On the relative rotational motion between rigid fibers and fluid in turbulent channel flow
Marchioli, C. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Zhao, L., E-mail: lihao.zhao@ntnu.no [Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Andersson, H. I. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway)
2016-01-15
In this study, the rotation of small rigid fibers relative to the surrounding fluid in wall-bounded turbulence is examined by means of direct numerical simulations coupled with Lagrangian tracking. Statistics of the relative (fiber-to-fluid) angular velocity, referred to as slip spin in the present study, are evaluated by modelling fibers as prolate spheroidal particles with Stokes number, St, ranging from 1 to 100 and aspect ratio, λ, ranging from 3 to 50. Results are compared one-to-one with those obtained for spherical particles (λ = 1) to highlight effects due to fiber length. The statistical moments of the slip spin show that differences in the rotation rate of fibers and fluid are influenced by inertia, but depend strongly also on fiber length: Departures from the spherical shape, even when small, are associated with an increase of rotational inertia and prevent fibers from passively following the surrounding fluid. An increase of fiber length, in addition, decouples the rotational dynamics of a fiber from its translational dynamics suggesting that the two motions can be modelled independently only for long enough fibers (e.g., for aspect ratios of order ten or higher in the present simulations)
Magnetic fields for fluid motion.
Weston, Melissa C; Gerner, Matthew D; Fritsch, Ingrid
2010-05-01
Three forces induced by magnetic fields offer unique control of fluid motion and new opportunities in microfluidics. This article describes magnetoconvective phenomena in terms of the theory and controversy, tuning by redox processes at electrodes, early-stage applications in analytical chemistry, mature applications in disciplines far afield, and future directions for micro total analysis systems. (To listen to a podcast about this article, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html .).
Wakou, Jun'ichi; Isobe, Masaharu
2012-06-01
We investigated the validity of fluctuation-dissipation relations in the nonequilibrium stationary state of fluidized granular media under gravity by two independent approaches, based on theory and numerical simulations. A phenomenological Langevin-type theory describing the fluctuation of center of mass height, which was originally constructed for a one-dimensional granular gas on a vibrating bottom plate, was generalized to any dimensionality, even for the case in which the vibrating bottom plate is replaced by a thermal wall. The theory predicts a fluctuation-dissipation relation known to be satisfied at equilibrium, with a modification that replaces the equilibrium temperature by an effective temperature defined by the center of mass kinetic energy. To test the validity of the fluctuation-dissipation relation, we performed extensive and accurate event-driven molecular dynamics simulations for the model system with a thermal wall at the bottom. The power spectrum and response function of the center of mass height were measured and closely compared with theoretical predictions. It is shown that the fluctuation-dissipation relation for the granular system is satisfied, especially in the high-frequency (short time) region, for a wide range of system parameters. Finally, we describe the relationship between systematic deviations in the low-frequency (long time) region and the time scales of the driven granular system.
Joseph, Daniel D
1976-01-01
The study of stability aims at understanding the abrupt changes which are observed in fluid motions as the external parameters are varied. It is a demanding study, far from full grown"whose most interesting conclusions are recent. I have written a detailed account of those parts of the recent theory which I regard as established. Acknowledgements I started writing this book in 1967 at the invitation of Clifford Truesdell. It was to be a short work on the energy theory of stability and if I had stuck to that I would have finished the writing many years ago. The theory of stability has developed so rapidly since 1967 that the book I might then have written would now have a much too limited scope. I am grateful to Truesdell, not so much for the invitation to spend endless hours of writing and erasing, but for the generous way he has supported my efforts and encouraged me to higher standards of good work. I have tried to follow Truesdell's advice to write this work in a clear and uncomplicated style. This is not ...
Spinning fluids in general relativity
Ray, J. R.; Smalley, L. L.
1982-01-01
General relativity field equations are employed to examine a continuous medium with internal spin. A variational principle formerly applied in the special relativity case is extended to the general relativity case, using a tetrad to express the spin density and the four-velocity of the fluid. An energy-momentum tensor is subsequently defined for a spinning fluid. The equations of motion of the fluid are suggested to be useful in analytical studies of galaxies, for anisotropic Bianchi universes, and for turbulent eddies.
A.I. Da Silva
2011-08-01
Full Text Available The aim of the present study was to determine the effect of volume and composition of fluid replacement on the physical performance of male football referees. Ten referees were evaluated during three official matches. In one match the participants were asked to consume mineral water ad libitum, and in the others they consumed a pre-determined volume of mineral water or a carbohydrate electrolyte solution (6.4% carbohydrate and 22 mM Na+ equivalent to 1% of their baseline body mass (half before the match and half during the interval. Total water loss, sweat rate and match physiological performance were measured. When rehydrated ad libitum (pre-match and at half time participants lost 1.97 ± 0.18% of their pre-match body mass (2.14 ± 0.19 L. This parameter was significantly reduced when they consumed a pre-determined volume of fluid. Sweat rate was significantly reduced when the referees ingested a pre-determined volume of a carbohydrate electrolyte solution, 0.72 ± 0.12 vs 1.16 ± 0.11 L/h ad libitum. The high percentage (74.1% of movements at low speed (walking, jogging observed when they ingested fluid ad libitum was significantly reduced to 71% with mineral water and to 69.9% with carbohydrate solution. An increase in percent movement expended in backward running was observed when they consumed a pre-determined volume of carbohydrate solution, 7.7 ± 0.5 vs 5.5 ± 0.5% ad libitum. The improved hydration status achieved with the carbohydrate electrolyte solution reduced the length of time spent in activities at low-speed movements and increased the time spent in activities demanding high-energy expenditure.
Motional Coherence in Fluid Phospholipid Membranes
Rheinstadter, Maikel C; Flenner, Elijah J; Bruening, Beate; Seydel, Tilo; Kosztin, Ioan
2008-01-01
We report a high energy-resolution neutron backscattering study, combined with in-situ diffraction, to investigate slow molecular motions on nanosecond time scales in the fluid phase of phospholipid bilayers of 1,2-dimyristoyl-sn-glycero-3-phoshatidylcholine (DMPC) and DMPC/40% cholesterol (wt/wt). A cooperative structural relaxation process was observed. From the in-plane scattering vector dependence of the relaxation rates in hydrogenated and deuterated samples, combined with results from a 0.1 microsecond long all atom molecular dynamics simulation, it is concluded that correlated dynamics in lipid membranes occurs over several lipid distances, spanning a time interval from pico- to nanoseconds.
Motion Equation of Vorticity for Newton Fluid
Jianhua, X
2005-01-01
The vorticity plays an important role in aerodynamics and rotational flow. Usually, they are studied with modified Navier-Stokes equation. This research will deduce the motion equation of vorticity from Navier-Stokes equation. To this propose, the velocity gradient field is decomposed as the stack of non-rotation field and pure-rotation field. By introducing the Chen S+R decomposition, the rotational flow is redefined. For elastic fluid, the research shows that for Newton fluid, the local average rotation always produces an additional pressure on the rotation plane. This item is deterministic rather than stochastic (as Reynolds stress) or adjustable. For non-elastic fluid, such as air, the research shows that the rotation will produce an additional stress along the rotation axis direction, that is on the normal direction of rotation plane. This result can be used to explain the lift force connected with vortex. The main purpose of this research is to supply a solvable mathematical model for the calculation of...
Numerical study of fluid motion in bioreactor with two mixers
Zheleva, I., E-mail: izheleva@uni-ruse.bg [Department of Heat Technology, Hydraulics and Ecology, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria); Lecheva, A., E-mail: alecheva@uni-ruse.bg [Department of Mathematics, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria)
2015-10-28
Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.
Motions of elastic solids in fluids under vibration
Sorokin, V. S.; Blekhman, I. I.; Thomsen, Jon Juel
2010-01-01
Motion of a rigid or deformable solid in a viscous incompressible fluid and corresponding fluid–solid interactions are considered. Different cases of applying high frequency vibrations to the solid or to the surrounding fluid are treated. Simple formulas for the mean velocity of the solid...... are derived, under the assumption that the regime of the fluid flow induced by its motion is turbulent and the fluid resistance force is nonlinearly dependent on its velocity. It is shown that vibrations of a fluid’s volume slow down the motion of a submerged solid. This effect is much pronounced in the case...... of a deformable solid (i.e., gas bubble) exposed to near-resonant excitation. The results are relevant to the theory of gravitational enrichment of raw materials, and also contribute to the theory of controlled locomotion of a body with an internal oscillator in continuous deformable (solid or fluid) media....
Topological fluid mechanics of point vortex motions
Boyland, P; Aref, H; Boyland, Philip; Stremler, Mark; Aref, Hassan
1999-01-01
Topological techniques are used to study the motions of systems of point vortices in the infinite plane, in singly-periodic arrays, and in doubly-periodic lattices. The reduction of each system using its symmetries is described in detail. Restricting to three vortices with zero net circulation, each reduced system is described by a one degree of freedom Hamiltonian. The phase portrait of this reduced system is subdivided into regimes using the separatrix motions, and a braid representing the topology of all vortex motions in each regime is computed. This braid also describes the isotopy class of the advection homeomorphism induced by the vortex motion. The Thurston-Nielsen theory is then used to analyse these isotopy classes, and in certain cases strong conclusions about the dynamics of the advection can be made.
Topological fluid mechanics of point vortex motions
1999-01-01
Topological techniques are used to study the motions of systems of point vortices in the infinite plane, in singly-periodic arrays, and in doubly-periodic lattices. The reduction of each system using its symmetries is described in detail. Restricting to three vortices with zero net circulation, each reduced system is described by a one degree of freedom Hamiltonian. The phase portrait of this reduced system is subdivided into regimes using the separatrix motions, and a braid representing the ...
Instabilities, motion and deformation of active fluid droplets
Whitfield, Carl A.; Hawkins, Rhoda J.
2016-12-01
We consider two minimal models of active fluid droplets that exhibit complex dynamics including steady motion, deformation, rotation and oscillating motion. First we consider a droplet with a concentration of active contractile matter adsorbed to its boundary. We analytically predict activity driven instabilities in the concentration profile, and compare them to the dynamics we find from simulations. Secondly, we consider a droplet of active polar fluid of constant concentration. In this system we predict, motion and deformation of the droplets in certain activity ranges due to instabilities in the polarisation field. Both these systems show spontaneous transitions to motility and deformation which resemble dynamics of the cell cytoskeleton in animal cells.
Brownian Motion and General Relativity
O'Hara, Paul
2013-01-01
We construct a model of Brownian Motion on a pseudo-Riemannian manifold associated with general relativity. There are two aspects of the problem: The first is to define a sequence of stopping times associated with the Brownian "kicks" or impulses. The second is to define the dynamics of the particle along geodesics in between the Brownian kicks. When these two aspects are taken together, we can associate various distributions with the motion. We will find that the statistics of space-time events will obey a temperature dependent four dimensional Gaussian distribution defined over the quaternions which locally can be identified with Minkowski space. Analogously, the statistics of the 4-velocities will obey a kind of Maxwell-Juttner distribution. In contrast to previous work, our processes are characterized by two independent proper time variables defined with respect to the laboratory frame: a discrete one corresponding to the stopping times when the impulses take place and a continuous one corresponding to th...
Motion Control along Relative Equilibria
Nordkvist, Nikolaj
2008-01-01
The subject of this thesis is control of mechanical systems as they evolve along the steady motions called relative equilibria. These trajectories are of interest in theory and applications and have the characterizing property that the system's body-fixed velocity is constant. For example, constant...... on a Lie group is locally controllable along a relative equilibrium. These conditions subsume the well-known local controllability conditions for equilibrium points. Second, for systems that have fewer controls than degrees of freedom, we present a novel algorithm to control simple mechanical control...
The action principle for generalized fluid motion including gyroviscosity
Lingam, M
2014-01-01
A general set of fluid equations that allow for energy-conserving momentum transport by gyroscopic motion of fluid elements is obtained. The equations are produced by a class of action principles that yield a large subset of the known fluid and magnetofluid models, including gyroviscosity. Analysis of the action principle yields broad, model-independent results regarding the conservation laws of energy and linear and angular momenta. The formalism is illustrated by studying fluid models with intrinsic angular momentum that may appear in the contexts of condensed matter, biological, and other areas of physics.
Magnetohydrodynamic motion of a two-fluid plasma
Burby, J. W.
2017-08-01
The two-fluid Maxwell system couples frictionless electrons and ion fluids via Maxwell's equations. When the frequencies of light waves, Langmuir waves, and single-particle cyclotron motion are scaled to be asymptotically large, the two-fluid Maxwell system becomes a fast-slow dynamical system. This fast-slow system admits a formally exact single-fluid closure that may be computed systematically with any desired order of accuracy through the use of a functional partial differential equation. In the leading order approximation, the closure reproduces magnetohydrodynamics (MHD). Higher order truncations of the closure give an infinite hierarchy of extended MHD models that allow for arbitrary mass ratio, as well as perturbative deviations from charge neutrality. The closure is interpreted geometrically as an invariant slow manifold in the infinite-dimensional two-fluid phase space, on which two-fluid motions are free of high-frequency oscillations. This perspective shows that the full closure inherits a Hamiltonian structure from the two-fluid theory. By employing infinite-dimensional Lie transforms, the Poisson bracket for the all-order closure may be obtained in the closed form. Thus, conservative truncations of the single-fluid closure may be obtained by simply truncating the single-fluid Hamiltonian. Moreover, the closed-form expression for the all-order bracket gives explicit expressions for a number of the full closure's conservation laws. Notably, the full closure, as well as any of its Hamiltonian truncations, admits a pair of independent circulation invariants.
The action principle for generalized fluid motion including gyroviscosity
Lingam, M., E-mail: manasvi@physics.utexas.edu; Morrison, P.J., E-mail: morrison@physics.utexas.edu
2014-11-07
Highlights: • Method for constructing action principles for a diverse class of fluids with gyroscopic momentum transport is described. • General criteria for the conservation of momentum and angular momentum via Noether's theorem are obtained. • Fluids with intrinsic angular momentum are built as an illustration of the method. - Abstract: A general set of fluid equations that allow for energy-conserving momentum transport by gyroscopic motion of fluid elements is obtained. The equations are produced by a class of action principles that yield a large subset of the known fluid and magnetofluid models, including gyroviscosity. Analysis of the action principle yields broad, model-independent results regarding the conservation laws of energy and linear and angular momenta. The formalism is illustrated by studying fluid models with intrinsic angular momentum that may appear in the contexts of condensed matter, biological, and other areas of physics.
The unsteady motion of a sphere in a viscoelastic fluid
Becker, L.E.; McKinley, G. H.; Rasmussen, Henrik K.
1994-01-01
The motion of a sphere accelerating from rest along the center line of a cylindrical tube filled with a polyisobutylene (PIB) Boger fluid is examined both experimentally, using a digital imaging system, and numerically via a Lagrangian finite element method for single and multimode Oldroyd models...
Projectile Motion in Special Relativity.
Naddy, Cory J.; Dudley, Scott C.; Haaland, Ryan K.
2000-01-01
Explains the motion that occurs when a particle with an initial velocity to the right is acted upon by a constant downward force. Considers what happens when the speed of the particle approaches the speed of light in particular. (WRM)
Rheological fluid motion in tube by metachronal wave of cilia
Maiti, S
2013-01-01
The purpose of this paper is a theoretical study of a non-linear problem of rheological fluid transport in an axisymmetric tube by cilium. However, an attempt has been made to explain the role of cilia motion on the transport of fluid through the ductus efferentes of the male reproductive tract. Ostwald-de Waele power law viscous fluid has been considered to represent the rheological fluid to analyze pumping by means of a sequence of beat of cilia from row to row of cilia in a given row of cells and from one row of cells to the next (metachronal wave movement) under conditions for which the corresponding Reynolds number is small enough for inertial effects to be negligible and the wavelength to diameter ratio is large enough for the pressure to be considered uniform over the cross-section. Analyses and computations of the detailed fluid motions reveal that the time-averaged flow rates are directly dependent on epsilon, a non-dimensional measure involving the mean radius R of the tube and the cilia length. Thu...
Fluids in motion: Contemporary artScience- inspiration and realization
Zabusky, Norman
2013-01-01
I examine contemporary work in fluids in motion to demonstrate strong connections between art, science and technology. In one burgeoning domain, falling liquid drops impacting solid substrates or pools it is valuable to compare how artists and scientists describe their goals and their use of high speed digital photography to capture and measure events. I also examine the use of devices beyond paint brushes to create pictures and views, including installations and projections from computer simulations. In particular, Ned Kahn whose installations in the public domain show various fluids in motion - water, sand, fog, fire as turbulent boundary layers, vortex rings, whirlpools, waterfalls, etc. Finally, I examine aspects of the role of digital technology and its utilization by artists, museums and galleries for innovative displays.
Effect of fluid motion on colony formation in Microcystis aeruginosa
Lin LI
2013-01-01
Full Text Available Microcystis aeruginosa, generally occurring in large colonies under natural conditions, mainly exists as single cells in laboratory cultures. The mechanisms involved in colony formation in Microcystis aeruginosa and their roles in algal blooms remain unknown. In this study, based on previous research findings that fluid motion may stimulate the colony formation in green algae, culture experiments were conducted under axenic conditions in a circular water chamber where the flow rate, temperature, light, and nutrients were controlled. The number of cells of Microcystis aeruginosa, the number of cells per colony, and the colonial characteristics in various growth phases were observed and measured. The results indicated that the colony formation in Microcystis aeruginosa, which was not observed under stagnant conditions, was evident when there was fluid motion, with the number of cells per largest colony reaching 120 and the proportion of the number of cells in colonial form to the total number of cells and the mean number of cells per colony reaching their peak values at a flow rate of 35 cm/s. Based on the analysis of colony formation process, fluid motion stimulates the colony formation in Microcystis aeruginosa in the lag growth phase, while flushes and disaggregates the colonies in the exponential growth phase. The stimulation effect in the lag growth phase may be attributable to the involvement of fluid motion in a series of physiological processes, including the uptake of trace elements and the synthesis and secretion of polysaccharides. In addition, the experimental groups exhibiting typical colonial characteristics in the lag growth phase were found to have higher cell biomass in the later phase.
Motion of compressible magnetic fluids in T^3
Weiping Yan
2013-10-01
Full Text Available This article shows the existence of weak time-periodic motion of a three-dimensional system of compressible magnetic fluid driven by time-dependent external forces in a torus T^3. The model consists of the mass conservation equation, the linear momentum equation, the angular momentum equation, the Bloch-Torrey type equation and the magnetostatic equation. This analysis is based on the Faedo-Galerkin method and weak compactness techniques.
Motion control of a rotor with a cavity with a viscous fluid
Gurchenkov, A. A.; Esenkov, A. S.; Tsurkov, V. I.
2007-01-01
A formulation and solution procedure of optimal control problems for perturbed relative uniform motion of a body with a cavity filled with a viscous incompressible fluid are proposed. In this paper, the case with a cylinder is considered; however, this approach is basically true for the a cavity of
Symmetry breaking in fluid dynamics: Lie group reducible motions for real fluids
Holm, D.D.
1976-07-01
The physics of fluids is based on certain kinematical invariance principles, which refer to coordinate systems, dimensions, and Galilean reference frames. Other, thermodynamic, symmetry principles are introduced by the material description. In the present work, the interplay between these two kinds of invariance principles is used to solve for classes of one-dimensional non-steady isentropic motions of a fluid whose equation of state is of Mie-Gruneisen type. Also, the change in profile and attenuation of weak shock waves in a dissipative medium is studied at the level of Burgers' approximation from the viewpoint of its underlying symmetry structure. The mathematical method of approach is based on the theory of infinitesimal Lie groups. Fluid motions are characterized according to inequivalent subgroups of the full invariance group of the flow description and exact group reducible solutions are presented.
Viscous fluid motion in a spinning and nutating cylinder
Herbert, T.
1986-06-01
Spin-stabilized projectiles with liquid payloads can experience a severe flight instability characterized by a rapid yaw-angle growth and a simultaneous loss in spin rate. Laboratory experiments and field tests have shown that this instability originates from the internal fluid motion in the range of high viscosity. After evaluation of the experimental data and analysis of the equations for the fluid motion in a spinning and nutating cylinder, a simple model of this flow has been developed. Disregarding the finite length of the cylinder, this model provides the flow field and the viscous contribution to the liquid moments in analytical form. At low Reynolds number, the flow field agrees well with computational results for the center section of a cylinder of aspect ratio 4.3. The roll moment caused by this flow largely agrees with experimental data for a wide range of Reynolds numbers. Estimates of the temperature variation indicate that discrepancies at very low Reynolds numbers may originate from associated changes of the viscosity during the experiments.
Computational Fluid Dynamics Demonstration of Rigid Bodies in Motion
Camarena, Ernesto; Vu, Bruce T.
2011-01-01
The Design Analysis Branch (NE-Ml) at the Kennedy Space Center has not had the ability to accurately couple Rigid Body Dynamics (RBD) and Computational Fluid Dynamics (CFD). OVERFLOW-D is a flow solver that has been developed by NASA to have the capability to analyze and simulate dynamic motions with up to six Degrees of Freedom (6-DOF). Two simulations were prepared over the course of the internship to demonstrate 6DOF motion of rigid bodies under aerodynamic loading. The geometries in the simulations were based on a conceptual Space Launch System (SLS). The first simulation that was prepared and computed was the motion of a Solid Rocket Booster (SRB) as it separates from its core stage. To reduce computational time during the development of the simulation, only half of the physical domain with respect to the symmetry plane was simulated. Then a full solution was prepared and computed. The second simulation was a model of the SLS as it departs from a launch pad under a 20 knot crosswind. This simulation was reduced to Two Dimensions (2D) to reduce both preparation and computation time. By allowing 2-DOF for translations and 1-DOF for rotation, the simulation predicted unrealistic rotation. The simulation was then constrained to only allow translations.
Relative motion in a debris cloud
Kebe, Fatoumata
2016-07-01
After an explosion or collision in space, a hundred or thousands of debris are generated. To be able to study a debris cloud it's necessary to develop new analysis tools. In that sense, we have studied several representations of the relative motion with the parent body's orbit as the reference. Thus, in the case of an explosion the original spacecraft has a circular orbit which will be the reference one in the relative motion's equations while, in the case of a collision, we will take one of the spacecraft's orbit as the reference. We mainly focus on the relative motion method that used the differential elements instead of the Cartesian coordinates as it allows to take into account the main perturbation.
Two-dimensional convection and interchange motions in fluids and magnetized plasmas
Garcia, O.E.; Bian, N.H.; Naulin, V.
2006-01-01
In this contribution some recent investigations of two- dimensional thermal convection relevant to ordinary fluids as well as magnetized plasmas are reviewed. An introductory discussion is given of the physical mechanism for baroclinic vorticity generation and convective motions in stratified...... fluids, emphasizing its relation to interchange motions of non- uniformly magnetized plasmas. This is followed by a review of the theories for the onset of convection and quasi-linear saturation in driven-dissipative systems. Non-linear numerical simulations which result in stationary convective states....... The global bursting is interpreted in terms of a predator-prey regulation from the point of view of energetics. Finally, a discussion is given of the relevance of these phenomena to a variety of magnetized plasma experiments....
Droplet motion in one-component fluids on solid substrates with wettability gradients
Xu, Xinpeng
2012-05-11
(conservative) driving force due to the wettability gradient and the (dissipative) viscous drag force. In addition, we study the motion of droplets on cooled or heated solid substrates with wettability gradients. The fast temperature variations from the solid to the fluid can be accurately described in the present approach. It is observed that accompanying the droplet migration, the contact lines move through phase transition and boundary velocity slip with their relative contributions mostly determined by the slip length. The results presented in this paper may lead to a more complete understanding of the droplet motion driven by wettability gradients with a detailed picture of the fluid flows and phase transitions in the vicinity of the moving contact line.
Droplet motion in one-component fluids on solid substrates with wettability gradients
Xu, Xinpeng; Qian, Tiezheng
2012-05-01
steady migration of the droplets results from the balance between the (conservative) driving force due to the wettability gradient and the (dissipative) viscous drag force. In addition, we study the motion of droplets on cooled or heated solid substrates with wettability gradients. The fast temperature variations from the solid to the fluid can be accurately described in the present approach. It is observed that accompanying the droplet migration, the contact lines move through phase transition and boundary velocity slip with their relative contributions mostly determined by the slip length. The results presented in this paper may lead to a more complete understanding of the droplet motion driven by wettability gradients with a detailed picture of the fluid flows and phase transitions in the vicinity of the moving contact line.
Hernández, E. S.; Capuzzi, P.; Szybisz, L.
2011-02-01
We extend our earlier fluid-dynamical description of fermion superfluids incorporating the particle energy flow together with the equation of motion for the internal kinetic energy of the pairs. The formal scheme combines a set of equations similar to those of classical hydrodynamics with the equations of motion for the anomalous density and for its related momentum density and kinetic energy density. This dynamical frame represents a second order truncation of an infinite hierarchy of equations of motion isomorphic to the full time dependent Hartree-Fock-Bogoliubov equations in coordinate representation. We analyze the equilibrium solutions and fluctuations for a homogeneous, unpolarized fermion system of two species, and show that the collective spectrum presents the well-known Anderson-Bogoliubov low energy mode of homogeneous superfluids and a pairing vibration near the gap energy.
Study of the Motion of a Vertically Falling Sphere in a Viscous Fluid
Soares, A. A.; Caramelo, L.; Andrade, M. A. P. M.
2012-01-01
This paper aims at contributing to a better understanding of the motion of spherical particles in viscous fluids. The classical problem of spheres falling through viscous fluids for small Reynolds numbers was solved taking into account the effects of added mass. The analytical solution for the motion of a falling sphere, from the beginning to the…
The effects of bio-fluid on the internal motion of DNA
Sulaiman, A; 10.1166/jctn.2011.1669
2011-01-01
The internal motions of DNA immersed in bio-fluid are investigated. The interactions between the fragments of DNA and the surrounding bio-fluid are modeled using the gauge fluid lagrangian. In the model, the bio-fluid is coupled to the standard gauge invariant bosonic lagrangian describing the DNA. It is shown that at non-relativistic limit various equation of motions, from the well-known Sine-Gordon equation to the simultaneous nonlinear equations, can be constructed within a single framework. The effects of bio-fluid are investigated for two cases : single and double stranded DNA. It is argued that the small and large amplitudes of a single stranded DNA motion immersed in bio-fluid can be explained in a natural way within the model as a solitonic wave regardless with the fluid velocity. In contrary the double stranded DNA behaves as regular or damped harmonic oscillator and is highly depending on the fluid velocity.
Relating Brownian motion to diffusion with superparamagnetic colloids
Darras, A.; Fiscina, J.; Vandewalle, N.; Lumay, G.
2017-04-01
An original experiment is introduced that allows students to relate the Brownian motion of a set of superparamagnetic colloidal particles to their macroscopic diffusion. An external and constant magnetic field is first applied to the colloidal suspension so that the particles self-organize into chains. When the magnetic field is removed, the particles then freely diffuse from their positions in the chain, starting from the same coordinate on the axis perpendicular to the initial chain. This configuration thus enables an observer to study the one dimensional diffusion process, while also observing the underlying Brownian motion of the microscopic particles. Moreover, by studying the evolution of the particle distribution, a measurement of the diffusion coefficient can be obtained. In addition, by repeating this measurement with fluids of various viscosities, the Stokes-Einstein relation may be illustrated.
Shape matters: Near-field fluid mechanics dominate the collective motions of ellipsoidal squirmers.
Kyoya, K; Matsunaga, D; Imai, Y; Omori, T; Ishikawa, T
2015-12-01
Microswimmers show a variety of collective motions. Despite extensive study, questions remain regarding the role of near-field fluid mechanics in collective motion. In this paper, we describe precisely the Stokes flow around hydrodynamically interacting ellipsoidal squirmers in a monolayer suspension. The results showed that various collective motions, such as ordering, aggregation, and whirls, are dominated by the swimming mode and the aspect ratio. The collective motions are mainly induced by near-field fluid mechanics, despite Stokes flow propagation over a long range. These results emphasize the importance of particle shape in collective motion.
Relative motion correction to fission barriers
Skalski, J
2007-01-01
We discuss the effect of kinetic energy of the relative motion becoming spurious for separate fragments on the selfconsistent mean-field fission barriers. The treatment of the relative motion in the cluster model is contrasted with the necessity of a simpler and approximate approach in the mean-field theory. A scheme of the energy correction to the Hartree-Fock is proposed. The results obtained with the effective Skyrme interaction SLy6 show that the correction, previously estimated as $\\sim$ 8 MeV in $A=70-100$ nuclei, amounts to 4 MeV in the medium heavy nucleus $^{198}$Hg and to null in $^{238}$U. However, the corrected barrier implies a shorter fission half-life of the latter nucleus. The same effect is expected to lower barriers for multipartition (i.e. ternary fission, etc) and make hyperdeformed minima less stable.
Relative Motion Correction to Fission Barriers
Skalski, J.
We discuss the effect of kinetic energy of the relative motion becoming spurious for separate fragments on the selfconsistent mean-field fission barriers. The treatment of the relative motion in the cluster model is contrasted with the necessity of a simpler and approximate approach in the mean-field theory. A scheme of the energy correction to the Hartree-Fock is proposed. The results obtained with the effective Skyrme interaction SLy6 show that the correction, previously estimated as ~ 8 MeV in A = 70 - 100 nuclei, amounts to 4 MeV in the medium heavy nucleus 198Hg and to null in 238U. However, the corrected barrier implies a shorter fission half-life of the latter nucleus. The same effect is expected to lower barriers for multipartition (i.e. ternary fission, etc) and make hyperdeformed minima less stable.
Fujimura, Kaoru [ed.] [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1995-01-01
This is the abstracts of the Mini-Symposium on Stability and Bifurcation in Fluid Motions held on September 9-10, 1994 at the Tokai Establishment of JAERI and the Tokai Kaikan. Sixteen talks were given on various important subjects related with stability and bifurcation phenomena in fluids. All of them are theoretical and numerical analyses involving linear stability analysis, weakly nonlinear analysis, bifurcation analysis, and direct computation of nonlinearly equilibrium solutions. (author).
CFD Simulation of the Vertical Motion Characteristics of the Moonpool Fluid for the Truss Spar
Bin Wang; Liqin Liu; Yougang Tang
2014-01-01
The research purpose of this paper is to estimate the impacts of the parameters of the guide plate on the vertical motion characteristics of the moonpool fluid. With the volume of fluid (VOF) method, three-dimensional models of the moonpool fluid motions of the truss spar platform are established. Simulation results are then presented for the moonpool forced oscillation by employing the dynamic mesh method and user-defined functions in FLUENT. The motions of the moonpool fluid and the loads on the guide plates are obtained for both cases of square-ring and crisscross. The results show that the shape and area of the guide plate at the bottom of the moonpool have a significant impact on the physical parameters of the moonpool, including the load on the moonpool guide plate, motion form of the moonpool fluid and the mass flow rate.
Attitude Dynamics of a Spinning Rocket with Internal Fluid Whirling Motion
Marius Ionut MARMUREANU
2014-06-01
Full Text Available This paper evaluates the impact that helical motion of fluid products of combustion within the combustion chamber of a rocket can have on the attitude dynamics of rocket systems. By developing the study presented by Sookgaew (2004, we determined the configuration of the Coriolis moment components, which catch the impact of the combustion product’s whirling motion, for the radial and centripetal propellant burn pattern specific to S-5M and S-5K solid rocket motors. We continue the investigation of the effects of internal whirling motion of fluid products of combustion on the attitude behavior of variable mass systems of the rocket type by examining the spin motion and transverse attitude motion of such systems. The results obtained show that internal fluid whirling motion can cause appreciable deviations in spin rate predictions, and also affects the frequencies of the transverse angular velocity components.
First general solutions for unidirectional motions of rate type fluids over an infinite plate
Constantin Fetecau
2015-09-01
Full Text Available Based on a simple but important remark regarding the governing equation for the non-trivial shear stress corresponding to the motion of a fluid over an infinite plate, exact solutions are established for the motion of Oldroyd-B fluids due to the plate that applies an arbitrary time-dependent shear stress to the fluid. These solutions, that allow us to provide the first exact solutions for motions of rate type fluids produced by an infinite plate that applies constant, constantly accelerating or oscillating shears stresses to the fluid, can easily be reduced to the similar solutions for Maxwell, second grade or Newtonian fluids performing the same motion. Furthermore, the obtained solutions are used to develop general solutions for the motion induced by a moving plate and to correct or recover as special cases different known results from the existing literature. Consequently, the motion problem of such fluids over an infinite plate that is moving in its plane or applies a shear stress to the fluid is completely solved.
New methods to provide exact solutions for some unidirectional motions of rate type fluids
Fetecau Corina
2016-01-01
Full Text Available Based on three immediate consequences of the governing equations corresponding to some unidirectional motions of rate type fluids, new motion problems are tackled for exact solutions. For generality purposes, exact solutions are developed for shear stress boundary value problems of generalized Burgers fluids. Such solutions, for which the shear stress instead of its differential expressions is given on the boundary, are lack in the literature for such fluids. Consequently, the first exact solutions for motions of rate type fluids induced by an infinite plate or a circular cylinder that applies a constant shear f or an oscillating shear f sin(ωt to the fluid are here presented. In addition, all steady-state solutions can easily be reduced to known solutions for second grade and Newtonian fluids.
Modelling anisotropic fluid spheres in general relativity
Boonserm, Petarpa; Visser, Matt
2015-01-01
We argue that an arbitrary general relativistic anisotropic fluid sphere, (spherically symmetric but with transverse pressure not equal to radial pressure), can nevertheless be successfully modelled by suitable linear combinations of quite ordinary classical matter: an isotropic perfect fluid, a classical electromagnetic field, and a classical (minimally coupled) scalar field. While the most general decomposition is not unique, a preferred minimal decomposition can be constructed that is unique. We show how the classical energy conditions for the anisotropic fluid sphere can be related to energy conditions for the isotropic perfect fluid, electromagnetic field, and scalar field components of the model. Furthermore we show how this decomposition relates to the distribution of electric charge density and scalar charge density throughout the model that is used to mimic the anisotropic fluid sphere. Consequently, we can build physically reasonable matter models for almost any spherically symmetric spacetime.
Dispersion of a solute in peristaltic motion of a couple stress fluid through a porous medium
G. Radhakrishnamacharya; Habtu Alemayehu
2012-01-01
The paper presents an analytical solution for dispersion of a solute in the peristaltic motion of a couple stress fluid through a porous medium in the presence of both homogeneous and heterogeneous chemical reactions...
Mass and Motion in General Relativity
Blanchet, Luc; Whiting, Bernard
2011-01-01
From the infinitesimal scale of particle physics to the cosmic scale of the universe, research is concerned with the nature of mass. While there have been spectacular advances in physics during the past century, mass still remains a mysterious entity at the forefront of current research. Our current perspective on gravitation has arisen over millennia, through the contemplation of falling apples, lift thought experiments and notions of stars spiraling into black holes. In this volume, the world’s leading scientists offer a multifaceted approach to mass by giving a concise and introductory presentation based on insights from their respective fields of research on gravity. The main theme is mass and its motion within general relativity and other theories of gravity, particularly for compact bodies. Within this framework, all articles are tied together coherently, covering post-Newtonian and related methods as well as the self-force approach to the analysis of motion in curved space-time, closing with an ove...
Wave motions in unbounded poroelastic solids infused with compressible fluids
Quiligotti, S; dell'Isola, F
2010-01-01
Looking at rational solid-fluid mixture theories in the context of their biomechanical perspectives, this work aims at proposing a two-scale constitutive theory of a poroelastic solid infused with an inviscid compressible fluid. The propagation of steady-state harmonic plane waves in unbounded media is investigated in both cases of unconstrained solid-fluid mixtures and fluid-saturated poroelastic solids. Relevant effects on the resulting characteristic speed of longitudinal and transverse elastic waves, due to the constitutive parameters introduced, are finally highlighted and discussed.
Motions of deformable inclusions in a horizontally oscillating vessel with a compressible fluid
Demidov, I.V.; Sorokin, Vladislav
2016-01-01
The paper is concerned with the analysis of rigid particle and compressible gas bubble motion in a horizontally oscillating vessel with a compressible fluid. A nonlinear differential equation describing motion of inclusions with respect to the vessel is derived and solved by the method of direct ...
A possible quantum fluid-dynamical approach to vortex motion in nuclei
Nishiyama, Seiya
2016-01-01
The essential point of Bohr-Mottelson theory is to assume a irrotational flow. As was already suggested by Marumori and Watanabe, the internal rotational motion, i.e., the vortex motion, however, may exist also in nuclei. So, we have a necessity of taking the vortex motion into consideration. In a classical fluid dynamics, there are various ways to treat the internal rotational velocity. The Clebsch representation, v(x) = -\
Caribbean tectonics and relative plate motions
Burke, K.; Dewey, J. F.; Cooper, C.; Mann, P.; Pindell, J. L.
1984-01-01
During the last century, three different ways of interpreting the tectonic evolution of the Gulf of Mexico and the Caribbean have been proposed, taking into account the Bailey Willis School of a permanent pre-Jurassic deep sea basin, the Edward Suess School of a subsided continental terrain, and the Alfred Wegener School of continental separation. The present investigation is concerned with an outline of an interpretation which follows that of Pindell and Dewey (1982). An attempt is made to point out ways in which the advanced hypotheses can be tested. The fit of Africa, North America, and South America is considered along with aspects of relative motion between North and South America since the early Jurasic. Attention is given to a framework for reconstructing Caribbean plate evolution, the evolution of the Caribbean, the plate boundary zones of the northern and southern Caribbean, and the active deformation of the Caribbean plate.
Bounded relative motion under zonal harmonics perturbations
Baresi, Nicola; Scheeres, Daniel J.
2017-04-01
The problem of finding natural bounded relative trajectories between the different units of a distributed space system is of great interest to the astrodynamics community. This is because most popular initialization methods still fail to establish long-term bounded relative motion when gravitational perturbations are involved. Recent numerical searches based on dynamical systems theory and ergodic maps have demonstrated that bounded relative trajectories not only exist but may extend up to hundreds of kilometers, i.e., well beyond the reach of currently available techniques. To remedy this, we introduce a novel approach that relies on neither linearized equations nor mean-to-osculating orbit element mappings. The proposed algorithm applies to rotationally symmetric bodies and is based on a numerical method for computing quasi-periodic invariant tori via stroboscopic maps, including extra constraints to fix the average of the nodal period and RAAN drift between two consecutive equatorial plane crossings of the quasi-periodic solutions. In this way, bounded relative trajectories of arbitrary size can be found with great accuracy as long as these are allowed by the natural dynamics and the physical constraints of the system (e.g., the surface of the gravitational attractor). This holds under any number of zonal harmonics perturbations and for arbitrary time intervals as demonstrated by numerical simulations about an Earth-like planet and the highly oblate primary of the binary asteroid (66391) 1999 KW4.
It's Alive! Spontaneous Motion of Shear Thickening Fluids Floating on the Air-Water Interface
Khandavalli, Sunilkumar; Rothstein, Jonathan P
2013-01-01
In this fluid dynamics video, we show the spontaneous random motion of thin filaments of a shear-thickening colloidal dispersions floating on the surface of water. The fluid is a dispersion of fumed silica nanoparticles in a low molecular weight polypropylene glycol (PPG) solvent. No external field or force is applied. The observed motion is driven by strong surface tension gradients as the polypropylene glycol slowly diffuses from from the filaments into water, resulting in the observed Marangoni flow. The motion is exaggerated by the thin filament constructs by the attractive interactions between silica nanoparticles and the PPG.
Measurements of coupled fluid and sediment motion over mobile sand dunes in a laboratory flume
Daniel G.WREN; Roger A.KUHNLE
2008-01-01
The relationship between turbulent fluid motions and sediment particle motions over mobile sand dunes was investigated by using a laser Doppler velocimeter and an acoustic backscatter system in laboratory experiments performed at the USDA-ARS-National Sedimentation Laboratory.Profiles of acoustic backscatter from particles and at-a-point turbulence data were collected while translating both measurement devices downstream at the speed of mobile dune bedforms.The resulting data set was used to examine the frequency (recurrence frequency) at which the fluctuating backscatter and fluid velocity signals exceeded magnitude thresholds based on the standard deviation (σ) of the local velocity and the magnitude the acoustic signal resulting from backscatter from suspended particles.The slope of the downstream and vertical velocity recurrence frequencies generally indicated a gradually increasing recurrence time with increasing elevation.The recurrence frequency for acoustic backscatter data was not strongly variable with elevation.The closest correspondence between the recurrence frequencies of sediment backscatter and vertical velocities at the 1σ magnitude threshold was in a region defined by X/L＜0.4 and 3＜6 cm.The downstream velocity was most closely related to backscatter in a small region at 0.4＜X/L＜0.8 and less than 3-4 cm from the bed.
Meteorological fluid dynamics asymptotic modelling, stability and chaotic atmospheric motion
Zeytounian, Radyadour K
1991-01-01
The author considers meteorology as a part of fluid dynamics. He tries to derive the properties of atmospheric flows from a rational analysis of the Navier-Stokes equations, at the same time analyzing various types of initial and boundary problems. This approach to simulate nature by models from fluid dynamics will be of interest to both scientists and students of physics and theoretical meteorology.
Motion Control of Disc Electrode by Electrorheological Fluids
Tsuda, Kazutoshi; Hirose, Yuji; Ogura, Hironao; Otsubo, Yasufumi
2008-07-01
The electrorheological(ER) suspensions are sandwiched between two flat disc electrodes with the radial line patterns. The pattern electrodes are fixed on the parallel plate geometry on a stress-controlled rheometer which was modified for the ER experiments. The motion of disk electrodes analyzed as a function of electrification modes to obtain the basic data for ER actuators.
Near field fluid coupling between internal motion of the organ of Corti and the basilar membrane
Elliott, Stephen J.; Ni, Guangjian [Institute of Sound and Vibration Research, University of Southampton, Southampton (United Kingdom)
2015-12-31
The pressure distribution in each of the fluid chambers of the cochlea can be decomposed into a 1D, or plane wave, component and a near field component, which decays rapidly away from the excitation point. The transverse motion of the basilar membrane, BM, for example, generates both a 1D pressure field, which couples into the slow wave, and a local near field pressure, proportional to the BM acceleration, that generates an added mass on the BM due to the fluid motion. When the organ of Corti, OC, undergoes internal motion, due for example to outer hair cell activity, this motion will not itself generate any 1D pressure if the OC is incompressible and the BM is constrained not to move volumetrically, and so will not directly couple into the slow wave. This motion will, however, generate a near field pressure, proportional to the OC acceleration, which will act on the OC and thus increases its effective mass. The near field pressure due to this OC motion will also act on the BM, generating a force on the BM proportional to the acceleration of the OC, and thus create a “coupling mass” effect. By reciprocity, this coupling mass is the same as that acting on the OC due to the motion of the BM. This near field fluid coupling is initially observed in a finite element model of a slice of the cochlea. These simulations suggest a simple analytical formulation for the fluid coupling, using higher order beam modes across the width of the cochlear partition. It is well known that the added mass due to the near field pressure dominates the overall mass of the BM, and thus significantly affects the micromechanical dynamics. This work not only quantifies the added mass of the OC due its own motion in the fluid, and shows that this is important, but also demonstrates that the coupling mass effect between the BM and OC significantly affects the dynamics of simple micromechanical models.
Graybill, George
2007-01-01
Take the mystery out of motion. Our resource gives you everything you need to teach young scientists about motion. Students will learn about linear, accelerating, rotating and oscillating motion, and how these relate to everyday life - and even the solar system. Measuring and graphing motion is easy, and the concepts of speed, velocity and acceleration are clearly explained. Reading passages, comprehension questions, color mini posters and lots of hands-on activities all help teach and reinforce key concepts. Vocabulary and language are simplified in our resource to make them accessible to str
Characteristics of a magnetic fluid seal and its motion in an axial variable seal gap
QIAN Ji-guo; YANG Zhi-yi
2008-01-01
With suitable assumptions a hydrodynamic model for the magnetic fluid motion in an axial variable gap seal was constructed, and the solution to the equations of the model was deduced. The characteristics of a magnetic fluid seal and its motion,including the speed and pressure distribution, and the seal capacity of a magnetic fluid rotating seal were systematically described.The factors affecting seal capacity and ways to improve seal capacity based on the hydrodynamic model are discussed. The basic condition for dynamic seal availability is presented. The rotating speed and radius of the shafts should be decreased. The work can provide proof of a seal design or suggest ways to improve the seal capacity of magnetic fluid seals.
Piston motion in the perfect-conductive magnetizable uncompressible fluid
Naletova, V.A.
1977-01-01
A solution is given for the movement of a perfect conductive solid horizontal piston at a constant velocity u, parallel to the plane of the piston, in a perfect conductive magnetizable uncompressible fluid in an applied magnetic field H/sub 0/. Either a shock wave, a centered wave, or a alvenian fracture, or a combination of an alvenian fracture and waves can be propagated in front of the piston under these conditions. In this case either the shock or centered wave is propagated at first, followed by the movement of the alvenian fracture. Either case is manifested at such velocities. When the piston moves along the boundary, the piston-medium can flow as a surface current which can be found from the solution to the problem. 3 references, 3 figures.
Modeling study on fluid flow and inclusion motion in 6-strand bloom caster tundishes
Guanghua Wen; Lifeng Zhang; Ping Tang; Zhenjiang Su; Mingmei Zhu; Wuan Gu; Kewen Zhao
2004-01-01
The behavior of fluid flow and particle motion in a 6-strand bloom caster tundish was investigated by a water model and numerical simulation. Compared with a device without flow control, the tundish with flow control has an important effect on the fluid flow pattern and inclusion removal. It is revealed that by non-isothermal process, which is real production condition, the fluid flow in tundish shows a strong buoyancy pattem, which drives particles to move upwards. The particle removal was quantitatively studied by mathematical and physical simulations.
Reproduction of solutions in the plane problem on motion of a free-boundary fluid
Karabut, E. A.; Zhuravleva, E. N.
2016-07-01
This study is devoted to finding exact solutions of the plane unsteady problem on the motion of an ideal incompressible free-boundary fluid. A certain procedure of reproduction making it possible to obtain a two-parametrical family of new exact solutions from one known solution is proposed.
Peristaltic motion of third grade fluid in curved channel
S.HINA; M.MUSTAFA; T.HAYAT; F.E.ALSAADI
2014-01-01
Analysis is performed to study the slip effects on the peristaltic flow of non-Newtonian fluid in a curved channel with wall properties. The resulting nonlinear partial differential equations are transformed to a single ordinary differential equation in a stream function by using the assumptions of long wavelength and low Reynolds number. This differential equation is solved numerically by employing the built-in routine for solving nonlinear boundary value problems (BVPs) through the software Mathematica. In addition, the analytic solutions for small Deborah number are computed with a regular perturbation technique. It is noticed that the symmetry of bolus is destroyed in a curved channel. An intensification in the slip effect results in a larger magnitude of axial velocity. Further, the size and circulation of the trapped boluses increase with an increase in the slip parameter. Different from the case of planar channel, the axial velocity profiles are tilted towards the lower part of the channel. A comparative study between analytic and numerical solutions shows excellent agreement.
Advances in comparative physiology from high-speed imaging of animal and fluid motion.
Lauder, George V; Madden, Peter G A
2008-01-01
Since the time of Muybridge and Marey in the last half of the nineteenth century, studies of animal movement have relied on some form of high-speed or stop-action imaging to permit analysis of appendage and body motion. In the past ten years, the advent of megapixel-resolution high-speed digital imaging with maximal framing rates of 250 to 100,000 images per second has allowed new views of musculoskeletal function in comparative physiology that now extend to imaging flow around moving animals and the calculation of fluid forces produced by animals moving in fluids. In particular, the technique of digital particle image velocimetry (DPIV) has revolutionized our ability to understand how moving animals generate fluid forces and propel themselves through air and water. DPIV algorithms generate a matrix of velocity vectors through the use of image cross-correlation, which can then be used to calculate the force exerted on the fluid as well as locomotor work and power. DPIV algorithms can also be applied to images of moving animals to calculate the velocity of different regions of the moving animal, providing a much more detailed picture of animal motion than can traditional digitizing methods. Although three-dimensional measurement of animal motion is now routine, in the near future model-based kinematic reconstructions and volumetric analyses of animal-generated fluid flow patterns will provide the next step in imaging animal biomechanics and physiology.
Analysis of accelerated motion in the theory of relativity
Jones, R. T.
1976-01-01
Conventional treatments of accelerated motion in the theory of relativity have led to certain difficulties of interpretation. Certain reversals in the apparent gravitational field of an accelerated body may be avoided by simpler analysis based on the use of restricted conformal transformations. In the conformal theory the velocity of light remains constant even for experimenters in accelerated motion. The problem considered is that of rectilinear motion with a variable velocity. The motion takes place along the x or x' axis of two coordinate systems.
Motions of deformable inclusions in a horizontally oscillating vessel with a compressible fluid
Demidov, I. V.; Sorokin, V. S.
2016-11-01
The paper is concerned with the analysis of rigid particle and compressible gas bubble motion in a horizontally oscillating vessel with a compressible fluid. A nonlinear differential equation describing motion of inclusions with respect to the vessel is derived and solved by the method of direct separation of motions. It is shown that rigid particles and gas bubbles can move both in nodes and antinodes of the pressure, depending on their size, density, and vibration parameters. The conditions under which different kinds of motion can incur have been determined. An expression for the critical radius of the bubbles which are affected by the negligible vibrational force is found. Also an approximate expression has been obtained for the average velocity of bubble's motion in the fluid; relationship between this velocity and bubble radius and vibration parameters has been revealed. A simple physical explanation of the noticed effects is proposed. Series of numerical experiments has been conducted, their results confirming those obtained theoretically. These results may be of interest for development of the flotation theory and other technological processes.
Effects of temperature gradient induced nanoparticle motion on conduction and convection of fluid
Zhou Leping, E-mail: lpzhou@ncepu.edu.cn [North China Electric Power University, Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, School of Energy, Power and Mechanical Engineering (China); Peterson, George P.; Yoda, Minani [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering (United States); Wang Buxuan [Tsinghua University, Department of Thermal Engineering (China)
2012-03-15
The role of temperature gradient induced nanoparticle motion on conduction and convection was investigated. Possible mechanisms for variations resulting from variations in the thermophysical properties are theoretically and experimentally discussed. The effect of the nanoparticle motion on conduction is demonstrated through thermal conductivity measurement of deionized water with suspended CuO nanoparticles (50 nm in diameter) and correlated with the contributions of Brownian diffusion, thermophoresis, etc. The tendencies observed is that the magnitude of and the variation in the thermal conductivity increases with increasing volume fraction for a given temperature, which is due primarily to the Brownian diffusion of the nanoparticles. Using dimensional analysis, the thermal conductivity is correlated and both the interfacial thermal resistance and near-field radiation are found to be essentially negligible. A modification term that incorporates the contributions of Brownian motion and thermophoresis is proposed. The effect of nanoscale convection is illustrated through an experimental investigation that utilized fluorescent polystyrene nanoparticle tracers (200 nm in diameter) and multilayer nanoparticle image velocimetry. The results indicate that both the magnitude and the deviation of the fluid motion increased with increasing heat flux in the near-wall region. Meanwhile, the fluid motion tended to decrease with the off-wall distance for a given heating power. A corresponding numerical study of convection of pure deionized water shows that the velocity along the off-wall direction is several orders of magnitude lower than that of deionized water, which indicates that Brownian motion in the near-wall region is crucial for fluid with suspended nanoparticles in convection.
Financial Brownian Particle in the Layered Order-Book Fluid and Fluctuation-Dissipation Relations
Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako
2014-03-01
We introduce a novel description of the dynamics of the order book of financial markets as that of an effective colloidal Brownian particle embedded in fluid particles. The analysis of comprehensive market data enables us to identify all motions of the fluid particles. Correlations between the motions of the Brownian particle and its surrounding fluid particles reflect specific layering interactions; in the inner layer the correlation is strong and with short memory, while in the outer layer it is weaker and with long memory. By interpreting and estimating the contribution from the outer layer as a drag resistance, we demonstrate the validity of the fluctuation-dissipation relation in this nonmaterial Brownian motion process.
PLANE SURFACE SUDDENLY SET IN MOTION IN A VISCOELASTIC FLUID WITH FRACTIONAL MAXWELL MODEL
谭文长; 徐明瑜
2002-01-01
The fractional calculus approach in the constitutive relationship model of viscoelastic fluid is introduced. The flow near a wall suddenly set in motion is studied for a non-Newtonian viscoelastic fluid with the fractional Maxwell model. Exact solutions of velocity and stress are obtained by using the discrete inverse Laplace transform of the sequential fractional derivatives. It is found that the effect of the fractional orders in the constitutive relationship on the flow field is significant. The results show that for small times there are appreciable viscoelastic effects on the shear stress at the plate, for large times the viscoelastic effects become weak.
Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model
Wenchang, Tan; Mingyu, Xu
2002-08-01
The fractional calculus approach in the constitutive relationship model of viscoelastic fluid is introduced. The flow near a wall suddenly set in motion is studied for a non-Newtonian viscoelastic fluid with the fractional Maxwell model. Exact solutions of velocity and stress are obtained by using the discrete inverse Laplace transform of the sequential fractional derivatives. It is found that the effect of the fractional orders in the constitutive relationship on the flow field is significant. The results show that for small times there are appreciable viscoelastic effects on the shear stress at the plate, for large times the viscoelastic effects become weak.
RELATIVE MOTION AND DEFORMATION OF PACIFIC PLATE FROM SPACE GEODESY
JinShuanggen; ZhuWenyao
2003-01-01
The circum-Pacific tectonic system that contains of convergent, divergent and transform boundaries, is the most active region of volcanoes and earthquakes in the world, and involves many important theoretical questions in geosciences. The relative motion and deformation of Pacific plate is still an active subject of research. In this note, we analyze the deformation of Pacific plate and obtain reliable results of the relative motion rates at the circum-Pacific boundaries based on space geodetic data, which reveals the present-day motion characteristics of Pacific plate.
Vision System for Relative Motion Estimation from Optical Flow
Sergey M. Sokolov
2010-08-01
Full Text Available For the recent years there was an increasing interest in different methods of motion analysis based on visual data acquisition. Vision systems, intended to obtain quantitative data regarding motion in real time are especially in demand. This paper talks about the vision systems that allow the receipt of information on relative object motion in real time. It is shown, that the algorithms solving a wide range of practical problems by definition of relative movement can be generated on the basis of the known algorithms of an optical flow calculation. One of the system's goals is the creation of economically efficient intellectual sensor prototype in order to estimate relative objects motion based on optic flow. The results of the experiments with a prototype system model are shown.
The Effect of Steady Fluid Motion on One-Dimensional Wave Propagation (Postprint)
2007-08-01
wave propagation in ducts where fluid motion was appreciable, Morse and Ingard (1968), Eversman (1970, 1971b), Ingard and Singhai (1973, 1974), Gogate...modified with the continuity equation to give an alternate momentum equation. This methodology was applied by Morse and Ingard (1968) to achieve a second...termed the convective wave equation, Morse and Ingard (1968) and Dowling (2003) 3. SIMPLIFICATION OF PDEs TO ODE’s WITH SECOND ORDER ACCURATE FINITE
CDIO-Concept for Enginering Education in Fluid Power, Motion Control and Mechatronic Design
Conrad, Finn; Sørensen, Torben
2006-01-01
of mechatronics solutions with fluid power actuators for motion control of machines and robots. The idea of CDIO-Concept is to take care of that the students are learning by doing and learning while doing when the students are active to generate new products and solutions by going through the phases from...... mechatronics design, and advantages as well as challenges are identified and discussed. An IT-tool concept for modelling, simulation and design of mechatronic products and systems is proposed....
Effect of fluid motion on the impact erosion by a micro-particle on quartz crystals
Cai, D. H.; Qi, H.; Wen, D. H.; Zhang, L.; Yuan, Q. L.; Chen, Z. Z.
2016-08-01
Abrasive slurry jet (ASJ) is a promising technology to process a variety of materials with advantages of high flexibility, no heat affected zone and high cutting efficiency. In this paper, the impressions generated on a quartz crystal specimen by the impacts of micro-particles laden in a water flow and the associated impact erosion mechanisms are presented and discussed in order to effectively and efficiently control the machining quality. Both brittle and ductile mode erosions coexist in the machining process due to the influence of the fluid motion on the trajectories of particles near the target surface. Large-scale craters produced by brittle conchoidal fractures associated with crashed zone, radial and lateral cracks, dominate the erosion process at large jet impact angles while small-scale craters involving micro-ploughing and micro-cutting are produced by the ductile mode erosion at small jet impact angles. The relation between the process parameters and the overall average volume of craters has also been quantitatively analyzed. A combination of small jet impact angle and abrasive particles and low water pressure is preferred for improving the surface quality after the ASJ machining process caused by the more formation of ductile mode induced craters on the target material, but it is at the sacrifice of the material removal rate as well.
Effect of fluid motion on the impact erosion by a micro-particle on quartz crystals
D. H. Cai
2016-08-01
Full Text Available Abrasive slurry jet (ASJ is a promising technology to process a variety of materials with advantages of high flexibility, no heat affected zone and high cutting efficiency. In this paper, the impressions generated on a quartz crystal specimen by the impacts of micro-particles laden in a water flow and the associated impact erosion mechanisms are presented and discussed in order to effectively and efficiently control the machining quality. Both brittle and ductile mode erosions coexist in the machining process due to the influence of the fluid motion on the trajectories of particles near the target surface. Large-scale craters produced by brittle conchoidal fractures associated with crashed zone, radial and lateral cracks, dominate the erosion process at large jet impact angles while small-scale craters involving micro-ploughing and micro-cutting are produced by the ductile mode erosion at small jet impact angles. The relation between the process parameters and the overall average volume of craters has also been quantitatively analyzed. A combination of small jet impact angle and abrasive particles and low water pressure is preferred for improving the surface quality after the ASJ machining process caused by the more formation of ductile mode induced craters on the target material, but it is at the sacrifice of the material removal rate as well.
Xu, Xinpeng
2012-06-26
Using a continuum model capable of describing the one-component liquid-gas hydrodynamics down to the contact line scale, we carry out numerical simulation and physical analysis for the droplet motion driven by thermal singularity. For liquid droplets in one-component fluids on heated or cooled substrates, the liquid-gas interface is nearly isothermal. Consequently, a thermal singularity occurs at the contact line and the Marangoni effect due to temperature gradient is suppressed. Through evaporation or condensation in the vicinity of the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. This effect on the contact angle can be used to move the droplets on substrates with thermal gradients. Our numerical results for this kind of droplet motion are explained by a simple fluid dynamical model at the droplet length scale. Since the mechanism for droplet motion is based on the change of contact angle, a separation of length scales is exhibited through a comparison between the droplet motion induced by a wettability gradient and that by a thermal gradient. It is shown that the flow field at the droplet length scale is independent of the statics or dynamics at the contact line scale.
Observations of geometry and ages constrain relative motion of Hawaii and Louisville plumes
Wessel, Paul; Kroenke, Loren W.
