WorldWideScience

Sample records for relative flow speed

  1. Rat muscle blood flows during high-speed locomotion

    International Nuclear Information System (INIS)

    Armstrong, R.B.; Laughlin, M.H.

    1985-01-01

    We previously studied blood flow distribution within and among rat muscles as a function of speed from walking (15 m/min) through galloping (75 m/min) on a motor-driven treadmill. The results showed that muscle blood flows continued to increase as a function of speed through 75 m/min. The purpose of the present study was to have rats run up to maximal treadmill speeds to determine if blood flows in the muscles reach a plateau as a function of running speed over the animals normal range of locomotory speeds. Muscle blood flows were measured with radiolabeled microspheres at 1 min of running at 75, 90, and 105 m/min in male Sprague-Dawley rats. The data indicate that even at these relatively high treadmill speeds there was still no clear evidence of a plateau in blood flow in most of the hindlimb muscles. Flows in most muscles continued to increase as a function of speed. These observed patterns of blood flow vs. running speed may have resulted from the rigorous selection of rats that were capable of performing the high-intensity exercise and thus only be representative of a highly specific population of animals. On the other hand, the data could be interpreted to indicate that the cardiovascular potential during exercise is considerably higher in laboratory rats than has normally been assumed and that inadequate blood flow delivery to the muscles does not serve as a major limitation to their locomotory performance

  2. Insights from field observations into controls on flow front speed in submarine sediment flows

    Science.gov (United States)

    Heerema, C.; Talling, P.; Cartigny, M.; Paull, C. K.; Gwiazda, R.; Clare, M. A.; Parsons, D. R.; Xu, J.; Simmons, S.; Maier, K. L.; Chapplow, N.; Gales, J. A.; McGann, M.; Barry, J.; Lundsten, E. M.; Anderson, K.; O'Reilly, T. C.; Rosenberger, K. J.; Sumner, E. J.; Stacey, C.

    2017-12-01

    Seafloor avalanches of sediment called turbidity currents are one of the most important processes for moving sediment across our planet. Only rivers carry comparable amounts of sediment across such large areas. Here we present some of the first detailed monitoring of these underwater flows that is being undertaken at a series of test sites. We seek to understand the factors that determine flow front speed, and how that speed varies with distance. This frontal speed is particularly important for predicting flow runout, and how the power of these hazardous flows varies with distance. First, we consider unusually detailed measurements of flow front speed defined by transit times between moorings and other tracked objects placed on the floor of Monterey Canyon offshore California in 2016-17. These measurements are then compared to flow front speeds measured using multiple moorings in Bute Inlet, British Columbia in 2016; and by cable breaks in Gaoping Canyon offshore Taiwan in 2006 and 2009. We seek to understand how flow front velocity is related to seafloor gradient, flow front thickness and density. It appears that the spatial evolution of frontal speed is similar in multiple flows, although their peak frontal velocities vary. Flow front velocity tends to increase rapidly initially before declining rather gradually over tens or even hundreds of kilometres. It has been proposed that submarine flows will exist in one of two states; either eroding and accelerating, or depositing sediment and dissipating. We conclude by discussing the implications of this global compilation of flow front velocities for understanding submarine flow behaviour.

  3. Plasma-Assisted Chemistry in High-Speed Flow

    International Nuclear Information System (INIS)

    Leonov, Sergey B.; Yarantsev, Dmitry A.; Napartovich, Anatoly P.; Kochetov, Igor V.

    2007-01-01

    Fundamental problems related to the high-speed combustion are analyzed. The result of plasma-chemical modeling is presented as a motivation of experimental activity. Numerical simulations of the effect of uniform non-equilibrium discharge on the premixed hydrogen and ethylene-air mixture in supersonic flow demonstrate an advantage of such a technique over a heating. Experimental results on multi-electrode non-uniform discharge maintenance behind wallstep and in cavity of supersonic flow are presented. The model test on hydrogen and ethylene ignition is demonstrated at direct fuel injection to low-temperature high-speed airflow

  4. Empirical analysis of gross vehicle weight and free flow speed and consideration on its relation with differential speed limit.

    Science.gov (United States)

    Saifizul, Ahmad Abdullah; Yamanaka, Hideo; Karim, Mohamed Rehan

    2011-05-01

    Most highly motorized countries in the world have implemented different speed limits for light weight and heavy weight vehicles. The heavy vehicle speed limit is usually chosen to be lower than that of passenger cars due to the difficulty for the drivers to safely maneuver the heavy vehicle at high speed and greater impact during a crash. However, in many cases, the speed limit for heavy vehicle is set by only considering the vehicle size or category, mostly due to simplicity in enforcement. In this study, traffic and vehicular data for all vehicle types were collected using a weigh-in-motion system installed at Federal Route 54 in Malaysia. The first finding from the data showed that the weight variation for each vehicle category is considerable. Therefore, the effect of gross vehicle weight (GVW) and category of heavy vehicle on free flow speed and their interaction were analyzed using statistical techniques. Empirical analysis results showed that statistically for each type of heavy vehicle, there was a significant relationship between free flow speed of a heavy vehicle and GVW. Specifically, the results suggest that the mean and variance of free flow speed decrease with an increase GVW by the amount unrelated to size and shape for all GVW range. Then, based on the 85th percentile principle, the study proposed a new concept for setting the speed limit for heavy vehicle by incorporating GVW where a different speed limit is imposed to the heavy vehicle, not only based on vehicle classification, but also according to its GVW. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2013-01-01

    Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current tre...

  6. Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed.

    Directory of Open Access Journals (Sweden)

    Rick O Gilmore

    Full Text Available Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in early to middle childhood, a time when psychophysical data suggest that there are changes in sensitivity. To fill this gap, electroencephalographic (EEG responses were recorded in 4- to 8-year-old children who viewed three time-varying optic flow patterns (translation, rotation, and radial expansion/contraction at three different speeds (2, 4, and 8 deg/s. Modulations of global motion coherence evoked coherent EEG responses at the first harmonic that differed by flow pattern and responses at the third harmonic and dot update rate that varied by speed. Pattern-related responses clustered over right lateral channels while speed-related responses clustered over midline channels. Both children and adults show widespread responses to modulations of motion coherence at the second harmonic that are not selective for pattern or speed. The results suggest that the developing brain segregates the processing of optic flow pattern from speed and that an adult-like pattern of neural responses to optic flow has begun to emerge by early to middle childhood.

  7. AC-DC integrated load flow calculation for variable speed offshore wind farms

    DEFF Research Database (Denmark)

    Zhao, Menghua; Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    This paper proposes a sequential AC-DC integrated load flow algorithm for variable speed offshore wind farms. In this algorithm, the variable frequency and the control strategy of variable speed wind turbine systems are considered. In addition, the losses of wind turbine systems and the losses...... of converters are also integrated into the load flow algorithm. As a general algorithm, it can be applied to different types of wind farm configurations, and the load flow is related to the wind speed....

  8. Electromagnetic application device for flow rate/flow speed control

    International Nuclear Information System (INIS)

    Yoshioka, Senji.

    1994-01-01

    Electric current and magnetic field are at first generated in a direction perpendicular to a flow channel of a fluid, and forces generated by electromagnetic interaction of the current and the magnetic field are combined and exerted on the fluid, to control the flow rate and the flow speed thereby decreasing flowing pressure loss. In addition, an electric current generation means and a magnetic field generation means integrated together are disposed to a structural component constituting the flow channel, and they are combined to attain the aimed effect. The current generating means forms a potential difference by supplying electric power to a pair of electrodes as a cathode and an anode by using structures disposed along the channel, to generate an electric field or electric current in a direction perpendicular to the flow channel. The magnetic field generating means forms a counter current (reciprocal current) by using structures disposed along the flow channel, to generate synthesized or emphasized magnetic field. The fluid can be applied with a force in the direction of the flowing direction by the electromagnetic interaction of the electric current and the magnetic field, thereby capable of propelling the fluid. Accordingly, the flowrate/flowing speed can be controlled inside of the flow channel and flowing pressure loss can be decreased. (N.H.)

  9. High speed digital holographic interferometry for hypersonic flow visualization

    Science.gov (United States)

    Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.

    2013-06-01

    Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.

  10. Wake flow characteristics at high wind speed

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Torben J.; Larsen, Gunner Chr.

    2016-01-01

    Wake flow characteristic at high wind speeds is the main subject of this paper. Although the wake losses decrease at high wind speeds it has been found in a recent study that for multiple wake inflow the increase in loading due to wake effects are substantial even at wind speeds well above rated ...

  11. Local scattering property scales flow speed estimation in laser speckle contrast imaging

    International Nuclear Information System (INIS)

    Miao, Peng; Chao, Zhen; Feng, Shihan; Ji, Yuanyuan; Yu, Hang; Thakor, Nitish V; Li, Nan

    2015-01-01

    Laser speckle contrast imaging (LSCI) has been widely used in in vivo blood flow imaging. However, the effect of local scattering property (scattering coefficient µ s ) on blood flow speed estimation has not been well investigated. In this study, such an effect was quantified and involved in relation between speckle autocorrelation time τ c and flow speed v based on simulation flow experiments. For in vivo blood flow imaging, an improved estimation strategy was developed to eliminate the estimation bias due to the inhomogeneous distribution of the scattering property. Compared to traditional LSCI, a new estimation method significantly suppressed the imaging noise and improves the imaging contrast of vasculatures. Furthermore, the new method successfully captured the blood flow changes and vascular constriction patterns in rats’ cerebral cortex from normothermia to mild and moderate hypothermia. (letter)

  12. Unsteady flow simulations of Pelton turbine at different rotational speeds

    Directory of Open Access Journals (Sweden)

    Minsuk Choi

    2015-11-01

    Full Text Available This article presents numerical simulations of a small Pelton turbine suitable for desalination system. A commercial flow solver was adopted to resolve difficulties in the numerical simulation for Pelton turbine such as the relative motion of the turbine runner to the injector and two-phase flow of water and air. To decrease the numerical diffusion of the water jet, a new topology with only hexagonal mesh was suggested for the computational mesh around the complex geometry of a bucket. The predicted flow coefficient, net head coefficient, and overall efficiency showed a good agreement with the experimental data. Based on the validation of the numerical results, the pattern of wet area on the bucket inner surface has been analyzed at different rotational speeds, and an attempt to find the connection between rotational speeds, torque, and efficiency has been made.

  13. Cavitation performance improvement of high specific speed mixed-flow pump

    International Nuclear Information System (INIS)

    Chen, T; Sun, Y B; Wu, D Z; Wang, L Q

    2012-01-01

    Cavitation performance improvement of large hydraulic machinery such as pump and turbine has been a hot topic for decades. During the design process of the pumps, in order to minimize size, weight and cost centrifugal and mixed-flow pump impellers are required to operate at the highest possible rotational speed. The rotational speed is limited by the phenomenon of cavitation. The hydraulic model of high-speed mixed-flow pump with large flow rate and high pumping head, which was designed based on the traditional method, always involves poor cavitation performance. In this paper, on the basis of the same hydraulic design parameters, two hydraulic models of high-speed mixed-flow pump were designed by using different methods, in order to investigate the cavitation and hydraulic performance of the two models, the method of computational fluid dynamics (CFD) was adopted for internal flow simulation of the high specific speed mixed-flow pump. Based on the results of numerical simulation, the influences of impeller parameters and three-dimensional configuration on pressure distribution of the blades' suction surfaces were analyzed. The numerical simulation results shows a better pressure distribution and lower pressure drop around the leading edge of the improved model. The research results could provide references to the design and optimization of the anti-cavitation blade.

  14. Investigations on high speed MHD liquid flow

    International Nuclear Information System (INIS)

    Yamasaki, Takasuke; Kamiyama, Shin-ichi.

    1982-01-01

    Lately, the pressure drop problem of MHD two-phase flow in a duct has been investigated theoretically and experimentally in conjunction with the problems of liquid metal MHD two-phase flow power-generating cycle or of liquid metal boiling two-phase flow in the blanket of a nuclear fusion reactor. Though many research results have been reported so far for MHD single-phase flow, the hydrodynamic studies on high speed two-phase flow are reported only rarely, specifically the study dealing with the generation of cavitation is not found. In the present investigation, the basic equation was derived, analyzing the high speed MHD liquid flow in a diverging duct as the one-dimensional flow of homogeneous two-phase fluid of small void ratio. Furthermore, the theoretical solution for the effect of magnetic field on cavitation-generating conditions was tried. The pressure distribution in MHD flow in a duct largely varies with load factor, and even if the void ratio is small, the pressure distribution in two-phase flow is considerably different from that in single-phase flow. Even if the MHD two-phase flow in a duct is subsonic flow at the throat, the critical conditions may be achieved sometimes in a diverging duct. It was shown that cavitation is more likely to occur as magnetic field becomes more intense if it is generated downstream of the throat. This explains the experimental results qualitatively. (Wakatsuki, Y.)

  15. Flow in a Low Specific Speed Centrifugal Pump Using PIV

    Directory of Open Access Journals (Sweden)

    Cui Dai

    2013-01-01

    Full Text Available The interflow plays important roles in centrifugal pump design. In order to study the effect of rotation and z-axis on internal flow, two-dimensional particle image velocimetry (PIV measurements have been performed to measure the steady velocity field on three planes in all impeller passages of a low specific-speed centrifugal pump. The results show that the relative velocity flows in blade passages are obviously different in terms of the positions of the blade relative to the tongue. The interaction between the impeller and tongue changes the occurrence and development of low velocity region with time. From shroud to hub, the relative velocity gradually increases, and the minimum value moves toward the suction surface. On the midplane, the magnitude increases with increased flow rate from pressure surface to suction surface, while at the shroud and hub, the measured velocity first increases with decreased flow rate from the blade pressure surface to nearly ζ = 0.5 to 0.6.

  16. Internal Flow of a High Specific-Speed Diagonal-Flow Fan (Rotor Outlet Flow Fields with Rotating Stall

    Directory of Open Access Journals (Sweden)

    Norimasa Shiomi

    2003-01-01

    Full Text Available We carried out investigations for the purpose of clarifying the rotor outlet flow fields with rotating stall cell in a diagonal-flow fan. The test fan was a high–specific-speed (ns=1620 type of diagonal-flow fan that had 6 rotor blades and 11 stator blades. It has been shown that the number of the stall cell is 1, and its propagating speed is approximately 80% of its rotor speed, although little has been known about the behavior of the stall cell because a flow field with a rotating stall cell is essentially unsteady. In order to capture the behavior of the stall cell at the rotor outlet flow fields, hot-wire surveys were performed using a single-slant hotwire probe. The data obtained by these surveys were processed by means of a double phase-locked averaging technique, which enabled us to capture the flow field with the rotating stall cell in the reference coordinate system fixed to the rotor. As a result, time-dependent ensemble averages of the three-dimensional velocity components at the rotor outlet flow fields were obtained. The behavior of the stall cell was shown for each velocity component, and the flow patterns on the meridional planes were illustrated.

  17. IN VITRO FLOW ANALYSIS OF NOVEL DOUBLE-CUTTING, OPEN-PORT, ULTRAHIGH-SPEED VITRECTOMY SYSTEMS.

    Science.gov (United States)

    Zehetner, Claus; Moelgg, Marion; Bechrakis, Emmanouil; Linhart, Caroline; Bechrakis, Nikolaos E

    2017-10-09

    To analyze the performance and flow characteristics of novel double-cutting, open-port, 23-, 25-, and 27-gauge ultrahigh-speed vitrectomy systems. In vitro fluidic measurements were performed to assess the volumetric aspiration profiles of several vitrectomy systems in basic salt solution and egg white. Double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. Increase in cutting frequency to the maximum level resulted in flow reduction of less than 10% (0.0%-9.5%). Commercially available 23-, 25-, and 27-G double-cutting probes exhibited higher egg-white and basic salt solution flow rates at all evaluated cut rates, with aspirational efficiencies being 1.1 to 2.9 times the flow rates of standard single-blade vitrectomy probes of the same caliber at the maximum preset vacuum. The highest relative differences were observed at faster cut rates. The newly introduced double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. The fluidic principle of constant flow even at the highest cut rates and low vacuum levels might impact surgical strategies, especially when performing manipulations close to the retina.

  18. Modelling Free Flow Speed on Two-Lane Rural Highways in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Ivan Lovrić

    2014-04-01

    Full Text Available Free flow speed is used as a parameter in transportation planning and capacity analysis models, as well as speed-flow diagrams. Many of these models suggest estimating free flow speed according to measurements from similar highways, which is not a practical method for use in B&H. This paper first discusses problems with using these methodologies in conditions prevailing in B&H and then presents a free flow speed evaluation model developed from a comprehensive field survey conducted on nine homogeneous sections of state and regional roads.

  19. Loss reduction in axial-flow compressors through low-speed model testing

    Science.gov (United States)

    Wisler, D. C.

    1984-01-01

    A systematic procedure for reducing losses in axial-flow compressors is presented. In this procedure, a large, low-speed, aerodynamic model of a high-speed core compressor is designed and fabricated based on aerodynamic similarity principles. This model is then tested at low speed where high-loss regions associated with three-dimensional endwall boundary layers flow separation, leakage, and secondary flows can be located, detailed measurements made, and loss mechanisms determined with much greater accuracy and much lower cost and risk than is possible in small, high-speed compressors. Design modifications are made by using custom-tailored airfoils and vector diagrams, airfoil endbends, and modified wall geometries in the high-loss regions. The design improvements resulting in reduced loss or increased stall margin are then scaled to high speed. This paper describes the procedure and presents experimental results to show that in some cases endwall loss has been reduced by as much as 10 percent, flow separation has been reduced or eliminated, and stall margin has been substantially improved by using these techniques.

  20. Experimental analysis of flow structure in contra-rotating axial flow pump designed with different rotational speed concept

    Science.gov (United States)

    Cao, Linlin; Watanabe, Satoshi; Imanishi, Toshiki; Yoshimura, Hiroaki; Furukawa, Akinori

    2013-08-01

    As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head — flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carried out to understand the complicated internal flow structures in the rotors.

  1. Reducing the impact of speed dispersion on subway corridor flow.

    Science.gov (United States)

    Qiao, Jing; Sun, Lishan; Liu, Xiaoming; Rong, Jian

    2017-11-01

    The rapid increase in the volume of subway passengers in Beijing has necessitated higher requirements for the safety and efficiency of subway corridors. Speed dispersion is an important factor that affects safety and efficiency. This paper aims to analyze the management control methods for reducing pedestrian speed dispersion in subways. The characteristics of the speed dispersion of pedestrian flow were analyzed according to field videos. The control measurements which were conducted by placing traffic signs, yellow marking, and guardrail were proposed to alleviate speed dispersion. The results showed that the methods of placing traffic signs, yellow marking, and a guardrail improved safety and efficiency for all four volumes of pedestrian traffic flow, and the best-performing control measurement was guardrails. Furthermore, guardrails' optimal position and design measurements were explored. The research findings provide a rationale for subway managers in optimizing pedestrian traffic flow in subway corridors. Copyright © 2017. Published by Elsevier Ltd.

  2. Predicting Free Flow Speed and Crash Risk of Bicycle Traffic Flow Using Artificial Neural Network Models

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2015-01-01

    Full Text Available Free flow speed is a fundamental measure of traffic performance and has been found to affect the severity of crash risk. However, the previous studies lack analysis and modelling of impact factors on bicycles’ free flow speed. The main focus of this study is to develop multilayer back propagation artificial neural network (BPANN models for the prediction of free flow speed and crash risk on the separated bicycle path. Four different models with considering different combinations of input variables (e.g., path width, traffic condition, bicycle type, and cyclists’ characteristics were developed. 459 field data samples were collected from eleven bicycle paths in Hangzhou, China, and 70% of total samples were used for training, 15% for validation, and 15% for testing. The results show that considering the input variables of bicycle types and characteristics of cyclists will effectively improve the accuracy of the prediction models. Meanwhile, the parameters of bicycle types have more significant effect on predicting free flow speed of bicycle compared to those of cyclists’ characteristics. The findings could contribute for evaluation, planning, and management of bicycle safety.

  3. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2009-01-01

    This book introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. For the computation of turbulent compressible flows, current methods of averaging and filtering are presented so that the reader is exposed to a consistent development of applicable equation sets for both the mean or resolved fields as well as the transport equations for the turbulent stress field. For the measurement of turbulent compressible flows, current techniques ranging from hot-wire anemometry to PIV are evaluated and limitations assessed. Characterizing dynamic features of free shear flows, including jets, mixing layers and wakes, and wall-bounded flows, including shock-turbulence and shock boundary-layer interactions, obtained from computations, experiments and simulations are discussed. Key features: * Describes prediction methodologies in...

  4. Load flow analysis for variable speed offshore wind farms

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhao, Menghua; Blaabjerg, Frede

    2009-01-01

    factors such as the different wind farm configurations, the control of wind turbines and the power losses of pulse width modulation converters are considered. The DC/DC converter model is proposed and integrated into load flow algorithm by modifying the Jacobian matrix. Two iterative methods are proposed...... and integrated into the load flow algorithm: one takes into account the control strategy of converters and the other considers the power losses of converters. In addition, different types of variable speed wind turbine systems with different control methods are investigated. Finally, the method is demonstrated......A serial AC-DC integrated load flow algorithm for variable speed offshore wind farms is proposed. It divides the electrical system of a wind farm into several local networks, and different load flow methods are used for these local networks sequentially. This method is fast, more accurate, and many...

  5. High-speed solar wind flow parameters at 1 AU

    International Nuclear Information System (INIS)

    Feldman, W.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.

    1976-01-01

    To develop a set of constraints for theories of solar wind high-speed streams, a detailed study was made of the fastest streams observed at 1 AU during the time period spanning March 1971 through July 1974. Streams were accepted for study only if (1) the maximum speed exceeded 650 km s -1 ; (2) effects of stream-stream dynamical interaction on the flow parameters could be safely separated from the intrinsic characteristics of the high-speed regions; (3) the full width at half maximum (FWHM) of the stream when mapped back to 20 solar radii by using a constant speed approximation was greater than 45degree in Carrington longitude; and (4) there were no obvious solar-activity-induced contaminating effects. Nineteen streams during this time interval satisfied these criteria. Average parameters at 1 AU for those portions of these streams above V=650 km s -1 are given.Not only is it not presently known why electrons are significantly cooler than the protons within high-speed regions, but also observed particle fluxes and convected energy fluxes for speed greater than 650 km s -1 are substantially larger than those values predicted by any of the existing theories of solar wind high-speed streams. More work is therefore needed in refining present solar wind models to see whether suitable modifications and/or combinations of existing theories based on reasonable coronal conditions can accommodate the above high-speed flow parameters

  6. Numerical analysis of high-speed liquid lithium free-surface flow

    International Nuclear Information System (INIS)

    Gordeev, Sergej; Heinzel, Volker; Stieglitz, Robert

    2012-01-01

    Highlights: ► The free surface behavior of a high speed lithium jet is investigated by means of a CFD LES analysis. ► The study is aiming to validate adequate LES technique. ► The Osaka University experiments with liquid lithium jet have been simulated. ► Four cases with jet flow velocities of 4, 9, 13 and 15 m/s are analyzed. ► Calculation results show a good qualitative and a quantitative agreement with the experimental data. - Abstract: The free-surface stability of the target of the International Fusion Material Irradiation Facility (IFMIF) is one of the crucial issues, since the spatio-temporal behavior of the free-surface determines the neutron flux to be generated. This article investigates the relation between the evolution of a wall boundary layer in a convergent nozzle and the free surface shape of a high speed lithium jet by means of a CFD LES analysis using the Osaka University experiments. The study is aiming to validate adequate LES technique to analyze the individual flow phenomena observed. Four cases with jet flow velocities of 4, 9, 13 and 15 m/s are analyzed. First analyses of calculation results show that the simulation exhibits a good qualitative and a quantitative agreement with the experimental data, which allows in the future a more realistic prediction of the IFMIF target behavior.

  7. High speed motion neutron radiography of two-phase flow

    International Nuclear Information System (INIS)

    Robinson, A.H.; Wang, S.L.

    1983-01-01

    Current research in the area of two-phase flow utilizes a wide variety of sensing devices, but some limitations exist on the information which can be obtained. Neutron radiography is a feasible alternative to ''see'' the two-phase flow. A system to perform neutron radiographic analysis of dynamic events which occur on the order of several milliseconds has been developed at Oregon State University. Two different methods have been used to radiograph the simulated two-phase flow. These are pulsed, or ''flash'' radiography, and high speed movie neutron radiography. The pulsed method serves as a ''snap-shot'' with an exposure time ranging from 10 to 20 milliseconds. In high speed movie radiography, a scintillator is used to convert neutrons into light which is enhanced by an optical intensifier and then photographed by a high speed camera. Both types of radiography utilize the pulsing capability of the OSU TRIGA reactor. The principle difficulty with this type of neutron radiography is the fogging of the image due to the large amount of scattering in the water. This difficulty can be overcome by using thin regions for the two-phase flow or using heavy water instead of light water. The results obtained in this paper demonstrate the feasibility of using neutron radiography to obtain data in two-phase flow situations. Both movies and flash radiographs have been obtained of air bubbles in water and boiling from a heater element. The neutron radiographs of the boiling element show both nucleate boiling and film boiling. (Auth.)

  8. Inductive flow meter for measuring the speed of flow and gas volume contained in a flow of liquid metal

    International Nuclear Information System (INIS)

    Mueller, S.

    1980-01-01

    The speed of flow of the sodium is measured in two closely adjacent flow crossections using pairs of electrodes in the field of two disc-shaped permanent magnets made of AlNiCo 450, by means of measurements of running time of speed fluctuations. The result of the measurement is independent of the temperature of the sensor and the temperature of the sodium. The same arrangement makes it possible to determine the proportion by volume of the fission gas in sodium with a limiting freequency of several kHz. (DG) [de

  9. A new phase coding method using a slice selection gradient for high speed flow velocity meaurements in NMR tomography

    International Nuclear Information System (INIS)

    Oh, C.H.; Cho, Z.H.; California Univ., Irvine

    1986-01-01

    A new phase coding method using a selection gradient for high speed NMR flow velocity measurements is introduced and discussed. To establish a phase-velocity relationship of flow under the slice selection gradient and spin-echo RF pulse, the Bloch equation was numerically solved under the assumption that only one directional flow exists, i.e. in the direction of slice selection. Details of the numerical solution of the Bloch equation and techniques related to the numerical computations are also given. Finally, using the numerical calculation, high speed flow velocity measurement was attempted and found to be in good agreement with other complementary controlled measurements. (author)

  10. Modeling of high speed micro rotors in moderate flow confinement

    NARCIS (Netherlands)

    Dikmen, E.; van der Hoogt, Peter; Aarts, Ronald G.K.M.; Sas, P.; Bergen, B.

    2008-01-01

    The recent developments in high speed micro rotating machinery lead to the need for multiphysical modeling of the rotor and the surrounding medium. In this study, thermal and flow induced effects on rotor dynamics of geometries with moderate flow confinement are studied. The structure is modeled via

  11. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system

    Science.gov (United States)

    Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang

    2018-04-01

    An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform.

  12. Distributed flow sensing for closed-loop speed control of a flexible fish robot.

    Science.gov (United States)

    Zhang, Feitian; Lagor, Francis D; Yeo, Derrick; Washington, Patrick; Paley, Derek A

    2015-10-23

    Flexibility plays an important role in fish behavior by enabling high maneuverability for predator avoidance and swimming in turbulent flow. This paper presents a novel flexible fish robot equipped with distributed pressure sensors for flow sensing. The body of the robot is molded from soft, hyperelastic material, which provides flexibility. Its Joukowski-foil shape is conducive to modeling the fluid analytically. A quasi-steady potential-flow model is adopted for real-time flow estimation, whereas a discrete-time vortex-shedding flow model is used for higher-fidelity simulation. The dynamics for the flexible fish robot yield a reduced model for one-dimensional swimming. A recursive Bayesian filter assimilates pressure measurements to estimate flow speed, angle of attack, and foil camber. The closed-loop speed-control strategy combines an inverse-mapping feedforward controller based on an average model derived for periodic actuation of angle-of-attack and a proportional-integral feedback controller utilizing the estimated flow information. Simulation and experimental results are presented to show the effectiveness of the estimation and control strategy. The paper provides a systematic approach to distributed flow sensing for closed-loop speed control of a flexible fish robot by regulating the flapping amplitude.

  13. Study on transient hydrodynamic performance and cavitation characteristic of high-speed mixed-flow pump

    International Nuclear Information System (INIS)

    Chen, T; Liu, Y L; Sun, Y B; Wang, L Q; Wu, D Z

    2013-01-01

    In order to analyse the hydrodynamic performance and cavitation characteristic of a high-speed mixed-flow pump during transient operations, experimental studies were carried out. The transient hydrodynamic performance and cavitation characteristics of the mixed-flow pump with guide vane during start-up operation processes were tested on the pump performance test-bed. Performance tests of the pump were carried out under various inlet pressures and speed-changing operations. The real-time instantaneous external characteristics such as rotational speed, hydraulic head, flow rate, suction pressure and discharge pressure of the pump were measured. Based on the experimental results, the effect of fluid acceleration on the hydrodynamic performances and cavitation characteristics of the mixed-flow pump were analysed and evaluated

  14. On-Chip Enucleation of Bovine Oocytes using Microrobot-Assisted Flow-Speed Control

    Directory of Open Access Journals (Sweden)

    Akihiko Ichikawa

    2013-06-01

    Full Text Available In this study, we developed a microfluidic chip with a magnetically driven microrobot for oocyte enucleation. A microfluidic system was specially designed for enucleation, and the microrobot actively controls the local flow-speed distribution in the microfluidic chip. The microrobot can adjust fluid resistances in a channel and can open or close the channel to control the flow distribution. Analytical modeling was conducted to control the fluid speed distribution using the microrobot, and the model was experimentally validated. The novelties of the developed microfluidic system are as follows: (1 the cutting speed improved significantly owing to the local fluid flow control; (2 the cutting volume of the oocyte can be adjusted so that the oocyte undergoes less damage; and (3 the nucleus can be removed properly using the combination of a microrobot and hydrodynamic forces. Using this device, we achieved a minimally invasive enucleation process. The average enucleation time was 2.5 s and the average removal volume ratio was 20%. The proposed new system has the advantages of better operation speed, greater cutting precision, and potential for repeatable enucleation.

  15. Honeybees' speed depends on dorsal as well as lateral, ventral and frontal optic flows.

    Directory of Open Access Journals (Sweden)

    Geoffrey Portelli

    Full Text Available Flying insects use the optic flow to navigate safely in unfamiliar environments, especially by adjusting their speed and their clearance from surrounding objects. It has not yet been established, however, which specific parts of the optical flow field insects use to control their speed. With a view to answering this question, freely flying honeybees were trained to fly along a specially designed tunnel including two successive tapering parts: the first part was tapered in the vertical plane and the second one, in the horizontal plane. The honeybees were found to adjust their speed on the basis of the optic flow they perceived not only in the lateral and ventral parts of their visual field, but also in the dorsal part. More specifically, the honeybees' speed varied monotonically, depending on the minimum cross-section of the tunnel, regardless of whether the narrowing occurred in the horizontal or vertical plane. The honeybees' speed decreased or increased whenever the minimum cross-section decreased or increased. In other words, the larger sum of the two opposite optic flows in the horizontal and vertical planes was kept practically constant thanks to the speed control performed by the honeybees upon encountering a narrowing of the tunnel. The previously described ALIS ("AutopiLot using an Insect-based vision System" model nicely matches the present behavioral findings. The ALIS model is based on a feedback control scheme that explains how honeybees may keep their speed proportional to the minimum local cross-section of a tunnel, based solely on optic flow processing, without any need for speedometers or rangefinders. The present behavioral findings suggest how flying insects may succeed in adjusting their speed in their complex foraging environments, while at the same time adjusting their distance not only from lateral and ventral objects but also from those located in their dorsal visual field.

  16. Flow visualization of bubble behavior under two-phase natural circulation flow conditions using high speed digital camera

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley F.; Su, Jian, E-mail: wlemos@con.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose L.H., E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2013-07-01

    The The present work aims at identifying flow patterns and measuring interfacial parameters in two-phase natural circulation by using visualization technique with high-speed digital camera. The experiments were conducted in the Natural Circulation Circuit (CCN), installed at Nuclear Engineering Institute/CNEN. The thermo-hydraulic circuit comprises heater, heat exchanger, expansion tank, the pressure relief valve and pipes to interconnect the components. A glass tube is installed at the midpoint of the riser connected to the heater outlet. The natural circulation circuit is complemented by acquisition system of values of temperatures, flow and graphic interface. The instrumentation has thermocouples, volumetric flow meter, rotameter and high-speed digital camera. The experimental study is performed through analysis of information from measurements of temperatures at strategic points along the hydraulic circuit, besides natural circulation flow rates. The comparisons between analytical and experimental values are validated by viewing, recording and processing of the images for the flows patterns. Variables involved in the process of identification of flow regimes, dimensionless parameters, the phase velocity of the flow, initial boiling point, the phenomenon of 'flashing' pre-slug flow type were obtained experimentally. (author)

  17. Flow visualization of bubble behavior under two-phase natural circulation flow conditions using high speed digital camera

    International Nuclear Information System (INIS)

    Lemos, Wanderley F.; Su, Jian; Faccini, Jose L.H.

    2013-01-01

    The The present work aims at identifying flow patterns and measuring interfacial parameters in two-phase natural circulation by using visualization technique with high-speed digital camera. The experiments were conducted in the Natural Circulation Circuit (CCN), installed at Nuclear Engineering Institute/CNEN. The thermo-hydraulic circuit comprises heater, heat exchanger, expansion tank, the pressure relief valve and pipes to interconnect the components. A glass tube is installed at the midpoint of the riser connected to the heater outlet. The natural circulation circuit is complemented by acquisition system of values of temperatures, flow and graphic interface. The instrumentation has thermocouples, volumetric flow meter, rotameter and high-speed digital camera. The experimental study is performed through analysis of information from measurements of temperatures at strategic points along the hydraulic circuit, besides natural circulation flow rates. The comparisons between analytical and experimental values are validated by viewing, recording and processing of the images for the flows patterns. Variables involved in the process of identification of flow regimes, dimensionless parameters, the phase velocity of the flow, initial boiling point, the phenomenon of 'flashing' pre-slug flow type were obtained experimentally. (author)

  18. Positivity-preserving space-time CE/SE scheme for high speed flows

    KAUST Repository

    Shen, Hua

    2017-03-02

    We develop a space-time conservation element and solution element (CE/SE) scheme using a simple slope limiter to preserve the positivity of the density and pressure in computations of inviscid and viscous high-speed flows. In general, the limiter works with all existing CE/SE schemes. Here, we test the limiter on a central Courant number insensitive (CNI) CE/SE scheme implemented on hybrid unstructured meshes. Numerical examples show that the proposed limiter preserves the positivity of the density and pressure without disrupting the conservation law; it also improves robustness without losing accuracy in solving high-speed flows.

  19. Positivity-preserving space-time CE/SE scheme for high speed flows

    KAUST Repository

    Shen, Hua; Parsani, Matteo

    2017-01-01

    We develop a space-time conservation element and solution element (CE/SE) scheme using a simple slope limiter to preserve the positivity of the density and pressure in computations of inviscid and viscous high-speed flows. In general, the limiter works with all existing CE/SE schemes. Here, we test the limiter on a central Courant number insensitive (CNI) CE/SE scheme implemented on hybrid unstructured meshes. Numerical examples show that the proposed limiter preserves the positivity of the density and pressure without disrupting the conservation law; it also improves robustness without losing accuracy in solving high-speed flows.

  20. Flow and free running speed characterization of dental air turbine handpieces.

    Science.gov (United States)

    Dyson, J E; Darvell, B W

    1999-09-01

    Dental air turbine handpieces have been widely used in clinical dentistry for over 30 years, yet little work has been reported on their performance. A few studies have been concerned with measurement of speed (i.e. rotation rate), torque and power performance of these devices, but neither investigations of functional relationships between controlling variables nor theory dealing specifically with this class of turbine have been reported. This has hindered the development of satisfactory methods of handpiece specification and of testing dental rotary cutting tools. It was the intention of the present work to remedy that deficiency. Measurements of pressure, temperature, gas flow rate and rotation rate were made with improved accuracy and precision for 14 ball bearing turbine handpieces on several gases. Functional relationships between gas properties, supply pressure, flow rate, turbine design factors and free running speed were identified and equations describing these aspects of behaviour of this class of turbine developed. The rotor radius, through peripheral Mach number, was found to be a major determinant of speed performance. In addition, gas flow was found to be an important limiting factor through the effect of choke. Each dental handpiece can be treated as a simple orifice of a characteristic cross-sectional area. Free running speed can be explained in terms of gas properties and pressure, with allowance for a design-specific performance coefficient.

  1. Experimental Comparison of Speed : Fuel-flow and Speed-area Controls on a Turbojet Engine for Small Step Disturbances

    Science.gov (United States)

    Wenzel, L M; Hart, C E; Craig, R T

    1957-01-01

    Optimum proportional-plus-integral control settings for speed - fuel-flow control, determined by minimization of integral criteria, correlated well with analytically predicted optimum settings. Engine response data are given for a range of control settings around the optimum. An inherent nonlinearity in the speed-area loop necessitated the use of nonlinear controls. Response data for two such nonlinear control schemes are presented.

  2. Flow Studies of Decelerators at Supersonic Speeds

    Science.gov (United States)

    1959-01-01

    Wind tunnel tests recorded the effect of decelerators on flow at various supersonic speeds. Rigid parachute models were tested for the effects of porosity, shroud length, and number of shrouds. Flexible model parachutes were tested for effects of porosity and conical-shaped canopy. Ribbon dive brakes on a missile-shaped body were tested for effect of tension cable type and ribbon flare type. The final test involved a plastic sphere on riser lines.

  3. Analysis of Metal Flow Behavior and Residual Stress Formation of Complex Functional Profiles under High-Speed Cold Roll-Beating

    Directory of Open Access Journals (Sweden)

    Fengkui Cui

    2018-01-01

    Full Text Available To obtain a good surface layer performance of the complex functional profile during the high-speed cold roll-beating forming process, this paper analyzed the metal plastic flow and residual stress-formed mechanism by using a theoretical model of the metal flow and residual stress generation. By using simulation software, the cold roll-beating forming process of a spline shaft was simulated and analyzed. The metal flow and residual stress formation law in the motion were researched. In a practical experiment, the changes in the grains in the spline tooth profile section and the residual stress distribution on the tooth profile were studied. A microcorrespondence relationship was established between the metal plastic flow and the residual stress generation. The conclusions indicate that the rate at which the metal flow decreases changes gradually at different metal layers. The residual stress value is directly related to the plastic flow difference. As the roll-beating speed increases, the uneven degree of plastic deformation at the workpiece surface increases, and the residual stress in the tooth profile is generally greater. At the same roll-beating speed, the rate change trend of the metal flow decreases gradually from the surface to the inner layer and from the dedendum to the addendum. The residual stress distribution on the surface of the tooth profile decreases from the dedendum to the addendum. These findings provide a basis and guidance for the controlled use of residual stress, obtaining better surface layer quality in the high-speed cold roll-beating process of the complex functional profile.

  4. Effect of variations in air speed on cross-flow cylinder frosting

    International Nuclear Information System (INIS)

    Monaghan, P.F.; Cassidy, S.F.; Oosthuizen, P.H.

    1990-01-01

    In this paper the effect of fluctuating air speed on frost growth and heat transfer to a cylinder in cross-flow is discussed. Frost-growth of up to 20 hours is simulated using an experimentally validated finite difference computer model. Graphical results are presented for frost mass, frost depth, frost surface temperature and heat transfer versus time under both steady and fluctuating air speed conditions. In general, it is found that a thinner, more dense frost layer develops under fluctuating air speed conditions giving improved heat transfer. This phenomenon may be explained by the increased frequency of frost surface thaw/freeze cycles when fluctuating air speed conditions prevail

  5. Numerical solution of recirculating flow by a simple finite element recursion relation

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D W; Cooper, R E

    1980-01-01

    A time-split finite element recursion relation, based on linear basis functions, is used to solve the two-dimensional equations of motion. Recirculating flow in a rectangular cavity and free convective flow in an enclosed container are analyzed. The relation has the advantage of finite element accuracy and finite difference speed and simplicity. Incorporating dissipation parameters in the functionals decreases numerical dispersion and improves phase lag.

  6. Numerical Simulation of 3D Solid-Liquid Turbulent Flow in a Low Specific Speed Centrifugal Pump: Flow Field Analysis

    Directory of Open Access Journals (Sweden)

    Baocheng Shi

    2014-06-01

    Full Text Available For numerically simulating 3D solid-liquid turbulent flow in low specific speed centrifugal pumps, the iteration convergence problem caused by complex internal structure and high rotational speed of pump is always a problem for numeral simulation researchers. To solve this problem, the combination of three measures of dynamic underrelaxation factor adjustment, step method, and rotational velocity control means according to residual curves trends of operating parameters was used to improve the numerical convergence. Numeral simulation of 3D turbulent flow in a low specific speed solid-liquid centrifugal pump was performed, and the results showed that the improved solution strategy is greatly helpful to the numerical convergence. Moreover, the 3D turbulent flow fields in pumps have been simulated for the bottom ash-particles with the volume fraction of 10%, 20%, and 30% at the same particle diameter of 0.1 mm. The two-phase calculation results are compared with those of single-phase clean water flow. The calculated results gave the main region of the abrasion of the impeller and volute casing and improve the hydraulic design of the impeller in order to decrease the abrasion and increase the service life of the pump.

  7. Optical Flow-Field Techniques Used for Measurements in High-Speed Centrifugal Compressors

    Science.gov (United States)

    Skoch, Gary J.

    1999-01-01

    The overall performance of a centrifugal compressor depends on the performance of the impeller and diffuser as well as on the interactions occurring between these components. Accurate measurements of the flow fields in each component are needed to develop computational models that can be used in compressor design codes. These measurements must be made simultaneously over an area that covers both components so that researchers can understand the interactions occurring between the two components. Optical measurement techniques are being used at the NASA Lewis Research Center to measure the velocity fields present in both the impeller and diffuser of a 4:1 pressure ratio centrifugal compressor operating at several conditions ranging from design flow to surge. Laser Doppler Velocimetry (LDV) was used to measure the intrablade flows present in the impeller, and the results were compared with analyses obtained from two three-dimensional viscous codes. The development of a region of low throughflow velocity fluid within this high-speed impeller was examined and compared with a similar region first observed in a large low-speed centrifugal impeller at Lewis. Particle Image Velocimetry (PIV) is a relatively new technique that has been applied to measuring the diffuser flow fields. PIV can collect data rapidly in the diffuser while avoiding the light-reflection problems that are often encountered when LDV is used. The Particle Image Velocimeter employs a sheet of pulsed laser light that is introduced into the diffuser in a quasi-radial direction through an optical probe inserted near the diffuser discharge. The light sheet is positioned such that its centerline is parallel to the hub and shroud surfaces and such that it is parallel to the diffuser vane, thereby avoiding reflections from the solid surfaces. Seed particles small enough to follow the diffuser flow are introduced into the compressor at an upstream location. A high-speed charge-coupled discharge (CCD) camera is

  8. High-speed flow visualization in a pump-turbine under off-design operating conditions

    International Nuclear Information System (INIS)

    Hasmatuchi, V; Roth, S; Botero, F; Avellan, F; Farhat, M

    2010-01-01

    The flow hydrodynamics in a low specific speed radial pump-turbine reduced scale model is experimentally investigated under off-design operating conditions in generating mode. Wall pressure measurements, in the stator, synchronized with high-speed flow visualizations in the vaneless space between the impeller and the guide vanes using air bubbles injection are performed. When starting from the best efficiency point and increasing the runner speed, a significant increase of the pressure fluctuations is observed mainly in channels between wicket gates. The spectral analysis shows a rise of one stall cell, rotating with about 70% of the impeller frequency, at runaway, which further increases as the zero discharge condition is approached. Then a specific image processing technique is detailed and applied to create a synthetic instantaneous view of the flow pattern on the entire guide vanes circumference for an operating point in turbine-brake mode, where backflow and vortices accompany the stall passage.

  9. Dust mobilization by high-speed vapor flow under LOVA

    International Nuclear Information System (INIS)

    Matsuki, K.; Suzuki, S.; Ebara, S.; Yokomine, T.; Shimizu, A.

    2006-01-01

    In the safety analysis on the International Thermonuclear Experimental Reactor (ITER), the ingress of coolant (ICE) event and the loss of vacuum (LOVA) event are considered as one of the most serious accident. On the assumption of LOVA occurring after ICE, it is inferable that activated dusts are under the wet condition. Transport behavior of in-vessel activated dusts under the wet condition is not well understood in comparison with the dry case. In this study, we experimentally investigated the entrainment behavior of dust under LOVA after ICE. We measured dust entrainment by high-speed humid airflow with phase change. Graphite dusts and glass beads are used as substitutions for mobile inventory. The relations among the relative humidity, the entrainment of particles in the exhaust gas flow and the adhesion rate of dust particles on the pipe wall have been made clear, as has the distribution profile of dust deposition on the pipe wall. The entrainment ratio decreased as the relative humidity increased and increased as the initial pressure difference increased

  10. Discussion of various flow calculation methods in high-speed centrifuges

    International Nuclear Information System (INIS)

    Louvet, P.; Cortet, C.

    1979-01-01

    The flow in high-speed centrifuges for the separation of uranium isotopes has been studied in the frame of linearized theory for long years. Three different methods have been derived for viscous compressible flow with small Ekman numbers and high Mach numbers: - numerical solution of flow equation by finite element method and Gaussian elimination (Centaure Code), - boundary layer theory using matched asymptotic expansions, - the so called eigenfunction method slightly modified. The mathematical assumptions, the easiness and the accuracy of the computations are compared. Numerical applications are performed successively for thermal countercurrent centrifuges with or without injections

  11. Using wind speed from a blade-mounted flow sensor for power and load assessment on modern wind turbines

    DEFF Research Database (Denmark)

    Pedersen, Mads M.; Larsen, Torben J.; Madsen, Helge Aa

    2017-01-01

    In this paper an alternative method to evaluate power performance and loads on wind turbines using a blade-mounted flow sensor is investigated. The hypothesis is that the wind speed measured at the blades has a high correlation with the power and loads such that a power or load assessment can...... be performed from a few hours or days of measurements. In the present study a blade-mounted five-hole pitot tube is used as the flow sensor as an alternative to the conventional approach, where the reference wind speed is either measured at a nearby met mast or on the nacelle using lidar technology or cup...... anemometers. From the flow sensor measurements, an accurate estimate of the wind speed at the rotor plane can be obtained. This wind speed is disturbed by the presence of the wind turbine, and it is therefore different from the free-flow wind speed. However, the recorded wind speed has a high correlation...

  12. Preconditioned conjugate-gradient methods for low-speed flow calculations

    Science.gov (United States)

    Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing

    1993-01-01

    An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations is integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the Lower-Upper Successive Symmetric Over-Relaxation iterative scheme is more efficient than a preconditioner based on Incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional Line Gauss-Seidel Relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.

  13. Preconditioned Conjugate Gradient methods for low speed flow calculations

    Science.gov (United States)

    Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing

    1993-01-01

    An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations are integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and the convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the lower-upper (L-U)-successive symmetric over-relaxation iterative scheme is more efficient than a preconditioner based on incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional line Gauss-Seidel relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.

  14. Development and numerical analysis of low specific speed mixed-flow pump

    International Nuclear Information System (INIS)

    Li, H F; Huo, Y W; Pan, Z B; Zhou, W C; He, M H

    2012-01-01

    With the development of the city, the market of the mixed flow pump with large flux and high head is prospect. The KSB Shanghai Pump Co., LTD decided to develop low speed specific speed mixed flow pump to meet the market requirements. Based on the centrifugal pump and axial flow pump model, aiming at the characteristics of large flux and high head, a new type of guide vane mixed flow pump was designed. The computational fluid dynamics method was adopted to analyze the internal flow of the new type model and predict its performances. The time-averaged Navier-Stokes equations were closed by SST k-ω turbulent model to adapt internal flow of guide vane with larger curvatures. The multi-reference frame(MRF) method was used to deal with the coupling of rotating impeller and static guide vane, and the SIMPLEC method was adopted to achieve the coupling solution of velocity and pressure. The computational results shows that there is great flow impact on the head of vanes at different working conditions, and there is great flow separation at the tailing of the guide vanes at different working conditions, and all will affect the performance of pump. Based on the computational results, optimizations were carried out to decrease the impact on the head of vanes and flow separation at the tailing of the guide vanes. The optimized model was simulated and its performance was predicted. The computational results show that the impact on the head of vanes and the separation at the tailing of the guide vanes disappeared. The high efficiency of the optimized pump is wide, and it fit the original design destination. The newly designed mixed flow pump is now in modeling and its experimental performance will be getting soon.

  15. Development and numerical analysis of low specific speed mixed-flow pump

    Science.gov (United States)

    Li, H. F.; Huo, Y. W.; Pan, Z. B.; Zhou, W. C.; He, M. H.

    2012-11-01

    With the development of the city, the market of the mixed flow pump with large flux and high head is prospect. The KSB Shanghai Pump Co., LTD decided to develop low speed specific speed mixed flow pump to meet the market requirements. Based on the centrifugal pump and axial flow pump model, aiming at the characteristics of large flux and high head, a new type of guide vane mixed flow pump was designed. The computational fluid dynamics method was adopted to analyze the internal flow of the new type model and predict its performances. The time-averaged Navier-Stokes equations were closed by SST k-ω turbulent model to adapt internal flow of guide vane with larger curvatures. The multi-reference frame(MRF) method was used to deal with the coupling of rotating impeller and static guide vane, and the SIMPLEC method was adopted to achieve the coupling solution of velocity and pressure. The computational results shows that there is great flow impact on the head of vanes at different working conditions, and there is great flow separation at the tailing of the guide vanes at different working conditions, and all will affect the performance of pump. Based on the computational results, optimizations were carried out to decrease the impact on the head of vanes and flow separation at the tailing of the guide vanes. The optimized model was simulated and its performance was predicted. The computational results show that the impact on the head of vanes and the separation at the tailing of the guide vanes disappeared. The high efficiency of the optimized pump is wide, and it fit the original design destination. The newly designed mixed flow pump is now in modeling and its experimental performance will be getting soon.

  16. Virtual Refrigerant Mass Flow and Power Sensors for Variable-Speed Compressors

    OpenAIRE

    Kim, Woohyun; Braun, James E.

    2012-01-01

    The use of variable-speed compressors in heat pumps and air conditioners has increased in recent years in order to improve comfort and energy efficiency. At the same time, there is a trend towards embedding more sensors in this type of equipment to facilitate real-time energy monitoring and diagnostics. Although compressor mass flow rate and power consumption are useful indices for performance monitoring and diagnostics, they are expensive to measure. The virtual variable-speed compressor sen...

  17. Online Speed Scaling Based on Active Job Count to Minimize Flow Plus Energy

    DEFF Research Database (Denmark)

    Lam, Tak-Wah; Lee, Lap Kei; To, Isaac K. K.

    2013-01-01

    This paper is concerned with online scheduling algorithms that aim at minimizing the total flow time plus energy usage. The results are divided into two parts. First, we consider the well-studied “simple” speed scaling model and show how to analyze a speed scaling algorithm (called AJC) that chan...

  18. the factors that affect the free flow speed on an arterial in ilorin, nigeria

    African Journals Online (AJOL)

    user

    lower average free flow speed of commercial saloon cars on wet pavement than on dry pavement, with 12% percentage ... average space mean speed in a low volume traffic stream when ..... travel way width and number of traffic control units.

  19. Direct numerical simulation of laminar-turbulent flow over a flat plate at hypersonic flow speeds

    Science.gov (United States)

    Egorov, I. V.; Novikov, A. V.

    2016-06-01

    A method for direct numerical simulation of a laminar-turbulent flow around bodies at hypersonic flow speeds is proposed. The simulation is performed by solving the full three-dimensional unsteady Navier-Stokes equations. The method of calculation is oriented to application of supercomputers and is based on implicit monotonic approximation schemes and a modified Newton-Raphson method for solving nonlinear difference equations. By this method, the development of three-dimensional perturbations in the boundary layer over a flat plate and in a near-wall flow in a compression corner is studied at the Mach numbers of the free-stream of M = 5.37. In addition to pulsation characteristic, distributions of the mean coefficients of the viscous flow in the transient section of the streamlined surface are obtained, which enables one to determine the beginning of the laminar-turbulent transition and estimate the characteristics of the turbulent flow in the boundary layer.

  20. Diameter-speed relation of sprite streamers

    International Nuclear Information System (INIS)

    Kanmae, T; Stenbaek-Nielsen, H C; McHarg, M G; Haaland, R K

    2012-01-01

    Propagation and splitting of sprite streamers has been observed at high temporal and spatial resolution using two intensified high-speed CMOS cameras recording at 10 000 and 16 000 frames per second. Concurrent video recordings from a remote site provided data for triangulation allowing us to determine accurate altitude scales for the sprites. Diameters and speeds of the sprite streamers were measured from the high-speed images, and the diameters were scaled to the reduced diameters based on the triangulated locations. The sprite streamers with larger reduced diameter move faster than those with smaller diameter; the relation between the reduced diameter and speed is roughly linear. The reduced diameters at ≈65-70 km altitude are larger than streamer diameters measured at ground pressure in laboratory discharges indicating a deviation from the similarity law possibly due to the effects of the photoionization and an expansion of the streamer head along its propagation over a long distance. The reduced diameter and speed of the sprite streamers agree well with the diameter-velocity relation proposed by Naidis (2009 Phys. Rev. E 79 057401), and the peak electric field of the sprite streamers is estimated to be approximately 3-5 times the breakdown threshold field. (paper)

  1. Turbulent Scalar Transport Model Validation for High Speed Propulsive Flows, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort entails the validation of a RANS turbulent scalar transport model (SFM) for high speed propulsive flows, using new experimental data sets and...

  2. Generating pulsatility by pump speed modulation with continuous-flow total artificial heart in awake calves.

    Science.gov (United States)

    Fukamachi, Kiyotaka; Karimov, Jamshid H; Sunagawa, Gengo; Horvath, David J; Byram, Nicole; Kuban, Barry D; Dessoffy, Raymond; Sale, Shiva; Golding, Leonard A R; Moazami, Nader

    2017-12-01

    The purpose of this study was to evaluate the effects of sinusoidal pump speed modulation of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) on hemodynamics and pump flow in an awake chronic calf model. The sinusoidal pump speed modulations, performed on the day of elective sacrifice, were set at ±15 and ± 25% of mean pump speed at 80 bpm in four awake calves with a CFTAH. The systemic and pulmonary arterial pulse pressures increased to 12.0 and 12.3 mmHg (±15% modulation) and to 15.9 and 15.7 mmHg (±25% modulation), respectively. The pulsatility index and surplus hemodynamic energy significantly increased, respectively, to 1.05 and 1346 ergs/cm at ±15% speed modulation and to 1.51 and 3381 ergs/cm at ±25% speed modulation. This study showed that it is feasible to generate pressure pulsatility with pump speed modulation; the platform is suitable for evaluating the physiologic impact of pulsatility and allows determination of the best speed modulations in terms of magnitude, frequency, and profiles.

  3. A Real-Time Method to Estimate Speed of Object Based on Object Detection and Optical Flow Calculation

    Science.gov (United States)

    Liu, Kaizhan; Ye, Yunming; Li, Xutao; Li, Yan

    2018-04-01

    In recent years Convolutional Neural Network (CNN) has been widely used in computer vision field and makes great progress in lots of contents like object detection and classification. Even so, combining Convolutional Neural Network, which means making multiple CNN frameworks working synchronously and sharing their output information, could figure out useful message that each of them cannot provide singly. Here we introduce a method to real-time estimate speed of object by combining two CNN: YOLOv2 and FlowNet. In every frame, YOLOv2 provides object size; object location and object type while FlowNet providing the optical flow of whole image. On one hand, object size and object location help to select out the object part of optical flow image thus calculating out the average optical flow of every object. On the other hand, object type and object size help to figure out the relationship between optical flow and true speed by means of optics theory and priori knowledge. Therefore, with these two key information, speed of object can be estimated. This method manages to estimate multiple objects at real-time speed by only using a normal camera even in moving status, whose error is acceptable in most application fields like manless driving or robot vision.

