rainfall. The model performed best in estimating 2013 influenza activity in Panama and west-central El Salvador departments (correlation coefficients: 0.5-0.9). Conclusions/Significance: The findings highlighted the association between influenza activity and specific humidity in these 3 tropical countries. Positive association with humidity was found in El Salvador and Panama. Negative association was found in the more subtropical Guatemala, similar to temperate regions. Of all the study locations, Guatemala had annual mean temperature and specific

  3. Determination of partition and diffusion coefficients of formaldehyde in selected building materials and impact of relative humidity (journal)

    Science.gov (United States)

    The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...

  4. Determination of partition and diffusion coefficient of formaldehyde in selected building materials and impact of relative humidity

    Science.gov (United States)

    The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...

  5. On the Temperature and Humidity Dissimilarity in the Marine Surface Layer

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Kelly, Mark C.; Sempreviva, Anna Maria

    2014-01-01

    there is an efficient latent heat transfer but negligible sensible heat transfer. Our data suggest that parametrization of humidity fluxes via similarity theory could still be reliable when the correlation coefficient >0.5, and in near-neutral conditions the humidity flux can be estimated without use of the sensible...... of the boundary-layer scale in breaking the “same source, same sink” assumption for scalar similarity. This is supported by the combination of our spectral analysis of scalar fluxes and corresponding measured and modelled boundary-layer depth. This assumption is also broken in near-neutral conditions, when...... heat flux....

  6. Influences of thickness, scanning velocity and relative humidity on the frictional properties of WS2 nanosheets

    Science.gov (United States)

    Feng, Dongdong; Peng, Jinfeng; Liu, Sisi; Zheng, Xuejun; Yan, Xinyang; He, Wenyuan

    2018-01-01

    Distinguishing with the traditional cantilever mechanics method, we propose the extended cantilever mechanics method to calibrate the lateral calibration factor by using the normal spring constant obtained from atomic force microscopy (AFM) but not the Young’s modulus and the width of the cantilever, before the influences of thickness, scanning velocity and humidity on the frictional properties are investigated via friction measurement performed by the lateral force mode (LFM) of AFM. Tungsten disulfide (WS2) nanosheets were prepared through hydrothermal intercalation and exfoliation route, and AFM and Raman microscope were used to investigate the frictional properties, thickness and crystalline structure. The friction force and coefficient decrease monotonically with the increase of the nanosheet’s thickness, and the friction coefficient minimum value is close to 0.012 when the thickness larger than 5 nm. The friction property variation on the nanosheet’s thickness can be explained by the puckering effect of tip-sheet adhesion according thickness dependence of bending stiffness in the frame of continuum mechanics. The friction force is a constant value 1.7 nN when the scanning speed larger than the critical value 3.10 μm s-1, while it logarithmically increases for the scanning speed less than the critical value. It is easy to understand through the energy dissipation model and the thermally activated effect. The friction force and friction coefficient increase with the relative humidity at the range of 30%-60%, and the latter is at the range of 0.010-0.013. Influence of relative humidity is discussed via the increasing area of the water monolayer during the water adsorption process. The research can not only enrich nanotribology theory, but also prompt two dimensions materials for nanomechanical applications.

  7. Conservação da maçã 'Fuji' sob diferentes temperaturas, umidades relativas e momentos de instalação da atmosfera de armazenamento 'Fuji' apples storage under different temperatures, relative humidity and moment of establishment of controlled atmosphere conditions

    Directory of Open Access Journals (Sweden)

    Auri Brackmann

    2000-03-01

    Full Text Available O experimento foi desenvolvido com o objetivo de avaliar o efeito da variação da temperatura e umidade relativa (UR durante o armazenamento e, do momento de instalação das condições de atmosfera controlada sobre a qualidade de maçãs cv. Fuji. Após o resfriamento lento (11 dias - de 12°C até a temperatura de armazenamento, os frutos foram armazenados em atmosfera controlada (AC com de 1kPa O2 e 0,2kPa CO2. Os tratamentos avaliados foram combinações de temperaturas (0,5 e 2,5°C, UR (91 e 96% nos primeiros 40 dias de armazenamento e instalação da atmosfera no 1º ou 4º dia após o fechamento das câmaras de AC. No restante do período, a temperatura de armazenamento, foi de 0,5°C e UR de 96%. Após oito meses de armazenamento não houve diferenças significativas nos parâmetros firmeza de polpa, acidez titulável, sólidos solúveis totais, podridão e degenerescência entre os tratamentos. No teste de prateleira (sete dias em temperatura ambiente, teor de sólidos solúveis totais foi menor para o tratamento com instalação de atmosfera no 1º dia. A redução da UR (91% nos primeiros 40 dias de armazenamento não reduziu a ocorrência de podridões. Por outro lado, a alta temperatura (2,5°C no início do armazenamento apresentou eficiência no controle da podridão.The experiment was carried out with the objective to evaluate the effect of variation of the temperature and relative humidity (RH during storage period and the rate of establishment of controlled atmosphere conditions on the quality of ‘Fuji’ apples. After cooling down during 11 days (12°C to storage temperature, the fruits were stored in controlled atmosphere (CA with 1kPa O2 and 0,2kPa CO2. The evaluated treatments were combinations of initial temperatures (0.5°C and 2.5°C, initial RH (91 and 96% during the first 40 storage days and pull down of oxygen in the CA store (first or fourth day after CA chamber closing. Afterward the fruits were maintened at 0

  8. Environmental degradation of Opalinus Clay with cyclic variations in relative humidity

    Science.gov (United States)

    Wild, Katrin; Walter, Patric; Madonna, Claudio; Amann, Florian

    2016-04-01

    Clay shales are considered as favorable host rocks for nuclear waste repositories due to their low permeability, high sorption capacity and the potential for self-sealing. However, the favorable characteristics of the rock mass may change during tunnel excavation. Excavation is accompanied by stress redistribution and the development of an excavation damage zone. Furthermore, unloading and exposure to atmospheric conditions with a lower relative humidity (RH) causes desaturation of the rock mass close to the tunnel. This leads to shrinkage and the formation of desiccation cracks. During the open drift stage, seasonal atmospheric changes, especially RH variations, may alter the rock mass and influence the long-term crack evolution. This contribution discusses the influence of RH variation on the mechanical behavior of OPA. A series of specimens were exposed to short-term and long-term, stepwise cyclic RH variations between about 60 and 95% at constant temperature. Strains were measured using strain gauges to monitor the volumetric response during RH cycles. After each applied RH cycle, Brazilian tensile strength (BTS) tests were performed to identify whether there is a change in tensile strength due to environmental damage caused by the change in RH. Swelling and shrinkage of the specimens accompanied by irreversible volumetric expansion was observed as a consequence of the exposure to RH cycles. However, the irreversible strain was limited to the direction normal to bedding suggesting that internal damage is restricted along the bedding planes. No significant effect of cyclic RH variations on the BTS of the specimens was observed. The strength parallel to bedding remained constant over several cycles while the strength normal to bedding shows a slightly decreasing trend after 2 cycles. Furthermore, the water retention characteristics of the specimens were not altered significantly during stepwise RH cycling as the evolution of the water content was reversible

  9. Two types of physical inconsistency to avoid with quantile mapping: a case study with relative humidity over North America.

    Science.gov (United States)

    Grenier, P.

    2017-12-01

    Statistical post-processing techniques aim at generating plausible climate scenarios from climate simulations and observation-based reference products. These techniques are generally not physically-based, and consequently they remedy the problem of simulation biases at the risk of generating physical inconsistency (PI). Although this concern is often emphasized, it is rarely addressed quantitatively. Here, PI generated by quantile mapping (QM), a technique widely used in climatological and hydrological applications, is investigated using relative humidity (RH) and its parent variables, namely specific humidity (SH), temperature and pressure. PI is classified into two types: 1) inadequate value for an individual variable (e.g. RH > 100 %), and 2) breaking of an inter-variable relationship. Scenarios built for this study correspond to twelve sites representing a variety of climate types over North America. Data used are an ensemble of ten 3-hourly global (CMIP5) and regional (CORDEX-NAM) simulations, as well as the CFSR reanalysis. PI of type 1 is discussed in terms of frequency of occurrence and amplitude of unphysical cases for RH and SH variables. PI of type 2 is investigated with heuristic proxies designed to directly compare the physical inconsistency problem with the initial bias problem. Finally, recommendations are provided for an appropriate use of QM given the potential to generate physical inconsistency of types 1 and 2.

  10. Annual variation in canopy openness, air temperature and humidity inthe understory of three forested sites in southern Bahia State, Brazil

    Directory of Open Access Journals (Sweden)

    Marayana Prado Pinheiro

    2013-01-01

    Full Text Available Aiming at contributing to the knowledge of physical factors affecting community structure in Atlantic Forest remnants of southern Bahia state, Brazil, we analyzed the annual variation in the understory microclimate of a hillside forest fragment in the ‘Reserva Particular do Patrimônio Natural Serra do Teimoso’ (RST and a rustic cacao agroforestry system (Cabruca, located nearby the RST. Canopy openness (CO, air temperature (Ta, air relative humidity (RH and vapor pressure deficit (VPD data were collected between April, 2005 and April, 2006 at the base (RSTB, 340 m and the top (RSTT, 640 m of the RST and at the Cabruca (CB, 250 m. Data of rainfall, Ta, RH and VPD were also collected in an open area (OA, 270 m. The highest rainfalls (> 100 mm occurred in November, 2005 and April, 2006, whereas October, 2005 was the driest month (< 20 mm. CO ranged between 2.5 % in the CB (April, 2006 and 7.7 % in the RST (October, 2005. Low rainfall in October, 2005 affected VPDmax in all sites. Those effects were more pronounced in OA, followed by CB, RSTB and RSTT. During the period of measurements, the values of Ta, RH and VPD in CB were closer to the values measured in OA than to the values measured inside the forest.

