WorldWideScience

Sample records for relative humidity air

  1. Analysis of air temperature and relative humidity: study of microclimates

    OpenAIRE

    Elis Dener Lima Alves; Marcelo Sacardi Biudes

    2012-01-01

    Understanding the variability of climate elements in time and space is fundamental to the knowledge of the dynamics of microclimate. Thus, the objective was to analyze the variability of air temperature and relative humidity on the Cuiabá campus of the Federal University of Mato Grosso, and, through the clustering technique, to analyze the formation of groups to propose a zoning microclimate in the area study. To this end, collection data of air temperature and relative humidity at 15 points ...

  2. High accuracy acoustic relative humidity measurement in duct flow with air.

    Science.gov (United States)

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  3. Seasonal Variations of Indoor Microbial Exposures and Their Relation to Temperature, Relative Humidity, and Air Exchange Rate

    DEFF Research Database (Denmark)

    Frankel, Mika; Bekö, Gabriel; Timm, Michael

    2012-01-01

    with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total...... inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m3) and were lowest in winter (median, 26 CFU/m3). Indoor...... of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly...

  4. High Accuracy Acoustic Relative Humidity Measurement inDuct Flow with Air

    Directory of Open Access Journals (Sweden)

    Cees van der Geld

    2010-08-01

    Full Text Available An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  5. Impact of individually controlled facially applied air movement on perceived air quality at high humidity

    DEFF Research Database (Denmark)

    Skwarczynski, Mariusz; Melikov, Arsen Krikor; Kaczmarczyk, J.

    2010-01-01

    and local air velocity under a constant air temperature of 26 degrees C, namely: 70% relative humidity without air movement, 30% relative humidity without air movement and 70% relative humidity with air movement under isothermal conditions. Personalized ventilation was used to supply room air from the front...

  6. Indoor air humidity, air quality, and health - An overview.

    Science.gov (United States)

    Wolkoff, Peder

    2018-04-01

    There is a long-standing dispute about indoor air humidity and perceived indoor air quality (IAQ) and associated health effects. Complaints about sensory irritation in eyes and upper airways are generally among top-two symptoms together with the perception "dry air" in office environments. This calls for an integrated analysis of indoor air humidity and eye and airway health effects. This overview has reviewed the literature about the effects of extended exposure to low humidity on perceived IAQ, sensory irritation symptoms in eyes and airways, work performance, sleep quality, virus survival, and voice disruption. Elevation of the indoor air humidity may positively impact perceived IAQ, eye symptomatology, and possibly work performance in the office environment; however, mice inhalation studies do not show exacerbation of sensory irritation in the airways by low humidity. Elevated humidified indoor air appears to reduce nasal symptoms in patients suffering from obstructive apnea syndrome, while no clear improvement on voice production has been identified, except for those with vocal fatigue. Both low and high RH, and perhaps even better absolute humidity (water vapor), favors transmission and survival of influenza virus in many studies, but the relationship between temperature, humidity, and the virus and aerosol dynamics is complex, which in the end depends on the individual virus type and its physical/chemical properties. Dry and humid air perception continues to be reported in offices and in residential areas, despite the IAQ parameter "dry air" (or "wet/humid air") is semantically misleading, because a sensory organ for humidity is non-existing in humans. This IAQ parameter appears to reflect different perceptions among other odor, dustiness, and possibly exacerbated by desiccation effect of low air humidity. It is salient to distinguish between indoor air humidity (relative or absolute) near the breathing and ocular zone and phenomena caused by moisture

  7. Impact of individually controlled facially applied air movement on perceived air quality at high humidity

    Energy Technology Data Exchange (ETDEWEB)

    Skwarczynski, M.A. [Faculty of Environmental Engineering, Institute of Environmental Protection Engineering, Department of Indoor Environment Engineering, Lublin University of Technology, Lublin (Poland); International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Copenhagen (Denmark); Melikov, A.K.; Lyubenova, V. [International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Copenhagen (Denmark); Kaczmarczyk, J. [Faculty of Energy and Environmental Engineering, Department of Heating, Ventilation and Dust Removal Technology, Silesian University of Technology, Gliwice (Poland)

    2010-10-15

    The effect of facially applied air movement on perceived air quality (PAQ) at high humidity was studied. Thirty subjects (21 males and 9 females) participated in three, 3-h experiments performed in a climate chamber. The experimental conditions covered three combinations of relative humidity and local air velocity under a constant air temperature of 26 C, namely: 70% relative humidity without air movement, 30% relative humidity without air movement and 70% relative humidity with air movement under isothermal conditions. Personalized ventilation was used to supply room air from the front toward the upper part of the body (upper chest, head). The subjects could control the flow rate (velocity) of the supplied air in the vicinity of their bodies. The results indicate an airflow with elevated velocity applied to the face significantly improves the acceptability of the air quality at the room air temperature of 26 C and relative humidity of 70%. (author)

  8. Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate.

    Science.gov (United States)

    Frankel, Mika; Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind; Madsen, Anne Mette

    2012-12-01

    Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m(3)) and were lowest in winter (median, 26 CFU/m(3)). Indoor bacteria peaked in spring (median, 2,165 CFU/m(3)) and were lowest in summer (median, 240 CFU/m(3)). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates.

  9. High accuracy acoustic relative humidity measurement in duct flow with air

    NARCIS (Netherlands)

    Schaik, van W.; Grooten, M.H.M.; Wernaart, T.; Geld, van der C.W.M.

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and

  10. New calculation method for thermodynamic properties of humid air in humid air turbine cycle – The general model and solutions for saturated humid air

    International Nuclear Information System (INIS)

    Wang, Zidong; Chen, Hanping; Weng, Shilie

    2013-01-01

    The article proposes a new calculation method for thermodynamic properties (i.e. specific enthalpy, specific entropy and specific volume) of humid air in humid air turbine cycle. The research pressure range is from 0.1 MPa to 5 MPa. The fundamental behaviors of dry air and water vapor in saturated humid air are explored in depth. The new model proposes and verifies the relationship between total gas mixture pressure and gas component pressures. This provides a good explanation of the fundamental behaviors of gas components in gas mixture from a new perspective. Another discovery is that the water vapor component pressure of saturated humid air equals P S , always smaller than its partial pressure (f·P S ) which was believed in the past researches. In the new model, “Local Gas Constant” describes the interaction between similar molecules. “Improvement Factor” is proposed for the first time by this article, and it quantitatively describes the magnitude of interaction between dissimilar molecules. They are combined to fully describe the real thermodynamic properties of humid air. The average error of Revised Dalton's Method is within 0.1% compared to experimentally-based data. - Highlights: • Our new model is suitable to calculate thermodynamic properties of humid air in HAT cycle. • Fundamental behaviors of dry air and water vapor in saturated humid air are explored in depth. • Local-Gas-Constant describes existing alone component and Improvement Factor describes interaction between different components. • The new model proposes and verifies the relationship between total gas mixture pressure and component pressures. • It solves saturated humid air thoroughly and deviates from experimental data less than 0.1%

  11. Air humidity requirements for human comfort

    DEFF Research Database (Denmark)

    Toftum, Jørn; Fanger, Povl Ole

    1999-01-01

    level near 100% rh. For respiratory comfort are the requirements much more stringent and results in lower permissible indoor air humidities. Compared with the upper humidity limit specified in existing thermal comfort standards, e.g. ASHRAE Addendum 55a, the humidity limit based on skin humidity......Upper humidity limits for the comfort zone determined from two recently presented models for predicting discomfort due to skin humidity and insufficient respiratory cooling are proposed. The proposed limits are compared with the maximum permissible humidity level prescribed in existing standards...... for the thermal indoor environment. The skin humidity model predicts discomfort as a function of the relative humidity of the skin, which is determined by existing models for human heat and moisture transfer based on environmental parameters, clothing characteristics and activity level. The respiratory model...

  12. The influence of air temperature and relative humidity on dynamics of water potential in Betula pendula (Betulaceae trees

    Directory of Open Access Journals (Sweden)

    G. P. Тikhova

    2017-02-01

    Full Text Available Linear multiple models were developed to describe diurnal and seasonal dynamics of water potential (Ψ of the foliated shoots in the plants of Betula genus related to air temperature and relative humidity in the middle taiga (southern Karelia. The results of the study revealed unidirectional changes, but different effect strength of air temperature and relative humidity on Ψ of the foliated shoots of common silver birch (Betula pendula Roth and curly (Karelian birch (Betula pendula Roth var. carelica. It was shown that increasing air temperature 1°С results in similar decreasing of Ψ value equal to 0.037–0.038 MPa in both of the birches (p > 0.05. Since the diurnal air temperature range achieves 10–15 °С, the contribution of this factor may be up to 0.57 MPa. On the contrary, the contribution of relative air humidity to Ψ value differs significantly in distinct birch forms (p < 0.05. In this case the change range of Ψ value in silver birch and curly birch may be up to 0.46 (0.015 MPa/1 % RH and 0.52 МПа (0.017 MPa/1 % RH, respectively. The results indicate that curly birch responds to the increase of relative air humidity with higher magnification of Ψ in comparison with common silver birch.

  13. Dependence of alpha radionuclide diffusion and deposition on relative air humidity

    International Nuclear Information System (INIS)

    Danis, A.; Ciubotariu, M.; Oncescu, M.; Mocsy, I.; Tomulescu, V.

    2000-01-01

    The diffusion and deposition of the gaseous and solid alpha radionuclides/aerosols depend strongly on the relative air humidity. This dependence gets a great significance in the case of radon and their genetically related alpha radionuclides monitoring in the dwelling and working places for radioprotection purposes, particularly in establishing the equilibrium factor. For the gaseous and solid alpha radionuclides genetically related, Rn-222 and its solid alpha descendants including their aerosols obtained by radionuclide attachments to different particles present in air, the vertical gradient of volume concentrations was experimentally determined. The experiments were performed in: an airtight tubular laboratory chamber, a house cellar (Cluj-Napoca) and the entrance gallery of an abandoned mine (Avram Iancu, Bihor), in which the relative humidity was ranging from 65% up to 96%. For the laboratory chamber, these radionuclides were generated by a calibrated Ra-226 source, prepared at the Radionuclide Production Centre, IPNE-HH, Bucharest. The source was included into an air tight device with a well known volume and it was used only after 40 days, when the Ra-226 and its alpha descendants were under radioactive equilibrium. For the diffusion/deposition studies, this source was coupled with the airtight laboratory chamber. In the mine gallery and house cellar, the radon and its descendants were naturally and continuously generated by radium sources in soil and building materials. The alpha volume concentration determinations required the use of a very accurate and sensitive alpha measurement method. These requirements were met by the alpha track method. This method was used by us in the following conditions: the CR-39 plastic track detector (Page, England) for the detection of the alpha particles and the optical microscopy for the study of alpha tracks (Wild stereomicroscope M7S and a Karl Zeiss Jena binocular microscope). The volume concentrations of radon and the

  14. Influence of air humidity on polymeric microresonators

    International Nuclear Information System (INIS)

    Schmid, S; Kühne, S; Hierold, C

    2009-01-01

    The influence of air humidity on polymeric microresonators is investigated by means of three different resonator types. SU-8 microbeams, SU-8 microstrings and a silicon micromirror with SU-8 hinges are exposed to relative humidities between 3% and 60%. The shifts of the resonant frequencies as a function of the relative humidity (RH) are explained based on mechanical models which are extended with water absorption models in polymer materials. The dominant effect causing the resonant frequency change is evaluated for each structure type. The eigenfrequency of the microstrings and the micromirror in the out-of-plane mode, which both mainly are defined by the pre-stress of the polymeric structures, are found to be highly sensitive to changes of air humidity. The humidity-induced (hygrometric) volume expansion reversibly reduces the pre-stress which results in relative frequency changes of up to 0.78%/%RH for the microstrings. A maximum coefficient of humidity-induced volume expansion for SU-8 of α hyg = 52.3 ppm/%RH is evaluated by fitting the data with the analytical model. It was found that microstrings that were stored at 150 °C over 150 h are more moisture sensitive compared to structures that were stored at room temperature. For the SU-8 microbeams and the micromirror in the tilt mode, the eigenfrequency is mainly defined by the modulus of the polymer material. The measured relative resonant frequency changes were below 1% for the given RH range. For low RH values, antiplasticization is observed (the modulus increases) followed by a plasticization for increasing RH values

  15. Air temperature and relative humidity in Dome Fuji Station buildings, East Antarctic ice sheet, in 2003

    Directory of Open Access Journals (Sweden)

    Takao Kameda

    2008-06-01

    Full Text Available In order to clarify the living condition in Dome Fuji Station in 2003, air temperature and relative humidity in the station were measured. Thermocouples with data logger and a ventilated psychrometer were used for the measurements. Average air temperature from February 11, 2003 to January 14, 2004 (missing period: July 19 to August 17 in the Dome Fuji Station buildings were as follows: Generator room 24.7℃, Dining room 23.5℃, Observation room 21.1℃, Dormitory room 18.2℃, Corridor 18.2℃, Food storage 8.2℃ and Old ice coring site -51.3℃. Average outside air temperature (1.5m height from the snow surface during the period was -54.4℃. A remarkable increase of outside air temperature (+30℃ at maximum due to a blocking high event was observed from October 31, 2003 to November 10, 2003 at Dome Fuji, during which increase of air temperature from 5 to 8°C in the station buildings was recorded. Snow on the station buildings was partly melted and some of the melted water penetrated into the station. This was the only time snow melted during the wintering over party's stay at the station. Average relative humidity in the station buildings obtained using a small humidifier was about 25%; the relative humidity without using the humidifier ranged from 9.0 to 22.9%.

  16. Factors controlling upper tropospheric relative humidity

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2004-03-01

    Full Text Available Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003, clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold. Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous

  17. Factors controlling upper tropospheric relative humidity

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2004-03-01

    Full Text Available Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003, clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold.

    Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous

  18. 40 CFR 89.326 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air... type of intake air supply, the humidity measurements must be made within the intake air supply system...

  19. 40 CFR 91.310 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply. Air...

  20. Physical activity profile of 2014 FIFA World Cup players, with regard to different ranges of air temperature and relative humidity

    Science.gov (United States)

    Chmura, Paweł; Konefał, Marek; Andrzejewski, Marcin; Kosowski, Jakub; Rokita, Andrzej; Chmura, Jan

    2017-04-01

    The present study attempts to assess changes in soccer players' physical activity profiles under the simultaneous influence of the different combinations of ambient temperature and relative humidity characterising matches of the 2014 FIFA World Cup hosted by Brazil. The study material consisted of observations of 340 players representing 32 national teams taking part in the tournament. The measured indices included total distances covered; distances covered with low, moderate, or high intensity; numbers of sprints performed, and peak running speeds achieved. The analysis was carried out using FIFA official match data from the Castrol Performance Index system. Ultimately, consideration was given to a combination of three air temperature ranges, i.e. below 22 °C, 22-28 °C, and above 28 °C; and two relative humidity ranges below 60 % and above 60 %. The greatest average distance recorded (10.54 ± 0.91 km) covered by players at an air temperature below 22 °C and a relative humidity below 60 %, while the shortest (9.83 ± 1.08 km) characterised the same air temperature range, but conditions of relative humidity above 60 % ( p ≤ 0.001). Two-way ANOVA revealed significant differences ( p ≤ 0.001) in numbers of sprints performed by players, depending on whether the air temperature range was below 22 °C (40.48 ± 11.17) or above 28 °C (30.72 ± 9.40), but only where the relative humidity was at the same time below 60 %. Results presented indicate that the conditions most comfortable for physical activity on the part of players occur at 22 °C, and with relative humidity under 60 %.

  1. Upper limits for air humidity based on human comfort

    DEFF Research Database (Denmark)

    Toftum, Jørn; Fanger, Povl Ole; Jørgensen, Anette S.

    1998-01-01

    respiratory cooling. Human subjects perceived the condition of their skin to be less acceptable with increasing skin humidity. Inhaled air was rated warmer, more stuffy and less acceptable with increasing air humidity and temperature. Based on the subjects' comfort responses, new upper limits for air humidity......The purpose of this study was to verify the hypothesis that insufficient respiratory cooling and a high level of skin humidity are two reasons for thermal discomfort at high air humidities, and to prescribe upper limits for humidity based on discomfort due to elevated skin humidity and insufficient...

  2. 40 CFR 90.310 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a) Humidity...

  3. Humidification tower for humid air gas turbine cycles: Experimental analysis

    International Nuclear Information System (INIS)

    Traverso, A.

    2010-01-01

    In the HAT (humid air turbine) cycle, the humidification of compressed air can be provided by a pressurised saturator (i.e. humidification tower or saturation tower), this solution being known to offer several attractive features. This work is focused on an experimental study of a pressurised humidification tower, with structured packing. After a description of the test rig employed to carry out the measuring campaign, the results relating to the thermodynamic process are presented and discussed. The experimental campaign was carried out over 162 working points, covering a relatively wide range of possible operating conditions. It is shown that the saturator behaviour, in terms of air outlet humidity and temperature, is primarily driven by, in decreasing order of relevance, the inlet water temperature, the inlet water over inlet dry air mass flow ratio and the inlet air temperature. The exit relative humidity is consistently over 100%, which may be explained partially by measurement accuracy and droplet entrainment, and partially by the non-ideal behaviour of air-steam mixtures close to saturation. Experimental results have been successfully correlated using a set of new non-dimensional groups: such a correlation is able to capture the air outlet temperature with a standard deviation σ = 2.8 K.

  4. Relationship between relative humidity and the dew point ...

    African Journals Online (AJOL)

    This research was aimed at determining the relationship between relative humidity and the dew point temperature in Benin City, Edo State, Nigeria. The dew point temperature was approximated from the measured air temperature and relative humidity with the aid of a currently self-designed weather monitoring system.

  5. Influence of Air Humidity and Water Particles on Dust Control Using Ultrasonic Atomization

    Science.gov (United States)

    Okawa, Hirokazu; Nishi, Kentaro; Shindo, Dai; Kawamura, Youhei

    2012-07-01

    The influence of air humidity and water particles on dust control was examined using ultrasonic atomization at 2.4 MHz, an acrylic box (61 L), and four types of ore dust samples: green tuff (4 µm), green tuff (6 µm), kaolin, and silica. It was clearly demonstrated that ultrasonic atomization was effective in raising humidity rapidly. However, at high relative air humidity, the water particles remained stable in the box without changing to water vapor. Ultrasonic atomization was applied to suppress dust dispersion and 40-95% dust reduction was achieved at 83% relative air humidity. Dust dispersion was more effective with ultrasonic atomization than without.

  6. Cultivar Differences in Plant Transpiration Rate at High Relative Air Humidity Are Not Related to Genotypic Variation in Stomatal Responsiveness

    DEFF Research Database (Denmark)

    Gebraegziabher, Habtamu Giday; Kjær, Katrine Heinsvig; Ottosen, Carl-Otto

    2015-01-01

    Plants grown at high relative air humidity (RH) often show disturbed water relations due to less responsive stomata. The attenuation of stomatal responsiveness as a result of high RH during leaf expansion depends on the cultivar. We hypothesized that tolerant cultivars to high RH experience a low...

  7. Influence of relative humidity of air on the level of aqueous tritium in corn, wheat and sunflower

    International Nuclear Information System (INIS)

    Indeka, L.

    1981-01-01

    The short-term changes in level of aqueous tritium in the leaves in relation to the air humidity were studied. The experiments were carried out on corn in which the transpiration is relatively small, on sunflower with very high transpiration and on wheat with intermediate transpiration. (M.F.W.)

  8. Effects of air humidity on ionization chamber response

    International Nuclear Information System (INIS)

    Meger, C.; DeLuca, P.M. Jr.; Pearson, D.W.; Venci, R.

    1983-01-01

    A study of the effect of air humidity on four different ionization chamber cap materials verified earlier studies (Kristensen and Sundbom, 1981; Mijnheer et al., 1983) and extended our understanding of the problem. We found nylon and A-150 plastic caps swell as they absorb water from the air. This accounts for as much as 2.5% increase in ionization response. Graphite chambers readily absorb and desorb water from the air. This creates a problem in maintaining dry air in a wet graphite chamber. Humid air has a different density and W value than dry air (Niatel, 1969, 1975). This decreases the charge collected in a wet graphite chamber. We observe a decrease in response of approximately 2%, a value greater than can be accounted for by these effects alone. Polyethylene chambers are unaffected by humid air. 4 refs., 9 figs

  9. Effect of air humidity on microstructure and phase composition of lithium deuteride corrosion products

    International Nuclear Information System (INIS)

    Liu, Xiaobo; Liu, Jiping

    2017-01-01

    Highlights: • Lithium deuteride samples are corroded by air with different relative humidity. • Show the structure and composition of fracture surface of corrosion particle. • The lithium carbonate formation is related to air humidity. • The lithium carbonate only exists in the surface of lithium hydroxide layer. • There is a concentration gradient of H 2 O across the lithium hydroxide layer. - Abstract: Lithium deuteride (LiD) was exposed to air for 600 min to determine the effect of air humidity on its microstructure and phase composition. XRD and XPS results revealed that LiOH and Li 2 CO 3 formed at relative humidity values of >30%, whereas only LiOH formed at values <20%. SEM and EDS images showed a clear LiOH layer; Li 2 CO 3 was confined to the surface of this layer. The schematic illustration revealed that the concentration gradient of H 2 O across the LiOH layer resulted in little Li 2 CO 3 formed in the layer. This work will contribute to increase understanding of LiD corrosion in air.

  10. Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs

    DEFF Research Database (Denmark)

    Hagen, Anke; Chen, Ming; Neufeld, Kai

    2009-01-01

    Anode supported SOFCs based on Ni-YSZ anodes, YSZ electrolytes, and LSM-YSZ cathodes were studied with respect to durability in humid air (~4%) over typically 1500 hours. Operating temperature and current density were varied between 750 and 850 oC and 0.25-0.75 A/cm2, respectively. It was found...... that the introduction of humidity affected the cell voltage under polarization of the cell and that this effect was (at least partly) reversible upon switching off the humidity, probably related to a segregation of impurities towards the three phase boundary in the presence of humidity. Generally, the studied cells...... were successfully operated in humid air under technologically relevant conditions. Improvements at the cathode/electrolyte interface made it possible to obtain highly stable cells, which can be operated under high current density and at 750 oC in humid air - conditions that are known to cause...

  11. Calibration of Relative Humidity Sensors using a Dew Point Generator

    OpenAIRE

    Brooks, Milo

    2010-01-01

    A relative humidity sensor can be calibrated using a dew point generator to continuously supply an air stream of known constant humidity and a temperature chamber to control the dew point and ambient temperature.

  12. Dynamics of spatial heterogeneity of stomatal closure in Tradescantia virginiana altered by growth at high relative air humidity

    NARCIS (Netherlands)

    Rezaei Nejad, A.; Harbinson, J.; Meeteren, van U.

    2006-01-01

    The spatial heterogeneity of stomatal closure in response to rapid desiccation of excised well-watered Tradescantia virginiana leaves grown at moderate (55%) or high (90%) relative air humidity (RH) was studied using a chlorophyll fluorescence imaging system under non-photorespiratory conditions.

  13. Significance of air humidity and air velocity for fungal spore release into the air

    Science.gov (United States)

    Pasanen, A.-L.; Pasanen, P.; Jantunen, M. J.; Kalliokoski, P.

    Our previous field studies have shown that the presence of molds in buildings does not necessarily mean elevated airborne spore counts. Therefore, we investigated the release of fungal spores from cultures of Aspergillus fumigatus, Penicillium sp. and Cladosporium sp. at different air velocities and air humidities. Spores of A. fumigatus and Penicillium sp. were released from conidiophores already at air velocity of 0.5 ms -1, whereas Cladosporium spores required at least a velocity of 1.0 ms -1. Airborne spore counts of A. fumigatus and Penicillium sp. were usually higher in dry than moist air, being minimal at relative humidities (r.h.) above 70%, while the effect of r.h. on the release of Cladosporium sp. was ambivalent. The geometric mean diameter of released spores increased when the r.h. exceeded a certain level which depends on fungal genus. Thus, spores of all three fungi were hygroscopic but the hygroscopicity of various spores appeared at different r.h.-ranges. This study indicates that spore release is controlled by external factors and depends on fungal genus which can be one reason for considerable variation of airborne spore counts in buildings with mold problems.

  14. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false NOX intake-air humidity and... NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you may correct NOX emissions for the effects of intake-air humidity or temperature. Use the NOX intake...

  15. Effect of relative humidity on growth of sodium oxide aerosols

    International Nuclear Information System (INIS)

    Sundarajan, A.R.; Mitragotri, D.S.; Mukunda Rao, S.R.

    1982-01-01

    Behavior of aerosol resulting from sodium fires in a closed vessel is investigated and the changes in the particle size distribution of the aerosol due to coagulation and humidity have been studied. The initial mass concentration is in the range of 80 -- 500 mg/m 3 and the relative humidity is varied between 50 to 98%. The initial size of the released aerosol is found to be 0.9 μm. Equilibrium diameters of particles growing in humid air have been computed for various humidity levels using water activity of sodium hydroxide. Both theoretical and experimental results have yielded growth ratios of about 3 at about 95% relative humidity. It is recommended that the computer codes dealing with aerosol coagulation behavior in reactor containment should include an appropriate humidity-growth function. (author)

  16. Humid-air and aqueous corrosion models for corrosion-allowance barrier material

    International Nuclear Information System (INIS)

    Lee, J.H.; Atkins, J.E.; Andrews, R.W.

    1995-01-01

    Humid-air and aqueous general and pitting corrosion models (including their uncertainties) for the carbon steel outer containment barrier were developed using the corrosion data from literature for a suite of cast irons and carbon steels which have similar corrosion behaviors to the outer barrier material. The corrosion data include the potential effects of various chemical species present in the testing environments. The atmospheric corrosion data also embed any effects of cyclic wetting and drying and salts that may form on the corroding specimen surface. The humid-air and aqueous general corrosion models are consistent in that the predicted humid-air general corrosion rates at relative humidities between 85 and 100% RH are close to the predicted aqueous general corrosion rates. Using the expected values of the model parameters, the model predicts that aqueous pitting corrosion is the most likely failure mode for the carbon steel outer barrier, and an earliest failure (or initial pit penetration) of the 100-mm thick barrier may occur as early as about 500 years if it is exposed continuously to an aqueous condition at between 60 and 70 degrees C

  17. EDITORIAL: Humidity sensors Humidity sensors

    Science.gov (United States)

    Regtien, Paul P. L.

    2012-01-01

    All matter is more or less hygroscopic. The moisture content varies with vapour concentration of the surrounding air and, as a consequence, most material properties change with humidity. Mechanical and thermal properties of many materials, such as the tensile strength of adhesives, stiffness of plastics, stoutness of building and packaging materials or the thermal resistivity of isolation materials, all decrease with increasing environmental humidity or cyclic humidity changes. The presence of water vapour may have a detrimental influence on many electrical constructions and systems exposed to humid air, from high-power systems to microcircuits. Water vapour penetrates through coatings, cable insulations and integrated-circuit packages, exerting a fatal influence on the performance of the enclosed systems. For these and many other applications, knowledge of the relationship between moisture content or humidity and material properties or system behaviour is indispensable. This requires hygrometers for process control or test and calibration chambers with high accuracy in the appropriate temperature and humidity range. Humidity measurement methods can roughly be categorized into four groups: water vapour removal (the mass before and after removal is measured); saturation (the air is brought to saturation and the `effort' to reach that state is measured); humidity-dependent parameters (measurement of properties of humid air with a known relation between a specific property and the vapour content, for instance the refractive index, electromagnetic spectrum and acoustic velocity); and absorption (based on the known relation between characteristic properties of non-hydrophobic materials and the amount of absorbed water from the gas to which these materials are exposed). The many basic principles to measure air humidity are described in, for instance, the extensive compilations by Wexler [1] and Sonntag [2]. Absorption-type hygrometers have small dimensions and can be

  18. Ethylene sensitivity and relative air humidity regulate root hydraulic properties in tomato plants.

    Science.gov (United States)

    Calvo-Polanco, Monica; Ibort, Pablo; Molina, Sonia; Ruiz-Lozano, Juan Manuel; Zamarreño, Angel María; García-Mina, Jose María; Aroca, Ricardo

    2017-11-01

    The effect of ethylene and its precursor ACC on root hydraulic properties, including aquaporin expression and abundance, is modulated by relative air humidity and plant sensitivity to ethylene. Relative air humidity (RH) is a main factor contributing to water balance in plants. Ethylene (ET) is known to be involved in the regulation of root water uptake and stomatal opening although its role on plant water balance under different RH is not very well understood. We studied, at the physiological, hormonal and molecular levels (aquaporins expression, abundance and phosphorylation state), the plant responses to exogenous 1-aminocyclopropane-1-carboxylic acid (ACC; precursor of ET) and 2-aminoisobutyric acid (AIB; inhibitor of ET biosynthesis), after 24 h of application to the roots of tomato wild type (WT) plants and its ET-insensitive never ripe (nr) mutant, at two RH levels: regular (50%) and close to saturation RH. Highest RH induced an increase of root hydraulic conductivity (Lp o ) of non-treated WT plants, and the opposite effect in nr mutants. The treatment with ACC reduced Lp o in WT plants at low RH and in nr plants at high RH. The application of AIB increased Lp o only in nr plants at high RH. In untreated plants, the RH treatment changed the abundance and phosphorylation of aquaporins that affected differently both genotypes according to their ET sensitivity. We show that RH is critical in regulating root hydraulic properties, and that Lp o is affected by the plant sensitivity to ET, and possibly to ACC, by regulating aquaporins expression and their phosphorylation status. These results incorporate the relationship between RH and ET in the response of Lp o to environmental changes.

  19. Statistical Modelling of Temperature and Moisture Uptake of Biochars Exposed to Selected Relative Humidity of Air

    Directory of Open Access Journals (Sweden)

    Luciane Bastistella

    2018-02-01

    Full Text Available New experimental techniques, as well as modern variants on known methods, have recently been employed to investigate the fundamental reactions underlying the oxidation of biochar. The purpose of this paper was to experimentally and statistically study how the relative humidity of air, mass, and particle size of four biochars influenced the adsorption of water and the increase in temperature. A random factorial design was employed using the intuitive statistical software Xlstat. A simple linear regression model and an analysis of variance with a pairwise comparison were performed. The experimental study was carried out on the wood of Quercus pubescens, Cyclobalanopsis glauca, Trigonostemon huangmosun, and Bambusa vulgaris, and involved five relative humidity conditions (22, 43, 75, 84, and 90%, two mass samples (0.1 and 1 g, and two particle sizes (powder and piece. Two response variables including water adsorption and temperature increase were analyzed and discussed. The temperature did not increase linearly with the adsorption of water. Temperature was modeled by nine explanatory variables, while water adsorption was modeled by eight. Five variables, including factors and their interactions, were found to be common to the two models. Sample mass and relative humidity influenced the two qualitative variables, while particle size and biochar type only influenced the temperature.

  20. Effects of Humidity Swings on Adsorption Columns for Air Revitalization: Modeling and Experiments

    Science.gov (United States)

    LeVan, M. Douglas; Finn, John E.

    1997-01-01

    Air purification systems are necessary to provide clean air in the closed environments aboard spacecraft. Trace contaminants are removed using adsorption. One major factor concerning the removal of trace contaminants is relative humidity. Water can reduce adsorption capacity and, due to constant fluctuations, its presence is difficult to incorporate into adsorption column designs. The purpose of the research was to allow for better design techniques in trace contaminant adsorption systems, especially for feeds with water present. Experiments and mathematical modeling research on effects of humidity swings on adsorption columns for air revitalization were carried out.

  1. Numerical Modelling Of Humid Air Flow Around A Porous Body

    Directory of Open Access Journals (Sweden)

    Bohojło-Wiśniewska Aneta

    2015-09-01

    Full Text Available This paper presents an example of humid air flow around a single head of Chinese cabbage under conditions of complex heat transfer. This kind of numerical simulation allows us to create a heat and humidity transfer model between the Chinese cabbage and the flowing humid air. The calculations utilize the heat transfer model in porous medium, which includes the temperature difference between the solid (vegetable tissue and fluid (air phases of the porous medium. Modelling and calculations were performed in ANSYS Fluent 14.5 software.

  2. Mars Science Laboratory relative humidity observations: Initial results.

    Science.gov (United States)

    Harri, A-M; Genzer, M; Kemppinen, O; Gomez-Elvira, J; Haberle, R; Polkko, J; Savijärvi, H; Rennó, N; Rodriguez-Manfredi, J A; Schmidt, W; Richardson, M; Siili, T; Paton, M; Torre-Juarez, M De La; Mäkinen, T; Newman, C; Rafkin, S; Mischna, M; Merikallio, S; Haukka, H; Martin-Torres, J; Komu, M; Zorzano, M-P; Peinado, V; Vazquez, L; Urqui, R

    2014-09-01

    The Mars Science Laboratory (MSL) made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity (REMS-H), and UV measurements. We concentrate on describing the REMS-H measurement performance and initial observations during the first 100 MSL sols as well as constraining the REMS-H results by comparing them with earlier observations and modeling results. The REMS-H device is based on polymeric capacitive humidity sensors developed by Vaisala Inc., and it makes use of transducer electronics section placed in the vicinity of the three humidity sensor heads. The humidity device is mounted on the REMS boom providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The final relative humidity results appear to be convincing and are aligned with earlier indirect observations of the total atmospheric precipitable water content. The water mixing ratio in the atmospheric surface layer appears to vary between 30 and 75 ppm. When assuming uniform mixing, the precipitable water content of the atmosphere is ranging from a few to six precipitable micrometers. Atmospheric water mixing ratio at Gale crater varies from 30 to 140 ppmMSL relative humidity observation provides good dataHighest detected relative humidity reading during first MSL 100 sols is RH75.

  3. On the distribution of relative humidity in cirrus clouds

    Directory of Open Access Journals (Sweden)

    P. Spichtinger

    2004-01-01

    Full Text Available We have analysed relative humidity statistics from measurements in cirrus clouds taken unintentionally during the Measurement of OZone by Airbus In-service airCraft project (MOZAIC. The shapes of the in-cloud humidity distributions change from nearly symmetric in relatively warm cirrus (warmer than −40°C to considerably positively skew (i.e. towards high humidities in colder clouds. These results are in agreement to findings obtained recently from the INterhemispheric differences in Cirrus properties from Anthropogenic emissions (INCA campaign (Ovarlez et al., 2002. We interprete the temperature dependence of the shapes of the humidity distributions as an effect of the length of time a cirrus cloud needs from formation to a mature equilibrium stage, where the humidity is close to saturation. The duration of this transitional period increases with decreasing temperature. Hence cold cirrus clouds are more often met in the transitional stage than warm clouds.

  4. Estimating relations between temperature, relative humidity as independed variables and selected water quality parameters in Lake Manzala, Egypt

    Directory of Open Access Journals (Sweden)

    Gehan A.H. Sallam

    2018-03-01

    Full Text Available In Egypt, Lake Manzala is the largest and the most productive lake of northern coastal lakes. In this study, the continuous measurements data of the Real Time Water Quality Monitoring stations in Lake Manzala were statistically analyzed to measure the regional and seasonal variations of the selected water quality parameters in relation to the change of air temperature and relative humidity. Simple formulas are elaborated using the DataFit software to predict the selected water quality parameters of the Lake including pH, Dissolved Oxygen (DO, Electrical Conductivity (EC, Total Dissolved Solids (TDS, Turbidity, and Chlorophyll as a function of air temperature, relative humidity and quantities and qualities of the drainage water that discharge into the lake. An empirical positive relation was found between air temperature and the relative humidity and pH, EC and TDS and negative relation with DO. There is no significant effect on the other two parameters of turbidity and chlorophyll.

  5. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    KAUST Repository

    Ahn, Yongtae

    2014-02-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry air to 980 ± 80 mW m -2 with water-saturated air. When the cathode was exposed to higher water pressures by placing the cathode in a horizontal position, with the cathode oriented so it was on the reactor bottom, power was reduced for both with dry (1030 ± 130 mW m-2) and water-saturated (390 ± 190 mW m-2) air. Decreased performance was partly due to water flooding of the catalyst, which would hinder oxygen diffusion to the catalyst. However, drying used cathodes did not improve performance in electrochemical tests. Soaking the cathode in a weak acid solution, but not deionized water, mostly restored performance (960 ± 60 mW m-2), suggesting that there was salt precipitation in the cathode that was enhanced by higher relative humidity or water pressure. These results showed that cathode performance could be adversely affected by both flooding and the subsequent salt precipitation, and therefore control of air humidity and water pressure may need to be considered for long-term MFC operation. © 2013 Elsevier B.V. All rights reserved.

  6. Co3O4 as p-Type Material for CO Sensing in Humid Air

    Directory of Open Access Journals (Sweden)

    Svetlana Vladimirova

    2017-09-01

    Full Text Available Nanocrystalline cobalt oxide Co3O4 has been prepared by precipitation and subsequent thermal decomposition of a carbonate precursor, and has been characterized in detail using XRD, transmission electron microscopy, and FTIR spectroscopy. The sensory characteristics of the material towards carbon monoxide in the concentration range 6.7–20 ppm have been examined in both dry and humid air. A sensor signal is achieved in dry air at sufficiently low temperatures T = 80–120 °C, but the increase in relative humidity results in the disappearance of sensor signal in this temperature range. At temperatures above 200 °C the inversion of the sensor signal in dry air was observed. In the temperature interval 180–200 °C the sensor signal toward CO is nearly the same at 0, 20 and 60% r.h. The obtained results are discussed in relation with the specific features of the adsorption of CO, oxygen, and water molecules on the surface of Co3O4. The independence of the sensor signal from the air humidity combined with a sufficiently short response time at a moderate operating temperature makes Co3O4 a very promising material for CO detection in conditions of variable humidity.

  7. A physically based analytical spatial air temperature and humidity model

    Science.gov (United States)

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2013-01-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat...

  8. Temperature and Humidity Control in Air-Conditioned Buildings with lower Energy Demand and increased Indoor Air Quality

    DEFF Research Database (Denmark)

    Paul, Joachim; Martos, E. T.

    2003-01-01

    Air-conditioning is not only a matter of temperature control. Thermal comfort and good indoor air quality are mainly a matter of humidity. Human health and well being may suffer seriously from inadequate humidity and/or too low temperatures in a room. A case study involving supermarket air......%. For indoor air temperature and humidity control, the use of an ice slurry (´Binary Ice´)was compared to conventional chilled water. The use of Binary Ice instead of chilled water makes the air handling and air distribution installation much simpler, recirculation of air becomes obsolete, and a higher portion...... of ambient air can be supplied, thus improving the indoor air quality still further. Reheating of air is not necessary when using Binary Ice. The introduction of chilled air into a room requires a different type of air outlet, however. When using Binary Ice, energy savings are high for climates with low...

  9. Study and realization of a new humid air generator; towards the definition of a dew temperature reference; Etude et realisation d'un nouveau generateur d'air humide; vers la definition d'une reference en temperature de rosee

    Energy Technology Data Exchange (ETDEWEB)

    Blanquart, B.

    2001-03-01

    The air humidity is an important parameter for several biological and physico-chemical processes. The aim of this thesis is the direct determination of the dew temperature without any link with the gravimetric reference. This document presents the realization and adjusting of a new humid air generator for the -80 deg. C to +15 deg. C range and the uncertainty linked with the dew temperature of the humid air generated. The first chapter recalls the definitions of humid air related data and the principles of the apparatuses used for the measurement of air humidity. The second chapter deals with temperature measurements while chapter 3 describes the new humid air generator built around an 'ideal' cell based on the theoretical definition of the dew temperature. Technical constraints due to temperature measurement and to hygrometers calibration are progressively integrated and introduced and lead to the practical realization of the device. Differences between the ideal cell and the prototype are estimated using a theoretical approach of mass and heat exchanges coupled with experimental results obtained with a previous prototype. Chapter 4 presents a first status of the device uncertainties with some possibilities of reduction of these uncertainties. (J.S.)

  10. Calculation principles of humid air in a reversed Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1998-12-31

    The article presents a calculation method for reversed Brayton cycle that uses humid air as working medium. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. The expansion process differs physically from the compression process, when the water vapour in the humid air begins to condensate. In the thermodynamic equilibrium of the flow, the water vapour pressure in humid air cannot exceed the pressure of saturated water vapour in corresponding temperature. Expansion calculation during operation around the saturation zone is based on a quasistatic expansion, in which the system after the turbine is in thermodynamical equilibrium. The state parameters are at every moment defined by the equation of state, and there is no supercooling in the vapour. Following simplifications are used in the calculations: The system is assumed to be adiabatic. This means that there is no heat transfer to the surroundings. This is a common practice, when the temperature differences are moderate as here; The power of the cooling is omitted. The cooling construction is very dependent on the machine and the distribution of the losses; The flow is assumed to be one-dimensional, steady-state and homogenous. The water vapour condensing in the turbine can cause errors, but the errors are mainly included in the efficiency calculation. (author) 11 refs.

  11. Calculation principles of humid air in a reversed Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    The article presents a calculation method for reversed Brayton cycle that uses humid air as working medium. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. The expansion process differs physically from the compression process, when the water vapour in the humid air begins to condensate. In the thermodynamic equilibrium of the flow, the water vapour pressure in humid air cannot exceed the pressure of saturated water vapour in corresponding temperature. Expansion calculation during operation around the saturation zone is based on a quasistatic expansion, in which the system after the turbine is in thermodynamical equilibrium. The state parameters are at every moment defined by the equation of state, and there is no supercooling in the vapour. Following simplifications are used in the calculations: The system is assumed to be adiabatic. This means that there is no heat transfer to the surroundings. This is a common practice, when the temperature differences are moderate as here; The power of the cooling is omitted. The cooling construction is very dependent on the machine and the distribution of the losses; The flow is assumed to be one-dimensional, steady-state and homogenous. The water vapour condensing in the turbine can cause errors, but the errors are mainly included in the efficiency calculation. (author) 11 refs.

  12. Improving stomatal functioning at elevated growth air humidity: A review.

    Science.gov (United States)

    Fanourakis, Dimitrios; Bouranis, Dimitrios; Giday, Habtamu; Carvalho, Dália R A; Rezaei Nejad, Abdolhossein; Ottosen, Carl-Otto

    2016-12-01

    Plants grown at high relative air humidity (RH≥85%) are prone to lethal wilting upon transfer to conditions of high evaporative demand. The reduced survival of these plants is related to (i) increased cuticular permeability, (ii) changed anatomical features (i.e., longer pore length and higher stomatal density), (iii) reduced rehydration ability, (iv) impaired water potential sensitivity to leaf dehydration and, most importantly, (v) compromised stomatal closing ability. This review presents a critical analysis of the strategies which stimulate stomatal functioning during plant development at high RH. These include (a) breeding for tolerant cultivars, (b) interventions with respect to the belowground environment (i.e., water deficit, increased salinity, nutrient culture and grafting) as well as (c) manipulation of the aerial environment [i.e., increased proportion of blue light, increased air movement, temporal temperature rise, and spraying with abscisic acid (ABA)]. Root hypoxia, mechanical disturbance, as well as spraying with compounds mimicking ABA, lessening its inactivation or stimulating its within-leaf redistribution are also expected to improve stomatal functioning of leaves expanded in humid air. Available evidence leaves little doubt that genotypic and phenotypic differences in stomatal functioning following cultivation at high RH are realized through the intermediacy of ABA. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Ambient humidity and the skin: the impact of air humidity in healthy and diseased states.

    Science.gov (United States)

    Goad, N; Gawkrodger, D J

    2016-08-01

    Humidity, along with other climatic factors such as temperature and ultraviolet radiation, can have an important impact on the skin. Limited data suggest that external humidity influences the water content of the stratum corneum. An online literature search was conducted through Pub-Med using combinations of the following keywords: skin, skin disease, humidity, dermatoses, dermatitis, eczema, and mist. Publications included in this review were limited to (i) studies in humans or animals, (ii) publications showing relevance to the field of dermatology, (iii) studies published in English and (iv) publications discussing humidity as an independent influence on skin function. Studies examining environmental factors as composite influences on skin health are only included where the impact of humidity on the skin is also explored in isolation of other environmental factors. A formal systematic review was not feasible for this topic due to the heterogeneity of the available research. Epidemiological studies indicated an increase in eczema with low internal (indoors) humidity and an increase in eczema with external high humidity. Other studies suggest that symptoms of dry skin appear with low humidity internal air-conditioned environments. Murine studies determined that low humidity caused a number of changes in the skin, including the impairment of the desquamation process. Studies in humans demonstrated a reduction in transepidermal water loss (TEWL) (a measure of the integrity of the skin's barrier function) with low humidity, alterations in the water content in the stratum corneum, decreased skin elasticity and increased roughness. Intervention with a humidifying mist increased the water content of the stratum corneum. Conversely, there is some evidence that low humidity conditions can actually improve the barrier function of the skin. Ambient relative humidity has an impact on a range of parameters involved in skin health but the literature is inconclusive. Further

  14. A vantage from space can detect earlier drought onset: an approach using relative humidity.

    Science.gov (United States)

    Farahmand, Alireza; AghaKouchak, Amir; Teixeira, Joao

    2015-02-25

    Each year, droughts cause significant economic and agricultural losses across the world. The early warning and onset detection of drought is of particular importance for effective agriculture and water resource management. Previous studies show that the Standard Precipitation Index (SPI), a measure of precipitation deficit, detects drought onset earlier than other indicators. Here we show that satellite-based near surface air relative humidity data can further improve drought onset detection and early warning. This paper introduces the Standardized Relative Humidity Index (SRHI) based on the NASA Atmospheric Infrared Sounder (AIRS) observations. The results indicate that the SRHI typically detects the drought onset earlier than the SPI. While the AIRS mission was not originally designed for drought monitoring, we show that its relative humidity data offers a new and unique avenue for drought monitoring and early warning. We conclude that the early warning aspects of SRHI may have merit for integration into current drought monitoring systems.

  15. The impact of temperature and humidity on perception and emission of indoor air pollutants

    DEFF Research Database (Denmark)

    Fang, Lei; Clausen, Geo; Fanger, Povl Ole

    1996-01-01

    Sensory response to air polluted by five building materials under different combinations of temperature and humidity in the ranges 18°C-28°C and 30%-70% was studied in the laboratory. The experiments were designed to study separately the impact of temperature and humidity on the perception of air...... polluted by materials, and on the emission of pollutants from the materials. At all tested pollution levels of the five materials, the air was perceived significantly less acceptable with increasing temperature and humidity, and the impact of temperature and humidity on perception decreased with increasing...... pollution level. A significant linear correlation between acceptability and enthalpy of the air was found to describe the influence of temperature and humidity on perception. The impact of temperature and humidity on sensory emission was less significant than the impact on perception; however, the sensory...

  16. Experimental analysis of pressurised humidification tower for humid air gas turbine cycles. Part A: Experimental campaign

    International Nuclear Information System (INIS)

    Pedemonte, A.A.; Traverso, A.; Massardo, A.F.

    2008-01-01

    One of the most interesting methods of water introduction in a gas turbine circuit is represented by the humid air turbine cycle (HAT). In the HAT cycle, the humidification can be provided by a pressurised saturator (i.e. humidification tower or saturation tower), this solution being known to offer several attractive features. This part A is focused on an experimental study of a pressurised humidification tower, with structured packing inside. After a description of the test rig employed to carry out the measuring campaign, the results relating to the thermodynamic process are presented and discussed. The experimental campaign was carried out over 162 working points, covering a relatively wide range of possible operating conditions. Details about measured data are provided in the appendix. It is shown that the saturator's behaviour, in terms of air outlet humidity and temperature, is primarily driven by, in decreasing order of relevance, the inlet water temperature, the inlet water over inlet dry air mass flow ratio and the inlet air temperature. Finally, the exit relative humidity is shown to be consistently over 100%, which may be explained partially by measurement accuracy and droplet entrainment, and partially by the non-ideal behaviour of air-steam mixtures close to saturation

  17. Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs

    DEFF Research Database (Denmark)

    Hagen, Anke; Neufeld, Kai; Liu, Yi-Lin

    2010-01-01

    Anode-supported solid oxide fuel cells (SOFCs) based on Ni–yttria-stabilized zirconia (YSZ) anodes, YSZ electrolytes, and lanthanum strontium manganite (LSM)–YSZ cathodes were studied with respect to durability in humid air (~4%) typically over 1500 h. Operating temperature and current density were...... varied between 750 and 850°C and 0.25–0.75 A/cm2, respectively. The introduction of humidity affected the cell voltage under polarization of the cell, and this effect was (at least partly) reversible upon switching off the humidity. Generally, the studied cells were operated in humid air under...... technologically relevant conditions over more than 1500 h. Improvements at the cathode/electrolyte interface made it possible to obtain highly stable cells, which can be operated under high current density and at 750°C in humid air, conditions that cause significant cell voltage degradation in dry air on cells...

  18. Biphilic Surfaces for Enhanced Water Collection from Humid Air

    Science.gov (United States)

    Benkoski, Jason; Gerasopoulos, Konstantinos; Luedeman, William

    Surface wettability plays an important role in water recovery, distillation, dehumidification, and heat transfer. The efficiency of each process depends on the rate of droplet nucleation, droplet growth, and mass transfer. Unfortunately, hydrophilic surfaces are good at nucleation but poor at shedding. Hydrophobic surfaces are the reverse. Many plants and animals overcome this tradeoff through biphilic surfaces with patterned wettability. For example, the Stenocara beetle uses hydrophilic patches on a superhydrophobic background to collect fog from air. Cribellate spiders similarly collect fog on their webs through periodic spindle-knot structures. In this study, we investigate the effects of wettability patterns on the rate of water collection from humid air. The steady state rate of water collection per unit area is measured as a function of undercooling, angle of inclination, water contact angle, hydrophilic patch size, patch spacing, area fraction, and patch height relative to the hydrophobic background. We then model each pattern by comparing the potential and kinetic energy of a droplet as it rolls downwards at a fixed angle. The results indicate that the design rules for collecting fog differ from those for condensation from humid air. The authors gratefully acknowledge the Office of Naval Research for financial support through Grant Number N00014-15-1-2107.

  19. Short term change in relative humidity during the festival of Diwali in India

    Science.gov (United States)

    Ganguly, Nandita D.

    2015-07-01

    The changes in humidity levels during the Diwali festivities have been examined over a period of 13 years at three Indian metro cities: Ahmedabad, New Delhi and Kolkata. A small short term increase in relative humidity even in the absence of transport of humid air from Arabian Sea and Bay of Bengal has been observed. The relative humidity levels were found to be exceeding the ambient levels during night and lying below the ambient levels during morning hours, indicating an increase in the survival rates of viruses responsible for the transmission of viral infections, as well as triggering immune-mediated illnesses such as asthma during Diwali.

  20. Relative Humidity in the Tropopause Saturation Layer

    Science.gov (United States)

    Selkirk, H. B.; Schoeberl, M. R.; Pfister, L.; Thornberry, T. D.; Bui, T. V.

    2017-12-01

    The tropical tropopause separates two very different atmospheric regimes: the stable lower stratosphere where the air is both extremely dry and nearly always so, and a transition layer in the uppermost tropical troposphere, where humidity on average increases rapidly downward but can undergo substantial temporal fluctuations. The processes that control the humidity in this layer below the tropopause include convective detrainment (which can result in either a net hydration or dehydration), slow ascent, wave motions and advection. Together these determine the humidity of the air that eventually passes through the tropopause and into the stratosphere, and we refer to this layer as the tropopause saturation layer or TSL. We know from in situ water vapor observations such as Ticosonde's 12-year balloonsonde record at Costa Rica that layers of supersaturation are frequently observed in the TSL. While their frequency is greatest during the local rainy season from June through October, supersaturation is also observed in the boreal winter dry season when deep convection is well south of Costa Rica. In other words, local convection is not a necessary condition for the presence of supersaturation. Furthermore, there are indications from airborne measurements during the recent POSIDON campaign at Guam that if anything deep convection tends to `reset' the TSL locally to a state of just-saturation. Conversely, it may be that layers of supersaturation are the result of slow ascent. To explore these ideas we take Ticosonde water vapor observations from the TSL, stratify them on the basis of relative humidity and report on the differences in the the history of upstream convective influence between supersaturated parcels and those that are not.

  1. Investigation of Interfacial Phenomena During Condensation of Humid Air on a Horizontal Substrate

    Directory of Open Access Journals (Sweden)

    Tiwari Akhilesh

    2013-12-01

    Full Text Available The condensation phenomenon of humid air on solid substrates can occur in many applications, and it is known as one of the most difficult problem to deal with for the improvement of the quality of air in a closed environment. The present study was motivated by the investigation of the coupling between ventilation and condensation inside controlled ecological life support systems (CELSS, as it has an important role for higher plants growth in greenhouses and living conditions in manned spacecraft cabins, particularly in long duration space flights or in future space bases. It is well known that the enhancement of the gas exchange with leaves and the growth of plants are dependent on the organoleptic and/or the surrounding thermo-physical factors. Insufficient air movement around plants and condensation on plant leaves generally limit their growth by suppressing the gas diffusion in the leaf boundary-layer thereby decreasing photosynthetic and transpiration rates. Thus, the optimization of a CELSS will require the control of the airflow and concomitant gas/liquid transfer at the plant surfaces. The experimental and theoretical modeling of CELSS requires a comprehensive understanding of the micro to the macro levels of liquid gas phase transfer. Hence, an experimental set-up was developed at 1-g to evaluate the mass transfer coefficients due to condensation of humid air on specific geometries in well controlled environmental conditions. The goal was to establish correlations between the fluxes of mass and heat, the relative humidity and the mean flow for the development of theoretical models based on local transfer coefficients. The experiments were performed at ambient temperature, with a relative humidity between 35-70% and for a velocity range of 1.0-3.0 m.s−1.

  2. Odors and sensations of humidity and dryness in relation to sick building syndrome and home environment in Chongqing, China.

    Directory of Open Access Journals (Sweden)

    Juan Wang

    Full Text Available The prevalence of perceptions of odors and sensations of air humidity and sick building syndrome symptoms in domestic environments were studied using responses to a questionnaire on the home environment. Parents of 4530 1-8 year old children from randomly selected kindergartens in Chongqing, China participated. Stuffy odor, unpleasant odor, pungent odor, mold odor, tobacco smoke odor, humid air and dry air in the last three month (weekly or sometimes was reported by 31.4%, 26.5%, 16.1%, 10.6%, 33.0%, 32.1% and 37.2% of the parents, respectively. The prevalence of parents' SBS symptoms (weekly or sometimes were: 78.7% for general symptoms, 74.3% for mucosal symptoms and 47.5% for skin symptoms. Multi-nominal regression analyses for associations between odors/sensations of air humidity and SBS symptoms showed that the odds ratio for "weekly" SBS symptoms were consistently higher than for "sometimes" SBS symptoms. Living near a main road or highway, redecoration, and new furniture were risk factors for perceptions of odors and sensations of humid air and dry air. Dampness related problems (mold spots, damp stains, water damage and condensation were all risk factors for perceptions of odors and sensations of humid air and dry air, as was the presence of cockroaches, rats, and mosquitoes/flies, use of mosquito-repellent incense and incense. Protective factors included cleaning the child's bedroom every day and frequently exposing bedding to sunshine. In conclusion, adults' perceptions of odors and sensations of humid air and dry air are related to factors of the home environment and SBS symptoms are related to odor perceptions.

  3. A physically based analytical spatial air temperature and humidity model

    Science.gov (United States)

    Yang, Yang; Endreny, Theodore A.; Nowak, David J.

    2013-09-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat storage based on semiempirical functions and generates spatially distributed estimates based on inputs of topography, land cover, and the weather data measured at a reference site. The model assumes that for all grids under the same mesoscale climate, grid air temperature and humidity are modified by local variation in absorbed solar radiation and the partitioning of sensible and latent heat. The model uses a reference grid site for time series meteorological data and the air temperature and humidity of any other grid can be obtained by solving the heat flux network equations. PASATH was coupled with the USDA iTree-Hydro water balance model to obtain evapotranspiration terms and run from 20 to 29 August 2010 at a 360 m by 360 m grid scale and hourly time step across a 285 km2 watershed including the urban area of Syracuse, NY. PASATH predictions were tested at nine urban weather stations representing variability in urban topography and land cover. The PASATH model predictive efficiency R2 ranged from 0.81 to 0.99 for air temperature and 0.77 to 0.97 for dew point temperature. PASATH is expected to have broad applications on environmental and ecological models.

  4. Exploring the effects of symmetrical and asymmetrical relative humidity on the performance of H{sub 2}/air PEM fuel cell at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Mahmoud M.; Okajima, Takeoshi; Kitamura, Fusao; Ohsaka, Takeo [Department of Electronic Chemistry, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Hayase, Masahiko [Development Department, NF Co., 6-3-20 Tsunashima-higashi, Kohoku-ku, Yokohama 223-8508 (Japan)

    2007-02-10

    This article is dedicated to study the interlinked effects of symmetric relative humidity (RH), and asymmetric RH on the performance of H{sub 2}/air PEM fuel cell at different temperatures. The symmetric and asymmetric RH were achieved by setting the cathode relative humidity (RHC) and anode relative humidity (RHA) as equal and unequal values, respectively. The cell performance was evaluated by collecting polarization curves of the cell at different RH, RHC and RHA and at different cell temperatures (T{sub cell}). The polarization curves along with the measured internal cell resistance (membrane resistance) were discussed in the light of the present fuel cell theory. The results showed that symmetric relative humidity has different impacts depending on the cell temperature. While at RH of 35% the cell can show considerable performance at T{sub cell} = 70 C, it is not so at T{sub cell} = 90 C. At T{sub cell} = 70 C, the cell potential increases with RH at lower and medium current densities but decreases with RH at higher currents. This was attributed to the different controlling processes at higher and lower current densities. This trend at 70 C is completely destroyed at 90 C. Operating our PEM fuel cell at dry H{sub 2} gas conditions (RHA = 0%) is not detrimental as operating the cell at dry Air (O{sub 2}) conditions (RHC = 0%). At RHA = 0% and humidified air, water transport by back diffusion from the cathode to the anode at the employed experimental conditions can support reasonable rehydration of the membrane and catalysts. At RHA = 0, a possible minimum RHC for considerable cell operation is temperature dependent. At RHC = 0 conditions, the cell can operate only at RHA = 100% with a loss that depends on T{sub cell}. It was found that the internal cell resistance depends on RH, RHA, RHC and T{sub cell} and it is consistent with the observed cell performance. (author)

  5. The influence of air humidity on an unsealed ionization chamber in a linear accelerator

    International Nuclear Information System (INIS)

    Blad, B.; Nilsson, P.; Knoeoes, T.

    1996-01-01

    The safe and accurate delivery of the prescribed absorbed dose is the central function of the dose monitoring and beam stabilization system in a medical linear accelerator. The absorbed dose delivered to the patient during radiotherapy is often monitored by a transmission ionization chamber. Therefore it is of utmost importance that the chamber behaves correctly. We have noticed that the sensitivity of an unsealed chamber in a Philips SL linear accelerator changes significantly, especially during and after the summer season. The reason for this is probably a corrosion effect of the conductive plates in the chamber due to the increased relative humidity during hot periods. We have found that the responses of the different ion chamber plates change with variations in air humidity and that they do not return to their original values when the air humidity is returned to ambient conditions. (author)

  6. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    Science.gov (United States)

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  7. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-01-01

    Full Text Available This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  8. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    International Nuclear Information System (INIS)

    Hongbin Zhao, H.; Yue, P.; Cao, L.

    2009-01-01

    A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT), and solar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  9. Estimating surface solar radiation from upper-air humidity

    Energy Technology Data Exchange (ETDEWEB)

    Kun Yang [Telecommunications Advancement Organization of Japan, Tokyo (Japan); Koike, Toshio [University of Tokyo (Japan). Dept. of Civil Engineering

    2002-07-01

    A numerical model is developed to estimate global solar irradiance from upper-air humidity. In this model, solar radiation under clear skies is calculated through a simple model with radiation-damping processes under consideration. A sky clearness indicator is parameterized from relative humidity profiles within three atmospheric sublayers, and the indicator is used to connect global solar radiation under clear skies and that under cloudy skies. Model inter-comparisons at 18 sites in Japan suggest (1) global solar radiation strongly depends on the sky clearness indicator, (2) the new model generally gives better estimation to hourly-mean solar irradiance than the other three methods used in numerical weather predictions, and (3) the new model may be applied to estimate long-term solar radiation. In addition, a study at one site in the Tibetan Plateau shows vigorous convective activities in the region may cause some uncertainties to radiation estimations due to the small-scale and short life of convective systems. (author)

  10. Diffusion coefficients for unattached decay products of thoron - dependence on ventilation and relative humidity

    International Nuclear Information System (INIS)

    Kotrappa, P.; Bhanti, D.P.; Raghunath, B.

    1976-01-01

    The results of a study of the diffusivity of unattached decay products of thoron with respect to air changes using a recently developed diffusion sampler are reported. The dependence of diffusivity of radon/thoron decay products on relative humidity has also been investigated by measurement of diffusion coefficients in an atmosphere where relative humidities varied from 5 to 90%. Results are shown tabulated. (U.K.)

  11. Evaporative Cooler Use Influences Temporal Indoor Relative Humidity but Not Dust Mite Allergen Levels in Homes in a Semi-Arid Climate.

    Science.gov (United States)

    Johnston, James D; Tuttle, Steven C; Nelson, Morgan C; Bradshaw, Rebecca K; Hoybjerg, Taylor G; Johnson, Julene B; Kruman, Bryce A; Orton, Taylor S; Cook, Ryan B; Eggett, Dennis L; Weber, K Scott

    2016-01-01

    Concerns about energy consumption and climate change make residential evaporative coolers a popular alternative to central air conditioning in arid and semi-arid climates. However, evaporative coolers have been shown to significantly increase indoor relative humidity and dust mite allergen levels in some studies, while showing no association in other studies. Improved measurement of temporal fluctuations in indoor relative humidity may help identify factors that promote mite growth in homes in dry climates. Dust samples and continuous indoor relative humidity measurements were collected from homes with central air conditioning and homes with evaporative coolers in Utah. Samples were collected over two seasons, winter/spring (Jan-Apr) and summer (July-Sept), 2014. Dust samples were analyzed for Der p 1 and Der f 1 using a two-site monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) analysis. Housing characteristics including age of home, occupant density, and age of mattresses, furniture, and carpeting were also measured. Positive Der p 1 or Der f 1 samples were found in 25.0% of the homes and there was no difference in mean allergen levels by type of air conditioning. Indoor relative humidity was significantly higher in homes with evaporative coolers compared to those with central air conditioning during the summer. Homes with evaporative coolers also spent significantly more time during summer above 55.0% and 65.0% relative humidity compared to central air homes, but not above 75.0%. Findings from this study suggest that increased humidity from evaporative coolers may not be sufficient to exceed the critical equilibrium humidity or maintain humidity excursions for sufficient duration in relatively larger single-family homes in semi-arid climates to support mite growth and reproduction.

  12. In-situ Air Temperature and Relative Humidity in Greenbelt, MD, 2013-2015

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set describes the temperature and relative humidity at 12 locations around Goddard Space Flight Center in Greenbelt MD at 15 minute intervals between...

  13. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    Directory of Open Access Journals (Sweden)

    Hongbin Zhao

    2009-01-01

    Full Text Available A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT, and sollar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  14. Influence of sample temperature and environmental humidity on measurements of benzene in ambient air by transportable GC-PID

    Directory of Open Access Journals (Sweden)

    C. Romero-Trigueros

    2017-10-01

    Full Text Available Calibration of in situ analysers of air pollutants is usually done with dry standards. In this paper, the influence of sample temperature and environmental humidity on benzene measurements by gas chromatography coupled with a photoionisation detector (GC-PID is studied. Two reference gas mixtures (40 and 5 µg m−3 nominal concentration benzene in air were subjected to two temperature cycles (20/5/20 °C and 20/35/20 °C and measured with two identical GC-PIDs. The change in sample temperature did not produce any significant change in readings. Regarding ambient humidity, the chromatographs were calibrated for benzene with dry gases and subjected to measure reference standards with humidity (20 and 80 % at 20 °C. When measuring a concentration of 0.5 µg m−3 benzene in air, the levels of humidity tested did not produce any significant interference in measurements taken with any of the analysers. However, when measuring a concentration of 40 µg m−3, biases in measurements of 18 and 21 % for each respective analyser were obtained when the relative humidity of the sample was 80 % at 20 °C. Further tests were carried out to study the nature of this interference. Results show that humidity interference depends on both the amount fractions of water vapour and benzene. If benzene concentrations in an area are close to its annual limit value (5 µg m−3, biases of 2.2 % can be expected when the absolute humidity is 8.6 g cm−3 – corresponding to a relative humidity of 50 % at 20 °C. This can be accounted for in the uncertainty budget of measurements with no need for corrections. If benzene concentrations are above the annual limit value, biases become higher. Thus, in these cases, actions should be taken to reduce the humidity interference, as an underestimation of benzene concentrations may cause a mismanagement of air quality in these situations.

  15. Modeling of humidity-related reliability in enclosures with electronics

    DEFF Research Database (Denmark)

    Hygum, Morten Arnfeldt; Popok, Vladimir

    2015-01-01

    Reliability of electronics that operate outdoor is strongly affected by environmental factors such as temperature and humidity. Fluctuations of these parameters can lead to water condensation inside enclosures. Therefore, modelling of humidity distribution in a container with air and freely exposed...

  16. Quantitative Ethylene Measurements with MOx Chemiresistive Sensors at Different Relative Air Humidities

    Directory of Open Access Journals (Sweden)

    Matic Krivec

    2015-11-01

    Full Text Available The sensitivity of two commercial metal oxide (MOx sensors to ethylene is tested at different relative humidities. One sensor (MiCS-5914 is based on tungsten oxide, the other (MQ-3 on tin oxide. Both sensors were found to be sensitive to ethylene concentrations down to 10 ppm. Both sensors have significant response times; however, the tungsten sensor is the faster one. Sensor models are developed that predict the concentration of ethylene given the sensor output and the relative humidity. The MQ-3 sensor model achieves an accuracy of ±9.2 ppm and the MiCS-5914 sensor model predicts concentration to ±7.0 ppm. Both sensors are more accurate for concentrations below 50 ppm, achieving ±6.7 ppm (MQ-3 and 5.7 ppm (MiCS-5914.

  17. Evaporative Cooler Use Influences Temporal Indoor Relative Humidity but Not Dust Mite Allergen Levels in Homes in a Semi-Arid Climate.