2009-07-01
The classic view of linear island chains as volcanic expressions of interactions between changing plate tectonic motions and fixed mantle plumes has come under renewed scrutiny. In particular, observed paleolatitudes from the Emperor seamounts imply that the Hawaii hotspot was > 5-15° further north during formation of these seamounts and that rapid retardation of its southward migration was the primary agent forming the angular Hawaii-Emperor bend. Supporting this view are predictions from fluid dynamic experiments that suggest the general mantle circulation may displace narrow mantle plumes; consequently the surface locations of hotspots are not fixed and may have varied considerably in the past. However, the locations and ages of available rock samples place fundamental limits on the relative motion between the Hawaii and Louisville hotspots. Here we use such data to estimate empirical age progression curves for separate chains and calculate the continuous variations in hotspot separations through time. While the data are sparse, the inferred inter-hotspot motion for ages > 55 Myr appears significant but the observed relative motion is only about half of what is predicted by mantle dynamics models. To reconcile the observed paleolatitudes with our observed relative motion requires either a larger contemporaneous southward motion of the Louisville hotspot than previously suggested or a moderate component of true polar wander.
Onset of motion at the surface of a porous granular bed by a shearing fluid flow
Hong, Anyu; Tao, Mingjiang; Kudrolli, Arshad
2014-03-01
We will discuss an experimental investigation of the onset of particle motion by a fluid flow over an unconsolidated granular bed. This situation arises in a number of natural and industrial processes including wind blowing over sand, sediment transport in rivers, tidal flows interacting with beaches and flows in slurry pipelines and mixing tanks. The Shields criteria given by the ratio of the viscous shear and normal stresses is used to understand the onset of motion. However, reviews reveals considerable scatter while noting broad trends with Reynolds Number. We discuss an idealized model system where fluid flows with a prescribed flow rate through a horizontal rectangular pipe initially fully filled with granular beads. The granular bed height decreases and reaches a constant height when the shear stress at the boundary decreases below a critical value. We compare and contrast the values obtained assuming no-slip boundary conditions with those observed with PIV using florescent tracer particles to measure the actual fluid flow profile near the porous interface. We will also report the observed variation of the Shields criteria with particle Reynolds Number by varying particle size and fluid flow rates.
M. Abdulhameed
2015-12-01
Full Text Available In this work, the unidirectional flow of an incompressible electrically conducting third-grade fluid past a vertical transpiration wall through a porous medium with time-dependent periodic motion is presented. The nonlinear partial differential equations are transformed to ordinary differential equation by means of symmetry reductions. The reduced equation is then solved analytically for steady-state and time-dependent transient parts. The time series of the transient flow velocity for different pertinent parameters are examined through plots. During the course of computation, it was observed that the time-dependent transient and steady-state solutions agree very well at large value of time when the ratio is related to fluid parameters γ∗γ>1.
Motion of liquid plugs between vapor bubbles in capillary tubes: a comparison between fluids
Bertossi, Rémi; Ayel, Vincent; Mehta, Balkrishna; Romestant, Cyril; Bertin, Yves; Khandekar, Sameer
2017-04-01
Pulsating heat pipes (PHP) are now well-known devices in which liquid/vapor slug flow oscillates in a capillary tube wound between hot and cold sources. In this context, this paper focuses on the motion of the liquid plug, trapped between vapor bubbles, moving in capillary tubes, to try to better understand the thermo-physical phenomena involved in such devices. This study is divided into three parts. In the first part, an experimental study presents the evolution of the vapor pressure during the evaporation process of a liquid thin film deposited from a liquid plug flowing in a heated capillary tube: it is found that the behavior of the generated and removed vapor can be very different, according to the thermophysical properties of the fluids. In the second part, a transient model allows to compare, in terms of pressure and duration, the motion of a constant-length liquid plug trapped between two bubbles subjected to a constant difference of vapor pressure: the results highlight that the performances of the four fluids are also very different. Finally, a third model that can be considered as an improvement of the second one, is also presented: here, the liquid slug is surrounded by two vapor bubbles, one subjected to evaporation, the pressure in both bubbles is now a result of the calculation. This model still allows comparing the behaviors of the fluid. Even if our models are quite far from a complete model of a real PHP, results do indicate towards the applicability of different fluids as suitable working fluids for PHPs, particularly in terms of the flow instabilities which they generate.
Onset and cessation of grain motion in fluid-sheared beds
Clark, Abe; Salevan, Julia; Shattuck, Mark; Ouellette, Nick; O'Hern, Corey
2015-11-01
We performed molecular dynamics simulations of granular beds driven by a model hydrodynamic shear flow to elucidate general grain-scale mechanisms that determine the onset and cessation of sediment transport. By varying the Shields number (the nondimensional shear stress at the top of the bed) and particle Reynolds number (the ratio of particle inertia to viscous damping), we explore how variations of the fluid flow rate, particle inertia, and fluid viscosity affect the onset and cessation of bed motion. For low to moderate particle Reynolds numbers, a critical boundary separates mobile and static states. Transition times between these states diverge as this boundary is approached both from above and below. At high particle Reynolds number, inertial effects become dominant, and particle motion can be sustained well below flow rates at which mobilization of a static bed occurs. We also find that the onset of bed motion (for both low and high particle Reynolds numbers) is described by Weibullian weakest-link statistics, and thus is crucially dependent on the packing structure of the granular bed, even deep beneath the surface. This work was supported by the US Army Research Office under Grant No. W911NF-14-1-0005.
Wear of connector contacts exposed to relative motion
Wilk, R. A.
Connectors play a significant role in the performance, cost, and reliability of electronic equipment. In connection with the development of the system interconnection design, a factor which is often overlooked is related to the importance of connector selection and mounting to minimize relative motion between contacts during vibration encountered in handling, transportation, and service. This motion can lead to the loss of protective coatings (gold and nickel) due to frictional wear. If this happens, fretting corrosion of the base metals may occur. The produced damage can adversely affect performance due to increased joint resistance, eventually causing intermittent contacts. The present investigation is concerned with the study of different style contacts (tuning fork, box, and circular) to determine their endurance and wear characteristics when exposed to relative motion created by vibration. All contacts investigated were fabricated from brass, beryllium copper, or phosphor bronze, and had .00127 mm minimum gold plating over .00127 mm minimum nickel plating.
Simulation of Fluid Steady Circulating Motion in Pre-Screen Well Zone
A. M. Sheiko
2007-01-01
Full Text Available A mathematical model of a steady circulating motion of fluid in a pre-screen zone of the committed well is constructed. Its screen is parted not only by horizontal partitions but also by vertical packers into a series of blowing and sucking quadrants. The proposed mathematical model allows to determine pressure and speed of fluid during circulation in any point of pre-screen well zone with constant and changed permeability. Theoretical and experimental investigations of circulating fluid motion with various permeability of pre-screen well zone are given in the paper. As a result of it, it has been ascertained that pressure on quadrant boundaries is equal to zero and an angular component of a velocity vector reaches a maximum value. A radial component of the velocity vector reaches its maximum value in the center of a quadrant. Good convergence of the results of mathematical and physical simulation testifies about the possibility to use mathematical model for determination of design parameters of a circulating regeneration quadrant device.
Physiological Flow of Jeffrey Six Constant Fluid Model due to Ciliary Motion
Shaheen, A.; Hussain, S.; Nadeem, S.
2016-12-01
The main purpose of this article is to present a mathematical model of ciliary motion in an annulus. In this analysis, the peristaltic motion of non-Newtonian Jeffrey six constant fluid is observed in an annulus with ciliated tips in the presence of heat and mass transfer. The effects of viscous dissipation are also considered. The flow equations of non-Newtonian fluid for the two-dimensional tube in cylindrical coordinates are simplified using the low Reynolds number and long wave-length approximations. The main equations for Jeffrey six constant fluid are considered in cylindrical coordinates system. The resulting nonlinear problem is solved using the regular perturbation technique in terms of a variant of small dimensionless parameter α. The results of the solutions for velocity, temperature and concentration field are presented graphically. Bk is Brinkman number, ST is soret number, and SH is the Schmidth number. Outcome for the longitudinal velocity, pressure rise, pressure gradient and stream lines are represented through graphs. in the history, the viscous-dissipation effect is usually represented by the Brinkman number.
Global Existence and Asymptotic Behavior of Affine Motion of 3D Ideal Fluids Surrounded by Vacuum
Sideris, Thomas C.
2017-07-01
The 3D compressible and incompressible Euler equations with a physical vacuum free boundary condition and affine initial conditions reduce to a globally solvable Hamiltonian system of ordinary differential equations for the deformation gradient in {GL^+(3, R)}. The evolution of the fluid domain is described by a family of ellipsoids whose diameter grows at a rate proportional to time. Upon rescaling to a fixed diameter, the asymptotic limit of the fluid ellipsoid is determined by a positive semi-definite quadratic form of rank r = 1, 2, or 3, corresponding to the asymptotic degeneration of the ellipsoid along 3- r of its principal axes. In the compressible case, the asymptotic limit has rank r = 3, and asymptotic completeness holds, when the adiabatic index {γ} satisfies {4/3 adiabatic index {γ}. In the incompressible case, affine motion reduces to geodesic flow in {SL(3, R)} with the Euclidean metric. For incompressible affine swirling flow, there is a structural instability. Generically, when the vorticity is nonzero, the domains degenerate along only one axis, but the physical vacuum boundary condition fails over a finite time interval. The rescaled fluid domains of irrotational motion can collapse along two axes.
An Efficient Multi-Scale Modelling Approach for ssDNA Motion in Fluid Flow
M.Benke; E.Shapiro; D.Drikakis
2008-01-01
The paper presents a multi-scale modelling approach for simulating macromolecules in fluid flows. Macromolecule transport at low number densities is frequently encountered in biomedical devices, such as separators, detection and analysis systems. Accurate modelling of this process is challenging due to the wide range of physical scales involved. The continuum approach is not valid for low solute concentrations, but the large timescales of the fluid flow make purely molecular simulations prohibitively expensive. A promising multi-scale modelling strategy is provided by the meta-modelling approach considered in this paper. Meta-models are based on the coupled solution of fluid flow equations and equations of motion for a simplified mechanical model of macromolecules. The approach enables simulation of individual macromolecules at macroscopic time scales. Meta-models often rely on particle-corrector algorithms, which impose length constraints on the mechanical model. Lack of robustness of the particle-corrector algorithm employed can lead to slow convergence and numerical instability. A new FAst Linear COrrector (FALCO) algorithm is introduced in this paper, which significantly improves computational efficiency in comparison with the widely used SHAKE algorithm. Validation of the new particle corrector against a simple analytic solution is performed and improved convergence is demonstrated for ssDNA motion in a lid-driven micro-cavity.
The rising motion of spheres in structured fluids with yield stress
Mirzaagha, S.; Pasquino, R.; Iuliano, E.; D'Avino, G.; Zonfrilli, F.; Guida, V.; Grizzuti, N.
2017-09-01
The rising of spherical bodies in structured fluids with yield stress is studied. The system is a suspension of hydrogenated castor oil colloidal fibers in a surfactant micellar solution. The fiber network confers to the fluid a viscoelastic behavior, with a well-defined yield stress, which increases with increasing fiber concentration. Various fluids with different fiber contents are prepared and rheologically characterized. A home-made time-lapse photography setup is used to monitor the time evolution position of the spherical particles, and the rising motion of both hollow spheres and air bubbles, in the diameter range 65-550 μm, is measured. The experiments last as long as several weeks, corresponding to significantly low measured velocities. Finite element simulations are performed to support the experimental data, assuming both interfacial slip and no slip conditions. The fluid dynamic phenomenon is studied and discussed in terms of dimensionless numbers, such as yield ratio, Bingham number, and Stokes drag coefficient. The results are novel for the system (suspending medium and hollow spheres) and for the covered Bingham number range, which is extended over three orders of magnitude in comparison with already available literature results. Our values provide quantitative data of the mechanical properties (i.e., yield stress value) at very low shear rates, in a prohibitive range for a traditional rheometer, and agree with the macroscopic rheological response. Moreover, the important role of the power law index n of the Herschel-Bulkley model, used to fit the data, has been highlighted. Our results, based on a Bingham-like fluid, are compared with the experimental data already available with Carbopol, treated as a Herschel Bulkley fluid with n = 0.5. The results could have important implications in the fabric and personal care detergency, a technological area where many fluids have composition and show rheological properties similar to those considered in the
FENG Shun-Xin; FU Song
2007-01-01
The effects of inner cylinder orbital motion on Taylor vortex flow of Newtonian and power-law fluid are studied numerically. The results demonstrate that when the eccentricity is not small, the orbital motion influences the stability of the flow in a non-monotonic manner. The variations of the flow-induced forces on the inner cylinder versus orbital motion are also different from the cases in which the flow is two-dimensional and laminar.
Ascitic fluid analysis in malignancy-related ascites.
Runyon, B A; Hoefs, J C; Morgan, T R
1988-01-01
A prospective study identified 45 patients with malignancy-related ascites among 448 ascites patients (10% of the total). Patients were categorized into five subgroups based on the pathophysiology of ascites formation. Each subgroup had a distinctive ascitic fluid analysis. Patients with peritoneal carcinomatosis but without massive liver metastases (53.3% of the patients with malignancy-related ascites) had a uniformly positive ascitic fluid cytology, high ascitic fluid protein concentration and low serum-ascites albumin gradient. Patients with massive liver metastases and no other cause for ascites formation (13.3% of the series) had a negative cytology, low ascitic fluid protein concentration, high serum-ascites albumin gradient and markedly elevated serum alkaline phosphatase. Those with peritoneal carcinomatosis and massive liver metastases (13.3% of the series) had a nearly uniformly positive ascitic fluid cytology, variable protein concentration, high serum-ascites albumin gradient and markedly elevated serum alkaline phosphatase. Chylous ascites (6.7%) was characterized by a milky appearance, negative cytology and an elevated ascitic fluid triglyceride concentration. Patients with hepatocellular carcinoma superimposed on cirrhosis (13.3%) had negative ascitic fluid cytology, low ascitic fluid protein concentration, high serum-ascites albumin gradient and elevated serum and ascitic fluid alpha-fetoprotein concentration. Two-thirds of patients with malignancy-related ascites had peritoneal carcinomatosis; 96.7% of patients with peritoneal carcinomatosis had positive ascitic fluid cytology. Ascitic fluid analysis is helpful in identifying and distinguishing the subgroups of malignancy-related ascites.
Effect of fluid inertia on the motion of a collinear swimmer
Felderhof, B U
2016-01-01
The swimming of a two-sphere system and of a three-sphere chain in an incompressible viscous fluid is studied on the basis of simplified equations of motion which take account of both Stokes friction and added mass effects. The analysis is based on an explicit expression for the asymptotic periodic swimming velocity and a corresponding evaluation of the mean rate of dissipation. The mean swimming velocity of the two-sphere system is found to be non-vanishing provided that the two spheres are not identical. The swimming of a comparable chain of three identical spheres is much more efficient.
On the lateral fluid motion during pool boiling via preferentially located cavities
Kapsenberg, F.; Strid, L.; Thiagarajan, N.; Narayanan, V.; Bhavnani, S. H.
2014-04-01
Passively generated lateral motion of fluid during pool boiling on asymmetrically textured meso-scale structures is discussed in this Letter. The surface texture is in the form of 30°-60° mm-scale ratchets with re-entrant cavities located on the 30° face. High speed visualization of growing bubbles from cavities indicates growth and departure normal to the 30° face of the ratchets. A semi-empirical model of net axial liquid velocity due to the non-vertical bubble growth is developed and validated in a pool boiling experiment.
Effects of nanoparticles on the peristaltic motion of tangent hyperbolic fluid model in an annulus
S. Nadeem
2015-12-01
Full Text Available In the present article, effects of nanoparticles on the peristaltic flow of tangent hyperbolic fluid in an annulus are described. The two-dimensional equations of tangent hyperbolic fluid are solved by using the assumptions of low Reynolds number and long wavelength. Analytical solution is obtained with the help of homotopy perturbation and Adomian decomposition method for velocity, temperature and nanoparticles concentration. Solutions are discussed through graphs. Solutions for pressure rise, temperature, nanoparticles concentration, pressure gradient and streamlines are plotted for various emerging parameters. It is found that the temperature profile increases with increase in Brownian motion and thermophoresis parameter. It is also found that the size of the trapped bolus in triangular wave is smaller as compared to other waves. Further, the comparison of both analytical solutions is presented.
Transient mathematical model for the axial annular fluid flow caused by drillpipe motion
Kimura, Hudson F.; Ramalho, Vanessa A.O.; Negrao, Cezar O.R.; Junqueira, Silvio L.M. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Dept. Academico de Mecanica. Lab. de Ciencias Termicas]. E-mails: hudsonhfk@yahoo.com.br; vanessinha123@gmail.com; negrao@utfpr.edu.br; silvio@utfpr.edu.br; Martins, Andre Leibsohn [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Tecnologia de Engenharia de Pocos (TEP)]. E-mail: aleibsohn@petrobras.com.br
2008-07-01
The axial movement of drill pipes is a common operation in oil well drilling. This motion displaces the drilling fluid and causes pressure changes in the borehole. The descending pipe movement increases the pressure at the bottomhole (surge) and its extraction reduces it (swab). If the bottomhole pressure overcomes the formation fracture pressure, circulation loss may take place. On the other hand, if the pressure within the well is smaller than the pore pressure, kicks can occur. In order to maintain the bottomhole pressure within the formation fracture and pore pressures, the drill pipe must be moved slowly and therefore, the task becomes quite time consuming. The current work presents a mathematical model to predict surge and swab pressures in annular spaces. The approach is based on conservation equations of mass and momentum. The fluid flow is considered laminar, one-dimensional, compressible, isothermal and transient. The fluid is regarded as Newtonian with constant compressibility. The viscous effect is lumped and the concept of friction factor is applied. The governing differential equations are non-linear and therefore, they are solved numerically by the finite volume method. A sensitivity analysis of the flow parameters is carried out. For instance, the pressure wave propagation is observed for low compressibility fluids. Pressure oscillation is observed for low aspect ratio ratios. (author)
Special Theory of Relativity without special assumptions and tachyonic motion
E. Kapuścik
2010-01-01
Full Text Available The most general form of transformations of space-time coordinates in Special Theory of Relativity based solely on physical assumptions is described. Only the linearity of space-time transformations and the constancy of the speed of light are used as assumptions. The application to tachyonic motion is indicated.
Human heart rate variability relation is unchanged during motion sickness
Mullen, T. J.; Berger, R. D.; Oman, C. M.; Cohen, R. J.
1998-01-01
In a study of 18 human subjects, we applied a new technique, estimation of the transfer function between instantaneous lung volume (ILV) and instantaneous heart rate (HR), to assess autonomic activity during motion sickness. Two control recordings of ILV and electrocardiogram (ECG) were made prior to the development of motion sickness. During the first, subjects were seated motionless, and during the second they were seated rotating sinusoidally about an earth vertical axis. Subjects then wore prism goggles that reverse the left-right visual field and performed manual tasks until they developed moderate motion sickness. Finally, ILV and ECG were recorded while subjects maintained a relatively constant level of sickness by intermittent eye closure during rotation with the goggles. Based on analyses of ILV to HR transfer functions from the three conditions, we were unable to demonstrate a change in autonomic control of heart rate due to rotation alone or due to motion sickness. These findings do not support the notion that moderate motion sickness is manifested as a generalized autonomic response.
Visual motion event related potentials distinguish aging and Alzheimer's disease.
Fernandez, Roberto; Monacelli, Anthony; Duffy, Charles J
2013-01-01
Aging and Alzheimer's disease (AD) disrupt visuospatial processing and visual motion evoked potentials in a manner linked to navigational deficits. Our goal is to determine if aging and AD have distinct effects on visual cortical motion processing for navigation. We recorded visual motion event related potentials (ERPs) in young (YNC) and older normal controls (ONC), and early AD patients (EADs) who viewed rapidly changing optic flow stimuli that simulate naturalistic changes in heading direction, like those that occur when following a path of self-movement through the environment. After a random series of optic flow stimuli, a vertical motion stimulus was presented to verify sustained visual attention by demanding a rapid push-button response. Optic flow evokes robust ERPs that are delayed in aging and diminished in AD. The interspersed vertical motion stimuli yielded shorter N200 latencies in EADs, matching those in ONCs, but the EADs' N200 amplitudes remained small. Aging and AD have distinct effects on visual sensory processing: aging delays evoked response, whereas AD diminishes responsiveness.
Nadeem Salamat; El-hadi Zahzah
2012-01-01
Defining spatiotemporal relations and modeling motion events are emerging issues of current research. Motion events are the subclasses of spatiotemporal relations, where stable and unstable spatio-temporal topological relations and temporal order of occurrence of a primitive event play an important role. In this paper, we proposed a theory of spatio-temporal relations based on topological and orientation perspective. This theory characterized the spatiotemporal relations into different classe...
Development of a suspension type sliding planar motion table using magnetic fluid lubrication
Li, Xinghui; Shinshi, Tadahiko; Hijikata, Wataru; Morimoto, Yoshihiro
2016-06-01
A sliding planar motion table system that can be used for the lens driving actuator of a laser cutting machine was developed. The system uses magnetic fluid as the lubricant to avoid the leakage of lubricating oil under the table and reduce environmental pollution. The motion table is suspended from the guide surface by an attractive force generated by electromagnets to reduce the contact and frictional forces between the table and the guide surface. The table is capable of movement in one rotational and two translational directions over the guide surface using six electromagnets and three non-contact displacement sensors. Experimental results showed that the magnetic suspension of the table reduced the friction by 82.1% compared to the friction that would otherwise be generated by the dead weight of the table. Circular motion within a diameter of 2 mm was achieved with resolutions of 5 μm and 20 μrad in the translational and rotational directions, respectively. A bandwidth of higher than 100 Hz was also achieved in the three movement directions.
Relative-Motion Sensors and Actuators for Two Optical Tables
Gursel, Yekta; McKenney, Elizabeth
2004-01-01
Optoelectronic sensors and magnetic actuators have been developed as parts of a system for controlling the relative position and attitude of two massive optical tables that float on separate standard air suspensions that attenuate ground vibrations. In the specific application for which these sensors and actuators were developed, one of the optical tables holds an optical system that mimics distant stars, while the other optical table holds a test article that simulates a spaceborne stellar interferometer that would be used to observe the stars. The control system is designed to suppress relative motion of the tables or, on demand, to impose controlled relative motion between the tables. The control system includes a sensor system that detects relative motion of the tables in six independent degrees of freedom and a drive system that can apply force to the star-simulator table in the six degrees of freedom. The sensor system includes (1) a set of laser heterodyne gauges and (2) a set of four diode lasers on the star-simulator table, each aimed at one of four quadrant photodiodes at nominal corresponding positions on the test-article table. The heterodyne gauges are used to measure relative displacements along the x axis.
The difference between the perception of absolute and relative motion: A reaction time study
J.B. Smeets (Jeroen); E. Brenner (Eli)
1994-01-01
textabstractWe used a reaction-time paradigm to examine the extent to which motion detection depends on relative motion. In the absence of relative motion, the responses could be described by a simple model based on the detection of a fixed change in position. If relative motion was present, the res
Dynamics and control of Lorentz-augmented spacecraft relative motion
Yan, Ye; Yang, Yueneng
2017-01-01
This book develops a dynamical model of the orbital motion of Lorentz spacecraft in both unperturbed and J2-perturbed environments. It explicitly discusses three kinds of typical space missions involving relative orbital control: spacecraft hovering, rendezvous, and formation flying. Subsequently, it puts forward designs for both open-loop and closed-loop control schemes propelled or augmented by the geomagnetic Lorentz force. These control schemes are entirely novel and represent a significantly departure from previous approaches.
Regular and Chaotic Motion in General Relativity: The Case of a Massive Magnetic Dipole
Kopáček, Ondřej; Karas, Vladimír; Kojima, Yasufumi
2014-01-01
Circular motion of particles, dust grains and fluids in the vicinity of compact objects has been investigated as a model for accretion of gaseous and dusty environment. Here we further discuss, within the framework of general relativity, figures of equilibrium of matter under the influence of combined gravitational and large-scale magnetic fields, assuming that the accreted material acquires a small electric charge due to interplay of plasma processes and photoionization. In particular, we employ an exact solution describing the massive magnetic dipole and we identify the regions of stable motion. We also investigate situations when the particle dynamics exhibits the onset of chaos. In order to characterize the measure of chaoticness we employ techniques of Poincar\\'e surfaces of section and of recurrence plots.
Measurement of fluid motion using antipodal nToF detectors
Grim, Gary; Bionta, Richard; Caggiano, Jac; Eckart, Mark; Hartouni, Ed; Hatarik, Robert; Kilkenny, Joe; Moore, Alastair; Sayre, Daniel; Yeamans, Charles
2016-10-01
The mid-2016 implementation of a neutron time-of-flight (nToF) detector in the northern hemisphere of the NIF experimental areas has provided an approximately antipodal detector pair configuration. In addition to enabling the first measurements of neutron spectra in the northern hemisphere of the NIF Target Bay, this configuration enables the most sensitive measurement of north/south fluid motion during neutron production in inertial confinement fusion implosions. We present the status and initial results of measurements using the NIF antipodal nToF system. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Ground Motion Relations While TBM Drilling in Unconsolidated Sediments
Grund, Michael; Ritter, Joachim R. R.; Gehrig, Manuel
2016-05-01
The induced ground motions due to the tunnel boring machine (TBM), which has been used for the drilling of the urban metro tunnel in Karlsruhe (SW Germany), has been studied using the continuous recordings of seven seismological monitoring stations. The drilling has been undertaken in unconsolidated sediments of the Rhine River system, relatively close to the surface at 6-20 m depth and in the vicinity of many historic buildings. Compared to the reference values of DIN 4150-3 (1-80 Hz), no exceedance of the recommended peak ground velocity (PGV) limits (3-5 mm/s) was observed at the single recording site locations on building basements during the observation period between October 2014 and February 2015. Detailed analyses in the time and frequency domains helped with the detection of the sources of several specific shaking signals in the recorded time series and with the comparison of the aforementioned TBM-induced signals. The amplitude analysis allowed for the determination of a PGV attenuation relation (quality factor Q ~ 30-50) and the comparison of the TBM-induced ground motion with other artificially induced and natural ground motions of similar amplitudes.
Perpetual motion and driven dynamics of a mobile impurity in a quantum fluid
Lychkovskiy, O.
2015-04-01
We study the dynamics of a mobile impurity in a quantum fluid at zero temperature. Two related settings are considered. In the first setting, the impurity is injected in the fluid with some initial velocity v0, and we are interested in its velocity at infinite time, v∞. We derive a rigorous upper bound on | v0-v∞| for initial velocities smaller than the generalized critical velocity. In the limit of vanishing impurity-fluid coupling, this bound amounts to v∞=v0 , which can be regarded as a rigorous proof of the Landau criterion of superfluidity. In the case of a finite coupling, the velocity of the impurity can drop, but not to zero; the bound quantifies the maximal possible drop. In the second setting, a small constant force is exerted upon the impurity. We argue that two distinct dynamical regimes exist—backscattering oscillations of the impurity velocity and saturation of the velocity without oscillations. For fluids with vc L=vs (where vc L and vs are the Landau critical velocity and sound velocity, respectively), the latter regime is realized. For fluids with vc L
Simulation of Fluid Flow in a Channel Induced by Three Types of Fin-Like Motion
无
2007-01-01
One of many interesting research activities in biofluidmechanics is dedicated to investigations of locomotion in water.Some of propulsion mechanisms observed in the underwater world are used in the development process of underwater autonomic vehicles (AUV). In order to characterise several solutions according to their manoeuvrability, influence on the surrounding fluid and energetic efficiency, a detailed analysis of fin-like movement is indispensable.In the current paper an analysis of undulatory, oscillatory and combined fim-like movements by means of numerical simulation is carried out. The conservation equation of mass and the conservation equation of momentum are solved with the Finite Volume Method (FVM) by use of the software CFX-10.0. The undulatory and oscillatory fin movements are modelled with an equation that is implemented within an additional subroutine and joined with the main solver. Numericalsimulations are carried out in the computational domain, in which one fin is fixed in a flow-through water duct. Simulations are carded out in the range of the Re number up to 105. The results show significant influence of applied fin motion on the velocity distribution in the surrounding fluid.
The problem of friction in two-dimensional relative motion
Grech, D K; Grech, Dariusz; Mazur, Zygmunt
2000-01-01
We analyse a mechanical system in two-dimensional relative motion with friction. Although the system is simple, the peculiar interplay between two kinetic friction forces and gravity leads to the wide range of admissible solutions exceeding most intuitive expectations. In particular, the strong qualitative dependence between behaviour of the system, boundary conditions and parameters involved in its description is emphasised. The problem is intended to be discussed in theoretical framework and might be of interest for physics and mechanics students as well as for physics teachers.
Nuriev, A. N.; Zakharova, O. S.; Zaitseva, O. N.; Yunusova, A. I.
2016-11-01
A rectilinear motion of a two-mass system in a viscous incompressible fluid is considered. The system consists of a shell having the form of an equilateral triangular cylinder and a movable internal mass. The motion of the system as a whole is forced by longitudinal oscillations of the internal mass relative to the shell. This mechanical system simulates a vibration-driven robot, i.e. a mobile device capable to move in a resistive medium without external moving parts. Investigation of the system is carried out by a direct numerical simulation. A comparative analysis of the characteristics of the motion and flow regimes around the vibration-driven robot is carried out for different internal mass oscillation laws.
Fine-grained uncertainty relation under the relativistic motion
Feng, Jun; Gould, Mark D; Fan, Heng
2014-01-01
One of the most important features of quantum theory is the uncertainty principle. Amount various uncertainty relations, the profound Fine-Grained Uncertainty Relation (FGUR) is used to distinguish the uncertainty inherent in obtaining any combination of outcomes for different measurements. In this paper, we explore this uncertainty relation in relativistic regime. For observer undergoes an uniform acceleration who immersed in an Unruh thermal bath, we show that the uncertainty bound is dependent on the acceleration parameter and choice of Unruh modes. Dramatically, we find that the measurements in Mutually Unbiased Bases (MUBs), sharing same uncertainty bound in inertial frame, could be distinguished from each other for a noninertial observer. On the other hand, once the Unruh decoherence is prevented by utilizing the cavity, the entanglement could be generated from nonuniform motion. We show that, for the observer restricted in a single rigid cavity, the uncertainty exhibits a periodic evolution with respec...
Bhatti, M. M.; Zeeshan, A.; Ellahi, R.
2016-09-01
In this article, heat transfer with nonlinear thermal radiation on sinusoidal motion of magnetic solid particles in a dust Jeffrey fluid has been studied. The effects of Magnetohydrodynamic (MHD) and hall current are also taken under consideration. The governing equation of motion and energy equation are modelled with help of Ohms law for fluid and dust phases. The solutions of the resulting ordinary coupled partial differential equations are solved analytically. The impact of all the physical parameters of interest such as Hartmann number, slip parameter, Hall parameter, radiation parameter, Prandtl number, Eckert number and particle volume fraction are demonstrated mathematically and graphically. Trapping mechanism is also discussed in detail by drawing contour lines. The present analysis affirms many interesting behaviours, which permit further study on solid particles motion with heat and mass transfer.
Relative Proper Motions in the Rho Ophiuchi Cluster
Wilking, Bruce A.; Vrba, Frederick J.; Sullivan, Timothy
2015-12-01
Near-infrared images optimized for astrometry have been obtained for four fields in the high-density L 1688 cloud core over a 12 year period. The targeted regions include deeply embedded young stellar objects (YSOs) and very low luminosity objects too faint and/or heavily veiled for spectroscopy. Relative proper motions in R.A. and decl. were computed for 111 sources and again for a subset of 65 YSOs, resulting in a mean proper motion of (0,0) for each field. Assuming each field has the same mean proper motion, YSOs in the four fields were combined to yield estimates of the velocity dispersions in R.A. and decl. that are consistent with 1.0 km s-1. These values appear to be independent of the evolutionary state of the YSOs. The observed velocity dispersions are consistent with the dispersion in radial velocity derived for optically visible YSOs at the periphery of the cloud core and are consistent with virial equilibrium. The higher velocity dispersion of the YSOs in the plane of the sky relative to that of dense cores may be a consequence of stellar encounters due to dense cores and filaments fragmenting to form small groups of stars or the global collapse of the L 1688 cloud core. An analysis of the differential magnitudes of objects over the 12 year baseline has not only confirmed the near-infrared variability for 29 YSOs established by prior studies, but has also identified 18 new variability candidates. Four of these have not been previously identified as YSOs and may be newly identified cluster members.
Resolving Neighbourhood Relations in a Parallel Fluid Dynamic Solver
Frisch, Jerome
2012-06-01
Computational Fluid Dynamics simulations require an enormous computational effort if a physically reasonable accuracy should be reached. Therefore, a parallel implementation is inevitable. This paper describes the basics of our implemented fluid solver with a special aspect on the hierarchical data structure, unique cell and grid identification, and the neighbourhood relations in-between grids on different processes. A special server concept keeps track of every grid over all processes while minimising data transfer between the nodes. © 2012 IEEE.
Guangqian WANG; Xudong FU; Xingkui WANG
2005-01-01
Formulating underlying mechanisms of concentrated solid-liquid flows is essential for simulation of various industrial processes and natural phenomena. A generalized constitutive model for particle motion in flows with low to moderate solids concentrations is developed. This generalized model facilitates characterization of inelastic collisions, particle-fluid interactions, and shearing effects.Moderately concentrated simple shear flows of a sand-water mixture are analyzed, and comparisons of model predictions and experimental data are in good agreement. This model exhibits sound performance in characterizing particle motion for wide ranges of concentration and shear rate, and may supply a reasonable and competent alternative to previous models developed for dilute and rapid-granular flows when applied to moderately concentrated situations. The concentration approaches zero (C → 0) asymptote is observed at a relatively high shear rate in model predictions.Assumption of low collisional dissipation of the particle phase as C → 0 is more reasonable for this observation, compared to that without the interstitial fluid effect. Accurately modeling energy dissipation is important for characterizing the stability of dilute simple shear flows of solid-liquid mixtures. Incorporating friction forces will also facilitate improvement of the applicability of this generalized model to flows at extremely high concentrations.
Peristaltic motion of a Johnson-Segalman fluid in a planar channel
Hayat T.
2003-01-01
Full Text Available This paper is devoted to the study of the two-dimensional flow of a Johnson-Segalman fluid in a planar channel having walls that are transversely displaced by an infinite, harmonic travelling wave of large wavelength. Both analytical and numerical solutions are presented. The analysis for the analytical solution is carried out for small Weissenberg numbers. (A Weissenberg number is the ratio of the relaxation time of the fluid to a characteristic time associated with the flow. Analytical solutions have been obtained for the stream function from which the relations of the velocity and the longitudinal pressure gradient have been derived. The expression of the pressure rise over a wavelength has also been determined. Numerical computations are performed and compared to the perturbation analysis. Several limiting situations with their implications can be examined from the presented analysis.
Haddad, Zoubida [Department of Mechanical Engineering, Technology Faculty, Firat University, TR-23119, Elazig (Turkey); Department of Fluid Mechanics, Faculty of Physics, University of Sciences and Technology-Houari Boumediene, Algiers (Algeria); Abu-Nada, Eiyad [Department of Mechanical Engineering, King Faisal University, Al-Ahsa 31982 (Saudi Arabia); Oztop, Hakan F. [Department of Mechanical Engineering, Technology Faculty, Firat University, TR-23119, Elazig (Turkey); Mataoui, Amina [Department of Fluid Mechanics, Faculty of Physics, University of Sciences and Technology-Houari Boumediene, Algiers (Algeria)
2012-07-15
Natural convection heat transfer and fluid flow of CuO-Water nano-fluids is studied using the Rayleigh-Benard problem. A two component non-homogenous equilibrium model is used for the nano-fluid that incorporates the effects of Brownian motion and thermophoresis. Variable thermal conductivity and variable viscosity are taken into account in this work. Finite volume method is used to solve governing equations. Results are presented by streamlines, isotherms, nano-particle distribution, local and mean Nusselt numbers and nano-particle profiles at top and bottom side. Comparison of two cases as absence of Brownian and thermophoresis effects and presence of Brownian and thermophoresis effects showed that higher heat transfer is formed with the presence of Brownian and thermophoresis effect. In general, by considering the role of thermophoresis and Brownian motion, an enhancement in heat transfer is observed at any volume fraction of nano-particles. However, the enhancement is more pronounced at low volume fraction of nano-particles and the heat transfer decreases by increasing nano-particle volume fraction. On the other hand, by neglecting the role of thermophoresis and Brownian motion, deterioration in heat transfer is observed and this deterioration elevates by increasing the volume fraction of nano-particles. (authors)
Investigating the fluid mechanics behind red blood cell-induced lateral platelet motion
Crowl Erickson, Lindsay; Fogelson, Aaron
2009-11-01
Platelets play an essential role in blood clotting; they adhere to damaged tissue and release chemicals that activate other platelets. Yet in order to adhere, platelets must first come into contact with the injured vessel wall. Under arterial flow conditions, platelets have an enhanced concentration near blood vessel walls. This non-uniform cell distribution depends on the fluid dynamics of blood as a heterogeneous medium. We use a parallelized lattice Boltzmann-immersed boundary method to solve the flow dynamics of red cells and platelets in a periodic 2D vessel with no-slip boundary conditions. Red cells are treated as biconcave immersed boundary objects with isotropic Skalak membrane tension and an internal viscosity five times that of the surrounding plasma. Using this method we analyze the influence of shear rate, hematocrit, and red cell membrane properties on lateral platelet motion. We find that the effective diffusion of platelets is significantly lower near the vessel wall compared to the center of the vessel. Insight gained from this work could lead to significant improvements to current models for platelet adhesion where the presence of red blood cells is neglected due to computational intensity.
Capturing the 3D Motion of an Infalling Galaxy via Fluid Dynamics
Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul E. J.; Roediger, Elke; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.
2017-01-01
The Fornax Cluster is the nearest (≤slant 20 Mpc) galaxy cluster in the southern sky. NGC 1404 is a bright elliptical galaxy falling through the intracluster medium (ICM) of the Fornax Cluster. The sharp leading edge of NGC 1404 forms a classical “cold front” that separates 0.6 keV dense interstellar medium and 1.5 keV diffuse ICM. We measure the angular pressure variation along the cold front using a very deep (670 ks) Chandra X-ray observation. We are taking the classical approach—using stagnation pressure to determine a substructure’s speed—to the next level by not only deriving a general speed but also directionality, which yields the complete velocity field as well as the distance of the substructure directly from the pressure distribution. We find a hydrodynamic model consistent with the pressure jump along NGC 1404's atmosphere measured in multiple directions. The best-fit model gives an inclination of 33° and a Mach number of 1.3 for the infall of NGC 1404, in agreement with complementary measurements of the motion of NGC 1404. Our study demonstrates the successful treatment of a highly ionized ICM as ideal fluid flow, in support of the hypothesis that magnetic pressure is not dynamically important over most of the virial region of galaxy clusters.
CDIO-Concept for Enginering Education in Fluid Power, Motion Control and Mechatronic Design
Conrad, Finn; Sørensen, Torben
2006-01-01
The paper presents significant Danish experiment results of a developed CDIO-Concept and approach for active and integrated learning in today’s engineering education of MSc Degree students, and research results from using IT-Tools for CAE/CAD and dynamic modelling, simulation, analysis, and desig...... mechatronics design, and advantages as well as challenges are identified and discussed. An IT-tool concept for modelling, simulation and design of mechatronic products and systems is proposed.......The paper presents significant Danish experiment results of a developed CDIO-Concept and approach for active and integrated learning in today’s engineering education of MSc Degree students, and research results from using IT-Tools for CAE/CAD and dynamic modelling, simulation, analysis, and design...... of mechatronics solutions with fluid power actuators for motion control of machines and robots. The idea of CDIO-Concept is to take care of that the students are learning by doing and learning while doing when the students are active to generate new products and solutions by going through the phases from...
Ground Motion Relations for the Upper Rhine Graben
Calbini, V.; Granet, M.; Camelbeeck, T.
2006-12-01
Earthquake in Europe are primarily located within the Euro-Mediterranean domain. However, the Upper Rhine Graben (URG) region regularly suffers earthquakes which are felt physically by inhabitants and cause damage to private property and the industrial infrastructure. In 1356, a major earthquake (I0 = X) destroyed part of the city of Basel. Recently, several events having M > 5 have shaken this area. In the framework of an INTERREG III project funded by the European community, a microzonation study has been achieved across the "three borders" area including the cities of Basel and Mulhouse. In particular, the ground motion was studied. The URG, which belongs to the ECRIS (European Cenozoic Rift System), is characterized by rift-related sedimentary basins with several hundreds meters of tertiary sediments overlaying the basement. Such a subsurface geology leads to strong site effects. Predictive attenuation laws and their related uncertainties are evaluated considering strong motions records and velocimetric records from small to moderate local events (Magnitude ranging 3
Dilatonic Brans-Dicke Anisotropic Collapsing Fluid Sphere And de Broglie Quantum Wave Motion
Ghaffarnejad, Hossein
2014-01-01
Two dimensional analogue of vacuum sector of the Brans Dicke gravity is used to study dynamics of anisotropic spherical symmetric perfect fluid. We solve dynamical equations and obtain internal metric of the fluid describing a stellar collapse with equation of state as $\\rho(p)=2(p-p_0^3/p^3)$ for $\\omega>>1$. We determine time dependence oscillations of particles ensemble, apparent and event horizons location where the particles same as the event horizon are trapped by the apparent horizon and they are located on back of the apparent horizon. We determine radial accelerating velocity of the particles ensemble from the phase part of the corresponding de Broglie quantum wave of the fluid sphere. A good correspondence between our classical and de Broglie quantum wave solutions are obtained by overlapping diagram of the classical solutions of relative distance of the particles, apparent and event horizons with particles ensemble density where finally the particles together with the event horizon located back of ...
Bertrand, Josie-Anne; Lassonde, Maryse; Robert, Manon; Nguyen, Dang Khoa; Bertone, Armando; Doucet, Marie-Ève; Bouthillier, Alain; Lepore, Franco
2012-01-01
How the brain processes visual stimuli has been extensively studied using scalp surface electrodes and magnetic resonance imaging. Using these and other methods, complex gratings have been shown to activate the ventral visual stream, whereas moving stimuli preferentially activate the dorsal stream. In the current study, a first experiment assessed brain activations evoked by complex gratings using intracranial electroencephalography in 10 epileptic patients implanted with subdural electrodes. These stimuli of intermediate levels of complexity were presented in such a way that transformational apparent motion (TAM) was perceived. Responses from both the ventral and the dorsal pathways were obtained. The response characteristics of visual area 4 and the fusiform cortex were of similar amplitudes, suggesting that both ventral areas are recruited for the processing of complex gratings. On the other hand, TAM-induced responses of dorsal pathway areas were relatively noisier and of lower amplitudes, suggesting that TAM does not activate motion-specific structures to the same extent as does real motion. To test this hypothesis, we examined the activity evoked by TAM in comparison to the one produced by real motion in a patient implanted with the same subdural electrodes. Findings demonstrated that neural response to real motion was much stronger than that evoked by TAM, in both the primary visual cortex (V1) and other motion-sensitive areas within the dorsal pathway. These results support the conclusion that apparent motion, even if perceptually similar to real motion, is not processed in a similar manner.
Deriabine, Mikhail
2003-01-01
We consider the problem of heavy rigid body dynamics in an infinite volume of an ideal incompressible fluid performing a potential motion. If the body is axially-symmetric, then the system admits partial solutions, when the axis of symmetry is vertical, and the body sinks and rotates around its...... symmetry axis. These solutions were found by V.A.Steklov already at the end of the 19th century, and he also pointed out that in general these motions are unstable (as they are uniformly accelerated).Here we consider the more delicate question, namely we derive the conditions for stability of the rotation...
Annihilation Radiation Gauge for Relative Density and Multiphase Fluid Monitoring
Vidal A.
2014-03-01
Full Text Available The knowledge of the multi-phase flow parameters are important for the petroleum industry, specifically during the transport in pipelines and network related to exploitation’s wells. Crude oil flow is studied by Monte Carlo simulation and experimentally to determine transient liquid phase in a laboratory system. Relative density and fluid phase time variation is monitored employing a fast nuclear data acquisition setup that includes two large volume BaF2 scintillator detectors coupled to an electronic chain and data display in a LabView® environment. Fluid parameters are determined by the difference in count rate of coincidence pulses. The operational characteristics of the equipment indicate that 2 % deviation in the CCR corresponds to a variation, on average, of 20 % in the fraction of liquid of the multiphase fluid.
Motion sickness susceptibility related to ACTH, ADH and TSH
Kohl, R. L.; Leach, C.; Homick, J. L.; Larochelle, F. T.
1983-01-01
The hypothesis that endogenous levels of certain hormones might be indicative of an individual's susceptibility to stressful motion is tested in a comparison of subjects classified as less prone to motion sickness with those of higher susceptibility. The levels of ACTH and vasopressin measured before exposure to stressful motion were twice as high in the less-suceptible group. No significant differences were noted in the levels of angiotensin, aldosterone, or TSH. The differences between the two groups were greater for a given hormone than for any of the changes induced by exposure to stressful motion.
Mimicking static anisotropic fluid spheres in general relativity
Boonserm, Petarpa; Ngampitipan, Tritos; Visser, Matt
2016-11-01
We argue that an arbitrary general relativistic static anisotropic fluid sphere, (static and spherically symmetric but with transverse pressure not equal to radial pressure), can nevertheless be successfully mimicked by suitable linear combinations of theoretically attractive and quite simple classical matter: a classical (charged) isotropic perfect fluid, a classical electromagnetic field and a classical (minimally coupled) scalar field. While the most general decomposition is not unique, a preferred minimal decomposition can be constructed that is unique. We show how the classical energy conditions for the anisotropic fluid sphere can be related to energy conditions for the isotropic perfect fluid, electromagnetic field, and scalar field components of the model. Furthermore, we show how this decomposition relates to the distribution of both electric charge density and scalar charge density throughout the model. The generalized TOV equation implies that the perfect fluid component in this model is automatically in internal equilibrium, with pressure forces, electric forces, and scalar forces balancing the gravitational pseudo-force. Consequently, we can build theoretically attractive matter models that can be used to mimic almost any static spherically symmetric spacetime.
Afsar Khan, A. [Department of Mathematics and Statistics, FBAS, IIUI, Islamabad (Pakistan); Ellahi, R., E-mail: rahmatellahi@yahoo.com [Department of Mathematics and Statistics, FBAS, IIUI, Islamabad (Pakistan); Department of Mechanical Engineering, Bourns Hall, University of California Riverside, CA 92521 (United States); Mudassar Gulzar, M. [National University of Sciences and Technology, College of Electrical and Mechanical Engineering Islamabad (Pakistan); Sheikholeslami, Mohsen [Department of Mechanical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of)
2014-12-15
In this study the peristaltic motion of Oldroyd fluid in an asymmetric channel is investigated. Mathematical analysis has been carried out in the presence of an inclined magnetic field. Heat transfer is also taken into account. The physical problem is first modeled and then the analytical solutions of coupled equations are developed by regular perturbation method. Assumptions of long wavelength approximation are used. Effects of inclined magnetic field on the axial velocity and temperature are presented. Physical features of pertinent parameters such as wave number δ, Reynolds number Re, Weissenberg number Wi, Prandtl number Pr and Hartmann number M are also discussed graphically at the end of the paper. - Highlights: • This paper analyses heat transfer and inclined magnetic effects in peristaltic motion of Oldroyd fluid. • An asymmetric channel under long wavelength approximation is considered. • Regular perturbation method is used to find analytical solutions. • Effects of sundry parameters are presented through graphs.
Particle motion measured at an operational wind turbine in relation to hearing sensitivity in fish.
Sigray, Peter; Andersson, Mathias H
2011-07-01
The effect of sound pressure on the hearing of fish has been extensively investigated in laboratory studies as well as in field trials in contrast to particle motion where few studies have been carried out. To improve this dearth of knowledge, an instrument for measuring particle motion was developed and used in a field trial. The particle motion is measured using a neutrally buoyant sphere, which co-oscillates with the fluid motion. The unit was deployed in close vicinity to a wind turbine foundation at Utgrunden wind farm in the Baltic Sea. Measurements of particle motion were undertaken at different distances from the turbine as well as at varying wind speeds. Levels of particle motion were compared to audiograms for cod (Gadus morhua L.) and plaice (Pleuronectes platessa L.).
Modeling on Fluid Flow and Inclusion Motion in Centrifugal Continuous Casting Strands
Wang, Qiangqiang; Zhang, Lifeng; Sridhar, Seetharaman
2016-08-01
During the centrifugal continuous casting process, unreasonable casting parameters can cause violent level fluctuation, serious gas entrainment, and formation of frozen shell pieces at the meniscus. Thus, in the current study, a three-dimensional multiphase turbulent model was established to study the transport phenomena during centrifugal continuous casting process. The effects of nozzle position, casting and rotational speed on the flow pattern, centrifugal force acting on the molten steel, level fluctuation, gas entrainment, shear stress on mold wall, and motion of inclusions during centrifugal continuous casting process were investigated. Volume of Fluid model was used to simulate the molten steel-air two-phase. The level fluctuation and the gas entrainment during casting were calculated by user-developed subroutines. The trajectory of inclusions in the rotating system was calculated using the Lagrangian approach. The results show that during centrifugal continuous casting, a large amount of gas was entrained into the molten steel, and broken into bubbles of various sizes. The greater the distance to the mold wall, the smaller the centrifugal force. Rotation speed had the most important influence on the centrifugal force distribution at the side region. Angular moving angle of the nozzle with 8° and keeping the rotation speed with 60 revolutions per minute can somehow stabilize the level fluctuation. The increase of angular angle of nozzle from 8 to 18 deg and rotation speed from 40 to 80 revolutions per minute favored to decrease the total volume of entrained bubbles, while the increase of distance of nozzle moving left and casting speed had reverse effects. The trajectories of inclusions in the mold were irregular, and then rotated along the strand length. After penetrating a certain distance, the inclusions gradually moved to the center of billet and gathered there. More work, such as the heat transfer, the solidification, and the inclusions entrapment
Relative Status Determination for Spacecraft Relative Motion Based on Dual Quaternion
Jun Sun
2014-01-01
Full Text Available For the two-satellite formation, the relative motion and attitude determination algorithm is a key component that affects the flight quality and mission efficiency. The relative status determination algorithm is proposed based on the Extended Kalman Filter (EKF and the system state optimal estimate linearization. Aiming at the relative motion of the spacecraft formation navigation problem, the spacecraft relative kinematics and dynamics model are derived from the dual quaternion in the algorithm. Then taking advantage of EKF technique, combining with the dual quaternion integrated dynamic models, considering the navigation algorithm using the fusion measurement by the gyroscope and star sensors, the relative status determination algorithm is designed. At last the simulation is done to verify the feasibility of the algorithm. The simulation results show that the EKF algorithm has faster convergence speed and higher accuracy.
Time-dependent closure relations for relativistic collisionless fluid equations.
Bendib-Kalache, K; Bendib, A; El Hadj, K Mohammed
2010-11-01
Linear fluid equations for relativistic and collisionless plasmas are derived. Closure relations for the fluid equations are analytically computed from the relativistic Vlasov equation in the Fourier space (ω,k), where ω and k are the conjugate variables of time t and space x variables, respectively. The mathematical method used is based on the projection operator techniques and the continued fraction mathematical tools. The generalized heat flux and stress tensor are calculated for arbitrary parameter ω/kc where c is the speed of light, and for arbitrary relativistic parameter z=mc²/T , where m is the particle rest mass and T, the plasma temperature in energy units.
Learning Grasp Strategies Composed of Contact Relative Motions
Platt, Robert, Jr.
2007-01-01
Of central importance to grasp synthesis algorithms are the assumptions made about the object to be grasped and the sensory information that is available. Many approaches avoid the issue of sensing entirely by assuming that complete information is available. In contrast, this paper proposes an approach to grasp synthesis expressed in terms of units of control that simultaneously change the contact configuration and sense information about the object and the relative manipulator-object pose. These units of control, known as contact relative motions (CRMs), allow the grasp synthesis problem to be recast as an optimal control problem where the goal is to find a strategy for executing CRMs that leads to a grasp in the shortest number of steps. An experiment is described that uses Robonaut, the NASA-JSC space humanoid, to show that CRMs are a viable means of synthesizing grasps. However, because of the limited amount of information that a single CRM can sense, the optimal control problem may be partially observable. This paper proposes expressing the problem as a k-order Markov Decision Process (MDP) and solving it using Reinforcement Learning. This approach is tested in a simulation of a two-contact manipulator that learns to grasp an object. Grasp strategies learned in simulation are tested on the physical Robonaut platform and found to lead to grasp configurations consistently.
A linear auroral current-voltage relation in fluid theory
J. Vedin
2004-04-01
Full Text Available Progress in our understanding of auroral currents and auroral electron acceleration has for decades been hampered by an apparent incompatibility between kinetic and fluid models of the physics involved. A well established kinetic model predicts that steady upward field-aligned currents should be linearly related to the potential drop along the field line, but collisionless fluid models that reproduce this linear current-voltage relation have not been found. Using temperatures calculated from the kinetic model in the presence of an upward auroral current, we construct here approximants for the parallel and perpendicular temperatures. Although our model is rather simplified, we find that the fluid equations predict a realistic large-scale parallel electric field and a linear current-voltage relation when these approximants are employed as nonlocal equations of state. This suggests that the concepts we introduce can be applied to the development of accurate equations of state for fluid simulations of auroral flux tubes.
Key words. Magnetospheric physics (auroral phenomena; magnetosphere-ionosphere interactions – Space plasma physics (kinetic and MHD theory
Bartzke, Gerhard; Rogers, Benedict D.; Fourtakas, Georgios; Mokos, Athanasios; Huhn, Katrin
2016-04-01
The processes that cause the creation of a variety of sediment morphological features, e.g. laminated beds, ripples, or dunes, are based on the initial motion of individual sediment grains. However, with experimental techniques it is difficult to measure the flow characteristics, i.e., the velocity of the pore water flow in sediments, at a sufficient resolution and in a non-intrusive way. As a result, the role of fluid infiltration at the surface and in the interior affecting the initiation of motion of a sediment bed is not yet fully understood. Consequently, there is a strong need for numerical models, since these are capable of quantifying fluid driven sediment transport processes of complex sediment beds composed of irregular shapes. The numerical method Smoothed Particle Hydrodynamics (SPH) satisfies this need. As a meshless and Lagrangian technique, SPH is ideally suited to simulating flows in sediment beds composed of various grain shapes, but also flow around single grains at a high temporal and spatial resolution. The solver chosen is DualSPHysics (www.dual.sphysics.org) since this is validated for a range of flow conditions. For the present investigation a 3-D numerical flume model was generated using SPH with a length of 4.0 cm, a width of 0.05 cm and a height of 0.2 cm where mobile sediment particles were deposited in a recess. An experimental setup was designed to test sediment configurations composed of irregular grain shapes (grain diameter, D50=1000 μm). Each bed consisted of 3500 mobile objects. After the bed generation process, the entire domain was flooded with 18 million fluid particles. To drive the flow, an oscillating motion perpendicular to the bed was applied to the fluid, reaching a peak value of 0.3 cm/s, simulating 4 seconds of real time. The model results showed that flow speeds decreased logarithmically from the top of the domain towards the surface of the beds, indicating a fully developed boundary layer. Analysis of the fluid
Relative resolution: A hybrid formalism for fluid mixtures
Chaimovich, Aviel; Peter, Christine; Kremer, Kurt
2015-12-01
We show here that molecular resolution is inherently hybrid in terms of relative separation. While nearest neighbors are characterized by a fine-grained (geometrically detailed) model, other neighbors are characterized by a coarse-grained (isotropically simplified) model. We notably present an analytical expression for relating the two models via energy conservation. This hybrid framework is correspondingly capable of retrieving the structural and thermal behavior of various multi-component and multi-phase fluids across state space.
Event-related alpha suppression in response to facial motion.
Girges, Christine; Wright, Michael J; Spencer, Janine V; O'Brien, Justin M D
2014-01-01
While biological motion refers to both face and body movements, little is known about the visual perception of facial motion. We therefore examined alpha wave suppression as a reduction in power is thought to reflect visual activity, in addition to attentional reorienting and memory processes. Nineteen neurologically healthy adults were tested on their ability to discriminate between successive facial motion captures. These animations exhibited both rigid and non-rigid facial motion, as well as speech expressions. The structural and surface appearance of these facial animations did not differ, thus participants decisions were based solely on differences in facial movements. Upright, orientation-inverted and luminance-inverted facial stimuli were compared. At occipital and parieto-occipital regions, upright facial motion evoked a transient increase in alpha which was then followed by a significant reduction. This finding is discussed in terms of neural efficiency, gating mechanisms and neural synchronization. Moreover, there was no difference in the amount of alpha suppression evoked by each facial stimulus at occipital regions, suggesting early visual processing remains unaffected by manipulation paradigms. However, upright facial motion evoked greater suppression at parieto-occipital sites, and did so in the shortest latency. Increased activity within this region may reflect higher attentional reorienting to natural facial motion but also involvement of areas associated with the visual control of body effectors.
Morris, Melissa
2013-01-01
The continuum equations of fluid mechanics are rederived with the intention of keeping certain mechanical and thermodynamic concepts separate. A new "mechanical" mass density is created to be used in computing inertial quantities, whereas the actual mass density is treated as a thermodynamic variable. A new set of balance laws is proposed, including a mass balance equation with a non-convective flux. The basic principles of irreversible thermodynamics are used to obtain linear constitutive equations that are expansions of--not only the usual affinities involving gradients of temperature and velocity--but also the gradient of the chemical potential. Transport coefficients are then chosen based on an elementary diffusion model, which yields simple constitutive laws featuring just one diffusion transport parameter. The resulting formulation differs from the Navier-Stokes-Fourier equations of fluid motion. In order to highlight key similarities and differences between the two formulations, several fluid mechanics...
Gruca, Marta; Division of Complex Fluids Team
2014-11-01
We investigate dynamics of many particles settling under gravity in a viscous fluid within the Stokes flow regime. We consider several families of regular initial configurations of a large number of point-particles which lead to periodic and quasi-periodic motions of the particles. We vary the relative distance between particles and observe how does it affect the dynamics. We observe the oscillations under some out-of-phase rearrangements of the particles. We also see a large influence of initial conditions on the system stability. By perturbating the regular configurations we obtain the dynamics corresponding to the dynamics of drop of suspension. We also explore the dynamics of such system in porous media where analogous quasi-periodic motions have been found.
ZHANG Li-feng
2005-01-01
Following up the fluid flow simulation in a 60 t tundish, the trajectories of inclusions in the 60 t tundish without flow control are simulated by considering the force balance between the drag force and the inertial buoyancy force. The Stochastic model yields more accurate inclusion motion than the non-Stochastic model due to including the effect of the turbulent fluctuation. The average residence time of inclusions decreases with increasing size. The thermal buoyancy favors inclusions removal especially the small inclusions. Using solute transport like the dye injection in water model and copper addition in the real steel tundish cannot accurately study the motion of the inclusions. In the simulation, more than 68% inclusions bigger than 10μm are removed to the top, and less than 32% enters the mold. The thermal buoyancy has little effect on the fraction of inclusions moved to the top of the inlet zone, and it mainly favors the removal of inclusions smaller than 100μm to the top surface of the outlet zone. For inclusions bigger than 100μm , the effect of thermal buoyancy on their motion can be ignored compared to the inertial buoyancy effect.
A Live-Time Relation: Motion Graphics meets Classical Music
Steijn, Arthur
2014-01-01
present segments of my work toward a working model for the process of design of visuals and motion graphics applied in spatial contexts. I show how various design elements and components: line and shape, tone and colour, time and timing, rhythm and movement interact with conceptualizations of space......, liveness and atmosphere. The design model will be a framework for both academic analytical studies as well as for designing time-based narratives and visual concepts involving motion graphics in spatial contexts. I focus on cases in which both pre-rendered, and live generated motion graphics are designed....... Of particular interest are the audio-visual parallels between motion graphics presented in the foyer, before, and the large-scale video projections, during the live concert. These parallels are studied through theory and using terminology derived from two different fields. One perspective includes ideas...