  4. Burst Speed of Wild Fishes under High-Velocity Flow Conditions Using Stamina Tunnel with Natural Guidance System in River

    Science.gov (United States)

    Izumi, Mattashi; Yamamoto, Yasuyuki; Yataya, Kenichi; Kamiyama, Kohhei

    Swimming experiments were conducted on wild fishes in a natural guidance system stamina tunnel (cylindrical pipe) installed in a fishway of a local river under high-velocity flow conditions (tunnel flow velocity : 211 to 279 cm·s-1). In this study, the swimming characteristics of fishes were observed. The results show that (1) the swimming speeds of Tribolodon hakonensis (Japanese dace), Phoxinus lagowshi steindachneri (Japanese fat-minnow), Plecoglossus altivelis (Ayu), and Zacco platypus (Pale chub) were in proportion to their body length under identical water flow velocity conditions; (2) the maximum burst speed of Japanese dace and Japanese fat-minnow (measuring 4 to 6 cm in length) was 262 to 319 cm·s-1 under high flow velocity conditions (225 to 230 cm·s-1), while the maximum burst speed of Ayu and Pale chub (measuring 5 cm to 12 cm in length) was 308 to 355 cm·s-1 under high flow velocity conditions (264 to 273 cm·s-1) ; (3) the 50cm-maximum swimming speed of swimming fishes was 1.07 times faster than the pipe-swimming speed; (4) the faster the flow velocity, the shorter the swimming distance became.

  5. Concurrent Flame Growth, Spread and Extinction over Composite Fabric Samples in Low Speed Purely Forced Flow in Microgravity

    Science.gov (United States)

    Zhao, Xiaoyang; T'ien, James S.; Ferkul, Paul V.; Olson, Sandra L.

    2015-01-01

    As a part of the NASA BASS and BASS-II experimental projects aboard the International Space Station, flame growth, spread and extinction over a composite cotton-fiberglass fabric blend (referred to as the SIBAL fabric) were studied in low-speed concurrent forced flows. The tests were conducted in a small flow duct within the Microgravity Science Glovebox. The fuel samples measured 1.2 and 2.2 cm wide and 10 cm long. Ambient oxygen was varied from 21% down to 16% and flow speed from 40 cm/s down to 1 cm/s. A small flame resulted at low flow, enabling us to observe the entire history of flame development including ignition, flame growth, steady spread (in some cases) and decay at the end of the sample. In addition, by decreasing flow velocity during some of the tests, low-speed flame quenching extinction limits were found as a function of oxygen percentage. The quenching speeds were found to be between 1 and 5 cm/s with higher speed in lower oxygen atmosphere. The shape of the quenching boundary supports the prediction by earlier theoretical models. These long duration microgravity experiments provide a rare opportunity for solid fuel combustion since microgravity time in ground-based facilities is generally not sufficient. This is the first time that a low-speed quenching boundary in concurrent spread is determined in a clean and unambiguous manner.

  6. The influence of air flow speed on fire propagation in object

    Directory of Open Access Journals (Sweden)

    Jevtić Radoje

    2015-01-01

    Full Text Available Fire presents the process of the uncontrolled combustion that makes material damage and endangers human lives. It is important to know the factors that fire depends on for success projecting and realization of fire protection systems. One of such factors is different air flow that could be presented as wind, draft and the like. The simulation of different air flow speeds and its influences on fire propagation in object were analyzed in this paper.

  7. Application of PIV to the Measurement of High Speed Jet Flows

    Science.gov (United States)

    Lourenco, L.

    1999-01-01

    The Particle Image Velocimetry, PIV, has been implemented for the investigation of high-speed jet flows at the NASA Langley Research Center. In this approach the velocity (displacement) is found as the location of a peak in the correlation map of particle images acquired in quick succession. In the study, the technique for the correct seeding of the flow field were developed and implemented and the operational parameters influencing the accuracy of the measurement have been optimized.

  8. Outflow of traffic from the national capital Kuala Lumpur to the north, south and east coast highways using flow, speed and density relationships

    Institute of Scientific and Technical Information of China (English)

    Nik Hashim Nik Mustapha; Nik Nur Wahidah Nik Hashim

    2016-01-01

    The functional relationships between flow (veh/km), density (veh/h) and speed (km/h) in traffic congestion have a long history of research. However, their findings and techniques persist to be relevant to this day. The analysis is pertinent, particularly in finding the best fit for the three major highways in Malaysia, namely the KL-Karak Highway, KL-Seremban Highway and KL-Ipoh Highway. The trans-logarithm function of density—speed model was compared to the classical models of Greenshields, Greenberg, Underwood and Drake et al. using data provided by the Transport Statistics Malaysia 2014. The results of regression analysis revealed that the Greenshields and Greenberg models were statistically signifi-cant. The trans-logarithm function was also tested and the results were nonetheless without exception. Its usefulness in addition to statistical significance related to the derived economic concepts of maximum speed and the related number of vehicles, flow and density and the limits of free speed were relevant in comparing the individual levels of traffic congestion between highways. For instance, KL-Karak Highway was least congested compared to KL-Seremban Highway and KL-Ipoh Highway. Their maximum speeds, based on three lanes carriage capacity of one direction, were 33.4 km/h for KL-Karak, 15.9 km/h for KL-Seremban, and 21.1 km/h for KL-Ipoh. Their corresponding flows were approxi-mated at 1080.9 veh/h, 1555.4 veh/h, and 1436.6 veh/h.

  9. The relative and absolute speed of radiographic screen - film systems

    International Nuclear Information System (INIS)

    Lee, In Ja; Huh, Joon

    1993-01-01

    Recently, a large number of new screen-film systems have become available for use in diagnostic radiology. These new screens are made of materials generally known as rare - earth phosphors which have high x-ray absorption and high x-ray to light conversion efficiency compared to calcium tungstate phosphors. The major advantage of these new systems is reduction of patient exposure due to their high speed or high sensitivity. However, a system with excessively high speed can result in a significant degradation of radiographic image quality. Therefore, the speed is important parameters for users of these system. Our aim of in this was to determine accurately and precisely the absolute speed and relative speeds of both new and conventional screen - film system. We determined the absolute speed in condition of BRH phantom beam quality and the relative speed were measured by a split - screen technique in condition of BRH and ANSI phantom beam quality. The absolute and the relative speed were determined for 8 kinds of screen - 4 kinds of film in regular system and 7 kinds pf screen - 7 kinds of film in ortho system. In this study we could know the New Rx, T - MAT G has the highest film speed, also know Green system's standard deviation of relative speed larger than blue system. It was realized that there were no relationship between the absolute speed and the blue system. It was realized that there were no relationship between the absolute speed and the relative speed in ortho or regular system

  10. Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows

    Science.gov (United States)

    2013-08-13

    October 2008 - December 2013 4. TITLE AND SUBTITLE Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows...influence cavity hysteresis behavior. These observations are used to guide improved supercavitating -vehicle analyses including numerical predictions...experiments, and modeling 15. SUBJECT TERMS supercavitation , computational fluid dynamics, multiphase flow 16. SECURITY CLASSIFICATION OF: a

  11. Numerical analysis of flow induced noise propagation in supercavitating vehicles at subsonic speeds.

    Science.gov (United States)

    Ramesh, Sai Sudha; Lim, Kian Meng; Zheng, Jianguo; Khoo, Boo Cheong

    2014-04-01

    Flow supercavitation begins when fluid is accelerated over a sharp edge, usually at the nose of an underwater vehicle, where phase change occurs and causes low density gaseous cavity to gradually envelop the whole object (supercavity) and thereby enabling higher speeds of underwater vehicles. The process of supercavity inception/development by means of "natural cavitation" and its sustainment through ventilated cavitation result in turbulence and fluctuations at the water-vapor interface that manifest themselves as major sources of hydrodynamic noise. Therefore in the present context, three main sources are investigated, namely, (1) flow generated noise due to turbulent pressure fluctuations around the supercavity, (2) small scale pressure fluctuations at the vapor-water interface, and (3) pressure fluctuations due to direct impingement of ventilated gas-jets on the supercavity wall. An understanding of their relative contributions toward self-noise is very crucial for the efficient operation of high frequency acoustic sensors that facilitate the vehicle's guidance system. Qualitative comparisons of acoustic pressure distribution resulting from aforementioned sound sources are presented by employing a recently developed boundary integral method. By using flow data from a specially developed unsteady computational fluid dynamics solver for simulating supercavitating flows, the boundary-element method based acoustic solver was developed for computing flow generated sound.

  12. Estimation of Engine Intake Air Mass Flow using a generic Speed-Density method

    Directory of Open Access Journals (Sweden)

    Vojtíšek Michal

    2014-10-01

    Full Text Available Measurement of real driving emissions (RDE from internal combustion engines under real-world operation using portable, onboard monitoring systems (PEMS is becoming an increasingly important tool aiding the assessment of the effects of new fuels and technologies on environment and human health. The knowledge of exhaust flow is one of the prerequisites for successful RDE measurement with PEMS. One of the simplest approaches for estimating the exhaust flow from virtually any engine is its computation from the intake air flow, which is calculated from measured engine rpm and intake manifold charge pressure and temperature using a generic speed-density algorithm, applicable to most contemporary four-cycle engines. In this work, a generic speed-density algorithm was compared against several reference methods on representative European production engines - a gasoline port-injected automobile engine, two turbocharged diesel automobile engines, and a heavy-duty turbocharged diesel engine. The overall results suggest that the uncertainty of the generic speed-density method is on the order of 10% throughout most of the engine operating range, but increasing to tens of percent where high-volume exhaust gas recirculation is used. For non-EGR engines, such uncertainty is acceptable for many simpler and screening measurements, and may be, where desired, reduced by engine-specific calibration.

  13. Using wind speed from a blade-mounted flow sensor for power and load assessment on modern wind turbines

    Directory of Open Access Journals (Sweden)

    M. M. Pedersen

    2017-11-01

    Full Text Available In this paper an alternative method to evaluate power performance and loads on wind turbines using a blade-mounted flow sensor is investigated. The hypothesis is that the wind speed measured at the blades has a high correlation with the power and loads such that a power or load assessment can be performed from a few hours or days of measurements.In the present study a blade-mounted five-hole pitot tube is used as the flow sensor as an alternative to the conventional approach, where the reference wind speed is either measured at a nearby met mast or on the nacelle using lidar technology or cup anemometers. From the flow sensor measurements, an accurate estimate of the wind speed at the rotor plane can be obtained. This wind speed is disturbed by the presence of the wind turbine, and it is therefore different from the free-flow wind speed. However, the recorded wind speed has a high correlation with the actual power production as well as the flap-wise loads as it is measured close to the blade where the aerodynamic forces are acting.Conventional power curves are based on at least 180 h of 10 min mean values, but using the blade-mounted flow sensor both the observation average time and the overall assessment time can potentially be shortened. The basis for this hypothesis is that the sensor is able to provide more observations with higher accuracy, as the sensor follows the rotation of the rotor and because of the high correlation between the flow at the blades and the power production. This is the research question addressed in this paper.The method is first tested using aeroelastic simulations where the dependence of the radial position and effect of multiple blade-mounted flow sensors are also investigated. Next the method is evaluated on the basis of full-scale measurements on a pitch-regulated, variable-speed 3.6 MW wind turbine.It is concluded that the wind speed derived from the blade-mounted flow sensor is highly correlated with the

  14. Mixed Platoon Flow Dispersion Model Based on Speed-Truncated Gaussian Mixture Distribution

    Directory of Open Access Journals (Sweden)

    Weitiao Wu

    2013-01-01

    Full Text Available A mixed traffic flow feature is presented on urban arterials in China due to a large amount of buses. Based on field data, a macroscopic mixed platoon flow dispersion model (MPFDM was proposed to simulate the platoon dispersion process along the road section between two adjacent intersections from the flow view. More close to field observation, truncated Gaussian mixture distribution was adopted as the speed density distribution for mixed platoon. Expectation maximum (EM algorithm was used for parameters estimation. The relationship between the arriving flow distribution at downstream intersection and the departing flow distribution at upstream intersection was investigated using the proposed model. Comparison analysis using virtual flow data was performed between the Robertson model and the MPFDM. The results confirmed the validity of the proposed model.

  15. Outflow of traffic from the national capital Kuala Lumpur to the north, south and east coast highways using flow, speed and density relationships

    Directory of Open Access Journals (Sweden)

    Nik Hashim Nik Mustapha

    2016-12-01

    Full Text Available The functional relationships between flow (veh/km, density (veh/h and speed (km/h in traffic congestion have a long history of research. However, their findings and techniques persist to be relevant to this day. The analysis is pertinent, particularly in finding the best fit for the three major highways in Malaysia, namely the KL-Karak Highway, KL-Seremban Highway and KL-Ipoh Highway. The trans-logarithm function of density–speed model was compared to the classical models of Greenshields, Greenberg, Underwood and Drake et al. using data provided by the Transport Statistics Malaysia 2014. The results of regression analysis revealed that the Greenshields and Greenberg models were statistically significant. The trans-logarithm function was also tested and the results were nonetheless without exception. Its usefulness in addition to statistical significance related to the derived economic concepts of maximum speed and the related number of vehicles, flow and density and the limits of free speed were relevant in comparing the individual levels of traffic congestion between highways. For instance, KL-Karak Highway was least congested compared to KL-Seremban Highway and KL-Ipoh Highway. Their maximum speeds, based on three lanes carriage capacity of one direction, were 33.4 km/h for KL-Karak, 15.9 km/h for KL-Seremban, and 21.1 km/h for KL-Ipoh. Their corresponding flows were approximated at 1080.9 veh/h, 1555.4 veh/h, and 1436.6 veh/h.

  16. NASA low-speed centrifugal compressor for 3-D viscous code assessment and fundamental flow physics research

    Science.gov (United States)

    Hathaway, M. D.; Wood, J. R.; Wasserbauer, C. A.

    1991-01-01

    A low speed centrifugal compressor facility recently built by the NASA Lewis Research Center is described. The purpose of this facility is to obtain detailed flow field measurements for computational fluid dynamic code assessment and flow physics modeling in support of Army and NASA efforts to advance small gas turbine engine technology. The facility is heavily instrumented with pressure and temperature probes, both in the stationary and rotating frames of reference, and has provisions for flow visualization and laser velocimetry. The facility will accommodate rotational speeds to 2400 rpm and is rated at pressures to 1.25 atm. The initial compressor stage being tested is geometrically and dynamically representative of modern high-performance centrifugal compressor stages with the exception of Mach number levels. Preliminary experimental investigations of inlet and exit flow uniformly and measurement repeatability are presented. These results demonstrate the high quality of the data which may be expected from this facility. The significance of synergism between computational fluid dynamic analysis and experimentation throughout the development of the low speed centrifugal compressor facility is demonstrated.

  17. MOSS spectroscopic camera for imaging time resolved plasma species temperature and flow speed

    International Nuclear Information System (INIS)

    Michael, Clive; Howard, John

    2000-01-01

    A MOSS (Modulated Optical Solid-State) spectroscopic camera has been devised to monitor the spatial and temporal variations of temperatures and flow speeds of plasma ion species, the Doppler broadening measurement being made of spectroscopic lines specified. As opposed to a single channel MOSS spectrometer, the camera images light from plasma onto an array of light detectors, being mentioned 2D imaging of plasma ion temperatures and flow speeds. In addition, compared to a conventional grating spectrometer, the MOSS camera shows an excellent light collecting performance which leads to the improvement of signal to noise ratio and of time resolution. The present paper first describes basic items of MOSS spectroscopy, then follows MOSS camera with an emphasis on the optical system of 2D imaging. (author)

  18. MOSS spectroscopic camera for imaging time resolved plasma species temperature and flow speed

    Energy Technology Data Exchange (ETDEWEB)

    Michael, Clive; Howard, John [Australian National Univ., Plasma Research Laboratory, Canberra (Australia)

    2000-03-01

    A MOSS (Modulated Optical Solid-State) spectroscopic camera has been devised to monitor the spatial and temporal variations of temperatures and flow speeds of plasma ion species, the Doppler broadening measurement being made of spectroscopic lines specified. As opposed to a single channel MOSS spectrometer, the camera images light from plasma onto an array of light detectors, being mentioned 2D imaging of plasma ion temperatures and flow speeds. In addition, compared to a conventional grating spectrometer, the MOSS camera shows an excellent light collecting performance which leads to the improvement of signal to noise ratio and of time resolution. The present paper first describes basic items of MOSS spectroscopy, then follows MOSS camera with an emphasis on the optical system of 2D imaging. (author)

  19. A study on the performance and internal flow characteristics of a very low specific speed centrifugal pump

    International Nuclear Information System (INIS)

    Choi, Young Do; Kurokawa, Junichi; Lee, Young Ho

    2005-01-01

    In the very low specific speed range (n s < 0.25, non-dimensional), the efficiency of centrifugal pump designed by a conventional method is very low in common. Therefore, positive-displacement pumps have long been used widely. Recently, since the centrifugal pumps are becoming higher in rotational speed and smaller in size, there experts to develop a new centrifugal pump with a high performance to replace the positive-displacement pumps. The purpose of this study is to investigate the internal flow characteristics of a very low specific speed centrifugal pump and to examine the effect of internal flow pattern on pump performance. The results show that the theoretical head definition of semi-open impeller should be revised by the consideration of high slip factor in the semi-open impeller, and the leakage flow through the tip clearance results in a large effect on the impeller internal flow. Strong reverse flow at the outlet of semi-open impeller reduces the absolute tangential velocity considerably, and the decreased absolute tangential velocity increases the slip factor with the reduction of theoretical head

  20. Numerical study on the impact of ground heating and ambient wind speed on flow fields in street canyons

    Science.gov (United States)

    Li, Lei; Yang, Lin; Zhang, Li-Jie; Jiang, Yin

    2012-11-01

    The impact of ground heating on flow fields in street canyons under different ambient wind speed conditions was studied based on numerical methods. A series of numerical tests were performed, and three factors including height-to-width (H/W) ratio, ambient wind speed and ground heating intensity were taken into account. Three types of street canyon with H/W ratios of 0.5, 1.0 and 2.0, respectively, were used in the simulation and seven speed values ranging from 0.0 to 3.0 m s-1 were set for the ambient wind speed. The ground heating intensity, which was defined as the difference between the ground temperature and air temperature, ranged from 10 to 40 K with an increase of 10 K in the tests. The results showed that under calm conditions, ground heating could induce circulation with a wind speed of around 1.0 m s-1, which is enough to disperse pollutants in a street canyon. It was also found that an ambient wind speed threshold may exist for street canyons with a fixed H/W ratio. When ambient wind speed was lower than the threshold identified in this study, the impact of the thermal effect on the flow field was obvious, and there existed a multi-vortex flow pattern in the street canyon. When the ambient wind speed was higher than the threshold, the circulation pattern was basically determined by dynamic effects. The tests on the impact of heating intensity showed that a higher ground heating intensity could strengthen the vortical flow within the street canyon, which would help improve pollutant diffusion capability in street canyons.

  1. Effects of Bell Speed and Flow Rate on Evaporation of Water Spray from a Rotary Bell Atomizer

    Directory of Open Access Journals (Sweden)

    Rajan Ray

    2015-05-01

    Full Text Available A phase doppler anemometer (PDA was used to determine the effects of evaporation on water spray for three rotary bell atomizer operational variable parameters: shaping air, bell speed and liquid flow. Shaping air was set at either 200 standard liters per minute (L/min or 300 L/min, bell speed was set to 30, 40 or 50 thousand rotations per minute (krpm and water flow rate was varied between 100, 200 or 300 cubic centimeters per minute (cm3/min. The total evaporation between 22.5 and 37.5 cm from the atomizer (cm3/s was calculated for all the combinations of those variables. Evaporation rate increased with higher flow rate and bell speed but no statistically significant effects were obtained for variable shaping air on interactions between parameters.

  2. Assessment of Human Ambulatory Speed by Measuring Near-Body Air Flow

    Directory of Open Access Journals (Sweden)

    Stefano Salati

    2010-09-01

    Full Text Available Accurate measurements of physical activity are important for the diagnosis of the exacerbation of chronic diseases. Accelerometers have been widely employed in clinical research for measuring activity intensity and investigating the association between physical activity and adverse health conditions. However, the ability of accelerometers in assessing physical activity intensity such as walking speed has been constrained by the inter-individual variability in sensor output and by the necessity of developing unobtrusive low-power monitoring systems. This paper will present a study aimed at investigating the accuracy of a wearable measuring system of near-body air flow to determine ambulatory speed in the field.

  3. Overall impact of speed-related initiatives and factors on crash outcomes.

    Science.gov (United States)

    D'Elia, A; Newstead, S; Cameron, M

    2007-01-01

    From December 2000 until July 2002 a package of speed-related initiatives and factors took place in Victoria, Australia. The broad aim of this study was to evaluate the overall impact of the package on crash outcomes. Monthly crash counts and injury severity proportions were assessed using Poisson and logistic regression models respectively. The model measured the overall effect of the package after adjusting as far as possible for non-speed road safety initiatives and socio-economic factors. The speed-related package was associated with statistically significant estimated reductions in casualty crashes and suggested reductions in injury severity with trends towards increased reductions over time. From December 2000 until July 2002, three new speed enforcement initiatives were implemented in Victoria, Australia. These initiatives were introduced in stages and involved the following key components: More covert operations of mobile speed cameras, including flash-less operations; 50% increase in speed camera operating hours; and lowering of cameras' speed detection threshold. In addition, during the period 2001 to 2002, the 50 km/h General Urban Speed Limit (GUSL) was introduced (January 2001), there was an increase in speed-related advertising including the "Wipe Off 5" campaign, media announcements were made related to the above enforcement initiatives and there was a speeding penalty restructure. The above elements combine to make up a package of speed-related initiatives and factors. The package represents a broad, long term program by Victorian government agencies to reduce speed based on three linked strategies: more intensive Police enforcement of speed limits to deter potential offenders, i.e. the three new speed enforcement initiatives just described - supported by higher penalties; a reduction in the speed limit on local streets throughout Victoria from 60 km/h to 50 km/h; and provision of information using the mass media (television, radio and billboard) to

  4. Modulation of walking speed by changing optic flow in persons with stroke

    Directory of Open Access Journals (Sweden)

    Lamontagne Anouk

    2007-06-01

    Full Text Available Abstract Background Walking speed, which is often reduced after stroke, can be influenced by the perception of optic flow (OF speed. The present study aims to: 1 compare the modulation of walking speed in response to OF speed changes between persons with stroke and healthy controls and 2 investigate whether virtual environments (VE manipulating OF speed can be used to promote volitional changes in walking speed post stroke. Methods Twelve persons with stroke and 12 healthy individuals walked on a self-paced treadmill while viewing a virtual corridor in a helmet-mounted display. Two experiments were carried out on the same day. In experiment 1, the speed of an expanding OF was varied sinusoidally at 0.017 Hz (sine duration = 60 s, from 0 to 2 times the subject's comfortable walking speed, for a total duration of 5 minutes. In experiment 2, subjects were exposed to expanding OFs at discrete speeds that ranged from 0.25 to 2 times their comfortable speed. Each test trial was paired with a control trial performed at comfortable speed with matching OF. For each of the test trials, subjects were instructed to walk the distance within the same time as during the immediately preceding control trial. VEs were controlled by the CAREN-2 system (Motek. Instantaneous changes in gait speed (experiment 1 and the ratio of speed changes in the test trial over the control trial (experiment 2 were contrasted between the two groups of subjects. Results When OF speed was changing continuously (experiment 1, an out-of-phase modulation was observed in the gait speed of healthy subjects, such that slower OFs induced faster walking speeds, and vice versa. Persons with stroke displayed weaker (p 0.05, T-test. Conclusion Stroke affects the modulation of gait speed in response to changes in the perception of movement through different OF speeds. Nevertheless, the preservation of even a modest modulation enabled the persons with stroke to increase walking speed when

  5. Nearly Interactive Parabolized Navier-Stokes Solver for High Speed Forebody and Inlet Flows

    Science.gov (United States)

    Benson, Thomas J.; Liou, May-Fun; Jones, William H.; Trefny, Charles J.

    2009-01-01

    A system of computer programs is being developed for the preliminary design of high speed inlets and forebodies. The system comprises four functions: geometry definition, flow grid generation, flow solver, and graphics post-processor. The system runs on a dedicated personal computer using the Windows operating system and is controlled by graphical user interfaces written in MATLAB (The Mathworks, Inc.). The flow solver uses the Parabolized Navier-Stokes equations to compute millions of mesh points in several minutes. Sample two-dimensional and three-dimensional calculations are demonstrated in the paper.

  6. Ultra-high-speed digital in-line holography system applied to particle-laden supersonic underexpanded jet flows

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Buchmann, Nicolas A.; Soria, Julio

    2012-01-01

    -fluid interactions in these high-speed flows special high performance techniques are required. The present work is an investigation into the applicability of magnified digital in-line holography with ultra-high-speed recording for the study of three-dimensional supersonic particle-laden flows. An optical setup...... × 10mm calibration grid and 120 μm particles on a glass plate. In the case with the calibration grid it is found that accurate determination of the depthwise position is possible. However, when applying the same technique to the particle target, significant problems are encountered. © 2012...

  7. Correction of edge-flame propagation speed in a counterflow, annular slot burner

    KAUST Repository

    Tran, Vu Manh

    2015-10-22

    To characterize the propagation modes of flames, flame propagation speed must be accurately calculated. The impact of propagating edge-flames on the flow fields of unburned gases is limited experimentally. Thus, few studies have evaluated true propagation speeds by subtracting the flow velocities of unburned gases from flame displacement speeds. Here, we present a counterflow, annular slot burner that provides an ideal one-dimensional strain rate and lengthwise zero flow velocity that allowed us to study the fundamental behaviors of edge-flames. In addition, our burner has easy optical access for detailed laser diagnostics. Flame displacement speeds were measured using a high-speed camera and related flow fields of unburned gases were visualized by particle image velocimetry. These techniques allowed us to identify significant modifications to the flow fields of unburned gases caused by thermal expansion of the propagating edges, which enabled us to calculate true flame propagation speeds that took into account the flow velocities of unburned gases.

  8. Sleep-related vehicle crashes on low speed roads.

    Science.gov (United States)

    Filtness, A J; Armstrong, K A; Watson, A; Smith, S S

    2017-02-01

    Very little is known about the characteristics of sleep related (SR) crashes occurring on low speed roads compared with current understanding of the role of sleep in crashes occurring on high speed roads e.g. motorways. To address this gap, analyses were undertaken to identify the differences and similarities between (1) SR crashes occurring on roads with low (≤60km/h) and high (≥100km/h) speed limits, and (2) SR crashes and not-SR crashes occurring on roads with low speed limits. Police reports of all crashes occurring on low and high speed roads over a ten year period between 2000 and 2009 were examined for Queensland, Australia. Attending police officers identified all crash attributes, including 'fatigue/fell asleep', which indicates that the police believe the crash to have a causal factor relating to falling asleep, sleepiness due to sleep loss, time of day, or fatigue. Driver or rider involvement in crashes was classified as SR or not-SR. All crash-associated variables were compared using Chi-square tests (Cramer's V=effect size). A series of logistic regression was performed, with driver and crash characteristics as predictors of crash category. A conservative alpha level of 0.001 determined statistical significance. There were 440,855 drivers or riders involved in a crash during this time; 6923 (1.6%) were attributed as SR. SR crashes on low speed roads have similar characteristics to those on high speed roads with young (16-24y) males consistently over represented. SR crashes on low speed roads are noticeably different to not-SR crashes in the same speed zone in that male and young novice drivers are over represented and outcomes are more severe. Of all the SR crashes identified, 41% occurred on low speed roads. SR crashes are not confined to high speed roads. Low speed SR crashes warrant specific investigation because they occur in densely populated areas, exposing a greater number of people to risk and have more severe outcomes than not-SR crashes

  9. Transient flow characteristics of a high speed rotary valve

    Science.gov (United States)

    Browning, Patrick H.

    Pressing economic and environmental concerns related to the performance of fossil fuel burning internal combustion engines have revitalized research in more efficient, cleaner burning combustion methods such as homogeneous charge compression ignition (HCCI). Although many variations of such engines now exist, several limiting factors have restrained the full potential of HCCI. A new method patented by West Virginia University (WVU) called Compression Ignition by Air Injection (CIBAI) may help broaden the range of effective HCCI operation. The CIBAI process is ideally facilitated by operating two synchronized piston-cylinders mounted head-to-head with one of the cylinders filled with a homogeneous mixture of air and fuel and the other cylinder filled with air. A specialized valve called the cylinder connecting valve (CCV) separates the two cylinders, opens just before reaching top dead center (TDC), and allows the injection air into the charge to achieve autoignition. The CCV remains open during the entire power stroke such that upon ignition the rapid pressure rise in the charge cylinder forces mass flow back through the CCV into the air-only cylinder. The limited mass transfer between the cylinders through the CCV limits the theoretical auto ignition timing capabilities and thermal efficiency of the CIBAI cycle. Research has been performed to: (1) Experimentally measure the transient behavior of a potential CCV design during valve opening between two chambers maintained at constant pressure and again at constant volume; (2) Develop a modified theoretical CCV mass flow model based upon the measured cold flow valve performance that is capable of predicting the operating conditions required for successful mixture autoignition; (3) Make recommendations for future CCV designs to maximize CIBAI combustion range. Results indicate that the modified-ball CCV design offers suitable transient flow qualities required for application to the CIBAI concept. Mass injection events

  10. Characterization of Diamond Nanoparticles by High-Speed Micro-Thermal Field-Flow Fractionation

    Czech Academy of Sciences Publication Activity Database

    Janča, Josef

    2015-01-01

    Roč. 20, č. 8 (2015), s. 671-680 ISSN 1023-666X R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : diamond nanoparticles * high-speed microfluidic separation * micro-thermal field-flow fractionation, * article size distribution Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.515, year: 2015

  11. Age-related changes in crowding and reading speed

    OpenAIRE

    Liu, Rong; Patel, Bhavika N.; Kwon, MiYoung

    2017-01-01

    Crowding, the inability to recognize objects in clutter, is known to play a role in developmental changes in reading speed. Here, we investigated whether crowding also plays a role in age-related changes in reading speed. We recruited 18 young (mean age: 22.6???3.5; range: 18~31) and 21 older adults (mean age: 58.2???7.0; range: 50~73) with normal vision. Reading speed was measured with short blocks of text. The degree of crowding was determined by measuring crowding zone (the distance betwee...

  12. Calibration of a γ- Re θ transition model and its application in low-speed flows

    Science.gov (United States)

    Wang, YunTao; Zhang, YuLun; Meng, DeHong; Wang, GunXue; Li, Song

    2014-12-01

    The prediction of laminar-turbulent transition in boundary layer is very important for obtaining accurate aerodynamic characteristics with computational fluid dynamic (CFD) tools, because laminar-turbulent transition is directly related to complex flow phenomena in boundary layer and separated flow in space. Unfortunately, the transition effect isn't included in today's major CFD tools because of non-local calculations in transition modeling. In this paper, Menter's γ- Re θ transition model is calibrated and incorporated into a Reynolds-Averaged Navier-Stokes (RANS) code — Trisonic Platform (TRIP) developed in China Aerodynamic Research and Development Center (CARDC). Based on the experimental data of flat plate from the literature, the empirical correlations involved in the transition model are modified and calibrated numerically. Numerical simulation for low-speed flow of Trapezoidal Wing (Trap Wing) is performed and compared with the corresponding experimental data. It is indicated that the γ- Re θ transition model can accurately predict the location of separation-induced transition and natural transition in the flow region with moderate pressure gradient. The transition model effectively imporves the simulation accuracy of the boundary layer and aerodynamic characteristics.

  13. Carotid flow pulsatility is higher in women with greater decrement in gait speed during multi-tasking.

    Science.gov (United States)

    Gonzales, Joaquin U; James, C Roger; Yang, Hyung Suk; Jensen, Daniel; Atkins, Lee; Al-Khalil, Kareem; O'Boyle, Michael

    2017-05-01

    Central arterial hemodynamics is associated with cognitive impairment. Reductions in gait speed during walking while performing concurrent tasks known as dual-tasking (DT) or multi-tasking (MT) is thought to reflect the cognitive cost that exceeds neural capacity to share resources. We hypothesized that central vascular function would associate with decrements in gait speed during DT or MT. Gait speed was measured using a motion capture system in 56 women (30-80y) without mild-cognitive impairment. Dual-tasking was considered walking at a fast-pace while balancing a tray. Multi-tasking was the DT condition plus subtracting by serial 7's. Applanation tonometry was used for measurement of aortic stiffness and central pulse pressure. Doppler-ultrasound was used to measure blood flow velocity and β-stiffness index in the common carotid artery. The percent change in gait speed was larger for MT than DT (14.1±11.2 vs. 8.7±9.6%, p decrement (third tertile) as compared to women with less decrement (first tertile) in gait speed during MT after adjusting for age, gait speed, and task error. Carotid pulse pressure and β-stiffness did not contribute to these tertile differences. Elevated carotid flow pulsatility and resistance are characteristics found in healthy women that show lower cognitive capacity to walk and perform multiple concurrent tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. High speed photography for investigating kiloampere discharges in supersonic air flows

    International Nuclear Information System (INIS)

    Jones, G.R.; Strachan, D.

    1975-01-01

    Examples of the use of conventional high speed photographic techniques are given for obtaining information about the behaviour of high current arc discharges in different gas flow fields. The photographic records yield information about the extent of both the luminous arc core and the surrounding heated volume of gas. A knowledge of these parameters leads to a better understanding of arc discharges which occur in gas blast circuit breakers. (author)

  15. Measurements of granular flow dynamics with high speed digital images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jingeol [Univ. of Florida, Gainesville, FL (United States)

    1994-01-01

    The flow of granular materials is common to many industrial processes. This dissertation suggests and validates image processing algorithms applied to high speed digital images to measure the dynamics (velocity, temperature and volume fraction) of dry granular solids flowing down an inclined chute under the action of gravity. Glass and acrylic particles have been used as granular solids in the experiment. One technique utilizes block matching for spatially averaged velocity measurements of the glass particles. This technique is compared with the velocity measurement using an optic probe which is a conventional granular flow velocity measurement device. The other technique for measuring the velocities of individual acrylic particles is developed with correspondence using a Hopfield network. This technique first locates the positions of particles with pattern recognition techniques, followed by a clustering technique, which produces point patterns. Also, several techniques are compared for particle recognition: synthetic discriminant function (SDF), minimum average correlation energy (MACE) filter, modified minimum average correlation energy (MMACE) filter and variance normalized correlation. The author proposes an MMACE filter which improves generalization of the MACE filter by adjusting the amount of averaged spectrum of training images in the spectrum whitening stages of the MACE filter. Variance normalized correlation is applied to measure the velocity and temperature of flowing glass particles down the inclined chute. The measurements are taken for the steady and wavy flow and qualitatively compared with a theoretical model of granular flow.

  16. The theory of relativity and super-light-speeds-I: Kinematical part

    International Nuclear Information System (INIS)

    Cao Shenglin.

    1987-05-01

    According to some local properties of Lorentz transformation, Einstein stated: ''Velocities greater than that of light have no possibility of existence''. He neglected to point out the applicable range of the special theory of relativity. In fact, it could only be applied to the sub-light-speed. This paper shows that if we think of the possibility of the existence of the super-light-speed and redescribe the special theory of relativity following Einstein's way, a new kinematical theory would be founded. The new theory would retain all kinematical meaning of the special theory of relativity when matters move with sub-light-speed and would give new content when matters move with super-light-speed. The paper also discusses the observation principle for the motions with the super-light-speed. (author). 2 refs, 1 fig

  17. Energy transformation, transfer, and release dynamics in high speed turbulent flows

    Science.gov (United States)

    2017-03-01

    Secondly, a new high -order (4 th -order) convective flux formulation was developed that uses the tabulated information, yet produces a fully consistent...Klippenstein 2012 Comprehensive H2/O2 Kinetic Model for High - Pressure Combustion. Int. J. Chem. Kinetics 44:444-474. Cabot, W.H., A.W. Cook, P.L. Miller, D.E...AFRL-AFOSR-VA-TR-2017-0054 Energy Transformation, Transfer, and Release Dynamics in High -Speed Turbulent Flows Paul Dimotakis CALIFORNIA INSTITUTE

  18. Irrigant flow in the root canal: experimental validation of an unsteady Computational Fluid Dynamics model using high-speed imaging.

    Science.gov (United States)

    Boutsioukis, C; Verhaagen, B; Versluis, M; Kastrinakis, E; van der Sluis, L W M

    2010-05-01

    To compare the results of a Computational Fluid Dynamics (CFD) simulation of the irrigant flow within a prepared root canal, during final irrigation with a syringe and a needle, with experimental high-speed visualizations and theoretical calculations of an identical geometry and to evaluate the effect of off-centre positioning of the needle inside the root canal. A CFD model was created to simulate irrigant flow from a side-vented needle inside a prepared root canal. Calculations were carried out for four different positions of the needle inside a prepared root canal. An identical root canal model was made from poly-dimethyl-siloxane (PDMS). High-speed imaging of the flow seeded with particles and Particle Image Velocimetry (PIV) were combined to obtain the velocity field inside the root canal experimentally. Computational, theoretical and experimental results were compared to assess the validity of the computational model. Comparison between CFD computations and experiments revealed good agreement in the velocity magnitude and vortex location and size. Small lateral displacements of the needle inside the canal had a limited effect on the flow field. High-speed imaging experiments together with PIV of the flow inside a simulated root canal showed a good agreement with the CFD model, even though the flow was unsteady. Therefore, the CFD model is able to predict reliably the flow in similar domains.

  19. Influence of speed and frequency towards the automotive turbocharger turbine performance under pulsating flow conditions

    International Nuclear Information System (INIS)

    Padzillah, M.H.; Rajoo, S.; Martinez-Botas, R.F.

    2014-01-01

    Highlights: • 3D CFD modeling of a turbocharger turbine with pulsating flow. • Characterization based on turbine speed and frequency. • Speed has higher influence on turbine performance compared to frequency. • Detailed localized flow behavior are shown for better understanding. - Abstract: The ever-increasing demand for low carbon applications in automotive industry has intensified the development of highly efficient engines and energy recovery devices. Even though there are significant developments in the alternative powertrains such as full electric, their full deployment is hindered by high costing and unattractive life-cycle energy and emission balance. Thus powertrain based on highly efficient internal combustion engines are still considered to be the mainstream for years to come. Traditionally, turbocharger has been an essential tool to boost the engine power, however in recent years it is seen as an enabling technology for engine downsizing. It is a well-known fact that a turbocharger turbine in an internal combustion engine operates in a highly pulsating exhaust flow. There are numerous studies looking into the complex interaction of the pulsating exhaust gas within the turbocharger turbine, however the phenomena is still not fully integrated into the design stage. Industry practice is still to design and match the turbine to an engine based on steady performance maps. The current work is undertaken with the mind to move one step closer towards fully integrating the pulsating flow performance into the turbocharger turbine design. This paper presents the development efforts and results from a full 3-D CFD model of a turbocharger turbine stage. The simulations were conducted at 30,000 rpm and 48,000 rpm (50% and 80% design speed respectively) for both 20 Hz and 80 Hz pulsating flow inlet conditions. Complete validation procedure using cold-flow experimental data is also described. The temporal and spatial resolutions of the incidence angle at the

  20. Technical report on prototype intelligent network flow optimization (INFLO) dynamic speed harmonization and queue warning.

    Science.gov (United States)

    2015-06-01

    This Technical Report on Prototype Intelligent Network Flow Optimization (INFLO) Dynamic Speed Harmonization and : Queue Warning is the final report for the project. It describes the prototyping, acceptance testing and small-scale : demonstration of ...

  1. Supercavitating flow around high-speed underwater projectile near free surface induced by air entrainment

    Directory of Open Access Journals (Sweden)

    Chang Xu

    2018-03-01

    Full Text Available Cavitating flow near free surface is a complicated issue and may provide new inspiration on high-speed surface cruising. This study observes stable supercavitating flow as a new phenomenon in a launch experiment of axisymmetric projectile when the upper side of the projectile coincides with the free surface. A numerical approach is established using large eddy-simulation and volume-of-fluid methods, and good agreements are achieved between numerical and experimental results. Supercavity formation mechanism is revealed by analyzing the experiment photographs and the iso-surface of 90% water volume fraction in numerical results. The entrainment of a large amount of air into the cavity can cause the pressure inside the cavity to similarly increase with the pressure outside the cavity, which makes the actual cavitation number close to zero and is similar to supercavitation. Cases with various headforms of the projectile and cavitation numbers on the cavitating flow, as well as the drag reduction effects are further examined. Results indicate that the present strategy near the free surface could possibly be a new effective approach for high-speed cruising after vigorous design optimization in the future.

  2. Matching optical flow to motor speed in virtual reality while running on a treadmill

    Science.gov (United States)

    Lafortuna, Claudio L.; Mugellini, Elena; Abou Khaled, Omar

    2018-01-01

    We investigated how visual and kinaesthetic/efferent information is integrated for speed perception in running. Twelve moderately trained to trained subjects ran on a treadmill at three different speeds (8, 10, 12 km/h) in front of a moving virtual scene. They were asked to match the visual speed of the scene to their running speed–i.e., treadmill’s speed. For each trial, participants indicated whether the scene was moving slower or faster than they were running. Visual speed was adjusted according to their response using a staircase until the Point of Subjective Equality (PSE) was reached, i.e., until visual and running speed were perceived as equivalent. For all three running speeds, participants systematically underestimated the visual speed relative to their actual running speed. Indeed, the speed of the visual scene had to exceed the actual running speed in order to be perceived as equivalent to the treadmill speed. The underestimation of visual speed was speed-dependent, and percentage of underestimation relative to running speed ranged from 15% at 8km/h to 31% at 12km/h. We suggest that this fact should be taken into consideration to improve the design of attractive treadmill-mediated virtual environments enhancing engagement into physical activity for healthier lifestyles and disease prevention and care. PMID:29641564

  3. Laser Anemometer Measurements of the Three-Dimensional Rotor Flow Field in the NASA Low-Speed Centrifugal Compressor

    Science.gov (United States)

    Hathaway, Michael D.; Chriss, Randall M.; Strazisar, Anthony J.; Wood, Jerry R.

    1995-01-01

    A laser anemometer system was used to provide detailed surveys of the three-dimensional velocity field within the NASA low-speed centrifugal impeller operating with a vaneless diffuser. Both laser anemometer and aerodynamic performance data were acquired at the design flow rate and at a lower flow rate. Floor path coordinates, detailed blade geometry, and pneumatic probe survey results are presented in tabular form. The laser anemometer data are presented in the form of pitchwise distributions of axial, radial, and relative tangential velocity on blade-to-blade stream surfaces at 5-percent-of-span increments, starting at 95-percent-of-span from the hub. The laser anemometer data are also presented as contour and wire-frame plots of throughflow velocity and vector plots of secondary velocities at all measurement stations through the impeller.

  4. Supercomputer implementation of finite element algorithms for high speed compressible flows. Progress report, period ending 30 June 1986

    International Nuclear Information System (INIS)

    Thornton, E.A.; Ramakrishnan, R.

    1986-06-01

    Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes

  5. Relation of sortable silt grain-size to deep-sea current speeds: Calibration of the 'Mud Current Meter'

    Science.gov (United States)

    McCave, I. N.; Thornalley, D. J. R.; Hall, I. R.

    2017-09-01

    Fine grain-size parameters have been used for inference of palaeoflow speeds of near-bottom currents in the deep-sea. The basic idea stems from observations of varying sediment size parameters on a continental margin with a gradient from slower flow speeds at shallower depths to faster at deeper. In the deep-sea, size-sorting occurs during deposition after benthic storm resuspension events. At flow speeds below 10-15 cm s-1 mean grain-size in the terrigenous non-cohesive 'sortable silt' range (denoted by SS bar , mean of 10-63 μm) is controlled by selective deposition, whereas above that range removal of finer material by winnowing is also argued to play a role. A calibration of the SS bar grain-size flow speed proxy based on sediment samples taken adjacent to sites of long-term current meters set within 100 m of the sea bed for more than a year is presented here. Grain-size has been measured by either Sedigraph or Coulter Counter, in some cases both, between which there is an excellent correlation for SS bar (r = 0.96). Size-speed data indicate calibration relationships with an overall sensitivity of 1.36 ± 0.19 cm s-1/μm. A calibration line comprising 12 points including 9 from the Iceland overflow region is well defined, but at least two other smaller groups (Weddell/Scotia Sea and NW Atlantic continental rise/Rockall Trough) are fitted by sub-parallel lines with a smaller constant. This suggests a possible influence of the calibre of material supplied to the site of deposition (not the initial source supply) which, if depleted in very coarse silt (31-63 μm), would limit SS bar to smaller values for a given speed than with a broader size-spectrum supply. Local calibrations, or a core-top grain-size and local flow speed, are thus necessary to infer absolute speeds from grain-size. The trend of the calibrations diverges markedly from the slope of experimental critical erosion and deposition flow speeds versus grain-size, making it unlikely that the SS bar (or

  6. Effectiveness of Motorcycle speed controlled by speed hump

    Directory of Open Access Journals (Sweden)

    Pornsiri Urapa

    2014-09-01

    Full Text Available Speed humps are one of the traffic calming measures widely accepted to control vehicle speed in the local road. Humps standards from the western countries are designed mainly for the passenger car. This study, therefore, aims to reveal the effectiveness of speed hump to control the motorcycle speed. This study observes the free-flow speed of the riders at the total of 20 speed bumps and humps. They are 0.3-14.8 meter in width and 5-18 centimeter in height. The results reveal that the 85th percentile speeds reduce 15-65 percent when crossing the speed bumps and speed humps. Besides, this study develops the speed model to predict the motorcycle mean speed and 85th percentile speed. It is found that speed humps follow the ITE standard can control motorcycle crossing speeds to be 25-30 Kph which are suitable to travel on the local road.

  7. A matrix-free implicit treatment for all speed flows on unstructured grids

    International Nuclear Information System (INIS)

    Kloczko, Th.

    2006-03-01

    The aim of this research work is the development of an efficient implicit scheme for computing compressible and low-speed flows on unstructured meshes. The first part is devoted to the review and analysis of some standard block-implicit treatments for the two-dimensional Euler and Navier-Stokes equations with a view to identify the best candidate for a fair comparison with the matrix-free treatment. The second part forms the main original contribution of this research work. It describes and analyses a matrix-free treatment that can be applied to any type of flow (inviscid/viscous, low Mach/highly compressible, steady/unsteady). The third part deals with the implementation of this treatment within the CAST3M code, and the demonstration of its advantages over existing techniques for computing applications of interest for the CEA: low-Mach number steady and unsteady flows in a Tee junction for example

  8. Speed scaling for weighted flow time

    NARCIS (Netherlands)

    Bansal, N.; Pruhs, K.R.; Stein, C.

    2007-01-01

    In addition to the traditional goal of efficiently managing time and space, many computers now need to efficiently manage power usage. For example, Intel's SpeedStep and AMD's PowerNOW technologies allow the Windows XP operating system to dynamically change the speed of the processor to prolong

  9. Flow establishment behind blunt bodies at hypersonic speeds in a shock tunnel

    Science.gov (United States)

    Park, G.; Hruschka, R.; Gai, S. L.; Neely, A. J.

    2008-11-01

    An investigation of flow establishment behind two blunt bodies, a circular cylinder and a 45° half-angle blunted-cone was conducted. Unlike previous studies which relied solely on surface measurements, the present study combines these with unique high-speed visualisation to image the establishment of the flow structure in the base region. Test flows were generated using a free-piston shock tunnel at a nominal Mach number of 10. The freestream unit Reynolds numbers considered were 3.02x105/m and 1.17x106/m at total enthalpies of 13.35MJ/kg and 3.94MJ/kg, respectively. In general, the experiments showed that it takes longer to establish steady heat flux than pressure. The circular cylinder data showed that the near wake had a slight Reynolds number effect, where the size of the near wake was smaller for the high enthalpy flow condition. The blunted-cone data showed that the heat flux and pressures reached steady states in the near wake at similar times for both high and low enthalpy conditions.

  10. Amendment to Validated dynamic flow model

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2011-01-01

    The purpose of WP2 is to establish flow models relating the wind speed at turbines in a farm. Until now, active control of power reference has not been included in these models as only data with standard operation has been available. In this report the first data series with power reference excit...... turbine in undisturbed flow. For this data set both the multiplicative model and in particular the simple first order transfer function model can predict the down wind wind speed from upwind wind speed and loading.......The purpose of WP2 is to establish flow models relating the wind speed at turbines in a farm. Until now, active control of power reference has not been included in these models as only data with standard operation has been available. In this report the first data series with power reference...

  11. Computational Aerodynamic Simulations of a 1484 ft/sec Tip Speed Quiet High-Speed Fan System Model for Acoustic Methods Assessment and Development

    Science.gov (United States)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of a 1484 ft/sec tip speed quiet high-speed fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which includes a core duct and a bypass duct that merge upstream of the fan system nozzle. As a result, only fan rotational speed and the system bypass ratio, set by means of a translating nozzle plug, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive or critical boundary layer separations or related secondary-flow problems, with the exception of the hub boundary layer at the core duct entrance. At that location a significant flow separation is present. The region of local flow

  12. Flow speed measurement using two-point collective light scattering

    International Nuclear Information System (INIS)

    Heinemeier, N.P.

    1998-09-01

    Measurements of turbulence in plasmas and fluids using the technique of collective light scattering have always been plagued by very poor spatial resolution. In 1994, a novel two-point collective light scattering system for the measurement of transport in a fusion plasma was proposed. This diagnostic method was design for a great improvement of the spatial resolution, without sacrificing accuracy in the velocity measurement. The system was installed at the W7-AS steallartor in Garching, Germany, in 1996, and has been operating since. This master thesis is an investigation of the possible application of this new method to the measurement of flow speeds in normal fluids, in particular air, although the results presented in this work have significance for the plasma measurements as well. The main goal of the project was the experimental verification of previous theoretical predictions. However, the theoretical considerations presented in the thesis show that the method can only be hoped to work for flows that are almost laminar and shearless, which makes it of very small practical interest. Furthermore, this result also implies that the diagnostic at W7-AS cannot be expected to give the results originally hoped for. (au)

  13. Electric field measurements in a kHz-driven He jet - The influence of the gas flow speed

    NARCIS (Netherlands)

    Sobota, A.; Guaitella, O.; Sretenović, G.B.; Krstić, I.B.; Kovačević, V.V.; Obrusník, A.; Nguyen, Y.N.; Zajíčková, L.; Obradović, B.M.; Kuraica, M.M.

    2016-01-01

    This report focuses on the dependence of electric field strength in the effluent of a vertically downwards-operated plasma jet freely expanding into room air as a function of the gas flow speed. A 30 kHz AC-driven He jet was used in a coaxial geometry, with an amplitude of 2 kV and gas flow between

  14. Development and application of a particle image velocimeter for high-speed flows

    Science.gov (United States)

    Molezzi, M. J.; Dutton, J. C.

    1992-01-01

    A particle image velocimetry (PIV) system has been developed for use in high-speed separated air flows. The image acquisition system uses two 550 mJ/pulse Nd:YAG lasers and is fully controlled by a host Macintosh computer. The interrogation system is also Macintosh-based and performs interrogations at approximately 2.3 sec/spot and 4.0 sec/spot when using the Young's fringe and autocorrelation methods, respectively. The system has been proven in preliminary experiments using known-displacement simulated PIV photographs and a simple axisymmetric jet flow. Further results have been obtained in a transonic wind tunnel operating at Mach 0.4 to 0.5 (135 m/s to 170 m/s). PIV experiments were done with an empty test section to provide uniform flow data for comparison with pressure and LDV data, then with a two-dimensional base model, revealing features of the von Karman vortex street wake and underlying small scale turbulence.

  15. Effects of Injection Timing on Fluid Flow Characteristics of Partially Premixed Combustion Based on High-Speed Particle Image Velocimetry

    KAUST Repository

    Izadi Najafabadi, Mohammad; Tanov, Slavey; Wang, Hua; Somers, Bart; Johansson, Bengt; Dam, Nico

    2017-01-01

    behavior. The scope of the present study is to investigate the fluid flow characteristics of PPC at different injection timings. To this end, high-speed Particle Image Velocimetry (PIV) is implemented in a light-duty optical engine to measure fluid flow

  16. Numerical Investigation on a Prototype Centrifugal Pump Subjected to Fluctuating Rotational Speed

    Directory of Open Access Journals (Sweden)

    Yu-Liang Zhang

    2014-01-01

    Full Text Available The rotational speed of pumps often encounters fluctuation in engineering for some reasons. In this paper, in order to study the transient response characteristic of a prototype centrifugal pump subjected to fluctuating rotational speed, a closed-loop pipe system including the pump is built to accomplish unsteady flow calculations in which the boundary conditions at the inlet and the outlet of the pump are not required to be set. The external performance results show that the head’s responsiveness to the fluctuating rotational speed is very good, while the flow rate’s responsiveness is slightly delayed. The variation tendencies of the static pressures at the inlet and the outlet of the pump are almost completely opposite, wherein the variation tendency of the static pressure at the outlet is identical with that of the rotational speed. The intensity of the turbulence energy in each impeller channel is relatively uniform in the transient flow calculations, while, in the quasi-steady flow calculation, it becomes weaker in a channel closed to the volute tongue. The nondimensional flow rate and head coefficients are dependent on the rotational speed, and their variation tendencies are opposite to that of the fluctuating rotational speed as a whole.

  17. Application of X-ray micro-computed tomography on high-speed cavitating diesel fuel flows

    Energy Technology Data Exchange (ETDEWEB)

    Mitroglou, N.; Lorenzi, M.; Gavaises, M. [City University London, School of Mathematics Computer Science and Engineering, London (United Kingdom); Santini, M. [University of Bergamo, Department of Engineering, Bergamo (Italy)

    2016-11-15

    The flow inside a purpose built enlarged single-orifice nozzle replica is quantified using time-averaged X-ray micro-computed tomography (micro-CT) and high-speed shadowgraphy. Results have been obtained at Reynolds and cavitation numbers similar to those of real-size injectors. Good agreement for the cavitation extent inside the orifice is found between the micro-CT and the corresponding temporal mean 2D cavitation image, as captured by the high-speed camera. However, the internal 3D structure of the developing cavitation cloud reveals a hollow vapour cloud ring formed at the hole entrance and extending only at the lower part of the hole due to the asymmetric flow entry. Moreover, the cavitation volume fraction exhibits a significant gradient along the orifice volume. The cavitation number and the needle valve lift seem to be the most influential operating parameters, while the Reynolds number seems to have only small effect for the range of values tested. Overall, the study demonstrates that use of micro-CT can be a reliable tool for cavitation in nozzle orifices operating under nominal steady-state conditions. (orig.)

  18. Application of X-ray micro-computed tomography on high-speed cavitating diesel fuel flows

    Science.gov (United States)

    Mitroglou, N.; Lorenzi, M.; Santini, M.; Gavaises, M.

    2016-11-01

    The flow inside a purpose built enlarged single-orifice nozzle replica is quantified using time-averaged X-ray micro-computed tomography (micro-CT) and high-speed shadowgraphy. Results have been obtained at Reynolds and cavitation numbers similar to those of real-size injectors. Good agreement for the cavitation extent inside the orifice is found between the micro-CT and the corresponding temporal mean 2D cavitation image, as captured by the high-speed camera. However, the internal 3D structure of the developing cavitation cloud reveals a hollow vapour cloud ring formed at the hole entrance and extending only at the lower part of the hole due to the asymmetric flow entry. Moreover, the cavitation volume fraction exhibits a significant gradient along the orifice volume. The cavitation number and the needle valve lift seem to be the most influential operating parameters, while the Reynolds number seems to have only small effect for the range of values tested. Overall, the study demonstrates that use of micro-CT can be a reliable tool for cavitation in nozzle orifices operating under nominal steady-state conditions.

  19. Application of X-ray micro-computed tomography on high-speed cavitating diesel fuel flows

    International Nuclear Information System (INIS)

    Mitroglou, N.; Lorenzi, M.; Gavaises, M.; Santini, M.