    Directory of Open Access Journals (Sweden)

    James D Johnston

    Full Text Available Concerns about energy consumption and climate change make residential evaporative coolers a popular alternative to central air conditioning in arid and semi-arid climates. However, evaporative coolers have been shown to significantly increase indoor relative humidity and dust mite allergen levels in some studies, while showing no association in other studies. Improved measurement of temporal fluctuations in indoor relative humidity may help identify factors that promote mite growth in homes in dry climates. Dust samples and continuous indoor relative humidity measurements were collected from homes with central air conditioning and homes with evaporative coolers in Utah. Samples were collected over two seasons, winter/spring (Jan-Apr and summer (July-Sept, 2014. Dust samples were analyzed for Der p 1 and Der f 1 using a two-site monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA analysis. Housing characteristics including age of home, occupant density, and age of mattresses, furniture, and carpeting were also measured. Positive Der p 1 or Der f 1 samples were found in 25.0% of the homes and there was no difference in mean allergen levels by type of air conditioning. Indoor relative humidity was significantly higher in homes with evaporative coolers compared to those with central air conditioning during the summer. Homes with evaporative coolers also spent significantly more time during summer above 55.0% and 65.0% relative humidity compared to central air homes, but not above 75.0%. Findings from this study suggest that increased humidity from evaporative coolers may not be sufficient to exceed the critical equilibrium humidity or maintain humidity excursions for sufficient duration in relatively larger single-family homes in semi-arid climates to support mite growth and reproduction.

  18. Elevated air movement enhances stomatal sensitivity to abscisic acid in leaves developed at high relative air humidity

    Directory of Open Access Journals (Sweden)

    Dália R.A. Carvalho

    2015-05-01

    Full Text Available High relative air humidity (RH ≥ 85% during growth leads to stomata malfunctioning, resulting in water stress when plants are transferred to conditions of high evaporative demand. In this study, we hypothesized that an elevated air movement (MOV 24 h per day, during the whole period of leaf development would increase abscisic acid concentration ([ABA] enhancing stomatal functioning. Pot rose ‘Toril’ was grown at moderate (61% or high (92% RH combined with a negligible MOV or with a continuous MOV of 0.92 m s-1. High MOV reduced stomatal pore length and aperture in plants developed at high RH. Moreover, stomatal function improved when high MOV-treated plants were subjected to leaflet desiccation and ABA feeding. Endogenous concentration of ABA and its metabolites in the leaves was reduced by 35% in high RH, but contrary to our hypothesis this concentration was not significantly affected by high MOV. Interestingly, in detached leaflets grown at high RH, high MOV increased stomatal sensitivity to ABA since the amount of exogenous ABA required to decrease the transpiration rate was significantly reduced. This is the first study to show that high MOV increases stomatal functionality in leaves developed at high RH by reducing the stomatal pore length and aperture and enhancing stomatal sensitivity to ABA rather than increasing leaf [ABA].

  19. Improvement of lithium chloride dew-point hygrometer for direct reading and controlling of relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.Z.; Chu, Y.

    1986-01-01

    The lithium chloride dew-point hygrometer has many advantages over other types of hygrometers. However, it only reads and controls the dew-point temperature of air instead of the relative humidity, which is more important in industry, agriculture, food storage, and hygiene. This paper describes a new hygrometer which is based on the same principle as the lithium chloride dew-point hygrometer, but it can read and control the relative humidity directly. The instrument is quick in response and the ranges of temperature and relative humidity are quite large. Its accuracy is normally within 3% RH and its precision is within 2% RH.

  20. Mars Science Laboratory (MSL) - First Results of Relative Humidity Observations

    Science.gov (United States)

    Genzer, Maria; Harri, Ari-Matti; Kemppinen, Osku; Gómez-Elvira, Javier; Renno, Nilton; Savijärvi, Hannu; Schmidt, Walter; Polkko, Jouni; Rodríquez-Manfredi, Jose Antonio; de la Torre Juárez, Manuel; Mischna, Michael; Martín-Torres, Javier; Haukka, Harri; Paz Zorzano-Mier, Maria; Rafkin, Scott; Paton, Mark; MSL Science Team

    2013-04-01

    The Mars Science laboratory (MSL) called Curiosity made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity, and UV measurements. The REMS instrument suite is described at length in [1]. We concentrate on describing the first results from the REMS relative humidity observations and comparison of the measurements with modeling results. The REMS humidity device is provided by the Finnish Meteorological Institute. It is based on polymeric capacitive humidity sensors developed by Vaisala Inc. The humidity device makes use of one transducer electronics section placed in the vicinity of the three (3) humidity sensor heads. The humidity device is mounted on the REMS boom 2 providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The absolute accuracy of the humidity device is temperature dependent, and is of the order of 2% at the temperature range of -30 to -10 °C, and of the order of 10% at the temperature range of -80 to -60 °C. This enables the investigations of atmospheric humidity variations of both diurnal and seasonal scale. The humidity device measurements will have a lag, when a step-wise change in humidity is taking place. This lag effect is increasing with decreasing temperature, and it is of the order of a few hours at the temperature of -75 °C. To compensate for the lag effect we used an algorithm developed by Mäkinen [2]. The humidity observations were validated after tedious efforts. This was needed to compensate for the artifacts of the transducer electronics. The compensation process includes an assumption that the relative humidity at Mars in the temperature range of 0 to -30 °C is about zero. The

  1. Kinetic model of vibrational relaxation in a humid-air pulsed corona discharge

    International Nuclear Information System (INIS)

    Komuro, Atsushi; Ono, Ryo; Oda, Tetsuji

    2010-01-01

    The effect of humidity on the vibrational relaxation of O 2 (v) and N 2 (v) in a humid-air pulsed corona discharge is studied using a kinetic model. We previously showed that humidity markedly increases the vibration-to-translation (V-T) rate of molecules in a humid-air pulsed corona discharge by measuring O 2 (v) density (Ono et al 2010 Plasma Sources Sci. Technol. 19 015009). In this paper, we numerically calculate the vibrational kinetics of O 2 , N 2 and H 2 O to study the reason behind the acceleration of V-T in the presence of humidity. The calculation closely reproduces the measured acceleration of V-T due to humidity, and shows that the increase in the V-T rate is caused by the fast vibration-to-vibration (V-V) processes of O 2 -H 2 O and N 2 -H 2 O and the subsequent rapid V-T process of H 2 O-H 2 O. In addition, it is shown that O atom density is also important in the vibrational kinetics owing to the rapid V-T process of O 2 -O.

  2. Air humidity as key determinant of morphogenesis and productivity of the rare temperate woodland fern Polystichum braunii.

    Science.gov (United States)

    Schwerbrock, R; Leuschner, C

    2016-07-01

    (1) Most ferns are restricted to moist and shady habitats, but it is not known whether soil moisture or atmospheric water status are decisive limiting factors, or if both are equally important. (2) Using the rare temperate woodland fern Polystichum braunii, we conducted a three-factorial climate chamber experiment (soil moisture (SM) × air humidity (RH) × air temperature (T)) to test the hypotheses that: (i) atmospheric water status (RH) exerts a similarly large influence on the fern's biology as soil moisture, and (ii) both a reduction in RH and an increase in air temperature reduce vigour and growth. (3) Nine of 11 morphological, physiological and growth-related traits were significantly influenced by an increase in RH from 65% to 95%, leading to higher leaf conductance, increased above- and belowground productivity, higher fertility, more epidermal trichomes and fewer leaf deformities under high air humidity. In contrast, soil moisture variation (from 66% to 70% in the moist to ca. 42% in the dry treatment) influenced only one trait (specific leaf area), and temperature variation (15 °C versus 19 °C during daytime) only three traits (leaf conductance, root/shoot ratio, specific leaf area); RH was the only factor affecting productivity. (4) This study is the first experimental proof for a soil moisture-independent air humidity effect on the growth of terrestrial woodland ferns. P. braunii appears to be an air humidity hygrophyte that, whithin the range of realistic environmental conditions set in this study, suffers more from a reduction in RH than in soil moisture. A climate warming-related increase in summer temperatures, however, seems not to directly threaten this endangered species. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. The impact of humidity on evaporative cooling in small desert birds exposed to high air temperatures.

    Science.gov (United States)

    Gerson, Alexander R; Smith, Eric Krabbe; Smit, Ben; McKechnie, Andrew E; Wolf, Blair O

    2014-01-01

    Environmental temperatures that exceed body temperature (Tb) force endothermic animals to rely solely on evaporative cooling to dissipate heat. However, evaporative heat dissipation can be drastically reduced by environmental humidity, imposing a thermoregulatory challenge. The goal of this study was to investigate the effects of humidity on the thermoregulation of desert birds and to compare the sensitivity of cutaneous and respiratory evaporation to reduced vapor density gradients. Rates of evaporative water loss, metabolic rate, and Tb were measured in birds exposed to humidities ranging from ∼2 to 30 g H2O m(-3) (0%-100% relative humidity at 30°C) at air temperatures between 44° and 56°C. In sociable weavers, a species that dissipates heat primarily through panting, rates of evaporative water loss were inhibited by as much as 36% by high humidity at 48°C, and these birds showed a high degree of hyperthermia. At lower temperatures (40°-44°C), evaporative water loss was largely unaffected by humidity in this species. In Namaqua doves, which primarily use cutaneous evaporation, increasing humidity reduced rates of evaporative water loss, but overall rates of water loss were lower than those observed in sociable weavers. Our data suggest that cutaneous evaporation is more efficient than panting, requiring less water to maintain Tb at a given temperature, but panting appears less sensitive to humidity over the air temperature range investigated here.

  4. Comments on 'The effects of air humidity on ionisation chamber response'; and reply

    International Nuclear Information System (INIS)

    Ross, C.K.; Rogers, D.W.O.; Meger, C.M.; DeLuca, P.M. Jr.; Pearson, D.W.; Attix, F.H.; Venci, R.

    1988-01-01

    A criticism of recent work on the effect of air humidity on ionization chamber response in 60 Co beams is given. A supplementary comment by the authors admits to an error in the calculation of the linear stopping power for humid air. Other differences between the recent work and previous studies are argued to be reasonably consistent within the very difficult experimental measurements involved. (U.K.)

  5. Study on heat and mass transfer characteristics of humid air-flow in a fin bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hwi [Air-Conditioner Research Laboratory, LG Electronics, Seoul 153-082 (Korea); Koyama, Shigeru; Kuwahara, Ken [Department of Energy and Environmental Engineering, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Kwon, Jeong-Tae [Department of Mechanical Engineering, Hoseo University, Asan, Chungnam 336-795 (Korea); Park, Byung-Duck [School of Mechanical and Automotive Engineering, Kyungpook National University, Sangju, Gyeongbuk 742-711 (Korea)

    2010-11-15

    This paper deals with the heat and mass transfer characteristics of humid air-flow under frosting conditions. A slit fin bundle was used for the simulation of fins of a heat exchanger. The effects of the cooling block temperature, air humidity and air velocity on the frosting characteristics were experimentally investigated. The frosted mass was affected considerably by the cooling block temperature and air humidity. However, the effect of air velocity on it was not so large. The pressure drop was affected remarkably by all experimental parameters in this study. Local heat flux distribution and frost thickness distribution on each fin were predicted from the measured fin temperatures and the mass and energy conservation equations on the frost surface and inside the frost layer. (author)

  6. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    KAUST Repository

    Ahn, Yongtae; Zhang, Fang; Logan, Bruce E.

    2014-01-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry

  7. A novel capacity controller for a three-evaporator air conditioning (TEAC) system for improved indoor humidity control

    International Nuclear Information System (INIS)

    Yan, Huaxia; Deng, Shiming; Chan, Ming-yin

    2016-01-01

    Highlights: • A novel capacity controller for TEAC systems for improved indoor humidity control is developed. • The novel controller was developed by integrating two previous control algorithms. • Experimental controllability tests were carried out. • Improved control over indoor humidity levels and higher energy efficiency can be achieved. - Abstract: Using a multi-evaporator air conditioning (MEAC) system to correctly control indoor air temperatures only in a multi-room application is already a challenging and difficult task, let alone the control of both indoor air temperature and humidity. This is because in an MEAC system, a number of indoor units are connected to a common condensing unit. Hence, the interferences among operation parameters of different indoor units would make the desired control of an MEAC system hard to realize. Limited capacity control algorithms for MEAC systems have been developed, with most of them focusing only on the control of indoor air temperature, and no previous studies involving control of indoor air humidity using MEAC systems can be identified. In this paper, the development of a novel capacity controller for a three-evaporator air conditioning (TEAC) system for improved indoor air humidity control is reported. The novel controller was developed by integrating two previous control algorithms for a dual-evaporator air conditioning system for temperature control and for a single-evaporator air conditioning system for improved indoor humidity control. Experimental controllability tests were carried out and the controllability test results showed that, with the novel controller, improved control over indoor humidity levels and better energy efficiency for a TEAC system could be obtained as compared to the traditional On–Off controllers extensively used by MEAC systems.

  8. Efficiency of producing anion and relative humidity of the indigenous woody plants in Jeju islands

    Science.gov (United States)

    Son, S.-G.; Kim, K.-J.; Kim, H.-J.; Kim, C.-M.; Byun, K.-O.

    2009-04-01

    This study is to evaluate the ability of interior plants to produce anion and relative humidity that can purify polluted indoor air. Four indigenous woody plants in Jeju islands such as Sarcandra glaber (Thunb.) Nakai, Illicium anisatum L, Cleyera japonica Thunb. and Ilex rotunda Thunb. were used. Sansevieria trifasciata cv. Laurentii was also used as a comparative plant. The amount of anion and increment of relative humidity produced by five species of indoor plants was assessed by anion measurement (ITC-201A)in a sealed acryl chamber (118Ã-118Ã-119.5cm). The highest amount of anion was 515 ea/cm3produced by I. rotunda. The amounts of anion were 293 ea/cm3, 273 ea/cm3, and 211 ea/cm3 in S. glaber, I. anisatum and C. japonica, respecively while it was 220 ea/cm3 in S. trifasciata. The increment of relative humidity was highest in I. anisatum as 27.4% while it was lowest in S. trifasciata as 14.0%. This result suggested that all four indigenous plants tested were more effective to purify the indoor polluted air than S. trifasciata. Key words: interior plant, S. glaber, I. anisatum, C. japonica, I. rotunda, indoor polluted air

  9. PSYCRODATA: a software which calculates the air humidity characteristics and relate its with the variations of the gamma environmental bottom

    International Nuclear Information System (INIS)

    Alonso A, D.; Dominguez L, O.; Ramos V, O.; Caveda R, C.A.; Capote F, E.; Dominguez G, A.; Valdes S, E.; Rodriguez V, E.

    2006-01-01

    The computer tool 'Psycrodata', able to calculate the values of those characteristics of the humidity of the air starting from the measurements carried out of humidity and temperature in the post of occident of the National Net of Environmental Radiological Surveillance was obtained. Among the facilities that 'Psycrodata' toasts it is the keeping the obtained information in a database facilitating the making of reports. For another part the possibility of selection of different approaches for the calculation and the introduction of the psicrometric coefficient to use, its make that each station can have the suitable psicrometric chart keeping in mind the instrumentation and the characteristics of the area of location of the same one. Also, can have facilities to import text files for later on to be plotted, it allowed to correlate the absorbed dose rate in air due to the environmental gamma radiation, besides of the temperature and the humidity, with the tension of the water steam, the temperature of the dew point and the saturation deficit. (Author)

  10. Is Obsidian Hydration Dating Affected by Relative Humidity?

    Science.gov (United States)

    Friedman, I.; Trembour, F.W.; Smith, G.I.; Smith, F.L.

    1994-01-01

    Experiments carried out under temperatures and relative humidities that approximate ambient conditions show that the rate of hydration of obsidian is a function of the relative humidity, as well as of previously established variables of temperature and obsidian chemical composition. Measurements of the relative humidity of soil at 25 sites and at depths of between 0.01 and 2 m below ground show that in most soil environments, at depths below about 0.25 m, the relative humidity is constant at 100%. We have found that the thickness of the hydrated layer developed on obsidian outcrops exposed to the sun and to relative humidities of 30-90% is similar to that formed on other portions of the outcrop that were shielded from the sun and exposed to a relative humidity of approximately 100%. Surface samples of obsidian exposed to solar heating should hydrate more rapidly than samples buried in the ground. However, the effect of the lower mean relative humidity experiences by surface samples tends to compensate for the elevated temperature, which may explain why obsidian hydration ages of surface samples usually approximate those derived from buried samples.

  11. Integrated CMOS dew point sensors for relative humidity measurement

    Science.gov (United States)

    Savalli, Nicolo; Baglio, Salvatore; Castorina, Salvatore; Sacco, Vincenzo; Tringali, Cristina

    2004-07-01

    This work deals with the development of integrated relative humidity dew point sensors realized by adopting standard CMOS technology for applications in various fields. The proposed system is composed by a suspended plate that is cooled by exploiting integrated Peltier cells. The cold junctions of the cells have been spread over the plate surface to improve the homogeneity of the temperature distribution over its surface, where cooling will cause the water condensation. The temperature at which water drops occur, named dew point temperature, is a function of the air humidity. Measurement of such dew point temperature and the ambient temperature allows to know the relative humidity. The detection of water drops is achieved by adopting a capacitive sensing strategy realized by interdigited fixed combs, composed by the upper layer of the adopted process. Such a capacitive sensor, together with its conditioning circuit, drives a trigger that stops the cooling of the plate and enables the reading of the dew point temperature. Temperature measurements are achieved by means of suitably integrated thermocouples. The analytical model of the proposed system has been developed and has been used to design a prototype device and to estimate its performances. In such a prototype, the thermoelectric cooler is composed by 56 Peltier cells, made by metal 1/poly 1 junctions. The plate has a square shape with 200 μm side, and it is realized by exploiting the oxide layers. Starting from the ambient temperature a temperature variation of ΔT = 15 K can be reached in 10 ms thus allowing to measure a relative humidity greater than 40%.

  12. Relative humidity measurements with thermocouple psychrometer and capacitance sensors

    International Nuclear Information System (INIS)

    Mao, Naihsien.

    1991-01-01

    The relative humidity is one of the important hydrological parameters affecting waste package performance. Water potential of a system is defined as the amount of work required to reversibly and isothermally move an infinitesimal quantity of water from a pool of pure water to that system at the same elevation. The thermocouple psychrometer, which acts as a wet-dry bulb instrument based on the Peltier effect, is used to measure water potential. The thermocouple psychrometer works only for relative humidity greater than 94 percent. Other sensors must be used for drier conditions. Hence, the author also uses a Vaisala Humicap, which measures the capacitance change due to relative humidity change. The operation range of the Humicap (Model HMP 135Y) is from 0 to 100 percent relative humidity and up to 160C (320F) in temperature. A psychrometer has three thermocouple junctions. Two copper-constantan junctions serve as reference temperature junctions and the constantan-chromel junction is the sensing junction. Current is passed through the thermocouple causing cooling of the sensing junction by the Peltier effect. When the temperature of the junction is below the dew point, water will condense upon the junction from the air. The Peltier current is discontinued and the thermocouple output is recorded as the temperature of the thermocouple returns to ambient. The temperature changes rapidly toward the ambient temperature until it reaches the wet bulb depression temperature. At this point, evaporation of the water from the junction produces a cooling effect upon the junction that offsets the heat absorbed from the ambient surroundings. This continues until the water is depleted and the thermocouple temperature returns to the ambient temperature (Briscoe, 1984). The datalogger starts to take data roughly at the wet bulb depression temperature

  13. Degradation mechanism of CH3NH3PbI3 perovskite materials upon exposure to humid air

    International Nuclear Information System (INIS)

    Shirayama, Masaki; Kato, Masato; Fujiseki, Takemasa; Hara, Shota; Kadowaki, Hideyuki; Murata, Daisuke; Fujiwara, Hiroyuki; Miyadera, Tetsuhiko; Sugita, Takeshi; Chikamatsu, Masayuki

    2016-01-01

    Low stability of organic-inorganic perovskite (CH 3 NH 3 PbI 3 ) solar cells in humid air environments is a serious drawback which could limit practical application of this material severely. In this study, from real-time spectroscopic ellipsometry characterization, the degradation mechanism of ultra-smooth CH 3 NH 3 PbI 3 layers prepared by a laser evaporation technique is studied. We present evidence that the CH 3 NH 3 PbI 3 degradation in humid air proceeds by two competing reactions of (i) the PbI 2 formation by the desorption of CH 3 NH 3 I species and (ii) the generation of a CH 3 NH 3 PbI 3 hydrate phase by H 2 O incorporation. In particular, rapid phase change occurs in the near-surface region and the CH 3 NH 3 PbI 3 layer thickness reduces rapidly in the initial 1 h air exposure even at a low relative humidity of 40%. After the prolonged air exposure, the CH 3 NH 3 PbI 3 layer is converted completely to hexagonal platelet PbI 2 /hydrate crystals that have a distinct atomic-scale multilayer structure with a period of 0.65 ± 0.05 nm. We find that conventional x-ray diffraction and optical characterization in the visible region, used commonly in earlier works, are quite insensitive to the surface phase change. Based on results obtained in this work, we discuss the degradation mechanism of CH 3 NH 3 PbI 3 in humid air.

  14. Experimental research on the indoor temperature and humidity fields in radiant ceiling air-conditioning system under natural ventilation

    Science.gov (United States)

    Huang, Tao; Xiang, Yutong; Wang, Yonghong

    2017-05-01

    In this paper, the indoor temperature and humidity fields of the air in a metal ceiling radiant panel air conditioning system with fresh air under natural ventilation were researched. The temperature and humidity distributions at different height and different position were compared. Through the computation analysis of partial pressure of water vapor, the self-recovery characteristics of humidity after the natural ventilation was discussed.

  15. Variations of relative humidity in relation to meningitis in Africa

    Science.gov (United States)

    Seefeldt, M. W.; Hopson, T. M.

    2011-12-01

    The meningitis belt is a region covering Sub-Saharan Africa from the Sahel of West Africa eastward to western Ethiopia. The region is prone to meningitis epidemics during the dry season extending from approximately January to May, depending on the region. Relative humidity has been found to be a critical environmental factor indicating the susceptibility of a region to meningitis epidemics. This study evaluates the variation of relative humidity across West Africa over 30 dry-seasons (1979 - 2009) using the NASA-MERRA dataset. The method of self-organizing maps is employed to characterize the changes in relative humidity patterns across the region within a given dry season as well as changes over the 30 years. A general pattern of changes in relative humidity is indicated as the rainbelt retreats to the south at the onset of the dry season and then returns to the region at the end of the dry season. Within each dry season there is a unique pattern. The climatological conditions of relative humidity at the onset of the dry season provide an indication of the moisture environment for the entire dry season. Year to year variation in the relative humidity patterns are found to be gradual. Future applications involve using the results from the SOM evaluation to be used for future decisions involving prevention of meningitis epidemics.

  16. Electron energy distribution functions and transport coefficients relevant for air plasmas in the troposphere: impact of humidity and gas temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo-Vazquez, F J [Instituto de Astrofisica de Andalucia (IAA), CSIC, PO Box 3004, 18080 Granada (Spain); Donko, Z [Research Institute for Solid State Physics and Optics, H-1525 Budapest, PO Box, 49 (Hungary)

    2009-08-15

    A Boltzmann and Monte Carlo analysis of the electron energy distribution function (EEDF) and transport coefficients for air plasmas is presented for the conditions of the Earth troposphere where some transient luminous events (TLEs) such as blue jets, blue starters and gigantic jets have been observed. According to recent model results (Minschwaner et al 2004 J. Climate 17 1272) supported by the halogen occultation experiment, the relative humidity of the atmospheric air between 0 and 15 km can change between 15% and 100% depending on the altitude investigated and the ground temperature. The latter results cover a region of latitudes between -25 deg. S and +25 deg. N, that is, the Earth tropical region where lightning and TLE activity is quite high. The calculations shown here suggest that the relative humidity has a clear impact on the behaviour of the EEDF and magnitude of the transport coefficients of air plasmas at ground (0 km) and room temperature conditions (293 K). At higher altitudes (11 and 15 km), the influence of the relative humidity is negligible when the values of the gas temperature are assumed to be the 'natural' ones corresponding to those altitudes, that is, {approx}215 K (at 11 km) and {approx}198 K (at 15 km). However, it is found that a small enhancement (of maximum 100 K) in the background gas temperature (that could be reasonably associated with the TLE activity) would lead to a remarkable impact of the relative humidity on the EEDF and transport coefficients of air plasmas under the conditions of blue jets, blue starters and gigantic jets at 11 and 15 km. The latter effects are visible for relatively low reduced electric fields (E/N {<=} 25 Td) that could be controlling the afterglow kinetics of the air plasmas generated by TLEs. However, for much higher fields such as, for instance, 400 Td (representative of the fields in the streamer coronas and lightning leaders), the impact of increasing the relative humidity and gas

  17. Electron energy distribution functions and transport coefficients relevant for air plasmas in the troposphere: impact of humidity and gas temperature

    International Nuclear Information System (INIS)

    Gordillo-Vazquez, F J; Donko, Z

    2009-01-01

    A Boltzmann and Monte Carlo analysis of the electron energy distribution function (EEDF) and transport coefficients for air plasmas is presented for the conditions of the Earth troposphere where some transient luminous events (TLEs) such as blue jets, blue starters and gigantic jets have been observed. According to recent model results (Minschwaner et al 2004 J. Climate 17 1272) supported by the halogen occultation experiment, the relative humidity of the atmospheric air between 0 and 15 km can change between 15% and 100% depending on the altitude investigated and the ground temperature. The latter results cover a region of latitudes between -25 deg. S and +25 deg. N, that is, the Earth tropical region where lightning and TLE activity is quite high. The calculations shown here suggest that the relative humidity has a clear impact on the behaviour of the EEDF and magnitude of the transport coefficients of air plasmas at ground (0 km) and room temperature conditions (293 K). At higher altitudes (11 and 15 km), the influence of the relative humidity is negligible when the values of the gas temperature are assumed to be the 'natural' ones corresponding to those altitudes, that is, ∼215 K (at 11 km) and ∼198 K (at 15 km). However, it is found that a small enhancement (of maximum 100 K) in the background gas temperature (that could be reasonably associated with the TLE activity) would lead to a remarkable impact of the relative humidity on the EEDF and transport coefficients of air plasmas under the conditions of blue jets, blue starters and gigantic jets at 11 and 15 km. The latter effects are visible for relatively low reduced electric fields (E/N ≤ 25 Td) that could be controlling the afterglow kinetics of the air plasmas generated by TLEs. However, for much higher fields such as, for instance, 400 Td (representative of the fields in the streamer coronas and lightning leaders), the impact of increasing the relative humidity and gas temperature is only slightly

  18. Particles and emissions from a diesel engine equipped with a humid air motor system

    Energy Technology Data Exchange (ETDEWEB)

    Nord, Kent; Zurita, Grover; Tingvall, Bror; Haupt, Dan [Luleaa Univ. of Technology (Sweden). Div. of Environmental Technology

    2002-02-01

    A system for reduction of NO{sub x}, humid air motor system (HAM), has been connected to an eleven liters diesel engine. Earlier studies have demonstrated the system's capacity to lower NO{sub x}-emissions from diesel engines. The present study is directed to investigate their influence of the system on the emissions of particles, aldehydes and noise while at the same time monitoring essential engine parameters, water consumption and verifying the NO{sub x} reducing ability. The system has been tested under the various conditions stated in 13-mode cycle ECE R-49. Additional tests have been necessary for sampling and measurements of particles and noise. The results show that HAM caused a large reduction of the NO{sub x} emissions while the engine performance was almost unaffected. Average reduction of NO{sub x} during the different modes of ECE R-49 was 51,1%. The reduction was directly related to the humidity of the inlet air and a further reduction can be anticipated with higher humidity. Samples have also been taken for acetaldehydes and formaldehyde. The results suggest a large reduction of aldehydes, in the range of 78 to 100%, when using HAM. Unfortunately it cannot be excluded that the results obtained are a result of a combination of high air humidity and the sampling technique used. The influence of the system on the emission of hydrocarbons was negligible while a moderate increase in the emission of carbon monoxide was noticed. No confident relationship between air humidity and the observed effects could be detected. Particle number concentrations and size distribution have also been measured. The measurements showed that the particle number concentrations was usually increased when HAM was coupled to the engine. The increase in particle number concentration, observed in five out of six running modes, varied between 46 and 148%. There was no trend indicating a shift in mean particle diameter when using HAM. Noise level and cylinder pressure have also

  19. Porous ZrO_2-TiO_2 ceramics for applications as sensing elements in the air humidity monitoring

    International Nuclear Information System (INIS)

    Oliveira, Rodrigo de Matos; Nono, Maria do Carmo de Andrade

    2011-01-01

    The environmental monitoring requires versatile, reliable and lower cost instruments. The chemical superficial absorption/adsorption capability of water molecules by several ceramic oxides makes them excellent candidates for this application. In this way, many efforts have been made for the development of porous ceramics, manufactured from mechanical mixture of ZrO_2 and TiO_2 powders, for application as air humidity sensing elements. The sintered ceramics were characterized as for crystalline phases (X-ray diffraction) and pores structure (scanning electron microscopy and mercury porosimetry). The relative humidity curves for the ceramics were obtained from measurements with RLC bridge in climatic chamber. The behavior of these curves were comparatively analyzed with the aid of pores sizes distribution curves, obtained through mercury porosimetry. The results evidenced that the air humidity ceramic sensing elements are very promising ones. (author)

  20. Does the increased air humidity affect soil respiration and carbon stocks?

    Science.gov (United States)

    Kukumägi, Mai; Celi, Luisella; Said-Pullicino, Daniel; Kupper, Priit; Sõber, Jaak; Lõhmus, Krista; Kutti, Sander; Ostonen, Ivika

    2013-04-01

    Climate manipulation experiments at ecosystem-scale enable us to simulate, investigate and predict changes in carbon balance of forest ecosystems. Considering the predicted increase in air humidity and precipitation for northern latitudes, this work aimed at investigating the effect of increased air humidity on soil respiration, distribution of soil organic matter (SOM) among pools having different turnover times, and microbial, fine root and rhizome biomass. The study was carried out in silver birch (Betula pendula Roth.) and hybrid aspen (Populus tremula L. × P. tremuloides Michx.) stands in a Free Air Humidity Manipulation (FAHM) experimental facility containing three humidified (H; on average 7% above current ambient levels since 2008) and three control (C) plots. Soil respiration rates were measured monthly during the growing season using a closed dynamic chamber method. Density fractionation was adopted to separate SOM into two light fractions (free and aggregate-occluded particulate organic matter, fPOM and oPOM respectively), and one heavy fraction (mineral-associated organic matter, MOM). The fine root and rhizome biomass and microbial data are presented for silver birch stands only. In 2011, after 4 growing seasons of humidity manipulation soil organic carbon contents were significantly higher in C plots than H plot (13.5 and 12.5 g C kg-1, respectively), while soil respiration tended to be higher in the latter. Microbial biomass and basal respiration were 13 and 14% higher in H plots than in the C plots, respectively. Twice more fine roots of trees were estimated in H plots, while the total fine root and rhizome biomass (tree + understory) was similar in C and H plots. Fine root turnover was higher for both silver birch and understory roots in H plots. Labile SOM light fractions (fPOM and oPOM) were significantly smaller in H plots with respect to C plots (silver birch and hybrid aspen stands together), whereas no differences were observed in the

  1. The effects of building-related factors on classroom relative humidity among North Carolina schools participating in the 'Free to Breathe, Free to Teach' study.

    Science.gov (United States)

    Angelon-Gaetz, K A; Richardson, D B; Lipton, D M; Marshall, S W; Lamb, B; LoFrese, T

    2015-12-01

    Both high and low indoor relative humidity (RH) directly impact Indoor Air Quality (IAQ), an important school health concern. Prior school studies reported a high prevalence of mold, roaches, and water damage; however, few examined associations between modifiable classroom factors and RH, a quantitative indicator of dampness. We recorded RH longitudinally in 134 North Carolina classrooms (n = 9066 classroom-days) to quantify the relationships between modifiable classroom factors and average daily RH below, within, or above levels recommended to improve school IAQ (30-50% or 30-60% RH). The odds of having high RH (>60%) were 5.8 [95% Confidence Interval (CI): 2.9, 11.3] times higher in classrooms with annual compared to quarterly heating, ventilating, and air-conditioning (HVAC) system maintenance and 2.5 (95% CI: 1.5, 4.2) times higher in classrooms with HVAC economizers compared to those without economizers. Classrooms with direct-expansion split systems compared to chilled water systems had 2.7 (95% CI: 1.7, 4.4) times higher odds of low RH (60%) of those without setbacks. This research suggests actionable decision points for school design and maintenance to prevent high or low classroom RH. This study combines longitudinal measurements of classroom relative humidity with school inspection data from several schools to describe the problem of relative humidity control in schools. Our findings on how maintenance and mechanical factors affect classroom humidity provide suggestions on building operations policies and heating, ventilating, and air-conditioning (HVAC) design considerations that may improve classroom relative humidity control. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Frost Growth and Densification on a Flat Surface in Laminar Flow with Variable Humidity

    Science.gov (United States)

    Kandula, M.

    2012-01-01

    Experiments are performed concerning frost growth and densification in laminar flow over a flat surface under conditions of constant and variable humidity. The flat plate test specimen is made of aluminum-6031, and has dimensions of 0.3 mx0.3 mx6.35 mm. Results for the first variable humidity case are obtained for a plate temperature of 255.4 K, air velocity of 1.77 m/s, air temperature of 295.1 K, and a relative humidity continuously ranging from 81 to 54%. The second variable humidity test case corresponds to plate temperature of 255.4 K, air velocity of 2.44 m/s, air temperature of 291.8 K, and a relative humidity ranging from 66 to 59%. Results for the constant humidity case are obtained for a plate temperature of 263.7 K, air velocity of 1.7 m/s, air temperature of 295 K, and a relative humidity of 71.6 %. Comparisons of the data with the author's frost model extended to accommodate variable humidity suggest satisfactory agreement between the theory and the data for both constant and variable humidity.

  3. A mathematical correlation between variations in solar radiation parameters. 2. Global radiation, air temperature and specific humidity

    International Nuclear Information System (INIS)

    Njau, E.C.

    1988-06-01

    We derive from first principles, an equation which expresses global radiation as a function of specific humidity and air temperature at screen height. The practical validity of this equation is tested by using humidity, air temperature and global radiation data from Tanzania. It is shown that global radiation values calculated on the basis of the derived equation agree with measured radiation values to within ± 8% as long as the prevalent (horizontal) winds are either calm or light. It is noted that the equation is equally valid at times of strong horizontal winds provided that the temperature and humidity measuring site is sufficiently shielded from the winds. This implies that meteorological stations that are (for some unavoidable reasons) unable to stock pyranometers can still procure reasonable estimates of local global radiation as long as they can, at least, stock the relatively cheaper barometers and wet- and dry-bulb psychrometers. (author). 12 refs, 1 fig., 4 tabs

  4. Long-term Effects of Relative Humidity on Properties of Microwave Hardened Moulding Sand with Sodium Silicate

    Directory of Open Access Journals (Sweden)

    Stachowicz M.

    2017-09-01

    Full Text Available Moulding sands containing sodium silicate (water-glass belong to the group of porous mixture with low resistance to increased humidity. Thanks to hydrophilic properties of hardened or even overheated binder, possible is application of effective methods of hydrous reclamation consisting in its secondary hydration. For the same reason (hydrophilia of the binder, moulds and foundry cores made of high-silica moulding sands with sodium silicate are susceptible to the action of components of atmospheric air, including the contained steam. This paper presents results of a research on the effect of (relative humidity on mechanical and technological properties of microwave-hardened moulding mixtures. Specimens of the moulding sand containing 1.5 wt% of sodium water-glass with module 2.5 were subjected, in a laboratory climatic chamber, to long-term action of steam contained in the chamber atmosphere. Concentration of water in atmospheric air was stabilized for 28 days (672 h according to the relative humidity parameter that was ca. 40%, 60% and 80% at constant temperature 20 °C. In three cycles of the examinations, the specimens were taken out from the chamber every 7 days (168 h and their mechanical and technological parameters were determined. It was found on the grounds of laboratory measurements that moulds and cores hardened with microwaves are susceptible to action of atmospheric air and presence of water (as steam intensifies action of the air components on glassy film of sodium silicate. Microwave-hardened moulding sands containing sodium silicate may be stored on a long-term basis in strictly determined atmospheric conditions only, at reduced humidity. In spite of a negative effect of steam contained in the air, the examined moulding mixtures maintain a part of their mechanical and technological properties, so the moulds and foundry cores stored in specified, controlled conditions could be still used in manufacture.

  5. Physiological and subjective responses to low relative humidity.

    Science.gov (United States)

    Sunwoo, Yujin; Chou, Chinmei; Takeshita, Junko; Murakami, Motoko; Tochihara, Yutaka

    2006-01-01

    In order to investigate the influence of low relative humidity, we measured saccharin clearance time (SCT), frequency of blinking, heart rate (HR), blood pressure, hydration state of skin, transepidermal water loss (TEWL), recovery sebum level and skin temperature as physiological responses. We asked subjects to judge thermal, dryness and comfort sensations as subjective responses using a rating scale. Sixteen non-smoking healthy male students were selected. The pre-room conditions were maintained at an air temperature (Ta) of 25 degrees C and a relative humidity (RH) of 50%. The test room conditions were adjusted to provide a Ta of 25 degrees C and RH levels of 10%, 30% and 50%.RH had no effect on the activity of the sebaceous gland and on cardiovascular reactions like blood pressure and HR. However, it was obvious that low RH affects SCT, the dryness of the ocular mucosa and the stratum corneum of the skin and causes a decrease in mean skin temperature. Under 30% RH, the eyes and skin become dry, and under 10% RH the nasal mucous membrane becomes dry as well as the eyes and skin, and the mean skin temperature decreases. These findings suggested that to avoid dryness of the eyes and skin, it is necessary to maintain an RH greater than 30%, and to avoid dryness of the nasal mucous membrane, it is necessary to maintain an RH greater than 10%. Subjects felt cold immediately after a change in RH while they had only a slight perception of dryness at the change of humidity.

  6. Effects of temperature and relative humidity on DNA methylation.

    Science.gov (United States)

    Bind, Marie-Abele; Zanobetti, Antonella; Gasparrini, Antonio; Peters, Annette; Coull, Brent; Baccarelli, Andrea; Tarantini, Letizia; Koutrakis, Petros; Vokonas, Pantel; Schwartz, Joel

    2014-07-01

    Previous studies have found relationships between DNA methylation and various environmental contaminant exposures. Associations with weather have not been examined. Because temperature and humidity are related to mortality even on non-extreme days, we hypothesized that temperature and relative humidity may affect methylation. We repeatedly measured methylation on long interspersed nuclear elements (LINE-1), Alu, and 9 candidate genes in blood samples from 777 elderly men participating in the Normative Aging Study (1999-2009). We assessed whether ambient temperature and relative humidity are related to methylation on LINE-1 and Alu, as well as on genes controlling coagulation, inflammation, cortisol, DNA repair, and metabolic pathway. We examined intermediate-term associations of temperature, relative humidity, and their interaction with methylation, using distributed lag models. Temperature or relative humidity levels were associated with methylation on tissue factor (F3), intercellular adhesion molecule 1 (ICAM-1), toll-like receptor 2 (TRL-2), carnitine O-acetyltransferase (CRAT), interferon gamma (IFN-γ), inducible nitric oxide synthase (iNOS), and glucocorticoid receptor, LINE-1, and Alu. For instance, a 5°C increase in 3-week average temperature in ICAM-1 methylation was associated with a 9% increase (95% confidence interval: 3% to 15%), whereas a 10% increase in 3-week average relative humidity was associated with a 5% decrease (-8% to -1%). The relative humidity association with ICAM-1 methylation was stronger on hot days than mild days. DNA methylation in blood cells may reflect biological effects of temperature and relative humidity. Temperature and relative humidity may also interact to produce stronger effects.

  7. Effect of humidity on thoron adsorption in activated charcoal bed

    International Nuclear Information System (INIS)

    Sudeep Kumara, K.; Karunakara, N.; Yashodhara, I.; Sapra, B.K.; Sahoo, B.K.; Gaware, J.J.; Kanse, S.D.; Mayya, Y.S.

    2014-01-01

    Activated charcoal is a well-known adsorber of 222 Rn and 220 Rn gases. This property can be effectively used for remediation of these gases in the workplaces of uranium and thorium processing facilities. However, the adsorption on charcoal is sensitive to variation in temperature and humidity. The successful designing and characterization of adsorption systems require an adequate understanding of these sensitivities. The study has been carried out towards this end, to delineate the effect of relative humidity on the efficacy of 220 Rn mitigations in a charcoal bed. Air carrying 220 Rn from a Pylon source was passed through a column filled with coconut shell-based granular activated charcoal. The relative humidity of the air was controlled, and the transmission characteristics were examined at relative humidity varying from 45% to 60%. The mitigation factor was found to decrease significantly with an increase of humidity in the air. (author)

  8. Energy efficient air inlet humidity control; Energiezuinige inblaasvochtregeling

    Energy Technology Data Exchange (ETDEWEB)

    Gielen, J.H. [C Point, DLV Plant, Horst (Netherlands)

    2005-03-15

    This project report describes the results of research conducted on the control of the inlet, humidification and dehumidification, based on the air inlet humidity rate. The project was carried out at a mushroom cultivation business in Heijen, the Netherlands [Dutch] Deze projectrapportage geeft de resultaten van het onderzoek naar het regelen van de luchtklep, bevochtiging en ontvochtiging, op basis van het inblaasvochtgehalte. Het project werd uitgevoerd op een champignonkwekerij in Heijen.

  9. Cyclic crack resistance of magnesium alloys in vacuum, humid an highly desiccated air

    International Nuclear Information System (INIS)

    Yarema, S.Ya.; Zinyuk, O.D.

    1986-01-01

    Investigation results on cyclic crack resistance of four structural magnesium alloys in vacuum, humid and highly desiccated air are presented. The regularities obtained are discussed at the background of the known data, using the data on crack closing and hydrogen concenration near its vertex. Diagrams of fatigue fracture of magnesium alloys MA2-1, MA15, MA8 and MA18, produced in vacuum, dry and humid air, on the whole obey the previously established regularities for aluminium alloys and steels. The diagrams of fatigue fracture plotted taking into account crack closing (v-ΔK eff ) for dry and humid air are quite similar. An increase in cyclic crack resistance of the materials in vacuum can not be explained by the change in the crack closing and is evidently conditioned by the absence of hydrogen absorption as the main factor accelerating the crack growth. Effect of vacuum on the threshold K th increases with the increase in σ 0.2 , which testifies to a strong effect of medium on the rate of fatigue crack growth in near the threshold region

  10. System analysis of membrane facilitated water generation from air humidity

    NARCIS (Netherlands)

    Bergmair, D.; Metz, S.J.; Lange, de H.C.; Steenhoven, van A.A.

    2014-01-01

    The use of water vapor selective membranes can reduce the energy requirement for extracting water out of humid air by more than 50%. We performed a system analysis of a proposed unit, that uses membranes to separate water vapor from other atmospheric gases. This concentrated vapor can then be

  11. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    Science.gov (United States)

    Blakenship, Clay; Zavodsky, Bradley; Blackwell, William

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. Forecasts are against ERA reanalyses.

  12. Differential effects of elevated air humidity on stomatal closing ability of Kalanchoë blossfeldiana between the C

    NARCIS (Netherlands)

    Fanourakis, Dimitrios; Hyldgaard, Benita; Gebraegziabher, Habtamu; Bouranis, Dimitris; Körner, Oliver; Nielsen, Kai Lønne; Ottosen, Carl-Otto

    2017-01-01

    High relative air humidity (RH ≥ 85%) impairs stomatal functionality, attenuating plant capacity to cope with abiotic stress. Previous studies were limited to C3 species, so the RH effect on stomatal physiology of CAM plants remains unexplored. We addressed the topic through

  13. Diffusion through Pig Gastric Mucin: Effect of Relative Humidity.

    Directory of Open Access Journals (Sweden)

    Anna Runnsjö

    Full Text Available Mucus covers the epithelium found in all intestinal tracts, where it serves as an important protecting barrier, and pharmaceutical drugs administrated by the oral, rectal, vaginal, ocular, or nasal route need to penetrate the mucus in order to reach their targets. Furthermore, the diffusion in mucus as well as the viscosity of mucus in the eyes, nose and throat can change depending on the relative humidity of the surrounding air. In this study we have investigated how diffusion through gels of mucin, the main protein in mucus, is affected by changes in ambient relative humidity (i.e. water activity. Already a small decrease in water activity was found to give rise to a significant decrease in penetration rate through the mucin gel of the antibacterial drug metronidazole. We also show that a decrease in water activity leads to decreased diffusion rate in the mucin gel for the fluorophore fluorescein. This study shows that it is possible to alter transport rates of molecules through mucus by changing the water activity in the gel. It furthermore illustrates the importance of considering effects of the water activity in the mucosa during development of potential pharmaceuticals.

  14. High resolution dynamical downscaling of air temperature and relative humidity: performance assessment of WRF for Portugal

    Science.gov (United States)

    Menezes, Isilda; Pereira, Mário; Moreira, Demerval; Carvalheiro, Luís; Bugalho, Lourdes; Corte-Real, João

    2017-04-01

    Air temperature and relative humidity are two of the atmospheric variables with higher impact on human and natural systems, contributing to define the stress/comfortable conditions, affecting the productivity and health of the individuals as well as diminishing the resilience to other environmental hazards. Atmospheric regional models, driven by large scale forecasts from global circulation models, are the best way to reproduce such environmental conditions in high space-time resolution. This study is focused on the performance assessment of the WRF mesoscale model to perform high resolution dynamical downscaling for Portugal with three two-way nested grids, at 60 km, 20 km and 5 km horizontal resolution. The simulations of WRF models were produced with different initial and boundary forcing conditions. The NCEP-FNL Operational Global Analysis data available on 1-degree by 1-degree grid every six hours and ERA-Interim reanalyses dataset were used to drive the models. Two alternative configurations of the WRF model, including planetary boundary, layer schemes, microphysics, land-surface models, radiation schemes, were used and tested within the 5 km spatial resolution domain. Simulations of air temperature and relative humidity were produced for January and July of 2016 and compared with the observed datasets provided by the Instituto Português do Mar e da Atmosfera (IPMA) for 83 weather stations. Different performance measures of bias, precision, and accuracy were used, namely normalized bias, standard deviation, mean absolute error, root mean square error, bias of root mean square error as well as correlation based measures (e.g., coefficient of determination) and goodness of fit measures (index of agreement). Main conclusions from the obtained results reveal: (i) great similarity between the spatial patterns of the simulated and observed fields; (ii) only small differences between simulations produced with ERA-Interim and NCEP-FNL, in spite of some differences

  15. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges

    Science.gov (United States)

    P. Sarrette, J.; Eichwald, O.; Marchal, F.; Ducasse, O.; Yousfi, M.

    2016-05-01

    The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air). The simulation involves the electro-dynamics, chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation. Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond. The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO. After 5 ms, the time corresponding to the occurrence of 50 successive discharge/post-discharge phases, a higher NO removal rate and a lower ozone production rate are found in humid air. This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.

  16. Effect of relative humidity and temperature control on in-cabin thermal comfort state: Thermodynamic and psychometric analyses

    International Nuclear Information System (INIS)

    Alahmer, A.; Omar, M.A.; Mayyas, A.; Dongri, Shan

    2011-01-01

    This manuscript discusses the effect of manipulating the Relative Humidity RH of in-cabin environment on the thermal comfort and human occupants' thermal sensation. The study uses thermodynamic and psychometric analyses, to incorporate the effect of changing RH along with the dry bulb temperature on human comfort. Specifically, the study computes the effect of changing the relative humidity on the amount of heat rejected from the passenger compartment and the effect of relative humidity on occupants comfort zone. A practical system implementation is also discussed in terms of an evaporative cooler design. The results show that changing the RH along with dry bulb temperature inside vehicular cabins can improve the air conditioning efficiency by reducing the heat removed while improving the Human comfort sensations as measured by the Predicted Mean Value PMV and the Predicted Percentage Dissatisfied PPD indices. - Highlights: → Investigates the effect of controlling the RH and dry bulb temperature on in-cabin thermal comfort and sensation. → Conducts the thermodynamic and psychometric analyses for changing the RH and temperature for in-cabin air conditioning. → Discusses a possible system implementation through an evaporative cooler design.

  17. Objective and Subjective Responses to Low Relative Humidity in an Office Intervention Study

    DEFF Research Database (Denmark)

    Lagercrantz, Love Per; Wyon, David; Meyer, H. W.

    2003-01-01

    and objective (clinical) measurements were applied. The following effects of increased humidity were significant, though small: the air was evaluated as less dry (though still on the dry side of neutral), eyes smarted less (by 10% of full scale) eye irritation decreased (by 11%), symptoms of dry throat, mouth......The impact of dry indoor air on comfort and health in winter was investigated in a crossover intervention study in two floors of an office building in northern Sweden. The indoor air humidity (normally 10-20% RH) was raised to 23-24% RH, one floor at a time, using steam humidifiers. Questionnaires...

  18. Humidity level In psychrometric processes

    International Nuclear Information System (INIS)

    Mojsovski, Filip

    2008-01-01

    When a thermal engineer needs to control, rather than merely moderate humidity, he must focus on the moisture level as a separate variable - not simply an addition of temperature control. Controlling humidity generally demands a correct psychrometric approach dedicated to that purpose [1].Analysis of the humidity level in psychrometric thermal processes leads to relevant data for theory and practice [2]. This paper presents: (1) the summer climatic curve for the Skopje region, (2) selected results of investigation on farm dryers made outside laboratories. The first purpose of such activity was to examine relations between weather conditions and drying conditions. The estimation of weather condition for the warmest season of the year was realized by a summer climatic curve. In the science of drying, basic drying conditions are temperature, relative humidity and velocity of air, thickness of dried product and dryer construction. The second purpose was to realize correct prediction of drying rates for various psychrometrics drying processes and local products. Test runs with the dryer were carried out over a period of 24 h, using fruits and vegetables as experimental material. Air flow rate through the dryer of 150 m3/h, overall drying rate of 0.04 kg/h and air temperature of 65 oC were reached. Three types of solar dryers, were exploited in the research.

  19. Experimental investigation on the off-design performance of a small-sized humid air turbine cycle

    International Nuclear Information System (INIS)

    Wei, Chenyu; Zang, Shusheng

    2013-01-01

    This research aimed to study the improvement of the gas turbine performance of a humid air turbine (HAT) cycle at low pressure ratio and at low turbine inlet temperature (TIT). To achieve this goal, an off-design performance test investigation was conducted on a small-sized, two-shaft gas turbine test rig. The test rig consisted of a centrifugal compressor, a centripetal turbine, an individual direct flow flame tube, a free power turbine, a dynamometer, and a saturator with structured packing. Two different conditions were considered for the test investigation: in Case I, the control system kept the fuel flow constant at 57 kg/h, and in Case II, the turbine inlet temperature was kept constant at 665 °C. In Case I, when the air humidity ratio increased from 30 g/kg dry air (DA) to 43 g/kg DA, the power output increased by 3 kW. At the same time, the turbine inlet temperature decreased by 19 °C, and the NO x emissions were reduced from 25 ppm to 16 ppm. In Case II, when the air humidity ratio increased from 48 g/kg DA to 57 g/kg DA, the power output increased by 9.5 kW. Based on the actual gas turbine parts, characteristics, and test conditions, the off-design performance of the HAT cycle was calculated. Upon comparing the measured and calculated results, the HAT cycle was found to perform better than the two-shaft cycle in terms of specific work, efficiency, and specific fuel consumption. The effect of performance improvement became more obvious as the air humidity ratio increased. Under the same inlet air flow, turbine inlet temperature, and power output, the surge margin on compressor curves became enlarged as the humidity ratio increased. The off-design performance of a HAT cycle with regenerator was also investigated. The results show that the highest efficiency can be increased by 3.1%, which will greatly improve the gas turbine performance. -- Highlights: ► We built a flexible small-size test rig of HAT cycle gas turbine and the real test data were

  20. Relative humidity impact on aerosol parameters in a Paris suburban area

    Directory of Open Access Journals (Sweden)

    H. Randriamiarisoa

    2006-01-01

    Full Text Available Measurements of relative humidity (RH and aerosol parameters (scattering cross section, size distributions and chemical composition, performed in ambient atmospheric conditions, have been used to study the influence of relative humidity on aerosol properties. The data were acquired in a suburban area south of Paris, between 18 and 24 July 2000, in the framework of the 'Etude et Simulation de la Qualité de l'air en Ile-de-France' (ESQUIF program. According to the origin of the air masses arriving over the Paris area, the aerosol hygroscopicity is more or less pronounced. The aerosol chemical composition data were used as input of a thermodynamic model to simulate the variation of the aerosol water mass content with ambient RH and to determine the main inorganic salt compounds. The coupling of observations and modelling reveals the presence of deliquescence processes with hysteresis phenomenon in the hygroscopic growth cycle. Based on the Hänel model, parameterisations of the scattering cross section, the modal radius of the accumulation mode of the size distribution and the aerosol water mass content, as a function of increasing RH, have been assessed. For the first time, a crosscheck of these parameterisations has been performed and shows that the hygroscopic behaviour of the accumulation mode can be coherently characterized by combined optical, size distribution and chemical measurements.

  1. Modelling the relative stability of carbon nanotubes exposed to environmental adsorbates and air

    International Nuclear Information System (INIS)

    Barnard, Amanda S

    2009-01-01

    In parallel with the development of technological applications for carbon nanotubes, issues related to toxicology and environmental impact are also under increased scrutiny. It is clear from the available literature that the integrity of future carbon nanotube-based devices, our ability to anticipate failure of these devices, and our ability to manage the toxicological and environmental impacts require a detailed understanding of the stability of pure and functionalized carbon nanotubes under a full range of environmental conditions. Motivated by this endeavour, the present study uses a general thermodynamic model to predict the relative stability of carbon nanotubes exposed to a variety of atmospheric adsorbates, and uses them to examine the stability of nanotubes in air, as a function of the relative humidity. In general the results indicate that the adsorption of a sparse coverage of air is thermodynamically favoured, depending on the humidity, and the stability of small diameter nanotubes may be improved by exposure to humid air.

  2. Nanoscale mechanochemical wear of phosphate laser glass against a CeO{sub 2} particle in humid air

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jiaxin, E-mail: yujiaxin@swust.edu.cn [Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010 (China); He, Hongtu; Zhang, Yafeng [Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010 (China); Hu, Hailong [Analysis and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China)

    2017-01-15

    Highlights: • Friction components of phosphate glass/CeO{sub 2} pair in humid air were quantified to understand the friction mechanism. • Severe nanoscale wear was directly observed by AFM topography on both phosphate glass and CeO{sub 2} particle in humid air. • The wearless behaviors of phosphate glass in vacuum were confirmed by the AFM phase image. • Capillary water bridge induced corrosion plays an important role in the mechanochemical wear of phosphate glass in air. - Abstract: Using an atomic force microscope, the friction and wear of phosphate laser glass against a CeO{sub 2} particle were quantitatively studied both in humid air and in vacuum, to reveal the water molecules induced mechanochemical wear mechanism of phosphate laser glass. The friction coefficient of the glass/CeO{sub 2} pair in air was found to be 5–7 times higher than that in vacuum due to the formation of a capillary water bridge at the friction interface, with a contribution of the capillary-related friction to the total friction coefficient as high as 65–79%. The capillary water bridge further induced a serious material removal of glass and CeO{sub 2} particle surfaces, while supplying both a local liquid water environment to corrode the glass surface and a high shearing force to assist the stretching of the Ce−O−P bond, accelerating the reaction between water and the glass/CeO{sub 2} pair. In vacuum, however, no discernable wear phenomena were observed, but the phase images captured by AFM tapping mode suggested the occurrence of potential strain hardening in the friction area of the glass surface.

  3. INFLUENCE OF TEMPERATURE AND RELATIVE HUMIDITY ON THE STUDDED AGARICUS BLAZEI MURRILL MUSHROOM COMPOST

    Directory of Open Access Journals (Sweden)

    Sándor Rózsa

    2017-12-01

    Full Text Available Almond mushroom, Agaricus blazei Murrill, is the so-called secondary saprophyte, developing on partially processed substrate, in which microorganisms reduced complex ligno-cellulose compounds. Numerous authors have shown that due to the similar life cycle in the cultivation of almond mushroom technologies developed for white button mushroom may be applied. However, almond mushroom requires high temperature and high humidity as well as access to light to form fruiting bodies. In Brazil, due to the advantageous climatic conditions this species is frequently grown outdoors; however, in other countries - mainly due to its high temperature requirements - such cultivation system is risky and may only be successful during very warm summers. In this study, we analyzed four kind of compost studded by Agaricus blazei Murrill mushroom mycelium. We recorded every hour the air and compost temperature and the air relative humidity. The best studded compost was the classical, followed by synthetic and then by the mixt compost.

  4. Air temperature and humidity diversity in the Hornsund fjord area (Spitsbergen) in the period 1 July 2014 - 30 June 2015

    Science.gov (United States)

    Przybylak, Rajmund; Araźny, Andrzej; Wyszyński, Przemysław; Budzik, Tomasz; Wawrzyniak, Tomasz

    2016-04-01

    The article presents preliminary results of studies into the spatial diversity of air temperature and relative humidity (overground layer, 2 m a.g.l.) in the area of the Hornsund fjord (S Spitsbergen, approx. 77°N), based on data collected between 1 July 2014 and 30 June 2015. The Hornsund fjord runs latitudinal along approx. 40 km and its average width is about 10 km. Numerous glaciers flow into the fjord and the mountain ridges around it often exceed 700 m a.s.l. Data series obtained from 11 sites equipped with automatic weather stations (Vaisala, Campbell, Davis) or HOBO temperature and humidity sensors were used. Two sites (Hornsund HOR and the Hans Glacier HG4) have been operating for years, whereas 9 new ones (Bogstranda BOG, Fugleberget FUG, Gnålodden GNA, Gåshamnoyra GAS, Hyttevika HYT, Lisbetdalen LIS, Ostrogradskijfjella OST, Treskelodden TRE and Wilczekodden WIL) were established within the Polish-Norwegian AWAKE-2 project. Three of the sites (BOG, GAS and OST) were damaged by polar bears, hence their measurement series are shorter. A substantial spatial diversity was found in the air temperature and relative humidity in the area, mostly influenced by elevation, type of surface and distance from the Greenland Sea's open water. During the year (July 2014 - June 2015), the areas of HYT (-1.1°C) and WIL (-1.9°C) were the warmest. Both sites are located on the west coast of the fjord. The HYT demonstrates the most favourable temperature conditions, being orographically sheltered from the east and its cold and dry air masses. The coldest sites were the mountain-top site of FUG (-5.9°C) and the glacier-located HG4 (-4.3°C). The low temperature at FUG resulted from its elevation (568 m a.s.l.), whereas at HG4 (184 m a.s.l) the glaciated surface also added up to the result. In the analysed period, the annual course of air temperature in the area had a clear minimum in February, when the lowest mean monthly values ranged from -9.4°C at HYT to -15.1°C at

  5. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.

    1999-01-01

    and experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6......Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations...

  6. Fran Bosnjakovic and his world of thermodynamic charts - demonstrated for selected processes with humid air

    International Nuclear Information System (INIS)

    Knoche, Karl-Friedrich T.

    2004-01-01

    Some examples of technical processes operating with humid air as a working fluid, such as air compression and evaporation cooling, are discussed using the Mollier diagrams for better understanding of their performance. Bosnjakovic's important contributions towards the development of graphical methods are illustrated

  7. Degradation mechanism of CH{sub 3}NH{sub 3}PbI{sub 3} perovskite materials upon exposure to humid air

    Energy Technology Data Exchange (ETDEWEB)

    Shirayama, Masaki; Kato, Masato; Fujiseki, Takemasa; Hara, Shota; Kadowaki, Hideyuki; Murata, Daisuke; Fujiwara, Hiroyuki, E-mail: fujiwara@gifu-u.ac.jp [Department of Electrical, Electronic and Computer Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Miyadera, Tetsuhiko; Sugita, Takeshi; Chikamatsu, Masayuki [Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8568 (Japan)

    2016-03-21

    Low stability of organic-inorganic perovskite (CH{sub 3}NH{sub 3}PbI{sub 3}) solar cells in humid air environments is a serious drawback which could limit practical application of this material severely. In this study, from real-time spectroscopic ellipsometry characterization, the degradation mechanism of ultra-smooth CH{sub 3}NH{sub 3}PbI{sub 3} layers prepared by a laser evaporation technique is studied. We present evidence that the CH{sub 3}NH{sub 3}PbI{sub 3} degradation in humid air proceeds by two competing reactions of (i) the PbI{sub 2} formation by the desorption of CH{sub 3}NH{sub 3}I species and (ii) the generation of a CH{sub 3}NH{sub 3}PbI{sub 3} hydrate phase by H{sub 2}O incorporation. In particular, rapid phase change occurs in the near-surface region and the CH{sub 3}NH{sub 3}PbI{sub 3} layer thickness reduces rapidly in the initial 1 h air exposure even at a low relative humidity of 40%. After the prolonged air exposure, the CH{sub 3}NH{sub 3}PbI{sub 3} layer is converted completely to hexagonal platelet PbI{sub 2}/hydrate crystals that have a distinct atomic-scale multilayer structure with a period of 0.65 ± 0.05 nm. We find that conventional x-ray diffraction and optical characterization in the visible region, used commonly in earlier works, are quite insensitive to the surface phase change. Based on results obtained in this work, we discuss the degradation mechanism of CH{sub 3}NH{sub 3}PbI{sub 3} in humid air.

  8. Perception of cabin air quality in airline crew related to air humidification, on intercontinental flights.

    Science.gov (United States)

    Lindgren, T; Norbäck, D; Wieslander, G

    2007-06-01

    The influence of air humidification in aircraft, on perception of cabin air quality among airline crew (N = 71) was investigated. In-flight investigations were performed in the forward part and in the aft part on eight intercontinental flights with one Boeing 767 individually, equipped with an evaporation humidifier combined with a dehumidifying unit, to reduce accumulation of condensed water in the wall construction. Four flights had the air humidification active when going out, and turned off on the return flight. The four others had the inverse humidification sequence. The sequences were randomized, and double blind. Air humidification increased relative air humidity (RH) by 10% in forward part, and by 3% in aft part of the cabin and in the cockpit. When the humidification device was active, the cabin air was perceived as being less dry (P = 0.008), and fresher (P = 0.002). The mean concentration of viable bacteria (77-108 cfu/m(3)), viable molds (74-84 cfu/m(3)), and respirable particles (1-8 microg/m3) was low, both during humidified and non-humidified flights. On flights with air humidification, there were less particles in the forward part of the aircraft (P = 0.01). In conclusion, RH can be slightly increased by using ceramic evaporation humidifier, without any measurable increase of microorganisms in cabin air. The cabin air quality was perceived as being better with air humidification. PRACTICAL IMPLICATION: Relative air humidity is low (10-20%) during intercontinental flights, and can be increased by using ceramic evaporation humidifier, without any measurable increase of microorganism in cabin air. Air humidification could increase the sensation of better cabin air quality.

  9. Air movement and perceived air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Kaczmarczyk, J.

    2012-01-01

    The impact of air movement on perceived air quality (PAQ) and sick building syndrome (SBS) symptoms was studied. In total, 124 human subjects participated in four series of experiments performed in climate chambers at different combinations of room air temperature (20, 23, 26 and 28 °C), relative...... and the humidity of the room air. At a low humidity level of 30% an increased velocity could compensate for the decrease in perceived air quality due to an elevated temperature ranging from 20 °C to 26 °C. In a room with 26 °C, increased air movement was also able to compensate for an increase in humidity from 30...... humidity (30, 40 and 70%) and pollution level (low and high). Most of the experiments were performed with and without facially applied airflow at elevated velocity. The importance of the use of recirculated room air and clean, cool and dry outdoor air was studied. The exposures ranged from 60. min to 235...

  10. Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis.

    Science.gov (United States)

    Georgii, Elisabeth; Jin, Ming; Zhao, Jin; Kanawati, Basem; Schmitt-Kopplin, Philippe; Albert, Andreas; Winkler, J Barbro; Schäffner, Anton R

    2017-07-10

    Elevated temperature and reduced water availability are frequently linked abiotic stresses that may provoke distinct as well as interacting molecular responses. Based on non-targeted metabolomic and transcriptomic measurements from Arabidopsis rosettes, this study aims at a systematic elucidation of relevant components in different drought and heat scenarios as well as relationships between molecular players of stress response. In combined drought-heat stress, the majority of single stress responses are maintained. However, interaction effects between drought and heat can be discovered as well; these relate to protein folding, flavonoid biosynthesis and growth inhibition, which are enhanced, reduced or specifically induced in combined stress, respectively. Heat stress experiments with and without supplementation of air humidity for maintenance of vapor pressure deficit suggest that decreased relative air humidity due to elevated temperature is an important component of heat stress, specifically being responsible for hormone-related responses to water deprivation. Remarkably, this "dry air effect" is the primary trigger of the metabolomic response to heat. In contrast, the transcriptomic response has a substantial temperature component exceeding the dry air component and including up-regulation of many transcription factors and protein folding-related genes. Data level integration independent of prior knowledge on pathways and condition labels reveals shared drought and heat responses between transcriptome and metabolome, biomarker candidates and co-regulation between genes and metabolic compounds, suggesting novel players in abiotic stress response pathways. Drought and heat stress interact both at transcript and at metabolite response level. A comprehensive, non-targeted view of this interaction as well as non-interacting processes is important to be taken into account when improving tolerance to abiotic stresses in breeding programs. Transcriptome and metabolome

  11. Microbes at Surface-Air Interfaces: The Metabolic Harnessing of Relative Humidity, Surface Hygroscopicity, and Oligotrophy for Resilience

    Science.gov (United States)

    Stone, Wendy; Kroukamp, Otini; Korber, Darren R.; McKelvie, Jennifer; Wolfaardt, Gideon M.

    2016-01-01

    The human environment is predominantly not aqueous, and microbes are ubiquitous at the surface-air interfaces with which we interact. Yet microbial studies at surface-air interfaces are largely survival-oriented, whilst microbial metabolism has overwhelmingly been investigated from the perspective of liquid saturation. This study explored microbial survival and metabolism under desiccation, particularly the influence of relative humidity (RH), surface hygroscopicity, and nutrient availability on the interchange between these two phenomena. The combination of a hygroscopic matrix (i.e., clay or 4,000 MW polyethylene glycol) and high RH resulted in persistent measurable microbial metabolism during desiccation. In contrast, no microbial metabolism was detected at (a) hygroscopic interfaces at low RH, and (b) less hygroscopic interfaces (i.e., sand and plastic/glass) at high or low RH. Cell survival was conversely inhibited at high RH and promoted at low RH, irrespective of surface hygroscopicity. Based on this demonstration of metabolic persistence and survival inhibition at high RH, it was proposed that biofilm metabolic rates might inversely influence whole-biofilm resilience, with ‘resilience’ defined in this study as a biofilm’s capacity to recover from desiccation. The concept of whole-biofilm resilience being promoted by oligotrophy was supported in desiccation-tolerant Arthrobacter spp. biofilms, but not in desiccation-sensitive Pseudomonas aeruginosa biofilms. The ability of microbes to interact with surfaces to harness water vapor during desiccation was demonstrated, and potentially to harness oligotrophy (the most ubiquitous natural condition facing microbes) for adaptation to desiccation. PMID:27746774

  12. Measurements of VOC/SVOC emission factors from burning incenses in an environmental test chamber: influence of temperature, relative humidity, and air exchange rate.