Sbitnev, Valeriy I
2014-01-01
Owing to three conditions (namely: (a) the velocity is represented by sum of irrotational and solenoidal components; (b) the fluid is barotropic; (c) a bath with the fluid undergoes vertical vibrations) the Navier-Stokes equation admits reduction to the modified Hamilton-Jacobi equation. The modification term is the Bohmian(quantum) potential. This reduction opens possibility to define a complex-valued function, named the wave function, which is a solution of the Schr\\"{o}dinger equation. The solenoidal component being added to the momentum operator poses itself as a vector potential by analogy with the magnetic vector potential. The vector potential is represented by the solenoidal velocity multiplied by mass of the fluid element. Vortex tubes, rings, and balls along with the wave function guiding these objects are solutions of this equation. Motion of the vortex balls along the Bohmian trajectories gives a model of droplets moving on the fluid surface. A peculiar fluid is the superfluid physical vacuum. It ...
The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion
ZHANG Yi
2011-01-01
The integration method of a dynamical system of relative motion is studied,and the method of variation of parameters for the dynamical equations of relative motion is presented.First,the dynamic equations of relative motion are brought into the frame of generalized Birkhoffian systems and are expressed in the contravariant algebraic form.Second,an auxiliary system is constructed and its complete solution is found.Finally,the variation of parameters is given,and a complete solution of the problem is obtained by taking advantage of the properties of generalized canonical transformations.An example is given to illustrate the application of the results.An important direction in analytical dynamics is to present new and versatile integration methods for a complex mechanical system.The motion of a complex system may include the motion of a carrier,as well as the motion of a carried system relative to the carrier.Whittaker[1] studied the Lagrange equations of a holonomic system subject to uniform rotation constraints.Lur'e studied the dynamics of relative motion ofa holonomic system.[2] Mei took the dynamics of relative motion as a special topic to review and research in his monographs.[3-8] Over the past twenty years,research on the dynamics of relative motion has been fruitful.[3- 24]%The integration method of a dynamical system of relative motion is studied, and the method of variation of parameters for the dynamical equations of relative motion is presented. First, the dynamic equations of relative motion are brought into the frame of generalized Birkhoffan systems and are expressed in the contravariant algebraic form. Second, an auxiliary system is constructed and its complete solution is found. Finally, the variation of parameters is given, and a complete solution of the problem is obtained by taking advantage of the properties of generalized canonical transformations. An example is given to illustrate the application of the results.
Thanhtoan Tran
2014-08-01
Full Text Available The objective of this study is to illustrate the unsteady aerodynamic effects of a floating offshore wind turbine experiencing the prescribed pitching motion of a supporting floating platform as a sine function. The three-dimensional, unsteady Reynolds Averaged Navier-Stokes equations with the shear-stress transport (SST k-ω turbulence model were applied. Moreover, an overset grid approach was used to model the rigid body motion of a wind turbine blade. The current simulation results are compared to various approaches from previous studies. The unsteady aerodynamic loads of the blade were demonstrated to change drastically with respect to the frequency and amplitude of platform motion.
Savalia, Neil K; Agres, Phillip F; Chan, Micaela Y; Feczko, Eric J; Kennedy, Kristen M; Wig, Gagan S
2017-01-01
Motion-contaminated T1-weighted (T1w) magnetic resonance imaging (MRI) results in misestimates of brain structure. Because conventional T1w scans are not collected with direct measures of head motion, a practical alternative is needed to identify potential motion-induced bias in measures of brain anatomy. Head movements during functional MRI (fMRI) scanning of 266 healthy adults (20-89 years) were analyzed to reveal stable features of in-scanner head motion. The magnitude of head motion increased with age and exhibited within-participant stability across different fMRI scans. fMRI head motion was then related to measurements of both quality control (QC) and brain anatomy derived from a T1w structural image from the same scan session. A procedure was adopted to "flag" individuals exhibiting excessive head movement during fMRI or poor T1w quality rating. The flagging procedure reliably reduced the influence of head motion on estimates of gray matter thickness across the cortical surface. Moreover, T1w images from flagged participants exhibited reduced estimates of gray matter thickness and volume in comparison to age- and gender-matched samples, resulting in inflated effect sizes in the relationships between regional anatomical measures and age. Gray matter thickness differences were noted in numerous regions previously reported to undergo prominent atrophy with age. Recommendations are provided for mitigating this potential confound, and highlight how the procedure may lead to more accurate measurement and comparison of anatomical features. Hum Brain Mapp 38:472-492, 2017. © 2016 Wiley Periodicals, Inc.
On Brownian motion in ideal gas and related principles
Kuzovlev, Yuriy E.
2008-01-01
Brownian motion of particle interacting with atoms of ideal gas is discussed as a key problem of kinetics lying at the border between ``dead'' systems like the Lorentz gas or formal constructs of conceptual Boltzmannian kinetics and actual ``alive'' systems like mere gas possessing scaleless (1/f) fluctuations in their kinetic characteristics (e.g. in diffusuvity and mobility of the ``Brownian particle'').
Monaghan, James M.; Clement, John
1999-01-01
Presents evidence for students' qualitative and quantitative difficulties with apparently simple one-dimensional relative-motion problems, students' spontaneous visualization of relative-motion problems, the visualizations facilitating solution of these problems, and students' memories of the online computer simulation used as a framework for…
Monaghan, James M.; Clement, John
2000-01-01
Hypothesizes that the construction of visual models, resolution of these visual models with numeric models and, in many cases, rejection of commitments such as the belief in one true velocity, are necessary for students to form integrated mental models of relative motion events. Studies high school students' relative motion problem solving.…
Learning Relative Motion Concepts in Immersive and Non-Immersive Virtual Environments
Kozhevnikov, Michael; Gurlitt, Johannes; Kozhevnikov, Maria
2013-01-01
The focus of the current study is to understand which unique features of an immersive virtual reality environment have the potential to improve learning relative motion concepts. Thirty-seven undergraduate students learned relative motion concepts using computer simulation either in immersive virtual environment (IVE) or non-immersive desktop…
Learning Relative Motion Concepts in Immersive and Non-Immersive Virtual Environments
Kozhevnikov, Michael; Gurlitt, Johannes; Kozhevnikov, Maria
2013-01-01
The focus of the current study is to understand which unique features of an immersive virtual reality environment have the potential to improve learning relative motion concepts. Thirty-seven undergraduate students learned relative motion concepts using computer simulation either in immersive virtual environment (IVE) or non-immersive desktop…
Stochastic calculus for fractional Brownian motion and related processes
Mishura, Yuliya S
2008-01-01
The theory of fractional Brownian motion and other long-memory processes are addressed in this volume. Interesting topics for PhD students and specialists in probability theory, stochastic analysis and financial mathematics demonstrate the modern level of this field. Among these are results about Levy characterization of fractional Brownian motion, maximal moment inequalities for Wiener integrals including the values 0
Three-dimensional analysis of relationship between relative orientation and motion modes
Fan Shijie a; Fan Hongqi a; Xiao Huaitie a; Fan Jianpeng b; Fu Qiang a
2014-01-01
Target motion modes have a close relationship with the relative orientation of missile-to-target in three-dimensional highly maneuvering target interception. From the perspective of rela-tionship between the sensor coordinate system and the target body coordinate system, a basic model of sensor is stated and the definition of relative angular velocity between the two coordinate systems is introduced firstly. Then, the three-dimensional analytic expressions of relative angular velocity for different motion modes are derived and simplified by analyzing the influences of target centroid motion, rotation around centroid and relative motion. Finally, the relationships of the relative angular velocity directions and values with motion modes are discussed. Simulation results validate the rationality of the theoretical analysis. It is demonstrated that there are significant differences of the relative orientation in different motion modes which include luxuriant information about motion modes. The conclusions are significant for the research of motion mode identification, maneuver detection, maneuvering target tracking and interception using target signatures.
Three-dimensional analysis of relationship between relative orientation and motion modes
Fan Shijie
2014-12-01
Full Text Available Target motion modes have a close relationship with the relative orientation of missile-to-target in three-dimensional highly maneuvering target interception. From the perspective of relationship between the sensor coordinate system and the target body coordinate system, a basic model of sensor is stated and the definition of relative angular velocity between the two coordinate systems is introduced firstly. Then, the three-dimensional analytic expressions of relative angular velocity for different motion modes are derived and simplified by analyzing the influences of target centroid motion, rotation around centroid and relative motion. Finally, the relationships of the relative angular velocity directions and values with motion modes are discussed. Simulation results validate the rationality of the theoretical analysis. It is demonstrated that there are significant differences of the relative orientation in different motion modes which include luxuriant information about motion modes. The conclusions are significant for the research of motion mode identification, maneuver detection, maneuvering target tracking and interception using target signatures.
Hirai, Masahiro; Kakigi, Ryusuke
2008-12-15
To reveal the neural dynamics underlying biological motion processing, we introduced a novel golf-swing point-light motion (PLM) stimulus with an adaptation paradigm and measured event-related potentials (ERPs). In the adaptation phase, PLM and scrambled PLM (sPLM) stimuli were presented; a static point-lights stimulus was also presented as a control condition. In the subsequent test phase, PLM or sPLM stimuli were presented. We measured ERPs from the onset of the test phase. Two negative components were observed and modulated differently: the amplitude of the N1 component was significantly attenuated by PLM and sPLM adaptation stimuli compared with the static point-light adaptation stimulus, whereas the amplitude of the N2 component in response to the PLM test stimulus was significantly attenuated only by the PLM adaptation stimulus. The amplitude of the N2 component in response to the PLM test stimulus was significantly larger than that in response to the sPLM test stimulus when a sPLM or static adaptation stimulus was used. These findings indicate that the N1 component is sensitive to local motion information while the N2 component is sensitive to the presence of a coherent form conveyed by global motion.
Dilatonic Brans-Dicke Anisotropic Collapsing Fluid Sphere And de Broglie Quantum Wave Motion
Ghaffarnejad, Hossein
2016-08-01
Two dimensional (2D) analogue of vacuum sector of the Brans Dicke (BD) gravity [1] is studied to obtain dynamics of anisotropic spherically symmetric perfect fluid. Our obtained static solutions behave as dark matter with state equation but in non-static regimes behave as regular perfect fluid with barotropic index ϒ > 0. Positivity property of total mass of the fluid causes that the BD parameter to be ω >2/3 and/or ω 0 the apparent horizon is covered by event horizon where the cosmic censorship hypothesis is still valid. According to the model [1], we obtain de Broglie pilot wave of our metric solution which describes particles ensemble which become distinguishable via different values of ω. Incident current density of particles ensemble on the horizons is evaluated which describe the ‘Hawking radiation’. The de Brogle-Bohm quantum potential effect is calculated also on the event (apparent) horizon which is independent (dependent) to values of ω.
Bhatti, M M; Zeeshan, A; Ellahi, R
2016-12-01
In this article, heat transfer analysis on clot blood model of the particle-fluid suspension through a non-uniform annulus has been investigated. The blood propagating along the whole length of the annulus was induced by peristaltic motion. The effects of variable viscosity and slip condition are also taken into account. The governing flow problem is modeled using lubrication approach by taking the assumption of long wavelength and creeping flow regime. The resulting equation for fluid phase and particle phase is solved analytically and closed form solutions are obtained. The physical impact of all the emerging parameters is discussed mathematically and graphically. Particularly, we considered the effects of particle volume fraction, slip parameter, the maximum height of clot, viscosity parameter, average volume flow rate, Prandtl number, Eckert number and fluid parameter on temperature profile, pressure rise and friction forces for outer and inner tube. Numerical computations have been used to determine the behavior of pressure rise and friction along the whole length of the annulus. The present study is also presented for an endoscope as a special case of our study. It is observed that greater influence of clot tends to rise the pressure rise significantly. It is also found that temperature profile increases due to the enhancement in Prandtl number, Eckert number, and fluid parameter. The present study reveals that friction forces for outer tube have higher magnitude as compared to the friction forces for an inner tube. In fact, the results for present study can also be reduced to the Newtonian fluid by taking ζ → ∞.
Cardiovascular adaptations, fluid shifts, and countermeasures related to space flight.
Hargens, Alan R; Richardson, Sara
2009-10-01
Significant progress has been made related to understanding cardiovascular adaptations to microgravity and development of countermeasures to improve crew re-adaptation to gravity. The primary ongoing issues are orthostatic intolerance after flight, reduced exercise capacity, the effect of vascular-smooth muscle loss on other physiologic systems, development of efficient and low-cost countermeasures to counteract these losses, and an understanding of fluid shift mechanisms. Previous animal studies of cardiovascular adaptations offer evidence that prolonged microgravity remodels walls of blood vessels, which in turn, is important for deconditioning of the cardiovascular system and other functions of the body. Over the past 10 years, our studies have documented that treadmill exercise within lower body negative pressure counteracts most physiologic decrements with bed rest in both women and men. Future studies should improve hardware and protocols to protect crew members during prolonged missions. Finally, it is proposed that transcapillary fluid shifts in microgravity may be related to the loss of tissue weight and external compression of blood vessels.
Acquisition-related motion compensation for digital subtraction angiography.
Ionasec, Razvan Ioan; Heigl, Benno; Hornegger, Joachim
2009-06-01
Subtraction methods in angiography are generally applied in order to enhance the visualization of blood vessels by eliminating bones and surrounding tissues from X-ray images. The main limitation of these methods is the sensitivity to patient movement, which leads to artifacts and reduces the clinical value of the subtraction images. In this paper we present a novel method for rigid motion compensation with primary application to road mapping, frequently used in image-guided interventions. Using the general concept of image-based registration, we optimize the physical position and orientation of the C-arm X-ray device, thought of as the rigid 3D transformation accounting for the patient movement. The registration is carried out using a hierarchical optimization strategy and a similarity measure based on the variance of intensity differences, which has been shown to be most suitable for fluoroscopic images. Performance evaluation demonstrated the capabilities of the proposed approach to compensate for potential intra-operative patient motion, being more resilient to the fundamental problems of pure image-based registration.
Xia, H M; Wang, Z P; Koh, Y X; May, K T
2010-07-07
In micromixer studies, compared with the design, modeling and characterization, the influence of the fluid properties on mixing has been less discussed. This topic is of practical significance as the properties of diverse biological and chemical liquids to be mixed have large variations. Here, we report a microfluidic mixer for mixing fluids with widely different viscosities. It contains an interconnected multi-channel network through which the bulk fluid volumes are divided into smaller ones and chaotically reorganized. Then, the multiple fluid streams are driven into an expansion chamber which triggers viscous flow instabilities. Experiments with the co-flow of glycerol and aqueous solutions show an automatic transition of the flow from a steady state to a 'turbulent' state, significantly enhancing the mixing. This observation is rather interesting considering that it occurs in a passive flow and the average Reynolds number involved is small. Further testing indicates that this mixer works well at viscosity ratio (chi) up to the order of 10(4).
Peristaltic Motion of Power-Law Fluid with Heat and Mass Transfer
T.Hayat; S.Hina; Awatif A.Hendi
2011-01-01
@@ The effects of wall properties and heat and mass transfer on the peristalsis in a power-law fluid are investigated.The solutions for the stream function, temperature, concentration and heat transfer coefficient are obtained.The axial velocity, temperature and mass concentration are studied for different emerging parameters.
The role of angular momentum in the laminar motion of viscous fluids
Paglietti, A.
2017-03-01
In laminar flow, viscous fluids must exert appropriate elastic shear stresses normal to the flow direction. This is a direct consequence of the balance of angular momentum. There is a limit, however, to the maximum elastic shear stress that a fluid can exert. This is the ultimate shear stress, τ _y, of the fluid. If this limit is exceeded, laminar flow becomes dynamically incompatible. The ultimate shear stress of a fluid can be determined from experiments on plane Couette flow. For water at 20°, the data available in the literature indicate a value of τ _y of about 14.4× 10^{-3} Pa. This study applies this value to determine the Reynolds numbers at which flowing water reaches its ultimate shear stress in the case of Taylor-Couette flow and circular pipe flow. The Reynolds numbers thus obtained turn out to be reasonably close to those corresponding to the onset of turbulence in the considered flows. This suggests a connection between the limit to laminar flow, on the one hand, and the occurrence of turbulence, on the other.
Lorentz Contraction, Bell's Spaceships and Rigid Body Motion in Special Relativity
Franklin, Jerrold
2010-01-01
The meaning of Lorentz contraction in special relativity and its connection with Bell's spaceships parable is discussed. The motion of Bell's spaceships is then compared with the accelerated motion of a rigid body. We have tried to write this in a simple form that could be used to correct students' misconceptions due to conflicting earlier…
Lorentz Contraction, Bell's Spaceships and Rigid Body Motion in Special Relativity
Franklin, Jerrold
2010-01-01
The meaning of Lorentz contraction in special relativity and its connection with Bell's spaceships parable is discussed. The motion of Bell's spaceships is then compared with the accelerated motion of a rigid body. We have tried to write this in a simple form that could be used to correct students' misconceptions due to conflicting earlier…
Li, Jin
2011-01-01
In this paper we consider the Stochastic isothermal, nonlinear, incompressible bipolar viscous fluids driven by a genuine cylindrical fractional Bronwnian motion with Hurst parameter $H \\in (1/4,1/2)$ under Dirichlet boundary condition on 2D square domain. First we prove the existence and regularity of the stochastic convolution corresponding to the stochastic non-Newtonian fluids. Then we obtain the existence and uniqueness results for the stochastic non-Newtonian fluids. Under certain condition, the random dynamical system generated by non-Newtonian fluids has a random attractor.
Comparisons between measurement and analysis of fluid motion in internal combustion engines
Witze, P.O. (ed.)
1981-10-01
The Engine Combustion Technology Project was created for the purpose of promoting the development of advanced piston engine concepts by the development of techniques to measure, analyze, and understand the combustion process. The technologies emphasized in the project include laser-based measurement techniques and large-scale computer simulations. Considerable progress has already been achieved by project participants in modeling engine air motion, fuel sprays, and engine combustion phenomena. This milestone report covers one part of that progress, summarizing the current capabilities of multi-dimensional computer codes being developed by the project to predict the behavior of turbulent air motion in an engine environment. Computed results are compared directly with experimental data in six different areas of importance to internal combustion engines: (1) Induction-generated ring-vortex structures; (2) Piston-induced vortex roll-up; (3) Behavior of turbulence during compression; (4) Decay of swirling flow during compression; (5) Decay of swirling flow in a constant volume engine simulator; (6) Exhaust-pipe flow. The computational procedures used include vortex dynamics, rapid distortion theory, and finite difference models employing two-equation and subgrid-scale turbulence models. Although the capability does not yet exist to predict the air motion in an engine from its geometric configuration alone, the results presented show that many flowfield sub-processes can be predicted given well-specified initial and boundary conditions.
Kiørboe, Thomas; Thygesen, Uffe Høgsbro
2001-01-01
Marine snow aggregates are colonized by copepods, and encounter rates inferred from observed abundances of colonizers are high. We examined the potential for hydromechanical and chemical remote detection. The fluid disturbance generated by a sinking aggregate was described by solving the Navier......-Stokes' equation for a sinking sphere at Reynolds numbers typical of marine snow (up to 20). Fluid deformation rate, the component of the flow that can be perceived by copepods, attenuates rapidly, and detection distances estimated from knowledge of the hydromechanical sensitivity in copepods are insufficient...... to account for the observed abundances of colonizers. We next solved the advection-diffusion equation to describe the chemical trail left by a leaking and sinking aggregate. The plume is long and slender and may be detected by a horizontally cruising copepod. From the model of the plume and literature- based...
Approximate solutions of non-linear circular orbit relative motion in curvilinear coordinates
Bombardelli, Claudio; Gonzalo, Juan Luis; Roa, Javier
2016-07-01
A compact, time-explicit, approximate solution of the highly non-linear relative motion in curvilinear coordinates is provided under the assumption of circular orbit for the chief spacecraft. The rather compact, three-dimensional solution is obtained by algebraic manipulation of the individual Keplerian motions in curvilinear, rather than Cartesian coordinates, and provides analytical expressions for the secular, constant and periodic terms of each coordinate as a function of the initial relative motion conditions or relative orbital elements. Numerical test cases are conducted to show that the approximate solution can be effectively employed to extend the classical linear Clohessy-Wiltshire solution to include non-linear relative motion without significant loss of accuracy up to a limit of 0.4-0.45 in eccentricity and 40-45° in relative inclination for the follower. A very simple, quadratic extension of the classical Clohessy-Wiltshire solution in curvilinear coordinates is also presented.
Approximate solutions of non-linear circular orbit relative motion in curvilinear coordinates
Bombardelli, Claudio; Gonzalo, Juan Luis; Roa, Javier
2017-01-01
A compact, time-explicit, approximate solution of the highly non-linear relative motion in curvilinear coordinates is provided under the assumption of circular orbit for the chief spacecraft. The rather compact, three-dimensional solution is obtained by algebraic manipulation of the individual Keplerian motions in curvilinear, rather than Cartesian coordinates, and provides analytical expressions for the secular, constant and periodic terms of each coordinate as a function of the initial relative motion conditions or relative orbital elements. Numerical test cases are conducted to show that the approximate solution can be effectively employed to extend the classical linear Clohessy-Wiltshire solution to include non-linear relative motion without significant loss of accuracy up to a limit of 0.4-0.45 in eccentricity and 40-45° in relative inclination for the follower. A very simple, quadratic extension of the classical Clohessy-Wiltshire solution in curvilinear coordinates is also presented.
Electroosmotic fluid motion and late-time solute transport at non-negligible zeta potentials
S. K. Griffiths; R. H. Nilson
1999-12-01
Analytical and numerical methods are employed to determine the electric potential, fluid velocity and late-time solute distribution for electroosmotic flow in a tube and channel when the zeta potential is not small. The electric potential and fluid velocity are in general obtained by numerical means. In addition, new analytical solutions are presented for the velocity in a tube and channel in the extremes of large and small Debye layer thickness. The electroosmotic fluid velocity is used to analyze late-time transport of a neutral non-reacting solute. Zeroth and first-order solutions describing axial variation of the solute concentration are determined analytically. The resulting expressions contain eigenvalues representing the dispersion and skewness of the axial concentration profiles. These eigenvalues and the functions describing transverse variation of the concentration field are determined numerically using a shooting technique. Results are presented for both tube and channel geometries over a wide range of the normalized Debye layer thickness and zeta potential. Simple analytical approximations to the eigenvalues are also provided for the limiting cases of large and small values of the Debye layer thickness. The methodology developed here for electroosmotic flow is also applied to the Taylor problem of late-time transport and dispersion in pressure-driven flows.
Caimmi R.
2008-01-01
Full Text Available A theory of collisionless fluids is developed in a unified picture, where nonrotating (Ωf1 = Ωf2 = Ωf3 = 0 figures with some given random velocity component distributions, and rotating (Ωf1 = Ωf2 = Ωf3 figures with a different random velocity component distributions, make adjoint configurations to the same system. R fluids are defined as ideal, self-gravitating fluids satisfying the virial theorem assumptions, in presence of systematic rotation around each of the principal axes of inertia. To this aim, mean and rms angular velocities and mean and rms tangential velocity components are expressed, by weighting on the moment of inertia and the mass, respectively. The figure rotation is defined as the mean angular velocity, weighted on the moment of inertia, with respect to a selected axis. The generalized tensor virial equations (Caimmi and Marmo 2005 are formulated for R fluids and further attention is devoted to axisymmetric configurations where, for selected coordinate axes, a variation in figure rotation has to be counterbalanced by a variation in anisotropy excess and vice versa. A microscopical analysis of systematic and random motions is performed under a few general hypotheses, by reversing the sign of tangential or axial velocity components of an assigned fraction of particles, leaving the distribution function and other parameters unchanged (Meza 2002. The application of the reversion process to tangential velocity components is found to imply the conversion of random motion rotation kinetic energy into systematic motion rotation kinetic energy. The application of the reversion process to axial velocity components is found to imply the conversion of random motion translation kinetic energy into systematic motion translation kinetic energy, and the loss related to a change of reference frame is expressed in terms of systematic motion (imaginary rotation kinetic energy. A number of special situations are investigated in greater
A Functional Equation Governing the Motion of a Compressible Fluid Flow
无
2000-01-01
The fundamental problem of the statistical dynamics of a turbulent flow, formulated in terms of characteristic functionals, has already been pointed out in the work of E. Hopf. In his work he deduced a functional equation governing the evolution of the characteristic functional of a turbulent velocity field in an incompressible field. In this paper we present a derivation of a dynamical equation governing the evolution of the characteristic functional of a turbulent velocity field in a compressible field. However, the characteristic functional equations we derived are governing the motions of an ideal gas and van der Waals gas.
The zonal motion of equatorial plasma bubbles relative to the background ionosphere
Kil, Hyosub; Lee, Woo Kyoung; Kwak, Young-Sil; Zhang, Yongliang; Paxton, Larry J.; Milla, Marco
2014-07-01
The zonal motions of plasmas inside equatorial plasma bubbles are different from those in the background ionosphere. The difference was explained in terms of the tilt of bubbles by recent studies, but observational evidence of this hypothesis has not yet been provided. We examine this hypothesis and, at the same time, look for an alternative explanation on the basis of the coincident satellite and radar observations over Jicamarca (11.95°S, 76.87°W) in Peru. In the observations at premidnight by the first Republic of China satellite (altitude: 600 km, inclination: 35°), plasmas inside bubbles drift westward relative to ambient plasmas. The same phenomenon is identified by radar observations. However, the relative westward plasma motions inside bubbles occur regardless of the tilt of bubbles, and therefore, the tilt is not the primary cause of the deviation of the plasma motions inside bubbles. The zonal plasma motions in the topside are characterized by systematic eastward drifts, whereas the zonal motions of plasmas in the bottomside backscatter layer show a mixture of eastward and westward drifts. The zonal plasma motions inside backscatter plumes resemble those in the bottomside backscatter layer. These observations indicate that plasmas inside bubbles maintain the properties of the zonal plasma motions in the bottomside where the bubbles originate. With this assumption, the deviation of the zonal motions of plasmas inside bubbles from those of ambient plasmas is understood in terms of the difference of the zonal plasma flows in the bottomside and topside.
Measured Data Processing Method For Relative Motions Between Two Side-by-side Ships
Ping-an Shi
2013-01-01
Full Text Available In order to design and implement a wave compensation system to reduce the relative motion between two side-by-side ships in waves, a new method to process measured data of ship model test with contact measurement to study the characteristics of relative motion was presented. The reference co-ordinate systems and relative motions were defined, and the scheme of the model test was described. Then the Empirical Mode Decomposition(EMD adaptive filter were designed, the frequency domain integration transform method based upon Fast Fourier Transform(FFT were established. The procedure to transform acceleration signal into displacement was proposed and verified, and the processing results with and without EMD adaptive filter were compared. Finally, the relative motions consistent with reality were acquired, which indicates this method is effective for measured data processing.
Shin, Hyun Kyung; Choi, Bongsik; Talkner, Peter; Lee, Eok Kyun
2014-12-07
Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.
Vibratory motion of fourth order fluid film over a unsteady heated flat
Mohmand, Muhammad Ismail; Mamat, Mustafa Bin; Shah, Qayyum; Gul, Taza
2017-03-01
Analysis of heat transfer is studied in magnetohydrodynamic (MHD) thin layer flow of an unsteady fourth grade fluid past a moving and oscillating vertical plate for lift and drainage problem. The governing equations are modelled in terms of nonlinear partial differential equations with some physical boundary conditions. Two different analytical methods, namely Adomian Decomposition Method (ADM) and the Optimal Homotopy Asymptotic Method (OHAM) are used for finding the series solution of the problem. The solutions obtained through two different techniques are compared using graphs and tables and found an excellent agreement. The variants of embedded flow parameters in the solution are analyzed through graphical illustrations.
Self-propelled motion of a fluid droplet under chemical reaction
Yabunaka, Shunsuke; Yoshinaga, Natsuhiko
2012-01-01
We study self-propelled dynamics of a droplet due to a Marangoni effect and chemical reactions in a binary fluid with a dilute third component of chemical product which affects the interfacial energy of a droplet. The equation for the migration velocity of the center of mass of a droplet is derived in the limit of an infinitesimally thin inter- face. We found that there is a bifurcation from a motionless state to a propagating state of droplet by changing the strength of the Marangoni effect.
Zimdahl, W; Zimdahl, Winfried; Balakin, Alexander B.
1998-01-01
The particles of a classical relativistic gas are supposed to move under the influence of a quasilinear (in the particle four-momenta), self-interacting force inbetween elastic, binary collisions. This force which is completely fixed by the equilibrium conditions of the gas, gives rise to an effective viscous pressure on the fluid phenomenological level. Earlier results concerning the possibility of accelerated expansion of the universe due to cosmological particle production are reinterpreted. A phenomenon such as power law inflation may be traced back to specific self-interacting forces keeping the particles of a gas universe in states of generalized equilibrium.
CHEN Xiang-Wei; WANG Ming-Quan; WANG Xin-Min
2005-01-01
Based on the theory of symmetries and conserved quantities, the exact invariants and adiabatic invariants of nonholonomic dynamical system of relative motion are studied. The perturbation to symmetries for the nonholonomic dynamical system of relative motion under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the form of exact invariants and adiabatic invariants as well as the conditions for their existence are given. Then the corresponding inverse problem is studied.
Exact invariants and adiabatic invariants of dynamical system of relative motion
Chen Xiang-Wei; Wang Xin-Min; Wang Ming-Quan
2004-01-01
Based on the theory of symmetries and conserved quantities, the exact inwriants and adiabatic inwriants of a dynamical system of relative motion are studied. The perturbation to symmetries for the dynamical system of relative motion under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the form of exact invariants and adiabatic invariants as well as the conditions for their existence are given. Then the corresponding inverse problem is studied.
Characterization of Non-Linearized Spacecraft Relative Motion using Nonlinear Normal Modes
2016-04-20
Non-Linearized Spacecraft Relative Motion using Nonlinear Normal Modes 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F...AFRL-RV-PS- AFRL-RV-PS- TR-2015-0182 TR-2015-0182 CHARACTERIZATION OF NON-LINEARIZED SPACECRAFT RELATIVE MOTION USING NONLINEAR NORMAL MODES Eric...STATEMENT. THOMAS LOVELL PAUL HAUSGEN, Ph.D. Program Manager Technical Advisor, Spacecraft Component Technology JOHN BEAUCHEMIN Chief Engineer
Lie-Form Invariance of the Nonholonomic System of Relative Motion in Event Space
无
2007-01-01
In this paper, the Lie-form invariance of a nonholonomic system of relative motion in event space is studied.Firstly, the definition and the criterion of the Lie-form invariance of the nonholonomic system of relative motion in event space is given. Secondly, the Hojman conserved quantity and a new type of conserved quantity deduced from the Lie-form invariance are obtained. An example is given to illustrate the application of the results.
Heat transfers and related effects in supercritical fluids
Zappoli, Bernard; Garrabos, Yves
2015-01-01
This book investigates the unique hydrodynamics and heat transfer problems that are encountered in the vicinity of the critical point of fluids. Emphasis is given on weightlessness conditions, gravity effects and thermovibrational phenomena. Near their critical point, fluids indeed obey universal behavior and become very compressible and expandable. Their comportment, when gravity effects are suppressed, becomes quite unusual. The problems that are treated in this book are of interest to students and researchers interested in the original behavior of near-critical fluids as well as to engineers that have to manage supercritical fluids. A special chapter is dedicated to the present knowledge of critical point phenomena. Specific data for many fluids are provided, ranging from cryogenics (hydrogen) to high temperature (water). Basic information in statistical mechanics, mathematics and measurement techniques is also included. The basic concepts of fluid mechanics are given for the non-specialists to be able to ...
M. Rahimi-Gorji
2015-06-01
Full Text Available An analytical investigation is applied for unsteady motion of a rigid spherical particle in a quiescent shear-thinning power-law fluid. The results were compared with those obtained from Collocation Method (CM and the established Numerical Method (Fourth order Runge–Kutta scheme. It was shown that CM gave accurate results. Collocation Method (CM and Numerical Method are used to solve the present problem. We obtained that the CM which was used to solve such nonlinear differential equation with fractional power is simpler and more accurate than series method such as HPM which was used in some previous works by others but the new method named Akbari-Ganji’s Method (AGM is an accurate and simple method which is slower than CM for solving such problems. The terminal settling velocity—that is the velocity at which the net forces on a falling particle eliminate—for three different spherical particles (made of plastic, glass and steel and three flow behavior index n, in three sets of power-law non-Newtonian fluids was investigated, based on polynomial solution (CM. Analytical results obtained indicated that the time of reaching the terminal velocity in a falling procedure is significantly increased with growing of the particle size that validated with Numerical Method. Further, with approaching flow behavior to Newtonian behavior from shear-thinning properties of flow (n → 1, the transient time to achieving the terminal settling velocity is decreased.
von Kármán–Howarth and Corrsin equations closure based on Lagrangian description of the fluid motion
Divitiis, Nicola de, E-mail: n.dedivitiis@gmail.com
2016-05-15
A new approach to obtain the closure formulas for the von Kármán–Howarth and Corrsin equations is presented, which is based on the Lagrangian representation of the fluid motion, and on the Liouville theorem associated to the kinematics of a pair of fluid particles. This kinematics is characterized by the finite scale separation vector which is assumed to be statistically independent from the velocity field. Such assumption is justified by the hypothesis of fully developed turbulence and by the property that this vector varies much more rapidly than the velocity field. This formulation leads to the closure formulas of von Kármán–Howarth and Corrsin equations in terms of longitudinal velocity and temperature correlations following a demonstration completely different with respect to the previous works. Some of the properties and the limitations of the closed equations are discussed. In particular, we show that the times of evolution of the developed kinetic energy and temperature spectra are finite quantities which depend on the initial conditions.
Caimmi, R.
2008-06-01
Full Text Available A theory of collisionless fluids is developed in a unified picture, where nonrotating $(widetilde{Omega_1}=widetilde{Omega_2}= widetilde{Omega_3}=0$ figures with some given random velocity component distributions, and rotating $(widetilde{Omega_1} ewidetilde{Omega_2} e widetilde{Omega_3} $ figures with a different random velocity component distributions, make adjoint configurations to the same system. R fluids are defined as ideal, self-gravitating fluids satisfying the virial theorem assumptions, in presence of systematic rotation around each of the principal axes of inertia. To this aim, mean and rms angular velocities and mean and rms tangential velocity components are expressed, by weighting on the moment of inertia and the mass, respectively. The figure rotation is defined as the mean angular velocity, weighted on the moment of inertia, with respectto a selected axis. The generalized tensor virial equations (Caimmi and Marmo 2005 are formulated for R fluidsand further attention is devoted to axisymmetric configurations where, for selected coordinateaxes, a variation in figure rotation has to be counterbalanced by a variation in anisotropy excess and viceversa. A microscopical analysis of systematic and random motions is performed under a fewgeneral hypotheses, by reversing the sign of tangential or axial velocity components of anassigned fraction of particles, leaving the distribution function and other parametersunchanged (Meza 2002. The application of the reversion process to tangential velocitycomponents is found to imply the conversion of random motion rotation kinetic energy intosystematic motion rotation kinetic energy. The application ofthe reversion process to axial velocity components is found to imply the conversionof random motion translation kinetic energy into systematic motion translation kinetic energy, and theloss related to a change of reference frame is expressed in terms of systematic motion (imaginary rotation kinetic
Phonons in slow motion: dispersion relations in ultrathin Si membranes.
Cuffe, John; Chávez, Emigdio; Shchepetov, Andrey; Chapuis, Pierre-Olivier; El Boudouti, El Houssaine; Alzina, Francesc; Kehoe, Timothy; Gomis-Bresco, Jordi; Dudek, Damian; Pennec, Yan; Djafari-Rouhani, Bahram; Prunnila, Mika; Ahopelto, Jouni; Sotomayor Torres, Clivia M
2012-07-11
We report the changes in dispersion relations of hypersonic acoustic phonons in free-standing silicon membranes as thin as ∼8 nm. We observe a reduction of the phase and group velocities of the fundamental flexural mode by more than 1 order of magnitude compared to bulk values. The modification of the dispersion relation in nanostructures has important consequences for noise control in nano- and microelectromechanical systems (MEMS/NEMS) as well as opto-mechanical devices.
Pahlavian, Soroush Heidari; Loth, Francis; Luciano, Mark; Oshinski, John; Martin, Bryn A
2015-12-01
Central nervous system (CNS) tissue motion of the brain occurs over 30 million cardiac cycles per year due to intracranial pressure differences caused by the pulsatile blood flow and cerebrospinal fluid (CSF) motion within the intracranial space. This motion has been found to be elevated in type 1 Chiari malformation. The impact of CNS tissue motion on CSF dynamics was assessed using a moving-boundary computational fluid dynamics (CFD) model of the cervical-medullary junction (CMJ). The cerebellar tonsils and spinal cord were modeled as rigid surfaces moving in the caudocranial direction over the cardiac cycle. The CFD boundary conditions were based on in vivo MR imaging of a 35-year old female Chiari malformation patient with ~150-300 µm motion of the cerebellar tonsils and spinal cord, respectively. Results showed that tissue motion increased CSF pressure dissociation across the CMJ and peak velocities up to 120 and 60%, respectively. Alterations in CSF dynamics were most pronounced near the CMJ and during peak tonsillar velocity. These results show a small CNS tissue motion at the CMJ can alter CSF dynamics for a portion of the cardiac cycle and demonstrate the utility of CFD modeling coupled with MR imaging to help understand CSF dynamics.
Onset of cavity deformation upon subsonic motion of a projectile in a fluid complex plasma.
Zhukhovitskii, D I; Ivlev, A V; Fortov, V E; Morfill, G E
2013-06-01
We study the deformation of a cavity around a large projectile moving with subsonic velocity in the cloud of small dust particles. To solve this problem, we employ the Navier-Stokes equation for a compressible fluid with due regard for friction between dust particles and atoms of neutral gas. The solution shows that due to friction, the pressure of a dust cloud at the surface of a cavity around the projectile can become negative, which entails the emergence of a considerable asymmetry of the cavity, i.e., the cavity deformation. Corresponding threshold velocity is calculated, which is found to decrease with increasing cavity size. Measurement of such velocity makes it possible to estimate the static pressure inside the dust cloud.
Onset of cavity deformation upon subsonic motion of a projectile in a fluid complex plasma
Zhukhovitskii, D I; Fortov, V E; Morfill, G E
2013-01-01
We study deformation of a cavity around a large projectile moving with subsonic velocity in the cloud of small dust particles. To solve this problem, we employ the Navier-Stokes equation for a compressible fluid with due regard for friction between dust particles and atoms of neutral gas. The solutions shows that due to friction, the pressure of dust cloud at the boundary of the cavity behind the projectile can become negative, which entails formation of a microscopic void free from dust particles -- the cavity deformation. The corresponding threshold velocity is calculated, which is found to decrease with increasing cavity size. Measurement of such velocity makes it possible to estimate the static pressure inside the dist cloud.
Peristaltic motion of Johnson-Segalman fluid in a curved channel with slip conditions.
Sadia Hina
Full Text Available Slip effects on the peristaltic transport of Johnson-Segalman fluid through a curved channel have been addressed. The influence of wall properties is also analyzed. Long wavelength and low Reynolds number assumptions have been utilized in the mathematical formulation of the problem. The equations so formed have been solved numerically by shooting method through computational software Mathematica 8. In addition the analytic solution for small Weissenberg number (elastic parameter is computed through a regular perturbation method. An excellent agreement is noticed between the two solutions. The results indicate an increase in the magnitude of velocity with an intensification in the slip effect. Moreover the size and circulation of the trapped boluses increase with an increase in the slip parameter. Unlike the planar channel, the profiles of axial velocity are not symmetric about the central line of the channel.
Peristaltic motion of Johnson-Segalman fluid in a curved channel with slip conditions.
Hina, Sadia; Mustafa, Meraj; Hayat, Tasawar
2014-01-01
Slip effects on the peristaltic transport of Johnson-Segalman fluid through a curved channel have been addressed. The influence of wall properties is also analyzed. Long wavelength and low Reynolds number assumptions have been utilized in the mathematical formulation of the problem. The equations so formed have been solved numerically by shooting method through computational software Mathematica 8. In addition the analytic solution for small Weissenberg number (elastic parameter) is computed through a regular perturbation method. An excellent agreement is noticed between the two solutions. The results indicate an increase in the magnitude of velocity with an intensification in the slip effect. Moreover the size and circulation of the trapped boluses increase with an increase in the slip parameter. Unlike the planar channel, the profiles of axial velocity are not symmetric about the central line of the channel.
Seismic motion attenuation relations in Sichuan and adjacent areas
LEI Jian-cheng; GAO Meng-tan; YU Yan-xiang
2007-01-01
The Sichuan and adjacent areas is divided into southwest China region (SWCR) and Sichuan Basin region (SCBR) according to tectonic backgrounds and seismic damage distribution features. 96 modern destructive earthquakes in SWCR and 40 in SCBR are gathered respectively. All their magnitude parameters are checked. Based on the statistic relations between epicentral intensity and magnitude as well as relation between sensible radius and magnitude, the near and far field seismic intensity attenuation features are represented and controlled. And then the seismic intensity attenuation relations along major axis, minor axis and mean axis are established separately. The systematic deviations of surface wave magnitude between China seismograph network and U.S. seismograph network are considered in this paper. By making use of the new attenuation relations of bedrock horizontal ground acceleration response spectrum in west U.S., the attenuation relations of bedrock horizontal ground acceleration response spectrum in SWCR and SCBR are digital transformed based on the attenuation model considering acceleration saturation of distance and magnitude in near field.
Fluid motion in a spinning, coning cylinder via spatial eigenfunction expansion
Hall, Philip; Sedney, Raymond; Gerber, Nathan
1987-08-01
The first attempts to explain the motion of a liquid-filled projectile were confined to the limit Reynolds Number = Re approaches infinity and linear theory. Recently, the need became apparent for the limit Re approaches 0 for which the spatial eigenvalue method was developed; it is not restricted in Re, however. The eigenvalue problem is defined by ordinary differential equations in the radial direction. The eigenvalues are determined by an iterative process for which sufficiently accurate initial estimates are required. The flow variables are expanded in a eigenfunction series with coefficients determined by satisfying the boundary conditions; a least squares method and collocation method are used for this purpose. The pressure and shear stress so determined give the pressure coefficient and overturning moment. The accuracy of the calculation is discussed. Results are given over a range of Re, aspect ratio, and nutational frequency. The CPU time required on the VAX 8600 varies from 10 seconds at Re = 10 to 30 minutes at Re = 1,000. Results are compared with experimental measurements. Comparisons are also made with results from the large scale finite difference program of Strikwerda.
Direct numerical simulation of the motion of circular pollutant particles in Newtonian fluid
SHAO Xue-ming; LIN Jian-zhong; YU Zhao-sheng
2003-01-01
An improved implementation of distributed multiplier/fictitious domain method is presented for the direct numerical simulation of particulate flow. The key improvement is to replace a finite-element triangulation for the velocity and a "twice-coarser" triangulation for the pressure with a rectangular discretization for the velocity and pressure. For code validation, the sedimentation of a single particle in a two-dimensional channel was simulated. The results show that the simulation is independent of the mesh size as well as the time step. The comparison between experimental data and our simulation shows that our code can give a more accurate simulation on the motion of particles than previous DLM code. Our code was then applied to simulate the sedimentation of 600 particles in a rectangular box. The falling course is presented and discussed. At the same time, this simulation also demonstrates that the method presented in this paper can be used for solving the initial problems involving a lager number of particles exactly with computing durations kept at acceptable levels.
Applications of laser based measurements to combustion related fluid dynamics
Klingmann, J.
1998-12-01
This thesis is concerned with laser based techniques for the measurement of fluid dynamical properties and their application to combusting flow fields or flow fields related to combustion. As an introduction, the theory of turbulent flow and combustion is shortly presented. An overview of laser based measuring techniques is given. Next, seven papers are included. The main topic of papers 1 and 2 is the measurements of swirling pipe flows with sudden axi-symmetric expansions. These flow fields are related to the flow fields of gas turbine combustors. Measurements and computations using commercial software are compared. Papers 3 and 7 deal with a laser Doppler anemometry based method for the measurement of the turbulent dissipation rate and its application to an axi-symmetric free jet, respectively. The measurements rely on two-point measurements with high spatial resolution. Also three-component one-point measurements are used to obtain the triple velocity correlations. Together these measurements are sufficient to present the energy balance, if pressure effects are neglected. Papers 4, 5 and 6 are concerned with the turbulent flame speed under premixed conditions. Papers 4 and 5 present flame speed measurements from a stationary burner using methane and Danish natural gas. Particle image velocimetry and one- and two-point Laser Doppler anemometry is used to measure flame speed and turbulent quantities, including integral length scales. Paper 7 presents measurements of flame speed and turbulence parameters in a spark ignition engine. Here heat release analyses from pressure measurements are combined with one- and two-point laser Doppler anemometry to analyze influence of turbulence on flame propagation 50 refs, 25 figs
Fedosin, Sergey G
2016-01-01
From the principle of least action the equation of motion for viscous compressible and charged fluid is derived. The viscosity effect is described by the 4-potential of the energy dissipation field, dissipation tensor and dissipation stress-energy tensor. In the weak field limit it is shown that the obtained equation is equivalent to the Navier-Stokes equation. The equation for the power of the kinetic energy loss is provided, the equation of motion is integrated, and the dependence of the velocity magnitude is determined. A complete set of equations is presented, which suffices to solve the problem of motion of viscous compressible and charged fluid in the gravitational and electromagnetic fields.
Naoki Takada
2014-09-01
Full Text Available Applicability of two kinds of computational-fluid-dynamics method adopting Cahn-Hilliard (CH and Allen-Cahn (AC-type diffuse-interface advection equations based on a phase-field model (PFM is examined to simulation of motions of microscopic incompressible two-phase fluid on solid surface. A capillarity-driven gas-liquid motion in rectangular channel is simulated by use of a PFM method for solving Navier-Stokes (NS equations and a CH equation, whereas an immiscible liquid-liquid flow in a microchannel with T-junction and square cross section is simulated by use of another PFM method proposed in this study, which adopts a lattice-Boltzmann method based on fictitious particles kinematics as numerical scheme for solving NS equations and an AC equation that is modified to improve volume-of-fluid conservation. The major findings are as follows: (1 effect of capillary force on the dynamic two-phase fluid system with a high density ratio is well predicted for cross-sectional aspect ratio of the channel = 1 and 2; (2 mono-dispersed slug flow pattern transition is reproduced in good agreement with experimental observations in terms of variation in length and interval of droplets as increasing their volumetric flow rates at a constant flow rate ratio = 1. These results prove that the PFM methods can be used for analyzing two-phase fluid motions in various microfluidic devices and micro fabrication processes.
Identifying Fracture Types and Relative Ages Using Fluid Inclusion Stratigraphy
Dilley, Lorie M.; Norman, David; Owens, Lara
2008-06-30
Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Understanding the life cycle of a fracture in a geothermal system is fundamental to the development of techniques for creating fractures. Recognizing the stage of a fracture, whether it is currently open and transmitting fluids; if it recently has closed; or if it is an ancient fracture would assist in targeting areas for further fracture stimulation. Identifying dense fracture areas as well as large open fractures from small fracture systems will also assist in fracture stimulation selection. Geothermal systems are constantly generating fractures, and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. Our hypothesis is that fractures over their life cycle have different chemical signatures that we can see in fluid inclusion gas analysis and by using the new method of fluid inclusion stratigraphy (FIS) the different stages of fractures, along with an estimate of fracture size can be identified during the well drilling process. We have shown with this study that it is possible to identify fracture locations using FIS and that different fractures have different chemical signatures however that signature is somewhat dependent upon rock type. Open, active fractures correlate with increase concentrations of CO2, N2, Ar, and to a lesser extent H2O. These fractures would be targets for further enhancement. The usefulness of this method is that it is low cost alternative to current well logging techniques and can be done as a well is being drilled.
Poisson theory and integration method for a dynamical system of relative motion
Zhang Yi; Shang Mei
2011-01-01
This paper focuses on studying the Poisson theory and the integration method of dynamics of relative motion. Equations of a dynamical system of relative motion in phase space are given. Poisson theory of the system is established. The Jacobi last multiplier of the system is defined, and the relation between the Jacobi last multiplier and the first integrals of the system is studied. Our research shows that for a dynamical system of relative motion, whose configuration is determined by n generalized coordinates, the solution of the system can be found by using the Jacobi last multiplier if (2n - 1) first integrals of the system are known. At the end of the paper, an example is given to illustrate the application of the results.
The visual perception of natural motion: abnormal task-related neural activity in DYT1 dystonia.
Sako, Wataru; Fujita, Koji; Vo, An; Rucker, Janet C; Rizzo, John-Ross; Niethammer, Martin; Carbon, Maren; Bressman, Susan B; Uluğ, Aziz M; Eidelberg, David
2015-12-01
Although primary dystonia is defined by its characteristic motor manifestations, non-motor signs and symptoms have increasingly been recognized in this disorder. Recent neuroimaging studies have related the motor features of primary dystonia to connectivity changes in cerebello-thalamo-cortical pathways. It is not known, however, whether the non-motor manifestations of the disorder are associated with similar circuit abnormalities. To explore this possibility, we used functional magnetic resonance imaging to study primary dystonia and healthy volunteer subjects while they performed a motion perception task in which elliptical target trajectories were visually tracked on a computer screen. Prior functional magnetic resonance imaging studies of healthy subjects performing this task have revealed selective activation of motor regions during the perception of 'natural' versus 'unnatural' motion (defined respectively as trajectories with kinematic properties that either comply with or violate the two-thirds power law of motion). Several regions with significant connectivity changes in primary dystonia were situated in proximity to normal motion perception pathways, suggesting that abnormalities of these circuits may also be present in this disorder. To determine whether activation responses to natural versus unnatural motion in primary dystonia differ from normal, we used functional magnetic resonance imaging to study 10 DYT1 dystonia and 10 healthy control subjects at rest and during the perception of 'natural' and 'unnatural' motion. Both groups exhibited significant activation changes across perceptual conditions in the cerebellum, pons, and subthalamic nucleus. The two groups differed, however, in their responses to 'natural' versus 'unnatural' motion in these regions. In healthy subjects, regional activation was greater during the perception of natural (versus unnatural) motion (P perception of unnatural (versus natural) motion (P perception is disrupted in DYT1
The importance of perceived relative motion in the control of posture.
Kelly, Jonathan W; Loomis, Jack M; Beall, Andrew C
2005-03-01
Two experiments investigated the role of optic flow in controlling posture. Both experiments measured postural sway in two virtual environments with different 3-D structure but the same optic flow. Observers attempted to maintain balance on one foot while viewing an object that appeared either rigid with respect to the environment or that appeared to move concomitantly with head movements. The apparent object motion concomitant with head motion was achieved by changing the perceived, but not physical, depth of the object. For both objects, the optic flow information was the same and only depth information was varied. Observers showed a decrease in stability (as measured by head sway) when viewing the object that appeared to move, suggesting that perceived relative motion, not optic flow, signals self-motion to the postural control system.
Hoots, F. R.; Fitzpatrick, P. M.
1979-01-01
The classical Poisson equations of rotational motion are used to study the attitude motions of an earth orbiting, rapidly spinning gyroscope perturbed by the effects of general relativity (Einstein theory). The center of mass of the gyroscope is assumed to move about a rotating oblate earth in an evolving elliptic orbit which includes all first-order oblateness effects produced by the earth. A method of averaging is used to obtain a transformation of variables, for the nonresonance case, which significantly simplifies the Poisson differential equations of motion of the gyroscope. Long-term solutions are obtained by an exact analytical integration of the simplified transformed equations. These solutions may be used to predict both the orientation of the gyroscope and the motion of its rotational angular momentum vector as viewed from its center of mass. The results are valid for all eccentricities and all inclinations not near the critical inclination.
Leblond, C.; Sigrist, J. F.; Auvity, B.; Peerhossaini, H.
2009-01-01
This paper deals with the transient motions experienced by an elastic circular cylinder in a cylindrical fluid domain initially at rest and subjected to small-amplitude imposed displacements. Three fluid models are considered, namely potential, viscous and acoustic, to cover different fluid-structure interaction regimes. They are derived here from the general compressible Navier-Stokes equations by a formal perturbation method so as to underline their links and ranges of validity a priori. The resulting fluid models are linear owing to the small-amplitude-displacement hypothesis. For simplicity, the elastic flexure beam model is chosen for the circular cylinder dynamics. The semi-analytical approach used here is based on the methods of Laplace transform in time, in vacuo eigenvector expansion with time-dependent coefficients for the transverse beam displacement and separation of variables for the fluid. Moreover, the viscous case is handled with a matched asymptotic expansion performed at first order. The projection of the fluid forces on the in vacuo eigenvectors leads to a fully coupled system involving the modal time-dependent displacement coefficients. These coefficients are then obtained by matrix inversion in the Laplace domain and fast numerical inversion of the Laplace transform. The three models, written in the form of convolution products, are described through the analysis of their kernels, involving both the wave propagation phenomena in the fluid domain and the beam elasticity. Last, the three models are illustrated for a specific imposed motion mimicking shock loading. It is shown that their combination permits coverage of a broad range of motions.
Ali, M.E. [King Saud University, Riyadh (Saudi Arabia). Mechanical Engineering Department; Magyari, E. [Institute of Building Technology, ETH Zuerich (Switzerland)
2007-01-15
The title problem arises in the terminal stage of a large class of industrial manufacturing processes as polymer extrusion, wire drawing, drawing of plastic sheets, etc. It concerns the transient crossover to the state of rest of the fluid and heat flow which accompanies the steady fabrication process, when the devices are switched off gradually (i.e. when the motion is slowed down and the surface temperature approaches the ambient temperature continuously). The mechanical and thermal characteristics of such an unsteady process are investigated in the boundary layer approximation, assuming a linear variation of the steady stretching velocity with the longitudinal coordinate x and an inverse linear law for its decrease with time during the gradual switch-off process. For the corresponding surface temperature a general power-law variation is admitted. The paper presents the similarity analysis of several specific cases. The cases of basic interest of a constant surface temperature T{sub w} and of a constant surface heat flux q{sub w} are discussed in some detail. In the case T{sub w}=const. an exact solution is reported and the Prandtl number dependence of the corresponding surface heat flux is given for all 0
A review of some basic aspects related to integration of airplane’s equations of motion
Dan TURCANU
2017-09-01
Full Text Available Numerical integration of the airplane’s equations of motion has long been considered among the most fundamental calculations in airplane’s analysis. Numerical algorithms have been implemented and experimentally validated. However, the need for superior speed and accuracy is still very topical, as, nowadays, various optimization algorithms rely heavily on data generated from the integration of the equations of motion and having access to larger amounts of data can increase the quality of the optimization. Now, for a number of decades, engineers have relied heavily on commercial codes based on automatically selected integration steps. However, optimally chosen constant integration steps can save time and allows for larger numbers of integrations to be performed. Yet, the basic papers that presented the fundamentals of numerical integration, as applied to airplane’s equations of motion are nowadays not easy to locate. Consequently, this paper presents a review of basic aspects related to the integration of airplane’s equation of motion. The discussion covers fundamentals of longitudinal and lateral-directional motion as well as the implementation of some numerical integration methods. The relation between numerical integration steps, accuracy, computational resource usage, numerical stability and their relation with the parameters describing the dynamic response of the airplane is considered and suggestions are presented for a faster yet accurate numerical integration.
Oliveira, Anderson S; Schlink, Bryan R; Hairston, W David; König, Peter; Ferris, Daniel P
2017-01-01
Recording scalp electroencephalography (EEG) during human motion can introduce motion artifacts. Repetitive head movements can generate artifact patterns across scalp EEG sensors. There are many methods for identifying and rejecting bad channels and independent components from EEG datasets, but there is a lack of methods dedicated to evaluate specific intra-channel amplitude patterns for identifying motion-related artifacts. In this study, we proposed a template correlation rejection (TCR) as a novel method for identifying and rejecting EEG channels and independent components carrying motion-related artifacts. We recorded EEG data from 10 subjects during treadmill walking. The template correlation rejection method consists of creating templates of amplitude patterns and determining the fraction of total epochs presenting relevant correlation to the template. For EEG channels, the template correlation rejection removed channels presenting the majority of epochs (>75%) correlated to the template, and presenting pronounced amplitude in comparison to all recorded channels. For independent components, the template correlation rejection removed components presenting the majority of epochs correlated to the template. Evaluation of scalp maps and power spectra confirmed low neural content for the rejected components. We found that channels identified for rejection contained ~60% higher delta power, and had spectral properties locked to the gait phases. After rejecting the identified channels and running independent component analysis on the EEG datasets, the proposed method identified 4.3 ± 1.8 independent components (out of 198 ± 12) with substantive motion-related artifacts. These results indicate that template correlation rejection is an effective method for rejecting EEG channels contaminated with motion-related artifact during human locomotion.
A Channel Rejection Method for Attenuating Motion-Related Artifacts in EEG Recordings during Walking
Anderson S. Oliveira
2017-04-01
Full Text Available Recording scalp electroencephalography (EEG during human motion can introduce motion artifacts. Repetitive head movements can generate artifact patterns across scalp EEG sensors. There are many methods for identifying and rejecting bad channels and independent components from EEG datasets, but there is a lack of methods dedicated to evaluate specific intra-channel amplitude patterns for identifying motion-related artifacts. In this study, we proposed a template correlation rejection (TCR as a novel method for identifying and rejecting EEG channels and independent components carrying motion-related artifacts. We recorded EEG data from 10 subjects during treadmill walking. The template correlation rejection method consists of creating templates of amplitude patterns and determining the fraction of total epochs presenting relevant correlation to the template. For EEG channels, the template correlation rejection removed channels presenting the majority of epochs (>75% correlated to the template, and presenting pronounced amplitude in comparison to all recorded channels. For independent components, the template correlation rejection removed components presenting the majority of epochs correlated to the template. Evaluation of scalp maps and power spectra confirmed low neural content for the rejected components. We found that channels identified for rejection contained ~60% higher delta power, and had spectral properties locked to the gait phases. After rejecting the identified channels and running independent component analysis on the EEG datasets, the proposed method identified 4.3 ± 1.8 independent components (out of 198 ± 12 with substantive motion-related artifacts. These results indicate that template correlation rejection is an effective method for rejecting EEG channels contaminated with motion-related artifact during human locomotion.
Y. Y. Yan
2007-01-01
Over the last decade, computational methods have been intensively applied to a variety of scientific researches and engineering designs. Although the computational fluid dynamics (CFD) method has played a dominant role in studying and simulating transport phenomena involving fluid flow and heat and mass transfers, in recent years, other numerical methods for the simulations at meso- and micro-scales have also been actively applied to solve the physics of complex flow and fluid-interface interactions. This paper presents a review of recent advances in multi-scale computational simulation of biomimetics related fluid flow problems. The state-of-the-art numerical techniques, such as lattice Boltzmann method (LBM), molecular dynamics (MD), and conventional CFD, applied to different problems such as fish flow, electro-osmosis effect of earthworm motion, and self-cleaning hydrophobic surface, and the numerical approaches are introduced. The new challenging of modelling biomimetics problems in developing the physical conditions of self-clean hydrophobic surfaces is discussed.