    2016-01-01

    The flow inside a purpose built enlarged single-orifice nozzle replica is quantified using time-averaged X-ray micro-computed tomography (micro-CT) and high-speed shadowgraphy. Results have been obtained at Reynolds and cavitation numbers similar to those of real-size injectors. Good agreement for the cavitation extent inside the orifice is found between the micro-CT and the corresponding temporal mean 2D cavitation image, as captured by the high-speed camera. However, the internal 3D structure of the developing cavitation cloud reveals a hollow vapour cloud ring formed at the hole entrance and extending only at the lower part of the hole due to the asymmetric flow entry. Moreover, the cavitation volume fraction exhibits a significant gradient along the orifice volume. The cavitation number and the needle valve lift seem to be the most influential operating parameters, while the Reynolds number seems to have only small effect for the range of values tested. Overall, the study demonstrates that use of micro-CT can be a reliable tool for cavitation in nozzle orifices operating under nominal steady-state conditions. (orig.)

  20. Effects of tool speeds and corresponding torque/energy on stir zone formation during friction stir welding/processing

    International Nuclear Information System (INIS)

    Cui, S; Chen, Z W

    2009-01-01

    The way processing parameters and the measurable thermomechanical responses relate to the individual and combined flows forming the different processed zones during friction stir welding/processing has been studied. Experimentally, a cast Al-7Si-0.3Mg alloy was used to provide readily identifiable processed zones. A series of friction stir experiments covering a wide range of tool forward and rotation speeds were conducted followed by the measurement of individual and combined stir areas. It has been found that the basic modes of material flow did not change but the relative volume of each flow depended on both forward and rotation speeds. The trends observed in the present data explain how pin rotation relates to the material transportation mechanism and the associated torque required. This data also explains how forward speed, not rotation speed, relates to specific energy and the volume of the total stir zone.

  1. Does manipulating the speed of visual flow in virtual reality change distance estimation while walking in Parkinson's disease?

    Science.gov (United States)

    Ehgoetz Martens, Kaylena A; Ellard, Colin G; Almeida, Quincy J

    2015-03-01

    Although dopaminergic replacement therapy is believed to improve sensory processing in PD, while delayed perceptual speed is thought to be caused by a predominantly cholinergic deficit, it is unclear whether sensory-perceptual deficits are a result of corrupt sensory processing, or a delay in updating perceived feedback during movement. The current study aimed to examine these two hypotheses by manipulating visual flow speed and dopaminergic medication to examine which influenced distance estimation in PD. Fourteen PD and sixteen HC participants were instructed to estimate the distance of a remembered target by walking to the position the target formerly occupied. This task was completed in virtual reality in order to manipulate the visual flow (VF) speed in real time. Three conditions were carried out: (1) BASELINE: VF speed was equal to participants' real-time movement speed; (2) SLOW: VF speed was reduced by 50 %; (2) FAST: VF speed was increased by 30 %. Individuals with PD performed the experiment in their ON and OFF state. PD demonstrated significantly greater judgement error during BASELINE and FAST conditions compared to HC, although PD did not improve their judgement error during the SLOW condition. Additionally, PD had greater variable error during baseline compared to HC; however, during the SLOW conditions, PD had significantly less variable error compared to baseline and similar variable error to HC participants. Overall, dopaminergic medication did not significantly influence judgement error. Therefore, these results suggest that corrupt processing of sensory information is the main contributor to sensory-perceptual deficits during movement in PD rather than delayed updating of sensory feedback.

  2. Advanced high speed X-ray CT scanner for measurement and visualization of multi-phase flow

    International Nuclear Information System (INIS)

    Hori, Keiichi; Fujimoto, Tetsuro; Kawanishi, Kohei; Nishikawa, Hideo

    1998-01-01

    The development of an ultra-fast X-ray computed tomography (CT) scanner has been performed. The object of interest is in a transient or unsettled state, which makes the conventional CT scanner inappropriate. A concept of electrical switching of electron beam of X-ray generation unit is adopted to reduce the scanning time instead of a mechanical motion adopted by a conventional CT scanner. The mechanical motion is a major obstacle to improve the scanning speed. A prototype system with a scanning time of 3.6 milliseconds was developed at first. And, the feasibility was confirmed to measure the dynamic events of two-phase flow. However, faster scanning speed is generally required for the practical use in the thermalhydraulics research field. Therefore, the development of advanced type has been performed. This advanced type can operate under the scanning time of 0.5 milliseconds and is applicable for the measurement of the multi-phase flow with velocity up to 4-5 m/s. (author)

  3. A prediction of 3-D viscous flow and performance of the NASA Low-Speed Centrifugal Compressor

    Science.gov (United States)

    Moore, John; Moore, Joan G.

    1990-01-01

    A prediction of the three-dimensional turbulent flow in the NASA Low-Speed Centrifugal Compressor Impeller has been made. The calculation was made for the compressor design conditions with the specified uniform tip clearance gap. The predicted performance is significantly worse than that predicted in the NASA design study. This is explained by the high tip leakage flow in the present calculation and by the different model adopted for tip leakage flow mixing. The calculation gives an accumulation of high losses in the shroud/pressure-side quadrant near the exit of the impeller. It also predicts a region of meridional backflow near the shroud wall. Both of these flow features should be extensive enough in the NASA impeller to allow detailed flow measurements, leading to improved flow modeling. Recommendations are made for future flow studies in the NASA impeller.

  4. Perceived enjoyment, concentration, intention, and speed violation behavior: Using flow theory and theory of planned behavior.

    Science.gov (United States)

    Atombo, Charles; Wu, Chaozhong; Zhang, Hui; Wemegah, Tina D

    2017-10-03

    Road accidents are an important public health concern, and speeding is a major contributor. Although flow theory (FLT) is a valid model for understanding behavior, currently the nature of the roles and interplay of FLT constructs within the theory of planned behavior (TPB) framework when attempting to explain the determinants of motivations for intention to speed and speeding behavior of car drivers is not yet known. The study aims to synthesize TPB and FLT in explaining drivers of advanced vehicles intentions to speed and speed violation behaviors and evaluate factors that are critical for explaining intention and behavior. The hypothesized model was validated using a sample collected from 354 fully licensed drivers of advanced vehicles, involving 278 males and 76 females on 2 occasions separated by a 3-month interval. During the first of the 2 occasions, participants completed questionnaire measures of TPB and FLT variables. Three months later, participants' speed violation behaviors were assessed. The study observed a significant positive relationship between the constructs. The proposed model accounted for 51 and 45% of the variance in intention to speed and speed violation behavior, respectively. The independent predictors of intention were enjoyment, attitude, and subjective norm. The independent predictors of speed violation behavior were enjoyment, concentration, intention, and perceived behavioral control. The findings suggest that safety interventions for preventing speed violation behaviors should be aimed at underlying beliefs influencing the speeding behaviors of drivers of advanced vehicles. Furthermore, perceived enjoyment is of equal importance to driver's intention, influencing speed violation behavior.

  5. An investigation of the speeding-related crash designation through crash narrative reviews sampled via logistic regression.

    Science.gov (United States)

    Fitzpatrick, Cole D; Rakasi, Saritha; Knodler, Michael A

    2017-01-01

    Speed is one of the most important factors in traffic safety as higher speeds are linked to increased crash risk and higher injury severities. Nearly a third of fatal crashes in the United States are designated as "speeding-related", which is defined as either "the driver behavior of exceeding the posted speed limit or driving too fast for conditions." While many studies have utilized the speeding-related designation in safety analyses, no studies have examined the underlying accuracy of this designation. Herein, we investigate the speeding-related crash designation through the development of a series of logistic regression models that were derived from the established speeding-related crash typologies and validated using a blind review, by multiple researchers, of 604 crash narratives. The developed logistic regression model accurately identified crashes which were not originally designated as speeding-related but had crash narratives that suggested speeding as a causative factor. Only 53.4% of crashes designated as speeding-related contained narratives which described speeding as a causative factor. Further investigation of these crashes revealed that the driver contributing code (DCC) of "driving too fast for conditions" was being used in three separate situations. Additionally, this DCC was also incorrectly used when "exceeding the posted speed limit" would likely have been a more appropriate designation. Finally, it was determined that the responding officer only utilized one DCC in 82% of crashes not designated as speeding-related but contained a narrative indicating speed as a contributing causal factor. The use of logistic regression models based upon speeding-related crash typologies offers a promising method by which all possible speeding-related crashes could be identified. Published by Elsevier Ltd.

  6. Correction of edge-flame propagation speed in a counterflow, annular slot burner

    KAUST Repository

    Tran, Vu Manh; Cha, Min

    2015-01-01

    to study the fundamental behaviors of edge-flames. In addition, our burner has easy optical access for detailed laser diagnostics. Flame displacement speeds were measured using a high-speed camera and related flow fields of unburned gases were visualized

  7. Flow speed measurement using two-point collective light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeier, N.P

    1998-09-01

    Measurements of turbulence in plasmas and fluids using the technique of collective light scattering have always been plagued by very poor spatial resolution. In 1994, a novel two-point collective light scattering system for the measurement of transport in a fusion plasma was proposed. This diagnostic method was design for a great improvement of the spatial resolution, without sacrificing accuracy in the velocity measurement. The system was installed at the W7-AS steallartor in Garching, Germany, in 1996, and has been operating since. This master thesis is an investigation of the possible application of this new method to the measurement of flow speeds in normal fluids, in particular air, although the results presented in this work have significance for the plasma measurements as well. The main goal of the project was the experimental verification of previous theoretical predictions. However, the theoretical considerations presented in the thesis show that the method can only be hoped to work for flows that are almost laminar and shearless, which makes it of very small practical interest. Furthermore, this result also implies that the diagnostic at W7-AS cannot be expected to give the results originally hoped for. (au) 1 tab., 51 ills., 29 refs.

  8. Flipping the analytical coin : closing the information flow loop in high speed (real time) analysis

    NARCIS (Netherlands)

    K.E. Shahroudi

    1997-01-01

    textabstractAnalysis modules tend to be set up as one way flow of information, i.e a clear distinction between cause and effect or input and output. However, as the speed of analysis approaches real time (or faster than movie rate), it becomes increasingly difficult for an external user to

  9. High speed ultrasonic system to measure bubbles velocities in a horizontal two-phase flow

    International Nuclear Information System (INIS)

    Cunha Filho, Jurandyr S.; Jian Su; Farias, Marcos S.; Faccini, Jose L.H.; Lamy, Carlos A.

    2009-01-01

    In this work, a non invasive technique consisting of a high speed ultrasonic multitransducer pulse-echo system was developed to characterize gas-liquid two-phase flow parameters that are important in the study of the primary refrigeration circuit of nuclear reactors. The high speed ultrasonic system consists of two transducers (10 MHz/φ 6.35 mm), a generator/multiplexer board, and software that selects and has a data acquisition system of the ultrasonic signals. The resolutions of the system and the pulse time generated from each transducer are, respectively, 10 ns and 1.06 ms. The system initially was used in the local instantaneous measurement of gas-liquid interface in a circular horizontal pipe test section made of a 5 m long stainless steel pipe of 51.2 mm inner diameter, where the elongated bubbles velocity was measured (Taylor bubbles). The results show that the high speed ultrasonic pulse-echo system provides good results for the determination of elongated bubbles velocities. (author)

  10. Large-eddy simulation/Reynolds-averaged Navier-Stokes hybrid schemes for high speed flows

    Science.gov (United States)

    Xiao, Xudong

    Three LES/RANS hybrid schemes have been proposed for the prediction of high speed separated flows. Each method couples the k-zeta (Enstrophy) BANS model with an LES subgrid scale one-equation model by using a blending function that is coordinate system independent. Two of these functions are based on turbulence dissipation length scale and grid size, while the third one has no explicit dependence on the grid. To implement the LES/RANS hybrid schemes, a new rescaling-reintroducing method is used to generate time-dependent turbulent inflow conditions. The hybrid schemes have been tested on a Mach 2.88 flow over 25 degree compression-expansion ramp and a Mach 2.79 flow over 20 degree compression ramp. A special computation procedure has been designed to prevent the separation zone from expanding upstream to the recycle-plane. The code is parallelized using Message Passing Interface (MPI) and is optimized for running on IBM-SP3 parallel machine. The scheme was validated first for a flat plate. It was shown that the blending function has to be monotonic to prevent the RANS region from appearing in the LES region. In the 25 deg ramp case, the hybrid schemes provided better agreement with experiment in the recovery region. Grid refinement studies demonstrated the importance of using a grid independent blend function and further improvement with experiment in the recovery region. In the 20 deg ramp case, with a relatively finer grid, the hybrid scheme characterized by grid independent blending function well predicted the flow field in both the separation region and the recovery region. Therefore, with "appropriately" fine grid, current hybrid schemes are promising for the simulation of shock wave/boundary layer interaction problems.

  11. Experimental and computational investigation of the NASA low-speed centrifugal compressor flow field

    Science.gov (United States)

    Hathaway, Michael D.; Chriss, Randall M.; Wood, Jerry R.; Strazisar, Anthony J.

    1993-01-01

    An experimental and computational investigation of the NASA Lewis Research Center's low-speed centrifugal compressor (LSCC) flow field was conducted using laser anemometry and Dawes' three-dimensional viscous code. The experimental configuration consisted of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane. In several cases the measurements provide details of the flow within the blade boundary layers. Insight into the complex flow physics within centrifugal compressors is provided by the computational fluid dynamics analysis (CFD), and assessment of the CFD predictions is provided by comparison with the measurements. Five-hole probe and hot-wire surveys at the inlet and exit to the impeller as well as surface flow visualization along the impeller blade surfaces provided independent confirmation of the laser measurement technique. The results clearly document the development of the throughflow velocity wake that is characteristic of unshrouded centrifugal compressors.

  12. Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland

    DEFF Research Database (Denmark)

    Nettles, M.; Larsen, T. B.; Elósegui, P.

    2008-01-01

    Geodetic observations show several large, sudden increases in flow speed at Helheim Glacier, one of Greenland's largest outlet glaciers, during summer, 2007. These step-like accelerations, detected along the length of the glacier, coincide with teleseismically detected glacial earthquakes and major...... iceberg calving events. No coseismic offset in the position of the glacier surface is observed; instead, modest tsunamis associated with the glacial earthquakes implicate glacier calving in the seismogenic process. Our results link changes in glacier velocity directly to calving-front behavior...... at Greenland's largest outlet glaciers, on timescales as short as minutes to hours, and clarify the mechanism by which glacial earthquakes occur. Citation: Nettles, M., et al. (2008), Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland....

  13. Hydraulic performance numerical simulation of high specific speed mixed-flow pump based on quasi three-dimensional hydraulic design method

    International Nuclear Information System (INIS)

    Zhang, Y X; Su, M; Hou, H C; Song, P F

    2013-01-01

    This research adopts the quasi three-dimensional hydraulic design method for the impeller of high specific speed mixed-flow pump to achieve the purpose of verifying the hydraulic design method and improving hydraulic performance. Based on the two families of stream surface theory, the direct problem is completed when the meridional flow field of impeller is obtained by employing iterative calculation to settle the continuity and momentum equation of fluid. The inverse problem is completed by using the meridional flow field calculated in the direct problem. After several iterations of the direct and inverse problem, the shape of impeller and flow field information can be obtained finally when the result of iteration satisfies the convergent criteria. Subsequently the internal flow field of the designed pump are simulated by using RANS equations with RNG k-ε two-equation turbulence model. The static pressure and streamline distributions at the symmetrical cross-section, the vector velocity distribution around blades and the reflux phenomenon are analyzed. The numerical results show that the quasi three-dimensional hydraulic design method for high specific speed mixed-flow pump improves the hydraulic performance and reveal main characteristics of the internal flow of mixed-flow pump as well as provide basis for judging the rationality of the hydraulic design, improvement and optimization of hydraulic model

  14. Thermoconvective flow velocity in a high-speed magnetofluid seal after it has stopped

    Science.gov (United States)

    Krakov, M. S.; Nikiforov, I. V.

    2012-09-01

    Convective flow is investigated in the high-speed (linear velocity of the shaft seal is more than 1 m/s) magnetofluid shaft seal after it has been stopped. Magnetic fluid is preliminarily heated due to viscous friction in the moving seal. After the shaft has been stopped, nonuniform heated fluid remains under the action of a high-gradient magnetic field. Numerical analysis has revealed that in this situation, intense thermomagnetic convection is initiated. The velocity of magnetic fluid depends on its viscosity. For the fluid with viscosity of 2 × 10-4 m2/s the maximum flow velocity within the volume of magnetic fluid with a characteristic size of 1 mm can attain a value of 10 m/s.

  15. Tribological properties of high-speed steel treated by compression plasma flow

    International Nuclear Information System (INIS)

    Cherenda, K.K.; Uglov, V.V.; Anishchik, V.M.; Stalmashonak, A.K.; Astashinski, V.M.

    2004-01-01

    Full text: The investigation of tribological properties of two high-speed steels AISI M2 and AISI Tl treated by the nitrogen compression plasma flow was the main aim of this work. Two types of samples were investigated before and after quenching. The plasma flow was received in a magneto-plasma compressor. The impulse duration was ∼100 μs, the number of impulses varied in the range of 1-5, the nitrogen pressure in the chamber was 400-4000 Pa, the energy absorbed by the sample was 2-10 J/cm 2 per impulse. Tribological properties were examined by means of a tribometer TAYl under conditions of dry friction. The Vickers's microhardness was measured by a hard meter PMT3. X-ray diffraction analysis, Auger electron spectroscopy, scanning electron microscopy and energy dispersion microanalysis were used for samples characterization. The earlier conducted investigations showed that the compression plasma flow suited well for the improvement of tribological properties of iron and low-alloyed steels due to the formation of hardening nitrides in the near surface layer. It was found that in the case of high-speed steels only not quenched samples had increased hardness after treatment. The latter can be explained by the formation of hardening nitrides though the phase analysis did not clearly reveal their presence. The element composition confirmed the presence of nitrogen in the surface layer with the concentration up to 30 at. %. The treatment of quenched samples almost always resulted in the hardness decrease due to the dissolution or partial dissolution of alloying elements carbides: M 6 C, MC, M 23 C 6 . The rate of carbides dissolution increased with the growth of the energy absorbed by the sample. The treated samples showed a lower value of the friction coefficient than the untreated one. It could be explained by the formation of nitrogenous austenite which was found out by the phase analysis. At the same time the compression plasma flow strongly influenced surface

  16. Study on numerical methods for transient flow induced by speed-changing impeller of fluid machinery

    International Nuclear Information System (INIS)

    Wu, Dazhuan; Chen, Tao; Wang, Leqin; Cheng, Wentao; Sun, Youbo

    2013-01-01

    In order to establish a reliable numerical method for solving the transient rotating flow induced by a speed-changing impeller, two numerical methods based on finite volume method (FVM) were presented and analyzed in this study. Two-dimensional numerical simulations of incompressible transient unsteady flow induced by an impeller during starting process were carried out respectively by using DM and DSR methods. The accuracy and adaptability of the two methods were evaluated by comprehensively comparing the calculation results. Moreover, an intensive study on the application of DSR method was conducted subsequently. The results showed that transient flow structure evolution and transient characteristics of the starting impeller are obviously affected by the starting process. The transient flow can be captured by both two methods, and the DSR method shows a higher computational efficiency. As an application example, the starting process of a mixed-flow pump was simulated by using DSR method. The calculation results were analyzed by comparing with the experiment data.

  17. Thermoconvective flow velocity in a high-speed magnetofluid seal after it has stopped

    OpenAIRE

    Krakov, M. S.; Nikiforov, I. V.

    2012-01-01

    Convective flow is investigated in the high-speed (linear velocity of the shaft seal is more than 1 m/s) magnetofluid shaft seal after it has been stopped. Magnetic fluid is preliminarily heated due to viscous friction in the moving seal. After the shaft has been stopped, nonuniform heated fluid remains under the action of a high-gradient magnetic field. Numerical analysis has revealed that in this situation, intense thermomagnetic convection is initiated. The velocity of magnetic fluid depen...

  18. Online traffic flow model applying dynamic flow-density relation

    International Nuclear Information System (INIS)

    Kim, Y.

    2002-01-01

    This dissertation describes a new approach of the online traffic flow modelling based on the hydrodynamic traffic flow model and an online process to adapt the flow-density relation dynamically. The new modelling approach was tested based on the real traffic situations in various homogeneous motorway sections and a motorway section with ramps and gave encouraging simulation results. This work is composed of two parts: first the analysis of traffic flow characteristics and second the development of a new online traffic flow model applying these characteristics. For homogeneous motorway sections traffic flow is classified into six different traffic states with different characteristics. Delimitation criteria were developed to separate these states. The hysteresis phenomena were analysed during the transitions between these traffic states. The traffic states and the transitions are represented on a states diagram with the flow axis and the density axis. For motorway sections with ramps the complicated traffic flow is simplified and classified into three traffic states depending on the propagation of congestion. The traffic states are represented on a phase diagram with the upstream demand axis and the interaction strength axis which was defined in this research. The states diagram and the phase diagram provide a basis for the development of the dynamic flow-density relation. The first-order hydrodynamic traffic flow model was programmed according to the cell-transmission scheme extended by the modification of flow dependent sending/receiving functions, the classification of cells and the determination strategy for the flow-density relation in the cells. The unreasonable results of macroscopic traffic flow models, which may occur in the first and last cells in certain conditions are alleviated by applying buffer cells between the traffic data and the model. The sending/receiving functions of the cells are determined dynamically based on the classification of the

  19. An Analysis of Flow in Rotating Passage of Large Radial-Inlet Centrifugal Compressor at Tip Speed of 700 Feet Per Second

    National Research Council Canada - National Science Library

    Prian, Vasily

    1951-01-01

    An analysis was made of the flow in the rotating passages of a 48-inch diameter radial-inlet centrifugal impeller at a tip speed of 700 feet per second in order to provide more knowledge on the flow...

  20. Investigation on Flow-Induced Noise due to Backflow in Low Specific Speed Centrifugal Pumps

    Directory of Open Access Journals (Sweden)

    Qiaorui Si

    2013-01-01

    Full Text Available Flow-induced noise causes disturbances during the operation of centrifugal pumps and also affects their performance. The pumps often work at off-design conditions, mainly at part-load conditions, because of frequent changes in the pump device system. Consequently numerous unstable phenomena occur. In low specific speed centrifugal pumps the main disturbance is the inlet backflow, which is considered as one of the most important factors of flow-induced noise and vibration. In this study, a test rig of the flow-induced noise and vibration of the centrifugal pump was built to collect signals under various operating conditions. The three-dimensional unsteady flow of centrifugal pumps was calculated based on the Reynolds-averaged equations that resemble the shear stress transport (SST k-ω turbulence model. The results show that the blade passing frequency and shaft frequency are dominant in the spectrum of flow-induced noise, whereas the shaft component, amplitude value at shaft frequency, and peak frequencies around the shaft increase with decreasing flow. Through flow field analysis, the inlet backflow of the impeller occurs under 0.7 times the design flow. The pressure pulsation spectrum with backflow conditions validates the flow-induced noise findings. The velocity characteristics of the backflow zone at the inlet pipe were analyzed, and the dynamic characteristics of the backflow eddy during one impeller rotating period were simultaneously obtained by employing the backflow conditions. A flow visualization experiment was performed to confirm the numerical calculations.

  1. Psychomotor speed is related to perceived performance in rowers

    NARCIS (Netherlands)

    Nederhof, Esther; Visscher, Chris; Lemmink, Koen

    2008-01-01

    The goal of the present study was to determine if psychomotor speed is related to perceived performance. It was hypothesized that lower perceived performance was related to longer reaction times. A total of 85 measurements were taken in 26 varsity rowers (mean age 21.3 years, s=1.6) on five

  2. Numerical Investigation on the Effects of Self-Excited Tip Flow Unsteadiness and Blade Row Interactions on the Performance Predictions of Low Speed and Transonic Compressor Rotors

    Science.gov (United States)

    Lee, Daniel H.

    The impact blade row interactions can have on the performance of compressor rotors has been well documented. It is also well known that rotor tip clearance flows can have a large effect on compressor performance and stall margin and recent research has shown that tip leakage flows can exhibit self-excited unsteadiness at near stall conditions. However, the impact of tip leakage flow on the performance and operating range of a compressor rotor, relative to other important flow features such as upstream stator wakes or downstream potential effects, has not been explored. To this end, a numerical investigation has been conducted to determine the effects of self-excited tip flow unsteadiness, upstream stator wakes, and downstream blade row interactions on the performance prediction of low speed and transonic compressor rotors. Calculations included a single blade-row rotor configuration as well as two multi-blade row configurations: one where the rotor was modeled with an upstream stator and a second where the rotor was modeled with a downstream stator. Steady-state and time accurate calculations were performed using a RANS solver and the results were compared with detailed experimental data obtained in the GE Low Speed Research Compressor and the Notre Dame Transonic Rig at several operating conditions including near stall. Differences in the performance predictions between the three configurations were then used to determine the effect of the upstream stator wakes and the downstream blade row interactions. Results obtained show that for both the low speed and transonic research compressors used in this investigation time-accurate RANS analysis is necessary to accurately predict the stalling character of the rotor. Additionally, for the first time it is demonstrated that capturing the unsteady tip flow can have a larger impact on rotor performance predictions than adjacent blade row interactions.

  3. Inversion of Flow Depth and Speed from Tsunami Deposits using TsuSedMod

    Science.gov (United States)

    Spiske, M.; Weiss, R.; Roskosch, J.; Bahlburg, H.

    2008-12-01

    The global evolution of a tsunami wave train can be expressed by the sum of local effects along a tsunami- wave beam. The near-shore evolution of tsunami is very complex as the waves interact with the sea-bottom sediments. Filtered through offshore and onshore erosion and deposition, this evolution is recorded in the coastal area by topographical changes, local erosion and tsunami deposits. Recordable sedimentary on-site features include grain-size distributions and horizontal thickness trends. Immediately after an event, indicators of flow depth and run up extent, such as water marks on buildings and vegetation, debris and plastic bags caught in trees and swash lines, can be measured in the field. A direct measurement of the overland flow velocity is usually not possible. However, regarding recent tsunami events, videos of surveillance cameras or witness accounts helped to estimate the characteristics of overland flow. For historical and paleotsunami events such information is not directly available. Jaffe & Gelfenbaum (2007) developed an inversion model (TsuSedMod) to estimate flow depth and speed based upon the grain-size distribution and the thickness of onshore tsunami sediments. This model assumes a steady distribution of sediment in the water column, for which the appication of the Rouse equation is possible. Further simplifications, especially concerning the turbulence structure, are based on the mixing- length theory by Prandtl, the standard approximation in physical sedimentology. We calculated flow depths for sediments left behind by the 2004 Sumatra-Tsunami in India and Kenya (Weiss & Bahlburg, 2006; Bahlburg & Weiss, 2007) and by the 2006 Java-Tsunami on Java (Piepenbreier et al., 2007), using the model of Jaffe and Gelfenbaum (2007). Estimated flow depth were compared with measured data to extend the validation procedure. This extension is needed to gain confidence and understanding before the next step is taken to compute the near

  4. Low speed/low rarefaction flow simulation in micro/nano cavity using DSMC method with small number of particles per cell

    International Nuclear Information System (INIS)

    Amiri-Jaghargh, Ali; Roohi, Ehsan; Niazmand, Hamid; Stefanov, Stefan

    2012-01-01

    The aim of this study is to extend the validity of the simplified Bernoulli-trials (SBT)/dual grid algorithm, newly proposed by Stefanov, as a suitable alternative of the standard collision scheme in the direct simulation Monte Carlo (DSMC) method, for solving low speed/low Knudsen number rarefied micro/nano flows. The main advantage of the SBT algorithm is to provide accurate calculations using much smaller number of particles per cell, i.e., ≈ 1. Compared to the original development of SBT [1], we extend the application of the SBT scheme to the near continuum rarefied flows, i.e., Kn = 0.005, where NTC scheme requires a relatively large sample size. Comparing the results of the SBT/dual grid scheme with NTC, it is shown that the SBT/dual grid scheme could successfully predict the thermal pattern and hydrodynamics field as well as surface parameters such as velocity slip and temperature jump. Nonlinear flux-corrected transport algorithm (FCT) is also employed as a filter to extract the smooth solution from the noisy DSMC calculation for low-speed/low-Knudsen number DSMC calculations. The results indicate that combination of SBT/dual grid and FTC filtering can decrease the total sample size needed to reach smooth solution without losing significant accuracy.

  5. Analysis of Low Speed Stall Aerodynamics of a Swept Wing with Laminar Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  6. Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  7. ULTRA-SHARP nonoscillatory convection schemes for high-speed steady multidimensional flow

    Science.gov (United States)

    Leonard, B. P.; Mokhtari, Simin

    1990-01-01

    For convection-dominated flows, classical second-order methods are notoriously oscillatory and often unstable. For this reason, many computational fluid dynamicists have adopted various forms of (inherently stable) first-order upwinding over the past few decades. Although it is now well known that first-order convection schemes suffer from serious inaccuracies attributable to artificial viscosity or numerical diffusion under high convection conditions, these methods continue to enjoy widespread popularity for numerical heat transfer calculations, apparently due to a perceived lack of viable high accuracy alternatives. But alternatives are available. For example, nonoscillatory methods used in gasdynamics, including currently popular TVD schemes, can be easily adapted to multidimensional incompressible flow and convective transport. This, in itself, would be a major advance for numerical convective heat transfer, for example. But, as is shown, second-order TVD schemes form only a small, overly restrictive, subclass of a much more universal, and extremely simple, nonoscillatory flux-limiting strategy which can be applied to convection schemes of arbitrarily high order accuracy, while requiring only a simple tridiagonal ADI line-solver, as used in the majority of general purpose iterative codes for incompressible flow and numerical heat transfer. The new universal limiter and associated solution procedures form the so-called ULTRA-SHARP alternative for high resolution nonoscillatory multidimensional steady state high speed convective modelling.

  8. Development of a Dual-PIV system for high-speed flow applications

    Science.gov (United States)

    Schreyer, Anne-Marie; Lasserre, Jean J.; Dupont, Pierre

    2015-10-01

    A new Dual-particle image velocimetry (Dual-PIV) system for application in supersonic flows was developed. The system was designed for shock wave/turbulent boundary layer interactions with separation. This type of flow places demanding requirements on the system, from the large range of characteristic frequencies O(100 Hz-100 kHz) to spatial and temporal resolutions necessary for the measurement of turbulent quantities (Dolling in AIAA J 39(8):1517-1531, 2001; Dupont et al. in J Fluid Mech 559:255-277, 2006; Smits and Dussauge in Turbulent shear layers in supersonic flow, 2nd edn. Springer, New York, 2006). While classic PIV systems using high-resolution CCD sensors allow high spatial resolution, these systems cannot provide the required temporal resolution. Existing high-speed PIV systems provide temporal and CMOS sensor resolutions, and even laser pulse energies, that are not adapted to our needs. The only obvious solution allowing sufficiently high spatial resolution, access to high frequencies, and a high laser pulse energy is a multi-frame system: a Dual-PIV system, consisting of two synchronized PIV systems observing the same field of view, will give access to temporal characteristics of the flow. The key technology of our system is frequency-based image separation: two lasers of different wavelengths illuminate the field of view. The cross-pollution with laser light from the respective other branches was quantified during system validation. The overall system noise was quantified, and the prevailing error of only 2 % reflects the good spatial and temporal alignment. The quality of the measurement system is demonstrated with some results on a subsonic jet flow including the spatio-temporal inter-correlation functions between the systems. First measurements in a turbulent flat-plate boundary layer at Mach 2 show the same satisfactory data quality and are also presented and discussed.

  9. Modified Motor Vehicles Travel Speed Models on the Basis of Curb Parking Setting under Mixed Traffic Flow

    Directory of Open Access Journals (Sweden)

    Zhenyu Mei

    2012-01-01

    Full Text Available The ongoing controversy about in what condition should we set the curb parking has few definitive answers because comprehensive research in this area has been lacking. Our goal is to present a set of heuristic urban street speed functions under mixed traffic flow by taking into account impacts of curb parking. Two impacts have been defined to classify and quantify the phenomena of motor vehicles' speed dynamics in terms of curb parking. The first impact is called Space impact, which is caused by the curb parking types. The other one is the Time impact, which results from the driver maneuvering in or out of parking space. In this paper, based on the empirical data collected from six typical urban streets in Nanjing, China, two models have been proposed to describe these phenomena for one-way traffic and two-way traffic, respectively. An intensive experiment has been conducted in order to calibrate and validate these proposed models, by taking into account the complexity of the model parameters. We also provide guidelines in terms of how to cluster and calculate those models' parameters. Results from these models demonstrated promising performance of modeling motor vehicles' speed for mixed traffic flow under the influence of curb parking.

  10. Influence of air flow, temperature and agitation speed in the batch acetification process to obtain orange vinegar (Citrus sinensis var.W. Navel

    Directory of Open Access Journals (Sweden)

    María Ferreyra

    2012-03-01

    Full Text Available This paper describes the influence of process variables to produce orange vinegar. Orange juice was fermented with Saccharomyces cerevisiae until reach 14% v/v. The biooxidation was carried out with Acetobacter sp., in submerge culture using a laboratory scale fermentor. In order to avoid the inhibitory effect of ethanol on acetic acid bacteria, the orange wine was diluted to 6% v/v with a mineral solution. It was performed a factorial design 2k to study the influence of variables. It was studied air flow rate/agitation at levels of 0.3-0.6 vvm and 200-400 rpm and the effect of air flow rate/temperature at 0.4-0.6 vvm and 25- 30°C, respectively. Duplicate treatments were carried out and the results were evaluated in terms of productivity and fermentation yield. Statistical design (p-value<0.05 was analyzed using Statgraphics Centurion XV Corporate software. Treatments performed at 200 rpm and different air flow levels, did not show significant differences on acetification rate. At higher agitation speed and air flow rates, the productivity was high. The best yields were obtained at lower air flows levels and higher agitation speed. Temperature did not present statistically differences on studied variables. The best yield was obtained at 400 rpm and 0.3 vvm at 25°C. It can be concluded that agitation speed plays an important role for a better acetification rate however higher air flow rates causes less yields.

  11. Model Reduction of Computational Aerothermodynamics for Multi-Discipline Analysis in High Speed Flows

    Science.gov (United States)

    Crowell, Andrew Rippetoe

    This dissertation describes model reduction techniques for the computation of aerodynamic heat flux and pressure loads for multi-disciplinary analysis of hypersonic vehicles. NASA and the Department of Defense have expressed renewed interest in the development of responsive, reusable hypersonic cruise vehicles capable of sustained high-speed flight and access to space. However, an extensive set of technical challenges have obstructed the development of such vehicles. These technical challenges are partially due to both the inability to accurately test scaled vehicles in wind tunnels and to the time intensive nature of high-fidelity computational modeling, particularly for the fluid using Computational Fluid Dynamics (CFD). The aim of this dissertation is to develop efficient and accurate models for the aerodynamic heat flux and pressure loads to replace the need for computationally expensive, high-fidelity CFD during coupled analysis. Furthermore, aerodynamic heating and pressure loads are systematically evaluated for a number of different operating conditions, including: simple two-dimensional flow over flat surfaces up to three-dimensional flows over deformed surfaces with shock-shock interaction and shock-boundary layer interaction. An additional focus of this dissertation is on the implementation and computation of results using the developed aerodynamic heating and pressure models in complex fluid-thermal-structural simulations. Model reduction is achieved using a two-pronged approach. One prong focuses on developing analytical corrections to isothermal, steady-state CFD flow solutions in order to capture flow effects associated with transient spatially-varying surface temperatures and surface pressures (e.g., surface deformation, surface vibration, shock impingements, etc.). The second prong is focused on minimizing the computational expense of computing the steady-state CFD solutions by developing an efficient surrogate CFD model. The developed two

  12. Modeling of speed distribution for mixed bicycle traffic flow

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2015-11-01

    Full Text Available Speed is a fundamental measure of traffic performance for highway systems. There were lots of results for the speed characteristics of motorized vehicles. In this article, we studied the speed distribution for mixed bicycle traffic which was ignored in the past. Field speed data were collected from Hangzhou, China, under different survey sites, traffic conditions, and percentages of electric bicycle. The statistics results of field data show that the total mean speed of electric bicycles is 17.09 km/h, 3.63 km/h faster and 27.0% higher than that of regular bicycles. Normal, log-normal, gamma, and Weibull distribution models were used for testing speed data. The results of goodness-of-fit hypothesis tests imply that the log-normal and Weibull model can fit the field data very well. Then, the relationships between mean speed and electric bicycle proportions were proposed using linear regression models, and the mean speed for purely electric bicycles or regular bicycles can be obtained. The findings of this article will provide effective help for the safety and traffic management of mixed bicycle traffic.

  13. Cellular Automata Models of Traffic Behavior in Presence of Speed Breaking Structures

    International Nuclear Information System (INIS)

    Ramachandran, Parthasarathy

    2009-01-01

    In this article, we study traffic flow in the presence of speed breaking structures. The speed breakers are typically used to reduce the local speed of vehicles near certain institutions such as schools and hospitals. Through a cellular automata model we study the impact of such structures on global traffic characteristics. The simulation results indicate that the presence of speed breakers could reduce the global flow under moderate global densities. However, under low and high global density traffic regime the presence of speed breakers does not have an impact on the global flow. Further the speed limit enforced by the speed breaker creates a phase distinction. For a given global density and slowdown probability, as the speed limit enforced by the speed breaker increases, the traffic moves from the reduced flow phase to maximum flow phase. This underlines the importance of proper design of these structures to avoid undesired flow restrictions. (general)

  14. Flow Rate In Microfluidic Pumps As A Function Of Tension and Pump Motor Head Speed

    Science.gov (United States)

    Irwin, Anthony; McBride, Krista

    2015-03-01

    As the use of microfluidic devices has become more common in recent years the need for standardization within the pump systems has grown. The pumps are ball bearing rotor microfluidic pumps and work off the idea of peristalsis. The rapid contraction and relaxation propagating down a tube or a microfluidic channel. The ball bearings compress the tube (occlusion) and move along part of the tube length forcing fluid to move inside of the tube in the same direction of the ball bearings. When the ball bearing rolls off the area occupied by the microfluidic channel, its walls and ceiling undergo restitution and a pocket of low pressure is briefly formed pulling more of the liquid into the pump system. Before looking to standardize the pump systems it must be known how the tension placed by the pumps bearing heads onto the PDMS inserts channels affect the pumps performance (mainly the flow rate produced). The relationship of the speed at which the bearings on the motor head spin and the flow rate must also be established. This research produced calibration curves for flow rate vs. tension and rpm. These calibration curves allow the devices to be set to optimal user settings by simply varying either the motor head tension or the motor head speed. I would like to acknowledge the help and support of Vanderbilt University SyBBURE program, Christina Marasco, Stacy Sherod, Franck Block and Krista McBride.

  15. Walking speed-related changes in stride time variability: effects of decreased speed

    Directory of Open Access Journals (Sweden)

    Dubost Veronique

    2009-08-01

    Full Text Available Abstract Background Conflicting results have been reported regarding the relationship between stride time variability (STV and walking speed. While some studies failed to establish any relationship, others reported either a linear or a non-linear relationship. We therefore sought to determine the extent to which decrease in self-selected walking speed influenced STV among healthy young adults. Methods The mean value, the standard deviation and the coefficient of variation of stride time, as well as the mean value of stride velocity were recorded while steady-state walking using the GAITRite® system in 29 healthy young adults who walked consecutively at 88%, 79%, 71%, 64%, 58%, 53%, 46% and 39% of their preferred walking speed. Results The decrease in stride velocity increased significantly mean values, SD and CoV of stride time (p Conclusion The results support the assumption that gait variability increases while walking speed decreases and, thus, gait might be more unstable when healthy subjects walk slower compared with their preferred walking speed. Furthermore, these results highlight that a decrease in walking speed can be a potential confounder while evaluating STV.

  16. A novel five-wire micro anemometer with 3D directionality for low speed air flow detection and acoustic particle velocity detecting capability

    Science.gov (United States)

    Li, Zhe; Chang, Wenhan; Gao, Chengchen; Hao, Yilong

    2018-04-01

    In this paper, a novel five-wire micro-fabricated anemometer with 3D directionality based on calorimetric principle is proposed, which is capable of measuring low speed airflow. This structure is realized by vertically bonding two different dies, which can be fabricated on the same wafer resulting in a simple fabrication process. Experiments on speed lower than 200 mm s-1 are conducted, showing good repeatability and directionality. The speed of airflow is controlled by the volumetric flow rate. The measured velocity sensitivity is 9.4 mV · s m-1, with relative direction sensitivity of 37.1 dB. The deviation between the expected and the measured directivity is analyzed by both theories and simulations. A correction procedure is proposed and turns out to be useful to eliminate this deviation. To further explore the potential of our device, we expose it to acoustic plane waves in a standing wave tube, showing consistent planar directivity of figure of eight. The measured velocity sensitivity at 1 kHz and 120 dBC is 4.4 mV · s m-1, with relative direction sensitivity of 27.0 dB. By using the correction method proposed above, the maximum angle error is about  ±2°, showing its good directionality accuracy.

  17. MOE-Analysis for Oversaturated Flow with Interrupted Facility and Heterogeneous Traffic for Urban Roads

    Directory of Open Access Journals (Sweden)

    Hemant Kumar Sharma

    2012-09-01

    Full Text Available Speed-flow functions have been developed by several transportation experts to predict accurately the speed of urban road networks. HCM Speed-Flow Curve, BPR Curve, MTC Speed-Flow Curve, Akçelik Speed-Flow Curve are some extraordinary efforts to define the shape of speed-flow curves. However, the complexity of driver's behaviour, interactions among different type of vehicles, lateral clearance, co-relation of driver's psychology with vehicular characteristics and interdependence of various variables of traffic has led to continuous development and refinement of speed-flow curves. The problem gets more difficult in the case of urban roads with heterogeneous traffic, oversaturated flow and signalized network (which includes some unsignalized intersections as well. This paper presents analysis for various measures of effectiveness (MOE for urban roads with interrupted flow comprising heterogeneous traffic. Model has been developed for heterogeneous traffic under constraints of roadway geometry, vehicle characteristics, driving behaviour and traffic controls. The model developed in this paper predicts speed, delay, average queue and maximum queue estimates for urban roads and quantifies congestion for oversaturated conditions. The investigation details the oversaturated portion of flow in particular.

  18. Individual Differences in the Speed of Facial Emotion Recognition Show Little Specificity but Are Strongly Related with General Mental Speed: Psychometric, Neural and Genetic Evidence

    Directory of Open Access Journals (Sweden)

    Xinyang Liu

    2017-08-01

    Full Text Available Facial identity and facial expression processing are crucial socio-emotional abilities but seem to show only limited psychometric uniqueness when the processing speed is considered in easy tasks. We applied a comprehensive measurement of processing speed and contrasted performance specificity in socio-emotional, social and non-social stimuli from an individual differences perspective. Performance in a multivariate task battery could be best modeled by a general speed factor and a first-order factor capturing some specific variance due to processing emotional facial expressions. We further tested equivalence of the relationships between speed factors and polymorphisms of dopamine and serotonin transporter genes. Results show that the speed factors are not only psychometrically equivalent but invariant in their relation with the Catechol-O-Methyl-Transferase (COMT Val158Met polymorphism. However, the 5-HTTLPR/rs25531 serotonin polymorphism was related with the first-order factor of emotion perception speed, suggesting a specific genetic correlate of processing emotions. We further investigated the relationship between several components of event-related brain potentials with psychometric abilities, and tested emotion specific individual differences at the neurophysiological level. Results revealed swifter emotion perception abilities to go along with larger amplitudes of the P100 and the Early Posterior Negativity (EPN, when emotion processing was modeled on its own. However, after partialling out the shared variance of emotion perception speed with general processing speed-related abilities, brain-behavior relationships did not remain specific for emotion. Together, the present results suggest that speed abilities are strongly interrelated but show some specificity for emotion processing speed at the psychometric level. At both genetic and neurophysiological levels, emotion specificity depended on whether general cognition is taken into account

  19. Individual Differences in the Speed of Facial Emotion Recognition Show Little Specificity but Are Strongly Related with General Mental Speed: Psychometric, Neural and Genetic Evidence

    Science.gov (United States)

    Liu, Xinyang; Hildebrandt, Andrea; Recio, Guillermo; Sommer, Werner; Cai, Xinxia; Wilhelm, Oliver

    2017-01-01

    Facial identity and facial expression processing are crucial socio-emotional abilities but seem to show only limited psychometric uniqueness when the processing speed is considered in easy tasks. We applied a comprehensive measurement of processing speed and contrasted performance specificity in socio-emotional, social and non-social stimuli from an individual differences perspective. Performance in a multivariate task battery could be best modeled by a general speed factor and a first-order factor capturing some specific variance due to processing emotional facial expressions. We further tested equivalence of the relationships between speed factors and polymorphisms of dopamine and serotonin transporter genes. Results show that the speed factors are not only psychometrically equivalent but invariant in their relation with the Catechol-O-Methyl-Transferase (COMT) Val158Met polymorphism. However, the 5-HTTLPR/rs25531 serotonin polymorphism was related with the first-order factor of emotion perception speed, suggesting a specific genetic correlate of processing emotions. We further investigated the relationship between several components of event-related brain potentials with psychometric abilities, and tested emotion specific individual differences at the neurophysiological level. Results revealed swifter emotion perception abilities to go along with larger amplitudes of the P100 and the Early Posterior Negativity (EPN), when emotion processing was modeled on its own. However, after partialling out the shared variance of emotion perception speed with general processing speed-related abilities, brain-behavior relationships did not remain specific for emotion. Together, the present results suggest that speed abilities are strongly interrelated but show some specificity for emotion processing speed at the psychometric level. At both genetic and neurophysiological levels, emotion specificity depended on whether general cognition is taken into account or not. These

  20. Aeroacoustic modelling of low-speed flows

    Energy Technology Data Exchange (ETDEWEB)

    Wen Zhong Shen; Noerkaer Soerensen, Jens

    1998-08-01

    A new numerical algorithm for acoustic noise generation is developed. The approach involves two steps comprising an incompressible flow part and inviscid acoustic part. The acoustic part can be started at any time of the incompressible computation. The formulation can be applied both for isentropic flows and non-isentropic flows. The model is validated for the cases of an isentropic pulsating sphere and non-isentropic flows past a circular cylinder and a NACA 0015 airfoil. The computations show that the generated acoustic frequencies have the form 1/m of the basic frequency of incompressible flow. (au) 15 refs.

  1. Wire-mesh sensor, ultrasound and high-speed videometry applied for the characterization of horizontal gas-liquid slug flow

    Science.gov (United States)

    Ofuchi, C. Y.; Morales, R. E. M.; Arruda, L. V. R.; Neves, F., Jr.; Dorini, L.; do Amaral, C. E. F.; da Silva, M. J.

    2012-03-01

    Gas-liquid flows occur in a broad range of industrial applications, for instance in chemical, petrochemical and nuclear industries. Correct understating of flow behavior is crucial for safe and optimized operation of equipments and processes. Thus, measurement of gas-liquid flow plays an important role. Many techniques have been proposed and applied to analyze two-phase flows so far. In this experimental research, data from a wire-mesh sensor, an ultrasound technique and high-speed camera are used to study two-phase slug flows in horizontal pipes. The experiments were performed in an experimental two-phase flow loop which comprises a horizontal acrylic pipe of 26 mm internal diameter and 9 m length. Water and air were used to produce the two-phase flow and their flow rates are separately controlled to produce different flow conditions. As a parameter of choice, translational velocity of air bubbles was determined by each of the techniques and comparatively evaluated along with a mechanistic flow model. Results obtained show good agreement among all techniques. The visualization of flow obtained by the different techniques is also presented.

  2. Measurement of liquid film flow on nuclear rod bundle in micro-scale by using very high speed camera system

    Science.gov (United States)

    Pham, Son; Kawara, Zensaku; Yokomine, Takehiko; Kunugi, Tomoaki

    2012-11-01

    Playing important roles in the mass and heat transfer as well as the safety of boiling water reactor, the liquid film flow on nuclear fuel rods has been studied by different measurement techniques such as ultrasonic transmission, conductivity probe, etc. Obtained experimental data of this annular two-phase flow, however, are still not enough to construct the physical model for critical heat flux analysis especially at the micro-scale. Remain problems are mainly caused by complicated geometry of fuel rod bundles, high velocity and very unstable interface behavior of liquid and gas flow. To get over these difficulties, a new approach using a very high speed digital camera system has been introduced in this work. The test section simulating a 3×3 rectangular rod bundle was made of acrylic to allow a full optical observation of the camera. Image data were taken through Cassegrain optical system to maintain the spatiotemporal resolution up to 7 μm and 20 μs. The results included not only the real-time visual information of flow patterns, but also the quantitative data such as liquid film thickness, the droplets' size and speed distributions, and the tilt angle of wavy surfaces. These databases could contribute to the development of a new model for the annular two-phase flow. Partly supported by the Global Center of Excellence (G-COE) program (J-051) of MEXT, Japan.

  3. Modifying behaviour to reduce over-speeding in work-related drivers: an objective approach.

    Science.gov (United States)

    Newnam, Sharon; Lewis, Ioni; Warmerdam, Amanda

    2014-03-01

    The goal of this study was to utilise an objective measurement tool, via an on-board Diagnostic tool (OBDII), to explore the effectiveness of a behaviour modification intervention designed to reduce over-speed violations in a group of work-related drivers. It was predicted that over-speed violations would be decreased following participation in a behaviour modification intervention where drivers received weekly feedback on their speeding performance and goal setting exercises. The final analysis included the on-road behaviour of 16 drivers, all of whom completed each stage of the intervention programme. As predicted, over-speed violations significantly decreased from pre-test to post-test, after controlling for kilometres driven. These findings offer practical guidance for industry in developing interventions designed to improve work-related driving behaviour. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Effect of welding current and speed on occurrence of humping bead in high-speed GMAW

    Institute of Scientific and Technical Information of China (English)

    Chen Ji; Wu Chuansong

    2009-01-01

    The developed mathematical model of humping formation mechanism in high-speed gas metal arc welding (GMAW) is used to analyze the effects of welding current and welding speed on the occurrence of humping bead. It considers both the momentum and heat content of backward flowing molten jet inside weld pool. Three-dimensional geometry of weld pool, the spacing between two adjacent humps and hump height along humping weld bead are calculated under different levels of welding current and welding speed. It shows that wire feeding rate, power intensity and the moment of backward flowing molten jet are the major factors on humping bead formation.

  5. Crystallization speed of salbutamol as a function of relative humidity and temperature.

    Science.gov (United States)

    Zellnitz, Sarah; Narygina, Olga; Resch, Christian; Schroettner, Hartmuth; Urbanetz, Nora Anne

    2015-07-15

    Spray dried salbutamol sulphate and salbutamol base particles are amorphous as a result of spray drying. As there is always the risk of recrystallization of amorphous material, the aim of this work is the evaluation of the temperature and humidity dependent recrystallization of spray dried salbutamol sulphate and base. Therefore in-situ Powder X-ray Diffraction (PXRD) studies of the crystallization process at various temperature (25 and 35 °C) and humidity (60%, 70%, 80%, 90% relative humidity) conditions were performed. It was shown that the crystallization speed of salbutamol sulphate and base is a non-linear function of both temperature and relative humidity. The higher the relative humidity the higher is the crystallization speed. At 60% relative humidity salbutamol base as well as salbutamol sulphate were found to be amorphous even after 12 h, however samples changed optically. At 70% and 90% RH recrystallization of salbutamol base is completed after 3 h and 30 min and recrystallization of salbutamol sulphate after 4h and 1h, respectively. Higher temperature (35 °C) also leads to increased crystallization speeds at all tested values of relative humidity. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Simultaneous two-phase flow measurement of spray mixing process by means of high-speed two-color PIV

    International Nuclear Information System (INIS)

    Zhang, Ming; Xu, Min; Hung, David L S

    2014-01-01

    In this article, a novel high-speed two-color PIV optical diagnostic technique has been developed and applied to simultaneously measure the velocity flow-fields of a multi-hole spark-ignition direct injection (SIDI) fuel injector spray and its ambient gas in a high-pressure constant volume chamber. To allow for the phase discrimination between the fuel droplets and ambient gas, a special tracer-filter system was designed. Fluorescent seeding particles with Sauter mean diameter (SMD) of 4.8 µm were used to trace the gas inside the chamber. With a single high-speed Nd:YLF laser sheet (527 nm) as the incident light source, the Mie-scattering signal marked the phase of the fuel spray, while the fluorescent signal generated from the seeding particles tracked the phase of ambient gas. A high-speed camera, with an image-doubler (mounted in front of the camera lens) that divided the camera pixels into two parts focusing on the same field of view, was used to collect the Mie-scattering signal and LIF (laser induced fluorescence) signal simultaneously with two carefully selected optical filters. To accommodate the large dynamic range of velocities in the two phases (1–2 orders of magnitude difference), two separation times (dt) were introduced. This technique was successfully applied to the liquid spray and ambient gas two-phase flow measurement. The measurement accuracy was compared with those from LDV (laser Doppler velocimetry) measurement and good agreement was obtained. Ambient gas motion surrounding the fuel spray was investigated and characterized into three zones. The momentum transfer process between the fuel spray and ambient gas in each zone was analyzed. The two-phase flow interaction under various superheated conditions was investigated. A strengthened momentum transfer from the liquid spray to the ambient was observed with increased superheat degree. (paper)

  7. Deformed special relativity with an invariant minimum speed and its ...

    Indian Academy of Sciences (India)

    On the other hand, according to special relativity (SR), the momentum cannot ... Deformed special relativity with an invariant minimum speed ..... However, we need to show that there is an anti-gravitational interaction between the ordinary proof mass m and the big sphere with a 'dark mass' of vacuum (MΛ), but let us first ...

  8. Experimental and analytical studies on high-speed plane jet along concave wall simulating IFMIF Li target flow

    International Nuclear Information System (INIS)

    Nakamura, H.; Ida, M.; Kato, Y.; Maekawa, H.; Katsuta, H.; Itoh, K.; Kukita, Y.

    1998-01-01

    As part of the conceptual design activity (CDA) of the international fusion materials irradiation facility (IFMIF), the characteristics of the high-speed liquid lithium (Li) plane jet target flow have been studied by water experiments and numerical analyses for both heating and non-heating conditions. The simulated prototypal-size water flows were stable over the entire length of ∝130 mm at the average velocity up to 17 m/s. The jet flow had a specific radial velocity profile, close to that of free-vortex flow, because of a static pressure distribution in the jet thickness due to centrifugal force. Detailed velocity measurement revealed that this flow condition is penetrating into the upstream reducer nozzle up to a distance ∼ the jet thickness. The numerical analyses using a two-dimensional Cartesian-coordinate model were successful to predict the velocity profile transient around the nozzle exit, though underestimated the development of the velocity profile and the jet thickness. (orig.)

  9. NASA low speed centrifugal compressor

    Science.gov (United States)

    Hathaway, Michael D.

    1990-01-01

    The flow characteristics of a low speed centrifugal compressor were examined at NASA Lewis Research Center to improve understanding of the flow in centrifugal compressors, to provide models of various flow phenomena, and to acquire benchmark data for three dimensional viscous flow code validation. The paper describes the objectives, test facilities' instrumentation, and experiment preliminary comparisons.

  10. Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates.