    Science.gov (United States)

    Manoukian, A; Buiron, D; Temime-Roussel, B; Wortham, H; Quivet, E

    2016-04-01

    This study investigates the influence of three environmental indoor parameters (i.e., temperature, relative humidity, and air exchange rate) on the emission of 13 volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) during incense burning. Experiments have been carried out using an environmental test chamber. Statistical results from a classical two-level full factorial design highlight the predominant effect of ventilation on emission factors. The higher the ventilation, the higher the emission factor. Moreover, thanks to these results, an estimation of the concentration range for the compounds under study can be calculated and allows a quick look of indoor pollution induced by incense combustion. Carcinogenic substances (i.e., benzene, benzo(a)pyrene, and formaldehyde) produced from the incense combustion would be predicted in typical living indoors conditions to reach instantaneous concentration levels close to or higher than air quality exposure threshold values.

  13. Humidity data for 9975 shipping packages with cane fiberboard

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W. L. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-05-01

    The 9975 surveillance program is developing a technical basis to support extending the storage period of 9975 packages in K-Area Complex beyond the currently approved 15 years. A key element of this effort is developing a better understanding of degradation of the fiberboard assembly under storage conditions. This degradation is influenced greatly by the moisture content of the fiberboard, which is not well characterized on an individual package basis. Direct measurements of humidity and fiberboard moisture content have been made on two test packages with cane fiberboard and varying internal heat levels from 0 up to 19W. With an internal heat load, a temperature gradient in the fiberboard assembly leads to varying relative humidity in the air around the fiberboard. However, the absolute humidity tends to remain approximately constant throughout the package. The moisture content of fiberboard varies under the influence of several phenomena. Changes in local fiberboard temperature (from an internal heat load) can cause fiberboard moisture changes through absorption or evaporation. Fiberboard degradation at elevated temperature will produce water as a byproduct. And the moisture level within the package is constantly seeking equilibrium with that of the surrounding room air, which varies on a daily and seasonal basis. One indicator of the moisture condition within a 9975 package might be obtained by measuring the relative humidity in the upper air space, by inserting a humidity probe through a caplug hole. However, the data indicate that for the higher internal heat loads (15 and 19 watts), a large variation in internal moisture conditions produces little or no variation in the air space relative humidity. Therefore, this approach does not appear to be sensitive to fiberboard moisture variations at the higher heat loads which are of most interest to maintaining fiberboard integrity.

  14. A Trial Intercomparison of Humidity Generators at Extremes of Range Using Relative Humidity Transmitters

    Science.gov (United States)

    Stevens, M.; Benyon, R.; Bell, S. A.; Vicente, T.

    2008-10-01

    In order to effectively implement the Mutual Recognition Arrangement (MRA) of the International Committee for Weights and Measures (CIPM), national metrology institutes (NMIs) are required to support their claims of calibration and measurement capability (CMC) with a quality system compliant with ISO/IEC 17025, and with suitable evidence of participation in key or supplementary comparisons. The CMC review process, both at regional and inter-regional levels, uses criteria that combine the provisions mentioned above, together with additional evidence demonstrating scientific and technical competence of the institutes. For dew-point temperatures, there are key comparisons in progress under the Consultative Committee for Thermometry (CCT) and under the European regional metrology organisation (EUROMET), together with information available on past regional supplementary comparisons. However, for relative humidity there are, to date, no such comparisons available to support CMC entries. This paper presents and discusses the results of a preliminary investigation of the use of relative humidity and temperature transmitters in order to determine their suitability for the intercomparison of standard humidity generators in support of CMC claims for the calibration of relative humidity instruments. The results of a recent bilateral comparison between 2 NMIs at the extremes of the range up to 98%rh at 70 °C, and down to 1%rh at -40 °C are reported. Specific precautions and recommendations on the use of the devices as transfer standards are presented.

  15. Is the perception of clean, humid air indeed affected by cooling the respiratory tract?

    Science.gov (United States)

    Burek, Rudolf; Polednik, Bernard; Guz, Łukasz

    2017-07-01

    The study aims at determining exposure-response relationships after short exposure to clean air and long exposure to air polluted by people. The impact of water vapor content in the indoor air on its acceptability (ACC) was assessed by the occupants after a short exposure to clean air and an hour-long exposure to increasingly polluted air. The study presents a critical analysis pertaining to the stimulation of olfactory sensations by the air enthalpy suggested in previous models and proposes a new model based on the Weber-Fechner law. Our assumption was that water vapor is the stimulus of olfactory sensations. The model was calibrated and verified in field conditions, in a mechanically ventilated and air conditioned auditorium. Measurements of the air temperature, relative humidity, velocity and CO2 content were carried out; the acceptability of air quality was assessed by 162 untrained students. The subjective assessments and the measurements of the environmental qualities allowed for determining the Weber coefficients and the threshold concentrations of water vapor, as well as for establishing the limitations of the model at short and long exposure to polluted indoor air. The results are in agreement with previous studies. The standard error equals 0.07 for immediate assessments and 0.17 for assessments after adaptation. Based on the model one can predict the ACC assessments of trained and untrained participants.

  16. Mycotoxin production in wheat grains by different Aspergilli in relation to different relative humidities and storage periods.

    Science.gov (United States)

    Atalla, Mohamed Mabrouk; Hassanein, Naziha Mohamed; El-Beih, Ahmed Atef; Youssef, Youssef Abdel-ghany

    2003-02-01

    Four different Aspergilli (Aspergillus oryzae, A. parasiticus, A. terreus and A. versicolor) were grown on wheat grains underdifferent degrees of relative humidity 14, 50, 74, 80 and 90%. Samples of wheat grains were taken monthly for a period of six months and examined for mycotoxin production. A. oryzae was found to produce aflatoxins B1, B2, zearalenone, DON and T-2 toxins under elevated degrees of humidity and prolonged periods of storage. A. parasiticus produced aflatoxins B1, G1, NIV, DON and T-2 toxins in high concentrations during a period of not more than three months storage at 14% relative humidity; at an increased level of relative humidity of 74% ochratoxin A, zearalenone and sterigmatocystin were also produced at high levels. The isolate was drastic in toxin production. A. terrus produced toxins at 14% relative humidity (aflatoxin G2 and DON) at levels much higher than any other prevalent degrees of humidity. A. versicolor is highly sensitive to relative humidity and grain moisture content It produced aflatoxins B1, G1, NIV and DON at a relative humidity of 50% and another toxins (aflatoxin G2, ochratoxins A, B and zearalenone) at 74%. The microorganism can be considered a trichothecene producer under suitable relative humidity.

  17. A Note on the Spatio Temporal Variations in the Temperature and Relative Humidity over Akure, Ondo State, Nigeria

    Science.gov (United States)

    Eludoyin, A. O.; Akinbode, O. M.; Archibong, E. O.

    2007-07-01

    This study was carried out in one of the Administrative State Capitals in the southwestern part of Nigeria. Its aim is to serve as a baseline data for highlighting the effect of spatial distribution of settlements, population, and socioeconomic activities on urban air temperature and relative humidity. The main objective of the study is to assess the impact of urban growth on the microclimate of the administrative city. Temperature and relative humidity data from 1992 to 2001 were obtained from the three existing meteorological stations in Akure, the Administrative Capital of Ondo State, Nigeria, namely the Federal Ministry of Aviation, Akure Airport station (FMA), Federal University of Technology, Akure (FUTA) and the Federal School of Agriculture (SOA). Air temperature and relative humidity measurements along primary roads and in the built up areas were obtained from seventeen stations, using sling psychrometer. The data were subsequently analysed for spatial and temporal variations. The results obtained indicated that while the maximum, average and minimum temperatures showed significant annual variations, the spatial variations among the existing meteorological stations were not significant. The city is characterized by increasing annual mean temperatures whose maximum was significantly higher than that of Ondo town — another important town within the state. The annual mean temperatures ranged between 26.2°C and 30.4°C. Minimum and maximum temperatures varied from 12.3°C to 26°C and 22.5°C to 39.6°C, respectively while the relative humidity ranged between 27.5% and 98.2%. Urban `heat island' intensity was exhibited around central business district of the Oba market. 2007 American Institute of Physics

  18. Testing and ground calibration of DREAMS-H relative humidity device

    Science.gov (United States)

    Genzer, Maria; Hieta, Maria; Nikkanen, Timo; Schmidt, Walter; Kemppinen, Osku; Harri, Ari-Matti; Haukka, Harri

    2015-04-01

    DREAMS (Dust Characterization, Risk Assessment and Environmental Analyzer on the Martian Surface) instrument suite is to be launched as part of the ESA ExoMars 2016/Schiaparelli lander. DREAMS consists of an environmental package for monitoring temperature, pressure, relative humidity, winds and dust opacity, as well as atmospheric electricity of Martian atmosphere. The DREAMS instruments and scientific goals are described in [1]. Here we describe testing and ground calibration of the relative humidity device, DREAMS-H, provided to the DREAMS payload by the Finnish Meteorological Institute and based on proprietary technology of Vaisala, Inc. The same kind of device is part of the REMS instrument package onboard MSL Curiosity Rover [2][3]. DREAMS-H is based on Vaisala Humicap® technology adapted for use in Martian environment by the Finnish Meteorological Institute. The device is very small and lightweighed, with total mass less than 20 g and consuming only 15 mW of power. The Humicap® sensor heads contain an active polymer film that changes its capacitance as function of relative humidity, with 0% to 100% RH measurement range. The dynamic range of the device gets smaller with sensor temperature, being in -70°C approximately 30% of the dynamic range in 0°C [3]. Good-quality relative humidity measurements require knowing the temperature of the environment in which relative humidity is measured. An important part of DREAMS-H calibration was temperature calibration of Vaisala Thermocap® temperature sensors used for housekeeping temperature measurements of the DREAMS-H device. For this, several temperature points in the desired operational range were measured with 0.1°C accuracy traceable to national standards. The main part of humidity calibration of DREAMS-H flight models was done in subzero temperatures in a humidity generator of the Finnish Center of Metrology and Accreditation (MIKES). Several relative humidity points ranging from almost dry to almost wet

  19. Sealed Attics Exposed to Two Years of Weathering in a Hot and Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William A [ORNL; Railkar, Sudhir [GAF; Shiao, Ming C [ORNL; Desjarlais, Andre Omer [ORNL

    2016-01-01

    Field studies in a hot, humid climate were conducted to investigate the thermal and hygrothermal performance of ventilated attics and non-ventilated semi-conditioned attics sealed with open-cell and with closed-cell spray polyurethane foam insulation. Moisture pin measurements made in the sheathing and absolute humidity sensor data from inside the foam and from the attic air show that moisture is being stored in the foam. The moisture in the foam diffuses to and from the sheathing dependent on the pressure gradient at the foam-sheathing interface which is driven by the irradiance and night-sky radiation. Ventilated attics in the same hot, humid climate showed less moisture movement in the sheathing than those sealed with either open- or closed-cell spray foam. In the ventilated attics the relative humidity drops as the attic air warms; however, the opposite was observed in the sealed attics. Peaks in measured relative humidity in excess of 80 90% and occasionally near saturation (i.e., 100%) were observed from solar noon till about 8 PM on hot, humid days. The conditioned space of the test facility is heated and cooled by an air-to-air heat pump. Therefore the partial pressure of the indoor air during peak irradiance is almost always less than that observed in the sealed attics. Field data will be presented to bring to light the critical humidity control issues in sealed attics exposed to hot, humid climates.

  20. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

    2012-11-01

    The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

  1. Temperature and humidity dependence of air fluorescence yield measured by AIRFLY

    International Nuclear Information System (INIS)

    Ave, M.; Bohacova, M.; Buonomo, B.; Busca, N.; Cazon, L.; Chemerisov, S.D.; Conde, M.E.; Crowell, R.A.; Di Carlo, P.; Di Giulio, C.; Doubrava, M.; Esposito, A.; Facal, P.; Franchini, F.J.; Hoerandel, J.; Hrabovsky, M.; Iarlori, M.; Kasprzyk, T.E.; Keilhauer, B.

    2008-01-01

    The fluorescence detection of ultra high energy cosmic rays requires a detailed knowledge of the fluorescence light emission from nitrogen molecules over a wide range of atmospheric parameters, corresponding to altitudes typical of the cosmic ray shower development in the atmosphere. We have studied the temperature and humidity dependence of the fluorescence light spectrum excited by MeV electrons in air. Results for the 313.6, 337.1, 353.7 and 391.4 nm bands are reported in this paper. We found that the temperature and humidity dependence of the quenching process changes the fluorescence yield by a sizeable amount (up to 20% for the temperature dependence in the 391.4 nm band) and its effect must be included for a precise estimation of the energy of ultra high energy cosmic rays.

  2. Humidity correction in the standard measurement of exposure

    International Nuclear Information System (INIS)

    Ibaraki, Yasuyuki; Katoh, Akira

    1980-01-01

    This paper deals with the humidity correction to be made in the standard measurement of the exposure to the measured ionization current in the humid air for the purpose of excluding the influence of the water vapour that is not included in the definition of the exposure. First, formulae giving the humidity correction factors for a parallel plate free air chamber and a cavity chamber have been derived respectively in the case where the contributions of air and water vapour to the ionization are independent. Next, in the case where the contributions are not independent, i.e., the Jesse effect is taken into account, a formula to obtain the W-value for humid air has been derived on the basis of the Niatel's experimental result. Using this formula, formulae to obtain the humidity correction factors for the free air chamber and the cavity chamber are derived. The humidity calculated by the latter formulae show good agreements with the results by Niatel and Guiho, respectively. (author)

  3. Crystallization speed of salbutamol as a function of relative humidity and temperature.

    Science.gov (United States)

    Zellnitz, Sarah; Narygina, Olga; Resch, Christian; Schroettner, Hartmuth; Urbanetz, Nora Anne

    2015-07-15

    Spray dried salbutamol sulphate and salbutamol base particles are amorphous as a result of spray drying. As there is always the risk of recrystallization of amorphous material, the aim of this work is the evaluation of the temperature and humidity dependent recrystallization of spray dried salbutamol sulphate and base. Therefore in-situ Powder X-ray Diffraction (PXRD) studies of the crystallization process at various temperature (25 and 35 °C) and humidity (60%, 70%, 80%, 90% relative humidity) conditions were performed. It was shown that the crystallization speed of salbutamol sulphate and base is a non-linear function of both temperature and relative humidity. The higher the relative humidity the higher is the crystallization speed. At 60% relative humidity salbutamol base as well as salbutamol sulphate were found to be amorphous even after 12 h, however samples changed optically. At 70% and 90% RH recrystallization of salbutamol base is completed after 3 h and 30 min and recrystallization of salbutamol sulphate after 4h and 1h, respectively. Higher temperature (35 °C) also leads to increased crystallization speeds at all tested values of relative humidity. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Evaporation Kinetics of Laboratory Generated Secondary Organic Aerosols at Elevated Relative Humidity

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Jacqueline M.; Imre, D.; Beranek, Josef; Shrivastava, ManishKumar B.; Zelenyuk, Alla

    2015-01-06

    Secondary organic aerosols (SOA) dominate atmospheric organic aerosols that affect climate, air quality, and health. Recent studies indicate that, contrary to previously held assumptions, at low relative humidity (RH) these particles are semi-solid and evaporate orders of magnitude slower than expected. Elevated relative humidity has the potential to affect significantly formation, properties, and atmospheric evolution of SOA particles. Here we present a study of the effect of RH on the room-temperature evaporation kinetics of SOA particles formed by ozonolysis of α-pinene and limonene. Experiments were carried out on SOA particles generated, evaporated, and aged at 0%, 50% and 90% RH. We find that in all cases evaporation begins with a relatively fast phase, during which 30% to 70% of the particle mass evaporates in 2 hours, followed by a much slower evaporation rate. Evaporation kinetics at 0% and 50% RH are nearly the same, while at 90% RH a slightly larger fraction evaporates. In all cases, aging the particles prior to inducing evaporation reduces the evaporative losses, with aging at elevated RH leading to more significant effect. In all cases, SOA evaporation is nearly size-independent, providing direct evidence that oligomers play a crucial role in determining the evaporation kinetics.

  5. circadian rhythm of calling behavior in the emei music frog (babina daunchina)is associated with habitat temperature and relative humidity

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    generally,the function of vocalizations made by male anurans are to attract females or defend resources.typically,males vocalize in choruses during one or more periods in a twenty-four-hour cycle,which varies,however,among species.nevertheless,the causal factors influencing circadian variations of calling patterns in anuran species are not clear.in this study,male chorus vocalizations were monitored in the emei music frog (babina daunchina)for 17 consecutive days during the breeding season,while its habitat air temperature and relative humidity in the course of experiments were measured as well.the results revealed that the circadian calling patterns were characterized by two periods of peak vocalization,which were observed from 0500 h to 0700 h and from 1300 h to 2000 h,while the lowest activity period was found from 2100 h to 2200 h.both calls/h and notes/h were positively correlated with air temperature and negatively with relative humidity.overall,our data indicate that the emei music frogs (b.daunchina)could regulate their vocal activities based on the changes of physical micro-environment (e.g.,temperature or humidity)to maximize reproductive success.

  6. An Inexpensive, Stable, and Accurate Relative Humidity Measurement Method for Challenging Environments.

    Science.gov (United States)

    Zhang, Wei; Ma, Hong; Yang, Simon X

    2016-03-18

    In this research, an improved psychrometer is developed to solve practical issues arising in the relative humidity measurement of challenging drying environments for meat manufacturing in agricultural and agri-food industries. The design in this research focused on the structure of the improved psychrometer, signal conversion, and calculation methods. The experimental results showed the effect of varying psychrometer structure on relative humidity measurement accuracy. An industrial application to dry-cured meat products demonstrated the effective performance of the improved psychrometer being used as a relative humidity measurement sensor in meat-drying rooms. In a drying environment for meat manufacturing, the achieved measurement accuracy for relative humidity using the improved psychrometer was ±0.6%. The system test results showed that the improved psychrometer can provide reliable and long-term stable relative humidity measurements with high accuracy in the drying system of meat products.

  7. Selective Detection of Target Volatile Organic Compounds in Contaminated Humid Air Using a Sensor Array with Principal Component Analysis

    Science.gov (United States)

    Itoh, Toshio; Akamatsu, Takafumi; Tsuruta, Akihiro; Shin, Woosuck

    2017-01-01

    We investigated selective detection of the target volatile organic compounds (VOCs) nonanal, n-decane, and acetoin for lung cancer-related VOCs, and acetone and methyl i-butyl ketone for diabetes-related VOCs, in humid air with simulated VOC contamination (total concentration: 300 μg/m3). We used six “grain boundary-response type” sensors, including four commercially available sensors (TGS 2600, 2610, 2610, and 2620) and two Pt, Pd, and Au-loaded SnO2 sensors (Pt, Pd, Au/SnO2), and two “bulk-response type” sensors, including Zr-doped CeO2 (CeZr10), i.e., eight sensors in total. We then analyzed their sensor signals using principal component analysis (PCA). Although the six “grain boundary-response type” sensors were found to be insufficient for selective detection of the target gases in humid air, the addition of two “bulk-response type” sensors improved the selectivity, even with simulated VOC contamination. To further improve the discrimination, we selected appropriate sensors from the eight sensors based on the PCA results. The selectivity to each target gas was maintained and was not affected by contamination. PMID:28753948

  8. Impact of temperature and humidity on acceptability of indoor air quality during immediate and longer whole-body exposures

    DEFF Research Database (Denmark)

    Fang, Lei; Clausen, Geo; Fanger, Povl Ole

    1997-01-01

    Acceptability of clean air and air polluted by building materials was studied in climate chambers with different levels of air temperature and humidity in the ranges 18-28°C and 30-70%. The immediate acceptability after entering a chamber and the acceptability during a 20-minute whole-body exposu...

  9. Using Relative Humidity Forecasts to Manage Meningitis in the Sahel

    Science.gov (United States)

    Pandya, R. E.; Adams-Forgor, A.; Akweogno, P.; Awine, T.; Dalaba, M.; Dukic, V.; Dumont, A.; Hayden, M.; Hodgson, A.; Hopson, T. M.; Hugonnet, S.; Yoksas, T. C.

    2012-12-01

    Meningitis epidemics in the Sahel occur quasi-regularly and with devastating impact. In 2008, for example, eighty-eight thousand people contracted meningitis and over five thousand died. Until very recently, the protection provided by the only available vaccine was so limited and short-lived that the only practical strategy for vaccination was reactive: waiting until an epidemic occurred in the region and then vaccinating in that region to prevent the epidemic's further growth. Even with that strategy, there were still times when demand outpaced available vaccine. While a new vaccine has recently been developed that is effective and inexpensive enough to be used more broadly and proactively, it is only effective against the strain of bacteria that causes the most common kind of bacterial meningitis. As a result, there will likely be continued need for reactive vaccination strategies. It is widely known that meningitis epidemics in the Sahel occur only in the dry season. Our project investigated this relationship, and several independent lines of evidence demonstrate a robust relationship between the onset of the rainy season, as marked by weekly average relative humidity above 40%, and the end of meningitis epidemics. These lines of evidence include statistical analysis of two years of weekly meningitis and weather data across the Sahel, cross-correlation of ten years of meningitis and weather data in the Upper East region of northern Ghana, and high-resolution weather simulations of past meningitis seasons to interpolate available weather data. We also adapted two techniques that have been successfully used in public health studies: generalized additive models, which have been used to relate air quality and health, and a linearized version of the compartmental epidemics model that has been used to understand MRSA. Based on these multiple lines of evidence, average weekly relative humidity forecast two weeks in advance appears consistently and strongly related to

  10. The impact of relative humidity and atmospheric pressure on mortality in Guangzhou, China.

    Science.gov (United States)

    Ou, Chun Quan; Yang, Jun; Ou, Qiao Qun; Liu, Hua Zhang; Lin, Guo Zhen; Chen, Ping Yan; Qian, Jun; Guo, Yu Ming

    2014-12-01

    Although many studies have examined the effects of ambient temperatures on mortality, little evidence is on health impacts of atmospheric pressure and relative humidity. This study aimed to assess the impacts of atmospheric pressure and relative humidity on mortality in Guangzhou, China. This study included 213,737 registered deaths during 2003-2011 in Guangzhou, China. A quasi-Poisson regression with a distributed lag non-linear model was used to assess the effects of atmospheric pressure/relative humidity. We found significant effect of low atmospheric pressure/relative humidity on mortality. There was a 1.79% (95% confidence interval: 0.38%-3.22%) increase in non-accidental mortality and a 2.27% (0.07%-4.51%) increase in cardiovascular mortality comparing the 5th and 25th percentile of atmospheric pressure. A 3.97% (0.67%-7.39%) increase in cardiovascular mortality was also observed comparing the 5th and 25th percentile of relative humidity. Women were more vulnerable to decrease in atmospheric pressure and relative humidity than men. Age and education attainment were also potential effect modifiers. Furthermore, low atmospheric pressure and relative humidity increased temperature-related mortality. Both low atmospheric pressure and relative humidity are important risk factors of mortality. Our findings would be helpful to develop health risk assessment and climate policy interventions that would better protect vulnerable subgroups of the population. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  11. Methodology for the characterization of the humidity behavior inside CPV modules

    Directory of Open Access Journals (Sweden)

    Carmine Cancro

    2015-10-01

    Full Text Available In this study the characterization of the humidity behavior inside concentrating photovoltaic (CPV modules is addressed. To this purpose, several experimental tests have been carried out by using two different CPV modules and three different breathers, collecting in each analyzed case the evolution of temperature, relative and specific humidity of the air volume contained inside the module for many days. Results indicates that, for each of the CPV modules analyzed, it is possible to construct a characteristic curve in the temperature-specific humidity psychrometric chart, that can be used for estimating the specific humidity of the air inside the CPV module as a function of the internal air temperature. The characteristic curve can be also used to estimate the saturation temperature of the air inside the CPV module, and consequently to detect the eventuality of moisture condensation during cloudy days or night-time, namely when the temperature of the air inside the module is low and reaches the external ambient one. This methodology can be used in CPV modules design for the choice of the breather and of the construction materials, in order to obtain a saturation temperature as low as possible.

  12. All-Optical Graphene Oxide Humidity Sensors

    Directory of Open Access Journals (Sweden)

    Weng Hong Lim

    2014-12-01

    Full Text Available The optical characteristics of graphene oxide (GO were explored to design and fabricate a GO-based optical humidity sensor. GO film was coated onto a SU8 polymer channel waveguide using the drop-casting technique. The proposed sensor shows a high TE-mode absorption at 1550 nm. Due to the dependence of the dielectric properties of the GO film on water content, this high TE-mode absorption decreases when the ambient relative humidity increases. The proposed sensor shows a rapid response (<1 s to periodically interrupted humid air flow. The transmission of the proposed sensor shows a linear response of 0.553 dB/% RH in the range of 60% to 100% RH.

  13. All-optical graphene oxide humidity sensors.

    Science.gov (United States)

    Lim, Weng Hong; Yap, Yuen Kiat; Chong, Wu Yi; Ahmad, Harith

    2014-12-17

    The optical characteristics of graphene oxide (GO) were explored to design and fabricate a GO-based optical humidity sensor. GO film was coated onto a SU8 polymer channel waveguide using the drop-casting technique. The proposed sensor shows a high TE-mode absorption at 1550 nm. Due to the dependence of the dielectric properties of the GO film on water content, this high TE-mode absorption decreases when the ambient relative humidity increases. The proposed sensor shows a rapid response (<1 s) to periodically interrupted humid air flow. The transmission of the proposed sensor shows a linear response of 0.553 dB/% RH in the range of 60% to 100% RH.

  14. Season and humidity dependence of the effects of air pollution on COPD hospitalizations in Hong Kong

    Science.gov (United States)

    Qiu, Hong; Yu, Ignatius Tak Sun; Wang, Xiaorong; Tian, Linwei; Tse, Lap Ah; Wong, Tze Wai

    2013-09-01

    Associations between ambient pollution and respiratory morbidity including chronic obstructive pulmonary disease (COPD) have been confirmed. Weather factors, such as temperature, season and relative humidity (RH), may modify the effects of air pollution. This time series study was conducted to examine whether the effects of air pollution on emergency COPD hospital admissions in Hong Kong varied across seasons and RH levels, and explore the possible joint modification of season and RH on the effects of pollution. Data of daily air pollution concentrations mean temperature and RH, and COPD hospital admissions from 1998 to 2007 were collected. Generalized additive Poisson models with interaction terms were used to estimate the effects of pollution across seasons and RH levels. We observed an increase in the detrimental effects of air pollution in the cool season and on low humidity days. On the cool and dry days, a 10 μg m-3 increment of lag03 exposure was associated with an increase in emergency COPD admissions by 1.76% (95%CI: 1.19-2.34%), 3.43% (95%CI: 2.80-4.07%), and 1.99% (95%CI: 0.90-3.09%) for nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide (SO2), respectively, all of which were statistically significantly higher than those on the other days. No consistent modification of weather factors was found for the effects of particles with an aerodynamic diameter less than 10 μm (PM10). The results suggested that season and RH jointly modified the effects of gaseous pollutants, resulting in increased emergency COPD hospitalizations on the cool and dry days.

  15. Physiological and subjective responses to low relative humidity in young and elderly men.

    Science.gov (United States)

    Sunwoo, Yujin; Chou, Chinmei; Takeshita, Junko; Murakami, Motoko; Tochihara, Yutaka

    2006-05-01

    In order to compare the physiological and the subjective responses to low relative humidity of elderly and young men, we measured saccharin clearance time (SCT), frequency of blinking, hydration state of the skin, transepidermal water loss (TEWL), sebum level recovery and skin temperatures as physiological responses. We asked subjects to evaluate thermal, dryness and comfort sensations as subjective responses using a rating scale. Eight non-smoking healthy male students (21.7+/-0.8 yr) and eight non-smoking healthy elderly men (71.1+/-4.1 yr) were selected. The pre-room conditions were maintained at an air temperature (Ta) of 25 degrees C and a relative humidity (RH) of 50%. The test-room conditions were adjusted to provide 25 degrees C Ta and RH levels of 10%, 30% and 50%. RH had no effect on the activity of the sebaceous gland or change of mean skin temperature. SCT of the elderly group under 10% RH was significantly longer than that of the young group. In particular, considering the SCT change, the nasal mucous membrane seems to be affected more in the elderly than in the young in low RH. Under 30% RH, the eyes and skin become dry, and under 10% RH the nasal mucous membrane becomes dry as well as the eyes and skin. These findings suggested that to avoid dryness of the eyes and skin, it is necessary to maintain greater than 30% RH, and to avoid dryness of the nasal mucous membrane, it is necessary to maintain greater than 10% RH. On the thermal sensation of the legs, at the lower humidity level, the elderly group felt cooler than the young group. On the dry sensation of the eyes and throat, the young group felt drier than the elderly group at the lower humidity levels. From the above results, the elderly group had difficulty in feeling dryness in the nasal mucous membrane despite being easily affected by low humidity. On the other hand, the young group felt the change of humidity sensitively despite not being severely affected by low humidity. Ocular mucosa and

  16. Ground calibration of DREAMS-H relative humidity device

    Science.gov (United States)

    Komu, M.; Genzer, M.; Nikkanen, T.; Schmidt, W.; Haukka, H.; Kemppinen, O.; Harri, A.-M.

    2014-04-01

    DREAMS (Dust Characterization, Risk Assessment and Environmental Analyzer on the Martian Surface) instrument suite is to be launched as part of ESA ExoMars 2016/Entry, Descent and Landing Demonstration Module (EDM). DREAMS consists of an environmental package for monitoring temperature, pressure, relative humidity, winds and dust opacity, as well as atmospheric electricity of Martian atmosphere. DREAMS instruments and scientific goals are described in [1]. Here we describe ground calibration of the relative humidity device, DREAMS-H, provided to DREAMS payload by Finnish Meteorological Institute and based on proprietary technology of Vaisala, Inc. Same kind of device is part of REMS instrument package onboard MSL Curiosity Rover [2][3].

  17. Screening of a dust particle charge in a humid air plasma created by an electron beam

    Science.gov (United States)

    Filippov, A. V.; Derbenev, I. N.; Kurkin, S. A.

    2018-01-01

    A kinetic model has been developed for charged particle reactions in a humid air plasma produced by a fast electron beam. The model includes over 550 reactions with electrons, 33 positive ion species and 14 negative ion species. The model has been tested by solving 48 non-steady state equations for number densities of charged particles in humid air electron beam plasma, and by comparing with the available experimental data. The system of 48 steady state equations has been solved by iterative method in order to define the main ion species of the humid air plasma. A reduced kinetic model has been developed to describe the processes with the main ions and electrons. Screening constants have been calculated on the basis of the reduced system by means of Leverrier-Fadeev method. The dependencies of screening constants on gas ionization rates have been found for the rates from 10 to 1018 cm-3s-1 and the fraction of water molecules from 0 to 2%. The analysis of the constants has revealed that one of them is close to the inverse Debye length, and the other constants are defined by the inverse diffusion lengths passed by ions in the characteristic times of the attachment, recombination, and ion conversion. Pure imaginary screening constants appear at low rates of gas ionization.

  18. Water Collection from Air Humidity in Bahrain

    Directory of Open Access Journals (Sweden)

    Dahman. Nidal A.

    2017-01-01

    Full Text Available The Kingdom of Bahrain falls geographically in one of the driest regions in the world. Conventional fresh surface water bodies, such as rivers and lakes, are nonexistent and for water consumption, Bahrain prominently relies on the desalination of sea water. This paper presents an ongoing project that is being pursued by a group of student and their advising professors to investigate the viability of extracting water from air humidity. Dehumidifiers have been utilized as water extraction devices. Those devices have been distributed on six areas that were selected based on a rigorous geospatial modeling of historical meteorological data. The areas fall in residential and industrial neighborhoods that are located in the main island and the island of Muharraq. Water samples have been collected three times every week since May of 2016 and the collection process will continue until May of 2017. The collected water samples have been analyzed against numerous variables individually and in combinations including: amount of water collected per hour versus geographical location, amount of water collected per hour versus meteorological factors, suitability of collected water for potable human consumption, detection of air pollution in the areas of collection and the economy of this method of water collection in comparison to other nonconventional methods. An overview of the completed analysis results is presented in this paper.

  19. Temperature-dependent deliquescence relative humidities and water activities using humidity controlled thermogravimetric analysis with application to malonic acid.

    Science.gov (United States)

    Beyer, Keith D; Schroeder, Jason R; Kissinger, Jared A

    2014-04-03

    We utilize a new experimental technique, humidity-controlled thermogravimetric analysis (HTGA), to determine temperature-dependent deliquescence relative humidities (DRH) and to determine the equilibrium concentration of a solution at a given temperature and relative humidity. To that end, we have investigated the malonic acid/water system determining the DRH and concentration/RH relationship in the temperature range 303-278 K. Excellent agreement is found with literature values for the DRH of malonic acid as a function of temperature and for the concentration/RH relationship at several temperatures. Thus, we extend the DRH and concentration/RH relationship to a broader temperature range and are using the HTGA experiments to investigate other organic acids.

  20. Uncertainly Analysis of Two Types of Humidity Sensors by a Humidity Generator with a Divided-Flow System

    Science.gov (United States)

    Chen, Ling-Hsi

    2018-01-01

    Humidity measurement is an important technique for the agricultural, foods, pharmaceuticals, and chemical industries. For the sake of convenience, electrical relative humidity (RH) sensors have been widely used. These sensors need to be calibrated to ensure their accuracy and the uncertainty measurement of these sensors has become a major concern. In this study, a self-made divided-flow generator was established to calibrate two types of electrical humidity sensors. The standard reference humidity was calculated from dew-point temperature and air dry-bulb temperature measured by a chilled mirror monitor. This divided-flow generator could produce consistent result of RH measurement results. The uncertainty of the reference standard increased with the increase of RH values. The combined uncertainty with the adequate calibration equations were ranged from 0.82% to 1.45% RH for resistive humidity sensors and 0.63% to 1.4% for capacitive humidity sensors, respectively. This self-made, divided-flow generator, and calibration method are cheap, time-saving, and easy to be used. Thus, the proposed approach can easily be applied in research laboratories. PMID:29466313

  1. Uncertainly Analysis of Two Types of Humidity Sensors by a Humidity Generator with a Divided-Flow System.

    Science.gov (United States)

    Chen, Ling-Hsi; Chen, Chiachung

    2018-02-21

    Humidity measurement is an important technique for the agricultural, foods, pharmaceuticals, and chemical industries. For the sake of convenience, electrical relative humidity (RH) sensors have been widely used. These sensors need to be calibrated to ensure their accuracy and the uncertainty measurement of these sensors has become a major concern. In this study, a self-made divided-flow generator was established to calibrate two types of electrical humidity sensors. The standard reference humidity was calculated from dew-point temperature and air dry-bulb temperature measured by a chilled mirror monitor. This divided-flow generator could produce consistent result of RH measurement results. The uncertainty of the reference standard increased with the increase of RH values. The combined uncertainty with the adequate calibration equations were ranged from 0.82% to 1.45% RH for resistive humidity sensors and 0.63% to 1.4% for capacitive humidity sensors, respectively. This self-made, divided-flow generator, and calibration method are cheap, time-saving, and easy to be used. Thus, the proposed approach can easily be applied in research laboratories.

  2. Temperature and Humidity Profiles in the TqJoint Data Group of AIRS Version 6 Product for the Climate Model Evaluation

    Science.gov (United States)

    Ding, Feng; Fang, Fan; Hearty, Thomas J.; Theobald, Michael; Vollmer, Bruce; Lynnes, Christopher

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) mission is entering its 13th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing long-wave radiation, cloud properties, and trace gases. Thus AIRS data have been widely used, among other things, for short-term climate research and observational component for model evaluation. One instance is the fifth phase of the Coupled Model Intercomparison Project (CMIP5) which uses AIRS version 5 data in the climate model evaluation. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for data from the AIRS mission. The GES DISC, in collaboration with the AIRS Project, released data from the version 6 algorithm in early 2013. The new algorithm represents a significant improvement over previous versions in terms of greater stability, yield, and quality of products. The ongoing Earth System Grid for next generation climate model research project, a collaborative effort of GES DISC and NASA JPL, will bring temperature and humidity profiles from AIRS version 6. The AIRS version 6 product adds a new "TqJoint" data group, which contains data for a common set of observations across water vapor and temperature at all atmospheric levels and is suitable for climate process studies. How different may the monthly temperature and humidity profiles in "TqJoint" group be from the "Standard" group where temperature and water vapor are not always valid at the same time? This study aims to answer the question by comprehensively comparing the temperature and humidity profiles from the "TqJoint" group and the "Standard" group. The comparison includes mean differences at different levels globally and over land and ocean. We are also working on examining the sampling differences between the "TqJoint" and "Standard" group using MERRA data.

  3. Autogenous Deformation and Change of the Relative Humidity in Silica Fume-Modified Cement Paste

    DEFF Research Database (Denmark)

    Jensen, Ole mejlhede; Hansen, Per Freiesleben

    1996-01-01

    Even during sealed curing and at a constant temperature a hardening cement paste will deform and the relative humidity within its pores will lower. This autogenous deformation and autogenous relative humidity change may be so significant that the cement paste cracks if the deformation is restrained....... This article focuses on the influence of silica fume addition on autogenous deformation and autogenous relative humidity change. Continuous measurement of autogenous deformation and autogenous relative humidity change for more than 1 year and 1« years, respectively, was performed. The investigations show...... thatsilica fume addition markedly increases the autogenous shrinkage as well as the autogenous relative humidity change....

  4. TiO2-TiO2 composite resistive humidity sensor: ethanol crosssensitivity

    International Nuclear Information System (INIS)

    Ghalamboran, Milad; Saedi, Yasin

    2016-01-01

    The fabrication method and characterization results of a TiO 2 -TiO 2 composite bead used for humidity sensing along with its negative cross-sensitivity to ethanol vapor are reported. The bead shaped resistive sample sensors are fabricated by the drop-casting of a TiO 2 slurry on two Pt wire segments. The dried bead is pre-fired at 750°C and subsequently impregnated with a Ti-based sol. The sample is ready for characterization after a thermal annealing at 600°C in air. Structurally, the bead is a composite of the micron-sized TiO 2 crystallites embedded in a matrix of nanometric TiO 2 particle aggregates. The performance of the beads as resistive humidity sensors is recorded at room temperature in standard humidity level chambers. Results evince the wide dynamic range of the sensors fabricated in the low relative humidity range. While the sensor conductance is not sensitive to ethanol vapor in dry air, in humid air, sensor's responses are negatively affected by the contaminant. (paper)

  5. Effect of relative humidity on solar potential

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol

    2005-01-01

    In this study, the effect of relative humidity on solar potential is investigated using artificial neural-networks. Two different models are used to train the neural networks. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine-duration, and mean temperature) are used in the input layer of the network (Model 1). But, relative humidity values are added to one network in model (Model 2). In other words, the only difference between the models is relative humidity. New formulae based on meteorological and geographical data, have been developed to determine the solar energy potential in Turkey using the networks' weights for both models. Scaled conjugate gradient (SCG) and Levenberg-Marquardt (LM) learning algorithms and a logistic sigmoid transfer-function were used in the network. The best approach was obtained by the SCG algorithm with nine neurons for both models. Meteorological data for the four years, 2000-2003, for 18 cities (Artvin, Cesme, Bozkurt, Malkara, Florya, Tosya, Kizilcahamam, Yenisehir, Edremit, Gediz, Kangal, Solhan, Ergani, Selcuk, Milas, Seydisehir, Siverek and Kilis) spread over Turkey have been used as data in order to train the neural network. Solar radiation is in output layer. One month for each city was used as test data, and these months have not been used for training. The maximum mean absolute percentage errors (MAPEs) for Tosya are 2.770394% and 2.8597% for Models 1 and 2, respectively. The minimum MAPEs for Seydisehir are 1.055205% and 1.041% with R 2 (99.9862%, 99.9842%) for Models 1 and 2, respectively, in the SCG algorithm with nine neurons. The best value of R 2 for Models 1 and 2 are for Seydisehir. The minimum value of R 2 for Model 1 is 99.8855% for Tosya, and the value for Model 2 is 99.9001% for Yenisehir. Results show that the humidity has only a negligible effect upon the prediction of solar potential using artificial neural-networks

  6. Roller compaction: Effect of relative humidity of lactose powder.

    Science.gov (United States)

    Omar, Chalak S; Dhenge, Ranjit M; Palzer, Stefan; Hounslow, Michael J; Salman, Agba D

    2016-09-01

    The effect of storage at different relative humidity conditions, for various types of lactose, on roller compaction behaviour was investigated. Three types of lactose were used in this study: anhydrous lactose (SuperTab21AN), spray dried lactose (SuperTab11SD) and α-lactose monohydrate 200M. These powders differ in their amorphous contents, due to different manufacturing processes. The powders were stored in a climatic chamber at different relative humidity values ranging from 10% to 80% RH. It was found that the roller compaction behaviour and ribbon properties were different for powders conditioned to different relative humidities. The amount of fines produced, which is undesirable in roller compaction, was found to be different at different relative humidity. The minimum amount of fines produced was found to be for powders conditioned at 20-40% RH. The maximum amount of fines was produced for powders conditioned at 80% RH. This was attributed to the decrease in powder flowability, as indicated by the flow function coefficient ffc and the angle of repose. Particle Image Velocimetry (PIV) was also applied to determine the velocity of primary particles during ribbon production, and it was found that the velocity of the powder during the roller compaction decreased with powders stored at high RH. This resulted in less powder being present in the compaction zone at the edges of the rollers, which resulted in ribbons with a smaller overall width. The relative humidity for the storage of powders has shown to have minimal effect on the ribbon tensile strength at low RH conditions (10-20%). The lowest tensile strength of ribbons produced from lactose 200M and SD was for powders conditioned at 80% RH, whereas, ribbons produced from lactose 21AN at the same condition of 80% RH showed the highest tensile strength. The storage RH range 20-40% was found to be an optimum condition for roll compacting three lactose powders, as it resulted in a minimum amount of fines in the

  7. Humidity affects the morphology of particles emitted from beclomethasone dipropionate pressurized metered dose inhalers.

    Science.gov (United States)

    Ivey, James W; Bhambri, Pallavi; Church, Tanya K; Lewis, David A; McDermott, Mark T; Elbayomy, Shereen; Finlay, Warren H; Vehring, Reinhard

    2017-03-30

    The effects of propellant type, cosolvent content, and air humidity on the morphology and solid phase of the particles produced from solution pressurized metered dose inhalers containing the corticosteroid beclomethasone dipropionate were investigated. The active ingredient was dissolved in the HFA propellants 134a and 227ea with varying levels of the cosolvent ethanol and filled into pressurized metered dose inhalers. Inhalers were actuated into an evaporation chamber under controlled temperature and humidity conditions and sampled using a single nozzle, single stage inertial impactor. Particle morphology was assessed qualitatively using field emission scanning electron microscopy and focused ion beam-helium ion microscopy. Drug solid phase was assessed using Raman microscopy. The relative humidity of the air during inhaler actuation was found to have a strong effect on the particle morphology, with solid spheroidal particles produced in dry air and highly porous particles produced at higher humidity levels. Air humidification was found to have no effect on the solid phase of the drug particles, which was predominantly amorphous for all tested formulations. A critical level of air relative humidity was required to generate porous particles for each tested formulation. This critical relative humidity was found to depend on the amount of ethanol used in the inhaler, but not on the type of propellant utilized. The results indicate that under the right circumstances water vapor saturation followed by nucleated water condensation or ice deposition occurs during particle formation from evaporating propellant-cosolvent-BDP droplets. This finding reveals the importance of condensed water or ice as a templating agent for porosity when particle formation occurs at saturated conditions, with possible implications on the pharmacokinetics of solution pMDIs and potential applications in particle engineering for drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Reaction velocity of sodium hydration in humid air and sodium carbonation in humid carbon dioxide atmosphere. Fundamental study on sodium carbonate process in FBR bulk sodium coolant disposal technology

    International Nuclear Information System (INIS)

    Tadokoro, Yutaka; Yoshida, Eiichi

    1999-11-01

    A sodium carbonate processing method, which changes sodium to sodium carbonate and/or sodium bicarbonate by humid carbon dioxide, has been examined and about to be applied to large test loops dismantling. However, that the basic data regarding the progress of the reaction is insufficient on the other hand, is a present condition. The present report therefore aims at presenting basic data regarding the reaction velocity of sodium hydration in humid air and sodium carbonation in humid carbon dioxide atmosphere, and observing the reaction progress, for the application to large test loops dismantling. The test result is summarized as follows. (1) Although the reaction velocity of sodium varied with sodium specimen sizes and velocity measurement methods, the reaction velocity of sodium hydration was in about 0.16 ∼ 0.34 mmh -1 (0.016 ∼ 0.033g cm -2 h -1 , 6.8x10 -4 ∼ 1.4x10 -3 mol cm -2 h -1 ) and that of sodium carbonation was in about 0.16 ∼ 0.27mmh -1 (0.016 ∼ 0.023g cm -2 h -1 , 6.8x10 -4 ∼ 1.1x10 -3 mol cm -2 h -1 ) (26 ∼ 31degC, RH 100%). (2) The reaction velocity of sodium in carbon dioxide atmosphere was greatly affected by vapor partial pressure (absolutely humidity). And the velocity was estimated in 0.08 ∼ 0.12mmh -1 (0.008 ∼ 0.012g cm -2 h -1 , 3.4x10 -4 ∼ 5.2x10 -4 mol cm -2 h -1 ) in the carbon dioxide atmosphere, whose temperature of 20degC and relative humidity of 80% are assumed real sodium carbonate process condition. (3) By the X-ray diffraction method, NaOH was found in humid air reaction product. Na 2 CO 3 , NaHCO 3 were found in carbon dioxide atmosphere reaction product. It was considered that Sodium changes to NaOH, and subsequently to NaHCO 3 through Na 2 CO 3 . (4) For the application to large test loops dismantling, it is considered possible to change sodium to a target amount of sodium carbonate (or sodium bicarbonate) by setting up gas supply quantity and also processing time appropriately according to the surface area

  9. Effect of low air velocities on thermal homeostasis and comfort during exercise at space station operational temperature and humidity

    Science.gov (United States)

    Beumer, Ronald J.

    1989-01-01

    The effectiveness of different low air velocities in maintaining thermal comfort and homeostasis during exercise at space station operational temperature and humidity was investigated. Five male subjects exercised on a treadmill for successive ten minute periods at 60, 71, and 83 percent of maximum oxygen consumption at each of four air velocities, 30, 50, 80, and 120 ft/min, at 22 C and 62 percent relative humidity. No consistent trends or statistically significant differences between air velocities were found in body weight loss, sweat accumulation, or changes in rectal, skin, and body temperatures. Occurrence of the smallest body weight loss at 120 ft/min, the largest sweat accumulation at 30 ft/min, and the smallest rise in rectal temperature and the greatest drop in skin temperature at 120 ft/min all suggested more efficient evaporative cooling at the highest velocity. Heat storage at all velocities was evidenced by increased rectal and body temperatures; skin temperatures declined or increased only slightly. Body and rectal temperature increases corresponded with increased perception of warmth and slight thermal discomfort as exercise progressed. At all air velocities, mean thermal perception never exceeded warm and mean discomfort, greatest at 30 ft/min, was categorized at worst as uncomfortable; sensation of thermal neutrality and comfort returned rapidly after cessation of exercise. Suggestions for further elucidation of the effects of low air velocities on thermal comfort and homeostasis include larger numbers of subjects, more extensive skin temperature measurements and more rigorous analysis of the data from this study.

  10. Relationship of the moisture content of Finnish wheat flour and relative humidity

    Directory of Open Access Journals (Sweden)

    Yu-Yen Linko

    1968-01-01

    Full Text Available Changes in the moisture content of Finnish commercial wheat flour stored at variable relative humidities, representing the conditions typical of flour storage in Finland, were investigated. It could be shown that flour of 15 % moisture at the time of packing tends to dry considerably during normal storage conditions. Owing to the hysteresis effect, the moisture content of once dried flour is not likely to reach detrimental levels during normal storage, even if the relative humidity would exceed the critical level of 75—80 % for short periods. Minimum warehouse relative humidity was observed during Januay, at which time flour moisture had decreased to 6.7 %. The equilibrium humidity for flour of 15 % original moisture content was found to be about 70 %.

  11. Data set: 31 years of spatially distributed air temperature, humidity, precipitation amount and precipitation phase from a mountain catchment in the rain-snow transition zone

    Science.gov (United States)

    Thirty one years of spatially distributed air temperature, relative humidity, dew point temperature, precipitation amount, and precipitation phase data are presented for the Reynolds Creek Experimental Watershed. The data are spatially distributed over a 10m Lidar-derived digital elevation model at ...

  12. Temperature and Humidity Control in Livestock Stables

    DEFF Research Database (Denmark)

    Hansen, Michael; Andersen, Palle; Nielsen, Kirsten M.

    2010-01-01

    The paper describes temperature and humidity control of a livestock stable. It is important to have a correct air flow pattern in the livestock stable in order to achieve proper temperature and humidity control as well as to avoid draught. In the investigated livestock stable the air flow...

  13. Temperature and Relative Humidity Vertical Profiles within Planetary Boundary Layer in Winter Urban Airshed

    Science.gov (United States)

    Bendl, Jan; Hovorka, Jan

    2017-12-01

    The planetary boundary layer is a dynamic system with turbulent flow where horizontal and vertical air mixing depends mainly on the weather conditions and geomorphology. Normally, air temperature from the Earth surface decreases with height but inversion situation may occur, mainly during winter. Pollutant dispersion is poor during inversions so air pollutant concentration can quickly rise, especially in urban closed valleys. Air pollution was evaluated by WHO as a human carcinogen (mostly by polycyclic aromatic hydrocarbons) and health effects are obvious. Knowledge about inversion layer height is important for estimation of the pollution impact and it can give us also information about the air pollution sources. Temperature and relative humidity vertical profiles complement ground measurements. Ground measurements were conducted to characterize comprehensively urban airshed in Svermov, residential district of the city of Kladno, about 30 km NW of Prague, from the 2nd Feb. to the 3rd of March 2016. The Svermov is an air pollution hot-spot for long time benzo[a]pyrene (B[a]P) limit exceedances, reaching the highest B[a]P annual concentration in Bohemia - west part of the Czech Republic. Since the Svermov sits in a shallow valley, frequent vertical temperature inversion in winter and low emission heights of pollution sources prevent pollutant dispersal off the valley. Such orography is common to numerous small settlements in the Czech Republic. Ground measurements at the sports field in the Svermov were complemented by temperature and humidity vertical profiles acquired by a Vaisala radiosonde positioned at tethered He-filled balloon. Total number of 53 series of vertical profiles up to the height of 300 m was conducted. Meteorology parameters were acquired with 4 Hz frequency. The measurements confirmed frequent early-morning and night formation of temperature inversion within boundary layer up to the height of 50 m. This rather shallow inversion had significant

  14. Retrofit device and method to improve humidity control of vapor compression cooling systems

    Science.gov (United States)

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2016-08-16

    A method and device for improving moisture removal capacity of a vapor compression system is disclosed. The vapor compression system is started up with the evaporator blower initially set to a high speed. A relative humidity in a return air stream is measured with the evaporator blower operating at the high speed. If the measured humidity is above the predetermined high relative humidity value, the evaporator blower speed is reduced from the initially set high speed to the lowest possible speed. The device is a control board connected with the blower and uses a predetermined change in measured relative humidity to control the blower motor speed.

  15. SIZE DISTRIBUTION OF SEA-SALT EMISSIONS AS A FUNCTION OF RELATIVE HUMIDITY

    Science.gov (United States)

    This note presents a straightforward method to correct sea-salt-emission particle-size distributions according to local relative humidity. The proposed method covers a wide range of relative humidity (0.45 to 0.99) and its derivation incorporates recent laboratory results on sea-...

  16. Changes in ocular and nasal signs and symptoms among air crew in relation to air humidification on intercontinental flights.

    Science.gov (United States)

    Norbäck, Dan; Lindgren, Torsten; Wieslander, Gunilla

    2006-04-01

    This study evaluates the influence of air humidification in aircraft on symptoms, tear-film stability, nasal patency, and peak expiratory flow. Commercial air crew (N=71) were given a medical examination during eight flights from Stockholm to Chicago and eight flights in the opposite direction. Examinations were done onboard one Boeing 767 aircraft equipped with an evaporation humidifier in the forward part of the cabin. The investigators followed the air crew, staying one night in Chicago and returning with the same crew. Four of the flights had the air humidification device active in-flight to Chicago and deactivated when returning to Stockholm. The other four flights had the inverse humidification sequence. The humidification sequence was randomized and double blind. Hygienic measurements were performed. The humidification increased the relative air humidity by 10% in the 1st row in business class, by 3% in the last row (39th row) in tourist class, and by 3% in the cockpit. Air humidification increased tear-film stability and nasal patency and decreased ocular, nasal, and dermal symptoms and headache. The mean concentration of viable bacteria [77-108 colony-forming units (cfu)/m(3)], viable molds (74-84 cfu/m(3)), and particulate matter (1-8 microg/m(3)) was low, both during the humidified and non-humidified flights. Relative air humidity is low (10-12%) during intercontinental flights and can be increased by the use of a ceramic evaporation humidifier, without any measurable increase of microorganisms in cabin air. Air humidification could increase passenger and crew comfort by increasing tear-film stability and nasal patency and reducing various symptoms.

  17. Effect of humidity on radon exhalation rate from concrete

    International Nuclear Information System (INIS)

    Yamanishi, Hirokuni; Obayashi, Haruo; Tsuji, Naruhito; Nakayoshi, Hisao

    1998-01-01

    The objective of the present study is evaluation of seasonal humidity effect on radon exhalation rate from concrete. Three concrete pieces have been placed in three different fixed humidity circumstances for about a year. The three fixed humidities are selected 3, 10, 25 g m -3 in absolute humidity, those correspond to dry condition as control, winter and summer, respectively. Radon exhalation rate from each concrete piece is measured every one month during humidity exposure. Under the lower humidity, radon exhalation rate from concrete is small. On the contrary, radon exhalation rate is large in the higher humidity circumstance. This trend is consistent with the seasonal variation of indoor air radon concentration in low air-exchange-rate room. (author)

  18. Retrieval of relative humidity from CSIR-NLC mobile LIDAR backscatter measurements

    CSIR Research Space (South Africa)

    Tesfaye, M

    2009-09-01

    Full Text Available data was collected over 23 hours. The above data sets were used to determine the retrieved relative humidity and compared with Irene (near to Pretoria) weather balloon humidity measurements. The results of the comparative study are presented...

  19. Investigating the effect of gas flow rate, inlet ozone concentration and relative humidity on the efficacy of catalytic ozonation process in the removal of xylene from waste airstream

    Directory of Open Access Journals (Sweden)

    H.R. MokaramI

    2010-10-01

    Full Text Available Background and aimsThe catalytic ozonation is an efficient process for the degradation of volatile organic compounds from contaminated air stream. This study was aimed at investigating the efficacy of catalytic ozonation process in removal of xylene from the polluted air stream andthe influence of retention time (gas flow rate, inlet ozone dose and relative humidity on this performanceMethodsthe catalytic ozonation of xylene was conducted using a bench scale set-up consisted of a syringe pump,an air pump, an ozone generator, and a glass reactor packed with activated carbon. Several experimental run was defined to investigate the influence of the selectedoperational variables.ResultsThe results indicated that the efficiency of catalytic ozonation was greater than that of single adsorption in removal of xylene under similar inlet concentration and relative humidity. We found a significant catalytic effect for activated carbon when used in combination with ozonation process, leading to improvement of xylene removal percentage. In addition, the elimination capacity of the system improved with the increase of inlet ozone dose as well as gas flow rate. The relative humidity showed a positive effect of the xylene removal at the range of 5 to 50%, while the higher humidity (more than 50% resulted in reduction of the performance.ConclusionThe findings of the present work revealed that the catalytic ozonation process can be an efficient technique for treating the air streams containing industrial concentrations of xylene. Furthermore, there is a practical potential to retrofit the present adsorption systems intothe catalytic ozonation simply by coupling them with the ozonation system. the catalytic ozonation of xylene was conducted using a bench scale set-up consisted of a syringe pump,an air pump, an ozone generator, and a glass reactor packed with activated carbon. Several experimental run was defined to investigate the influence of the selected

  20. A multi-channel humidity control system based on LabVIEW

    International Nuclear Information System (INIS)

    Zhang Aiwu; Xie Yuguang; Liu Hongbang; Liu Yingbiao; Cai Xiao; Yu Boxiang; Lu Junguang; Zhou Li

    2011-01-01

    A real time multi-channel humidity control system was designed based on LabVIEW, using the dry air branch of BESⅢ drying system. The hardware of this control system consist of mini humidity and temperature sensors, intelligent collection module, switch quantity controller and electromagnetic valves. The humidity can be controlled at arbitrary value from air humidity to 3% with accuracy better than 2%. Multi microenvironment with different humidity can be easily controlled and monitored in real time by this system. It can also be extended to hybrid control of multi channel humidity and temperature. (authors)

  1. Comparison of Single-Point and Continuous Sampling Methods for Estimating Residential Indoor Temperature and Humidity.

    Science.gov (United States)

    Johnston, James D; Magnusson, Brianna M; Eggett, Dennis; Collingwood, Scott C; Bernhardt, Scott A

    2015-01-01

    Residential temperature and humidity are associated with multiple health effects. Studies commonly use single-point measures to estimate indoor temperature and humidity exposures, but there is little evidence to support this sampling strategy. This study evaluated the relationship between single-point and continuous monitoring of air temperature, apparent temperature, relative humidity, and absolute humidity over four exposure intervals (5-min, 30-min, 24-hr, and 12-days) in 9 northern Utah homes, from March-June 2012. Three homes were sampled twice, for a total of 12 observation periods. Continuous data-logged sampling was conducted in homes for 2-3 wks, and simultaneous single-point measures (n = 114) were collected using handheld thermo-hygrometers. Time-centered single-point measures were moderately correlated with short-term (30-min) data logger mean air temperature (r = 0.76, β = 0.74), apparent temperature (r = 0.79, β = 0.79), relative humidity (r = 0.70, β = 0.63), and absolute humidity (r = 0.80, β = 0.80). Data logger 12-day means were also moderately correlated with single-point air temperature (r = 0.64, β = 0.43) and apparent temperature (r = 0.64, β = 0.44), but were weakly correlated with single-point relative humidity (r = 0.53, β = 0.35) and absolute humidity (r = 0.52, β = 0.39). Of the single-point RH measures, 59 (51.8%) deviated more than ±5%, 21 (18.4%) deviated more than ±10%, and 6 (5.3%) deviated more than ±15% from data logger 12-day means. Where continuous indoor monitoring is not feasible, single-point sampling strategies should include multiple measures collected at prescribed time points based on local conditions.

  2. Concentrations of Staphylococcus species in indoor air as associated with other bacteria, season, relative humidity, air change rate, and S. aureus-positive occupants.

    Science.gov (United States)

    Madsen, Anne Mette; Moslehi-Jenabian, Saloomeh; Islam, Md Zohorul; Frankel, Mika; Spilak, Michal; Frederiksen, Margit W

    2018-01-01

    The aim of this study was to obtain knowledge about concentrations of Staphylococcus aureus, MRSA (methicillin-resistant S. aureus), and other Staphylococcus species in indoor air in Greater Copenhagen and about factors affecting the concentrations. The effects of season, temperature, relative humidity, air change rate (ACR), other bacterial genera, area per occupant, and presence of S. aureus-positive occupants were studied. In samples from 67 living rooms, S. hominis, S. warneri, S. epidermidis, and S. capitis were found in 13-25%; S. saprophyticus, S. cohnii, and S. pasteuri in 5-10%; and S. lugdunensis, S. haemolyticus, S. caprae, S. equorum, S. kloosii, S. pettenkoferi, S. simulans, and S. xylosus in less than 3%. Staphylococcus aureus were found in two of 67 living rooms: spa type t034 (an MRSA) was recovered from a farmhouse, while spa type t509 was found in an urban home. Two species, S. equorum and S. kloosii, were found only in the farmhouse. Staphylococcus was significantly associated with season with lowest concentration and richness in winter. Genera composition was associated with ACR with smaller fractions of Staphylococcus at higher ACR, while richness was significantly and negatively associated with area per occupant. Concentration of Staphylococcus correlated positively with the total concentration of bacteria, but negatively with the total concentration of other bacteria. The concentration of Staphylococcus was not significantly associated with concentrations of the other abundant genera Bacillus, Kocuria, and Micrococcus. In offices with S. aureus-positive occupants, airborne S. aureus was not found. In conclusion, Staphylococcus species constitute a considerable proportion of the airborne bacteria in the studied homes and offices. However, both S. aureus and MRSA had very low prevalence during all seasons. Thus, transmission of S. aureus and MRSA through the air in living rooms in Copenhagen is expected to be limited. The negative associations

  3. Predicting Indian Summer Monsoon onset through variations of surface air temperature and relative humidity

    Science.gov (United States)

    Stolbova, Veronika; Surovyatkina, Elena; Kurths, Jurgen

    2015-04-01

    Indian Summer Monsoon (ISM) rainfall has an enormous effect on Indian agriculture, economy, and, as a consequence, life and prosperity of more than one billion people. Variability of the monsoonal rainfall and its onset have a huge influence on food production, agricultural planning and GDP of the country, which on 22% is determined by agriculture. Consequently, successful forecasting of the ISM onset is a big challenge and large efforts are being put into it. Here, we propose a novel approach for predictability of the ISM onset, based on critical transition theory. The ISM onset is defined as an abrupt transition from sporadious rainfall to spatially organized and temporally sustained rainfall. Taking this into account, we consider the ISM onset as is a critical transition from pre-monsoon to monsoon, which take place in time and also in space. It allows us to suggest that before the onset of ISM on the Indian subcontinent should be areas of critical behavior where indicators of the critical transitions can be detected through an analysis of observational data. First, we identify areas with such critical behavior. Second, we use detected areas as reference points for observation locations for the ISM onset prediction. Third, we derive a precursor for the ISM onset based on the analysis of surface air temperature and relative humidity variations in these reference points. Finally, we demonstrate the performance of this precursor on two observational data sets. The proposed approach allows to determine ISM onset in advance in 67% of all considered years. Our proposed approach is less effective during the anomalous years, which are associated with weak/strong monsoons, e.g. El-Nino, La-Nina or positive Indian Ocean Dipole events. The ISM onset is predicted for 23 out of 27 normal monsoon years (85%) during the past 6 decades. In the anomalous years, we show that time series analysis in both areas during the pre-monsoon period reveals indicators whether the

  4. Influence of Courtyard Ventilation on Thermal Performance of Office Building in Hot-Humid Climate: A Case Study

    Science.gov (United States)

    Abbaas, Esra'a. Sh.; Saif, Ala'eddin A.; Munaaim, MAC; Azree Othuman Mydin, Md.

    2018-03-01

    The influence of courtyard on the thermal performance of Development Department office building in University Malaysia Perlis (UniMAP, Pauh Putra campus) is investigated through simulation study for the effect of ventilation on indoor air temperature and relative humidity of the building. The study is carried out using EnergyPlus simulator interface within OpenStudio and SketchUp plug in software to measure both of air temperature and relative humidity hourly on 21 April 2017 as a design day. The results show that the ventilation through the windows facing the courtyard has sufficient effect on reducing the air temperature compared to the ventilation through external windows since natural ventilation is highly effective on driving the indoor warm air out to courtyard. In addition, the relative humidity is reduced due to ventilation since the courtyard has high ability to remove or dilute indoor airborne pollutants coming from indoor sources. This indicates that the presence of courtyard is highly influential on thermal performance of the building.

  5. The humidity effect on the breakdown voltage characteristics and the transport parameters of air

    International Nuclear Information System (INIS)

    Radmilović-Radjenović, M.; Radjenović, B.; Nikitović, Ž.; Matejčik, Š.; Klas, M.

    2012-01-01

    This paper contains experimental results for the direct current (DC) breakdown voltages and calculated transport parameters for dry, synthetic and ambient air. The breakdown voltage curves for dry, ambient and synthetic air at the gap size of 100μm are very similar. The differences between them are much more pronounced at the interelectrode separation of 20μm, especially at the right hand branch of the breakdown voltage curves. On the other hand, the effective yields γ for dry and synthetic air are in disagreement at lower values of the E/p. Results of calculations based on the Two Term Approximation indicate that the humidity has no a great influence on the transport parameters at all range of the reduce field E/N.

  6. Comparisons of the tropospheric specific humidity from GPS radio occultations with ERA-Interim, NASA MERRA, and AIRS data

    Science.gov (United States)

    Vergados, Panagiotis; Mannucci, Anthony J.; Ao, Chi O.; Verkhoglyadova, Olga; Iijima, Byron

    2018-03-01

    We construct a 9-year data record (2007-2015) of the tropospheric specific humidity using Global Positioning System radio occultation (GPS RO) observations from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission. This record covers the ±40° latitude belt and includes estimates of the zonally averaged monthly mean specific humidity from 700 up to 400 hPa. It includes three major climate zones: (a) the deep tropics (±15°), (b) the trade winds belts (±15-30°), and (c) the subtropics (±30-40°). We find that the RO observations agree very well with the European Centre for Medium-Range Weather Forecasts Re-Analysis Interim (ERA-Interim), the Modern-Era Retrospective Analysis for Research and Applications (MERRA), and the Atmospheric Infrared Sounder (AIRS) by capturing similar magnitudes and patterns of variability in the monthly zonal mean specific humidity and interannual anomaly over annual and interannual timescales. The JPL and UCAR specific humidity climatologies differ by less than 15 % (depending on location and pressure level), primarily due to differences in the retrieved refractivity. In the middle-to-upper troposphere, in all climate zones, JPL is the wettest of all data sets, AIRS is the driest of all data sets, and UCAR, ERA-Interim, and MERRA are in very good agreement, lying between the JPL and AIRS climatologies. In the lower-to-middle troposphere, we present a complex behavior of discrepancies, and we speculate that this might be due to convection and entrainment. Conclusively, the RO observations could potentially be used as a climate variable, but more thorough analysis is required to assess the structural uncertainty between centers and its origin.

  7. Bacterial pleomorphism and competition in a relative humidity gradient

    NARCIS (Netherlands)

    de Goffau, Marcus C.; Yang, Xiaomei; van Dijl, Jan Maarten; Harmsen, Hermie J. M.

    The response of different bacterial species to reduced water availability was studied using a simple relative humidity gradient technique. Interestingly, distinct differences in morphology and growth patterns were observed between populations of the same species growing at different relative

  8. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    1998-01-01

    This report deals with gas phase hydration of pure cement clinker minerals at reduced relative humidities. This is an important subject in relation to modern high performance concrete which may self-desiccate during hydration. In addition the subject has relevance to storage stability where...... prehydration may occur. In the report both theoretical considerations and experimental data are presented. It is suggested that the initiation of hydration during water vapour exposure is nucleation controlled....