EFFECTS OF CONVECTIVE FLUID MOTION UPON OXIDE CRYSTAL GROWTH IN HIGH TEMPERATURE SOLUTION
无
2002-01-01
@@ For understanding of the influence of convective flow on crystal growth, space high temperature in situ observation instrument (SHITISOI) is dedicated to visualize and record the whole growth process of oxide crystals in high temperature up to 1000°C. Model experiments using transparent liquids such as KNbO3 and a mix ture of Li2B4O7+KNbO3 were chosen to investigate effects on ground and in space.On the earth, an investigation of growth kinetics of KNbO3 crystal related to two different states of convection: diffusive-advective flow and diffusive-convective flow,has been performed. The per unit length of a step e is calculated from the exper imental data for two different states of convection. Analyses of these data show the effect of buoyancy convection is to enhance the sharpness of the interface. The growth of KNbO3 crystals from solution of KNbO3+Li2B4O7 was investigated in space. The streamlines of the steady thermocapillary convection in Li2B4O7 solvent was observed. Due to thermocapillary convection, KNbO3 crystal grains grew and filled the whole solution homogeneously. Earth-based quenching experiments are de signed in order to study polyhedral instability of KNbO3 crystal, which is controlled by diffusion mechanism limitation. In all cases, when the crystal was nucleated near air/solution surface, it lost its polyhedral stability and varied from polyhedrons to dedrites. The thickness of diffusion mechanism limitation layer is about 60μm.
Nabil T. M. Eldabe
2014-01-01
Full Text Available This paper is devoted to the study of the peristaltic motion of non-Newtonian fluid with heat and mass transfer through a porous medium in the channel under the effect of magnetic field. A modified Casson non-Newtonian constitutive model is employed for the transport fluid. A perturbation series’ method of solution of the stream function is discussed. The effects of various parameters of interest such as the magnetic parameter, Casson parameter, and permeability parameter on the velocity, pressure rise, temperature, and concentration are discussed and illustrated graphically through a set of figures.
Singh, R. P.; Ahmad, R.
2015-12-01
A comparison of recent observed ground motion parameters of recent Gorkha Nepal earthquake of 25 April 2015 (Mw 7.8) with the predicted ground motion parameters using exitsing attenuation relation of the Himalayan region will be presented. The recent earthquake took about 8000 lives and destroyed thousands of poor quality of buildings and the earthquake was felt by millions of people living in Nepal, China, India, Bangladesh, and Bhutan. The knowledge of ground parameters are very important in developing seismic code of seismic prone regions like Himalaya for better design of buildings. The ground parameters recorded in recent earthquake event and aftershocks are compared with attenuation relations for the Himalayan region, the predicted ground motion parameters show good correlation with the observed ground parameters. The results will be of great use to Civil engineers in updating existing building codes in the Himlayan and surrounding regions and also for the evaluation of seismic hazards. The results clearly show that the attenuation relation developed for the Himalayan region should be only used, other attenuation relations based on other regions fail to provide good estimate of observed ground motion parameters.
Unnikrishnan, C S
2012-01-01
I show that no force or torque is generated in cases involving a charge and a magnet with their relative velocity zero, in any inertial frame of reference. A recent suspicion of an anomalous torque and conflict with relativity in this case is rested. What is distilled as `Lorentz force' in standard electrodynamics, with relative velocity as the parameter, is an under-representation of two distinct physical phenomena, an effect due to Lorentz contraction and another due to the Ampere current-current interaction, rolled into one due to prejudice from special relativity applied only to linear motion. When both are included in the analysis of the problem there is no anomalous force or torque, ensuring the validity of Poincare's principle of relativity. The issue of validity of electrodynamics without the concept of absolute rest, however, is subtle and empirically open when general noninertial motion is considered, as I will discuss in another paper.
The main properties and peculiarities of the Earth's motion relative to the center of mass
Klimov, D. M.; Akulenko, L. D.; Kumakshev, S. A.
2014-10-01
The methods of theoretical and celestial mechanics and mathematical statistics have been used to prove that the Earth's motion relative to the center of mass, the polar wobble, in the principal approximation is a combination of two circumferences with a slow trend in the mean position corresponding to the annual and Chandler components. It has been established that the parameters (amplitude and phase shift) of the annual wobble are stable, while those of the Chandler component are less stable and undergo significant variations over the observed time intervals. It has been proven that the behavior of these polar motion parameters is attributable to the gravitational-tidal mechanisms of their excitation.
On the dynamics and control of the relative motion between two spacecraft
Yu, Shaohua
1995-03-01
The dynamics of the relative motion between two nearby spacecraft is investigated in a local orbital co-ordinate system. A phase plane analysis shows that a stable equilibrium state may exist in the motion. Based on this analysis, a control method called the range-rate control algorithm (RRCA) has been established. The controlled trajectory is stable and in a straight line. Furthermore, an omni-directional version of RRCA has also been introduced. The computation, measurement and propulsion scheme for the algorithm is very simple. As an illustrated example, the tethered satellite system as well as the in-orbit spacecraft rendezvous are simulated by the algorithm.
Universal flow-density relation of single-file bicycle, pedestrian and car motion
Zhang, Jun; Holl, Stefan; Boltes, Maik; Andresen, Erik; Schadschneider, Andreas; Seyfried, Armin
2013-01-01
The relation between flow and density, also known as the fundamental diagram, is an essential quantitative characteristic to describe the efficiency of traffic systems. We have performed experiments with single-file motion of bicycles and compare the results with previous studies for car and pedestrian motion in similar setups. In the space-time diagrams we observe three different states of motion (free flow state, jammed state and stop-and-go waves) in all these systems. Despite of their obvious differences they are described by a universal fundamental diagram after proper rescaling of space and time which takes into account the size and free velocity of the three kinds of agents. This indicates that the similarities between the systems go deeper than expected.
Universal flow-density relation of single-file bicycle, pedestrian and car motion
Zhang, J., E-mail: ju.zhang@fz-juelich.de [Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Mehner, W., E-mail: w.mehner@fz-juelich.de [Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Holl, S., E-mail: st.holl@fz-juelich.de [Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Boltes, M., E-mail: m.boltes@fz-juelich.de [Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Andresen, E., E-mail: e.andresen@uni-wuppertal.de [Department of Computer Simulation for Fire Safety and Pedestrian Traffic, Bergische Universität Wuppertal, 42285 Wuppertal (Germany); Schadschneider, A., E-mail: as@thp.uni-koeln.de [Institut für Theoretische Physik, Universität zu Köln, 50937 Köln (Germany); Seyfried, A., E-mail: a.seyfried@fz-juelich.de [Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Department of Computer Simulation for Fire Safety and Pedestrian Traffic, Bergische Universität Wuppertal, 42285 Wuppertal (Germany)
2014-09-12
The relation between flow and density is an essential quantitative characteristic to describe the efficiency of traffic systems. We have performed experiments with single-file motion of bicycles and compared the results with previous studies for car and pedestrian motion in similar setups. In the space–time diagrams we observe three different states of motion (free flow state, jammed state and stop-and-go waves) in all these systems. Despite their obvious differences they are described by a universal fundamental diagram after proper rescaling of space and time which takes into account the size and free velocity of the three kinds of agents. This indicates that the similarities between the systems go deeper than expected.
On the motion of rotating bodies in field gravity theory and general relativity
Baryshev, Yu V
2000-01-01
On the basis of Lagrangian formalism of relativistic field theory post-Newtonian equations of motion for a rotating body are derived in the frame of Feynman's quantum field gravity theory (FGT) and compared with corresponding geodesic equations in general relativity (GR). It is shown that in FGT the trajectory of a rotating test body does not depend on a choice of a coordinate system. The equation of translational motion of a gyroscope is applied to description of laboratory experiments with free falling rotating bodies and rotating bodies on a balance scale. Post-Newtonian relativistic effect of periodical modulation of the orbital motion of a rotating body is discussed for the case of planets of the solar system and for binary pulsars PSR B1913+16 and PSR B1259-63. In the case of binary pulsars with known spin orientations this effect gives a possibility to measure radiuses of neutron stars.
Universal flow-density relation of single-file bicycle, pedestrian and car motion
Zhang, J.; Mehner, W.; Holl, S.; Boltes, M.; Andresen, E.; Schadschneider, A.; Seyfried, A.
2014-09-01
The relation between flow and density is an essential quantitative characteristic to describe the efficiency of traffic systems. We have performed experiments with single-file motion of bicycles and compared the results with previous studies for car and pedestrian motion in similar setups. In the space-time diagrams we observe three different states of motion (free flow state, jammed state and stop-and-go waves) in all these systems. Despite their obvious differences they are described by a universal fundamental diagram after proper rescaling of space and time which takes into account the size and free velocity of the three kinds of agents. This indicates that the similarities between the systems go deeper than expected.
Indifference to Chaotic Motion May Be Related to Social Disinterest in Children With Autism
Haworth, Joshua; Kyvelidou, Anastasia; Fisher, Wayne; Stergiou, Nicholas
2017-01-01
Children with autism spectrum disorder tend to have little interest in the presence, actions, and motives of other persons. In addition, these children tend to present with a limited and overly redundant movement repertoire, often expressing hyperfixation and aversion to novelty. We explore whether this is related to a more fundamental lack of appreciation for various temporal dynamics, including periodic, chaotic, and aperiodic motion structures. Seven children with ASD (age, gender, and height matched with children without ASD) were asked to stand and watch the motion of a visual stimulus displayed on a large (55″) video monitor. Gaze and posture movements were recorded and assessed using cross recurrence quantification analysis for qualities of coordination, including rate and duration of bouts of coordination. Results showed that children with ASD do not express an affinity to chaotic motion of the stimulus in the same way as children without ASD. We contend that this indifference to chaotic motion is foundational to their general disinterest in biological motion.
Haworth, Joshua L; Kyvelidou, Anastasia; Fisher, Wayne; Stergiou, Nicholas
2015-01-01
Recognition of biological motion is pervasive in early child development. Further, viewing the movement behavior of others is a primary component of a child's acquisition of complex, robust movement repertoires, through imitation and real-time coordinated action. We theorize that inherent to biological movements are particular qualities of mathematical chaos and complexity. We further posit that this character affords the rich and complex inter-dynamics throughout early motor development. Specifically, we explored whether children's preference for biological motion may be related to an affinity for mathematical chaos. Cross recurrence quantification analysis (cRQA) was used to investigate the coordination of gaze and posture with various temporal structures (periodic, chaotic, and aperiodic) of the motion of an oscillating visual stimulus. Children appear to competently perceive and respond to chaotic motion, both in rate (cRQA-percent determinism) and duration (cRQA-maxline) of coordination. We interpret this to indicate that children not only recognize chaotic motion structures, but also have a preference for coordination with them. Further, stratification of our sample (by age) uncovers the suggestion that this preference may become refined with age.
The relation of motion sickness to the spatial-temporal properties of velocity storage
Dai, Mingjia; Kunin, Mikhail; Raphan, Theodore; Cohen, Bernard; Young, L. R. (Principal Investigator)
2003-01-01
Tilting the head in roll to or from the upright while rotating at a constant velocity (roll while rotating, RWR) alters the position of the semicircular canals relative to the axis of rotation. This produces vertical and horizontal nystagmus, disorientation, vertigo, and nausea. With recurrent exposure, subjects habituate and can make more head movements before experiencing overpowering motion sickness. We questioned whether promethazine lessened the vertigo or delayed the habituation, whether habituation of the vertigo was related to the central vestibular time constant, i.e., to the time constant of velocity storage, and whether the severity of the motion sickness was related to deviation of the axis of eye velocity from gravity. Sixteen subjects received promethazine and placebo in a double-blind, crossover study in two consecutive 4-day test series 1 month apart, termed series I and II. Horizontal and vertical eye movements were recorded with video-oculography while subjects performed roll head movements of approx. 45 degrees over 2 s to and from the upright position while being rotated at 138 degrees /s around a vertical axis. Motion sickness was scaled from 1 (no sickness) to an endpoint of 20, at which time the subject was too sick to continue or was about to vomit. Habituation was determined by the number of head movements that subjects made before reaching the maximum motion sickness score of 20. Head movements increased steadily in each session with repeated testing, and there was no difference between the number of head movements made by the promethazine and placebo groups. Horizontal and vertical angular vestibulo-ocular reflex (aVOR) time constants declined in each test, with the declines being closely correlated to the increase in the number of head movements. The strength of vertiginous sensation was associated with the amount of deviation of the axis of eye velocity from gravity; the larger the deviation of the eye velocity axis from gravity, the
[Cerebrospinal fluid shunts for hydrocephalus and related disorders].
Ito, Masaki; Houkin, Kiyohiro; Saito, Hisayasu; Shimbo, Daisuke; Motegi, Hiroaki; Kawabori, Masahito; Miyamoto, Michiyuki; Yamauchi, Tomohiro
2012-10-01
Cerebrospinal fluid (CSF) shunts are commonly employed to treat patients with hydrocephalus. A large number of papers have been published focusing on complications and failures of CSF shunts. However, there appears to be a paucity of knowledge comprehensively covering both common complications and rare ones. In this systematic review, we surveyed articles about surgical complications of CSF shunts as comprehensively as possible. Quantitative analysis was performed to determine the frequency of well-known complications, mortality and revision rates of CSF shunts. Furthermore, rare complications of CSF shunts have also been reviewed.
Relative Motion between the Rivera and North American Plates: Constraints from Focal Mechanisms
Suárez, Gerardo; Jaramillo, Said H.; Bandy, William
2010-05-01
The direction and velocity of the Rivera Plate in western Mexico relative to the North American plate has been a source of controversy. The southeastern segment of this plate boundary has been the site of one of the largest subduction events observed in Mexico during the last 100 years: the 3 June 1932 earthquake (Mw 8.2). To the northwest of the rupture zone of the 1932 event, however, there are no other known large subduction events, either from the historical or instrumental record. We analyze all focal mechanisms in this northern segment of the plate boundary to define the direction of relative motion between these two plates. The largest event occurred beneath the Tres Marias Escarpment, the earthquake of 4 December 1948. The recomputed magnitude yields Mw 6.4. This event caused widespread damage in a penal colony on the Tres Marias Islands. Although the focal mechanism of the 1948 event is not well constrained, the first arrival data collected shows reverse faulting with P axes oriented in a NE-SW direction. This mechanism coincides with other two fault plane solutions of more recent events. These mechanisms indicate reverse faulting beneath the Tres Marias Escarpment. To the northwest of the Islas Marias, in area where no clear physiographic feature defines the plate limits, we identify a group of strike-slip events, where the E-W trending nodal plane indicates right-lateral motion. These mechanisms suggest that the relative motion between Rivera and North America may be taken up by right-lateral strike slip motion. The accuracy of the locations does not allow to define in detail the geometry of this plate boundary. The slip vectors determined from these focal mechanisms are compared with the flow lines resulting from the various poles of relative motion between Rivera and North America to constrain its location.
Age-Related Impairment of Quality of Joint Motion in Vibroarthrographic Signal Analysis
Dawid Bączkowicz
2015-01-01
Full Text Available Aging is associated with degenerative changes in articular surfaces leading to quantitative and qualitative impairment of joint motion. Therefore, the aim of this study is to evaluate an age-related quality of the patellofemoral joint (PFJ motion in the vibroarthrographic (VAG signal analysis. Two hundred and twenty individuals were enrolled in this study and divided into five groups according to age. The VAG signals were collected during flexion/extension knee motion using an acceleration sensor and described using four parameters (VMS, P1, P2, and H. We observed that values of parameters VMS, P1, and P2 increase in accordance with the age, but H level decreases. The most significant differences were achieved between the youngest and the oldest participants’ groups. Moreover, we show that parameters VMS, P1, and P2 positively correlate with age, contrary to negatively associated H parameter. Our results suggest that the impairment of joint motion is a result of age-related osteoarticular degenerative changes.
Rotating columns: relating structure-from-motion, accretion/deletion, and figure/ground.
Froyen, Vicky; Feldman, Jacob; Singh, Manish
2013-08-14
We present a novel phenomenon involving an interaction between accretion deletion, figure-ground interpretation, and structure-from-motion. Our displays contain alternating light and dark vertical regions in which random-dot textures moved horizontally at constant speed but in opposite directions in alternating regions. This motion is consistent with all the light regions in front, with the dark regions completing amodally into a single large surface moving in the background, or vice versa. Surprisingly, the regions that are perceived as figural are also perceived as 3-D volumes rotating in depth (like rotating columns)-despite the fact that dot motion is not consistent with 3-D rotation. In a series of experiments, we found we could manipulate which set of regions is perceived as rotating volumes simply by varying known geometric cues to figure ground, including convexity, parallelism, symmetry, and relative area. Subjects indicated which colored regions they perceived as rotating. For our displays we found convexity to be a stronger cue than either symmetry or parallelism. We furthermore found a smooth monotonic decay of the proportion by which subjects perceive symmetric regions as figural, as a function of their relative area. Our results reveal an intriguing new interaction between accretion-deletion, figure-ground, and 3-D motion that is not captured by existing models. They also provide an effective tool for measuring figure-ground perception.
Pancreatic tissue fluid pressure in chronic pancreatitis. Relation to pain, morphology, and function
Ebbehøj, N; Borly, L; Bülow, J
1990-01-01
The relation between pancreatic tissue fluid pressure and pain, morphology, and function was studied in a cross-sectional investigation. Pressure measurements were performed by percutaneous fine-needle puncture. Thirty-nine patients with chronic pancreatitis were included, 25 with pain and 14...... calcifications. In conclusion, pancreatic tissue fluid pressure is a valuable indicator of pain in chronic pancreatitis....
Einstein's equations from Einstein's inertial motion and Newton's law for relative acceleration
Schmid, Christoph
2016-01-01
We show that Einstein's $R^{\\hat{0} \\hat{0}}$ equation for nonrelativistic matter and strong gravitational fields is identical with Newton's equation for relative radial acceleration of neighbouring freefalling particles, spherically averaged. These laws are explicitely identical with primary observer's (1) space-time slicing by radial 4-geodesics, (2) radially parallel Local Ortho-Normal Bases, LONBs, (3) Riemann normal 3-coordinates. Hats on indices denote LONBs. General relativity follows from Newton's law of relative acceleration, Einstein's inertial motion, Lorentz covariance, and energy-momentum conservation combined with Bianchi identity. The gravitational field equation of Newton-Gauss and Einstein's $R^{\\hat{0} \\hat{0}}$ equation are identical and linear in gravitational field for an inertial primary observer.--- Einstein's equivalence between fictitious forces and gravitational forces is formulated as equivalence theorem in the equations of motion. With this, the gravitational field equation of 19th...
Koch, Jon; Borg, John; Mattson, Abby; Olsen, Kris; Bahcall, James
2012-01-01
Objective. This in vitro study compared the flow pattern and shear stress of an irrigant induced by ultrasonic and polymer rotary finishing file activation in an acrylic root canal model. Flow visualization analysis was performed using an acrylic canal filled with a mixture of distilled water and rheoscopic fluid. The ultrasonic and polymer rotary finishing file were separately tested in the canal and activated in a static position and in a cyclical axial motion (up and down). Particle movement in the fluid was captured using a high-speed digital camera and DaVis 7.1 software. The fluid shear stress analysis was performed using hot film anemometry. A hot-wire was placed in an acrylic root canal and the canal was filled with distilled water. The ultrasonic and polymer rotary finishing files were separately tested in a static position and in a cyclical axial motion. Positive needle irrigation was also tested separately for fluid shear stress. The induced wall shear stress was measured using LabVIEW 8.0 software.
On the Relation of Earthquake Stress Drop and Ground Motion Variability
Oth, A.; Miyake, H.; Bindi, D.
2015-12-01
The physical properties of the seismic source play a major role in the generation of earthquake ground motions. One of the key parameters typically used in this context is the so-called stress drop since it can be directly linked to the high-frequency spectral level of ground motion, and it is an important input parameter for ground motion modeling. At the same time, classically determined stress drop estimates from moment-corner frequency analysis have been shown to be extremely variable, and this to a much larger degree than might be expected from the decomposition of ground motion variability into its between-event and within-event components following the random effects approach (Cotton et al., 2013). This discrepancy raises the question of whether classically determined stress drop variability is too large, which would have significant implications for ground motion prediction in seismic hazard analysis. We use the rich high-quality accelerometric databases available in Japan to derive non-parametric ground motion models on these data that serve as reference models. We then investigate the relation between the between-event terms for the individual earthquakes from these regressions with stress drop estimates determined nation-wide for crustal earthquakes. As a complement to the non-parametric models, we also apply a parametric mixed effects modeling approach to investigate the influence of between-event, between-region and between-sequence variability. The analysis is carried out for JMA equivalent seismic intensity, PGA and PGV data. Our results indicate a clear correlation of the between-event terms with stress drops estimates, both for non-parametric and parametric approaches - however with the interesting effect of the appearance of two major families of events with widely different stress drop, yet similar range of between-event terms. This effect is in agreement with the observation made by Cotton et al. (2013) that the between-event ground motion
Attenuation relation for strong motion in Eastern Java based on appropriate database and method
Mahendra, Rian; Rohadi, Supriyanto; Rudyanto, Ariska
2017-07-01
The selection and determination of attenuation relation has become important for seismic hazard assessment in active seismic region. This research initially constructs the appropriate strong motion database, including site condition and type of the earthquake. The data set consisted of large number earthquakes of 5 ≤ Mw ≤ 9 and distance less than 500 km that occurred around Java from 2009 until 2016. The location and depth of earthquake are being relocated using double difference method to improve the quality of database. Strong motion data from twelve BMKG's accelerographs which are located in east Java is used. The site condition is known by using dominant period and Vs30. The type of earthquake is classified into crustal earthquake, interface, and intraslab based on slab geometry analysis. A total of 10 Ground Motion Prediction Equations (GMPEs) are tested using Likelihood (Scherbaum et al., 2004) and Euclidean Distance Ranking method (Kale and Akkar, 2012) with the associated database. The evaluation of these methods lead to a set of GMPEs that can be applied for seismic hazard in East Java where the strong motion data is collected. The result of these methods found that there is still high deviation of GMPEs, so the writer modified some GMPEs using inversion method. Validation was performed by analysing the attenuation curve of the selected GMPE and observation data in period 2015 up to 2016. The results show that the selected GMPE is suitable for estimated PGA value in East Java.
Videotapes and Movies on Fluid Dynamics and Fluid Machines
Carr, Bobbie; Young, Virginia E.
1996-01-01
Chapter 17 of Handbook of Fluid Dynamics and Fluid Machinery: Experimental and Computational Fluid Dynamics, Volume 11. A list of videorecordings and 16mm motion pictures about Fluid Dynamics and Fluid Machines.
Long-term passive distance-bounded relative motion in the presence of TeX perturbations
Chu, J.; Guo, J.; Gill, E.K.A.
2015-01-01
This paper presents closed-form solutions for the problem of long-term satellite relative motion in the presence of J2 perturbations, and introduces a design methodology for long-term passive distance-bounded relative motion. There are two key ingredients of closed-form solutions.One is the model of
ZHANG Li-feng; ZHI Jian-jun; MOU Ji-ning; CUI Jian
2005-01-01
The κ-ε two-equation model is used to simulate the fluid flow in the continuous casting tundish coupling with the effect of thermal buoyancy. The natural convection induced by the thermal buoyancy generates an upward flow pattern especially at the outlet zone, and has little effect on the fluid flow in the inlet zone. The maximum viscosity is 700 times larger than the laminar viscosity, which indicates the strong turbulent flow in the tundish. The maximum temperature difference in the whole tundish is 8.2 K. The temperature near the stopper rod and the short wall is obviously lower than that in the inlet zone. The existence of the stopper rod has a big effect on the fluid flow entering the SEN and the mold. All the characteristics of the tundish geometry should be considered to accurately simulate the fluid flow in the tundish.
Conformal invariance and conserved quantities of dynamical system of relative motion
Chen Xiang-Wei; Zhao Yong-Hong; Li Yan-Min
2009-01-01
This paper discusses in detail the conformal invariance by infinitesimal transformations of a dynamical system of relative motion.The necessary and sufficient conditions of conformal invariance and Lie symmetry are given simulta neously by the action of infinitesimal transformations.Then it obtains the conserved quantities of conformal invariance by the infinitesimal transformations.Finally an example is given to illustrate the application of the results.
The theory of asynchronous relative motion I: time transformations and nonlinear corrections
Roa, Javier; Peláez, Jesús
2017-03-01
Using alternative independent variables in lieu of time has important advantages when propagating the partial derivatives of the trajectory. This paper focuses on spacecraft relative motion, but the concepts presented here can be extended to any problem involving the variational equations of orbital motion. A usual approach for modeling the relative dynamics is to evaluate how the reference orbit changes when modifying the initial conditions slightly. But when the time is a mere dependent variable, changes in the initial conditions will result in changes in time as well: a time delay between the reference and the neighbor solution will appear. The theory of asynchronous relative motion shows how the time delay can be corrected to recover the physical sense of the solution and, more importantly, how this correction can be used to improve significantly the accuracy of the linear solutions to relative motion found in the literature. As an example, an improved version of the Clohessy-Wiltshire (CW) solution is presented explicitly. The correcting terms are extremely compact, and the solution proves more accurate than the second and even third order CW equations for long propagations. The application to the elliptic case is also discussed. The theory is not restricted to Keplerian orbits, as it holds under any perturbation. To prove this statement, two examples of realistic trajectories are presented: a pair of spacecraft orbiting the Earth and perturbed by a realistic force model; and two probes describing a quasi-periodic orbit in the Jupiter-Europa system subject to third-body perturbations. The numerical examples show that the new theory yields reductions in the propagation error of several orders of magnitude, both in position and velocity, when compared to the linear approach.
The theory of asynchronous relative motion I: time transformations and nonlinear corrections
Roa, Javier; Peláez, Jesús
2016-09-01
Using alternative independent variables in lieu of time has important advantages when propagating the partial derivatives of the trajectory. This paper focuses on spacecraft relative motion, but the concepts presented here can be extended to any problem involving the variational equations of orbital motion. A usual approach for modeling the relative dynamics is to evaluate how the reference orbit changes when modifying the initial conditions slightly. But when the time is a mere dependent variable, changes in the initial conditions will result in changes in time as well: a time delay between the reference and the neighbor solution will appear. The theory of asynchronous relative motion shows how the time delay can be corrected to recover the physical sense of the solution and, more importantly, how this correction can be used to improve significantly the accuracy of the linear solutions to relative motion found in the literature. As an example, an improved version of the Clohessy-Wiltshire (CW) solution is presented explicitly. The correcting terms are extremely compact, and the solution proves more accurate than the second and even third order CW equations for long propagations. The application to the elliptic case is also discussed. The theory is not restricted to Keplerian orbits, as it holds under any perturbation. To prove this statement, two examples of realistic trajectories are presented: a pair of spacecraft orbiting the Earth and perturbed by a realistic force model; and two probes describing a quasi-periodic orbit in the Jupiter-Europa system subject to third-body perturbations. The numerical examples show that the new theory yields reductions in the propagation error of several orders of magnitude, both in position and velocity, when compared to the linear approach.
Analytical solution of perturbed relative motion: an application of satellite formations to geodesy
Wnuk, Edwin
In the upcoming years, several space missions will be operated using a number of spacecraft flying in formation. Clusters of spacecraft with a carefully designed orbits and optimal formation geometry enable a wide variety of applications ranging from remote sensing to astronomy, geodesy and basic physics. Many of the applications require precise relative navigation and autonomous orbit control of satellites moving in a formation. For many missions a centimeter level of orbit control accuracy is required. The GRACE mission, since its launch in 2002, has been improving the Earth's gravity field model to a very high level of accuracy. This mission is a formation flying one consisting of two satellites moving in coplanar orbits and provides range and range-rate measurements between the satellites in the along-track direction. Future geodetic missions probably will employ alternative architectures using additional satellites and/or performing out-of-plane motion, e.g cartwheel orbits. The paper presents an analytical model of a satellite formation motion that enables propagation of the relative spacecraft motion. The model is based on the analytical theory of satellite relative motion that was presented in the previous our papers (Wnuk and Golebiewska, 2005, 2006). This theory takes into account the influence of the following gravitational perturbation effects: 1) zonal and tesseral harmonic geopotential coefficients up to arbitrary degree and order, 2) Lunar gravity, 3) Sun gravity. Formulas for differential perturbations were derived with any restriction concerning a plane of satellite orbits. They can be applied in both: in plane and out of plane cases. Using this propagator we calculated relative orbits and future relative satellite positions for different types of formations: in plane, out of plane, cartwheel and others. We analyzed the influence of particular parts of perturbation effects and estimated the accuracy of predicted relative spacecrafts positions
Climate dynamics and fluid mechanics: Natural variability and related uncertainties
Ghil, Michael; Simonnet, Eric; 10.1016/j.physd.2008.03.036
2010-01-01
The purpose of this review-and-research paper is twofold: (i) to review the role played in climate dynamics by fluid-dynamical models; and (ii) to contribute to the understanding and reduction of the uncertainties in future climate-change projections. To illustrate the first point, we focus on the large-scale, wind-driven flow of the mid-latitude oceans which contribute in a crucial way to Earth's climate, and to changes therein. We study the low-frequency variability (LFV) of the wind-driven, double-gyre circulation in mid-latitude ocean basins, via the bifurcation sequence that leads from steady states through periodic solutions and on to the chaotic, irregular flows documented in the observations. This sequence involves local, pitchfork and Hopf bifurcations, as well as global, homoclinic ones. The natural climate variability induced by the LFV of the ocean circulation is but one of the causes of uncertainties in climate projections. Another major cause of such uncertainties could reside in the structural ...
SHI Bao-ping; LIU Bo-yan; ZHANG Jian
2007-01-01
A composite source model has been used to simulate a broadband strong ground motion with an associated fault rupture process. A scenario earthquake fault model has been used to generate 1 000 earthquake events with a magnitude of Mw8.0. The simulated results show that, for the characteristic event with a strike-slip faulting, the characteristics of near fault ground motion is strongly dependent on the rupture directivity. If the distance between the sites and fault was given, the ground motion in the forward direction (Site A) is much larger than that in the backward direction (Site C) and that close to the fault (Site B). The SH waves radiated from the fault, which corresponds to the fault-normal component plays a key role in the ground motion amplification. Corresponding to the sites A, B, and C, the statistical analysis shows that the ratio of their aPG is 2.15:1.5:1 and their standard deviations are about 0.12, 0.11, and 0.13, respectively. If these results are applied in the current probabilistic seismic hazard analysis (PSHA), then, for the lower annual frequency of exceedance of peak ground acceleration, the predicted aPG from the hazard curve could reduce by 30% or more compared with the current PSHA model used in the developing of seismic hazard map in the USA. Therefore, with a consideration of near fault ground motion caused by the rupture directivity, the regression model used in the development of the regional attenuation relation should be modified accordingly.
Sazonov, V. V.
2013-03-01
We investigated periodic motions of the axis of symmetry of a model satellite of the Earth, which are similar to the motions of the longitudinal axes of the Mir orbital station in 1999-2001 and the Foton-M3 satellite in 2007. The motions of these spacecraft represented weakly disturbed regular Euler precession with the angular momentum vector of motion relative to the center of mass close to the orbital plane. The direction of this vector during the motion was not practically changed. The model satellite represents an axisymmetric gyrostat with gyrostatic moment directed along the axis of symmetry. The satellite moves in a circular orbit and undergoes the action of the gravitational torque. The motion of the axis of symmetry of this satellite relative to the absolute space is described by fourth-order differential equations with periodic coefficients. The periodic solutions to this system with special symmetry properties are constructed using analytical and numerical methods.
Bonfiglio, Andrea; Repetto, Rodolfo; Siggers, Jennifer H.; Stocchino, Alessandro
2013-03-01
Intravitreal drug delivery is a commonly used treatment for several retinal diseases. The objective of this research is to characterize and quantify the role of the vitreous humor motion, induced by saccadic movements, on drug transport processes in the vitreous chamber. A Perspex model of the human vitreous chamber was created, and filled with a purely viscous fluid, representing eyes with a liquefied vitreous humor or those containing viscous tamponade fluids. Periodic movements were applied to the model and the resulting three-dimensional (3D) flow fields were measured. Drug delivery within the vitreous chamber was investigated by calculating particle trajectories using integration over time of the experimental velocity fields. The motion of the vitreous humor generated by saccadic eye movements is intrinsically 3D. Advective mass transport largely overcomes molecular diffusive transport and is significantly anisotropic, leading to a much faster drug dispersion than in the case of stationary vitreous humor. Disregarding the effects of vitreous humor motion due to eye movements when predicting the efficiency of drug delivery treatments leads to significant underestimation of the drug transport coefficients, and this, in turn, will lead to significantly erroneous predictions of the concentration levels on the retina.
Alexandroni, Heli; Bahar, Raz; Chill, Henry H; Karavani, Gilad; Ben-Yossef, Orna; Shushan, Asher
To examine whether our new reporting system and mandatory fluid-balance form could improve the communication and awareness within the surgical team and therefore the safety of hysteroscopic operations. A case-control study (Canadian Task Force classification II-2). An endoscopic gynecology unit at a tertiary-care university hospital. Women aged 17 to 88 years (median, 43.9) who underwent operative hysteroscopy to treat uterine pathology. Operative hysteroscopy was performed using bipolar technology and normal saline as an irrigation media with the new fluid-balance form and a mandatory reporting system. The control group was composed of women who underwent the procedure using the same technology, with a previous protocol. Data regarding intraoperative and postoperative short-term complications were prospectively collected during surgery and at the 2-week follow-up visit. About 2000 procedures were investigated (601 in the study group and 1396 in the control group). In the control group there were 20 incidents of fluid deficit over 2 L. In 4 of these cases the procedure was terminated, but in the other 16 cases the procedure was continued, with or without awareness of the surgeons to the deficit. Of these cases, 2 suffered from media-related complications, and in 3 others complications were avoided by diuretics. In contrast, in the study group there were 10 incidents of fluid deficit over 2 L, of which 5 cases were terminated on time and the other 5 continued under the informed decision of the surgeon. In this group, none of the women experienced a media-related complication. The difference between the number of procedures that were terminated on time between the control and study groups was not statistically significant (p = .115). There was a statistically significant reduction in the total complication rate between the study group (1.8%) and the control group (3.9%; p = .019). The fluid-balance form and mandatory reporting system have been shown to reduce
Wen-Jun Guo; Qing-Juan Gong
2016-01-01
Objective:To analyze the effect of ozone perfusion combined with sodium hyaluronate injection on pain intensity and related mediators in synovial fluid of patients with knee osteoarthritis. Methods:A total of 98 cases with knee osteoarthritis treated in our hospital from July 2012 to May 2014 were selected as research subjects and randomly divided into observation group and control group, each group with 49 cases. Control group received sodium hyaluronate injection therapy alone, observation group received ozone perfusion combined with sodium hyaluronate injection therapy, and then differences in visual analogue scale (VAS), knee joint range of motion (ROM) and expression levels of oxygen free radicals and inflammatory factors, MMP-related indexes and T cell subsets BTLA in synovial fluid of two groups were compared. Results:VAS values of observation group at different points in time after treatment were lower than those of control group, and ROM values were higher than those of control group (P<0.05);SOD level in synovial fluid of observation group after treatment was higher than that of control group, and levels of MDA, NO, IL-1, IL-6 and TNF-ααwere lower than those of control group (P<0.05);uPA, MMP-3, MMP-9, MMP-13 and MMP-14 levels in synovial fluid of observation group after treatment were lower than those of control group (P<0.05);CD3+BTLA+T cell, CD4+BTLA+T cell and CD8+BTLA+T cell values in synovial fluid of observation group after treatment were significantly higher than those of control group (P<0.05). Conclusions: Ozone perfusion combined with sodium hyaluronate injection therapy of patients with knee osteoarthritis can significantly reduce patients’ perception of pain and increase knee joint range of motion while optimize the expression of related molecules in synovial fluid and promote recovery of overall condition.
Hide, Raymond
1995-01-01
General expressions (with potential applications in several areas of geophysical fluid dynamics) are derived for all three components of the contribution made by the geostrophic part of the pressure field associated with flow in a rotating gravitating fluid to the topographic torque exerted by the fluid on a rigid impermeable bounding surface of any shape. When applied to the Earth's liquid metallic core, which is bounded by nearly spherical surfaces and can be divided into two main regions, the "torosphere" and "polosphere," the expressions reduce to formulae given previously by the author, thereby providing further support for his work and that of others on the role of topographic coupling at the core-mantle boundary in the excitation by core motions of Earth rotation fluctuations on decadal time scales. They also show that recent criticisms of that work are vitiated by mathematical and physical errors. Contrary to these criticisms, the author's scheme for exploiting Earth rotation and other geophysical data (either real or simulated in computer models) in quantitative studies of the topography of the core-mantle boundary (CMB) by intercomparing various models of (a) motions in the core based on geomagnetic secular variation data and (b) CMB topography based on seismological and gravity data has a sound theoretical basis. The practical scope of the scheme is of course limited by the accuracy of real data, but this is a matter for investigation, not a priori assessment.
Akram, Safia, E-mail: safia_akram@yahoo.com [Department of Humanities and Basic Sciences, Military College of Signals, National University of Sciences and Technology, Rawalpindi 46000 (Pakistan); Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan); Nadeem, S. [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan)
2013-02-15
We discuss the peristaltic motion of a two dimensional Jeffrey fluid in an asymmetric channel under the effects of induced magnetic field and heat transfer. The problem is simplified by using long wave length and low Reynolds approximations. Exact and closed form Adomian solutions are presented. Expressions for the velocity, stream function, magnetic force function, temperature, pressure gradient and pressure rise are computed. The results of pertinent parameters are discussed. Finally, the trapping phenomena for different wave shapes are discussed. It is observed that the pressure rise for sinusoidal wave is less than trapezoidal wave and greater than triangular in a Jeffrey fluid. - Highlights: Black-Right-Pointing-Pointer The effects of induced magnetic field and heat transfer in peristaltic motion of a two dimensional Jeffrey fluid are discussed. Black-Right-Pointing-Pointer In this paper exact and closed form Adomian solutions are presented. Black-Right-Pointing-Pointer Different wave shapes are considered to observe the behavior of pressure rise and trapping phenomena.
Critical fluid technology for the processing of lipid-related natural products
King, J.W. [Los Alamos National Lab., Supercritical Fluid Facility, Chemistry Div. NM (United States)
2004-07-01
In recent years, the technology envelope that embraces critical fluids can involve a wide range of conditions, different types of pure and modified fluids, as well as processing options involving extractions, fractionations or reactions. Technological development drivers continue to be environmentally and consumer-benign processing and/or products, however in recent years expansion of the use of sub- and supercritical fluids has been catalyzed by applications in such opportune fields as nutraceuticals, conversion of biomass (bio-refining), and the ability to modify natural products by reactions. The use of critical fluid technology is an important facet of any sustainable development program, particularly when utilized over a broad, interconnected application platform. In this overview presentation, concepts and applications of critical fluids from the author's research as well as the literature will be cited to support the above trends. A totally 'green' processing platform appears to be viable using carbon dioxide in the appropriate form, ethanol and water as intermediate co-solvents/reactants, and water from above its boiling point to supercritical conditions. These fluids can be combined in overall coupled unit processes, such as combining trans-esterification with hydrogenation, or glycero-lysis of lipid moieties with supercritical fluid fractionation. Such fluids also can exploited sequentially for bio-refining processes or the segregation of value-added products, but may require using coupled fluid or unit operations to obtain the targeted product composition or purity. Changing the reduced temperatures and/or pressures of critical fluids offers a plethora of opportunity, an excellent example being the relative critical fluid state of water. For example, sub-critical water slightly above its boiling point provides a unique medium that mimics polar organic solvents, and has been used even for the extraction of thermally labile solutes or
Absolute and Relative Motion Measurements on a Model of a High-Speed Containership
1983-10-01
motivated a series of forced oscillation experiments on the SL-7 2 hull, designed to measure the various components of the rigid body equations of motion and...probes were originally designed to measure relative motion over a large range, from bottom emersion to deck immersion. However, their electronic... EXPERIEMTN : Zo/T = 0.037 0S•) 0.0746 0.1• 0.1100- 0.1470 OO 0 o o S I I I I I I I Fn -- 0.21’r- A8 ~ U’•’ 0ý Q.VL l 0 0 0 0 0 0 I I i i I i I Fn= 0.3 0.2 0
Topology of the Relative Motion: Circular and Eccentric Reference Orbit Cases
FontdecabaiBaig, Jordi; Metris, Gilles; Exertier, Pierre
2007-01-01
This paper deals with the topology of the relative trajectories in flight formations. The purpose is to study the different types of relative trajectories, their degrees of freedom, and to give an adapted parameterization. The paper also deals with the research of local circular motions. Even if they exist only when the reference orbit is circular, we extrapolate initial conditions to the eccentric reference orbit case.This alternative approach is complementary with traditional approaches in terms of cartesian coordinates or differences of orbital elements.
Undulatory swimming in viscoelastic fluids
Shen, Xiaoning
2011-01-01
The effects of fluid elasticity on the swimming behavior of the nematode \\emph{Caenorhabditis elegans} are experimentally investigated by tracking the nematode's motion and measuring the corresponding velocity fields. We find that fluid elasticity hinders self-propulsion. Compared to Newtonian solutions, fluid elasticity leads to 35% slower propulsion speed. Furthermore, self-propulsion decreases as elastic stresses grow in magnitude in the fluid. This decrease in self-propulsion in viscoelastic fluids is related to the stretching of flexible molecules near hyperbolic points in the flow.
Undulatory swimming in viscoelastic fluids.
Shen, X N; Arratia, P E
2011-05-20
The effects of fluid elasticity on the swimming behavior of the nematode Caenorhabditis elegans are experimentally investigated by tracking the nematode's motion and measuring the corresponding velocity fields. We find that fluid elasticity hinders self-propulsion. Compared to Newtonian solutions, fluid elasticity leads to up to 35% slower propulsion. Furthermore, self-propulsion decreases as elastic stresses grow in magnitude in the fluid. This decrease in self-propulsion in viscoelastic fluids is related to the stretching of flexible molecules near hyperbolic points in the flow.
On the relative importance of second-order terms in relativistic dissipative fluid dynamics
Molnár, E; Denicol, G S; Rischke, D H
2013-01-01
In Denicol et al., Phys. Rev. D 85, 114047 (2012), the equations of motion of relativistic dissipative fluid dynamics were derived from the relativistic Boltzmann equation. These equations contain a multitude of terms of second order in Knudsen number, in inverse Reynolds number, or their product. Terms of second order in Knudsen number give rise to non-hyperbolic (and thus acausal) behavior and must be neglected in (numerical) solutions of relativistic dissipative fluid dynamics. The coefficients of the terms which are of the order of the product of Knudsen and inverse Reynolds numbers have been explicitly computed in the above reference, in the limit of a massless Boltzmann gas. Terms of second order in inverse Reynolds number arise from the collision term in the Boltzmann equation, upon expansion to second order in deviations from the single-particle distribution function in local thermodynamical equilibrium. In this work, we compute these second-order terms for a massless Boltzmann gas with constant scatt...
Dhakal, Y. P.; Kunugi, T.; Suzuki, W.; Aoi, S.
2014-12-01
Many of the empirical ground motion prediction equations (GMPE) also known as attenuation relations have been developed for absolute acceleration or pseudo relative velocity response spectra. For a small damping, pseudo and absolute acceleration response spectra are nearly identical and hence interchangeable. It is generally known that the relative and pseudo relative velocity response spectra differ considerably at very short or very long periods, and the two are often considered similar at intermediate periods. However, observations show that the period range at which the two spectra become comparable is different from site to site. Also, the relationship of the above two types of velocity response spectra with absolute velocity response spectra are not discussed well in literature. The absolute velocity response spectra are the peak values of time histories obtained by adding the ground velocities to relative velocity response time histories at individual natural periods. There exists many tall buildings on huge and deep sedimentary basins such as the Kanto basin, and the number of such buildings is growing. Recently, Japan Meteorological Agency (JMA) has proposed four classes of long-period ground motion intensity (http://www.data.jma.go.jp/svd/eew/data/ltpgm/) based on absolute velocity response spectra, which correlate to the difficulty of movement of people in tall buildings. As the researchers are using various types of response spectra for long-period ground motions, it is important to understand the relationships between them to take appropriate measures for disaster prevention applications. In this paper, we, therefore, obtain and discuss the empirical attenuation relationships using the same functional forms for the three types of velocity response spectra computed from observed strong motion records from moderate to large earthquakes in relation to JMA magnitude, hypocentral distance, sediment depths, and AVS30 as predictor variables at periods between
Asymptotic analytical methods in fluid mechanics related to drag prediction
Inger, G. R.
1975-01-01
Some recent theoretical work of a purely analytical nature is described which promises to provide engineering predictions for the important drag-related phenomena of flow in the stall regime. This analytical work deals with rigorous asymptotic studies of the complete Navier-Stokes equations that govern the viscous flow around any aerodynamic body under conditions where boundary layer separation takes place from the body surface.
Fabienne MARTIN-JUCHAT
2013-07-01
Full Text Available We want to show here how recent innovations called Motion Capture, still being tested in laboratory on their potential uses, invite us to change our way to relate to the “technique”. We don’t want to question what the technique does to the social, nor what the social structures does to the technique, but we want to highlight the shifting principles that define interactions between technologies and humans. We therefore underline how using these motion sensors gives birth to different human modes of being present, co-present, or in a sensory and thymic interaction with technology. This article is based on experimental use tests, convoking both artists and engineers, questioning differently the relationship between technology, human and the interaction order. Our result is to question how using and being with these motion sensors, as a dancer, displace epistemological oppositions such as person/machine. It finally sheds light on how some others classical models can move, especially the semiotic decomposition of interaction processes and status.
Dean, J C; Wilcox, C H; Daniels, A U; Goodwin, R R; Van Wagoner, E; Dunn, H K
1991-01-01
A new experimental technique for measuring generalized three-dimensional motion of vertebral bodies during cyclic loading in vitro is presented. The system consists of an orthogonal array of three lasers mounted rigidly to one vertebra, and a set of three mutually orthogonal charge-coupled devices mounted rigidly to an adjacent vertebra. Each laser strikes a corresponding charge-coupled device screen. The mathematical model of the system is reduced to a linear set of equations with consequent matrix algebra allowing fast real-time data reduction during cyclic movements of the spine. The range and accuracy of the system is well suited for studying thoracolumbar motion segments. Distinct advantages of the system include miniaturization of the components, the elimination of the need for mechanical linkages between the bodies, and a high degree of accuracy which is not dependent on viewing volume as found in photogrammetric systems. More generally, the spectrum of potential applications of systems of this type to the real-time measurement of the relative motion of two bodies is extremely broad.
A. Afsar Khan
2016-01-01
Full Text Available The peristaltic motion of a third order fluid due to asymmetric waves propagating on the sidewalls of a inclined asymmetric channel is discussed. The key features of the problem includes longwavelength and low-Reynolds number assumptions. A mathematical analysis has been carried out to investigate the effect of slip condition, variable viscosity and magnetohydrodynamics (MHD. Followed by the nondimensionalization of the nonlinear governing equations along with the nonlinear boundary conditions, a perturbation analysis is made. For the validity of the approximate solution, a numerical solution is obtained using the iterative collocation technique.
USEFUL RELATIVE MOTION DESCRIPTION METHOD FOR PERTURBATIONS ANALYSIS IN SATELLITE FORMATION FLYING
MENG Xin; LI Jun-feng; GAO Yun-feng
2005-01-01
A set of parameters called relative orbital elements were defined to describe the relative motion of the satellites in the formation flying. With the help of these parameters, the effect of the perturbations on the relative orbit trajectory and geometric properties of satellite formation can be easily analyzed. First,the relative orbital elements are derived, and pointed out: if the eccentricity of the leading satellite is a small value, the relative orbit trajectory is determined by the intersection between an elliptic cylinder and a plane in the leading satellite orbit frame reference; and the parameters that describe the elliptic cylinder and the plane can be used to obtain the relative orbit trajectory and the relative orbital elements. Second, by analyzing the effects of gravitational perturbations on the relative orbit using the relative orbital elements,it is found that the propagation of a relative orbit consists of two parts: one is the drift of the elliptic cylinder; and the other is the rotation of the plane resulted from the rotation of the normal of the plane. Meanwhile, the analytic formulae for the drift and rotation rates of a relative trajectory under gravitational perturbations are presented. Finally, the relative orbit trajectory and the corresponding changes were analyzed with respect to the J2 perturbation.
Ab initio study of edge effect on relative motion of walls in carbon nanotubes.
Popov, Andrey M; Lebedeva, Irina V; Knizhnik, Andrey A; Lozovik, Yurii E; Potapkin, Boris V
2013-01-14
Interwall interaction energies of double-walled nanotubes with long inner and short outer walls are calculated as functions of coordinates describing relative rotation and displacement of the walls using van der Waals corrected density functional theory. The magnitude of corrugation and the shape of the potential energy relief are found to be very sensitive to changes of the shorter wall length at subnanometer scale and atomic structure of the edges if at least one of the walls is chiral. Threshold forces required to start relative motion of the short walls and temperatures at which the transition between diffusive and free motion of the short walls takes place are estimated. The edges are also shown to provide a considerable contribution to the barrier to relative rotation of commensurate nonchiral walls. For such walls, temperatures of orientational melting, i.e., the crossover from rotational diffusion to free relative rotation, are estimated. The possibility to produce nanotube-based bolt∕nut pairs and nanobearings is discussed.
Xie Yin-Li; Jia Li-Qun; Luo Shao-Kai
2011-01-01
Special Lie symmetry and the Hojman conserved quantity for Appell equations in a dynamical system of relative motion are investigated. The definition and the criterion of the special Lie symmetry of Appell equations in a dynamical system of relative motion under infinitesimal group transformation are presented. The expression of the equation for the special Lie symmetry of Appell equations and the Hojman conserved quantity, deduced directly from the special Lie symmetry in a dynamical system of relative motion, are obtained. An example is given to illustrate the application of the results.
T. M. Ajayi
2017-01-01
Full Text Available The problem of a non-Newtonian fluid flow past an upper surface of an object that is neither a perfect horizontal/vertical nor inclined/cone in which dissipation of energy is associated with temperature-dependent plastic dynamic viscosity is considered. An attempt has been made to focus on the case of two-dimensional Casson fluid flow over a horizontal melting surface embedded in a thermally stratified medium. Since the viscosity of the non-Newtonian fluid tends to take energy from the motion (kinetic energy and transform it into internal energy, the viscous dissipation term is accommodated in the energy equation. Due to the existence of internal space-dependent heat source; plastic dynamic viscosity and thermal conductivity of the non-Newtonian fluid are assumed to vary linearly with temperature. Based on the boundary layer assumptions, suitable similarity variables are applied to nondimensionalized, parameterized and reduce the governing partial differential equations into a coupled ordinary differential equations. These equations along with the boundary conditions are solved numerically using the shooting method together with the Runge-Kutta technique. The effects of pertinent parameters are established. A significant increases in Rex1/2Cfx is guaranteed with St when magnitude of β is large. Rex1/2Cfx decreases with Ec and m.
The use of symmetrized valence and relative motion coordinates for crystal potentials
McMurry, H. L.; Hansen, Flemming Yssing
1980-01-01
Symmetrized valence coordinates are linear combinations of conventional valence coordinates which display the symmetry of a set of atoms bound by the valence bonds. Relative motion coordinates are relative translations, or relative rotations, of two or more strongly bonded groups of atoms among...... which relatively weak forces act. They are useful for expressing interactions between molecules in molecular crystals and should be chosen, also, to reflect the symmetry of the interacting groups. Since coordinates defined by these procedures possess elements of symmetry in common with the bonding...... interaction constants coupling coordinates of unlike symmetry with regard to the crystal point group are necessarily zero. They may be small, also, for coordinates which belong to different representations of the local symmetry when this is not the same as for the crystal. Procedures are given for defining...
Martinez, P.; Bohnhoff, M.; Kwiatek, G.
2012-12-01
Studying potential spatial and temporal variations of the crustal stress field caused by massive fluid injection during reservoir stimulation is important towards an improved understanding of induced seismicity in different types of reservoirs. However, an accurate and reliable determination of such stress changes is difficult and requires dense local seismic networks with good azimuthal coverage and low magnitude-detection threshold. The Geysers geothermal field is located close to the San Andreas Fault in California, USA. There, induced seismicity associated with the exploitation of the reservoir has been extensively monitored for more than 30 years. While it is evident that seismicity at The Geyser is related to injection and production operations it is difficult to relate the production parameters from individual wells to the spatial and temporal patterns of the crustal stress field and associated seismicity. Earlier attempts to determine the local stress field in the area (Oppenheimer, 1986, J. G. R., 91) estimated the stress orientation by inverting 210 fault plane solutions. He obtained a result that was very consistent with the regional stress field, which might indicate that the regional tectonic stress field dominates over the stresses induced locally by reservoir treatment. In this study we aim at determining potential spatial and temporal variations of the local stress field orientation at The Geysers geothermal site using first motion polarity data provided by a permanent array of 34 stations from Lawrence Berkeley National Laboratory (LBNL) installed in 2007. The network is composed of 3-component short period sensors located at the surface throughout the geothermal field with a sampling frequency of 500 Hz. To determine the stress field orientation we apply different stress inversion methods including non-linear stress inversion algorithms (Abers and Gephart, 2001, J. G. R., 106) with Bayesian uncertainty assessment and a linear approach (Hardebeck
Effect of task-related continuous auditory feedback during learning of tracking motion exercises
Rosati Giulio
2012-10-01
visuomotor perturbation, whereas controller-task-related sound feedback did not. This result was particularly interesting, as the subjects relied more on auditory augmentation of the visualized target motion (which was altered with respect to arm motion by the visuomotor perturbation, rather than on sound feedback provided in the controller space, i.e., information directly related to the effective target motion of their arm. Conclusions Our results indicate that auditory augmentation of visual feedback can be beneficial during the execution of upper limb movement exercises. In particular, we found that continuous task-related information provided through sound, in addition to visual feedback can improve not only performance but also the learning of a novel visuomotor perturbation. However, error-related information provided through sound did not improve performance and negatively affected learning in the presence of the visuomotor perturbation.
Klevgard, Paul A
2015-01-01
The classical (Newtonian) concept of projectile motion underwent a series of seemingly minor changes and adjustments between the discovery of the quantum (Planck, 1900) and the early codification of quantum theory (Dirac, 1928). The goal of physicists in this period was to keep change to a minimum and preserve as much as possible of the traditional projectile paradigm (TPP). These adjustments were successful in masking an all-out projectile paradigm crisis, but they have left us with a conceptual muddle. This has been especially deleterious for special relativity and our understanding of space contraction and time dilation.
XIE Yin-Li; YANG Xin-Fang; JIA Li-Qun
2011-01-01
Noether symmetry of Nielsen equation and Noether conserved quantity deduced directly from Noether symmetry for dynamical systems of the relative motion are studied.The definition and criteria of Noether symmetry of a Nielsen equation under the infinitesimal transformations of groups are given.Expression of Noether conserved quantity deduced directly from Noether symmetry of Nielsen equation for the system are obtained.Finally, an example is given to illustrate the application of the results.PACS numbers: 11.30.-j, 45.20.Jj, 02.20.Sv
A GPS estimate of relative motion between North and South America
Dixon, Timothy H.; Mao, Ailin
GPS velocity data are used to estimate the Euler vector describing rigid body motion of North America relative to South America. Assuming the boundary between the North and South American plates is located near the Fifteen Twenty fracture zone in the equatorial Atlantic, the Euler vector predicts extension across the Royal Trough up to 1 mm/yr, and convergence across the Barracuda Ridge at about 2 mm/yr, in agreement with geological estimates averaged over tens of millions of years. Further west, convergence between North and South America at rates up to 8 mm/yr may contribute to deformation of the Caribbean plate along its southwest boundary with South America.
The Energy-Momentum Tensor for a Dissipative Fluid in General Relativity
Pimentel, Oscar M; Lora-Clavijo, F D
2016-01-01
Considering the growing interest of the astrophysicist community in the study of dissipative fluids with the aim of getting a more realistic description of the universe, we present in this paper a physical analysis of the energy-momentum tensor of a viscous fluid with heat flux. We introduce the general form of this tensor and, using the approximation of small velocity gradients, we relate the stresses of the fluid with the viscosity coefficients, the shear tensor and the expansion factor. Exploiting these relations, we can write the stresses in terms of the extrinsic curvature of the normal surface to the 4-velocity vector of the fluid, and we can also establish a connection between the perfect fluid and the symmetries of the spacetime. On the other hand, we calculate the energy conditions for a dissipative fluid through contractions of the energy-momentum tensor with the 4-velocity vector of an arbitrary observer. This method is interesting because it allows us to compute the conditions in a reasonable easy...
Relation between pore size and the compressibility of a confined fluid
Gor, Gennady Y., E-mail: gennady.y.gor@gmail.com [NRC Research Associate, Resident at Center for Computational Materials Science, Naval Research Laboratory, Washington, DC 20375 (United States); Siderius, Daniel W.; Krekelberg, William P.; Shen, Vincent K. [Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Rasmussen, Christopher J. [DuPont Central Research and Development Experimental Station, Wilmington, Delaware 19803 (United States); Bernstein, Noam [Center for Computational Materials Science, Naval Research Laboratory, Washington, DC 20375 (United States)
2015-11-21
When a fluid is confined to a nanopore, its thermodynamic properties differ from the properties of a bulk fluid, so measuring such properties of the confined fluid can provide information about the pore sizes. Here, we report a simple relation between the pore size and isothermal compressibility of argon confined in such pores. Compressibility is calculated from the fluctuations of the number of particles in the grand canonical ensemble using two different simulation techniques: conventional grand-canonical Monte Carlo and grand-canonical ensemble transition-matrix Monte Carlo. Our results provide a theoretical framework for extracting the information on the pore sizes of fluid-saturated samples by measuring the compressibility from ultrasonic experiments.
Relation Between Pore Size and the Compressibility of a Confined Fluid
Gor, Gennady Y; Rasmussen, Christopher J; Krekelberg, William P; Shen, Vincent K; Bernstein, Noam
2015-01-01
When a fluid is confined to a nanopore, its thermodynamic properties differ from the properties of a bulk fluid, so measuring such properties of the confined fluid can provide information about the pore sizes. Here we report a simple relation between the pore size and isothermal compressibility of argon confined in these pores. Compressibility is calculated from the fluctuations of the number of particles in the grand canonical ensemble using two different simulation techniques: conventional grand-canonical Monte Carlo and grand-canonical ensemble transition-matrix Monte Carlo. Our results provide a theoretical framework for extracting the information on the pore sizes of fluid-saturated samples by measuring the compressibility from ultrasonic experiments.