  11. Clinical, cardiopulmonary and haemocytological effects of xylazine in goats after acute exposure to different environmental temperature and humidity conditions

    Directory of Open Access Journals (Sweden)

    E.G.M. Mogoa

    2000-07-01

    Full Text Available This study was carried out to assess the influence of xylazine administration on clinical, cardiopulmonary and haemocytological variables after acute exposure to different environmental conditions. Xylazine hydrochloride was administered intravenously at 0.1 mg/kg body mass to 6 clinically healthy, castrated male goats. All animals were exposed for 60 min to 3 sets of climatic conditions: 14 °C, 33% relative humidity; 24 °C, 55% RH, and 34 °C, 65% RH. The variables that were measured for a period of 60 min after xylazine administration were sedation, analgesia, salivation, urination, ventilation rate, heart-rate, mean arterial blood pressure, oesophageal temperature, haematocrit, mean corpuscular volume and mean corpuscular haemoglobin concentration. Xylazine induced sedation, analgesia, salivation and urination independently of the 3 environmental conditions. Environment had no influence on the onset, duration and recovery from sedation. In the 14 °C environment, xylazine resulted in a significant decrease in ventilation and heart-rate from baseline values. Significant changes in mean arterial blood pressure, haemoglobin concentration, mean corpuscular volume, haematocrit and red cell count were observed in the 3 environments. Total plasma protein was significantly altered at 24 °C and 34 °C. Acute exposure of goats to different environmental conditions had no significant influence on the clinical, cardiopulmonary and haemocytological variables. Physiological changes induced by xylazine were therefore independent of the environment.

  12. Simultaneous remote measurement of CO2 concentration, humidity and temperature with a matrix of optical fiber sensors

    Science.gov (United States)

    Wysokiński, Karol; Filipowicz, Marta; Stańczyk, Tomasz; Lipiński, Stanisław; Napierała, Marek; Murawski, Michał; Nasiłowski, Tomasz

    2017-10-01

    A matrix of optical fiber sensors eligible for remote measurements is reported in this paper. The aim of work was to monitor the air quality with a device, which does not need any electricity on site of the measurement. The matrix consists of several sensors detecting carbon dioxide concentration, relative humidity and temperature. Sensors utilize active optical materials, which change their color when exposed to varied conditions. All the sensors are powered with standard light emitting diodes. Light is transmitted by an optical fiber from the light source and then it reaches the active layer which changes its color, when the conditions change. This results in a change of attenuation of light passing through the active layer. Modified light is then transmitted by another optical fiber to the detector, where simple photoresistor is used. It is powered by a stabilized DC power supply and the current is measured. Since no expensive elements are needed to manufacture such a matrix of sensors, its price may be competitive to the price of the devices already available on the market, while the matrix also exhibits other valuable properties.

  13. Effect of relative humidity on the tribological properties of hydrogenated diamond-like carbon films in a nitrogen environment

    International Nuclear Information System (INIS)

    Li Hongxuan; Xu Tao; Wang Chengbing; Chen Jianmin; Zhou Huidi; Liu Huiwen

    2005-01-01

    Hydrogenated diamond-like carbon (DLC) films were deposited on Si (100) wafers by a plasma enhanced chemical vapour deposition technique using CH 4 plus Ar as the feedstock. The friction and wear properties of the resulting films under different relative humidities, ranging from 5% to 100%, in a nitrogen environment, were measured using a ball-on-disc tribometer, with Si 3 N 4 balls as the counterparts. The friction surfaces of the films and Si 3 N 4 balls were observed on a scanning electron microscope, and investigated by x-ray photoelectron spectroscopy. The results showed that the friction coefficient increased continuously from 0.025 to 0.09 with increase in relative humidity from 5% to 100%, while the wear rate of the films sharply decreased and reached a minimum at a relative humidity of 40%, then it increased with further increase of the relative humidity. The interruption of the transferred carbon-rich layer on the Si 3 N 4 ball, and the friction-induced oxidation of the films at higher relative humidity were proposed as the main reasons for the increase in the friction coefficient. Moreover, the oxidation and hydrolysis of the Si 3 N 4 ball at higher relative humidity, leading to the formation of a tribochemical film, which mainly consists of silica gel, on the friction surface, are also thought to influence the friction and wear behaviour of the hydrogenated DLC films

  14. Relative humidity impact on aerosol parameters in a Paris suburban area

    Directory of Open Access Journals (Sweden)

    H. Randriamiarisoa

    2006-01-01

    Full Text Available Measurements of relative humidity (RH and aerosol parameters (scattering cross section, size distributions and chemical composition, performed in ambient atmospheric conditions, have been used to study the influence of relative humidity on aerosol properties. The data were acquired in a suburban area south of Paris, between 18 and 24 July 2000, in the framework of the 'Etude et Simulation de la Qualité de l'air en Ile-de-France' (ESQUIF program. According to the origin of the air masses arriving over the Paris area, the aerosol hygroscopicity is more or less pronounced. The aerosol chemical composition data were used as input of a thermodynamic model to simulate the variation of the aerosol water mass content with ambient RH and to determine the main inorganic salt compounds. The coupling of observations and modelling reveals the presence of deliquescence processes with hysteresis phenomenon in the hygroscopic growth cycle. Based on the Hänel model, parameterisations of the scattering cross section, the modal radius of the accumulation mode of the size distribution and the aerosol water mass content, as a function of increasing RH, have been assessed. For the first time, a crosscheck of these parameterisations has been performed and shows that the hygroscopic behaviour of the accumulation mode can be coherently characterized by combined optical, size distribution and chemical measurements.

  15. Human mortality seasonality in Castile-León, Spain, between 1980 and 1998: the influence of temperature, pressure and humidity

    Science.gov (United States)

    Fernández-Raga, María; Tomás, Clemente; Fraile, Roberto

    2010-07-01

    This study was carried out in the region of Castile and Leon, Spain, from 1980 to 1998 and analyzes the relationship between the number of monthly deaths caused by cardiovascular, respiratory and digestive diseases and three meteorological variables: temperature, pressure and humidity. One of the innovations in this study is the application of principal component analysis in a way that differs from its usual application: one single series representing the whole region was constructed for each meteorological variable from the series of eight weather stations. Annual and seasonal mortality trends were also studied. Cardiovascular diseases are the leading cause of death in Castile and Leon. The mortality related to cardiovascular, respiratory and digestive systems shows a statistically significant rising trend across the study period (an annual increase of 6, 16 and 4‰, respectively). The pressure at which mortality is lowest is approximately the same for all causes of death (about 915 hPa), but temperature values vary greatly (16.8-19.7°C for the mean, 10.9-18.1°C for the minimum, and 24.1-27.2°C for the maximum temperature). The most comfortable temperatures for patients with cardiovascular diseases (16.8°C) are apparently lower than those for patients with respiratory diseases (18.1°C), which are, in turn, lower than in the case of diseases of the digestive system (19.7°C). Finally, the optimal humidity for patients with respiratory diseases is the lowest (24%) among the diseases, and the highest (51%) corresponds to diseases of the digestive system, while the optimal relative humidity for the cardiovascular system is 45%.

  16. A Revised Calibration Function and Results for the Phoenix Mission TECP Relative Humidity Sensor

    Science.gov (United States)

    Zent, Aaron

    2014-01-01

    The original calibration function of the R(sub H) sensor on the Phoenix Thermal and Electrical Conductivity Sensor (TECP) has been revised in order to extend the range of the valid calibration, and to improve accuracy. The original function returned non-physical R(sub H) values at the lowest temperatures. To resolve this, and because the original calibration was performed against a pair of hygrometers that measured frost point (T(sub f)), the revised calibration equation is also cast in terms of frost point. Because of the complexity of maintaining very low temperatures and high R(sub H) in the laboratory, no calibration data exists at T is greater than 203K. However, sensor response during the mission was smooth and continuous down to 181 K. Therefore we have opted to include flight data in the calibration data set; selection was limited to data acquired during periods when the atmosphere is known to have been saturated. T(sub f) remained below 210 K throughout the mission(P is greater than 0.75 Pa). R(sub H), conversely, ranged from 1 to well under 0.01 diurnally, due to approximately 50 K temperature variations. To first order, both vapor pressure and its variance are greater during daylight hours. Variance in overnight humidity is almost entirely explained by temperature, while atmospheric turbulence contributes substantial variance to daytime humidity. Likewise, data gathered with the TECP aloft reflect higher H2O abundances than at the surface, as well as greater variance. There is evidence for saturation of the atmosphere overnight throughout much of the mission. In virtually every overnight observation, once the atmosphere cooled to T(sub f), water vapor begins to decrease, and tracks air temperature. There is no evidence for substantial decreases in water vapor prior to saturation, as expected for adsorptive exchange. Likewise, there is no evidence of local control of vapor by phases such as perchlorate hydrates hydrated minerals. The daytime average H2O

  17. Effects of ambient air temperature, humidity and rainfall on annual survival of adult little penguins Eudyptula minor in southeastern Australia

    Science.gov (United States)

    Ganendran, L. B.; Sidhu, L. A.; Catchpole, E. A.; Chambers, L. E.; Dann, P.