  9. PSYCRODATA: a software which calculates the air humidity characteristics and relate its with the variations of the gamma environmental bottom; PSYCRODATA: software que calcula las caracteristicas de la humedad del aire y las relaciona con las variaciones del fondo gamma ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Alonso A, D.; Dominguez L, O.; Ramos V, O.; Caveda R, C.A.; Capote F, E. [CPHR, Calle 20 No. 4113 e/41 y 47, Playa, C.P. 11300, A.P. 6195, C.P. 10600 La Habana (Cuba); Dominguez G, A.; Valdes S, E. [Instituto Superior de Ciencias y Tecnicas Aplicadas (INSTEC), La Habana (Cuba); Rodriguez V, E. [Instituto de Meteorologia (INSMET), La Habana (Cuba)]. e-mail: lola@cphr.edu.cu

    2006-07-01

    The computer tool 'Psycrodata', able to calculate the values of those characteristics of the humidity of the air starting from the measurements carried out of humidity and temperature in the post of occident of the National Net of Environmental Radiological Surveillance was obtained. Among the facilities that 'Psycrodata' toasts it is the keeping the obtained information in a database facilitating the making of reports. For another part the possibility of selection of different approaches for the calculation and the introduction of the psicrometric coefficient to use, its make that each station can have the suitable psicrometric chart keeping in mind the instrumentation and the characteristics of the area of location of the same one. Also, can have facilities to import text files for later on to be plotted, it allowed to correlate the absorbed dose rate in air due to the environmental gamma radiation, besides of the temperature and the humidity, with the tension of the water steam, the temperature of the dew point and the saturation deficit. (Author)

  10. Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates.

    Science.gov (United States)

    Csavina, Janae; Field, Jason; Félix, Omar; Corral-Avitia, Alba Y; Sáez, A Eduardo; Betterton, Eric A

    2014-07-15

    Atmospheric particulate have deleterious impacts on human health. Predicting dust and aerosol emission and transport would be helpful to reduce harmful impacts but, despite numerous studies, prediction of dust events and contaminant transport in dust remains challenging. In this work, we show that relative humidity and wind speed are both determinants in atmospheric dust concentration. Observations of atmospheric dust concentrations in Green Valley, AZ, USA, and Juárez, Chihuahua, México, show that PM10 concentrations are not directly correlated with wind speed or relative humidity separately. However, selecting the data for high wind speeds (>4m/s at 10 m elevation), a definite trend is observed between dust concentration and relative humidity: dust concentration increases with relative humidity, reaching a maximum around 25% and it subsequently decreases with relative humidity. Models for dust storm forecasting may be improved by utilizing atmospheric humidity and wind speed as main drivers for dust generation and transport. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Temperature and relative humidity dependence of radiochromic film dosimeter response to gamma electron radiation

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Puhl, J.M.; Miller, A.

    1995-01-01

    on some earlier studies, their response functions have been reported to be dependent on the temperature and relative humidity during irradiation. The present study investigates differences in response over practical ranges of temperature, relative humidity, dose, and for different recent batches of films...... humidity) and should be calibrated under environmental conditions (temperature) at which they will be used routinely....

  12. Atomic force microscope adhesion measurements and atomistic molecular dynamics simulations at different humidities

    International Nuclear Information System (INIS)

    Seppä, Jeremias; Sairanen, Hannu; Korpelainen, Virpi; Husu, Hannu; Heinonen, Martti; Lassila, Antti; Reischl, Bernhard; Raiteri, Paolo; Rohl, Andrew L; Nordlund, Kai

    2017-01-01

    Due to their operation principle atomic force microscopes (AFMs) are sensitive to all factors affecting the detected force between the probe and the sample. Relative humidity is an important and often neglected—both in experiments and simulations—factor in the interaction force between AFM probe and sample in air. This paper describes the humidity control system designed and built for the interferometrically traceable metrology AFM (IT-MAFM) at VTT MIKES. The humidity control is based on circulating the air of the AFM enclosure via dryer and humidifier paths with adjustable flow and mixing ratio of dry and humid air. The design humidity range of the system is 20–60 %rh. Force–distance adhesion studies at humidity levels between 25 %rh and 53 %rh are presented and compared to an atomistic molecular dynamics (MD) simulation. The uncertainty level of the thermal noise method implementation used for force constant calibration of the AFM cantilevers is 10 %, being the dominant component of the interaction force measurement uncertainty. Comparing the simulation and the experiment, the primary uncertainties are related to the nominally 7 nm radius and shape of measurement probe apex, possible wear and contamination, and the atomistic simulation technique details. The interaction forces are of the same order of magnitude in simulation and measurement (5 nN). An elongation of a few nanometres of the water meniscus between probe tip and sample, before its rupture, is seen in simulation upon retraction of the tip in higher humidity. This behaviour is also supported by the presented experimental measurement data but the data is insufficient to conclusively verify the quantitative meniscus elongation. (paper)

  13. Formaldehyde Emissions from Urea-Formaldehyde- and no-added-formaldehyde-Bonded particleboard as Influenced by Temperature and Relative Humidity

    Science.gov (United States)

    Charles R. Frihart; James M. Wescott; Timothy L. Chaffee; Kyle M. Gonner

    2012-01-01

    It is well documented that temperature and humidity can influence formaldehyde emissions from composite panels that are produced using urea-formaldehyde (UF)–type adhesives. This work investigates the effect of temperature and humidity on newer commercial California Air Resources Board (CARB) phase II–compliant particleboard produced with UF-type adhesives. These...

  14. Passenger evaluation of the optimum balance between fresh air supply and humidity from 7-h exposures in a simulated aircraft cabin

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Wyon, David Peter; Lagercrantz, Love Per

    2007-01-01

    A 21-seat section of an aircraft cabin with realistic pollution sources was built inside a climate chamber capable of providing fresh outside air at very low humidity. Maintaining a constant 200 l/s rate of total air supply, i.e. recircu-lated and make-up air, to the cabin, experiments simulating 7...

  15. Resistance of HEPA filter separator materials to humid air--hydrogen fluoride--fluorine environments

    International Nuclear Information System (INIS)

    Weber, C.W.; Petit, G.S.; Woodfin, S.B.

    1977-01-01

    The U. S. Energy Research and Development Administration (ERDA) is interested in the development of a high-efficiency particulate air (HEPA) filter that is resistant to such corrosive reagents as hydrogen fluoride (HF) and fluorine (F 2 ) in air environments of normal relative humidity (about 50% RH). Several types of separator materials are used in the fabrication of commercial filters. The basic types of separator materials are asbestos, Kraft paper, plastic, and aluminum. At the request of the ERDA Division of Operational Safety, the different types of separator materials have been evaluated for their resistance to corrosive attack by HF and F 2 . The separator materials were dynamically tested in the 4-stage multiunit tester located in the Oak Ridge Gaseous Diffusion Plant laboratories. This is the system previously used in the evaluation of the Herty Foundation filter paper samples. Concurrent with the testing of filter media for its resistance to HF and F 2 , another component of the completed filter, the separator, was tested. All samples were exposed to a constant air flow (50% RH) of 32 liters/min, at 100 0 F, containing 900 ppM HF and 300 ppM F 2 . Exposure periods varied from 2 to 1000 h; however, the longer exposures were made only on the stronger candidates. Test results show the plastic and aluminum separator materials to be superior to the other types in resistance to HF and F 2 . The asbestos separators disintegrated after a relatively short exposure time; the Kraft paper types were the next weakest. The Clear Plastic S was the best performer of the plastics tested

  16. Analysis of heat transfer and frost layer formation on a cryogenic tank wall exposed to the humid atmospheric air

    International Nuclear Information System (INIS)

    Kim, Kyoung-Hoon; Ko, Hyung-Jong; Kim, Kyoungjin; Kim, Yong-Wook; Cho, Kie-Joo

    2009-01-01

    In this paper heat transfer characteristics and frost layer formation are investigated numerically on the surface of a cryogenic oxidizer tank for a liquid propulsion rocket, where a frost layer could be a significant factor in maintaining oxidizer temperature within a required range. Frost formation is modeled by considering mass diffusion of water vapor in the air into the frost layer and various heat transfer modes such as natural and forced convection, latent heat, solar radiation of short wavelength, and ambient radiation of long wavelength. Computational results are first compared with the available measurements and show favorable agreement on thickness and effective thermal conductivity of the frost layer. In the case of the cryogenic tank, a series of parametric studies is presented in order to examine the effects of important parameters such as temperature and wind speed of ambient air, air humidity, and tank wall temperature on the frost layer formation and the amount of heat transfer into the tank. It is found that the heat transfer by solar radiation is significant and also that heat transfer strongly depends on air humidity, ambient air temperature, and wind speed but not tank wall temperature.

  17. INVESTIGATION OF THE HUMIDITY EFFECT ON THE FAC-IR-300 IONIZATION CHAMBER RESPONSE.

    Science.gov (United States)

    Mohammadi, Seyed Mostafa; Tavakoli-Anbaran, Hossein

    2018-02-01

    The free-air ionization chamber is communicating with the ambient air, therefore, the atmospheric parameters such as temperature, pressure and humidity effect on the ionization chamber performance. The free-air ionization chamber, entitled as FAC-IR-300, that design at the Atomic Energy Organization of Iran, AEOI, is required the atmospheric correction factors for correct the chamber reading. In this article, the effect of humidity on the ionization chamber response was investigated. For this reason, was introduced the humidity correction factor, kh. In this article, the Monte Carlo simulation was used to determine the kh factor. The simulation results show in relative humidities between 30% to 80%, the kh factor is equal 0.9970 at 20°C and 0.9975 at 22°C. From the simulation results, at low energy the energy dependence of the kh factor is significant and with increasing energy this dependence is negligible. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Recommended values of the humidity correction factor k{sub n} for determining exposure in an X-ray beam with free-air chambers; Valores recomendados del factor de correccion por humedad, k{sub h} para la determinacion de la exposicion en un haz de rayos X usando camaras de paredes de aire

    Energy Technology Data Exchange (ETDEWEB)

    Los Arcos, J M; Brosed, A

    1983-07-01

    The experimental values stated by CCEMRI (Section I) concerning the humidity correction factor k{sub h} required for determining exposure in an X-ray beam with free-air chambers are commented and a method to estimate k{sub n} numerically, at any particular combination of relative humidity, pressure and temperature, la explained. A table of k{sub h}, calculated for relative humidity varying from 0% to 90%, for pressures in the range of 70 kPa to 104kPa and temperatures between 15 degree centigree and 30 degree centigree, is included. (Author) 10 refs.

  19. NOS CO-OPS Meteorological Data, Relative Humidity, 6-Minute

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has Relative Humidity data from NOAA NOS Center for Operational Oceanographic Products and Services (CO-OPS). WARNING: These preliminary data have not...

  20. Relative Humidity Sensing Properties Of Cu2O Doped ZnO Nanocomposite

    International Nuclear Information System (INIS)

    Pandey, N. K.; Tiwari, K.; Tripathi, A.; Roy, A.; Rai, A.; Awasthi, P.

    2009-01-01

    In this paper we report application of Cu 2 O doped ZnO composite prepared by solid state reaction route as humidity sensor. Pellet samples of ZnO-Cu 2 O nanocrystalline powders with 2, 5 and 10 weight% of Cu 2 O in ZnO have been prepared. Pellets have been annealed at temperatures of 200-500 deg. C and exposed to humidity. It is observed that as relative humidity increases, resistance of the pellet decreases for the humidity from 10% to 90%. Sample with 5% of Cu 2 O doped in ZnO and annealed at 500 deg. C shows best results with sensitivity of 1.50 MΩ/%RH. In this case the hysteresis is low and the reproducibility high, making it the suitable candidate for humidity sensing.

  1. Effect of the irradiation temperature and relative humidity on PVG dosifilm

    International Nuclear Information System (INIS)

    Jia Haishun; Chen Wenxiu; Shen Yuxin

    1999-01-01

    The effect of environmental factors, such as irradiation temperature and relative humidity, on the PVG dosifilm irradiated by EB was tested. Experiments show that the temperature coefficient of irradiated PVG dosifilm was 0.008 deg. C -1 from 20 deg. C to 55 deg. C, and the humidity coefficient was 0.006 per r.h. (%) from r.h. 0% to 76%. The PVG dosifilm can be used as a routine dosimeter for dose measurement for low-energy EB processing. The absorbed dose values for various irradiation temperature and humidity can be corrected based on experimental data. (author)

  2. [The balance of harmful trace contaminants between the air humidity condensate and air in a simulator of the Mir orbit station moisture condensation unit].

    Science.gov (United States)

    Zlotopol'skiĭ, V M; Smolenskaia, T S

    2000-01-01

    Subject of the investigation was the balance of harmful trace contaminants (HTC) between the air moisture condensate and air in a simulator of the MIR moisture condensation unit. Experiments involved various classes of water-solvent compounds including alcohols (C1-C4), ketons (C1-C2), aldehydes (C1-C2), fatty acids (C2-C4), esters (acetates C4-C6), and ammonium. For most of the compounds, removal efficiency correlates with air humidity and virtually does not depend on the HTC concentration within the range of 0.25 to 59.1 mg/m3.

  3. The Vertical Structure of Relative Humidity and Ozone in the Tropical Upper Troposphere: Intercomparisons Among In Situ Observations, A-Train Measurements and Large-Scale Models

    Science.gov (United States)

    Selkirk, Henry B.; Manyin, Michael; Douglass, Anne R.; Oman, Luke; Pawson, Steven; Ott, Lesley; Benson, Craig; Stolarski, Richard

    2010-01-01

    In situ measurements in the tropics have shown that in regions of active convection, relative humidity with respect to ice in the upper troposphere is typically close to saturation on average, and supersaturations greater than 20% are not uncommon. Balloon soundings with the cryogenic frost point hygrometer (CFH) at Costa Rica during northern summer, for example, show this tendency to be strongest between 11 and 15.5 km (345-360 K potential temperature, or approximately 250-120 hPa). this is the altitude range of deep convective detrainment. Additionally, simultaneous ozonesonde measurements show that stratospheric air (O3 greater than 150 ppbv) can be found as low as approximately 14 km (350 K/150 hPa). In contrast, results from northern winter show a much drier upper troposphere and little penetration of stratospheric air below the tropopause at 17.5 km (approximately 383 K). We show that these results are consistent with in situ measurements from the Measurement of Ozone and water vapor by Airbus In-service airCraft (MOZAIC) program which samples a wider, though still limited, range of tropical locations. To generalize to the tropics as a whole, we compare our insitu results to data from two A-Train satellite instruments, the Atmospheric Infrared Sounder (AIRS) and the Microwave Limb Sounder (MLS) on the Aqua and Aura satellites respectively. Finally, we examine the vertical structure of water vapor, relative humidity and ozone in the NASA Goddard MERRA analysis, an assimilation dataset, and a new version of the GEOS CCM, a free-running chemistry-climate model. We demonstrate that conditional probability distributions of relative humidity and ozone are a sensitive diagnostic for assessing the representation of deep convection and upper troposphere/lower stratosphere mixing processes in large-scale analyses and climate models.

  4. Effects of relative humidity on banana fruit drop

    NARCIS (Netherlands)

    Saengpook, C.; Ketsa, S.; Doorn, van W.G.

    2007-01-01

    Commercial ripening of banana fruit occurs at high relative humidity (RH), which prevents browning of damaged skin areas. In experiments with ripening at high RH (94 ± 1%) the individual fruit (fingers) of `Sucrier¿ (Musa acuminata, AA Group) banana exhibited a high rate of drop. The falling off of

  5. Daily indoor-to-outdoor temperature and humidity relationships: a sample across seasons and diverse climatic regions.

    Science.gov (United States)

    Nguyen, Jennifer L; Dockery, Douglas W

    2016-02-01

    The health consequences of heat and cold are usually evaluated based on associations with outdoor measurements collected at a nearby weather reporting station. However, people in the developed world spend little time outdoors, especially during extreme temperature events. We examined the association between indoor and outdoor temperature and humidity in a range of climates. We measured indoor temperature, apparent temperature, relative humidity, dew point, and specific humidity (a measure of moisture content in air) for one calendar year (2012) in a convenience sample of eight diverse locations ranging from the equatorial region (10 °N) to the Arctic (64 °N). We then compared the indoor conditions to outdoor values recorded at the nearest airport weather station. We found that the shape of the indoor-to-outdoor temperature and humidity relationships varied across seasons and locations. Indoor temperatures showed little variation across season and location. There was large variation in indoor relative humidity between seasons and between locations which was independent of outdoor airport measurements. On the other hand, indoor specific humidity, and to a lesser extent dew point, tracked with outdoor, airport measurements both seasonally and between climates, across a wide range of outdoor temperatures. These results suggest that, in general, outdoor measures of actual moisture content in air better capture indoor conditions than outdoor temperature and relative humidity. Therefore, in studies where water vapor is among the parameters of interest for examining weather-related health effects, outdoor measurements of actual moisture content can be more reliably used as a proxy for indoor exposure than the more commonly examined variables of temperature and relative humidity.

  6. Limiting criteria for human exposure to low humidity indoors

    DEFF Research Database (Denmark)

    Wyon, David; Fang, Lei; Meyer, H.

    2002-01-01

    Thirty subjects (17 female) were exposed for 5 hours to clean air at 5%, 15%, 25% and 35% RH at 22 deg.C. Another 30 subjects (15 female) were similarly exposed to air polluted by carpet and linoleum at 18, 22 and 26 deg.C with humidity 2.4 g/kg dry air (=15% RH at 22 deg.C), and at 22 deg.C, 35......% RH. The subjects performed simulated office work throughout each exposure. Building Related Symptom (BRS) intensity was reported on visual-analogue scales. Tests of eye, nose and skin function were applied. In these short exposures subjective discomfort, though significantly increased by low humidity......, was very moderate even at 5% RH. However, tear film quality as indicated by the Mucous Ferning Test deteriorated significantly at RH22 deg.C, significantly more rapid blink rates were observed at 5% than at 35% RH, and skin became significantly more dry at 15% than at 35% RH....

  7. Corrosion product identification and relative rates of corrosion of candidate metals in an irradiated air-steam environment

    International Nuclear Information System (INIS)

    Reed, D.T.; Swayambunathan, V.; Tani, B.S.; Van Konynenburg, R.A.

    1989-01-01

    Previously reported work by others indicates that dicopper trihydroxide nitrate, Cu 2 NO 3 (OH) 3 , forms on copper and copper alloys subjected to irradiated moist air near room temperature. We have performed experiments over a range of temperature and humidity, and have found that this species is formed at temperatures up to at least 150 degree C if low to intermediate relative humidities are present. At 150 degree C and 100% relative humidity, only Cu 2 O and CuO were observed. The relative general corrosion rates of the copper materials tested in 1-month experiments at dose rates of 0.7 and 2.0 kGy/h were Cu > 70/30 Cu--Ni > Al-bronze. High-nickel alloy 825 showed no observable corrosion. 29 refs., 4 tabs

  8. Angle-tip Fiber Probe as Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Pabitra NATH

    2010-05-01

    Full Text Available In this paper, I present a simple fiber optic relative humidity sensor (FORHS using an angled-tip multimode optical fiber. The sensing region is fabricated by coating moisture sensitive Cobalt Chloride (CoCl2 doped polyvinyl alcohol (PVA film on the surface of fiber optic tip. Light signal introducing from flat-end of the fiber is back-reflected at the fiber tip-air interface by the effect of total internal refection. The change of relative humidity (RH in the outstanding medium affects of evanescent field absorption at the fiber tip-sensing film interface thus, modulates the back-reflected signal. With the present sensing investigation, RH ranging from 5 % to 95 % can be measured with high degree of repeatability and has a fast response time of about 2 seconds.

  9. Behavior of HEPA filters under high humidity airflows

    International Nuclear Information System (INIS)

    Ricketts, C.I.

    1992-10-01

    To help determine and improve the safety margins of High Efficiency Particulate Air (HEPA) filter units in nuclear facilities under possible accident conditions, the structural limits and failure mechanisms of filter in high-humidity airflows were established and the fundamental physical phenomena underlying filter failure or malfunction in humid air were identified. Empirical models for increases in filter pressure drop with time in terms of the relevant airstream parameters were also developed. The weaknesses of currently employed humidity countermeasures used in filter protection are discussed and fundamental explanations for reported filter failures in normal service are given. (orig./DG) [de

  10. Within-Crop Air Temperature and Humidity Outcomes on Spatio-Temporal Distribution of the Key Rose Pest Frankliniella occidentalis.

    Science.gov (United States)

    Fatnassi, Hicham; Pizzol, Jeannine; Senoussi, Rachid; Biondi, Antonio; Desneux, Nicolas; Poncet, Christine; Boulard, Thierry

    2015-01-01

    Frankliniella occidentalis (Pergande) is a key pest of various crops worldwide. In this study, we analyse the dependence of the infestation of this pest on spatially distributed micro climatic factors in a rose greenhouse. Despite the importance of this subject, the few existing studies have been realized in laboratory rather than in greenhouse conditions. However, recent progress on greenhouse microclimate characterisation has highlighted the strong indoor climate heterogeneity that may influence the within-crop pest distribution. In this study, both microclimate (air temperature and humidity) and thrips distribution were simultaneously mapped in a rose greenhouse. The measurements were sensed in a horizontal plane situated at mid-height of the rose crop inside the greenhouse. Simultaneously, thrips population dynamics were assessed after an artificial and homogeneous infestation of the rose crop. The spatio-temporal distribution of climate and thrips within the greenhouse were compared, and links between thrips infestation and climatic conditions were investigated. A statistical model was used to define the favourable climate conditions for thrips adults and larvae. Our results showed that (i) the air temperature and air humidity were very heterogeneously distributed within the crop, (ii) pest populations aggregated in the most favourable climatic areas and (iii) the highest population density of thrips adults and larvae were recorded at 27°C and 22°C for temperature and 63% and 86% for humidity, respectively. These findings confirm, in real rose cropping conditions, previous laboratory studies on the F. occidentalis climatic optimum and provide a solid scientific support for climatic-based control methods against this pest.

  11. Within-Crop Air Temperature and Humidity Outcomes on Spatio-Temporal Distribution of the Key Rose Pest Frankliniella occidentalis.

    Directory of Open Access Journals (Sweden)

    Hicham Fatnassi

    Full Text Available Frankliniella occidentalis (Pergande is a key pest of various crops worldwide. In this study, we analyse the dependence of the infestation of this pest on spatially distributed micro climatic factors in a rose greenhouse. Despite the importance of this subject, the few existing studies have been realized in laboratory rather than in greenhouse conditions. However, recent progress on greenhouse microclimate characterisation has highlighted the strong indoor climate heterogeneity that may influence the within-crop pest distribution. In this study, both microclimate (air temperature and humidity and thrips distribution were simultaneously mapped in a rose greenhouse. The measurements were sensed in a horizontal plane situated at mid-height of the rose crop inside the greenhouse. Simultaneously, thrips population dynamics were assessed after an artificial and homogeneous infestation of the rose crop. The spatio-temporal distribution of climate and thrips within the greenhouse were compared, and links between thrips infestation and climatic conditions were investigated. A statistical model was used to define the favourable climate conditions for thrips adults and larvae. Our results showed that (i the air temperature and air humidity were very heterogeneously distributed within the crop, (ii pest populations aggregated in the most favourable climatic areas and (iii the highest population density of thrips adults and larvae were recorded at 27°C and 22°C for temperature and 63% and 86% for humidity, respectively. These findings confirm, in real rose cropping conditions, previous laboratory studies on the F. occidentalis climatic optimum and provide a solid scientific support for climatic-based control methods against this pest.

  12. Morphological and Relative Humidity Sensing Properties of Pure ZnO Nanomaterial

    Directory of Open Access Journals (Sweden)

    N. K. Pandey

    2010-11-01

    Full Text Available In this paper we report the resistive type humidity sensing properties of pure ZnO nanomaterial prepared by solid-state reaction method. Pellets of pure ZnO nanocrystalline powder have been made with 10 weight % of glass powder at pressure of 260 MPa by hydraulic press machine for 3 hours. These pellets have been sintered at temperatures 200 °C - 500 °C in an electric muffle furnace for 3 hours at heating rate of 5°C/min. After sintering, these pellets have been exposed to humidity in a specially designed humidity chamber at room temperature. It has been observed that as relative humidity increases, resistance of the pellets decreases for entire range of humidity i.e. 10 % to 90 %. The sensing element of ZnO shows best results with sensitivity of 11.13 MΩ/%RH for the annealing temperature of 400 °C. This sensing element manifests lower hysteresis, less effect of aging and high reproducibility for annealing temperature 400 °C. SEM micrographs show that the sensing elements manifest porous structure with a network of pores that are expected to provide sites for humidity adsorption. The average grain size calculated from SEM micrograph is 236 nm. XRD pattern shows peaks of hexagonal zincite. As calculated from Scherer’s formula, the average crystalline size for this sensing element is 59.4 nm. For this sensing element, the values of activation energy from the Arrhenius plot is 0.041 eV for temperature range 200 °C - 400 °C and 0.393 eV for temperature range 400 °C - 500 °C. The adsorption of water molecules on the surface takes place via a dissociative chemisorption process leading to release of electrons. ZnO has electron vacancy. Hence, because of this reaction, the electrons are accumulated at the ZnO surface and consequently, the resistance of the sensing element decreases with increase in relative humidity.

  13. Relationships of relative humidity with PM2.5 and PM10 in the Yangtze River Delta, China.

    Science.gov (United States)

    Lou, Cairong; Liu, Hongyu; Li, Yufeng; Peng, Yan; Wang, Juan; Dai, Lingjun

    2017-10-23

    Severe particulate matter (PM, including PM 2.5 and PM 10 ) pollution frequently impacts many cities in the Yangtze River Delta (YRD) in China, which has aroused growing concern. In this study, we examined the associations between relative humidity (RH) and PM pollution using the equal step-size statistical method. Our results revealed that RH had an inverted U-shaped relationship with PM 2.5 concentrations (peaking at RH = 45-70%), and an inverted V-shaped relationship (peaking at RH = 40 ± 5%) with PM 10 , SO 2 , and NO 2 . The trends of polluted-day number significantly changed at RH = 70%. The very-dry (RH humidity (RH = 60-70%) conditions positively affected PM 2.5 and exerted an accumulation effect, while the mid-humidity (RH = 70-80%), high-humidity (RH = 80-90%), and extreme-humidity (RH = 90-100%) conditions played a significant role in reducing particle concentrations. For PM 10 , the accumulation and reduction effects of RH were split at RH = 45%. Moreover, an upward slope in the PM 2.5 /PM 10 ratio indicated that the accumulation effects from increasing RH were more intense on PM 2.5 than on PM 10 , while the opposite was noticed for the reduction effects. Secondary transformations from SO 2 and NO 2 to sulfate and nitrate were mainly responsible for PM 2.5 pollution, and thus, controlling these precursors is effective in mitigating the PM pollution in the YRD, especially during winter. The conclusions in this study will be helpful for regional air-quality management.

  14. The effect of relative humidity on germination of Sporangia of Phytophthora ramorum

    Science.gov (United States)

    Sporangia of three isolates of P. ramorum representing three different clonal lineages were subjected to relative humidity (RH) levels between 80 and 100% for exposure periods ranging from 1 to 24 h at 20°C in darkness. Airtight snap-lid plastic containers (21.5 x 14.5 x 5 cm) were used as humidity ...

  15. A calibration facility to provide traceable calibration to upper air humidity measuring sensors

    Science.gov (United States)

    Cuccaro, Rugiada; Rosso, Lucia; Smorgon, Denis; Beltramino, Giulio; Fernicola, Vito

    2017-04-01

    Accurate knowledge and high quality measurement of the upper air humidity and of its profile in atmosphere is essential in many areas of the atmospheric research, for example in weather forecasting, environmental pollution studies and research in meteorology and climatology. Moving from the troposphere to the stratosphere, the water vapour amount varies between some percent to few part per million. For this reason, through the years, several methods and instruments have been developed for the measurement of the humidity in atmosphere. Among the instruments used for atmospheric sounding, radiosondes, airborne and balloon-borne chilled mirror hygrometer (CMH) and tunable diode laser absorption spectrometers (TDLAS) play a key role. To avoid the presence of unknown biases and systematic errors and to obtain accurate and reliable humidity measurements, these instruments need a SI-traceable calibration, preferably carried out in conditions similar to those expected in the field. To satisfy such a need, a new calibration facility has been developed at INRIM. The facility is based on a thermodynamic-based frost-point generator designed to achieve a complete saturation of the carrier gas with a single passage through an isothermal saturator. The humidity generator covers the frost point temperature range between -98 °C and -20 °C and is able to work at any controlled pressure between 200 hPa and 1000 hPa (corresponding to a barometric altitude between ground level and approximately 12000 m). The paper reports the work carried out to test the generator performances, discusses the results and presents the evaluation of the measurement uncertainty. The present work was carried out within the European Joint Research Project "MeteoMet 2 - Metrology for Essential Climate Variables" co-funded by the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

  16. A distribution law for relative humidity in the upper troposphere and lower stratosphere derived from three years of MOZAIC measurements

    Directory of Open Access Journals (Sweden)

    K. Gierens

    1999-09-01

    Full Text Available Data from three years of MOZAIC measurements made it possible to determine a distribution law for the relative humidity in the upper troposphere and lower stratosphere. Data amounting to 13.5% of the total were obtained in regions with ice supersaturation. Troposphere and stratosphere are distinguished by an ozone concentration of 130 ppbv as threshold. The probability of measuring a certain amount of ice supersaturation in the troposphere decreases exponentially with the degree of ice supersaturation. The probability of measuring a certain relative humidity in the stratosphere (both with respect to water and ice decreases exponentially with the relative humidity. A stochastic model that naturally leads to the exponential distribution is provided. Mean supersaturation in the troposphere is about 15%, whereas ice nucleation requires 30% supersaturation on the average. This explains the frequency of regions in which aircraft induce persistent contrails but which are otherwise free of clouds. Ice supersaturated regions are 3-4 K colder and contain more than 50% more vapour than other regions in the upper troposphere. The stratospheric air masses sampled are dry, as expected, having mean relative humidity over water of 12% and over ice of 23%, respectively. However, 2% of the stratospheric data indicate ice supersaturation. As the MOZAIC measurements have been obtained on commercial flights mainly between Europe and North America, the data do not provide a complete global picture, but the exponential character of the distribution laws found is probably valid globally. Since water vapour is the most important greenhouse gas and since it might enhance the anthropogenic greenhouse effects via positive feedback mechanisms, it is important to represent its distribution correctly in climate models. The discovery of the distribution law of the relative humidity makes possible simple tests to show whether the hydrological cycle in climate models is

  17. Bond Strength of Resin Composite to Dentin with Different Adhesive Systems: Influence of Relative Humidity and Application Time.

    Science.gov (United States)

    Amsler, Fabienne; Peutzfeldt, Anne; Lussi, Adrian; Flury, Simon

    2015-06-01

    To investigate the influence of relative humidity and application time on bond strength to dentin of different classes of adhesive systems. A total of 360 extracted human molars were ground to mid-coronal dentin. The dentin specimens were treated with one of six adhesive systems (Syntac Classic, OptiBond FL, Clearfil SE Bond, AdheSE, Xeno Select, or Scotchbond Universal), and resin composite (Filtek Z250) was applied to the treated dentin surface under four experimental conditions (45% relative humidity/application time according to manufacturers' instructions; 45% relative humidity/reduced application time; 85% relative humidity/application time according to manufacturers' instructions; 85% relative humidity/reduced application time). After storage (37°C, 100% humidity, 24 h), shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by Kruskal-Wallis tests and Mann-Whitney U-tests with Bonferroni-Holm correction for multiple testing (level of significance: α = 0.05). Increased relative humidity and reduced application time had no effect on SBS for Clearfil SE Bond and Scotchbond Universal (p = 1.00). For Syntac Classic, OptiBond FL, AdheSE, and Xeno Select there was no effect on SBS of reduced application time of the adhesive system (p ≥ 0.403). However, increased relative humidity significantly reduced SBS for Syntac Classic, OptiBond FL, and Xeno Select irrespective of application time (p ≤ 0.003), whereas for AdheSE, increased relative humidity significantly reduced SBS at recommended application time only (p = 0.002). Generally, increased relative humidity had a detrimental effect on SBS to dentin, but reduced application time had no effect.

  18. Relative Humidity Sensor Based on No-Core Fiber Coated by Agarose-Gel Film

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2017-10-01

    Full Text Available A relative humidity (RH sensor based on single-mode–no-core–single-mode fiber (SNCS structure is proposed and experimentally demonstrated. The agarose gel is coated on the no-core fiber (NCF as the cladding, and multimode interference (MMI occurs in the SNCS structure. The transmission spectrum of the sensor is modulated at different ambient relative humidities due to the tunable refractive index property of the agarose gel film. The relative humidity can be measured by the wavelength shift and intensity variation of the dip in the transmission spectra. The humidity response of the sensors, coated with different concentrations and coating numbers of the agarose solution, were experimentally investigated. The wavelength and intensity sensitivity is obtained as −149 pm/%RH and −0.075 dB/%RH in the range of 30% RH to 75% RH, respectively. The rise and fall time is tested to be 4.8 s and 7.1 s, respectively. The proposed sensor has a great potential in real-time RH monitoring.

  19. Laboratory study of SO2 dry deposition on limestone and marble: Effects of humidity and surface variables

    Science.gov (United States)

    Spiker, E. C.; Hosker, R.P.; Weintraub, V.C.; Sherwood, S.I.

    1995-01-01

    The dry deposition of gaseous air pollutants on stone and other materials is influenced by atmospheric processes and the chemical characteristics of the deposited gas species and of the specific receptor material. Previous studies have shown that relative humidity, surface moisture, and acid buffering capability of the receptor surface are very important factors. To better quantify this behavior, a special recirculating wind tunnel/environmental chamber was constructed, in which wind speed, turbulence, air temperature, relative humidity, and concentrations of several pollutants (SO2, O3, nitrogen oxides) can be held constant. An airfoil sample holder holds up to eight stone samples (3.8 cm in diameter and 1 cm thick) in nearly identical exposure conditions. SO2 deposition on limestone was found to increase exponentially with increasing relative humidity (RH). Marble behaves similarly, but with a much lower deposition rate. Trends indicate there is little deposition below 20% RH on clean limestone and below 60% RH on clean marble. This large difference is due to the limestone's greater porosity, surface roughness, and effective surface area. These results indicate surface variables generally limit SO2 deposition below about 70% RH on limestone and below at least 95% RH on marble. Aerodynamic variables generally limit deposition at higher relative humidity or when the surface is wet.The dry deposition of gaseous air pollutants on stone and other materials is influenced by atmospheric processes and the chemical characteristics of the deposited gas species and of the specific receptor material. Previous studies have shown that relative humidity, surface moisture, and acid buffering capability of the receptor surface are very important factors. To better quantify this behavior, a special recirculating wind tunnel/environmental chamber was constructed, in which wind speed, turbulence, air temperature, relative humidity, and concentrations of several pollutants (SO2, O3

  20. Relation of temperature and humidity to the risk of recurrent gout attacks.

    Science.gov (United States)

    Neogi, Tuhina; Chen, Clara; Niu, Jingbo; Chaisson, Christine; Hunter, David J; Choi, Hyon; Zhang, Yuqing

    2014-08-15

    Gout attack risk may be affected by weather (e.g., because of volume depletion). We therefore examined the association of temperature and humidity with the risk of recurrent gout attacks by conducting an internet-based case-crossover study in the United States (in 2003-2010) among subjects with a diagnosis of gout who had 1 or more attacks during 1 year of follow-up. We examined the association of temperature and humidity over the prior 48 hours with the risk of gout attacks using a time-stratified approach and conditional logistic regression. Among 632 subjects with gout, there was a significant dose-response relationship between mean temperature in the prior 48 hours and the risk of subsequent gout attack (P = 0.01 for linear trend). Higher temperatures were associated with approximately 40% higher risk of gout attack compared with moderate temperatures. There was a reverse J-shaped relationship between mean relative humidity and the risk of gout attacks (P = 0.03 for quadratic trend). The combination of high temperature and low humidity had the greatest association (odds ratio = 2.04, 95% confidence interval: 1.26, 3.30) compared with moderate temperature and relative humidity. Thus, high ambient temperature and possibly extremes of humidity were associated with an increased risk of gout attack, despite the likelihood that individuals are often in climate-controlled indoor environments. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Horizontal Air-Ground Heat Exchanger Performance and Humidity Simulation by Computational Fluid Dynamic Analysis

    Directory of Open Access Journals (Sweden)

    Paolo Maria Congedo

    2016-11-01

    Full Text Available Improving energy efficiency in buildings and promoting renewables are key objectives of European energy policies. Several technological measures are being developed to enhance the energy performance of buildings. Among these, geothermal systems present a huge potential to reduce energy consumption for mechanical ventilation and cooling, but their behavior depending on varying parameters, boundary and climatic conditions is not fully established. In this paper a horizontal air-ground heat exchanger (HAGHE system is studied by the development of a computational fluid dynamics (CFD model. Summer and winter conditions representative of the Mediterranean climate are analyzed to evaluate operation and thermal performance differences. A particular focus is given to humidity variations as this parameter has a major impact on indoor air quality and comfort. Results show the benefits that HAGHE systems can provide in reducing energy consumption in all seasons, in summer when free-cooling can be implemented avoiding post air treatment using heat pumps.

  2. Comparison of land surface humidity between observations and CMIP5 models

    Science.gov (United States)

    Dunn, Robert J. H.; Willett, Kate M.; Ciavarella, Andrew; Stott, Peter A.

    2017-08-01

    We compare the latest observational land surface humidity dataset, HadISDH, with the latest generation of climate models extracted from the CMIP5 archive and the ERA-Interim reanalysis over the period 1973 to present. The globally averaged behaviour of HadISDH and ERA-Interim are very similar in both humidity measures and air temperature, on decadal and interannual timescales. The global average relative humidity shows a gradual increase from 1973 to 2000, followed by a steep decline in recent years. The observed specific humidity shows a steady increase in the global average during the early period but in the later period it remains approximately constant. None of the CMIP5 models or experiments capture the observed behaviour of the relative or specific humidity over the entire study period. When using an atmosphere-only model, driven by observed sea surface temperatures and radiative forcing changes, the behaviour of regional average temperature and specific humidity are better captured, but there is little improvement in the relative humidity. Comparing the observed climatologies with those from historical model runs shows that the models are generally cooler everywhere, are drier and less saturated in the tropics and extra-tropics, and have comparable moisture levels but are more saturated in the high latitudes. The spatial pattern of linear trends is relatively similar between the models and HadISDH for temperature and specific humidity, but there are large differences for relative humidity, with less moistening shown in the models over the tropics and very little at high latitudes. The observed drying in mid-latitudes is present at a much lower magnitude in the CMIP5 models. Relationships between temperature and humidity anomalies (T-q and T-rh) show good agreement for specific humidity between models and observations, and between the models themselves, but much poorer for relative humidity. The T-q correlation from the models is more steeply positive than

  3. Induction of genetic changes in Saccharomyces cerevisiae by partial drying in air of constant relative humidity and by UV

    International Nuclear Information System (INIS)

    Hieda, K.

    1981-01-01

    It was investigated whether there was a critical degree of dryness for induction of genetic changes by drying. Saccharomyces cerevisiae cells were dried in air of 0.33, 53 and 76% relative humidity (RH). The frequencies of mitotic recombination at ade2, of gene conversion at leu1, and of gene mutation at can1 were measured in X2447, XS1473 and S288C strains, respectively. After the cells had been dried at 0% RH for 4 h the frequencies of the genetic changes at ade2, leu1 and can1 were, respectively, 56, 7 and 3.5 times higher than each spontaneous frequency. Induction rates, defined as the frequencies of the induced genetic changes per unit time (1 h) of drying, were greatly decreased with increase in RH. Partial drying in air of 76% RH up to 4 and 8 h induced no genetic change at ade2 and leu1, respectively. It was concluded, therefore, that drying at a certain RH between 53 and 76% gave the critical degreee of dryness of cells for the induction of the genetic changes. The water contents of cells (g water per g dry material) were 12% at 53% RH and 21% at 76% RH, whereas the water content of native cells was 212%. Removal of a large amount of cellular water had no effect on the induction of the genetic changes. UV sensitivity of partially dried cells of X2447 for the induction of the genetic change at ade2 drastically increased with decrease in RH between 76 and 53%. The drastic change in the UV sensitivity suggested that photochemical reactivity of DNA of chromosome XV, in which the ade2 locus is located, changed between 76 and 53% RH. It seems that the genetic changes were induced only in the low RH region where DNA in vivo had a different photochemical reactivity. (orig.)

  4. Experimental drying shrinkage of hardened cement pastes as a function of relative humidity

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Baroghel, V.B.

    1996-01-01

    The results of an experimental study concerning drying shrinkage measured as a function of relative humidity on thin specimens of mature hardened cement pastes are presented. The results obtained at two laboratories are compared.......The results of an experimental study concerning drying shrinkage measured as a function of relative humidity on thin specimens of mature hardened cement pastes are presented. The results obtained at two laboratories are compared....

  5. Stomata of the CAM plant Tillandsia recurvata respond directly to humidity.

    Science.gov (United States)

    Lange, O L; Medina, E

    1979-01-01

    Under controlled conditions, CO 2 exchange of Tillandsia recurvata showed all characteristics of CAM. During the phase of nocturnal CO 2 fixation stomata of the plant responded sensitively to changes in ambient air humidity. Dry air resulted in an increase, moist air in a decrease of diffusion resistance. The evaporative demand of the air affected the level of stomatal resistance during the entire night period. Due to stomatal closure, the total nocturnal water loss of T. recurvata was less at low than at high humidity. It is concluded that stomata respond directly to humidity and not via bulk tissue water conditions of the leaves. Such control of transpiration may optimize water use efficiency for this almost rootless, extreme epiphyte.

  6. Tapered Fiber Coated with Hydroxyethyl Cellulose/Polyvinylidene Fluoride Composite for Relative Humidity Sensor

    Directory of Open Access Journals (Sweden)

    M. Z. Muhammad

    2013-01-01

    Full Text Available A simple relative humidity (RH sensor is demonstrated using a tapered fiber coated with hydroxyethyl cellulose/polyvinylidene fluoride (HEC/PVDF composite as a probe. This coating acts as an inner cladding whose refractive index decreases with the rise in humidity and thus allows more light to be transmitted in humid state. A difference of up to 0.89 dB of the transmitted optical power is observed when RH changes from 50% to 80% in case of the silica fiber probe. The proposed sensor has a sensitivity of about 0.0228 dB/%RH with a slope linearity of more than 99.91%. In case of the plastic optical fiber (POF probe, the output voltage of the sensor increases linearly with a sensitivity of 0.0231 mV/%RH and a linearity of more than 99.65% as the relative humidity increases from 55% to 80%.

  7. Thermal Effectiveness of Wall Indoor Fountain in Warm Humid Climate

    Science.gov (United States)

    Seputra, J. A. P.

    2018-03-01

    Nowadays, many buildings wield indoor water features such as waterfalls, fountains, and water curtains to improve their aesthetical value. Despite the provision of air cooling due to water evaporation, this feature also has adverse effect if applied in warm humid climate since evaporation might increase air humidity beyond the comfort level. Yet, there are no specific researches intended to measure water feature’s effect upon its thermal condition. In response, this research examines the influence of evaporative cooling on indoor wall fountain toward occupant’s thermal comfort in warm humid climate. To achieve this goal, case study is established in Waroeng Steak Restaurant’s dining room in Surakarta-Indonesia. In addition, SNI 03-6572-2001 with comfort range of 20.5–27.1°C and 40-60% of relative humidity is utilized as thermal criterion. Furthermore, Computational Fluid Dynamics (CFD) is employed to process the data and derive conclusions. Research variables are; feature’s height, obstructions, and fan types. As results, Two Bumps Model (ToB) is appropriate when employs natural ventilation. However, if the room is mechanically ventilated, Three Bumps Model (TeB) becomes the best choice. Moreover, application of adaptive ventilation is required to maintain thermal balance.

  8. Stable and Selective Humidity Sensing Using Stacked Black Phosphorus Flakes.

    Science.gov (United States)

    Yasaei, Poya; Behranginia, Amirhossein; Foroozan, Tara; Asadi, Mohammad; Kim, Kibum; Khalili-Araghi, Fatemeh; Salehi-Khojin, Amin

    2015-10-27

    Black phosphorus (BP) atomic layers are known to undergo chemical degradation in humid air. Yet in more robust configurations such as films, composites, and embedded structures, BP can potentially be utilized in a large number of practical applications. In this study, we explored the sensing characteristics of BP films and observed an ultrasensitive and selective response toward humid air with a trace-level detection capability and a very minor drift over time. Our experiments show that the drain current of the BP sensor increases by ∼4 orders of magnitude as the relative humidity (RH) varies from 10% to 85%, which ranks it among the highest ever reported values for humidity detection. The mechanistic studies indicate that the operation principle of the BP film sensors is based on the modulation in the leakage ionic current caused by autoionization of water molecules and ionic solvation of the phosphorus oxoacids produced on moist BP surfaces. Our stability tests reveal that the response of the BP film sensors remains nearly unchanged after prolonged exposures (up to 3 months) to ambient conditions. This study opens up the route for utilizing BP stacked films in many potential applications such as energy generation/storage systems, electrocatalysis, and chemical/biosensing.

  9. Use of personalized ventilation for improving health, comfort, and performance at high room temperature and humidity

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Skwarczynski, Mariusz; Kaczmarczyk, J.

    2013-01-01

    in five 4-h experiments in a climate chamber. Under the conditions with PV, the subjects were able to control the rate and direction of the supplied personalized flow of clean air. Subjective responses were collected through questionnaires. During all exposures, the subjects were occupied with tasks used......The effect of personalized ventilation (PV) on people's health, comfort, and performance in a warm and humid environment (26 and 28°C at 70% relative humidity) was studied and compared with their responses in a comfortable environment (23°C and 40% relative humidity). Thirty subjects participated...... to assess their performance. Objective measures of tear film stability, concentration of stress biomarkers in saliva, and eye blinking rate were taken. Using PV significantly improved the perceived air quality (PAQ) and thermal sensation and decreased the intensity of Sick Building Syndrome (SBS) symptoms...

  10. Artificial Fruit: Postharvest Online Monitoring of Agricultural Food by Measuring Humidity and Temperature

    Science.gov (United States)

    Hübert, T.; Lang, C.

    2012-09-01

    An online monitoring of environmental and inherent product parameters is required during transportation and storage of fruit and vegetables to avoid quality degradation and spoilage. The control of transpiration losses is suggested as an indicator for fruit freshness by humidity measurements. For that purpose, an electronic sensor is surrounded by a wet porous fiber material which is in contact with the outer atmosphere. Transpiration reduces the water content of the porous material and thus also the internal water activity. The sensor system, known as "artificial fruit," measures the relative humidity and temperature inside the wet material. Humidity and temperature data are collected and transmitted on demand by a miniaturized radio communication unit. The decrease in the measured relative humidity has been calibrated against the mass loss of tomatoes under different external influencing parameters such as temperature, humidity, and air flow. Current battery life allows the sensor system, embedded in a fruit crate, to transmit data on transpiration losses via radio transmission for up to two weeks.

  11. Recent Improvements in Retrieving Near-Surface Air Temperature and Humidity Using Microwave Remote Sensing

    Science.gov (United States)

    Roberts, J. Brent

    2010-01-01

    Detailed studies of the energy and water cycles require accurate estimation of the turbulent fluxes of moisture and heat across the atmosphere-ocean interface at regional to basin scale. Providing estimates of these latent and sensible heat fluxes over the global ocean necessitates the use of satellite or reanalysis-based estimates of near surface variables. Recent studies have shown that errors in the surface (10 meter)estimates of humidity and temperature are currently the largest sources of uncertainty in the production of turbulent fluxes from satellite observations. Therefore, emphasis has been placed on reducing the systematic errors in the retrieval of these parameters from microwave radiometers. This study discusses recent improvements in the retrieval of air temperature and humidity through improvements in the choice of algorithms (linear vs. nonlinear) and the choice of microwave sensors. Particular focus is placed on improvements using a neural network approach with a single sensor (Special Sensor Microwave/Imager) and the use of combined sensors from the NASA AQUA satellite platform. The latter algorithm utilizes the unique sampling available on AQUA from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A). Current estimates of uncertainty in the near-surface humidity and temperature from single and multi-sensor approaches are discussed and used to estimate errors in the turbulent fluxes.

  12. Research on Using the Naturally Cold Air and the Snow for Data Center Air-conditioning, and Humidity Control

    Science.gov (United States)

    Tsuda, Kunikazu; Tano, Shunichi; Ichino, Junko

    To lower power consumption has becomes a worldwide concern. It is also becoming a bigger area in Computer Systems, such as reflected by the growing use of software-as-a-service and cloud computing whose market has increased since 2000, at the same time, the number of data centers that accumulates and manages the computer has increased rapidly. Power consumption at data centers is accounts for a big share of the entire IT power usage, and is still rapidly increasing. This research focuses on the air-conditioning that occupies accounts for the biggest portion of electric power consumption by data centers, and proposes to develop a technique to lower the power consumption by applying the natural cool air and the snow for control temperature and humidity. We verify those effectiveness of this approach by the experiment. Furthermore, we also examine the extent to which energy reduction is possible when a data center is located in Hokkaido.

  13. Hydration behaviour of synthetic saponite at variable relative humidity

    Indian Academy of Sciences (India)

    Hydration behaviour of synthetic saponite was examined by X-ray powder diffraction simulation at various relative humidities (RH). The basal spacing of the Ca-saponite increased stepwise with increase in RH. The (00) reflections observed reflect single or dual hydration states of smectite. Quasi-rational, intermediate, or ...

  14. Experimental investigation of air relative humidity (RH) cycling tests on MEA/cell aging in PEMFC. Pt. I. Study of high RH cycling test with air RH at 62%/100%

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.T.; Chatillon, Y.; Bonnet, C.; Lapicque, F. [Laboratoire Reactions et Genie des Procedes, CNRS-Nancy University, Nancy (France); Leclerc, S. [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, CNRS-Nancy University, Vandoeuvre-les-Nancy (France); Hinaje, M.; Rael, S. [Groupe de Recherche en Electrotechnique et Electronique de Nancy, CNRS-Nancy University, Vandoeuvre-les-Nancy (France)

    2012-06-15

    The effect of high air relative humidity (RH) cycling (RH{sub C} 62%/100%) on the degradation mechanisms of a single (5 x 5 cm{sup 2}) proton exchange membrane fuel cells was investigated. The cell performance was compared to a cell operated at constant humidification (RH{sub C} = 62%). Runs were conducted over approximately 1,500 h at 0.3 A cm{sup -2}. The overall loss in cell performance for the high RH cycling test was 12 {mu}V h{sup -1} whereas it was at 3 {mu}V h{sup -1} under constant humidification. Impedance spectroscopy reveals that the ohmic and charge transfer resistances were little modified in both runs. H{sub 2} crossover measurement indicated that both high RH cycling and constant RH test did not promote serious effect on gas permeability. The electroactive surface loss for anode and cathode during high air RH cycling was more significant than at constant RH operation. The water uptake determined by {sup 1}H nuclear magnetic resonance within the membrane electrode assembly (MEA) after high RH cycling was reduced by 12% in comparison with a fresh MEA. Transmission electron microscopy showed bubbles and pinholes formation in the membrane, catalyst particles agglomeration (also observed by X-ray diffraction), catalyst particles migration in the membrane and thickness reduction of the catalytic layers. Scanning electron microscopy was conducted to observe the changes in morphology of gas diffusion layers after the runs. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Tribology of Si/SiO2 in humid air: transition from severe chemical wear to wearless behavior at nanoscale.

    Science.gov (United States)

    Chen, Lei; He, Hongtu; Wang, Xiaodong; Kim, Seong H; Qian, Linmao

    2015-01-13

    Wear at sliding interfaces of silicon is a main cause for material loss in nanomanufacturing and device failure in microelectromechanical system (MEMS) applications. However, a comprehensive understanding of the nanoscale wear mechanisms of silicon in ambient conditions is still lacking. Here, we report the chemical wear of single crystalline silicon, a material used for micro/nanoscale devices, in humid air under the contact pressure lower than the material hardness. A transmission electron microscopy (TEM) analysis of the wear track confirmed that the wear of silicon in humid conditions originates from surface reactions without significant subsurface damages such as plastic deformation or fracture. When rubbed with a SiO2 ball, the single crystalline silicon surface exhibited transitions from severe wear in intermediate humidity to nearly wearless states at two opposite extremes: (a) low humidity and high sliding speed conditions and (b) high humidity and low speed conditions. These transitions suggested that at the sliding interfaces of Si/SiO2 at least two different tribochemical reactions play important roles. One would be the formation of a strong "hydrogen bonding bridge" between hydroxyl groups of two sliding interfaces and the other the removal of hydroxyl groups from the SiO2 surface. The experimental data indicated that the dominance of each reaction varies with the ambient humidity and sliding speed.

  16. Strategies for humidity control

    Energy Technology Data Exchange (ETDEWEB)

    Baumgarth, S

    1987-01-01

    Humidity and temperature control in air-conditioning systems mostly involves coupled closed-loop control circuits. The author discusses their uncoupling and resulting consequences as well as energy-optimized control of recirculation air flaps or enthalpy recovering systems (h-x control) in detail. Special reference is made of the application of the DDC technology and its scope, limits and preconditions. In conclusions, the author presents pertinent measurement results. (orig.).

  17. Low-cost personal cooling in hot humid offices

    DEFF Research Database (Denmark)

    Gunnarsen, Lars Bo; Santos, A.

    This report presents a low cost solution to avoid heat stress in a hot and humid environment based on a solar powered drying of supply air. The air drying facilities and a validation of the benefits through comprehensive human exposure studies are described. The study represents an example...... of applied participative research performed in a developing country. The report may be used as a background for the improvement of the indoor climate in poor, hot and humid regions without increased use of electricity....

  18. Adaptive Thermal Comfort in Japanese Houses during the Summer Season: Behavioral Adaptation and the Effect of Humidity

    Directory of Open Access Journals (Sweden)

    Hom B. Rijal

    2015-09-01

    Full Text Available In order to clarify effect of humidity on the room temperatures reported to be comfortable, an occupant thermal comfort and behavior survey was conducted for five summers in the living rooms and bedrooms of residences in the Kanto region of Japan. We have collected 13,525 thermal comfort votes from over 239 residents of 120 homes, together with corresponding measurements of room temperature and humidity of the air. The residents were generally well-satisfied with the thermal environment of their houses, with or without the use of air-conditioning, and thus were well-adapted to their thermal conditions. The humidity was found to have very little direct effect on the comfort temperature. However, the comfort temperature was strongly related to the reported skin moisture. Behavioral adaptation such as window opening and fan use increase air movement and improve thermal comfort.

  19. Influence of relative humidity on radiosensitivity of Aspergillus flavus Link. infecting cocoa beans

    International Nuclear Information System (INIS)

    Amoako-Atta, B.; Odamtten, G.T.; Appiah, V.

    1981-01-01

    The first part of this paper deals with the moisture sorption isotherms of dried cocoa beans under different relative humidities of 55, 65, 75, 85 or 95%. The second part evaluates the effects of relative humidity (RH), initial moisture content (m.c.) of cocoa beans, and different radiation exposure doses (0, 250, 350, 450, 500 or 550 krad) on Aspergillus flavus spore inoculated cocoa beans kept in fixed RH environmental chamber of 75 or 85% RH post-irradiation for forty days. The results discussed suggest that the m.c. of beans increased from an initial level of 6.4% to 7, 7.8 and 8.9% at 55, 65, and 75% respectively, after a storage period of 6-8 days. However, beans stored under 85% or 95% RH continued to absorb moisture from their respective environments indefinitely during the 64-day storage period. Furthermore, the ambient relative humidity to which the beans are subjected before or after irradiation significantly affect the radiosensitivity of toxigenic A. flavus; the differences in such radiosensitivity are influenced by either the available moisture or the initial m.c. of the beans to the inoculum. The authors conclude from their study that high environmental RH increased the radio-resistance of A. flavus spores making it difficult to establish a radiation decontamination level of practical value under a tropical environment with high ambient relative humidity. (author)

  20. Effect of environmental dust particles on laser textured yttria-stabilized zirconia surface in humid air ambient

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Al-Sharafi, A.; Al-Sulaiman, F.; Karatas, C.

    2018-05-01

    Zirconium nitride is used as a selective surface for concentrated solar heating applications and one of the methods to form a zirconium nitride is texturing of zirconia surface by a high intensity laser beam under high pressure nitrogen gas environment. Laser texturing also provides hydrophobic surface characteristics via forming micro/nano pillars at the surface; however, environmental dust settlement on textured surface influences the surface characteristics significantly. In the present study, laser texturing of zirconia surface and effects of the dust particles on the textured surface in a humid air ambient are investigated. Analytical tools are used to assess the morphological changes on the laser textured surface prior and after the dust settlement in the humid air ambient. It is found that laser textured surface has hydrophobic characteristics. The mud formed during condensate of water on the dust particles alters the characteristics of the laser textured surface. The tangential force required to remove the dry mud from the textured surface remains high; in which case, the dried liquid solution at the mud-textured surface interface is responsible for the strong adhesion of the dry mud on the textured surface. The textured surface becomes hydrophilic after the dry mud was removed from the surface by a desalinated water jet.

  1. Urban-Rural Humidity Contrasts in Mexico City

    Science.gov (United States)

    Jáuregui, E.; Tejeda, A.

    1997-02-01

    Data from one pair of urban-suburban (Tacubaya and Airport) andone pair of urban-rural (School of Mines and Plan Texcoco) temperature and humidity measuring stations were used to illustrate specific humidity(q) contrasts in Mexico City. Results show a marked seasonal variation of q from around 7.9 g kg-1 during the dry months to 10 g kg-1 in the wet season (May-October) on both urban and suburban sites. The mean monthly contrasts for this pair of stations, albeit small, show that the city air is somewhat drier during the first half of the year. Comparison of urban and rural q on an hourly basis shows that although urban air is more humid at night the reverse is true during the afternoon. Areal distribution of q shows two centres of maximum humidity over the city at night and a corresponding minimum during the afternoon. On average the urban-rural contrasts in q were found to be somewhat smaller than the estimated uncertainty. The above results are in agreement with mid-latitude experience.

  2. Effect of Temperature and Relative Humidity on the Growth of ...

    African Journals Online (AJOL)

    were used to determine the temperature effect on the growth of H. fulvum. Maximum growth of H. ... The fungus showed maximum growth at 92.5 and 100% relative humidity. .... recommended that fruits and vegetables should be stored at low ...

  3. Fabrication of a capacitive relative humidity sensor using aluminum thin films deposited on etched printed circuit board

    Directory of Open Access Journals (Sweden)

    Lee Jacqueline Ann L.

    2016-01-01

    Full Text Available A capacitive humidity-sensing device was created by thermal evaporation of 99.999% aluminum. The substrate used for the coating was etched double-sided printed circuit board. The etched printed circuit board serves as the dielectric of the capacitor while the aluminum thin films deposited on either side serve as the plates of the capacitor. The capacitance was measured before and after exposure to humidity. The device was then calibrated by comparing the readings of capacitance with that of the relative humidity sensor of the Vernier LabQuest2. It was found that there is a linear relationship between the capacitance and relative humidity given by the equation C=1.418RH+29.139 where C is the capacitance and RH is the relative humidity. The surface of the aluminum films is porous and it is through these pores that water is adsorbed and capillary condensation occurs, thereby causing the capacitance to change upon exposure to humidity.

  4. Study of the morphology of corrosion features of natural graphite oxidised by dry and humid air

    International Nuclear Information System (INIS)

    Senevat, Jean

    1965-12-01

    The author reports a study which aimed at highlighting the morphology differences between corrosion features which affect flakes of natural graphite oxidised by dry air and by humid air. The study is based on observations made by optical and transmission electronic microscopy, this last one being performed on replicates. As the so-called 'Hennig' replicates did not result in a sufficient resolution of corrosion feature details, another method has been developed. Three classes of samples (in relationship with the rate of impurities present in samples) have been studied. Flakes have thus been sorted and each flake has then been oxidised at different wear rates. This highlights the influence of damages created by impurities in the lattice [fr

  5. Uncertainties in downscaled relative humidity for a semi-arid region ...

    Indian Academy of Sciences (India)

    variables are extracted from the (1) National Centers for Environmental Prediction ... and (2) simulations of the third generation Canadian Coupled Global Climate ... Ef, MAE and P. Cumulative distribution functions were prepared from the ... Climate change; downscaling; hydroclimatology; relative humidity; multi-step linear ...

  6. Transfer Efficiency of Bacteria and Viruses from Porous and Nonporous Fomites to Fingers under Different Relative Humidity Conditions

    Science.gov (United States)

    Gerba, Charles P.; Tamimi, Akrum H.; Kitajima, Masaaki; Maxwell, Sheri L.; Rose, Joan B.

    2013-01-01

    Fomites can serve as routes of transmission for both enteric and respiratory pathogens. The present study examined the effect of low and high relative humidity on fomite-to-finger transfer efficiency of five model organisms from several common inanimate surfaces (fomites). Nine fomites representing porous and nonporous surfaces of different compositions were studied. Escherichia coli, Staphylococcus aureus, Bacillus thuringiensis, MS2 coliphage, and poliovirus 1 were placed on fomites in 10-μl drops and allowed to dry for 30 min under low (15% to 32%) or high (40% to 65%) relative humidity. Fomite-to-finger transfers were performed using 1.0 kg/cm2 of pressure for 10 s. Transfer efficiencies were greater under high relative humidity for both porous and nonporous surfaces. Most organisms on average had greater transfer efficiencies under high relative humidity than under low relative humidity. Nonporous surfaces had a greater transfer efficiency (up to 57%) than porous surfaces (humidity, as well as under high relative humidity (nonporous, up to 79.5%; porous, <13.4%). Transfer efficiency also varied with fomite material and organism type. The data generated can be used in quantitative microbial risk assessment models to assess the risk of infection from fomite-transmitted human pathogens and the relative levels of exposure to different types of fomites and microorganisms. PMID:23851098

  7. Calibration of Relative Humidity Devices in Low-pressure, Low-temperature CO2 Environment

    Science.gov (United States)

    Genzer, Maria; Polkko, Jouni; Nikkanen, Timo; Hieta, Maria; Harri, Ari-Matti

    2017-04-01

    Calibration of relative humidity devices requires in minimum two humidity points - dry (0%RH) and (near)saturation (95-100%RH) - over the expected operational temperature and pressure range of the device. In terrestrial applications these are relatively easy to achieve using for example N2 gas as dry medium, and water vapor saturation chambers for producing saturation and intermediate humidity points. But for example in applications intended for meteorological measurements on Mars there is a need to achieve at least dry and saturation points in low-temperature, low-pressure CO2 environment. We have developed a custom-made, small, relatively low-cost calibration chamber able to produce both dry points and saturation points in Martian range pressure CO2, in temperatures down to -70°C. The system utilizes a commercially available temperature chamber for temperature control, vacuum vessels and pumps. The main pressure vessel with the devices under test inside is placed inside the temperature chamber, and the pressure inside is controlled by pumps and manual valves and monitored with a commercial pressure reference with calibration traceable to national standards. Air, CO2, or if needed another gas like N2, is used for filling the vessel until the desired pressure is achieved. Another pressure vessel with a dedicated pressure pump is used as the saturation chamber. This vessel is placed in the room outside the temperature chamber, partly filled with water and used for achieving saturated water vapor in room-temperature low-pressure environment. The saturation chamber is connected to the main pressure vessel via valves. In this system dry point, low-pressure CO2 environment is achieved by filling the main pressure vessel with dry CO2 gas until the desired pressure is achieved. A constant flow of gas is maintained with the pump and valves and monitored with the pressure reference. The saturation point is then achieved by adding some water vapor from the saturation

  8. Effect of relative humidity on migration of BP from paperboard into a food simulant

    DEFF Research Database (Denmark)

    Barnkob, Line Lundbæk; Petersen, Jens Højslev

    In the scientific literature it is obligatory to control and report the test time and temperature applied when testing migration but it is not current practice to either control or report the relative humidity (RH).......In the scientific literature it is obligatory to control and report the test time and temperature applied when testing migration but it is not current practice to either control or report the relative humidity (RH)....

  9. Effect of inspired air conditions on exercise-induced bronchoconstriction and urinary CC16 levels in athletes.

    Science.gov (United States)

    Bolger, C; Tufvesson, E; Anderson, S D; Devereux, G; Ayres, J G; Bjermer, L; Sue-Chu, M; Kippelen, P

    2011-10-01

    Injury to the airway epithelium has been proposed as a key susceptibility factor for exercise-induced bronchoconstriction (EIB). Our goals were to establish whether airway epithelial cell injury occurs during EIB in athletes and whether inhalation of warm humid air inhibits this injury. Twenty-one young male athletes (10 with a history of EIB) performed two 8-min exercise tests near maximal aerobic capacity in cold dry (4°C, 37% relative humidity) and warm humid (25°C, 94% relative humidity) air on separate days. Postexercise changes in urinary CC16 were used as a biomarker of airway epithelial cell perturbation and injury. Bronchoconstriction occurred in eight athletes in the cold dry environment and was completely blocked by inhalation of warm humid air [maximal fall in forced expiratory volume in 1 s = 18.1 ± 2.1% (SD) in cold dry air and 1.7 ± 0.8% in warm humid air, P air [median CC16 increase pre- to postchallenge = 1.91 and 0.35 ng/μmol in cold dry and warm humid air, respectively, in athletes with EIB (P = 0.017) and 1.68 and 0.48 ng/μmol in cold dry and warm humid air, respectively, in athletes without EIB (P = 0.002)]. The results indicate that exercise hyperpnea transiently disrupts the airway epithelium of all athletes (not only in those with EIB) and that inhalation of warm moist air limits airway epithelial cell perturbation and injury.

  10. Effect of humidity and particle hygroscopicity on the mass loading capacity of high efficiency particulate air (HEPA) filters

    International Nuclear Information System (INIS)

    Gupta, A.; Biswas, P.; Monson, P.R.; Novick, V.J.