Taetz, Stephan; John, Timm; Bröcker, Michael; Spandler, Carl; Stracke, Andreas
2017-04-01
A better understanding of the subduction zone fluid cycle and its mechanical feedback requires in-depth knowledge of how fluids flow within and out of the descending slabs. In order to develop reliable quantitative models of fluid flow, the general relationship between dehydration reactions, fluid pathway formation, and the dimensions and timescales of distinct fluid flow events have to be explored. The high-pressure/low-temperature metamorphic rocks of the Pouébo Eclogite Mélange in New Caledonia provide an excellent opportunity to study the fluid flux in a subduction zone setting. Fluid dynamics are recorded by high-pressure veins that cross-cut eclogite facies mélange blocks from this occurrence. Two types of garnet-quartz-phengite veins can be distinguished. These veins record both synmetamorphic internal fluid release by mineral breakdown reactions (type I veins) as well as infiltration of an external fluid (type II veins) and the associated formation of a reaction halo. The overall dehydration, fluid accumulation and fluid migration documented by the type I veins occurred on a timescale of 10^5-106 years that is mainly given by the geometry and convergence rate of the subduction system. In order to quantify the timeframe of fluid-rock interaction between the external fluid and the wall-rock, we have applied Li-isotope chronology. A continuous profile was sampled perpendicular to a type II vein including material from the vein, the reaction selvage and the immediate host rock. Additional drill cores were taken from parts of the outcrop that most likely remained completely unaffected by fluid infiltration-induced alteration. Different Li concentrations in the internal and external fluid reservoirs produced a distinct diffusion profile of decreasing Li concentration and increasing δ7Li as the reaction front propagated into the host-rock. Li-chronometric constraints indicate that fluid-rock interaction related to the formation of the type II veins and had
Weather-related Ground Motions Recorded by Taiwan Broadband Seismic Network Stations
Yang, C. F.; Chi, W. C.; Lai, Y. J.
2015-12-01
Broadband seismometers record ground motions, which can be induced by weather-related processes. Analyzing such signals might help to better understand those natural processes. Here, we used continuous seismic data, meteorological data and stream data to analyze the weather-related ground motions during typhoon cases and rainy season case in Taiwan. We detected some long period seismic signals at the station Mahsi (MASB) during three meteorological cases (Typhoon Kalmaegi in 2008, Typhoon Morakot in 2009 and the East Asian rainy season in 2012). The amplitude of the seismic waveform correlated with the amount of the precipitation and the derivative of water level and discharge in the nearby river. According to the relationships of waveforms in main and minor rainfall events, we derived apparent source time functions (ASTFs) and used the ASTFs to estimate and quantify the precipitation of main rainfall events in the cases. The estimated precipitation has high correlation coefficients (> 0.82) with the observation. It shows that the long period seismic data may be applied to rainfall monitoring.
New Worlds Observer Formation Control Design Based on the Dynamics of Relative Motion
Luquette, Richard J.
2008-01-01
The New Worlds Observer (NWO) mission is designed for the direct detection and characterization of extrasolar planets. The NWO mission concept employs a two spacecraft leader-follower formation on a trajectory around the Earth/Moon-Sun L(sub 2) Libration Point. The leader spacecraft is baselined as a 4 meter optical telescope. The follower, Starshade spacecraft, is designed to suppress light from a central body star permitting direct detection of a surrounding exoplanetary system. The current design requires a nominal leader-follower separation range of 72 Megameters. NWO poses many challenges including formation control. NWO cycles between three principal control modes during the nominal mission timeline: science (fine pointing), realignment and transition. This paper examines formation control strategies in the context of dynamics of relative motion for two spacecraft operating in the vicinity of the Earth/Moon-Sun L(sub 2)libration point. The paper presents an overview of the equations of relative motion followed by a discussion of each of the control modes. Discussion and analysis characterize control strategies for each of the mission control modes, including requirements, implementation challenges and project fuel budgets.
Special relativity and superluminal motions: a discussion of some recent experiments
Recami, E. [Istituto Nazionale di Fisica Nucleare, Milan (Italy)]|[Bergamo Univ., Bergamo (Italy). Fac. di Ingegneria]|[State Univ. of Campinas, Campinas (Brazil); Fontana, F. [Pirelli Cavi, Milan (Italy). R and D sector; Garavaglia, R. [Milan Univ., Milan (Italy). Dipt. di Scienze dell' Informazione
2000-03-01
Some experiments, performed at Berkeley, Cologne, Florence, Vienna, Orsay and Rennes led to the claim that something seems to travel with a group velocity larger than the speed c of light in vacuum. Various other experimental results seem to point in the same direction. For instance, localized wavelet-type solutions of Maxwell equations have been found, both theoretically and experimentally, that travel with superluminal speed. Even mounic and electronic neutrinos - it has been proposed - might be tachyons, since their square mass appears to be negative. With regard to the first mentioned experiments, it was very recently claimed by Guenter Nimtz that those results with evanescent waves or tunnelling photons - implying superluminal signal and impulse transmission - violate Einstein causality. This note, on the contrary, discusses that all such results do not place relativistic causality in jeopardy, even if they refer to actual tachyonic motions. In fact, special relativity can cope even with also the known paradoxes , devised for faster than light motion, even if this is not widely recognized. Here the paper shows, in detail and rigorously, how to solve the oldest casual paradox. originally proposed by Tolman, which is the kernel of many further tachyon paradoxes. The key to the solution is a careful application of tachyon mechanics, as it unambiguously follows from special relativity.
The forms of three-order Lagrangian equation in relative motion
Ma Shan-Jun; Liu Ming-Ping; Huang Pei-Tian
2005-01-01
In this paper, the general expressions of three-order Lagrangian equations in a motional coordinate system are obtained. In coordinate systems with some specific forms of motion, the expressions corresponding to these equations are also presented.
Fluid Intake Related to Brain Edema in Acute Middle Cerebral Artery Infarction.
Dharmasaroja, Pornpatr A
2016-02-01
Evidence of the appropriate amount of fluid intake during the first few days after acute stroke was scarce. Concerns were raised in patients with acute malignant middle cerebral infarction, who tended to have malignant brain edema later. The purpose of the study was to evaluate the effect of fluid intake on the occurrence of malignant brain edema in patients with acute middle cerebral artery infarction. Patients with acute middle cerebral artery infarction who had National Institute of Health Stroke Scale (NIHSS) score of at least 15 were included. Baseline characteristics and amount of fluid intake during the first few days were compared in patients with and without malignant brain edema. One hundred ninety-three patients were studied. Mean NIHSS score was 20. Malignant brain edema occurred in 69 patients (36%). Higher amount of fluid intake (>1650 ml or >28 ml/kg/day or >93% of daily maintenance fluid) showed a significant association with malignant brain edema (OR = 13.86, 95% CI 5.11-37.60, p value edema, 39 patients (39/65, 60%) died and only 11% (7/65 patients) had favorable outcome. High amount of fluid intake in the first few days of acute middle cerebral infarction was related to the occurrence of malignant brain edema.
Martin, Bryn A; Yiallourou, Theresia I; Pahlavian, Soroush Heidari; Thyagaraj, Suraj; Bunck, Alexander C; Loth, Francis; Sheffer, Daniel B; Kröger, Jan Robert; Stergiopulos, Nikolaos
2016-05-01
For the first time, inter-operator dependence of MRI based computational fluid dynamics (CFD) modeling of cerebrospinal fluid (CSF) in the cervical spinal subarachnoid space (SSS) is evaluated. In vivo MRI flow measurements and anatomy MRI images were obtained at the cervico-medullary junction of a healthy subject and a Chiari I malformation patient. 3D anatomies of the SSS were reconstructed by manual segmentation by four independent operators for both cases. CFD results were compared at nine axial locations along the SSS in terms of hydrodynamic and geometric parameters. Intraclass correlation (ICC) assessed the inter-operator agreement for each parameter over the axial locations and coefficient of variance (CV) compared the percentage of variance for each parameter between the operators. Greater operator dependence was found for the patient (0.19 0.78). For the healthy subject, hydraulic diameter and Womersley number had the least variance (CV = ~2%). For the patient, peak diastolic velocity and Reynolds number had the smallest variance (CV = ~3%). These results show a high degree of inter-operator reliability for MRI-based CFD simulations of CSF flow in the cervical spine for healthy subjects and a lower degree of reliability for patients with Type I Chiari malformation.
M. V. Krautsov
2015-01-01
Full Text Available The article presents the results of a research into various hydromechanical processes such as hindered falling of an individual ball in a liquid; suspension of a homogeneous monodispersed granular layer with ascending fluid flow; homogeneous liquid filtration in a porous granular layer. The authors generalize the results of theoretical and experimental studies, employ the theory of similarity, and establish that the laws of hydraulic friction for the mentioned hydromechanical processes share the common ground described by one general equation that provides basis for obtaining the individual formulae computing the studied hydromechanical processes. The formulae appear in dimensionless similitude parameters that reflect correlation of the essential action forces.The presented scientific results contribute to the theory development of the applied hydromechanical phenomena and the new obtained formulae enable enhancement of the calculation procedures for structures and installations that realize the studied hydraumechanical processes. Thus, the research results for the hindered falling of an individual ball in a liquid can apply in viscosimetry techniques and in handling the problems related to calculations of various movement types and separate units in technologies realizing the hydraulic processes of hindered falling of individual balls in liquids.Fluidization processes (pseudo-liquefaction of the granular layers enjoy wide application in various segments of industry for instance in chemical engineering at adsorption, desorption, dissolution, dealkalization, ablution. A new general calculating formula incipiency provides a possibility for technological computations realization under any operational mode. The filtration process is used in industry as well as occurs in nature, for example, in movement of the ground water. At present, the basis for calculating techniques is the monomial Darcy formula defining the filtering rate as function of the
D'Auria, Bernardo
2011-01-01
In this paper we study a reflected Markov-modulated Brownian motion with a two sided reflection in which the drift, diffusion coefficient and the two boundaries are (jointly) modulated by a finite state space irreducible continuous time Markov chain. The goal is to compute the stationary distribution of this Markov process, which in addition to the complication of having a stochastic boundary can also include jumps at state change epochs of the underlying Markov chain because of the boundary changes. We give the general theory and then specialize to the case where the underlying Markov chain has two states. Moreover, motivated by an application of optimal dividend strategies, we consider the case where the lower barrier is zero and the upper barrier is subject to control. In this case we generalized earlier results from the case of a reflected Brownian motion to the Markov modulated case.
Relative Vessel Motion Tracking using Sensor Fusion, Aruco Markers, and MRU Sensors
Sondre Sanden Tordal
2017-04-01
Full Text Available This paper presents a novel approach for estimating the relative motion between two moving offshore vessels. The method is based on a sensor fusion algorithm including a vision system and two motion reference units (MRUs. The vision system makes use of the open-source computer vision library OpenCV and a cube with Aruco markers placed onto each of the cube sides. The Extended Quaternion Kalman Filter (EQKF is used for bad pose rejection for the vision system. The presented sensor fusion algorithm is based on the Indirect Feedforward Kalman Filter for error estimation. The system is self-calibrating in the sense that the Aruco cube can be placed in an arbitrary location on the secondary vessel. Experimental 6-DOF results demonstrate the accuracy and efficiency of the proposed sensor fusion method compared with the internal joint sensors of two Stewart platforms and the industrial robot. The standard deviation error was found to be 31mm or better when the Arcuo cube was placed at three different locations.
Review of seismicity and ground motion studies related to development of seismic design at SRS
Stephenson, D.E. [Westinghouse Savannah River Co., Aiken, SC (United States); Acree, J.R. [Westinghouse Environmental and Geotechnical Services, Inc., Columbia, SC (United States)
1992-08-01
The NRC response spectra developed in Reg. Guide 1.60 is being used in the studies related to restarting of the existing Savannah River Site (SRS) reactors. Because it envelopes all the other site specific spectra which have been developed for SRS, it provides significant conservatism in the design and analysis of the reactor systems for ground motions of this value or with these probability levels. This spectral shape is also the shape used for the design of the recently licensed Vogtle Nuclear Station, located south of the Savannah River from the SRS. This report provides a summary of the data base used to develop the design basis earthquake. This includes the seismicity, rates of occurrence, magnitudes, and attenuation relationships. A summary is provided for the studies performed and methodologies used to establish the design basis earthquake for SRS. The ground motion response spectra developed from the various studies are also summarized. The seismic hazard and PGA`s developed for other critical facilities in the region are discussed, and the SRS seismic instrumentation is presented. The programs for resolving outstanding issues are discussed and conclusions are presented.
Universal current-velocity relation of skyrmion motion in chiral magnets
Iwasaki, Junichi; Mochizuki, Masahito; Nagaosa, Naoto
2013-03-01
Current-driven motion of the magnetic domain wall requires large critical current density jc ~109 -1012 A/m2, at which the joule heating is a serious problem. The skyrmions recently discovered in chiral magnets, on the other hand, have much smaller critical current of jc ~105 -106 A/m2. We present a numerical simulation of the Landau-Lifshitz-Gilbert equation, which reveals a remarkably robust and universal current-velocity relation of the slyrmion motion driven by the spin transfer torque unaffected by either impurities or nonadiabatic effect in sharp contrast to the case of domain wall or spin helix (HL). Simulation results are analyzed using a theory based on Thiele's equation, and it is concluded that this surprising behavior is due to the Magnus force and flexible shape-deformation of individual skyrmions and skyrmion crystal (SkX), which enable them to avoid pinning centers and then weaken the net pinning force. Dynamical deformation of SkX leads to the fluctuation of Bragg peak with large amplitude, which can be detected by the recent neutron-scattering experiment.
[Comment on “Changes in relative sea level”] Changes in sea level: The question of secular motion
Dickman, S. R.
I am writing this note in reference to one paragraph of a generally interesting report, “Changes in Relative Mean Sea Level’ [by the IAPSO Advisory Committee on Tides and Mean Sea Level], which appeared in the November 5, 1985 issue of Eos [p. 754]. In this paragraph the authors question the nature and even existence of the secular motion of the earth's rotation pole. The paragraph states that because of supposed extreme irregularities in the observed (ILS) motion, “it may even be that the entire apparent secular motion of the pole is an artifact of systematic efforts [this word should probably read ‘errors’] in the ILS” data.
Travelling wave analysis and jump relations for a fluid model of quasineutral plasma
Cordier, S. (Ecole Polytechnique, 91 - Palaiseau (France)); Degond, P. (Toulouse-3 Univ., 31 (France)); Markowich, P. (Technische Univ. Berlin (Germany)); Schmeiser, C. (Technische Univ., Vienna (Austria))
1994-05-01
A 1-D fluid model for a plasma is presented. In the quasineutral limit, this model leads to a non conservative hyperbolic system for which the jump relations are a-priority not well defined. The problem can be solved for sufficiently strong shocks via a travelling wave analysis. (authors). 5 refs.
Mohmand, Muhammad Ismail; Mamat, Mustafa Bin; Shah, Qayyum
2017-07-01
This article deals with the time dependent analysis of thermally conducting and Magneto-hydrodynamic (MHD) liquid film flow of a fourth order fluid past a vertical and vibratory plate. In this article have been developed for higher order complex nature fluids. The governing-equations have been modeled in the terms of nonlinear partial differential equations with the help of physical boundary circumstances. Two different analytical approaches i.e. Adomian decomposition method (ADM) and the optimal homotopy asymptotic method (OHAM), have been used for discoveryof the series clarification of the problems. Solutions obtained via two diversemethods have been compared using the graphs, tables and found an excellent contract. Variants of the embedded flow parameters in the solution have been analysed through the graphical diagrams.
Motion of small bodies in general relativity: foundations and implementations of the self-force
Pound, Adam
2010-01-01
Extreme mass-ratio inspirals, in which solar-mass compact bodies spiral into supermassive black holes, are an important potential source for gravitational wave detectors. Because of the extreme mass-ratio, one can model these systems using perturbation theory. However, in order to relate the motion of the small body to the emitted waveform, one requires a model that is accurate on extremely long timescales. Additionally, in order to avoid intractable divergences, one requires a model that treats the small body as asymptotically small rather than exactly pointlike. Both of these difficulties can be resolved by using techniques of singular perturbation theory. I begin this dissertation with an analysis of singular perturbation theory on manifolds, including the common techniques of matched asymptotic expansions and two-timescale expansions. I then formulate a systematic asymptotic expansion in which the metric perturbation due to the body is expanded while a representative worldline is held fixed, and I contras...
Application of Analytic Solution in Relative Motion to Spacecraft Formation Flying in Elliptic Orbit
Cho, Hancheol; Park, Sang-Young; Choi, Kyu-Hong
2008-09-01
The current paper presents application of a new analytic solution in general relative motion to spacecraft formation flying in an elliptic orbit. The calculus of variations is used to analytically find optimal trajectories and controls for the given problem. The inverse of the fundamental matrix associated with the dynamic equations is not required for the solution in the current study. It is verified that the optimal thrust vector is a function of the fundamental matrix of the given state equations. The cost function and the state vector during the reconfiguration can be analytically obtained as well. The results predict the form of optimal solutions in advance without having to solve the problem. Numerical simulation shows the brevity and the accuracy of the general analytic solutions developed in the current paper.
Geochemical Features of Ore Fluid for Gold Deposits Related to Alkaline Rocks in China
齐金忠; 李莉
2000-01-01
Fluid inclusion studies of 5 gold deposits connected with alkaline rocks show that quartz separated from auriferous quartz veins contains abundant three-phase CO2-NaCl-H2O inclusions and two-phase CO2-dominated ones,measuring 5-20um in diameter,Homogenization temperatures of the fluid inclusions are mostly within the range of 150-300℃,and the salinities,mainly 0.2wt%-12 wt%(NaCl),Gold mineralizations occurred at depths of 1.4-2.8km,The most striking character of fluid composition is that among the cations,Na+ in dominant,followed by K+,Ca2+,among the anions,Cl- is slightly higher than SO42-,In the evaporate,H2O is dominant,followed by CO2,The pH values are mainly within the range of 6.5-8.5,indicating that the ore-forming solutions are alkaline in nature.The hydrogen and oxygen isotopic ratios indicate that the ore fluid is composed mainly of magmatic water.With the dropping of temperature in the ore fluid,the contents of CO2 decreased while the salinity increased.The relations between Au and other components of the ore fluid are discussed in the paper,and it is concluded that in these deposits,Chlorides,H2S,SiO2,CO2,etc.in the fluid all are involved in the migration and concentration of Au.
Effect of head and jaw position on respiratory-related motion of the genioglossus.
Cai, Mingshu; Brown, Elizabeth C; Hatt, Alice; Cheng, Shaokoon; Bilston, Lynne E
2016-04-01
Head and jaw position influence upper airway patency and electromyographic (EMG) activity of the main upper airway dilator muscle, the genioglossus. However, it is not known whether changes in genioglossus EMG activity translate into altered muscle movement during respiration. The aim of this study was to determine the influence of head and jaw position on dilatory motion of the genioglossus in healthy adult men during quiet breathing by measuring the displacement of the posterior tongue in six positions--neutral, head extension, head rotation, head flexion, mouth opening, and mandibular advancement. Respiratory-related motion of the genioglossus was imaged with spatial modulation of magnetization (SPAMM) in 12 awake male participants. Tissue displacement was quantified with harmonic phase (HARP) analysis. The genioglossus moved anteriorly beginning immediately before or during inspiration, and there was greater movement in the oropharynx than in the velopharynx in all positions. Anterior displacements of the oropharyngeal tongue varied between neutral head position (0.81 ± 0.41 mm), head flexion (0.62 ± 0.45 mm), extension (0.39 ± 0.19 mm), axial rotation (0.39 ± 0.2 mm), mouth open (1.24 ± 0.72 mm), and mandibular advancement (1.08 ± 0.65 mm). Anteroposterior displacement increased in the mouth-open position and decreased in the rotated position relative to cross-sectional area (CSA) (P = 0.002 and 0.02, respectively), but CSA did not independently predict anteroposterior movement overall (P = 0.057). The findings of this study suggest that head position influences airway dilation during inspiration and may contribute to variation in airway patency in different head positions. Copyright © 2016 the American Physiological Society.
Measurement of average density and relative volumes in a dispersed two-phase fluid
Sreepada, Sastry R.; Rippel, Robert R.
1992-01-01
An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.
Locomotion in complex fluids: Integral theorems
Lauga, Eric
2014-01-01
The biological fluids encountered by self-propelled cells display complex microstructures and rheology. We consider here the general problem of low-Reynolds number locomotion in a complex fluid. {Building on classical work on the transport of particles in viscoelastic fluids,} we demonstrate how to mathematically derive three integral theorems relating the arbitrary motion of an isolated organism to its swimming kinematics {in a non-Newtonian fluid}. These theorems correspond to three situations of interest, namely (1) squirming motion in a linear viscoelastic fluid, (2) arbitrary surface deformation in a weakly non-Newtonian fluid, and (3) small-amplitude deformation in an arbitrarily non-Newtonian fluid. Our final results, valid for a wide-class of {swimmer geometry,} surface kinematics and constitutive models, at most require mathematical knowledge of a series of Newtonian flow problems, and will be useful to quantity the locomotion of biological and synthetic swimmers in complex environments.
Borisov, A. V.; Kuznetsov, S. P.; Mamaev, I. S.; Tenenev, V. A.
2016-09-01
From analysis of time series obtained on the numerical solution of a plane problem on the motion of a body with an elliptic cross section under the action of gravity force in an incompressible viscous fluid, a system of ordinary differential equations approximately describing the dynamics of the body is reconstructed. To this end, coefficients responsible for the added mass, the force caused by the circulation of the velocity field, and the resisting force are found by the least square adjustment. The agreement between the finitedimensional description and the simulation on the basis of the Navier-Stokes equations is illustrated by images of attractors in regular and chaotic modes. The coefficients found make it possible to estimate the actual contribution of different effects to the dynamics of the body.
WANG Ying; YANG Jian-min; L(U) Hai-ning
2009-01-01
Spar platforms could be subject to vortex-induced-motions (VIM) in certain current conditions. Lock-in is a phenomenon which occurs in a range of reduced velocities in VIM. In this paper, a new concept of spar platform called cell-truss spar is studied using both computational fluid dynamics (CFD) and model test to investigate the VIM of the spar under different reduced velocities. The unique configuration of the cell-truss spar is carefully considered, and the unsteady flow around the spar is calculated and visualized in CFD simulations. A physical model with a scale ratio of 1:100 of the cell-truss spar is fabricated, and model tests are carried out in the current-generating ocean engineering basin. Many important parameters in VIM of the cell-truss spar are obtained, the occurrence of lock-in phenomenon is successfully simulated, and the mechanism and rules of lock-in are analyzed.
Zhukhovitskii, Dmitry; Ivlev, Alexei; Thomas, Hubertus; Fortov, Vladimir; Lipaev, Andrey; Morfill, Gregor; Molotkov, Vladimir; Naumkin, Vadim
Subsonic motion of a large particle (projectile) moving through the bulk of a dust crystal formed by negatively charged small particles is investigated using the PK-3 Plus laboratory onboard the International Space Station. Tracing the dust particle trajectories show that the projectile moves almost freely through the bulk of plasma crystal, while dust particles move along characteristic alpha-shaped pathways near the large particle. We develop a theory of nonviscous dust particles motion about a projectile and calculate particle trajectories. The deformation of a cavity around a subsonic projectile in the cloud of small dust particles is investigated with due regard for friction between the dust particles and atoms of neutral gas. The pressure of a dust cloud at the surface of a cavity around the projectile can become negative, which entails the emergence of a considerable asymmetry of the cavity, i.e., the cavity deformation. Corresponding threshold velocity is calculated, which is found to decrease with increasing cavity size. Developed theory makes it possible to estimate the static pressure of dust particles in a cloud on the basis of experimental data. A good agreement with experiment validates our approach.
Gauged motion in general relativity and in Kaluza-Klein theories
Nouri-Zonoz, M; Nouri-Zonoz, Mohammad; Tavanfar, Ali Reza
2003-01-01
In a recent paper [1] a new generalization of Killing motion, the {\\it gauged motion}, has been introduced for stationary spacetimes where it was shown that the physical symmetries of such spacetimes are well described through this new symmetry. In this article after a more detailed study in stationary case we present the definition of gauged motion for general spacetimes. The definition is based on the gauged Lie derivative induced by a threading family of observers and the relevant reparametrization invariance. We also extend the gauged motion to the case of Kaluza-Klein theories.
2009-01-01
This is a survey on normal distributions and the related central limit theorem under sublinear expectation.We also present Brownian motion under sublinear expectations and the related stochastic calculus of It?’s type.The results provide new and robust tools for the problem of probability model uncertainty arising in financial risk,statistics and other industrial problems.
PENG ShiGe
2009-01-01
This is a survey on normal distributions and the related central limit theorem under sublinear expectation. We also present Brownian motion under sublinear expectations and the related stochastic calculus of Ito's type. The results provide new and robust tools for the problem of probability model uncertainty arising in financial risk, statistics and other industrial problems.
Lecourtier J.
2006-11-01
Full Text Available A laboratory study has been undertaken to elucidate the influence of structural parameters of polymer/electrolyte systems commonly used for the formulation of water-based drilling fluids on their performances as filtrate reducers or cuttings dispersion inhibitors. The dependence of properties of bentonite/polymer/electrolyte systems on polymer molecular characteristics has been studied. The results indicate that polymer dimensions which depend on both salinity and polymer molecular weight have a major influence on the efficiency in inhibiting cuttings dispersion. Filtration properties of the investigated model fluids have been found to be strongly dependent on polymer/bentonite interactions : an increase in molecular weight of polymeric additives can induce clay particle flocculation resulting in poor filtration control whereas an increase in polymer negative charges improves bentonite dispersion and thus filtration properties. Une étude de laboratoire a été entreprise pour évaluer l'influence exercée par les paramètres structuraux des systèmes polymère/électrolyte couramment utilisés pour la formulation de fluides de forage à base d'eau sur leurs performances en tant que réducteurs de filtrat ou inhibiteurs de dispersion des déblais. Les relations entre les propriétés des systèmes bentonite/polymère/électrolyte et les caractéristiques moléculaires du polymère ont été étudiées. Les résultats montrent que les dimensions du polymère qui dépendent à la fois de la salinité et du poids moléculaire ont une influence majeure sur son efficacité à inhiber la dispersion des déblais. On a constaté que les propriétés de filtration des modèles de fluides étudiés dépendent fortement de l'interaction polymère/bentonite : une augmentation du poids moléculaire des additifs polymères peut entraîner une floculation des particules argileuses provoquant un mauvais contrôle de filtration, alors qu'une augmentation des
Pan, Tsorng-Whay
2016-01-01
In this article we present a numerical study of the dynamics of two disks settling in a narrow vertical channel filled with Oldroyd-B fluid. Two kinds of particle dynamics are obtained: (i) periodic interaction between two disks and (ii) the chain formation of two disks. For the periodic interaction of two disks, two different motions are obtained: (a) two disks stay far apart and interact periodically and (b) two disks interact closely and then far apart in a periodic way, like the drafting, kissing and tumbling of two disks sedimenting in Newtonian fluid, due to the lack of strong enough elastic force. For the formation of two disk chain occurred at higher values of the elasticity number, it is either a tilted chain or a vertical chain. The tilted chain can be obtained for either that the elasticity number is less than the critical value for having the vertical chain or that the Mach number is greater than the critical value for a long body to fall broadside-on. Hence the values of the elasticity number and...
On the integrability of the motion of 3D-Swinging Atwood machine and related problems
Elmandouh, A.A., E-mail: adel78@mans.edu.eg [Department of Mathematics and Statistics, Faculty of Science, King Faisal University, P.O. Box 400, Al-Ahsaa 31982 (Saudi Arabia); Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)
2016-03-06
In the present article, we study the problem of the motion of 3D- Swinging Atwood machine. A new integrable case for this problem is announced. We point out a new integrable case describing the motion of a heavy particle on a titled cone.
Relative motions of fragments of the split comets. I - A new approach
Sekanina, Z.
1977-01-01
A hypothesis is proposed which interprets the relative motion of two fragments of a split comet in terms of a slight difference between their effective solar attraction rather than in terms of the impulse imparted to them at separation. A quantitative version of this hypothesis is formulated by assuming that the difference in effective solar attraction varies with heliocentric distance in direct proportion to the actual solar attraction so that the ratio of the two forces is constant and equal to a measure of the relative effect between the two fragments under consideration. Results obtained using this formulation are compared with observational evidence on the split comets P/Biela, Liais 1860 I, 1882 II, P/Brooks 2 1889 V, Swift 1899 I, Kopff 1905 IV, Mellish 1915 II, Taylor 1916 I, 1947 XII, Wirtanen 1957 VI, Ikeya-Seki 1965 VIII, Kohoutek 1970 III, and West 1975n. The hypothesis is found to fail only in the case of comet Wirtanen 1957 VI. Some unusual phenomena associated with split comets are examined.
Nuisance Flooding and Relative Sea-Level Rise: the Importance of Present-Day Land Motion.
Karegar, Makan A; Dixon, Timothy H; Malservisi, Rocco; Kusche, Jürgen; Engelhart, Simon E
2017-09-11
Sea-level rise is beginning to cause increased inundation of many low-lying coastal areas. While most of Earth's coastal areas are at risk, areas that will be affected first are characterized by several additional factors. These include regional oceanographic and meteorological effects and/or land subsidence that cause relative sea level to rise faster than the global average. For catastrophic coastal flooding, when wind-driven storm surge inundates large areas, the relative contribution of sea-level rise to the frequency of these events is difficult to evaluate. For small scale "nuisance flooding," often associated with high tides, recent increases in frequency are more clearly linked to sea-level rise and global warming. While both types of flooding are likely to increase in the future, only nuisance flooding is an early indicator of areas that will eventually experience increased catastrophic flooding and land loss. Here we assess the frequency and location of nuisance flooding along the eastern seaboard of North America. We show that vertical land motion induced by recent anthropogenic activity and glacial isostatic adjustment are contributing factors for increased nuisance flooding. Our results have implications for flood susceptibility, forecasting and mitigation, including management of groundwater extraction from coastal aquifers.
White, Peter A
2013-01-01
How accurate are explicit judgements about familiar forms of object motion, and how are they made? Participants judged the relations between force exerted in kicking a soccer ball and variables that define the trajectory of the ball: launch angle, maximum height attained, and maximum distance reached. Judgements tended to conform to a simple heuristic that judged force tends to increase as maximum height and maximum distance increase, with launch angle not being influential. Support was also found for the converse prediction, that judged maximum height and distance tend to increase as the amount of force described in the kick increases. The observed judgemental tendencies did not resemble the objective relations, in which force is a function of interactions between the trajectory variables. This adds to a body of research indicating that practical knowledge based on experiences of actions on objects is not available to the processes that generate judgements in higher cognition and that such judgements are generated by simple rules that do not capture the objective interactions between the physical variables.
Gardner, T N; Evans, M; Kyberd, P J
1996-11-01
A mechanical linkage with electro-magnetic sensors (a displacement transducer) is described, which may be used to measure accurately the relative motion at a bony junction such as a fracture. The linkage may be fixed to bone screws of externally-fixated fractures during routine patient activity, to measure three-dimensional inter fragmentary displacements arising from dynamic loading. Movements of the linkage are monitored by six Hall Effect devices for the six degrees of freedom (three orthogonal translations and three rotations about the translating axes). Measurements are made within error bounds of +/- 0.025 mm and +/- 0.025 deg over a range of 5 mm for the two orthogonal transverse translations, 8 mm for axial translation and 8 deg for the three rotations. Movements at the linkage, remote from the fracture, are then translated mathematically to the fracture site, assuming rigid screw contact with the bone. Displacements of the distal fragment in relation to the proximal, at the fracture center, can then be expressed anatomically through anterior, medial, and distal translations, and rotations in the sagittal, coronal, or transverse planes.
Space Weather Influence on Relative Motion Control using the Touchless Electrostatic Tractor
Hogan, Erik A.; Schaub, Hanspeter
2016-09-01
With recent interest in the use of electrostatic forces for contactless tugging and attitude control of noncooperative objects for orbital servicing and active debris mitigation, the need for a method of remote charge control arises. In this paper, the use of a directed electron beam for remote charge control is considered in conjunction with the relative motion control. A tug vehicle emits an electron beam onto a deputy object, charging it negatively. At the same time, the tug is charged positively due to beam emission, resulting in an attractive electrostatic force. The relative position feedback control between the tug and the passive debris object is studied subject to the charging being created through an electron beam. Employing the nominal variations of the GEO space weather conditions across longitude slots, two electrostatic tugging strategies are considered. First, the electron beam current is adjusted throughout the orbit in order to maximize this resulting electrostatic force. This open-loop control strategy compensates for changes in the nominally expected local space weather environment in the GEO region to adjust for fluctuations in the local plasma return currents. Second, the performance impact of using a fixed electron beam current on the electrostatic tractor is studied if the same natural space weather variations are assumed. The fixed electron beam current shows a minor performance penalty (<5 %) while providing a much simpler implementation that does not require any knowledge of local space weather conditions.
Xu, Peng
2016-01-01
With continuous advances in technologies related to deep space ranging and satellite gravity gradiometry, corrections from general relativity to the dynamics of relative orbital motions will certainly become important. In this work, we extend,in a systematic way, the Hill-Clohessy-Wiltshire Equations to include the complete first order post-Newtonian effects from general relativity. Within certain short time limit, post-Newtonian corrections to general periodic solutions of the Hill-Clohessy-Wiltshire Equations are also worked out.
Workshop on induced Seismicity due to fluid injection/production from Energy-Related Applications
Majer, E.L.; Asanuma, Hiroshi; Rueter, Horst; Stump, Brian; Segall, Paul; Zoback, Mark; Nelson, Jim; Frohlich, Cliff; Rutledge, Jim; Gritto, Roland; Baria, Roy; Hickman, Steve; McGarr, Art; Ellsworth, Bill; Lockner, Dave; Oppenheimer, David; Henning, Peter; Rosca, Anca; Hornby, Brian; Wang, Herb; Beeler, Nick; Ghassemi, Ahmad; Walters, Mark; Robertson-Tait, Ann; Dracos, Peter; Fehler, Mike; Abou-Sayed, Ahmed; Ake, Jon; Vorobiev, Oleg; Julian, Bruce
2011-04-01
that was necessary not only to make fluid injections safe, but an economic asset, DOE organized a series of workshops. The first workshop was held on February 4, 2010, at Stanford University. A second workshop will be held in mid-2010 to address the critical elements of a 'best practices/protocol' that industry could use as a guide to move forward with safe implementation of fluid injections/production for energy-related applications, i.e., a risk mitigation plan, and specific recommendations for industry to follow. The objectives of the first workshop were to identify critical technology and research needs/approaches to advance the understanding of induced seismicity associated with energy related fluid injection/production, such that: (1) The risk associated with induced seismicity can be reduced to a level that is acceptable to the public, policy makers, and regulators; and (2) Seismicity can be utilized/controlled to monitor, manage, and optimize the desired fluid behavior in a cost effective fashion. There were two primary goals during the workshop: (1) Identify the critical roadblocks preventing the necessary understanding of human-induced seismicity. These roadblocks could be technology related (better imaging of faults and fractures, more accurate fluid tracking, improved stress measurements, etc.), research related (fundamental understanding of rock physical properties and geochemical fluid/rock interactions, development of improved constitutive relations, improved understanding of rock failure, improved data processing and modeling, etc.), or a combination of both. (2) After laying out the roadblocks the second goal was to identify technology development and research needs that could be implemented in the near future to address the above objectives.
Van Dillen, Linda R; Bloom, Nancy J; Gombatto, Sara P; Susco, Thomas M
2008-05-01
To examine whether passive hip rotation motion was different between people with and without low back pain (LBP) who regularly participate in sports that require repeated rotation of the trunk and hips. We hypothesized that people with LBP would have less total hip rotation motion and more asymmetry of motion between sides than people without LBP. Two group, case-control. University-based musculoskeletal analysis laboratory. Forty-eight subjects (35 males, 13 females; mean age: 26.56+/-7.44 years) who reported regular participation in a rotation-related sport participated. Two groups were compared; people with LBP (N=24) and people without LBP (N=24; NoLBP). Data were collected on participant-related, LBP-related, sport-related and activity-related variables. Measures of passive hip rotation range of motion were obtained. The differences between the LBP and NoLBP groups were examined. People with and without a history of LBP were the same with regard to all participant-related, sport-related and activity-related variables. The LBP group had significantly less total rotation (P=.035) and more asymmetry of total rotation, right hip versus left hip, (P=.022) than the NoLBP group. Left total hip rotation was more limited than right total hip rotation in the LBP group (P=.004). There were no significant differences in left and right total hip rotation for the NoLBP group (P=.323). Among people who participate in rotation-related sports, those with LBP had less overall passive hip rotation motion and more asymmetry of rotation between sides than people without LBP. These findings suggest that the specific directional demands imposed on the hip and trunk during regularly performed activities may be an important consideration in deciding which impairments may be most relevant to test and to consider in prevention and intervention strategies.
Can headway reduction in fog be explained by impaired perception of relative motion?
Caro, Stéphane; Cavallo, Viola; Marendaz, Christian; Boer, Erwin R; Vienne, Fabrice
2009-06-01
The goal of this study was to provide a better understanding of driver behavior in fog. Impaired perception of changes in headway is hypothesized to be one of the reasons for shorter following distances in foggy conditions as compared with clear weather. In the experiments described here, we measured response time for discriminating between whether the vehicle ahead is getting closer or farther away. Several visibility conditions were studied, ranging from a no-fog condition to a condition in which the vehicle could be seen only by its rear fog lights. Fog conditions increased response times when the outline of the vehicle was barely visible or not visible at all. The longer response times in fog were attributable to the low contrast of the vehicle outline when still visible and to the smaller spacing between the two lights when the outline could not be properly perceived. Moreover, response times were found to be shorter for shorter following distances and for faster accelerations. Reducing headway could be a way for drivers to achieve faster discrimination of relative motion in foggy weather. More specifically, shortening one's following distance until visibility of the lead vehicle changes from bad to good may have a perceptual control benefit, insofar as the response time gain compensates for the reduction in headway under these conditions. Potential applications include improving traffic safety. The results provide a possible explanation for close following in fog and point out the importance of rear-light design under these conditions.
Coventry, Kenny R; Christophel, Thomas B; Fehr, Thorsten; Valdés-Conroy, Berenice; Herrmann, Manfred
2013-08-01
When looking at static visual images, people often exhibit mental animation, anticipating visual events that have not yet happened. But what determines when mental animation occurs? Measuring mental animation using localized brain function (visual motion processing in the middle temporal and middle superior temporal areas, MT+), we demonstrated that animating static pictures of objects is dependent both on the functionally relevant spatial arrangement that objects have with one another (e.g., a bottle above a glass vs. a glass above a bottle) and on the linguistic judgment to be made about those objects (e.g., "Is the bottle above the glass?" vs. "Is the bottle bigger than the glass?"). Furthermore, we showed that mental animation is driven by functional relations and language separately in the right hemisphere of the brain but conjointly in the left hemisphere. Mental animation is not a unitary construct; the predictions humans make about the visual world are driven flexibly, with hemispheric asymmetry in the routes to MT+ activation.
Equation of motion of canonical tensor model and Hamilton-Jacobi equation of general relativity
Chen, Hua; Sato, Yuki
2016-01-01
The canonical tensor model (CTM) is a rank-three tensor model formulated as a totally constrained system in the canonical formalism. The constraint algebra of CTM has a similar structure as that of the ADM formalism of general relativity, and is studied as a discretized model for quantum gravity. In this paper, we analyze the classical equation of motion (EOM) of CTM in a formal continuum limit through a derivative expansion of the tensor up to the forth order, and show that it is the same as the EOM of a coupled system of gravity and a scalar field derived from the Hamilton-Jacobi equation with an appropriate choice of an action. The action contains a scalar field potential of an exponential form, and the system classically respects a dilatational symmetry. We find that the system has a critical dimension, given by six, over which it becomes unstable due to the wrong sign of the scalar kinetic term. In six dimensions, de Sitter spacetime becomes a solution to the EOM, signaling the emergence of a conformal s...
Moshinsky, M.; Seligman, T.H.
1981-08-01
The present paper can be viewed from two standpoints. The first is that it derives the canonical transformation that takes the Hamiltonian of the Coulomb problem (in the Fock--Bargmann formulation) into that of the harmonic oscillator, while transforming the angular momenta of both problems into each other. The second is the one in which the solution of the previous problem is required if we wish to find the canonical transformation relating microscopic and macroscopic collective models, where the former is derived from a system of A particles moving in two dimensions and interacting through harmonic oscillator forces. The canonical transformation shows the existence of a U(3) symmetry group in the microscopic collective model corresponding to that of the three-dimensional oscillator which is the Hamiltonian of the macroscopic collective model. The importance of this result rests on the fact that had the motion of the particles taken place in the physical three-dimensional space, rather than the hypothetical two-dimensional one discussed here, the symmetry group would have been U(6) rather than U(3). Thus, the group theoretical structure of an s-d boson picture or, equivalently, of a generalized Bohr--Mottelson approach, is present implicitly in an A-body system interacting through harmonic oscillator forces.
Ibragimov, Ranis N.
2010-09-01
We study the linearized stability of a planar dynamical model describing two-phase perfect fluid circulating around a circle with a sufficiently large radius within a central gravitational field. The model is associated with the spatial and temporal structure of the zonally averaged global-scale atmospheric longitudinal circulation around the Earth. Two cases are studied separately; in the first one, the simulations were carried out using the rigid lid approximation at the upper boundary of the outer atmospheric layer. In the second one, the free boundary nonlinear conditions (kinematic and dynamic) were assumed on the outer atmospheric layer. For the both cases, a certain family of steady, explicit solutions which have circular streamlines was considered. The governing equations were linearized at these solutions to find the typical wave numbers of the interfacial wave perturbation to the basic state at which the destabilizing effect of shear, which overcomes the stabilizing effect of stratification, occurs. It is shown that for the both cases, the model always have the same two potentially unstable wave modes while there always exist two wave modes which are stable for any wavelengths. The behavior of the stable and unstable modes were compared for the both cases to investigate the effects of the free boundary on the mixing process at the interface.
Past Plate Motions and The Evolution of Earth's Lower Mantle: Relating LLSVPs and Plume Distribution
Bull, A. L.; Torsvik, T. H.; Shephard, G. E.
2015-12-01
Seismic tomography elucidates broad, low shear-wave velocity structures in the lower mantle beneath Africa and the central Pacific with uncertain physical and compositional origins. The anomalously slow areas, which cover nearly 50% of the core-mantle boundary, are often referred to as Large Low Shear Velocity Provinces (LLSVPs) due to the reduced velocity of seismic waves passing through them. Several hypotheses have arisen to explain the LLSVPs in the context of large-scale mantle convection. One end-member scenario infers a spatial correlation between LLSVP margins at depth and the reconstructed surface eruption sites of hotspots, kimberlites, and Large Igneous Provinces. Such a correlation has been explained by the preferential triggering of plumes at LLSVP margins by impingement of the subducting lithosphere upon the lower thermal boundary layer at the interface between ambient mantle and the higher density structures. This scenario propounds that Earth's plate motion history plays a controlling role in plume development, and that the location, geometry and morphology of plumes may be influenced by the movement of subducting slabs. Here, we investigate what is necessary to create such a pattern of plume distribution in relation to LLSVPs. We consider what effect past plate motions may have had on the evolution of Earth's lower mantle, and discuss the development of mantle plumes in terms of subduction dynamics. We integrate plate tectonic histories and numerical models of mantle convection to investigate the role that subduction history plays in the development and evolution of plumes in the presence of LLSVPs. To test whether an interaction exists between the surface location of subduction and plume eruption sites, and if so, to what degree over time, we apply varying shifts to the absolute reference frame of the plate reconstruction. With this method, we are able to change the location of subduction at the surface and thus the global flow field. This in turn
1986-01-01
Approved for public release; distribution is unlimited The use of retinal biometric identifiers as security devices in shipboard applications was investigated with the use of the DOT 7.5(new version) and DAISY 7. 5( old version) scanners of the Eye-Dentify Co. of Beaverton, Oregon. Motion testing was the primary purpose of the thesis. It was the first occurance of dynamic testing on any type of retinal pattern recognition device. A transverse motion(only) simulator tha...
Philippe G. LeFloch
2000-12-01
Full Text Available This paper deals with the so-called p-system describing the dynamics of isothermal and compressible fluids. The constitutive equation is assumed to have the typical convexity/concavity properties of the van der Waals equation. We search for discontinuous solutions constrained by the associated mathematical entropy inequality. First, following a strategy proposed by Abeyaratne and Knowles and by Hayes and LeFloch, we describe here the whole family of nonclassical Riemann solutions for this model. Second, we supplement the set of equations with a kinetic relation for the propagation of nonclassical undercompressive shocks, and we arrive at a uniquely defined solution of the Riemann problem. We also prove that the solutions depend $L^1$-continuously upon their data. The main novelty of the present paper is the presence of two inflection points in the constitutive equation. The Riemann solver constructed here is relevant for fluids in which viscosity and capillarity effects are kept in balance.
Madu, B. C.
2012-01-01
The study explored the efficacy of four-step (4-E) learning cycle approach on students understanding of concepts related to Simple Harmonic Motion (SHM). 124 students (63 for experimental group and 61 for control group) participated in the study. The students' views and ideas in simple Harmonic Achievement test were analyzed qualitatively. The…
Friction of Teflon-S-coated Ti-6Al-4V under conditions of oscillatory relative motion
Ligterink, D.J.; Verkerke, Gijsbertus Jacob; de Gee, A.W.J.
1990-01-01
An extendable prosthesis for implantation in a human leg has been developed. The friction forces during extension of the prosthesis must be low, so a coating of Teflon-S was applied to the sliding surfaces. During walking, damage can occur as a result of oscillatory relative motion. Therefore experi
Schäfer, Gerhard [Friedrich-Schiller-Universität Jena, Theoretisch-Physikalisches Institut, Max-Wien-Pl. 1, D-07743 Jena, EU (Germany)
2014-01-14
The current knowledge in the post-Newtonian (PN) dynamics and motion of non-spinning and spinning compact binaries will be presented based on the Arnowitt-Deser-Misner Hamiltonian approach to general relativity. The presentation will cover the binary dynamics with non-spinning components up to the 4PN order and for spinning binaries up to the next-to-next-to-leading order in the spin-orbit and spin-spin couplings. Radiation reaction will be treated for both non-spinning and spinning binaries. Explicit analytic expressions for the motion will be given, innermost stable circular orbits will be discussed.
Shinbrot, Marvin
2012-01-01
Readable and user-friendly, this high-level introduction explores the derivation of the equations of fluid motion from statistical mechanics, classical theory, and a portion of the modern mathematical theory of viscous, incompressible fluids. 1973 edition.
Unsworth, Nash; Redick, Thomas S.; Lakey, Chad E.; Young, Diana L.
2010-01-01
A latent variable analysis was conducted to examine the nature of individual differences in lapses of attention and their relation to executive and fluid abilities. Participants performed a sustained attention task along with multiple measures of executive control and fluid abilities. Lapses of attention were indexed based on the slowest reaction…
Age-related changes in cervical sagittal range of motion and alignment.
Park, Moon Soo; Moon, Seong-Hwan; Lee, Hwan-Mo; Kim, Tae-Hwan; Oh, Jae Keun; Nam, Ji Hoon; Riew, K Daniel
2014-08-01
Study Design Retrospective cohort study. Objective To compare sagittal cervical range of motion (ROM) and alignment in young versus middle-aged adults. Methods One hundred four asymptomatic adults were selected randomly out of 791 subjects who underwent lateral cervical radiographs in neutral, flexion, and extension positions. They were divided into two groups: young (age 20 to 29, 52 people) and middle-aged adults (age 50 to 59, 52 people). We determined the ROMs of upper cervical (occipital-C2 angle), midcervical (C2-C7 angle), and cervicothoracic spine (cervicosternal angle). We compared the alignment differences of the two groups by calculating the distances between C2 and C7 plumb lines, and C2 central-offset distance. Results In neutral position, there was no significant difference between young and middle-aged adults. However, in flexion, C2-C7 angle, distance between C2-C7 plumb lines, and C2 central-offset distance decreased with age. In extension, C2-C7 angle and C2 central-offset distance decreased with age. During flexion and extension, midcervical ROM and the range of C2 central-offset distance decreased in the middle-aged group. However, there was no difference between the two age groups in the ROM of the upper cervical and the cervicothoracic regions during flexion and extension. Conclusion We found that, despite of the presence of age-related cervical alignment changes, the only difference between the two groups was in the sagittal ROM of the midcervical spine during flexion and extension. Only the ROM of the midcervical spine appears to change significantly, consistent with findings that these levels are most likely to develop both symptomatic and asymptomatic degenerative changes.
Xiaokui Yue
2014-01-01
Full Text Available A numerical approach for obtaining periodic orbits of satellite relative motion is proposed, based on using the time domain collocation (TDC method to search for the periodic solutions of an exact J2 nonlinear relative model. The initial conditions for periodic relative orbits of the Clohessy-Wiltshire (C-W equations or Tschauner-Hempel (T-H equations can be refined with this approach to generate nearly bounded orbits. With these orbits, a method based on the least-squares principle is then proposed to generate projected closed orbit (PCO, which is a reference for the relative motion control. Numerical simulations reveal that the presented TDC searching scheme is effective and simple, and the projected closed orbit is very fuel saving.
Suliburska, J; Kocyłowski, R; Komorowicz, I; Grzesiak, M; Bogdański, P; Barałkiewicz, D
2016-07-01
The concentrations of various trace elements in amniotic fluid (AF) change over the course of pregnancy, with gestational age and fetus growth. The aim of the present study was to evaluate the concentrations of selected essential and toxic elements in AF and their relations to maternal and fetal parameters. The study was carried out in 39 pregnant women, aged 34.6 ± 4.7 years, between weeks 16 and 26 of gestation. Amniotic fluid samples were obtained during the standard procedure of amniocentesis in high-risk patients for chromosomal abnormalities. An inductively coupled plasma mass spectrometry (ICP-MS) technique was used to determine the levels of Al, As, Ba, Cd, Co, Cr, Cu, Mg, Mn, Ni, Sr, U, and V in AF. Body mass and blood pressure were measured in all the women. The basic parameters of fetal development were also assayed. It was found that the age of the mother, the gender of the fetus, and the week of the pregnancy may affect the concentrations of mineral in the amniotic fluid. Moreover, several significant correlations between the essential and toxic elements and maternal and fetal parameters were observed. In particular, negative and positive correlations between fetal parameters and magnesium and copper levels in AF, respectively, were seen. The present findings demonstrate the association between minerals in AF and fetal development.
A linear dispersion relation for the hybrid kinetic-ion/fluid-electron model of plasma physics
Told, Daniel; Astfalk, Patrick; Jenko, Frank
2016-01-01
A dispersion relation for a commonly used hybrid model of plasma physics is developed, which combines fully kinetic ions and a massless-electron fluid description. Although this model and variations of it have been used to describe plasma phenomena for about 40 years, to date there exists no general dispersion relation to describe the linear wave physics contained in the model. Previous efforts along these lines are extended here to retain arbitrary wave propagation angles, temperature anisotropy effects, as well as additional terms in the generalized Ohm's law which determines the electric field. A numerical solver for the dispersion relation is developed, and linear wave physics is benchmarked against solutions of a full Vlasov-Maxwell dispersion relation solver. This work opens the door to a more accurate interpretation of existing and future wave and turbulence simulations using this type of hybrid model.
Archuleta, R.; Bonilla, F.; Doroudian, M.; Elgamal, A.; Hueze, F.
2000-06-06
This is the second report on the UC/CLC Campus Earthquake Program (CEP), concerning the estimation of exposure of the U.C. Santa Barbara campus to strong earthquake motions (Phase 2 study). The main results of Phase 1 are summarized in the current report. This document describes the studies which resulted in site-specific strong motion estimates for the Engineering I site, and discusses the potential impact of these motions on the building. The main elements of Phase 2 are: (1) determining that a M 6.8 earthquake on the North Channel-Pitas Point (NCPP) fault is the largest threat to the campus. Its recurrence interval is estimated at 350 to 525 years; (2) recording earthquakes from that fault on March 23, 1998 (M 3.2) and May 14, 1999 (M 3.2) at the new UCSB seismic station; (3) using these recordings as empirical Green's functions (EGF) in scenario earthquake simulations which provided strong motion estimates (seismic syntheses) at a depth of 74 m under the Engineering I site; 240 such simulations were performed, each with the same seismic moment, but giving a broad range of motions that were analyzed for their mean and standard deviation; (4) laboratory testing, at U.C. Berkeley and U.C. Los Angeles, of soil samples obtained from drilling at the UCSB station site, to determine their response to earthquake-type loading; (5) performing nonlinear soil dynamic calculations, using the soil properties determined in-situ and in the laboratory, to calculate the surface strong motions resulting from the seismic syntheses at depth; (6) comparing these CEP-generated strong motion estimates to acceleration spectra based on the application of state-of-practice methods - the IBC 2000 code, UBC 97 code and Probabilistic Seismic Hazard Analysis (PSHA), this comparison will be used to formulate design-basis spectra for future buildings and retrofits at UCSB; and (7) comparing the response of the Engineering I building to the CEP ground motion estimates and to the design
Ducoux, M.; Branquet, Y.; Jolivet, L.; Arbaret, L.; Grasemann, B.; Rabillard, A.; Gumiaux, C.; Drufin, S.
2017-01-01
Back-arc extension in the Aegean Sea has been accommodated by several large-scale detachments such as the West Cycladic Detachment System (WCDS) in the Oligocene and Miocene. The WCDS especially crops out on Serifos Island (Cyclades) with a synkinematic granodioritic intrusion. As skarns represent metasomatic reactions near the contact between intrusions and the host rocks, they sign the position of the main drains used by fluids. While the mineralogy of the Serifos skarns is well known, geometrical and kinematic relations between the detachments and ore bodies remains poorly studied. This study allows us to distinguish different types of skarn. High Temperature skarns correspond to (1) massive garnet endoskarns, (2) ribbon and ;bubble; garnet-pyroxene endoskarns, (3) garnet-pyroxene cracks exoskarns, whereas medium-temperature pyroxene ± ilvaite bearing skarn breccias within the Meghàlo Livadhi and Kàvos Kiklopas detachments belonging to the WCDS. Our observations show that skarn formation is associated with the activity of detachments and the syntectonic pluton emplacement. Endo and exoskarn deposits formed coeval with the ductile and brittle structures resulting from the activity of the WCDS, such as echelon veins, veins with antithetic shear and boudinaged veins wrapped within sheath folds, with a top-to-the SSW or SW shear senses compatible with the regional kinematics. Some skarn breccias formed within detachment planes far from the contact of the main granodioritic body, attesting for the intense flow of magmatic fluids along these discontinuities. These over-pressurized fluids play a major role in the mechanical behaviour of the detachments and strain localization. The two detachments acting as preferential crustal-scale drains, the pattern of magmatic fluid flows is not centred on the intrusion. In this context, iron-rich skarns and associated primary magnetite deposits have been remobilized during late brittle increments of motion along the detachments
Jayanthi, Aditya; Coker, Christopher
2016-11-01
In the last decade, CFD simulations have transitioned from the stage where they are used to validate the final designs to the main stream development of products driven by the simulation. However, there are still niche areas of applications liking oiling simulations, where the traditional CFD simulation times are probative to use them in product development and have to rely on experimental methods, which are expensive. In this paper a unique example of Sprocket-Chain simulation will be presented using nanoFluidx a commercial SPH code developed by FluiDyna GmbH and Altair Engineering. The grid less nature of the of SPH method has inherent advantages in the areas of application with complex geometry which pose severe challenge to classical finite volume CFD methods due to complex moving geometries, moving meshes and high resolution requirements leading to long simulation times. The simulations times using nanoFluidx can be reduced from weeks to days allowing the flexibility to run more simulation and can be in used in main stream product development. The example problem under consideration is a classical Multiphysics problem and a sequentially coupled solution of Motion Solve and nanoFluidX will be presented. This abstract is replacing DFD16-2016-000045.
Holenberg, Yulia; Lavrenteva, Olga M; Shavit, Uri; Nir, Avinoam
2012-12-01
We report experimental evidence of an effect opposite to the "solidification" of small bubbles in liquid where the surface can become immobile. Namely, it is demonstrated that smooth solid spheres falling in a yield-stress fluid under the action of gravity can behave similar to drops. Particle tracking velocimetry was used to determine the shape of the yielded region around solid spherical particles undergoing slow stationary motion in 0.07% w/w Carbopol gel due to gravity under creeping flow conditions. The flow field inside the yielded region was determined by particle image velocimetry. It was found that the shape of the yielded region and the flow field around slow-moving rough particles is similar to the published results of numerical simulations, whereas those around smooth spheres resemble the experimental results obtained for viscous drops. The effect was explained by a slip of the gel on the smooth surface. Most likely, the slip originated from seepage of clean water from the gel, forming a thin lubricating layer near the solid surface.
Cerebrospinal fluid flow. Pt. 2; Physiology of respiration-related pulsations
Schroth, G. (Dept. of Neuroradiology, Tuebingen Univ. (Germany)); Klose, U. (Dept. of Neuroradiology, Tuebingen Univ. (Germany))
1992-12-01
Cerebrospinal fluid (CSF) flow in the cerebral aqueduct and spinal canal was analysed using real-time magnetic resonance imaging measurement techniques. Respiration-induced rhythmic modulation of the cardiac-related oscillating CSF pulsation in the cerebal aqueduct and spinal canal was found. Deep inspiration was immediately followed by marked increase in downward CSF flow in the cervical spinal canal, whereas a delay of about two heart beats was seen before downward flow from the third to the fourth ventricle increased. This pattern was also detected during yawning and was followed by a marked increase of blood flow in the internal jugular vein. (orig.)
Bianchi type-II universe with wet dark fluid in general theory of relativity
Mahanta, Chandra Rekha; Sheikh, Azizur Rahman
2017-09-01
In this paper, dark energy models of the universe filled with wet dark fluid are constructed in the frame work of LRS Bianchi type-II space-time in General Theory of Relativity. A new equation of state modeled on the equation of state p = γ ( ρ - ρ_{*} ), which can describe liquid including water, is used. The exact solutions of Einstein's field equations are obtained in quadrature form and the models corresponding to the cases γ = 0 and γ = 1 are discussed in details.
Multi-origin alkanes related to CO2-rich, mantle-derived fluid in Dongying Sag, Bohai Bay Basin
无
2002-01-01
With the newly obtained carbon isotope data for the natural gas, a pilot study of multiple-sourced alkanes related to the mantled-derived fluid is presented. The carbon isotope values of alkanes in the Dongying Sag possess thefea tures indicating a general organic origin. However, there are two sub-populations in the isotopic data set, which reflect two specific types of origins. In gene ral, the sub-population with high δ13CCH4 values is related to the CO2-rich, mantle-derived fluid, and it is distributed in the belts where mantle-derived fluid flow and basic volcanic activities have occurred. Geological and geochemical studies demonstrate that this variation of methane carbon isotope values in the Dongying Sag is unrelated with the basin bury and thermal histories, types of source rocks, and reactions between basin fluid and rocks. Mixing of mantle-derived fluid and organic sourced hydrocarbons is probably the cause for the variation .
Well, Lennart; Rausch, Vanessa Hanna; Adam, Gerhard; Henes, Frank Oliver; Bannas, Peter
2017-07-01
Purpose Varying frequencies (5 - 18 %) of contrast-related transient severe motion (TSM) imaging artifacts during gadoxetate disodium-enhanced arterial phase liver MRI have been reported. Since previous reports originated from the United States and Japan, we aimed to determine the frequency of TSM at a German institution and to correlate it with potential risk factors and previously published results. Materials and Methods Two age- and sex-matched groups were retrospectively selected (gadoxetate disodium n = 89; gadobenate dimeglumine n = 89) from dynamic contrast-enhanced MRI examinations in a single center. Respiratory motion-related artifacts in non-enhanced and dynamic phases were assessed independently by two readers blinded to contrast agents on a 4-point scale. Scores of ≥ 3 were considered as severe motion artifacts. Severe motion artifacts in arterial phases were considered as TSM if scores in all other phases were 0.05). Conclusion We revealed a high frequency of TSM after injection of gadoxetate disodium at a German institution, substantiating the importance of a diagnosis-limiting phenomenon that so far has only been reported from the United States and Japan. In accordance with previous studies, we did not identify associated risk factors for TSM. Key Points: · Gadoxetate disodium causes TSM in a relevant number of patients.. · The frequency of TSM is similar between the USA, Japan and Germany.. · To date, no validated risk factors for TSM could be identified.. Citation Format · Well L, Rausch VH, Adam G et al. Transient Severe Motion Artifact Related to Gadoxetate Disodium-Enhanced Liver MRI: Frequency and Risk Evaluation at a German Institution. Fortschr Röntgenstr 2017; 189: 651 - 660. © Georg Thieme Verlag KG Stuttgart · New York.