    Science.gov (United States)

    Csavina, Janae; Field, Jason; Félix, Omar; Corral-Avitia, Alba Y; Sáez, A Eduardo; Betterton, Eric A

    2014-07-15

    Atmospheric particulate have deleterious impacts on human health. Predicting dust and aerosol emission and transport would be helpful to reduce harmful impacts but, despite numerous studies, prediction of dust events and contaminant transport in dust remains challenging. In this work, we show that relative humidity and wind speed are both determinants in atmospheric dust concentration. Observations of atmospheric dust concentrations in Green Valley, AZ, USA, and Juárez, Chihuahua, México, show that PM10 concentrations are not directly correlated with wind speed or relative humidity separately. However, selecting the data for high wind speeds (>4m/s at 10 m elevation), a definite trend is observed between dust concentration and relative humidity: dust concentration increases with relative humidity, reaching a maximum around 25% and it subsequently decreases with relative humidity. Models for dust storm forecasting may be improved by utilizing atmospheric humidity and wind speed as main drivers for dust generation and transport. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Numerical comparisons of the performance of a hydraulic coupling with different pump rotational speeds

    International Nuclear Information System (INIS)

    Luo, Y; Feng, L H; Liu, S H; Chen, T J; Fan, H G

    2013-01-01

    A hydraulic coupling is a hydrodynamic device for transmitting rotating mechanical power. It is widely used in the machinery industry because of its advantages of high energy transmission efficiency, shock absorption and good adaptability, etc. In this paper, SIMPLEC algorithm and SST k-ω turbulence model were employed to simulate the steady state flows at operating conditions of two different rotational speeds (3000r/min and 7500 r/min) of the pump of a specified hydraulic coupling model. The results indicate the existence of similarity in the distributions of the flow fields between the two speeds, but the efficiency at the optimum condition is larger with higher rotational speed. It is concluded that the similarity principle of the efficiency of the hydraulic couplings does not apply in this case due to the relatively high rotating speed and small geometric specifications. It is also shown that the radially stratified pressure distribution on the torus section becomes more obvious with larger speed ratios, since the centrifugal movement plays more dominant roles over the circulating movement in these situations. When the speed ratio is small, with the completion of the circulating flow, the pressure distribution presents in a more circular pattern around the neutral zone of the torus section

  12. Speed, speed variation and crash relationships for urban arterials.

    Science.gov (United States)

    Wang, Xuesong; Zhou, Qingya; Quddus, Mohammed; Fan, Tianxiang; Fang, Shou'en

    2018-04-01

    Speed and speed variation are closely associated with traffic safety. There is, however, a dearth of research on this subject for the case of urban arterials in general, and in the context of developing nations. In downtown Shanghai, the traffic conditions in each direction are very different by time of day, and speed characteristics during peak hours are also greatly different from those during off-peak hours. Considering that traffic demand changes with time and in different directions, arterials in this study were divided into one-way segments by the direction of flow, and time of day was differentiated and controlled for. In terms of data collection, traditional fixed-based methods have been widely used in previous studies, but they fail to capture the spatio-temporal distributions of speed along a road. A new approach is introduced to estimate speed variation by integrating spatio-temporal speed fluctuation of a single vehicle with speed differences between vehicles using taxi-based high frequency GPS data. With this approach, this paper aims to comprehensively establish a relationship between mean speed, speed variation and traffic crashes for the purpose of formulating effective speed management measures, specifically using an urban dataset. From a total of 234 one-way road segments from eight arterials in Shanghai, mean speed, speed variation, geometric design features, traffic volume, and crash data were collected. Because the safety effects of mean speed and speed variation may vary at different segment lengths, arterials with similar signal spacing density were grouped together. To account for potential correlations among these segments, a hierarchical Poisson log-normal model with random effects was developed. Results show that a 1% increase in mean speed on urban arterials was associated with a 0.7% increase in total crashes, and larger speed variation was also associated with increased crash frequency. Copyright © 2018 Elsevier Ltd. All rights

  13. Gyrotactic suppression and emergence of chaotic trajectories of swimming particles in three-dimensional flows

    Science.gov (United States)

    Richardson, S. I. Heath; Baggaley, A. W.; Hill, N. A.

    2018-02-01

    We study the effects of imposed three-dimensional flows on the trajectories and mixing of gyrotactic swimming microorganisms and identify phenomena not seen in flows restricted to two dimensions. Through numerical simulation of Taylor-Green and Arnold-Beltrami-Childress (ABC) flows, we explore the role that the flow and the cell shape play in determining the long-term configuration of the cells' trajectories, which often take the form of multiple sinuous and helical "plumelike" structures, even in the chaotic ABC flow. This gyrotactic suppression of Lagrangian chaos persists even in the presence of random noise. Analytical solutions for a number of cases reveal the how plumes form and the nature of the competition between torques acting on individual cells. Furthermore, studies of Lyapunov exponents reveal that, as the ratio of cell swimming speed relative to the flow speed increases from zero, the initial chaotic trajectories are first suppressed and then give way to a second unexpected window of chaotic trajectories at speeds greater than unity, before suppression of chaos at high relative swimming speeds.

  14. Relative speed of processing determines color-word contingency learning.

    Science.gov (United States)

    Forrin, Noah D; MacLeod, Colin M

    2017-10-01

    In three experiments, we tested a relative-speed-of-processing account of color-word contingency learning, a phenomenon in which color identification responses to high-contingency stimuli (words that appear most often in particular colors) are faster than those to low-contingency stimuli. Experiment 1 showed equally large contingency-learning effects whether responding was to the colors or to the words, likely due to slow responding to both dimensions because of the unfamiliar mapping required by the key press responses. For Experiment 2, participants switched to vocal responding, in which reading words is considerably faster than naming colors, and we obtained a contingency-learning effect only for color naming, the slower dimension. In Experiment 3, previewing the color information resulted in a reduced contingency-learning effect for color naming, but it enhanced the contingency-learning effect for word reading. These results are all consistent with contingency learning influencing performance only when the nominally irrelevant feature is faster to process than the relevant feature, and therefore are entirely in accord with a relative-speed-of-processing explanation.

  15. NASA Langley Low Speed Aeroacoustic Wind Tunnel: Background Noise and Flow Survey Results Prior to FY05 Construction of Facilities Modifications

    Science.gov (United States)

    Booth, Earl R., Jr.; Henderson, Brenda S.

    2005-01-01

    The NASA Langley Research Center Low Speed Aeroacoustic Wind Tunnel is a premier facility for model-scale testing of jet noise reduction concepts at realistic flow conditions. However, flow inside the open jet test section is less than optimum. A Construction of Facilities project, scheduled for FY 05, will replace the flow collector with a new design intended to reduce recirculation in the open jet test section. The reduction of recirculation will reduce background noise levels measured by a microphone array impinged by the recirculation flow and will improve flow characteristics in the open jet tunnel flow. In order to assess the degree to which this modification is successful, background noise levels and tunnel flow are documented, in order to establish a baseline, in this report.

  16. The radial speed-expansion speed relation for Earth-directed CMEs

    Science.gov (United States)

    Mäkelä, P.; Gopalswamy, N.; Yashiro, S.

    2016-05-01

    Earth-directed coronal mass ejections (CMEs) are the main drivers of major geomagnetic storms. Therefore, a good estimate of the disturbance arrival time at Earth is required for space weather predictions. The STEREO and SOHO spacecraft were viewing the Sun in near quadrature during January 2010 to September 2012, providing a unique opportunity to study the radial speed (Vrad)-expansion speed (Vexp) relationship of Earth-directed CMEs. This relationship is useful in estimating the Vrad of Earth-directed CMEs, when they are observed from Earth view only. We selected 19 Earth-directed CMEs observed by the Large Angle and Spectrometric Coronagraph (LASCO)/C3 coronagraph on SOHO and the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI)/COR2 coronagraph on STEREO during January 2010 to September 2012. We found that of the three tested geometric CME models the full ice-cream cone model of the CME describes best the Vrad-Vexp relationship, as suggested by earlier investigations. We also tested the prediction accuracy of the empirical shock arrival (ESA) model proposed by Gopalswamy et al. (2005a), while estimating the CME propagation speeds from the CME expansion speeds. If we use STEREO observations to estimate the CME width required to calculate the Vrad from the Vexp measurements, the mean absolute error (MAE) of the shock arrival times of the ESA model is 8.4 h. If the LASCO measurements are used to estimate the CME width, the MAE still remains below 17 h. Therefore, by using the simple Vrad-Vexp relationship to estimate the Vrad of the Earth-directed CMEs, the ESA model is able to predict the shock arrival times with accuracy comparable to most other more complex models.

  17. Variable speed limit strategies analysis with mesoscopic traffic flow model based on complex networks

    Science.gov (United States)

    Li, Shu-Bin; Cao, Dan-Ni; Dang, Wen-Xiu; Zhang, Lin

    As a new cross-discipline, the complexity science has penetrated into every field of economy and society. With the arrival of big data, the research of the complexity science has reached its summit again. In recent years, it offers a new perspective for traffic control by using complex networks theory. The interaction course of various kinds of information in traffic system forms a huge complex system. A new mesoscopic traffic flow model is improved with variable speed limit (VSL), and the simulation process is designed, which is based on the complex networks theory combined with the proposed model. This paper studies effect of VSL on the dynamic traffic flow, and then analyzes the optimal control strategy of VSL in different network topologies. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help the department of traffic management.

  18. RICE: a computer program for multicomponent chemically reactive flows at all speeds

    International Nuclear Information System (INIS)

    Rivard, W.C.; Farmer, O.A.; Butler, T.D.

    1974-11-01

    The fluid dynamics of chemically reactive mixtures are calculated at arbitrary flow speeds with the RICE program. The dynamics are governed by the two-dimensional, time-dependent Navier-Stokes equations together with the species transport equations and the mass-action rate equations for the chemical reactions. The mass and momentum equations for the mixture are solved implicitly by the ICE technique. The equations for total energy and species transport are solved explicitly while the chemical rate equations are solved implicitly with a time step that may be a submultiple of the hydrodynamic time step. Application is made to continuous wave HF chemical lasers to compute the supersonic mixing and chemical reactions that take place in the lasing cavity. (U.S.)

  19. Simulation of load traffic and steeped speed control of conveyor

    Science.gov (United States)

    Reutov, A. A.

    2017-10-01

    The article examines the possibilities of the step control simulation of conveyor speed within Mathcad, Simulink, Stateflow software. To check the efficiency of the control algorithms and to more accurately determine the characteristics of the control system, it is necessary to simulate the process of speed control with real values of traffic for a work shift or for a day. For evaluating the belt workload and absence of spillage it is necessary to use empirical values of load flow in a shorter period of time. The analytical formulas for optimal speed step values were received using empirical values of load. The simulation checks acceptability of an algorithm, determines optimal parameters of regulation corresponding to load flow characteristics. The average speed and the number of speed switching during simulation are admitted as criteria of regulation efficiency. The simulation example within Mathcad software is implemented. The average conveyor speed decreases essentially by two-step and three-step control. A further increase in the number of regulatory steps decreases average speed insignificantly but considerably increases the intensity of the speed switching. Incremental algorithm of speed regulation uses different number of stages for growing and reducing load traffic. This algorithm allows smooth control of the conveyor speed changes with monotonic variation of the load flow. The load flow oscillation leads to an unjustified increase or decrease of speed. Work results can be applied at the design of belt conveyors with adjustable drives.

  20. Linking pedestrian flow characteristics with stepping locomotion

    Science.gov (United States)

    Wang, Jiayue; Boltes, Maik; Seyfried, Armin; Zhang, Jun; Ziemer, Verena; Weng, Wenguo

    2018-06-01

    While properties of human traffic flow are described by speed, density and flow, the locomotion of pedestrian is based on steps. To relate characteristics of human locomotor system with properties of human traffic flow, this paper aims to connect gait characteristics like step length, step frequency, swaying amplitude and synchronization with speed and density and thus to build a ground for advanced pedestrian models. For this aim, observational and experimental study on the single-file movement of pedestrians at different densities is conducted. Methods to measure step length, step frequency, swaying amplitude and step synchronization are proposed by means of trajectories of the head. Mathematical models for the relations of step length or frequency and speed are evaluated. The problem how step length and step duration are influenced by factors like body height and density is investigated. It is shown that the effect of body height on step length and step duration changes with density. Furthermore, two different types of step in-phase synchronization between two successive pedestrians are observed and the influence of step synchronization on step length is examined.

  1. Aerothermal and aeroelastic response prediction of aerospace structures in high-speed flows using direct numerical simulation

    Science.gov (United States)

    Ostoich, Christopher Mark

    Future high-speed air vehicles will be lightweight, flexible, and reusable. Ve- hicles fitting this description are subject to severe thermal and fluid dynamic loading from multiple sources such as aerothermal heating, propulsion sys- tem exhaust, and high dynamic pressures. The combination of low-margin design requirements and extreme environmental conditions emphasizes the occurrence of fluid-thermal-structural coupling. Numerous attempts to field such vehicles have been unsuccessful over the past half-century due par- tially to the inability of traditional design and analysis practices to predict the structural response in this flight regime. In this thesis, a high-fidelity computational approach is used to examine the fluid-structural response of aerospace structures in high-speed flows. The method is applied to two cases: one involving a fluid-thermal interaction problem in a hypersonic flow and the other a fluid-structure interaction study involving a turbulent boundary layer and a compliant panel. The coupled fluid-thermal investigation features a nominally rigid alu- minum spherical dome fixed to a ceramic panel holder placed in a Mach 6.59 laminar boundary layer. The problem was originally studied by Glass and Hunt in a 1988 wind tunnel experiment in the NASA Langley 8-Foot High Temperature Tunnel and is motivated by thermally bowed body panels designed for the National Aerospace Plane. In this work, the compressible Navier-Stokes equations for a thermally perfect gas and the transient heat equation in the structure are solved simultaneously using two high-fidelity solvers coupled at the solid-fluid interface. Predicted surface heat fluxes are within 10% of the measured values in the dome interior with greater differ- ences found near the dome edges where uncertainties concerning the exper- imental model's construction likely influence the thermal dynamics. On the flat panel holder, the local surface heat fluxes approach those on the wind- ward dome face

  2. The speed of gravity in general relativity and theoretical interpretation of the Jovian deflection experiment

    International Nuclear Information System (INIS)

    Kopeikin, Sergei M

    2004-01-01

    According to Einstein, the notions of geodesic, parallel transport (affine connection) and curvature of the spacetime manifold have a pure geometric origin and do not correlate with any electromagnetic concepts. At the same time, curvature is generated by matter which is not affiliated with the spacetime geometric concepts. For this reason, the fundamental constant c entering the geometric and matter sectors of the general theory of relativity has different conceptual meanings. Specifically, the letter c on the left-hand side of the Einstein equations (geometric sector) entering the Christoffel symbols and its time derivatives is the ultimate speed of gravity characterizing the upper limit on the speed of its propagation as well as the maximal rate of change of time derivatives of the metric tensor, that is gravitational field. The letter c on the right-hand side of the Einstein equations (matter sector) is the maximal speed of propagation of any other field rather than gravity. Einstein's general principle of relativity extends his principle of special relativity and equates the numerical value of the ultimate speed of gravity to that of the speed of light in the special theory of relativity but this general principle must be tested experimentally. To this end, we work out the speed of gravity parametrization of the Einstein equations (c g -parametrization) to keep track of the time-dependent effects associated with the geometric sector of general relativity and to separate them from the time-dependent effects of the matter sector. Parametrized post-Newtonian (PPN) approximation of the Einstein equations is derived in order to explain the gravitational physics of the Jovian deflection VLBI experiment conducted on 8 September 2002. The post-Newtonian series expansion in the c g -parametrized general relativity is with respect to a small parameter that is proportional to the ratio of the characteristic velocity of the bodies to the speed of propagation of the

  3. Free-flow speeds for representative road and terrain types

    CSIR Research Space (South Africa)

    Schutte, IC

    2009-06-02

    Full Text Available Speed plays an important role in the justification of road infrstructure projects. It affects both vehicle operating cost and travel time cost. If incorrecr values for speed are used in the economic analyses of transport projects, incorrect...

  4. Film thickness in gas-liquid two-phase flow, (2)

    International Nuclear Information System (INIS)

    Sekoguchi, Kotohiko; Fukano, Toru; Kawakami, Yasushi; Shimizu, Hideo.

    1977-01-01

    The effect of four rectangular obstacles inserted into a circular tube has been studied in gas-liquid two-phase flow. The obstacles are set on the inner wall of the tube, and the ratio of the opening is 0.6. The water film flows partially through the obstacles. The minimum thickness of water film was measured in relation to flow speed. The serious effect of the obstacles was seen against the formation of water film, and drainage under the obstacles and backward flow play important roles. Since water film can flow partially through the obstacles, the film in case of the rectangular obstacles in thicker than that in case of an orifice when the gas flow speed was slower than 5 m/s. However, when the gas flow speed is over 5 m/s, the film thickness was thinner. The minimum film thickness of downstream of the obstacles was almost same as that in case of no obstacle. The minimum film thickness of up stream depends on the location of measurement due to the effect of drainage. (Kato, T.)

  5. Retrofitting adjustable speed drives for large induction motors

    International Nuclear Information System (INIS)

    Wuestefeld, M.R.; Merriam, C.H.; Porter, N.S.

    2004-01-01

    Adjustable speed drives (ASDs) are used in many power plants to control process flow by varying the speed of synchronous and induction motors. In applications where the flow requirements vary significantly, ASDs reduce energy and maintenance requirements when compared with drag valves, dampers or other methods to control flow. Until recently, high horsepower ASDs were not available for induction motors. However, advances in power electronics technology have demonstrated the reliability and cost effectiveness of ASDs for large horsepower induction motors. Emphasis on reducing operation and maintenance costs and increasing the capacity factor of nuclear power plants has led some utilities to consider replacing flow control devices in systems powered by large induction motors with ASDs. ASDs provide a high degree of reliability and significant energy savings in situations where full flow operation is not needed for a substantial part of the time. This paper describes the basic adjustable speed drive technologies available for large induction motor applications, ASD operating experience and retrofitting ASDs to replace the existing GE Boiling Water Reactor recirculation flow control system

  6. Large eddy simulation and direct numerical simulation of high speed turbulent reacting flows

    Science.gov (United States)

    Adumitroaie, V.; Frankel, S. H.; Madnia, C. K.; Givi, P.

    The objective of this research is to make use of Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first phase of this research conducted within the past three years have been directed in several issues pertaining to intricate physics of turbulent reacting flows. In our previous 5 semi-annual reports submitted to NASA LaRC, as well as several technical papers in archival journals, the results of our investigations have been fully described. In this progress report which is different in format as compared to our previous documents, we focus only on the issue of LES. The reason for doing so is that LES is the primary issue of interest to our Technical Monitor and that our other findings were needed to support the activities conducted under this prime issue. The outcomes of our related investigations, nevertheless, are included in the appendices accompanying this report. The relevance of the materials in these appendices are, therefore, discussed only briefly within the body of the report. Here, results are presented of a priori and a posterior analyses for validity assessments of assumed Probability Density Function (PDF) methods as potential subgrid scale (SGS) closures for LES of turbulent reacting flows. Simple non-premixed reacting systems involving an isothermal reaction of the type A + B yields Products under both chemical equilibrium and non-equilibrium conditions are considered. A priori analyses are conducted of a homogeneous box flow, and a spatially developing planar mixing layer to investigate the performance of the Pearson Family of PDF's as SGS models. A posteriori analyses are conducted of the mixing layer using a hybrid one-equation Smagorinsky/PDF SGS closure. The Smagorinsky closure augmented by the solution of the subgrid turbulent kinetic energy (TKE) equation is employed to account for hydrodynamic fluctuations, and the PDF is employed for modeling the

  7. Study on cocurrent downtake gas-liquid flow in a vertical channel

    International Nuclear Information System (INIS)

    Lozovetskij, V.V.

    1978-01-01

    Hydraulic resistance and liquid stall from the film surface at cocurrent film and gas downflow in vertical channel in measurement range of reynolds number from 100 to 1260 for the film and from 1.2x10 4 to 10 5 for gas are studied. For downflow two regimes are characteristic: purely annular, that is separate phase flow regime, and the regime of stall and carrying liquid droplets from the film surface, that is annular dispersed flow regime. The existence boundaries of both regimes are determined and criterial equations for pressure drop calculation are obtained. It is established experimentally that at sufficient range from the liquid input place on the working zone the established two-phase flow takes place. In their nucleus two areas can be singled out, which differ by the flow density values of stalled liquid: central, having the permanent flow density value and area adjacent to the film surface, the liquid in the combs of waves making a significant contribution to the flow density value. At equal flooding density with the relative gas speed increase, the flow density value of stalled liquid in the channel central part increase. A similar result also takes place at flooding density increase at permanent relative speed. Flooding density and relative speed increase leads to levelling stalled liquid distribution about the channel cross section

  8. Longitudinal Mediation of Processing Speed on Age-Related Change in Memory and Fluid Intelligence

    Science.gov (United States)

    Robitaille, Annie; Piccinin, Andrea M.; Muniz, Graciela; Hoffman, Lesa; Johansson, Boo; Deeg, Dorly J.H.; Aartsen, Marja J.; Comijs, Hannie C.; Hofer, Scott M.

    2014-01-01

    Age-related decline in processing speed has long been considered a key driver of cognitive aging. While the majority of empirical evidence for the processing speed hypothesis has been obtained from analyses of between-person age differences, longitudinal studies provide a direct test of within-person change. Using recent developments in longitudinal mediation analysis, we examine the speed–mediation hypothesis at both the within- and between-person levels in two longitudinal studies, LASA and OCTO-Twin. We found significant within-person indirect effects of change in age, such that increasing age was related to lower speed which, in turn, relates to lower performance across repeated measures on other cognitive outcomes. Although between-person indirect effects were also significant in LASA, they were not in OCTO-Twin. These differing magnitudes of direct and indirect effects across levels demonstrate the importance of separating between- and within-person effects in evaluating theoretical models of age-related change. PMID:23957224

  9. Integrated Variable Speed Limits Control and Ramp Metering for Bottleneck Regions on Freeway

    Directory of Open Access Journals (Sweden)

    Ming-hui Ma

    2015-01-01

    Full Text Available To enhance the efficiency of the existing freeway system and therefore to mitigate traffic congestion and related problems on the freeway mainline lane-drop bottleneck region, the advanced strategy for bottleneck control is essential. This paper proposes a method that integrates variable speed limits and ramp metering for freeway bottleneck region control to relieve the chaos in bottleneck region. To this end, based on the analyses of spatial-temporal patterns of traffic flow, a macroscopic traffic flow model is extended to describe the traffic flow operating characteristic by considering the impacts of variable speed limits in mainstream bottleneck region. In addition, to achieve the goal of balancing the priority of the vehicles on mainline and on-ramp, increasing capacity, and reducing travel delay on bottleneck region, an improved control model, as well as an advanced control strategy that integrates variable speed limits and ramp metering, is developed. The proposed method is tested in simulation for a real freeway infrastructure feed and calibrates real traffic variables. The results demonstrate that the proposed method can substantially improve the traffic flow efficiency of mainline and on-ramp and enhance the quality of traffic flow at the investigated freeway mainline bottleneck.

  10. Relative association of processing speed, short-term memory and sustained attention with task on gait speed: a study of community-dwelling people 50 years and older.

    Science.gov (United States)

    Killane, Isabelle; Donoghue, Orna A; Savva, George M; Cronin, Hilary; Kenny, Rose Anne; Reilly, Richard B

    2014-11-01

    For single gait tasks, associations have been reported between gait speed and cognitive domains. However, few studies have evaluated if this association is altered in dual gait tasks given gait speed changes with complexity and nature of task. We evaluated relative contributions of specific elements of cognitive function (including sustained attention and processing speed) to dual task gait speed in a nationally representative population of community-dwelling adults over 50 years. Gait speed was obtained using the GaitRite walkway during three gait tasks: single, cognitive (alternate letters), and motor (carrying a filled glass). Linear regression models, adjusted for covariates, were constructed to predict the relative contributions of seven neuropsychological tests to gait speed differences and to investigate gait task effects. The mean age and gait speed of the population (n = 4,431, 55% women) was 62.4 years (SD = 8.2) and 135.85 cm/s (SD = 20.20, single task), respectively. Poorer processing speed, short-term memory, and sustained attention were major cognitive contributors to slower gait speed for all gait tasks. Both dual gait tasks were robust to covariate adjustment and had a significant additional executive function element not found for the single gait task. For community-dwelling older adults processing speed, short-term memory and sustained attention were independently associated with gait speed for all gait tasks. Dual gait tasks were found to highlight specific executive function elements. This result forms a baseline value for dual task gait speed. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Visual function and cognitive speed of processing mediate age-related decline in memory span and fluid intelligence.

    Science.gov (United States)

    Clay, Olivio J; Edwards, Jerri D; Ross, Lesley A; Okonkwo, Ozioma; Wadley, Virginia G; Roth, David L; Ball, Karlene K

    2009-06-01

    To evaluate the relationship between sensory and cognitive decline, particularly with respect to speed of processing, memory span, and fluid intelligence. In addition, the common cause, sensory degradation and speed of processing hypotheses were compared. Structural equation modeling was used to investigate the complex relationships among age-related decrements in these areas. Cross-sectional data analyses included 842 older adult participants (M = 73 years). After accounting for age-related declines in vision and processing speed, the direct associations between age and memory span and between age and fluid intelligence were nonsignificant. Older age was associated with visual decline, which was associated with slower speed of processing, which in turn was associated with greater cognitive deficits. The findings support both the sensory degradation and speed of processing accounts of age-related, cognitive decline. Furthermore, the findings highlight positive aspects of normal cognitive aging in that older age may not be associated with a loss of fluid intelligence if visual sensory functioning and processing speed can be maintained.

  12. Deformed special relativity with an energy barrier of a minimum speed

    International Nuclear Information System (INIS)

    Nassif, Claudio

    2011-01-01

    Full text: This research aims to introduce a new principle of symmetry in the flat space-time by means of the elimination of the classical idea of rest, and by including a universal minimum limit of speed in the quantum world. Such a limit, unattainable by the particles, represents a preferred inertial reference frame associated with a universal background field that breaks Lorentz symmetry. So there emerges a new relativistic dynamics where a minimum speed forms an inferior energy barrier. One of the interesting implications of the existence of such a minimum speed is that it prevents the absolute zero temperature for an ultracold gas, according to the third law of thermodynamics. So we will be able to provide a fundamental dynamical explanation for the third law by means of a connection between such a phenomenological law and the new relativistic dynamics with a minimum speed. In other words we say that our relevant investigation is with respect to the problem of the absolute zero temperature in the thermodynamics of an ideal gas. We have made a connection between the 3 rd law of Thermodynamics and the new dynamics with a minimum speed by means of a relation between the absolute zero temperature (T = 0 deg K) and a minimum average speed (V) for a gas with N particles (molecules or atoms). Since T = 0 deg K is thermodynamically unattainable, we have shown this is due to the impossibility of reaching V from the new dynamics standpoint. (author)

  13. Effect of Sweep on Cavity Flow Fields at Subsonic and Transonic Speeds

    Science.gov (United States)

    Tracy, Maureen B.; Plentovich, Elizabeth B.; Hemsch, Michael J.; Wilcox, Floyd J.

    2012-01-01

    An experimental investigation was conducted in the NASA Langley 7 x 10-Foot High Speed Tunnel (HST) to study the effect of leading- and trailing-edge sweep on cavity flow fields for a range of cavity length-to-height (l/h) ratios. The free-stream Mach number was varied from 0.2 to 0.8. The cavity had a depth of 0.5 inches, a width of 2.5 inches, and a maximum length of 12.0 inches. The leading- and trailing-edge sweep was adjusted using block inserts to achieve leading edge sweep angles of 65 deg, 55 deg, 45 deg, 35 deg, and 0 deg. The fore and aft cavity walls were always parallel. The aft wall of the cavity was remotely positioned to achieve a range of length-to-depth ratios. Fluctuating- and static-pressure data were obtained on the floor of the cavity. The fluctuating pressure data were used to determine whether or not resonance occurred in the cavity rather than to provide a characterization of the fluctuating pressure field. Qualitative surface flow visualization was obtained using a technique in which colored water was introduced into the model through static-pressure orifices. A complete tabulation of the mean static-pressure data for the swept leading edge cavities is included.

  14. Two-dimensional computational modeling of high-speed transient flow in gun tunnel

    Science.gov (United States)

    Mohsen, A. M.; Yusoff, M. Z.; Hasini, H.; Al-Falahi, A.

    2018-03-01

    In this work, an axisymmetric numerical model was developed to investigate the transient flow inside a 7-meter-long free piston gun tunnel. The numerical solution of the gun tunnel was carried out using the commercial solver Fluent. The governing equations of mass, momentum, and energy were discretized using the finite volume method. The dynamic zone of the piston was modeled as a rigid body, and its motion was coupled with the hydrodynamic forces from the flow solution based on the six-degree-of-freedom solver. A comparison of the numerical data with the theoretical calculations and experimental measurements of a ground-based gun tunnel facility showed good agreement. The effects of parameters such as working gases and initial pressure ratio on the test conditions in the facility were examined. The pressure ratio ranged from 10 to 50, and gas combinations of air-air, helium-air, air-nitrogen, and air-CO2 were used. The results showed that steady nozzle reservoir conditions can be maintained for a longer duration when the initial conditions across the diaphragm are adjusted. It was also found that the gas combination of helium-air yielded the highest shock wave strength and speed, but a longer test time was achieved in the test section when using the CO2 test gas.

  15. Free flow wind speed from a blade-mounted flow sensor

    DEFF Research Database (Denmark)

    Pedersen, Mads Mølgaard; Larsen, Torben Juul; Aagaard Madsen, Helge

    2018-01-01

    This paper presents a method for obtaining the free-inflow velocities from a 3-D flow sensor mounted on the blade of a wind turbine. From its position on the rotating blade, e.g. one-third from the tip, a blade-mounted flow sensor (BMFS) is able to provide valuable information about the turbulent...... sheared inflow in different regions of the rotor. At the rotor, however, the inflow is affected by the wind turbine, and in most cases the wind of interest is the inflow that the wind turbine is exposed to, i.e. the free-inflow velocities. The current method applies a combination of aerodynamic models...... and procedures to estimate the induced velocities, i.e. the disturbance of the flow field caused by the wind turbine. These velocities are subtracted from the flow velocities measured by the BMFS to obtain the free-inflow velocities. Aeroelastic codes, like HAWC2, typically use a similar approach to calculate...

  16. Development of Localized Arc Filament RF Plasma Actuators for High-Speed and High Reynolds Number Flow Control

    Science.gov (United States)

    2010-01-01

    high-speed flows is problematic due to their low forcing frequency (for mechanical actuators) and low forcing amplitude (for piezo actuators...very low fraction of DC power is coupled to the actuators (5-10%), with the rest of the power dissipated in massive ballast resistors acting as heat... resistors . The use of high-power resistors also significantly increases the weight and size of the plasma generator and makes scaling to a large number of

  17. Experiment of a centrifugal pump during changing speed operation

    International Nuclear Information System (INIS)

    Yuan, H J; Wu, Y L; Liu, S H; Shao, J

    2012-01-01

    In this paper, a method of changing rotational speed of impeller periodically as the pulsatile working condition is developed to realize pulse outputs both of flow discharge and of head for a centrifugal pump through experiment. The performance of the centrifugal pump under pulsatile working operation condition is measured which indicates this model pump could produce desired pulse flow under such condition. Flow patterns at four testing points under pulsatile conditions are obtained by means of the particle image velocimetry (PIV) technology both with laser induced fluorescence (LIF) particles and refractive index matched (RIM) fluid. Results of PIV measurement show the distributions of velocity, streamlines, and the principal Reynolds normal stress (PRNS). Under the design flow rate condition, the relative velocity in the blade channel distributes smoothly and decreases from inlet to exit. And at the impeller exit, the relative velocity is lower close to suction side than that near pressure side of blade in most of blade channels.

  18. Vertical axis wind turbine wake in boundary layer flow in a wind tunnel

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2016-04-01

    A vertical axis wind turbine is placed in a boundary layer flow in a wind tunnel, and its wake is investigated. Measurements are performed using an x-wire to measure two components of velocity and turbulence statistics in the wake of the wind turbine. The study is performed at various heights and crosswind positions in order to investigate the full volume of the wake for a range of tip speed ratios. The velocity deficit and levels of turbulence in the wake are related to the performance of the turbine. The asymmetric incoming boundary layer flow causes the rate of recovery in the wake to change as a function of height. Higher shear between the wake and unperturbed flow occurs at the top edge of the wake, inducing stronger turbulence and mixing in this region. The difference in flow relative to the blades causes the velocity deficit and turbulence level to change as a function of crosswind position behind the rotor. The relative difference diminishes with increasing tip speed ratio. Therefore, the wake becomes more homogeneous as tip speed ratio increases.

  19. Pulse-burst PIV in a high-speed wind tunnel

    International Nuclear Information System (INIS)

    Beresh, Steven; Kearney, Sean; Wagner, Justin; Guildenbecher, Daniel; Henfling, John; Spillers, Russell; Pruett, Brian; Jiang, Naibo; Slipchenko, Mikhail; Mance, Jason; Roy, Sukesh

    2015-01-01

    Time-resolved particle image velocimetry (TR-PIV) has been achieved in a high-speed wind tunnel, providing velocity field movies of compressible turbulence events. The requirements of high-speed flows demand greater energy at faster pulse rates than possible with the TR-PIV systems developed for low-speed flows. This has been realized using a pulse-burst laser to obtain movies at up to 50 kHz, with higher speeds possible at the cost of spatial resolution. The constraints imposed by use of a pulse-burst laser are limited burst duration of 10.2 ms and a low duty cycle for data acquisition. Pulse-burst PIV has been demonstrated in a supersonic jet exhausting into a transonic crossflow and in transonic flow over a rectangular cavity. The velocity field sequences reveal the passage of turbulent structures and can be used to find velocity power spectra at every point in the field, providing spatial distributions of acoustic modes. The present work represents the first use of TR-PIV in a high-speed ground-test facility. (paper)

  20. Comparison of performances of full-speed turbine and half-speed turbine for nuclear power plants

    International Nuclear Information System (INIS)

    Wang Hu; Zhang Weihong; Zhang Qiang; Li Shaohua

    2010-01-01

    The steam turbines of nuclear power plants can be divided into the full-speed turbine and half-speed turbine. Different speed leads to differences in many aspects. Therefore, the rational speed is the key point in the selection of steam turbines. This paper contrasts the economy between the half-speed turbine and full-speed turbine, by calculating the relative internal efficiency of half-speed and full-speed steam turbines with the typical level of 1000 megawatt. At the same time, this paper also calculate the relative speed of high speed water drops in the last stage blade of half-speed turbine and full-speed turbine, to contrast the water erosion between the half-speed turbine and full-speed turbine. The results show that the relative internal efficiency of half-speed turbine is higher than that of the full-speed turbine, and that the security especially the ability of preventing water erosion of half-speed turbine is better than that of the full-speed turbine. (authors)

  1. Coupling Analysis of Low-Speed Multiphase Flow and High-Frequency Electromagnetic Field in a Complex Pipeline Structure

    Directory of Open Access Journals (Sweden)

    Xiaokai Huo

    2014-01-01

    Full Text Available Accurate estimation of water content in an oil-water mixture is a key technology in oil exploration and production. Based on the principles of the microwave transmission line (MTL, the logging probe is an important water content measuring apparatus. However, the effects of mixed fluid flow on the measurement of electromagnetic field parameters are rarely considered. This study presents the coupling model for low-speed multiphase flow and high-frequency electromagnetic field in a complex pipeline structure. We derived the S-parameter equations for the stratified oil/water flow model. The corresponding relationship between the S-parameters and water holdup is established. Evident coupling effects of the fluid flow and the electromagnetic field are confirmed by comparing the calculated S-parameters for both stratified and homogeneous flow patterns. In addition, a multiple-solution problem is analyzed for the inversion of dielectric constant from the S-parameters. The most sensitive phase angle range is determined to improve the detection of variation in the dielectric constant. Suggestions are proposed based on the influence of the oil/water layer on measurement sensitivity to optimize the geometric parameters of a device structure. The method proposed elucidates how accuracy and sensitivity can be improved in water holdup measurements under high water content conditions.

  2. Progress on a Taylor weak statement finite element algorithm for high-speed aerodynamic flows

    Science.gov (United States)

    Baker, A. J.; Freels, J. D.

    1989-01-01

    A new finite element numerical Computational Fluid Dynamics (CFD) algorithm has matured to the point of efficiently solving two-dimensional high speed real-gas compressible flow problems in generalized coordinates on modern vector computer systems. The algorithm employs a Taylor Weak Statement classical Galerkin formulation, a variably implicit Newton iteration, and a tensor matrix product factorization of the linear algebra Jacobian under a generalized coordinate transformation. Allowing for a general two-dimensional conservation law system, the algorithm has been exercised on the Euler and laminar forms of the Navier-Stokes equations. Real-gas fluid properties are admitted, and numerical results verify solution accuracy, efficiency, and stability over a range of test problem parameters.

  3. Liquid metal current collectors for high-speed rotating machinery

    International Nuclear Information System (INIS)

    Carr, S.L.

    1976-01-01

    Recent interest in superconducting motors and generators has created a renewed interest in homopolar machinery. Homopolar machine designs have always been limited by the need for compact, high-current, low-voltage, sliding electrical curent collectors. Conventional graphite-based solid brushes are inadequate for use in homopolar machines. Liquid metals, under certain conditions of relative sliding velocities, electrical currents, and magnetic fields are known to be capable of performing well in homopolar machines. An effort to explore the capabilities and limits of a tongue-and-groove style current collector, utilizing sodium-potassium eutectic alloy (NaK) as the working fluid in high sliding speed operation is reported here. A double current collector generator model with a 14.5-cm maximum rotor diameter, 20,000 rpm rotational capability, and electrical current carrying ability was constructed and operated successfully at a peripheral velocity of 125 m/s. The limiting factor in these experiments was a high-speed fluid-flow instability resulting in the ejection of the working fluid from the operating portions of the collectors. The effects of collector size and geometry, working fluid (NaK or water), and cover gas pressure are reported. Hydrodynamic frictional torque-speed curves are given for the two fluids and for several geometries. Electrical resistances as a function of peripheral velocity at 60 amperes are reported, and the phenomenology of the high-speed fluid-flow instabilities is discussed. The possibility of long-term high-speed operation of current collectors of the tongue-and-groove type, along with experimental and theoretical hydrodynamic friction losses at high peripheral velocities, is considered

  4. Desflurane usage during anesthesia with and without N2O using FLOW-i Automatic Gas Control with three different wash-in speeds.

    Science.gov (United States)

    De Medts, Robrecht; Carette, Rik; De Wolf, Andre M; Hendrickx, Jan F A

    2017-06-09

    AGC ® (Automatic Gas Control) is the FLOW-i's automated low flow tool (Maquet, Solna, Sweden) that target controls the inspired O 2 (F I O 2 ) and end-expired desflurane concentration (F A des) while (by design) exponentially decreasing fresh gas flow (FGF) during wash-in to a maintenance default FGF of 300 mL min -1 . It also offers a choice of wash-in speeds for the inhaled agents. We examined AGC performance and hypothesized that the use of lower wash-in speeds and N 2 O both reduce desflurane usage (Vdes). After obtaining IRB approval and patient consent, 78 ASA I-II patients undergoing abdominal surgery were randomly assigned to 1 of 6 groups (n = 13 each), depending on carrier gas (O 2 /air or O 2 /N 2 O) and wash-in speed (AGC speed 2, 4, or 6) of desflurane, resulting in groups air/2, air/4, air/6, N 2 O/2, N 2 O/4, and N 2 O/6. The target for F I O 2 was set at 35%, while the F A des target was selected so that the AGC displayed 1.3 MAC (corrected for the additive affect of N 2 O if used). AGC was activated upon starting mechanical ventilation. Varvel's criteria were used to describe performance of achieving the targets. Patient demographics, end-expired N 2 O concentration, MAC, FGF, and Vdes were compared using ANOVA. Data are presented as mean ± standard deviation, except for Varvel's criteria (median ± quartiles). Patient demographics did not differ among the groups. Median performance error was -2-0% for F I O 2 and -3-1% for F A des; median absolute performance error was 1-2% for F I O 2 and 0-3% for F A des. MAC increased faster in N 2 O groups, but total MAC decreased 0.1-0.25 MAC below that in the O 2 /air groups after 60 min. The effect of wash-in speed on Vdes faded over time. N 2 O decreased Vdes by 62%. AGC performance for O 2 and desflurane targeting is excellent. After 1 h, the wash-in speeds tested are unlikely to affect desflurane usage. N 2 O usage decreases Vdes proportionally with its reduction in F A tdes.

  5. Applicability of linearized-theory attached-flow methods to design and analysis of flap systems at low speeds for thin swept wings with sharp leading edges

    Science.gov (United States)

    Carlson, Harry W.; Darden, Christine M.

    1987-01-01

    Low-speed experimental force and data on a series of thin swept wings with sharp leading edges and leading and trailing-edge flaps are compared with predictions made using a linearized-theory method which includes estimates of vortex forces. These comparisons were made to assess the effectiveness of linearized-theory methods for use in the design and analysis of flap systems in subsonic flow. Results demonstrate that linearized-theory, attached-flow methods (with approximate representation of vortex forces) can form the basis of a rational system for flap design and analysis. Even attached-flow methods that do not take vortex forces into account can be used for the selection of optimized flap-system geometry, but design-point performance levels tend to be underestimated unless vortex forces are included. Illustrative examples of the use of these methods in the design of efficient low-speed flap systems are included.

  6. Visualizing special relativity: the field of an electric dipole moving at relativistic speed

    International Nuclear Information System (INIS)

    Smith, Glenn S

    2011-01-01

    The electromagnetic field is determined for a time-varying electric dipole moving with a constant velocity that is parallel to its moment. Graphics are used to visualize this field in the rest frame of the dipole and in the laboratory frame when the dipole is moving at relativistic speed. Various phenomena from special relativity are clearly illustrated by these graphics and explained with simple calculations; these include the constancy of the speed of light in inertial frames, the Doppler effect, the headlight effect, and the concentration of field lines. In addition, the energy and linear momentum of the radiated field are determined and shown to satisfy the transformation and invariance required by special relativity.

  7. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Michael P.; Chen, Zheng; Ju, Yiguang; Dryer, Frederick L. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2009-04-15

    elevated pressures. Flow-corrected flame speeds in the small cylindrical chamber used here agree well with previously reported flame speeds from large spherical chambers. Previous papers presenting burning velocities from cylindrical chambers report performing data analysis on flame radii less than 0.5 or 0.6 times the wall radius, where the flame speed calculated neglecting confinement effects may be low by {proportional_to}15 or 20%, respectively. For cylindrical chambers, data analysis should be restricted to flame radii less than 0.3 times the wall radius or a flow correction should be employed to account for the burned gas motions. With regard to the design of future vessels, larger vessels that minimize the flow aberrations for the same flame radius are preferred. Larger vessels maximize the relatively unaffected region of data allowing for a more straightforward approach to interpret the experimental data. (author)

  8. Investigation of turbulent separation in a forward-facing step flow

    International Nuclear Information System (INIS)

    Pearson, D S; Goulart, P J; Ganapathisubramani, B

    2011-01-01

    The relation between the upstream and downstream regions of separation of the flow over a forward-facing step is investigated using experimental data. High-speed Particle Image Velocimetry (PIV) data is used to show a correlation between the wall shear stress of the oncoming boundary layer and the streamwise location of reverse flow upstream of the step. The time delay associated with the correlation is consistent with average convection velocities in the lower boundary layer. This suggests that appropriate addition of momentum into the boundary layer could be used to control the spatial extent of the separation upstream of the step. In addition, low-speed PIV data is used to show statistical relations between the flow characteristics of the recirculation regions in the vicinity of the step face. It is shown that a slower than average flow velocity above the step face is associated with an increase in the wall-normal extent of upstream reverse flow, an increase in the inclination of the flow above the step and an increase in downstream vorticity.

  9. Three Flow Features behind the Flow Control Authority of DBD Plasma Actuator: Result of High-Fidelity Simulations and the Related Experiments

    Directory of Open Access Journals (Sweden)

    Kozo Fujii

    2018-04-01

    Full Text Available Both computational and experimental studies are conducted for understanding of the flow separation control mechanism of a DBD (dielectric barrier discharge plasma actuator. Low speed flows over an airfoil are considered. A DBD plasma actuator is attached near the leading edge of an airfoil and the mechanism of flow control of this small device is discussed. The DBD plasma actuator, especially in burst mode, is shown to be very effective for controlling flow separation at Reynolds number of 6.3 × 104, when applied to the flows at an angle of attack higher than the stall. The analysis reveals that the flow structure includes three remarkable features that provide good authority for flow separation control with the appropriate actuator parameters. With proper setting of the actuator parameters to enhance the effective flow features for the application, good flow control can be achieved. Based on the analysis, guidelines for the effective use of DBD plasma actuators are proposed. A DBD plasma actuator is also applied to the flows under cruise conditions. With the DBD plasma actuator attached, a simple airfoil turns out to show higher lift-to-drag ratio than a well-designed airfoil.

  10. Approximate Dispersion Relations for Waves on Arbitrary Shear Flows

    Science.gov (United States)

    Ellingsen, S. À.; Li, Y.

    2017-12-01

    An approximate dispersion relation is derived and presented for linear surface waves atop a shear current whose magnitude and direction can vary arbitrarily with depth. The approximation, derived to first order of deviation from potential flow, is shown to produce good approximations at all wavelengths for a wide range of naturally occuring shear flows as well as widely used model flows. The relation reduces in many cases to a 3-D generalization of the much used approximation by Skop (1987), developed further by Kirby and Chen (1989), but is shown to be more robust, succeeding in situations where the Kirby and Chen model fails. The two approximations incur the same numerical cost and difficulty. While the Kirby and Chen approximation is excellent for a wide range of currents, the exact criteria for its applicability have not been known. We explain the apparently serendipitous success of the latter and derive proper conditions of applicability for both approximate dispersion relations. Our new model has a greater range of applicability. A second order approximation is also derived. It greatly improves accuracy, which is shown to be important in difficult cases. It has an advantage over the corresponding second-order expression proposed by Kirby and Chen that its criterion of accuracy is explicitly known, which is not currently the case for the latter to our knowledge. Our second-order term is also arguably significantly simpler to implement, and more physically transparent, than its sibling due to Kirby and Chen.Plain Language SummaryIn order to answer key questions such as how the ocean surface affects the climate, erodes the coastline and transports nutrients, we must understand how waves move. This is not so easy when depth varying currents are present, as they often are in coastal waters. We have developed a modeling tool for accurately predicting wave properties in such situations, ready for use, for example, in the complex oceanographic computer models. Our

  11. Cadence® High-Speed PCB Layout Flow Workshop

    CERN Document Server

    2003-01-01

    Last release of Cadence High-Speed PCB Design methodology (PE142) based on Concept-HDL schematic editor, Constraint Manager, SPECCTRAQuest signal integrity analysis tool and ALLEGRO layout associated with SPECCTRA auto router tools, is now enough developed and stable to be taken into account for high-speed board designs at CERN. The implementation of this methodology, build around the new Constraint Manager program, is essential when you have to develop a board having a lot of high-speed design rules such as terminated lines, large bus structures, maximum length, timing, crosstalk etc.. that could not be under control by traditional method. On more conventional designs, formal aspect of the methodology could avoid misunderstanding between hardware and ALLEGRO layout designers, minimizing prototype iteration, development time and price. The capability to keep trace of the original digital designer intents in schematic or board layout, loading formal constraints in EDMS, could also be considered for LHC electro...

  12. TOMOGRAPHY OF PLASMA FLOWS IN THE UPPER SOLAR CONVECTION ZONE USING TIME-DISTANCE INVERSION COMBINING RIDGE AND PHASE-SPEED FILTERING

    International Nuclear Information System (INIS)

    Švanda, Michal

    2013-01-01

    The consistency of time-distance inversions for horizontal components of the plasma flow on supergranular scales in the upper solar convection zone is checked by comparing the results derived using two k-ω filtering procedures—ridge filtering and phase-speed filtering—commonly used in time-distance helioseismology. I show that both approaches result in similar flow estimates when finite-frequency sensitivity kernels are used. I further demonstrate that the performance of the inversion improves (in terms of a simultaneously better averaging kernel and a lower noise level) when the two approaches are combined together in one inversion. Using the combined inversion, I invert for horizontal flows in the upper 10 Mm of the solar convection zone. The flows connected with supergranulation seem to be coherent only for the top ∼5 Mm; deeper down there is a hint of change of the convection scales toward structures larger than supergranules

  13. Mobility-Related Fatigue, Walking Speed, and Muscle Strength in Older People

    DEFF Research Database (Denmark)

    Mänty, Minna; Mendes de Leon, Carlos F.; Rantanen, Taina

    2012-01-01

    history, as well as performance-based assessment of walking speed and maximal isometric strength of knee extension, body extension, and handgrip. Results. In the cross-sectional baseline analysis, one unit increase in fatigue score was associated with 0.03 m/s (b = −.03, p ... the degree to which muscle strength accounts for this association. Methods. The study is based on baseline (n = 523) and 5-year follow-up data (n = 292) from a cohort of 75-year-old persons. Standardized assessments include self-report measures of mobility-related fatigue (score range 0–6) and medical......, p strength accounted up to 21% and among men up to 24% for the association. In the prospective analysis, fatigue at baseline was predictive of change in walking speed...

  14. Relative entropy and the RG flow

    Energy Technology Data Exchange (ETDEWEB)

    Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo [Centro Atómico Bariloche and CONICET,S.C. de Bariloche, Río Negro, R8402AGP (Argentina)

    2017-03-16

    We consider the relative entropy between vacuum states of two different theories: a conformal field theory (CFT), and the CFT perturbed by a relevant operator. By restricting both states to the null Cauchy surface in the causal domain of a sphere, we make the relative entropy equal to the difference of entanglement entropies. As a result, this difference has the positivity and monotonicity properties of relative entropy. From this it follows a simple alternative proof of the c-theorem in d=2 space-time dimensions and, for d>2, the proof that the coefficient of the area term in the entanglement entropy decreases along the renormalization group (RG) flow between fixed points. We comment on the regimes of convergence of relative entropy, depending on the space-time dimensions and the conformal dimension Δ of the perturbation that triggers the RG flow.

  15. Numerical approximations for speeding up mcmc inference in the infinite relational model

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Albers, Kristoffer Jon

    2015-01-01

    The infinite relational model (IRM) is a powerful model for discovering clusters in complex networks; however, the computational speed of Markov chain Monte Carlo inference in the model can be a limiting factor when analyzing large networks. We investigate how using numerical approximations...

  16. Turbulent jet diffusion flame length evolution with cross flows in a sub-pressure atmosphere

    International Nuclear Information System (INIS)

    Wang, Qiang; Hu, Longhua; Zhang, Xiaozheng; Zhang, Xiaolei; Lu, Shouxiang; Ding, Hang

    2015-01-01

    Highlights: • Quantifying turbulent jet diffusion flame length with cross flows. • Unique data revealed for a sub-atmospheric pressure. • Non-dimensional global correlation proposed for flame trajectory-line length. - Abstract: This paper investigates the evolution characteristics of turbulent jet diffusion flame (flame trajectory-line length, flame height in vertical jet direction) with increasing cross flows in a sub-pressure (64 kPa) atmosphere. The combined effect of cross flow and a special sub-pressure atmosphere condition is revealed, where no data is available in the literatures. Experiments are carried out with a wind tunnel built specially in Lhasa city (altitude: 3650 m; pressure: 64 kPa) and in Hefei city (altitude: 50 m; pressure: 100 kPa), using nozzles with diameter of 3 mm, 4 mm and 5 mm and propane as fuel. It is found that, as cross flow air speed increases from zero, the flame trajectory-line length firstly decreases and then becomes almost stable (for relative small nozzle, 3 mm in this study) or increases (for relative large nozzle, 4 mm and 5 mm in this study) beyond a transitional critical cross flow air speed in normal pressure, however decreases monotonically until being blown-out in the sub-pressure atmosphere. The flame height in jet direction decreases monotonically with cross air flow speed and then reaches a steady value in both pressures. For the transitional state of flame trajectory-line length with increasing cross air flow speed, the corresponding critical cross flow air speed is found to be proportional to the fuel jet velocity, meanwhile independent of nozzle diameter. Correlation models are proposed for the flame height in jet direction and the flame trajectory-line length for both ambient pressures, which are shown to be in good agreement with the experimental results.

  17. Maximum relative speeds of living organisms: Why do bacteria perform as fast as ostriches?

    Science.gov (United States)

    Meyer-Vernet, Nicole; Rospars, Jean-Pierre

    2016-12-01

    Self-locomotion is central to animal behaviour and survival. It is generally analysed by focusing on preferred speeds and gaits under particular biological and physical constraints. In the present paper we focus instead on the maximum speed and we study its order-of-magnitude scaling with body size, from bacteria to the largest terrestrial and aquatic organisms. Using data for about 460 species of various taxonomic groups, we find a maximum relative speed of the order of magnitude of ten body lengths per second over a 1020-fold mass range of running and swimming animals. This result implies a locomotor time scale of the order of one tenth of second, virtually independent on body size, anatomy and locomotion style, whose ubiquity requires an explanation building on basic properties of motile organisms. From first-principle estimates, we relate this generic time scale to other basic biological properties, using in particular the recent generalisation of the muscle specific tension to molecular motors. Finally, we go a step further by relating this time scale to still more basic quantities, as environmental conditions at Earth in addition to fundamental physical and chemical constants.

  18. SOME EMPIRICAL RELATIONS BETWEEN TRAVEL SPEED, TRAFFIC VOLUME AND TRAFFIC COMPOSITION IN URBAN ARTERIALS

    Directory of Open Access Journals (Sweden)

    Eleni I. VLAHOGIANNI, Ph.D.

    2007-01-01

    Full Text Available The effects of traffic mix (the percentage of cars, trucks, buses and so on are of particular interest in the speed-volume relationship in urban signalized arterials under various geometric and control characteristics. The paper presents some empirical observations on the relation between travel speed, traffic volume and traffic composition in urban signalized arterials. A methodology based on emerging self-organizing structures of neural networks to identify regions in the speed-volume relationship with respect to traffic composition and Bayesian networks to evaluate the effect of different types of motorized vehicles on prevailing traffic conditions is proposed. Results based on data from a large urban network indicate that the variability in traffic conditions can be described by eight regions in speed-volume relationship with respect to traffic composition. Further evaluation of the effect of motorized vehicles in each region separately indicates that the effect of traffic composition decreases with the onset of congestion. Moreover, taxis and motorcycles are the primary affecting parameter of the form of the speed-volume relationship in urban arterials.

  19. Biomolecular Nano-Flow-Sensor to Measure Near-Surface Flow

    Directory of Open Access Journals (Sweden)

    Noji Hiroyuki

    2009-01-01

    Full Text Available Abstract We have proposed and experimentally demonstrated that the measurement of the near-surface flow at the interface between a liquid and solid using a 10 nm-sized biomolecular motor of F1-ATPase as a nano-flow-sensor. For this purpose, we developed a microfluidic test-bed chip to precisely control the liquid flow acting on the F1-ATPase. In order to visualize the rotation of F1-ATPase, several hundreds nanometer-sized particle was immobilized at the rotational axis of F1-ATPase to enhance the rotation to be detected by optical microscopy. The rotational motion of F1-ATPase, which was immobilized on an inner surface of the test-bed chip, was measured to obtain the correlation between the near-surface flow and the rotation speed of F1-ATPase. As a result, we obtained the relationship that the rotation speed of F1-ATPase was linearly decelerated with increasing flow velocity. The mechanism of the correlation between the rotation speed and the near-surface flow remains unclear, however the concept to use biomolecule as a nano-flow-sensor was proofed successfully. (See supplementary material 1 Electronic supplementary material The online version of this article (doi:10.1007/s11671-009-9479-3 contains supplementary material, which is available to authorized users. Click here for file

  20. Brachial blood flow under relative levels of blood flow restriction is decreased in a nonlinear fashion.

    Science.gov (United States)

    Mouser, J Grant; Ade, Carl J; Black, Christopher D; Bemben, Debra A; Bemben, Michael G

    2018-05-01

    Blood flow restriction (BFR), the application of external pressure to occlude venous return and restrict arterial inflow, has been shown to increase muscular size and strength when combined with low-load resistance exercise. BFR in the research setting uses a wide range of pressures, applying a pressure based upon an individual's systolic pressure or a percentage of occlusion pressure; not a directly determined reduction in blood flow. The relationship between relative pressure and blood flow has not been established. To measure blood flow in the arm under relative levels of BFR. Forty-five people (18-40 years old) participated. Arterial occlusion pressure in the right arm was measured using a 5-cm pneumatic cuff. Blood flow in the brachial artery was measured at rest and at pressures between 10% and 90% of occlusion using ultrasound. Blood flow decreased in a nonlinear, stepped fashion. Blood flow decreased at 10% of occlusion and remained constant until decreasing again at 40%, where it remained until 90% of occlusion. The decrease in brachial blood flow is not proportional to the applied relative pressure. The prescription of blood flow restriction should take into account the stimulus provided at each relative level of blood flow. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  1. A coupled overlapping domain method for the computation of transitional flow through artificial heart valves

    NARCIS (Netherlands)

    Verkaik, A.C.; Bogaerds, A.C.B.; Storti, F.; Van De Vosse, F.N.