    1993-01-01

    The effect of humidity, particle hygroscopicity, and size on the mass loading capacity of glass fiber high efficiency particulate air filters was studied. Above the deliquescent point, the pressure drop across the filter increased nonlinearly with areal loading density (mass collected/filtration area) of a NaCl aerosol, thus significantly reducing the mass loading capacity of the filter compared to dry hygroscopic or nonhygroscopic particle mass loadings. The specific cake resistance K 2 was computed for different test conditions and used as a measure of the mass loading capacity. K 2 was found to decrease with increasing humidity for nonhygroscopic aluminum oxide particles and for hygroscopic NaCl particles (at humidities below the deliquescent point). It is postulated that an increase in humidity leads to the formation of a more open particulate cake which lowers the pressure drop for a given mass loading. A formula for predicting K 2 for lognormally distributed aerosols (parameters obtained from impactor data) was derived. The resistance factor, R, calculated using this formula was compared to the theoretical R calculated using the Rudnick-Happel expression. For the nonhygroscopic aluminum oxide, the agreement was good but for the hygroscopic sodium chloride, due to large variation in the cake porosity estimates, the agreement was poor. 17 refs., 6 figs., 3 tabs

  11. Effects of suspension of air-conditioning on airtight-type racks.

    Science.gov (United States)

    Kanzaki, M; Fujieda, M; Furukawa, T

    2001-10-01

    Although isolation racks are superior to open-type racks in terms of securing breeding conditions for laboratory animals, the contingency-proofing capability of the former has yet to be determined. Therefore, from the view of risk management, we studied the environmental change in isolation racks by forcibly suspending ventilation and air-conditioning and confirming the maximal time length for complete recovery to the original condition after restarting their operations. The isolation racks were placed in a room that was equipped with an independent air-conditioning system. When the inside condition of the racks reached 22-24 degrees C and 59-64% of relative humidity, the air-conditioning and ventilation were forcibly suspended and the subsequent temperature, relative humidity, ammonium and CO2 concentrations in the racks were measured over time. We found that after suspending the air-conditioning and ventilation, it took 40-60 min for temperature, and about 10 min for relative humidity to exceed the maximum values (temperature and relative humidity) referred to in the Showa 58 Nenban Guideline Jikken Doubutsu Shisetsu no Kenchiku oyobi Setsubi (Guidelines of buildings and facilities for experimental animals in Japan; Year 1983 edition). After 17 hr 25 min of the suspension of air-conditioning and ventilation, two rats were found dead. Then, the air-conditioning and ventilation were restarted. It took about 2 hr for temperature, and 50 min for relative humidity to regain the guideline values. The ammonium concentration stayed within the guideline value with a maximum concentration of 2 ppm in the experimental period, whereas the CO2 concentration was found to exceed 9% at the time of animal death.

  12. Humidity evolution (breathing effect) in enclosures with electronics

    DEFF Research Database (Denmark)

    Hygum, Morten Arnfeldt; Popok, Vladimir

    2015-01-01

    Packaging and enclosures used for protecting power electronics operating outdoors are designed to withstand the local climatic and environmental changes. Hermetic enclosures are expensive and therefore other solutions for protecting the electronics from a harsh environment are required. One...... of the dangerous parameters is high humidity of air. Moisture can inevitable reach the electronics either due to diffusion through the wall of an enclosure or small holes, which are designed for electrical or other connections. A driving force for humid air movement is the temperature difference between...... the operating electronics and the surrounding environment. This temperature, thus, gives rise to a natural convection, which we also refer to as breathing. Robust and intelligent enclosure designs must account for this breathing as it can significantly change the humidity distribution in the enclosure...

  13. Exploitation of humid air latent heat by means of solar assisted heat pumps operating below the dew point

    International Nuclear Information System (INIS)

    Scarpa, Federico; Tagliafico, Luca A.

    2016-01-01

    Highlights: • The opportunity of humid air latent heat exploitation by DX-SAHP is investigated. • A set of experimental tests confirms this opportunity and quantifies it as relevant. • A parametric analysis is performed, via simulation, to deepen the subject. • The energy gain is relevant during both night and daytime. - Abstract: Nowadays, the exploitation of environmental exergy resources for heating purposes (solar energy, convection heat transfer from ambient air, moist air humidity condensation) by means of properly designed heat pump systems is a possible opportunity. In particular, the use of direct expansion solar assisted heat pumps (DX-SAHP) is investigated in this study, when a bare external plate (the solar collector) is kept at temperatures lower than the dew point temperature of ambient air, so that condensation takes place on it. The potential of this technology is settled and an instrumented prototype of a small DX-SAHP system is used to verify the actual performance of the system, in terms of specific thermal energy delivered to the user, efficiency and regulation capabilities. Results clearly show that the contribution of the condensation is significant (20%–30% of the total harvested energy) overnight or in cloudy days with very low or no solar irradiation, and must be taken into account in a system model devoted to describe the DX-SAHP behavior. During daytime, the percentage gain decreases but is still consistent. By investigating along these lines, the heat due to condensation harvested by the collector is found to be a function of the dew-point temperature alone.

  14. Thermal comfort in air-conditioned buildings in hot and humid climates--why are we not getting it right?

    Science.gov (United States)

    Sekhar, S C

    2016-02-01

    While there are plenty of anecdotal experiences of overcooled buildings in summer, evidence from field studies suggests that there is indeed an issue of overcooling in tropical buildings. The findings suggest that overcooled buildings are not a consequence of occupant preference but more like an outcome of the HVAC system design and operation. Occupants' adaptation in overcooled indoor environments through additional clothing cannot be regarded as an effective mitigating strategy for cold thermal discomfort. In the last two decades or so, several field studies and field environmental chamber studies in the tropics provided evidence for occupants' preference for a warmer temperature with adaptation methods such as elevated air speeds. It is important to bear in mind that indoor humidity levels are not compromised as they could have an impact on the inhaled air condition that could eventually affect perceived air quality. This review article has attempted to track significant developments in our understanding of the thermal comfort issues in air-conditioned office and educational buildings in hot and humid climates in the last 25 years, primarily on occupant preference for thermal comfort in such climates. The issue of overcooled buildings, by design intent or otherwise, is discussed in some detail. Finally, the article has explored some viable adaptive thermal comfort options that show considerable promise for not only improving thermal comfort in tropical buildings but are also energy efficient and could be seen as sustainable solutions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. A method for high accuracy determination of equilibrium relative humidity

    DEFF Research Database (Denmark)

    Jensen, O.M.

    2012-01-01

    This paper treats a new method for measuring equilibrium relative humidity and equilibrium dew-point temperature of a material sample. The developed measuring device is described – a Dew-point Meter – which by means of so-called Dynamic Dew-point Analysis permits quick and very accurate...

  16. Statistical analysis of the effects of relative humidity and temperature ...

    African Journals Online (AJOL)

    Meteorological data from the Department of Satellite Application Facility on Climate Monitoring (CMSAF), DWD Germany have been used to study and investigate the effect of relative humidity and temperature on refractivity in twenty six locations grouped into for climatic regions aloft Nigeria (Coastal, Guinea savannah, ...

  17. Humidity Data for 9975 Shipping Packages with Softwood Fiberboard

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-12

    The 9975 surveillance program is developing a technical basis to support extending the storage period of 9975 packages in K-Area Complex beyond the currently approved 15 years. A key element of this effort is developing a better understanding of degradation of the fiberboard assembly under storage conditions. This degradation is influenced greatly by the moisture content of the fiberboard, which is not well characterized on an individual package basis. Direct measurements of humidity and fiberboard moisture content have been made on two test packages with softwood fiberboard and varying internal heat levels from 0 up to 19W. Comparable measurements with cane fiberboard have been reported previously. With an internal heat load, a temperature gradient in the fiberboard assembly leads to varying relative humidity in the air around the fiberboard. However, the absolute humidity tends to remain approximately constant throughout the package, especially at lower heat loads.

  18. Performance analysis of humid air turbine cycle with solar energy for methanol decomposition

    International Nuclear Information System (INIS)

    Zhao, Hongbin; Yue, Pengxiu

    2011-01-01

    According to the physical and chemical energy cascade utilization and concept of synthesis integration of variety cycle systems, a new humid air turbine (HAT) cycle with solar energy for methanol decomposition has been proposed in this paper. The solar energy is utilized for methanol decomposing as a heat source in the HAT cycle. The low energy level of solar energy is supposed to convert the high energy level of chemical energy through methanol absorption, realizing the combination of clean energy and normal chemical fuels as compared to the normal chemical recuperative cycle. As a result, the performance of normal chemical fuel thermal cycle can be improved to some extent. Though the energy level of decomposed syngas from methanol is decreased, the cascade utilization of methanol is upgraded. The energy level and exergy losses in the system are graphically displayed with the energy utilization diagrams (EUD). The results show that the cycle's exergy efficiency is higher than that of the conventional HAT cycle by at least 5 percentage points under the same operating conditions. In addition, the cycle's thermal efficiency, exergy efficiency and solar thermal efficiency respond to an optimal methanol conversion. -- Highlights: → This paper proposed and studied the humid air turbine (HAT) cycle with methanol through decomposition with solar energy. → The cycle's exergy efficiency is higher than that of the conventional HAT cycle by at least 5 percentage points. → It is estimated that the solar heat-work conversion efficiency is about 39%, higher than usual. → There is an optimal methanol conversation for the cycle's thermal efficiency and exergy efficiency at given π and TIT. → Using EUD, the exergy loss is decreased by 8 percentage points compared with the conventional HAT cycle.

  19. The effect of changing ambient humidity on moisture condition in timber elements

    DEFF Research Database (Denmark)

    Hozjan, Tomaẑ; Turk, Goran; Srpĉiĉ, Stanislav

    2012-01-01

    a fully coupled transport model including a model for the influential sorption hysteresis of wood is used. The coupled model accounts for both vapor transport in pores and bound water transport in wood tissue. Moisture state history influences relationship between moisture state of wood and air humidity......This paper deals with the effect of the changing ambient humidity on moisture conditions in timber elements. The naturally varying humidity is possible to model as a relative combination of different harmonic cycles, with different periods and amplitudes. For the determination of the moisture field......, it must therefore be taken into account. In order to include history dependency, a hysteresis model is used here. Results from numerical calculations for timber specimen exposed to combined daily and annually cyclic variation of outside humidity are presented. Copyright © (2012) by WCTE 2012 Committee....

  20. Air filtration and air cooling in dairies

    Energy Technology Data Exchange (ETDEWEB)

    Rubzov, J A

    1986-01-01

    In addition to the maintenance of optimum temperatures and relative humidities, a continuous cleaning of the circulating air by means of suspended matter filters and regular disinfection of the spaces and equipment are required in the maturing and storage room for cheese. This contribution presents solutions to the use of suspended matter filters in air cooling plant for dairies in the U.S.S.R.

  1. Electrolysis Processes in D.C. Corona Discharges in Humid Air

    Science.gov (United States)

    Lelièvre, J.; Dubreuil, N.; Brisset, J.-L.

    1995-04-01

    Aqueous solutions exposed to the flux of the neutrals emitted in a d.c. point-to-plane corona discharge in air enriched with NO-3 and NO-2 anions as the matching counter-ions of the protons. The nitrate concentration continuously increases with the treatment time while that of the nitrites presents a maximum. Both concentrations are increasing functions of the current intensity and the exposure time. These results are examined in terms of successive electrochemical reactions and involve oxidation and reduction reactions at each electrode. L'exposition d'une solution aqueuse aux neutres d'une décharge couronne pointe-plan continue établie dans l'air humide fait apparaître en solution des ions nitrites et nitrates qui équilibrent la formation des protons. La concentration en nitrates croît continûment tandis que celle des nitrites présente un maximum. Un mécanisme d'oxydations successives est proposé; il implique des réactions électrochimiques à chaque électrode et rend compte que la décharge négative engendre des concentrations en nitrite supérieures à la décharge positive. Un développement du modèle concourt à expliquer la différence d'effets observés pour des décharges positives ou négatives selon la nature du gaz plasmagène.

  2. Ten-year mortality in a sample of an adult population in relation to air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Krzyzanowski, M; Wojtyniak, B

    1982-12-01

    The 10-year mortality in a sample of adult inhabitants of Cracow, Poland, was analysed according to the levels of air pollution in the area of residence. Smoking habit and several social and occupational factors were considered in the analysis, which was carried out with the use of a multivariate method for categorical variables. Among men the main effect of air pollution was marginally significant, but there was a significant interaction between air pollution and smoking. Among women no such relation could be detected. Also, the association between female mortality and smoking was not significant. From other factors considered in the analysis, only exposure at work to dust, high humidity, and variable temperature was related to mortality in both men and women. In addition among women higher mortality was related to a lower level of education.

  3. Effect of the temperature and relative humidity in dosemeters used for personnel monitoring

    International Nuclear Information System (INIS)

    Antonio Filho, J.

    1982-12-01

    The systematics of the combined effect of temperature and humidity on photographic dosimeters of the type Agfa-Gevaert, Kodak type II, III and the thermoluminescent dosimeters LiF:Mg,Ti (TLD-100, Harshaw), D-CaSO 4 :Dy-0,4 (Teledyne), e CaSO 4 :Dy+NaCl (IPEN), used in personal monitoring in Brazil was investigated, in the temperature range of 20 0 C to 50 0 C and relative humidity of 65% to 95%, in order to determine the best manner of utilization of these detectors in Brazilian climatic conditions. The dosimeters were studied in different forms of packing-sheet such as aluminezed paper and polyethylene. For the determination of the systematics, the dosimeters were irradiated in three conditions: before, during and after of storage in climatic chambers to a maximum period of 60 days. It was found that the dosimetric filmes and thermoluminescent dosimeter CaSO 4 :Dy+NaCl without protection, presented a high dependence to temperature and humidity, and when protected presented good results. Therefore, the best manner of utilization of these monitors in environments with relative humidity and temperature greater them 75% and 30 0 C respectively, is achieved with the protection of aluminized paper. The LiF:Mg,Ti and D+CaSO 4 :Dy-0,4 dosimeters can be utilized in their original form because they presented low dependence with humidity and temperature in the range studied. (Author) [pt

  4. Repeatability and Reversibility of the Humidity Sensor Based on Photonic Crystal Fiber Interferometer

    Science.gov (United States)

    Hindal, S. S.; Taher, H. J.

    2018-05-01

    The RH sensor operation based on water vapor adsorption and desorption at the silica-air interface within the PCF. Sensor fabrication is simple; it includes splicing and cleaving the PCF with SMF only. PCF (LMA-10) with a certain length spliced to SMF (Corning-28). The PCFI spectrum exhibits good sensitivity to the variations of humidity. The PCFI response is observed for range of relative humidity values from (27% RH to 85% RH), the interference peaks position is found to be shifted to longer wavelength as the humidity increases. In this work, a 6cm length of PCFs is used, and it shows a sensitivity of (2.41pm / %RH), good repeatability, and reversible in nature. This humidity sensor has distinguished features as that the sensor does not require the use of a hygroscopic material, robust, compact size, immunity to electromagnetic interference, and it has potential applications for high humidity environments.

  5. The effect of combining a relative-humidity-sensitive ventilation system with the moisture-buffering capacity of materials on indoor climate and energy efficiency of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Woloszyn, Monika [Universite de Lyon, Lyon F-69003 (France); Universite Lyon1, Villeurbanne F-69622 (France); INSA-Lyon, CETHIL UMR CNRS 5008, bat. Sadi Carnot, F-69621 Villeurbanne cedex (France); Kalamees, Targo [Chair of Building Physics and Architecture, Tallinn University of Technology, Ehiteja tee 5 19086 (Estonia); Olivier Abadie, Marc [Pontifical Catholic University of Parana - PUCPR/CCET-Thermal Systems Laboratory, Rua Imaculada Conceicao, 1155 Curitiba, PR 80215-901 (Brazil); LEPTIAB-University of La Rochelle, Avenue M. Crepeau, 17000 La Rochelle (France); Steeman, Marijke [Department of Architecture and Urban Planning, UGENT-Ghent University, J. Plateaustraat 22, 9000 Ghent (Belgium); Sasic Kalagasidis, Angela [Department of Building Technology, Chalmers University of Technology, Sven Hultins gata 8, 412 96 Gothenburg (Sweden)

    2009-03-15

    Indoor moisture management, which means keeping the indoor relative humidity (RH) at correct levels, is very important for whole building performance in terms of indoor air quality (IAQ), energy performance and durability of the building. In this study, the effect of combining a relative-humidity-sensitive (RHS) ventilation system with indoor moisture buffering materials was investigated. Four comprehensive heat-air-moisture (HAM) simulation tools were used to analyse the performance of different moisture management strategies in terms of IAQ and of energy efficiency. Despite some differences in results, a good agreement was found and similar trends were detected from the results, using the four different simulation tools. The results from simulations demonstrate that RHS ventilation reduces the spread between the minimum and maximum values of the RH in the indoor air and generates energy savings. Energy savings are achieved while keeping the RH at target level, not allowing for possible risk of condensations. The disadvantage of this type of demand controlled-ventilation is that other pollutants (such as CO{sub 2}) may exceed target values. This study also confirmed that the use of moisture-buffering materials is a very efficient way to reduce the amplitude of daily moisture variations. It was possible, by the combined effect of ventilation and wood as buffering material, to keep the indoor RH at a very stable level. (author)

  6. Pressure and Relative Humidity Measurement Devices for Mars 2020 Rover

    Science.gov (United States)

    Hieta, M.; Genzer, M.; Nikkanen, T.; Haukka, H.; Harri, A.-M.; Polkko, J.; Rodriguez-Manfredi, J. A.

    2017-09-01

    One of the scientific payloads onboard the NASA Mars 2020 rover mission is Mars Environmental Dynamic Analyzer (MEDA): a set of environmental sensors for Mars surface weather measurements. Finnish Meteorological Institute (FMI) provides a pressure measurement device (MEDA PS) and a relative humidity measurement device (MEDA HS) for MEDA.

  7. Gender, airborne chemical monitoring, and physical work environment are related to indoor air symptoms among nonindustrial workers in the Klang Valley, Malaysia.

    Science.gov (United States)

    Syazwan, Aizat Ismail; Hafizan, Juahir; Baharudin, Mohd Rafee; Azman, Ahmad Zaid Fattah; Izwyn, Zulkapri; Zulfadhli, Ismail; Syahidatussyakirah, Katis

    2013-01-01

    The purpose of this study was to analyze the relationship of airborne chemicals and the physical work environment risk element on the indoor air symptoms of nonindustrial workers. A cross-sectional study consisting of 200 office workers. A random selection of 200 buildings was analyzed for exposure and indoor air symptoms based on a pilot study in the Klang Valley, Malaysia. A set of modified published questionnaires by the Department of Occupational Safety and Health (DOSH), Malaysia and a previous study (MM040NA questionnaire) pertaining to indoor air symptoms was used in the evaluation process of the indoor air symptoms. Statistical analyses involving logistic regression and linear regression were used to determine the relationship between exposure and indoor air symptoms for use in the development of an indoor risk matrix. The results indicate that some indoor air pollutants (carbon monoxide, formaldehyde, total volatile organic compound, and dust) are related to indoor air symptoms of men and women. Temperature and relative humidity showed a positive association with complaints related to the perceived indoor environmental condition (drafts and inconsistency of temperature). Men predominantly reported general symptoms when stratification of gender involved exposure to formaldehyde. Women reported high levels of complaints related to mucosal and general symptoms from exposure to the dust level indoors. Exposure to pollutants (total volatile organic compounds, carbon monoxide, and formaldehyde) and physical stressors (air temperature and relative humidity) influence reported symptoms of office workers. These parameters should be focused upon and graded as one of the important elements in the grading procedure when qualitatively evaluating the indoor environment.

  8. Measurement of Temperature and Relative Humidity with Polymer Optical Fiber Sensors Based on the Induced Stress-Optic Effect

    Science.gov (United States)

    Pontes, Maria José

    2018-01-01

    This paper presents a system capable of measuring temperature and relative humidity with polymer optical fiber (POF) sensors. The sensors are based on variations of the Young’s and shear moduli of the POF with variations in temperature and relative humidity. The system comprises two POFs, each with a predefined torsion stress that resulted in a variation in the fiber refractive index due to the stress-optic effect. Because there is a correlation between stress and material properties, the variation in temperature and humidity causes a variation in the fiber’s stress, which leads to variations in the fiber refractive index. Only two photodiodes comprise the sensor interrogation, resulting in a simple and low-cost system capable of measuring humidity in the range of 5–97% and temperature in the range of 21–46 °C. The root mean squared errors (RMSEs) between the proposed sensors and the reference were 1.12 °C and 1.36% for the measurements of temperature and relative humidity, respectively. In addition, fiber etching resulted in a sensor with a 2 s response time for a relative humidity variation of 10%, which is one of the lowest recorded response times for intrinsic POF humidity sensors. PMID:29558387

  9. Effect of air humidification on the sick building syndrome and perceived indoor air quality in hospitals: a four month longitudinal study.

    Science.gov (United States)

    Nordström, K; Norbäck, D; Akselsson, R

    1994-01-01

    The sensation of dryness and irritation is essential in the sick building syndrome (SBS), and such symptoms are common in both office and hospital employees. In Scandinavia, the indoor relative humidity in well ventilated buildings is usually in the range 10-35% in winter. The aim of this study was to evaluate the effect of steam air humidification on SBS and perceived air quality during the heating season. The study base consisted of a dynamic population of 104 hospital employees, working in four new and well ventilated geriatric hospital units in southern Sweden. Air humidification raised the relative air humidity to 40-45% in two units during a four months period, whereas the other two units served as controls with relative humidity from 25-35%. Symptoms and perceived indoor air quality were measured before and after the study period by a standardised self administered questionnaire. The technical measurements comprised room temperature, air humidity, static electricity, exhaust air flow, aerosols, microorganisms, and volatile organic compounds in the air. The most pronounced effect of the humidification was a significant decrease of the sensation of air dryness, static electricity, and airway symptoms. After four months of air humidification during the heating season, 24% reported a weekly sensation of dryness in humidified units, compared with 73% in controls. No significant changes in symptoms of SBS or perceived air quality over time were found in the control group. The room temperature in all units was between 21-23 degrees C, and no significant effect of air humidification on the air concentration of aerosols or volatile organic compounds was found. No growth of microorganisms was found in the supply air ducts, and no legionella bacteria were found in the supply water of the humidifier. Air humidification, however, significantly reduced the measured personal exposure to static electricity. It is concluded that air humidification during the heating season

  10. Opposing effects of humidity on rhodochrosite surface oxidation.

    Science.gov (United States)

    Na, Chongzheng; Tang, Yuanzhi; Wang, Haitao; Martin, Scot T

    2015-03-03

    Rhodochrosite (MnCO3) is a model mineral representing carbonate aerosol particles containing redox-active elements that can influence particle surface reconstruction in humid air, thereby affecting the heterogeneous transformation of important atmospheric constituents such as nitric oxides, sulfur dioxides, and organic acids. Using in situ atomic force microscopy, we show that the surface reconstruction of rhodochrosite in humid oxygen leads to the formation and growth of oxide nanostructures. The oxidative reconstruction consists of two consecutive processes with distinctive time scales, including a long waiting period corresponding to slow nucleation and a rapid expansion phase corresponding to fast growth. By varying the relative humidity from 55 to 78%, we further show that increasing humidity has opposing effects on the two processes, accelerating nucleation from 2.8(±0.2) × 10(-3) to 3.0(±0.2) × 10(-2) h(-1) but decelerating growth from 7.5(±0.3) × 10(-3) to 3.1(±0.1) × 10(-3) μm(2) h(-1). Through quantitative analysis, we propose that nanostructure nucleation is controlled by rhodochrosite surface dissolution, similar to the dissolution-precipitation mechanism proposed for carbonate mineral surface reconstruction in aqueous solution. To explain nanostructure growth in humid oxygen, a new Cabrera-Mott mechanism involving electron tunneling and solid-state diffusion is proposed.

  11. Why alite stops hydrating below 80% relative humidity

    International Nuclear Information System (INIS)

    Flatt, Robert J.; Scherer, George W.; Bullard, Jeffrey W.

    2011-01-01

    It has been observed that the hydration of cement paste stops when the relative humidity drops below about 80%. A thermodynamic analysis shows that the capillary pressure exerted at that RH shifts the solubility of tricalcium silicate, so that it is in equilibrium with water. This is a reflection of the chemical shrinkage in this system: according to Le Chatelier's principle, since the volume of the products is less than that of the reactants, a negative (capillary) pressure opposes the reaction.

  12. AC Response to Humidity and Propane of Sprayed Fe-Zn Oxide Films

    Directory of Open Access Journals (Sweden)

    Alejandro AVILA-GARCÍA

    2009-09-01

    Full Text Available Iron-zinc oxide films with different Zn contents were ultrasonically sprayed on glass substrates and inter-digital gold electrodes were evaporated upon them. Films were deposited from solutions containing 2, 10 and 30 at. % Zn. Hematite, amorphous and Franklinite structures turned out, respectively. They were assessed as humidity and propane detectors under alternating-current conditions for frequencies from 1 to 105 Hz and temperatures 30 and 250 oC. Their impedances in dry air, humid air and humid air plus propane were determined from voltage measurements with a Lock-In amplifier. Sensitivities to humidity (53 % RH. and 189, 500 and 786 ppm of propane from the response of the resistance, reactance and also the total impedance were determined as functions of frequency. The maximum sensitivity to humidity ranges from 24 % up to 308 %. For propane, the maximum sensitivity ranges from 45 % up to 711 %. The largest sensitivity values correspond in all cases to reactance. From the dynamical response, the response and recovery times are determined, along with the concentration-dependence of the sensitivity. The sensing mechanisms are commented.

  13. Turbulent transport across an interface between dry and humid air in a stratified environment

    Science.gov (United States)

    Gallana, Luca; de Santi, Francesca; di Savino, Silvio; Iovieno, Michele; Ricchiardone, Renzo; Tordella, Daniela

    2014-11-01

    The transport of energy and water vapor across a thin layer which separates two decaying isotropic turbulent flows with different kinetic energy and humidity is considered. The interface is placed in a shearless stratified environment in temporal decay. This system reproduces a few aspects of small scale turbulent transport across a dry air/moist air interface in an atmospheric like context. In our incompressible DNS at Reλ = 250 , Boussinesq's approximation is used for momentum and energy transport while the vapor is modeled as a passive scalar (Kumar, Schumacher & Shaw 2014). We investigated different stratification levels with an initial Fr between 0.8 and 8 in presence of a kinetic energy ratio equal to 7. As the buoyancy term becomes of the same order of the inertial ones, a spatial redistribution of kinetic energy, dissipation and vapor concentration is observed. This eventually leads to the onset of a well of kinetic energy in the low energy side of the mixing layer which blocks the entrainment of dry air. Results are discussed and compared with laboratory and numerical experiments. A posteriori estimates of the eventual compression/expansion of fluid particles inside the interfacial mixing layer are given (Nance & Durran 1994).

  14. Nacre-like hybrid films: Structure, properties, and the effect of relative humidity.

    Science.gov (United States)

    Abba, Mohammed T; Hunger, Philipp M; Kalidindi, Surya R; Wegst, Ulrike G K

    2015-03-01

    Functional materials often are hybrids composed of biopolymers and mineral constituents. The arrangement and interactions of the constituents frequently lead to hierarchical structures with exceptional mechanical properties and multifunctionality. In this study, hybrid thin films with a nacre-like brick-and-mortar microstructure were fabricated in a straightforward and reproducible manner through manual shear casting using the biopolymer chitosan as the matrix material (mortar) and alumina platelets as the reinforcing particles (bricks). The ratio of inorganic to organic content was varied from 0% to 15% and the relative humidities from 36% to 75% to determine their effects on the mechanical properties. It was found that increasing the volume fraction of alumina from 0% to 15% results in a twofold increase in the modulus of the film, but decreases the tensile strength by up to 30%, when the volume fraction of alumina is higher than 5%. Additionally, this study quantifies and illustrates the critical role of the relative humidity on the mechanical properties of the hybrid film. Increasing the relative humidity from 36% to 75% decreases the modulus and strength by about 45% and triples the strain at failure. These results suggest that complex hybrid materials can be manufactured and tailor made for specific applications or environmental conditions. Copyright © 2015. Published by Elsevier Ltd.

  15. Effect of varying relative humidity on the rancidity of cashew ...

    African Journals Online (AJOL)

    Post harvest deterioration by microbes due to improper storage condition is considered to be the major cause of spoilage and rancidity of most oil-bearing seeds like cashew nuts through lipolytic action of lipase enzyme. Roasted cashew nuts were subjected to four different storage conditions with different relative humidity ...

  16. Influence of relative humidity on tensile and compressive creep of ...

    African Journals Online (AJOL)

    This paper presents an experimental study on the influence of ambient relative humidity on tensile creep of plain concrete amended with Ground Granulated Blast - furnace Slag and compares it with its influence on compressive creep. Tensile and compressive creep tests were carried out on concrete specimens of 34.49 ...

  17. Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths.

    Science.gov (United States)

    von Arx, Martin; Goyret, Joaquín; Davidowitz, Goggy; Raguso, Robert A

    2012-06-12

    Most research on plant-pollinator communication has focused on sensory and behavioral responses to relatively static cues. Floral rewards such as nectar, however, are dynamic, and foraging animals will increase their energetic profit if they can make use of floral cues that more accurately indicate nectar availability. Here we document such a cue--transient humidity gradients--using the night blooming flowers of Oenothera cespitosa (Onagraceae). The headspace of newly opened flowers reaches levels of about 4% above ambient relative humidity due to additive evapotranspirational water loss through petals and water-saturated air from the nectar tube. Floral humidity plumes differ from ambient levels only during the first 30 min after anthesis (before nectar is depleted in wild populations), whereas other floral traits (scent, shape, and color) persist for 12-24 h. Manipulative experiments indicated that floral humidity gradients are mechanistically linked to nectar volume and therefore contain information about energy rewards to floral visitors. Behavioral assays with Hyles lineata (Sphingidae) and artificial flowers with appropriate humidity gradients suggest that these hawkmoth pollinators distinguish between subtle differences in relative humidity when other floral cues are held constant. Moths consistently approached and probed flowers with elevated humidity over those with ambient humidity levels. Because floral humidity gradients are largely produced by the evaporation of nectar itself, they represent condition-informative cues that facilitate remote sensing of floral profitability by discriminating foragers. In a xeric environment, this level of honest communication should be adaptive when plant reproductive success is pollinator limited, due to intense competition for the attention of a specialized pollinator.

  18. Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths

    Science.gov (United States)

    von Arx, Martin; Goyret, Joaquín; Davidowitz, Goggy; Raguso, Robert A.

    2012-01-01

    Most research on plant–pollinator communication has focused on sensory and behavioral responses to relatively static cues. Floral rewards such as nectar, however, are dynamic, and foraging animals will increase their energetic profit if they can make use of floral cues that more accurately indicate nectar availability. Here we document such a cue—transient humidity gradients—using the night blooming flowers of Oenothera cespitosa (Onagraceae). The headspace of newly opened flowers reaches levels of about 4% above ambient relative humidity due to additive evapotranspirational water loss through petals and water-saturated air from the nectar tube. Floral humidity plumes differ from ambient levels only during the first 30 min after anthesis (before nectar is depleted in wild populations), whereas other floral traits (scent, shape, and color) persist for 12–24 h. Manipulative experiments indicated that floral humidity gradients are mechanistically linked to nectar volume and therefore contain information about energy rewards to floral visitors. Behavioral assays with Hyles lineata (Sphingidae) and artificial flowers with appropriate humidity gradients suggest that these hawkmoth pollinators distinguish between subtle differences in relative humidity when other floral cues are held constant. Moths consistently approached and probed flowers with elevated humidity over those with ambient humidity levels. Because floral humidity gradients are largely produced by the evaporation of nectar itself, they represent condition-informative cues that facilitate remote sensing of floral profitability by discriminating foragers. In a xeric environment, this level of honest communication should be adaptive when plant reproductive success is pollinator limited, due to intense competition for the attention of a specialized pollinator. PMID:22645365

  19. models of hourly dry bulb temperature and relative humidity of key

    African Journals Online (AJOL)

    user

    3: Worst cases of MFE for Dry bulb temperature and Relative humidity. Fig. 4: Best cases of ... the Second Joint International Conference of. University of Ilorin, Ilorin, Nigeria and University ... Erbs, D. G., “Models and Applications for Weather.

  20. Combination of air-source heat pumps with liquid desiccant dehumidification of air

    International Nuclear Information System (INIS)

    Zhang Li; Hihara, Eiji; Saikawa, Michiyuki

    2012-01-01

    Highlights: ► We propose a frost-free air-source heat pump system with integrated desiccant. ► The system can provide heating load continuously and humidify room. ► The coefficient of performance of the system is 2.6 at T a = −7 °C and RH = 80%. ► The heating load of solution is 3–4 times larger than cooling load of solution. - Abstract: This paper proposes a frost-free air source heat pump system with integrated liquid desiccant dehumidification, in which frosting can be retarded by dehumidifying air before entering an outdoor heat exchanger. And the water removed from the air is used to humidify a room. Simulation is carried out at a dry-bulb temperature of −7 to 5.5 °C and a relative humidity of 80% depending on the frosting conditions. The results show that the coefficient of performance (COP) is in the range of 2.6–2.9, which is 30–40% higher than that of heat pump heating integrated with an electric heater humidifying system. And it is found that the optimum value of the concentration of lithium chloride aqueous solution is 37% for the frost-free operation mode. Experiments are conducted for liquid desiccant system under low air temperature and high relative humidity conditions. Experimental results show that the dew point of the dehumidified air is decreased by 8 °C and the humidity ratio of the humidified air is kept at 8.1 g kg −1 , which ensures the frost-free operation of the heat pump evaporator and the comfortable level of room humidity simultaneously. The heating load of solution is 3–4.5 times larger than cooling load of solution, which agrees with the assumption given at the part of the simulation. Furthermore, the deviations between the calculated COP LHRU and the experimental results are within 33%.

  1. Influence of indoor air conditions on radon concentration in a detached house

    International Nuclear Information System (INIS)

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-01-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50–60%. - Highlights: ► We use CFD to simulate indoor radon concentration and distribution. ► The effects of ventilation rate, temperature and moisture are investigated. ► Model validation is performed through analytical solution and measurement results. ► Results show that ventilation rate is inversely proportional to radon level. ► There is a range of temperature and relative humidity that minimize radon level.

  2. [An early warning method of cucumber downy mildew in solar greenhouse based on canopy temperature and humidity modeling].

    Science.gov (United States)

    Wang, Hui; Li, Mei-lan; Xu, Jian-ping; Chen, Mei-xiang; Li, Wen-yong; Li, Ming

    2015-10-01

    The greenhouse environmental parameters can be used to establish greenhouse nirco-climate model, which can combine with disease model for early warning, with aim of ecological controlling diseases to reduce pesticide usage, and protecting greenhouse ecological environment to ensure the agricultural product quality safety. Greenhouse canopy leaf temperature and air relative humidity, models were established using energy balance and moisture balance principle inside the greenhouse. The leaf temperature model considered radiation heat transfer between the greenhouse crops, wall, soil and cover, plus the heat exchange caused by indoor net radiation and crop transpiration. Furthermore, the water dynamic balance in the greenhouse including leaf transpiration, soil evaporation, cover and leaf water vapor condensation, was considered to develop a relative humidity model. The primary infection and latent period warning models for cucumber downy mildew (Pseudoperonospora cubensis) were validated using the results of the leaf temperature and relative humidity model, and then the estimated disease occurrence date of cucumber downy mildew was compared with actual disease occurrence date of field observation. Finally, the results were verified by the measured temperature and humidity data of September and October, 2014. The results showed that the root mean square deviations (RMSDs) of the measured and estimated leaf temperature were 0.016 and 0.024 °C, and the RMSDs of the measured and estimated air relative humidity were 0.15% and 0.13%, respectively. Combining the result of estimated temperature and humidity models, a cucumber disease early warning system was established to forecast the date of disease occurrence, which met with the real date. Thus, this work could provide the micro-environment data for the early warning system of cucumber diseases in solar greenhouses.

  3. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems.

    Science.gov (United States)

    Möritz, M; Peters, H; Nipko, B; Rüden, H

    2001-07-01

    The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry ( 12 degrees C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70% and molds by > 80%). However, during long periods of high relative humidity (> 80% R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occurred. These microorganisms were mainly smaller than 1.1 microns therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80% R. H. (mean of 3 days), e.g. by using preheaters in front of air filters in HVAC-systems.

  4. Mask humidity during CPAP: influence of ambient temperature, heated humidification and heated tubing.

    Science.gov (United States)

    Nilius, Georg; Domanski, Ulrike; Schroeder, Maik; Woehrle, Holger; Graml, Andrea; Franke, Karl-Josef

    2018-01-01

    Mucosal drying during continuous positive airway pressure (CPAP) therapy is problematic for many patients. This study assessed the influence of ambient relative humidity (rH) and air temperature (T) in winter and summer on mask humidity during CPAP, with and without mask leak, and with or without heated humidification ± heated tubing. CPAP (8 and 12 cmH 2 O) without humidification (no humidity [nH]), with heated humidification controlled by ambient temperature and humidity (heated humidity [HH]) and HH plus heated tubing climate line (CL), with and without leakage, were compared in 18 subjects with OSA during summer and winter. The absolute humidity (aH) and the T inside the mask during CPAP were significantly lower in winter versus summer under all applied conditions. Overall, absolute humidity differences between summer and winter were statistically significant in both HH and CL vs. nH ( p humidification or with standard HH. Clinically-relevant reductions in aH were documented during CPAP given under winter conditions. The addition of heated humidification, using a heated tube to avoid condensation is recommended to increase aH, which could be useful in CPAP users complaining of nose and throat symptoms.

  5. Using relative humidity to predict spotfire probability on prescribed burns

    Science.gov (United States)

    John R. Weir

    2007-01-01

    Spotfires have and always will be a problem that burn bosses and fire crews will have to contend with on prescribed burns. Weather factors (temperature, wind speed and relative humidity) are the main variables burn bosses can use to predict and monitor prescribed fire behavior. At the Oklahoma State University Research Range, prescribed burns are conducted during...

  6. Effect of relative humidity on the tribological properties of hydrogenated diamond-like carbon films in a nitrogen environment

    International Nuclear Information System (INIS)

    Li Hongxuan; Xu Tao; Wang Chengbing; Chen Jianmin; Zhou Huidi; Liu Huiwen

    2005-01-01

    Hydrogenated diamond-like carbon (DLC) films were deposited on Si (100) wafers by a plasma enhanced chemical vapour deposition technique using CH 4 plus Ar as the feedstock. The friction and wear properties of the resulting films under different relative humidities, ranging from 5% to 100%, in a nitrogen environment, were measured using a ball-on-disc tribometer, with Si 3 N 4 balls as the counterparts. The friction surfaces of the films and Si 3 N 4 balls were observed on a scanning electron microscope, and investigated by x-ray photoelectron spectroscopy. The results showed that the friction coefficient increased continuously from 0.025 to 0.09 with increase in relative humidity from 5% to 100%, while the wear rate of the films sharply decreased and reached a minimum at a relative humidity of 40%, then it increased with further increase of the relative humidity. The interruption of the transferred carbon-rich layer on the Si 3 N 4 ball, and the friction-induced oxidation of the films at higher relative humidity were proposed as the main reasons for the increase in the friction coefficient. Moreover, the oxidation and hydrolysis of the Si 3 N 4 ball at higher relative humidity, leading to the formation of a tribochemical film, which mainly consists of silica gel, on the friction surface, are also thought to influence the friction and wear behaviour of the hydrogenated DLC films

  7. Energy analysis of the personalized ventilation system in hot and humid climates

    DEFF Research Database (Denmark)

    Schiavon, S.; Melikov, Arsen Krikor; Sekhar, C.

    2010-01-01

    , inhaled air quality, thermal comfort, and self-estimated productivity. Little is known about its energy performance. In this study, the energy consumption of a personalized ventilation system introduced in an office building located in a hot and humid climate (Singapore) has been investigated by means...... effectiveness of PV; (b) increasing the maximum allowed room air temperature due to PV capacity to control the microclimate; (c) supplying the outdoor air only when the occupant is at the desk. The strategy to control the supply air temperature does not affect the energy consumption in a hot and humid climate....

  8. Humidity effects on the electrical properties of hexagonal boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, A. [Institut d' Electronique, de Microelectronique et de Nanotechnologie/CNRS UMR 8520, Cite Scientifique, Avenue Poincare, 59652 Villeneuve d' Ascq (France)]. E-mail: ali.soltani@iemn.univ-lille1.fr; Thevenin, P. [Laboratoire Materiaux Optiques Photonique et Systemes/CNRS FRE 2304, Universite de Metz and Supelec, 2 rue Edouard Belin, 57070 Metz (France); Bakhtiar, H. [Faculty of Science, Physics Department, Technology University of Malaysia, Karung Berkunci 791, 80990, Johor Bahru, Johor (Malaysia); Bath, A. [Laboratoire Materiaux Optiques Photonique et Systemes/CNRS FRE 2304, Universite de Metz and Supelec, 2 rue Edouard Belin, 57070 Metz (France)]. E-mail: bath@metz.supelec.fr

    2005-01-03

    Thin films of hexagonal boron nitride (h-BN) were grown by a plasma enhanced chemical vapour deposition (PECVD) technique. The quality of the films was assessed by infrared spectroscopy, microRaman spectroscopy as a function of annealing temperature and by X-ray photoelectron spectroscopy. The films proved to be thermally stable up to 1370 K. Current-voltage measurements were performed, as a function of humidity, using metal-insulator-semiconductor and metal-insulator-metal structures. Typical resistivities were found in the range 10{sup 13}-10{sup 14} {omega} cm in dry air and exhibit high sensitivity against humidity. The influence of the mean orientation of the c-axis of the BN films was considered. Sawtooth voltage pulse trains were also applied. Threshold switching phenomena were observed, but only in atmosphere containing humidity. The values of the switching voltages depend strongly on the relative humidity (RH), on the characteristics of the applied sawtooth voltage pulse trains, as well as on the nature of the metallic electrode.

  9. Occupant evaluation of 7-hour exposures in a simulated aircraft cabin - Part 1: Optimum balance between fresh air supply and humidity

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Wyon, David Peter; Lagercrantz, Love Per

    2005-01-01

    Low humidity in the aircraft cabin environment has been identified as a possible cause of symptoms experienced during long flights. A mock-up of a 21-seat section of an aircraft cabin with realistic pollution sources was built inside a climate chamber, capable of providing fresh outside air at very...

  10. Neutron diffraction for studying the influence of the relative humidity on the carbonation process of cement pastes

    International Nuclear Information System (INIS)

    Galan, I; Andrade, C; Castellote, M; Rebolledo, N; Sanchez, J; Toro, L; Puente, I; Campo, J; Fabelo, O

    2011-01-01

    The effect of humidity on hydrated cement carbonation has been studied by means of in-situ neutron diffraction measurements. The evolution of the main crystalline phases in the bulk of the sample, portlandite and calcite, has been monitored during the process. Data obtained from neutron diffraction allow the quantification of the phases involved. The results highlight the great influence of humidity on carbonation. At very low humidity there are almost no changes. Between 53 and 75% relative humidity, portlandite decrease and calcite increase data can be fitted to exponential decay functions. At very high humidity portlandite remains nearly constant while calcite increases slightly with time, almost linearly.

  11. Relative air temperature analysis external building on Gowa Campus

    Science.gov (United States)

    Mustamin, Tayeb; Rahim, Ramli; Baharuddin; Jamala, Nurul; Kusno, Asniawaty

    2018-03-01

    This study aims to data analyze the relative temperature and humidity of the air outside the building. Data retrieval taken from weather monitoring device (monitoring) Vaisala, RTU (Remote Terminal Unit), Which is part of the AWS (Automatic Weather Stations) Then Processing data processed and analyzed by using Microsoft Excel program in the form of graph / picture fluctuation Which shows the average value, standard deviation, maximum value, and minimum value. Results of data processing then grouped in the form: Daily, and monthly, based on time intervals every 30 minutes. The results showed Outside air temperatures in March, April, May and September 2016 Which entered in the thermal comfort zone according to SNI standard (Indonesian National Standard) only at 06.00-10.00. In late March to early April Thermal comfort zone also occurs at 15.30-18.00. The highest maximum air temperature occurred in September 2016 at 11.01-11.30 And the lowest minimum value in September 2016, time 6:00 to 6:30. The result of the next analysis shows the level of data conformity with thermal comfort zone based on SNI (Indonesian National Standard) every month.

  12. Investigation of humidity-dependent nanotribology behaviors of Si(1 0 0)/SiO2 pair moving from stick to slip

    International Nuclear Information System (INIS)

    Yu Jiaxin; Chen Lei; Qian Linmao; Song Danlu; Cai Yong

    2013-01-01

    Highlights: ► The effect of humidity on the motion behavior of Si(1 0 0)/SiO 2 pair was clarified. ► With increase in humidity, adhesion force increases slowly firstly, then sharply. ► With increase in humidity, friction force increases sharply firstly, then slowly. ► The wear degree of Si is relative to the physical state of absorbed water film. ► The tribochemical reaction of Si(1 0 0) in humid air was verified by ToF-SIMS. - Abstract: With an atomic force microscopy, the humidity-dependent nanotribology behaviors of Si(1 0 0) against SiO 2 microsphere were investigated while the relative movement translated from stick to slip. The relative humidity RH of air exhibits a strong effect on the motion behavior of Si(1 0 0)/SiO 2 pair. With the increase in RH, relative movement of Si(1 0 0)/SiO 2 pair is easier to keep into stick state, namely, the relative slip becomes more difficult to occur in a higher humidity range. The adhesion F a will increase with the increase in RH in the given humidity range. In the low RH range ( a increases very slowly. However, in relative higher RH range (>20%), F a increases very sharply once ‘liquid-like’ adsorbed water layer forms, because it increases the capillary force. The initial friction forces F t of Si(1 0 0)/SiO 2 pair also increase with the increase in RH in the given humidity range. However, different from F a , it increases sharply in the low RH range ( 30%). During the cyclic friction process, under the higher RH, relative stable tangential force is easier to be observed at higher displacement amplitude, here, the relative movement usually keeps into stick state. With the increase in RH, the surface damage of Si(1 0 0) transforms from mechanical deformation (forming hillock) to tribochemical wear (material removal). The tribochemical wear is sensitive to the absorbed water film with ‘solid-like’ structure, here, the wear volume increases drastically in this RH range (<20%); further increase of wear is

  13. Humidity effects on surface dielectric barrier discharge for gaseous naphthalene decomposition

    Science.gov (United States)

    Abdelaziz, Ayman A.; Ishijima, Tatsuo; Seto, Takafumi

    2018-04-01

    Experiments are performed using dry and humid air to clarify the effects of water vapour on the characteristics of surface dielectric barrier discharge (SDBD) and investigate its impact on the performance of the SDBD for decomposition of gaseous naphthalene in air stream. The current characteristics, including the discharge and the capacitive currents, are deeply analyzed and the discharge mechanism is explored. The results confirmed that the humidity affected the microdischarge distribution without affecting the discharge mode. Interestingly, it is found that the water vapour had a significant influence on the capacitance of the reactor due to its deposition on the discharge electrode and the dielectric, which, in turn, affects the power loss in the dielectric and the total power consumed in the reactor. Thus, the factor of the humidity effect on the power loss in the dielectric should be considered in addition to its effect on the attachment coefficient. Additionally, there was an optimum level of the humidity for the decomposition of naphthalene in the SDBD, and its value depended on the gas composition, where the maximum naphthalene decomposition efficiency in O2/H2O is achieved at the humidity level ˜10%, which was lower than that obtained in air/H2O (˜28%). The results also revealed that the role of the humidity in the decomposition efficiency was not significant in the humidified O2 at high power level. This was attributed to the significant increase in oxygen-derived species (such as O atoms and O3) at high power, which was enough to overcome the negative effects of the humidity.

  14. The relative influence of body characteristics on humid heat stress response

    NARCIS (Netherlands)

    Havenith, G.; Luttikholt, V. G.; Vrijkotte, T. G.

    1995-01-01

    The present study was designed to determine the relative importance of individual characteristics such as maximal oxygen uptake (VO2max), adiposity, DuBois body surface area (AD), surface to mass ratio (AD: mass) and body mass, for the individual's reaction to humid heat stress. For this purpose 27

  15. Recent changes in solar irradiance and infrared irradiance related with air temperature and cloudiness at the King Sejong Station, Antarctica

    Science.gov (United States)

    Jung, Y.; Kim, J.; Cho, H.; Lee, B.

    2006-12-01

    The polar region play a critical role in the surface energy balance and the climate system of the Earth. The important question in the region is that what is the role of the Antarctic atmospheric heat sink of global climate. Thus, this study shows the trends of global solar irradiance, infrared irradiance, air temperature and cloudiness measured at the King Sejong station, Antarctica, during the period of 1996-2004 and determines their relationship and variability of the surface energy balance. Annual average of solar radiation and cloudiness is 81.8 Wm-2 and 6.8 oktas and their trends show the decrease of -0.24 Wm-2yr-1(-0.30 %yr-1) and 0.02 oktas yr-1(0.30 %yr-1). The change of solar irradiance is directly related to change of cloudiness and decrease of solar irradiance presents radiative cooling at the surface. Monthly mean infrared irradiance, air temperature and specific humidity shows the decrease of -2.11 Wm^{- 2}yr-1(-0.75 %yr-1), -0.07 'Cyr-1(-5.15 %yr-1) and -0.044 gkg-1yr-1(-1.42 %yr-1), respectively. Annual average of the infrared irradiance is 279.9 Wm-2 and correlated with the air temperature, specific humidity and cloudiness. A multiple regression model for estimation of the infrared irradiance using the components has been developed. Effects of the components on the infrared irradiance changes show 52 %, 19 % and 10 % for air temperature, specific humidity and cloudiness, respectively. Among the components, air temperature has a great influence on infrared irradiance. Despite the increase of cloudiness, the decrease in the infrared irradiance is due to the decrease of air temperature and specific humidity which have a cooling effect. Therefore, the net radiation of the surface energy balance shows radiative cooling of negative 11-24 Wm^{- 2} during winter and radiative warming of positive 32-83 Wm-2 during the summer. Thus, the amount of shortage and surplus at the surface is mostly balanced by turbulent flux of sensible and latent heat.

  16. Performance evaluation of an indirect pre-cooling evaporative heat exchanger operating in hot and humid climate

    International Nuclear Information System (INIS)

    Cui, X.; Chua, K.J.; Islam, M.R.; Ng, K.C.

    2015-01-01

    Highlights: • An IEHX is introduced as a pre-cooling unit for humid tropical climate. • A computational model is developed to investigate the performance of IEHX. • The air treatment process with condensation from the product air is studied. • The hybrid system shows an appreciable energy saving potential. - Abstract: A hybrid system, that combines an indirect evaporative heat exchanger (IEHX) and a vapor compression system, is introduced for humid tropical climate application. The chief purpose of the IEHX is to pre-cool the incoming air for vapor compression system. In the IEHX unit, the outdoor humid air in the product channel may potentially condense when heat is exchanged with the room exhaust air. A computational model has been developed to theoretically investigate the performance of an IEHX with condensation from the product air by employing the room exhaust air as the working air. We validated the model by comparing its temperature distribution and predicted heat flux against experimental data acquired from literature sources. The numerical model showed good agreement with the experimental findings with maximum average discrepancy of 9.7%. The validated model was employed to investigate the performance of two types of IEHX in terms of the air treatment process, temperature and humidity distribution, cooling effectiveness, cooling capacity, and energy consumption. Simulation results have indicated that the IEHX unit is able to fulfill 47% of the cooling load for the outdoor humid air while incurring a small amount of fan power. Consequently, the hybrid system is able to realize significant energy savings

  17. The anthropogenic influence on heat and humidity in the US Midwest

    Science.gov (United States)

    Inda Diaz, H. A.; O'Brien, T. A.; Stone, D. A.

    2016-12-01

    Heatwaves, and extreme temperatures in general, have a wide range of negative impacts on society, and particularly on human health. In addition to temperature, humidity plays a key role in regulating human body temperature, with higher humidities tending to reduce the effectiveness of perspiration. There is recent theoretical and observational evidence that co-occurring extreme heat and humidity can potentially have a much more dramatic impact on human health than either extreme in isolation. There is an abundance of observational evidence indicating that anthropogenic increases in greenhouse gas (GHG) forcing have contributed to an increase in the intensity and frequency of temperature extremes on a global scale. However, aside from purely thermodynamically-driven increases in near-surface humidity, there is a paucity of similar evidence for anthropogenic impacts on humidity. Thermodynamic scaling would suggest that air masses originating from the ocean would be associated with higher specific humidity in a warmer world, and transpiration from irrigated crops could further increase humidity in warm air masses. In order to explore the role of anthropogenic GHG forcing on the co-occurrence of temperature and humidity extremes in the Midwestern United States (US), we evaluate a large ensemble of global climate model simulations with and without anthropogenic GHG forcing. In particular, we examine differences between the probability distributions of near-surface temperature, humidity, wet-bulb temperature, and the joint distribution of temperature and humidity in this ensemble. Finally, we explore augmenting this experimental framework with additional simulations to explore the role of anthropogenic changes in the land surface, and in particular irrigated crops, on co-occurring extreme heat and humidity.

  18. Air-side performance of a micro-channel heat exchanger in wet surface conditions

    Directory of Open Access Journals (Sweden)

    Srisomba Raviwat

    2017-01-01

    Full Text Available The effects of operating conditions on the air-side heat transfer, and pressure drop of a micro-channel heat exchanger under wet surface conditions were studied experimentally. The test section was an aluminum micro-channel heat exchanger, consisting of a multi-louvered fin and multi-port mini-channels. Experiments were conducted to study the effects of inlet relative humidity, air frontal velocity, air inlet temperature, and refrigerant temperature on air-side performance. The experimental data were analyzed using the mean enthalpy difference method. The test run was performed at relative air humidities ranging between 45% and 80%; air inlet temperature ranges of 27, 30, and 33°C; refrigerant-saturated temperatures ranging from 18 to 22°C; and Reynolds numbers between 128 and 166. The results show that the inlet relative humidity, air inlet temperature, and the refrigerant temperature had significant effects on heat transfer performance and air-side pressure drop. The heat transfer coefficient and pressure drop for the micro-channel heat exchanger under wet surface conditions are proposed in terms of the Colburn j factor and Fanning f factor.

  19. Inhibition between 350 and 500 deg. C of the corrosion of magnesium by damp air; Inhibition entre 350 et 500 deg. C de la corrosion du magnesium par l'air humide

    Energy Technology Data Exchange (ETDEWEB)

    Darras, Raymond; Caillat, Roger [Commissariat a l' energie atomique et aux energies alternatives - CEA (France)

    1960-07-01

    It has been demonstrated that the formation of a fluoride layer on the surface of magnesium by either dry or wet methods raises the temperature to which it resists corrosion in damp air from 350 to 490 deg. C. This protection effect could lead to a revision of the Pilling and Bedworth rule. Reprint of a paper published in 'Comptes Rendus des Seances de l'Academie des Sciences', tome 249, p. 1517-1519, sitting of 19 October 1959 [French] Il a ete montre que la formation d'une couche fluoree a la surface du magnesium, soit par voie seche, soit par voie humide, permet d'elever de 350 a 490 deg. C la temperature jusqu'a laquelle il resiste a la corrosion dans l'air humide. Cet effet protecteur pourrait conduire a revoir la regle de Pilling et Bedworth. Reproduction d'un article publie dans les 'Comptes Rendus des Seances de l'Academie des Sciences', tome 249, p. 1517-1519, seance du 19 octobre 1959.

  20. The minimum work required for air conditioning process

    International Nuclear Information System (INIS)

    Alhazmy, Majed M.

    2006-01-01

    This paper presents a theoretical analysis based on the second law of thermodynamics to estimate the minimum work required for the air conditioning process. The air conditioning process for hot and humid climates involves reducing air temperature and humidity. In the present analysis the inlet state is the state of the environment which has also been chosen as the dead state. The final state is the human thermal comfort fixed at 20 o C dry bulb temperature and 60% relative humidity. The general air conditioning process is represented by an equivalent path consisting of an isothermal dehumidification followed by a sensible cooling. An exergy analysis is performed on each process separately. Dehumidification is analyzed as a separation process of an ideal mixture of air and water vapor. The variations of the minimum work required for the air conditioning process with the ambient conditions is estimated and the ratio of the work needed for dehumidification to the total work needed to perform the entire process is presented. The effect of small variations in the final conditions on the minimum required work is evaluated. Tolerating a warmer or more humid final condition can be an easy solution to reduce the energy consumptions during critical load periods

  1. Experimental analysis of an air-to-air heat recovery unit for balanced ventilation systems in residential buildings

    International Nuclear Information System (INIS)

    Fernandez-Seara, Jose; Diz, Ruben; Uhia, Francisco J.; Dopazo, Alberto; Ferro, Jose M.

    2011-01-01

    This paper deals with the experimental analysis of an air-to-air heat recovery unit equipped with a sensible polymer plate heat exchanger (PHE) for balanced ventilation systems in residential buildings. The PHE is arranged in parallel triangular ducts. An experimental facility was designed to reproduce the typical outdoor and exhaust air conditions with regard to temperature and humidity. The unit was tested under balanced operation conditions, as commonly used in practice. A set of tests was conducted under the reference operating conditions to evaluate the PHE performance. Afterwards, an experimental parametric analysis was conducted to investigate the influence of changing the operating conditions on the PHE performance. Experiments were carried out varying the inlet fresh air temperature, the exhaust air relative humidity and the air flow rate. The experimental results are shown and discussed in this paper.

  2. Uncertainties of Gaseous Oxidized Mercury Measurements Using KCl-Coated Denuders, Cation-Exchange Membranes, and Nylon Membranes: Humidity Influences.

    Science.gov (United States)

    Huang, Jiaoyan; Gustin, Mae Sexauer

    2015-05-19

    Quantifying the concentration of gaseous oxidized mercury (GOM) and identifying the chemical compounds in the atmosphere are important for developing accurate local, regional, and global biogeochemical cycles. The major hypothesis driving this work was that relative humidity affects collection of GOM on KCl-coated denuders and nylon membranes, both currently being applied to measure GOM. Using a laboratory manifold system and ambient air, GOM capture efficiency on 3 different collection surfaces, including KCl-coated denuders, nylon membranes, and cation-exchange membranes, was investigated at relative humidity ranging from 25 to 75%. Recovery of permeated HgBr2 on KCl-coated denuders declined by 4-60% during spikes of relative humidity (25 to 75%). When spikes were turned off GOM recoveries returned to 60 ± 19% of permeated levels. In some cases, KCl-coated denuders were gradually passivated over time after additional humidity was applied. In this study, GOM recovery on nylon membranes decreased with high humidity and ozone concentrations. However, additional humidity enhanced GOM recovery on cation-exchange membranes. In addition, reduction and oxidation of elemental mercury during experiments was observed. The findings in this study can help to explain field observations in previous studies.

  3. Effect of Temperature and Relative Humidity on the Growth of ...

    African Journals Online (AJOL)

    The effects of temperature and relative humidity on the growth of Helminthosporium fulvum were investigated. Various temperature regimes of 10oC, 15oC, 20oC, 25oC, 30oC, 35oC and 40¢ªC were used to determine the temperature effect on the growth of H. fulvum. Maximum growth of H. fulvum was obtained at 25¢ªC ...

  4. Thermodynamic properties of sea air

    Directory of Open Access Journals (Sweden)

    R. Feistel

    2010-02-01

    Full Text Available Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS, and have been adopted in 2009 for oceanography by IOC/UNESCO.

    In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as "sea air" here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well.

    The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.

  5. SAW RFID-Tags for Mass-Sensitive Detection of Humidity and Vapors

    Directory of Open Access Journals (Sweden)

    Gerhard Fischerauer

    2009-12-01

    Full Text Available One-port surface acoustic wave (SAW devices with defined reflector patterns give characteristic signal patterns in the time domain making them identifiable and leading to so-called RFID-Tags. Each sensor responds with a burst of signals, their timed positions giving the identification code, while the amplitudes can be related to the analyte concentration. This paper presents the first combination of such a transducer with chemically sensitive layer materials. These include crosslinked polyvinyl alcohol for determining relative humidity and tert-butylcalix[4]arene for detecting solvent vapors coated on the free space between the reflectors. In going from the time domain to the frequency domain by Fourier transformation, changes in frequency and phase lead to sensor responses. Hence, it is possible to measure the concentration of tetrachloroethene in air down to 50 ppm, as well as 1% changes in relative humidity.

  6. Effects of relative humidity, temperature, and population density on production of cuticular hydrocarbons in housefly Musca domestica L.

    NARCIS (Netherlands)

    Noorman, N; Den Otter, CJ

    The production of cuticular hydrocarbons by both males and females of Musca domestica L. under very wet conditions (90% relative humidity) compared to the production at 50 and 20% relative humidity is delayed up to at least 3 days after emergence from the pupae. Eight days after emergence, however,

  7. Effect of Relative Humidity on Adsorption Breakthrough of CO2 on Activated Carbon Fibers

    Directory of Open Access Journals (Sweden)

    Yu-Chun Chiang

    2017-11-01

    Full Text Available Microporous activated carbon fibers (ACFs were developed for CO2 capture based on potassium hydroxide (KOH activation and tetraethylenepentamine (TEPA amination. The material properties of the modified ACFs were characterized using several techniques. The adsorption breakthrough curves of CO2 were measured and the effect of relative humidity in the carrier gas was determined. The KOH activation at high temperature generated additional pore networks and the intercalation of metallic K into the carbon matrix, leading to the production of mesopore and micropore volumes and providing access to the active sites in the micropores. However, this treatment also resulted in the loss of nitrogen functionalities. The TEPA amination has successfully introduced nitrogen functionalities onto the fiber surface, but its long-chain structure blocked parts of the micropores and, thus, made the available surface area and pore volume limited. Introduction of the power of time into the Wheeler equation was required to fit the data well. The relative humidity within the studied range had almost no effects on the breakthrough curves. It was expected that the concentration of CO2 was high enough so that the impact on CO2 adsorption capacity lessened due to increased relative humidity.

  8. Influence of relative humidity and temperature on quantity of electric charge of static protective clothing used in petrochemical industry

    Science.gov (United States)

    Zhang, Yunpeng; Liu, Quanzhen; Liu, Baoquan; Li, Yipeng; Zhang, Tingting

    2013-03-01

    In this paper, the working principle of static protective clothing and its testing method of quantity of electric charge are introduced, and the influence of temperature and relative humidity on the quantity of electric charge (qe) of static protective clothing is studied by measuring qe of different clothing samples. The result shows that temperature and relative humidity can influence qe of static protective clothing to some extent and the influence of relative humidity is bigger than that of temperature. According to experimental results, the relationship of qe and relative humidity and temperature was analysed, and the safety boundary of quantity of electric charge is discussed. In order to reduce the occurrence of electrostatic accidents and ensure safe production and operation of petrochemical industry, some suggestions on choosing and using of static protective clothing are given for guaranteeing its static protective performance.

  9. Effects of Thermal Mass, Window Size, and Night-Time Ventilation on Peak Indoor Air Temperature in the Warm-Humid Climate of Ghana

    Directory of Open Access Journals (Sweden)

    S. Amos-Abanyie

    2013-01-01

    Full Text Available Most office buildings in the warm-humid sub-Saharan countries experience high cooling load because of the predominant use of sandcrete blocks which are of low thermal mass in construction and extensive use of glazing. Relatively, low night-time temperatures are not harnessed in cooling buildings because office openings remain closed after work hours. An optimization was performed through a sensitivity analysis-based simulation, using the Energy Plus (E+ simulation software to assess the effects of thermal mass, window size, and night ventilation on peak indoor air temperature (PIAT. An experimental system was designed based on the features of the most promising simulation model, constructed and monitored, and the experimental data used to validate the simulation model. The results show that an optimization of thermal mass and window size coupled with activation of night-time ventilation provides a synergistic effect to obtain reduced peak indoor air temperature. An expression that predicts, indoor maximum temperature has been derived for models of various thermal masses.

  10. Energy-Efficient Management of Mechanical Ventilation and Relative Humidity in Hot-Humid Climates

    Energy Technology Data Exchange (ETDEWEB)

    Withers, Jr., Charles R. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)

    2016-12-01

    In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split on seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.

  11. 40 CFR 86.344-79 - Humidity calculations.

    Science.gov (United States)

    2010-07-01

    ... = Web-bulb temperature (°K) B = − 12.150799 F 0 = − 8.49922(10)3 F 1 = − 7.4231865(10)3 F 2 = 96.1635147...). ER06OC93.088 Figure D79-5—Saturation Vapor Pressure Over Water (pascals) Temperature °C 0.0 0.1 0.2 0.3 0.4... = barometric pressure (Pa) H = specific humidity, (gm H2O/gm of dry air) K = 0.6220 gm H2O/gm dry air M air...

  12. Development of Smart Ventilation Control Algorithms for Humidity Control in High-Performance Homes in Humid U.S. Climates

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ticci, Sara [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-11

    , Orlando, Houston, Charleston, Memphis and Baltimore). The control options were compared to a baseline system that supplies outdoor air to a central forced air cooling (and heating) system (CFIS) that is often used in hot humid climates. Simulations were performed with CFIS ventilation systems operating on a 33% duty-cycle, consistent with 62.2-2013. The CFIS outside airflow rates were set to 0%, 50% and 100% of 62.2-2013 requirements to explore effects of ventilation rate on indoor high humidity. These simulations were performed with and without a dehumidifier in the model. Ten control algorithms were developed and tested. Analysis of outdoor humidity patterns facilitated smart control development. It was found that outdoor humidity varies most strongly seasonally—by month of the year—and that all locations follow the similar pattern of much higher humidity during summer. Daily and hourly variations in outdoor humidity were found to be progressively smaller than the monthly seasonal variation. Patterns in hourly humidity are driven by diurnal daily patterns, so they were predictable but small, and were unlikely to provide much control benefit. Variation in outdoor humidity between days was larger, but unpredictable, except by much more complex climate models. We determined that no-sensor strategies might be able to take advantage of seasonal patterns in humidity, but that real-time smart controls were required to capture variation between days. Sensor-based approaches are also required to respond dynamically to indoor conditions and variations not considered in our analysis. All smart controls face trade-offs between sensor accuracy, cost, complexity and robustness.

  13. Analysis of the electrical characteristic of linseed oil films exposed to humidity

    Energy Technology Data Exchange (ETDEWEB)

    Palummo, Lucrezia [Rome University Tor Vergata, Physic Department, Rome (Italy); Bearzotti, Andrea [IMM-CNR, Area di Ricerca di Roma Tor Vergata, Rome (Italy)

    2009-12-15

    Linseed oil is a material widely used in various applications as a protecting layer for surfaces in industry, in scientific research, for medical use, and finally for artistic purpose. This natural origins substance has a particular application as a protective and smoothing layer on phenolic-melaminic laminate electrodes on Resistive Plate Chamber (RPC) detectors used in various particle physic experiments. In such electronic applications where linseed oil could be exposed to water vapours, an electrical characterization should result useful for having an overall control of the process involving the oil. In this paper, we studied the electrical behaviour towards relative humidity variations of linseed oil films deposited on interdigitated metal electrodes. Moreover, I/V characterisation both in air and vacuum, current vs. temperature and relative humidity was performed. (orig.)