    2016-08-01

    Seabirds are subject to the influences of local climate variables during periods of land-based activities such as breeding and, for some species, moult; particularly if they undergo a catastrophic moult (complete simultaneous moult) as do penguins. We investigated potential relationships between adult penguin survival and land-based climate variables (ambient air temperature, humidity and rainfall) using 46 years of mark-recapture data of little penguins Eudyptula minor gathered at a breeding colony on Phillip Island in southeastern Australia. Our results showed that adult penguin survival had a stronger association with land-based climate variables during the moult period, when birds were unable to go to sea for up to 3 weeks, than during the breeding period, when birds could sacrifice breeding success in favour of survival. Annual adult survival probability was positively associated with humidity during moult and negatively associated with rainfall during moult. Prolonged heat during breeding and moult had a negative association with annual adult survival. Local climate projections suggest increasing days of high temperatures, fewer days of rainfall which will result in more droughts (and by implication, lower humidity) and more extreme rainfall events. All of these predicted climate changes are expected to have a negative impact on adult penguin survival.

  18. The interrelationship between dengue incidence and diurnal ranges of temperature and humidity in a Sri Lankan city and its potential applications.

    Science.gov (United States)

    Ehelepola, N D B; Ariyaratne, Kusalika

    2015-01-01

    Temperature, humidity, and other weather variables influence dengue transmission. Published studies show how the diurnal fluctuations of temperature around different mean temperatures influence dengue transmission. There are no published studies about the correlation between diurnal range of humidity and dengue transmission. The goals of this study were to determine the correlation between dengue incidence and diurnal fluctuations of temperature and humidity in the Sri Lankan city of Kandy and to explore the possibilities of using that information for better control of dengue. We calculated the weekly dengue incidence in Kandy during the period 2003-2012, after collecting data on all of the reported dengue patients and estimated midyear populations. Data on daily maximum and minimum temperatures and night-time and daytime humidity were obtained from two weather stations, averaged, and converted into weekly data. The number of days per week with a diurnal temperature range (DTR) of >10°C and humidity range (DHR) of >20 and humidity. There were negative correlations between dengue incidence and a DTR >10°C and a DHR >20% with 3.3-week and 4-week lag periods, respectively. Additionally, positive correlations between dengue incidence and a DTR humidity in the future. We suggest ways and means to use this information for local dengue control and to mitigate the potential effects of the ongoing global reduction of DTR on dengue incidence.

  19. Application of graphene oxide based Microfiber-Knot resonator for relative humidity sensing

    Directory of Open Access Journals (Sweden)

    S.R. Azzuhri

    2018-06-01

    Full Text Available A relative humidity (RH sensor is proposed and demonstrated using a micro-knot resonator (MKR enhanced with a layer graphene oxide (GO coating. The MKR is fabricated by means of tapering a standard fiber, with the GO coating added by the drop-cast method. The proposed sensor is tested for an RH range of between 0% and 80% at 20% intervals, and the configurations with and without the GO coating achieve sensitivities of 0.0104 nm/% and 0.0095 nm/%, respectively. The MKR configuration without the GO coating has a linear response correlation coefficient of 0.9098 and a resolution of 0.1%, while the configuration with the GO coating has a linear response correlation coefficient of 0.9548 and a resolution of 0.096% which is better. The proposed sensor has multiple applications, especially in the area of climate and atmospheric measurement and monitoring. Keywords: Microfiber, Resonator, Humidity sensor

  20. Fabrication of a capacitive relative humidity sensor using aluminum thin films deposited on etched printed circuit board

    Directory of Open Access Journals (Sweden)

    Lee Jacqueline Ann L.

    2016-01-01

    Full Text Available A capacitive humidity-sensing device was created by thermal evaporation of 99.999% aluminum. The substrate used for the coating was etched double-sided printed circuit board. The etched printed circuit board serves as the dielectric of the capacitor while the aluminum thin films deposited on either side serve as the plates of the capacitor. The capacitance was measured before and after exposure to humidity. The device was then calibrated by comparing the readings of capacitance with that of the relative humidity sensor of the Vernier LabQuest2. It was found that there is a linear relationship between the capacitance and relative humidity given by the equation C=1.418RH+29.139 where C is the capacitance and RH is the relative humidity. The surface of the aluminum films is porous and it is through these pores that water is adsorbed and capillary condensation occurs, thereby causing the capacitance to change upon exposure to humidity.

  1. Ingestion of a cold temperature/menthol beverage increases outdoor exercise performance in a hot, humid environment.

    Science.gov (United States)

    Tran Trong, Than; Riera, Florence; Rinaldi, Kévin; Briki, Walid; Hue, Olivier

    2015-01-01

    A recent laboratory study demonstrated that the ingestion of a cold/menthol beverage improved exercise performance in a hot and humid environment during 20 km of all-out cycling. Therefore, the aim of this study was to determine whether the ingestion of cold water/ice-slurry with menthol would improve performance in hot and humid outdoor conditions. Ten trained males completed three trials of five blocks consisting of 4-km cycling and 1.5-km running. During warm-up, every block and recovery, the athletes drank 190 ml of aromatized (i.e., with 0.05 mL of menthol) beverage at three temperatures: Neutral (ambient temperature) (28.7°C±0. 5°C), Cold (3.1°C±0.6°C) or Ice-slurry (0.17°C±0.07°C). Trial time, core temperature (Tco), heart rate (HR), rate of perceived exertion (RPE), thermal sensation (TS) and thermal comfort (TC) were assessed. Ice-slurry/menthol increased performance by 6.2% and 3.3% compared with neutral water/menthol and cold water/menthol, respectively. No between-trial differences were noted for Tco, HR, RPE, TC and TS was lower with ice-slurry/menthol and cold water/menthol compared with neutral water/menthol. A low drink temperature combined with menthol lessens the performance decline in hot/humid outdoor conditions (i.e., compared with cold water alone). Performances were better with no difference in psycho-physiological stress (Tco, HR and RPE) between trials. The changes in perceptual parameters caused by absorbing a cold/menthol beverage reflect the psychological impact. The mechanism leading to these results seems to involve brain integration of signals from physiological and psychological sources.

  2. Ingestion of a cold temperature/menthol beverage increases outdoor exercise performance in a hot, humid environment.

    Directory of Open Access Journals (Sweden)

    Than Tran Trong

    Full Text Available A recent laboratory study demonstrated that the ingestion of a cold/menthol beverage improved exercise performance in a hot and humid environment during 20 km of all-out cycling. Therefore, the aim of this study was to determine whether the ingestion of cold water/ice-slurry with menthol would improve performance in hot and humid outdoor conditions.Ten trained males completed three trials of five blocks consisting of 4-km cycling and 1.5-km running. During warm-up, every block and recovery, the athletes drank 190 ml of aromatized (i.e., with 0.05 mL of menthol beverage at three temperatures: Neutral (ambient temperature (28.7°C±0. 5°C, Cold (3.1°C±0.6°C or Ice-slurry (0.17°C±0.07°C. Trial time, core temperature (Tco, heart rate (HR, rate of perceived exertion (RPE, thermal sensation (TS and thermal comfort (TC were assessed.Ice-slurry/menthol increased performance by 6.2% and 3.3% compared with neutral water/menthol and cold water/menthol, respectively. No between-trial differences were noted for Tco, HR, RPE, TC and TS was lower with ice-slurry/menthol and cold water/menthol compared with neutral water/menthol.A low drink temperature combined with menthol lessens the performance decline in hot/humid outdoor conditions (i.e., compared with cold water alone. Performances were better with no difference in psycho-physiological stress (Tco, HR and RPE between trials. The changes in perceptual parameters caused by absorbing a cold/menthol beverage reflect the psychological impact. The mechanism leading to these results seems to involve brain integration of signals from physiological and psychological sources.

  3. Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating.

    Science.gov (United States)

    Correia, Sandra F H; Antunes, Paulo; Pecoraro, Edison; Lima, Patrícia P; Varum, Humberto; Carlos, Luis D; Ferreira, Rute A S; André, Paulo S

    2012-01-01

    In this work we proposed a relative humidity (RH) sensor based on a Bragg grating written in an optical fiber, associated with a coating of organo-silica hybrid material prepared by the sol-gel method. The organo-silica-based coating has a strong adhesion to the optical fiber and its expansion is reversibly affected by the change in the RH values (15.0-95.0%) of the surrounding environment, allowing an increased sensitivity (22.2 pm/%RH) and durability due to the presence of a siliceous-based inorganic component. The developed sensor was tested in a real structure health monitoring essay, in which the RH inside two concrete blocks with different porosity values was measured over 1 year. The results demonstrated the potential of the proposed optical sensor in the monitoring of civil engineering structures.

  4. Defining relative humidity in terms of water activity. Part 1: definition

    Science.gov (United States)

    Feistel, Rainer; Lovell-Smith, Jeremy W.

    2017-08-01

    Relative humidity (RH) is a quantity widely used in various fields such as metrology, meteorology, climatology or engineering. However, RH is neither uniformly defined, nor do some definitions properly account for deviations from ideal-gas properties, nor is the application range of interest fully covered. In this paper, a new full-range definition of RH is proposed that is based on the thermodynamics of activities in order to include deviations from ideal-gas behaviour. Below the critical point of pure water, at pressures p  definition is consistent with de-facto standard RH definitions published previously and recommended internationally. Virial approximations are reported for estimating small corrections to the ideal-gas equations.

  5. Kinetically Determined Hygroscopicity and Efflorescence of Sucrose-Ammonium Sulfate Aerosol Droplets under Lower Relative Humidity.