    2012-01-01

    When blood is pumped through the aortic valves, it has a time dependent flow with a relatively high speed, resulting in Reynolds numbers between 1500 and 3000. Hence, flow is in the transitional regime between laminar and turbulent flow. Transitional flow contains small scale fluctuations, see

  2. Effects of Potential Lane-Changing Probability on Uniform Flow

    International Nuclear Information System (INIS)

    Tang Tieqiao; Huang Haijun; Shang Huayan

    2010-01-01

    In this paper, we use the car-following model with the anticipation effect of the potential lane-changing probability (Acta Mech. Sin. 24 (2008) 399) to investigate the effects of the potential lane-changing probability on uniform flow. The analytical and numerical results show that the potential lane-changing probability can enhance the speed and flow of uniform flow and that their increments are related to the density.

  3. Supercritical droplet dynamics and emission in low speed cross-flows

    International Nuclear Information System (INIS)

    Chae, J. W.; Yang, H. S.; Yoon, W. S.

    2008-01-01

    Droplet dynamics and emission of a supercritical droplet in crossing gas stream are numerically investigated. Effects of ambient pressure and velocity of nitrogen gas on the dynamics of the supercritical oxygen droplet are parametrically examined. Unsteady conservative axisymmetric Navier-Stokes equations in curvilinear coordinates are preconditioned and solved by dual-time stepping method. A unified property evaluation scheme based on a fundamental equation of state and extended corresponding-state principle is established to deal with thermodynamic non-idealities and transport anomalies. At lower pressures and velocities of nitrogen cross flows, both the diffusion and the convection are important in determining the droplet dynamics. Relative flow motion causes a secondary breakup and cascading vortices, and the droplet lifetime is reduced with increasing in ambient pressure. At higher ambient pressures and velocities, however, the droplet dynamics become convection-controlled while the secondary breakup is hindered by reduced diffusivity of the oxygen. Gas-phase mixing depends on the convection and diffusion velocities in conjunction with corresponding droplet deformation and flow interaction. Supercritical droplet dynamics and emission is not similar with respect to the pressure and velocity of the ambient gas and thus provides no scale

  4. Application of the ultrasonic technique and high-speed filming for the study of the structure of air-water bubbly flows

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, R.D.M.; Venturini, O.J.; Tanahashi, E.I. [Universidade Federal de Itajuba (UNIFEI), Itajuba (Brazil); Neves, F. Jr. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba (Brazil); Franca, F.A. [Universidade Estadual de Campinas (UNICAMP), Campinas (Brazil)

    2009-10-15

    Multiphase flows are very common in industry, oftentimes involving very harsh environments and fluids. Accordingly, there is a need to determine the dispersed phase holdup using noninvasive fast responding techniques; besides, knowledge of the flow structure is essential for the assessment of the transport processes involved. The ultrasonic technique fulfills these requirements and could have the capability to provide the information required. In this paper, the potential of the ultrasonic technique for application to two-phase flows was investigated by checking acoustic attenuation data against experimental data on the void fraction and flow topology of vertical, upward, air-water bubbly flows in the zero to 15% void fraction range. The ultrasonic apparatus consisted of one emitter/receiver transducer and three other receivers at different positions along the pipe circumference; simultaneous high-speed motion pictures of the flow patterns were made at 250 and 1000 fps. The attenuation data for all sensors exhibited a systematic interrelated behavior with void fraction, thereby testifying to the capability of the ultrasonic technique to measure the dispersed phase holdup. From the motion pictures, basic gas phase structures and different flows patterns were identified that corroborated several features of the acoustic attenuation data. Finally, the acoustic wave transit time was also investigated as a function of void fraction. (author)

  5. Reducing travel delay by in-car advice on speed, headway and lane use based on downstream traffic flow conditions - a simulation study

    NARCIS (Netherlands)

    Schakel, W.J.; Klunder, G.; van Arem, B.; Harmsen, E.; Hagenzieker, M.P.

    2012-01-01

    A new advisory ADAS system is implemented in micro simulation to asses the effects on traffic flow as well as on safety. The system uses loop detector data from which situations may be recognized where advices are given to drivers in-car. Advice is given on speed, headway and lane use. Effectively

  6. Improvement of lipase production at different stirring speeds and oxygen levels

    Directory of Open Access Journals (Sweden)

    F.O.M. Alonso

    2005-03-01

    Full Text Available Lipase production by a Brazilian wild strain of Yarrowia lipolytica at different stirring speeds and air flow rates was studied. The relationship among lipid consumption, cell growth and lipase production by this microorganism is presented. The most pronounced effect of oxygen on lipase production was determined by stirring speed. Maximum lipase activity was detected in the late stationary phase at 200 rpm and an air flow rate of 1-2 dm³/min (0.8-1.7 vvm when the lipid source had been fully consumed. Higher stirring speeds resulted in mechanical and/or oxidative stress, while lower stirring speeds seemed to limit oxygen levels. An increase in the availability of oxygen at higher air flow rates led to faster lipid uptake and anticipation of enzyme release into the culture medium. The highest lipase production was obtained at 200 rpm and 1 dm³/min (0.8 vvm.

  7. The Effect of Rotor Cruise Tip Speed, Engine Technology and Engine/Drive System RPM on the NASA Large Civil Tiltrotor (LCTR2) Size and Performance

    Science.gov (United States)

    Robuck, Mark; Wilkerson, Joseph; Maciolek, Robert; Vonderwell, Dan

    2012-01-01

    A multi-year study was conducted under NASA NNA06BC41C Task Order 10 and NASA NNA09DA56C task orders 2, 4, and 5 to identify the most promising propulsion system concepts that enable rotor cruise tip speeds down to 54% of the hover tip speed for a civil tiltrotor aircraft. Combinations of engine RPM reduction and 2-speed drive systems were evaluated. Three levels of engine and the drive system advanced technology were assessed; 2015, 2025 and 2035. Propulsion and drive system configurations that resulted in minimum vehicle gross weight were identified. Design variables included engine speed reduction, drive system speed reduction, technology, and rotor cruise propulsion efficiency. The NASA Large Civil Tiltrotor, LCTR, aircraft served as the base vehicle concept for this study and was resized for over thirty combinations of operating cruise RPM and technology level, quantifying LCTR2 Gross Weight, size, and mission fuel. Additional studies show design sensitivity to other mission ranges and design airspeeds, with corresponding relative estimated operational cost. The lightest vehicle gross weight solution consistently came from rotor cruise tip speeds between 422 fps and 500 fps. Nearly equivalent results were achieved with operating at reduced engine RPM with a single-speed drive system or with a two-speed drive system and 100% engine RPM. Projected performance for a 2025 engine technology provided improved fuel flow over a wide range of operating speeds relative to the 2015 technology, but increased engine weight nullified the improved fuel flow resulting in increased aircraft gross weights. The 2035 engine technology provided further fuel flow reduction and 25% lower engine weight, and the 2035 drive system technology provided a 12% reduction in drive system weight. In combination, the 2035 technologies reduced aircraft takeoff gross weight by 14% relative to the 2015 technologies.

  8. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface.

    Science.gov (United States)

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa

    2014-01-01

    In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account.

  9. The influence of current speed and vegetation density on flow structure in two macrotidal eelgrass canopies

    Science.gov (United States)

    Lacy, Jessica R.; Wyllie-Echeverria, Sandy

    2011-01-01

    The influence of eelgrass (Zostera marina) on near-bed currents, turbulence, and drag was investigated at three sites in two eelgrass canopies of differing density and at one unvegetated site in the San Juan archipelago of Puget Sound, Washington, USA. Eelgrass blade length exceeded 1 m. Velocity profiles up to 1.5 m above the sea floor were collected over a spring-neap tidal cycle with a downward-looking pulse-coherent acoustic Doppler profiler above the canopies and two acoustic Doppler velocimeters within the canopies. The eelgrass attenuated currents by a minimum of 40%, and by more than 70% at the most densely vegetated site. Attenuation decreased with increasing current speed. The data were compared to the shear-layer model of vegetated flows and the displaced logarithmic model. Velocity profiles outside the meadows were logarithmic. Within the canopies, most profiles were consistent with the shear-layer model, with a logarithmic layer above the canopy. However, at the less-dense sites, when currents were strong, shear at the sea floor and above the canopy was significant relative to shear at the top of the canopy, and the velocity profiles more closely resembled those in a rough-wall boundary layer. Turbulence was strong at the canopy top and decreased with height. Friction velocity at the canopy top was 1.5–2 times greater than at the unvegetated, sandy site. The coefficient of drag CD on the overlying flow derived from the logarithmic velocity profile above the canopy, was 3–8 times greater than at the unvegetated site (0.01–0.023 vs. 2.9 × 10−3).

  10. Improved choked flow model for MARS code

    International Nuclear Information System (INIS)

    Chung, Moon Sun; Lee, Won Jae; Ha, Kwi Seok; Hwang, Moon Kyu

    2002-01-01

    Choked flow calculation is improved by using a new sound speed criterion for bubbly flow that is derived by the characteristic analysis of hyperbolic two-fluid model. This model was based on the notion of surface tension for the interfacial pressure jump terms in the momentum equations. Real eigenvalues obtained as the closed-form solution of characteristic polynomial represent the sound speed in the bubbly flow regime that agrees well with the existing experimental data. The present sound speed shows more reasonable result in the extreme case than the Nguyens did. The present choked flow criterion derived by the present sound speed is employed in the MARS code and assessed by using the Marviken choked flow tests. The assessment results without any adjustment made by some discharge coefficients demonstrate more accurate predictions of choked flow rate in the bubbly flow regime than those of the earlier choked flow calculations. By calculating the Typical PWR (SBLOCA) problem, we make sure that the present model can reproduce the reasonable transients of integral reactor system

  11. Flow visualization and relative permeability measurements in rough-walled fractures

    International Nuclear Information System (INIS)

    Persoff, P.; Pruess, K.

    1993-01-01

    Two-phase (gas-liquid) flow experiments were done in a natural rock fracture and transparent replicas of natural fractures. Liquid was injected at constant volume flow rate, and gas was injected at either constant mass flow rate or constant pressure. When gas was injected at constant mass flow rate, the gas inlet pressure, and inlet and outlet capillary pressures, generally did not reach steady state but cycled irregularly. Flow visualization showed that this cycling was due to repeated blocking and unblocking of gas flow paths by liquid. Relative permeabilities calculated from flow rate and pressure data show that the sum of the relative permeabilities of the two phases is much less than 1, indicating that each phase interferes strongly with the flow of the other. Comparison of the relative permeability curves with typical curves for porous media (Corey curves) show that the phase interference is stronger in fractures than in typical porous media

  12. Speed of reasoning and its relation to reasoning ability

    NARCIS (Netherlands)

    Goldhammer, F.; Klein Entink, R.H.

    2011-01-01

    The study investigates empirical properties of reasoning speed which is conceived as the fluency of solving reasoning problems. Responses and response times in reasoning tasks are modeled jointly to clarify the covariance structure of reasoning speed and reasoning ability. To determine underlying

  13. Nonlinear Output Feedback Control of Underwater Vehicle Propellers using Advance Speed Feedback

    DEFF Research Database (Denmark)

    Fossen, T.I.; Blanke, M.

    1999-01-01

    More accurate propeller shaft speed controllers can be designed by using nonlinear control theory. In this paper, an output feedback controller reconstructing the advance speed (speed of water going into the propeller) from vehicle speed measurements is derived. For this purpose a three-state model...... minimizes thruster losses due to variations in propeller axial inlet flow which is a major problem when applying conventional vehicle-propeller control systems. The proposed controller is simulated for an underwater vehicle equipped with a single propeller. From the simulations it can be concluded...... of propeller shaft speed, forward (surge) speed of the vehicle and axial inlet flow of the propeller is applied. A nonlinear observer in combination with an output feedback integral controller are derived by applying Lyapunov stability theory and exponential stability is proven. The output feedback controller...

  14. Simple technique for measuring relative renal blood flow

    International Nuclear Information System (INIS)

    Shames, D.M.; Korobkin, M.

    1976-01-01

    To determine whether externally monitored early renal uptake of 131 I-hippurate is proportional to renal blood flow, the renal uptake of 131 -hippurate at 1 to 2 min after injection was compared with the renal accumulation of radioactive carbonized microspheres in dogs. A renal artery catheter equipped with a balloon was used to decrease renal blood flow unilaterally. One minute after the intravenous injection of 100 μCi of 131 I-hippurate, about 1 μCi of either 85 Sr- or 95 Nb-labeled carbon microspheres was injected into the left ventricle. Radioactivity was measured over both kidneys. The total radioactivity within each kidney region of interest was corrected for background and integrated over the 1 to 2 min interval after injection. Thirteen measurements of relative renal blood flow were made for seven dogs. The dogs were then killed and both kidneys were excised and counted for the radioactivity of the microspheres. The 1 to 2-min relative renal uptake of 131 I-hippurate correlated well with relative microsphere uptake, suggesting that relative renal blood flow can be simply determined from the external measurements of renal uptake of 131 I-hippurate

  15. An algorithm for the estimation of road traffic space mean speeds from double loop detector data

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Diaz, M.; Perez Perez, I.

    2016-07-01

    Most algorithms trying to analyze or forecast road traffic rely on many inputs, but in practice, calculations are usually limited by the available data and measurement equipment. Generally, some of these inputs are substituted by raw or even inappropriate estimations, which in some cases come into conflict with the fundamentals of traffic flow theory. This paper refers to one common example of these bad practices. Many traffic management centres depend on the data provided by double loop detectors, which supply, among others, vehicle speeds. The common data treatment is to compute the arithmetic mean of these speeds over different aggregation periods (i.e. the time mean speeds). Time mean speed is not consistent with Edie’s generalized definitions of traffic variables, and therefore it is not the average speed which relates flow to density. This means that current practice begins with an error that can have negative effects in later studies and applications. The algorithm introduced in this paper enables easily the estimation of space mean speeds from the data provided by the loops. It is based on two key hypotheses: stationarity of traffic and log-normal distribution of the individual speeds in each time interval of aggregation. It could also be used in case of transient traffic as a part of any data fusion methodology. (Author)

  16. Osmotically driven flows in microchannels separated by a semipermeable membrane

    DEFF Research Database (Denmark)

    Jensen, Kåre Hartvig; Lee, J.; Bohr, Tomas

    2009-01-01

    We have fabricated lab-on-a-chip systems with microchannels separated by integrated membranes allowing for osmotically driven microflows. We have investigated these flows experimentally by studying the dynamics and structure of the front of a sugar solution travelling in 200 mu m wide and 50-200 mu...... m deep microchannels. We find that the sugar front travels at a constant speed, and that this speed is proportional to the concentration of the sugar solution and inversely proportional to the depth of the channel. We propose a theoretical model, which, in the limit of low axial flow resistance......, predicts that the sugar front should indeed travel with a constant velocity. The model also predicts an inverse relationship between the depth of the channel and the speed, and a linear relation between the sugar concentration and the speed. We thus find good qualitative agreement between the experimental...

  17. A new hydraulic regulation method on district heating system with distributed variable-speed pumps

    International Nuclear Information System (INIS)

    Wang, Hai; Wang, Haiying; Zhu, Tong

    2017-01-01

    flow rate of one substation varied according to its heat demand and the flow rates of other substations maintained their original values. And in Scenario II, the flow rates of all substations varied synchronously with the same relative rate. The results of the both scenarios indicated that all pumps could be properly adjusted to their designated flow rates by the proposed method with a high frequency adjustment resolution as 0.001 Hz. In scenario I, compared with the district heating system with distributed variable-speed-pumps configuration, the power consumption would be 26.6–66.8% less than that of the conventional central circulating pump configuration during the 4 rounds of regulations. In scenario II, the energy saving ratio of the district system with distributed variable-speed-pumps configuration would be 36.1–90.3% less than that of the conventional central circulating pump configuration during the 5 rounds of regulations.

  18. The research on flow pulsation characteristics of axial piston pump

    Science.gov (United States)

    Wang, Bingchao; Wang, Yulin

    2017-01-01

    The flow pulsation is an important factor influencing the axial piston pump performance. In this paper we implement modeling and simulation of the axial piston pump with AMESim software to explore the flow pulsation characteristics under various factors . Theory analysis shows the loading pressure, angular speed, piston numbers and the accumulator impose evident influence on the flow pulsation characteristics. This simulation and analysis can be used for reducing the flow pulsation rate via properly setting the related factors.

  19. Speeding up the flash calculations in two-phase compositional flow simulations - The application of sparse grids

    KAUST Repository

    Wu, Yuanqing

    2015-03-01

    Flash calculations have become a performance bottleneck in the simulation of compositional flow in subsurface reservoirs. We apply a sparse grid surrogate model to substitute the flash calculation and thus try to remove the bottleneck from the reservoir simulation. So instead of doing a flash calculation in each time step of the simulation, we just generate a sparse grid approximation of all possible results of the flash calculation before the reservoir simulation. Then we evaluate the constructed surrogate model to approximate the values of the flash calculation results from this surrogate during the simulations. The execution of the true flash calculation has been shifted from the online phase during the simulation to the offline phase before the simulation. Sparse grids are known to require only few unknowns in order to obtain good approximation qualities. In conjunction with local adaptivity, sparse grids ensure that the accuracy of the surrogate is acceptable while keeping the memory usage small by only storing a minimal amount of values for the surrogate. The accuracy of the sparse grid surrogate during the reservoir simulation is compared to the accuracy of using a surrogate based on regular Cartesian grids and the original flash calculation. The surrogate model improves the speed of the flash calculations and the simulation of the whole reservoir. In an experiment, it is shown that the speed of the online flash calculations is increased by about 2000 times and as a result the speed of the reservoir simulations has been enhanced by 21 times in the best conditions.

  20. Scaling Relations for Viscous and Gravitational Flow Instabilities in Multiphase Multicomponent Compressible Flow

    Science.gov (United States)

    Moortgat, J.; Amooie, M. A.; Soltanian, M. R.

    2016-12-01

    Problems in hydrogeology and hydrocarbon reservoirs generally involve the transport of solutes in a single solvent phase (e.g., contaminants or dissolved injection gas), or the flow of multiple phases that may or may not exchange mass (e.g., brine, NAPL, oil, gas). Often, flow is viscously and gravitationally unstable due to mobility and density contrasts within a phase or between phases. Such instabilities have been studied in detail for single-phase incompressible fluids and for two-phase immiscible flow, but to a lesser extent for multiphase multicomponent compressible flow. The latter is the subject of this presentation. Robust phase stability analyses and phase split calculations, based on equations of state, determine the mass exchange between phases and the resulting phase behavior, i.e., phase densities, viscosities, and volumes. Higher-order finite element methods and fine grids are used to capture the small-scale onset of flow instabilities. A full matrix of composition dependent coefficients is considered for each Fickian diffusive phase flux. Formation heterogeneity can have a profound impact and is represented by realistic geostatistical models. Qualitatively, fingering in multiphase compositional flow is different from single-phase problems because 1) phase mobilities depend on rock wettability through relative permeabilities, and 2) the initial density and viscosity ratios between phases may change due to species transfer. To quantify mixing rates in different flow regimes and for varying degrees of miscibility and medium heterogeneities, we define the spatial variance, scalar dissipation rate, dilution index, skewness, and kurtosis of the molar density of introduced species. Molar densities, unlike compositions, include compressibility effects. The temporal evolution of these measures shows that, while transport at the small-scale (cm) is described by the classical advection-diffusion-dispersion relations, scaling at the macro-scale (> 10 m) shows

  1. Quantification of disturbed coronary flow by disturbed vorticity index and relation with fractional flow reserve

    DEFF Research Database (Denmark)

    Chu, Miao; von Birgelen, Clemens; Li, Yingguang

    2018-01-01

    BACKGROUND AND AIMS: The relation between FFR and local coronary flow patterns is incompletely understood. We aimed at developing a novel hemodynamic index to quantify disturbed coronary flow, and to investigate its relationship with lesion-associated pressure-drop, and fractional flow reserve (F...

  2. Cadence® High High-Speed PCB Design Flow Workshop

    CERN Document Server

    2006-01-01

    Last release of Cadence High-Speed PCB Design methodology (PE142) based on Concept-HDL schematic editor, Constraint Manager, SPECCTRAQuest signal integrity analysis tool and ALLEGRO layout associated with SPECCTRA auto router tools, is now enough developed and stable to be taken into account for high-speed board designs at CERN. The implementation of this methodology, build around the new Constraint Manager program, is essential when you have to develop a board having a lot of high-speed design rules such as terminated lines, large bus structures, maximum length, timing, crosstalk etc.. that could not be under control by traditional method. On more conventional designs, formal aspect of the methodology could avoid misunderstanding between hardware and ALLEGRO layout designers, minimizing prototype iteration, development time and price. The capability to keep trace of the original digital designer intents in schematic or board layout, loading formal constraints in EDMS, could also be considered for LHC electro...

  3. Development of the Seeding System Used for Laser Velocimeter Surveys of the NASA Low-Speed Centrifugal Compressor Flow Field

    Science.gov (United States)

    Wasserbauer, C. A.; Hathaway, M. D.

    1994-01-01

    Consideration is given to an atomizer-based system for distributing high-volume rates of polystyrene latex (PSL) seed material developed to support laser velocimeter investigations of the NASA Low-Speed Compressor flow field. Complete evaporation of the liquid carrier before the flow entering the compressor was of primary concern for the seeder system design. It is argued that the seed nozzle should incorporate a needle valve that can mechanically dislodge accumulated PSL seed material when the nozzle is turned off. Water is less expensive as the liquid carrier and should be used whenever adequate residence times are available to ensure complete evaporation. PSL agglomerates over time and needs to be mixed or blended before use. Arrangement of the spray nozzles needs to be adjustable to provide maximum seeding at the laser probe volume.

  4. Development of Modal Analysis for the Study of Global Modes in High Speed Boundary Layer Flows

    Science.gov (United States)

    Brock, Joseph Michael

    Boundary layer transition for compressible flows remains a challenging and unsolved problem. In the context of high-speed compressible flow, transitional and turbulent boundary-layers produce significantly higher surface heating caused by an increase in skin-friction. The higher heating associated with transitional and turbulent boundary layers drives thermal protection systems (TPS) and mission trajectory bounds. Proper understanding of the mechanisms that drive transition is crucial to the successful design and operation of the next generation spacecraft. Currently, prediction of boundary-layer transition is based on experimental efforts and computational stability analysis. Computational analysis, anchored by experimental correlations, offers an avenue to assess/predict stability at a reduced cost. Classical methods of Linearized Stability Theory (LST) and Parabolized Stability Equations (PSE) have proven to be very useful for simple geometries/base flows. Under certain conditions the assumptions that are inherent to classical methods become invalid and the use of LST/PSE is inaccurate. In these situations, a global approach must be considered. A TriGlobal stability analysis code, Global Mode Analysis in US3D (GMAUS3D), has been developed and implemented into the unstructured solver US3D. A discussion of the methodology and implementation will be presented. Two flow configurations are presented in an effort to validate/verify the approach. First, stability analysis for a subsonic cylinder wake is performed and results compared to literature. Second, a supersonic blunt cone is considered to directly compare LST/PSE analysis and results generated by GMAUS3D.

  5. High-Speed Thermal Characterization of Cryogenic Flows, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development on a high-speed fiber optic sensor and readout system for cryogenic temperature measurements in liquid oxygen (LOX) and liquid...

  6. Age and gender related differences in aortic blood flow

    DEFF Research Database (Denmark)

    Traberg, Marie Sand; Pedersen, Mads Møller; Hemmsen, Martin Christian

    2012-01-01

    The abdominal aorta (AA) is predisposed to development of abdominal aneurysms (AAA), a focal dilatation of the artery with fatal consequences if left untreated. The blood flow patterns in the AA is thought to play an important role in the development of AAA. The purpose of this work is to investi......The abdominal aorta (AA) is predisposed to development of abdominal aneurysms (AAA), a focal dilatation of the artery with fatal consequences if left untreated. The blood flow patterns in the AA is thought to play an important role in the development of AAA. The purpose of this work...... is to investigate the blood flow pat- terns within a group of healthy volunteers (4 females, 7 males) aged 23 to 76 years to identify changes and differences related to age and gender. The healthy volunteers were categorized by gender (male/female) and age (below/above 35 years). Subject-specific flow and geometry...... to elderly. Thus, changes in blood flow patterns in the AA related to age and gender is observed. Further investigations are needed to determine the relation between changes in blood flow patterns and AAA development....

  7. SPEED COMPLIANCE IN FREEWAY VARIABLE SPEED LIMIT SYSTEM – CASE STUDY OF THE PRAGUE CITY RING

    Directory of Open Access Journals (Sweden)

    Michał MATOWICKI

    2016-03-01

    Full Text Available Many previous studies have confirmed the strong relationship between speed compliance and the frequency and severity of traffic accidents. Variable speed limit (VSL system as a measure to improve traffic safety enables the freeway system to change its posted speed limit based on various traffic and environmental conditions. Such system helps drivers to recognize the upcoming events, to adjust their driving style and in such way to address speed variation of the traffic flow. This is called speed harmonization. Although many studies researching the effect of VSL system on the traffic stream can be found, there are only few addressing its influence on the drivers behavior, particularly focusing on their tolerance limit and compliance, which has crucial meaning for future design of controlling algorithms. This study was prepared to inspect this grey area by studying the data from the VSL system at Prague city ring, describing the influence of the highway management system and its influence on drivers.

  8. Effect of extrusion stem speed on extrusion process for a hollow aluminum profile

    International Nuclear Information System (INIS)

    Zhang, Cunsheng; Zhao, Guoqun; Chen, Zhiren; Chen, Hao; Kou, Fujun

    2012-01-01

    Highlights: ► Extrusion stem speed has significant effects on extrusion process. ► An optimum value of stem speed exists for uniform metal flow distribution. ► A higher stem speed leads to a higher required extrusion force. ► A high stem speed leads to an improved welding quality of aluminum profile. - Abstract: Extrusion stem speed is one of important process parameters during aluminum profile extrusion, which directly influences the profile quality and choice of extrusion equipments. In this paper, the extrusion process of a thin-walled hollow aluminum profile was simulated by means of the HyperXtrude commercial software. Through a serial of numerical simulation, the effects of stem speed on extrusion process, such as metal flow behavior at die exit, temperature distribution, extrusion force, and welding pressure, have been investigated. The numerical results showed that there existed an optimum value of stem speed for flow velocity distribution. With the increasing stem speed, the temperature of the extrudate and required extrusion force increased, and the welding quality of extrudate would be improved. Through comprehensive comparison and analysis, the appropriate stem speed could be determined for practical extrusion production. Thus, the research results could give effective guideline for determining initial billet and die temperature and choosing the proper extrusion press in aluminum profile industry.

  9. Age-Related Imbalance Is Associated With Slower Walking Speed: An Analysis From the National Health and Nutrition Examination Survey.

    Science.gov (United States)

    Xie, Yanjun J; Liu, Elizabeth Y; Anson, Eric R; Agrawal, Yuri

    Walking speed is an important dimension of gait function and is known to decline with age. Gait function is a process of dynamic balance and motor control that relies on multiple sensory inputs (eg, visual, proprioceptive, and vestibular) and motor outputs. These sensory and motor physiologic systems also play a role in static postural control, which has been shown to decline with age. In this study, we evaluated whether imbalance that occurs as part of healthy aging is associated with slower walking speed in a nationally representative sample of older adults. We performed a cross-sectional analysis of the previously collected 1999 to 2002 National Health and Nutrition Examination Survey (NHANES) data to evaluate whether age-related imbalance is associated with slower walking speed in older adults aged 50 to 85 years (n = 2116). Balance was assessed on a pass/fail basis during a challenging postural task-condition 4 of the modified Romberg Test-and walking speed was determined using a 20-ft (6.10 m) timed walk. Multivariable linear regression was used to evaluate the association between imbalance and walking speed, adjusting for demographic and health-related covariates. A structural equation model was developed to estimate the extent to which imbalance mediates the association between age and slower walking speed. In the unadjusted regression model, inability to perform the NHANES balance task was significantly associated with 0.10 m/s slower walking speed (95% confidence interval: -0.13 to -0.07; P imbalance mediates 12.2% of the association between age and slower walking speed in older adults. In a nationally representative sample, age-related balance limitation was associated with slower walking speed. Balance impairment may lead to walking speed declines. In addition, reduced static postural control and dynamic walking speed that occur with aging may share common etiologic origins, including the decline in visual, proprioceptive, and vestibular sensory and

  10. Adaptive Neuro-Fuzzy Determination of the Effect of Experimental Parameters on Vehicle Agent Speed Relative to Vehicle Intruder.

    Directory of Open Access Journals (Sweden)

    Shahaboddin Shamshirband

    Full Text Available Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean, Intruder Rear sensors active (boolean, Agent Front sensors active (boolean, Agent Rear sensors active (boolean, RSSI signal intensity/strength (integer, Elapsed time (in seconds, Distance between Agent and Intruder (m, Angle of Agent relative to Intruder (angle between vehicles °, Altitude difference between Agent and Intruder (m influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles ° is the most influential parameters to Vehicle agent speed relative to Vehicle intruder.

  11. Adaptive Neuro-Fuzzy Determination of the Effect of Experimental Parameters on Vehicle Agent Speed Relative to Vehicle Intruder.

    Science.gov (United States)

    Shamshirband, Shahaboddin; Banjanovic-Mehmedovic, Lejla; Bosankic, Ivan; Kasapovic, Suad; Abdul Wahab, Ainuddin Wahid Bin

    2016-01-01

    Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean), Intruder Rear sensors active (boolean), Agent Front sensors active (boolean), Agent Rear sensors active (boolean), RSSI signal intensity/strength (integer), Elapsed time (in seconds), Distance between Agent and Intruder (m), Angle of Agent relative to Intruder (angle between vehicles °), Altitude difference between Agent and Intruder (m)) influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m) and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles °) is the most influential parameters to Vehicle agent speed relative to Vehicle intruder.

  12. Assertion based verification methodology for HDL designs of primary sodium pump speed and eddy current flow measurement systems of PFBR

    International Nuclear Information System (INIS)

    Misra, M.K.; Menon, Saritha P.; Thirugnana Murthy, D.

    2013-01-01

    With the growing complexity and size of digital designs, functional verification has become a huge challenge. The validation and testing process accounts for a significant percentage of the overall development effort and cost for electronic systems. Many studies have shown that up to 70% of the design development time and resources are spent on functional verification. Functional errors manifest themselves very early in the design flow, and unless they are detected upfront, they can result in severe consequences - both financially and from a safety viewpoint. This paper covers the various types of verification methodologies and focuses on Assertion Based Verification Methodology for HDL designs, taking as case studies, the Primary Sodium Pump Speed and Eddy Current Flow Measurement Systems of PFBR. (author)

  13. Cross-sectional void fraction distribution measurements in a vertical annulus two-phase flow by high speed X-ray computed tomography and real-time neutron radiography techniques

    International Nuclear Information System (INIS)

    Harvel, G.D.; Hori, K.; Kawanishi, K.

    1995-01-01

    A Real-Time Neutron Radiography (RTNR) system and a high speed X-ray Computed tomography (X-CT) system are compared for measurement of two-phase flow. Each system is used to determine the flow regime, and the void fraction distribution in a vertical annulus flow channel. A standard optical video system is also used to observe the flow regime. The annulus flow channel is operated as a bubble column and measurements obtained for gas flow rates from 0.0 to 30.01/min. The flow regimes observed by all three measurement systems through image analysis shows that the two-dimensional void fraction distribution can be obtained. The X-CT system is shown to have a superior temporal resolution capable of resolving the void fraction distribution in an (r,θ) plane in 33.0 ms. Void fraction distribution for bubbly flow and slug flow is determined

  14. Cross-sectional void fraction distribution measurements in a vertical annulus two-phase flow by high speed X-ray computed tomography and real-time neutron radiography techniques

    Energy Technology Data Exchange (ETDEWEB)

    Harvel, G.D. [McMaster Univ., Ontario (Canada)]|[Combustion and Heat Transfer Lab., Takasago (Japan); Hori, K.; Kawanishi, K. [Combustion and Heat Transfer Lab., Takasago (Japan)] [and others

    1995-09-01

    A Real-Time Neutron Radiography (RTNR) system and a high speed X-ray Computed tomography (X-CT) system are compared for measurement of two-phase flow. Each system is used to determine the flow regime, and the void fraction distribution in a vertical annulus flow channel. A standard optical video system is also used to observe the flow regime. The annulus flow channel is operated as a bubble column and measurements obtained for gas flow rates from 0.0 to 30.01/min. The flow regimes observed by all three measurement systems through image analysis shows that the two-dimensional void fraction distribution can be obtained. The X-CT system is shown to have a superior temporal resolution capable of resolving the void fraction distribution in an (r,{theta}) plane in 33.0 ms. Void fraction distribution for bubbly flow and slug flow is determined.

  15. Relation Between Pressure and Volume Unloading During Ramp Testing in Patients Supported with a Continuous-Flow Left Ventricular Assist Device

    DEFF Research Database (Denmark)

    Jung, Mette H; Hassager, Christian; Balling, Louise

    2015-01-01

    Pulmonary capillary wedge pressure (PCWP) is the key to describing left ventricular (LV) unloading, however, the relation between pressure and the echocardiography-derived surrogate of LV volume (left ventricular end-diastolic diameter (LVEDD)) as a function of pump speed (RPM) in continuous......-flow left ventricular assist device (CF-LVAD) patients is unknown. In this study the pressure-volume relationship as a function of RPM during ramp testing was investigated by simultaneously measuring PCWP by Swan-Ganz catheter and LVEDD by echocardiography. The ramp protocol started at usual pump setting...

  16. Assessment of Power Potential of Tidal Currents and Impacts of Power Extraction on Flow Speeds in Indonesia

    Science.gov (United States)

    Orhan, K.; Mayerle, R.

    2016-12-01

    A methodology comprising of the estimates of power yield, evaluation of the effects of power extraction on flow conditions, and near-field investigations to deliver wake characteritics, recovery and interactions is described and applied to several straits in Indonesia. Site selection is done with high-resolution, three-dimensional flow models providing sufficient spatiotemporal coverage. Much attention has been given to the meteorological forcing, and conditions at the open sea boundaries to adequately capture the density gradients and flow fields. Model verification using tidal records shows excellent agreement. Sites with adequate depth for the energy conversion using horizontal axis tidal turbines, average kinetic power density greater than 0.5 kW/m2, and surface area larger than 0.5km2 are defined as energy hotspots. Spatial variation of the average extractable electric power is determined, and annual tidal energy resource is estimated for the straits in question. The results showed that the potential for tidal power generation in Indonesia is likely to exceed previous predictions reaching around 4,800MW. To assess the impact of the devices, flexible mesh models with higher resolutions have been developed. Effects on flow conditions, and near-field turbine wakes are resolved in greater detail with triangular horizontal grids. The energy is assumed to be removed uniformly by sub-grid scale arrays of turbines, and calculations are made based on velocities at the hub heights of the devices. An additional drag force resulting in dissipation of the pre-existing kinetic power from %10 to %60 within a flow cross-section is introduced to capture the impacts. It was found that the effect of power extraction on water levels and flow speeds in adjacent areas is not significant. Results show the effectivess of the method to capture wake characteritics and recovery reasonably well with low computational cost.

  17. Expansion of the Darcy-Weisbach Relation for Porous Flow Analysis

    International Nuclear Information System (INIS)

    Shin, Chang Hoon; Park, Warn Gyu

    2017-01-01

    This study started to deduce a permeability relationship that can consider the geometric features of various porous media under different flow regimes. With reference to the previous works of Kozeny and Carman, the conventional Darcy-Weisbach relation (Darcy's friction flow equation) was reviewed and expanded for porous flow analysis. Based on the capillary model, this relation was transformed to the friction equivalent permeability (FEP) definition. The validity of the FEP definition was confirmed by means of comparison with the Kozeny-Carman equation. Hereby, it was shown that the FEP definition is the generalized form of the Kozeny-Carman equation, which is confined to laminar flow through a circular capillary. In conclusion, the FEP definition as a new permeability estimation method was successfully developed by expanding the Darcy-Weisbach relation for porous flow analyses.

  18. Expansion of the Darcy-Weisbach Relation for Porous Flow Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Hoon [Korea Gas Corporation (KOGAS), Daegu (Korea, Republic of); Park, Warn Gyu [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2017-04-15

    This study started to deduce a permeability relationship that can consider the geometric features of various porous media under different flow regimes. With reference to the previous works of Kozeny and Carman, the conventional Darcy-Weisbach relation (Darcy's friction flow equation) was reviewed and expanded for porous flow analysis. Based on the capillary model, this relation was transformed to the friction equivalent permeability (FEP) definition. The validity of the FEP definition was confirmed by means of comparison with the Kozeny-Carman equation. Hereby, it was shown that the FEP definition is the generalized form of the Kozeny-Carman equation, which is confined to laminar flow through a circular capillary. In conclusion, the FEP definition as a new permeability estimation method was successfully developed by expanding the Darcy-Weisbach relation for porous flow analyses.

  19. Enhancement of Arterial Pressure Pulsatility by Controlling Continuous-Flow Left Ventricular Assist Device Flow Rate in Mock Circulatory System.

    Science.gov (United States)

    Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M

    Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.

  20. Marangoni elasticity of flowing soap films

    Science.gov (United States)

    Kim, Ildoo; Mandre, Shreyas

    2017-08-01

    We measure the Marangoni elasticity of a flowing soap film to be 22 mN/m irrespective of its width, thickness, flow speed, or the bulk soap concentration. We perform this measurement by generating an oblique shock in the soap film and measuring the shock angle, flow speed, and thickness. We postulate that the elasticity is constant because the film surface is crowded with soap molecules. Our method allows nondestructive measurement of flowing soap film elasticity and the value 22 mN/m is likely applicable to other similarly constructed flowing soap films.

  1. High-Speed Synchrotron X-ray Imaging Studies of the Ultrasound Shockwave and Enhanced Flow during Metal Solidification Processes

    Science.gov (United States)

    Tan, Dongyue; Lee, Tung Lik; Khong, Jia Chuan; Connolley, Thomas; Fezzaa, Kamel; Mi, Jiawei

    2015-07-01

    The highly dynamic behavior of ultrasonic bubble implosion in liquid metal, the multiphase liquid metal flow containing bubbles and particles, and the interaction between ultrasonic waves and semisolid phases during solidification of metal were studied in situ using the complementary ultrafast and high-speed synchrotron X-ray imaging facilities housed, respectively, at the Advanced Photon Source, Argonne National Laboratory, US, and Diamond Light Source, UK. Real-time ultrafast X-ray imaging of 135,780 frames per second revealed that ultrasonic bubble implosion in a liquid Bi-8 wt pctZn alloy can occur in a single wave period (30 kHz), and the effective region affected by the shockwave at implosion was 3.5 times the original bubble diameter. Furthermore, ultrasound bubbles in liquid metal move faster than the primary particles, and the velocity of bubbles is 70 ~ 100 pct higher than that of the primary particles present in the same locations close to the sonotrode. Ultrasound waves can very effectively create a strong swirling flow in a semisolid melt in less than one second. The energetic flow can detach solid particles from the liquid-solid interface and redistribute them back into the bulk liquid very effectively.

  2. PDF methods for combustion in high-speed turbulent flows

    Science.gov (United States)

    Pope, Stephen B.

    1995-01-01

    This report describes the research performed during the second year of this three-year project. The ultimate objective of the project is extend the applicability of probability density function (pdf) methods from incompressible to compressible turbulent reactive flows. As described in subsequent sections, progress has been made on: (1) formulation and modelling of pdf equations for compressible turbulence, in both homogeneous and inhomogeneous inert flows; and (2) implementation of the compressible model in various flow configurations, namely decaying isotropic turbulence, homogeneous shear flow and plane mixing layer.

  3. Direct Evidence for Vision-based Control of Flight Speed in Budgerigars.

    Science.gov (United States)

    Schiffner, Ingo; Srinivasan, Mandyam V

    2015-06-05

    We have investigated whether, and, if so, how birds use vision to regulate the speed of their flight. Budgerigars, Melopsittacus undulatus, were filmed in 3-D using high-speed video cameras as they flew along a 25 m tunnel in which stationary or moving vertically oriented black and white stripes were projected on the side walls. We found that the birds increased their flight speed when the stripes were moved in the birds' flight direction, but decreased it only marginally when the stripes were moved in the opposite direction. The results provide the first direct evidence that Budgerigars use cues based on optic flow, to regulate their flight speed. However, unlike the situation in flying insects, it appears that the control of flight speed in Budgerigars is direction-specific. It does not rely solely on cues derived from optic flow, but may also be determined by energy constraints.

  4. Optic flow-based collision-free strategies: From insects to robots.

    Science.gov (United States)

    Serres, Julien R; Ruffier, Franck

    2017-09-01

    Flying insects are able to fly smartly in an unpredictable environment. It has been found that flying insects have smart neurons inside their tiny brains that are sensitive to visual motion also called optic flow. Consequently, flying insects rely mainly on visual motion during their flight maneuvers such as: takeoff or landing, terrain following, tunnel crossing, lateral and frontal obstacle avoidance, and adjusting flight speed in a cluttered environment. Optic flow can be defined as the vector field of the apparent motion of objects, surfaces, and edges in a visual scene generated by the relative motion between an observer (an eye or a camera) and the scene. Translational optic flow is particularly interesting for short-range navigation because it depends on the ratio between (i) the relative linear speed of the visual scene with respect to the observer and (ii) the distance of the observer from obstacles in the surrounding environment without any direct measurement of either speed or distance. In flying insects, roll stabilization reflex and yaw saccades attenuate any rotation at the eye level in roll and yaw respectively (i.e. to cancel any rotational optic flow) in order to ensure pure translational optic flow between two successive saccades. Our survey focuses on feedback-loops which use the translational optic flow that insects employ for collision-free navigation. Optic flow is likely, over the next decade to be one of the most important visual cues that can explain flying insects' behaviors for short-range navigation maneuvers in complex tunnels. Conversely, the biorobotic approach can therefore help to develop innovative flight control systems for flying robots with the aim of mimicking flying insects' abilities and better understanding their flight. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Marangoni elasticity of flowing soap films

    OpenAIRE

    Kim, Ildoo; Mandre, Shreyas

    2016-01-01

    We measure the Marangoni elasticity of a flowing soap film to be 22 dyne/cm irrespective of its width, thickness, flow speed, or the bulk soap concentration. We perform this measurement by generating an oblique shock in the soap film and measuring the shock angle, flow speed and thickness. We postulate that the elasticity is constant because the film surface is crowded with soap molecules. Our method allows non-destructive measurement of flowing soap film elasticity, and the value 22 dyne/cm ...

  6. Experimental investigation on a high subsonic compressor cascade flow

    Directory of Open Access Journals (Sweden)

    Zhang Haideng

    2015-08-01

    Full Text Available With the aim of deepening the understanding of high-speed compressor cascade flow, this paper reports an experimental study on NACA-65 K48 compressor cascade with high subsonic inlet flow. With the increase of passage pressurizing ability, endwall boundary layer behavior is deteriorated, and the transition zone is extended from suction surface to the endwall as the adverse pressure gradient increases. Cross flow from endwall to midspan, mixing of corner boundary layer and the main stream, and reversal flow on the suction surface are caused by corner separation vortex structures. Passage vortex is the main corner separation vortex. During its movement downstream, the size grows bigger while the rotating direction changes, forming a limiting circle. With higher incidence, corner separation is further deteriorated, leading to higher flow loss. Meanwhile, corner separation structure, flow mixing characteristics and flow loss distribution vary a lot with the change of incidence. Compared with low aspect-ratio model, corner separation of high aspect-ratio model moves away from the endwall and is more sufficiently developed downstream the cascade. Results obtained present details of high-speed compressor cascade flow, which is rare in the relating research fields and is beneficial to mechanism analysis, aerodynamic optimization and flow control design.

  7. Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Marashdeh, Qussai [Tech4imaging LLC, Columbus, OH (United States)

    2013-02-01

    A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi

  8. Numerical study of the influence of flow blockage on the aerodynamic coefficients of models in low-speed wind tunnels

    Science.gov (United States)

    Bui, V. T.; Kalugin, V. T.; Lapygin, V. I.; Khlupnov, A. I.

    2017-11-01

    With the use of ANSYS Fluent software and ANSYS ICEM CFD calculation grid generator, the flows past a wing airfoil, an infinite cylinder, and 3D blunted bodies located in the open and closed test sections of low-speed wind tunnels were calculated. The mathematical model of the flows included the Reynolds equations and the SST model of turbulence. It was found that the ratios between the aerodynamic coefficients in the test section and in the free (unbounded) stream could be fairly well approximated with a piecewise-linear function of the blockage factor, whose value weakly depended on the angle of attack. The calculated data and data gained in the analysis of previously reported experimental studies proved to be in a good agreement. The impact of the extension of the closed test section on the airfoil lift force is analyzed.

  9. Flow visualization

    CERN Document Server

    Merzkirch, Wolfgang

    1974-01-01

    Flow Visualization describes the most widely used methods for visualizing flows. Flow visualization evaluates certain properties of a flow field directly accessible to visual perception. Organized into five chapters, this book first presents the methods that create a visible flow pattern that could be investigated by visual inspection, such as simple dye and density-sensitive visualization methods. It then deals with the application of electron beams and streaming birefringence. Optical methods for compressible flows, hydraulic analogy, and high-speed photography are discussed in other cha

  10. Predation by the Dwarf Seahorse on Copepods: Quantifying Motion and Flows Using 3D High Speed Digital Holographic Cinematography - When Seahorses Attack!

    Science.gov (United States)

    Gemmell, Brad; Sheng, Jian; Buskey, Ed

    2008-11-01

    Copepods are an important planktonic food source for most of the world's fish species. This high predation pressure has led copepods to evolve an extremely effective escape response, with reaction times to hydrodynamic disturbances of less than 4 ms and escape speeds of over 500 body lengths per second. Using 3D high speed digital holographic cinematography (up to 2000 frames per second) we elucidate the role of entrainment flow fields generated by a natural visual predator, the dwarf seahorse (Hippocampus zosterae) during attacks on its prey, Acartia tonsa. Using phytoplankton as a tracer, we recorded and reconstructed 3D flow fields around the head of the seahorse and its prey during both successful and unsuccessful attacks to better understand how some attacks lead to capture with little or no detection from the copepod while others result in failed attacks. Attacks start with a slow approach to minimize the hydro-mechanical disturbance which is used by copepods to detect the approach of a potential predator. Successful attacks result in the seahorse using its pipette-like mouth to create suction faster than the copepod's response latency. As these characteristic scales of entrainment increase, a successful escape becomes more likely.

  11. Vehicle Speed Estimation and Forecasting Methods Based on Cellular Floating Vehicle Data

    Directory of Open Access Journals (Sweden)

    Wei-Kuang Lai

    2016-02-01

    Full Text Available Traffic information estimation and forecasting methods based on cellular floating vehicle data (CFVD are proposed to analyze the signals (e.g., handovers (HOs, call arrivals (CAs, normal location updates (NLUs and periodic location updates (PLUs from cellular networks. For traffic information estimation, analytic models are proposed to estimate the traffic flow in accordance with the amounts of HOs and NLUs and to estimate the traffic density in accordance with the amounts of CAs and PLUs. Then, the vehicle speeds can be estimated in accordance with the estimated traffic flows and estimated traffic densities. For vehicle speed forecasting, a back-propagation neural network algorithm is considered to predict the future vehicle speed in accordance with the current traffic information (i.e., the estimated vehicle speeds from CFVD. In the experimental environment, this study adopted the practical traffic information (i.e., traffic flow and vehicle speed from Taiwan Area National Freeway Bureau as the input characteristics of the traffic simulation program and referred to the mobile station (MS communication behaviors from Chunghwa Telecom to simulate the traffic information and communication records. The experimental results illustrated that the average accuracy of the vehicle speed forecasting method is 95.72%. Therefore, the proposed methods based on CFVD are suitable for an intelligent transportation system.

  12. Rapid Speed Modulation of a Rotary Total Artificial Heart Impeller.

    Science.gov (United States)

    Kleinheyer, Matthias; Timms, Daniel L; Tansley, Geoffrey D; Nestler, Frank; Greatrex, Nicholas A; Frazier, O Howard; Cohn, William E

    2016-09-01

    Unlike the earlier reciprocating volume displacement-type pumps, rotary blood pumps (RBPs) typically operate at a constant rotational speed and produce continuous outflow. When RBP technology is used in constructing a total artificial heart (TAH), the pressure waveform that the TAH produces is flat, without the rise and fall associated with a normal arterial pulse. Several studies have suggested that pulseless circulation may impair microcirculatory perfusion and the autoregulatory response and may contribute to adverse events such as gastrointestinal bleeding, arteriovenous malformations, and pump thrombosis. It may therefore be beneficial to attempt to reproduce pulsatile output, similar to that generated by the native heart, by rapidly modulating the speed of an RBP impeller. The choice of an appropriate speed profile and control strategy to generate physiologic waveforms while minimizing power consumption and blood trauma becomes a challenge. In this study, pump operation modes with six different speed profiles using the BiVACOR TAH were evaluated in vitro. These modes were compared with respect to: hemodynamic pulsatility, which was quantified as surplus hemodynamic energy (SHE); maximum rate of change of pressure (dP/dt); pulse power index; and motor power consumption as a function of pulse pressure. The results showed that the evaluated variables underwent different trends in response to changes in the speed profile shape. The findings indicated a possible trade-off between SHE levels and flow rate pulsatility related to the relative systolic duration in the speed profile. Furthermore, none of the evaluated measures was sufficient to fully characterize hemodynamic pulsatility. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. Fluid flow dynamics in MAS systems

    Science.gov (United States)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

  14. Topics in LIGO-related physics: Interferometric speed meters and tidal work

    Science.gov (United States)

    Purdue, Patricia Marie

    In the quest to develop viable designs for third-generation interferometric gravitational-wave detectors (such as the Laser Interferometer Gravitational-Wave Observatory, LIGO), one strategy is monitoring the relative momentum or speed of the test-mass mirrors, rather than monitoring their relative position. The most straightforward design for a speed-meter interferometer that accomplishes this is analyzed in Chapter 2. It is shown that in principle this design can beat the standard quantum limit (SQL) by an arbitrarily large amount, over an arbitrarily wide range of frequencies. However, in practice, this specific speed meter requires exorbitantly high input light power. Chapter 3 proposes a more sophisticated version of a speed meter. This new design requires modest input power and appears to be a fully practical candidate for third-generation detectors. It can beat the SQL over a broad range of frequencies (˜10 to 100 Hz in practice) by a factor h/hSQL ˜ WSQLcirc/Wc irc . Here Wcirc is the light power circulating in the interferometer arms and WSQL ≃ 800 kW is the circulating power required to beat the SQL at 100 Hz. If squeezed vacuum (with a power-squeeze factor e-2 R) is injected into the interferometer's output port, the SQL can be beat with less laser power: h/h SQL ˜ WSQLcirc/Wc irce2R . For realistic parameters (e2 R ≃ 10 and Wcirc ≃ 800 kW), the SQL can be beat by a factor ˜3 from 10 to 100 Hz. By performing frequency-dependent homodyne detection on the output (using two kilometer-scale filter cavities), one can markedly improve the interferometer's sensitivity at frequencies above 100 Hz. Chapter 4 is a contribution to the foundations for analyzing sources of gravitational waves. Specifically, it presents an analysis of the tidal work done on a self-gravitating body in an external tidal field. By examining the change in the mass-energy of the body as a result of the tidal field, it is shown that the work done is gauge invariant, while the body

  15. CFD Simulation and Optimization of Very Low Head Axial Flow Turbine Runner

    Directory of Open Access Journals (Sweden)

    Yohannis Mitiku Tobo

    2015-10-01

    Full Text Available The main objective of this work is Computational Fluid Dynamics (CFD modelling, simulation and optimization of very low head axial flow turbine runner  to be used to drive  a centrifugal pump of turbine-driven pump. The ultimate goal of the optimization is to produce a power of 1kW at head less than 1m from flowing  river to drive centrifugal pump using mechanical coupling (speed multiplier gear directly. Flow rate, blade numbers, turbine rotational speed, inlet angle are parameters used in CFD modeling,  simulation and design optimization of the turbine runner. The computed results show that power developed by a turbine runner increases with increasing flow rate. Pressure inside the turbine runner increases with flow rate but, runner efficiency increases for some flow rate and almost constant thereafter. Efficiency and power developed by a runner drops quickly if turbine speed increases due to higher pressure losses and conversion of pressure energy to kinetic energy inside the runner. Increasing blade number increases power developed but, efficiency does not increase always. Efficiency increases for some blade number and drops down due to the fact that  change in direction of the relative flow vector at the runner exit, which decreases the net rotational momentum and increases the axial flow velocity.

  16. Engine control system having speed-based timing

    Science.gov (United States)

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2012-02-14

    A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a controller in communication with the actuator. The controller is configured to receive a signal indicative of engine speed and compare the engine speed signal with a desired engine speed. The controller is also configured to selectively regulate the actuator to adjust a timing of the engine valve to control an amount of air/fuel mixture delivered to the cylinder based on the comparison.

  17. Freeway travel speed calculation model based on ETC transaction data.

    Science.gov (United States)

    Weng, Jiancheng; Yuan, Rongliang; Wang, Ru; Wang, Chang

    2014-01-01

    Real-time traffic flow operation condition of freeway gradually becomes the critical information for the freeway users and managers. In fact, electronic toll collection (ETC) transaction data effectively records operational information of vehicles on freeway, which provides a new method to estimate the travel speed of freeway. First, the paper analyzed the structure of ETC transaction data and presented the data preprocess procedure. Then, a dual-level travel speed calculation model was established under different levels of sample sizes. In order to ensure a sufficient sample size, ETC data of different enter-leave toll plazas pairs which contain more than one road segment were used to calculate the travel speed of every road segment. The reduction coefficient α and reliable weight θ for sample vehicle speed were introduced in the model. Finally, the model was verified by the special designed field experiments which were conducted on several freeways in Beijing at different time periods. The experiments results demonstrated that the average relative error was about 6.5% which means that the freeway travel speed could be estimated by the proposed model accurately. The proposed model is helpful to promote the level of the freeway operation monitoring and the freeway management, as well as to provide useful information for the freeway travelers.

  18. Laser Velocimeter Measurements in the Pump of an Automotive Torque Converter Part II – Effect of Pump Speed and Oil Viscosity

    Directory of Open Access Journals (Sweden)

    Ronald D. Flack

    2000-01-01

    Full Text Available The velocity field inside a torque converter pump was studied for two separate effects: variable pump rotational speed and variable oil viscosity. Three-dimensional velocity measurements were taken using a laser velocimeter for both the pump mid- and exit planes. The effect ofvariable pump rotational speed was studied by running the pump at two different speeds and holding speed ratio (pump rotational speed]turbine rotational speed constant. Similarly, the effect of viscosity on the pump flow field was studied by varying the temperature and]or using two different viscosity oils as the working fluid in the pump. Threedimensional velocity vector plots, through-flow contour plots, and secondary flow profiles were obtained for both pump planes and all test conditions. Results showed that torque converter mass flows increased approximately linearly with increasing pump rotational speed (and fixed speed ratio but that the flow was not directly proportional to pump rotational speed. However, mass flows were seen to decrease as the oil viscosity was decreased with a resulting increased Reynolds number; for these conditions the high velocity regions were seen to decrease in size and low velocity regions were seen to increase in size. In the pump mid-plane strong counter-clockwise secondary flows and in the exit plane strong clockwise secondary flows were observed. The vorticities and slip factors were calculated from the experimental results and are presented. The torque core-to-shell and blade-to-blade torque distributions were calculated for both planes. Finally, the flow fields were seen to demonstrate similitude when Reynolds numbers were matched.

  19. Energy saving opportunity with variable speed drive in primary air-handling unit

    International Nuclear Information System (INIS)

    Li, J.S.M.