  14. Apparatus for investigating the reactions of soft-bodied invertebrates to controlled humidity gradients.

    Science.gov (United States)

    Russell, Joshua; Pierce-Shimomura, Jonathan T

    2014-11-30

    While many studies have assayed behavioral responses of animals to chemical, temperature and light gradients, fewer studies have assayed how animals respond to humidity gradients. Our novel humidity chamber has allowed us to study the neuromolecular basis of humidity sensation in the nematode Caenorhabditis elegans (Russell et al., 2014). We describe an easy-to-construct, low-cost humidity chamber to assay the behavior of small animals, including soft-bodied invertebrates, in controlled humidity gradients. We show that our humidity-chamber design is amenable to soft-bodied invertebrates and can produce reliable gradients ranging 0.3-8% RH/cm across a 9-cm long × 7.5-cm wide gel-covered arena. Previous humidity chambers relied on circulating dry and moist air to produce a steep humidity gradient in a small arena (e.g. Sayeed and Benzer, 1996). To remove the confound of moving air that may elicit mechanical responses independent of humidity responses, our chamber controlled the humidity gradient using reservoirs of hygroscopic materials. Additionally, to better observe the behavioral mechanisms for humidity responses, our chamber provided a larger arena. Although similar chambers have been described previously, these approaches were not suitable for soft-bodied invertebrates or for easy imaging of behavior because they required that animals move across wire or fabric mesh. The general applicability of our humidity chamber overcomes limitations of previous designs and opens the door to observe the behavioral responses of soft-bodied invertebrates, including genetically powerful C. elegans and Drosophila larvae. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Influence of relative humidity and temperature on quantity of electric charge of static protective clothing used in petrochemical industry

    International Nuclear Information System (INIS)

    Zhang, Yunpeng; Liu, Quanzhen; Liu, Baoquan; Li, Yipeng; Zhang, Tingting

    2013-01-01

    In this paper, the working principle of static protective clothing and its testing method of quantity of electric charge are introduced, and the influence of temperature and relative humidity on the quantity of electric charge (q e ) of static protective clothing is studied by measuring q e of different clothing samples. The result shows that temperature and relative humidity can influence q e of static protective clothing to some extent and the influence of relative humidity is bigger than that of temperature. According to experimental results, the relationship of q e and relative humidity and temperature was analysed, and the safety boundary of quantity of electric charge is discussed. In order to reduce the occurrence of electrostatic accidents and ensure safe production and operation of petrochemical industry, some suggestions on choosing and using of static protective clothing are given for guaranteeing its static protective performance.

  16. The effect of relative humidity on output performance of inclined and ...

    African Journals Online (AJOL)

    The set-up of 70 Watts solar panel was inclined stationary at 150 for maximum solar reception while the set-up of 80 Watts solar panel had automatic solar tracker for effective capturing of solar radiation. For 70 Watts solar panel, the maximum power output of 59.99 Watt was obtained when the relative humidity was 30%.

  17. COMPARISON OF INDOOR AIR QUALITY IN RESTAURANT KITCHENS IN TEHRAN WITH AMBIENT AIR QUALITY

    Directory of Open Access Journals (Sweden)

    M. Ghasemkhani, F. Naseri

    2008-01-01

    Full Text Available The indoor air quality of 131 restaurant kitchens in Tehran was investigated from May to September 2006. Gas stoves use in restaurant kitchens is a major source of indoor combustion, product carbon monoxide and nitrogen dioxide. The study focused on one of the busy zones located in the southwest and central part of the city. Measurements were done for indoor and outdoor air pollutants, carbon monoxide and nitrogen dioxide; ambient temperature and relative humidity were also measured. Result indicated that the mean levels of CO and NO2 in restaurant kitchens were below the recommended limit of 25 and 3ppm, respectively. Correlations between indoor and outdoor air quality were performed consequently. Results of the mean ambient temperature and relative humidity were above the guideline. In this study the mean levels of CO and NO2 gas cooking in restaurant kitchens were found to be lower compared with the similar studies.

  18. Evaluation of Temperature and Humidity Profiles of Unified Model and ECMWF Analyses Using GRUAN Radiosonde Observations

    Directory of Open Access Journals (Sweden)

    Young-Chan Noh

    2016-07-01

    Full Text Available Temperature and water vapor profiles from the Korea Meteorological Administration (KMA and the United Kingdom Met Office (UKMO Unified Model (UM data assimilation systems and from reanalysis fields from the European Centre for Medium-Range Weather Forecasts (ECMWF were assessed using collocated radiosonde observations from the Global Climate Observing System (GCOS Reference Upper-Air Network (GRUAN for January–December 2012. The motivation was to examine the overall performance of data assimilation outputs. The difference statistics of the collocated model outputs versus the radiosonde observations indicated a good agreement for the temperature, amongst datasets, while less agreement was found for the relative humidity. A comparison of the UM outputs from the UKMO and KMA revealed that they are similar to each other. The introduction of the new version of UM into the KMA in May 2012 resulted in an improved analysis performance, particularly for the moisture field. On the other hand, ECMWF reanalysis data showed slightly reduced performance for relative humidity compared with the UM, with a significant humid bias in the upper troposphere. ECMWF reanalysis temperature fields showed nearly the same performance as the two UM analyses. The root mean square differences (RMSDs of the relative humidity for the three models were larger for more humid conditions, suggesting that humidity forecasts are less reliable under these conditions.

  19. Implications of drying temperature and humidity on the drying kinetics of seaweed

    Science.gov (United States)

    Ali, Majid Khan Majahar; Fudholi, Ahmad; Muthuvalu, M. S.; Sulaiman, Jumat; Yasir, Suhaimi Md

    2017-11-01

    A Low Temperature and Humidity Chamber Test tested in the Solar Energy Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia. Experiments are attempted to study the effect of drying air temperature and humidity on the drying kinetics of seaweed Kappaphycus species Striatum besides to develop a model to estimate the drying curves. Simple method using a excel software is used in the analysis of raw data obtained from the drying experiment. The values of the parameters a, n and the constant k for the models are determined using a plot of curve drying models. Three different drying models are compared with experiment data seaweed drying at 30, 40, 50 and 60°C and relative humidity 20, 30 and 40% for seaweed. The higher drying temperatures and low relative humidity effects the moisture content that will be rapidly reduced. The most suitable model is selected to best describe the drying behavior of seaweed. The values of the coefficient of determination (R2), mean bias error (MBE) and root mean square error (RMSE) are used to determine the goodness or the quality of the fit. The Page model is showed a better fit to drying seaweed. The results from this study crucial for solar dryer development on pilot scale in Malaysia.

  20. In optics humidity compensation in NDIR exhaust gas measurements of NO2

    DEFF Research Database (Denmark)

    Stolberg-Rohr, Thomine Kirstine; Buchner, Rainer; Clausen, Sønnik

    2015-01-01

    NDIR is proposed for monitoring of air pollutants emitted by ship engines. Careful optical filtering overcomes the challenge of optical detection of NO2 in humid exhaust gas, despite spectroscopic overlap with the water vapour band. © 2014 OSA.......NDIR is proposed for monitoring of air pollutants emitted by ship engines. Careful optical filtering overcomes the challenge of optical detection of NO2 in humid exhaust gas, despite spectroscopic overlap with the water vapour band. © 2014 OSA....

  1. Decoupling dehumidification and cooling for energy saving and desirable space air conditions in hot and humid Hong Kong

    International Nuclear Information System (INIS)

    Lee, W.L.; Chen Hua; Leung, Y.C.; Zhang, Y.

    2012-01-01

    Highlights: ► The combined use of dedicated ventilation and dry cooling (DCDV) system was investigated. ► Investigations were based actual equipment performance data and realistic building and system characteristics. ► DCDV system could save 54% of the annual energy use for air-conditioning. ► DCDV system could better achieve the desired space air conditions. ► DCDV system could decouple dehumidification and cooling. - Abstract: The combined use of dedicated outdoor air ventilation (DV) and dry cooling (DC) air-conditioning system to decouple sensible and latent cooling for desirable space air conditions, better indoor air quality, and energy efficiency is proposed for hot and humid climates like Hong Kong. In this study, the performance and energy saving potential of DCDV system in comparison to conventional systems (constant air volume (CAV) system with and without reheat) for air conditioning of a typical office building in Hong Kong are evaluated. Through hour-by-hour simulations, using actual equipment performance data and realistic building and system characteristics, the cooling load profile, resultant indoor air conditions, condensation at the DC coil, and energy consumptions are calculated and analyzed. The results indicate that with the use of DCDV system, the desirable indoor conditions could be achieved and the annual energy use could be reduced by 54% over CAV system with reheat. The condensate-free characteristic at the DC coil to reduce risk of catching disease could also be realized.

  2. Ultrahigh humidity sensitivity of graphene oxide.

    Science.gov (United States)

    Bi, Hengchang; Yin, Kuibo; Xie, Xiao; Ji, Jing; Wan, Shu; Sun, Litao; Terrones, Mauricio; Dresselhaus, Mildred S

    2013-01-01

    Humidity sensors have been extensively used in various fields, and numerous problems are encountered when using humidity sensors, including low sensitivity, long response and recovery times, and narrow humidity detection ranges. Using graphene oxide (G-O) films as humidity sensing materials, we fabricate here a microscale capacitive humidity sensor. Compared with conventional capacitive humidity sensors, the G-O based humidity sensor has a sensitivity of up to 37800% which is more than 10 times higher than that of the best one among conventional sensors at 15%-95% relative humidity. Moreover, our humidity sensor shows a fast response time (less than 1/4 of that of the conventional one) and recovery time (less than 1/2 of that of the conventional one). Therefore, G-O appears to be an ideal material for constructing humidity sensors with ultrahigh sensitivity for widespread applications.

  3. Inter-Laboratory Comparison for Calibration of Relative Humidity Devices Among Accredited Laboratories in Malaysia

    Science.gov (United States)

    Hussain, F.; Khairuddin, S.; Othman, H.

    2017-01-01

    An inter-laboratory comparison in relative humidity measurements among accredited laboratories has been coordinated by the National Metrology Institute of Malaysia. It was carried out to determine the performance of the participating laboratories. The objective of the comparison was to acknowledge the participating laboratories competencies and to verify the level of accuracies declared in their scope of accreditation, in accordance with the MS ISO/IEC 17025 accreditation. The measurement parameter involved was relative humidity for the range of 30-90 %rh at a nominal temperature of 50°C. Eight accredited laboratories participated in the inter-laboratory comparison. Two units of artifacts have been circulated among the participants as the transfer standards.

  4. Low-cost personal cooling in hot humid offices. Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsen, L [Danish Building Research Inst., (Denmark); Santos, A [Univ. of the Philippines, Diliman (Philippines)

    1997-05-01

    A solution, based on low-cost solar-powered air drying, to heat stress in buildings located in developing countries with a hot and humid climate is presented. The air-drying facilities are described and a validation of the ensuing benefits through comprehensive human exposure studies is given. A prototype of a solar powered supply system for dried air was constructed and supply air was led to six personal units for ventilation and cooling placed in cubicles simulating office workplaces. 123 heat-acclimatized people were exposed for one hour in each of the cubicles. It is concluded that drying indoor air reduces heat stress among heat-adapted people in hot and humid offices and that the low-cost solar powered air drying system functioned satisfactorily , although some improvements are recommended. The drying power of the sun can be stored in recovered silica gel beads and used for other purposes. It is suggested that further research could explore the possibility of desiccant drying of agricultural products during the rainy season. (ARW) 30 refs.

  5. Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 1: Background and equations

    Directory of Open Access Journals (Sweden)

    R. Feistel

    2010-07-01

    Full Text Available A new seawater standard referred to as the International Thermodynamic Equation of Seawater 2010 (TEOS-10 was adopted in June 2009 by UNESCO/IOC on its 25th General Assembly in Paris, as recommended by the SCOR/IAPSO Working Group 127 (WG127 on Thermodynamics and Equation of State of Seawater. To support the adoption process, WG127 has developed a comprehensive source code library for the thermodynamic properties of liquid water, water vapour, ice, seawater and humid air, referred to as the Sea-Ice-Air (SIA library. Here we present the background information and equations required for the determination of the properties of single phases and components as well as of phase transitions and composite systems as implemented in the library. All results are based on rigorous mathematical methods applied to the Primary Standards of the constituents, formulated as empirical thermodynamic potential functions and, except for humid air, endorsed as Releases of the International Association for the Properties of Water and Steam (IAPWS. Details of the implementation in the TEOS-10 SIA library are given in a companion paper.

  6. Humidity Graphs for All Seasons.

    Science.gov (United States)

    Esmael, F.

    1982-01-01

    In a previous article in this journal (Vol. 17, p358, 1979), a wet-bulb depression table was recommended for two simple experiments to determine relative humidity. However, the use of a graph is suggested because it gives the relative humidity directly from the wet and dry bulb readings. (JN)

  7. Lower-tropospheric humidity: climatology, trends and the relation to the ITCZ

    Directory of Open Access Journals (Sweden)

    Alexander Läderach

    2013-07-01

    Full Text Available The tropical region is an area of maximum humidity and serves as the major humidity source of the globe. Among other phenomena, it is governed by the so-called Inter-Tropical Convergence Zone (ITCZ which is commonly defined by converging low-level winds or enhanced precipitation. Given its importance as a humidity source, we investigate the humidity fields in the tropics in different reanalysis data sets, deduce the climatology and variability and assess the relationship to the ITCZ. Therefore, a new analysis method of the specific humidity distribution is introduced which allows detecting the location of the humidity maximum, the strength and the meridional extent. The results show that the humidity maximum in boreal summer is strongly shifted northward over the warm pool/Asia Monsoon area and the Gulf of Mexico. These shifts go along with a peak in the strength in both areas; however, the extent shrinks over the warm pool/Asia Monsoon area, whereas it is wider over the Gulf of Mexico. In winter, such connections between location, strength and extent are not found. Still, a peak in strength is again identified over the Gulf of Mexico in boreal winter. The variability of the three characteristics is dominated by inter-annual signals in both seasons. The results using ERA-interim data suggest a positive trend in the Gulf of Mexico/Atlantic region from 1979 to 2010, showing an increased northward shift in the recent years. Although the trend is only weakly confirmed by the results using MERRA reanalysis data, it is in phase with a trend in hurricane activity – a possible hint of the importance of the new method on hurricanes. Furthermore, the position of the maximum humidity coincides with one of the ITCZ in most areas. One exception is the western and central Pacific, where the area is dominated by the double ITCZ in boreal winter. Nevertheless, the new method enables us to gain more insight into the humidity distribution, its variability and

  8. The effect of environmental parameters to dust concentration in air-conditioned space

    Science.gov (United States)

    Ismail, A. M. M.; Manssor, N. A. S.; Nalisa, A.; Yahaya, N.

    2017-08-01

    Malaysia has a wet and hot climate, therefore most of the spaces are air conditioned. The environment might affect dust concentration inside a space and affect the indoor air quality (IAQ). The main objective of this study is to study the dust concentration collected inside enclosed air-conditioned space. The measurement was done physically at four selected offices and two classrooms using a number of equipment to measure the dust concentration and environmental parameters which are temperature and relative air humidity. It was found that the highest dust concentration produced in office (temperature of 24.7°C, relative humidity of 66.5%) is 0.075 mg/m3, as compared to classroom, the highest dust concentration produced is 0.060 mg/m3 office (temperature of 25.9°C, relative humidity of 64.0%). However, both measurements show that value still within the safety level set by DOSH Malaysia (2005-2010) and ASHRAE 62.2 2016. The office contained higher dust concentration compared to classroom because of frequent movement transpires daily due to the functional of the offices.

  9. High relative humidity pre-harvest reduces post-harvest proliferation of Salmonella in tomatoes.

    Science.gov (United States)

    Devleesschauwer, Brecht; Marvasi, Massimiliano; Giurcanu, Mihai C; Hochmuth, George J; Speybroeck, Niko; Havelaar, Arie H; Teplitski, Max

    2017-09-01

    Outbreaks of human illness caused by enteric pathogens such as Salmonella are increasingly linked to the consumption of fruits and vegetables. Knowledge on the factors affecting Salmonella proliferation on fresh produce therefore becomes increasingly important to safeguard public health. Previous experiments showed a limited impact of pre-harvest production practices on Salmonella proliferation on tomatoes, but suggested a significant effect of harvest time. We explored the data from two previously published and one unpublished experiment using regression trees, which allowed overcoming the interpretational difficulties of classical statistical models with higher order interactions. We assessed the effect of harvest time by explicitly modeling the climatic conditions at harvest time and by performing confirmatory laboratory experiments. Across all datasets, regression trees confirmed the dominant effect of harvest time on Salmonella proliferation, with humidity-related factors emerging as the most important underlying climatic factors. High relative humidity the week prior to harvest was consistently associated with lower Salmonella proliferation. A controlled lab experiment confirmed that tomatoes containing their native epimicrobiota supported significantly lower Salmonella proliferation when incubated at higher humidity prior to inoculation. The complex interactions between environmental conditions and the native microbiota of the tomato crop remain to be fully understood. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The role of absorbent building materials in moderating changes of relative humidity

    DEFF Research Database (Denmark)

    Padfield, Tim

    The problem studied in this work is, how porous, absorbent materials surroundning or placed in a room influence the relative humidity of the room. This is of interest in designing precautions and machinery to monitor the indoor climate in museums and dwelling rooms. - A novel technique for the in...

  11. Model, Proxy and Isotopic Perspectives on the East African Humid Period

    Science.gov (United States)

    Tierney, Jessica E.; Lewis, Sophie C.; Cook, Benjamin I.; LeGrande, Allegra N.; Schmidt, Gavin A.

    2011-01-01

    Both North and East Africa experienced more humid conditions during the early and mid-Holocene epoch (11,000-5000yr BP; 11-5 ka) relative to today. The North African Humid Period has been a major focus of paleoclimatic study, and represents a response of the hydrological cycle to the increase in boreal summer insolation and associated ocean, atmosphere and land surface feedbacks. Meanwhile, the mechanisms that caused the coeval East African Humid Period are poorly understood. Here, we use results from isotopeenabled coupled climate modeling experiments to investigate the cause of the East African Humid Period. The modeling results are interpreted alongside proxy records of both water balance and the isotopic composition of rainfall. Our simulations show that the orbitally-induced increase in dry season precipitation and the subsequent reduction in precipitation seasonality can explain the East African Humid Period, and this scenario agrees well with regional lake level and pollen paleoclimate data. Changes in zonal moisture flux from both the Atlantic and Indian Ocean account for the simulated increase in precipitation from June through November. Isotopic paleoclimate data and simulated changes in moisture source demonstrate that the western East African Rift Valley in particular experienced more humid conditions due to the influx of Atlantic moisture and enhanced convergence along the Congo Air Boundary. Our study demonstrates that zonal changes in moisture advection are an important determinant of climate variability in the East African region.

  12. Observational evidence for aerosols increasing upper tropospheric humidity

    Directory of Open Access Journals (Sweden)

    L. Riuttanen

    2016-11-01

    Full Text Available Aerosol–cloud interactions are the largest source of uncertainty in the radiative forcing of the global climate. A phenomenon not included in the estimates of the total net forcing is the potential increase in upper tropospheric humidity (UTH by anthropogenic aerosols via changes in the microphysics of deep convection. Using remote sensing data over the ocean east of China in summer, we show that increased aerosol loads are associated with an UTH increase of 2.2 ± 1.5 in units of relative humidity. We show that humidification of aerosols or other meteorological covariation is very unlikely to be the cause of this result, indicating relevance for the global climate. In tropical moist air such an UTH increase leads to a regional radiative effect of 0.5 ± 0.4 W m−2. We conclude that the effect of aerosols on UTH should be included in future studies of anthropogenic climate change and climate sensitivity.

  13. Thermal Comfort and Optimum Humidity Part 1

    Directory of Open Access Journals (Sweden)

    M. V. Jokl

    2002-01-01

    Full Text Available The hydrothermal microclimate is the main component in indoor comfort. The optimum hydrothermal level can be ensured by suitable changes in the sources of heat and water vapor within the building, changes in the environment (the interior of the building and in the people exposed to the conditions inside the building. A change in the heat source and the source of water vapor involves improving the heat - insulating properties and the air permeability of the peripheral walls and especially of the windows. The change in the environment will bring human bodies into balance with the environment. This can be expressed in terms of an optimum or at least an acceptable globe temperature, an adequate proportion of radiant heat within the total amount of heat from the environment (defined by the difference between air and wall temperature, uniform cooling of the human body by the environment, defined a by the acceptable temperature difference between head and ankles, b by acceptable temperature variations during a shift (location unchanged, or during movement from one location to another without a change of clothing. Finally, a moisture balance between man and the environment is necessary (defined by acceptable relative air humidity. A change for human beings means a change of clothes which, of course, is limited by social acceptance in summer and by inconvenient heaviness in winter. The principles of optimum heating and cooling, humidification and dehumidification are presented in this paper.Hydrothermal comfort in an environment depends on heat and humidity flows (heat and water vapors, occurring in a given space in a building interior and affecting the total state of the human organism.

  14. Thermal Comfort and Optimum Humidity Part 2

    Directory of Open Access Journals (Sweden)

    M. V. Jokl

    2002-01-01

    Full Text Available The hydrothermal microclimate is the main component in indoor comfort. The optimum hydrothermal level can be ensured by suitable changes in the sources of heat and water vapor within the building, changes in the environment (the interior of the building and in the people exposed to the conditions inside the building. A change in the heat source and the source of water vapor involves improving the heat - insulating properties and the air permeability of the peripheral walls and especially of the windows. The change in the environment will bring human bodies into balance with the environment. This can be expressed in terms of an optimum or at least an acceptable globe temperature, an adequate proportion of radiant heat within the total amount of heat from the environment (defined by the difference between air and wall temperature, uniform cooling of the human body by the environment, defined a by the acceptable temperature difference between head and ankles, b by acceptable temperature variations during a shift (location unchanged, or during movement from one location to another without a change of clothing. Finally, a moisture balance between man and the environment is necessary (defined by acceptable relative air humidity. A change for human beings means a change of clothes which, of course, is limited by social acceptance in summer and by inconvenient heaviness in winter. The principles of optimum heating and cooling, humidification and dehumidification are presented in this paper.Hydrothermal comfort in an environment depends on heat and humidity flows (heat and water vapors, occurring in a given space in a building interior and affecting the total state of the human organism.

  15. Humidity requirements in WSCF Laboratories

    International Nuclear Information System (INIS)

    Evans, R.A.

    1994-01-01

    The purpose of this paper is to develop and document a position on Relative Humidity (RH) requirements in the WSCF Laboratories. A current survey of equipment vendors for Organic, Inorganic and Radiochemical laboratories indicate that 25% - 80% relative humidity may meet the environmental requirements for safe operation and protection of all the laboratory equipment

  16. Nano-enabled paper humidity sensor for mobile based point-of-care lung function monitoring.

    Science.gov (United States)

    Bhattacharjee, Mitradip; Nemade, Harshal B; Bandyopadhyay, Dipankar

    2017-08-15

    The frequency of breathing and peak flow rate of exhaled air are necessary parameters to detect chronic obstructive pulmonary diseases (COPDs) such as asthma, bronchitis, or pneumonia. We developed a lung function monitoring point-of-care-testing device (LFM-POCT) consisting of mouthpiece, paper-based humidity sensor, micro-heater, and real-time monitoring unit. Fabrication of a mouthpiece of optimal length ensured that the exhaled air was focused on the humidity-sensor. The resistive relative humidity sensor was developed using a filter paper coated with nanoparticles, which could easily follow the frequency and peak flow rate of the human breathing. Adsorption followed by condensation of the water molecules of the humid air on the paper-sensor during the forced exhalation reduced the electrical resistance of the sensor, which was converted to an electrical signal for sensing. A micro-heater composed of a copper-coil embedded in a polymer matrix helped in maintaining an optimal temperature on the sensor surface. Thus, water condensed on the sensor surface only during forcible breathing and the sensor recovered rapidly after the exhalation was complete by rapid desorption of water molecules from the sensor surface. Two types of real-time monitoring units were integrated into the device based on light emitting diodes (LEDs) and smart phones. The LED based unit displayed the diseased, critical, and fit conditions of the lungs by flashing LEDs of different colors. In comparison, for the mobile based monitoring unit, an application was developed employing an open source software, which established a wireless connectivity with the LFM-POCT device to perform the tests. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Population growth and development of Liposcelis pearmani (Psocoptera: Liposcelididae) at constant temperatures and relative humidities.

    Science.gov (United States)

    Aminatou, B A; Gautam, S G; Opit, G P; Talley, J; Shakya, K

    2011-08-01

    Psocids of genus Liposcelis are now considered serious pests of stored products. We investigated the effects of eight temperatures (22.5, 25.0, 27.5, 30.0, 32.5, 35.0, 37.5, and 40.0°C) and four relative humidities (43, 55, 63, and 75%) on population growth and development of the psocid Liposcelis pearmani Lienhard. L. pearmani did not survive at 37.5 and 40.0°C, at all relative humidities tested; at 43% RH, at all temperatures tested; and at 55% RH, at 32.5 and 35°C. The greatest population growth was recorded at 32.5°C and 75% RH (32-fold growth). L. pearmani males have two to four nymphal instars, and the percentages of males with two, three, and four instars were 17, 63, and 20%, respectively. Female L. pearmani have two to five instars, and the percentages of females with two, three, four, and five instars were 5, 39, 55, and 1%, respectively. We developed temperature-dependent development equations for male and female eggs, individual nymphal, combined nymphal, and combined immature stages. Based on 30-d population growth, L. pearmani cannot survive at temperatures >35.0°C; does not thrive at low relative humidities (55%), at temperatures above 25°C; and has a high optimum relative humidity for population growth (75%). Therefore, we expect it to have a more limited distribution compared with other Liposcelis species. These data provide a better understanding of how temperature and RH may influence L. pearmani population dynamics and can be used in population growth models to help develop effective management strategies for this psocid, and to predict its occurrence.

  18. Searching for new solutions Humidity measurements in the environments

    Directory of Open Access Journals (Sweden)

    Gianina Creţu

    2008-05-01

    Full Text Available More attention is nowadays being paid to thequality of the air we breathe, resulting in an increasingneed for humidity measurements in the home and officeenvironments. Maintaining the proper level of relativehumidity is also necessary to avoid conditions of extremehumidity condensation in buildings.The facts that construction problems and excessive waterand humidity often go together is well-known around theworld today. Moisture and water damage is a wellknown problem in construction in many countries.Problems of all construction are caused by humidity and50 per cent of all buildings have some kind of moisturerelatedproblems. Growing awareness of percentages suchas these has led to greater attention being paid toconstruction humidity and its measurement throughoutthe world in recent years.This paper presents a condensed review of nowadayshumidity sensors technology, problem implicated andsome modern tendencies.

  19. Development of data logger for atmospheric pressure, temperature and relative humidity for gas-filled detector

    International Nuclear Information System (INIS)

    Sahu, S.; Sahu, P.K.; Bhuyan, M.R.; Biswas, S.; Mohanty, B.

    2014-01-01

    At IoP-NISER an initiative has been taken to build and test micro-pattern gas detector such as Gas Electron Multiplier (GEM) for several upcoming High-Energy Physics (HEP) experiment projects. Temperature (t), atmospheric pressure (p) and relative humidity (RH) monitor and recording is very important for gas filled detector development. A data logger to monitor and record the ambient parameters such as temperature, relative humidity and pressure has been developed. With this data logger continuous recording of t, p, RH and time stamp can be done with a programmable sampling interval. This data is necessary to correct the gain of a gas filled detector

  20. Mapping near-surface air temperature, pressure, relative humidity and wind speed over Mainland China with high spatiotemporal resolution

    Science.gov (United States)

    Li, Tao; Zheng, Xiaogu; Dai, Yongjiu; Yang, Chi; Chen, Zhuoqi; Zhang, Shupeng; Wu, Guocan; Wang, Zhonglei; Huang, Chengcheng; Shen, Yan; Liao, Rongwei

    2014-09-01

    As part of a joint effort to construct an atmospheric forcing dataset for mainland China with high spatiotemporal resolution, a new approach is proposed to construct gridded near-surface temperature, relative humidity, wind speed and surface pressure with a resolution of 1 km×1 km. The approach comprises two steps: (1) fit a partial thin-plate smoothing spline with orography and reanalysis data as explanatory variables to ground-based observations for estimating a trend surface; (2) apply a simple kriging procedure to the residual for trend surface correction. The proposed approach is applied to observations collected at approximately 700 stations over mainland China. The generated forcing fields are compared with the corresponding components of the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis dataset and the Princeton meteorological forcing dataset. The comparison shows that, both within the station network and within the resolutions of the two gridded datasets, the interpolation errors of the proposed approach are markedly smaller than the two gridded datasets.

  1. Estimation of evaporation from equilibrium diurnal boundary layer humidity

    Science.gov (United States)

    Salvucci, G.; Rigden, A. J.; Li, D.; Gentine, P.

    2017-12-01

    Simplified conceptual models of the convective boundary layer as a well mixed profile of potential temperature (theta) and specific humidity (q) impinging on an initially stably stratified linear potential temperature profile have a long history in atmospheric sciences. These one dimensional representations of complex mixing are useful for gaining insights into land-atmosphere interactions and for prediction when state of the art LES approaches are infeasible. As previously shown (e.g. Betts), if one neglects the role of q in bouyancy, the framework yields a unique relation between mixed layer Theta, mixed layer height (h), and cumulative sensible heat flux (SH) throughout the day. Similarly assuming an initially q profile yields a simple relation between q, h, and cumulative latent heat flux (LH). The diurnal dynamics of theta and q are strongly dependent on SH and the initial lapse rates of theta (gamma_thet) and q (gamma q). In the estimation method proposed here, we further constrain these relations with two more assumptions: 1) The specific humidity is the same at the start of the period of boundary layer growth and at the collapse; and 2) Once the mixed layer reaches the LCL, further drying occurs proportionally to the deardorff convective velocity scale (omega) multiplied by q. Assumption (1) is based on the idea that below the cloud layer, there are no sinks of moisture within the mixed layer (neglecting lateral humidity divergence). Thus the net mixing of dry air aloft with evaporation from the surface must balance. Inclusion of the simple model of moisture loss above the LCL into the bulk-CBL model allows definition of an equilibrium humidity (q) condition at which the diurnal cycle of q repeats (i.e. additions of q from surface balance entrainment of dry air from above). Surprisingly, this framework allows estimation of LH from q, theta, and estimated net radiation by solving for the value of Evaporative Fraction (EF) for which the diurnal cycle of q

  2. Acute airway effects of airborne formaldehyde in sensitized and non-sensitized mice housed in a dry or humid environment

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Søren Thor, E-mail: stl@nrcwe.dk; Wolkoff, Peder, E-mail: pwo@nrcwe.dk; Hammer, Maria, E-mail: mha@nrcwe.dk; Kofoed-Sørensen, Vivi, E-mail: vks@nrcwe.dk; Clausen, Per Axel, E-mail: pac@nrcwe.dk; Nielsen, Gunnar Damgård, E-mail: gdn@nrcwe.dk

    2013-05-01

    We investigated the role of air humidity and allergic sensitization on the acute airway response to inhaled formaldehyde (FA) vapor. Mice were sensitized to the immunogen ovalbumin (OVA) by three intraperitoneal injections followed by two aerosol challenges, giving rise to allergic airway inflammation. Control mice were sham sensitized by saline injections and challenged by saline aerosols. Once sensitized, the mice were housed at high (85–89%) or low (< 10%) relative humidity, respectively for 48 h prior to a 60-min exposure to either 0.4, 1.8 or about 5 ppm FA. Before, during and after exposure, breathing parameters were monitored. These included the specific markers of nose and lung irritations as well as the expiratory flow rate, the latter being a marker of airflow limitation. The sensory irritation response in the upper airways was not affected by allergic inflammation or changes in humidity. At high relative humidity, the OVA-sensitized mice had a decreased expiratory airflow rate compared to the saline control mice after exposure to approximately 5 ppm FA. This is in accordance with the observations that asthmatics are more sensitive than non-asthmatics to higher concentrations of airway irritants including FA. In the dry environment, the opposite trend was seen; here, the saline control mice had a significantly decreased expiratory airflow rate compared to OVA-sensitized mice when exposed to 1.8 and 4 ppm FA. We speculate that increased mucus production in the OVA-sensitized mice has increased the “scrubber effect” in the nose, consequently protecting the conducting and lower airways. - Highlights: ► Role of air humidity and allergy on sensitivity to an airway irritant was studied. ► In the humid environment, allergy amplified the effects of formaldehyde. ► In the dry environment, allergy reduced the effect of formaldehyde. ► Neither allergy nor humidity changed the formaldehyde-induced nasal irritation.

  3. Acute airway effects of airborne formaldehyde in sensitized and non-sensitized mice housed in a dry or humid environment

    International Nuclear Information System (INIS)

    Larsen, Søren Thor; Wolkoff, Peder; Hammer, Maria; Kofoed-Sørensen, Vivi; Clausen, Per Axel; Nielsen, Gunnar Damgård

    2013-01-01

    We investigated the role of air humidity and allergic sensitization on the acute airway response to inhaled formaldehyde (FA) vapor. Mice were sensitized to the immunogen ovalbumin (OVA) by three intraperitoneal injections followed by two aerosol challenges, giving rise to allergic airway inflammation. Control mice were sham sensitized by saline injections and challenged by saline aerosols. Once sensitized, the mice were housed at high (85–89%) or low (< 10%) relative humidity, respectively for 48 h prior to a 60-min exposure to either 0.4, 1.8 or about 5 ppm FA. Before, during and after exposure, breathing parameters were monitored. These included the specific markers of nose and lung irritations as well as the expiratory flow rate, the latter being a marker of airflow limitation. The sensory irritation response in the upper airways was not affected by allergic inflammation or changes in humidity. At high relative humidity, the OVA-sensitized mice had a decreased expiratory airflow rate compared to the saline control mice after exposure to approximately 5 ppm FA. This is in accordance with the observations that asthmatics are more sensitive than non-asthmatics to higher concentrations of airway irritants including FA. In the dry environment, the opposite trend was seen; here, the saline control mice had a significantly decreased expiratory airflow rate compared to OVA-sensitized mice when exposed to 1.8 and 4 ppm FA. We speculate that increased mucus production in the OVA-sensitized mice has increased the “scrubber effect” in the nose, consequently protecting the conducting and lower airways. - Highlights: ► Role of air humidity and allergy on sensitivity to an airway irritant was studied. ► In the humid environment, allergy amplified the effects of formaldehyde. ► In the dry environment, allergy reduced the effect of formaldehyde. ► Neither allergy nor humidity changed the formaldehyde-induced nasal irritation

  4. Climate risk assessment in museums : degradation risks determined from temperature and relative humidity data

    NARCIS (Netherlands)

    Martens, M.H.J.

    2012-01-01

    The main subject of this thesis is the determination of climate risks to objects in museums on the basis of measured and/or simulated temperature and relative humidity data. The focus is on the quantification of climate related risks for the preservation quality of indoor climate in Dutch museums.

  5. Air Conditioner/Dehumidifier

    Science.gov (United States)

    1986-01-01

    An ordinary air conditioner in a very humid environment must overcool the room air, then reheat it. Mr. Dinh, a former STAC associate, devised a heat pipe based humidifier under a NASA Contract. The system used heat pipes to precool the air; the air conditioner's cooling coil removes heat and humidity, then the heat pipes restore the overcooled air to a comfortable temperature. The heat pipes use no energy, and typical savings are from 15-20%. The Dinh Company also manufactures a "Z" coil, a retrofit cooling coil which may be installed on an existing heater/air conditioner. It will also provide free hot water. The company has also developed a photovoltaic air conditioner and solar powered water pump.

  6. Thermal Comfort: An Index for Hot, Humid Asia. Educational Building Digest 12.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.

    The sensation of thermal comfort is determined by a combination of air temperature, humidity of the air, rate of movement of the air, and radiant heat. This digest is intended to assist architects to design educational facilities that are as thermally comfortable as is possible without recourse to mechanical air conditioning. A nomogram is…

  7. Humidity Sensing in Drosophila.

    Science.gov (United States)

    Enjin, Anders; Zaharieva, Emanuela E; Frank, Dominic D; Mansourian, Suzan; Suh, Greg S B; Gallio, Marco; Stensmyr, Marcus C

    2016-05-23

    Environmental humidity influences the fitness and geographic distribution of all animals [1]. Insects in particular use humidity cues to navigate the environment, and previous work suggests the existence of specific sensory mechanisms to detect favorable humidity ranges [2-5]. Yet, the molecular and cellular basis of humidity sensing (hygrosensation) remains poorly understood. Here we describe genes and neurons necessary for hygrosensation in the vinegar fly Drosophila melanogaster. We find that members of the Drosophila genus display species-specific humidity preferences related to conditions in their native habitats. Using a simple behavioral assay, we find that the ionotropic receptors IR40a, IR93a, and IR25a are all required for humidity preference in D. melanogaster. Yet, whereas IR40a is selectively required for hygrosensory responses, IR93a and IR25a mediate both humidity and temperature preference. Consistent with this, the expression of IR93a and IR25a includes thermosensory neurons of the arista. In contrast, IR40a is excluded from the arista but is expressed (and required) in specialized neurons innervating pore-less sensilla of the sacculus, a unique invagination of the third antennal segment. Indeed, calcium imaging showed that IR40a neurons directly respond to changes in humidity, and IR40a knockdown or IR93a mutation reduced their responses to stimuli. Taken together, our results suggest that the preference for a specific humidity range depends on specialized sacculus neurons, and that the processing of environmental humidity can happen largely in parallel to that of temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Humidity control device in a reactor container

    International Nuclear Information System (INIS)

    Aizawa, Motohiro; Igarashi, Hiroo; Osumi, Katsumi; Kimura, Takashi.

    1986-01-01

    Purpose: To provide a device capable of maintaining the inside of a container under high humidity circumstantial conditions causing less atmospheric corrosions, in order to prevent injuries due to atmospheric corrosions to smaller diameter stainless steel pipeways in the reactor container. Constitution: Stress corrosion cracks (SCC) to the smaller diameter stainless steel pipeways are caused dependent on the relative humidity and it is effective as the countermeasure against SCC to maintain the relative humidity at a low level less than 30 % or high level greater than 60 %. Based on the above findings, a humidity control device is disposed so as to maintain the relative humidity for the atmosphere within a reactor core on a higher humidity region. The device is adapted such that recycling gas in the dry-well coolant circuit is passed through an orifice to atomize the water introduced from feedwater pipe and introduce into a reactor core or such that the recycling gases in the dry-well cooling circuit are bubbled into water to remove chlorine gas in the reactor container gas thereby increasing the humidity in the reactor container. (Kamimura, M.)

  9. A comprehensive analysis of the physiological and anatomical components involved in higher water loss rates after leaf development at high humidity

    NARCIS (Netherlands)

    Fanourakis, D.; Heuvelink, E.; Pinto De Carvalho, S.M.

    2013-01-01

    To better understand the poor regulation of water loss after leaf development at high relative air humidity (RH), the relative importance of the physiological and anatomical components was analyzed focusing on cultivars with a contrasting sensitivity to elevated RH. The stomatal responsiveness to

  10. Seasonal variation of meteorological factors on air parameters and ...

    African Journals Online (AJOL)

    user

    Onna. Air quality parameters (Cl-, SPM and SO2) were found to have positive correlation with vapour pressure, humidity and rainfall values in the study areas. It was also established that a positive correlation exits between NO2, H2S, SO2, SPM, chloride, carbon monoxide and wind speed relative humidity, temperature and ...

  11. Coupled effects of the temperature and the relative humidity on gecko adhesion

    International Nuclear Information System (INIS)

    Peng, Zhilong; Yang, Yazheng; Chen, Shaohua

    2017-01-01

    To explain the inconsistent results of experiments on temperature-dependent gecko adhesion, a theoretical peeling model is established wherein a nano-thin film is adopted to simulate a gecko spatula. The model considers not only the respective effects of temperature and environmental humidity on the peel-off force but also the coupled effect of both factors. Increasing temperature is found to lead to a decreasing peel-off force if the environmental humidity is uncontrolled. However, if the environmental humidity is constant, the peel-off force is insensitive to the temperature and remains almost constant. The synthetic theoretical analysis demonstrates that the seemingly contradictory results of temperature-dependent gecko adhesion experiments are actually consistent under their respective experimental conditions. This inconsistency is mainly due to the environmental humidity, which varies with the changing temperature if it is not artificially controlled. The results cannot only reasonably explain the different experimental results for the effect of temperature on gecko adhesion but can also facilitate the design of temperature-controlled or humidity-controlled adhesion sensors by tuning the environmental humidity or temperature. (paper)

  12. Ozone Production With Dielectric Barrier Discharge: Effects of Power Source and Humidity

    KAUST Repository

    Zhang, Xuming

    2016-08-24

    Ozone synthesis in air dielectric barrier discharge (DBD) was studied with an emphasis on the effects of power sources and humidity. Discharge characteristics were investigated to understand the physical properties of plasma and corresponding system performance. It was found that 10-ns pulsed DBD produced a homogeneous discharge mode, while ac DBD yielded an inhomogeneous pattern with many microdischarge channels. At a similar level of the energy density (ED), decreasing the flowrate is more effective in the production of ozone for the cases of the ac DBD, while increased voltage is more effective for the pulsed DBD. Note that the maximum ozone production efficiency (110 g/kWh) was achieved with the pulsed DBD. At the ED of ∼ 85 J/L, the ozone concentrations with dry air were over three times higher than those with the relative humidity of 100% for both the ac DBD and pulsed DBD cases. A numerical simulation was conducted using a global model to understand a detailed chemical role of water vapor to ozone production. It was found HO and OH radicals from water vapor significantly consumed O atoms, resulting in a reduction in ozone production. The global model qualitatively captured the experimental trends, providing further evidence that the primary effect of humidity on ozone production is chemical in nature.

  13. CONTROLLING FACTORS OF POTENTIAL EVAPOTRANSPIRATION ABOVE GRASSLAND IN HUMID AND ARID AREA

    Directory of Open Access Journals (Sweden)

    . Yanto

    2013-05-01

    Full Text Available Potential evapotranspiration (PET is an importance process in water balance studies controlled by a number of meteorological factors such as temperature, wind speed, atmospheric pressure, solar radiation, vapor pressure gradient, relative humidity and biological factors such as vegetation type, canopy height and plant density that varied in time-scale and in spatial scale. Of all those variables, determining the most controlling factors of evapotranspiration in humid and arid area is of interest of this paper. Two sites representing humid and arid area i.e. Fermi Prairie site in Illinois and Audubon Research Ranch in Arizona respectively were investigated in this study.  The flux data employed in this study was acquired from Ameriflux Netwotk. Penmann-Monteith formula is employed in to estimate evapotranspiration rate in both sites. The result shows that the PET is in dependence on the considered meteorological factor such as shortwave radiation, vapor pressure, air temperature, wind speed, net radiation and vapor pressure deficit. It is also can be inferred from the analysis that PET is also strongly controlled by vegetation factors represented as stomatal resistance. Keywords: Potential evapotranspiration, Penmann-Monteith, humid, arid.

  14. Effect of inhomogeneities on streamer propagation: II. Streamer dynamics in high pressure humid air with bubbles

    International Nuclear Information System (INIS)

    Babaeva, Natalia Yu; Kushner, Mark J

    2009-01-01

    The branching of electric discharge streamers in atmospheric pressure air, dense gases and liquids is a common occurrence whose origins are likely found with many causes, both deterministic and stochastic. One mechanism for streamer branching may be inhomogeneities in the path of a streamer which either divert the streamer (typically a region of lower ionization) or produce a new branch (a region of higher ionization). The propagation and branching of streamers in liquids is likely aided by low density inhomogeneities, bubbles; however, modeling of streamers in liquids is made difficult by the lack of transport coefficients. As a first step towards understanding the propagation and branching of streamers in liquids, we investigated the consequences of random inhomogeneities in the form of low pressure bubbles on the propagation of streamers in high pressure humid air. By virtue of their lower density, bubbles have larger E/N (electric field/gas number density) than the ambient gas with larger rates of ionization. The intersection of a streamer with a bubble will focus the plasma into the bubble by virtue of that higher rate of ionization but the details of the interaction depend on the relative sizes of the bubble and streamer. When a streamer intersects a field of bubbles, the large E/N in the bubble avalanches seed electrons produced by photoionization from the streamer. Each bubble then launches both a negative and positive going streamer that may link with those from adjacent bubbles or the original streamer. The total process then appears as streamer branching.

  15. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring.

    Science.gov (United States)

    Wei, Peng; Ning, Zhi; Ye, Sheng; Sun, Li; Yang, Fenhuan; Wong, Ka Chun; Westerdahl, Dane; Louie, Peter K K

    2018-01-23

    The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series) for carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO₂), and oxidants (O x ) were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO₂ and ozone on a newly introduced oxidant sensor.

  16. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Peng Wei

    2018-01-01

    Full Text Available The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series for carbon monoxide (CO, nitric oxide (NO, nitrogen dioxide (NO2, and oxidants (Ox were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO2 and ozone on a newly introduced oxidant sensor.

  17. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring

    Science.gov (United States)

    Ning, Zhi; Ye, Sheng; Sun, Li; Yang, Fenhuan; Wong, Ka Chun; Westerdahl, Dane; Louie, Peter K. K.

    2018-01-01

    The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series) for carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), and oxidants (Ox) were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO2 and ozone on a newly introduced oxidant sensor. PMID:29360749

  18. MOISTURE HUMIDITY EQUILIBRIUM OF WOOD CHIPS FROM ENERGETIC CROPS

    Directory of Open Access Journals (Sweden)

    Jan Barwicki

    2008-09-01

    Full Text Available Processes occurring during storage of wood chips for energetic or furniture industry purposes were presented. As a result of carried out investigations, dependences of temperature and relative humidity changes of surrounding air were shown. Modified Henderson equation can be utilized for computer simulation of storing and drying processes concerning wood chips for energetic and furniture industry purposes. It reflects also obtained results from experiments carried out with above mentioned material. Using computer simulation program we can examine different wood chips storing conditions to avoid overheating and loss problems.

  19. The effect of ambient ozone and humidity on the performance of nylon and Teflon filters used in ambient air monitoring filter-pack systems

    Science.gov (United States)

    PE Padgett

    2010-01-01

    Nylon and Teflon filter media are frequently used for monitoring ambient air pollutants. These media are subject to many environmental factors that may influence adsorption and retention of particulate and gaseous nitrogenous pollutants. This study evaluated the effects of ozone and humidity on the efficacy of nylon and Teflon filters used in the US dry deposition...

  20. Performance analysis of a bio-gasification based combined cycle power plant employing indirectly heated humid air turbine

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S., E-mail: sankha.deepp@gmail.com; Mondal, P., E-mail: mondal.pradip87@gmail.com; Ghosh, S., E-mail: sudipghosh.becollege@gmail.com [Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah – 711103, West Bengal (India)

    2016-07-12

    Rapid depletion of fossil fuel has forced mankind to look into alternative fuel resources. In this context, biomass based power generation employing gas turbine appears to be a popular choice. Bio-gasification based combined cycle provides a feasible solution as far as grid-independent power generation is concerned for rural electrification projects. Indirectly heated gas turbine cycles are promising alternatives as they avoid downstream gas cleaning systems. Advanced thermodynamic cycles have become an interesting area of study to improve plant efficiency. Water injected system is one of the most attractive options in this field of applications. This paper presents a theoretical model of a biomass gasification based combined cycle that employs an indirectly heated humid air turbine (HAT) in the topping cycle. Maximum overall electrical efficiency is found to be around 41%. Gas turbine specific air consumption by mass is minimum when pressure ratio is 6. The study reveals that, incorporation of the humidification process helps to improve the overall performance of the plant.

  1. Effects of ambient air temperature, humidity and rainfall on annual survival of adult little penguins Eudyptula minor in southeastern Australia

    Science.gov (United States)

    Ganendran, L. B.; Sidhu, L. A.; Catchpole, E. A.; Chambers, L. E.; Dann, P.

    2016-08-01

    Seabirds are subject to the influences of local climate variables during periods of land-based activities such as breeding and, for some species, moult; particularly if they undergo a catastrophic moult (complete simultaneous moult) as do penguins. We investigated potential relationships between adult penguin survival and land-based climate variables (ambient air temperature, humidity and rainfall) using 46 years of mark-recapture data of little penguins Eudyptula minor gathered at a breeding colony on Phillip Island in southeastern Australia. Our results showed that adult penguin survival had a stronger association with land-based climate variables during the moult period, when birds were unable to go to sea for up to 3 weeks, than during the breeding period, when birds could sacrifice breeding success in favour of survival. Annual adult survival probability was positively associated with humidity during moult and negatively associated with rainfall during moult. Prolonged heat during breeding and moult had a negative association with annual adult survival. Local climate projections suggest increasing days of high temperatures, fewer days of rainfall which will result in more droughts (and by implication, lower humidity) and more extreme rainfall events. All of these predicted climate changes are expected to have a negative impact on adult penguin survival.

  2. Energy performance and consumption for biogas heat pump air conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenjun [Architectural Engineering College, Qingdao Agricultural University, 266109 (China); Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Tianjin University, Tianjin, 300072 (China); Wu, Huaizhi; Wu, Meiling [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Tianjin University, Tianjin, 300072 (China)

    2010-12-15

    Biogas engine-driven heat pump air conditioner is a new-style system which includes biogas engine-driven heat pump, primary heat exchanger, second heat exchanger, sprayed room and fans, pumps, etc. In summertime, the air can be reheated by the waste heat water from the biogas engine in the system, while the air can be reheated and humidified by the waste heat water in winter. Reducing or displacing electrical heating requirements can achieve the great opportunity for significant energy savings. This paper, therefore, aims to improve the energy performance of the AC system by using the waste heat from the biogas engine. The mathematic model was used to research the BHPAC. Explicitly, we investigated the influence of various factors including the outdoor air temperature and humidity in summer and winter. Results show that the biogas engine-driven heat pump air conditioner can save more energy than the electrical power heat pump. In summer, the minimum for percentage of primary energy saving for BHPAC is over 25%. With the outdoor air dry-bulb temperature and the relative humidity rises, the saving energy percentage rises. In winter, the minimum for percentage of primary energy saving for BHPAC is 37%. The more the outdoor air relative humidity of the outdoor air decreases, the more the BHPAC saves energy. It is proved that the system which is a highly actively fully utilizing energy technology has good partial load characteristic and good effects of energy saving. (author)

  3. Nucleation and Crystal Growth of Organic-Inorganic Lead Halide Perovskites under Different Relative Humidity.

    Science.gov (United States)

    Gao, Hao; Bao, Chunxiong; Li, Faming; Yu, Tao; Yang, Jie; Zhu, Weidong; Zhou, Xiaoxin; Fu, Gao; Zou, Zhigang

    2015-05-06

    Organic-inorganic lead halide perovskite compounds are very promising materials for high-efficiency perovskite solar cells. But how to fabricate high-quality perovksite films under controlled humidity conditions is still an important issue due to their sensitivity to moisture. In this study, we investigated the influence of ambient humidity on crystallization and surface morphology of one-step spin-coated perovskite films, as well as the performance of solar cells based on these perovskite films. On the basis of experimental analyses and thin film growth theory, we conclude that the influence of ambient humidity on nucleation at spin-coating stage is quite different from that on crystal growth at annealing stage. At the spin-coating stage, high nucleation density induced by high supersaturation prefers to appear under anhydrous circumstances, resulting in layer growth and high coverage of perovskite films. But at the annealing stage, the modest supersaturation benefits formation of perovskite films with good crystallinity. The films spin-coated under low relative humidity (RH) followed by annealing under high RH show an increase of crystallinity and improved performance of devices. Therefore, a mechanism of fast nucleation followed by modest crystal growth (high supersaturation at spin-coating stage and modest supersaturation at annealing stage) is suggested in the formation of high-quality perovskite films.

  4. Effect of high relative humidity on dried Plantago lanceolata L. leaves during long-term storage: effects on chemical composition, colour and microbiological quality.

    Science.gov (United States)

    Gonda, Sándor; Tóth, László; Gyémánt, Gyöngyi; Braun, Mihály; Emri, Tamás; Vasas, Gábor

    2012-01-01

    Modern phytotherapy and quality assurance requires stability data on bioactive metabolites to identify and minimise decomposing factors during processing and storage. A compound's stability in a complex matrix can be different from the stability of the purified compound. To test the stability of iridoids and acteoside and quantify changes in colour and microbiological quality in a common herbal tea, dried P. lanceolata leaves during exposure to high-humidity air. To test the contribution of fungi to metabolite decomposition. Dried P. lanceolata leaves were exposed to atmospheres of different relative humidity (75, 45 and 0%) for 24 weeks. Changes in aucubin and catalpol concentration were determined by CE-MEKC, and those in acteoside on TLC. Colour and chlorophyll-like pigments were measured by different spectrophotometric methods. The number of fungi was monitored; 10 strains were isolated from the plant drug, and their ability to decompose the analytes of interest was tested. During incubation at 75% relative humidity (RH), aucubin, catalpol and acteoside concentrations decreased by 95.7, 97.0 and 70.5%, respectively. Strong shifts were detected in CIELAB parameters a* and b* (browning) as a result of conversion of chlorophyll to pheophytin. Intensive microbial proliferation was also observed. Changes at 45 or 0% RH were typically insignificant. Seven of the 10 isolated fungal strains could decompose both iridoids, and five could decompose acteoside in vitro. It was shown that exposure to water results in loss of bioactive molecules of P. lanceolata dried leaves, and that colonising fungi are the key contributors to this loss. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Transferts de masse et de chaleur entre une gouttelette d'un liquide hygroscopique et l'air humide

    OpenAIRE

    Pelletret , R.; Sylvain , J.-D.

    1985-01-01

    Cette étude s'insère dans le cadre des interactions entre un liquide hygroscopique et l'air humide. Par définition, une goutte d'un tel liquide capte les molécules de vapeur d'eau et s'échauffe du fait de la chaleur libérée, à sa surface, par condensation. Des expérimentations, mesurant en régime transitoire la température de gouttelettes de chlorure de lithium et de soude, ont permis de valider, pour nos applications, la corrélation de Ranz et Marshall. Un modèle aux différences finies, de l...

  6. Effect of ambient temperature and relative humidity on interfacial temperature during early stages of drop evaporation.

    Science.gov (United States)

    Fukatani, Yuki; Orejon, Daniel; Kita, Yutaku; Takata, Yasuyuki; Kim, Jungho; Sefiane, Khellil

    2016-04-01

    Understanding drop evaporation mechanisms is important for many industrial, biological, and other applications. Drops of organic solvents undergoing evaporation have been found to display distinct thermal patterns, which in turn depend on the physical properties of the liquid, the substrate, and ambient conditions. These patterns have been reported previously to be bulk patterns from the solid-liquid to the liquid-gas drop interface. In the present work the effect of ambient temperature and humidity during the first stage of evaporation, i.e., pinned contact line, is studied paying special attention to the thermal information retrieved at the liquid-gas interface through IR thermography. This is coupled with drop profile monitoring to experimentally investigate the effect of ambient temperature and relative humidity on the drop interfacial thermal patterns and the evaporation rate. Results indicate that self-generated thermal patterns are enhanced by an increase in ambient temperature and/or a decrease in humidity. The more active thermal patterns observed at high ambient temperatures are explained in light of a greater temperature difference generated between the apex and the edge of the drop due to greater evaporative cooling. On the other hand, the presence of water humidity in the atmosphere is found to decrease the temperature difference along the drop interface due to the heat of adsorption, absorption and/or that of condensation of water onto the ethanol drops. The control, i.e., enhancement or suppression, of these thermal patterns at the drop interface by means of ambient temperature and relative humidity is quantified and reported.

  7. Relation of air mass history to nucleation events in Po Valley, Italy, using back trajectories analysis

    Directory of Open Access Journals (Sweden)

    L. Sogacheva

    2007-01-01

    Full Text Available In this paper, we study the transport of air masses to San Pietro Capofiume (SPC in Po Valley, Italy, by means of back trajectories analysis. Our main aim is to investigate whether air masses originate over different regions on nucleation event days and on nonevent days, during three years when nucleation events have been continuously recorded at SPC. The results indicate that nucleation events occur frequently in air masses arriving from Central Europe, whereas event frequency is much lower in the air transported from southern directions and from the Atlantic Ocean. We also analyzed the behaviour of meteorological parameters during 96 h transport to SPC, and found that, on average, event trajectories undergo stronger subsidence during the last 12 h before the arrival at SPC than nonevent trajectories. This causes a reversal in the temperature and relative humidity (RH differences between event and nonevent trajectories: between 96 and 12 h back time, temperature is lower and RH is higher for event than nonevent trajectories and between 12 and 0 h vice versa. Boundary layer mixing is stronger along the event trajectories compared to nonevent trajectories. The absolute humidity (AH is similar for the event and nonevent trajectories between about 96 h and about 60 h back time, but after that, the event trajectories AH becomes lower due to stronger rain. We also studied transport of SO2 to SPC, and conclude that although sources in Po Valley most probably dominate the measured concentrations, certain Central and Eastern European sources also make a substantial contribution.

  8. Indoor swimming pools. Humidity caused problems and suggested solutions

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Reports have been received from across Canada on premature deterioration and other problems of indoor swimming pool buildings. This technical paper has been prepared to assist pool managers to solve these problems, which typically include leaking roofs, condensation on inside walls, peeling paint, efflorescence, rusting of metal elements, deterioration of concrete block structures, and high costs for pool heating. An effective insulation and vapor barrier system for a swimming pool roof is described, and the high relative humidity of the typical pool building is discussed as the primary cause of most problems. Proper sealing to cut down air infiltration is recommended, along with proper maintenance and painting. High energy costs are often due to low insulation values and to excessive ventilation used for decreasing the humidity. By using dehumidifiers capable of heat recovery, and by placing an insulating blanket on the pool after operating hours, it is shown that substantial cost savings are possible. 10 figs.

  9. Efficiency of oxygen: absorbing sachets in different relative humidities and temperatures Eficiência de absorvedores de oxigênio sob diferentes umidades relativas e temperaturas

    Directory of Open Access Journals (Sweden)

    Renato Souza Cruz

    2007-12-01

    Full Text Available The main objective of this work was to evaluate the efficiency of oxygen - absorbing sachets at relative humidity of 75%, 80% and 85% and different temperatures, 10±2 ºC and 25±2 ºC. The experiment consisted in determining the O2 absorption under these conditions. A sachet was placed in desiccators with an internal air homogenization system. Aliquots of air were removed at pre-established time intervals and analyzed for oxygen content. The results showed that oxygen absorption by the sachet increased as the relative humidity increased for both temperature. Therefore the oxygen - absorbing sachets were most active under 25±2ºC and 85% relative humidity. At ambient condition (25±2ºC/75%RH the rate of oxygen absorbed was 50 mL/day and 18,5 mL/day for 10±2ºC. It was used a totally casualized design with three replicates.O objetivo principal deste trabalho foi avaliar a eficiência de sachês absorvedores de oxigênio a 75%, 80% e 85% de umidade relativa e diferentes temperaturas, 10±2 ºC e 25±2 ºC. O experimento consiste em determinar a absorção de O2 sob essas condições. Um sachê foi colocado dentro de um dessecador contendo um sistema de homogeneização do ar interno. Alíquotas de ar são retiradas dos dessecadores em intervalos de tempos pré-estabelecido e seu conteúdo de oxigênio analisado. Os resultados mostraram que a absorção de oxigênio pelos saches aumentaram com o aumento da temperatura para ambas as temperaturas. No entanto, os sachês mostraram uma maior eficiência para 85% de umidade relativa e 25±2ºC de temperatura. Na condição ambiente (25±2ºC/75%RH, a taxa de absorção dos sachês foi de 50 mL/dia e 18,5 mL/dia para 10±2ºC. O experimento foi conduzido com delineamento experimental inteiramente casualizado, com três repetições.

  10. Safety-related control air systems

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This Standard applies to those portions of the control air system that furnish air required to support, control, or operate systems or portions of systems that are safety related in nuclear power plants. This Standard relates only to the air supply system(s) for safety-related air operated devices and does not apply to the safety-related air operated device or to air operated actuators for such devices. The objectives of this Standard are to provide (1) minimum system design requirements for equipment, piping, instruments, controls, and wiring that constitute the air supply system; and (2) the system and component testing and maintenance requirements

  11. An under-aisle air distribution system facilitating humidification of commercial aircraft cabins

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tengfei; Yin, Shi; Wang, Shugang [School of Civil and Hydraulic Engineering, Dalian University of Technology (DUT), 2 Linggong Road, Dalian 116024 (China)

    2010-04-15

    Air environment in aircraft cabins has long been criticized especially for the dryness of the air within. Low moisture content in cabins is known to be responsible for headache, tiredness and many other non-specific symptoms. In addition, current widely used air distribution systems on airplanes dilute internally generated pollutants by promoting air mixing and thus impose risks of infectious airborne disease transmission. To boost air humidity level while simultaneously restricting air mixing, this investigation uses a validated computational fluid dynamics (CFD) program to design a new under-aisle air distribution system for wide-body aircraft cabins. The new system supplies fully outside, dry air at low momentum through a narrow channel passage along both side cabin walls to middle height of the cabin just beneath the stowage bins, while simultaneously humidified air is supplied through both perforated under aisles. By comparing with the current mixing air distribution system in terms of distribution of relative humidity, CO{sub 2} concentration, velocity, temperature and draught risk, the new system is found being able to improve the relative humidity from the existent 10% to the new level of 20% and lessen the inhaled CO{sub 2} concentration by 30%, without causing moisture condensation on cabin interior and inducing draught risks for passengers. The water consumption rate in air humidification is only around 0.05 kg/h per person, which should be affordable by airliners. (author)

  12. Seasonal trend analysis and ARIMA modeling of relative humidity and wind speed time series around Yamula Dam

    Science.gov (United States)

    Eymen, Abdurrahman; Köylü, Ümran

    2018-02-01

    Local climate change is determined by analysis of long-term recorded meteorological data. In the statistical analysis of the meteorological data, the Mann-Kendall rank test, which is one of the non-parametrical tests, has been used; on the other hand, for determining the power of the trend, Theil-Sen method has been used on the data obtained from 16 meteorological stations. The stations cover the provinces of Kayseri, Sivas, Yozgat, and Nevşehir in the Central Anatolia region of Turkey. Changes in land-use affect local climate. Dams are structures that cause major changes on the land. Yamula Dam is located 25 km northwest of Kayseri. The dam has huge water body which is approximately 85 km2. The mentioned tests have been used for detecting the presence of any positive or negative trend in meteorological data. The meteorological data in relation to the seasonal average, maximum, and minimum values of the relative humidity and seasonal average wind speed have been organized as time series and the tests have been conducted accordingly. As a result of these tests, the following have been identified: increase was observed in minimum relative humidity values in the spring, summer, and autumn seasons. As for the seasonal average wind speed, decrease was detected for nine stations in all seasons, whereas increase was observed in four stations. After the trend analysis, pre-dam mean relative humidity time series were modeled with Autoregressive Integrated Moving Averages (ARIMA) model which is statistical modeling tool. Post-dam relative humidity values were predicted by ARIMA models.

  13. Role of relative humidity in processing and storage of seeds and assessment of variability in storage behaviour in Brassica spp. and Eruca sativa.

    Science.gov (United States)

    Suma, A; Sreenivasan, Kalyani; Singh, A K; Radhamani, J

    2013-01-01

    The role of relative humidity (RH) while processing and storing seeds of Brassica spp. and Eruca sativa was investigated by creating different levels of relative humidity, namely, 75%, 50%, 32%, and 11% using different saturated salt solutions and 1% RH using concentrated sulphuric acid. The variability in seed storage behaviour of different species of Brassica was also evaluated. The samples were stored at 40 ± 2°C in sealed containers and various physiological parameters were assessed at different intervals up to three months. The seed viability and seedling vigour parameters were considerably reduced in all accessions at high relative humidity irrespective of the species. Storage at intermediate relative humidities caused minimal decline in viability. All the accessions performed better at relative humidity level of 32% maintaining seed moisture content of 3%. On analyzing the variability in storage behaviour, B. rapa and B. juncea were better performers than B. napus and Eruca sativa.

  14. Influence of ambient humidity on the current delivered by air-vented ionization chambers revisited

    International Nuclear Information System (INIS)

    Poirier, Aurelie; Douysset, Guilhem

    2006-01-01

    The influence of ambient humidity on the current delivered by a vented ionization chamber has been re-investigated. A Nucletron 077.091 well-type chamber together with a 192 Ir HDR brachytherapy source was enclosed in a climatic test chamber and the current was recorded for various humidity values. Great care has been taken for the design of the experimental setup in order to obtain reliable measurements of currents and humidity values inside the chamber active volume. A ±0.35% linear variation of the measured currents has been observed over a common range of humidities. This result is larger than the expected variation. No formal explanation of such a discrepancy has been found yet, however the present results could lead to a set of recommendations

  15. Influence of ambient humidity on the current delivered by air-vented ionization chambers revisited

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Aurelie; Douysset, Guilhem [Laboratoire National Henri Becquerel-LNE, CEA Saclay 91191 Gif-sur-Yvette (France)

    2006-10-07

    The influence of ambient humidity on the current delivered by a vented ionization chamber has been re-investigated. A Nucletron 077.091 well-type chamber together with a {sup 192}Ir HDR brachytherapy source was enclosed in a climatic test chamber and the current was recorded for various humidity values. Great care has been taken for the design of the experimental setup in order to obtain reliable measurements of currents and humidity values inside the chamber active volume. A {+-}0.35% linear variation of the measured currents has been observed over a common range of humidities. This result is larger than the expected variation. No formal explanation of such a discrepancy has been found yet, however the present results could lead to a set of recommendations.

  16. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments

    International Nuclear Information System (INIS)

    Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi

    2013-01-01

    A new crystal-mounting method has been developed that involves a combination of controlled humid air and polymer glue for crystal coating. This method is particularly useful when applied to fragile protein crystals that are known to be sensitive to subtle changes in their physicochemical environment. Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection

  17. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi, E-mail: kumasaka@spring8.or.jp [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2013-09-01

    A new crystal-mounting method has been developed that involves a combination of controlled humid air and polymer glue for crystal coating. This method is particularly useful when applied to fragile protein crystals that are known to be sensitive to subtle changes in their physicochemical environment. Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection.

  18. Development of relative humidity models by using optimized neural network structures

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-romero, A.; Ortega, J. F.; Juan, J. A.; Tarjuelo, J. M.; Moreno, M. A.

    2010-07-01

    Climate has always had a very important role in life on earth, as well as human activity and health. The influence of relative humidity (RH) in controlled environments (e.g. industrial processes in agro-food processing, cold storage of foods such as fruits, vegetables and meat, or controls in greenhouses) is very important. Relative humidity is a main factor in agricultural production and crop yield (due to the influence on crop water demand or the development and distribution of pests and diseases, for example). The main objective of this paper is to estimate RH [maximum (RHmax), average (RHave), and minimum (RHmin)] data in a specific area, being applied to the Region of Castilla-La Mancha (C-LM) in this case, from available data at thermo-pluviometric weather stations. In this paper Artificial neural networks (ANN) are used to generate RH considering maximum and minimum temperatures and extraterrestrial solar radiation data. Model validation and generation is based on data from the years 2000 to 2008 from 44 complete agroclimatic weather stations. Relative errors are estimated as 1) spatial errors of 11.30%, 6.80% and 10.27% and 2) temporal errors of 10.34%, 6.59% and 9.77% for RHmin, RHmax and RHave, respectively. The use of ANNs is interesting in generating climate parameters from available climate data. For determining optimal ANN structure in estimating RH values, model calibration and validation is necessary, considering spatial and temporal variability. (Author) 44 refs.