Lundgren, Lina E; Tran, Tai T; Nimphius, Sophia; Raymond, Ellen; Secomb, Josh L; Farley, Oliver R L; Newton, Robert U; Sheppard, Jeremy M
2016-01-01
This study aimed to describe the impact forces, accelerations and ankle range of motion in five different landing tasks that are used in training and testing for competitive surfing athletes, to assist coaches in the prescription of landing task progression and monitoring training load. Eleven competitive surfing athletes aged 24 ± 7 years participated, and inertial motion sensors were fixed to the anterior aspect of the feet, mid-tibial shafts, sacrum and eighth thoracic vertebrae on these athletes. Three tasks were performed landing on force plates and two tasks in a modified gymnastics set-up used for land-based aerial training. Peak landing force, resultant peak acceleration and front and rear side ankle dorsiflexion ranges of motion during landing were determined. The peak acceleration was approximately 50% higher when performing aerial training using a mini-trampoline and landing on a soft-density foam board, compared to a similar landing off a 50 cm box. Furthermore, the ankle ranges of motion during the gymnastic type landings were significantly lower than the other landing types (P ≤ 0.05 and P ≤ 0.001), for front and rear sides, respectively. Conclusively, increased task complexity and specificity of the sport increased the tibial peak acceleration, indicating greater training load.
Indexical Relations and Sound Motion Pictures in L2 Curricula: The Dynamic Role of the Teacher
Chen, Liang; Oller, John W., Jr.
2005-01-01
Well-chosen sound motion pictures (SMPs) can be excellent language teaching tools for presenting facts and providing comprehensible input in the target language. They give access to content and authentic surface forms in the target language as well as to the associations between them. SMPs also allow repeated exposures, but they are rarely…
Festa, G.; Zollo, A.; Amoroso, O.; Ascione, A.; Colombelli, S.; Elia, L.; Emolo, A.; Martino, C.; Mazzoli, S.; Orefice, A.; Russo, G.
2014-12-01
ISNet (http://isnet.fisica.unina.it) is deployed in Southern Apennines along the active fault system responsible for the 1980, M 6.9 Irpinia earthquake. ISNet consists of 32 seismic stations equipped with both strong motion and velocimetric instruments (either broadband or short-period), with the aim of capture a broad set of seismic signals, from ambient noise to strong motion. Real time and near real time procedures run at ISNet with the goal of monitoring the seismicity, check possible space-time anomalies, detect seismic sequences and launch an earthquake early warning in the case of potential significant ground shaking in the area. To understand the role of fluids on the seismicity of the area, we investigated velocity and attenuation models. The former is built from accurate cross-correlation picking and S wave detection based onto polarization analysis. Joint inversion of both P and S arrival times is then based on a linearized multi-scale tomographic approach. Attenuation is instead obtained from inversion of displacement spectra, deconvolving for the source effect. High VP/VS and QS/QP >1 were found within a ~15 km wide rock volume where intense microseismicity is located. This indicates that concentration of seismicity is possibly controlled by high pore fluid pressure. This earthquake reservoir may come from a positive feedback between the seismic pumping that controls the fluid transmission through the fractured damage zone and the low permeability of cross fault barrier, increasing the fluid pore pressure within the fault bounded block. In this picture, sequences mostly occur at the base of this fluid rich layer. They show an anomalous pattern in the earthquake occurrence per magnitude classes; main events evolve with a complex source kinematics, as obtained from backprojection of apparent source time functions, indicating possible directivity effects. In this area sequences might be the key for understanding the transition between the deep
Ronny Pini; Sally M Benson
2013-01-01
Capillary pressure and relative permeability drainage curves are simultaneously measured on a single Berea Sandstone core by using three different fluid pairs, namely g CO 2/water, g N 2/water and s c CO 2/brine...
Conserved linear dynamics of single-molecule Brownian motion
Serag, Maged F.
2017-06-06
Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.
Avichai Lustig
Full Text Available Lateralization is mostly analyzed for single traits, but seldom for two or more traits while performing a given task (e.g. object manipulation. We examined lateralization in eye use and in body motion that co-occur during avoidance behaviour of the common chameleon, Chamaeleo chameleon. A chameleon facing a moving threat smoothly repositions its body on the side of its perch distal to the threat, to minimize its visual exposure. We previously demonstrated that during the response (i eye use and body motion were, each, lateralized at the tested group level (N = 26, (ii in body motion, we observed two similar-sized sub-groups, one exhibiting a greater reduction in body exposure to threat approaching from the left and one--to threat approaching from the right (left- and right-biased subgroups, (iii the left-biased sub-group exhibited weak lateralization of body exposure under binocular threat viewing and none under monocular viewing while the right-biased sub-group exhibited strong lateralization under both monocular and binocular threat viewing. In avoidance, how is eye use related to body motion at the entire group and at the sub-group levels? We demonstrate that (i in the left-biased sub-group, eye use is not lateralized, (ii in the right-biased sub-group, eye use is lateralized under binocular, but not monocular viewing of the threat, (iii the dominance of the right-biased sub-group determines the lateralization of the entire group tested. We conclude that in chameleons, patterns of lateralization of visual function and body motion are inter-related at a subtle level. Presently, the patterns cannot be compared with humans' or related to the unique visual system of chameleons, with highly independent eye movements, complete optic nerve decussation and relatively few inter-hemispheric commissures. We present a model to explain the possible inter-hemispheric differences in dominance in chameleons' visual control of body motion during avoidance.
Thermal equilibrium of a Brownian particle in a fluctuating fluid: a numerical study
Liu, Yi; Nie, Deming
2017-07-01
In this work the fluctuating lattice Boltzmann method was adopted to simulate the motion of a Brownian particle in a fluid in two dimensions. The temperatures characterizing the translation motion and rotational motion of the particle were calculated to evaluate the thermal equilibrium between the particle and the fluid. Furthermore, the effects of the fluid temperature and viscosity on the fluid pressure fluctuation were investigated. The linear relationships were observed in a log-log coordinate. Besides, the slopes of the linear relation were obtained, which keeps constant for all cases studied.
WANG Fangqun; LI Lan; FENG Zhigang; QIAN Kunxi
2005-01-01
A quantitative evaluation of shear stress-related hemolysis in centrifugal blood pumps with different impeller designs has been investigated. Computational fluid dynamics (CFD) is applied to track the shear stress history of the streamlines of red cells. The power law model of the relations among the hemolysis, shear stress and exposure time is used to evaluate the hemolysis in the pumps.Hemolysis tests are also conducted to verify the estimations. Both the estimations and experimentally measured hemolysis levels show that the hemolysis in the streamlined impeller pump developed by the authors is lower than the pump with straight-vane under the same boundary conditions. The approach is proved to be acceptable and practical to predict hemolysis levels of blood pumps.
Bandeen, William R.
1961-01-01
It is desired that the Nimbus meteorological satellite always cross the equator around local noon and, half-an-orbit later, cross the equator in the other direction around local midnight. The application of the phenomenon of nodal regression toward this end is discussed, and an analysis of the parameters angles of inclination, periods, and heights of such "ideal" circular orbits is presented. Also, the relative motion of the apparent versus the fictitious mean sun is briefly discussed.
Relation of landslides triggered by the Kiholo Bay earthquake to modeled ground motion
Harp, Edwin L.; Hartzell, Stephen H.; Jibson, Randall W.; Ramirez-Guzman, L.; Schmitt, Robert G.
2014-01-01
The 2006 Kiholo Bay, Hawaii, earthquake triggered high concentrations of rock falls and slides in the steep canyons of the Kohala Mountains along the north coast of Hawaii. Within these mountains and canyons a complex distribution of landslides was triggered by the earthquake shaking. In parts of the area, landslides were preferentially located on east‐facing slopes, whereas in other parts of the canyons no systematic pattern prevailed with respect to slope aspect or vertical position on the slopes. The geology within the canyons is homogeneous, so we hypothesize that the variable landslide distribution is the result of localized variation in ground shaking; therefore, we used a state‐of‐the‐art, high‐resolution ground‐motion simulation model to see if it could reproduce the landslide‐distribution patterns. We used a 3D finite‐element analysis to model earthquake shaking using a 10 m digital elevation model and slip on a finite‐fault model constructed from teleseismic records of the mainshock. Ground velocity time histories were calculated up to a frequency of 5 Hz. Dynamic shear strain also was calculated and compared with the landslide distribution. Results were mixed for the velocity simulations, with some areas showing correlation of landslide locations with peak modeled ground motions but many other areas showing no such correlation. Results were much improved for the comparison with dynamic shear strain. This suggests that (1) rock falls and slides are possibly triggered by higher frequency ground motions (velocities) than those in our simulations, (2) the ground‐motion velocity model needs more refinement, or (3) dynamic shear strain may be a more fundamental measurement of the decoupling process of slope materials during seismic shaking.
Simulation paradoxes related to a fractional Brownian motion with small Hurst index
Makogin, Vitalii
2016-01-01
We consider the simulation of sample paths of a fractional Brownian motion with small values of the Hurst index and estimate the behavior of the expected maximum. We prove that, for each fixed $N$, the error of approximation $\\mathbf {E}\\max_{t\\in[0,1]}B^H(t)-\\mathbf {E}\\max_{i=\\overline{1,N}}B^H(i/N)$ grows rapidly to $\\infty$ as the Hurst index tends to 0.
Age-Related Changes in Cervical Sagittal Range of Motion and Alignment
Park, Moon Soo; Moon, Seong-Hwan; Lee, Hwan-Mo; Kim, Tae-Hwan; Oh, Jae Keun; Nam, Ji Hoon; Riew, K. Daniel
2014-01-01
Study Design Retrospective cohort study. Objective To compare sagittal cervical range of motion (ROM) and alignment in young versus middle-aged adults. Methods One hundred four asymptomatic adults were selected randomly out of 791 subjects who underwent lateral cervical radiographs in neutral, flexion, and extension positions. They were divided into two groups: young (age 20 to 29, 52 people) and middle-aged adults (age 50 to 59, 52 people). We determined the ROMs of upper cervical (occipital...
Sun, Y P; Zheng, Y H; Zhang, Z G
2017-06-09
Objective: To analyze related factors on the number of mesenchymal stem cells in the synovial fluid of the temporomandibular joint (TMJ) and provide an research basis for understanding of the source and biological role of mesenchymal stem cells derived from synovial fluid in TMJ. Methods: One hundred and twenty-two synovial fluid samples from 91 temporomandibular disorders (TMD) patients who visited in Department of TMJ Center, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University from March 2013 to December 2013 were collected in this study, and 6 TMJ synovial fluid samples from 6 normal volunteers who were studying in the North Campus of Sun Yat-sen University were also collected, so did their clinical information. Then the relation between the number of mesenchymal stem cells derived from synovial fluid and the health status of the joints, age of donor, disc perforation, condylar bony destruction, blood containing and visual analogue scale score of pain were investigated using Mann-Whitney U test and Spearman rank correlation test. Results: The number of mesenchymal stem cells derived from synovial fluid had no significant relation with visual analogue scale score of pain (r=0.041, P=0.672), blood containing (P=0.063), condylar bony destruction (P= 0.371). Linear correlation between the number of mesenchymal stem cells derived from synovial fluid and age of donor was very week (r=0.186, P=0.043). The number of mesenchymal stem cells up-regulated when the joint was in a disease state (P=0.001). The disc perforation group had more mesenchymal stem cells in synovial fluid than without disc perforation group (P=0.042). Conclusions: The number of mesenchymal stem cells derived from synovial fluid in TMJ has no correlation with peripheral blood circulation and condylar bony destruction, while has close relation with soft tissue structure damage of the joint.
Vortical Motions of Baryonic Gas in the Cosmic Web: Growth History and Scaling Relation
Zhu, Weishan
2015-01-01
The vortical motions of the baryonic gas residing in large scale structures are investigated by cosmological hydrodynamic simulations. Proceeding in the formation of the cosmic web, the vortical motions of baryonic matter are pumped up by baroclinity in two stages, i.e., the formation of sheets, and filaments. The mean curl velocity are about $< 1$, 1-10, 10-150, 5-50 km/s in voids, sheets, filaments and knots at $z=0$, respectively. The scaling of the vortical velocity of gas can be well described by the She-Leveque hierarchical turbulence model in the range of $l<0.65(1.50) h^{-1}$ Mpc in simulation of box size 25(100) $h^{-1}$ Mpc. The fractal Hausdorff dimension of vortical motions, $d$, revealed by velocity structure functions, is $\\sim 2.1-2.3$($\\sim 1.8-2.1$). It is slightly larger than the fractal dimension of mass distribution in filaments, $\\textit{D}^f \\sim 1.9-2.2$, and smaller than the fractal dimension of sheets, $\\textit{D}^s \\sim 2.4-2.7$. The vortical kinetic energy of baryonic gas is m...
Gonzalez-Garcia, J. J.
2004-12-01
Using ITRF2000 as a common reference frame link, I analyzed survey mode and permanent GPS published results, together with SOPAC public data and results (http://sopac.ucsd.edu), in order to evaluate relative present day crustal deformation in California and northern Mexico. The crustal velocity field of Mexico (Marquez-Azua and DeMets, 2003) obtained from continuous GPS measurements conducted by Instituto Nacional de Geografia e Informatica (INEGI) for 1993-2001, was partially used. The preferred model for an instantaneous rigid motion between North-America and Pacific plates (NAPA), is obtained using results of Isla Guadalupe GPS surveys (1991-2002) giving a new constraint for Pacific plate (PA) motion (Gonzalez-Garcia et al., 2003). It produces an apparent reduction of 1 mm/yr in the absolute motion in the border zone between PA and North-America (NA) plates in this region, as compared with other GPS models (v.g. Prawirodirdjo and Bock, 2004); and it is 3 mm/yr higher than NNRNUVEL-1A. In the PA reference frame, westernmost islands from San Francisco (FARB), Los Angeles (MIG1), and Ensenada (GUAX); give current residuals of 1.8, 1.7 and 0.9 mm/yr and azimuths that are consistent with local tectonic setting, respectively. In the NA reference frame, besides the confirmation of 2 mm/yr E-W extension for the southern Basin and Range province in northern Mexico; a present day deformation rate of 40.5 mm/yr between San Felipe, Baja California (SFBC) and Hermosillo, Sonora, is obtained. This rate agrees with a 6.3 to 6.7 Ma for the "initiation of a full sea-floor spreading" in the northern Gulf of California. SFBC has a 7 mm/yr motion in the PA reference frame, giving then, a full NAPA theoretical absolute motion of 47.5 mm/yr. For Puerto Penasco, Sonora (PENA) there is a NAPA motion of 46.2 mm/yr and a residual of 1.2 mm/yr in the NA reference frame, this site is located only 75 km to the northeast from the Wagner basin center. For southern Isla Guadalupe (GUAX) there
Fundamental trends in fluid-structure interaction
Galdi, Giovanni P
2010-01-01
The interaction of a fluid with a solid body is a widespread phenomenon in nature, occurring at different scales and different applied disciplines. Interestingly enough, even though the mathematical theory of the motion of bodies in a liquid is one of the oldest and most classical problems in fluid mechanics, mathematicians have, only very recently, become interested in a systematic study of the basic problems related to fluid-structure interaction, from both analytical and numerical viewpoints. ""Fundamental Trends in Fluid-Structure Interaction"" is a unique collection of important papers wr
Bohm, Mirjam; Haberland, Christian; Asch, Günter
2013-04-01
We use local earthquake data observed by the amphibious, temporary seismic MERAMEX array to derive spatial variations of seismic attenuation (Qp) in the crust and upper mantle beneath Central Java. The path-averaged attenuation values (t∗) of a high quality subset of 84 local earthquakes were calculated by a spectral inversion technique. These 1929 t∗-values inverted by a least-squares tomographic inversion yield the 3D distribution of the specific attenuation (Qp). Analysis of the model resolution matrix and synthetic recovery tests were used to investigate the confidence of the Qp-model. We notice a prominent zone of increased attenuation beneath and north of the modern volcanic arc at depths down to 15 km. Most of this anomaly seems to be related to the Eocene-Miocene Kendeng Basin (mainly in the eastern part of the study area). Enhanced attenuation is also found in the upper crust in the direct vicinity of recent volcanoes pointing towards zones of partial melts, presence of fluids and increased temperatures in the middle to upper crust. The middle and lower crust seems not to be associated with strong heating and the presence of melts throughout the arc. Enhanced attenuation above the subducting slab beneath the marine forearc seems to be due to the presence of fluids.
Luca Levrini
2013-01-01
Full Text Available Substance P (SP is a tachykinin released from both the central and the peripheral endings of primary afferent neurons and functions as a neurotransmitter. As a transmitter signaling pain, substance P is involved in nociception and is an extremely potent vasodilator. We found several studies about this neuropeptide especially in relation to parodontology and a few orthodontic reviews. This is because in the past the importance of this neuropeptide in dental element undergoing periodontal inflammation was observed. The aims of the present pilot study was to investigate whether the substance P was present in gingival crevicular fluid in dental elements undergoing orthodontic treatment with Invisalign technique compared to teeth belonging to the same series but not undergoing orthodontic movement. We analysed gengival crevicular fluid (GCF collected from four young subjects, using a paper cone for a time of 60 seconds. The results showed that SP is present in the gengival sulcus in elements undergoing orthodontic forces during treatment with Invisalign technique and not in the control teeth. During the literature analysis, we have found a lot of papers describing involvement of SP in periodontitis and inflammatory diseases, but further studies are needed in order to demonstrate the role of this neuropeptide during teeth movement.
Levrini, Luca; Sacerdote, Paola; Moretti, Sarah; Panzi, Silvia; Caprioglio, Alberto
2013-01-01
Substance P (SP) is a tachykinin released from both the central and the peripheral endings of primary afferent neurons and functions as a neurotransmitter. As a transmitter signaling pain, substance P is involved in nociception and is an extremely potent vasodilator. We found several studies about this neuropeptide especially in relation to parodontology and a few orthodontic reviews. This is because in the past the importance of this neuropeptide in dental element undergoing periodontal inflammation was observed. The aims of the present pilot study was to investigate whether the substance P was present in gingival crevicular fluid in dental elements undergoing orthodontic treatment with Invisalign technique compared to teeth belonging to the same series but not undergoing orthodontic movement. We analysed gengival crevicular fluid (GCF) collected from four young subjects, using a paper cone for a time of 60 seconds. The results showed that SP is present in the gengival sulcus in elements undergoing orthodontic forces during treatment with Invisalign technique and not in the control teeth. During the literature analysis, we have found a lot of papers describing involvement of SP in periodontitis and inflammatory diseases, but further studies are needed in order to demonstrate the role of this neuropeptide during teeth movement. PMID:23737731
Saunders, Jeffrey A.
2014-01-01
Direction of self-motion during walking is indicated by multiple cues, including optic flow, nonvisual sensory cues, and motor prediction. I measured the reliability of perceived heading from visual and nonvisual cues during walking, and whether cues are weighted in an optimal manner. I used a heading alignment task to measure perceived heading during walking. Observers walked toward a target in a virtual environment with and without global optic flow. The target was simulated to be infinitely far away, so that it did not provide direct feedback about direction of self-motion. Variability in heading direction was low even without optic flow, with average RMS error of 2.4°. Global optic flow reduced variability to 1.9°–2.1°, depending on the structure of the environment. The small amount of variance reduction was consistent with optimal use of visual information. The relative contribution of visual and nonvisual information was also measured using cue conflict conditions. Optic flow specified a conflicting heading direction (±5°), and bias in walking direction was used to infer relative weighting. Visual feedback influenced heading direction by 16%–34% depending on scene structure, with more effect with dense motion parallax. The weighting of visual feedback was close to the predictions of an optimal integration model given the observed variability measures. PMID:24648194
Ge, Y; Colvill, E; O’Brien, R; Keall, P [Radiation Physics Laboratory, University of Sydney, NSW (Australia); Booth, J [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW (Australia)
2015-06-15
Purpose Large intrafraction relative motion of multiple targets is common in advanced head and neck, lung, abdominal, gynaecological and urological cancer, jeopardizing the treatment outcomes. The objective of this study is to develop a real-time adaptation strategy, for the first time, to accurately correct for the relative motion of multiple targets by reshaping the treatment field using the multi-leaf collimator (MLC). Methods The principle of tracking the simultaneously treated but differentially moving tumor targets is to determine the new aperture shape that conforms to the shifted targets. Three dimensional volumes representing the individual targets are projected to the beam’s eye view. The leaf openings falling inside each 2D projection will be shifted according to the measured motion of each target to form the new aperture shape. Based on the updated beam shape, new leaf positions will be determined with optimized trade-off between the target underdose and healthy tissue overdose, and considerations of the physical constraints of the MLC. Taking a prostate cancer patient with pelvic lymph node involvement as an example, a preliminary dosimetric study was conducted to demonstrate the potential treatment improvement compared to the state-of- art adaptation technique which shifts the whole beam to track only one target. Results The world-first intrafraction adaptation system capable of reshaping the beam to correct for the relative motion of multiple targets has been developed. The dose in the static nodes and small bowel are closer to the planned distribution and the V45 of small bowel is decreased from 110cc to 75cc, corresponding to a 30% reduction by this technique compared to the state-of-art adaptation technique. Conclusion The developed adaptation system to correct for intrafraction relative motion of multiple targets will guarantee the tumour coverage and thus enable PTV margin reduction to minimize the high target dose to the adjacent organs
A bonnet and fluid jet polishing facility for optics fabrication related to the E-ELT
Vecchi, G.; Basso, S.; Civitani, M.; Ghigo, M.; Pareschi, G.; Riva, M.; Zerbi, F. M.
A robotic polishing machine has been implemented at INAF-Brera Astronomical Observatory within the T-REX project. The facility, IRP1200 by Zeeko Ltd., consists of a 7-axis computer-controlled polishing/forming machine capable of producing precision surfaces on several optical materials. The machine enables two methods, the bonnet and the fluid jet polishing. We report on the results of the standard bonnet polishing machine acceptance tests that have been completed at our site. We intend to use the machine to support development and production programs related to the European Extremely Large Telescope (E-ELT), in particular, for making part of the optics of the Multi-conjugate Adaptive Optics RelaY (MAORY) module.
Akherat, S M Javid Mahmoudzadeh
2016-01-01
Considerations on implementation of the stress-strain constitutive relations applied in Computational Fluid dynamics (CFD) simulation of cardiovascular flows have been addressed extensively in the literature. However, the matter is yet controversial. The author suggests that the choice of non-Newtonian models and the consideration of non-Newtonian assumption versus the Newtonian assumption is very application oriented and cannot be solely dependent on the vessel size. In the presented work, where a renal disease patient-specific geometry is used, the non-Newtonian effects manifest insignificant, while the vessel is considered to be medium to small which, according to the literature, suggest a strict use of non-Newtonian formulation. The insignificance of the non-Newtonian effects specially manifests in Wall Shear Stress (WSS) along the walls of the numerical domain, where the differences between Newtonian calculated WSS and non-Newtonian calculated WSS is barely visible.
周正; 周坚; 邹石莹; 吴效民
2001-01-01
Objective. To discover the relation between alkaline phosphatase (ALP) in gingival crevicular fluid (GCF)of implant teeth aad the curing results.Methods. We measured the ALP level in GCF among 56 cases of implant teeth which included 2 failed cas-es, 5 cases with bad oral hygiene and gingivitis, and compared it with that in the normal group composed of 10persons.Results. The ALP levels in normal group and success implant group showed no difference. The ALP levelsin normal group and success with gingivitis group showed obvious difference. The ALP levels of the 2 failed cas-es are the highest of all.Conclusions. The ALP level in GCF is an important index in evaluating the curing result of the implantteeth.``
Hung, R. J.; Liaw, G. S.
1980-01-01
It is noted that large quantities of atmospheric aerosols with composition SO4(-2), NO3(-1), and NH4(+1) have been detected in highly industrialized areas. Most aerosol products come from energy-related fuel combustion. Fluid mechanics simulation of both microphysical and macrophysical processes is considered in studying the time dependent evolution of the saturation spectra of condensation nuclei associated with polluted and clean atmospheres during the time periods of advection fog formation. The results demonstrate that the condensation nuclei associated with a polluted atmosphere provide more favorable conditions than condensation nuclei associated with a clean atmosphere to produce dense advection fog, and that attaining a certain degree of supersaturation is not necessarily required for the formation of advection fog having condensation nuclei associated with a polluted atmosphere.
Lenormand, R.; Thiele, M.R. [Institut Francais du Petrole, Rueil Malmaison (France)
1997-08-01
The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities
Drug binding and mobility relating to the thermal fluctuation in fluid lipid membranes
Okamura, Emiko; Yoshii, Noriyuki
2008-12-01
Drug binding and mobility in fluid lipid bilayer membranes are quantified in situ by using the multinuclear solution NMR combined with the pulsed-field-gradient technique. One-dimensional and pulsed-field-gradient F19 and H1 NMR signals of an anticancer drug, 5-fluorouracil (5FU) are analyzed at 283-313 K in the presence of large unilamellar vesicles (LUVs) of egg phosphatidylcholine (EPC) as model cell membranes. The simultaneous observation of the membrane-bound and free 5FU signals enables to quantify in what amount of 5FU is bound to the membrane and how fast 5FU is moving within the membrane in relation to the thermal fluctuation of the soft, fluid environment. It is shown that the mobility of membrane-bound 5FU is slowed down by almost two orders of magnitude and similar to the lipid movement in the membrane, the movement closely related to the intramembrane fluidity. The mobility of 5FU and EPC is, however, not similar at 313 K; the 5FU movement is enhanced in the membrane as a result of the loose binding of 5FU in the lipid matrices. The membrane-bound fraction of 5FU is ˜0.1 and almost unaltered over the temperature range examined. It is also independent of the 5FU concentration from 2 to 30 mM with respect to the 40-50 mM LUV. The free energy of the 5FU binding is estimated at -4 to -2 kJ/mol, the magnitude always close to the thermal fluctuation, 2.4-2.6 kJ/mol.
Sandeep N.
2017-06-01
Full Text Available Within the last few decades, experts and scientists dealing with the flow of non-Newtonian fluids (most especially Casson fluid have confirmed the existence of such flow on a stretchable surface with low heat energy (i.e. absolute zero of temperature. This article presents the motion of a three-dimensional of such fluid. Influence of uniform space dependent internal heat source on the intermolecular forces holding the molecules of Casson fluid is investigated. It is assumed that the stagnation flow was induced by an external force (pressure gradient together with impulsive. Based on these assumptions, variable thermophysical properties are most suitable; hence modified kinematic viscosity model is presented. The system of governing equations of 3-dimensional unsteady Casson fluid was non-dimensionalized using suitable similarity transformation which unravels the behavior of the flow at full fledge short period. The numerical solution of the corresponding boundary value problem (ODE was obtained using Runge-Kutta fourth order along with shooting technique. The intermolecular forces holding the molecules of Casson fluid flow in both horizontal directions when magnitude of velocity ratio parameters are greater than unity breaks continuously with an increase in Casson parameter and this leads to an increase in velocity profiles in both directions.
Sandeep, N.; Animasaun, I. L.
2017-06-01
Within the last few decades, experts and scientists dealing with the flow of non-Newtonian fluids (most especially Casson fluid) have confirmed the existence of such flow on a stretchable surface with low heat energy (i.e. absolute zero of temperature). This article presents the motion of a three-dimensional of such fluid. Influence of uniform space dependent internal heat source on the intermolecular forces holding the molecules of Casson fluid is investigated. It is assumed that the stagnation flow was induced by an external force (pressure gradient) together with impulsive. Based on these assumptions, variable thermophysical properties are most suitable; hence modified kinematic viscosity model is presented. The system of governing equations of 3-dimensional unsteady Casson fluid was non-dimensionalized using suitable similarity transformation which unravels the behavior of the flow at full fledge short period. The numerical solution of the corresponding boundary value problem (ODE) was obtained using Runge-Kutta fourth order along with shooting technique. The intermolecular forces holding the molecules of Casson fluid flow in both horizontal directions when magnitude of velocity ratio parameters are greater than unity breaks continuously with an increase in Casson parameter and this leads to an increase in velocity profiles in both directions.
... Home Visit Global Sites Search Help? Pleural Fluid Analysis Share this page: Was this page helpful? Formal name: Pleural Fluid Analysis Related tests: Pericardial Fluid Analysis , Peritoneal Fluid Analysis , ...
Chang, Michael; Halaki, Mark; Adams, Roger; Cobley, Stephen; Lee, Kwee-Yum; O'Dwyer, Nicholas
2016-01-01
In dance, the goals of actions are not always clearly defined. Investigations into the perceived quality of dance actions and their relation to biomechanical motion should give insight into the performance of dance actions and their goals. The purpose of this review was to explore and document current literature concerning dance perception and its relation to the biomechanics of motion. Seven studies were included in the review. The study results showed systematic differences between expert, non-expert, and novice dancers in biomechanical and perceptual measures, both of which also varied according to the actions expressed in dance. Biomechanical and perceptual variables were found to be correlated in all the studies in the review. Significant relations were observed between kinematic variables such as amplitude, speed, and variability of movement, and perceptual measures of beauty and performance quality. However, in general, there were no clear trends in these relations. Instead, the evidence suggests that perceptual ratings of dance may be specific to both the task (the skill of the particular action) and the context (the music and staging). The results also suggest that the human perceptual system is sensitive to skillful movements and neuromuscular coordination. Since the value perceived by audiences appears to be related to dance action goals and the coordination of dance elements, practitioners could place a priority on development and execution of those factors.
Nayak, M.; Beck, J.; Udrea, B.
This paper focuses on the aerospace application of a single beam laser rangefinder (LRF) for 3D imaging, shape detection, and reconstruction in the context of a space-based space situational awareness (SSA) mission scenario. The primary limitation to 3D imaging from LRF point clouds is the one-dimensional nature of the single beam measurements. A method that combines relative orbital motion and scanning attitude motion to generate point clouds has been developed and the design and characterization of multiple relative motion and attitude maneuver profiles are presented. The target resident space object (RSO) has the shape of a generic telecommunications satellite. The shape and attitude of the RSO are unknown to the chaser satellite however, it is assumed that the RSO is un-cooperative and has fixed inertial pointing. All sensors in the metrology chain are assumed ideal. A previous study by the authors used pure Keplerian motion to perform a similar 3D imaging mission at an asteroid. A new baseline for proximity operations maneuvers for LRF scanning, based on a waypoint adaptation of the Hill-Clohessy-Wiltshire (HCW) equations is examined. Propellant expenditure for each waypoint profile is discussed and combinations of relative motion and attitude maneuvers that minimize the propellant used to achieve a minimum required point cloud density are studied. Both LRF strike-point coverage and point cloud density are maximized; the capability for 3D shape registration and reconstruction from point clouds generated with a single beam LRF without catalog comparison is proven. Next, a method of using edge detection algorithms to process a point cloud into a 3D modeled image containing reconstructed shapes is presented. Weighted accuracy of edge reconstruction with respect to the true model is used to calculate a qualitative “ metric” that evaluates effectiveness of coverage. Both edge recognition algorithms and the metric are independent of point cloud densit
Studies of some problems related to atomic ordering, molecular motion and pair distribution function
Levashov, Valentin A.
In this thesis the results of my work on three out of four projects on which I was working during my Ph.D. under supervision of Prof. M. F. Thorpe are summarized. The first project was devoted to the study of properties of a model that was developed to reproduce the ordering of ions in layered double hydroxides. In the model two types of positive ions occupy the sites of triangular lattice. The ordering of ions is assumed to occur due to the long-range Coulomb interaction. The charge neutrality is provided by the negative background charge, which is assumed to be the same at every site of the lattice. General properties of the model in 1d and 2d were studied and the phase diagrams were obtained. The obtained results predict multiple phase separations in this system of charges that can, in particularly, affect the stability of the layered double hydroxides. Some properties of the atomic pair distribution function (PDF) were studied during my work on the second project. Traditionally PDF was used to study atomic ordering at small distances, while it was assumed that at large distances PDF is featureless. Puzzled by the observation that PDF calculated for the crystalline Ni does not decay at large distances we studied the behavior, in particularly the origin of decay, of PDF at large distances. The obtained results potentially could be used to measure the amount of imperfections in crystalline materials and to test instrumental resolution in X-ray and neutron diffraction experiments. During my work on the third project we were developing a technique that would allow accurate calculation of PDF for the flexible molecules. Since quantum mechanical calculations are complicated and computationally demanding in calculations of PDF for molecules in liquid or gaseous phases, classical methods, like molecular dynamics are usually employed. Thus, quantum mechanical effects, like zero-point atomic motion, are usually ignored. However, it is necessary to take into account the
Ritta eBaddoura
2014-03-01
Full Text Available During an unannounced encounter between two humans and a proactive humanoid (called NAO, we study the dependencies between the human partners’ affective experience (measured via the answers to a questionnaire particularly regarding feeling familiar and feeling frightened, and their arm and head motion (frequency and smoothness using Inertial Measurement Units (IMU. NAO starts and ends its interaction with its partners by non-verbally greeting them hello (bowing and goodbye (moving its arm. The robot is invested with a real and useful task to perform: handing each participant an envelope containing a questionnaire they need to answer. NAO’s behavior varies from one partner to the other (Smooth with X vs. Resisting with Y. The results show high positive correlations between feeling familiar while interacting with the robot and: the frequency and smoothness of the human arm movement when waving back goodbye, as well as the smoothness of the head during the whole encounter. Results also show a strong negative dependency between feeling frightened and the frequency of the human arm movement when waving back goodbye. The Principal Component Analysis (PCA suggests that, in regards to the various motion measures examined in this paper, the head smoothness and the goodbye gesture frequency are the most reliable measures when it comes to considering the familiar experienced by the participants. The PCA also points out the irrelevance of the goodbye motion frequency when investigating the participants’ experience of fear in its relation to their motion characteristics. The results are discussed in light of the major findings of studies on body movements and postures accompanying specific emotions.
Baddoura, Ritta; Venture, Gentiane
2014-01-01
During an unannounced encounter between two humans and a proactive humanoid (NAO, Aldebaran Robotics), we study the dependencies between the human partners' affective experience (measured via the answers to a questionnaire) particularly regarding feeling familiar and feeling frightened, and their arm and head motion [frequency and smoothness using Inertial Measurement Units (IMU)]. NAO starts and ends its interaction with its partners by non-verbally greeting them hello (bowing) and goodbye (moving its arm). The robot is invested with a real and useful task to perform: handing each participant an envelope containing a questionnaire they need to answer. NAO's behavior varies from one partner to the other (Smooth with X vs. Resisting with Y). The results show high positive correlations between feeling familiar while interacting with the robot and: the frequency and smoothness of the human arm movement when waving back goodbye, as well as the smoothness of the head during the whole encounter. Results also show a negative dependency between feeling frightened and the frequency of the human arm movement when waving back goodbye. The principal component analysis (PCA) suggests that, in regards to the various motion measures examined in this paper, the head smoothness and the goodbye gesture frequency are the most reliable measures when it comes to considering the familiar experienced by the participants. The PCA also points out the irrelevance of the goodbye motion frequency when investigating the participants' experience of fear in its relation to their motion characteristics. The results are discussed in light of the major findings of studies on body movements and postures accompanying specific emotions.
Fluid absorption related to ion transport in human airway epithelial spheroids
Pedersen, P S; Holstein-Rathlou, N H; Larsen, P L
1999-01-01
, and amiloride inhibited both values. Fluid transport rates were calculated from repeated measurements of spheroid diameters. The results showed that 1) non-CF and CF spheroids absorbed fluid at identical rates (4.4 microl x cm(-2) x h(-1)), 2) amiloride inhibited fluid absorption to a lower residual level......) osmotic water permeabilities were equal in non-CF and CF spheroids ( approximately 27 x 10(-7) cm x s(-1) x atm(-1))....
Karakosta, Theano D; Soosaipillai, Antoninus; Diamandis, Eleftherios P; Batruch, Ihor; Drabovich, Andrei P
2016-09-01
Human kallikrein-related peptidases (KLKs) are a group of 15 secreted serine proteases encoded by the largest contiguous cluster of protease genes in the human genome. KLKs are involved in coordination of numerous physiological functions including regulation of blood pressure, neuronal plasticity, skin desquamation, and semen liquefaction, and thus represent promising diagnostic and therapeutic targets. Until now, quantification of KLKs in biological and clinical samples was accomplished by enzyme-linked immunosorbent assays (ELISA). Here, we developed multiplex targeted mass spectrometry assays for the simultaneous quantification of all 15 KLKs. Proteotypic peptides for each KLK were carefully selected based on experimental data and multiplexed in single assays. Performance of assays was evaluated using three different mass spectrometry platforms including triple quadrupole, quadrupole-ion trap, and quadrupole-orbitrap instruments. Heavy isotope-labeled synthetic peptides with a quantifying tag were used for absolute quantification of KLKs in sweat, cervico-vaginal fluid, seminal plasma, and blood serum, with limits of detection ranging from 5 to 500 ng/ml. Analytical performance of assays was evaluated by measuring endogenous KLKs in relevant biological fluids, and results were compared with selected ELISAs. The multiplex targeted proteomic assays were demonstrated to be accurate, reproducible, sensitive, and specific alternatives to antibody-based assays. Finally, KLK4, a highly prostate-specific protein and a speculated biomarker of prostate cancer, was unambiguously detected and quantified by immunoenrichment-SRM assay in seminal plasma and blood serum samples from individuals with confirmed prostate cancer and negative biopsy. Mass spectrometry revealed exclusively the presence of a secreted isoform and thus unequivocally resolved earlier disputes about KLK4 identity in seminal plasma. Measurements of KLK4 in either 41 seminal plasma or 58 blood serum samples
Tongran Liu
Full Text Available The relationship between human fluid intelligence and social-emotional abilities has been a topic of considerable interest. The current study investigated whether adolescents with different intellectual levels had different automatic neural processing of facial expressions. Two groups of adolescent males were enrolled: a high IQ group and an average IQ group. Age and parental socioeconomic status were matched between the two groups. Participants counted the numbers of the central cross changes while paired facial expressions were presented bilaterally in an oddball paradigm. There were two experimental conditions: a happy condition, in which neutral expressions were standard stimuli (p = 0.8 and happy expressions were deviant stimuli (p = 0.2, and a fearful condition, in which neutral expressions were standard stimuli (p = 0.8 and fearful expressions were deviant stimuli (p = 0.2. Participants were required to concentrate on the primary task of counting the central cross changes and to ignore the expressions to ensure that facial expression processing was automatic. Event-related potentials (ERPs were obtained during the tasks. The visual mismatch negativity (vMMN components were analyzed to index the automatic neural processing of facial expressions. For the early vMMN (50-130 ms, the high IQ group showed more negative vMMN amplitudes than the average IQ group in the happy condition. For the late vMMN (320-450 ms, the high IQ group had greater vMMN responses than the average IQ group over frontal and occipito-temporal areas in the fearful condition, and the average IQ group evoked larger vMMN amplitudes than the high IQ group over occipito-temporal areas in the happy condition. The present study elucidated the close relationships between fluid intelligence and pre-attentive change detection on social-emotional information.
Liu, Tongran; Xiao, Tong; Li, Xiaoyan; Shi, Jiannong
2015-01-01
The relationship between human fluid intelligence and social-emotional abilities has been a topic of considerable interest. The current study investigated whether adolescents with different intellectual levels had different automatic neural processing of facial expressions. Two groups of adolescent males were enrolled: a high IQ group and an average IQ group. Age and parental socioeconomic status were matched between the two groups. Participants counted the numbers of the central cross changes while paired facial expressions were presented bilaterally in an oddball paradigm. There were two experimental conditions: a happy condition, in which neutral expressions were standard stimuli (p = 0.8) and happy expressions were deviant stimuli (p = 0.2), and a fearful condition, in which neutral expressions were standard stimuli (p = 0.8) and fearful expressions were deviant stimuli (p = 0.2). Participants were required to concentrate on the primary task of counting the central cross changes and to ignore the expressions to ensure that facial expression processing was automatic. Event-related potentials (ERPs) were obtained during the tasks. The visual mismatch negativity (vMMN) components were analyzed to index the automatic neural processing of facial expressions. For the early vMMN (50-130 ms), the high IQ group showed more negative vMMN amplitudes than the average IQ group in the happy condition. For the late vMMN (320-450 ms), the high IQ group had greater vMMN responses than the average IQ group over frontal and occipito-temporal areas in the fearful condition, and the average IQ group evoked larger vMMN amplitudes than the high IQ group over occipito-temporal areas in the happy condition. The present study elucidated the close relationships between fluid intelligence and pre-attentive change detection on social-emotional information.
Neuronal and Glia-Related Biomarkers in Cerebrospinal Fluid of Patients with Acute Ischemic Stroke
Clara Hjalmarsson
2014-01-01
Full Text Available Background Cerebral ischemia promotes morphological reactions of the neurons, astrocytes, oligodendrocytes, and microglia in experimental studies. Our aim was to examine the profile of CSF (cerebrospinal fluid biomarkers and their relation to stroke severity and degree of white matter lesions (WML. Methods A total of 20 patients (mean age 76 years were included within 5–10 days after acute ischemic stroke (AIS onset. Stroke severity was assessed using NIHSS (National Institute of Health stroke scale. The age-related white matter changes (ARWMC scale was used to evaluate the extent of WML on CT-scans. The concentrations of specific CSF biomarkers were analyzed. Results Patients with AIS had significantly higher levels of NFL (neurofilament, light, T-tau, myelin basic protein (MBP, YKL-40, and glial fibrillary acidic protein (GFAP compared with controls; T-Tau, MBP, GFAP, and YKL-40 correlated with clinical stroke severity, whereas NFL correlated with severity of WML (tested by Mann–Whitney test. Conclusions Several CSF biomarkers increase in AIS, and they correlate to clinical stroke severity. However, only NFL was found to be a marker of degree of WML.
Bernard, Peter S
2015-01-01
This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.
Vuong, Quoc C; Friedman, Alinda; Read, Jenny C A
2012-03-16
Shape and motion are two dominant cues for object recognition, but it can be difficult to investigate their relative quantitative contribution to the recognition process. In the present study, we combined shape and non-rigid motion morphing to investigate the relative contributions of both types of cues to the discrimination of dynamic objects. In Experiment 1, we validated a novel parameter-based motion morphing technique using a single-part three-dimensional object. We then combined shape morphing with the novel motion morphing technique to pairs of multipart objects to create a joint shape and motion similarity space. In Experiment 2, participants were shown pairs of morphed objects from this space and responded "same" on the basis of motion-only, shape-only, or both cues. Both cue types influenced judgments: When responding to only one cue, the other cue could be ignored, although shape cues were more difficult to ignore. When responding on the basis of both cues, there was an overall bias to weight shape cues more than motion cues. Overall, our results suggest that shape influences discrimination more than motion even when both cue types have been made quantitatively equivalent in terms of their individual discriminability.
Myrzakulov, R.; Mamyrbekova, G.K.; Nugmanova, G.N.; Yesmakhanova, K.R. [Eurasian International Center for Theoretical Physics and Department of General and Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Lakshmanan, M., E-mail: lakshman@cnld.bdu.ac.in [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620 024 (India)
2014-06-13
Motion of curves and surfaces in R{sup 3} lead to nonlinear evolution equations which are often integrable. They are also intimately connected to the dynamics of spin chains in the continuum limit and integrable soliton systems through geometric and gauge symmetric connections/equivalence. Here we point out the fact that a more general situation in which the curves evolve in the presence of additional self-consistent vector potentials can lead to interesting generalized spin systems with self-consistent potentials or soliton equations with self-consistent potentials. We obtain the general form of the evolution equations of underlying curves and report specific examples of generalized spin chains and soliton equations. These include principal chiral model and various Myrzakulov spin equations in (1+1) dimensions and their geometrically equivalent generalized nonlinear Schrödinger (NLS) family of equations, including Hirota–Maxwell–Bloch equations, all in the presence of self-consistent potential fields. The associated gauge equivalent Lax pairs are also presented to confirm their integrability. - Highlights: • Geometry of continuum spin chain with self-consistent potentials explored. • Mapping on moving space curves in R{sup 3} in the presence of potential fields carried out. • Equivalent generalized nonlinear Schrödinger (NLS) family of equations identified. • Integrability of identified nonlinear systems proved by deducing appropriate Lax pairs.
Dynamic social adaptation of motion-related neurons in primate parietal cortex.
Naotaka Fujii
Full Text Available Social brain function, which allows us to adapt our behavior to social context, is poorly understood at the single-cell level due largely to technical limitations. But the questions involved are vital: How do neurons recognize and modulate their activity in response to social context? To probe the mechanisms involved, we developed a novel recording technique, called multi-dimensional recording, and applied it simultaneously in the left parietal cortices of two monkeys while they shared a common social space. When the monkeys sat near each other but did not interact, each monkey's parietal activity showed robust response preference to action by his own right arm and almost no response to action by the other's arm. But the preference was broken if social conflict emerged between the monkeys-specifically, if both were able to reach for the same food item placed on the table between them. Under these circumstances, parietal neurons started to show complex combinatorial responses to motion of self and other. Parietal cortex adapted its response properties in the social context by discarding and recruiting different neural populations. Our results suggest that parietal neurons can recognize social events in the environment linked with current social context and form part of a larger social brain network.
A Method for En Face OCT Imaging of Subretinal Fluid in Age-Related Macular Degeneration
Fatimah Mohammad
2014-01-01
Full Text Available Purpose. The purpose of the study is to report a method for en face imaging of subretinal fluid (SRF due to age-related macular degeneration (AMD based on spectral domain optical coherence tomography (SDOCT. Methods. High density SDOCT imaging was performed at two visits in 4 subjects with neovascular AMD and one healthy subject. En face OCT images of a retinal layer anterior to the retinal pigment epithelium were generated. Validity, repeatability, and utility of the method were established. Results. En face OCT images generated by manual and automatic segmentation were nearly indistinguishable and displayed similar regions of SRF. En face OCT images displayed uniform intensities and similar retinal vascular patterns in a healthy subject, while the size and appearance of a hypopigmented fibrotic scar in an AMD subject were similar at 2 visits. In AMD subjects, dark regions on en face OCT images corresponded to reduced or absent light reflectance due to SRF. On en face OCT images, a decrease in SRF areas with treatment was demonstrated and this corresponded with a reduction in the central subfield retinal thickness. Conclusion. En face OCT imaging is a promising tool for visualization and monitoring of SRF area due to disease progression and treatment.
A Method for En Face OCT Imaging of Subretinal Fluid in Age-Related Macular Degeneration.
Mohammad, Fatimah; Wanek, Justin; Zelkha, Ruth; Lim, Jennifer I; Chen, Judy; Shahidi, Mahnaz
2014-01-01
Purpose. The purpose of the study is to report a method for en face imaging of subretinal fluid (SRF) due to age-related macular degeneration (AMD) based on spectral domain optical coherence tomography (SDOCT). Methods. High density SDOCT imaging was performed at two visits in 4 subjects with neovascular AMD and one healthy subject. En face OCT images of a retinal layer anterior to the retinal pigment epithelium were generated. Validity, repeatability, and utility of the method were established. Results. En face OCT images generated by manual and automatic segmentation were nearly indistinguishable and displayed similar regions of SRF. En face OCT images displayed uniform intensities and similar retinal vascular patterns in a healthy subject, while the size and appearance of a hypopigmented fibrotic scar in an AMD subject were similar at 2 visits. In AMD subjects, dark regions on en face OCT images corresponded to reduced or absent light reflectance due to SRF. On en face OCT images, a decrease in SRF areas with treatment was demonstrated and this corresponded with a reduction in the central subfield retinal thickness. Conclusion. En face OCT imaging is a promising tool for visualization and monitoring of SRF area due to disease progression and treatment.
Dispersion Relations and Polarizations of Low-frequency Waves in Two-fluid Plasmas
Zhao, Jinsong
2015-01-01
Analytical expressions for the dispersion relations and polarizations of low-frequency waves in magnetized plasmas based on two-fluid model are obtained. The properties of waves propagating at different angles (to the ambient magnetic field $\\mathbf{B}_{0}$) and \\beta (the ratio of the plasma to magnetic pressures) values are investigated. It is shown that two linearly polarized waves, namely the fast and Alfv\\'{e}n modes in the low-\\beta $\\left( \\beta \\ll 1\\right)$ plasmas, the fast and slow modes in the \\beta \\sim 1 plasmas, and the Alfv\\'{e}n and slow modes in the high-\\beta $\\left( \\beta \\gg 1\\right)$ plasmas, become circularly polarized at the near-parallel (to $\\mathbf{B}_{0}$) propagation. The negative magnetic-helicity of the Alfv\\'{e}n mode occurs only at small or moderate angles in the low-\\beta plasmas, and the ion cross-helicity of the slow mode is nearly the same as that of the Alfv\\'{e}n mode in the high-\\beta plasmas. It also shown the electric polarization $\\delta E_{z}/\\delta E_{y}$ decreases...
Leila Heidari
2016-10-01
Full Text Available Identification of populations susceptible to heat effects is critical for targeted prevention and more accurate risk assessment. Fluid and electrolyte imbalance (FEI may provide an objective indicator of heat morbidity. Data on daily ambient temperature and FEI emergency department (ED visits were collected in Atlanta, Georgia, USA during 1993–2012. Associations of warm-season same-day temperatures and FEI ED visits were estimated using Poisson generalized linear models. Analyses explored associations between FEI ED visits and various temperature metrics (maximum, minimum, average, and diurnal change in ambient temperature, apparent temperature, and heat index modeled using linear, quadratic, and cubic terms to allow for non-linear associations. Effect modification by potential determinants of heat susceptibility (sex; race; comorbid congestive heart failure, kidney disease, and diabetes; and neighborhood poverty and education levels was assessed via stratification. Higher warm-season ambient temperature was significantly associated with FEI ED visits, regardless of temperature metric used. Stratified analyses suggested heat-related risks for all populations, but particularly for males. This work highlights the utility of FEI as an indicator of heat morbidity, the health threat posed by warm-season temperatures, and the importance of considering susceptible populations in heat-health research.
Passive hip movement measurements related to dynamic motion during gait in hip osteoarthritis.
Baker, Matt; Moreside, Janice; Wong, Ivan; Rutherford, Derek J
2016-10-01
Reduced sagittal plane range of motion (ROM) has been reported in individuals with hip osteoarthritis (OA) both during walking and passive testing. The purpose of this study was to determine if a relationship exists between hip extension ROM recorded during gait and passive hip extension ROM in individuals with moderate and severe hip OA, in comparison to an asymptomatic group. Sagittal plane hip ROM was calculated using skin surface marker trajectories captured during treadmill walking at self-selected speed. Passive hip ROM was measured using standardized position and recording procedures with a goniometer. Sagittal plane extension, flexion, and overall ROM were measured dynamically and passively. A two-way mixed model analysis of variance determined significant differences between groups and between passive and dynamic ROM (α = 0.05). Pearson correlations determined relationships between passive and dynamic ROM. Significant group by ROM interactions were found for flexion and extension ROM (p passive ROM compared to the other groups and greater passive than dynamic ROM (p passive ROM existed between all three groups (p passive hip extension were found in the moderate (r = 0.596) and severe OA (r = 0.586) groups, and no correlation was found in the asymptomatic group (r = 0.139). Passive ROM explains variance in dynamic ROM measurements obtained during gait in individuals with moderate and severe hip OA which have implications for the design of treatment strategies targeting walking pathomechanics. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1790-1797, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Rani, Sarma; Dhariwal, Rohit; Koch, Donald
2016-11-01
In an earlier work, we derived closures in the limit of high Stokes number for the diffusivity tensor in the PDF equation for particle pairs. The diffusivity contained the time integral of the Eulerian two-time correlation of fluid relative velocities seen by pairs that are nearly stationary.The two-time correlation was analytically resolved through the approximation that the temporal change in the fluid relative velocities seen by a pair occurs principally due to the advection of smaller eddies past the pair by large scale eddies. Two diffusivity expressions were obtained based on whether the pair center of mass remained fixed during flow time scales, or moved in response to integral-scale eddies. A quantitative analysis of the stochastic theory is performed through a comparison of the pair statistics obtained using Langevin simulations with those from DNS. Langevin simulations of particle pair dispersion were performed using the diffusivity closures for four particle Stokes numbers based on the Kolmogorov time-scale, Stη = 10 , 20 , 40 , 80 and at two Taylor micro-scale Reynolds numbers Reλ = 76 , 131 . Statistics such as RDF, PDF, variance and kurtosis of particle-pair relative velocities were computed using both Langevin and DNS runs, and compared.
Cosmology with moving bimetric fluids
García-García, Carlos; Martín-Moruno, Prado
2016-01-01
We study cosmological implications of bigravity and massive gravity solutions with non-simultaneously diagonal metrics by considering the generalized Gordon and Kerr-Schild ansatzes. The scenario that we obtain is equivalent to that of General Relativity with additional non-comoving perfect fluids. We show that the most general ghost-free bimetric theory generates three kinds of effective fluids whose equations of state are fixed by a function of the ansatz. Different choices of such function allow to reproduce the behaviour of different dark fluids. In particular, the Gordon ansatz is suitable for the description of various kinds of slowly-moving fluids, whereas the Kerr-Schild one is shown to describe a null dark energy component. The motion of those dark fluids with respect to the CMB is shown to generate, in turn, a relative motion of baryonic matter with respect to radition which contributes to the CMB anisotropies. CMB dipole observations are able to set stringent limits on the dark sector described by ...
Scholl-Bürgi, S; Korman, S H; Applegarth, D A; Karall, D; Lillquist, Y; Heinz-Erian, P; Davidson, A G F; Haberlandt, E; Sass, J O
2008-06-01
The characteristic elevation of plasma glycine concentrations observed in propionic acidaemia (PA) and other 'ketotic hyperglycinaemias' has been attributed to secondary inhibition of the hepatic glycine cleavage system (GCS) by accumulating CoA derivatives of branched-chain amino acid metabolites. In nonketotic hyperglycinaemia (NKH), cerebrospinal fluid (CSF) and plasma glycine levels and their ratio are increased due to primary deficiency of central nervous system (CNS) as well as hepatic GCS. Whether the GCS in the CNS is also inhibited in PA is unclear, as there are scant data available on CSF glycine levels in this disorder. We studied the relation of CSF and plasma glycine levels in 6 paired samples from 4 PA patients, including one PA patient with bacterial meningitis who underwent ventriculoperitoneal shunting and multiple CSF analyses (n = 26). In contrast to the CSF glycine levels which were generally elevated in all four PA patients, the CSF/plasma glycine concentration ratios in paired samples were normal (0.016-0.029), with the exception of a single sample (0.132) with extremely high CSF protein concentration (2010 mg/L) during the course of meningitis indicating a disturbed blood-brain barrier. This finding of normal CSF/plasma glycine ratio in PA suggests that the observed elevations of CSF glycine levels are a reflection of the concurrent hyperglycinaemia resulting from secondary inhibition of hepatic GCS, but that brain GCS is not affected, in contrast to the situation in NKH. The neurological sequelae in PA are therefore unlikely to be related to disturbed glycine metabolism.
2007-01-01
Periodic motion of three stirrers in a two-dimensional flow can lead to chaotic transport of the surrounding fluid. For certain stirrer motions, the generation of chaos is guaranteed solely by the topology of that motion and continuity of the fluid. Work in this area has focused largely on using physical rods as stirrers, but the theory also applies when the "stirrers" are passive fluid particles. We demonstrate the occurrence of topological chaos for Stokes flow in a two-dimensional lid-driv...
BAO Lin; HU Jin-song; YU Yong-liang; CHENG Peng; XU Bo-qing; TONG Bing-gang
2006-01-01
Flexible insect wings deform passively under the periodic loading during flapping flight. The wing flexibility is considered as one of the specific mechanisms on improving insect flight performance. The constitutive relation of the insect wing material plays a key role on the wing deformation, but has not been clearly understood yet. A viscoelastic constitutive relation model was established based on the stress relaxation experiment of a dragonfly wing (in vitro). This model was examined by the finite clement analysis of the dynamic deformation response for a model insect wing under the action of the periodical inertial force in flapping. It is revealed that the viscoelastic constitutive relation is rational to characterize the biomaterial property of insect wings in contrast to the elastic one. The amplitude and form of the passive viscoelastic deformation of the wing is evidently dependent on the viscous parameters in the constitutive relation.
Shepherd, Alex J; Joly-Mascheroni, Ramiro M
2017-04-01
Background Visual after-effects are illusions that occur after prolonged viewing of visual displays. The motion after-effect (MAE), for example, is an illusory impression of motion after viewing moving displays: subsequently, stationary displays appear to drift in the opposite direction. After-effects have been used extensively in basic vision research and in clinical settings, and are enhanced in migraine. Objective The objective of this article is to assess associations between ( 1 ) MAE duration and visual symptoms experienced during/between migraine/headache attacks, and ( 2 ) visual stimuli reported as migraine/headache triggers. Methods The MAE was elicited after viewing motion for 45 seconds. MAE duration was tested for three test contrast displays (high, medium, low). Participants also completed a headache questionnaire that included migraine/headache triggers. Results For each test contrast, the MAE was prolonged in migraine. MAE duration was associated with photophobia; visual triggers (flicker, striped patterns); and migraine or headache frequency. Conclusions Group differences on various visual tasks have been attributed to abnormal cortical processing in migraine, such as hyperexcitability, heightened responsiveness and/or a lack of intra-cortical inhibition. The results are not consistent with hyperexcitability simply from a general lack of inhibition. Alternative multi-stage models are discussed and suggestions for further research are recommended, including visual tests in clinical assessments/clinical trials.
Raschke, Mathias
2015-01-01
In this paper, I introduce a novel approach to modelling the individual random component (also called the intra-event uncertainty) of a ground-motion relation (GMR), as well as a novel approach to estimating the corresponding parameters. In essence, I contend that the individual random component is reproduced adequately by a simple stochastic mechanism of random impulses acting in the horizontal plane, with random directions. The random number of impulses was Poisson distributed. The parameters of the model were estimated according to a proposal by Raschke (2013a), with the sample of random difference xi=ln(Y1)-ln(Y2), in which Y1 and Y2 are the horizontal components of local ground-motion intensity. Any GMR element was eliminated by subtraction, except the individual random components. In the estimation procedure the distribution of difference xi was approximated by combining a large Monte Carlo simulated sample and Kernel smoothing. The estimated model satisfactorily fitted the difference xi of the sample o...