    Science.gov (United States)

    Wang, Lin-Na; Cai, Chen; Zhang, Yun-Hong

    2017-09-14

    Organic aerosols will likely form in semisolid, glassy, and high viscous state in the atmosphere, which show nonequilibrium kinetic characteristics at low relative humidity (RH) conditions. In this study, we applied optical tweezers to investigate the water transport in a sucrose/(NH 4 ) 2 SO 4 droplet with high organic to inorganic mole ratio (OIR). The characteristic time ratio between the droplet radius and the RH was used to describe the water mass transfer difference dependent on RH. For OIR greater than 1:1 in sucrose/(NH 4 ) 2 SO 4 droplets, the characteristic time ratio at low RH (∼60%). We also coupled vacuum FTIR spectrometer and a high-speed photography to study the efflorescence process in sucrose/(NH 4 ) 2 SO 4 droplets with low OIR. The crystalline fraction of (NH 4 ) 2 SO 4 was used to understand efflorescence behavior when the RH was linearly decreasing with a velocity of 1.2% RH min -1 . Because of suppression of (NH 4 ) 2 SO 4 nucleation by addition of sucrose, the efflorescence relative humidity (ERH) of (NH 4 ) 2 SO 4 decrease from the range of ∼48.2% to ∼36.1% for pure (NH 4 ) 2 SO 4 droplets to from ∼44.7% to ∼25.4%, from ∼43.2% to ∼21.2%, and from ∼41.7% to ∼21.1% for the mixed droplets with OIR of 1:4, 1:3, and 1:2, respectively. No crystallization was observed when the OIR is higher than 1:1. Suppression of (NH 4 ) 2 SO 4 crystal growth was also observed under high viscous sucrose/(NH 4 ) 2 SO 4 droplets at lower RH.

  6. Effect of relative humidity on onset of capillary forces for rough surfaces.

    Science.gov (United States)

    Zarate, Nyah V; Harrison, Aaron J; Litster, James D; Beaudoin, Stephen P

    2013-12-01

    Atomic force microscopy (AFM) was used to investigate the effect of relative humidity (RH) on the adhesion forces between silicon nitride AFM probes, hydrophilic stainless steel, and hydrophobic Perspex® (polymethylmethacrylate, PMMA). In addition, AFM-based phase contrast imaging was used to quantify the amount and location of adsorbed water present on these substrates at RH levels ranging from 15% to 65% at 22°C. Both the adhesion forces and the quantities of adsorbed moisture were seen to vary with RH, and the nature of this variation depended on the hydrophobicity of the substrate. For the Perspex®, both the adhesion force and the amount of adsorbed moisture were essentially independent of RH. For the stainless steel substrate, adsorbed moisture increased continuously with increasing RH, while the adhesion force rose from a minimum at 15% RH to a broad maximum between 25% and 35% RH. From 35% to 55% RH, the adhesion force dropped continuously to an intermediate level before rising again as 65% RH was approached. The changes in adhesion force with increasing relative humidity in the case of the stainless steel substrate were attributed to a balance of effects associated with adsorbed, sub-continuum water on the cantilever and steel. Hydrogen bonding interactions between these adsorbed water molecules were thought to increase the adhesion force. However, when significant quantities of molecular water adsorbed, these molecules were expect to decrease adhesion by screening the van der Waals interactions between the steel and the cantilever tip, and by increasing the separation distance between these solid surfaces when they were 'in contact'. Finally, the slight increase in adhesion between 55% and 65% RH was attributed to true capillary forces exerted by continuum water on the two solid surfaces. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Ethylene sensitivity and relative air humidity regulate root hydraulic properties in tomato plants.

    Science.gov (United States)

    Calvo-Polanco, Monica; Ibort, Pablo; Molina, Sonia; Ruiz-Lozano, Juan Manuel; Zamarreño, Angel María; García-Mina, Jose María; Aroca, Ricardo

    2017-11-01

    The effect of ethylene and its precursor ACC on root hydraulic properties, including aquaporin expression and abundance, is modulated by relative air humidity and plant sensitivity to ethylene. Relative air humidity (RH) is a main factor contributing to water balance in plants. Ethylene (ET) is known to be involved in the regulation of root water uptake and stomatal opening although its role on plant water balance under different RH is not very well understood. We studied, at the physiological, hormonal and molecular levels (aquaporins expression, abundance and phosphorylation state), the plant responses to exogenous 1-aminocyclopropane-1-carboxylic acid (ACC; precursor of ET) and 2-aminoisobutyric acid (AIB; inhibitor of ET biosynthesis), after 24 h of application to the roots of tomato wild type (WT) plants and its ET-insensitive never ripe (nr) mutant, at two RH levels: regular (50%) and close to saturation RH. Highest RH induced an increase of root hydraulic conductivity (Lp o ) of non-treated WT plants, and the opposite effect in nr mutants. The treatment with ACC reduced Lp o in WT plants at low RH and in nr plants at high RH. The application of AIB increased Lp o only in nr plants at high RH. In untreated plants, the RH treatment changed the abundance and phosphorylation of aquaporins that affected differently both genotypes according to their ET sensitivity. We show that RH is critical in regulating root hydraulic properties, and that Lp o is affected by the plant sensitivity to ET, and possibly to ACC, by regulating aquaporins expression and their phosphorylation status. These results incorporate the relationship between RH and ET in the response of Lp o to environmental changes.

  8. Within-Crop Air Temperature and Humidity Outcomes on Spatio-Temporal Distribution of the Key Rose Pest Frankliniella occidentalis.

    Science.gov (United States)

    Fatnassi, Hicham; Pizzol, Jeannine; Senoussi, Rachid; Biondi, Antonio; Desneux, Nicolas; Poncet, Christine; Boulard, Thierry

    2015-01-01

    Frankliniella occidentalis (Pergande) is a key pest of various crops worldwide. In this study, we analyse the dependence of the infestation of this pest on spatially distributed micro climatic factors in a rose greenhouse. Despite the importance of this subject, the few existing studies have been realized in laboratory rather than in greenhouse conditions. However, recent progress on greenhouse microclimate characterisation has highlighted the strong indoor climate heterogeneity that may influence the within-crop pest distribution. In this study, both microclimate (air temperature and humidity) and thrips distribution were simultaneously mapped in a rose greenhouse. The measurements were sensed in a horizontal plane situated at mid-height of the rose crop inside the greenhouse. Simultaneously, thrips population dynamics were assessed after an artificial and homogeneous infestation of the rose crop. The spatio-temporal distribution of climate and thrips within the greenhouse were compared, and links between thrips infestation and climatic conditions were investigated. A statistical model was used to define the favourable climate conditions for thrips adults and larvae. Our results showed that (i) the air temperature and air humidity were very heterogeneously distributed within the crop, (ii) pest populations aggregated in the most favourable climatic areas and (iii) the highest population density of thrips adults and larvae were recorded at 27°C and 22°C for temperature and 63% and 86% for humidity, respectively. These findings confirm, in real rose cropping conditions, previous laboratory studies on the F. occidentalis climatic optimum and provide a solid scientific support for climatic-based control methods against this pest.

  9. Within-Crop Air Temperature and Humidity Outcomes on Spatio-Temporal Distribution of the Key Rose Pest Frankliniella occidentalis.

    Directory of Open Access Journals (Sweden)

    Hicham Fatnassi

    Full Text Available Frankliniella occidentalis (Pergande is a key pest of various crops worldwide. In this study, we analyse the dependence of the infestation of this pest on spatially distributed micro climatic factors in a rose greenhouse. Despite the importance of this subject, the few existing studies have been realized in laboratory rather than in greenhouse conditions. However, recent progress on greenhouse microclimate characterisation has highlighted the strong indoor climate heterogeneity that may influence the within-crop pest distribution. In this study, both microclimate (air temperature and humidity and thrips distribution were simultaneously mapped in a rose greenhouse. The measurements were sensed in a horizontal plane situated at mid-height of the rose crop inside the greenhouse. Simultaneously, thrips population dynamics were assessed after an artificial and homogeneous infestation of the rose crop. The spatio-temporal distribution of climate and thrips within the greenhouse were compared, and links between thrips infestation and climatic conditions were investigated. A statistical model was used to define the favourable climate conditions for thrips adults and larvae. Our results showed that (i the air temperature and air humidity were very heterogeneously distributed within the crop, (ii pest populations aggregated in the most favourable climatic areas and (iii the highest population density of thrips adults and larvae were recorded at 27°C and 22°C for temperature and 63% and 86% for humidity, respectively. These findings confirm, in real rose cropping conditions, previous laboratory studies on the F. occidentalis climatic optimum and provide a solid scientific support for climatic-based control methods against this pest.

  10. Tensile behaviour of natural fibres. Effect of loading rate, temperature and humidity on the “accommodation” phenomena

    Directory of Open Access Journals (Sweden)

    Placet V.

    2010-06-01

    Full Text Available The use of natural fibres in high performance composite requires an accurate understanding of the mechanical behaviour of the fibres themselves. As for all biobased materials, the mechanical properties of natural fibres depend generally on the testing rate and on the environmental conditions. In addition, natural fibres as hemp for example exhibit a particular mechanism of stiffness increase and accommodation phenomena under cyclic loading. Loading rate, temperature and humidity effects on the viscoelastic properties of hemp fibres were investigated in this work. The collected results clearly emphasis the involvement of time-dependant and mechano-sorptive mechanisms.