  19. Measuring relative humidity in the radioactive environment of the IRRAD proton facility

    CERN Document Server

    Paerg, Marten

    2017-01-01

    The aim of the project was to obtain information on relative humidity conditions at different locations in the IRRAD proton facility. Due to high radiation levels inside the facility, different sensors had to be qualified and dedicated electronics had to be built to transfer the data of the sensors over long wires to a less radioactive area, where it could be collected.

  20. Creep behavior of sweetgum OSB: effect of load level and relative humidity

    Science.gov (United States)

    J.H. Pu; R.C. Tang; Chung-Yun Hse

    1994-01-01

    Flexural creep behavior of laboratory-fabricated sweetgum oriented strandboard (OSB). under constnat (65% and 95%) and cyclic (65% 95% at a 96-hr. frequency) relative humidity (RH) conditions at 75 F (23.9 C) is presented. Two levels (4.5% and 6.5%) of resin content (RC) of phenol-formaldehyde were used in fabricating the test panels. Two load levels (20% and...

  1. Effects of relative humidity on the characterization of a photochemical smog chamber.

    Science.gov (United States)

    Hu, Gaoshuo; Xu, Yongfu; Jia, Long

    2011-01-01

    Water vapor plays an important role in many atmospheric chemical reactions. A self-made indoor environmental smog chamber was used to investigate the effects of relative humidity (RH) on its characterization, which included the wall effects of reactive species such as 03 and NOx, and the determination of chamber-dependent OH radicals in terms of CO-NOx irradiation experiments. Results showed that the rate constant of O3 wall losses increased with increasing RH, and that their relationship was linearly significant. Although RH affected the rate constant of NOx wall losses, their relationship was not statistically significant. Background air generated a small amount of ozone at both high and low RH. When RH varied from 5% to 79%, the apparent rate constant kNO2-->HONO for the conversion of NO2 into gas phase HONO was estimated in the range of 0.70 x 10(-3)-2.5 x 10(-3) min(-1). A linear relationship between kNO2-->HONO and RH was obtained as kNO2-->HONO (10(-3) min(-1)) = -0.0255RH + 2.64, with R2 and P value being 0.978 and < 0.01. To our knowledge, this is the first report on their relationship. The generation mechanism for HONO and OH was also discussed in this work.

  2. Performance study of desiccant coated heat exchanger air conditioning system in winter

    International Nuclear Information System (INIS)

    Ge, T.S.; Dai, Y.J.; Wang, R.Z.

    2016-01-01

    Highlights: • Performance of desiccant coated heat exchanger AC system is predicted. • Effects of main operation parameters and climatic conditions are discussed. • Regeneration temperature of 30 °C is recommended under simulation condition. • Higher ambient humidity ratio results in increased humidity ratio of supply air. • Temperature of ambient air has neglectable effect on supply air. - Abstract: Conventional air source heat pump system faces several challenges when adopted in winter season. Solid desiccant air conditioning system can provide humidification and heating power simultaneously and can be driven by low grade thermal energy; it provides a good alternative for air source heat pump systems. However, conventional solid desiccant air conditioning system adopts desiccant wheel with high cost as core component, which hinders the development of such system. Recently, desiccant coated heat exchanger (DCHE) with low initial cost and high efficiency was developed and this paper aims to investigate performance of DCHE air conditioning system adopted in Shanghai winter season. Performance of the system is predicted by a developed mathematical model where supply air states, mass of humidification and coefficient of performance (COP) are adopted as performance indices to evaluate the feasibility and energy utilization ratio of the system. Effects of regeneration water temperature on system performance are analyzed. It is found that under the simulation condition, relatively low regeneration temperature (such as 20 °C) cannot meet the designed standard and relatively high regeneration temperature (such as 40 °C) provides too much extra heating power, thus moderate regeneration temperature around 30 °C is recommended. Meanwhile, switch time is a crucial operation parameter for the system to obtain satisfied supply air, switch time from 40 s to 80 s and from 70 s to 240 s are recommended for transient and average supply air states, respectively. Both

  3. Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben

    1999-01-01

    This paper deals with autogenous deformation and autogenous relative humidity change (RH change) in hardening cement paste. Theoretical considerations and experimental data are presented, which elucidate the influence of temperature on these properties. This is an important subject in the control...

  4. Synergistic interactions within disturbed habitats between temperature, relative humidity and UVB radiation on egg survival in a diadromous fish.

    Directory of Open Access Journals (Sweden)

    Michael J H Hickford

    Full Text Available Anthropogenic impacts, including urbanization, deforestation, farming, and livestock grazing have altered riparian margins worldwide. One effect of changes to riparian vegetation is that the ground-level light, temperature, and humidity environment has also been altered. Galaxias maculatus, one of the most widely distributed fishes of the southern hemisphere, lays eggs almost exclusively beneath riparian vegetation in tidally influenced reaches of rivers. We hypothesized that the survival of these eggs is greatly affected by the micro-environment afforded by vegetation, particularly relating to temperature, humidity and UVB radiation. We experimentally reduced riparian vegetation height and altered shading characteristics, tracked egg survival, and used small ground-level temperature, humidity and UVB sensors to relate survival to ground-level effects around egg masses. The ground-level physical environment was markedly different from the surrounding ambient conditions. Tall dense riparian vegetation modified ambient conditions to produce a buffered temperature regime with constant high relative humidity, generally above 90%, and negligible UVB radiation at ground-level. Where vegetation height was reduced, frequent high temperatures, low humidity, and high UVB irradiances reduced egg survival by up to 95%. Temperature effects on egg survival were probably indirect, through reduced humidity, because developing eggs are known to survive in a wide range of temperatures. In this study, it was remarkable how such small variations in relatively small sites could have such a large effect on egg survival. It appears that modifications to riparian vegetation and the associated changes in the physical conditions of egg laying sites are major mechanisms affecting egg survival. The impacts associated with vegetational changes through human-induced disturbances are complex yet potentially devastating. These effects are particularly important because they

  5. Humidity and Buildings. Technical Paper No. 188.

    Science.gov (United States)

    Hutcheon, N. B.

    Modified and controlled relative humidity in buildings for certain occupancies is discussed. New criteria are used in determining the needs, desirability and problems associated with humidities in a building. Severe winter climate requires that special attention be given to the problems associated with increased indoor humidities during cold…

  6. Gender, airborne chemical monitoring, and physical work environment are related to indoor air symptoms among nonindustrial workers in the Klang Valley, Malaysia

    Directory of Open Access Journals (Sweden)

    Syazwan AI

    2013-03-01

    Full Text Available Aizat Ismail Syazwan,1 Juahir Hafizan,2 Mohd Rafee Baharudin,1 Ahmad Zaid Fattah Azman,1 Zulkapri Izwyn,3 Ismail Zulfadhli,4 Katis Syahidatussyakirah11Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia; 2Department of Environmental Science/Environmental Forensics Research Center (ENFORCE, Universiti Putra Malaysia, Selangor, 3Department of Biosciences and Health Science, Universiti Teknologi Malaysia; 4Faculty of Built Environment, Universiti Teknologi Malaysia, Johor, MalaysiaObjectives: The purpose of this study was to analyze the relationship of airborne chemicals and the physical work environment risk element on the indoor air symptoms of nonindustrial workers.Design: A cross-sectional study consisting of 200 office workers. A random selection of 200 buildings was analyzed for exposure and indoor air symptoms based on a pilot study in the Klang Valley, Malaysia.Methods: A set of modified published questionnaires by the Department of Occupational Safety and Health (DOSH, Malaysia and a previous study (MM040NA questionnaire pertaining to indoor air symptoms was used in the evaluation process of the indoor air symptoms. Statistical analyses involving logistic regression and linear regression were used to determine the relationship between exposure and indoor air symptoms for use in the development of an indoor risk matrix.Results: The results indicate that some indoor air pollutants (carbon monoxide, formaldehyde, total volatile organic compound, and dust are related to indoor air symptoms of men and women. Temperature and relative humidity showed a positive association with complaints related to the perceived indoor environmental condition (drafts and inconsistency of temperature. Men predominantly reported general symptoms when stratification of gender involved exposure to formaldehyde. Women reported high levels of complaints related to mucosal and general symptoms from exposure to the dust

  7. Indoor air quality investigation at air-conditioned and non-air-conditioned markets in Hong Kong

    International Nuclear Information System (INIS)

    Guo, H.; Lee, S.C.; Chan, L.Y.

    2004-01-01

    To characterize indoor air quality at the markets in Hong Kong, three non-air-conditioned and two air-conditioned markets were selected for this study. The indoor air pollutants measured included PM 10 (particulate matters with aerodynamic diameter less than 10 μm), total bacteria count (TBC), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO 2 ) and sulfur dioxide (SO 2 ). The indoor and outdoor concentrations of these target air pollutants at these markets were measured and compared. The effects of air conditioning, temperature/relative humidity variation and different stalls on the indoor air quality were also investigated. The results indicated that all of the average indoor concentrations of PM 10 , TBC, CO and NO 2 at the markets were below the Hong Kong Indoor Air Quality Objectives (HKIAQO) standards with a few exceptions for PM 10 and TBC. The elevated PM 10 concentrations at Hung Hom, Ngau Tau Kok and Wan Chai markets were probably due to the air filtration of outdoor airborne particulates emitted from vehicular exhaust, whereas high concentrations of airborne bacteria at Sai Ying Pun and Tin Shing markets were linked to the use of air conditioning. Correlation analysis demonstrated that indoor bacteria concentrations were correlated with temperature and relative humidity. The operation of air conditioning did not significantly reduce the levels of air pollutants at the markets. However, the higher indoor/outdoor ratios demonstrated that the operation of air conditioning had influence on the levels of bacteria at the markets. It was found that average PM 10 concentration at poultry stalls was higher than the HKIAQO standard of 180 μg/m 3 , and was over two times that measured at vegetable, fish and meat stalls. Furthermore, the concentration of airborne bacteria at the poultry stalls was as high as 1031 CFU/m 3 , which was above the HKIAQO standard of 1000 CFU/m 3 . The bacteria levels at other three stalls were all below the HKIAQO standard

  8. UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method

    International Nuclear Information System (INIS)

    Fang, F; Futter, J; Markwitz, A; Kennedy, J

    2009-01-01

    The UV and humidity sensing properties of ZnO nanorods prepared by arc discharge have been studied. Scanning electron microscopy and photoluminescence spectroscopy were carried out to analyze the morphology and optical properties of the as-synthesized ZnO nanorods. Proton induced x-ray emission was used to probe the impurities in the ZnO nanorods. A large quantity of high purity ZnO nanorod structures were obtained with lengths of 0.5-1 μm. The diameters of the as-synthesized ZnO nanorods were found to be between 40 and 400 nm. The nanorods interlace with each other, forming 3D networks which make them suitable for sensing application. The addition of a polymeric film-forming agent (BASF LUVISKOL VA 64) improved the conductivity, as it facilitates the construction of conducting networks. Ultrasonication helped to separate the ZnO nanorods and disperse them evenly through the polymeric agent. Improved photoconductivity was measured for a ZnO nanorod sensor annealed in air at 200 deg. C for 30 min. The ZnO nanorod sensors showed a UV-sensitive photoconduction, where the photocurrent increased by nearly four orders of magnitude from 2.7 x 10 -10 to 1.0 x 10 -6 A at 18 V under 340 nm UV illumination. High humidity sensitivity and good stability were also measured. The resistance of the ZnO nanorod sensor decreased almost linearly with increasing relative humidity (RH). The resistance of the ZnO nanorods changed by approximately five orders of magnitude from 4.35 x 10 11 Ω in dry air (7% RH) to about 4.95 x 10 6 Ω in 95% RH air. It is experimentally demonstrated that ZnO nanorods obtained by the arc discharge method show excellent performance and promise for applications in both UV and humidity sensors.

  9. 7 CFR 28.301 - Measurement: humidity; temperature.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70° F. ...

  10. The sensitivity to humidity of radon monitoring instruments

    International Nuclear Information System (INIS)

    Schmied, H.

    1984-01-01

    In a project funded by the Swedish Building Research Council (BFR) a continuous radon monitoring instrument (RGA-400 EDA Instr. Inc.) with electrostatic field collection has been calibrated. The original calibration factor gave no reliable radon readings and was therefore corrected for relative humidity by EDA. From four calibrations in the radon chamber at the Swedish Radiation Protection Board (SSI) it was clear that the instrument was sensitive to absolute humidity, which gave better agreement than relative humidity or temperature. Sensitivity to humidity for this principle of measure ment has been presented in various papers without presenting any combined influence with temperature, which can lead to the wrong conclusions, especially when the temperature levels differ. Some laboratories use humidity absorbants to overcome this humidity dependence. In this paper the calibration results for the FGA-400 radon readings only, are presented. (Author)

  11. Application of graphene oxide based Microfiber-Knot resonator for relative humidity sensing

    Directory of Open Access Journals (Sweden)

    S.R. Azzuhri

    2018-06-01

    Full Text Available A relative humidity (RH sensor is proposed and demonstrated using a micro-knot resonator (MKR enhanced with a layer graphene oxide (GO coating. The MKR is fabricated by means of tapering a standard fiber, with the GO coating added by the drop-cast method. The proposed sensor is tested for an RH range of between 0% and 80% at 20% intervals, and the configurations with and without the GO coating achieve sensitivities of 0.0104 nm/% and 0.0095 nm/%, respectively. The MKR configuration without the GO coating has a linear response correlation coefficient of 0.9098 and a resolution of 0.1%, while the configuration with the GO coating has a linear response correlation coefficient of 0.9548 and a resolution of 0.096% which is better. The proposed sensor has multiple applications, especially in the area of climate and atmospheric measurement and monitoring. Keywords: Microfiber, Resonator, Humidity sensor

  12. Relative humidity sensor based on surface plasmon resonance of D-shaped fiber with polyvinyl alcohol embedding Au grating

    Science.gov (United States)

    Yan, Haitao; Han, Daofu; Li, Ming; Lin, Bo

    2017-01-01

    This paper presents the design, fabrication, and characterization of a D-shaped fiber coated with polyvinyl alcohol (PVA) embedding an Au grating-based relative humidity (RH) sensor. The Au grating is fabricated on a D-shaped fiber to match the wave-vector and excite the surface plasmon, and the PVA is embedded in the Au grating as a sensitive cladding film. The refractive index of PVA changes with the ambient humidity. Measurements in a controlled environment show that the RH sensor can achieve a sensitivity of 5.4 nm per relative humidity unit in the RH range from 0% to 70% RH. Moreover, the surface plasmon resonance can be realized and used for RH sensing at the C band of optical fiber communication instead of the visible light band due to the metallic grating microstructure on the D-shaped fiber.

  13. Humidity scanning quartz crystal microbalance with dissipation monitoring setup for determination of sorption-desorption isotherms and rheological changes

    Energy Technology Data Exchange (ETDEWEB)

    Björklund, Sebastian, E-mail: sebastianbjorklund@gmail.com; Kocherbitov, Vitaly [Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö (Sweden); Biofilms—Research Center for Biointerfaces, Malmö University, Malmö (Sweden)

    2015-05-15

    A new method to determine water sorption-desorption isotherms with high resolution in the complete range of water activities (relative humidities) is presented. The method is based on quartz crystal microbalance with dissipation monitoring (QCM-D). The QCM-D is equipped with a humidity module in which the sample film is kept in air with controlled humidity. The experimental setup allows for continuous scanning of the relative humidity from either dry to humid conditions or vice versa. The amount of water sorbed or desorbed from the sample is determined from the resonance frequencies of the coated quartz sensor, via analysis of the overtone dependence. In addition, the method allows for characterization of hydration induced changes of the rheological properties from the dissipation data, which is closely connected to the viscoelasticity of the film. The accuracy of the humidity scanning setup is confirmed in control experiments. Sorption-desorption isotherms of pig gastric mucin and lysozyme, obtained by the new method, show good agreement with previous results. Finally, we show that the deposition technique used to coat the quartz sensor influences the QCM-D data and how this issue can be used to obtain further information on the effect of hydration. In particular, we demonstrate that spin-coating represents an attractive alternative to obtain sorption-desorption isotherms, while drop-coating provides additional information on changes of the rheological properties during hydration.

  14. Particle backscatter and relative humidity measured across cirrus clouds and comparison with microphysical cirrus modelling

    Directory of Open Access Journals (Sweden)

    M. Brabec

    2012-10-01

    Full Text Available Advanced measurement and modelling techniques are employed to estimate the partitioning of atmospheric water between the gas phase and the condensed phase in and around cirrus clouds, and thus to identify in-cloud and out-of-cloud supersaturations with respect to ice. In November 2008 the newly developed balloon-borne backscatter sonde COBALD (Compact Optical Backscatter and AerosoL Detector was flown 14 times together with a CFH (Cryogenic Frost point Hygrometer from Lindenberg, Germany (52° N, 14° E. The case discussed here in detail shows two cirrus layers with in-cloud relative humidities with respect to ice between 50% and 130%. Global operational analysis data of ECMWF (roughly 1° × 1° horizontal and 1 km vertical resolution, 6-hourly stored fields fail to represent ice water contents and relative humidities. Conversely, regional COSMO-7 forecasts (6.6 km × 6.6 km, 5-min stored fields capture the measured humidities and cloud positions remarkably well. The main difference between ECMWF and COSMO data is the resolution of small-scale vertical features responsible for cirrus formation. Nevertheless, ice water contents in COSMO-7 are still off by factors 2–10, likely reflecting limitations in COSMO's ice phase bulk scheme. Significant improvements can be achieved by comprehensive size-resolved microphysical and optical modelling along backward trajectories based on COSMO-7 wind and temperature fields, which allow accurate computation of humidities, homogeneous ice nucleation, resulting ice particle size distributions and backscatter ratios at the COBALD wavelengths. However, only by superimposing small-scale temperature fluctuations, which remain unresolved by the numerical weather prediction models, can we obtain a satisfying agreement with the observations and reconcile the measured in-cloud non-equilibrium humidities with conventional ice cloud microphysics. Conversely, the model-data comparison provides no evidence that additional

  15. Robust Sliding Mode Control of Air Handling Unit for Energy Efficiency Enhancement

    Directory of Open Access Journals (Sweden)

    Awais Shah

    2017-11-01

    Full Text Available In order to achieve feasible and copacetic low energy consuming building, a robust and efficient air conditioning system is necessary. Since heating ventilation and air conditioning systems are nonlinear and temperature and humidity are coupled, application of conventional control is inappropriate. A multi-input multi-output nonlinear model is presented. The temperature and humidity of thermal zone are ascendance by the manipulation of the water and air flow rates. A sliding mode controller (SMC is designed to ensure robust performance of air handling unit in the presence of uncertainties. A simple proportional-integral-derivative (PID controller is used as a comparison template to highlight the efficiency of the proposed controller. To accomplish tracking targets, a variety of desired temperature and relative humidity commands (including ramp and combination with sequence of steps are investigated. According to simulation results, SMC transcends the PID controller in terms of settling time, steady state and rise time, which makes SMC more energy efficient.

  16. Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique

    Science.gov (United States)

    Chen, H.; Karion, A.; Rella, C. W.; Winderlich, J.; Gerbig, C.; Filges, A.; Newberger, T.; Sweeney, C.; Tans, P. P.

    2013-04-01

    Accurate measurements of carbon monoxide (CO) in humid air have been made using the cavity ring-down spectroscopy (CRDS) technique. The measurements of CO mole fractions are determined from the strength of its spectral absorption in the near-infrared region (~1.57 μm) after removing interferences from adjacent carbon dioxide (CO2) and water vapor (H2O) absorption lines. Water correction functions that account for the dilution and pressure-broadening effects as well as absorption line interferences from adjacent CO2 and H2O lines have been derived for CO2 mole fractions between 360-390 ppm and for reported H2O mole fractions between 0-4%. The line interference corrections are independent of CO mole fractions. The dependence of the line interference correction on CO2 abundance is estimated to be approximately -0.3 ppb/100 ppm CO2 for dry mole fractions of CO. Comparisons of water correction functions from different analyzers of the same type show significant differences, making it necessary to perform instrument-specific water tests for each individual analyzer. The CRDS analyzer was flown on an aircraft in Alaska from April to November in 2011, and the accuracy of the CO measurements by the CRDS analyzer has been validated against discrete NOAA/ESRL flask sample measurements made on board the same aircraft, with a mean difference between integrated in situ and flask measurements of -0.6 ppb and a standard deviation of 2.8 ppb. Preliminary testing of CRDS instrumentation that employs improved spectroscopic model functions for CO2, H2O, and CO to fit the raw spectral data (available since the beginning of 2012) indicates a smaller water vapor dependence than the models discussed here, but more work is necessary to fully validate the performance. The CRDS technique provides an accurate and low-maintenance method of monitoring the atmospheric dry mole fractions of CO in humid air streams.

  17. Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS technique

    Directory of Open Access Journals (Sweden)

    H. Chen

    2013-04-01

    Full Text Available Accurate measurements of carbon monoxide (CO in humid air have been made using the cavity ring-down spectroscopy (CRDS technique. The measurements of CO mole fractions are determined from the strength of its spectral absorption in the near-infrared region (~1.57 μm after removing interferences from adjacent carbon dioxide (CO2 and water vapor (H2O absorption lines. Water correction functions that account for the dilution and pressure-broadening effects as well as absorption line interferences from adjacent CO2 and H2O lines have been derived for CO2 mole fractions between 360–390 ppm and for reported H2O mole fractions between 0–4%. The line interference corrections are independent of CO mole fractions. The dependence of the line interference correction on CO2 abundance is estimated to be approximately −0.3 ppb/100 ppm CO2 for dry mole fractions of CO. Comparisons of water correction functions from different analyzers of the same type show significant differences, making it necessary to perform instrument-specific water tests for each individual analyzer. The CRDS analyzer was flown on an aircraft in Alaska from April to November in 2011, and the accuracy of the CO measurements by the CRDS analyzer has been validated against discrete NOAA/ESRL flask sample measurements made on board the same aircraft, with a mean difference between integrated in situ and flask measurements of −0.6 ppb and a standard deviation of 2.8 ppb. Preliminary testing of CRDS instrumentation that employs improved spectroscopic model functions for CO2, H2O, and CO to fit the raw spectral data (available since the beginning of 2012 indicates a smaller water vapor dependence than the models discussed here, but more work is necessary to fully validate the performance. The CRDS technique provides an accurate and low-maintenance method of monitoring the atmospheric dry mole fractions of CO in humid air streams.

  18. High Humidity Aerodynamic Effects Study on Offshore Wind Turbine Airfoil/Blade Performance through CFD Analysis

    Directory of Open Access Journals (Sweden)

    Weipeng Yue

    2017-01-01

    Full Text Available Damp air with high humidity combined with foggy, rainy weather, and icing in winter weather often is found to cause turbine performance degradation, and it is more concerned with offshore wind farm development. To address and understand the high humidity effects on wind turbine performance, our study has been conducted with spread sheet analysis on damp air properties investigation for air density and viscosity; then CFD modeling study using Fluent was carried out on airfoil and blade aerodynamic performance effects due to water vapor partial pressure of mixing flow and water condensation around leading edge and trailing edge of airfoil. It is found that the high humidity effects with water vapor mixing flow and water condensation thin film around airfoil may have insignificant effect directly on airfoil/blade performance; however, the indirect effects such as blade contamination and icing due to the water condensation may have significant effects on turbine performance degradation. Also it is that found the foggy weather with microwater droplet (including rainy weather may cause higher drag that lead to turbine performance degradation. It is found that, at high temperature, the high humidity effect on air density cannot be ignored for annual energy production calculation. The blade contamination and icing phenomenon need to be further investigated in the next study.

  19. Sporulation of Bremia lactucae affected by temperature, relative humidity, and wind in controlled conditions

    NARCIS (Netherlands)

    Su, H.; Bruggen, van A.H.C.; Subbarao, K.V.; Scherm, H.

    2004-01-01

    The effects of temperature (5 to 25degreesC), relative humidity (81 to 100%), wind speed (0 to 1.0 in s(-1)), and their interactions on sporulation of Bremia lactucae on lettuce cotyledons were investigated in controlled conditions. Sporulation was affected significantly (P <0.0001) by

  20. Absolute humidity and the human nose: A reanalysis of climate zones and their influence on nasal form and function.

    Science.gov (United States)

    Maddux, Scott D; Yokley, Todd R; Svoma, Bohumil M; Franciscus, Robert G

    2016-10-01

    Investigations into the selective role of climate on human nasal variation commonly divide climates into four broad adaptive zones (hot-dry, hot-wet, cold-dry, and cold-wet) based on temperature and relative humidity. Yet, absolute humidity-not relative humidity-is physiologically more important during respiration. Here, we investigate the global distribution of absolute humidity to better clarify ecogeographic demands on nasal physiology. We use monthly observations from the Climatic Research Unit Timeseries 3 (CRU TS3) database to construct global maps of average annual temperature, relative humidity and absolute humidity. Further, using data collected by Thomson and Buxton (1923) for over 15,000 globally-distributed individuals, we calculate the actual amount of heat and water that must be transferred to inspired air in different climatic regimes to maintain homeostasis, and investigate the influence of these factors on the nasal index. Our results show that absolute humidity, like temperature, generally decreases with latitude. Furthermore, our results demonstrate that environments typically characterized as "cold-wet" actually exhibit low absolute humidities, with values virtually identical to cold-dry environments and significantly lower than hot-wet and even hot-dry environments. Our results also indicate that strong associations between the nasal index and absolute humidity are, potentially erroneously, predicated on individuals from hot-dry environments possessing intermediate (mesorrhine) nasal indices. We suggest that differentially allocating populations to cold-dry or cold-wet climates is unlikely to reflect different selective pressures on respiratory physiology and nasal morphology-it is cold-dry, and to a lesser degree hot-dry environments, that stress respiratory function. Our study also supports assertions that demands for inspiratory modification are reduced in hot-wet environments, and that expiratory heat elimination for thermoregulation is a

  1. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments

    Science.gov (United States)

    Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi

    2013-01-01

    Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection. PMID:23999307

  2. Determination of equilibrium humidities using temperature and humidity controlled X-ray diffraction (RH-XRD)

    International Nuclear Information System (INIS)

    Linnow, Kirsten; Steiger, Michael

    2007-01-01

    Confined growth of crystals in porous building materials is generally considered to be a major cause of damage. We report on the use of X-ray diffraction under controlled conditions of temperature and relative humidity (RH-XRD) for the investigation of potentially deleterious phase transition reactions. An improved procedure based on rate measurements is used for the accurate and reproducible determination of equilibrium humidities of deliquescence and hydration reactions. The deliquescence humidities of NaCl (75.4 ± 0.5% RH) and Ca(NO 3 ) 2 .4H 2 O (50.8 ± 0.7% RH) at 25 deg. C determined with this improved RH-XRD technique are in excellent agreement with available literature data. Measurement of the hydration of anhydrous Ca(NO 3 ) 2 to form Ca(NO 3 ) 2 .2H 2 O revealed an equilibrium humidity of 10.2 ± 0.3%, which is also in reasonable agreement with available data. In conclusion, dynamic X-ray diffraction measurements are an appropriate method for the accurate and precise determination of equilibrium humidities with a number of interesting future applications

  3. The Effect of Humidity on the Knock Behavior in a Medium BMEP Lean-Burn High-Speed Gas Engine

    NARCIS (Netherlands)

    van Essen, Vincent Martijn; Gersen, Sander; van Dijk, Gerco; Mundt, Torsten; Levinsky, Howard

    2016-01-01

    The effects of air humidity on the knock characteristics of fuels are investigated in a lean-burn, high-speed medium BMEP engine fueled with a CH4 + 4.7 mole% C3H8 gas mixture. Experiments are carried out with humidity ratios ranging from 4.3 to 11 g H2O/kg dry air. The measured pressure profiles at

  4. Effects of humidity and interlayer cations on the frictional strength of montmorillonite

    Science.gov (United States)

    Tetsuka, Hiroshi; Katayama, Ikuo; Sakuma, Hiroshi; Tamura, Kenji

    2018-04-01

    We developed a humidity control system in a biaxial friction testing machine to investigate the effect of relative humidity and interlayer cations on the frictional strength of montmorillonite. We carried out the frictional experiments on Na- and Ca-montmorillonite under controlled relative humidities (ca. 10, 30, 50, 70, and 90%) and at a constant temperature (95 °C). Our experimental results show that frictional strengths of both Na- and Ca-montmorillonite decrease systematically with increasing relative humidity. The friction coefficients of Na-montmorillonite decrease from 0.33 (at relative humidity of 10%) to 0.06 (at relative humidity of 93%) and those of Ca-montmorillonite decrease from 0.22 (at relative humidity of 11%) to 0.04 (at relative humidity of 91%). Our results also show that the frictional strength of Na-montmorillonite is higher than that of Ca-montmorillonite at a given relative humidity. These results reveal that the frictional strength of montmorillonite is sensitive to hydration state and interlayer cation species, suggesting that the strength of faults containing these clay minerals depends on the physical and chemical environment.[Figure not available: see fulltext.

  5. Analysis of the system efficiency of an intermediate temperature proton exchange membrane fuel cell at elevated temperature and relative humidity conditions

    International Nuclear Information System (INIS)

    Jeon, Seung Won; Cha, Dowon; Kim, Hyung Soon; Kim, Yongchan

    2016-01-01

    Highlights: • System efficiency of PEMFC is evaluated at elevated temperature and humidity. • Operating parameters are optimized using response surface methodology. • The optimal operating parameters are T = 90.6 °C, RH = 100.0%, and ζ = 2.07. • The power output and system efficiency are 1.28 W and 15.8% at the optimum. • The system efficiency can be effectively improved by increasing relative humidity. - Abstract: Humidification of the membrane is very important in a proton exchange membrane fuel cell (PEMFC), to maintain high ionic conductivity. At an elevated temperature, a large amount of thermal energy is required for humidification because of the exponentially increased saturation vapor pressure. In this study, the system efficiency of a PEMFC was evaluated by considering the heat required for preheating/humidification and compression work. Three-dimensional steady-state simulations were conducted using Fluent 14 to simulate the electrochemical reactions. The operating conditions were optimized using response surface methodology by considering both the fuel cell output and system efficiency. In addition, the effects of operating parameters such as the temperature, relative humidity, and stoichiometric ratio were investigated. The system efficiency can be improved more effectively by increasing relative humidity rather than increasing operating temperature because the ionic conductivity of the membrane was strongly influenced by the relative humidity.

  6. The study of operating an air conditioning system using Maisotsenko-Cycle

    Science.gov (United States)

    Khan, Mohammad S.; Tahan, Sami; Toufic El-Achkar, Mohamad; Abou Jamus, Saleh

    2018-03-01

    The project aims to design and build an air conditioning system that runs on the Maisotsenko cycle. The system is required to condition and cool down ambient air for a small residential space with the reduction in the use of electricity and eliminating the use of commercial refrigerants. This project can operate at its optimum performance in remote areas like oil diggers and other projects that run in the desert or any site that would not have a very high relative humidity level. The Maisotsenko cycle is known as the thermodynamic concept that captures energy from the air by using the psychometric renewable energy available in the latent heat in water evaporating in air. The heat and mass exchanger design was based on choosing a material that would-be water resistant and breathable, which was found to be layers of cardboard placed on top of each other and thus creating channels for air to pass through. Aiming for this design eliminates any high power electrical equipment such as compressors, condensers and evaporators that would be used in an AC system with the exception of a 600 W blower and a 10 W fan, thus making it a more environmentally friendly project. Moreover, the project is limited by the ambient temperature and humidity, as the model operates at an optimum when the relative humidity is lower.

  7. Trends in mean maximum temperature, mean minimum temperature and mean relative humidity for Lautoka, Fiji during 2003 – 2013

    Directory of Open Access Journals (Sweden)

    Syed S. Ghani

    2017-12-01

    Full Text Available The current work observes the trends in Lautoka’s temperature and relative humidity during the period 2003 – 2013, which were analyzed using the recently updated data obtained from Fiji Meteorological Services (FMS. Four elements, mean maximum temperature, mean minimum temperature along with diurnal temperature range (DTR and mean relative humidity are investigated. From 2003–2013, the annual mean temperature has been enhanced between 0.02 and 0.080C. The heating is more in minimum temperature than in maximum temperature, resulting in a decrease of diurnal temperature range. The statistically significant increase was mostly seen during the summer months of December and January. Mean Relative Humidity has also increased from 3% to 8%. The bases of abnormal climate conditions are also studied. These bases were defined with temperature or humidity anomalies in their appropriate time sequences. These established the observed findings and exhibited that climate has been becoming gradually damper and heater throughout Lautoka during this period. While we are only at an initial phase in the probable inclinations of temperature changes, ecological reactions to recent climate change are already evidently noticeable. So it is proposed that it would be easier to identify climate alteration in a small island nation like Fiji.

  8. The influence of relative humidity on the dust measurement with the FH 62 I-N [1 m3.h-1

    International Nuclear Information System (INIS)

    Krasenbrink, A.

    1990-01-01

    The influence of relative humidity (rh) can be noticed evidently at continuous dust measurements if humidity increases rapidly up to more than 90%. This work investigated the possibilities to reduce the resulting error of taking up humidity by using two different types of glass fibre filters, the usual GF10 and its hydrophobic version GF10 HY. Compared with the results of the GF10 it could be shown that the GF10 HY takes up only 63% of humidity per time, yielding a concentration peak with an amount of 66% of the GF10 value. The total amount of absorbed humidity in mass units of the dust monitor differed between 30 μg and 50 μg for the GF10, and between 20 μg and 40 μg for the GF10 HY filter. (orig.) [de

  9. Compact Buried Ducts in a Hot-Humid Climate House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, Dave [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2016-01-07

    "9A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval. The primary research question with buried ducts is potential condensation at the outer jacket of the duct insulation in humid climates during the cooling season. Current best practices for buried ducts rely on encapsulating the insulated ducts with closed-cell spray polyurethane foam insulation to control condensation and improve air sealing. The encapsulated buried duct concept has been analyzed and shown to be effective in hot-humid climates. The purpose of this project is to develop an alternative buried duct system that performs effectively as ducts in conditioned space - durable, energy efficient, and cost-effective - in a hot-humid climate (IECC warm-humid climate zone 3A) with three goals that distinguish this project: 1) Evaluation of design criteria for buried ducts that use common materials and do not rely on encapsulation using spray foam or disrupt traditional work sequences; 2) Establishing design criteria for compact ducts and incorporate those with the buried duct criteria to further reduce energy losses and control installed costs; 3) Developing HVAC design guidance for performing accurate heating and cooling load calculations for compact buried ducts.

  10. Annual variation in canopy openness, air temperature and humidity inthe understory of three forested sites in southern Bahia State, Brazil

    Directory of Open Access Journals (Sweden)

    Marayana Prado Pinheiro

    2013-01-01

    Full Text Available Aiming at contributing to the knowledge of physical factors affecting community structure in Atlantic Forest remnants of southern Bahia state, Brazil, we analyzed the annual variation in the understory microclimate of a hillside forest fragment in the ‘Reserva Particular do Patrimônio Natural Serra do Teimoso’ (RST and a rustic cacao agroforestry system (Cabruca, located nearby the RST. Canopy openness (CO, air temperature (Ta, air relative humidity (RH and vapor pressure deficit (VPD data were collected between April, 2005 and April, 2006 at the base (RSTB, 340 m and the top (RSTT, 640 m of the RST and at the Cabruca (CB, 250 m. Data of rainfall, Ta, RH and VPD were also collected in an open area (OA, 270 m. The highest rainfalls (> 100 mm occurred in November, 2005 and April, 2006, whereas October, 2005 was the driest month (< 20 mm. CO ranged between 2.5 % in the CB (April, 2006 and 7.7 % in the RST (October, 2005. Low rainfall in October, 2005 affected VPDmax in all sites. Those effects were more pronounced in OA, followed by CB, RSTB and RSTT. During the period of measurements, the values of Ta, RH and VPD in CB were closer to the values measured in OA than to the values measured inside the forest.

  11. Low Humidity Characteristics of Polymer-Based Capacitive Humidity Sensors

    OpenAIRE

    Majewski Jacek

    2017-01-01

    Polymer-based capacitive humidity sensors emerged around 40 years ago; nevertheless, they currently constitute large part of sensors’ market within a range of medium (climatic and industrial) humidity 20−80%RH due to their linearity, stability and cost-effectiveness. However, for low humidity values (0−20%RH) that type of sensor exhibits increasingly nonlinear characteristics with decreasing of humidity values. This paper presents the results of some experimental trials of CMOS polymer-based ...

  12. Evaluation of Heating, Ventilation, and Air conditioning (HVAC System Performance in an Administrative Building in Tehran (Iran

    Directory of Open Access Journals (Sweden)

    H. Mari Oriyad

    2014-09-01

    Full Text Available Introduction: One of the factors influencing on indoor air quality of the buildings is performance of HVAC (heating, ventilation, and air conditioning systems. These systems supply clean and odorless air, with temperature, humidity, and air velocity within comfort ranges for the residents. The aim of this study was to evaluate performance HVAC system in an administrative building in Tehran. .Material and Method: A questionnaire, developed in their research was used to assess the building occupants’ perception about the performance of HVAC system. To evaluate the performance of HVAC systems, air velocities were measured in the diffusers using a thermal anemometer. Moreover, CO2 concentration, air temperature and relative humidity were measured in the whole floors of the building. Air distribution inside the building was evaluated using smoke test. .Results: Most of the studied people complained about the direction of airflow, thermal conditions and cigarette odor. The highest level of carbon dioxide was measured at 930 ppm inside the restaurant. The maximum and minimum air temperatures and relative humidity were measured 28.3-13.8° C and 28.4-23% respectively. Smoke test showed that the air distribution/direction wasn’t suitable in one third of air diffusers. .Conclusion: Improper air distribution / direction was the main problem with the studied HVAC system which could be corrected by adjusting and balancing of the system.

  13. XPS response in the corrosion products analysis for copper exposed at clean air environment

    International Nuclear Information System (INIS)

    Mariaca, L.; Morcillo, M.; Feliu Jr, S.; Gonzalez, J.A.

    1998-01-01

    In this work is presented the obtained response for superficial analysis technique by X-ray photoelectron spectroscopy (XPS or ESCA), to determine the corrosion products formed during the copper exposure at environment without pollutants (clean air) at 50, 70 and 90 % of relative humidity at 35 Centigrade. One of the copper corrosion products most knew is Cu 2 O. This oxide is formed instantly to be exposed the copper at air. However in function of the exposure time and the relative humidity at it is exposed, the Cu 2 O oxide is transformed at Cu O and Cu(OH) 2 (Author)

  14. Natural convection liquid desiccant loop as an auxiliary air conditioning system: investigating the operational parameters

    Science.gov (United States)

    Fazilati, Mohammad Ali; Alemrajabi, Ali Akbar; Sedaghat, Ahmad

    2018-03-01

    Liquid desiccant air conditioning system with natural convection was presented previously as a new generation of AC systems. The system consists of two three-fluid energy exchangers namely absorber and regenerator in which the action of air dehumidifying and desiccant regeneration is done, respectively. The influence of working parameters on system performance including the heat source and heat sink temperature, concentration of desiccant solution fills the system initially and humidity content of inlet air to regenerator is investigated experimentally. The heat source temperatures of 50 °C and 60 °C, heat sink temperatures of 15 °C and 20 °C and desiccant concentrations of 30% and 34%, are examined here. The inlet air to regenerator has temperature of 38.5 °C and three relative humidity of 14%, 38% and 44%. In all experiments, the inlet air to absorber has temperature of 31 °C and relative humidity of 75%. By inspecting evaluation indexes of system, it is revealed that higher startup desiccant concentration solution is more beneficial for all study cases. It is also observed although the highest/lowest temperature heat source/heat sink is most suitable for best system operation, increasing the heat source temperature should be accompanied with decreasing heat sink temperature. Using drier air stream for regenerator inlet does not necessarily improve system performance; and the air stream with proper value of humidity content should be employed. Finally after running the system in its best working condition, the coefficient of performance (COP) reached 4.66 which verified to be higher than when the same air conditioning task done by a conventional vapor compression system, in which case the COP was 3.38.

  15. Investigation of the influence of the microcapillary structure of natural skins on relative humidity in vacuum-sorption humidification

    Directory of Open Access Journals (Sweden)

    Larina Ludmila

    2017-01-01

    Full Text Available The article presents the results of studies confirming the law of the gamma distribution of microcapillaries in the structure of materials having a stochastic structure, for example, natural skins. The relative humidity of the latter depends on the mass of moisture collected by the microcapillaries, with heat and mass transfer under vacuum conditions. Numerical values of relative humidity in this case may differ from those recommended by footwear manufacturing technologies and should be considered as an integral part of the phenomenon of high-intensity heat and mass transfer under vacuum conditions and be determined by the proposed models.

  16. Investigation of Comfort Temperature and Occupant Behavior in Japanese Houses during the Hot and Humid Season

    Directory of Open Access Journals (Sweden)

    Hom B. Rijal

    2014-08-01

    Full Text Available In order to clarify the comfort temperature and to investigate the behavioral adaptation in Japanese houses, we have conducted a thermal comfort survey and occupant behavior survey in 30 living rooms during the hot and humid season in the Kanto region of Japan. We collected 3991 votes from 52 subjects. The comfort temperature was predicted by Griffiths’ method. They are analyzed according to humidity levels and compared with the adaptive model. The logistic regression analysis was conducted in order to understand occupant behavior. The mean comfort temperature in naturally ventilated mode is 27.6 °C which is within the acceptable zone of the adaptive model. The comfort temperature is related with skin moisture sensation. The results showed that the residents adapt to the hot and humid environments by increasing the air movement using behavioral adaptation such as window opening and fan use.

  17. Population Growth and Development of the Psocid Liposcelis fusciceps (Psocoptera: Liposcelididae) at Constant Temperatures and Relative Humidities.

    Science.gov (United States)

    Gautam, S G; Opit, G P; Shakya, K

    2016-02-01

    We investigated the effects of seven temperatures (22.5, 25.0, 27.5, 30.0, 32.5, 35.0, and 37.5°C) and four relative humidities (43, 55, 63, and 75%) on population growth and development of the psocid Liposcelis fusciceps Badonnel (Psocoptera: Liposcelididae). Results demonstrated that L. fusciceps did not survive at 43% RH, at all temperatures tested. At 55% RH, L. fusciceps did not survive at the highest three temperatures and no psocids survived at 37.5°C and 63% RH. The highest population growth was recorded at 30.0°C and 75% RH where populations increased 16-fold from an initial population of five females. L. fusciceps males have two to four nymphal instars, and the percentages of males with two, three, and four instars were 28, 70, and 2%, respectively. Female L. fusciceps have two to five instars, and the percentages of females with two, three, four, and five instars were 2, 33, 63, and 2%, respectively. The total developmental time for males was shorter than females. We developed temperature-dependent development equations for male and female eggs, individual nymphal, combined nymphal, and combined immature stages. Based on 30-d population growth, L. fusciceps can survive and multiply at a relative humidity of 55% at 22.5-30.0°C, but does better at 27.5-32.5°C and a higher relative humidity of 75%. Relative humidities of ≤ 63% and temperatures of ≥ 32.5°C are detrimental to L. fusciceps. These data provide a better understanding of L. fusciceps population dynamics and can be used to develop effective management strategies for this psocid. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance.

    Directory of Open Access Journals (Sweden)

    Kai Zhao

    Full Text Available Adequate perception of nasal airflow (i.e., nasal patency is an important consideration for patients with nasal sinus diseases. The perception of a lack of nasal patency becomes the primary symptom that drives these patients to seek medical treatment. However, clinical assessment of nasal patency remains a challenge because we lack objective measurements that correlate well with what patients perceive. The current study examined factors that may influence perceived patency, including air temperature, humidity, mucosal cooling, nasal resistance, and trigeminal sensitivity. Forty-four healthy subjects rated nasal patency while sampling air from three facial exposure boxes that were ventilated with untreated room air, cold air, and dry air, respectively. In all conditions, air temperature and relative humidity inside each box were recorded with sensors connected to a computer. Nasal resistance and minimum airway cross-sectional area (MCA were measured using rhinomanometry and acoustic rhinometry, respectively. General trigeminal sensitivity was assessed through lateralization thresholds to butanol. No significant correlation was found between perceived patency and nasal resistance or MCA. In contrast, air temperature, humidity, and butanol threshold combined significantly contributed to the ratings of patency, with mucosal cooling (heat loss being the most heavily weighted predictor. Air humidity significantly influences perceived patency, suggesting that mucosal cooling rather than air temperature alone provides the trigeminal sensation that results in perception of patency. The dynamic cooling between the airstream and the mucosal wall may be quantified experimentally or computationally and could potentially lead to a new clinical evaluation tool.

  19. Potential of indirect evaporative passive cooling with embedded tubes in a humid tropical climate : applications in a typical hot humid climate

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Chavez, J.R. [Univ. Autonoma Metropolitana-Azcapotzalco, Mexico City (Mexico). Dept. de Medio Ambiente, Laboratorio de Investigaciones en Arquitectura Bioclimatica; Givoni, B. [California Univ., Los Angeles, CA (United States); BGU, Beer Sheva (Israel); Viveros, O. [Cristobal Colon Univ., Veracruz (Mexico)

    2009-07-01

    The use of passive cooling techniques in buildings in hot and humid regions can reduce energy consumption while increasing thermal comfort for occupants. A study was conducted in the City of Veracruz, Mexico to investigate the performance of tubes embedded in the roof of the Gulf Meteorological Prevision Centre. Two identical insulated experimental cells were used, one serving as the control and the other one as the test unit, where the technique of embedded tubes in the roof was implemented and investigated during a typical overheating season. Results showed that this indirect evaporative cooling system is an effective strategy to reduce indoor temperatures without increasing the indoor humidity in buildings. The indoor maximum temperature was lowered by 2.72 K in the experimental test cell relative to the control unit. In addition, the resulting reduction of radiant temperatures in the test unit improved the thermal comfort of the occupants. It is expected that the implementation of this passive cooling technique will eventually contribute to reduced energy consumption and less use of air-conditioning systems in buildings, and thereby prevent emission of greenhouse gases to the atmosphere. 9 refs., 1 tab., 6 figs.

  20. Diurnal Thermal Behavior of Pavements, Vegetation, and Water Pond in a Hot-Humid City

    Directory of Open Access Journals (Sweden)

    Xiaoshan Yang

    2015-12-01

    Full Text Available This study investigated the diurnal thermal behavior of several urban surfaces and landscape components, including pavements, vegetation, and a water pond. The field experiment was conducted in a university campus of Guangzhou, South China, which is characterized by a hot and humid summer. The temperature of ground surface and grass leaves and the air temperature and humidity from 0.1 to 1.5 m heights were measured for a period of 24 h under hot summer conditions. The results showed that the concrete and granite slab pavements elevated the temperature of the air above them throughout the day. In contrast, the trees and the pond lowered the air temperature near ground during the daytime but produced a slight warming effect during the nighttime. The influence of vegetation on air temperature and humidity is affected by the configurations of greenery. Compared to the open lawn, the grass shaded by trees was more effective in cooling and the mixture of shrub and grass created a stronger cooling effect during the nighttime. The knowledge of thermal behavior of various urban surfaces and landscape components is an important tool for planners and designers. If utilized properly, it can lead to climatic rehabilitation in urban areas and an improvement of the outdoor thermal environment.

  1. Modelo de simulação da temperatura e umidade relativa do ar no interior de estufa plástica Simulation model of air temperature and relative humidity in to plastic greenhouses

    Directory of Open Access Journals (Sweden)

    Edilson Costa

    2004-04-01

    Full Text Available A simulação dos parâmetros climáticos de temperatura e umidade relativa do ar no interior de uma estufa plástica, por meio do balanço de energia, pode propiciar ao produtor uma ferramenta de auxílio na tomada de decisão. Nesse propósito, realizou-se uma simulação das condições no interior de estufa plástica, em função de parâmetros externos e internos a ela. A simulação revelou uma temperatura no interior da estufa plástica de 23,6 ºC, e os sensores revelaram um valor médio de 24,1 ºC para o período de cultivo da alface. Para a umidade relativa no interior da estufa plástica, o valor simulado foi de 61,6%, e o obtido com o auxílio de sensores foi de 66,0%. Os valores simulados apresentaram-se próximos dos valores obtidos pelos sensores, mostrando que o modelo pode ser usado para a estimativa da temperatura e umidade relativa do ar no interior da estufa plástica.Simulation of climatic parameters inside air temperature and relative humidity of plastic greenhouse, trough energy balance, allows to growers a good technical tool on the decision making to improve the performance of inside environments. A simulation of internal conditions based on external and internal parameters was evaluated. The results showed the inside mean temperature of 23.6 ºC in comparison with the experimental value of 24.1 ºC, for the cultivated period. The simulated relative humidity presented a value of 61.6% against 66.0% obtained by the sensors. The simulated values were closed to the values obtained by the sensors, which means that the model can be used to determine the internal conditions of plastic greenhouses.

  2. Mechanical reliability evaluation of alternate motors for use in a radioiodine air sampler

    International Nuclear Information System (INIS)

    Bird, S.K.; Huchton, R.L.; Motes, B.G.

    1984-03-01

    Detailed mechanical reliability studies of two alternate motors identified for use in the BNL Air Sampler wer conducted. The two motor types were obtained from Minnesota Electric Technology, Incorporated (MET) and TCS Industries (TCSI). Planned testing included evaluation of motor lifetimes and motor operability under different conditions of temperature, relative humidity, simulated rainfall, and dusty air. The TCSI motors were not lifetime tested due to their poor performance during the temperature/relative humidity tests. While operation on alternating current was satisfactory, on direct current only one of five TCSI motors completed all environmental testing. The MET motors had average lifetimes of 47 hours, 97 hours, and 188 hours, respectively, and exhibited satisfactory operation under all environmental test conditions. Therefore, the MET motor appears to be the better candidate motor for use in the BNL Air Sampler. However, because of the relatively high cost of purchasing and incorporating the MET motor into the BNL Air Sampler System, it is recommended that commercial air sampler systems be evaluated for use instead of the BNL system

  3. Radiation tolerant fiber optic humidity sensors for High Energy Physics applications

    CERN Document Server

    Berruti, Gaia Maria; Cusano, Andrea

    This work is devoted to the development of fiber optic humidity sensors to be applied in high-energy physics applications and in particular in experiments currently running at CERN. The high radiation level resulting from the operation of the accelerator at full luminosity can cause serious performance deterioration of the silicon sensors which are responsible for the particle tracking. To increase their lifetime, the sensors must be kept cold at temperatures below 0 C. At such low temperatures, any condensation risk has to be prevented and a precise thermal and hygrometric control of the air filling and surrounding the tracker detector cold volumes is mandatory. The technologies proposed at CERN for relative humidity monitoring are mainly based on capacitive sensing elements which are not designed with radiation resistance characteristic. In this scenario, fiber optic sensors seem to be perfectly suitable. Indeed, the fiber itself, if properly selected, can tolerate a very high level of radiation, optical fi...

  4. Twin-cuvette measurement technique for investigation of dry deposition of O3 and PAN to plant leaves under controlled humidity conditions

    Science.gov (United States)

    Sun, Shang; Moravek, Alexander; von der Heyden, Lisa; Held, Andreas; Sörgel, Matthias; Kesselmeier, Jürgen

    2016-02-01

    We present a dynamic twin-cuvette system for quantifying the trace-gas exchange fluxes between plants and the atmosphere under controlled temperature, light, and humidity conditions. Compared with a single-cuvette system, the twin-cuvette system is insensitive to disturbing background effects such as wall deposition. In combination with a climate chamber, we can perform flux measurements under constant and controllable environmental conditions. With an Automatic Temperature Regulated Air Humidification System (ATRAHS), we are able to regulate the relative humidity inside both cuvettes between 40 and 90 % with a high precision of 0.3 %. Thus, we could demonstrate that for a cuvette system operated with a high flow rate (> 20 L min-1), a temperature-regulated humidification system such as ATRAHS is an accurate method for air humidification of the flushing air. Furthermore, the fully automatic progressive fill-up of ATRAHS based on a floating valve improved the performance of the entire measurement system and prevented data gaps. Two reactive gas species, ozone (O3) and peroxyacetyl nitrate (PAN), were used to demonstrate the quality and performance of the twin-cuvette system. O3 and PAN exchange with Quercus ilex was investigated over a 14 day measurement period under controlled climate chamber conditions. By using O3 mixing ratios between 32 and 105 ppb and PAN mixing ratios between 100 and 350 ppt, a linear dependency of the O3 flux as well as the PAN flux in relation to its ambient mixing ratio could be observed. At relative humidity (RH) of 40 %, the deposition velocity ratio of O3 and PAN was determined to be 0.45. At that humidity, the deposition of O3 to the plant leaves was found to be only controlled by the leaf stomata. For PAN, an additional resistance inhibited the uptake of PAN by the leaves. Furthermore, the formation of water films on the leaf surface of plants inside the chamber could be continuously tracked with our custom built leaf wetness sensors

  5. Particulate Matter Mass Concentration in Residential Prefabricated Buildings Related to Temperature and Moisture

    Science.gov (United States)

    Kraus, Michal; Juhásová Šenitková, Ingrid

    2017-10-01

    Building environmental audit and the assessment of indoor air quality (IAQ) in typical residential buildings is necessary process to ensure users’ health and well-being. The paper deals with the concentrations on indoor dust particles (PM10) in the context of hygrothermal microclimate in indoor environment. The indoor temperature, relative humidity and air movement are basic significant factors determining the PM10 concentration [μg/m3]. The experimental measurements in this contribution represent the impact of indoor physical parameters on the concentration of particulate matter mass concentration. The occurrence of dust particles is typical for the almost two-thirds of interiors of the buildings. Other parameters indoor environment, such as air change rate, volume of the room, roughness and porosity of the building material surfaces, static electricity, light ions and others, were set constant and they are not taken into account in this study. The mass concentration of PM10 is measured during summer season in apartment of residential prefabricated building. The values of global temperature [°C] and relative humidity of indoor air [%] are also monitored. The quantity of particulate mass matter is determined gravimetrically by weighing according to CSN EN 12 341 (2014). The obtained results show that the temperature difference of the internal environment does not have a significant effect on the concentration PM10. Vice versa, the difference of relative humidity exhibits a difference of the concentration of dust particles. Higher levels of indoor particulates are observed for low values of relative humidity. The decreasing of relative air humidity about 10% caused 10µg/m3 of PM10 concentration increasing. The hygienic limit value of PM10 concentration is not exceeded at any point of experimental measurement.

  6. U-shaped micro-groove fiber based on femtosecond laser processing for humidity sensing

    Science.gov (United States)

    Fu, Gui; Ma, Li-li; Su, Fu-fang; Shi, Meng

    2018-05-01

    A novel optical fiber sensor with a U-shaped micro-groove structure ablated by femtosecond laser on single-mode fiber for measuring air relative humidity (RH) is reported in this paper. In order to improve the accuracy of sensor, a graphene oxide (GO)/polyvinyl alcohol (PVA) composite film is coated on the surface of micro-groove structure. In the U-shaped micro-groove structure, the remaining core and micro-cavity in the micro-groove make up two major optical propagation paths, forming a Mach-Zehnder interferometer (MZI). The sensor has a good linear response within the RH range of 30%—85%, and the maximum sensitivity can reach 0.638 1 nm/%RH. The effect of temperature on the overall performance of the humidity sensor is also investigated. As a new type of all-fiber device, the sensor shows excellent sensitivity and stability.

  7. Humidity Control System In The Neutron Detector Of Guide Tube

    International Nuclear Information System (INIS)

    Alibasya Harahap, Sentot

    2001-01-01

    The probable symptom neutron detector damage as cause decrease resistivity and corrosion in the electrical terminal, further more occasion to voltage failure and leak current in the isolation. The prevent of voltage failure in detector a needed humidity controller's with dry air supply to guide tube with 2 kg/cm exp.2 air pressure and 7 l/min, air flow as soon as continuity dryer process in the guide tube. Reactor shutdown and operation condition of diffusion rate is 0,476 cm exp.3/year and 6,46 cm exp.3/year

  8. A Standard CMOS Humidity Sensor without Post-Processing

    OpenAIRE

    Nizhnik, Oleg; Higuchi, Kohei; Maenaka, Kazusuke

    2011-01-01

    A 2 ?W power dissipation, voltage-output, humidity sensor accurate to 5% relative humidity was developed using the LFoundry 0.15 ?m CMOS technology without post-processing. The sensor consists of a woven lateral array of electrodes implemented in CMOS top metal, a Intervia Photodielectric 8023?10 humidity-sensitive layer, and a CMOS capacitance to voltage converter.

  9. Influence of the ambient humidity on the concentration of natural deposition-mode ice-nucleating particles

    Directory of Open Access Journals (Sweden)

    M. L. López

    2016-01-01

    Full Text Available This study reports measurements of deposition-mode ice-nucleating particle (INP concentrations at ground level during the period July–December 2014 in Córdoba, Argentina. Ambient air was sampled into a cloud chamber where the INP concentration was measured at a temperature of −25 °C and a 15 % supersaturation over ice. Measurements were performed on days with different thermodynamic conditions, including rainy days. The effect of the relative humidity at ground level (RHamb on the INP concentration was analyzed. The number of INPs activated varied from 1 L−1 at RHamb of 25 % to 30 L−1 at RHamb of 90 %. In general, a linear trend between the INP concentration and the RHamb was found, suggesting that this variability must be related to the effectiveness of the aerosols acting as INPs. From the backward trajectories analysis, it was found that the link between INP concentration and RHamb is independent of the origin of the air masses. The role of biological INPs and nucleation occurring in pores and cavities was discussed as a possible mechanism to explain the increase of the INP concentration during high ambient relative humidity events. This work provides valuable measurements of deposition-mode INP concentrations from the Southern Hemisphere where INP data are sparse so far.

  10. Methodology to determine the appropriate amount of excess air for the operation of a gas turbine in a wet environment

    Energy Technology Data Exchange (ETDEWEB)

    Lugo-Leyte, R.; Zamora-Mata, J.M.; Torres-Aldaco, A. [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Ingenieria de Procesos e Hidraulica, San Rafael Atlixco 186, Col Vicentina 09340, Iztapalapa, Mexico, D.F. (Mexico); Toledo-Velazquez, M. [Instituto Politecnico Nacional, Escuela Superior de Ingenieria Mecanica y Electrica, Seccion de Estudios de Posgrado e Investigacion, Laboratorio de Ingenieria Termica e Hidraulica Aplicada, Unidad Profesional Adolfo Lopez Mateos, Edificio 5, 3er piso SEPI-ESIME, C.P. 07738, Col. Lindavista, Mexico D.F. (Mexico); Salazar-Pereyra, M. [Tecnologico de Estudios Superiores de Ecatepec, Division de Ingenieria Mecatronica e Industrial, Posgrado en Ciencias en Ingenieria Mecatronica, Av. Tecnologico s/n, Col. Valle de Anahuac, C.P. 55210, Ecatepec de Morelos, Estado de Mexico (Mexico)

    2010-02-15

    This paper addresses the impact of excess air on turbine inlet temperature, power, and thermal efficiency at different pressure ratios. An explicit relationship is developed to determine the turbine inlet temperature as a function of excess air, pressure ratio and relative humidity. The effect of humidity on the calculation of excess air to achieve a pre-established power output is analyzed and presented. Likewise it is demonstrated that dry air calculations provide a valid upper bound for the performance of a gas turbine under a wet environment. (author)

  11. Biochars as Innovative Humidity Sensing Materials

    Directory of Open Access Journals (Sweden)

    Daniele Ziegler

    2017-12-01

    Full Text Available In this work, biochar-based humidity sensors were prepared by drop-coating technique. Polyvinylpyrrolidone (PVP was added as an organic binder to improve the adhesion of the sensing material onto ceramic substrates having platinum electrodes. Two biochars obtained from different precursors were used. The sensors were tested toward relative humidity (RH at room temperature and showed a response starting around 5 RH%, varying the impedance of 2 orders of magnitude after exposure to almost 100% relative humidity. In both cases, biochar materials are behaving as p-type semiconductors under low amounts of humidity. On the contrary, for higher RH values, the impedance decreased due to water molecules adsorption. When PVP is added to SWP700 biochar, n-p heterojunctions are formed between the two semiconductors, leading to a higher sensitivity at low RH values for the sensors SWP700-10% PVP and SWP700-20% PVP with respect to pure SWP700 sensor. Finally, response and recovery times were both reasonably fast (in the order of 1 min.

  12. Adjustment of web-building initiation to high humidity: a constraint by humidity-dependent thread stickiness in the spider Cyrtarachne.

    Science.gov (United States)

    Baba, Yuki G; Kusahara, Miki; Maezono, Yasunori; Miyashita, Tadashi

    2014-07-01

    Cyrtarachne is an orb-weaving spider belonging to the subfamily Cyrtarachninae (Araneidae) which includes triangular-web-building Pasilobus and bolas spiders. The Cyrtarachninae is a group of spiders specialized in catching moths, which is thought to have evolved from ordinary orb-weaving araneids. Although the web-building time of nocturnal spiders is in general related to the time of sunset, anecdotal evidence has suggested variability of web-building time in Cyrtarachne and its closely related genera. This study has examined the effects of temperature, humidity, moonlight intensity, and prey (moths) availability on web-building time of Cyrtarachne bufo, Cyrtarachne akirai, and Cyrtarachne nagasakiensis. Generalized linear mixed model (GLMM) have revealed that humidity, and not prey availability, was the essential variable that explained the daily variability of web-building time. Experiments measuring thread stickiness under different humidities showed that, although the thread of Cyrtarachne was found to have strong stickiness under high humidity, low humidity caused a marked decrease of thread stickiness. By contrast, no obvious change in stickiness was seen in an ordinary orb-weaving spider, Larinia argiopiformis. These findings suggest that Cyrtarachne adjusts its web-building time to favorable conditions of high humidity maintaining strong stickiness, which enables the threads to work efficiently for capturing prey.

  13. A preliminary investigation of indoor air quality in a naturally ventilated house

    International Nuclear Information System (INIS)

    Shahrani, S.; Ahmed, A.Z.; Abdul Rahman, S.

    2006-01-01

    Continuous monitoring of indoor air quality was conducted in a naturally ventilated Malaysian house. CO 2 , CO, temperature and relative air humidity measurements were performed in the bathroom, bedroom, family room, kitchen and living room at 15-minute intervals over a 24-hour monitoring period. The measurement data were supplemented with time activity diaries detailing the occupants time of occupancy in each room, activities undertaken in each room and cooling and/or ventilation techniques used in each room. Indoor air quality was found to be generally satisfactory in all five rooms. However, levels of CO in the family room exceeded the USEPA, WHO and Singapore guidelines. Additionally, levels of relative humidity in the kitchen, living room and family room temperature in all five rooms exceeded the ASHRAE and Singapore guidelines, and suggest the like hood of condensation and mould growth

  14. Applying Outdoor Environment to Develop Health, Comfort, and Energy Saving in the Office in Hot-Humid Climate

    Directory of Open Access Journals (Sweden)

    Rong Chen

    2013-01-01

    Full Text Available A human life demand set to emerge in the future is the achievement of sustainability by maintaining a comfortable indoor environment without excessive reliance on energy-consuming air conditioners. The major research processes in this study are: (1 measuring indoor air quality and thermal comfort to evaluate the comfort of an indoor environment; (2 implementing questionnaire survey analysis to explore people’s environmental self-perceptions and conducting a meta-analysis of the measurement results for air quality and physical aspects; and (3 constructing an indoor monitoring and management system. The experimental and analysis results of this research reveal that most of the office occupants preferred a cooler environment with a lower temperature. Additionally, because the summers in Taiwan are humid and hot, the occupants of an indoor space tend to feel uncomfortable because of the high humidity and poor indoor air quality. Therefore, Variable Air Volume (VAV, two air intakes, and exhaust plant are installed to improve indoor environment. After improvement, a lower temperature (approximately 21.2–23.9°C indirectly reduces humidity, thereby making the occupants comfortable. Increasing air velocity to 0.1~0.15 m/s, the carbon dioxide concentrations decrease below the requirement of the WHO. Ninety-five percent of the workers corresponded to the standard comfort zone after this improvement.

  15. Applying Outdoor Environment to Develop Health, Comfort, and Energy Saving in the Office in Hot-Humid Climate

    Science.gov (United States)

    Chen, Rong; Sung, Wen-Pei; Chang, Hung-Chang; Chi, Yi-Rou

    2013-01-01

    A human life demand set to emerge in the future is the achievement of sustainability by maintaining a comfortable indoor environment without excessive reliance on energy-consuming air conditioners. The major research processes in this study are: (1) measuring indoor air quality and thermal comfort to evaluate the comfort of an indoor environment; (2) implementing questionnaire survey analysis to explore people's environmental self-perceptions and conducting a meta-analysis of the measurement results for air quality and physical aspects; and (3) constructing an indoor monitoring and management system. The experimental and analysis results of this research reveal that most of the office occupants preferred a cooler environment with a lower temperature. Additionally, because the summers in Taiwan are humid and hot, the occupants of an indoor space tend to feel uncomfortable because of the high humidity and poor indoor air quality. Therefore, Variable Air Volume (VAV), two air intakes, and exhaust plant are installed to improve indoor environment. After improvement, a lower temperature (approximately 21.2–23.9°C) indirectly reduces humidity, thereby making the occupants comfortable. Increasing air velocity to 0.1 ~ 0.15 m/s, the carbon dioxide concentrations decrease below the requirement of the WHO. Ninety-five percent of the workers corresponded to the standard comfort zone after this improvement. PMID:24311976

  16. Density of loose-fill insulation material exposed to cyclic humidity conditions

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    the granulated loose-fill material is exposed to a climate that is characterised as cyclic humidity conditions (a constant temperature and a relative humidity alternating between two predetermined constant relative humidity levels). A better understanding of the behaviour of granulated loose-fill material...

  17. Gases Emission From Surface Layers of Sand Moulds and Cores Stored Under the Humid Air Conditions

    Directory of Open Access Journals (Sweden)

    Kaźnica N.

    2017-12-01

    Full Text Available A large number of defects of castings made in sand moulds is caused by gases. There are several sources of gases: gases emitted from moulds, cores or protective coatings during pouring and casting solidification; water in moulding sands; moisture adsorbed from surroundings due to atmospheric conditions changes. In investigations of gas volumetric emissions of moulding sands amounts of gases emitted from moulding sand were determined - up to now - in dependence of the applied binders, sand grains, protective coatings or alloys used for moulds pouring. The results of investigating gas volumetric emissions of thin-walled sand cores poured with liquid metal are presented in the hereby paper. They correspond to the surface layer in the mould work part, which is decisive for the surface quality of the obtained castings. In addition, cores were stored under conditions of a high air humidity, where due to large differences in humidity, the moisture - from surroundings - was adsorbed into the surface layer of the sand mould. Due to that, it was possible to asses the influence of the adsorbed moisture on the gas volumetric emission from moulds and cores surface layers by means of the new method of investigating the gas emission kinetics from thin moulding sand layers heated by liquid metal. The results of investigations of kinetics of the gas emission from moulding sands with furan and alkyd resins as well as with hydrated sodium silicate (water glass are presented. Kinetics of gases emissions from these kinds of moulding sands poured with Al-Si alloy were compared.