    2007-01-01

    Air conditioners used in the court buildings in Kowloon City, Hong Kong were retrofitted with variable speed drives in the primary air handling unit (PAU) in an effort to reduce energy consumption. The initial effect of this retrofit was investigated along with the feasibility of using a carbon dioxide (CO 2 ) based demand control ventilation to reduce energy consumption while optimizing indoor air quality. The air flow in most air conditioning fans is either constant or controlled by motorized inlet guide vanes. Although this controls the flow and may reduce the load on the fan, this constriction adds an energy loss, resulting in inefficient operation. Variable speed drives should be used on the PAU in order to maintain system efficiency. As the speed of the fans are reduced, the flow will decrease proportionally, while the power required by the fan will reduce the cube of the speed. Therefore, if the fresh air supply can be controlled by reducing the speed of the fan motor, then flow control would be more efficient. The energy saving associated with variable fresh air supply flow rate was evaluated along with the cost to building owners. This paper presented the results of the potential energy and cost savings associated with this retrofit, and included implementation cost and pay back period. It was estimated that about 20 per cent of power consumption and electricity costs can be saved per year, with a simple payback period of 2 years. 7 refs., 3 tabs., 3 figs

  20. Flow rate-pressure drop relation for deformable shallow microfluidic channels

    Science.gov (United States)

    Christov, Ivan C.; Cognet, Vincent; Shidhore, Tanmay C.; Stone, Howard A.

    2018-04-01

    Laminar flow in devices fabricated from soft materials causes deformation of the passage geometry, which affects the flow rate--pressure drop relation. For a given pressure drop, in channels with narrow rectangular cross-section, the flow rate varies as the cube of the channel height, so deformation can produce significant quantitative effects, including nonlinear dependence on the pressure drop [{Gervais, T., El-Ali, J., G\\"unther, A. \\& Jensen, K.\\ F.}\\ 2006 Flow-induced deformation of shallow microfluidic channels.\\ \\textit{Lab Chip} \\textbf{6}, 500--507]. Gervais et. al. proposed a successful model of the deformation-induced change in the flow rate by heuristically coupling a Hookean elastic response with the lubrication approximation for Stokes flow. However, their model contains a fitting parameter that must be found for each channel shape by performing an experiment. We present a perturbation approach for the flow rate--pressure drop relation in a shallow deformable microchannel using the theory of isotropic quasi-static plate bending and the Stokes equations under a lubrication approximation (specifically, the ratio of the channel's height to its width and of the channel's height to its length are both assumed small). Our result contains no free parameters and confirms Gervais et. al.'s observation that the flow rate is a quartic polynomial of the pressure drop. The derived flow rate--pressure drop relation compares favorably with experimental measurements.

  1. Flow measurement in bubbly and slug flow regimes using the electromagnetic flowmeter developed

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Ahn, Yeh Chan; Seo, Kyung Woo; Kim, Moo Hwan

    2002-01-01

    In order to investigate the characteristics of electromagnetic flowmeter in two-phase flow, an AC electromagnetic flowmeter was designed and manufactured. In various flow conditions, the signals and noises from the flowmeter were obtained and analyzed by comparison with the observed flow patterns with a high speed CCD camera. The experiment with the void simulators in which rod shaped non-conducting material was used was carried out to investigate the effect of the bubble position and the void fraction on the flowmeter. Based on the results from the void simulator, two-phase flow experiments encompassed from bubbly to slug flow regime were conducted. The simple relation ΔU TP = ΔU SP /(1-α) was verified with measurements of the potential difference and the void fraction. Due to the lack of homogeneity in a real two-phase flow, the discrepancy between the relation and the present measurement was slightly increased with void fraction and also liquid volumetric flux j f . Whereas there is no difference in the shape of the raw signal between single-phase flow and bubbly flow, the signal amplitude for bubbly flow is higher than that for single-phase flow at the same water flow rate, since the passage area of the water flow is reduced. In the case of slug flow, the phase and the amplitude of the flowmeter output show dramatically the flow characteristics around each slug bubble and the position of a slug bubble itself. Therefore, the electromagnetic flowmeter shows a good possibility of being useful for identifying the flow regimes

  2. An extended heterogeneous car-following model accounting for anticipation driving behavior and mixed maximum speeds

    Science.gov (United States)

    Sun, Fengxin; Wang, Jufeng; Cheng, Rongjun; Ge, Hongxia

    2018-02-01

    The optimal driving speeds of the different vehicles may be different for the same headway. In the optimal velocity function of the optimal velocity (OV) model, the maximum speed vmax is an important parameter determining the optimal driving speed. A vehicle with higher maximum speed is more willing to drive faster than that with lower maximum speed in similar situation. By incorporating the anticipation driving behavior of relative velocity and mixed maximum speeds of different percentages into optimal velocity function, an extended heterogeneous car-following model is presented in this paper. The analytical linear stable condition for this extended heterogeneous traffic model is obtained by using linear stability theory. Numerical simulations are carried out to explore the complex phenomenon resulted from the cooperation between anticipation driving behavior and heterogeneous maximum speeds in the optimal velocity function. The analytical and numerical results all demonstrate that strengthening driver's anticipation effect can improve the stability of heterogeneous traffic flow, and increasing the lowest value in the mixed maximum speeds will result in more instability, but increasing the value or proportion of the part already having higher maximum speed will cause different stabilities at high or low traffic densities.

  3. Study on flow fields in high specific speed centrifugal compressor with unpinched vaneless diffuser

    International Nuclear Information System (INIS)

    Tamaki, Hideaki

    2013-01-01

    Performance of centrifugal compressors strongly depends on their internal flow fields. CFD has become indispensable tool for getting the information about flow fields in centrifugal compressors. CFD codes are usually validated by some representative data or compared with calculated results by other CFD codes, in order to ensure their accuracies. However, learning their accuracies for all types of centrifugal compressor's specifications requires continuous works that compare experimental data obtained in developmental processes of various types of centrifugal compressors with CFD results. A prediction of a performance and a flow field of a centrifugal compressor by CFD is relatively accurate when the impact of separation and secondary flow on that flow field is weak, i.e. near design condition. Centrifugal compressors are deemed to have a wide operating range alongside high efficiencies at design points. Hence the prediction accuracy of CFD at off design conditions, where the impacts of separation and secondary flow on the flow field are strong, is critical for the design of the centrifugal compressors. This study therefore investigated the prediction accuracy of CFD using a centrifugal compressor whose geometry was intentionally changed to have a distorted flow field over a whole operating range, i.e. from choke to surge.

  4. Study on flow fields in high specific speed centrifugal compressor with unpinched vaneless diffuser

    Energy Technology Data Exchange (ETDEWEB)

    Tamaki, Hideaki [IHI Corporation, Yokoham (Japan)

    2013-06-15

    Performance of centrifugal compressors strongly depends on their internal flow fields. CFD has become indispensable tool for getting the information about flow fields in centrifugal compressors. CFD codes are usually validated by some representative data or compared with calculated results by other CFD codes, in order to ensure their accuracies. However, learning their accuracies for all types of centrifugal compressor's specifications requires continuous works that compare experimental data obtained in developmental processes of various types of centrifugal compressors with CFD results. A prediction of a performance and a flow field of a centrifugal compressor by CFD is relatively accurate when the impact of separation and secondary flow on that flow field is weak, i.e. near design condition. Centrifugal compressors are deemed to have a wide operating range alongside high efficiencies at design points. Hence the prediction accuracy of CFD at off design conditions, where the impacts of separation and secondary flow on the flow field are strong, is critical for the design of the centrifugal compressors. This study therefore investigated the prediction accuracy of CFD using a centrifugal compressor whose geometry was intentionally changed to have a distorted flow field over a whole operating range, i.e. from choke to surge.

  5. Relative ages of lava flows at Alba Patera, Mars

    International Nuclear Information System (INIS)

    Schneeberger, D.M.; Pieri, D.C.

    1987-01-01

    Many large lava flows on the flanks of Alba Patera are astonishing in their volume and length. As a suite, these flows suggest tremendously voluminous and sustained eruptions, and provide dimensional boundary conditions typically a factor of 100 larger than terrestrial flows. One of the most striking features associated with Alba Patera is the large, radially oriented lava flows that exhibit a variety of flow morphologies. These include sheet flows, tube fed and tube channel flows, and undifferentiated flows. Three groups of flows were studied; flows on the northwest flank, southeast flank, and the intracaldera region. The lava flows discussed probably were erupted as a group during the same major volcanic episode as suggested by the data presented. Absolute ages are poorly constrained for both the individual flows and shield, due in part to disagreement as to which absolute age curve is representative for Mars. A relative age sequence is implied but lacks precision due to the closeness of the size frequency curves

  6. Numerical flow analyses of a two-phase hydraulic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hur, N.; Kwak, M.; Moshfeghi, M. [Sogang University, Seoul (Korea, Republic of); Chang, C.-S.; Kang, N.-W. [VS Engineering, Seoul (Korea, Republic of)

    2017-05-15

    We investigated flow characteristics in a hydraulic coupling at different charged water conditions and speed ratios. Hence, simulations were performed for three-dimensional two-phase flow by using the VOF method. The realizable k-ε turbulence model was adopted. To resolve the interaction of passing blades of the primary and secondary wheels, simulations were conducted in the unsteady framework using a sliding grid technique. The results show that the water-air distribution inside the wheel is strongly dependent upon both amount of charged water and speed ratio. Generally, air is accumulated in the center of the wheel, forming a toroidal shape wrapped by the circulating water. The results also show that at high speed ratios, the solid-body-like rotation causes dry areas on the periphery of the wheels and, hence, considerably decreases the circulating flow rate and the transmitted torque. Furthermore, the momentum transfer was investigated through the concept of a mass flux triangle based on the local velocity multiplied by the local mixture density instead of the velocity triangle commonly used in a single-phase turbomachine analysis. Also, the mass fluxes along the radius of the coupling in the partially charged and fully charged cases were found to be completely different. It is shown that the flow rate at the interfacial plane and also the transmitted torque are closely related and are strongly dependent upon both the amount of charged water and speed ratio. Finally, a conceptual categorization together with two comprehensive maps was provided for the torque transmission and also circulating flow rates. These two maps in turn exhibit valuable engineering information and can serve as bases for an optimal design of a hydraulic coupling.

  7. Using Variable Speed Control on Pump Application

    Directory of Open Access Journals (Sweden)

    Dr.Sc. Aida Spahiu

    2012-06-01

    Full Text Available Pumps are one of the most common variable speed drive (VSD system applications and special interest has focused on improving their energy efficiency by using variable speed control instead of throttling or other less efficient flow control methods. Pumps are the single largest user of electricity in industry in the European Union, consuming 160 TWh per annum of electricity and accounting for 79 million tonnes of carbon dioxide (CO2 emissions [1]. Centrifugal pumps are the most likely pump style to provide a favorable return based on energy savings when applied with a variable speed drive. To help illustrate this, are conducted benchmark testing to document various head and flow scenarios and their corresponding effect on energy savings. Paper shows the relationship of static and friction head in the energy efficiency equation and the effect of motor, pump and VSD efficiencies. The received results are good reference points for engineers and managers of water sector in Albania to select the best prospects for maximizing efficiency and energy savings.

  8. Stability management of high speed axial flow compressor stage through axial extensions of bend skewed casing treatment

    Directory of Open Access Journals (Sweden)

    DilipkumarBhanudasji Alone

    2016-09-01

    Full Text Available This paper presents the experimental results to understand the performance of moderately loaded high speed single stage transonic axial flow compressor subjected to various configurations of axial extensions of bend skewed casing treatment with moderate porosity. The bend skewed casing treatment of 33% porosity was coupled with rectangular plenum chamber of depth equal to the slots depth. The five axial extensions of 20%, 40%, 60%, 80% and 100% were used for the experimental evaluations of compressor performance. The main objective was to identify the optimum extension of the casing treatment with reference to rotor leading edge which results in maximum stall margin improvements with minimum loss in the stage efficiency. At each axial extension the compressor performance is distinctive. The improvement in the stall margin was very significant at some axial extensions with 4%–5% penalty in the stage efficiency. The compressors stage shows recovery in terms of efficiency at lower axial extensions of 20% and 40% with increase in the peak stage efficiency. Measurements of flow parameters showed the typical behaviors at near stall flow conditions. Hot wire sensor was placed at the rotor upstream in the tip region to capture the oscillations in the inlet axial and tangential velocities at stall conditions. In the absence of casing treatment the compressor exhibit abrupt stall with very high oscillations in the inlet axial and tangential velocity of the flow. The extents of oscillations reduce with bend skewed casing treatment. Few measurements were also performed in the plenum chamber and salient results are presented in this paper.

  9. Coronary diastolic pressure-flow relation and zero flow pressure explained on the basis of intramyocardial compliance

    NARCIS (Netherlands)

    Spaan, J. A.

    1985-01-01

    In the controversy about the mechanisms determining the high zero flow pressures and the further interpretation of coronary diastolic pressure flow relations, this paper takes a stand in favor of intramyocardial compliance as the primary cause of the high zero flow pressures. An attempt has been

  10. Rarefield gas dynamics fundamentals, simulations and micro flows

    CERN Document Server

    Shen, Ching

    2006-01-01

    This book elucidates the methods of molecular gas dynamics or rarefied gas dynamics which treat the problems of gas flows when the discrete molecular effects of the gas prevail under the circumstances of low density, the emphasis being on the basis of the methods, the direct simulation Monte Carlo method applied to the simulation of non-equilibrium effects and the frontier subjects related to low speed microscale rarefied gas flows. It provides a solid basis for the study of molecular gas dynamics for senior students and graduates in the aerospace and mechanical engineering departments of universities and colleges. It gives a general acquaintance of modern developments of rarefied gas dynamics in various regimes and leads to the frontier topics of non-equilibrium rarefied gas dynamics and low speed microscale gas dynamics. It will be also of benefit to the scientific and technical researchers engaged in aerospace high altitude aerodynamic force and heating design and in the research on gas flow in MEMS.

  11. Visualization of bubble behaviors in forced convective subcooled flow boiling

    International Nuclear Information System (INIS)

    Inaba, Noriaki; Matsuzaki, Mitsuo; Kikura, Hiroshige; Aritomi, Masanori; Komeno, Toshihiro

    2007-01-01

    Condensation characteristics of vapor bubble after the departure from a heated section in forced convective subcooled flow boiling were studied visually by using a high speed camera. The purpose of the present study was to measure two-phase flow parameters in subcooled flow boiling. These two-phase flow parameters are void fraction, interfacial area concentration and Sauter mean diameter, which express bubble interface behaviors. The experimental set-up was designed to measure the two-phase flow parameters necessary for developing composite equations for the two fluid models in subcooled flow boiling. In the present experiments, the mass flux, liquid subcooling and the heater were varied within 100-1000kg/m 2 s, 2-10K and 100-300kW/m 2 respectively. Under these experimental conditions, the bubble images were obtained by a high-speed camera, and analyzed paying attention to the condensation of vapor bubbles. These two-phase parameters were obtained by the experimental data, such as the bubble parameter, the bubble volume and the bubble surface. In the calculation process of the two phase flow parameters, it was confirmed that these parameters are related to the void fraction. (author)

  12. Green operations of belt conveyors by means of speed control

    NARCIS (Netherlands)

    He, D.; Pang, Y.; Lodewijks, G.

    2017-01-01

    Belt conveyors can be partially loaded due to the variation of bulk material flow loaded onto the conveyor. Speed control attempts to reduce the belt conveyor energy consumption and to enable the green operations of belt conveyors. Current research of speed control rarely takes the conveyor dynamics

  13. Work zone variable speed limit systems: Effectiveness and system design issues.

    Science.gov (United States)

    2010-03-01

    Variable speed limit (VSL) systems have been used in a number of countries, particularly in Europe, as a method to improve flow and increase safety. VSLs use detectors to collect data on current traffic and/or weather conditions. Posted speed limits ...

  14. Visualizing Special Relativity: The Field of An Electric Dipole Moving at Relativistic Speed

    Science.gov (United States)

    Smith, Glenn S.

    2011-01-01

    The electromagnetic field is determined for a time-varying electric dipole moving with a constant velocity that is parallel to its moment. Graphics are used to visualize this field in the rest frame of the dipole and in the laboratory frame when the dipole is moving at relativistic speed. Various phenomena from special relativity are clearly…

  15. Research on Aerodynamic Noise Reduction for High-Speed Trains

    OpenAIRE

    Zhang, Yadong; Zhang, Jiye; Li, Tian; Zhang, Liang; Zhang, Weihua

    2016-01-01

    A broadband noise source model based on Lighthill’s acoustic theory was used to perform numerical simulations of the aerodynamic noise sources for a high-speed train. The near-field unsteady flow around a high-speed train was analysed based on a delayed detached-eddy simulation (DDES) using the finite volume method with high-order difference schemes. The far-field aerodynamic noise from a high-speed train was predicted using a computational fluid dynamics (CFD)/Ffowcs Williams-Hawkings (FW-H)...

  16. Computational Aerodynamic Simulations of a 1215 ft/sec Tip Speed Transonic Fan System Model for Acoustic Methods Assessment and Development

    Science.gov (United States)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of a 1215 ft/sec tip speed transonic fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which for this model did not include a split flow path with core and bypass ducts. As a result, it was only necessary to adjust fan rotational speed in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the flow fields at all operating conditions reveals no excessive boundary layer separations or related secondary-flow problems.

  17. The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers

    Science.gov (United States)

    Parker, Colin M.; Leftwich, Megan C.

    2016-05-01

    This work visualizes the flow surrounding a scaled model vertical axis wind turbine at realistic operating conditions. The model closely matches geometric and dynamic properties—tip speed ratio and Reynolds number—of a full-size turbine. The flow is visualized using particle imaging velocimetry (PIV) in the midplane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Time-averaged results show an asymmetric wake behind the turbine, regardless of tip speed ratio, with a larger velocity deficit for a higher tip speed ratio. For the higher tip speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04U_∞. Phase-averaged vorticity fields—achieved by syncing the PIV system with the rotation of the turbine—show distinct structures form from each turbine blade. There were distinct differences in results by tip speed ratios of 0.9, 1.3, and 2.2 of when in the cycle structures are shed into the wake—switching from two pairs to a single pair of vortices being shed—and how they convect into the wake—the middle tip speed ratio vortices convect downstream inside the wake, while the high tip speed ratio pair is shed into the shear layer of the wake. Finally, results show that the wake structure is much more sensitive to changes in tip speed ratio than to changes in Reynolds number.

  18. SCANNING SPEED INFLUENCE ON THE PHYSICAL PROPERTIES ...

    African Journals Online (AJOL)

    The most commonly used aerospace titanium alloy, Ti6Al4V, was deposited on Ti6Al4V plate of dimension 72 x 72 x5mm. The laser power of 3 kW, powder flow rate of 1.44 g/min and gas flow rate of 4 l/min were used throughout the deposition process. The transverse/ scanning speed was varied between 0.005 to 0.095 ...

  19. Speed Biases With Real-Life Video Clips

    Directory of Open Access Journals (Sweden)

    Federica Rossi

    2018-03-01

    Full Text Available We live almost literally immersed in an artificial visual world, especially motion pictures. In this exploratory study, we asked whether the best speed for reproducing a video is its original, shooting speed. By using adjustment and double staircase methods, we examined speed biases in viewing real-life video clips in three experiments, and assessed their robustness by manipulating visual and auditory factors. With the tested stimuli (short clips of human motion, mixed human-physical motion, physical motion and ego-motion, speed underestimation was the rule rather than the exception, although it depended largely on clip content, ranging on average from 2% (ego-motion to 32% (physical motion. Manipulating display size or adding arbitrary soundtracks did not modify these speed biases. Estimated speed was not correlated with estimated duration of these same video clips. These results indicate that the sense of speed for real-life video clips can be systematically biased, independently of the impression of elapsed time. Measuring subjective visual tempo may integrate traditional methods that assess time perception: speed biases may be exploited to develop a simple, objective test of reality flow, to be used for example in clinical and developmental contexts. From the perspective of video media, measuring speed biases may help to optimize video reproduction speed and validate “natural” video compression techniques based on sub-threshold temporal squeezing.

  20. Small portable speed calculator

    Science.gov (United States)

    Burch, J. L.; Billions, J. C.

    1973-01-01

    Calculator is adapted stopwatch calibrated for fast accurate measurement of speeds. Single assembled unit is rugged, self-contained, and relatively inexpensive to manufacture. Potential market includes automobile-speed enforcement, railroads, and field-test facilities.

  1. Effects of Relativity Lead to 'Warp Speed' Computations

    International Nuclear Information System (INIS)

    Vay, J.-L.

    2007-01-01

    A scientist at Lawrence Berkeley National Laboratory has discovered that a previously unnoticed consequence of Einstein's special theory of relativity can lead to speedup of computer calculations by orders of magnitude when applied to the computer modeling of a certain class of physical systems. This new finding offers the possibility of tackling some problems in a much shorter time and with far more precision than was possible before, as well as studying some configurations in every detail for the first time. The basis of Einstein's theory is the principle of relativity, which states that the laws of physics are the same for all observers, whether the 'observer' is a turtle 'racing' with a rabbit, or a beam of particles moving at near light speed. From the invariance of the laws of physics, one may be tempted to infer that the complexity of a system is independent of the motion of the observer, and consequently, a computer simulation will require the same number of mathematical operations, independently of the reference frame that is used for the calculation. Length contraction and time dilation are well known consequences of the special theory of relativity which lead to very counterintuitive effects. An alien observing human activity through a telescope in a spaceship traveling in the Vicinity of the earth near the speed of light would see everything flattened in the direction of propagation of its spaceship (for him, the earth would have the shape of a pancake), while all motions on earth would appear extremely slow, slowed almost to a standstill. Conversely, a space scientist observing the alien through a telescope based on earth would see a flattened alien almost to a standstill in a flattened spaceship. Meanwhile, an astronaut sitting in a spaceship moving at some lower velocity than the alien spaceship with regard to earth might see both the alien spaceship and the earth flattened in the same proportion and the motion unfolding in each of them at the same

  2. Device for precision measurement of speed of sound in a gas

    Science.gov (United States)

    Kelner, Eric; Minachi, Ali; Owen, Thomas E.; Burzynski, Jr., Marion; Petullo, Steven P.

    2004-11-30

    A sensor for measuring the speed of sound in a gas. The sensor has a helical coil, through which the gas flows before entering an inner chamber. Flow through the coil brings the gas into thermal equilibrium with the test chamber body. After the gas enters the chamber, a transducer produces an ultrasonic pulse, which is reflected from each of two faces of a target. The time difference between the two reflected signals is used to determine the speed of sound in the gas.

  3. Speed control device for coolant recycling pump

    International Nuclear Information System (INIS)

    Kageyama, Takao.

    1992-01-01

    The present invention intends to increase a margin relative of the oscillations of neutron fluxes when the temperature of feedwater is lowered in a compulsory recycling type BWR reactor. That is, when the operation point represented by a reactor thermal power and a reactor core inlet flow rate is in a state approximate to an oscillation limit of the reactor power, the device of the present invention controls the recycling pump speed in the increasing direction depending on the lowering range of the feedwater temperature from a stationary state. With such a constitution, even if the reactor power is in the operation region near the oscillation limit in the BWR type reactor and a feedwater heating loss is caused, the speed of the coolant recycling pump is increased by 10% at the maximum depending on the extent of the reduction of the feedwater temperature, so that the oscillation of the reactor power can be prevented from lasting for a long period of time even if a reactivity external disturbance should occur in the reactor. (I.S.)

  4. How humans use visual optic flow to regulate stepping during walking.

    Science.gov (United States)

    Salinas, Mandy M; Wilken, Jason M; Dingwell, Jonathan B

    2017-09-01

    Humans use visual optic flow to regulate average walking speed. Among many possible strategies available, healthy humans walking on motorized treadmills allow fluctuations in stride length (L n ) and stride time (T n ) to persist across multiple consecutive strides, but rapidly correct deviations in stride speed (S n =L n /T n ) at each successive stride, n. Several experiments verified this stepping strategy when participants walked with no optic flow. This study determined how removing or systematically altering optic flow influenced peoples' stride-to-stride stepping control strategies. Participants walked on a treadmill with a virtual reality (VR) scene projected onto a 3m tall, 180° semi-cylindrical screen in front of the treadmill. Five conditions were tested: blank screen ("BLANK"), static scene ("STATIC"), or moving scene with optic flow speed slower than ("SLOW"), matched to ("MATCH"), or faster than ("FAST") walking speed. Participants took shorter and faster strides and demonstrated increased stepping variability during the BLANK condition compared to the other conditions. Thus, when visual information was removed, individuals appeared to walk more cautiously. Optic flow influenced both how quickly humans corrected stride speed deviations and how successful they were at enacting this strategy to try to maintain approximately constant speed at each stride. These results were consistent with Weber's law: healthy adults more-rapidly corrected stride speed deviations in a no optic flow condition (the lower intensity stimuli) compared to contexts with non-zero optic flow. These results demonstrate how the temporal characteristics of optic flow influence ability to correct speed fluctuations during walking. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Flow in Pelton turbines

    OpenAIRE

    Furnes, Kjartan

    2013-01-01

    The flow in Pelton turbines is subsonic, turbulent, multiphase (water, air, and water vapor from cavitation), has high speeds, sharp gradients, free surface and dynamic boundary conditions. A static grid is unsuitable for modeling this mainly due to the turbine wheel and the liquid having a non-stationary relative motion.In recent times, significant progress in CFD simulation has been made, which also is relevant for Pelton turbines.Nevertheless, it is still common to perform costly model tes...

  6. Examples of detection of water flow by oxygen activation on pulsed neutron logs

    International Nuclear Information System (INIS)

    de Rosset, W.H.M.

    1986-01-01

    Upward flow of water in cased wellbores may be detected with pulsed neutron capture (PNC) and gamma ray (GR) tools. Water entering tubing, casing and flowing behind pipe may similarly be evaluated qualitatively. Gamma ray background anomalies in PNC data and elevation of GR tool response occur when water is flowing above threshold velocities and volumes. The technique requires logging the well under static and flow conditions or logging at different tools speeds in a flowing well. Oxygen activation results in increased gamma ray count rates at each detector. PNC far detector and GR well log curves from each log run (flowing well, static well) are overlain. The increases for each curve are offset from the point of water entry by a distance similar to tool source-detector spacing. These offsets in gamma increase are 15-20 ft. higher for the GR than for the PNC far detector and distinguish oxygen activation due to flowing water from common hot spots. The amount of gamma ray increase is controlled by the velocity of upward flow of water past the tool, the amount of water flowing, and the distance of the flow from the tool. Prior planning is important to gain usable information in flowing wells. The upward relative velocity imposes maximal and minimal tool speeds to produce significant gamma increases, and tool speed must be adjusted to optimize gamma changes. Use of the technique to answer actual production problems is illustrated with examples. Insight was gained which led to the correction of the problem in each case

  7. Lane changing and speed interaction on freeways : An analytical microscopic study

    NARCIS (Netherlands)

    Keyvan Ekbatani, M.; Grebert, V.; Daamen, W.; Knoop, V.L.

    2015-01-01

    Understanding the influence of lane changing manoeuvre on the capacity, stability, and breakdown of traffic flows is a crucial issue. In a recent study, four distinct lane change strategies on freeways have been empirically found: (1) Speed Leading; (2) Speed Leading with Overtaking; (3) Lane

  8. Implementation of density-based solver for all speeds in the framework of OpenFOAM

    Science.gov (United States)

    Shen, Chun; Sun, Fengxian; Xia, Xinlin

    2014-10-01

    In the framework of open source CFD code OpenFOAM, a density-based solver for all speeds flow field is developed. In this solver the preconditioned all speeds AUSM+(P) scheme is adopted and the dual time scheme is implemented to complete the unsteady process. Parallel computation could be implemented to accelerate the solving process. Different interface reconstruction algorithms are implemented, and their accuracy with respect to convection is compared. Three benchmark tests of lid-driven cavity flow, flow crossing over a bump, and flow over a forward-facing step are presented to show the accuracy of the AUSM+(P) solver for low-speed incompressible flow, transonic flow, and supersonic/hypersonic flow. Firstly, for the lid driven cavity flow, the computational results obtained by different interface reconstruction algorithms are compared. It is indicated that the one dimensional reconstruction scheme adopted in this solver possesses high accuracy and the solver developed in this paper can effectively catch the features of low incompressible flow. Then via the test cases regarding the flow crossing over bump and over forward step, the ability to capture characteristics of the transonic and supersonic/hypersonic flows are confirmed. The forward-facing step proves to be the most challenging for the preconditioned solvers with and without the dual time scheme. Nonetheless, the solvers described in this paper reproduce the main features of this flow, including the evolution of the initial transient.

  9. Hydrodynamic characteristics of high speed settling clarifiers by radiotracer method

    International Nuclear Information System (INIS)

    Griffith Martinez, Jose; Damera Martinez, A.; Ramos Espinosa, K.

    2003-01-01

    Results achieved in the evaluation of two high-speed settling cane juice Clarifiers, one denominated ICINAZ The Express and the other one a modified SRI, both located at the sugar factory Orlando Gonzalez employing the well established radiotracer method (Tc-99m) are presented Several trials performed simultaneously at the two Clarifiers demonstrated that the modified SRI was capable to assimilate the whole flow capacity of the factory with adequate characteristic of the pattern flux and residence time in the environment of 1 hour. In the other side, ICINAZ The Express Clarifier could only work at relative low flow capacity of the factory with residence time closely to the two hours and achieving occasionally a pattern flux seriously affected by fluctuations in the milling process. The non-availability of a flow meter did not allow to extract more information related to some pattern flux anomalies, nevertheless, the radiotracer method was able to detect certain differences between the two clear juice outlet of the modified SRI Clarifier, probably due some problems in the construction of this equipment. This fact so as other goals achieved in this work, show once more the potentiality of the radiotracer method for this type of study related to the hydrodynamic characteristics of industrial facilities. (Author)

  10. Impacts of Snowy Weather Conditions on Expressway Traffic Flow Characteristics

    Directory of Open Access Journals (Sweden)

    Jiancheng Weng

    2013-01-01

    Full Text Available Snowy weather will significantly degrade expressway operations, reduce service levels, and increase driving difficulty. Furthermore, the impact of snow varies in different types of roads, diverse cities, and snow densities due to different driving behavior. Traffic flow parameters are essential to decide what should be appropriate for weather-related traffic management and control strategies. This paper takes Beijing as a case study and analyzes traffic flow data collected by detectors in expressways. By comparing the performance of traffic flow under normal and snowy weather conditions, this paper quantitatively describes the impact of adverse weather on expressway volume and average speeds. Results indicate that average speeds on the Beijing expressway under heavy snow conditions decrease by 10–20 km/h when compared to those under normal weather conditions, the vehicle headway generally increases by 2–4 seconds, and the road capacity drops by about 33%. This paper also develops a specific expressway traffic parameter reduction model which proposes reduction coefficients of expressway volumes and speeds under various snow density conditions in Beijing. The conclusions paper provide effective foundational parameters for urban expressway controls and traffic management under snow conditions.

  11. Particle deposition in low-speed, high-turbulence flows

    DEFF Research Database (Denmark)

    Reck, Mads; Larsen, Poul Scheel; Ullum, U.

    2002-01-01

    The experimental and numerical study considers the concentration of airborne particulate contaminants, such as spores of spoilage fungi, and their deposition on a surface, in a petri dish, and on a warm box-shaped product placed in a food-processing environment. Field measurements by standard...... field measurements. Particle deposition is shown to be associated with near-wall coherent structures. Flow reversal, simulated by impulsive start, is shown to give higher deposition rates than steady mean flows. Key word index: Spoilage fungi; spores; food processing plant; deposition flux; large eddy...

  12. Influence of the relative rotational speed on component features in micro rotary swaging

    Directory of Open Access Journals (Sweden)

    Ishkina Svetlana

    2015-01-01

    Full Text Available Micro rotary swaging is a cold forming process for production of micro components with determined geometry and surface. It is also possible to change the microstructure of wires and hence the material properties. Swaging dies revolve around the work piece with an overlaid radial oscillation. Newly developed tools (Flat Surface Dies, FSD feature plain surfaces and do not represent the geometry of the formed part as in conventional swaging. Using these tools allows for producing wires with triangle geometry (cross section as well as a circular shape. To test the influence of FSD on material properties by micro swaging a new method is investigated: the variation of the relative speed between the specimen and dies in infeed rotary swaging. During this specific process copper (C11000 and steel (304 Alloy wires with diameter d0 = 1 mm are formed. It is noticed that the mechanical characteristics such as ductility and strength differ from the characteristics after conventional swaging. Moreover this approach enables new possibilities to influence the geometry and the surface quality of wires. The impact of the relative speed on the processed wire features is described in this paper.

  13. Effects of turbulence and flow inclination on the performance of cup anemometers in the field

    DEFF Research Database (Denmark)

    Papadopoulos, K.H.; Stefantos, N.C.; Schmidt Paulsen, U.

    2001-01-01

    Four commercial and one research cup anemometers were comparatively tested in a complex terrain site to quantify the effects of turbulence and flow inclination on the wind speed measurements. The difference of the mean wind speed reading between the anemometers was as much as 2% for wind directions...... where the mean flow was horizontal. This difference was large enough to be attributed to the well-known overspeeding effect related to the differing distance constant (ranging from 1.7 to 5 m) of the cup anemometers. The application of a theoretical model of the cup-anemometer behaviour in a three...... to correct the 10-min mean wind speed. The necessary information for the correction is the turbulent intensity (preferably in the vertical direction) and the mean flow inclination. For demanding applications, the angular response parameters of cup anemometers should be taken into account. The incorporation...

  14. Rotor aerodynamic power limits at low tip speed ratio using CFD

    International Nuclear Information System (INIS)

    Mikkelsen, Robert F; Sarmast, Sasan; Henningson, Dan; Sørensen, Jens N

    2014-01-01

    When investigating limits of rotor aerodynamic models, the Betz limit serves as a solid marker of an upper limit which no model should be able to exceed. A century ago Joukowsky (1912) proposed a rotor aerodynamic model utilizing a rotating actuator disc with a constant circulation. This model has since then been the subject of much controversy as it predicts a power performance that for all tip speed ratios exceeds the Betz limit and which goes to infinity when the tip speed ratio goes to zero. Recently, it was demonstrated that the Joukowsky model is fully consistent with the inviscid Euler equations and that the apparent inconsistency partly can be explained by the lack of viscous effects (Sprensen and van Kuik [4]). However, even including a term to account for the effect of viscosity at small tip speed ratios, the model still predicts a power yield that exceeds the Betz limit. In the present work we study in detail, using a CFD actuator line model, the flow behavior for rotors at small tip speed ratios. It is shown that the excessive swirl appearing towards the rotor center at small tip speed ratios generates vortex breakdown, causing a recirculating zone in the wake that limits the power yield of the rotor. The appearance of vortex breakdown has a similar effect on the flow behavior as the vortex ring state that usually appears at higher tip speed ratios. Limits to where vortex breakdown might occur with tip speed ratio and rotor loading as parameter are investigated and presented in the paper. The limits found correspond to well-known criterion for vortex breakdown onset for swirling flows in general. By applying a criterion for vortex breakdown in combination with the general momentum theory, the power performance always stays below the Betz limit

  15. The Flow of Energy

    Science.gov (United States)

    Znidarsic, F.; Robertson, G. A.

    In this paper, the flow of energy in materials is presented as mechanical waves with a distinct velocity or speed of transition. This speed of transition came about through the observations of cold fusion experiments, i.e., Low Energy Nuclear Reactions (LENR) and superconductor gravity experiments, both assumed speculative by mainstream science. In consideration of superconductor junctions, the LENR experiments have a similar speed of transition, which seems to imply that the reactions in the LENR experiment are discrete quantized reactions (energy - burst vs. continuous). Here an attempt is made to quantify this new condition as it applies to electrons; toward the progression of quantized energy flows (discrete energy burst) as a new source of clean energy and force mechanisms (i.e, propulsion).

  16. Transient analysis of a variable speed rotary compressor

    International Nuclear Information System (INIS)

    Park, Youn Cheol

    2010-01-01

    A transient simulation model of a rolling piston type rotary compressor is developed to predict the dynamic characteristics of a variable speed compressor. The model is based on the principles of conservation, real gas equations, kinematics of the crankshaft and roller, mass flow loss due to leakage, and heat transfer. For the computer simulation of the compressor, the experimental data were obtained from motor performance tests at various operating frequencies. Using the developed model, re-expansion loss, friction loss, mass flow loss and heat transfer loss is estimated as a function of the crankshaft speed in a variable speed compressor. In addition, the compressor efficiency and energy losses are predicted at various compressor-operating frequencies. Since the transient state of the compressor strongly depends on the system, the developed model is combined with a transient system simulation program to get transient variations of the compression process in the system. Motor efficiency, mechanical efficiency, motor torque and volumetric efficiency are calculated with respect to variation of the driving frequency in a rotary compressor.

  17. Biomimetic Flow Sensors

    NARCIS (Netherlands)

    Casas, J.; Liu, Chang; Krijnen, Gijsbertus J.M.

    2012-01-01

    Biomimetic flow sensors are biologically inspired devices that measure the speed and direction of fluids. This survey starts by describing the role and functioning of airflow-sensing hairs in arthropods and in fishes, carries on with the biomimetic MEMS implementations, both for air and water flow

  18. Hydraulic performance of a low specific speed centrifugal pump with Spanwise-Slotted Blades

    International Nuclear Information System (INIS)

    Ye, D X; Li, H; Wang, Y

    2013-01-01

    The hydraulic efficiency of a low specific speed centrifugal pump is low because of the long and narrow meridian flow passage, and the severe disk friction. Spanwise slotted blade flow control technology has been applied to the low specific speed centrifugal pump. This paper concluded that spanwise slotted blades can improve the pump performance in both experiments and simulations. In order to study the influence to the impeller and volute by spanwise slotted blade, impeller efficiency and volute efficiency were defined. The minimum volute efficiency and the maximum pump efficiency appear at the same time in the design flow condition in the unsteady simulation. The mechanism of spanwise slotted blade flow control technology should be researched furthermore

  19. Myelin Breakdown Mediates Age-Related Slowing in Cognitive Processing Speed in Healthy Elderly Men

    Science.gov (United States)

    Lu, Po H.; Lee, Grace J.; Tishler, Todd A.; Meghpara, Michael; Thompson, Paul M.; Bartzokis, George

    2013-01-01

    Background: To assess the hypothesis that in a sample of very healthy elderly men selected to minimize risk for Alzheimer's disease (AD) and cerebrovascular disease, myelin breakdown in late-myelinating regions mediates age-related slowing in cognitive processing speed (CPS). Materials and methods: The prefrontal lobe white matter and the genu of…

  20. Automated high-speed video analysis of the bubble dynamics in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Ilchenko, Volodymyr; Sattelmayer, Thomas [Technische Univ. Muenchen, Lehrstuhl fuer Thermodynamik, Garching (Germany)

    2004-04-01

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The test-section consists of a rectangular channel with a one side heated copper strip and a very good optical access. For the optical observation of the bubble behaviour the high-speed cinematography is used. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, a huge number of bubble cycles could be analysed. The structure of the developed algorithms for the detection of the bubble diameter, the bubble lifetime, the lifetime after the detachment process and the waiting time between two bubble cycles is described. Subsequently, the results from using these automated procedures are presented. A remarkable novelty is the presentation of all results as distribution functions. This is of physical importance because the commonly applied spatial and temporal averaging leads to a loss of information and, moreover, to an unjustified deterministic view of the boiling process, which exhibits in reality a very wide spread of bubble sizes and characteristic times. The results show that the mass flux dominates the temporal bubble behaviour. An increase of the liquid mass flux reveals a strong decrease of the bubble life - and waiting time. In contrast, the variation of the heat flux has a much smaller impact. It is shown in addition that the investigation of the bubble history using automated algorithms delivers novel information with respect to the bubble lift-off probability. (Author)

  1. Automated high-speed video analysis of the bubble dynamics in subcooled flow boiling

    International Nuclear Information System (INIS)

    Maurus, Reinhold; Ilchenko, Volodymyr; Sattelmayer, Thomas

    2004-01-01

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The test-section consists of a rectangular channel with a one side heated copper strip and a very good optical access. For the optical observation of the bubble behaviour the high-speed cinematography is used. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, a huge number of bubble cycles could be analysed. The structure of the developed algorithms for the detection of the bubble diameter, the bubble lifetime, the lifetime after the detachment process and the waiting time between two bubble cycles is described. Subsequently, the results from using these automated procedures are presented. A remarkable novelty is the presentation of all results as distribution functions. This is of physical importance because the commonly applied spatial and temporal averaging leads to a loss of information and, moreover, to an unjustified deterministic view of the boiling process, which exhibits in reality a very wide spread of bubble sizes and characteristic times. The results show that the mass flux dominates the temporal bubble behaviour. An increase of the liquid mass flux reveals a strong decrease of the bubble life- and waiting time. In contrast, the variation of the heat flux has a much smaller impact. It is shown in addition that the investigation of the bubble history using automated algorithms delivers novel information with respect to the bubble lift-off probability

  2. Rarefied, superorbital flows in an expansion tube

    Energy Technology Data Exchange (ETDEWEB)

    Wheatley, V.; Chiu, H.S.; Jacobs, P.A.; Macrossan, M.N.; Mee, D.J.; Morgan, R.G.

    2004-04-01

    This paper describes a free-piston driven expansion tube and its instrumentation. The facility is used to generate rarefied flows at speeds of approximately 10 km/s. Although the flow in the tube itself is in the continuum regime, rarefied flow conditions are achieved by allowing the test gas to further expand as a free jet into the facility's test section. The test flow is surveyed to provide bar-gauge pressure measurements. Numerical simulation is then used to describe more fully the test flow properties. The flows produced are suitable for the aerodynamic testing of small models at superorbital speeds and should provide data that are suitable for the calibration of Direct Simulation Monte-Carlo codes. (author)

  3. Transient flow characteristics of nuclear reactor coolant pump in recessive cavitation transition process

    International Nuclear Information System (INIS)

    Wang Xiuli; Yuan Shouqi; Zhu Rongsheng; Yu Zhijun

    2013-01-01

    The numerical simulation calculation of the transient flow characteristics of nuclear reactor coolant pump in the recessive cavitation transition process in the nuclear reactor coolant pump impeller passage is conducted by CFX, and the transient flow characteristics of nuclear reactor coolant pump in the transition process from reducing the inlet pressure at cavitation-born conditions to NPSHc condition is studied and analyzed. The flow field analysis shows that, in the recessive cavitation transition process, the speed diversification at the inlet is relative to the bubble increasing, and makes the speed near the blade entrance increase when the bubble phase region becomes larger. The bubble generation and collapse will affect the the speed fluctuation near the entrance. The vorticity close to the blade entrance gradually increasing is influenced by the bubble phase, and the collapse of bubble generated by cavitation will reduce the vorticity from the collapse to impeller outlet. Pump asymmetric structure causes the asymmetry of the flow, velocity and outlet pressure distribution within every impeller flow passage, which cause the asymmetry of the transient radial force. From the dimensionless t/T = 0.6, the bubble phase starts to have impact on the impeller transient radial force, and results in the irregular fluctuations. (authors)

  4. Effect of the submergence, the bed form geometry, and the speed of the surface water flow on the mitigation of pesticides in agricultural ditches

    Science.gov (United States)

    Boutron, Olivier; Margoum, Christelle; Chovelon, Jean-Marc; Guillemain, CéLine; Gouy, VéRonique

    2011-08-01

    Pesticides, which have been extensively used in agriculture, have become a major environmental issue, especially regarding surface and groundwater contamination. Of particular importance are vegetated farm drainage ditches, which can play an important role in the mitigation of pesticide contamination by adsorption onto ditch bed substrates. This role is, however, poorly understood, especially regarding the influence of hydrodynamic parameters, which make it difficult to promote best management practice of these systems. We have assessed the influence of three of these parameters (speed of the surface water flow, submergence, and geometrical characteristics of the bed forms) on the transfer and adsorption of selected pesticides (isoproturon, diuron, tebuconazole, and azoxystrobin) into the bed substrate by performing experiments with a tilted experimental flume, using hemp fibers as a standard of natural organic substrates that are found at the bottom of agricultural ditches. Results show the transfer of pesticides from surface water flow into bed substrate is favored, both regarding the amounts transferred into the bed substrate and the kinetics of the transfer, when the surface water speed and the submergence increase and when the bed forms are made of rectangular shapes. Extrapolation of flume data over a distance of several hundred meters suggests that an interesting possibility for improving the mitigation of pesticides in ditches would be to increase the submergence and to favor bed forms that tend to enhance perturbations and subsequent infiltration of the surface water flow.

  5. Simulation of High-Speed Droplet Impact Against Dry Substrates with Partial Velocity Slip

    Science.gov (United States)

    Kondo, Tomoki; Ando, Keita

    2017-11-01

    High-speed droplet impact can be used to clean substrates such as silicon wafers. Radially spreading shear flow after the impact may allow for mechanically removing contaminant particles at substrate surfaces. Since it is a big challenge to experimentally explore such complicated flow that exhibits contact line motion and water hammer, its flow feature is not well understood. Here, we aim to numerically evaluate shear flow caused by the impact of a spherical water droplet (of submillimeter sizes) at high speed (up to 50 m/s) against a dry rigid wall. We model the flow based on compressible Navier-Stokes equations with Stokes' hypothesis and solve them by a high-order-accurate finite volume method equipped with shock and interface capturing. To treat the motion of a contact line between the three phases (the droplet, the rigid wall, and the ambient air) in a robust manner, we permit velocity slip at the wall with Navier's model, for wall slip is known to come into play under steep velocity gradients that can arise from high-speed droplet impact. In our presentation, we will examine radially spreading flow after the droplet impact and the resulting wall shear stress generation from the simulation. This work was supported by JSPS KAKENHI Grant Number JP17J02211.

  6. Laser Velocimeter Measurements in the Pump of an Automotive Torque Converter Part I – Effect of Speed Ratio

    Directory of Open Access Journals (Sweden)

    Steven B. Ainley

    2000-01-01

    Full Text Available A torque converter was tested at four turbine/pump rotational speed ratios (0.200, 0.400, 0.600, and 0.800 all with a constant pump rotational speed in order to determine the effect of speed ratio on the torque converter pump flow field. Laser velocimetry was used to measure three components of velocity within the pump and a shaft encoder was employed to record the instantaneous pump angular position. Shaft encoder information was correlated with measured velocities to develop flow field blade-to-blade profiles and vector plots. Measurements were obtained in both the pump mid- and exit planes for all four speed ratios. Results showed large separation regions and jet/wake flows throughout the pump. The midplane flow was found to have strong counter-clockwise secondary components and the exit plane flow had strong clockwise secondary components. Mass flows were calculated from the velocity data and were found to decrease as the speed ratio was increased. Also, the vorticity and slip factors were calculated from the experimental data and are included. The mid-plane slip factors compare favorably to those for conventional centrifugal pumps but less slip was present in the exit plane than the mid-plane. Neither the slip factor nor the vorticity were seen to be strongly affected by the speed ratio. Finally, the torque core-to-shell and blade-to-blade torque distributions are presented for both planes.

  7. Flow visualization

    International Nuclear Information System (INIS)

    Weinstein, L.M.

    1991-01-01

    Flow visualization techniques are reviewed, with particular attention given to those applicable to liquid helium flows. Three techniques capable of obtaining qualitative and quantitative measurements of complex 3D flow fields are discussed including focusing schlieren, particle image volocimetry, and holocinematography (HCV). It is concluded that the HCV appears to be uniquely capable of obtaining full time-varying, 3D velocity field data, but is limited to the low speeds typical of liquid helium facilities. 8 refs

  8. Experiment of Burst Speed of Fingerling Masu salmon, Oncorhynchus, with Stamina Tunnel in The River

    Science.gov (United States)

    Izumi, Mattashi; Yamamoto, Yasuyuki; Yataya, Kenichi; Kamiyama, Kohhei

    A swimming experiment of cultured fingerling masu salmon (Oncorhynchus masou masou) (measuring 3cm to 6cm in length) was conducted in a round stamina tunnel (cylindrical pipe) installed in a fishway of a local river with a water flow velocity of 64cm·s-1 to 218cm·s-1 in order to study the burst speed of the masu salmon.The results show that: (1) the faster the swimming speed,the swimming time of the fingerling masu salmon shortened, and the ground speed also decreased as the flow velocity increased; (2)the faster the flow velocity,the shorter the swimming distance became; (3) the burst speed was calculated for the fingerling masu salmon with the considerably excellent swimming ability(measuring 4.6cm to 6.2cm in mean length) in conditions of a high velocity(218cm·s-1), and the result was: mean burst speed:229cm·s-1(S.D.8cm·s-1) to 232cm·s-1(S.D.:8cm·s-1).

  9. A study of energy dissipation and critical speed of granular flow in a rotating cylinder

    Science.gov (United States)

    Dragomir, Sergiu C.; Sinnott, Mathew D.; Semercigil, S. Eren; Turan, Özden F.

    2014-12-01

    Tuned vibration absorbers may improve the safety of flexible structures which are prone to excessive oscillation magnitudes under dynamic loads. A novel absorber design proposes sloshing of granular material in a rotating cylinder where the granular material is the energy dissipating agent. As the conventional dissipative elements require maintenance due to the nature of their function, the new design may represent a virtually maintenance free alternative. The angular speed of the cylinder containing particles has a critical centrifuging speed, after which particles remain permanently in contact with the walls and there can be no further dissipation. Until the critical speed, however, dissipation increases proportionally with the angular speed. It is then vital to know the value of the critical speed as the limit of dissipation. The focus of the present study is on determination of the critical centrifuge speed. This critical speed is also of practical importance in bulk-material handling rotary mills, such as dryers and crushers. Experiments and numerical simulations, using Discrete Element Method, are used to determine the critical centrifuging speed. In addition, predictions are given and guidelines are offered for the choice of material properties to maximize the energy dissipation. As a result of a parametric study, the coefficient of friction is found to have the greatest significance on the centrifuging speed.

  10. Flow past a rotating cylinder

    Science.gov (United States)

    Mittal, Sanjay; Kumar, Bhaskar

    2003-02-01

    Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.

  11. Multi-epoch VLBA Imaging of 20 New TeV Blazars: Apparent Jet Speeds

    Science.gov (United States)

    Piner, B. Glenn; Edwards, Philip G.

    2018-01-01

    We present 88 multi-epoch Very Long Baseline Array (VLBA) images (most at an observing frequency of 8 GHz) of 20 TeV blazars, all of the high-frequency-peaked BL Lac (HBL) class, that have not been previously studied at multiple epochs on the parsec scale. From these 20 sources, we analyze the apparent speeds of 43 jet components that are all detected at four or more epochs. As has been found for other TeV HBLs, the apparent speeds of these components are relatively slow. About two-thirds of the components have an apparent speed that is consistent (within 2σ) with no motion, and some of these components may be stationary patterns whose apparent speed does not relate to the underlying bulk flow speed. In addition, a superluminal tail to the apparent speed distribution of the TeV HBLs is detected for the first time, with eight components in seven sources having a 2σ lower limit on the apparent speed exceeding 1c. We combine the data from these 20 sources with an additional 18 sources from the literature to analyze the complete apparent speed distribution of all 38 TeV HBLs that have been studied with very long baseline interferometry at multiple epochs. The highest 2σ apparent speed lower limit considering all sources is 3.6c. This suggests that bulk Lorentz factors of up to about 4, but probably not much higher, exist in the parsec-scale radio-emitting regions of these sources, consistent with estimates obtained in the radio by other means such as brightness temperatures. This can be reconciled with the high Lorentz factors estimated from the high-energy data if the jet has velocity structures consisting of different emission regions with different Lorentz factors. In particular, we analyze the current apparent speed data for the TeV HBLs in the context of a model with a fast central spine and a slower outer layer.

  12. Altered aortic shape in bicuspid aortic valve relatives influences blood flow patterns.

    Science.gov (United States)

    Schnell, Susanne; Smith, Danielle A; Barker, Alex J; Entezari, Pegah; Honarmand, Amir R; Carr, Maria L; Malaisrie, S Chris; McCarthy, Patrick M; Collins, Jeremy; Carr, James C; Markl, Michael

    2016-11-01

    Bicuspid aortic valve (BAV) is known to exhibit familial inheritance and is associated with aortopathy and altered aortic haemodynamics. However, it remains unclear whether BAV-related aortopathy can be inherited independently of valve morphology. Four-dimensional flow magnetic resonance imaging for the in vivo assessment of thoracic aortic 3D blood flow was performed in 24 BAV relatives with trileaflet aortic valves (age = 40 ± 14 years) and 15 healthy controls (age = 37 ± 10 years). Data analysis included aortic dimensions, shape (round/gothic/cubic), and 3D blood flow characteristics (semi-quantitative vortex/helix grading and peak velocities). Cubic and gothic aortic shapes were markedly more prevalent in BAV relatives compared with controls (38 vs. 7%). Ascending aorta (AAo) vortex flow in BAV relatives was significantly increased compared with controls (grading = 1.5 ± 1.0 vs. 0.6 ± 0.9, P = 0.015). Aortic haemodynamics were influenced by aortic shape: peak velocities were reduced for gothic aortas vs. round aortas (P = 0.003); vortex flow was increased for cubic aortas in the AAo (P gothic aortas in the AAo and descending aorta (P = 0.003, P = 0.029). Logistic regression demonstrated significant associations of shape with severity of vortex flow in AAo (P < 0.001) and aortic arch (P = 0.016) in BAV relatives. BAV relatives expressed altered aortic shape and increased vortex flow despite the absence of valvular disease or aortic dilatation. These data suggest a heritable component of BAV-related aortopathy affecting aortic shape and aberrant blood flow, independent of valve morphology. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  13. Behaviour of liquid films and flooding in counter-current two-phase flow, (1)

    International Nuclear Information System (INIS)

    Suzuki, Shin-ichi; Ueda, Tatsuhiro.

    1978-01-01

    This paper reports on the results of study of the behavior of liquid film and flooding in counter-current two phase flow, and the flow speed of gas phase was measured over the wide ranges of tube diameter, tube length, amount of liquid flow, viscosity and surface tension. Liquid samples used for this experiment were water, glycerol, and second octyl alcohol. The phenomena were observed with a high speed camera. The maximum thickness of liquid film was measured, and the effects of various factors on the flooding were investigated. The results of investigation were as follows. The big waves which cause the flooding were developed by the interaction of one of the waves on liquid film surface with gas phase flow. The flow speed of gas phase at the time of beginning of flooding increases with the reduction of amount of liquid flow and the increase of tube diameter. The flooding flow speed is reduced with the increase of tube length. The larger maximum film thickness at the time of no gas phase flow causes flooding at low gas phase flow speed. (Kato, T.)

  14. Separation of flow

    CERN Document Server

    Chang, Paul K

    2014-01-01

    Interdisciplinary and Advanced Topics in Science and Engineering, Volume 3: Separation of Flow presents the problem of the separation of fluid flow. This book provides information covering the fields of basic physical processes, analyses, and experiments concerning flow separation.Organized into 12 chapters, this volume begins with an overview of the flow separation on the body surface as discusses in various classical examples. This text then examines the analytical and experimental results of the laminar boundary layer of steady, two-dimensional flows in the subsonic speed range. Other chapt

  15. Estimating the energy-saving benefit of reduced-flow and/or multi-speed commercial kitchen ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.; Schmid, F.; Spata, A.J.

    1999-07-01

    Kitchen exhaust ventilation systems are recognized as a major energy user within commercial food service facilities and restaurants. Minimizing the design ventilation rate of an appliance/hood system by optimizing hood performance in the laboratory is a viable strategy for reducing the makeup air heating and cooling loads as well as the exhaust and supply fan energy. Cutting back the exhaust flow under conditions of noncooking (appliance idle) can further reduce the energy load associated with a kitchen ventilation system. An optimized, two-speed exhaust system was installed within the scope of an energy-efficient, quick service restaurant (QSR) design and demonstration project. This paper evaluates the energy benefit of this variable-flow strategy as well as the savings associated with reducing the design ventilation rate (compared to an off-the-shelf exhaust hood). The paper describes a new public-domain software tool for estimating heating and cooling loads associated with the makeup air requirements of commercial kitchens. This bin-based software provides ASHRAE engineers with an alternative to hand calculations or more sophisticated hour-by-hour simulation. The dramatic impact that both makeup air set point and geographic location have on the outdoor air load is illustrated. The paper concludes with an industry-wide projection of energy savings associated with optimizing the design and operation of commercial kitchen ventilation (CKV) systems.

  16. Comparison of Traffic Speed Before, During and After “Banci Lalu Lintas” at Federal Road ft005

    Directory of Open Access Journals (Sweden)

    Rahman R.