  11. Priming and stress under high humidity and temperature on the physiological quality of Brachiaria brizantha cv. MG-5 seeds

    Directory of Open Access Journals (Sweden)

    Thiago Barbosa Batista

    2016-01-01

    Full Text Available Palisade grass is a forage plant that is widely used in pasture cropping in the Brazilian savannah. The aim of this experiment was to evaluate palisade grass (Brachiaria brizantha cv. MG–5 seeds subjected to priming and stress at high humidity and temperature (before and after conditioning. The experimental design was completely randomized in a 2x5 factorial arrangement. Seeds were exposed to stress under high humidity and temperature (before and after conditioning and five priming treatments [Water (Control, potassium nitrate (KNO3 at 0.2%, calcium nitrate Ca(NO32 at 0.2%, gibberellin (GA3 at 0.2% and glucose at 10%] with four replications. Two experiments were performed: Experiment I - seed with chemical scarification using H2SO4 and Experiment II - without scarification. The stress on the seed was applied using artificial aging at 41°C for 96 hours. Seed priming was accomplished by immersion at 25°C for 2 hours. Thereafter, the seeds were oven-dried at 35°C until they regained hygroscopic equilibrium. Seed germination and vigor were evaluated. Priming using KNO3 and Ca(NO32 produced seeds with high tolerance to stress under high temperature, and this process is efficient to overcome dormancy.

  12. Influence of Temperature and Humidity on the Stability of Carotenoids in Biofortified Maize (Zea mays L.) Genotypes during Controlled Postharvest Storage.

    Science.gov (United States)

    Ortiz, Darwin; Rocheford, Torbert; Ferruzzi, Mario G

    2016-04-06

    Maize is a staple crop that has been the subject of biofortification efforts to increase the natural content of provitamin A carotenoids. Although significant progress toward increasing provitamin A carotenoid content in maize varieties has been made, postharvest handling factors that influence carotenoid stability during storage have not been fully established. The objectives of this study were to determine carotenoid profiles of six selected provitamin A biofortified maize genotypes at various developmental stages and assess the stability of carotenoids in maize kernels during controlled storage conditions (12 month period), including elevated temperature and relative humidity. There were no significant changes in the content of individual carotenoids within genotypes during kernel development from 45 days after pollination through the time of harvest. Carotenoid losses through traditional grain drying were also minimal (carotenoids in maize kernels over storage time after harvest was found to be dependent on both temperature and humidity, with variation observed among genotypes. Different forms of provitamin A carotenoids follow similar degradation rates. The genotype C17xDE3 had a degradation rate 2 times faster than those of the other genotypes evaluated (P carotenoid stability under controlled storage were attributed, in part, to observed differences in the physical properties of the kernels (surface area and porosity). These results support the notion that effective control of moisture content and temperature of the kernels during storage conditions is essential to reduce the speed of degradative reactions.

  13. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio

    2016-01-01

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber...... preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed...... SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured...

  14. Effect of relative humidity on the composition of secondary organic aerosol from the oxidation of toluene

    Directory of Open Access Journals (Sweden)

    M. L. Hinks

    2018-02-01

    Full Text Available The effect of relative humidity (RH on the chemical composition of secondary organic aerosol (SOA formed from low-NOx toluene oxidation in the absence of seed particles was investigated. SOA samples were prepared in an aerosol smog chamber at < 2 % RH and 75 % RH, collected on Teflon filters, and analyzed with nanospray desorption electrospray ionization high-resolution mass spectrometry (nano-DESI–HRMS. Measurements revealed a significant reduction in the fraction of oligomers present in the SOA generated at 75 % RH compared to SOA generated under dry conditions. In a separate set of experiments, the particle mass concentrations were measured with a scanning mobility particle sizer (SMPS at RHs ranging from < 2 to 90 %. It was found that the particle mass loading decreased by nearly an order of magnitude when RH increased from < 2 to 75–90 % for low-NOx toluene SOA. The volatility distributions of the SOA compounds, estimated from the distribution of molecular formulas using the molecular corridor approach, confirmed that low-NOx toluene SOA became more volatile on average under high-RH conditions. In contrast, the effect of RH on SOA mass loading was found to be much smaller for high-NOx toluene SOA. The observed increase in the oligomer fraction and particle mass loading under dry conditions were attributed to the enhancement of condensation reactions, which produce water and oligomers from smaller compounds in low-NOx toluene SOA. The reduction in the fraction of oligomeric compounds under humid conditions is predicted to partly counteract the previously observed enhancement in the toluene SOA yield driven by the aerosol liquid water chemistry in deliquesced inorganic seed particles.

  15. Relative Humidity and the Susceptibility of Austenitic Stainless Steel to Stress Corrosion Cracking in an impure Plutonium Oxide Environment

    Energy Technology Data Exchange (ETDEWEB)

    Zapp, P.; Duffey, J.; Lam, P.; Dunn, K.

    2010-05-05

    Laboratory tests to investigate the corrosivity of moist plutonium oxide/chloride salt mixtures on 304L and 316L stainless steel coupons showed that corrosion occurred in selected samples. The tests exposed flat coupons for pitting evaluation and 'teardrop' stressed coupons for stress corrosion cracking (SCC) evaluation at room temperature to various mixtures of PuO{sub 2} and chloride-bearing salts for periods up to 500 days. The exposures were conducted in sealed containers in which the oxide-salt mixtures were loaded with about 0.6 wt % water from a humidified helium atmosphere. Observations of corrosion ranged from superficial staining to pitting and SCC. The extent of corrosion depended on the total salt concentration, the composition of the salt and the moisture present in the test environment. The most significant corrosion was found in coupons that were exposed to 98 wt % PuO{sub 2}, 2 wt % chloride salt mixtures that contained calcium chloride and 0.6 wt% water. SCC was observed in two 304L stainless steel teardrop coupons exposed in solid contact to a mixture of 98 wt % PuO{sub 2}, 0.9 wt % NaCl, 0.9 wt % KCl, and 0.2 wt % CaCl{sub 2}. The cracking was associated with the heat-affected zone of an autogenous weld that ran across the center of the coupon. Cracking was not observed in coupons exposed to the headspace gas above the solid mixture, or in coupons exposed to other mixtures with either no CaCl{sub 2} or 0.92 wt% CaCl{sub 2}. SCC was present where the 0.6 wt % water content exceeded the value needed to fully hydrate the available CaCl{sub 2}, but was absent where the water content was insufficient. These results reveal the significance of the relative humidity in the austenitic stainless steels environment to their susceptibility to corrosion. The relative humidity in the test environment was controlled by the water loading and the concentration of the hydrating salts such as CaCl{sub 2}. For each salt or salt mixture there is a threshold

  16. Nanosized Thin SnO2 Layers Doped with Te and TeO2 as Room Temperature Humidity Sensors

    Directory of Open Access Journals (Sweden)

    Biliana Georgieva

    2014-05-01

    Full Text Available In this paper the humidity sensing properties of layers prepared by a new method for obtaining doped tin oxide are studied. Different techniques—SEM, EDS in SEM, TEM, SAED, AES and electrical measurements—are used for detailed characterization of the thin layers. The as-deposited layers are amorphous with great specific area and low density. They are built up of a fine grained matrix, consisting of Sn- and Te-oxides, and a nanosized dispersed phase of Te, Sn and/or SnTe. The chemical composition of both the matrix and the nanosized particles depends on the ratio RSn/Te and the evaporation conditions. It is shown that as-deposited layers with RSn/Te ranging from 0.4 to 0.9 exhibit excellent characteristics as humidity sensors operating at room temperature—very high sensitivity, good selectivity, fast response and short recovery period. Ageing tests have shown that the layers possess good long-term stability. Results obtained regarding the type of the water adsorption on the layers’ surface help better understand the relation between preparation conditions, structure, composition and humidity sensing properties.

  17. Investigating the Strain, Temperature and Humidity Sensitivity of a Multimode Graded-Index Perfluorinated Polymer Optical Fiber with Bragg Grating.

    Science.gov (United States)

    Zheng, Yulong; Bremer, Kort; Roth, Bernhard

    2018-05-05

    In this work we investigate the strain, temperature and humidity sensitivity of a Fiber Bragg Grating (FBG) inscribed in a near infrared low-loss multimode perfluorinated polymer optical fiber based on cyclic transparent optical polymer (CYTOP). For this purpose, FBGs were inscribed into the multimode CYTOP fiber with a core diameter of 50 µm by using a krypton fluoride (KrF) excimer laser and the phase mask method. The evolution of the reflection spectrum of the FBG detected with a multimode interrogation technique revealed a single reflection peak with a full width at half maximum (FHWM) bandwidth of about 9 nm. Furthermore, the spectral envelope of the single FBG reflection peak can be optimized depending on the KrF excimer laser irradiation time. A linear shift of the Bragg wavelength due to applied strain, temperature and humidity was measured. Furthermore, depending on irradiation time of the KrF excimer laser, both the failure strain and strain sensitivity of the multimode fiber with FBG can be controlled. The inherent low light attenuation in the near infrared wavelength range (telecommunication window) of the multimode CYTOP fiber and the single FBG reflection peak when applying the multimode interrogation set-up will allow for new applications in the area of telecommunication and optical sensing.

  18. Influence of relative humidity of air on the level of aqueous tritium in corn, wheat and sunflower

    International Nuclear Information System (INIS)

    Indeka, L.

    1981-01-01

    The short-term changes in level of aqueous tritium in the leaves in relation to the air humidity were studied. The experiments were carried out on corn in which the transpiration is relatively small, on sunflower with very high transpiration and on wheat with intermediate transpiration. (M.F.W.)