Iaffaldano, Giampiero; Hawkins, Rhys; Sambridge, Malcolm
2014-04-01
of Nubia/Somalia relative motion since the Early Neogene is of particular importance in the Earth Sciences, because it (i) impacts on inferences on African dynamic topography; and (ii) allows us to link plate kinematics within the Indian realm with those within the Atlantic basin. The contemporary Nubia/Somalia motion is well known from geodetic observations. Precise estimates of the past-3.2-Myr average motion are also available from paleo-magnetic observations. However, little is known of the Nubia/Somalia motion prior to ˜3.2 Ma, chiefly because the Southwest Indian Ridge spread slowly, posing a challenge to precisely identify magnetic lineations. This also makes the few observations available particularly prone to noise. Here we reconstruct Nubia/Somalia relative motions since ˜20 Ma from the alternative plate-circuit Nubia-Arabia-Somalia. We resort to trans-dimensional hierarchical Bayesian Inference, which has proved effective in reducing finite-rotation noise, to unravel the Arabia/Somalia and Arabia/Nubia motions. We combine the resulting kinematics to reconstruct the Nubia/Somalia relative motion since ˜20 Ma. We verify the validity of the approach by comparing our reconstruction with the available record for the past ˜3.2 Myr, obtained through Antarctica. Results indicate that prior to ˜11 Ma the total motion between Nubia and Somalia was faster than today. Furthermore, it featured a significant strike-slip component along the Nubia/Somalia boundary. It is only since ˜11 Ma that Nubia diverges away from Somalia at slower rates, comparable to the present-day one. Kinematic changes of some 20% might have occurred in the period leading to the present-day, but plate-motion steadiness is also warranted within the uncertainties.
Huang, Yin-Nan, E-mail: ynhuang@ntu.edu.tw [Dept. of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (China); Yen, Wen-Yi, E-mail: b01501059@ntu.edu.tw [Dept. of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (China); Whittaker, Andrew S., E-mail: awhittak@buffalo.edu [Dept. of Civil, Structural and Environmental Engineering, MCEER, State University of New York at Buffalo, Buffalo, NY 14260 (United States)
2016-12-15
Highlights: • The correlation of components of ground motion is studied using 1689 sets of records. • The data support an upper bound of 0.3 on the correlation coefficient. • The data support the related requirement in the upcoming edition of ASCE Standard 4. - Abstract: Design standards for safety-related nuclear facilities such as ASCE Standard 4-98 and ASCE Standard 43-05 require the correlation coefficient for two orthogonal components of ground motions for response-history analysis to be less than 0.3. The technical basis of this requirement was developed by Hadjian three decades ago using 50 pairs of recorded ground motions that were available at that time. In this study, correlation coefficients for (1) two horizontal components, and (2) the vertical component and one horizontal component, of a set of ground motions are computed using records from a ground-motion database compiled recently for large-magnitude shallow crustal earthquakes. The impact of the orientation of the orthogonal horizontal components on the correlation coefficient of ground motions is discussed. The rules in the forthcoming edition of ASCE Standard 4 for the correlation of components in a set of ground motions are shown to be reasonable.
Cornoldi, Cesare; Giofrè, David; Calgaro, Giovanni; Stupiggia, Chiara
2013-07-01
Executive functions and, in particular, Attentional (active) Working Memory (WM) have been associated with fluid intelligence. The association contrasts with the hypothesis that children with ADHD exhibit problems with WM tasks requiring controlled attention and may have a good fluid intelligence. This paper examines whether children who are intelligent but present ADHD symptoms fail in attentional WM tasks. The latter result would be problematic for theories assuming the generality of a strict relationship between intelligence and WM. To study these issues, a battery of tests was administered to a group of 58 children who all displayed symptoms of ADHD. All children were between the age of 8 and 11 years, and were described by their teachers as smart. Children were compared to a control group matched for age, schooling, and gender. The battery included a test of fluid intelligence (Raven's Coloured Matrices), and a series of visuospatial WM tasks. Results showed that children with ADHD were high in intelligence but significantly lower than the controls in WM tasks requiring high attentional control, whereas there was no difference in WM tasks requiring low attentional control. Furthermore, only high attentional control WM tasks were significantly related to Raven's performance in the control group, whereas all WM tasks were similarly related in the ADHD group. It is concluded that performance in high attentional control WM tasks may be related to fluid intelligence, but also to a specific control component that is independent of intelligence and is poor in children with ADHD.
Petropoulos Christos J
2005-11-01
Full Text Available Abstract Background Central nervous system (CNS exposure to HIV is a universal facet of systemic infection. Because of its proximity to and shared barriers with the brain, cerebrospinal fluid (CSF provides a useful window into and model of human CNS HIV infection. Methods Prospective study of the relationships of CSF to plasma HIV RNA, and the effects of: 1 progression of systemic infection, 2 CSF white blood cell (WBC count, 3 antiretroviral therapy (ART, and 4 neurological performance. One hundred HIV-infected subjects were cross-sectionally studied, and 28 were followed longitudinally after initiating or changing ART. Results In cross-sectional analysis, HIV RNA levels were lower in CSF than plasma (median difference 1.30 log10 copies/mL. CSF HIV viral loads (VLs correlated strongly with plasma VLs and CSF WBC counts. Higher CSF WBC counts associated with smaller differences between plasma and CSF HIV VL. CSF VL did not correlate with blood CD4 count, but CD4 counts In subjects starting ART, those with lower CD4 counts had slower initial viral decay in CSF than in plasma. In all subjects, including five with persistent plasma viremia and four with new-onset ADC, CSF HIV eventually approached or reached the limit of viral detection and CSF pleocytosis resolved. Conclusion CSF HIV infection is common across the spectrum of infection and is directly related to CSF pleocytosis, though whether the latter is a response to or a contributing cause of CSF infection remains uncertain. Slowing in the rate of CSF response to ART compared to plasma as CD4 counts decline indicates a changing character of CSF infection with systemic immunological progression. Longer-term responses indicate that CSF infection generally responds well to ART, even in the face of systemic virological failure due to drug resistance. We present simple models to explain the differing relationships of CSF to plasma HIV in these settings.
Mitroka, J.G.
1989-01-01
Potential antidotes for human exposure to monochloroacetic acid (MCA) were evaluated using a rodent model. Dichloroacetic acid (DCA) and phenobarbital (PB) but not ethanol or phenytoin, were found to be effective antidotes to monochloroacetic acid (MCA) in rats. DCA (110 mg/kg, ip), administered to rats 15 minutes after a LD-80 of MCA (80 mg/kg, iv), consistently reduced mortality to 0%, while PB reduced mortality to less than 20%. Both DCA and PB were found to be similarly effective in mice. The hypothesis that PB reduces mortality in MCA treated rats by altering the metabolic disposition of MCA was evaluated and rejected. Administration of PB to rats treated with a lethal dose of ({sup 14}C)MCA did not alter the concentrations of MCA or its metabolites in plasma or cerebrospinal fluid (CSF), or the extent of covalent binding between radioactivity equivalent to ({sup 14}C)MCA and brain proteins. The relationship between altered blood-brain barrier permeability and death in MCA treated rats was investigated. Treatment with MCA (80 mg/kg, iv) was associated with a significant (50%) increase in the permeability of the rat blood-brain barrier to ({sup 125}I)BSA. The effect was not altered by treatment with PB, however, suggesting that altered blood-brain barrier permeability does not have an important role in the lethal effect of MCA in rats. The effect of MCA on brain carbohydrate metabolism in vivo was investigated. CSF and blood lactic acid concentrations increased in MCA treated rats, and the increase in CSF levels was dose related. In individual MCA treated rats, CSF lactate concentrations paralleled the time course of ataxia and a discrete threshold for death (18 mmol/L) was observed. The relationship between excess brain lactate levels and death in MCA treated rats was investigated further.
Effective Sensing Regions and Connectivity of Agents Undergoing Periodic Relative Motions
Swain, D.; Cao, M.; Leonard, N.E.
2008-01-01
Time-varying graphs are widely used to model communication and sensing in multi-agent systems such as mobile sensor networks and dynamic animal groups. Connectivity is often determined by the presence of neighbors in a sensing region defined by relative position and/or bearing. We present a method f
Gautier, David; Rabier, Valérie; Jallet, Ghislaine;
2012-01-01
Optic nerve involvement may occur in various infectious diseases, but is rarely reported after infection by the human immunodeficiency virus (HIV). We report the atypical case of a 38-year-old patient in whom the presenting features of HIV infection were due to a bilateral optic neuropathy associ...... associated with macular subretinal fluid and cystoid macular edema, which responded well to antiretroviral therapy....
Thermicity and fluid flow related to the evolution of the South Pyrenean Foreland Basin (SPFB)
Crognier, Nemo; Hoareau, Guilhem; Lacroix, Brice; Aubourg, Charles; Dubois, Michel; Lahfid, Abdeltif; Labaume, Pierre; Suarez-Ruiz, Isabel
2015-04-01
The East-West trending South Pyrenean Foreland Basin (SPFB), formed during the upper Cretaceous and the early Miocene due to the collision between Iberian and European plates, is filled by marine to continental deposits affected by a set of successive southvergent thrusts. In the western part of the SPFB (Jaca basin, Spain), from the North to the South the basin is subdivided into four parts: the internal Sierras, the turbiditic basin, the molassic basin and the external Sierras. In order to better constrain the fluid flow dynamic and the thermal regime of the basin during its tectonic evolution, we propose to estimate the temperatures and the O and C isotopic signatures of fluids, as well as the maximum temperatures recorded by pre- to syn-tectonic sediments of the Jaca basin. The C and O isotopic composition has been measured on ~100 veins and host sediment samples. The peak temperatures have also been estimated on 80 bulk rocks and calcite/quartz veins using a combination of several techniques, including Raman Spectroscopy of Carbonaceous Material, vitrinite reflectance, fluid inclusion microthermometry and mass-47 clumped isotopes. We show that in most tectonic fractures, primary fluid inclusions are characterized by moderate salinities (~2.5 wt%) compatible with connate or evolved meteoric waters, with increasing meteoric signature in the south of the basin. As suggested by temperature determinations and stable isotopes, involved fluids were generally in thermal and isotopic equilibrium with the host sediments, suggesting a low fluid-rock ratio (i.e., no significant fluid flow). These results support previous speculations of moderate fluid-flow through thrust faults and the hydrological compartmentalization of the Jaca basin during deformation (Lacroix et al., 2014). In addition we demonstrate that measured peak temperatures rapidly decrease southward, from ~240°C±30°C in Cretaceous to Eocene sediments located in the North of the basin close to the axial
宋兵伟; 马震岳; 堀口祐憲; 迁本良信
2011-01-01
The fundamental characteristics of rotordynamic fluid force moment on the backshroud of Francis turbine runners in precession motion were studied by model experiments and the numerical simulation based on a bulk flow model.The runner is modeled by a disk set close to a casing with small radial clearance.An inward leakage flow is produced by an external pump.The effects of the leakage flow rate,the pre-swirl velocity at the inlet of the radial clearance,and the axial clearance on the fluid force moment were examined.It is found that the fluid force moment encourages the precession motion at small forward precession angular velocity ratios region and the region encouraging the precession motion is affected by the pre-swirl velocity.Through the comparisons of the fluid force moment acting on the backshroud under the precession motions with and without the rotation of the disk,it is found that the normal moment generated by the precession motion without the rotation of the disk has not the effect of encouraging the precession motion.The swirl flow due to the rotation of the disk is found to be responsible for the encouragement of normal moment on the precession motion.%通过模型实验和基于整体流动模型的数值模拟研究了混流式水轮机进动过程中作用在转轮上冠的转动流体力矩的基本特性.模型实验中的转轮用一个圆盘来模拟,其上冠与后顶盖之间形成一个很小的轴向间隙.内向流由外部水泵供给.检验分析了间隙内泄漏流速、径向间隙进口处的预旋速度和轴向间隙宽度对流体力矩的影响.研究结果表明,进动流体力矩在很小的正向进动角速率比区间内对转轮的进动具有自激效应,并且进口处预旋速度对自激区间的影响显著.通过对转轮进动过程中流体所产生的转动力矩在转轮旋转和不旋转两种情况下的比较,得出了法向流体力矩在转轮只有进动没有旋转的情况下对转轮的进动没有自激
Intracochlear Fluid Pressure Changes Related to the Insertional Speed of a CI Electrode
I. Todt
2014-01-01
Full Text Available Introduction. To preserve residual hearing the atraumaticity of the cochlea electrode insertion has become a focus of cochlear implant research. In addition to other factors, the speed of insertion is thought to be a contributing factor in the concept of atraumatic implantation. The aim of our study was to observe intracochlear fluid pressure changes due to different insertional speeds of an implant electrode in a cochlear model. Materials and Methods. The experiments were performed using an artificial cochlear model. A linear actuator was mounted on an Advanced Bionics IJ insertional tool. The intracochlear fluid pressure was recorded through a pressure sensor which was placed in the helicotrema area. Defined insertions were randomly performed with speeds of 0.1 mm/sec, 0.25 mm/sec, 0.5 mm/sec, 1 mm/sec, and 2 mm/sec. Results. A direct correlation between speed and pressure was observed. Mean maximum values of intracochlear fluid pressure varied between 0.41 mm Hg and 1.27 mm Hg. Conclusion. We provide the first results of fluid pressure changes due to insertional speeds of CI electrodes in a cochlear model. A relationship between the insertional speed and intracochlear fluid pressure was observed. Further experiments are needed to apply these results to the in vivo situation.
Constraining the angular momentum of the Sun with planetary orbital motions and general relativity
Iorio, Lorenzo
2011-01-01
The angular momentum of a star is an important astrophysical quantity related to its internal structure, formation and evolution. On average, helioseismology yields S = 1.92 10^41 kg m^2 s^-1 for the angular momentum of the Sun. We constrain it in a model-independent, dynamical way by using the gravitomagnetic Lense-Thirring effect predicted by general relativity for the orbit of a test particle moving around a central rotating body. The correction to the standard Einsteinian/Newtonian precession of the longitude of the perihelion $ of Mercury, recently inferred by a team of astronomers from a fit of dynamical models of the forces acting on the planets of the solar system to a long data record, amounts to 0.4 +/- 0.6 mas cty^-1. The modeled forces did not include the Lense-Thirring effect itself, which is expected to be as large as -2.0 mas cty^-1 for the perihelion of Mercury from helioseismological values of S?. By assuming the validity of general relativity, from its theoretical prediction for the gravitom...
Kojima, T
2007-01-01
We explicitly construct two classes of infinitly many commutative operators in terms of the deformed W-algebra $W_{qt}(sl_N^)$, and give proofs of the commutation relations of these operators. We call one of them local integrals of motion and the other nonlocal one, since they can be regarded as elliptic deformation of local and nonlocal integrals of motion for the $W_N$ algebra.
Wang Xiao-Xiao; Sun Xian-Ting; Zhang Mei-Ling; Han Yue-Lin; Jia Li-Qun
2012-01-01
The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and the criterion of the Mei symmetry,and the expression of the Mei conserved quantity deduced directly from the Mei symmetry for the system are obtained.An example is given to illustrate the application of the results.
Wang Xiao-Xiao; Sun Xian-Ting; Zhang Mei-Ling; Xie Yin-Li; Jia Li-Qun
2011-01-01
The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied.The differential equations of motion of the Nielsen equation for the system,the definition and the criterion of Lie symmetry,and the expression of the Hojman conserved quantity deduced directly from the Lie symmetry for the system are obtained.An example is given to illustrate the application of the results.
Swimming speeds of filaments in nonlinearly viscoelastic fluids
Fu, Henry C; Powers, Thomas R; 10.1063/1.3086320
2010-01-01
Many microorganisms swim through gels and non-Newtonian fluids in their natural environments. In this paper, we focus on microorganisms which use flagella for propulsion. We address how swimming velocities are affected in nonlinearly viscoelastic fluids by examining the problem of an infinitely long cylinder with arbitrary beating motion in the Oldroyd-B fluid. We solve for the swimming velocity in the limit in which deflections of the cylinder from its straight configuration are small relative to the radius of the cylinder and the wavelength of the deflections; furthermore, the radius of the cylinder is small compared to the wavelength of deflections. We find that swimming velocities are diminished by nonlinear viscoelastic effects. We apply these results to examine what types of swimming motions can produce net translation in a nonlinear fluid, comparing to the Newtonian case, for which Purcell's "scallop" theorem describes how time-reversibility constrains which swimming motions are effective. We find that...
Constraining the Angular Momentum of the Sun with Planetary Orbital Motions and General Relativity
Iorio, L.
2012-12-01
The angular momentum of a star is an important astrophysical quantity related to its internal structure, formation, and evolution. Helioseismology yields S_{⊙}= 1.92×10^{41} kg m^{2 s^{-1}} for the angular momentum of the Sun. We show how it should be possible to constrain it in a near future by using the gravitomagnetic Lense-Thirring effect predicted by General Relativity for the orbit of a test particle moving around a central rotating body. We also discuss the present-day situation in view of the latest determinations of the supplementary perihelion precession [InlineEquation not available: see fulltext.] of Mercury. A fit by Fienga et al. ( Celestial Mech. Dynamical Astron. 111, 363, 2011) of the dynamical models of several standard forces acting on the planets of the solar system to a long data record yielded [InlineEquation not available: see fulltext.] milliarcseconds per century. The modeled forces did not include the Lense-Thirring effect itself, which is expected to be as large as [InlineEquation not available: see fulltext.] from helioseismology-based values of S ⊙. By assuming the validity of General Relativity, from its theoretical prediction for the gravitomagnetic perihelion precession of Mercury, one can straightforwardly infer S_{⊙}≤0.95×10^{41} kg m^{2 s^{-1}}. It disagrees with the currently available values from helioseismology. Possible sources for the present discrepancy are examined. Given the current level of accuracy in the Mercury ephemerides, the gravitomagnetic force of the Sun should be included in their force models. MESSENGER, in orbit around Mercury since March 2011, will collect science data until 2013, while BepiColombo, to be launched in 2015, should reach Mercury in 2022 for a year-long science phase: the analysis of their data will be important in effectively constraining S ⊙ in about a decade or, perhaps, even less.
Breukers, Rose-Marieke B G E; Trof, Ronald J; de Wilde, Rob B P; van den Berg, Paul C M; Twisk, Jos W R; Jansen, Jos R C; Groeneveld, Johan
2009-01-01
Cardiac function may differ after valvular (VS) and coronary artery (CAS) surgery and this may affect assessment of fluid responsiveness. The aim of the study was to compare VS and CAS in the value of cardiac filling pressures and volumes herein. There were eight consecutive patients after VS and eight after CAS, with femoral and pulmonary artery catheters in place. In each patient, five sequential fluid loading steps of 250 ml of colloid each were done. We measured central venous pressure (CVP), pulmonary artery occlusion pressure (PAOP) and, by transpulmonary thermodilution, cardiac index (CI) and global end-diastolic (GEDVI) and intrathoracic blood volume (ITBVI) indices. Fluid responsiveness was defined by a CI increase >5% or >10% per step. Global ejection fraction was lower and PAOP was higher after VS than CAS. In responding steps after VS (n=9-14) PAOP and volumes increased, while CVP and volumes increased in responding steps (n=12-19) after CAS. Baseline PAOP was lower in responding steps after VS only. Hence, baseline PAOP as well as changes in PAOP and volumes were of predictive value after VS and changes in CVP and volumes after CAS, in receiver operating characteristic curves. After VS, PAOP and volume changes equally correlated to CI changes. After CAS, only changes in CVP and volumes correlated to those in CI. While volumes are equally useful in monitoring fluid responsiveness, the predictive and monitoring value of PAOP is greater after VS than after CAS. In contrast, the CVP is of similar value as volume measurements in monitoring fluid responsiveness after CAS. The different value of pressures rather than of volumes between surgery types is likely caused by systolic left ventricular dysfunction in VS. The study suggests an effect of systolic cardiac function on optimal parameters of fluid responsiveness and superiority of the pulmonary artery catheter over transpulmonary dilution, for haemodynamic monitoring of VS patients.
On a family of well behaved perfect fluid balls as astrophysical objects in general relativity
Maurya, S. K.; Gupta, Y. K.
2011-07-01
A family of well behaved perfect fluid balls has been derived starting with the metric potential g 44= B(1+ Cr 2) n for all positive integral values of n. For n≥4, the members of this family are seen to satisfy the various physical conditions e.g. c 2 ρ≥ p≥0, dp/ dr1. Also the pressure, energy density, velocity of sound and ratio of pressure and energy density are of monotonically decreasing towards the pressure free interface ( r= a). The fluid balls join smoothly with the Schwarzschild exterior model at r= a. The well behaved perfect fluid balls so obtained are utilised to construct the superdense star models with their surface density 2×1014 gm/cm3. We have found that the maximum mass of the fluid balls corresponding to various values of n are decreasing with the increasing values of n. Over all maximum mass for the whole family turns out to be 4.1848 M Θ and the corresponding radius as 19.4144 km while the red shift at the centre and red shift at surface as Z 0=1.6459 and Z a =0.6538 respectively this all happens for n=4. It is interesting to note that for higher values of n viz n≥170, the physical data start merging with that of Kuchowicz superdense star models and hence the family of fluid models tends to the Kuchowicz fluid models as n→∞. Consequently the maximum mass of the family of solution can not be less than 1.6096 M Θ which is the maximum mass occupied by the Kuchowicz superdense ball. Hence each member of the family for n≥4 provides the astrophysical objects like White dwarfs, Quark star, typical neutron star.
War on Film: Military History Education. Video tapes, Motion Pictures, and Related Audiovisual Aids
1987-01-01
ultimately leading them into war anl their own r truction as a people. This film traces their tragic saga . 1).4. Navy Decline, the New Navy and the War With...stolen from us. We never touched a pen. We never sold our land. It was stolen." This is the tragic but heroic saga of Indian-United States relations as it...war as it was experienced by the foot soliiers, in Vietnam. The story vitews a twilight amibush by the Vietcong, a dawn raid by Marines, the death of’ a
Rigid motions: action-angles, relative cohomology and polynomials with roots on the unit circle
Francoise, Jean Pierre; Gallavotti, Giovanni
2012-01-01
Revisiting canonical integration of the classical solid near a uniform rotation, canonical action angle coordinates, hyperbolic and elliptic, are constructed in terms of various power series with coefficients which are polynomials in a variable $r^2$ depending on the inertia moments. Normal forms are derived via the analysis of a relative cohomology problem and shown to be obtainable without the use of ellitptic integrals (unlike the derivation of the action-angles). Results and conjectures also emerge about the properties of the above polynomials and the location of their roots. In particular a class of polynomials with all roots on the unit circle arises.
BALI Raj; PAREEK Umesh Kumar; PRADHAN Anirudh
2007-01-01
@@ Bianchi type-Ⅰ massive string cosmological model with magnetic field of barotropic perfect fluid distribution through the techniques used by Latelier and Stachel is investigated. To obtain the deterministic model of the universe, it is assumed that the universe is filled with barotropic perfect fluid distribution. The magnetic field is due to electric current produced along the x-axis with infinite electrical condúctivity. The behaviour of the model in the presence and absence of magnetic field together with other physical aspects is further discussed.
Anne Kröger
Full Text Available Attention-deficit/hyperactivity disorder (ADHD is often accompanied by problems in social behaviour, which are sometimes similar to some symptoms of autism-spectrum disorders (ASD. However, neuronal mechanisms of ASD-like deficits in ADHD have rarely been studied. The processing of biological motion-recently discussed as a marker of social cognition-was found to be disrupted in ASD in several studies. Thus in the present study we tested if biological motion processing is disrupted in ADHD. We used 64-channel EEG and spatio-temporal source analysis to assess event-related potentials associated with human motion processing in 21 children and adolescents with ADHD and 21 matched typically developing controls. On the behavioural level, all subjects were able to differentiate between human and scrambled motion. But in response to both scrambled and biological motion, the N200 amplitude was decreased in subjects with ADHD. After a spatio-temporal dipole analysis, a human motion specific activation was observable in occipital-temporal regions with a reduced and more diffuse activation in ADHD subjects. These results point towards neuronal determined alterations in the processing of biological motion in ADHD.
Spacecraft Formation Control: Managing Line-of-Sight Drift Based on the Dynamics of Relative Motion
Luquette, Richard J.; Sammer. Robert M.
2008-01-01
In a quest to improve space-based observational capability, an increasing number of investigators are proposing missions with precision formation flying architectures. Typical missions include the Micro- Arcsecond X-ray Imaging Mission (MAXIM), Stellar Imager (SI), and the New Worlds Observer (NWO). Missions designed to explore targets in deep-space generally require holding a formation configuration fixed in inertial space during science observation. Analysis in this paper is specifically aimed at the NWO architecture, characterizing the natural drift of the line-of-sight and the separation range for two spacecraft operating in the vicinity of the Earth/Moon-Sun L(sub 2) libration point. Analysis employs a linear form of the relative dynamics associated with an n-body gravity field. The study is designed to identify favorable observation directions, characterized by minimal line-of-sight drift, along the mission timeline.
Tonini, C.; Jones, D. H.; Mould, J.; Webster, R. L.; Danilovich, T.; Ozbilgen, S.
2014-03-01
We investigate the morphology dependence of the Tully-Fisher (TF) relation, and the expansion of the relation into a three-dimensional manifold defined by luminosity, total circular velocity and a third dynamical parameter, to fully characterize spiral galaxies across all morphological types. We use a full semi-analytic hierarchical model (based on Croton et al.), built on cosmological simulations of structure formation, to model galaxy evolution and build the theoretical TF relation. With this tool, we analyse a unique data set of galaxies for which we cross-match luminosity with total circular velocity and central velocity dispersion. We provide a theoretical framework to calculate such measurable quantities from hierarchical semi-analytic models. We establish the morphology dependence of the TF relation in both model and data. We analyse the dynamical properties of the model galaxies and determine that the parameter σ/VC, i.e. the ratio between random and total motions defined by velocity dispersion and circular velocity, accurately characterizes the varying slope of the TF relation for different model galaxy types. We apply these dynamical cuts to the observed galaxies and find indeed that such selection produces a differential slope of the TF relation. The TF slope in different ranges of σ/VC is consistent with that for the traditional photometric classification in Sa, Sb and Sc. We conclude that σ/VC is a good parameter to classify galaxy type, and we argue that such classification based on dynamics more closely mirrors the physical properties of the observed galaxies, compared to visual (photometric) classification. We also argue that dynamical classification is useful for samples where eye inspection is not reliable or impractical. We conclude that σ/VC is a suitable parameter to characterize the hierarchical assembly history that determines the disc-to-bulge ratio, and to expand the TF relation into a three-dimensional manifold, defined by luminosity
Ramakers, I.H.; Verhey, F.R.J.; Scheltens, P.; Hampel, H.; Soininen, H.; Aalten, P.; Olde Rikkert, M.G.; Verbeek, M.M.; Spiru, L.; Blennow, K.; Trojanowski, J.Q.; Shaw, L.M.; Visser, P.J.
2013-01-01
BACKGROUND: Anxiety, apathy and depression are common in subjects with mild cognitive impairment (MCI) and may herald Alzheimer's disease (AD). We investigated whether these symptoms correlated with cerebrospinal fluid (CSF) markers for AD in subjects with MCI. Method Subjects with MCI (n=268) were
Changes in energetic profile of pregnant ewes in relation with the composition of the fetal fluids
Samia Haffaf; Bouabdellah Benallou
2016-01-01
Objective: To evaluate the energetic profile of fetal fluids and to make comparisons of the concentrations of the constituents present with those in the maternal plasma.Methods: A study was conducted in 102 gravid sheep uteri. The four stages of gestation as Stage I(0–60 days), Stage II(61–90 days), Stage III(91–120 days) and Stage IV(121–145 days) were identified based on the crown anus length of the embryo/fetus. The amniotic and allantoic fluids collected from the gravid uteri of each group were subjected to biochemical analysis of glucose, cholesterol and triglyceride.Results: The levels of glucose and triglyceride in maternal plasma were lower(P 0.05) of plasma cholesterol levels was detected between the sampling periods.Contrariwise, cholesterol concentrations of fetal fluids were higher in Stages III and IV of pregnancy when compared with the Stages I and II.Conclusions: The influence of pregnancy on the biochemical composition of fetal fluids was statistically significant.
Robertson-Walker cosmological models with perfect fluid in general relativity
Rishi Kumar Tiwari
2011-01-01
Einstein's field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for a Robertson-Walker universe by assuming the cosmological term to be proportional to R-m (R is a scale factor and m is a constant). A variety of solutions is presented. The physical significance of the cosmological models has also been discussed.
Bianchi Type-IX viscous fluid cosmological model in general relativity
Raj Bali; Mahesh Kumar Yadav
2005-02-01
Bianchi Type-IX viscous fluid cosmological model is investigated. To get a deterministic model, we have assumed the condition = ( is a constant) between metric potentials and where is the coefficient of shear viscosity and the scalar of expansion in the model. The coefficient of bulk viscosity () is taken as constant. The physical and geometrical aspects of the model are also discussed.
Fluid-inclusion data on samples from Creede, Colorado, in relation to mineral paragenesis
Woods, T.L.; Roedder, Edwin; Bethke, P.M.
1982-01-01
Published and unpublished data on 2575 fluid inclusions in ore and gangue minerals from the Creede, Colorado, Ag-Pb-Zn-Cu vein deposit collected in our laboratories from 1959 to 1981 have shown that the average salinity (wt. % NaCl equivalent, hereinafter termed wt.% eq.) and homogenization temperature (Th), and the ranges of these two parameters for fluid inclusions in sphalerite, quartz, fluorite, and rhodochrosite, respectively, are 8.1 (4.6 - 13.4), 239?C (195-274?C); 6.1 (1.1-10.0), 260?C (190->400?C); 10.7 (6.1-11.1), 217?C (213-229?C) and 260?C (247-268?C) (bimodal distribution of Th); and 9.9 (9.3 - 10.6), 214?C (185-249?C). Inclusions have been measured in minerals from four of the five stages of mineralization previously recognized at Creede. The few inclusions of fluids depositing rhodochrosite (A-stage, earliest in the paragenesis) yield Th and salinity values more similar to those of the low-temperature (average Th 217?C) fluids forming some of the much later fluorite (C-stage) than to any of the other fluids. Th measurements on A-stage quartz range from 192?C to 263?C and average 237?C. The early, fine-grained, B-stage sphalerites yielded Th of 214 to 241?C and salinities of 6.1 to 10.2 wt. % eq. D-stage sphalerite (late in the paragenesis) has been studied in detail (growth-zone by growth-zone) for several localities along the OH vein and reveals a generally positive correlation among Th, salinity and iron content of the host sphalerite. The deposition of D-stage sphalerite was characterized by repeated cycling through different regions of salinity/Th space, as Th and salinity generally decreased with time. Seventeen salinity-Th measurements were made on D-stage sphalerite from one locality on the Bulldog Mountain vein system, which, like the OH vein, is one of four major ore-producing vein systems at Creede. These data suggest a lower Th for a given salinity fluid from sphalerite on the Bulldog Mountain vein than on the OH vein. The very high values
Bace1 activity in cerebrospinal fluid and its relation to markers of ad pathology
Mulder, S.D.; Flier, W.M. van der; Verheijen, J.H.; Mulder, C.; Scheltens, P.; Blankenstein, M.A.; Hack, C.E.; Veerhuis, R.
2010-01-01
Several studies have shown that reduced amyloid-β 1-42 (Aβ {42}) and increased tau levels in cerebrospinal fluid (CSF) reflect increased Alzheimer's disease (AD) pathology in the brain. β-site APP cleaving enzyme (BACE1) is thought to be the major β-secretase involved in Aβ production in the brain,
Indicial functions and flutter derivatives: A generalized approach to the motion-related wind loads
de Miranda, S.; Patruno, L.; Ubertini, F.; Vairo, G.
2013-10-01
This paper presents a general time-domain description of the loads acting on a moving cylindrical body immersed in a two-dimensional low-speed flow, aiming to consistently extend the framework of thin airfoil theory to mildly bluff sections, such as those usually employed for decks of modern long-span bridges. In order to systematically accommodate typical features of bluff-body aerodynamics, the classical Theodorsen and Wagner results are reorganized within a unified dimensionless approach, and generalized preserving their main formal structure. Accordingly, circulatory and non-circulatory contributions are separately described and superimposed, and generalized downwash-related terms are introduced. The strong duality between time-domain and frequency-domain representations is focused, and direct relationships between proper Wagner-like indicial functions and Theodorsen-like circulatory functions are deduced. Thereby, following the Scanlan formulation for bridge deck sections, flutter derivatives are represented by superimposing circulatory and non-circulatory effects, resulting in a frequency-domain description fully consistent with the Theodorsen's theory.
Turnover rate of cerebrospinal fluid in female sheep: changes related to different light-dark cycles
Malpaux Benoit
2009-08-01
Full Text Available Abstract Background Sheep are seasonal breeders. The key factor governing seasonal changes in the reproductive activity of the ewe is increased negative feedback of estradiol at the level of the hypothalamus under long-day conditions. It has previously been demonstrated that when gonadotropin secretions are inhibited during long days, there is a higher concentration of estradiol in the cerebrospinal fluid (CSF than during short days. This suggests an involvement of the CSF and choroid plexus in the neuroendocrine regulatory loop, but the mechanisms underlying this phenomenon remain unknown. One possible explanation of this difference in hormonal content is an effect of concentration or dilution caused by variations in CSF secretion rate. The aim of this study was thus to investigate changes in the CSF turnover rate related to light-dark cycles. Methods The turnover rate of the CSF was estimated by measuring the time taken for the recovery of intraventricular pressure (IVP after removal of a moderate volume (0.5 to 2 ml of CSF (slope in mmHg/min. The turnover rate was estimated three times in the same group of sheep: during a natural period of decreasing day-length corresponding to the initial period when gonadotropin activity is stimulated (SG1, during a long-day inhibitory period (IG, and finally during a short-day stimulatory period (SG2. Results The time taken and the speed of recovery of initial IVP differed between groups: 8 min 30 sec, 0.63 ± 0.07 mmHg/min(SG1, 11 min 1 sec, 0.38 ± 0.06 mmHg/min (IG and 9 min 0 sec, 0.72 ± 0.15 mmHg/min (SG2. Time changes of IVP differed between groups (ANOVA, p p p = 0.41, but was significantly different from IG: 71.33 ± 16.59 μl/min (p = 0.016. Conclusion This study shows that the turnover rate of CSF in ewes changes according to the light-dark cycle; it is increased during short day periods and reduced in long day periods. This phenomenon could account for differences in hormonal concentrations in
EVALUATION OF AMNIOT IC FLUID VOLUME AND ITS RELATION TO PERINATAL OUTCOME
Urmila
2015-05-01
Full Text Available BACKGROUND: Amniotic fluid is an indicator of placental function on the fetal development. The AFI is the most commonly used method of measuring amniotic fluid. AIMS: We aimed to study the amniotic fluid volume in pregnancies beyond 34 weeks of gestation and to evalu ate the predictive value of amniotic fluid index (AFI 5 cm during one year from August 2013 to July 2014. The women's history, clinical examination recorded and AFI were measured using the Phelan's technique and the perinatal outcome compared between the two groups i.e. AFI 5cm. STATISTICAL ANALYSIS USED: Chi - square test was carried out at 5% ( =0.05 level of significance to analyze the collected data for final outcome. RESULTS: Labour was induced in 30% in group A as compared to 18% in group B. Induction of labour was significantly less in cases with AFI>5 cm of same gestational age group. The non - reassuring fetal heart rate were recorded more often in group A i.e. AFI < 5 cm. The incidence of meconium sta ining in caesarean section and low 5 min Apgar score was higher in patients with oligohydramnios i.e. AFI < 5 cm (p=0.015, 0.012, 0.027 respectively. There was no significant difference in NICU admissions and perinatal death between the two groups. CONCLUSIO N: Amniotic fluid index is a helpful tool in determining the high risk patients during labour and AFI < 5 cm is one of the indicators of comparatively poor perinatal outcome.
Waki, Takahiro; Katsui, Kuniaki; Mitsuhashi, Toshiharu; Ogata, Takeshi; Katayama, Norihisa; Takemoto, Mitsuhiro; Nasu, Yasutomo; Kumon, Hiromi; Kanazawa, Susumu
2017-02-01
We investigated differences in seminal vesicle (SV) length and interfractional SV motion relative to the prostate gland in prostate cancer patients. We compared 32 patients who received androgen deprivation therapy (ADT) before radiotherapy with 12 patients receiving radiotherapy alone at Okayama University Hospital in August 2008-July 2011. We examined the right and left SVs' length and motion by computed tomography (CT) to determine the ADT's effects and analyzed 347 CT scans in a multiple linear regression model. The ADT patients' SV length was significantly shorter than the non-ADT patients'. The differences in right and left SV lengths between the ADT and non-ADT patients were 6.8 mm (95% CI 2.0-11.7 mm) and 7.2 mm (95% CI 3.1- 11.3 mm) respectively in an adjusted regression model. SV motion did not differ between the ADT and non- ADT patients in terms of interfractional motion of the SV tips and the SVs' center relative to the prostate gland. The ADT patients had significantly shorter SVs compared to the non-ADT patients, but no difference in SV motion was observed. SV interfractional motion should thus be compensated using the same planning margins, regardless of whether ADT is used.
Kasch, Norbert; Kley, Jonas; Köster, Jens; Wendler, Jens
2010-05-01
Suitable reservoir rocks for carbon capture and storage (CCS) in saline aquifers must be porous, permeable and reside at depths below c. 800 m in structurally simple, preferrably unfaulted settings. In central Europe, the Lower and particularly Middle Buntsandstein are regionally extensive stratigraphic units which often meet these requirements. While often deeply buried, the Buntsandstein is exposed at the surface and easily accessible in other areas. We have studied the evidence for natural fluid flux in Buntsandstein reservoir outcrop analogues and drill cores of southern Thuringia and northern Hesse. The clearest sign of fluid-rock interaction is local bleaching of the red sandstones. In the field and on drill cores we did not observe bleaching along faults, but commonly along joints. There, the bleached fringes may have sharp or diffuse boundaries and can be traced along individual joints for a few dm to m. They are most often observed on small joints and fine cracks. Using 3D laser scanning, photostereogrammetry and manual measurements we established the geometric properties of the joint systems. The joint systems always comprise several joint sets, but in southern Thuringia bleaching is restricted to one north-trending set. Mining reports and geological maps show that basalt dikes of Tertiary age in this region also trend north. In the underground salt mines of the Werra potassium district, potassium salt minerals show bleaching at the contacts with the dikes. Also, CO2 is found trapped within rock salt along north-trending fractures, sometimes causing violent gas eruptions during mining operations. Taken together, these observations suggest that the bleaching along north-trending joints in the Buntsandstein is causally related to the migration of CO2-bearing fluids associated with the basalt volcanism. However, the Fe-releasing process may depend on admixtures of other phases, most likely hydrocarbons released from bituminous Zechstein carbonates
Duzen, Carl; And Others
1992-01-01
Presents a series of activities that utilizes a leveling device to classify constant and accelerated motion. Applies this classification system to uniform circular motion and motion produced by gravitational force. (MDH)
Cramer, C. H.; Bhattacharya, S. N.; Kumar, A.
2002-12-01
It has been suggested that the Mw7.7 2001 Bhuj, India earthquake occurred in a stable continental region with ground-motion attenuation properties similar to eastern North America (ENA). No strong motion recordings for M7 or greater earthquakes have been recorded in ENA, so, if the two regions share similar properties, then observations from the Bhuj earthquake provide important information for hazard assessments in ENA as well as India. This thesis can be tested using seismic data for the Bhuj mainshock. The Indian Meteorological Department recorded accelerograph and broadband seismograph data at distances of 500 to 1800 km. Accelerograph and engineering seismoscope data were recorded at distances of 40 to 1100 km by the Department of Earthquake Engineering at the Indian Institute of Technology, Roorkee. We have processed the accelerograph and broadband data for response spectral accelerations and corrected them to a common NEHRP site class using Joyner and Boore (2000) site factors. The geologic conditions at each recording site were determined using the geologic map of India and categorized as Quaternary sediments, Tertiary sediments, or hard rock. Comparisons were then made to available ENA ground-motion attenuation relations. For peak ground acceleration (PGA) and 1.0 s spectral acceleration (Sa), the geologically-corrected Bhuj data generally fall among the ENA ground-motion attenuation relations. The Bhuj mainshock ground-motion data agree with the collective predictions of the ENA relations given the random uncertainty in ground-motion measurements of a factor of two or more plus the ground-motion attenuation relation modeling uncertainty. From an engineering perspective, this comparison supports the thesis that seismic-wave attenuation in stable continental India is similar to eastern North America.
Moertle, J.; Holk, G. J.
2015-12-01
Stable isotope geochemistry reveals a complex fluid evolution for the Western Metamorphic Belt (WMB), Coast Ranges Batholith (CRB), Central Gneiss Complex (CGC) and Coast Ranges Megalineament (CRM). These fluids are a product of a complex tectonic history related to terrane accretion that includes oblique convergence, metamorphism, magmatism, and orogenic collapse. From W-to-E, these fluid systems are as follows. High-pressure greenschist-to-amphibolite facies metasedimentary rocks of the WMB record variable mineral δD (-61 to -104‰) and δ18O (e.g., quartz +9.6 to +13.4‰) values with multiple minerals in apparent isotopic equilibrium (T ~ 450-550°C) suggest a low W/R system dominated by metamorphic fluids. Variable and non-equilibrium δD (-53 to -143‰) and δ18O (e.g., biotite +2.3 to +5.3‰) values from diorites of the Quottoon pluton affected by the ductile CRM suggest a complex evolution that involved both metamorphic and meteoric-hydrothermal fluids in this dextral shear zone; these results differ from those 300 km along strike to the north that documented only metamorphic fluids in the CRM (Goldfarb et al., 1988). Our data and those of Magaritz and Taylor (1976) from granulite facies metasediments of the CGC and plutons of the western CRB reveal homogeneous δD values (-62 to -78‰) and a restricted range of δ18O values (e.g., quartz +8.5 to +11.5‰) with all minerals in equilibrium at T > 570°C indicate a system dominated by magmatic fluids. Calculated whole-rock δ18O values (~ +7‰) for the Quottoon pluton and CRB intrusive rocks suggest a mantle origin for these magmas. Reinterpretation of very low δD (< -150‰) and quartz-feldspar δ18O pairs that display extreme disequilibrium (feldspar δ18O values as low as -5‰) from the Ponder pluton, eastern CRB, and Hazelton Group point reveals that the major meteoric-hydrothermal system that affected these rocks was related to Eocene detachment faulting along the Shames Lake fault system, a
Investigations of fluid flow and heat transport related to the strength of the San Andreas fault
Fulton, Patrick M.
2008-10-01
The shear strength of faults is an important factor in earthquake hazard assessment, and in understanding the earthquake process and the forces that drive tectonic deformation. However, on the basis of both geomechanical and thermal observations, many plate boundary faults, including the San Andreas Fault (SAF) in California, have been interpreted to slip at shear stresses considerably less than predicted by laboratory-derived friction laws and for hydrostatic fluid pressures. An understanding of whether plate-boundary faults truly are "weak" and the potential causes for such weakness are thus key unknowns in the physics of faulting. In the first section of this thesis, I evaluate whether thermal and hydrologic effects might disturb heat flow data which are used to interpret the strength of the SAF. Using numerical models of coupled fluid flow and heat transport, and by comparing model results with observational constraints, I show that redistribution of heat by groundwater flow is an unlikely explanation for the lack of a near fault increase in heat flow that would be associated with frictional heat generation on a strong fault (i.e. one that supports large shear stresses). I also show that the effects of topographic and subsurface refraction may account for previously unexplained spatial scatter in heat flow data around the fault, but even with these effects the data are most consistent with little or no frictional heat generation. In the second section of this thesis, I evaluate hypotheses invoking regional sources of fluid resulting from metamorphic dehydration reactions within the crust or upper mantle as mechanisms that generate large fluid overpressures within the fault zone required to explain the apparent weakness of the SAF. I calculate reasonable fluid source terms for both crustal and mantle dehydration following the creation of the SAF. I show that crustal dehydration sources are too small and short-lived to generate large overpressures, but it is
Liu, K.
2009-12-01
An evaluation of seismic hazards requires an estimate of the expected ground motion at the site of interest. The most common means of estimating this ground motion in engineering practice is the use of an attenuation relation. A number of developments have arisen recently to suggest that a new generation of attenuation relationships is warranted. The project named Next Generation Attenuation of Ground Motions (NGA) Project was developed by Pacific Earthquake Engineering Research Center (PEER) in response to a core objective: reducing uncertainty in earthquake ground motion estimation. This objective reflects recognition from industry sponsors that improvements in earthquake ground motion estimation will result in significant cost savings and will result in improved system performance in the event of a large earthquake. The Central Weather Bureau has implemented the Taiwan Strong Motion Instrumentation Program (TSMIP) to collect high-quality instrumental recordings of strong earthquake shaking.It is necessary for us to study the strong ground motion characteristics at the Ilan area of northeastern Taiwan. Further analyses using a good quality data base that includes 486 events and 4172 recordings of magnitude greater than 4.0 are required to derive the next generation attenuation of ground motion in Ilan area. In addition, Liu and Tsai (2007) used a catalog of more than 1840 shallow earthquakes with homogenized Mw magnitude ranging from 5.0 to 8.2 in 1900-2007 to estimate the seismic hazard potential in Taiwan. As a result, the PGA and PGV contour patterns of maximum ground motion show that Ilan Plain has high values of 0.2g and 80cm/sec with respect to MMI intensity VII and IX, respectively. Furthermore, from the mean ground motion and the seismic intensity rate analyses, they show that a high annul probability of MMI > VI greater than 35 percents are located at the Chianan area of western Taiwan and Ilan Plain in northeastern Taiwan. However, these results was
Brownian Motion Theory and Experiment
Basu, K; Basu, Kasturi; Baishya, Kopinjol
2003-01-01
Brownian motion is the perpetual irregular motion exhibited by small particles immersed in a fluid. Such random motion of the particles is produced by statistical fluctuations in the collisions they suffer with the molecules of the surrounding fluid. Brownian motion of particles in a fluid (like milk particles in water) can be observed under a microscope. Here we describe a simple experimental set-up to observe Brownian motion and a method of determining the diffusion coefficient of the Brownian particles, based on a theory due to Smoluchowski. While looking through the microscope we focus attention on a fixed small volume, and record the number of particles that are trapped in that volume, at regular intervals of time. This gives us a time-series data, which is enough to determine the diffusion coefficient of the particles to a good degree of accuracy.
基于运动相对性的六足机器人机体运动规划%Body Motion Planning for a Hexapod Robot Based on Relative Motion
李满宏; 张明路; 张建华; 张小俊
2015-01-01
将处于支撑相的六足机器人视为时变的并联机构进行运动学分析，给出了姿态给定情况下机体工作空间的确定方法及边界方程。在此基础上基于运动相对性原理，提出将机体的运动规划转化为足端轨迹规划的方法，从而简化机体运动规划中逆解的求取问题，并通过仿真与实验进行了验证。结果表明：六足机器人在支撑相内机体的工作空间为至多是支撑腿条数个空心球体的交集，利用运动相对性原理对支撑相内机体的运动规划问题进行转化简便、可行。%A hexapod robot in support phase was regarded as a time-varying parallel mechanism to make the kinematics analysis.The determination methods and boundary equations of the workspace were described herein for the hexapod robot whose body posture was given.Based on the relative mo-tion theory,a method to transform body motion planning into foot trajectory planning was presented to simplify the issue of body motion planning.Simulation and experimental results show that the workspace for the hexapod robot in support phase is the intersection of the hollow spheres whose number is up to the number of the support legs and using the principles of relative motion to trans-form the issue of body motion planning in support phase it is simple and feasible.
Ayla Sayli
2016-08-01
Full Text Available Data science for engineers is the most recent research area which suggests to analyse large data sets in order to find data analytics and use them for better designing and modelling. Ship design practice reveals that conceptual ship design is critically important for a successful basic design. Conceptual ship design needs to identify the true set of design variables influencing vessel performance and costs to define the best possible basic design by the use of performance prediction model. This model can be constructed by design engineers. The main idea of this paper comes from this crucial idea to determine relational classification of a set of small vessels using their hull form parameters and performance characteristics defined by transfer functions of heave and pitch motions and of absolute vertical acceleration, by our in-house software application based on K-Means algorithm from data mining. This application is implemented in the C# programming language on Microsoft SQL Server database. We also use the Elbow method to estimate the true number of clusters for K-Means algorithm. The computational results show that the considered set of small vessels can be clustered in three categories according to their functional relations of their hull form parameters and transfer functions considering all cases of three loading conditions, seven ship speeds as non-dimensional Froude numbers (Fn and nine wave-length to ship-length values (λ/L.
Bianchi Type-I bulk viscous fluid string dust magnetized cosmological model in general relativity
Raj Bali; Anjali
2004-09-01
Bianchi Type-I magnetized bulk viscous fluid string dust cosmological model is investigated. To get a determinate model, we have assumed the conditions and = constant where is the shear, the expansion in the model and the coefficient of bulk viscosity. The behaviour of the model in the presence and absence of magnetic field together with physical and geometrical aspects of the model are also discussed.
Vortex fields and the Lamb-Stokes dissipation relation of fluid dynamics
Scofield, D.F. [Department of Physics, Oklahoma State University, Stillwater, OK 74076 (United States); Huq, Pablo [College of Marine and Earth Studies, University of Delaware, Newark, DE 19716 (United States)], E-mail: huq@udel.edu
2008-06-09
Energy dissipation in Newtonian fluids containing a unified vortex field is shown to depend on -{eta}{integral}{sub V}({omega}{sup 2}+{lambda}{sup 2}{zeta}{sup 2})dV, where {eta}, {omega} and {zeta}=ux{omega} are viscosity, vorticity and swirl. This term augments viscous dissipation where stream tube geometry is curved, e.g., in turbulent or helical flows.
On the first G 1 stiff fluid spike solution in General Relativity
Coley, A. A.; Gregoris, D.; Lim, W. C.
2016-11-01
Using the Geroch transformation we obtain the first example of an exact stiff fluid spike solution to the Einstein field equations in a closed form exhibiting a spacelike G 1 group of symmetries (i.e., with a single isometry). This new solution is of Petrov type I and exhibits a spike crossing which persists to the past, which allows us to better understand spike crossings in the context of structure formation.
Bruno, Thomas J; Ott, Lisa S; Lovestead, Tara M; Huber, Marcia L
2010-04-16
The analysis of complex fluids such as crude oils, fuels, vegetable oils and mixed waste streams poses significant challenges arising primarily from the multiplicity of components, the different properties of the components (polarity, polarizability, etc.) and matrix properties. We have recently introduced an analytical strategy that simplifies many of these analyses, and provides the added potential of linking compositional information with physical property information. This aspect can be used to facilitate equation of state development for the complex fluids. In addition to chemical characterization, the approach provides the ability to calculate thermodynamic properties for such complex heterogeneous streams. The technique is based on the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. The analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. By far, the most widely used analytical technique we have used with the ADC is gas chromatography. This has enabled us to study finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this special issue of the Journal of Chromatography, specifically dedicated to extraction technologies, we describe the essential features of the advanced distillation curve metrology as an analytical strategy for complex fluids.
On the generation mechanisms of fluid-driven seismic signals related to volcano-tectonics
Fazio, Marco; Benson, Philip M.; Vinciguerra, Sergio
2017-01-01
The generation mechanics of fluid-driven volcano seismic signals, and their evolution with time, remains poorly understood. We present a laboratory study aiming to better constrain the time evolution of such signals across temperature conditions 25 to 175°C in order to simulate a "bubbly liquid." Simulations used pressures equivalent to volcanic edifices up to 1.6 km in depth using a triaxial deformation apparatus equipped with an array of acoustic emission sensors. We investigate the origin of fluid-driven seismic signals by rapidly venting the pore pressure through a characterized damage zone. During the release of water at 25°C broadband signals were generated, with frequencies ranging from 50 to 160 kHz. However, the decompression of a water/steam phase at 175°C generated a bimodal spectrum of different signals, in the range 100-160 kHz. These new results are consistent with natural signals from active volcanoes, such as Mount Etna, and highlight the role of fluid and gas phases (such as bubbly liquids) in generating different types of volcano-tectonic seismicity.
Thor, Maria; Apte, Aditya; Deasy, Joseph O; Karlsdóttir, Àsa; Moiseenko, Vitali; Liu, Mitchell; Muren, Ludvig Paul
2014-01-01
Background and purpose Many dose-limiting normal tissues in radiotherapy (RT) display considerable internal motion between fractions over a course of treatment, potentially reducing the appropriateness of using planned dose distributions to predict morbidity. Accounting explicitly for rectal motion could improve the predictive power of modelling rectal morbidity. To test this, we simulated the effect of motion in two cohorts. Materials and methods The included patients (232 and 159 cases) received RT for prostate cancer to 70 and 74 Gy. Motion-inclusive dose distributions were introduced as simulations of random or systematic motion to the planned dose distributions. Six rectal morbidity endpoints were analysed. A probit model using the QUANTEC recommended parameters was also applied to the cohorts. Results The differences in associations using the planned over the motion- inclusive dose distributions were modest. Statistically significant associations were obtained with four of the endpoints, mainly at high doses (55–70 Gy), using both the planned and the motion-inclusive dose distributions, primarily when simulating random motion. The strongest associations were observed for GI toxicity and rectal bleeding (Rs=0.12–0.21; Rs=0.11–0.20). Applying the probit model, significant associations were found for tenesmus and rectal bleeding (Rs=0.13, p=0.02). Conclusion Equally strong associations with rectal morbidity were observed at high doses (>55 Gy), for the planned and the simulated dose distributions including in particular random rectal motion. Future studies should explore patient-specific descriptions of rectal motion to achieve improved predictive power. PMID:24231236
Kröger, Anne; Hof, Katharina; Krick, Christoph; Siniatchkin, Michael; Jarczok, Tomasz; Freitag, Christine M.; Bender, Stephan
2014-01-01
Attention-deficit/hyperactivity disorder (ADHD) is often accompanied by problems in social behaviour, which are sometimes similar to some symptoms of autism-spectrum disorders (ASD). However, neuronal mechanisms of ASD-like deficits in ADHD have rarely been studied. The processing of biological motion–recently discussed as a marker of social cognition–was found to be disrupted in ASD in several studies. Thus in the present study we tested if biological motion processing is disrupted in ADHD. We used 64-channel EEG and spatio-temporal source analysis to assess event-related potentials associated with human motion processing in 21 children and adolescents with ADHD and 21 matched typically developing controls. On the behavioural level, all subjects were able to differentiate between human and scrambled motion. But in response to both scrambled and biological motion, the N200 amplitude was decreased in subjects with ADHD. After a spatio-temporal dipole analysis, a human motion specific activation was observable in occipital-temporal regions with a reduced and more diffuse activation in ADHD subjects. These results point towards neuronal determined alterations in the processing of biological motion in ADHD. PMID:24520402
Michell, S J
2013-01-01
Fluid and Particle Mechanics provides information pertinent to hydraulics or fluid mechanics. This book discusses the properties and behavior of liquids and gases in motion and at rest. Organized into nine chapters, this book begins with an overview of the science of fluid mechanics that is subdivided accordingly into two main branches, namely, fluid statics and fluid dynamics. This text then examines the flowmeter devices used for the measurement of flow of liquids and gases. Other chapters consider the principle of resistance in open channel flow, which is based on improper application of th
Giger, S.B.; Clennell, M.B.; Harbers, C.; Clark, P.; Ricchetti, M.; Heege, J.H. ter; Wassing, B.B.T.; Orlic, B.
2011-01-01
A new type of direct shear apparatus has been developed to allow for deformation of large and intact rock samples under fluid-sealed conditions. The sealed cell was specifically designed to monitor changes to fluid flow across the evolving rupture surface to large displacements (=120. mm), and effec
On the first $G_1$ stiff fluid spike solution in General Relativity
Coley, Alan; Lim, Woei Chet
2016-01-01
Using the Geroch transformation we obtain the first example of a stiff fluid solution to the Einstein field equations in a closed form exhibiting a spacelike $G_1$ group of symmetries (i.e., with a single isometry). This new solution can be interpreted as an exact example of a close-to-Friedmann-Lemaitre (perturbative) solution. The exact solution is the first (non-null) $G_1$ solution found, and exhibits a spike crossing which persists to the past, which allows us to better understand spike crossings in the context of structure formation.
无
2000-01-01
Based on the multiple-epoch Global Positioning System observations during a period from 1992 to 1999, we document directly a rapid crustal shortening of ～20 mm/a across the western Tianshan Mts. (76°E), in contrast to a 4 mm/a convergent rate across the eastern Tianshan Mts. (87°E)and the north-south convergence across the mountain belt descends laterally from west to east. The direction of current crustal movement inferred by GPS sites along the southern flank of the Tianshan Mts. is approximately perpendicular to the easterly-trending mountain belt, indicating that the Tarim Basin thrust almost rightly into the Tianshan Mts. The Tarim Basin accommodates nearly no or a minor, if any, crustal deformation and rotates clockwise, as a rigid body in a whole, at a rate of 0.64°/Ma around a Euler pole at 95.7°E, 40.3°N (Anxi, Gansu) with respect to the stable Siberia. The relative motion between the Kazakh platform and the Dzungarian Basin is quite apparent. The Dzungar should be regarded as an independent active block from the view of the Asia tectonic settings.
Ota, Susumu; Nakashima, Takeshi; Morisaka, Ayako; Omachi, Takaaki; Ida, Kunio; Kawamura, Morio
2010-12-01
Diminished range of motion (ROM) of the knee joint after total knee arthroplasty (TKA) is thought to be related to reduced patellar mobility. This has not been confirmed clinically due to a lack of quantitative methods adequate for measuring patellar mobility. We investigated the relationship between patellar mobility by a reported quantitative method and knee joint ROM after TKA. Forty-nine patients [osteoarthritis--OA: 29 knees; rheumatoid arthritis--RA: 20 knees] were examined after TKA. Respective medial and lateral patellar mobility was measured 1 and 6 months postoperatively using a patellofemoral arthrometer (PFA). Knee joint ROM was also measured in each of those 2 sessions. Although the flexion and extension of the knee joints improved significantly from 1 to 6 months after TKA, the medial and lateral patellar displacements (LPDs) failed to improve during that same period. Moreover, only the changes in knee flexion and medial patellar displacement (MPD) between the two sessions were positively correlated (r = 0.31, p knee ROM after TKA.
Ferrara, Matthew; Arnold, Gregory; Stuff, Mark
2009-10-01
This paper describes an invariant-based shape- and motion reconstruction algorithm for 3D-to-1D orthographically projected range data taken from unknown viewpoints. The algorithm exploits the object-image relation that arises in echo-based range data and represents a simplification and unification of previous work in the literature. Unlike one proposed approach, this method does not require uniqueness constraints, which makes its algorithmic form independent of the translation removal process (centroid removal, range alignment, etc.). The new algorithm, which simultaneously incorporates every projection and does not use an initialization in the optimization process, requires fewer calculations and is more straightforward than the previous approach. Additionally, the new algorithm is shown to be the natural extension of the approach developed by Tomasi and Kanade for 3D-to-2D orthographically projected data and is applied to a realistic inverse synthetic aperture radar imaging scenario, as well as experiments with varying amounts of aperture diversity and noise.