    2017-01-01

    Full Text Available Traffic engineering uses engineering methods and techniques to achieve the safe and time efficient movement of people and goods on roadways and it depends on traffic flow. The three main parameters of a traffic flow are volume, speed and density. Speed is an important transportation consideration because it relates to safety, time, comfort, convenience, and economics. This study is to show the difference of traffic speed for before, during and after a primary traffic survey called “Banci Lalu Lintas”. This study also is conducted at Federal Road FT005 with collaboration of Jabatan Kerja Raya (JKR. In achieving the goal for this study, traffic speed is recorded by using two methods which are manual method and Automatic Traffic Count (ATC. For before and after the survey, manual method is used and the data is collected for 15 minutes, while during the survey, ATC is used in collecting data for 24 hours per day in a week. The data obtained where the mean speed is recorded and is compared as well as analyzed between three categories which are before, during and after “Banci Lalu Lintas” and using statistical analysis. In result, the speed of vehicles for during the survey is the lowest compared to before and after survey where the differential percentage are 6.68% and 23.64% for before – during and during – after “Banci Lalu Lintas”. The study concluded that drivers tend to decrease their vehicles speed when there is an event or unexpected conditions on the road. The result is important for future development and safety of road in Malaysia.

  17. Applicability of eddy viscosity turbulence models in low specific speed centrifugal pump

    International Nuclear Information System (INIS)

    Wang, Y; Wang, W J

    2012-01-01

    The accuracy of numerical simulation determines the performance prediction whether to be successful or not in the research of centrifugal pump. In order to study the applicability of different turbulence models in the low specific speed centrifugal pump, the object was based on XST45-200 stamping and welding centrifugal pump. Five different kinds of standards which are k-ε model, RNG k-ε model, Realizable k-ε model, Standard k-ω model and SST k-ω model are adopted in steady numerical simulations of the centrifugal pump flow fields. Then, inner and outside characteristics of the centrifugal pump were gotten .And it also provides the calculation of pressure distribution using different turbulence models in the five conditions. Lastly, the performance curves of head, power and efficiency are compared with the test. The results show a good agreement between five kinds of turbulence models and tests obtained in small flow and design condition. In large flow, the standard k-ε model is worse than the other four, which is larger than the tested head with a relative deviation of 47.9% and efficiency with 50%.The calculation accuracy which used RNG k-ε model is highest. SST k-ω model takes the second place. Standard k-ω model can be used for the numerical simulation in the low specific speed centrifugal pump.

  18. Speed Variance and Its Influence on Accidents.

    Science.gov (United States)

    Garber, Nicholas J.; Gadirau, Ravi

    A study was conducted to investigate the traffic engineering factors that influence speed variance and to determine to what extent speed variance affects accident rates. Detailed analyses were carried out to relate speed variance with posted speed limit, design speeds, and other traffic variables. The major factor identified was the difference…

  19. Roundabouts converted for road trains and the effect on vehicle speed

    DEFF Research Database (Denmark)

    Tønning, Charlotte; Agerholm, Niels

    2016-01-01

    on the measured time use between two location identified in the roundabout for private cars driving under free flow conditions, an estimation of the speed with/after compared to the speed without/before the redesign is made for in total 100 cars per week per location. The very first tentative results show...

  20. Rotor aerodynamic power limits at low tip speed ratio using CFD

    DEFF Research Database (Denmark)

    Mikkelsen, Robert Flemming; Sarmast, Sasan; Henningson, Dan

    2014-01-01

    . In the present work we study in detail, using a CFD actuator line model, the flow behavior for rotors at small tip speed ratios. It is shown that the excessive swirl appearing towards the rotor center at small tip speed ratios generates vortex breakdown, causing a recirculating zone in the wake that limits...

  1. Reactor core flow rate control system

    International Nuclear Information System (INIS)

    Sakuma, Hitoshi; Tanikawa, Naoshi; Takahashi, Toshiyuki; Miyakawa, Tetsuya.

    1996-01-01

    When an internal pump is started by a variable frequency power source device, if magnetic fields of an AC generator are introduced after the rated speed is reached, neutron flux high scram occurs by abrupt increase of a reactor core flow rate. Then, in the present invention, magnetic fields for the AC generator are introduced at a speed previously set at which the fluctuation range of the reactor core flow rate (neutron flux) by the start up of the internal pump is within an allowable value. Since increase of the speed of the internal pump upon its start up is suppressed to determine the change of the reactor core flow rate within an allowable range, increase of neutron fluxes is suppressed to enable stable start up. Then, since transition boiling of fuels caused by abrupt decrease of the reactor core flow rate upon occurrence of abnormality in an external electric power system is prevented, and the magnetic fields for the AC generator are introduced in such a manner to put the speed increase fluctuation range of the internal pump upon start up within an allowable value, neutron flux high scram is not caused to enable stable start-up. (N.H.)

  2. Apparatus for decelerating the dropping speed of a control rod

    International Nuclear Information System (INIS)

    Shirakawa, Toshihisa.

    1975-01-01

    Object: To reduce the dropping speed (i.e. withdrawal) of a control rod of the upward insertion type in a BWR type reactor without reducing the speed of insertion. Structure: A control rod is provided with a flaring lower end so as to constitute a speed limiter which is penerated by vertically extending and upwardly open flow ducts that each have a narrow opening and flare upwardly. Thus, at the time of insertion of the control rod, the resistance offered thereto by the surrounding fluid is reduced to provide increased insertion speed. On the other hand, at the time of withdrawal the resistance offered by the fluid is increased to reduce the dropping speed of the control rod. (Ikeda, J.)

  3. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    International Nuclear Information System (INIS)

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

    2004-01-01

    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were ∼ 4 x 10 -7 cm 2 /s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10 -5 to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form

  4. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

    2004-12-14

    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were {approx} 4 x 10{sup -7} cm{sup 2}/s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10{sup -5} to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form.

  5. Flow-induced vibration -- 1994. PVP-Volume 273

    International Nuclear Information System (INIS)

    Au-Yang, M.K.; Fujita, K.

    1994-01-01

    Flow-induced vibration is a subject of practical interest to many engineering disciplines, including the power generation, process, and petrochemical industries. In the nuclear industry, flow-induced vibration reaches a higher level of concern because of safety issues and the huge cost associated with down time and site repair. Not surprisingly, during the last 25 years a tremendous amount of effort has been spent in the study of flow-induced vibration phenomena related to nuclear plant components, notably nuclear steam generator tube banks and nuclear fuel bundles. Yet, in spite of this concentrated effort, the industry is still not free from flow-induced vibration-related problems. This explains why in this volume almost half of the papers address the issue of cross-flow induced vibration in tube bundles, with applications to the nuclear steam generator and nuclear fuel bundles in mind. Unlike 10 or 15 years ago, when flow-induced vibration studies almost always involved experimentation and empirical studies, the advent of high-speed computers has enabled numerical calculation and simulation of this complex phenomenon to take place. Separate abstracts were prepared for 27 papers in this volume

  6. Lunar Laser-Ranging Detection of Light-Speed Anisotropy and Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2010-04-01

    Full Text Available The Apache Point Lunar Laser-ranging Operation (APOLLO, in NM, can detect photon bounces from retroreflectors on the moon surface to 0.1ns timing resolution. This facility enables not only the detection of light speed anisotropy, which defines a local preferred frame of reference - only in that frame is the speed of light isotropic, but also fluctuations/turbulence (gravitational waves in the flow of the dynamical 3-space relative to local systems/observers. So the APOLLO facility can act as an effective "gravitational wave" detector. A recently published small data set from November 5, 2007, is analysed to characterise both the average anisotropy velocity and the wave/turbulence effects. The results are consistent with some 13 previous detections, with the last and most accurate being from the spacecraft earth-flyby Doppler-shift NASA data.

  7. The flow over a 'high' aspect ratio gothic wing at supersonic speeds

    Science.gov (United States)

    Narayan, K. Y.

    1975-01-01

    Results are presented of an experimental investigation on a nonconical wing which supports an attached shock wave over a region of the leading edge near the vertex and a detached shock elsewhere. The shock detachment point is determined from planform schlieren photographs of the flow field and discrepancies are shown to exist between this and the one calculated by applying the oblique shock equations normal to the leading edge. On a physical basis, it is argued that the shock detachment has to obey the two-dimensional law normal to the leading edges. From this, and from other measurements on conical wings, it is thought that the planform schlieren technique may not be particularly satisfactory for detecting shock detachment. Surface pressure distributions are presented and are explained in terms of the flow over related delta wings which are identified as a vertex delta wing and a local delta wing.

  8. Test Facility Construction for Flow Visualization on Mixing Flow inside Subchannels of PWR Rod Bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seok; Jeon, Byong-Guk; Youn, Young-Jung; Choi, Hae-Seob; Euh, Dong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Flow inside rod bundles has a similarity with flow in porous media. To ensure thermal performance of a nuclear reactor, detailed information of the heat transfer and turbulent mixing flow phenomena taking place within the subchannels is required. The subchannel analysis is one of the key thermal-hydraulic calculations in the safety analysis of the nuclear reactor core. At present, subchannel computer codes are employed to simulate fuel elements of nuclear reactor cores and predict the performance of cores under normal operating and hypothetical accident conditions. The ability of these subchannels codes to predict both the flow and enthalpy distribution in fuel assemblies is very important in the design of nuclear reactors. Recently, according to the modern tend of the safety analysis for the nuclear reactor, a new component scale analysis code, named CUPID, and has been developed in KAERI. The CUPID code is based on a two-fluid and three-field model, and both the open and porous media approaches are incorporated. The PRIUS experiment has addressed many key topics related to flow behaviour in a rod bundle. These issues are related to the flow conditions inside a nuclear fuel element during normal operation of the plant or in accident scenarios. From the second half of 2016, flow visualization will be performed by using a high speed camera and image analysis technique, from which detailed information for the two-dimensional movement of single phase flow is quantified.

  9. Three-dimensional all-speed CFD code for safety analysis of nuclear reactor containment: Status of GASFLOW parallelization, model development, validation and application

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jianjun, E-mail: jianjun.xiao@kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Travis, John R., E-mail: jack_travis@comcast.com [Engineering and Scientific Software Inc., 3010 Old Pecos Trail, Santa Fe, NM 87505 (United States); Royl, Peter, E-mail: peter.royl@partner.kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Necker, Gottfried, E-mail: gottfried.necker@partner.kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Svishchev, Anatoly, E-mail: anatoly.svishchev@kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Jordan, Thomas, E-mail: thomas.jordan@kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2016-05-15

    Highlights: • 3-D scalable semi-implicit pressure-based CFD code for containment safety analysis. • Robust solution algorithm valid for all-speed flows. • Well validated and widely used CFD code for hydrogen safety analysis. • Code applied in various types of nuclear reactor containments. • Parallelization enables high-fidelity models in large scale containment simulations. - Abstract: GASFLOW is a three dimensional semi-implicit all-speed CFD code which can be used to predict fluid dynamics, chemical kinetics, heat and mass transfer, aerosol transportation and other related phenomena involved in postulated accidents in nuclear reactor containments. The main purpose of the paper is to give a brief review on recent GASFLOW code development, validations and applications in the field of nuclear safety. GASFLOW code has been well validated by international experimental benchmarks, and has been widely applied to hydrogen safety analysis in various types of nuclear power plants in European and Asian countries, which have been summarized in this paper. Furthermore, four benchmark tests of a lid-driven cavity flow, low Mach number jet flow, 1-D shock tube and supersonic flow over a forward-facing step are presented in order to demonstrate the accuracy and wide-ranging capability of ICE’d ALE solution algorithm for all-speed flows. GASFLOW has been successfully parallelized using the paradigms of Message Passing Interface (MPI) and domain decomposition. The parallel version, GASFLOW-MPI, adds great value to large scale containment simulations by enabling high-fidelity models, including more geometric details and more complex physics. It will be helpful for the nuclear safety engineers to better understand the hydrogen safety related physical phenomena during the severe accident, to optimize the design of the hydrogen risk mitigation systems and to fulfill the licensing requirements by the nuclear regulatory authorities. GASFLOW-MPI is targeting a high

  10. Indigenously developed large pumping speed cryoadsorption cryopump

    International Nuclear Information System (INIS)

    Gangradey, Ranjana; Mukherjee, Samiran Shanti; Agarwal, Jyoti

    2015-01-01

    Indigenous cryoadsorption cryopump with large pumping speeds for fusion reactor application has been developed at the Institute for Plasma Research (IPR). Towards its successful realization, technological bottlenecks were identified, studied and resolved. Hydroformed cryopanels were developed from concept leading to the design and product realization with successful technology transfer to the industry. This has led to the expertise for developing hydroformed panels for any desired shape, geometry and welding pattern. Activated sorbents were developed, characterized using an experimental set up which measures adsorption isotherms down to 4K for hydrogen and helium. Special techniques were evolved for coating sorbents on hydroformed cryopanels with suitable cryo-adhesives. Various arrangements of cryopanels at 4 K surrounded by 80 K shields and baffles (which are also hydroformed) were studied and optimized by transmission probability analysis using Monte Carlo techniques. CFD analysis was used to study the temperature distribution and flow analysis during the cryogen flow through the panels. Integration of the developed technologies to arrive at the final product was a challenging task and this was meticulously planned and executed. This resulted in a cryoadsorption cryopump offering pumping speeds as high as 50,000 to 70,000 1/s for helium and 1,50,000 1/s for hydrogen with a 3.2 m 2 of sorbent panel area. The first laboratory scale pump integrating the developed technologies was a Small Scale CryoPump (SSCP-01) with a pumping speed of 2,000 1/s for helium. Subsequently, Single Panel CryoPump (SPCP-01) with pumping speed 10,000 1/s for helium and a Multiple Panel CryoPump (MPCP-08) with a pumping speed of 70,000 1/s for helium and 1,50,000 1/s for hydrogen respectively were developed. This paper describes the efforts in realizing these products from laboratory to industrial scales. (author)

  11. Direct numerical simulation of a compressible boundary-layer flow past an isolated three-dimensional hump in a high-speed subsonic regime

    Science.gov (United States)

    De Grazia, D.; Moxey, D.; Sherwin, S. J.; Kravtsova, M. A.; Ruban, A. I.

    2018-02-01

    In this paper we study the boundary-layer separation produced in a high-speed subsonic boundary layer by a small wall roughness. Specifically, we present a direct numerical simulation (DNS) of a two-dimensional boundary-layer flow over a flat plate encountering a three-dimensional Gaussian-shaped hump. This work was motivated by the lack of DNS data of boundary-layer flows past roughness elements in a similar regime which is typical of civil aviation. The Mach and Reynolds numbers are chosen to be relevant for aeronautical applications when considering small imperfections at the leading edge of wings. We analyze different heights of the hump: The smaller heights result in a weakly nonlinear regime, while the larger result in a fully nonlinear regime with an increasing laminar separation bubble arising downstream of the roughness element and the formation of a pair of streamwise counterrotating vortices which appear to support themselves.

  12. A comparative pressure analysis of air flow between horizontal and V-Tail of UAV MALE of NACA0012H with speed variation

    OpenAIRE

    Riza Rahmat; Kurniawan Dicky; Wicaksono Arif Budi

    2018-01-01

    NACA0012H is an airfoil type that could be used for Unmanned Aerial Vehicle Medium Altitude Long Endurance. This experiment was used to analyze stress in the surface of Tail of UAV MALE that was caused by air flow. The experiment was conducted using Computational Fluid Dynamics Software. Two designs of tail, horizontal and V-tail, were considered to simulate pressure occurred on the surface of leading edge, chamber and trailing edge. The simulation was developed varying the speed of the UAV M...

  13. A reference Pelton turbine - High speed visualization in the rotating frame

    Science.gov (United States)

    Solemslie, Bjørn W.; Dahlhaug, Ole G.

    2016-11-01

    To enable a detailed study the flow mechanisms effecting the flow within the reference Pelton runner designed at the Waterpower Laboratory (NTNLT) a flow visualization system has been developed. The system enables high speed filming of the hydraulic surface of a single bucket in the rotating frame of reference. It is built with an angular borescopes adapter entering the turbine along the rotational axis and a borescope embedded within a bucket. A stationary high speed camera located outside the turbine housing has been connected to the optical arrangement by a non-contact coupling. The view point of the system includes the whole hydraulic surface of one half of a bucket. The system has been designed to minimize the amount of vibrations and to ensure that the vibrations felt by the borescope are the same as those affecting the camera. The preliminary results captured with the system are promising and enable a detailed study of the flow within the turbine.

  14. Endurance in speed skating

    NARCIS (Netherlands)

    Kuper, G.H.; Sterken, E.

    2002-01-01

    We analyse the development of world records speed skating from 1893 to 2000 for bothmen and women. The historical data show that it is likely that the relation betweenskating speed and distance of the various events is non-linear and converges to a limitvalue. We pay special attention to technical

  15. Solar-cycle Variations of Meridional Flows in the Solar Convection Zone Using Helioseismic Methods

    Science.gov (United States)

    Lin, Chia-Hsien; Chou, Dean-Yi

    2018-06-01

    The solar meridional flow is an axisymmetric flow in solar meridional planes, extending through the convection zone. Here we study its solar-cycle variations in the convection zone using SOHO/MDI helioseismic data from 1996 to 2010, including two solar minima and one maximum. The travel-time difference between northward and southward acoustic waves is related to the meridional flow along the wave path. Applying the ray approximation and the SOLA inversion method to the travel-time difference measured in a previous study, we obtain the meridional flow distributions in 0.67 ≤ r ≤ 0.96R ⊙ at the minimum and maximum. At the minimum, the flow has a three-layer structure: poleward in the upper convection zone, equatorward in the middle convection zone, and poleward again in the lower convection zone. The flow speed is close to zero within the error bar near the base of the convection zone. The flow distribution changes significantly from the minimum to the maximum. The change above 0.9R ⊙ shows two phenomena: first, the poleward flow speed is reduced at the maximum; second, an additional convergent flow centered at the active latitudes is generated at the maximum. These two phenomena are consistent with the surface meridional flow reported in previous studies. The change in flow extends all the way down to the base of the convection zone, and the pattern of the change below 0.9R ⊙ is more complicated. However, it is clear that the active latitudes play a role in the flow change: the changes in flow speed below and above the active latitudes have opposite signs. This suggests that magnetic fields could be responsible for the flow change.

  16. [Stem sap flow and water consumption of Tamarix ramosissima in hinterland of Taklimakan Desert].

    Science.gov (United States)

    Xu, Hao; Zhang, Xi-Ming; Yan, Hai-Long; Yao, Shi-Jun

    2007-04-01

    From April to November 2005, the stem sap flow and water consumption of Tamarix ramosissima in the hinterland of Taklimakan Desert was measured by Flow-32 System. The results showed that, in the extremely arid hinterland of Taklimakan Desert and under enough water supply, the average daily water consumption of T. ramosissima with a stem diameter of 3.5 cm and 2.0 cm was 6.322 kg and 1.179 kg, respectively in one growth season. The stem sap flow of T. ramosissima presented a single-peaked curve, with an obvious day and night variation rhythm and fluctuated with environment factors. Under enough water supply, the environmenal factors such as total radiation, wind speed and air temperature were the main factors affecting the stem sap flow, and the dynamics of stem sap flow could be predicted by the liner regression model based on total radiation and wind speed. Because of the extremely arid environment and enough water supply, T. ramosissima had a relatively higher stem sap flow rate and a great water consumption.

  17. A New Turbo-shaft Engine Control Law during Variable Rotor Speed Transient Process

    Science.gov (United States)

    Hua, Wei; Miao, Lizhen; Zhang, Haibo; Huang, Jinquan

    2015-12-01

    A closed-loop control law employing compressor guided vanes is firstly investigated to solve unacceptable fuel flow dynamic change in single fuel control for turbo-shaft engine here, especially for rotorcraft in variable rotor speed process. Based on an Augmented Linear Quadratic Regulator (ALQR) algorithm, a dual-input, single-output robust control scheme is proposed for a turbo-shaft engine, involving not only the closed loop adjustment of fuel flow but also that of compressor guided vanes. Furthermore, compared to single fuel control, some digital simulation cases using this new scheme about variable rotor speed have been implemented on the basis of an integrated system of helicopter and engine model. The results depict that the command tracking performance to the free turbine rotor speed can be asymptotically realized. Moreover, the fuel flow transient process has been significantly improved, and the fuel consumption has been dramatically cut down by more than 2% while keeping the helicopter level fight unchanged.

  18. The Ricci flow part IV : long-time solutions and related topics

    CERN Document Server

    Chow, Bennett; Glickenstein, David; Isenberg, James

    2015-01-01

    Ricci flow is a powerful technique using a heat-type equation to deform Riemannian metrics on manifolds to better metrics in the search for geometric decompositions. With the fourth part of their volume on techniques and applications of the theory, the authors discuss long-time solutions of the Ricci flow and related topics. In dimension 3, Perelman completed Hamilton's program to prove Thurston's geometrization conjecture. In higher dimensions the Ricci flow has remarkable properties, which indicates its usefulness to understand relations between the geometry and topology of manifolds. This b

  19. High speed atom source

    International Nuclear Information System (INIS)

    Hoshino, Hitoshi.

    1990-01-01

    In a high speed atom source, since the speed is not identical between ions and electrons, no sufficient neutralizing effect for ionic rays due to the mixing of the ionic rays and the electron rays can be obtained failing to obtain high speed atomic rays at high density. In view of the above, a speed control means is disposed for equalizing the speed of ions forming ionic rays and the speed of electrons forming electron rays. Further, incident angle of the electron rays and/or ionic rays to a magnet or an electrode is made variable. As a result, the relative speed between the ions and the electrons to the processing direction is reduced to zero, in which the probability of association between the ions and the electrons due to the coulomb force is increased to improve the neutralizing efficiency to easily obtain fine and high density high speed electron rays. Further, by varying the incident angle, a track capable of obtaining an ideal mixing depending on the energy of the neutralized ionic rays is formed. Since the high speed electron rays has such high density, they can be irradiated easily to the minute region of the specimen. (N.H.)

  20. Overview of Variable-Speed Power-Turbine Research

    Science.gov (United States)

    Welch, Gerard E.

    2011-01-01

    The vertical take-off and landing (VTOL) and high-speed cruise capability of the NASA Large Civil Tilt-Rotor (LCTR) notional vehicle is envisaged to enable increased throughput in the national airspace. A key challenge of the LCTR is the requirement to vary the main rotor speeds from 100% at take-off to near 50% at cruise as required to minimize mission fuel burn. The variable-speed power-turbine (VSPT), driving a fixed gear-ratio transmission, provides one approach for effecting this wide speed variation. The key aerodynamic and rotordynamic challenges of the VSPT were described in the FAP Conference presentation. The challenges include maintaining high turbine efficiency at high work factor, wide (60 deg.) of incidence variation in all blade rows due to the speed variation, and operation at low Reynolds numbers (with transitional flow). The PT -shaft of the VSPT must be designed for safe operation in the wide speed range required, and therefore poses challenges associated with rotordynamics. The technical challenges drive research activities underway at NASA. An overview of the NASA SRW VSPT research activities was provided. These activities included conceptual and preliminary aero and mechanical (rotordynamics) design of the VSPT for the LCTR application, experimental and computational research supporting the development of incidence tolerant blading, and steps toward component-level testing of a variable-speed power-turbine of relevance to the LCTR application.

  1. Numerical study on wake characteristics of high-speed trains

    Science.gov (United States)

    Yao, Shuan-Bao; Sun, Zhen-Xu; Guo, Di-Long; Chen, Da-Wei; Yang, Guo-Wei

    2013-12-01

    Intensive turbulence exists in the wakes of high speed trains, and the aerodynamic performance of the trailing car could deteriorate rapidly due to complicated features of the vortices in the wake zone. As a result, the safety and amenity of high speed trains would face a great challenge. This paper considers mainly the mechanism of vortex formation and evolution in the train flow field. A real CRH2 model is studied, with a leading car, a middle car and a trailing car included. Different running speeds and cross wind conditions are considered, and the approaches of unsteady Reynold-averaged Navier-Stokes (URANS) and detached eddy simulation (DES) are utilized, respectively. Results reveal that DES has better capability of capturing small eddies compared to URANS. However, for large eddies, the effects of two approaches are almost the same. In conditions without cross winds, two large vortex streets stretch from the train nose and interact strongly with each other in the wake zone. With the reinforcement of the ground, a complicated wake vortex system generates and becomes strengthened as the running speed increases. However, the locations of flow separations on the train surface and the separation mechanism keep unchanged. In conditions with cross winds, three large vortices develop along the leeward side of the train, among which the weakest one has no obvious influence on the wake flow while the other two stretch to the tail of the train and combine with the helical vortices in the train wake. Thus, optimization of the aerodynamic performance of the trailing car should be aiming at reducing the intensity of the wake vortex system.

  2. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.

    Science.gov (United States)

    Silva, Goncalo; Semiao, Viriato

    2017-07-01

    The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result, the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition, applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second, we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly accommodate the steady Poiseuille channel flow solution, over

  3. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries

    Science.gov (United States)

    Silva, Goncalo; Semiao, Viriato

    2017-07-01

    The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result, the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition, applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second, we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly accommodate the steady Poiseuille channel flow solution, over

  4. COMPUTER MODELING IN DEFORM-3D FOR ANALYSIS OF PLASTIC FLOW IN HIGH-SPEED HOT EXTRUSION OF BIMETALLIC FORMATIVE PARTS OF DIE TOOLING

    Directory of Open Access Journals (Sweden)

    I. V. Kachanov

    2015-01-01

    Full Text Available The modern development of industrial production is closely connected with the use of science-based and high technologies to ensure competitiveness of the manufactured products on the world market. There is also much tension around an energy- and resource saving problem which can be solved while introducing new technological processes and  creation of new materials that provide productivity increase through automation and improvement of tool life. Development and implementation of such technologies are rather often considered as time-consuming processes  which are connected with complex calculations and experimental investigations. Implementation of a simulation modelling for materials processing using modern software products serves an alternative to experimental and theoretical methods of research.The aim of this paper is to compare experimental results while obtaining bimetallic samples of a forming tool through the method of speed hot extrusion and the results obtained with the help of computer simulation using DEFORM-3D package and a finite element method. Comparative analysis of plastic flow of real and model samples has shown that the obtained models provide high-quality and reliable picture of plastic flow during high-speed hot extrusion. Modeling in DEFORM-3D make it possible to eliminate complex calculations and significantly reduce a number of experimental studies while developing new technological processes.

  5. Endurance in speed skating

    NARCIS (Netherlands)

    Kuper, Gerard H.; Sterken, Elmer

    2001-01-01

    We analyse the development of world records speed skating from 1893 to 2000 for both men and women. The historical data show that it is likely that the relation between skating speed and distance of the various events is non-linear and converges to a limit value. We pay special attention to

  6. Heat-flux gage measurements on a flat plate at a Mach number of 4.6 in the VSD high speed wind tunnel, a feasibility test (LA28). [wind tunnel tests of measuring instruments for boundary layer flow

    Science.gov (United States)

    1975-01-01

    The feasibility of employing thin-film heat-flux gages was studied as a method of defining boundary layer characteristics at supersonic speeds in a high speed blowdown wind tunnel. Flow visualization techniques (using oil) were employed. Tabulated data (computer printouts), a test facility description, and photographs of test equipment are given.

  7. Design and Checkout of a High Speed Research Nozzle Evaluation Rig

    Science.gov (United States)

    Castner, Raymond S.; Wolter, John D.

    1997-01-01

    The High Flow Jet Exit Rig (HFJER) was designed to provide simulated mixed flow turbojet engine exhaust for one- seventh scale models of advanced High Speed Research test nozzles. The new rig was designed to be used at NASA Lewis Research Center in the Nozzle Acoustic Test Rig and the 8x6 Supersonic Wind Tunnel. Capabilities were also designed to collect nozzle thrust measurement, aerodynamic measurements, and acoustic measurements when installed at the Nozzle Acoustic Test Rig. Simulated engine exhaust can be supplied from a high pressure air source at 33 pounds of air per second at 530 degrees Rankine and nozzle pressure ratios of 4.0. In addition, a combustion unit was designed from a J-58 aircraft engine burner to provide 20 pounds of air per second at 2000 degrees Rankine, also at nozzle pressure ratios of 4.0. These airflow capacities were designed to test High Speed Research nozzles with exhaust areas from eighteen square inches to twenty-two square inches. Nozzle inlet flow measurement is available through pressure and temperature sensors installed in the rig. Research instrumentation on High Speed Research nozzles is available with a maximum of 200 individual pressure and 100 individual temperature measurements. Checkout testing was performed in May 1997 with a 22 square inch ASME long radius flow nozzle. Checkout test results will be summarized and compared to the stated design goals.

  8. Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity

    KAUST Repository

    Hu, Longhua

    2016-10-02

    Materials, such as electrical wire, used in spacecraft must pass stringent fire safety standards. Tests for such standards are typically performed under normal gravity conditions and then extended to applications under microgravity conditions. The experiments reported here used polyethylene (PE)-insulated (thickness of 0.15 mm) Nichrome (NiCr)-core (diameter of 0.5 mm) electrical wires. Limiting oxygen concentrations (LOC) at extinction were measured for upward spreading flame at various forced opposed-flow (downward) speeds (0−25 cm/s) at several inclination angles (0−75°) under normal gravity conditions. The differences from those previously obtained under microgravity conditions were quantified and correlated to provide a reference for the development of fire safety test standards for electrical wires to be used in space exploration. It was found that as the opposed-flow speed increased for a specified inclination angle (except the horizontal case), LOC first increased, then decreased and finally increased again. The first local maximum of this LOC variation corresponded to a critical forced flow speed resulted from the change in flame spread pattern from concurrent to counter-current type. This critical forced flow speed correlated well with the buoyancy-induced flow speed component in the wire\\'s direction when the flame base width along the wire was used as a characteristic length scale. LOC was generally higher under the normal gravity than under the microgravity and the difference between the two decreased as the opposed-flow speed increases, following a reasonably linear trend at relatively higher flow speeds (over 10 cm/s). The decrease in the difference in LOC under normal- and microgravity conditions as the opposed-flow speed increases correlated well with the gravity acceleration component in the wire\\'s direction, providing a measure to extend LOC determined by the tests under normal gravity conditions (at various inclination angles and opposed-flow

  9. An analytical investigation on the valve and centrifugal pump speed control with a constant differential pressure across the valve

    International Nuclear Information System (INIS)

    Jung, B. R.; Joo, K. I.; Lee, B. J.; Baek, S. J.; Noh, T. S.

    2003-01-01

    A valve opening and centrifugal pump speed control was investigated analytically in a simple pumping system where the differential pressure across the control valve is maintained constant over the required flow range. The valve control program was derived analytically only as a function of the required flow rate to maintain the constant differential pressure across the valve. The centrifugal pump speed control program was also derived analytically for the required flow rate for the constant differential pressure across the control valve. These derivations theoretically show that the independent control is possible between the valve and pump speed in a system with a constant valve pressure drop. In addition, it was shown that a linear pump speed control is impossible in maintaining the constant valve pressure drop

  10. Fast visual prediction and slow optimization of preferred walking speed.

    Science.gov (United States)

    O'Connor, Shawn M; Donelan, J Maxwell

    2012-05-01

    People prefer walking speeds that minimize energetic cost. This may be accomplished by directly sensing metabolic rate and adapting gait to minimize it, but only slowly due to the compounded effects of sensing delays and iterative convergence. Visual and other sensory information is available more rapidly and could help predict which gait changes reduce energetic cost, but only approximately because it relies on prior experience and an indirect means to achieve economy. We used virtual reality to manipulate visually presented speed while 10 healthy subjects freely walked on a self-paced treadmill to test whether the nervous system beneficially combines these two mechanisms. Rather than manipulating the speed of visual flow directly, we coupled it to the walking speed selected by the subject and then manipulated the ratio between these two speeds. We then quantified the dynamics of walking speed adjustments in response to perturbations of the visual speed. For step changes in visual speed, subjects responded with rapid speed adjustments (lasting 300 s). The timing and direction of these responses strongly indicate that a rapid predictive process informed by visual feedback helps select preferred speed, perhaps to complement a slower optimization process that seeks to minimize energetic cost.

  11. INTEGRATED SPEED ESTIMATION MODEL FOR MULTILANE EXPREESSWAYS

    Science.gov (United States)

    Hong, Sungjoon; Oguchi, Takashi

    In this paper, an integrated speed-estimation model is developed based on empirical analyses for the basic sections of intercity multilane expressway un der the uncongested condition. This model enables a speed estimation for each lane at any site under arb itrary highway-alignment, traffic (traffic flow and truck percentage), and rainfall conditions. By combin ing this model and a lane-use model which estimates traffic distribution on the lanes by each vehicle type, it is also possible to es timate an average speed across all the lanes of one direction from a traffic demand by vehicle type under specific highway-alignment and rainfall conditions. This model is exp ected to be a tool for the evaluation of traffic performance for expressways when the performance me asure is travel speed, which is necessary for Performance-Oriented Highway Planning and Design. Regarding the highway-alignment condition, two new estimators, called effective horizo ntal curvature and effective vertical grade, are proposed in this paper which take into account the influence of upstream and downstream alignment conditions. They are applied to the speed-estimation model, and it shows increased accuracy of the estimation.

  12. Landscape structure and the speed of adaptation

    International Nuclear Information System (INIS)

    Claudino, Elder S.; Campos, Paulo R.A.

    2014-01-01

    The role of fragmentation in the adaptive process is addressed. We investigate how landscape structure affects the speed of adaptation in a spatially structured population model. As models of fragmented landscapes, here we simulate the percolation maps and the fractal landscapes. In the latter the degree of spatial autocorrelation can be suited. We verified that fragmentation can effectively affect the adaptive process. The examination of the fixation rates and speed of adaptation discloses the dichotomy exhibited by percolation maps and fractal landscapes. In the latter, there is a smooth change in the pace of the adaptation process, as the landscapes become more aggregated higher fixation rates and speed of adaptation are obtained. On the other hand, in random percolation the geometry of the percolating cluster matters. Thus, the scenario depends on whether the system is below or above the percolation threshold. - Highlights: • The role of fragmentation on the adaptive process is addressed. • Our approach makes the linkage between population genetics and landscape ecology. • Fragmentation affects gene flow and thus influences the speed of adaptation. • The level of clumping determines how the speed of adaptation is influenced

  13. Effect of region assignment on relative renal blood flow estimates using radionuclides

    International Nuclear Information System (INIS)

    Harris, C.C.; Ford, K.K.; Coleman, R.E.; Dunnick, N.R.

    1984-01-01

    To determine the value of the initial phase of the Tc-99m DTPA renogram in the direct estimation of relative renal blood flow in dogs, the ratios of the slopes of renal time-activity curves were compared with the ratios of measured blood flow. Radionuclide results were dependent on region-of-interest (ROI) and background ROI assignment, and correlated well with measured relative flow only with a maximum renal outline region. Curve slope ratios correlated well with measured flow ratios with and without background correction, while 1- to 2-minute uptake ratios correlated well only when corrected for background

  14. Drag reduction of a rapid vehicle in supercavitating flow

    OpenAIRE

    D. Yang; Y.L. Xiong; X.F. Guo

    2017-01-01

    Supercavitation is one of the most attractive technologies to achieve high speed for underwater vehicles. However, the multiphase flow with high-speed around the supercavitating vehicle (SCV) is difficult to simulate accurately. In this paper, we use modified the turbulent viscosity formula in the Standard K-Epsilon (SKE) turbulent model to simulate the supercavitating flow. The numerical results of flow over several typical cavitators are in agreement with the experimental data and theoretic...

  15. Anechoic wind tunnel tests on high-speed train bogie aerodynamic noise

    OpenAIRE

    Latorre Iglesias, E.; Thompson, D.; Smith, M.; Kitagawa, T.; Yamazaki, N.

    2016-01-01

    Aerodynamic noise becomes a significant noise source at speeds normally reached by high-speed trains. The train bogies are identified as important sources of aerodynamic noise. Due to the difficulty to assess this noise source carrying out field tests, wind tunnel tests offer many advantages. Tests were performed in the large-scale low-noise anechoic wind tunnel at Maibara, Japan, using a 1/7 scale train car and bogie model for a range of flow speeds between 50, 76, 89 and 100 m/s. The depend...

  16. Active surge control for variable speed axial compressors.

    Science.gov (United States)

    Lin, Shu; Yang, Chunjie; Wu, Ping; Song, Zhihuan

    2014-09-01

    This paper discusses active surge control in variable speed axial compressors. A compression system equipped with a variable area throttle is investigated. Based on a given compressor model, a fuzzy logic controller is designed for surge control and a proportional speed controller is used for speed control. The fuzzy controller uses measurements of the change of pressure rise as well as the change of mass flow to determine the throttle opening. The presented approach does not require the knowledge of system equilibrium or the surge line. Numerical simulations show promising results. The proposed fuzzy logic controller performs better than a backstepping controller and is capable to suppress surge at different operating points. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Coupled oscillations of flow along a perforated plate

    International Nuclear Information System (INIS)

    Celik, E.; Rockwell, D.

    2004-01-01

    Turbulent shear flow past a perforated plate bounded by a closed cavity can give rise to highly coherent oscillations, which have a wavelength of the order of the plate length. The present investigation focuses on the coupling between unsteady events on either side of the plate when the oscillations are self-sustaining. A cinema technique of high-image-density particle image velocimetry, which provides a space-time representation of the unsteadiness at a large number of locations over entire planes, is employed to characterize the distinctively different patterns of flow structure on the back (low-speed) side of the plate relative to those on the front (high-speed) side. Global cross-spectral analysis leads to patterns of spectral peaks and phase variations, along and across the plate. This approach, along with complementary types of image evaluation, delineates the physics of the oscillations, which include downstream propagating disturbances along either side of the plate and a coherent region of unsteadiness at its trailing-edge. On the backside of the plate, a sequence of upstream-oriented, pulsatile jets are formed, and the time-averaged flow pattern is a counterflow wall jet

  18. Investigation of the Shear Flow Effect and Tip Clearance on a Low Speed Axial Flow Compressor Cascade

    Directory of Open Access Journals (Sweden)

    Mahesh Varpe

    2013-01-01

    Full Text Available This paper explores the effect of inlet shear flow on the tip leakage flow in an axial flow compressor cascade. A flow with a high shear rate is generated in the test section of an open circuit cascade wind tunnel by using a combination of screens with a prescribed solidity. It is observed that a stable shear flow of shear rate 1.33 is possible and has a gradual decay rate until 15 times the height of the shear flow generator downstream. The computational results obtained agree well with the available experimental data on the baseline configuration. The detailed numerical analysis shows that the tip clearance improves the blade loading near the tip through the promotion of favorable incidence by the tip leakage flow. The tip clearance shifts the centre of pressure on the blade surface towards the tip. It, however, has no effect on the distribution of end wall loss and deviation angle along the span up to 60% from the hub. In the presence of a shear inflow, the end wall effects are considerable. On the other hand, with a shear inflow, the effects of tip leakage flow are observed to be partly suppressed. The shear flow reduces the tip leakage losses substantially in terms of kinetic energy associated with it.

  19. Visualization of Flow Field: Application of PLIF Technique

    Directory of Open Access Journals (Sweden)

    Jiang Bo Peng

    2018-01-01

    Full Text Available The objective of this paper is to apply planar laser-induced fluorescence (PLIF technology to flow field visualization. This experiment was carried out in a one-meter wind tunnel to study the wake flow field around a circular cylinder. This experiment studied the method of injecting tracer into the flow field; the frequency of the vortex in the wake field and the vortex speed are quantitatively analyzed. This paper gives the correspondence between the speed of the flow field and the frequency of the laser, which could be used as a rough reference standard for future wind tunnel visualization experiments. The result shows that PLIF diagnostic technology has great potential in visualization of flow field.

  20. A new Lagrangian method for real gases at supersonic speed

    Science.gov (United States)

    Loh, C. Y.; Liou, Meng-Sing

    1992-01-01

    With the renewed interest in high speed flights, the real gas effect is of theoretical as well as practical importance. In the past decade, upwind splittings or Godunov-type Riemann solutions have received tremendous attention and as a result significant progress has been made both in the ideal and non-ideal gas. In this paper, we propose a new approach that is formulated using the Lagrangian description, for the calculation of supersonic/hypersonic real gas inviscid flows. This new formulation avoids the grid generation step which is automatically obtained as the solution procedure marches in the 'time-like' direction. As a result, no remapping is required and the accuracy is faithfully maintained in the Lagrangian level. In this paper, we give numerical results for a variety of real gas problems consisting of essential elements in high speed flows, such as shock waves, expansion waves, slip surfaces and their interactions. Finally, calculations for flows in a generic inlet and nozzle are presented.

  1. Debris Flows and Related Phenomena

    Science.gov (United States)

    Ancey, C.

    Torrential floods are a major natural hazard, claiming thousands of lives and millions of dollars in lost property each year in almost all mountain areas on the Earth. After a catastrophic eruption of Mount St. Helen in the USA in May 1980, water from melting snow, torrential rains from the eruption cloud, and water displaced from Spirit Lake mixed with deposited ash and debris to produce very large debris flows and cause extensive damage and loss of life [1]. During the 1985 eruption of Nevado del Ruiz in Colombia, more than 20,000 people perished when a large debris flow triggered by the rapid melting of snow and ice at the volcano summit, swept through the town of Armero [2]. In 1991, the eruption of Pinatubo volcano in the Philippines disperses more than 5 cubic kilometres of volcanic ash into surrounding valleys. Much of that sediment has subsequently been mobilised as debris flows by typhoon rains and has devastated more than 300 square kilometres of agricultural land. Even, in Eur opean countries, recent events that torrential floods may have very destructive effects (Sarno and Quindici in southern Italy in May 1998, where approximately 200 people were killed). The catastrophic character of these floods in mountainous watersheds is a consequence of significant transport of materials associated with water flows. Two limiting flow regimes can be distinguished. Bed load and suspension refer to dilute transport of sediments within water. This means that water is the main agent in the flow dynamics and that the particle concentration does not exceed a few percent. Such flows are typically two-phase flows. In contrast, debris flows are mas s movements of concentrated slurries of water, fine solids, rocks and boulders. As a first approximation, debris flows can be treated as one-phase flows and their flow properties can be studied using classical rheological methods. The study of debris flows is a very exciting albeit immature science, made up of disparate elements

  2. Development of localized arc filament RF plasma actuators for high-speed and high Reynolds number flow control

    International Nuclear Information System (INIS)

    Kim, J.-H.; Nishihara, M.; Adamovich, I.V.; Samimy, M.; Gorbatov, S.V.; Pliavaka, F.V.

    2010-01-01

    Recently developed localized arc filament plasma actuators (LAFPAs) have shown tremendous control authority in high-speed and high Reynolds number flow for mixing enhancement and noise mitigation. Previously, these actuators were powered by a high-voltage pulsed DC plasma generator with low energy coupling efficiency of 5-10%. In the present work, a new custom-designed 8-channel pulsed radio frequency (RF) plasma generator has been developed to power up to 8 plasma actuators operated over a wide range of forcing frequencies (up to 50 kHz) and duty cycles (1-50%), and at high energy coupling efficiency (up to 80-85%). This reduces input electrical power requirements by approximately an order of magnitude, down to 12 W per actuator operating at 10% duty cycle. The new pulsed RF plasma generator is scalable to a system with a large number of channels. Performance of pulsed RF plasma actuators used for flow control was studied in a Mach 0.9 circular jet with a Reynolds number of about 623,000 and compared with that of pulsed DC actuators. Eight actuators were distributed uniformly on the perimeter of a 2.54-cm diameter circular nozzle extension. Both types of actuators coupled approximately the same amount of power to the flow, but with drastically different electrical inputs to the power supplies. Particle image velocimetry measurements showed that jet centerline Mach number decay produced by DC and RF actuators operating at the same forcing frequencies and duty cycles is very similar. At a forcing Strouhal number near 0.3, close to the jet column instability frequency, well-organized periodic structures, with similar patterns and dimensions, were generated in the jets forced by both DC and RF actuators. Far-field acoustic measurements demonstrated similar trends in the overall sound pressure level (OASPL) change produced by both types of actuators, resulting in OASPL reduction up to 1.2-1.5 dB in both cases. We conclude that pulsed RF actuators demonstrate flow

  3. Flow visualization in models of high speed centrifugal separators

    International Nuclear Information System (INIS)

    Lagerstedt, T.; Nabo, O.

    1987-01-01

    The modern centrifugal separator is a fluid machine where the high ''G'' forces set up by rotation are utilized to separate phases of different densities. The fluid dynamics of the separator is complex and poorly known. Hundred years of (practical) experience has, however, turned the separator into an efficient machine. The present report shows how straight forward visualization experiments in model rigs provide valuable information on the flow inside the separator. The report concentrates on describing the flow between the closely spaced discs in a separator disc stack

  4. Airfoil shape for flight at subsonic speeds

    Science.gov (United States)

    Whitcomb, Richard T.

    1976-01-01

    An airfoil having an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency.

  5. Effects of Injection Timing on Fluid Flow Characteristics of Partially Premixed Combustion Based on High-Speed Particle Image Velocimetry

    KAUST Repository

    Izadi Najafabadi, Mohammad

    2017-03-28

    Partially Premixed Combustion (PPC) is a promising combustion concept ,based on judicious tuning of the charge stratification, to meet the increasing demands of emission legislation and to improve fuel efficiency. Longer ignition delays of PPC in comparison with conventional diesel combustion provide better fuel/air mixture which decreases soot and NO emissions. Moreover, a proper injection timing and strategy for PPC can improve the combustion stability as a result of a higher level of fuel stratification in comparison with the Homogeneous Charge Compression Ignition (HCCI) concept. Injection timing is the major parameter with which to affect the level of fuel and combustion stratification and to control the combustion phasing and the heat release behavior. The scope of the present study is to investigate the fluid flow characteristics of PPC at different injection timings. To this end, high-speed Particle Image Velocimetry (PIV) is implemented in a light-duty optical engine to measure fluid flow characteristics, including the flow fields, mean velocity and cycle-resolved turbulence, inside the piston bowl as well as the squish region with a temporal resolution of 1 crank angle degree at 800 rpm. Two injectors, having 5 and 7 holes, were compared to see their effects on fluid flow and heat release behavior for different injection timings. Reactive and non-reactive measurements were performed to distinguish injection-driven and combustion-driven turbulence. Formation of vortices and higher turbulence levels enhance the air/fuel interaction, changing the level of fuel stratification and combustion duration. Results demonstrate clearly how turbulence level correlates with heat release behavior, and provide a quantitative dataset for validation of numerical simulations.

  6. Experiments in polydisperse two-phase turbulent flows

    International Nuclear Information System (INIS)

    Bachalo, W.D.; Houser, M.J.

    1985-01-01

    Aspects of turbulent two-phase flow measurements obtained with a laser Doppler velocimeter that was modified to also obtain particle size were investigated. Simultaneous measurements of the particle size and velocity allowed the determination of the lag characteristics of particles over a range of sizes. Relatively large particles were found to respond well to the turbulent fluctuations in low speed flows. Measurements of sprays were obtained at various points throughout the spray plume. Velocity measurements for each drop size class were obtained and revealed the relative velocity relaxation with downstream distance. The evolution of the rms velocities for each size class was also examined. Difficulties associated with seeding polydispersions to obtain gas phase turbulence data were discussed. Several approaches for mitigating the errors due to seed particle concentration bias were reviewed

  7. Motivation and flow: toward an understanding of the dynamics of the relation in architecture students.

    Science.gov (United States)

    Mills, Maura J; Fullagar, Clive J

    2008-09-01

    The authors investigated the relation between motivation and flow in a sample of 327 architecture students. Specifically, they investigated the relation between flow and several levels of intrinsic and extrinsic motivation, as well as amotivation. They also assessed the need for autonomy in moderating the relation between intrinsic motivation and engagement. Results indicated a significant relation between flow experiences in academic activities and the more self-determined forms of intrinsic motivation, but not for extrinsic motivation. The need for autonomy moderated the relation between flow and intrinsic motivation. These results are discussed in the context of understanding flow as an intrinsically motivating state and a viable construct for understanding engagement.

  8. Synchronized flow in oversaturated city traffic.

    Science.gov (United States)

    Kerner, Boris S; Klenov, Sergey L; Hermanns, Gerhard; Hemmerle, Peter; Rehborn, Hubert; Schreckenberg, Michael

    2013-11-01

    Based on numerical simulations with a stochastic three-phase traffic flow model, we reveal that moving queues (moving jams) in oversaturated city traffic dissolve at some distance upstream of the traffic signal while transforming into synchronized flow. It is found that, as in highway traffic [Kerner, Phys. Rev. E 85, 036110 (2012)], such a jam-absorption effect in city traffic is explained by a strong driver's speed adaptation: Time headways (space gaps) between vehicles increase upstream of a moving queue (moving jam), resulting in moving queue dissolution. It turns out that at given traffic signal parameters, the stronger the speed adaptation effect, the shorter the mean distance between the signal location and the road location at which moving queues dissolve fully and oversaturated traffic consists of synchronized flow only. A comparison of the synchronized flow in city traffic found in this Brief Report with synchronized flow in highway traffic is made.

  9. Blow-out limits of nonpremixed turbulent jet flames in a cross flow at atmospheric and sub-atmospheric pressures

    KAUST Repository

    Wang, Qiang

    2015-07-22

    The blow-out limits of nonpremixed turbulent jet flames in cross flows were studied, especially concerning the effect of ambient pressure, by conducting experiments at atmospheric and sub-atmospheric pressures. The combined effects of air flow and pressure were investigated by a series of experiments conducted in an especially built wind tunnel in Lhasa, a city on the Tibetan plateau where the altitude is 3650 m and the atmospheric pressure condition is naturally low (64 kPa). These results were compared with results obtained from a wind tunnel at standard atmospheric pressure (100 kPa) in Hefei city (altitude 50 m). The size of the fuel nozzles used in the experiments ranged from 3 to 8 mm in diameter and propane was used as the fuel. It was found that the blow-out limit of the air speed of the cross flow first increased (“cross flow dominant” regime) and then decreased (“fuel jet dominant” regime) as the fuel jet velocity increased in both pressures; however, the blow-out limit of the air speed of the cross flow was much lower at sub-atmospheric pressure than that at standard atmospheric pressure whereas the domain of the blow-out limit curve (in a plot of the air speed of the cross flow versus the fuel jet velocity) shrank as the pressure decreased. A theoretical model was developed to characterize the blow-out limit of nonpremixed jet flames in a cross flow based on a Damköhler number, defined as the ratio between the mixing time and the characteristic reaction time. A satisfactory correlation was obtained at relative strong cross flow conditions (“cross flow dominant” regime) that included the effects of the air speed of the cross flow, fuel jet velocity, nozzle diameter and pressure.

  10. Investigation of Unsteady Tip Clearance Flow in a Low-Speed One and Half Stage Axial Compressor with LES And PIV

    Science.gov (United States)

    Hah, Chunill; Hathaway, Michael; Katz, Joseph; Tan, David

    2015-01-01

    The primary focus of this paper is to investigate how a rotor's unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor when the rotor tip gap size is increased from 0.5 mm (0.49% of rotor tip blade chord, 2% of blade span) to 2.4 mm (2.34% chord, 4% span) at the design condition are investigated. The changes in unsteady tip clearance flow with the 0.62 % tip gap as the flow rate is reduced to near stall condition are also investigated. A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at these three flow conditions. Detailed Stereoscopic PIV (SPIV) measurements of the current flow fields were also performed at the Johns Hopkins University in a refractive index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. Unsteady tip clearance flow fields from LES are compared with the PIV measurements and both LES and PIV results are used to study changes in tip clearance flow structures. The current study shows that the tip clearance vortex is not a single structure as traditionally perceived. The tip clearance vortex is formed by multiple interlaced vorticities. Therefore, the tip clearance vortex is inherently unsteady. The multiple interlaced vortices never roll up to form a single structure. When phased-averaged, the tip clearance vortex appears as a single structure. When flow rate is reduced with the same tip gap, the tip clearance vortex rolls further upstream and the tip clearance vortex moves further radially inward and away from the suction side of the blade. When the tip gap size is increased at the design flow condition, the overall tip clearance vortex becomes stronger and it stays closer to the blade suction side and the vortex core extends all the way to the exit of the blade passage. Measured and calculated unsteady flow

  11. Finite Element Method Analysis of An Out Flow With Free Surface In Transition Zones

    Science.gov (United States)

    Saoula, R. Iddir S.; Mokhtar, K. Ait

    The object of this work is to present this part of the fluid mechanics that relates to out-flows of the fluid to big speeds in transitions. Results usually gotten by the classic processes can only have a qualitative aspect. The method fluently used for the count of these out-flows to big speeds is the one of characteristics, this approach remains interesting so much that doesn't appear within the out-flow of intersections of shock waves, as well as of reflections of these. In the simple geometry case, the method of finite differences satisfying result, But when the complexity of this geometry imposes itself, it is the method of finite elements that is proposed to solve this type of prob- lem, in particular for problems Trans critic. The goal of our work is to analyse free surface flows in channels no prismatic has oblong transverse section in zone of tran- sition. (Convergent, divergent). The basic mathematical model of this study is Saint Venant derivatives partial equations. To solve these equations we use the finite ele- ment method, the element of reference is the triangular element with 6 nodes which are quadratic in speed and linear in height (pressure). Our results and their obtains by others are very close to experimental results.

  12. Vibration characteristics of an inclined flip-flow screen panel in banana flip-flow screens

    Science.gov (United States)

    Xiong, Xiaoyan; Niu, Linkai; Gu, Chengxiang; Wang, Yinhua

    2017-12-01

    A banana flip-flow screen is an effective solution for the screening of high-viscosity, high-water and fine materials. As one of the key components, the vibration characteristics of the inclined flip-flow screen panel largely affects the screen performance and the processing capacity. In this paper, a mathematical model for the vibration characteristic of the inclined flip-flow screen panel is proposed based on Catenary theory. The reasonability of Catenary theory in analyzing the vibration characteristic of flip-flow screen panels is verified by a published experiment. Moreover, the effects of the rotation speed of exciters, the incline angle, the slack length and the characteristics of the screen on the vertical deflection, the vertical velocity and the vertical acceleration of the screen panel are investigated parametrically. The results show that the rotation speed of exciters, the incline angle, the slack length and the characteristics of the screen have significant effects on the vibrations of an inclined flip-flow screen panel, and these parameters should be optimized.

  13. Numerical flow analysis of axial flow compressor for steady and unsteady flow cases

    Science.gov (United States)

    Prabhudev, B. M.; Satish kumar, S.; Rajanna, D.

    2017-07-01

    Performance of jet engine is dependent on the performance of compressor. This paper gives numerical study of performance characteristics for axial compressor. The test rig is present at CSIR LAB Bangalore. Flow domains are meshed and fluid dynamic equations are solved using ANSYS package. Analysis is done for six different speeds and for operating conditions like choke, maximum efficiency & before stall point. Different plots are compared and results are discussed. Shock displacement, vortex flows, leakage patterns are presented along with unsteady FFT plot and time step plot.

  14. Bedforms formed by experimental supercritical density flows

    Science.gov (United States)

    Naruse, Hajime; Izumi, Norihiro; Yokokawa, Miwa; Muto, Tetsuji

    2014-05-01

    This study reveals characteristics and formative conditions of bedforms produced by saline density flows in supercritical flow conditions, especially focusing on the mechanism of the formation of plane bed. The motion of sediment particles forming bedforms was resolved by high-speed cameras (1/1000 frame/seconds). Experimental density flows were produced by mixtures of salt water (1.01-1.04 in density) and plastic particles (1.5 in specific density, 140 or 240 mm in diameter). Salt water and plastic particles are analogue materials of muddy water and sand particles in turbidity currents respectively. Acrylic flume (4.0 m long, 2.0 cm wide and 0.5 m deep) was submerged in an experimental tank (6.0 m long, 1.8 m wide and 1.2 m deep) that was filled by clear water. Features of bedforms were observed when the bed state in the flume reached equilibrium condition. The experimental conditions range 1.5-4.2 in densimetric Froude number and 0.2-0.8 in Shields dimensionless stress. We report the two major discoveries as a result of the flume experiments: (1) Plane bed under Froude-supercritical flows and (2) Geometrical characteristics of cyclic steps formed by density flows. (1) Plane bed was formed under the condition of supercritical flow regime. In previous studies, plane bed has been known to be formed by subcritical unidirectional flows (ca. 0.8 in Froude number). However, this study implies that plane bed can also be formed by supercritical conditions with high Shields dimensionless stress (>0.4) and very high Froude number (> 4.0). This discovery may suggest that previous estimations of paleo-hydraulic conditions of parallel lamination in turbidites should be reconsidered. The previous experimental studies and data from high-speed camera suggest that the region of plane bed formation coincides with the region of the sheet flow developments. The particle transport in sheet flow (thick bedload layer) induces transform of profile of flow shear stress, which may be

  15. Modeling Vertical Plasma Flows in Solar Filament Barbs

    Science.gov (United States)

    Litvinenko, Y.