  19. Relative humidity and its effect on aerosol optical depth in the vicinity of convective clouds

    International Nuclear Information System (INIS)

    Altaratz, O; Bar-Or, R Z; Wollner, U; Koren, I

    2013-01-01

    The hygroscopic growth of aerosols is controlled by the relative humidity (RH) and changes the aerosols’ physical and hence optical properties. Observational studies of aerosol–cloud interactions evaluate the aerosol concentration using optical parameters, such as the aerosol optical depth (AOD), which can be affected by aerosol humidification. In this study we evaluate the RH background and variance values, in the lower cloudy atmosphere, an additional source of variance in AOD values beside the natural changes in aerosol concentration. In addition, we estimate the bias in RH and AOD, related to cloud thickness. This provides the much needed range of RH-related biases in studies of aerosol–cloud interaction. Twelve years of radiosonde measurements (June–August) in thirteen globally distributed stations are analyzed. The estimated non-biased AOD variance due to day-to-day changes in RH is found to be around 20% and the biases linked to cloud development around 10%. Such an effect is important and should be considered in direct and indirect aerosol effect estimations but it is inadequate to account for most of the AOD trend found in observational studies of aerosol–cloud interactions. (letter)

  20. Investigation of the influence of the microcapillary structure of natural skins on relative humidity in vacuum-sorption humidification

    Directory of Open Access Journals (Sweden)

    Larina Ludmila

    2017-01-01

    Full Text Available The article presents the results of studies confirming the law of the gamma distribution of microcapillaries in the structure of materials having a stochastic structure, for example, natural skins. The relative humidity of the latter depends on the mass of moisture collected by the microcapillaries, with heat and mass transfer under vacuum conditions. Numerical values of relative humidity in this case may differ from those recommended by footwear manufacturing technologies and should be considered as an integral part of the phenomenon of high-intensity heat and mass transfer under vacuum conditions and be determined by the proposed models.

  1. Sensitivity of soil respiration to variability in soil moisture and temperature in a humid tropical forest

    Science.gov (United States)

    Tana Wood; M. Detto; W.L. Silver

    2013-01-01

    Precipitation and temperature are important drivers of soil respiration. The role of moisture and temperature are generally explored at seasonal or inter-annual timescales; however, significant variability also occurs on hourly to daily time-scales. We used small (1.54 m2), throughfall exclusion shelters to evaluate the role soil moisture and temperature as temporal...

  2. Comparisons of temperature, pressure and humidity measurements by balloon-borne radiosondes and frost point hygrometers during MOHAVE-2009

    Directory of Open Access Journals (Sweden)

    D. F. Hurst

    2011-12-01

    Full Text Available We compare coincident, in situ, balloon-borne measurements of temperature (T and pressure (P by two radiosondes (Vaisala RS92, Intermet iMet-1-RSB and similar measurements of relative humidity (RH by RS92 sondes and frost point hygrometers. Data from a total of 28 balloon flights with at least one pair of radiosondes are analyzed in 1-km altitude bins to quantify measurement differences between the sonde sensors and how they vary with altitude. Each comparison (T, P, RH exposes several profiles of anomalously large measurement differences. Measurement difference statistics, calculated with and without the anomalous profiles, are compared to uncertainties quoted by the radiosonde manufacturers. Excluding seven anomalous profiles, T differences between 19 pairs of RS92 and iMet sondes exceed their measurement uncertainty limits (2 σ 31% of the time and reveal a statistically significant, altitude-independent bias of 0.5 ± 0.2 °C. Similarly, RS92-iMet P differences in 22 non-anomalous profiles exceed their uncertainty limits 23% of the time, with a disproportionate 83% of the excessive P differences at altitudes >16 km. The RS92-iMet pressure differences increase smoothly from −0.6 hPa near the surface to 0.8 hPa above 25 km. Temperature and P differences between all 14 pairs of RS92 sondes exceed manufacturer-quoted, reproducibility limits (σ 28% and 11% of the time, respectively. About 95% of the excessive T differences are eliminated when 5 anomalous RS92-RS92 profiles are excluded. Only 5% of RH measurement differences between 14 pairs of RS92 sondes exceed the manufacturer's measurement reproducibility limit (σ. RH measurements by RS92 sondes are also compared to RH values calculated from frost point hygrometer measurements and coincident T measurements by the radiosondes. The influences of RS92-iMet Tand P differences on RH values and water vapor mixing

  3. Relative humidity sensor based on surface plasmon resonance of D-shaped fiber with polyvinyl alcohol embedding Au grating

    Science.gov (United States)

    Yan, Haitao; Han, Daofu; Li, Ming; Lin, Bo

    2017-01-01

    This paper presents the design, fabrication, and characterization of a D-shaped fiber coated with polyvinyl alcohol (PVA) embedding an Au grating-based relative humidity (RH) sensor. The Au grating is fabricated on a D-shaped fiber to match the wave-vector and excite the surface plasmon, and the PVA is embedded in the Au grating as a sensitive cladding film. The refractive index of PVA changes with the ambient humidity. Measurements in a controlled environment show that the RH sensor can achieve a sensitivity of 5.4 nm per relative humidity unit in the RH range from 0% to 70% RH. Moreover, the surface plasmon resonance can be realized and used for RH sensing at the C band of optical fiber communication instead of the visible light band due to the metallic grating microstructure on the D-shaped fiber.

  4. Statistical modeling of temperature, humidity and wind fields in the atmospheric boundary layer over the Siberian region

    Science.gov (United States)

    Lomakina, N. Ya.

    2017-11-01

    The work presents the results of the applied climatic division of the Siberian region into districts based on the methodology of objective classification of the atmospheric boundary layer climates by the "temperature-moisture-wind" complex realized with using the method of principal components and the special similarity criteria of average profiles and the eigen values of correlation matrices. On the territory of Siberia, it was identified 14 homogeneous regions for winter season and 10 regions were revealed for summer. The local statistical models were constructed for each region. These include vertical profiles of mean values, mean square deviations, and matrices of interlevel correlation of temperature, specific humidity, zonal and meridional wind velocity. The advantage of the obtained local statistical models over the regional models is shown.

  5. Des-acyl ghrelin prevents heatstroke-like symptoms in rats exposed to high temperature and high humidity.

    Science.gov (United States)

    Inoue, Yoshiyuki; Hayashi, Yujiro; Kangawa, Kenji; Suzuki, Yoshihiro; Murakami, Noboru; Nakahara, Keiko

    2016-02-26

    We have shown previously that des-acyl ghrelin decreases body temperature in rats through activation of the parasympathetic nervous system. Here we investigated whether des-acyl ghrelin ameliorates heatstroke in rats exposed to high temperature. Peripheral administration of des-acyl ghrelin significantly attenuated hyperthermia induced by exposure to high-temperature (35°C) together with high humidity (70-80%). Although biochemical analysis revealed that exposure to high temperature significantly increased hematocrit and the serum levels of aspartate amino transferase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), creatinine and electrolytes (Na(+), K(+), Cl(-)), most of these heatstroke-associated reactions were significantly reduced by treatment with des-acyl ghrelin. The level of des-acyl ghrelin in plasma was also found to be significantly increased under high-temperature conditions. These results suggest that des-acyl ghrelin could be useful for preventing heatstroke under high temperature condition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Difference in the Dissolution Behaviors of Tablets Containing Polyvinylpolypyrrolidone (PVPP) Depending on Pharmaceutical Formulation After Storage Under High Temperature and Humid Conditions.

    Science.gov (United States)

    Takekuma, Yoh; Ishizaka, Haruka; Sumi, Masato; Sato, Yuki; Sugawara, Mitsuru

    Storage under high temperature and humid conditions has been reported to decrease the dissolution rate for some kinds of tablets containing polyvinylpolypyrrolidone (PVPP) as a disintegrant. The aim of this study was to elucidate the properties of pharmaceutical formulations with PVPP that cause a decrease in the dissolution rate after storage under high temperature and humid conditions by using model tablets with a simple composition. Model tablets, which consisted of rosuvastatin calcium or 5 simple structure compounds, salicylic acid, 2-aminodiphenylmethane, 2-aminobiphenyl, 2-(p-tolyl)benzoic acid or 4.4'-biphenol as principal agents, cellulose, lactose hydrate, PVPP and magnesium stearate as additives, were made by direct compression. The model tables were wrapped in paraffin papers and stored for 2 weeks at 40°C/75% relative humidity (RH). Dissolution tests were carried out by the paddle method in the Japanese Pharmacopoeia 16th edition. Model tablets with a simple composition were able to reproduce a decreased dissolution rate after storage at 40°C/75% RH. These tablets showed significantly decreased water absorption activities after storage. In the case of tablets without lactose hydrate by replacing with cellulose, a decreased dissolution rate was not observed. Carboxyl and amino groups in the structure of the principal agent were not directly involved in the decreased dissolution. 2-Benzylaniline tablets showed a remarkably decreased dissolution rate and 2-aminobiphenyl and 2-(p-tolyl)benzoic acid tablets showed slightly decreased dissolution rates, though 4,4'-biphenol tablets did not show a decrease dissolution rate. We demonstrated that additives and structure of the principal agent were involved in the decreased in dissolution rate for tablets with PVPP. The results suggested that one of the reasons for a decreased dissolution rate was the inclusion of lactose hydrate in tablets. The results also indicated that compounds as principal agents with low

  7. Long-Term Monitoring of Fresco Paintings in the Cathedral of Valencia (Spain) Through Humidity and Temperature Sensors in Various Locations for Preventive Conservation

    Science.gov (United States)

    Zarzo, Manuel; Fernández-Navajas, Angel; García-Diego, Fernando-Juan

    2011-01-01

    We describe the performance of a microclimate monitoring system that was implemented for the preventive conservation of the Renaissance frescoes in the apse vault of the Cathedral of Valencia, that were restored in 2006. This system comprises 29 relative humidity (RH) and temperature sensors: 10 of them inserted into the plaster layer supporting the fresco paintings, 10 sensors in the walls close to the frescoes and nine sensors measuring the indoor microclimate at different points of the vault. Principal component analysis was applied to RH data recorded in 2007. The analysis was repeated with data collected in 2008 and 2010. The resulting loading plots revealed that the similarities and dissimilarities among sensors were approximately maintained along the three years. A physical interpretation was provided for the first and second principal components. Interestingly, sensors recording the highest RH values correspond to zones where humidity problems are causing formation of efflorescence. Recorded data of RH and temperature are discussed according to Italian Standard UNI 10829 (1999). PMID:22164100