  18. An experimental investigation of a novel design air humidifier using direct solar thermal heating

    International Nuclear Information System (INIS)

    Abd-ur-Rehman, Hafiz M.; Al-Sulaiman, Fahad A.

    2016-01-01

    Highlights: • A novel solar driven multi-stage bubble column humidifier is developed and tested. • Single stage, two stage, and three stage configuration were tested. • Average day round absolute humidity is increased by 9% for 2 stage configuration. • Average day round absolute humidity is increased by 23% for 3 stage configuration. • Air absolute humidity increases up to 26% with the integration of Fresnel lens. - Abstract: In this study, a novel solar heated multi-stage bubble column humidifier is designed and tested. The overall objective of this work is to investigate the main operating parameters of the new humidifier. The study addresses the significance of the perforated plate geometric features, optimum balance of air superficial velocity and water column height, and the influence of inlet water temperature and inlet air relative humidity on the performance of the humidifier. The day round performance of the humidifier is investigated in single stage, two stage, and three stage configuration, in which each configuration was tested with and without the integration of the Fresnel lens. Findings show that the average day round absolute humidity, without Fresnel lens, increased up to 9% for the two stage configuration and 23% for the three stage configuration as compared to the single stage configuration of the humidifier. The integration of the Fresnel lens further increased the absolute humidity up to 25% as compared to the results obtained without the integration of the Fresnel lens under the same prevailing conditions, which is significant. Moreover, the current humidifier shows a higher humidification efficiency in the climatic conditions that have a lower inlet air relative humidity. Furthermore, the finding demonstrates that the newly developed multi-stage bubble column humidifier has better performance as compared to the conventional single stage bubble column humidifier. The findings from this study are of pivotal importance to understand

  19. Temperature, humidity and time. Combined effects on radiochromic film dosimeters

    DEFF Research Database (Denmark)

    Abdel-Fattah, A.A.; Miller, A.

    1996-01-01

    The effects of both relative humidity and temperature during irradiation on the dose response of FWT-60-00 and Riso B3 radiochromic film dosimeters have been investigated in the relative humidity (RH) range 11-94% and temperature range 20-60 degrees C for irradiation by Co-60 photons and 10-Me......V electrons. The results show that humidity and temperature cannot be treated as independent variables, rather there appears to be interdependence between absorbed dose, temperature, and humidity. Dose rate does not seem to play a significant role. The dependence of temperature during irradiation is +0.......25 +/- 0.1% per degrees C for the FWT-60-00 dosimeters and +0.5 +/- 0.1% per degrees C For Riso B3 dosimeters at temperatures between 20 and 50 degrees C and at relative humidities between 20 and 53%. At extreme conditions both with respect to temperature and to humidity, the dosimeters show much stronger...

  20. Changes of pressure and humidity affect olfactory function.

    Science.gov (United States)

    Kuehn, Michael; Welsch, Heiko; Zahnert, Thomas; Hummel, Thomas

    2008-03-01

    The present study aimed at investigating the question whether olfactory function changes in relation to barometric pressure and humidity. Using climate chambers, odor threshold and discrimination for butanol were tested in 75 healthy volunteers under hypobaric and hyperbaric, and different humidity conditions. Among other effects, olfactory sensitivity at threshold level, but not suprathreshold odor discrimination, was impaired in a hypobaric compared to a hyperbaric milieu, and thresholds were lower in humid, compared to relatively dry conditions. In conclusion, environmental conditions modulate the sense of smell, and may, consecutively, influence results from olfactory tests.

  1. Indoor ice arenas. Humidity caused problems and suggested solutions

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This report was prepared to assist indoor ice arena managers in Canada to solve common problems related to humidity. These problems typically include leaking roofs, deterioration of roof and insulation, condensation on indoor walls, damages to exterior walls due to condensation on exterior metal parts, rusting metal elements, high energy bills, and long and costly ice-making periods. Recommendations are made for improved roof insulation systems, proper sealing, maintenance, and repair. High energy costs are seen as due to insufficient insulation, air leakage, and heat losses by radiation and convection. Convection can be controlled by dehumidification and shielding the ice from air currents. Radiation losses can be lowered by using a low-emmissivity suspended ceiling; this effectively breaks the flow of radiated heat from the roof toward the ice sheet, and has the additional benefit of lowering of lighting energy demand by acting as a reflector. It is shown that these measures can result in significant energy cost savings with favorable payback periods. 10 figs.

  2. Humidity Effects on Fragmentation in Plasma-Based Ambient Ionization Sources.

    Science.gov (United States)

    Newsome, G Asher; Ackerman, Luke K; Johnson, Kevin J

    2016-01-01

    Post-plasma ambient desorption/ionization (ADI) sources are fundamentally dependent on surrounding water vapor to produce protonated analyte ions. There are two reports of humidity effects on ADI spectra. However, it is unclear whether humidity will affect all ADI sources and analytes, and by what mechanism humidity affects spectra. Flowing atmospheric pressure afterglow (FAPA) ionization and direct analysis in real time (DART) mass spectra of various surface-deposited and gas-phase analytes were acquired at ambient temperature and pressure across a range of observed humidity values. A controlled humidity enclosure around the ion source and mass spectrometer inlet was used to create programmed humidity and temperatures. The relative abundance and fragmentation of molecular adduct ions for several compounds consistently varied with changing ambient humidity and also were controlled with the humidity enclosure. For several compounds, increasing humidity decreased protonated molecule and other molecular adduct ion fragmentation in both FAPA and DART spectra. For others, humidity increased fragment ion ratios. The effects of humidity on molecular adduct ion fragmentation were caused by changes in the relative abundances of different reagent protonated water clusters and, thus, a change in the average difference in proton affinity between an analyte and the population of water clusters. Control of humidity in ambient post-plasma ion sources is needed to create spectral stability and reproducibility.

  3. The Effect of Air Velocity on the Prevention of Heat Stress in Iranian Veiled Females

    Directory of Open Access Journals (Sweden)

    Habibi

    2016-09-01

    Full Text Available Background Some environmental factors such as the ambient temperature, radiant temperature, humidity and air velocity as well as clothing and activity level are effective to induce heat strain on the workers. Objectives The current study aimed to evaluate the effect of air velocity on Iranian veiled females at various exercise intensities and climatic conditions. Methods The current experimental study was conducted on 51 healthy veiled females with Islamic clothing (n = 30 in two hot-dry climatic chambers (wet-bulb globe temperature (WBGT = 32 ± 0.1°C and WBGT = 30 ± 0.1°C, 40% relative humidity (RH without air velocity and (n = 21 with air velocity 0.31 m/s in sitting and light workload conditions, respectively, for 60 minutes. The WBGT, oral temperature and heart rate were measured simultaneously every five minutes during the heat exposure and resting state. Data were analyzed using correlation and line regression by SPSS ver. 16. Results In both groups, oral temperature and heart rate increased during heat exposure. The increase of oral temperature and heart rate were larger in the group with air velocity (sitting position, 37.05 ± 0.20°C, 98.30 ± 7.79 bpm, light workload, 37.34 ± 0.24°C, 124.08 ± 6.09 bpm compared those of the group without air velocity (sitting position, 36.70 ± 0.36°C, 69.74 ± 0.98 bpm, light workload, 36.71 ± 0.27°C, 110.78 ± 17.9 bpm. The difference in physiological strain index (PSI between resting and low workload were higher in with air velocity group than those of the group without air velocity. Conclusions The results showed that the heat stress increased by increasing air velocity and humidity in both groups. The air velocity with high humidity can be considered as a positive factor in the occurrence of heat strain. Therefore, the incidence of heat stress decreases with the increase of humidity and reduction of air velocity or with increase of air velocity and reduction of humidity in Iranian veiled

  4. Trends in continental temperature and humidity directly linked to ocean warming.

    Science.gov (United States)

    Byrne, Michael P; O'Gorman, Paul A

    2018-05-08

    In recent decades, the land surface has warmed substantially more than the ocean surface, and relative humidity has fallen over land. Amplified warming and declining relative humidity over land are also dominant features of future climate projections, with implications for climate-change impacts. An emerging body of research has shown how constraints from atmospheric dynamics and moisture budgets are important for projected future land-ocean contrasts, but these ideas have not been used to investigate temperature and humidity records over recent decades. Here we show how both the temperature and humidity changes observed over land between 1979 and 2016 are linked to warming over neighboring oceans. A simple analytical theory, based on atmospheric dynamics and moisture transport, predicts equal changes in moist static energy over land and ocean and equal fractional changes in specific humidity over land and ocean. The theory is shown to be consistent with the observed trends in land temperature and humidity given the warming over ocean. Amplified land warming is needed for the increase in moist static energy over drier land to match that over ocean, and land relative humidity decreases because land specific humidity is linked via moisture transport to the weaker warming over ocean. However, there is considerable variability about the best-fit trend in land relative humidity that requires further investigation and which may be related to factors such as changes in atmospheric circulations and land-surface properties.

  5. Reversible adhesion switching of porous fibrillar adhesive pads by humidity.

    Science.gov (United States)

    Xue, Longjian; Kovalev, Alexander; Dening, Kirstin; Eichler-Volf, Anna; Eickmeier, Henning; Haase, Markus; Enke, Dirk; Steinhart, Martin; Gorb, Stanislav N

    2013-01-01

    We report reversible adhesion switching on porous fibrillar polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) adhesive pads by humidity changes. Adhesion at a relative humidity of 90% was more than nine times higher than at a relative humidity of 2%. On nonporous fibrillar adhesive pads of the same material, adhesion increased only by a factor of ~3.3. The switching performance remained unchanged in at least 10 successive high/low humidity cycles. Main origin of enhanced adhesion at high humidity is the humidity-induced decrease in the elastic modulus of the polar component P2VP rather than capillary force. The presence of spongelike continuous internal pore systems with walls consisting of P2VP significantly leveraged this effect. Fibrillar adhesive pads on which adhesion is switchable by humidity changes may be used for preconcentration of airborne particulates, pollutants, and germs combined with triggered surface cleaning.

  6. AIRQino, a low-cost air quality mobile platform

    Science.gov (United States)

    Zaldei, Alessandro; Vagnoli, Carolina; Di Lonardo, Sara; Gioli, Beniamino; Gualtieri, Giovanni; Toscano, Piero; Martelli, Francesca; Matese, Alessandro

    2015-04-01

    Recent air quality regulations (Directive 2008/50/EC) enforce the transition from point-based monitoring networks to new tools that must be capable of mapping and forecasting air quality on the totality of land area, and therefore the totality of citizens. This implies new technologies such as models and additional indicative measurements, are needed in addition to accurate fixed air quality monitoring stations, that until now have been taken as reference by local administrators for the enforcement of various mitigation strategies. However, due to their sporadic spatial distribution, they cannot describe the highly resolved spatial pollutant variations within cities. Integrating additional indicative measurements may provide adequate information on the spatial distribution of the ambient air quality, also allowing for a reduction of the required minimum number of fixed sampling points, whose high cost and complex maintenance still remain a crucial concern for local administrators. New low-cost and small size sensors are becoming available, that could be employed in air quality monitoring including mobile applications. However, accurate assessment of their accuracy and performance both in controlled and real monitoring conditions is crucially needed. Quantifying sensor response is a significant challenge due to the sensitivity to ambient temperature and humidity and the cross-sensitivity to others pollutant species. This study reports the development of an Arduino compatible electronic board (AIRQino) which integrates a series of low-cost metal oxide and NDIR sensors for air quality monitoring, with sensors to measure air temperature, relative humidity, noise, solar radiation and vertical acceleration. A comparative assessment was made for CO2, CO, NO2, CH4, O3, VOCs concentrations, temperature and relative humidity. A controlled climatic chamber study (-80°C / +80°C) was performed to verify temperature and humidity interference using reference gas cylinders and

  7. Assessment of the thermal environment effects on human comfort and health for the development of novel air conditioning system in tropical regions

    Energy Technology Data Exchange (ETDEWEB)

    Sookchaiya, Thammanoon; Monyakul, Veerapol; Thepa, Sirichai [Division of Energy Technology, School of Energy Environment and Materials, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand)

    2010-10-15

    This research shows the result of a brainstorming by medical experts in the first ranking university medical school and hospital of Thailand. It was based on Delphi technique. The objective of this research was to study both direct and indirect effects of humidity and temperature on human health in air-conditioned buildings in Thailand. Afterwards, the result was used to design and develop split type air conditioner (conventional air conditioner) which could control relative humidity and temperature with precision air conditioning system to comply with the climate and the suitability of the people living in Thailand building. The result of operation with precision inverter air conditioning system showed that the temperature inside the room changed from the default value around {+-}0.2 C (Case 1) and around {+-}0.35 C (Case 2) and it could control relative humidity as a desired condition between 50-60% (both cases) which was the appropriate range for Thai climate. Moreover, energy consumption of precision inverter air conditioning system was still less than conventional air conditioning system for about 7.5%. This research could provide people living in Thailand air conditioned building with human thermal comfort and health. (author)

  8. Humidity Sensing Behavior of Polyaniline / Strontium Arsenate Composites

    Directory of Open Access Journals (Sweden)

    Machappa T.

    2009-08-01

    Full Text Available The response of conducting Polyaniline (PANI / Ceramic (Sr3(AsO42 composites system to air moisture environment is studied. The conducting PANI and its composites are prepared by in situ polymerization technique. These prepared samples were characterized by XRD, FTIR & SEM, which confirms crystallinity, composite formation and porosity of the samples. The temperature dependent conductivity measurement shows the thermally activated behavior, where the conductivity increases with increase in temperature. The decrease in electrical resistance with change in relative humidity (RH over broad range (ranging between 20 to 95 % is due to the increase in surface electrical conductivity resulting from moisture absorption and due to capillary condensation of water causing increase in conductivity within the sensing materials.

  9. Wind power variations under humid and arid meteorological conditions

    International Nuclear Information System (INIS)

    Şen, Zekâi

    2013-01-01

    Highlights: • It indicates the role of weather parameters’ roles in the wind energy calculation. • Meteorological variables are more significant in arid regions for wind power. • It provides opportunity to take into consideration air density variability. • Wind power is presented in terms of the wind speed, temperature and pressure. - Abstract: The classical wind power per rotor area per time is given as the half product of the air density by third power of the wind velocity. This approach adopts the standard air density as constant (1.23 g/cm 3 ), which ignores the density dependence on air temperature and pressure. Weather conditions are not taken into consideration except the variations in wind velocity. In general, increase in pressure and decrease in temperature cause increase in the wind power generation. The rate of increase in the pressure has less effect on the wind power as compared with the temperature rate. This paper provides the wind power formulation based on three meteorological variables as the wind velocity, air temperature and air pressure. Furthermore, from the meteorology point of view any change in the wind power is expressed as a function of partial changes in these meteorological variables. Additionally, weather conditions in humid and arid regions differ from each other, and it is interesting to see possible differences between the two regions. The application of the methodology is presented for two meteorology stations in Istanbul, Turkey, as representative of the humid regions and Al-Madinah Al-Monawwarah, Kingdom of Saudi Arabia, for arid region, both on daily record bases for 2010. It is found that consideration of air temperature and pressure in the average wind power calculation gives about 1.3% decrease in Istanbul, whereas it is about 13.7% in Al-Madinah Al-Monawwarah. Hence, consideration of meteorological variables in wind power calculations becomes more significant in arid regions

  10. Revision to the humidity correction equation in the calculation formulae of the air refractive index based on a phase step interferometer with three frequency-stabilized lasers

    International Nuclear Information System (INIS)

    Chen, Qianghua; Zhang, Mengce; Liu, Shuaijie; He, Yongxi; Luo, Huifu; Luo, Jun; Lv, Weiwei

    2016-01-01

    At present the formulae proposed by G Boensch and E Potulski in 1998 (Boensch and Potulski 1998 Metrologia 35 133–9) are mostly used to calculate the air refractive index. However, the humidity correction equation in the formulae is derived by using the light source of a Cd lamp whose light frequency stability is poor and at a narrow temperature range, around 20 °C. So it is no longer suitable in present optical precision measurements. To solve this problem, we propose a refractive index measurement system based on phase step interferometer with three frequency stabilized lasers (532 nm, 633 nm, 780 nm), corrected coefficients of the humidity are measured and a corresponding revised humidity correction equation is acquired. Meanwhile, the application temperature range is extended from 14.6 °C to 25.0 °C. The experiment comparison results at the temperature of 22.2–23.2 °C show the accuracy by the presented equation is better than that of Boensch and Potulski. (paper)

  11. Performance investigation on a multi-unit heat pump for simultaneous temperature and humidity control

    International Nuclear Information System (INIS)

    Fan, Hongming; Shao, Shuangquan; Tian, Changqing

    2014-01-01

    Highlights: • A multi-unit heat pump is proposed for simultaneous temperature and humidity control. • Condensation heat is non, partly or fully recovered for temperature regulation. • Highly integrated heat pump for residential cooling, dehumidification and heating. • High energy saving potential for all-year-round operation in wet and warm regions. - Abstract: A multi-unit heat pump is presented for simultaneous humidity and temperature control to improve the energy efficiency and the thermal comfort. Two parallel connected condensers are employed in the system, locating at the back of the indoor evaporator and the outdoor unit, respectively. The heat pump can operate in four modes, including heating, cooling and dehumidification without and/or with partial or total condensing heat recovery. The experimental investigation shows that the temperature control capacity is from 3.5 kW for cooling to 3.8 kW for heating with the cooling and heating efficiency higher than 3.5 kW kW −1 , and the dehumidification rate is about 2.0 kg h −1 with the efficiency about 2.0 kg h −1 kW −1 . The supply air temperature and humidity can be simultaneously regulated with high accuracy and high efficiency by adjusting the indoor and/or outdoor air volumes. It provides an integrated and effective solution for simultaneous indoor air temperature and humidity control for all-year-round operation in residential buildings

  12. Laboratory Studies of Temperature and Relative Humidity Dependence of Aerosol Nucleation during the TANGENT 2017 IOP Study

    Science.gov (United States)

    Ouyang, Q.; Tiszenkel, L.; Stangl, C. M.; Krasnomowitz, J.; Johnston, M. V.; Lee, S.

    2017-12-01

    In this poster, we will present recent measurements of temperature and relative humidity dependence of aerosol nucleation of sulfuric acid under the conditions representative of the ground level to the free troposphere. Aerosol nucleation is critically dependent on temperature, but the current global aerosol models use nucleation algorithms that are independent of temperature and relative humidity due to the lack of experimental data. Thus, these models fail to simulate nucleation in a wide range of altitude and latitude conditions. We are currently conducting the Tandem Aerosol Nucleation and Growth Environment Tube (TANGENT) the intense observation period (IOP) experiments to investigate the aerosol nucleation and growth properties independently, during nucleation and growth. Nucleation takes place from sulfuric acid, water and some base compounds in a fast flow nucleation tube (FT-1). Nucleation precursors are detected with two chemical ionization mass spectrometers (CIMS) and newly nucleated particles are measured with a particle size magnifier (PSM) and a scanning mobility particle sizers (SMPS). Then these particles grow further in the second flow tube (FT-2) in the presence of oxidants of biogenic organic compounds. Chemical compositions of grown particles are further analyzed with a nano-aerosol mass spectrometer (NAMS). Our experimental results will provide a robust algorithm for aerosol nucleation and growth rates as a function of temperature and relative humidity.

  13. Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS

    Science.gov (United States)

    Irion, Fredrick W.; Kahn, Brian H.; Schreier, Mathias M.; Fetzer, Eric J.; Fishbein, Evan; Fu, Dejian; Kalmus, Peter; Wilson, R. Chris; Wong, Sun; Yue, Qing

    2018-02-01

    Single-footprint Atmospheric Infrared Sounder spectra are used in an optimal estimation-based algorithm (AIRS-OE) for simultaneous retrieval of atmospheric temperature, water vapor, surface temperature, cloud-top temperature, effective cloud optical depth and effective cloud particle radius. In a departure from currently operational AIRS retrievals (AIRS V6), cloud scattering and absorption are in the radiative transfer forward model and AIRS single-footprint thermal infrared data are used directly rather than cloud-cleared spectra (which are calculated using nine adjacent AIRS infrared footprints). Coincident MODIS cloud data are used for cloud a priori data. Using single-footprint spectra improves the horizontal resolution of the AIRS retrieval from ˜ 45 to ˜ 13.5 km at nadir, but as microwave data are not used, the retrieval is not made at altitudes below thick clouds. An outline of the AIRS-OE retrieval procedure and information content analysis is presented. Initial comparisons of AIRS-OE to AIRS V6 results show increased horizontal detail in the water vapor and relative humidity fields in the free troposphere above the clouds. Initial comparisons of temperature, water vapor and relative humidity profiles with coincident radiosondes show good agreement. Future improvements to the retrieval algorithm, and to the forward model in particular, are discussed.

  14. Quantifying Aerosol Delivery in Simulated Spontaneously Breathing Patients With Tracheostomy Using Different Humidification Systems With or Without Exhaled Humidity.

    Science.gov (United States)

    Ari, Arzu; Harwood, Robert; Sheard, Meryl; Alquaimi, Maher Mubarak; Alhamad, Bshayer; Fink, James B

    2016-05-01

    Aerosol and humidification therapy are used in long-term airway management of critically ill patients with a tracheostomy. The purpose of this study was to determine delivery efficiency of jet and mesh nebulizers combined with different humidification systems in a model of a spontaneously breathing tracheotomized adult with or without exhaled heated humidity. An in vitro model was constructed to simulate a spontaneously breathing adult (tidal volume, 400 mL; breathing frequency, 20 breaths/min; inspiratory-expiratory ratio, 1:2) with a tracheostomy using a teaching manikin attached to a test lung through a collecting filter (Vital Signs Respirgard II). Exhaled heat and humidity were simulated using a cascade humidifier set to deliver 37°C and >95% relative humidity. Albuterol sulfate (2.5 mg/3 mL) was administered with a jet nebulizer (AirLife Misty Max) operated at 10 L/min and a mesh nebulizer (Aeroneb Solo) using a heated pass-over humidifier, unheated large volume humidifier both at 40 L/min output and heat-and-moisture exchanger. Inhaled drug eluted from the filter was analyzed via spectrophotometry (276 nm). Delivery efficiency of the jet nebulizer was less than that of the mesh nebulizer under all conditions (P < .05). Aerosol delivery with each nebulizer was greatest on room air and lowest when heated humidifiers with higher flows were used. Exhaled humidity decreased drug delivery up to 44%. The jet nebulizer was less efficient than the mesh nebulizer in all conditions tested in this study. Aerosol deposition with each nebulizer was lowest with the heated humidifier with high flow. Exhaled humidity reduced inhaled dose of drug compared with a standard model with nonheated/nonhumidified exhalation. Further clinical research is warranted to understand the impact of exhaled humidity on aerosol drug delivery in spontaneously breathing patients with tracheostomy using different types of humidifiers. Copyright © 2016 by Daedalus Enterprises.

  15. In situ aerosol characterization at Cape Verde. Part 2: Parametrization of relative humidity- and wavelength-dependent aerosol optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Schladitz, Alexander; Muller, Thomas; Nordmann, Stephan; Tesche, Matthias; Wiedensohler, Alfred (Leibniz Institute for Tropospheric Research (IfT), Leipzig (Germany)), e-mail: alexander.schladitz@tropos.de; Gross, Silke; Freudenthaler, Volker; Gasteiger, Josef (Meteorological Institute, Ludwig-Maximilians-Universitaet, Munich (Germany))

    2011-09-15

    An observation-based numerical study of humidity-dependent aerosol optical properties of mixed marine and Saharan mineral dust aerosol is presented. An aerosol model was developed based on measured optical and microphysical properties to describe the marine and Saharan dust aerosol at Cape Verde. A wavelength-dependent optical equivalent imaginary part of the refractive index and a scattering non-sphericity factor for Saharan dust were derived. Simulations of humidity effects on optical properties by the aerosol model were validated with relative measurements of the extinction coefficient at ambient conditions. Parametrizations were derived to describe the humidity dependence of the extinction, scattering, and absorption coefficients as well as the asymmetry parameter and single scattering albedo. For wavelengths (300-950 nm) and dry dust volume fractions (0-1), aerosol optical properties as a function of relative humidity (RH = 0-90%) can be calculated from tabulated parameters. For instance, at a wavelength of 550 nm, a volume fraction of 0.5 of dust on the total particle volume (dry conditions) and a RH of 90%, the enhancements for the scattering, extinction and absorption coefficients are 2.55, 2.46 and 1.04, respectively, while the enhancements for the asymmetry parameter and single scattering albedo are 1.11 and 1.04

  16. Influence of fine water droplets to temperature and humidity

    Science.gov (United States)

    Hafidzal, M. H. M.; Hamzah, A.; Manaf, M. Z. A.; Saadun, M. N. A.; Zakaria, M. S.; Roslizar, A.; Jumaidin, R.

    2015-05-01

    Excessively dry air can cause dry skin, dry eyes and exacerbation of medical conditions. Therefore, many researches have been done in order to increase humidity in our environment. One of the ways is by using water droplets. Nowadays, it is well known in market stand fan equipped with water mister in order to increase the humidity of certain area. In this study, the same concept is applied to the ceiling fan. This study uses a model that combines a humidifier which functions as cooler, ceiling fan and scaled down model of house. The objective of this study is to analyze the influence of ceiling fan humidifier to the temperature and humidity in a house. The mechanism of this small model uses batteries as the power source, connected to the fan and the humidifier. The small water tank's function is to store and supply water to the humidifier. The humidifier is used to cool the room by changing water phase to fine water droplets. Fine water droplets are created from mechanism of the humidifier, which is by increasing the kinetic energy of water molecule using high frequency vibration that overcome the holding force between water molecules. Thus, the molecule of water will change to state of gas or mist. The fan is used to spread out the mist of water to surrounding of the room in order to enhance the humidity. Thermocouple and humidity meter are used to measure temperature and humidity in some period of times. The result shows that humidity increases and temperature decreases with time. This application of water droplet can be applied in the vehicles and engine in order to decrease the temperature.

  17. Attribution of observed surface humidity changes to human influence.

    Science.gov (United States)

    Willett, Katharine M; Gillett, Nathan P; Jones, Philip D; Thorne, Peter W

    2007-10-11

    Water vapour is the most important contributor to the natural greenhouse effect, and the amount of water vapour in the atmosphere is expected to increase under conditions of greenhouse-gas-induced warming, leading to a significant feedback on anthropogenic climate change. Theoretical and modelling studies predict that relative humidity will remain approximately constant at the global scale as the climate warms, leading to an increase in specific humidity. Although significant increases in surface specific humidity have been identified in several regions, and on the global scale in non-homogenized data, it has not been shown whether these changes are due to natural or human influences on climate. Here we use a new quality-controlled and homogenized gridded observational data set of surface humidity, with output from a coupled climate model, to identify and explore the causes of changes in surface specific humidity over the late twentieth century. We identify a significant global-scale increase in surface specific humidity that is attributable mainly to human influence. Specific humidity is found to have increased in response to rising temperatures, with relative humidity remaining approximately constant. These changes may have important implications, because atmospheric humidity is a key variable in determining the geographical distribution and maximum intensity of precipitation, the potential maximum intensity of tropical cyclones, and human heat stress, and has important effects on the biosphere and surface hydrology.

  18. Humidity: A review and primer on atmospheric moisture and human health.

    Science.gov (United States)

    Davis, Robert E; McGregor, Glenn R; Enfield, Kyle B

    2016-01-01

    Research examining associations between weather and human health frequently includes the effects of atmospheric humidity. A large number of humidity variables have been developed for numerous purposes, but little guidance is available to health researchers regarding appropriate variable selection. We examine a suite of commonly used humidity variables and summarize both the medical and biometeorological literature on associations between humidity and human health. As an example of the importance of humidity variable selection, we correlate numerous hourly humidity variables to daily respiratory syncytial virus isolates in Singapore from 1992 to 1994. Most water-vapor mass based variables (specific humidity, absolute humidity, mixing ratio, dewpoint temperature, vapor pressure) exhibit comparable correlations. Variables that include a thermal component (relative humidity, dewpoint depression, saturation vapor pressure) exhibit strong diurnality and seasonality. Humidity variable selection must be dictated by the underlying research question. Despite being the most commonly used humidity variable, relative humidity should be used sparingly and avoided in cases when the proximity to saturation is not medically relevant. Care must be taken in averaging certain humidity variables daily or seasonally to avoid statistical biasing associated with variables that are inherently diurnal through their relationship to temperature. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Mitigation of aflatoxin contamination in maize kernels is related to the metabolic alternation of reactive oxygen and nitrogen species by relative humidity

    Science.gov (United States)

    Environmental factors have been shown to be linked to exacerbated infection of maize kernels by Aspergillus flavus and subsequent aflatoxin contamination. Kernel resistance to aflatoxin contamination is associated with kernel water content and relative humidity during in vitro assays examining aflat...

  20. Deformation of high performance concrete plate under humid tropical weather

    Science.gov (United States)

    Niken, C.; Elly, T.; Supartono, FX; Laksmi, I.

    2018-03-01

    This paper presents the relationship between surrounding relative humidity and temperature on deformation behavior of one sample concrete plate with compressive strength of 60MPa. This research was done in Indonesia that is in humid tropical weather. A specimens measuring 3000 mm × 1600 mm × 150 mm were used. The behavior was obtained by using four embedded vibrating wire strain gauges (VWESG). As a result there is a very strong relationship between humidity and deformation at the age range of 7 until 21 days. The largest deformation occurs in the corner and the fluctuation of deformation in side position is larger than in the corner and in the middle. The peaks of surrounding relative humidity were fully followed by the deepest valley of deformation on time in the corner, while in another position the range delay time was 8 - 11 hours. There is a strong relationship between surrounding temperature and deformation at the range of 7 until 14 days. The influenced of surrounding relative humidity to concrete behavior is faster and longer than surrounding temperature. The influence of surrounding temperature in humid tropical weather was shorter than in non-humid tropical weather.

  1. Humidity Sensors Printed on Recycled Paper and Cardboard

    Directory of Open Access Journals (Sweden)

    Matija Mraović

    2014-07-01

    Full Text Available Research, design, fabrication and results of various screen printed capacitive humidity sensors is presented in this paper. Two types of capacitive humidity sensors have been designed and fabricated via screen printing on recycled paper and cardboard, obtained from the regional paper and cardboard industry. As printing ink, commercially available silver nanoparticle-based conductive ink was used. A considerable amount of work has been devoted to the humidity measurement methods using paper as a dielectric material. Performances of different structures have been tested in a humidity chamber. Relative humidity in the chamber was varied in the range of 35%–80% relative humidity (RH at a constant temperature of 23 °C. Parameters of interest were capacitance and conductance of each sensor material, as well as long term behaviour. Process reversibility has also been considered. The results obtained show a mainly logarithmic response of the paper sensors, with the only exception being cardboard-based sensors. Recycled paper-based sensors exhibit a change in value of three orders of magnitude, whereas cardboard-based sensors have a change in value of few 10s over the entire scope of relative humidity range (RH 35%–90%. Two different types of capacitor sensors have been investigated: lateral (comb type sensors and modified, perforated flat plate type sensors. The objective of the present work was to identify the most important factors affecting the material performances with humidity, and to contribute to the development of a sensor system supported with a Radio Frequency Identification (RFID chip directly on the material, for use in smart packaging applications. Therefore, the authors built a passive and a battery-supported wireless module based on SL900A smart sensory tag’s IC to achieve UHF-RFID functionality with data logging capability.

  2. Cluster size influence on the survivability of Rhipicephalus Boophilus microplus larvae under low relative humidity stress

    Science.gov (United States)

    Low relative humidity (RH) levels (=63%) have been previously shown to be a determining factor in the survival of southern cattle fever tick, Rhipicephalus microplus, larvae, regardless of temperature. Supporting this observation, large larval clusters can retain more water than isolated larvae. Th...

  3. Indoor air quality in Brazilian universities.

    Science.gov (United States)

    Jurado, Sonia R; Bankoff, Antônia D P; Sanchez, Andrea

    2014-07-11

    This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC) (n = 15) and naturally ventilated (NV) (n = 15) classrooms. The parameters of interest were indoor carbon dioxide (CO2), temperature, relative humidity (RH), wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively). The average indoor airborne dust concentration exceeded the Brazilian standards (indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem.

  4. Discomfort due to skin humidity with different fabric textures and materials

    DEFF Research Database (Denmark)

    Toftum, Jørn; Rasmussen, Leif Winsnes; Mackeprang, Jørgen

    2000-01-01

    This study investigated the possible effects of material and texture of the inner clothing layer on human comfort. A highly hygroscopic material (cotton) and a material of low hygroscopicity (polyester) were tested. Also, it was tested whether fabric texture (knitted/woven) influenced the perceived...... due to humid skin or clothing for persons engaged in office work, wearing woven or knitted inner layers made of polyester or cotton. The model allows upper limits for air humidity to be determined for indoor environments. In the comfort zone of temperatures, the model predicts only a moderate...

  5. Biogenic volatile organic compound analyses by PTR-TOF-MS: Calibration, humidity effect and reduced electric field dependency.

    Science.gov (United States)

    Pang, Xiaobing

    2015-06-01

    Green leaf volatiles (GLVs) emitted by plants after stress or damage induction are a major part of biogenic volatile organic compounds (BVOCs). Proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) is a high-resolution and sensitive technique for in situ GLV analyses, while its performance is dramatically influenced by humidity, electric field, etc. In this study the influence of gas humidity and the effect of reduced field (E/N) were examined in addition to measuring calibration curves for the GLVs. Calibration curves measured for seven of the GLVs in dry air were linear, with sensitivities ranging from 5 to 10 ncps/ppbv (normalized counts per second/parts per billion by volume). The sensitivities for most GLV analyses were found to increase by between 20% and 35% when the humidity of the sample gas was raised from 0% to 70% relative humidity (RH) at 21°C, with the exception of (E)-2-hexenol. Product ion branching ratios were also affected by humidity, with the relative abundance of the protonated molecular ions and higher mass fragment ions increasing with humidity. The effect of reduced field (E/N) on the fragmentation of GLVs was examined in the drift tube of the PTR-TOF-MS. The structurally similar GLVs are acutely susceptible to fragmentation following ionization and the fragmentation patterns are highly dependent on E/N. Overall the measured fragmentation patterns contain sufficient information to permit at least partial separation and identification of the isomeric GLVs by looking at differences in their fragmentation patterns at high and low E/N. Copyright © 2015. Published by Elsevier B.V.

  6. Static flexural properties of hedgehog spines conditioned in coupled temperature and relative humidity environments.

    Science.gov (United States)

    Kennedy, Emily B; Hsiung, Bor-Kai; Swift, Nathan B; Tan, Kwek-Tze

    2017-11-01

    Hedgehogs are agile climbers, scaling trees and plants to heights exceeding 10m while foraging insects. Hedgehog spines (a.k.a. quills) provide fall protection by absorbing shock and could offer insights for the design of lightweight, material-efficient, impact-resistant structures. There has been some study of flexural properties of hedgehog spines, but an understanding of how this keratinous biological material is affected by various temperature and relative humidity treatments, or how spine color (multicolored vs. white) affects mechanics, is lacking. To bridge this gap in the literature, we use three-point bending to analyze the effect of temperature, humidity, spine color, and their interactions on flexural strength and modulus of hedgehog spines. We also compare specific strength and stiffness of hedgehog spines to conventional engineered materials. We find hedgehog spine flexural properties can be finely tuned by modifying environmental conditioning parameters. White spines tend to be stronger and stiffer than multicolored spines. Finally, for most temperature and humidity conditioning parameters, hedgehog spines are ounce for ounce stronger than 201 stainless steel rods of the same diameter but as pliable as styrene rods with a slightly larger diameter. This unique combination of strength and elasticity makes hedgehog spines exemplary shock absorbers, and a suitable reference model for biomimicry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Methods of humidity determination Part II: Determination of material humidity

    OpenAIRE

    Rübner, Katrin; Balköse, Devrim; Robens, E.

    2008-01-01

    Part II covers the most common methods of measuring the humidity of solid material. State of water near solid surfaces, gravimetric measurement of material humidity, measurement of water sorption isotherms, chemical methods for determination of water content, measurement of material humidity via the gas phase, standardisation, cosmonautical observations are reviewed.

  8. Stress response of Escherichia coli induced by surface streamer discharge in humid air

    International Nuclear Information System (INIS)

    Doležalová, Eva; Prukner, Václav; Lukeš, Petr; Šimek, Milan

    2016-01-01

    Inactivation of Escherichia coli by means of surface streamer discharge has been investigated to obtain new insights into the key mechanisms involved, with a particular emphasis placed on the microbial response to plasma-induced stress. The surface streamer discharge was produced in coplanar dielectric barrier discharge electrode geometry, and was driven by an amplitude-modulated ac high voltage in humid synthetic air at atmospheric pressure. The response to plasma-induced stress was evaluated by using conventional cultivation, sublethal injury and resazurin assay and the LIVE/DEAD ® BacLight ™ Bacterial Viability kit. Compared to conventional cultivation, the LIVE/DEAD ® test labels bacteria with damaged membranes, while resazurin assay tracks their metabolic activity. Our results clearly demonstrate that the treated bacteria partly lost their ability to grow properly, i.e. they became injured and culturable, or even viable but nonculturable (VBNC). The ability to develop colonies could have been lost due to damage of the bacterial membrane. Damage of the membranes was mainly caused by the lipid peroxidation, evidencing the key role of oxygen reactive species, in particular ozone. We conclude that the conventional cultivation method overestimates the decontamination efficiency of various plasma sources, and must therefore be complemented by alternative techniques capable of resolving viable but nonculturable bacteria. (paper)

  9. Humidity Response of Polyaniline Based Sensor

    Directory of Open Access Journals (Sweden)

    Mamta PANDEY

    2010-02-01

    Full Text Available Abstract: This paper presents hitherto unreported humidity sensing capacity of emeraldine salt form of polyaniline. Humidity plays a major role in different processes in industries ranging from food to electronic goods besides human comfort and therefore its monitoring is an essential requirement during various processes. Polyaniline has a wide use for making sensors as it can be easily synthesized and has long stability. Polyaniline is synthesized here by chemical route and is found to sense humidity as it shows variation in electrical resistance with variation in relative humidity. Results are presented here for a range of 15 to 90 RH%. The resistance falls from 5.8 to 0.72 Giga ohms as RH varies from 15 to 65 % and then falls to 13.9 Mega ohms as RH approaches 90 %. The response and recovery times are also measured.

  10. Safety-related control air systems - approved 1977

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    This standard applies to those portions of the control air system that furnish air required to support, control, or operate systems or portions of systems that are safety related in nuclear power plants. This standard relates only to the air supply system(s) for safety-related air operated devices and does not apply to the safety-related air operated device or to air operated actuators for such devices. The objectives of this standard are to provide (1) minimum system design requirements for equipment, piping, instruments, controls, and wiring that constitute the air supply system; and (2) the system and component testing and maintenance requirements

  11. Humidity Sensor Based on Multi-Walled Carbon Nanotube Thin Films

    International Nuclear Information System (INIS)

    Cao, C.L.; Hu, C.G.; Fang, L.; Wang, S.X.; Cao, C.L.; Tian, Y.S.; Pan, C.Y.

    2009-01-01

    The properties of the humidity sensors made of chemically treated and untreated multi-walled carbon nano tube (MWCNT) thin films are investigated systematically. It shows that both the chemically treated and untreated MWCNT thin films demonstrate humidity sensitive properties, but the former have stronger sensitivity than the latter. In the range of 11%-98% relative humidity (RH), the resistances of the chemically treated and untreated MWCNT humidity sensors increase 120% and 28%, respectively. Moreover, the treated humidity sensors showed higher sensitivity and better stability. In addition, the response and recover properties, and stabilization of the humidity sensors are measured, and the humidity sensitive mechanisms of the sensors are analyzed. The humidity sensitivity of carbon nano tube thin films indicates it promise as a kind of humidity sensitive material

  12. Temperature, humidity and time., Combined effects on radiochromic film dosimeters

    International Nuclear Information System (INIS)

    Abdel-Fattah, A.A.; Miller, A.

    1996-01-01

    The effects of both relative humidity and temperature during irradiation on the dose response of FWT-60-00 and Riso B3 radiochromic film dosimeters have been investigated in the relative humidity (RH) range 11-94% and temperature range 20-60 o C for irradiation by 60 Co photons and 10-MeV electrons. The results show that humidity and temperature cannot be treated as independent variables, rather there appears to be interdependence between absorbed dose, temperature, and humidity. Dose rate does not seem to play a significant role. The dependence of temperature during irradiation is + 0.25 ± 0.1% per o C for the FWT-60-00 dosimeters and +0.5 ± 0.1% per o C for Riso B3 dosimeters at temperatures between 20 and 50 o C and at relative humidities between 20 and 53%. At extreme conditions both with respect to temperature and to humidity, the dosimeters show much stronger dependences. Whenever possible one should use dosimeters sealed in pouches under controlled intermediate humidity conditions (30-50%) or, if that is impractical, one should maintain conditions of calibration as close as possible to the conditions of use. Without that precaution, severe dosimetry errors may result. (author)

  13. Microwave Determination of Water Mole Fraction in Humid Gas Mixtures

    Science.gov (United States)

    Cuccaro, R.; Gavioso, R. M.; Benedetto, G.; Madonna Ripa, D.; Fernicola, V.; Guianvarc'h, C.

    2012-09-01

    A small volume (65 cm3) gold-plated quasi-spherical microwave resonator has been used to measure the water vapor mole fraction x w of H2O/N2 and H2O/air mixtures. This experimental technique exploits the high precision achievable in the determination of the cavity microwave resonance frequencies and is particularly sensitive to the presence of small concentrations of water vapor as a result of the high polarizability of this substance. The mixtures were prepared using the INRIM standard humidity generator for frost-point temperatures T fp in the range between 241 K and 270 K and a commercial two-pressure humidity generator operated at a dew-point temperature between 272 K and 291 K. The experimental measurements compare favorably with the calculated molar fractions of the mixture supplied by the humidity generators, showing a normalized error lower than 0.8.

  14. The influence of oxygen, partial vacuum, temperature, relative humidity combined with gamma radiation on the mosquito, Culex pipiens complex l. I. Effect of exposure to temperature and relative humidity alone.

    OpenAIRE

    Hafez, Mahmood [محمود حافظ; Abdel-Rahmen, A. M.; Osman, A. Z.; Wakid, A. M.; Hafez, M. K.

    1993-01-01

    The results revealed that a temperature of 10°C was the most effective temperature on pupal mortality of Culex pipiens complex L. followed by 32°C then 20 and 26°C. There was a gradual increase in pupal mortality with increasing the time of exposure to temperatures. The pupal mortality increased with decreasing the relative humidity levels at the same time of exposure. Exposure for short time periods did not affect significantly the pupal mortality. Increasing the exposure time increased m...

  15. The influence of humidity on the kinetics of local anodic oxidation

    International Nuclear Information System (INIS)

    BartosIk, M; Skoda, D; Tomanec, O; Kalousek, R; Jansky, P; Zlamal, J; Spousta, J; Sikola, T

    2007-01-01

    In this paper the influence of relative humidity on fabrication of nanostructures at GaAs (100) surfaces by local anodic oxidation (LAO) is reported. The attention was paid both to the dimensions of oxide nanolines prepared at different relative humidities for tip-surface voltages of 6 - 9 V and tip speeds of 10 - 200 nm/s, and to the profiles corresponding to line trenches (etched in HCl after the nanoxidation). Contrary to the expectations the height and the half-width of oxide nanolines did not increase with relative humidity in the whole interval from 35% to 90%, but for lower relative humidities (< 50%) the lines were comparable in size to those prepared at 90%. However, this was accompanied with instabilities in the oxidation process resulting most probably from enhanced size variations of the water meniscus between the tip and the surface at these low humidities

  16. Influence of humidity on the graphene band gap

    International Nuclear Information System (INIS)

    Zakaryan, H.A.; Aroutiounian, V.M.

    2015-01-01

    Influences of the humidity on graphene properties are studied and comparisons of graphene and polymer humidity sensors are carried out. Graphene sensors have remarkable response compare to nanoporous polymer membranes. The resistance of polymer sensors is 150 GOhm and decreases in 7.5 times at 60 per cent of the relative humidity. For graphene, resistance drops 4 times starting from ~100 kOhm. This is connected with the extension of graphene band gap. The reason of this is adsorbed water, which can create defects in the lattice or can transfer charge which depends on relative position of HOMO/LUMO of water and Dirac point of graphene

  17. Cross-Sensitivity Of Aethalometer Measurements To Relative Humidity

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, A.; Baltensperger, U.; Weingartner, E.

    2005-03-01

    Absorptive light reduction by atmospheric aerosols is important with respect to their climate forcing. An instrument to measure light absorption is the aethalometer, which is routinely used to measure the attenuation of light transmitted through aerosol-laden fibre filters. Measurements have shown that the condensable gases require a correction for artefacts. We present the first corrections for hydrophobic Palas soot-laden filters for the whole humidity range, enhancing the accuracy of aethalometer datasets. (author)

  18. Behavior of aerosols in a steam-air environment

    International Nuclear Information System (INIS)

    Adams, R.E.; Tobias, M.L.; Longest, A.W.

    1985-01-01

    The behavior of aerosols assumed to be characteristic of those generated during light water reactor (LWR) accident sequences and released into containment is being studied in the Nuclear Safety Pilot Plant (NSPP) which is located at the Oak Ridge National Laboratory (ORNL). The program plan for the NSPP aerosol project provides for the study of the behavior, within containment, of simulated LWR accident aerosols emanating from fuel, reactor core structural materials, and from concrete-molten core materials interactions. The aerodynamic behavior of each of these aerosols was studied individually to establish its characteristics; current experiments involve mixtures of these aerosols to establish their interaction and collective behavior within containment. Tests have been conducted with U 3 O 8 aerosols, Fe 2 O 3 aerosols, and concrete aerosols in an environment of either dry air [relative humidity (RH) less than 20%] or steam-air [relative humidity (RH) approximately 100%] with aerosol mass concentration being the primary experimental variable

  19. Determination of partition and diffusion coefficient of formaldehyde in selected building materials and impact of relative humidity

    Science.gov (United States)

    The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...

  20. Water sorption in wood and modified wood at high values of relative humidity

    DEFF Research Database (Denmark)

    Engelund, Emil Tang; Thygesen, Lisbeth Garbrecht; Hoffmeyer, Preben

    2010-01-01

    A theoretical study of the amount of moisture held in wood as capillary condensed water in the relative humidity (RH) range of 90–99.9% is carried out. The study is based on idealized geometries of the softwood structure related to micrographs. It is confined to structural elements such as bordered......, and different degrees of pit aspiration are assigned to earlywood and latewood. We suggest based on the results that capillary condensation makes only a very small contribution to the equilibrium moisture content. At 99.9% RH the contribution amounts to less than 0.0035 kg water per kg dry wood. This is in line...

  1. Mask humidity during CPAP: influence of ambient temperature, heated humidification and heated tubing

    Directory of Open Access Journals (Sweden)

    Nilius G

    2018-05-01

    Full Text Available Georg Nilius,1,2 Ulrike Domanski,1 Maik Schroeder,1 Holger Woehrle,3,4 Andrea Graml,4 Karl-Josef Franke,1,2 1Helios Klinik Hagen-Ambrock, Department of Pneumology, Hagen, Germany; 2Department of Internal Medicine, Witten-Herdecke University, Witten, Germany; 3Sleep and Ventilation Center Blaubeuren, Respiratory Center Ulm, Ulm, Germany; 4ResMed Science Center, ResMed Germany, Martinsried, Germany Purpose: Mucosal drying during continuous positive airway pressure (CPAP therapy is problematic for many patients. This study assessed the influence of ambient relative humidity (rH and air temperature (T in winter and summer on mask humidity during CPAP, with and without mask leak, and with or without heated humidification ± heated tubing. Methods: CPAP (8 and 12 cmH2O without humidification (no humidity [nH], with heated humidification controlled by ambient temperature and humidity (heated humidity [HH] and HH plus heated tubing climate line (CL, with and without leakage, were compared in 18 subjects with OSA during summer and winter. Results: The absolute humidity (aH and the T inside the mask during CPAP were significantly lower in winter versus summer under all applied conditions. Overall, absolute humidity differences between summer and winter were statistically significant in both HH and CL vs. nH (p < 0.05 in the presence and absence of mouth leak. There were no significant differences in aH between HH and CL. However, in-mask temperature during CL was higher (p < 0.05 and rH lower than during HH. In winter, CPAP with CL was more likely to keep rH constant at 80% than CPAP without humidification or with standard HH. Conclusion: Clinically-relevant reductions in aH were documented during CPAP given under winter conditions. The addition of heated humidification, using a heated tube to avoid condensation is recommended to increase aH, which could be useful in CPAP users complaining of nose and throat symptoms. Keywords: continuous positive

  2. Investigations of microelectronic humidity sensors made of composite oxides thin films

    International Nuclear Information System (INIS)

    Pogossyan, A.S.; Arutyunyan, V.M.

    1996-01-01

    Basic characteristics (the moisture sensitivity, lag, hysteresis and stability) of humidity sensors made of Fe 2 O 3 thin films with different K 2 content, as well as CaSiO 3 and NaBiTi 2 O 6 films,-new materials for the humidity sensors, are investigated. A composition Fe 2 O 3 (K) is found to be optimal with respect to high moisture sensitivity, speed of response, and a linearity in a wide range of the relative humidity. A mechanism of the moisture-sensitivity of films investigated is discussed. Criteria for the design parameters of the high-impedance humidity sensors are defined with the aim to broadening of the working range of the relative humidity in a side way of low values of the humidity.10 refs

  3. Humidity effects on wire insulation breakdown strength.

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, Leah

    2013-08-01

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  4. Thermal conditions and perceived air quality in an air-conditioned auditorium

    Science.gov (United States)

    Polednik, Bernard; Guz, Łukasz; Skwarczyński, Mariusz; Dudzińska, Marzenna R.

    2016-07-01

    The study reports measurements of indoor air temperature (T) and relative humidity (RH), perceived air quality (PAQ) and CO2, fine aerosol particle number (PN) and mass (PM1) concentrations in an air conditioned auditorium. The measurements of these air physical parameters have been carried out in the unoccupied auditorium with the air conditioning system switched off (AC off mode) and in the unoccupied and occupied auditorium with the air conditioning system switched off during the night and switched on during the day (AC on/off mode). The average indoor air thermal parameters, CO2 concentration and the PAQ value (in decipols) were elevated, while average PM1 concentration was lower in the AC on/off mode. A statistically significant (p PAQ values and CO2 concentrations (r = 0.66 and r = 0.59, respectively) in that AC mode. A significant negative correlation has been observed between T and PN and PM1 concentrations (r = -0.38 and r = -0.49, respectively). In the AC off mode the above relations between T and the particle concentrations were not that unequivocal. These findings may be of importance as they indicate that in certain AC operation modes the indoor air quality deteriorates along with the variation of the indoor air microclimate and room occupation. This, in turn, may adversely affect the comfort and productivity of the users of air conditioned premises.

  5. Defining relative humidity in terms of water activity. Part 1: definition

    Science.gov (United States)

    Feistel, Rainer; Lovell-Smith, Jeremy W.

    2017-08-01

    Relative humidity (RH) is a quantity widely used in various fields such as metrology, meteorology, climatology or engineering. However, RH is neither uniformly defined, nor do some definitions properly account for deviations from ideal-gas properties, nor is the application range of interest fully covered. In this paper, a new full-range definition of RH is proposed that is based on the thermodynamics of activities in order to include deviations from ideal-gas behaviour. Below the critical point of pure water, at pressures p  definition is consistent with de-facto standard RH definitions published previously and recommended internationally. Virial approximations are reported for estimating small corrections to the ideal-gas equations.

  6. Formaldehyde measurements by Proton transfer reaction – Mass Spectrometry (PTR-MS: correction for humidity effects

    Directory of Open Access Journals (Sweden)

    A. Vlasenko

    2010-08-01

    Full Text Available Formaldehyde measurements can provide useful information about photochemical activity in ambient air, given that HCHO is formed via numerous oxidation processes. Proton transfer reaction mass spectrometry (PTR-MS is an online technique that allows measurement of VOCs at the sub-ppbv level with good time resolution. PTR-MS quantification of HCHO is hampered by the humidity dependence of the instrument sensitivity, with higher humidity leading to loss of PTR-MS signal. In this study we present an analytical, first principles approach to correct the PTR-MS HCHO signal according to the concentration of water vapor in sampled air. The results of the correction are validated by comparison of the PTR-MS results to those from a Hantzsch fluorescence monitor which does not have the same humidity dependence. Results are presented for an intercomparison made during a field campaign in rural Ontario at Environment Canada's Centre for Atmospheric Research Experiments.

  7. Simulating the formation of Hurricane Isabel (2003) with AIRS data

    Science.gov (United States)

    Wu, Liguang; Braun, Scott A.; Qu, John J.; Hao, Xianjun

    2006-02-01

    Using the AIRS retrieved temperature and humidity profiles, the Saharan Air Layer (SAL) influence on the formation of Hurricane Isabel (2003) is simulated numerically with the MM5 model. The warmth and dryness of the SAL (the thermodynamic effect) is assimilated by use of the nudging technique, which enables the model thermodynamic state to be relaxed to the profiles of the AIRS retrieved data for the regions without cloud contamination. By incorporating the AIRS data, MM5 better simulates the large-scale flow patterns and the timing and location of the formation of Hurricane Isabel and its subsequent track. By comparing with an experiment without nudging of the AIRS data, it is shown that the SAL may have delayed the formation of Hurricane Isabel and inhibited the development of another tropical disturbance to the east. This case study confirms the argument by Dunion and Velden (2004) that the SAL can suppress Atlantic tropical cyclone activity by increasing the vertical wind shear, reducing the mean relative humidity, and stabilizing the environment at lower levels.

  8. Air temperature optimisation for humidity-controlled cold storage of the predatory mites Neoseiulus californicus and Phytoseiulus persimilis (Acari: Phytoseiidae).

    Science.gov (United States)

    Ghazy, Noureldin Abuelfadl; Suzuki, Takeshi; Amano, Hiroshi; Ohyama, Katsumi

    2014-03-01

    Humidity-controlled cold storage, in which the water vapour pressure is saturated, can prolong the survival of the predatory mites Neoseiulus californicus (McGregor) and Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). However, information on the optimum air temperature for long-term storage by this method is limited. The authors evaluated the survival of mated adult females of N. californicus and P. persimilis at 5.0, 7.5, 10.0 and 12.5 °C under saturated water vapour condition (vapour pressure deficit 0.0 kPa). N. californicus showed a longer survival time than P. persimilis at all the air temperatures. The longest mean survival time of N. californicus was 11 weeks at 7.5 °C, whereas that of P. persimilis was 8 weeks at 5.0 °C. After storage at 7.5 °C for 8 weeks, no negative effect on post-storage oviposition was observed in N. californicus, whereas the oviposition of P. persimilis stored at 5.0 °C for 8 weeks was significantly reduced. The interspecific variation in the response of these predators to low air temperature might be attributed to their natural habitat and energy requirements. These results may be useful for the long-term storage of these predators, which is required for cost-effective biological control. © 2013 Society of Chemical Industry.

  9. A high sensitivity nanomaterial based SAW humidity sensor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, T-T; Chou, T-H [Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan (China); Chen, Y-Y [Department of Mechanical Engineering, Tatung University, Taipei 104, Taiwan (China)], E-mail: wutt@ndt.iam.ntu.edu.tw

    2008-04-21

    In this paper, a highly sensitive humidity sensor is reported. The humidity sensor is configured by a 128{sup 0}YX-LiNbO{sub 3} based surface acoustic wave (SAW) resonator whose operating frequency is at 145 MHz. A dual delay line configuration is realized to eliminate external temperature fluctuations. Moreover, for nanostructured materials possessing high surface-to-volume ratio, large penetration depth and fast charge diffusion rate, camphor sulfonic acid doped polyaniline (PANI) nanofibres are synthesized by the interfacial polymerization method and further deposited on the SAW resonator as selective coating to enhance sensitivity. The humidity sensor is used to measure various relative humidities in the range 5-90% at room temperature. Results show that the PANI nanofibre based SAW humidity sensor exhibits excellent sensitivity and short-term repeatability.

  10. Empirical model for estimating dengue incidence using temperature, rainfall, and relative humidity: a 19-year retrospective analysis in East Delhi.

    Science.gov (United States)

    Ramachandran, Vishnampettai G; Roy, Priyamvada; Das, Shukla; Mogha, Narendra Singh; Bansal, Ajay Kumar

    2016-01-01

    Aedes mosquitoes are responsible for transmitting the dengue virus. The mosquito lifecycle is known to be influenced by temperature, rainfall, and relative humidity. This retrospective study was planned to investigate whether climatic factors could be used to predict the occurrence of dengue in East Delhi. The number of monthly dengue cases reported over 19 years was obtained from the laboratory records of our institution. Monthly data of rainfall, temperature, and humidity collected from a local weather station were correlated with the number of monthly reported dengue cases. One-way analysis of variance was used to analyse whether the climatic parameters differed significantly among seasons. Four models were developed using negative binomial generalized linear model analysis. Monthly rainfall, temperature, humidity, were used as independent variables, and the number of dengue cases reported monthly was used as the dependent variable. The first model considered data from the same month, while the other three models involved incorporating data with a lag phase of 1, 2, and 3 months, respectively. The greatest number of cases was reported during the post-monsoon period each year. Temperature, rainfall, and humidity varied significantly across the pre-monsoon, monsoon, and post-monsoon periods. The best correlation between these three climatic factors and dengue occurrence was at a time lag of 2 months. This study found that temperature, rainfall, and relative humidity significantly affected dengue occurrence in East Delhi. This weather-based dengue empirical model can forecast potential outbreaks 2-month in advance, providing an early warning system for intensifying dengue control measures.

  11. Investigation of Indoor Air Quality in Houses of Macedonia

    Directory of Open Access Journals (Sweden)

    Silvia Vilčeková

    2017-01-01

    Full Text Available People who live in buildings are exposed to harmful effects of indoor air pollution for many years. Therefore, our research is aimed to investigate the indoor air quality in family houses. The measurements of indoor air temperature, relative humidity, total volatile organic compounds (TVOC, particulate matters (PM and sound pressure level were carried out in 25 houses in several cities of the Republic of Macedonia. Mean values of indoor air temperature and relative humidity ranged from 18.9 °C to 25.6 °C and from 34.1% to 68.0%, respectively. With regard to TVOC, it can be stated that excessive occurrence was recorded. Mean values ranged from 50 μg/m3 to 2610 μg/m3. Recommended value (200 μg/m3 for human exposure to TVOC was exceeded in 32% of houses. Mean concentrations of PM2.5 (particular matter with diameter less than 2.5 μm and PM10 (diameter less than 10 μm are determined to be from 16.80 μg/m3 to 30.70 μg/m3 and from 38.30 μg/m3 to 74.60 μg/m3 individually. Mean values of sound pressure level ranged from 29.8 dB(A to 50.6 dB(A. Dependence between characteristics of buildings (Year of construction, Year of renovation, Smoke and Heating system and data from measurements (Temperature, Relative humidity, TVOC, PM2.5 and PM10 were analyzed using R software. Van der Waerden test shows dependence of Smoke on TVOC and PM2.5. Permutational multivariate analysis of variance shows the effect of interaction of Renovation and Smoke.

  12. THERMAL COMFORT STUDY OF AN AIR-CONDITIONED DESIGN STUDIO IN TROPICAL SURABAYA

    OpenAIRE

    Agus Dwi Hariyanto

    2005-01-01

    This paper evaluates the current thermal comfort condition in an air-conditioned design studio using objective measurement and subjective assessment. Objective measurement is mainly to quantify the air temperature, MRT, relative humidity, and air velocity. Subjective assessment is conducted using a questionnaire to determine the occupants thermal comfort sensations and investigate their perception of the thermal comfort level. A design studio in an academic institution in Surabaya was chosen ...

  13. Study on radon concentration monitoring using activated charcoal canisters in high humidity environments

    International Nuclear Information System (INIS)

    Wang Yuexing; Wang Haijun; Yang Yifang; Qin Sichang; Wang Zhentao; Zhang Zhenjiang

    2009-01-01

    The effects of humidity on the sensitivity using activated charcoal canisters for measuring radon concentrations in high humidity environments were studied. Every canister filled with 80 g of activated charcoal, and they were exposed to 48 h or 72 h in the relative humidity of 68%, 80%, 88% and 96% (28 degree C), respectively. The amount of radon absorbed in the canisters was determined by counting the gamma rays from 214 Pb and 214 Bi (radon progeny). The results showed that counts decreased with the increase of relative humidity. There was a negative linear relationship between count and humidity. In the relative humidity range of 68%-96%, the sensitivity of radon absorption decreased about 2.4% for every 1% (degree)rise in humidity. The results also showed that the exposure time of the activated charcoal canisters should be less than 3 days. (authors)

  14. Impacts of Present and Future Climate Variability On Agriculture and Forestry in the Humid and Sub-Humid Tropics

    International Nuclear Information System (INIS)

    Zhao, Y.; Wang, C.; Wang, S.; Tibig, Lourdes V.

    2005-01-01

    Although there are different results from different studies, most assessments indicate that climate variability would have negative effects on agriculture and forestry in the humid and sub-humid tropics. Cereal crop yields would decrease generally with even minimal increases in temperature. For commercial crops, extreme events such as cyclones, droughts and floods lead to larger damages than only changes of mean climate. Impacts of climate variability on livestock mainly include two aspects; impacts on animals such as increase of heat and disease stress-related death, and impacts on pasture. As to forestry, climate variability would have negative as well as some positive impacts on forests of humid and sub-humid tropics. However, in most tropical regions, the impacts of human activities such as deforestation will be more important than climate variability and climate change in determining natural forest cover

  15. 40 CFR 1065.125 - Engine intake air.

    Science.gov (United States)

    2010-07-01

    ... measurements at each intake, use an average value for verifying compliance to § 1065.520(b)(2). (2) Humidity. You may use a single shared humidity measurement for intake air as long as your equipment for handling... engines with multiple intakes with separate humidity measurements at each intake, use a flow-weighted...

  16. Effect of fabric texture and material on perceived discomfort at high humidity

    DEFF Research Database (Denmark)

    Toftum, Jørn; Rasmussen, Leif W.; Mackeprang, Jørgen

    1999-01-01

    This study investigated the effect of material (cotton/polyester) and texture (woven/knitted) of the inner layer of a clothing ensemble on human discomfort at high skin humidity. No clear effect on discomfort of material and texture could be detected. However, acceptability of skin humidity de......-crea-sed with increasing relative skin humidity. A model was developed that predicts the percentage of persons dissatisfied due to humid skin as a function of relative skin humidity. The model applies for woven and knitted cot-ton and polyester materials and for activity levels typical for office work. Even at very high...

  17. Corrosion inhibition of magnesium heated in wet air, by surface fluoridation; Inhibition de la corrosion du magnesium chauffe dans l'air humide, par fluoruration superficielle

    Energy Technology Data Exchange (ETDEWEB)

    Caillat, R; Darras, R; Leclercq, D [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The maximum temperature (350 deg. C) of magnesium corrosion resistance in wet air may be raised to 490-500 deg. C by the formation of a superficial fluoride film. This can be obtained by two different ways: either by addition of hydrofluoric acid to the corroding medium in a very small proportion such as 0,003 mg/litre; at atmospheric pressure, or by dipping the magnesium in a dilute aqueous solution of nitric and hydrofluoric acids at room temperature before exposing it to the corroding atmosphere. In both cases the corrosion inhibition is effective over a very long time, even several thousand hours. (author) [French] La temperature limite (350 deg. C) de resistance du magnesium a la corrosion par l'air humide, peut etre elevee jusque 490-500 deg. C par la formation d'une couche fluoruree superficielle. Deux procedes permettent d'obtenir ce resultat: l'atmosphere corrodante peut etre additionnee d'acide fluorhydrique a une concentration aussi faible que 0,003 mg/litre, a la pression atmospherique, ou bien le magnesium peut etre traite a froid, avant exposition a la corrosion, dans une solution aqueuse diluee d'acides nitrique et fluorhydrique. Dans les deux cas, la protection est assuree, meme pour de tres longues durees d'exposition: plusieurs milliers d'heures. (auteur)

  18. Self-calibrated humidity sensor in CMOS without post-processing.

    Science.gov (United States)

    Nizhnik, Oleg; Higuchi, Kohei; Maenaka, Kazusuke

    2012-01-01

    A 1.1 μW power dissipation, voltage-output humidity sensor with 10% relative humidity accuracy was developed in the LFoundry 0.15 μm CMOS technology without post-processing. The sensor consists of a woven lateral array of electrodes implemented in CMOS top metal, a humidity-sensitive layer of Intervia Photodielectric 8023D-10, a CMOS capacitance to voltage converter, and the self-calibration circuitry.

  19. Self-Calibrated Humidity Sensor in CMOS without Post-Processing

    OpenAIRE

    Nizhnik, Oleg; Higuchi, Kohei; Maenaka, Kazusuke

    2011-01-01

    A 1.1 μW power dissipation, voltage-output humidity sensor with 10% relative humidity accuracy was developed in the LFoundry 0.15 μm CMOS technology without post-processing. The sensor consists of a woven lateral array of electrodes implemented in CMOS top metal, a humidity-sensitive layer of Intervia Photodielectric 8023D-10, a CMOS capacitance to voltage converter, and the self-calibration circuitry.

  20. Effect of humidity and interlayer cation on frictional strength of montmorillonite

    Science.gov (United States)

    Tetsuka, H.; Katayama, I.; Sakuma, H.; Tamura, K.

    2016-12-01

    Smectite has been ubiquitously seen in fault gouge (Schleicher et al., 2006; Kuo et al., 2009; Si et al., 2014; Kameda, 2015) and is characteristic by low frictional coefficient (Saffer et al., 2001; Ikari et al., 2007); consequently, it has a key role in fault dynamics. The frictional strength of montmorillonite (a typical type of smectite) is affected by mainly two factors, 1) hydration state and 2) interlayer cation. Previous laboratory experiments have shown that the frictional strength of montmorillonite changes with hydration state (Ikari et al., 2007) and with interlayer cation (Behnsen and Faulkner, 2013). However, experimental study for frictional strengths of interlayer cation-exchanged montmorillonite under controlled hydration state has not been reported. We are developing humidity control system in biaxial friction testing machine and try to investigate the effect of relative humidity and interlayer cation on frictional strength of montmorillonite. The humidity control system consists of two units, 1) the pressure vessel (core holder) unit controlled by a constant temperature and 2) the vapor generating unit controlled by variable temperature. We control relative humidity around sample, which is calculated from the temperature around sample and the vapor pressure at vapor generating unit. Preliminary experiments under controlled humidity show frictional coefficient of montmorillonite decrease with increasing relative humidity. In the meeting, we will report the systematic study of frictional coefficient as function of relative humidity and interlayer cation species.