Henry, Pierre-Yves; Aberle, Jochen; Dijkstra, Jasper; Myrhaug, Dag
2016-04-01
Aquatic vegetation plays a vital role in ecohydrological systems regulating many physical, chemical, and biological processes across a wide range of spatial and temporal scales. As a consequence, plant-flow interactions are of particular interest to a wide range of disciplines. While early studies of the interactions between vegetation and flowing water employed simplified and non-flexible structures such as rigid cylinders, recent studies have included flexible plants to identify the main characteristics of the hydrodynamics of vegetated flows. However, the description of plant reconfiguration has often been based on a static approach, i.e. considering the plant's deformation under a static load and neglecting turbulent fluctuations. Correlations between drag fluctuations, plant movements, and upstream turbulence were recently established showing that shear layer turbulence at the surface of the different plant elements (such as blades or stems) can contribute significantly to the dynamic behaviour of the plant. However, the relations between plant movement and force fluctuations might change under varying flow velocities, and although this point is crucial for mixing processes and plant dislodgement by fatigue, these aspects of fluid-structure interactions applied to aquatic vegetation remain largely unexplored. Using an innovative combination of sensing techniques in one set of experiments, this study investigates the relations between turbulence, fluctuating fluid forces and movements of a flexible cylindrical plant surrogate. A silicone-based flexible cylinder was attached at the bottom of a 1m wide flume in fully-developed uniform flow. The lower 22 cm of the plant surrogate were made of plain flexible silicone, while the higher 13cm included a casted rigid sensor, measuring accelerations at the tip of the surrogate. Forces were sampled at high frequencies at the surrogate's base by a 6-degrees-of-freedom force/torque sensor measuring down to the gram
Age-related changes in body fluid volumes in young spontaneously hypertensive rats
Von Dreele, M.M. (Wright State Univ., Dayton, OH (USA))
1988-11-01
The authors have measured total body water (TBW, by dessiccation), extracellular fluid volume (ECF, Na{sub 2}{sup 35}SO{sub 4} space), and plasma volume (PV, radioiodinated serum albumin space) in 5-sec-butyl-5-ethyl-2-thiobarbituric acid and sodium salt (Inactin)-anesthetized spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats aged 12-60 days. Interstitial fluid volume (ISF) was calculated as ECF minus PV. Changes in TBW, ECF, and ISF were largely a function of age in both strains, which is typical of developing mammals. Further analysis revealed that although these volumes were significantly larger in SHR before 25 days of age, after 30 days no difference existed between the strains. Before 25 days of age, when SHR's TBW was expanded, no weight difference was seen between the strains. However, once TBW was normalized (after 30 days), WKY was significantly heavier than SHR. The ISF volume was preferentially enlarged in SHR, although PV was also periodically greater. ISF normalized at the time when blood pressure becomes significantly higher in SHR, when plasma aldosterone falls to WKY values in SHR and when renal function is approaching adult levels. Thus the return of ECF (ISF) to normal values may be a result of decreased aldosterone-dependent volume retention or to diuresis induced by increasing blood pressure in an animal whose renal function is close to maturity.
Beghini, Joziani; Giraldo, Paulo C; Linhares, Iara M; Ledger, William J; Witkin, Steven S
2015-08-01
Neutrophil gelatinase-associated lipocalin (NGAL) is a component of innate immunity that prevents iron uptake by microorganisms. We evaluated whether NGAL was present in vaginal fluid and whether concentrations were altered in women with bacterial vaginosis (BV) or vulvovaginal candidiasis (VVC). Vaginal secretions from 52 women with VVC, 43 with BV, and 77 healthy controls were assayed by enzyme-linked immunosorbent assay for NGAL and for concentrations of L-lactic acid. The median concentration of NGAL in vaginal fluid was significantly higher in control women (561 pg/mL) than in women with BV (402 pg/mL; P = .0116) and lower in women with VVC (741 pg/mL; P = .0017). Median lactic acid levels were similar in controls (0.11 mmol/L) and women with VVC (0.13 mmol/L) and were lower in women with BV (0.02 mmol/L; P < .0001). The NGAL and lactic acid concentrations were highly correlated (P < .0001). A decrease in Lactobacilli and/or lactic acid plus the absence of leukocytes results in lower vaginal NGAL levels that might facilitate the growth of bacteria associated with BV. © The Author(s) 2015.
Role of fluid shear stress in regulating VWF structure, function and related blood disorders.
Gogia, Shobhit; Neelamegham, Sriram
2015-01-01
Von Willebrand factor (VWF) is the largest glycoprotein in blood. It plays a crucial role in primary hemostasis via its binding interaction with platelet and endothelial cell surface receptors, other blood proteins and extra-cellular matrix components. This protein is found as a series of repeat units that are disulfide bonded to form multimeric structures. Once in blood, the protein multimer distribution is dynamically regulated by fluid shear stress which has two opposing effects: it promotes the aggregation or self-association of multiple VWF units, and it simultaneously reduces multimer size by facilitating the force-dependent cleavage of the protein by various proteases, most notably ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type repeats, motif 1 type 13). In addition to these effects, fluid shear also controls the solution and substrate-immobilized structure of VWF, the nature of contact between blood platelets and substrates, and the biomechanics of the GpIbα-VWF bond. These features together regulate different physiological and pathological processes including normal hemostasis, arterial and venous thrombosis, von Willebrand disease, thrombotic thrombocytopenic purpura and acquired von Willebrand syndrome. This article discusses current knowledge of VWF structure-function relationships with emphasis on the effects of hydrodynamic shear, including rapid methods to estimate the nature and magnitude of these forces in selected conditions. It shows that observations made by many investigators using solution and substrate-based shearing devices can be reconciled upon considering the physical size of VWF and the applied mechanical force in these different geometries.
Jianping Hu
2017-07-01
Full Text Available Functional connectivity maps using resting-state functional magnetic resonance imaging (rs-fMRI can closely resemble task fMRI activation patterns, suggesting that resting-state brain activity may predict task-evoked activation or behavioral performance. However, this conclusion was mostly drawn upon a healthy population. It remains unclear whether the predictive ability of resting-state brain activity for task-evoked activation would change under different pathological conditions. This study investigated dynamic changes of coupling between patterns of resting-state functional connectivity (RSFC and motion-related activation in different stages of cerebral stroke. Twenty stroke patients with hand motor function impairment were involved. rs-fMRI and hand motion-related fMRI data were acquired in the acute, subacute, and early chronic stages of cerebral stroke on a 3-T magnetic resonance (MR scanner. Sixteen healthy participants were enrolled as controls. For each subject, an activation map of the affected hand was first created using general linear model analysis on task fMRI data, and then an RSFC map was determined by seeding at the peak region of hand motion activation during the intact hand task. We then measured the extent of coupling between the RSFC maps and motion-related activation maps. Dynamic changes of the coupling between the two fMRI maps were estimated using one-way repeated measures analysis of variance across the three stages. Moreover, imaging parameters were correlated with motor performances. Data analysis showed that there were different coupling patterns between motion-related activation and RSFC maps associating with the affected motor regions during the acute, subacute, and early chronic stages of stroke. Coupling strengths increased as the recovery from stroke progressed. Coupling strengths were correlated with hand motion performance in the acute stage, while coupling recovery was negatively correlated with the recovery
Trincal, Vincent; Buatier, Martine; Charpentier, Delphine; Lacroix, Brice; Lanari, Pierre; Labaume, Pierre; Lahfid, Abdeltif; Vennemann, Torsten
2017-09-01
In orogens, shortening is mainly accommodated by thrusts, which constitute preferential zones for fluid-rock interactions. Fluid flow, mass transfer, and mineralogical reactions taking place along thrusts have been intensely investigated, especially in sedimentary basins for petroleum and uranium research. This study combines petrological investigations, mineralogical quantifications, and geochemical characterizations with a wide range of analytical tools with the aim of defining the fluid properties (nature, origin, temperature, and redox) and fluid-host rock interactions (mass transfers, recrystallization mechanisms, and newly formed synkinematic mineralization) in the Pic-de-Port-Vieux thrust fault zone (Pyrenees, Spain). We demonstrate that two geochemically contrasted rocks have been transformed by fluid flow under low-grade metamorphism conditions during thrusting. The hanging-wall Triassic red pelite was locally bleached, while the footwall Cretaceous dolomitic limestone was mylonitized. The results suggest that thrusting was accompanied by a dynamic calcite recrystallization in the dolomitic limestone as well as by leaching of iron via destabilization of iron oxides and phyllosilicate crystallization in the pelite. Geochemical and physical changes highlighted in this study have strong implications on the understanding of the thrust behavior (tectonic and hydraulic), and improve our knowledge of fluid-rock interactions in open fluid systems in the crust.
Droplets bouncing over a vibrating fluid layer
Cabrera-Garcia, Pablo
2012-01-01
This is an entry for the Gallery of Fluid Motion of the 65st Annual Meeting of the APS-DFD (fluid dynamics video). This video shows the motion of levitated liquid droplets. The levitation is produced by the vertical vibration of a liquid container. We made visualizations of the motion of many droplets to study the formation of clusters and their stability.
A NUMERICAL METHOD FOR SIMULATING NONLINEAR FLUID-RIGID STRUCTURE INTERACTION PROBLEMS
XingJ.T; PriceW.G; ChenY.G
2005-01-01
A numerical method for simulating nonlinear fluid-rigid structure interaction problems is developed. The structure is assumed to undergo large rigid body motions and the fluid flow is governed by nonlinear, viscous or non-viscous, field equations with nonlinear boundary conditions applied to the free surface and fluid-solid interaction interfaces. An Arbitrary-Lagrangian-Eulerian (ALE) mesh system is used to construct the numerical model. A multi-block numerical scheme of study is adopted allowing for the relative motion between moving overset grids, which are independent of one another. This provides a convenient method to overcome the difficulties in matching fluid meshes with large solid motions. Nonlinear numerical equations describing nonlinear fluid-solid interaction dynamics are derived through a numerical discretization scheme of study. A coupling iteration process is used to solve these numerical equations. Numerical examples are presented to demonstrate applications of the model developed.
Shuman, William P., E-mail: wshuman@u.washington.edu [Department of Radiology, 1959 NE Pacific Street, Box 357115, Seattle, WA 98195 (United States); Leipsic, Jonathon A., E-mail: JLeipsic@providencehealth.bc.ca [University of British Columbia and St. Paul' s Hospital, Department of Radiology, 1081 Burrard Street, Vancouver, BC, V6Z1Y6 (Canada); Busey, Janet M., E-mail: jbonny@u.washington.edu [Department of Radiology, 1959 NE Pacific Street, Box 357115, Seattle, WA 98195 (United States); Green, Douglas E., E-mail: dougreen@uw.edu [Department of Radiology, 1959 NE Pacific Street, Box 357115, Seattle, WA 98195 (United States); Pipavath, Sudhakar N., E-mail: snjp@u.wwashington.edu [Department of Radiology, 1959 NE Pacific Street, Box 357115, Seattle, WA 98195 (United States); Hague, Cameron J., E-mail: cjhague@interchange.ubc.ca [University of British Columbia and St. Paul' s Hospital, Department of Radiology, 1081 Burrard Street, Vancouver, BC, V6Z1Y6 (Canada); Koprowicz, Kent M., E-mail: kentk@u.washington.edu [Department of Radiology, 1959 NE Pacific Street, Box 357115, Seattle, WA 98195 (United States)
2012-09-15
Objective: To compare prospectively ECG gated CT pulmonary angiography (CTPA) with routine helical ungated CTPA for cardiac related motion artifacts and patient radiation dose. Subjects and methods: Twenty patients with signs and symptoms suspicious for pulmonary embolism and who had a heart rate below 85 were scanned with prospectively ECG gated CTPA. These gated exams were matched for several clinical parameters to exams from twenty similar clinical patients scanned with routine ungated helical CTPA. Three blinded independent reviewers subjectively evaluated all exams for overall pulmonary artery enhancement and for several cardiac motion related artifacts, including vessel blurring, intravascular shading, and double line. Reviewers also measured pulmonary artery intravascular density and image noise. Patient radiation dose for each technique was compared. Fourteen clinical prospectively ECG gated CTPA exams from a second institution were evaluated for the same parameters. Results: Prospectively ECG gated CTPA resulted in significantly decreased motion-related image artifact scores in lung segments adjacent to the heart compared to ungated CTPA. Measured image noise was not significantly different between the two types of CTPA exams. Effective dose was 28% less for prospectively ECG gated CTPA (4.9 mSv versus 6.8 mSv, p = 0.02). Similar results were found in the prospectively ECG gated exams from the second institution. Conclusion: Compared to routine helical ungated CTPA, prospectively ECG gated CTPA may result in less cardiac related motion artifact in lung segments adjacent to the heart and significantly less patient radiation dose.
Rutqvist, J.
2010-06-01
This paper presents recent advancement in and applications of TOUGH-FLAC, a simulator for multiphase fluid flow and geomechanics. The TOUGH-FLAC simulator links the TOUGH family multiphase fluid and heat transport codes with the commercial FLAC{sup 3D} geomechanical simulator. The most significant new TOUGH-FLAC development in the past few years is a revised architecture, enabling a more rigorous and tight coupling procedure with improved computational efficiency. The applications presented in this paper are related to modeling of crustal deformations caused by deep underground fluid movements and pressure changes as a result of both industrial activities (the In Salah CO{sub 2} Storage Project and the Geysers Geothermal Field) and natural events (the 1960s Matsushiro Earthquake Swarm). Finally, the paper provides some perspectives on the future of TOUGH-FLAC in light of its applicability to practical problems and the need for high-performance computing capabilities for field-scale problems, such as industrial-scale CO{sub 2} storage and enhanced geothermal systems. It is concluded that despite some limitations to fully adapting a commercial code such as FLAC{sup 3D} for some specialized research and computational needs, TOUGH-FLAC is likely to remain a pragmatic simulation approach, with an increasing number of users in both academia and industry.
Rutqvist, Jonny
2011-06-01
This paper presents recent advancement in and applications of TOUGH-FLAC, a simulator for multiphase fluid flow and geomechanics. The TOUGH-FLAC simulator links the TOUGH family multiphase fluid and heat transport codes with the commercial FLAC 3D geomechanical simulator. The most significant new TOUGH-FLAC development in the past few years is a revised architecture, enabling a more rigorous and tight coupling procedure with improved computational efficiency. The applications presented in this paper are related to modeling of crustal deformations caused by deep underground fluid movements and pressure changes as a result of both industrial activities (the In Salah CO 2 Storage Project and the Geysers Geothermal Field) and natural events (the 1960s Matsushiro Earthquake Swarm). Finally, the paper provides some perspectives on the future of TOUGH-FLAC in light of its applicability to practical problems and the need for high-performance computing capabilities for field-scale problems, such as industrial-scale CO 2 storage and enhanced geothermal systems. It is concluded that despite some limitations to fully adapting a commercial code such as FLAC 3D for some specialized research and computational needs, TOUGH-FLAC is likely to remain a pragmatic simulation approach, with an increasing number of users in both academia and industry.
Connor, Jerome
2014-01-01
This innovative volume provides a systematic treatment of the basic concepts and computational procedures for structural motion design and engineering for civil installations. The authors illustrate the application of motion control to a wide spectrum of buildings through many examples. Topics covered include optimal stiffness distributions for building-type structures, the role of damping in controlling motion, tuned mass dampers, base isolation systems, linear control, and nonlinear control. The book's primary objective is the satisfaction of motion-related design requirements, such as restrictions on displacement and acceleration. The book is ideal for practicing engineers and graduate students. This book also: · Broadens practitioners' understanding of structural motion control, the enabling technology for motion-based design · Provides readers the tools to satisfy requirements of modern, ultra-high strength materials that lack corresponding stiffness, where the motion re...
汪洋
2001-01-01
The regression formula between 3He/4He ratio of underground fluids and terrestrial heat flow in continental areas is tested by data sets from the former Soviet Union and the mainland of China. The results show that there is no close relation between the two values. The heat-He relation might estimate the regional heat flow value with ±25% accuracy at best. We propose that the ratio of crust/mantle component of continental heat flow (qc/qm) be inversely related to the 3He/4He ratio of underground fluids. Based on data sets of 3He/4He ratio and qc/qm in the Eurasia and Canadian Shield, we obtain the regression relation between qc/qm and 3He/4He: qc/qm = 0.815-0.300*loge(3He/4He), in which the unit of 3He/4He is Ra (atmospheric 3He/4He ratio). The crust and mantle heat flow components can be taken from surface heat flow and qc/qm ratio. Based on this formula and heat flow data in major basins of China, the crustal, mantle heat flow values and the average crustal heat production rates were estimated. The es
YANG Yan; Wu Guan-Hao; YU Yong-Liang; TONG Bing-Gang
2008-01-01
We present(1)the dynamical equations of deforming body and(2)an integrated method for deforming body dynamics and unsteady fluid dynamics,to investigate a modelled freely serf-propelled fish.The theoretical model and practical method is applicable for studies on the general mechanics of animal locomotion such as flying in air and swimming in water,particularly of free self-propulsion.The present results behave more credibly than the previous numerical studies and are close to the experimental results,and the aligned vortices pattern is discovered in cruising swimming.
Wang Xiao-Xiao; Han Yue-Lin; Zhang Mei-Ling; Jia Li-Qun
2013-01-01
Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and criterion of Lie symmetry,the condition and the expression of generalized Hojman conserved quantity deduced from Lie symmetry for the system are obtained.The condition and the expression of Hojman conserved quantity deduced from special Lie symmetry for the system under invariable time are further obtained.An example is given to illustrate the application of the results.
Time asynchronous relative dimension in space method for multi-scale problems in fluid dynamics
Markesteijn, A. P.; Karabasov, S. A.
2014-02-01
A novel computational method is presented for solving fluid dynamics equations in the multi-scale framework when the system size is an important parameter of the governing equations. The method (TARDIS) is based on a concurrent transformation of the governing equations in space and time and solving the transformed equations on a uniform Cartesian grid with the corresponding causality conditions at the grid interfaces. For implementation in the framework of TARDIS, the second-order CABARET scheme of Karabasov and Goloviznin [1] is selected for it provides a good combination of numerical accuracy, computational efficiency and simplicity of realisation. Numerical examples are first provided for several isothermal gas dynamics test problems and then for modelling of molecular fluctuations inside a microscopic flow channel and ultrasound wave propagation through a nano-scale region of molecular fluctuations.
Exact solutions for steady flows of second-grade fluids
ZHANG Dao-xiang; FENG Su-xiao; LU Zhi-ming; LIU Yu-lu
2009-01-01
This paper aims to investigate exact solutions for a second-grade fluid flow with the inverse method.By assuming the relation between the vorticity field and the streamfunction,the exact solutions of the motion of plane second-grade fluids are investigated and obtained.The solutions obtained include simple Couette flows,slit jet flows and uniform flows over a series of distributed obstacles.
Lu, Gui; Wang, Xiao-Dong; Duan, Yuan-Yuan
2016-10-01
Dynamic wetting is an important interfacial phenomenon in many industrial applications. There have been many excellent reviews of dynamic wetting, especially on super-hydrophobic surfaces with physical or chemical coatings, porous layers, hybrid micro/nano structures and biomimetic structures. This review summarizes recent research on dynamic wetting from the viewpoint of the fluids rather than the solid surfaces. The reviewed fluids range from simple Newtonian fluids to non-Newtonian fluids and complex nanofluids. The fundamental physical concepts and principles involved in dynamic wetting phenomena are also reviewed. This review focus on recent investigations of dynamic wetting by non-Newtonian fluids, including the latest experimental studies with a thorough review of the best dynamic wetting models for non-Newtonian fluids, to illustrate their successes and limitations. This paper also reports on new results on the still fledgling field of nanofluid wetting kinetics. The challenges of research on nanofluid dynamic wetting is not only due to the lack of nanoscale experimental techniques to probe the complex nanoparticle random motion, but also the lack of multiscale experimental techniques or theories to describe the effects of nanoparticle motion at the nanometer scale (10(-9) m) on the dynamic wetting taking place at the macroscopic scale (10(-3) m). This paper describes the various types of nanofluid dynamic wetting behaviors. Two nanoparticle dissipation modes, the bulk dissipation mode and the local dissipation mode, are proposed to resolve the uncertainties related to the various types of dynamic wetting mechanisms reported in the literature.
Oostrom, Mart (BATTELLE (PACIFIC NW LAB)); Lenhard, Robert J.(INEEL); Delshad, M; Robertson, S D.(Spirit 76, Midland, TX); M.Th. van Genuchten, F.J. Leij and L. Wu
1998-01-01
A critical component of all multiphase flow codes is how relationships among relative permeabilities, fluid saturations, and capillary pressures (i.e., k-S-P relations) are described. Models that are able to mimic fundamental fluid-flow processes to predict k S-P relations are preferable than extrapolating measured data points to estimate k-S-P relations because they may have greater utility and may be more consistent. Furthermore, different saturation-path histories may be simulated with a computer code than those measured in the k-S-P experiments. Because the geometry of the pore spaces in natural porous media is very complex and will likely never be precisely known to predict k-S-P behavior from fundamental relationships, k-S-P models are largely empirical. In this paper, an empirical model based on theoretical considerations is developed to predict hysteretic k-S-P relations in porous media in which the smaller pores are water-wet and the larger pores are oil-wet, i.e., mixed-w et. At high oil-water capillary pressures, the water saturation is modeled to approach the residual water saturation. At low oil-water capillary pressures (i.e., negative), the oil saturation is modeled to approach the residual oil saturation. Relative permeabilities are predicted using parameters that describe main-drainage S-P relations and accounting for the distribution of water and oil in the pore spaces of mixed-wet porous media. The proposed algebraic expressions are easy to implement in multiphase flow codes and can be used to predict k-S-P relations for any saturation-path history. In addition, the model is relatively easy to calibrate to porous media.
Badr Alkahtani
2015-12-01
Full Text Available The present model is committed to the study of MHD boundary layer flow and heat transfer past a nonlinear vertically stretching porous stretching sheet with the effects of hydrodynamic and thermal slip. The boundary value problem, consisting of boundary layer equations of motion and heat transfer, which are nonlinear partial differential equations are transformed into nonlinear ordinary differential equations, with the aid of similarity transformation. This problem has been solved, using Runge Kutta fourth order method with shooting technique. The effects of various physical parameters, such as, stretching parameter m, magnetic parameter M, porosity parameter fw, buoyancy parameter λ, Prandtl number Pr, Eckert number Ec, hydrodynamic slip parameter γ, and thermal slip parameter δ, on flow and heat transfer characteristics, are computed and represented graphically.
周坚; 邹石莹; 赵戚; 赵玉霞
1994-01-01
Prostaglandin E2(PGE2)levels in gingival crevicular fluid (GCF)of 46 normal controls and 90 patients suf-fering from periodontitis with different periodontal pocket depths were measured by radioimmunoassay (RIA).The results demonstrated that PGE2 levels in the periodontal pockets are higher in patients with peri-odontitis.The PGE2 level rises as the periodontal pocket deepens,especially in casses where the periodontal pocket depth exceeds 6 mm.This study shows that PGE2 level is significantly related to the severity of bone destruc-tion in periodontitis.
Lakatos, Bálint; Tősér, Zoltán; Tokodi, Márton; Doronina, Alexandra; Kosztin, Annamária; Muraru, Denisa; Badano, Luigi P; Kovács, Attila; Merkely, Béla
2017-03-27
Three major mechanisms contribute to right ventricular (RV) pump function: (i) shortening of the longitudinal axis with traction of the tricuspid annulus towards the apex; (ii) inward movement of the RV free wall; (iii) bulging of the interventricular septum into the RV and stretching the free wall over the septum. The relative contribution of the aforementioned mechanisms to RV pump function may change in different pathological conditions.Our aim was to develop a custom method to separately assess the extent of longitudinal, radial and anteroposterior displacement of the RV walls and to quantify their relative contribution to global RV ejection fraction using 3D data sets obtained by echocardiography.Accordingly, we decomposed the movement of the exported RV beutel wall in a vertex based manner. The volumes of the beutels accounting for the RV wall motion in only one direction (either longitudinal, radial, or anteroposterior) were calculated at each time frame using the signed tetrahedron method. Then, the relative contribution of the RV wall motion along the three different directions to global RV ejection fraction was calculated either as the ratio of the given direction's ejection fraction to global ejection fraction and as the frame-by-frame RV volume change (∆V/∆t) along the three motion directions.The ReVISION (Right VentrIcular Separate wall motIon quantificatiON) method may contribute to a better understanding of the pathophysiology of RV mechanical adaptations to different loading conditions and diseases.
O. Calonius
2003-01-01
Full Text Available The amount and type of wear produced in the prosthetic hip joint depends on the type of relative motion between the femoral head and the acetabular cup. Wear particles removed from the bearing surfaces of the joint can cause adverse tissue reactions resulting in osteolysis and ultimately in loosening of the fixation of the implant. When designing a simulator for evaluation of prospective materials for artificial hip joints it is important to verify that the type of relative motion at the articulation is similar to that produced in walking, involving continually changing direction of sliding. This paper is an overview of recent research done at Helsinki University of Technology on the analysis of the relationship between relative motion and wear in the prosthetic hip joint.To analyze the relative motion, software for computing tracks, referred to as slide tracks, drawn on the counterface by marker points on the bearing surface was developed and experimentally verified. The overall relative motion of the joint was illustrated by a slide track pattern, produced by many points. The patterns resulting from walking motion and from motion produced in ten contemporary hip simulator types were compared. The slide track computations were not limited to illustrational purposes but offered a basis for computing variations of sliding distances, sliding speeds and direction of sliding during a cycle. This was done for the slide track termed the force track, drawn by the resultant contact force. In addition, the product of the instantaneous load and increment of sliding distance was numerically integrated over a cycle. This track integral of load had so far not been determined for the majority of contemporary hip simulators. The track integral can be used in determining the wear factor, making it possible to compare clinical wear rates with those produced by hip simulators. The computation of the wear factor was subsequently improved by replacing the track
Tursunov, Arman; Kološ, Martin
2016-01-01
We study motion of charged particles in the field of a rotating black hole immersed into an external asymptotically uniform magnetic field, focusing on the epicyclic quasi-circular orbits near the equatorial plane. Separating the circular orbits into four qualitatively different classes according to the sign of the canonical angular momentum of the motion and the orientation of the Lorentz force, we analyse the circular orbits using the so called force formalism. We find the analytical solutions for the radial profiles of velocity, specific angular momentum and specific energy of the circular orbits in dependence on the black hole dimensionless spin and the magnetic field strength. The innermost stable circular orbits are determined for all four classes of the circular orbits. The stable circular orbits with outward oriented Lorentz force can extend to radii lower than the radius of the corresponding photon circular geodesic. We calculate the frequencies of the harmonic oscillatory motion of the charged parti...
Manuella, Fabio Carmelo; Ottolini, Luisa; Carbone, Serafina; Scavo, Lidia
2016-11-01
We studied a partially serpentinized peridotite xenolith, found in the diatreme tuff-breccia deposit at Valle Guffari (Hyblean Plateau, southeastern Sicily, Italy), which is representative of the Hyblean peridotite xenolith suite. We also considered all published (21) whole-rock analyses of Hyblean peridotites, to investigate the metasomatizing effects of seawater-related hydrothermal fluids in the Hyblean basement, an in-situ remnant of the ultraslow-spreading Permian Tethys. In detail, we analyzed the serpentine veins by different techniques (scanning electron microscopy-SEM, electron-probe microanalysis-EPMA, micro-Raman spectroscopy, X-ray powder diffraction-XRPD) to determine the crystal-chemical composition and the structure of the veins. In addition, secondary ion mass spectrometry (SIMS) was applied to measure the abundance of trace elements. Serpentine veins are made up of two Fe-rich polytypes, chrysotile 2Mc1 and lizardite 1T. The chondrite-normalized rare earth element compositions of both serpentine polytypes are lower than 1, except for a modest light rare earth element (LREE) enrichment, and also in some fluid-mobile elements (FME: B, Rb, Sr, U). Conversely, the whole-rock composition of the studied peridotite xenolith is enriched with LREE and other trace elements (B, Sr, P, Th, U, Pb), like most Hyblean peridotites. The REE and multi-element patterns of Hyblean peridotites are akin to those of hydrothermal sediments from the Mid-Atlantic Ridge and St. Demetrio hill (northern Hyblean Plateau), and abyssal peridotites (serpentinites) whose trace element abundance is generally ascribed to melt-rock interaction. The integrated interpretation of the data and the documentation of hydrothermal minerals [(Na,S)-rich apatite, carbonates] in serpentine veins indicate that serpentinization-related hydrothermal fluids do have a primary role in metasomatism (mainly for the abundance of LREE and high field strength elements-HFSE) of ancient (Permian Tethys) and
Zhong, Lirong; Oostrom, Martinus; Truex, Michael J.; Vermeul, Vincent R.; Szecsody, James E.
2013-01-15
Xanthan gum, a biopolymer, forms shear thinning fluids which can be used as delivery media to improve the distribution of remedial amendments injected into heterogeneous subsurface environments. The rheological behavior of the shear thinning solution needs to be known to develop an appropriate design for field injection. In this study, the rheological properties of xanthan gum solutions were obtained under various chemical and environmental conditions relevant to delivery of remedial amendments to groundwater. Higher xanthan concentration raised the absolute solution viscosity and increased the degree of shear thinning. Addition of remedial amendments (e.g., phosphate, sodium lactate, ethyl lactate) caused the dynamic viscosity of xanthan gum to decrease, but the solutions maintained shear-thinning properties. Use of simple salt (e.g. Na+, Ca2+) to increase the solution ionic strength also decreased the dynamic viscosity of xanthan and the degree of shear thinning, although the effect is a function of xanthan gum concentration and diminished as the xanthan gum concentration was increased. At high xanthan concentration, addition of salt to the solution increased dynamic viscosity. In the absence of sediments, xanthan gum solutions maintain their viscosity properties for months. However, xanthan gum solutions were shown to lose dynamic viscosity over a period of days to weeks when contacted with saturated site sediment. Loss of viscosity is attributed to physical and biodegradation processes.
Garn, Troy G; Law, Jack D; Greenhalgh, Mitchell R; Tranter, Rhonda
2014-04-01
A composite media including at least one crystalline aluminosilicate material in polyacrylonitrile. A method of forming a composite media is also disclosed. The method comprises dissolving polyacrylonitrile in an organic solvent to form a matrix solution. At least one crystalline aluminosilicate material is combined with the matrix solution to form a composite media solution. The organic solvent present in the composite media solution is diluted. The composite media solution is solidified. In addition, a method of processing a fluid stream is disclosed. The method comprises providing a beads of a composite media comprising at least one crystalline aluminosilicate material dispersed in a polyacrylonitrile matrix. The beads of the composite media are contacted with a fluid stream comprising at least one constituent. The at least one constituent is substantially removed from the fluid stream.
Fiszdon, W
1965-01-01
Fluid Dynamics Transactions, Volume 2 compiles 46 papers on fluid dynamics, a subdiscipline of fluid mechanics that deals with fluid flow. The topics discussed in this book include developments in interference theory for aeronautical applications; diffusion from sources in a turbulent boundary layer; unsteady motion of a finite wing span in a compressible medium; and wall pressure covariance and comparison with experiment. The certain classes of non-stationary axially symmetric flows in magneto-gas-dynamics; description of the phenomenon of secondary flows in curved channels by means of co
Javier Elpidio Monzón
2016-07-01
Full Text Available Background and Objectives: Prostaglandin E2 (PGE2 is present in gingival crevicular fluid the (GCF and is evidenced in periodontal disease (PD. However, there are no enough reports to correlate the PGE2 concentrations in GCF in periodontal health and disease with clinical and radiographic indicators, age and gender. Hence, the present study is aimed to estimate the levels of PGE2 in GCF of subjects without periodontal disease (SEP and periodontal disease (CEP. Materials and Methods: 99 subjects were selected, 33 without PD (G1 and 66 with PD, 33 with gingivitis (G2 and 33 with periodontitis (G3, which were submitted to a clinical and radiographic diagnosis, registering samples FGC, being stored, centrifuged and refrigerated for preservation. Subsequently the concentration of crevicular PGE2 was measured by using the enzyme linked immunosorbent assay (ELISA, determining the concentration of each subject. Results: PGE2 was detected in all the samples. The G1 presented a concentration of 28.82 ± 2.88 pg / mL, G2 44.91 ± 4.37 pg / mL and G3 148.67 ± 74.74 pg / mL (0.0001. PGE2 levels were significantly correlated with bleeding on probing, probing depth, attachment loss and bone loss (0.05. PGE2 levels were modified by age, but not gender. Conclusion: It is well known that activated inflammatory cells produce inflammatory mediators that stimulate the production of PGE2. The findings of this study demonstrate an increased concentration of PGE2 in FCG according to the presence of greater severity of PD. PGE2 may be considered as a biomarker in PD progression. However, controlled, longitudinal studies are needed to confirm this possibility.
Automated correction of spin-history related motion artefacts in fMRI : Simulated and phantom data
Muresan, Lucian; Renken, Remco; Roerdink, Jos B.T.M.; Duifhuis, Hendrikus
2005-01-01
This paper concerns the problem of correcting spin-history artefacts in fMRI data. We focus on the influence of through-plane motion on the history of magnetization. A change in object position will disrupt the tissue’s steady-state magnetization. The disruption will propagate to the next few acquir
Prosperetti, A.; Wijngaarden, van L.
1976-01-01
For the study of transients in gas-liquid flows, the equations of the so-called separated flow model are inadequate, because they possess, in the general case where gas and liquid move at different velocities, complex characteristics. This paper is concerned with the equations of motion for bubbly f
Top-spray fluid bed coating: Scale-up in terms of relative droplet size and drying force
Hede, Peter Dybdahl; Bach, P.; Jensen, Anker Degn
2008-01-01
that none of the two parameters alone may be used for successful sealing. Morphology and microscope studies indicated that the coating layer is homogenous and has similar structures across scale only when both the drying force and the relative droplet size were fixed. Impact and attrition tests indicated......Top-spray fluid bed coating scale-up experiments have been performed in three scales in order to test the validity of two parameters as possible scaling parameters: The drying force and the relative droplet size. The aim was to be able to reproduce the degree of agglomeration as well...... as the mechanical properties of the coated granules across scale. Two types of placebo enzyme granule cores were tested being non-porous glass ballotini cores (180-350 mu m) and low porosity sodium sulphate cores (180-350 mu m). Both types of core materials were coated with aqueous solutions of Na2SO4 using Dextrin...
Bodnar, Andrea
2013-05-01
Sea urchins have a different life history from humans and traditional model organisms used to study the process of aging. Sea urchins grow indeterminately, reproduce throughout their life span and some species have been shown to exhibit negligible senescence with no increase in mortality rate at advanced ages. Despite these properties, different species of sea urchins are reported to have very different natural life spans providing a unique model to investigate cellular mechanisms underlying life span determination and negligible senescence. To gain insight into the biological changes that accompany aging in these animals, proteomic profiles were examined in coelomic fluid from young and old sea urchins of three species with different life spans: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus and Strongylocentrotus purpuratus which has an intermediate life span. The proteomic profiles of cell-free coelomic fluid were complex with many proteins exhibiting different forms and extensive post-translational modifications. Approximately 20% of the protein spots on 2-D gels showed more than two-fold change with age in each of the species. Changes that are consistent with age in all three species may prove to be useful biomarkers for age-determination for these commercially fished marine invertebrates and also may provide clues to mechanisms of negligible senescence. Among the proteins that change with age, the ectodomain of low-density lipoprotein receptor-related protein 4 (LRP4) was significantly increased in the coelomic fluid of all three sea urchin species suggesting that the Wnt signaling pathway should be further investigated for its role in negligible senescence.
McCrea, Michael; Meier, Timothy; Huber, Daniel; Ptito, Alain; Bigler, Erin; Debert, Chantel T; Manley, Geoff; Menon, David; Chen, Jen-Kai; Wall, Rachel; Schneider, Kathryn J; McAllister, Thomas
2017-06-01
To conduct a systematic review of published literature on advanced neuroimaging, fluid biomarkers and genetic testing in the assessment of sport-related concussion (SRC). Computerised searches of Medline, PubMed, Cumulative Index to Nursing and Allied Health Literature (CINAHL), PsycINFO, Scopus and Cochrane Library from 1 January 2000 to 31 December 2016 were done. There were 3222 articles identified. In addition to medical subject heading terms, a study was included if (1) published in English, (2) represented original research, (3) involved human research, (4) pertained to SRC and (5) involved data from neuroimaging, fluid biomarkers or genetic testing collected within 6 months of injury. Ninety-eight studies qualified for review (76 neuroimaging, 16 biomarkers and 6 genetic testing). Separate reviews were conducted for neuroimaging, biomarkers and genetic testing. A standardised data extraction tool was used to document study design, population, tests employed and key findings. Reviewers used a modified quality assessment of studies of diagnostic accuracy studies (QUADAS-2) tool to rate the risk of bias, and a modified Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to rate the overall level of evidence for each search. Results from the three respective reviews are compiled in separate tables and an interpretive summary of the findings is provided. Advanced neuroimaging, fluid biomarkers and genetic testing are important research tools, but require further validation to determine their ultimate clinical utility in the evaluation of SRC. Future research efforts should address current gaps that limit clinical translation. Ultimately, research on neurobiological and genetic aspects of SRC is predicted to have major translational significance to evidence-based approaches to clinical management of SRC, much like applied clinical research has had over the past 20 years. © Article author(s) (or their employer(s) unless otherwise
R.E. Abo-Elkhair
2017-04-01
Full Text Available This article addresses, effects of a magneto-fluid through a Darcy flow model with oscillatory wavy walled whose inner surface is ciliated. The equations that governing the flow are modeled without using any approximations. Adomian Decomposition Method (ADM is used to evaluate the solution of our system of nonlinear partial differential equations. Stream function, velocity and pressure gradient components are obtained by using the vorticity formula. The effects for our arbitrary physical parameters on flow characteristics are analyzed by plotting diagrams and discussed in details. With the help of stream lines the trapping mechanism has also been discussed. The major outcomes for the ciliated channel walls are: The axial velocity is higher without a ciliated walls than that for a ciliated walls and an opposite behaviour is shown near the ciliated channel walls. The pressure gradients in both directions are higher for a ciliated channel walls. More numbers of the trapped bolus in the absent of the eccentricity of the cilia elliptic path.
Hildreth, E.C.
1984-01-01
This book examines the measurement of visual motion and the use of relative movement to locate the boundaries of physical objects in the environment. It investigates the nature of the computations that are necessary to perform this analysis by any vision system, biological or artificial. Contents: Introduction. Background. Computation of the Velocity Field. An Algorithm to Compute the Velocity Field. The Computation of Motion Discontinuities. Perceptual Studies of Motion Measurement. The Psychophysics of Discontinuity Detection. Neurophysiological Studies of Motion. Summary and Conclusions. References. Author and Subject Indexes.
交通流流体力学模型与非线性波%Fluid Dynamics Traffic Flow Models and Their Related Non-Linear Waves
张鹏; 王卓; 黄仕进
2013-01-01
Fluid dynamics methods were used in modeling traffic flow problems, which demonstrated many interesting non-linear propagation phenomena. It was summarized that the propagation was related to traffic pressures and self-driven forces, which generated shock and rarefaction waves in the LWR model, stop-and-go waves in the higher-order model, overtaking waves (shock or rarefaction waves) in the multi-class LWR model, and a contact discontinuity in problems with discontinuous fluxes. The Riemann problem arising from extension of the LWR model to traffic networks was also introduced in detail. And a system based on the Navi-er-Stokes equations was proposed to model the 2-dimensional pedestrian flow problem with application of the Eikon equation for determination of a pedestrian' s desired motion direction.%介绍了交通流问题中的流体力学描述方法,分析了交通流在受压力和自驱动力等因素作用下所产生的非线性波动现象.这些描述包括LWR运动学模型,考虑动力学效应的高阶模型,考虑超车效应的多车种LWR(Lighthill-Whitham-Richards)模型,以及考虑流通量间断的模型方程.此外,还介绍了LWR网络推广模型在交叉口的Riemann问题求解；提出了描述二维行人流问题的Navier-Stokes-Eikon方程模型并描述了确定行人流运动期盼方向的基本思想.
Eliazar, Iddo I., E-mail: eliazar@post.tau.ac.il [Holon Institute of Technology, P.O. Box 305, Holon 58102 (Israel); Shlesinger, Michael F., E-mail: mike.shlesinger@navy.mil [Office of Naval Research, Code 30, 875 N. Randolph St., Arlington, VA 22203 (United States)
2013-06-10
Brownian motion is the archetypal model for random transport processes in science and engineering. Brownian motion displays neither wild fluctuations (the “Noah effect”), nor long-range correlations (the “Joseph effect”). The quintessential model for processes displaying the Noah effect is Lévy motion, the quintessential model for processes displaying the Joseph effect is fractional Brownian motion, and the prototypical model for processes displaying both the Noah and Joseph effects is fractional Lévy motion. In this paper we review these four random-motion models–henceforth termed “fractional motions” –via a unified physical setting that is based on Langevin’s equation, the Einstein–Smoluchowski paradigm, and stochastic scaling limits. The unified setting explains the universal macroscopic emergence of fractional motions, and predicts–according to microscopic-level details–which of the four fractional motions will emerge on the macroscopic level. The statistical properties of fractional motions are classified and parametrized by two exponents—a “Noah exponent” governing their fluctuations, and a “Joseph exponent” governing their dispersions and correlations. This self-contained review provides a concise and cohesive introduction to fractional motions.
Peterka, Robert J.
Recent studies by Diamond and Markham 1,2 have identified significant correlations between space motion sickness susceptibility and measures of disconjugate torsional eye movements recorded during parabolic flights. These results support an earlier proposal by von Baumgarten and Thümler 3 which hypothesized that an asymmetry of otolith function between the two ears is the cause of space motion sickness. It may be possible to devise experiments that can be performed in the 1 g environment on earth that could identify and quantify the presence of asymmetric otolith function. This paper summarizes the known physiological and anatomical properties of the otolith organs and the properties of the torsional vestibulo-ocular reflex which are relevant to the design of a stimulus to identify otolith asymmetries. A specific stimulus which takes advantage of these properties is proposed.
Kvalbein, Martin
2012-01-01
The use of robotic systems for remote ultrasound diagnostics has emerged over the last years. This thesis looks into the possibility of integrating the Kinect sensor from Microsoft into a semi-autonomous robotic system for ultrasound diagnostics, with the intention to give the robotic system visual feedback to compensate for patient motion. In the first part of this thesis, a series of tests have been performed to explore the Kinect's sensor capabilities, with focus on accuracy, precis...
de Prunelé, A.; Caprais, J.; Ruffine, L.; Cassarino, L.; Guyader, V.; Bollinger, C.; Ondréas, H.; Donval, J.; Olu, K.; Geli, L. B.; Cunningham, K. L.; Cauquil, E.
2013-12-01
The Regab pockmark is a giant structure located at 3200 m water depth offshore Gabon and ~ 10 km north to the deep Congo channel (Zaïre canyon) (Gay et al. 2006; Ondréas et al. 2005). It has been visited for the first time in 2000 during the Zairov cruise. Since that time, several scientific cruises have allowed further investigations of this pockmark. The last cruise, WACS, for West Africa Cold Seeps, in January- February 2010, was undertaken on board the R/V ';Pourquoi Pas?' with the aim of identifying changes which can occur over time on this pockmark. Besides intensive ROV dives, three calypso cores and several push cores have been collected to better understand the relationships between the distribution of the living communities and the pore-fluids chemistry. In two calypso cores one collected within the pockmark and one outside, and both in areas without visible biological communities, pore-fluids profiles of dissolved elements (Alk, SO42-, Mn2+, Fe2+) show that degradation of organic matter is occurring and likely plays an important role in the sulfate reduction (Froelich et al. 1979). Methane was not detected. The Analysis of the pore-fluids by Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS) has shown the presence of alcohols, acid and phenol. These molecules are likely related to the degradation of organic matter and/or the production of the biological communities. Further investigations are ongoing to provide us with a clearer picture regarding the source of these molecules. The third calypso core collected in the northeast part of the pockmark containing gas hydrates. Sulfate profiles from the push cores show significant difference from one community to another. The analyses of both major and minor dissolved elements, along with molecular and isotopic methane concentration measurements are in progress for the push cores. The latter was done using a new analyzer G2201-i from Picarro for which new methods applied to pore-fluids has
Compressible Fluids Driven by Stochastic Forcing: The Relative Energy Inequality and Applications
Breit, Dominic; Feireisl, Eduard; Hofmanová, Martina
2017-03-01
We show the relative energy inequality for the compressible Navier-Stokes system driven by a stochastic forcing. As a corollary, we prove the weak-strong uniqueness property (pathwise and in law) and convergence of weak solutions in the inviscid-incompressible limit. In particular, we establish a Yamada-Watanabe type result in the context of the compressible Navier-Stokes system, that is, pathwise weak-strong uniqueness implies weak-strong uniqueness in law.
1993-08-17
Objectives are to develop state-of-the-art experimental apparatus for measuring the thermophysical properties of a wide range of fluids and fluid mixtures important to the energy, chemical, and energy-related industries, and carry out benchmark measurements on key systems. Measurement capabilities to be developed cover transport properties, thermodynamic properties, phase equilibria properties, and dielectric properties. The new apparatus will make it possible to study a wide range of complex fluid systems under conditions that have been previously inaccessible. Specific measurement capabilities to be developed are: Thermal Conductivity Apparatus, Vibrating Wire Viscometer, Dual-Sinker Densimeter, High-Temperature Vibrating Tube Densimeter, Dynamic Phase Equilibria Apparatus, Apparatus for Dilute Solutions, Total-Enthalpy Flow Calorimeter, Dielectric Constant Apparatus. The research also includes benchmark experimental measurements on pure and mixed alternative refrigerants, aqueous solutions, and carefully selected systems consisting of species of diverse size (methane + neopentane) and polarity (methane + ammonia) important for development of predictive models for energy-related fluids.
Herbert, Eric; Mordant, Nicolas; Falcon, Eric
2010-10-01
We report experiments on gravity-capillary wave turbulence on the surface of a fluid. The wave amplitudes are measured simultaneously in time and space by using an optical method. The full space-time power spectrum shows that the wave energy is localized on several branches in the wave-vector-frequency space. The number of branches depends on the power injected within the waves. The measurement of the nonlinear dispersion relation is found to be well described by a law suggesting that the energy transfer mechanisms involved in wave turbulence are restricted not only to purely resonant interaction between nonlinear waves. The power-law scaling of the spatial spectrum and the probability distribution of the wave amplitudes at a given wave number are also measured and compared to the theoretical predictions.
M. A. Feizi Chekab
2017-01-01
Full Text Available The present study focuses on the feasibility of using fluids, and in particular magnetic fluids, as “Fluid Structures” in designing external appendages for the submerged bodies and propulsive fins as a practical example. After reviewing the literature of the mathematical simulation of magnetic fluids and their applications, the concept of “Fluid Structures” and “Fluid Fins” are briefly introduced. The validation of the numerical solver against analytical solutions is presented and acceptable error of 1.21% up to 2.29% is estimated. Subsequently, the initial shaping of the ferrofluid as an external fluid fin, using three combinations of internal magnetic actuators, is presented which makes the way to the oscillating motion of the obtained fin, by producing a periodically changing magnetic field. It is demonstrated that the shape of the fluid fin is almost the replica of the magnetic field. On the other hand, it is illustrated that a fluid fin with a size under 0.005 m on a circular submerged body of 1cm diameter could produce 0.0158 N force which is a high thrust force relative to the size of the body and the fin. Based on the obtained results, one may conclude that, when a “Fluid Fin” is capable of producing this amount of thrust, other fluid appendages could be scientifically contemplated and practically designed.
Koller, Heiko; Acosta, Frank; Forstner, Rosemarie; Zenner, Juliane; Resch, Herbert; Tauber, Mark; Lederer, Stefan; Auffarth, Alexander; Hitzl, Wolfgang
2009-08-01
Knowledge on the outcome of C2-fractures is founded on heterogenous samples with cross-sectional outcome assessment focusing on union rates, complications and technical concerns related to surgical treatment. Reproducible clinical and functional outcome assessments are scant. Validated generic and disease specific outcome measures were rarely applied. Therefore, the aim of the current study is to investigate the radiographic, functional and clinical outcome of a patient sample with C2-fractures. Out of a consecutive series of 121 patients with C2 fractures, 44 met strict inclusion criteria and 35 patients with C2-fractures treated either nonsurgically or surgically with motion-preserving techniques were surveyed. Outcome analysis included validated measures (SF-36, NPDI, CSOQ), and a functional CT-scanning protocol for the evaluation of C1-2 rotation and alignment. Mean follow-up was 64 months and mean age of patients was 52 years. Classification of C2-fractures at injury was performed using a detailed morphological description: 24 patients had odontoid fractures type II or III, 18 patients had fracture patterns involving the vertebral body and 11 included a dislocated or a burst lateral mass fracture. Thirty-one percent of patients were treated with a halo, 34% with a Philadelphia collar and 34% had anterior odontoid screw fixation. At follow-up mean atlantoaxial rotation in left and right head position was 20.2 degrees and 20.6 degrees, respectively. According to the classification system of posttreatment C2-alignment established by our group in part I of the C2-fracture study project, mean malunion score was 2.8 points. In 49% of patients the fractures healed in anatomical shape or with mild malalignment. In 51% fractures healed with moderate or severe malalignment. Self-rated outcome was excellent or good in 65% of patients and moderate or poor in 35%. The raw data of varying nuances allow for comparison in future benchmark studies and metaanalysis. Detailed
Autonomous motion of semipermeable colloidal particles via chemical reactions: self-osmophoresis
Diaz, Misael; Cordova-Figueroa, Ubaldo
2010-11-01
While a large body of work exists on the design of catalytically-driven colloidal particles, little work exists on particles with the ability to permeate fluid through its surface that may be used for applications in lab-on-a-chip systems and drug delivery. We propose a model for the catalytically-driven motion of a semipermeable particle (e.g., non-motile microorganisms and vesicles) surrounded by reactant solutes in a Newtonian fluid. It is assumed that a first-order consumption reaction of surrounding reactants---which could be enzymatic or catalytic---occurs on half of the outer surface of the membrane. In equilibrium, the osmotic pressure inside the particle balances that of outside. The reaction creates an imbalance in osmotic pressure, causing outer fluid facing the catalytic side to permeate inside the particle as inner fluid permeates through the passive side. This fluid motion satisfies mass conservation inside the particle, causing particle motion towards regions of low reactant concentration by a mechanism known as osmophoresis. Preliminary results show that the particle velocity--defined as a P'eclet number--is a function of the permeability of the membrane, a "characteristic" osmotic velocity, and the Damköhler number--which is a measure of relative impacts of the diffusion and chemical reaction. The permeating fluid retards particle motion by dragging the solute against the induced osmotic imbalance.
Non-metric fluid dynamics and cosmology on Finsler spacetimes
Hohmann, Manuel
2016-01-01
We generalize the kinetic theory of fluids, in which the description of fluids is based on the geodesic motion of particles, to spacetimes modeled by Finsler geometry. Our results show that Finsler spacetimes are a suitable background for fluid dynamics and that the equation of motion for a collisionless fluid is given by the Liouville equation, as it is also the case for a metric background geometry. We finally apply this model to collisionless dust and a general fluid with cosmological symmetry and derive the corresponding equations of motion. It turns out that the equation of motion for a dust fluid is a simple generalization of the well-known Euler equations.
Self-truncation and scaling in Euler-Voigt-α and related fluid models.
Di Molfetta, Giuseppe; Krstlulovic, Giorgio; Brachet, Marc
2015-07-01
A generalization of the 3D Euler-Voigt-α model is obtained by introducing derivatives of arbitrary order β (instead of 2) in the Helmholtz operator. The β→∞ limit is shown to correspond to Galerkin truncation of the Euler equation. Direct numerical simulations (DNS) of the model are performed with resolutions up to 2048(3) and Taylor-Green initial data. DNS performed at large β demonstrate that this simple classical hydrodynamical model presents a self-truncation behavior, similar to that previously observed for the Gross-Pitaeveskii equation in Krstulovic and Brachet [Phys. Rev. Lett. 106, 115303 (2011)]. The self-truncation regime of the generalized model is shown to reproduce the behavior of the truncated Euler equation demonstrated in Cichowlas et al. [Phys. Rev. Lett. 95, 264502 (2005)]. The long-time growth of the self-truncation wave number k(st) appears to be self-similar. Two related α-Voigt versions of the eddy-damped quasinormal Markovian model and the Leith model are introduced. These simplified theoretical models are shown to reasonably reproduce intermediate time DNS results. The values of the self-similar exponents of these models are found analytically.
Magnelok technology: a complement to magnetorheological fluids
Carlson, J. David
2004-07-01
Magnetorheological or MR fluids have been successfully used to enable highly effective semi-active control systems in automobile primary suspensions to control unwanted motions in civil engineering structures and to provide force-feedback in steer-by-wire systems. A key to the successful use of MR fluids is an appreciation and understanding of the balance and trade-off between the magnetically controlled on-state force and the ever-present off-state viscous force. In all MR fluid applications, one must deal with the fact that MR fluids never fully decouple or go to zero force in their off-state. Magnelok devices are a magnetically controlled compliment to traditional MR fluid devices that have been developed to enable a true force decoupling in the off-state. Magnelok devices may be embodied as linear or rotary dampers, brakes, lockable struts or position holding devices. They are particularly suitable for lock/un-lock applications. Unlike MR fluid devices they contain no fluid yet they do provide a variable level of friction damping that is controlled by the magnitude of the applied magnetic field. Magnelok devices are low cost as they easily accommodate relatively loose mechanical tolerances and require no seals or accumulator. A variety of controllable Magnelok devices and applications are described.
,
2016-01-01
With Einstein's inertial motion (free-falling and non-rotating relative to gyroscopes), geodesics for non-relativistic particles can intersect repeatedly, allowing one to compute the space-time curvature $R^{\\hat{0} \\hat{0}}$ exactly. Einstein's $R^{\\hat{0} \\hat{0}}$ for strong gravitational fields and for relativistic source-matter is identical with the Newtonian expression for the relative radial acceleration of neighboring free-falling test-particles, spherically averaged.--- Einstein's field equations follow from Newtonian experiments, local Lorentz-covariance, and energy-momentum conservation combined with the Bianchi identity.
Richard, Antonin; Cathelineau, Michel; Boiron, Marie-Christine; Mercadier, Julien; Banks, David A.; Cuney, Michel
2016-02-01
The Paleoproterozoic Athabasca Basin (Canada) hosts numerous giant unconformity-related uranium deposits. The scope of this study is to establish the pressure, temperature, and composition (P-T-X conditions) of the brines that circulated at the base of the Athabasca Basin and in its crystalline basement before, during and after UO2 deposition. These brines are commonly sampled as fluid inclusions in quartz- and dolomite-cementing veins and breccias associated with alteration and U mineralization. Microthermometry and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data from five deposits (Rabbit Lake, P-Patch, Eagle Point, Millennium, and Shea Creek) complement previously published data for the McArthur River deposit. In all of the deposits investigated, fluid inclusion salinity is between 25 and 40 wt.% NaCl equiv., with compositions displaying a continuum between a "NaCl-rich brine" end-member (Cl > Na > Ca > Mg > K) and a "CaCl2-rich brine" end-member (Cl > Ca ≈ Mg > Na > K). The CaCl2-rich brine has the highest salinity and shows evidence for halite saturation at the time of trapping. The continuum of compositions between the NaCl-rich brine and the CaCl2-rich brine end-members combined with P-T reconstructions suggest anisothermal mixing of the two brines (NaCl-rich brine, 180 ± 30 °C and 800 ± 400 bars; CaCl2-rich brine, 120 ± 30 °C and 600 ± 300 bars) that occurred under fluctuating pressure conditions (hydrostatic to supra-hydrostatic). However, because the two brines were U bearing and therefore oxidized, brine mixing was probably not the driving force for UO2 deposition. Several scenarios are put forward to account for the Cl-Na-Ca-Mg-K composition of the brines, involving combinations of seawater evaporation, halite dissolution, mixing with a halite-dissolution brine, Mg/Ca exchange by dolomitization, Na/Ca exchange by albitization of plagioclase, Na/K exchange by albitization of K-feldspar, and Mg loss by Mg
Kiørboe, Thomas; Ploug, H.; Thygesen, Uffe Høgsbro
2001-01-01
in its wake, where solute concentration is either elevated (leaking substances) or depressed (consumed substances) relative to ambient concentration. Such plumes may impact the nutrition of osmotrophs. For example, based on published solubilization rates of aggregates we describe the amino acid plume...... behind a sinking aggregate (0.1 to 1.0 cm radius). The volume of the plume with amino acid concentrations high enough to significantly affect bacterial uptake rates is ca 100x the volume of the aggregate itself. Thus, sinking aggregates may create significant microniches also for free-living bacteria....
Unsteady fluid flow in smart material actuated fluid pumps
John, Shaju; Cadou, Christopher
2005-05-01
Smart materials' ability to deliver large block forces in a small package while operating at high frequencies makes them extremely attractive for converting electrical to mechanical power. This has led to the development of hybrid actuators consisting of co-located smart material actuated pumps and hydraulic cylinders that are connected by a set of fast-acting valves. The overall success of the hybrid concept hinges on the effectiveness of the coupling between the smart material and the fluid. This, in turn, is strongly dependent on the resistance to fluid flow in the device. This paper presents results from three-dimensional unsteady simulations of fluid flow in the pumping chamber of a prototype hybrid actuator powered by a piezo-electric stack. The results show that the forces associated with moving the fluid into and out of the pumping chamber already exceed 10% of the piezo stack blocked force at relatively low frequencies ~120 Hz and approach 40% of the blocked force at 800 Hz. This reduces the amplitude of the piston motion in such a way that the volume flow rate remains approximately constant above operating frequencies of 500 Hz while the efficiency of the pump decreases rapidly.
Testud, J.; Amayenc, P.; Chong, M.; Nutten, B.; Sauvaget, A.
1980-01-01
This paper is based on the observation of a cold front using a C-band Doppler radar. The extent of the precipitation system associated with the front allowed collection of Doppler radar data during 12 consecutive hours. The methodology for data acquisition presently used is conical scanning. The data analysis has been extended to the case of a nonuniform distribution of tracers.The air circulation is presented in a reference frame moving at the speed of the front. A pronounced cross-frontal circulation is found to be associated with significant cross-frontal acceleration. The thermal structure across the front is reconstructed by means of the equations of motion.From the vertical velocity field an estimate of the height-integrated condensation rate is made. It is found to agree with the rainfall rate inferred from the radar reflectivity data.Also, large-amplitude small-scale motions are detected and identified as a well-characterized atmospheric wave. Theoretical considerations support the explanation that it is the manifestation of a dynamical instability of the shear flow within the frontal zone.
Sabanovic, Asif
2011-01-01
"Presents a unified approach to the fundamental issues in motion control, starting from the basics and moving through single degree of freedom and multi-degree of freedom systems In Motion Control Systems, Šabanovic and Ohnishi present a unified approach to very diverse issues covered in motion control systems, offering know-how accumulated through work on very diverse problems into a comprehensive, integrated approach suitable for application in high demanding high-tech products. It covers material from single degree of freedom systems to complex multi-body non-redundant and redundant systems. The discussion of the main subject is based on original research results and will give treatment of the issues in motion control in the framework of the acceleration control method with disturbance rejection technique. This allows consistent unification of different issues in motion control ranging from simple trajectory tracking to topics related to haptics and bilateral control without and with delay in the measure...
Interaction between motion of free fluid surfaces and ship motions
Lamba, D.; Duse, A.; Varsami, C.; Hanzu-Pazara, R.
2017-08-01
This scientific research presents very important aspects of the liquefying process of bulk cargo carried on board merchant ship which may lead to loss of the intact stability of bulk carriers, with serious consequences for the safety of ships and their crew. We are going to present an analytical modelling, modal analysis and finite elements analysis applied in the hydrodynamics of the ship in the water environment, when realising a complex model 3D of the ship’s bulkheads by modelling with finite volumes with the purpose of emphasising these walls’ behaviour when on board the bulk carrier there is a sloshing effect due to free liquid surfaces in the ship’s cargo holds and we also performed a complex study regarding the structural answer of transverse bulkheads of the cargo holds due to the impact of free liquid surfaces.