  8. Long-Term Monitoring of Fresco Paintings in the Cathedral of Valencia (Spain Through Humidity and Temperature Sensors in Various Locations for Preventive Conservation

    Directory of Open Access Journals (Sweden)

    Angel Fernández-Navajas

    2011-09-01

    Full Text Available We describe the performance of a microclimate monitoring system that was implemented for the preventive conservation of the Renaissance frescoes in the apse vault of the Cathedral of Valencia, that were restored in 2006. This system comprises 29 relative humidity (RH and temperature sensors: 10 of them inserted into the plaster layer supporting the fresco paintings, 10 sensors in the walls close to the frescoes and nine sensors measuring the indoor microclimate at different points of the vault. Principal component analysis was applied to RH data recorded in 2007. The analysis was repeated with data collected in 2008 and 2010. The resulting loading plots revealed that the similarities and dissimilarities among sensors were approximately maintained along the three years. A physical interpretation was provided for the first and second principal components. Interestingly, sensors recording the highest RH values correspond to zones where humidity problems are causing formation of efflorescence. Recorded data of RH and temperature are discussed according to Italian Standard UNI 10829 (1999.

  9. Odors and sensations of humidity and dryness in relation to sick building syndrome and home environment in Chongqing, China.

    Directory of Open Access Journals (Sweden)

    Juan Wang

    Full Text Available The prevalence of perceptions of odors and sensations of air humidity and sick building syndrome symptoms in domestic environments were studied using responses to a questionnaire on the home environment. Parents of 4530 1-8 year old children from randomly selected kindergartens in Chongqing, China participated. Stuffy odor, unpleasant odor, pungent odor, mold odor, tobacco smoke odor, humid air and dry air in the last three month (weekly or sometimes was reported by 31.4%, 26.5%, 16.1%, 10.6%, 33.0%, 32.1% and 37.2% of the parents, respectively. The prevalence of parents' SBS symptoms (weekly or sometimes were: 78.7% for general symptoms, 74.3% for mucosal symptoms and 47.5% for skin symptoms. Multi-nominal regression analyses for associations between odors/sensations of air humidity and SBS symptoms showed that the odds ratio for "weekly" SBS symptoms were consistently higher than for "sometimes" SBS symptoms. Living near a main road or highway, redecoration, and new furniture were risk factors for perceptions of odors and sensations of humid air and dry air. Dampness related problems (mold spots, damp stains, water damage and condensation were all risk factors for perceptions of odors and sensations of humid air and dry air, as was the presence of cockroaches, rats, and mosquitoes/flies, use of mosquito-repellent incense and incense. Protective factors included cleaning the child's bedroom every day and frequently exposing bedding to sunshine. In conclusion, adults' perceptions of odors and sensations of humid air and dry air are related to factors of the home environment and SBS symptoms are related to odor perceptions.

  10. Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties

    Directory of Open Access Journals (Sweden)

    J. Michel Flores

    2012-06-01

    Full Text Available One of the major uncertainties in the understanding of Earth's climate system is the interaction between solar radiation and aerosols in the atmosphere. Aerosols exposed to high humidity will change their chemical, physical, and optical properties due to their increased water content. To model hydrated aerosols, atmospheric chemistry and climate models often use the volume weighted mixing rule to predict the complex refractive index (RI of aerosols when they interact with high relative humidity, and, in general, assume homogeneous mixing. This study explores the validity of these assumptions. A humidified cavity ring down aerosol spectrometer (CRD-AS and a tandem hygroscopic DMA (differential mobility analyzer are used to measure the extinction coefficient and hygroscopic growth factors of humidified aerosols, respectively. The measurements are performed at 80% and 90%RH at wavelengths of 532 nm and 355 nm using size-selected aerosols with different degrees of absorption; from purely scattering to highly absorbing particles. The ratio of the humidified to the dry extinction coefficients (fRHext(%RH, Dry is measured and compared to theoretical calculations based on Mie theory. Using the measured hygroscopic growth factors and assuming homogeneous mixing, the expected RIs using the volume weighted mixing rule are compared to the RIs derived from the extinction measurements.

    We found a weak linear dependence or no dependence of fRH(%RH, Dry with size for hydrated absorbing aerosols in contrast to the non-monotonically decreasing behavior with size for purely scattering aerosols. No discernible difference could be made between the two wavelengths used. Less than 7% differences were found between the real parts of the complex refractive indices derived and those calculated using the volume weighted mixing rule, and the imaginary parts had up to a 20% difference. However, for substances with growth factor less than 1

  11. Effects of relative humidity on the characterization of a photochemical smog chamber.

    Science.gov (United States)

    Hu, Gaoshuo; Xu, Yongfu; Jia, Long

    2011-01-01

    Water vapor plays an important role in many atmospheric chemical reactions. A self-made indoor environmental smog chamber was used to investigate the effects of relative humidity (RH) on its characterization, which included the wall effects of reactive species such as 03 and NOx, and the determination of chamber-dependent OH radicals in terms of CO-NOx irradiation experiments. Results showed that the rate constant of O3 wall losses increased with increasing RH, and that their relationship was linearly significant. Although RH affected the rate constant of NOx wall losses, their relationship was not statistically significant. Background air generated a small amount of ozone at both high and low RH. When RH varied from 5% to 79%, the apparent rate constant kNO2-->HONO for the conversion of NO2 into gas phase HONO was estimated in the range of 0.70 x 10(-3)-2.5 x 10(-3) min(-1). A linear relationship between kNO2-->HONO and RH was obtained as kNO2-->HONO (10(-3) min(-1)) = -0.0255RH + 2.64, with R2 and P value being 0.978 and < 0.01. To our knowledge, this is the first report on their relationship. The generation mechanism for HONO and OH was also discussed in this work.

  12. Sulfuric acid nucleation: power dependencies, variation with relative humidity, and effect of bases

    Directory of Open Access Journals (Sweden)

    J. H. Zollner

    2012-05-01

    Full Text Available Nucleation of particles composed of sulfuric acid, water, and nitrogen base molecules was studied using a continuous flow reactor. The particles formed from these vapors were detected with an ultrafine condensation particle counter, while vapors of sulfuric acid and nitrogen bases were detected by chemical ionization mass spectrometry. Variation of particle numbers with sulfuric acid concentration yielded a power dependency on sulfuric acid of 5 ± 1 for relative humidities of 14–68% at 296 K; similar experiments with varying water content yielded power dependencies on H2O of ~7. The critical cluster contains about 5 H2SO4 molecules and a new treatment of the power dependency for H2O suggests about 12 H2O molecules for these conditions. Addition of 2-to-45 pptv of ammonia or methyl amine resulted in up to millions of times more particles than in the absence of these compounds. Particle detection capabilities, sulfuric acid and nitrogen base detection, wall losses, and the extent of particle growth are discussed. Results are compared to previous laboratory nucleation studies and they are also discussed in terms of atmospheric nucleation scenarios.

  13. An Embedded Sensor Network for Measuring Elevation Effects on Temperature, Humidity, and Evapotranspiration Within a Tropical Alpine Valley

    Science.gov (United States)

    Hellstrom, R. A.; Mark, B. G.

    2006-12-01

    Conditions of glacier recession in the seasonally dry tropical Peruvian Andes motivates research to better constrain the hydrological balance in alpine valleys. Studies suggest that glaciers in the tropical Andes are particularly sensitive to seasonal humidity flux due to the migration of the Intertropical Convergence Zone. However, there is an outstanding need to better measure and model the spatiotemporal variability of energy and water budgets within pro-glacial valleys. In this context, we introduce a novel embedded network of low- cost, discrete temperature and humidity microloggers and an automatic weather station installed in the Llanganuco valley of the Cordillera Blanca. This paper presents data recorded over a full annual cycle (2004- 2005) and reports on network design and results during the dry and wet seasons. The transect of sensors ranging from about 3500 to 4700 m reveal seasonally characteristic diurnal fluctuations in up-valley lapse rate. A process-based water balance model (Brook90) examines the influence of meteorological forcing on evapotranspiration (ET) rates in the valley. The model results suggest that cloud-free daylight conditions enhances ET during the wet season. ET was insignificant throughout the dry season. In addition, we report on the effects of elevation on ET.

  14. Impact of individually controlled facially applied air movement on perceived air quality at high humidity

    DEFF Research Database (Denmark)

    Skwarczynski, Mariusz; Melikov, Arsen Krikor; Kaczmarczyk, J.

    2010-01-01

    and local air velocity under a constant air temperature of 26 degrees C, namely: 70% relative humidity without air movement, 30% relative humidity without air movement and 70% relative humidity with air movement under isothermal conditions. Personalized ventilation was used to supply room air from the front...

  15. Dynamics of spatial heterogeneity of stomatal closure in Tradescantia virginiana altered by growth at high relative air humidity

    NARCIS (Netherlands)

    Rezaei Nejad, A.; Harbinson, J.; Meeteren, van U.

    2006-01-01

    The spatial heterogeneity of stomatal closure in response to rapid desiccation of excised well-watered Tradescantia virginiana leaves grown at moderate (55%) or high (90%) relative air humidity (RH) was studied using a chlorophyll fluorescence imaging system under non-photorespiratory conditions.

  16. Relative effect of solder flux chemistry on the humidity related failures in electronics

    DEFF Research Database (Denmark)

    Verdingovas, Vadimas; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-01-01

    Purpose - This paper aims to investigate the effect of no-clean flux chemistry with various weak organic acids (WOAs) as activators on the corrosion reliability of electronics with emphasis on the hygroscopic nature of the residue. Design/methodology/approach - The hygroscopicity of flux residue...... in the impedance measurements were observed. Practical implications - The findings are attributed to the deliquescence RH of the WOA(s) in the flux and chemistry of water-layer formation. The results show the importance of WOA type in relation to its solubility and deliquescence RH on the corrosion reliability...

  17. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels

    Directory of Open Access Journals (Sweden)

    Sang Soon Hwang

    2009-11-01

    Full Text Available In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0–100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane.

  18. Comparative Transcriptomic Analysis in Paddy Rice under Storage and Identification of Differentially Regulated Genes in Response to High Temperature and Humidity.

    Science.gov (United States)

    Zhao, Chanjuan; Xie, Junqi; Li, Li; Cao, Chongjiang

    2017-09-20

    The transcriptomes of paddy rice in response to high temperature and humidity were studied using a high-throughput RNA sequencing approach. Effects of high temperature and humidity on the sucrose and starch contents and α/β-amylase activity were also investigated. Results showed that 6876 differentially expressed genes (DEGs) were identified in paddy rice under high temperature and humidity storage. Importantly, 12 DEGs that were downregulated fell into the "starch and sucrose pathway". The quantitative real-time polymerase chain reaction assays indicated that expression of these 12 DEGs was significantly decreased, which was in parallel with the reduced level of enzyme activities and the contents of sucrose and starch in paddy rice stored at high temperature and humidity conditions compared to the control group. Taken together, high temperature and humidity influence the quality of paddy rice at least partially by downregulating the expression of genes encoding sucrose transferases and hydrolases, which might result in the decrease of starch and sucrose contents.

  19. PSYCRODATA: a software which calculates the air humidity characteristics and relate its with the variations of the gamma environmental bottom

    International Nuclear Information System (INIS)

    Alonso A, D.; Dominguez L, O.; Ramos V, O.; Caveda R, C.A.; Capote F, E.; Dominguez G, A.; Valdes S, E.; Rodriguez V, E.

    2006-01-01

    The computer tool 'Psycrodata', able to calculate the values of those characteristics of the humidity of the air starting from the measurements carried out of humidity and temperature in the post of occident of the National Net of Environmental Radiological Surveillance was obtained. Among the facilities that 'Psycrodata' toasts it is the keeping the obtained information in a database facilitating the making of reports. For another part the possibility of selection of different approaches for the calculation and the introduction of the psicrometric coefficient to use, its make that each station can have the suitable psicrometric chart keeping in mind the instrumentation and the characteristics of the area of location of the same one. Also, can have facilities to import text files for later on to be plotted, it allowed to correlate the absorbed dose rate in air due to the environmental gamma radiation, besides of the temperature and the humidity, with the tension of the water steam, the temperature of the dew point and the saturation deficit. (Author)

  20. Metabolic Heat Regenerated Temperature Swing Adsorption for CO2, Thermal and Humidity Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is proposed for a Portable Life Support System to remove and reject heat and carbon dioxide...

  1. Lower-tropospheric humidity: climatology, trends and the relation to the ITCZ

    Directory of Open Access Journals (Sweden)

    Alexander Läderach

    2013-07-01

    Full Text Available The tropical region is an area of maximum humidity and serves as the major humidity source of the globe. Among other phenomena, it is governed by the so-called Inter-Tropical Convergence Zone (ITCZ which is commonly defined by converging low-level winds or enhanced precipitation. Given its importance as a humidity source, we investigate the humidity fields in the tropics in different reanalysis data sets, deduce the climatology and variability and assess the relationship to the ITCZ. Therefore, a new analysis method of the specific humidity distribution is introduced which allows detecting the location of the humidity maximum, the strength and the meridional extent. The results show that the humidity maximum in boreal summer is strongly shifted northward over the warm pool/Asia Monsoon area and the Gulf of Mexico. These shifts go along with a peak in the strength in both areas; however, the extent shrinks over the warm pool/Asia Monsoon area, whereas it is wider over the Gulf of Mexico. In winter, such connections between location, strength and extent are not found. Still, a peak in strength is again identified over the Gulf of Mexico in boreal winter. The variability of the three characteristics is dominated by inter-annual signals in both seasons. The results using ERA-interim data suggest a positive trend in the Gulf of Mexico/Atlantic region from 1979 to 2010, showing an increased northward shift in the recent years. Although the trend is only weakly confirmed by the results using MERRA reanalysis data, it is in phase with a trend in hurricane activity – a possible hint of the importance of the new method on hurricanes. Furthermore, the position of the maximum humidity coincides with one of the ITCZ in most areas. One exception is the western and central Pacific, where the area is dominated by the double ITCZ in boreal winter. Nevertheless, the new method enables us to gain more insight into the humidity distribution, its variability and

  2. A distribution law for relative humidity in the upper troposphere and lower stratosphere derived from three years of MOZAIC measurements

    Directory of Open Access Journals (Sweden)

    K. Gierens

    1999-09-01

    Full Text Available Data from three years of MOZAIC measurements made it possible to determine a distribution law for the relative humidity in the upper troposphere and lower stratosphere. Data amounting to 13.5% of the total were obtained in regions with ice supersaturation. Troposphere and stratosphere are distinguished by an ozone concentration of 130 ppbv as threshold. The probability of measuring a certain amount of ice supersaturation in the troposphere decreases exponentially with the degree of ice supersaturation. The probability of measuring a certain relative humidity in the stratosphere (both with respect to water and ice decreases exponentially with the relative humidity. A stochastic model that naturally leads to the exponential distribution is provided. Mean supersaturation in the troposphere is about 15%, whereas ice nucleation requires 30% supersaturation on the average. This explains the frequency of regions in which aircraft induce persistent contrails but which are otherwise free of clouds. Ice supersaturated regions are 3-4 K colder and contain more than 50% more vapour than other regions in the upper troposphere. The stratospheric air masses sampled are dry, as expected, having mean relative humidity over water of 12% and over ice of 23%, respectively. However, 2% of the stratospheric data indicate ice supersaturation. As the MOZAIC measurements have been obtained on commercial flights mainly between Europe and North America, the data do not provide a complete global picture, but the exponential character of the distribution laws found is probably valid globally. Since water vapour is the most important greenhouse gas and since it might enhance the anthropogenic greenhouse effects via positive feedback mechanisms, it is important to represent its distribution correctly in climate models. The discovery of the distribution law of the relative humidity makes possible simple tests to show whether the hydrological cycle in climate models is

  3. Ice formation via deposition nucleation on mineral dust and organics: dependence of onset relative humidity on total particulate surface area

    International Nuclear Information System (INIS)

    Kanji, Zamin A; Florea, Octavian; Abbatt, Jonathan P D

    2008-01-01

    We present ice nucleation results for Arizona test dust, kaolinite, montmorillonite, silica, silica coated with a hydrophobic octyl chain, oxalic acid dihydrate, Gascoyne leonardite (a humic material), and Aldrich humic acid (sodium salt). The focus was on deposition mode nucleation below water saturation at 233 K. Particles were deposited onto a hydrophobic cold stage by atomization of a slurry/solution and exposed to a constant partial pressure of water vapor. By lowering the temperature of the stage, the relative humidity with respect to ice (RH i ) was gradually increased until ice nucleation was observed using digital photography. Different numbers of particles were deposited onto the cold stage by varying the atomization solution concentration and deposition time. For the same total particulate surface area, mineral dust particles nucleated ice at lower supersaturations than all other materials. The most hydrophobic materials, i.e. Gascoyne leonardite and octyl silica, were the least active. For our limit of detection of one ice crystal, the ice onset RH i values were dependent on the total surface area of the particulates, indicating that no unique threshold RH i for ice nucleation prevails

  4. Ice formation via deposition nucleation on mineral dust and organics: dependence of onset relative humidity on total particulate surface area

    Energy Technology Data Exchange (ETDEWEB)

    Kanji, Zamin A; Florea, Octavian; Abbatt, Jonathan P D [Department of Chemistry, University of Toronto, 80 St George Street, Toronto, ON, M5S 3H6 (Canada)], E-mail: zkanji@chem.utoronto.ca

    2008-04-15

    We present ice nucleation results for Arizona test dust, kaolinite, montmorillonite, silica, silica coated with a hydrophobic octyl chain, oxalic acid dihydrate, Gascoyne leonardite (a humic material), and Aldrich humic acid (sodium salt). The focus was on deposition mode nucleation below water saturation at 233 K. Particles were deposited onto a hydrophobic cold stage by atomization of a slurry/solution and exposed to a constant partial pressure of water vapor. By lowering the temperature of the stage, the relative humidity with respect to ice (RH{sub i}) was gradually increased until ice nucleation was observed using digital photography. Different numbers of particles were deposited onto the cold stage by varying the atomization solution concentration and deposition time. For the same total particulate surface area, mineral dust particles nucleated ice at lower supersaturations than all other materials. The most hydrophobic materials, i.e. Gascoyne leonardite and octyl silica, were the least active. For our limit of detection of one ice crystal, the ice onset RH{sub i} values were dependent on the total surface area of the particulates, indicating that no unique threshold RH{sub i} for ice nucleation prevails.

  5. A Kinetic Model for Predicting the Relative Humidity in Modified Atmosphere Packaging and Its Application in Lentinula e