    2003-12-01

    Speeds of observed flows in quiescent solar filaments are typically much less than the local Alfvén speed. This is why the flows in filament barbs can be modeled by perturbing a local magnetostatic solution describing the balance between the Lorentz force, gravity, and gas pressure in a barb. Similarly, large-scale filament flows can be treated as adiabatically slow deformations of a force-free magnetic equilibrium that describes the global structure of a filament. This approach reconciles current theoretical models with the puzzling observational result that some of the flows appear to be neither aligned with the magnetic field nor controlled by gravity.

  16. Visual processing speed in old age

    DEFF Research Database (Denmark)

    Habekost, Thomas; vogel, asmus; Rostrup, Egill

    2013-01-01

    of the speed of a particular psychological process that are not confounded by the speed of other processes. We used Bundesen's (1990) Theory of Visual Attention (TVA) to obtain specific estimates of processing speed in the visual system controlled for the influence of response latency and individual variations...... dramatic aging effects were found for the perception threshold and the visual apprehension span. In the visual domain, cognitive aging seems to be most clearly related to reductions in processing speed....

  17. Pulsed laser triggered high speed microfluidic switch

    Science.gov (United States)

    Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu

    2008-10-01

    We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.

  18. PERSONALITY AND SPEEDING

    Directory of Open Access Journals (Sweden)

    Richard TAY

    2003-01-01

    Full Text Available While there has been extensive research on the effect of sensation seeking on risky driving, relatively little research has been conducted on Type-A personality. The motivations for speeding are likely to be different for each group and these differences have important implications for the design, implementation and expected efficacy of road safety countermeasures. This paper examines the influence of sensation seeking and Type-A behavior pattern on speeding behaviour. A sample of 139 staff and students in an Australian university were surveyed in July 2001 to gather information on their gender, age, personality and self-reported speeding behaviour. The data were analysed using correlations and analysis of variance procedures. Finally, some implications for road safety are discussed.

  19. Design of high-speed ECT and ERT system

    International Nuclear Information System (INIS)

    Wang Baoliang; Huang Zhiyao; Li Haiqing

    2009-01-01

    Process tomography technique provides a novel method to investigate the multi-phase flow distribution inside pipe or vessel. Electrical resistance tomography (ERT) and electrical capacitance tomography (ECT) are extensively studied in recent years. As the capacitance to voltage and resistance to voltage converters run faster, the speeds of other circuits in the system, such as MCU, A/D, D/A etc, have become the bottlenecks of improving the speed. This paper describes a new dual-modal, ECT and ERT, data acquisition system. The system is controlled by a digital signal processor. Both the ERT and the ECT systems use one platform to simplify the system design and maintenance. The system can work at high speed which is only limited by the capacitance to voltage converter or resistance to voltage converter. Primary test results show the speed of the new system is 1400 frames/second for 16-electrode ERT and 2200 frames/second for 12-electrode ECT.

  20. Method for confirming flow pattern of gas-water flow in horizontal tubes under rolling state

    International Nuclear Information System (INIS)

    Luan Feng; Yan Changqi

    2008-01-01

    An experimental study on the flow patterns of gas-water flow was carried out in horizontal tubes under rolling state. It was found that the pressure drop of two phase flow was with an obvious periodical characteristic. The flow pattern of the gas-water flow was distinguished according to the characteristics of the pressure drop in this paper. It was proved that the characteristics of the pressure drop can distinguish the flow pattern of gas-water flow correctly through comparing with the result of careful observation and high speed digital camera. (authors)

  1. Methodology for the determination of the time of arrival at scale function of the flow of water basin

    International Nuclear Information System (INIS)

    Almoza, Yeleine; Grimaldi, Salvador; Petroseli, Andrea; Santini, Monia; Nardi, Fernando

    2008-01-01

    Full text: Physics is closely related to the other natural sciences, and in certain mode covers all. For example, the geomorphology; hydrogeology and other so many branches of Physical geography, linking this science in the modelling of phenomena related with them. Watersheds are areas than by their topographic features are they identify and differ from other types of relief. Specifically in the Rigo basin of the region of Lazio, Italy, relief - flow of water - time relationship, was characterized by the physical relationship T = S/V where T is the time that it takes the water flow produced by a rain event on reaching the mouth or basin (sec.) limit, given the length is the flow to the mouth (m) and V is the speed you can have flow on the land (m/s). The determination of this time is of utmost importance in agriculture and in General for the management of natural disasters of character hydrological, by losses Economic and material which may cause large avenues of water flow in a way surprising and unexpected. Therefore the overall objective of this study is to determine the map of time of arrival of the flow along the entire basin Rigo to the mouth. In addition It has a target specific, compare two maps of time, one normally calculated with the variable speed in the field and another with constant speed. These physical magnitudes T, S, V, were determined in the information system Geographic ArcGIS 9.2 with ArcINFO extension, in an atmosphere of macro language AML of programming, on the basis of the model Digital of elevation (DEM) of the basin Rigo. Then is they were calculating on scales of pixels of 30 meters, different topographic attributes and hydrological. The determination of these attributes as the direction of the flow, Areas Cumulative drainage, drainage network, Horton parameters, among others were used to calculate per unit of map the length of the flow (S) to the mouth. Was subsequently calculated the speed the flow map on the ground since the law of

  2. Inverse Magnus force in free molecular flow

    Science.gov (United States)

    Herczynski, A.; Weidman, P.

    2003-11-01

    The sidewise force on a spinning sphere translating in a rarified gas is calculated assuming that the flow can be treated as a stream of free molecules. This approach was first introduced by Newton in his investigation of the drag force. While it is not fruitful at subsonic flows in normal conditions, it gives remarkably accurate results at hypersonic speeds. Here it is applied to the high Knudsen number flow over spinning spheres, cylinders, cubes and more generally any spinning parallelepiped. In all cases, the force is in the opposite direction to that of the classical Magnus effect in continuum flow. The simple calculation for a sphere reproduces the isothermal result obtained recently by Borg, et al. (Phys. Fluids, 15, 2003) using Maxwellian distribution functions. For any parallelepiped, including the cube, just like for the sphere and the cylinder, the force is shown to be steady. In each of these, the magnitude of the inverse Magnus force is proprtional to the product of the angular speed, translational speed, and the mas of the gas displaced by the object.

  3. Unsteady effects in flows past stationary airfoils with Gurney flaps due to unsteady flow separations at low Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Dan MATEESCU

    2015-12-01

    Full Text Available This paper presents the analysis of the unsteady flows past stationary airfoils equipped with Gurney flaps at low Reynolds numbers, aiming to study the unsteady behavior of the aerodynamic coefficients due to the flow separations occurring at these Reynolds numbers. The Gurney flaps are simple but very efficient lift-increasing devices, which due to their mechanical simplicity are of particular interest for the small size micro-air-vehicles (MAV flying at low speed and very low Reynolds number. The unsteady aerodynamic analysis is performed with an efficient time-accurate numerical method developed for the solution of the Navier-Stokes equations at low Reynolds numbers, which is second-order-accurate in time and space. The paper presents solutions for the unsteady aerodynamic coefficients of lift and drag and for the lift-to-drag ratio of several symmetric and cambered airfoils with Gurney flaps. It was found that although the airfoil is considered stationary, starting from a relatively small incidence (about 8 degrees the flow becomes unsteady due to the unsteadiness of the flow separations occurring at low Reynolds numbers, and the aerodynamic coefficients display periodic oscillations in time. A detailed study is presented in the paper on the influence of various geometric and flow parameters, such as the Gurney flap height, Reynolds number, airfoil relative thickness and relative camber, on the aerodynamic coefficients of lift, drag and lift-to-drag ratio. The flow separation is also studied with the aid of flow visualizations illustrating the changes in the flow pattern at various moments in time.

  4. Partial Cavity Flows at High Reynolds Numbers

    Science.gov (United States)

    Makiharju, Simo; Elbing, Brian; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2009-11-01

    Partial cavity flows created for friction drag reduction were examined on a large-scale. Partial cavities were investigated at Reynolds numbers up to 120 million, and stable cavities with frictional drag reduction of more than 95% were attained at optimal conditions. The model used was a 3 m wide and 12 m long flat plate with a plenum on the bottom. To create the partial cavity, air was injected at the base of an 18 cm backwards-facing step 2.1 m from the leading edge. The geometry at the cavity closure was varied for different flow speeds to optimize the closure of the cavity. Cavity gas flux, thickness, frictional loads, and cavity pressures were measured over a range of flow speeds and air injection fluxes. High-speed video was used extensively to investigate the unsteady three dimensional cavity closure, the overall cavity shape and oscillations.

  5. Speed-related spinal excitation from ankle dorsiflexors to knee extensors during human walking

    DEFF Research Database (Denmark)

    Iglesias, Caroline; Nielsen, Jens Bo; Marchand-Pauvert, Véronique

    2008-01-01

    Automatic adjustments of muscle activity throughout the body are required for the maintenance of balance during human walking. One mechanism that is likely to contribute to this control is the heteronymous spinal excitation between human ankle dorsiflexors and knee extensors (CPQ-reflex). Here, we...... investigated the CPQ-reflex at different walking speeds (1-6 km/h) and stride frequencies (0.6-1.3 Hz) in healthy human subjects to provide further evidence of its modulation, and its role in ensuring postural stability during walking. The CPQ-reflex was small or absent at walking speeds below 2-3 km....../h, then increased with walking speeds about 3-4 km/h, and reached a plateau without any further change at walking speeds from 4 to 6 km/h. The reflex showed no modulation when the stride cycle was varied at constant speed (4 km/h; short steps versus long steps). These changes were unlikely to be only caused...

  6. On the Symmetry Near the Speed-of-Light Barrier

    International Nuclear Information System (INIS)

    Telezhko, G.M.

    1993-01-01

    The possibility of observations of the object moving with speeds exceeding the speed of light is under study. It is shown that the special relatively theory, besides forbidding everything to cross the 'speed-of-light barrier', forbids also the observation of super luminous speeds. Certain observable characteristics of the objects corresponding to the case |v|>c of the special relativity theory are also discussed

  7. Report on dynamic speed harmonization and queue warning algorithm design.

    Science.gov (United States)

    2014-02-01

    This report provides a detailed description of the algorithms that will be used to generate harmonized recommended speeds : and queue warning information in the proposed Intelligent Network Flow Optimization (INFLO) prototype. This document : describ...

  8. Is There an Optimal Speed for Economical Running?

    Science.gov (United States)

    Black, Matthew I; Handsaker, Joseph C; Allen, Sam J; Forrester, Stephanie E; Folland, Jonathan P

    2018-01-01

    The influence of running speed and sex on running economy is unclear and may have been confounded by measurements of oxygen cost that do not account for known differences in substrate metabolism, across a limited range of speeds, and differences in performance standard. Therefore, this study assessed the energy cost of running over a wide range of speeds in high-level and recreational runners to investigate the effect of speed (in absolute and relative terms) and sex (men vs women of equivalent performance standard) on running economy. To determine the energy cost (kcal · kg -1  · km -1 ) of submaximal running, speed at lactate turn point (sLTP), and maximal rate of oxygen uptake, 92 healthy runners (high-level men, n = 14; high-level women, n = 10; recreational men, n = 35; recreational women, n = 33) completed a discontinuous incremental treadmill test. There were no sex-specific differences in the energy cost of running for the recreational or high-level runners when compared at absolute or relative running speeds (P > .05). The absolute and relative speed-energy cost relationships for the high-level runners demonstrated a curvilinear U shape with a nadir reflecting the most economical speed at 13 km/h or 70% sLTP. The high-level runners were more economical than the recreational runners at all absolute and relative running speeds (P running, there is no sex-specific difference, and high-level endurance runners exhibit better running economy than recreational endurance runners.

  9. FORECASTING OF PASSENGER TRAFFIC UPON IMPLEMENTATION OF HIGH-SPEED RUNNING

    Directory of Open Access Journals (Sweden)

    M. B. Kurhan

    2017-02-01

    Full Text Available Purpose. Forecasting of passenger traffic flows in the future is an essential and integral part of the complex process of designing of high-speed network (HSN. HSN direction and its parameters are determined by the volume of passenger traffic, the estimated value of which depends on the economic performance of the country, as well as the material status of citizens living in HSN concentration area, transport mobility of population, development of competing modes of transport and so on. The purpose of this work is to analyse the existing methods of passenger traffic forecasting, to evaluate errors of the existing models concerning determination of traffic volumes and to specify the scientific approach to the development of high-speed rail transport in Ukraine. Methodology. The existing forecasting methods are reduced to the following ones: Delphi approach, extrapolation method, factor and correlation analysis, simulation method. The method described in this paper is based on scientific approaches such as analysis – a comprehensive and detailed study of various aspects of the known forecasting methods, comparing of existing methods for establishing differences and similarities, as well as deduction – use of general knowledge to get the new particular one. Thus, the unified indicators determined for the country as a whole, such as gross domestic product, national income, total population and others cannot be used to forecast the traffic flow on specific areas of HSN construction. Therefore, it is necessary to move from the overall forecast to traffic volume forecast on particular direction. Findings. The conclusions are derived from the analysis of different approaches and methods of passenger flow forecasting. It is proposed to create typical techniques of traffic flow forecasting using modern mathematical methods that would allow avoiding unreasonable decisions and shortening project development time. The resulting recommendations will help

  10. Experimental measurements of the cavitating flow after horizontal water entry

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thang Tat; Thai, Nguyen Quang; Phuong, Truong Thi [Institute of Mechanics (IMECH), Vietnam Academy of Science and Technology (VAST), 264—Doi Can, Ba Dinh, Hanoi (Viet Nam); Hai, Duong Ngoc, E-mail: ntthang@imech.vast.vn, E-mail: dnhai@vast.vn, E-mail: nqthai@imech.vast.vn, E-mail: ttphuong@imech.vast.vn [Graduate University of Science and Technology (GUST), VAST, 18—Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam)

    2017-10-15

    Water-entry cavitating flow is of considerable importance in underwater high-speed applications. That is because of the drag-reduction effect that concerns the presence of a cavity around moving objects. Though the study of the flow has long been carried out, little data are documented in literature so far. Besides, currently, in the case of unsteady flow, experimental measurements of some flow parameters such as the cavity pressure still encounter difficulties. Hence continuing research efforts are of important significance. The objective of this study is to investigate experimentally the unsteady cavitating flow after the horizontal water entry of projectiles. An experimental apparatus has been developed. Qualitative and quantitative optical visualizations of the flow have been carried out by using high-speed videography. Digital image processing has been applied to analyzing the recorded flow images. Based on the known correlations between the ellipsoidal super-cavity’s size and the corresponding cavitation number, the cavity pressure has been measured by utilizing the data of image processing. A comparison between the partial- and super-cavitating flow regimes is reported. The received results can be useful for the design of high-speed underwater projectiles. (paper)

  11. High-speed centrifugation induces aggregation of extracellular vesicles.

    Science.gov (United States)

    Linares, Romain; Tan, Sisareuth; Gounou, Céline; Arraud, Nicolas; Brisson, Alain R

    2015-01-01

    Plasma and other body fluids contain cell-derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential biomedical applications. In order to isolate, concentrate and purify EVs, high-speed centrifugation is often used. We show here, using electron microscopy, receptor-specific gold labelling and flow cytometry, that high-speed centrifugation induces the formation of EV aggregates composed of a mixture of EVs of various phenotypes and morphologies. The presence of aggregates made of EVs of different phenotypes may lead to erroneous interpretation concerning the existence of EVs harbouring surface antigens from different cell origins.

  12. High-speed centrifugation induces aggregation of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Romain Linares

    2015-12-01

    Full Text Available Plasma and other body fluids contain cell-derived extracellular vesicles (EVs, which participate in physiopathological processes and have potential biomedical applications. In order to isolate, concentrate and purify EVs, high-speed centrifugation is often used. We show here, using electron microscopy, receptor-specific gold labelling and flow cytometry, that high-speed centrifugation induces the formation of EV aggregates composed of a mixture of EVs of various phenotypes and morphologies. The presence of aggregates made of EVs of different phenotypes may lead to erroneous interpretation concerning the existence of EVs harbouring surface antigens from different cell origins.

  13. Quantitative angle-insensitive flow measurement using relative standard deviation OCT.

    Science.gov (United States)

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-30

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo .

  14. Flow-driven voltage generation in carbon nanotubes

    Indian Academy of Sciences (India)

    The flow of various liquids and gases over single-walled carbon nanotube bundles induces an electrical signal (voltage/current) in the sample along the direction of the flow. The electrical response generated by the flow of liquids is found to be logarithmic in the flow speed over a wide range. In contrast, voltage generated ...

  15. Numerical research on rotating speed influence and flow state distribution of water-lubricated thrust bearing

    International Nuclear Information System (INIS)

    Deng Xiao; Deng Liping; Huang Wei

    2015-01-01

    Water-lubricated thrust bearing is one of the key parts in canned motor pump, for example, the RCP in AP1000, and it functions to balance axial loads. A calculation model which can handle all flow state lubrication performance for water-lubricated thrust bearing has been presented. The model first includes laminar and turbulent Reynolds' equation. Then to get continuous viscosity coefficients cross critical Reynolds number, a transition zone which ranges based on engineering experience is put up, through which Hermite interpolation is employed. The model is numerically solved in finite difference method with uniform grids. To accelerate the calculation process, multigrid method and line relaxation is adopted within the iteration procedure. A medium sized water-lubricated tilting pad thrust bearing is exampled to verify the calculation model. Results suggest that as rotating speed enlarges, lubrication state distribution of the thrust bearing gradually tends to turbulent lubrication from the intersection corner of pad outer diameter and pad inlet to the opposite, minimum water film thickness increases approximately linearly, maximum water film pressure has little change, meanwhile the friction power grows nearly in exponential law which could result in bad effect by yielding much more heat. (author)

  16. Active control of massively separated high-speed/base flows with electric arc plasma actuators

    Science.gov (United States)

    DeBlauw, Bradley G.

    The current project was undertaken to evaluate the effects of electric arc plasma actuators on high-speed separated flows. Two underlying goals motivated these experiments. The first goal was to provide a flow control technique that will result in enhanced flight performance for supersonic vehicles by altering the near-wake characteristics. The second goal was to gain a broader and more sophisticated understanding of these complex, supersonic, massively-separated, compressible, and turbulent flow fields. The attainment of the proposed objectives was facilitated through energy deposition from multiple electric-arc plasma discharges near the base corner separation point. The control authority of electric arc plasma actuators on a supersonic axisymmetric base flow was evaluated for several actuator geometries, frequencies, forcing modes, duty cycles/on-times, and currents. Initially, an electric arc plasma actuator power supply and control system were constructed to generate the arcs. Experiments were performed to evaluate the operational characteristics, electromagnetic emission, and fluidic effect of the actuators in quiescent ambient air. The maximum velocity induced by the arc when formed in a 5 mm x 1.6 mm x 2 mm deep cavity was about 40 m/s. During breakdown, the electromagnetic emission exhibited a rise and fall in intensity over a period of about 340 ns. After breakdown, the emission stabilized to a near-constant distribution. It was also observed that the plasma formed into two different modes: "high-voltage" and "low-voltage". It is believed that the plasma may be switching between an arc discharge and a glow discharge for these different modes. The two types of plasma do not appear to cause substantial differences on the induced fluidic effects of the actuator. In general, the characterization study provided a greater fundamental understanding of the operation of the actuators, as well as data for computational model comparison. Preliminary investigations

  17. Characterisation of Tidal Flows at the European Marine Energy Centre in the Absence of Ocean Waves

    Directory of Open Access Journals (Sweden)

    Brian G. Sellar

    2018-01-01

    Full Text Available The data analyses and results presented here are based on the field measurement campaign of the Reliable Data Acquisition Platform for Tidal (ReDAPT project (Energy Technologies Institute (ETI, U.K. 2010–2015. During ReDAPT, a 1 MW commercial prototype tidal turbine was deployed and operated at the Fall of Warness tidal test site within the European Marine Energy Centre (EMEC, Orkney, U.K. Mean flow speeds and Turbulence Intensity (TI at multiple positions proximal to the machine are considered. Through the implemented wave identification techniques, the dataset can be filtered into conditions where the effects of waves are present or absent. Due to the volume of results, only flow conditions in the absence of waves are reported here. The analysis shows that TI and mean flows are found to vary considerably between flood and ebb tides whilst exhibiting sensitivity to the tidal phase and to the specification of spatial averaging and velocity binning. The principal measurement technique was acoustic Doppler profiling provided by seabed-mounted Diverging-beam Acoustic Doppler Profilers (D-ADP together with remotely-operable Single-Beam Acoustic Doppler Profilers (SB-ADP installed at mid-depth on the tidal turbine. This novel configuration allows inter-instrument comparisons, which were conducted. Turbulence intensity averaged over the rotor extents of the ReDAPT turbine for flood tides vary between 16.7% at flow speeds above 0.3 m/s and 11.7% when considering only flow speeds in the turbine operating speed range, which reduces to 10.9% (6.8% relative reduction following the implementation of noise correction techniques. Equivalent values for ebb tides are 14.7%, 10.1% and 9.3% (7.9% relative reduction. For flood and ebb tides, TI values resulting from noise correction are reduced in absolute terms by 3% and 2% respectively across a wide velocity range and approximately 1% for turbine operating speeds. Through comparison with SB-ADP-derived mid

  18. Effects of automated speed enforcement in Montgomery County, Maryland, on vehicle speeds, public opinion, and crashes.

    Science.gov (United States)

    Hu, Wen; McCartt, Anne T

    2016-09-01

    In May 2007, Montgomery County, Maryland, implemented an automated speed enforcement program, with cameras allowed on residential streets with speed limits of 35 mph or lower and in school zones. In 2009, the state speed camera law increased the enforcement threshold from 11 to 12 mph over the speed limit and restricted school zone enforcement hours. In 2012, the county began using a corridor approach, in which cameras were periodically moved along the length of a roadway segment. The long-term effects of the speed camera program on travel speeds, public attitudes, and crashes were evaluated. Changes in travel speeds at camera sites from 6 months before the program began to 7½ years after were compared with changes in speeds at control sites in the nearby Virginia counties of Fairfax and Arlington. A telephone survey of Montgomery County drivers was conducted in Fall 2014 to examine attitudes and experiences related to automated speed enforcement. Using data on crashes during 2004-2013, logistic regression models examined the program's effects on the likelihood that a crash involved an incapacitating or fatal injury on camera-eligible roads and on potential spillover roads in Montgomery County, using crashes in Fairfax County on similar roads as controls. About 7½ years after the program began, speed cameras were associated with a 10% reduction in mean speeds and a 62% reduction in the likelihood that a vehicle was traveling more than 10 mph above the speed limit at camera sites. When interviewed in Fall 2014, 95% of drivers were aware of the camera program, 62% favored it, and most had received a camera ticket or knew someone else who had. The overall effect of the camera program in its modified form, including both the law change and the corridor approach, was a 39% reduction in the likelihood that a crash resulted in an incapacitating or fatal injury. Speed cameras alone were associated with a 19% reduction in the likelihood that a crash resulted in an

  19. Geometrically Flexible and Efficient Flow Analysis of High Speed Vehicles Via Domain Decomposition, Part 1: Unstructured-Grid Solver for High Speed Flows

    Science.gov (United States)

    White, Jeffery A.; Baurle, Robert A.; Passe, Bradley J.; Spiegel, Seth C.; Nishikawa, Hiroaki

    2017-01-01

    The ability to solve the equations governing the hypersonic turbulent flow of a real gas on unstructured grids using a spatially-elliptic, 2nd-order accurate, cell-centered, finite-volume method has been recently implemented in the VULCAN-CFD code. This paper describes the key numerical methods and techniques that were found to be required to robustly obtain accurate solutions to hypersonic flows on non-hex-dominant unstructured grids. The methods and techniques described include: an augmented stencil, weighted linear least squares, cell-average gradient method, a robust multidimensional cell-average gradient-limiter process that is consistent with the augmented stencil of the cell-average gradient method and a cell-face gradient method that contains a cell skewness sensitive damping term derived using hyperbolic diffusion based concepts. A data-parallel matrix-based symmetric Gauss-Seidel point-implicit scheme, used to solve the governing equations, is described and shown to be more robust and efficient than a matrix-free alternative. In addition, a y+ adaptive turbulent wall boundary condition methodology is presented. This boundary condition methodology is deigned to automatically switch between a solve-to-the-wall and a wall-matching-function boundary condition based on the local y+ of the 1st cell center off the wall. The aforementioned methods and techniques are then applied to a series of hypersonic and supersonic turbulent flat plate unit tests to examine the efficiency, robustness and convergence behavior of the implicit scheme and to determine the ability of the solve-to-the-wall and y+ adaptive turbulent wall boundary conditions to reproduce the turbulent law-of-the-wall. Finally, the thermally perfect, chemically frozen, Mach 7.8 turbulent flow of air through a scramjet flow-path is computed and compared with experimental data to demonstrate the robustness, accuracy and convergence behavior of the unstructured-grid solver for a realistic 3-D geometry on

  20. On equivalency of various expressions for speed of wave propagation for compressible liquid flows with heat transfer

    International Nuclear Information System (INIS)

    Chawla, T.C.

    1978-01-01

    It is demonstrated that for a compressible flow model with heat transfer, the introduction of a specific state equation to supplement the continuity, momentum an enthalpy equations, leads to a very specific form of an expression for a speed of wave propagation. Consequently, the numerous expressions obtained for various choices of state equations are not easily identifiable and, therefore, can not be evaluated directly in terms of measurable properties. By use of the various thermodynamic relationships, it has been shown that these expressions are all equivalent and are identifiable as isentropic sonic velocity. As a corollary to this demonstration, expressions have also been obtained in terms of measurable properties for various thermodynamic-state variables occurring in the coefficients of the governing equations. These expressions are required if loss in accuracy owing to noise introduced in the direct numerical differentiation of the derivatives that these state-variables represent is to be avoided. (author)

  1. The Impacts of Wind Speed Trends and 30-Year Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific Northwest.

    Science.gov (United States)

    Cross, Benjamin D; Kohfeld, Karen E; Bailey, Joseph; Cooper, Andrew B

    2015-01-01

    In hydroelectric dominated systems, the value and benefits of energy are higher during extended dry periods and lower during extended or extreme wet periods. By accounting for regional and temporal differences in the relationship between wind speed and reservoir inflow behavior during wind farm site selection, the benefits of energy diversification can be maximized. The goal of this work was to help maximize the value of wind power by quantifying the long-term (30-year) relationships between wind speed and streamflow behavior, using British Columbia (BC) and the Pacific Northwest (PNW) as a case study. Clean energy and self-sufficiency policies in British BC make the benefits of increased generation during low streamflow periods particularly large. Wind density (WD) estimates from a height of 10m (North American Regional Reanalysis, NARR) were correlated with cumulative usable inflows (CUI) for BC (collected from BC Hydro) for 1979-2010. The strongest WD-CUI correlations were found along the US coast (r ~0.55), whereas generally weaker correlations were found in northern regions, with negative correlations (r ~ -0.25) along BC's North Coast. Furthermore, during the lowest inflow years, WD anomalies increased by up to 40% above average values for the North Coast. Seasonally, high flows during the spring freshet were coincident with widespread negative WD anomalies, with a similar but opposite pattern for low inflow winter months. These poorly or negatively correlated sites could have a moderating influence on climate related variability in provincial electricity supply, by producing greater than average generation in low inflow years and reduced generation in wet years. Wind speed and WD trends were also analyzed for all NARR grid locations, which showed statistically significant positive trends for most of the PNW and the largest increases along the Pacific Coast.

  2. Droplet deposition measurement with high-speed camera and novel high-speed liquid film sensor with high spatial resolution

    International Nuclear Information System (INIS)

    Damsohn, M.; Prasser, H.-M.

    2011-01-01

    Highlights: → Development of a sensor for time- and space-resolved droplet deposition in annular flow. → Experimental measurement of droplet deposition in horizontal annular flow to compare readings of the sensor with images of a high-speed camera when droplets are depositing unto the liquid film. → Self-adaptive signal filter based on autoregression to separate droplet impacts in the sensor signal from waves of liquid films. - Abstract: A sensor based on the electrical conductance method is presented for the measurement of dynamic liquid films in two-phase flow. The so called liquid film sensor consists of a matrix with 64 x 16 measuring points, a spatial resolution of 3.12 mm and a time resolution of 10 kHz. Experiments in a horizontal co-current air-water film flow were conducted to test the capability of the sensor to detect droplet deposition from the gas core onto the liquid film. The experimental setup is equipped with the liquid film sensor and a high speed camera (HSC) recording the droplet deposition with a sampling rate of 10 kHz simultaneously. In some experiments the recognition of droplet deposition on the sensor is enhanced by marking the droplets with higher electrical conductivity. The comparison between the HSC and the sensor shows, that the sensor captures the droplet deposition above a certain droplet diameter. The impacts of droplet deposition can be filtered from the wavy structures respectively conductivity changes of the liquid film using a filter algorithm based on autoregression. The results will be used to locally measure droplet deposition e.g. in the proximity of spacers in a subchannel geometry.

  3. Comparison between OpenFOAM CFD & BEM theory for variable speed – variable pitch HAWT

    Directory of Open Access Journals (Sweden)

    ElQatary Islam

    2014-01-01

    Full Text Available OpenFoam is used to compare computational fluid dynamics (CFD with blade element momentum theory (BEM for a variable speed - variable pitch HAWT (Horizontal Axis Wind Turbine. The wind turbine is first designed using the BEM to determine the blade chord, twist and operating conditions. The wind turbine blade has an outer diameter of 14 m, uses a NACA 63–415 profile for the entire blade and root to tip twist distribution of 15deg (Figure 3. The RPM varies from 20–75 for freestream velocities varying between 3–10.5 m/s (variable speed and a constant RPM of 78.78 for velocities ranging between 11–25 m/s (variable pitch. OpenFOAM is used to investigate the wind turbine performance at several operating points including cut-in wind speed (3 m/s, rated wind speed (10.5 m/s and in the variable pitch zone. Simulation results show that in the variable-speed operating range, both CFD and BEM compare reasonably well. This agreement can be attributed to the fact that the complex three-dimensional flow around the turbine blades can be split into two radial segments. For radii less than the mid-span, the flow is three-dimensional, whereas for radii greater than the mid-span, the flow is approximately two-dimensional. Since the majority of the power is produced from sections beyond the mid-span, the agreement between CFD and BEM is reasonable. For the variable-pitch operating range the CFD results and BEM deviate considerably. In this case the majority of the power is produced from the inner sections in which the flow is three-dimensional and can no longer be predicted by the BEM. The results show that differences in pitch angles up to 10deg can result to regulate the power for high wind speeds in the variable-pitch operation zone.

  4. Quiet High Speed Fan II (QHSF II): Final Report

    Science.gov (United States)

    Kontos, Karen; Weir, Don; Ross, Dave

    2012-01-01

    This report details the aerodynamic, mechanical, structural design and fabrication of a Honey Engines Quiet High Speed Fan II (lower hub/tip ratio and higher specific flow than the Baseline I fan). This fan/nacelle system incorporates features such as advanced forward sweep and an advanced integrated fan/fan exit guide vane design that provides for the following characteristics: (1) Reduced noise at supersonic tip speeds, in comparison to current state-of-the-art fan technology; (2) Improved aeroelastic stability within the anticipated operating envelope; and (3) Aerodynamic performance consistent with current state-of-the-art fan technology. This fan was fabricated by Honeywell and tested in the NASA Glenn 9- by 15-Ft Low Speed Wind Tunnel for aerodynamic, aeromechanical, and acoustic performance.

  5. Hydrodynamic characteristics of high speed settling clarifiers by radiotracer method

    International Nuclear Information System (INIS)

    Griffith Martinez, J.; Flores Juan, P.; Cuesta Borges, J.; Damera Martinez, A.; Ramos Espinosa, K. A

    2005-01-01

    Results achieved in the evaluation of two high-speed settling cane juice Clarifiers, one denominated ICINAZ The Express and the other one with Low Residence Time (BTR), both located at the sugar factory Orlando Gonzalez employing the well established radiotracer method (Tc-99m) are presented. Several trials performed at the two Clarifiers demonstrated that the one identified as BTR was capable to assimilate the whole flow capacity of the factory with adequate characteristic of the pattern flux and residence time in the environment of 1 hour. In the other side, ICINAZ The Express Clarifier could only work at relative low flow capacity of the factory with residence time closely to the two hours and achieving occasionally a pattern flux seriously affected by fluctuations in the milling process. The radiotracer method was able to detect certain differences between the two clear juice outlet of the BTR Clarifier, probably due some problems in the construction of this equipment

  6. Changes in speed distribution: Applying aggregated safety effect models to individual vehicle speeds.

    Science.gov (United States)

    Vadeby, Anna; Forsman, Åsa

    2017-06-01

    This study investigated the effect of applying two aggregated models (the Power model and the Exponential model) to individual vehicle speeds instead of mean speeds. This is of particular interest when the measure introduced affects different parts of the speed distribution differently. The aim was to examine how the estimated overall risk was affected when assuming the models are valid on an individual vehicle level. Speed data from two applications of speed measurements were used in the study: an evaluation of movable speed cameras and a national evaluation of new speed limits in Sweden. The results showed that when applied on individual vehicle speed level compared with aggregated level, there was essentially no difference between these for the Power model in the case of injury accidents. However, for fatalities the difference was greater, especially for roads with new cameras where those driving fastest reduced their speed the most. For the case with new speed limits, the individual approach estimated a somewhat smaller effect, reflecting that changes in the 15th percentile (P15) were somewhat larger than changes in P85 in this case. For the Exponential model there was also a clear, although small, difference between applying the model to mean speed changes and individual vehicle speed changes when speed cameras were used. This applied both for injury accidents and fatalities. There were also larger effects for the Exponential model than for the Power model, especially for injury accidents. In conclusion, applying the Power or Exponential model to individual vehicle speeds is an alternative that provides reasonable results in relation to the original Power and Exponential models, but more research is needed to clarify the shape of the individual risk curve. It is not surprising that the impact on severe traffic crashes was larger in situations where those driving fastest reduced their speed the most. Further investigations on use of the Power and/or the

  7. High speed capillary zone electrophoresis-mass spectrometry via an electrokinetically pumped sheath flow interface for rapid analysis of amino acids and a protein digest.

    Science.gov (United States)

    Schiavone, Nicole M; Sarver, Scott A; Sun, Liangliang; Wojcik, Roza; Dovichi, Norman J

    2015-06-01

    While capillary zone electrophoresis (CZE) has been used to produce very rapid and efficient separations, coupling these high-speed separations with mass spectrometry (MS) has been challenging. Now, with much faster and sensitive mass spectrometers, it is possible to take full advantage of the CZE speed and reconstruct the fast migrating peaks. Here are three high-speed CZE-MS analyses via an electrokinetically pumped sheath-flow interface. The first separation demonstrates CZE-ESI-MS of an amino acid mixture with a 2-min separation, >50,000 theoretical plates, low micromolar concentration detection limits, and subfemtomole mass detection limits (LTQ XL mass spectrometer). The second separation with our recently improved third-generation CE-MS interface illustrates a 20 amino acid separation in ∼7min with an average over 200,000 plate counts, and results in almost-baseline resolution of structural isomers, leucine and isoleucine. The third separation is of a BSA digest with a reproducible CZE separation and mass spectrometry detection in 2min. CZE-MS/MS analysis of the BSA digest identified 31 peptides, produced 52% sequence coverage, and generated a peak capacity of ∼40 across the 1-min separation window (Q-Exactive mass spectrometer). Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Inverse airfoil design method for low-speed straight-bladed Darrieus-type VAWT applications

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, F. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia); Paraschivoiu, I.; Trifu, O. [Ecole Polytechnique, Montreal, PQ (Canada); Hess, M.; Gabrys, C. [Mariah Power Inc., Reno, NV (United States)

    2008-07-01

    Inverse airfoil design of a low-speed straight-bladed Darrieus-type vertical axis wind turbine (VAWT) can help improve aerodynamic performance and power output by eliminating undesirable flow field characteristics at very low Reynolds number. This study used an interactive inverse airfoil design method (PROFOIL) that allows specification of velocity and boundary-layer characteristics over different segments of the airfoil subject to constraints on the geometry (closure) and the flow field (far field boundary). Additional constraints were also considered to address pitching moment coefficient, thickness and the power output for a given tip-speed ratio. Performance analyses of the airfoil and the VAWT were carried out using state-of-the-art analyses codes XFOIL and CARDAAV, respectively. XFOIL is a panel method with a coupled boundary-layer scheme and is used to obtain the aerodynamic characteristics of resulting airfoil shapes. The final airfoil geometry is obtained through a multi-dimensional Newton iteration. The study showed that the strength of the method lies in the inverse design methodology whereas its weaknesses is in reliably predicting aerodynamic characteristics of airfoils at low Reynolds numbers and high angles of attack. A 10-15 per cent increase in the relative performance of the VAWT was achieved with this method. Although the results of the study showed that the method has great application potential for VAWTs in general, there is much room for improvement in flow analysis capabilities for low Re flows in reliably predicting post-stall aerodynamic characteristics. In the absence of such analysis capabilities, the authors suggested that the results should be viewed qualitatively and not quantitatively. 36 refs., 1 tab., 4 figs.

  9. The study on flow characteristics of butterfly valve using flow visualization

    International Nuclear Information System (INIS)

    Yang, S. M.; Hong, S. D.; Song, D. S.; Park, J. K.; Park, J. I.; Shin, S. K.; Kim, H. J.

    2005-01-01

    Flow visualization of butterfly valve is tested for four types(15 deg., 30 .deg., 45 .deg., and 90 .deg.) of valve opening angle. The inner flow characteristics of valve are studied. The flow variation was measured using a high speed camera which takes 500 frames per second with 1024 x 1024 pixels. These captured images were used for calculation to analyze two dimensional flow velocity of the valve. The smaller opening angle, the more increasing the differential pressure of a butterfly valve. Therefore, we know that the complex flow is occurred by increasing the differential pressure. And it is found that the flowing backward is more increased according to the increase of the opening angle of a butterfly valve. However, its flow pattern is similar to a simple pipe flow when the opening angle is 90 .deg.

  10. A general theory of two- and three-dimensional rotational flow in subsonic and transonic turbomachines

    Science.gov (United States)

    Wu, Chung-Hua

    1993-01-01

    This report represents a general theory applicable to axial, radial, and mixed flow turbomachines operating at subsonic and supersonic speeds with a finite number of blades of finite thickness. References reflect the evolution of computational methods used, from the inception of the theory in the 50's to the high-speed computer era of the 90's. Two kinds of relative stream surfaces, S(sub 1) and S(sub 2), are introduced for the purpose of obtaining a three-dimensional flow solution through the combination of two-dimensional flow solutions. Nonorthogonal curvilinear coordinates are used for the governing equations. Methods of computing transonic flow along S(sub 1) and S(sub 2) stream surfaces are given for special cases as well as for fully three-dimensional transonic flows. Procedures pertaining to the direct solutions and inverse solutions are presented. Information on shock wave locations and shapes needed for computations are discussed. Experimental data from a Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e.V. (DFVLR) rotor and from a Chinese Academy of Sciences (CAS) transonic compressor rotor are compared with the computed flow properties.

  11. Music-Elicited Emotion Identification Using Optical Flow Analysis of Human Face

    Science.gov (United States)

    Kniaz, V. V.; Smirnova, Z. N.

    2015-05-01

    Human emotion identification from image sequences is highly demanded nowadays. The range of possible applications can vary from an automatic smile shutter function of consumer grade digital cameras to Biofied Building technologies, which enables communication between building space and residents. The highly perceptual nature of human emotions leads to the complexity of their classification and identification. The main question arises from the subjective quality of emotional classification of events that elicit human emotions. A variety of methods for formal classification of emotions were developed in musical psychology. This work is focused on identification of human emotions evoked by musical pieces using human face tracking and optical flow analysis. Facial feature tracking algorithm used for facial feature speed and position estimation is presented. Facial features were extracted from each image sequence using human face tracking with local binary patterns (LBP) features. Accurate relative speeds of facial features were estimated using optical flow analysis. Obtained relative positions and speeds were used as the output facial emotion vector. The algorithm was tested using original software and recorded image sequences. The proposed technique proves to give a robust identification of human emotions elicited by musical pieces. The estimated models could be used for human emotion identification from image sequences in such fields as emotion based musical background or mood dependent radio.

  12. Experimental investigation of transverse flow estimation using transverse oscillation

    DEFF Research Database (Denmark)

    Udesen, Jesper; Jensen, Jørgen Arendt

    2003-01-01

    Conventional ultrasound scanners can only display the blood velocity component parallel to the ultrasound beam. Introducing a laterally oscillating field gives signals from which the transverse velocity component can be estimated using 2:1 parallel receive beamformers. To yield the performance...... perpendicular to the ultrasound beam. The velocity profile of the blood is parabolic, and the speed of the blood in the center of the vessel is 1.1 m/s. An extended autocorrelation algorithm is used for velocity estimation for 310 trials, each containing 32 beamformed signals. The velocity can be estimated.......0% and the relative mean standard deviation is found to be 9.8%. With the Compuflow 1000 programmable flow pump a color flow mode image is produced of the experimental setup for a parabolic flow. Also the flow of the human femoralis is reproduced and it is found that the characteristics of the flow can be estimated....

  13. The flow of a thin liquid film on a stationary and rotating disk. I - Experimental analysis and flow visualization

    Science.gov (United States)

    Thomas, S.; Faghri, A.; Hankey, W.

    1990-01-01

    The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed was 0-300 RPM and the flow rate was 7.0-15.0 LPM. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Surface waves were found in the supercritical and subcritical regions at all flow rates studied. When the rotational speed of the disk is low, a standing wave at the edge of the disk was present. As the rotational speed increased, the surface waves changed from the wavy-laminar region to a region in which the waves ran nearly radially across the disk on top of a thin substrate of fluid.

  14. Futsal match-related fatigue affects running performance and neuromuscular parameters but not finishing kick speed or accuracy

    DEFF Research Database (Denmark)

    Milioni, Fabio; Vieira, Luiz H P; Barbieri, Ricardo A

    2016-01-01

    Purpose: The aim of the present study was to investigate the influence of futsal match-related fatigue on running performance, neuromuscular variables, and finishing kick speed and accuracy. Methods: Ten professional futsal players participated in the study (age: 22.2 ± 2.5 years) and initially...

  15. Variation of wave speed determined by the PU-loop with proximity to a reflection site.

    Science.gov (United States)

    Li, Ye; Borlotti, Alessandra; Parker, Kim H; Khir, Ashraf W

    2011-01-01

    Wave speed is directly related to arterial distensibility and is widely used by clinicians to assess arterial stiffness. The PU-loop method for determining wave speed is based on the water hammer equation for flow in flexible tubes and artery using the method of characteristics. This technique determines wave speed using simultaneous measurements of pressure and velocity at a single point. The method shows that during the early part of systole, the relationship between pressure and velocity is generally linear, and the initial slope of the PU-loop is proportional to wave speed. In this work, we designed an in-vitro experiment to investigate the effect of proximity to a reflection site on the wave speed determined by the PU-loop through varying the distance between the measurement and reflection sites. Measurements were made in a flexible tube with a reflection site at the distal end formed by joining the tube to another tube with a different diameter and material properties. Six different flexible tubes were used to generate both positive and negative reflection coefficients of different magnitudes. We found that the wave speed determined by the PU-loop did not change when the measurement site was far from the reflection site but did change as the distance to the reflection site decreased. The calculated wave speed increased with positive reflections and decreased with negative reflections. The magnitude of the change in wave speed at a fixed distance from the reflection site increased with increasing the value of the reflection coefficient.

  16. Influence and applicability of wire-mesh sensor to acquire two phase flow dynamics

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu

    2011-01-01

    Wire-mesh sensors (WMS) are able to measure void distributions and velocity profile at high speed. Immersing the wire-mesh affects the structure of two-phase flow. Experiments were performed for single rising air bubble in a vertical pipe of i.d. 50 mm and 224 mm at water velocities ranging from 0.05 to 0.52 m/s and 0.42 to 0.83 m/s. Distortion of a relatively large bubble with the wire-mesh was small in the water velocity over 0.25 m/s and confirmed by cross-correlation analysis as well. Bubble rising velocity acquired by WMS is in good agreement with that estimated high-speed camera in the experimental range. WMS has applicability to acquire two phase flow dynamics in the water velocity over 0.25 m/s. (author)

  17. Cellular automata model for traffic flow at intersections in internet of vehicles

    Science.gov (United States)

    Zhao, Han-Tao; Liu, Xin-Ru; Chen, Xiao-Xu; Lu, Jian-Cheng

    2018-03-01

    Considering the effect of the front vehicle's speed, the influence of the brake light and the conflict of the traffic flow, we established a cellular automata model called CE-NS for traffic flow at the intersection in the non-vehicle networking environment. According to the information interaction of Internet of Vehicles (IoV), introducing parameters describing the congestion and the accurate speed of the front vehicle into the CE-NS model, we improved the rules of acceleration, deceleration and conflict, and finally established a cellular automata model for traffic flow at intersections of IoV. The relationship between traffic parameters such as vehicle speed, flow and average travel time is obtained by numerical simulation of two models. Based on this, we compared the traffic situation of the non-vehicle networking environment with conditions of IoV environment, and analyzed the influence of the different degree of IoV on the traffic flow. The results show that the traffic speed is increased, the travel time is reduced, the flux of intersections is increased and the traffic flow is more smoothly under IoV environment. After the vehicle which achieves IoV reaches a certain proportion, the operation effect of the traffic flow begins to improve obviously.

  18. Development of Hydroxyl Tagging Velocimetry for Low Velocity Flows

    Science.gov (United States)

    Andre, Matthieu A.; Bardet, Philippe M.; Burns, Ross A.; Danehy, Paul M.

    2016-01-01

    Hydroxyl tagging velocimetry (HTV) is a molecular tagging technique that relies on the photo-dissociation of water vapor into OH radicals and their subsequent tracking using laser induced fluorescence. Velocities are then obtained from time-of-flight calculations. At ambient temperature in air, the OH species lifetime is relatively short (<50 µs), making it suited for high speed flows. Lifetime and radicals formation increases with temperature, which allows HTV to also probe low-velocity, high-temperature flows or reacting flows such as flames. The present work aims at extending the domain of applicability of HTV, particularly towards low-speed (<10 m/s) and moderate (<500 K) temperature flows. Results are compared to particle image velocimetry (PIV) measurements recorded in identical conditions. Single shot and averaged velocity profiles are obtained in an air jet at room temperature. By modestly raising the temperature (100-200 degC) the OH production increases, resulting in an improvement of the signal-to-noise ratio (SNR). Use of nitrogen - a non-reactive gas with minimal collisional quenching - extends the OH species lifetime (to over 500 µs), which allows probing of slower flows or, alternately, increases the measurement precision at the expense of spatial resolution. Instantaneous velocity profiles are resolved in a 100degC nitrogen jet (maximum jet-center velocity of 6.5 m/s) with an uncertainty down to 0.10 m/s (1.5%) at 68% confidence level. MTV measurements are compared with particle image velocimetry and show agreement within 2%.

  19. Tornado-borne missile speeds. Final report

    International Nuclear Information System (INIS)

    Simiu, E.; Cordes, M.

    1976-04-01

    An investigation of the question of tornado-borne missile speeds was carried out, with a view to identify pertinent areas of uncertainty and to estimate credible tornado-borne missile speeds - within the limitations inherent in the present state of the art. The investigation consists of two parts: (1) a study in which a rational model for the missile motion is proposed, and numerical experiments are carried out corresponding to various assumptions on the initial conditions of the missile motion, the structure of the tornado flow, and the aerodynamic properties of the missile; (2) a theoretical and experimental study of tornado-borne missile aerodynamics, conducted by Colorado State Univ. (CSU) to be covered in a separate report by CSU. In the present report, the factors affecting missile motion and their influence upon such motion are examined

  20. Gap Flows through Idealized Topography. Part I: Forcing by Large-Scale Winds in the Nonrotating Limit.

    Science.gov (United States)

    Gabersek, Sasa.; Durran, Dale R.

    2004-12-01

    Gap winds produced by a uniform airstream flowing over an isolated flat-top ridge cut by a straight narrow gap are investigated by numerical simulation. On the scale of the entire barrier, the proportion of the oncoming flow that passes through the gap is relatively independent of the nondimensional mountain height , even over that range of for which there is the previously documented transition from a “flow over the ridge” regime to a “flow around” regime.The kinematics and dynamics of the gap flow itself were investigated by examining mass and momentum budgets for control volumes at the entrance, central, and exit regions of the gap. These analyses suggest three basic behaviors: the linear regime (small ) in which there is essentially no enhancement of the gap flow; the mountain wave regime ( 1.5) in which vertical mass and momentum fluxes play a crucial role in creating very strong winds near the exit of the gap; and the upstream-blocking regime ( 5) in which lateral convergence generates the strongest winds near the entrance of the gap.Trajectory analysis of the flow in the strongest events, the mountain wave events, confirms the importance of net subsidence in creating high wind speeds. Neglect of vertical motion in applications of Bernoulli's equation to gap flows is shown to lead to unreasonable wind speed predictions whenever the temperature at the gap exit exceeds that at the gap entrance. The distribution of the Bernoulli function on an isentropic surface shows a correspondence between regions of high Bernoulli function and high wind speeds in the gap-exit jet similar to that previously documented for shallow-water flow.

  1. Calibration of automatic performance measures - speed and volume data: volume 2, evaluation of the accuracy of approach volume counts and speeds collected by microwave sensors.

    Science.gov (United States)

    2016-05-01

    This study evaluated the accuracy of approach volumes and free flow approach speeds collected by the Wavetronix : SmartSensor Advance sensor for the Signal Performance Metrics system of the Utah Department of Transportation (UDOT), : using the field ...

  2. Altitude-Wind-Tunnel Investigation of a 4000-Pound-Thrust Axial-Flow Turbojet Engine. II - Operational Characteristics. II; Operational Characteristics

    Science.gov (United States)

    Fleming, William A.

    1948-01-01

    An investigation was conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of an axial flow-type turbojet engine with a 4000-pound-thrust rating over a range of pressure altitudes from 5,000 to 50,OOO feet, ram pressure ratios from 1.00 to 1.86, and temperatures from 60 deg to -50 deg F. The low-flow (standard) compressor with which the engine was originally equipped was replaced by a high-flow compressor for part of the investigation. The effects of altitude and airspeed on such operating characteristics as operating range, stability of combustion, acceleration, starting, operation of fuel-control systems, and bearing cooling were investigated. With the low-flow compressor, the engine could be operated at full speed without serious burner unbalance at altitudes up to 50,000 feet. Increasing the altitude and airspeed greatly reduced the operable speed range of the engine by raising the minimum operating speed of the engine. In several runs with the high-flow compressor the maximum engine speed was limited to less than 7600 rpm by combustion blow-out, high tail-pipe temperatures, and compressor stall. Acceleration of the engine was relatively slow and the time required for acceleration increased with altitude. At maximum engine speed a sudden reduction in jet-nozzle area resulted in an immediate increase in thrust. The engine started normally and easily below 20,000 feet with each configuration. The use of a high-voltage ignition system made possible starts at a pressure altitude of 40,000 feet; but on these starts the tail-pipe temperatures were very high, a great deal of fuel burned in and behind the tail-pipe, and acceleration was very slow. Operation of the engine was similar with both fuel regulators except that the modified fuel regulator restricted the fuel flow in such a manner that the acceleration above 6000 rpm was very slow. The bearings did not cool properly at high altitudes and high engine speeds with a low-flow

  3. Ballooning instabilities in tokamaks with sheared toroidal flows

    International Nuclear Information System (INIS)

    Waelbroeck, F.L.; Chen, L.

    1990-11-01

    The stability of ballooning modes in the presence of sheared toroidal flows is investigated. The eigenmodes are shown to be related by a Fourier transformation to the non-exponentially growing Floquet solutions found by Cooper. It is further shown that the problem cannot be reduced further than to a two dimensional partial differential equation. Next, the generalized ballooning equation is solved analytically for a circular tokamak equilibrium with sonic flows, but with a small rotation shear compared to the sound speed. With this ordering, the centrifugal forces are comparable to the pressure gradient forces driving the instability, but coupling of the mode with the sound wave is avoided. A new stability criterion is derived which explicitly demonstrates that flow shear is stabilizing at constant centrifugal force gradient. 34 refs

  4. High-speed PIV applied to the wake of the NASA CRM model in ETW at high Re-number stall conditions for sub- and transonic speeds

    OpenAIRE

    Konrath, Robert; Geisler, Reinhard; Otter, Dirk; Philipp, Florian; Ehlers, Hauke; Agocs, Janos; Quest, Jürgen

    2015-01-01

    Within the framework of the EU project ESWIRP the Particle Image Velocimetry (PIV) using high-speed camera and laser has been used to measure the turbulent flow in the wake of a stalled aircraft wing. The measurements took place on the Common Research Model (CRM) provided by NASA in the pressurized cryogenic European Transonic Wind tunnel (ETW). A specific cryo-PIV system has been used and adapted for using high-speed PIV components under the cryogenic conditions of the wind tunnel faci...

  5. The relative contributions of processing speed and cognitive load to working memory accuracy in multiple sclerosis.

    Science.gov (United States)

    Leavitt, Victoria M; Lengenfelder, Jean; Moore, Nancy B; Chiaravalloti, Nancy D; DeLuca, John

    2011-06-01

    Cognitive symptoms of multiple sclerosis (MS) include processing-speed deficits and working memory impairment. The precise manner in which these deficits interact in individuals with MS remains to be explicated. We hypothesized that providing more time on a complex working memory task would result in performance benefits for individuals with MS relative to healthy controls. Fifty-three individuals with clinically definite MS and 36 matched healthy controls performed a computerized task that systematically manipulated cognitive load. The interval between stimuli presentations was manipulated to provide increasing processing time. The results confirmed that individuals with MS who have processing-speed deficits significantly improve in performance accuracy when given additional time to process the information in working memory. Implications of these findings for developing appropriate cognitive rehabilitation interventions are discussed.

  6. Computational Aerodynamic Simulations of an 840 ft/sec Tip Speed Advanced Ducted Propulsor Fan System Model for Acoustic Methods Assessment and Development

    Science.gov (United States)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of an 840 ft/sec tip speed, Advanced Ducted Propulsor fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, lownoise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15- foot Low Speed Wind Tunnel at the NASA Glenn Research Center, resulting in quality, detailed aerodynamic and acoustic measurement data. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating conditions simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, excluding a long core duct section downstream of the core inlet guide vane. As a result, only fan rotational speed and system bypass ratio, set by specifying static pressure downstream of the core inlet guide vane row, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. The computed blade row flow fields for all five fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive boundary layer separations or related secondary-flow problems. A few spanwise comparisons between

  7. Evaluation of IOM personal sampler at different flow rates.

    Science.gov (United States)

    Zhou, Yue; Cheng, Yung-Sung

    2010-02-01

    The Institute of Occupational Medicine (IOM) personal sampler is usually operated at a flow rate of 2.0 L/min, the rate at which it was designed and calibrated, for sampling the inhalable mass fraction of airborne particles in occupational environments. In an environment of low aerosol concentrations only small amounts of material are collected, and that may not be sufficient for analysis. Recently, a new sampling pump with a flow rate up to 15 L/min became available for personal samplers, with the potential of operating at higher flow rates. The flow rate of a Leland Legacy sampling pump, which operates at high flow rates, was evaluated and calibrated, and its maximum flow was found to be 10.6 L/min. IOM samplers were placed on a mannequin, and sampling was conducted in a large aerosol wind tunnel at wind speeds of 0.56 and 2.22 m/s. Monodisperse aerosols of oleic acid tagged with sodium fluorescein in the size range of 2 to 100 microm were used in the test. The IOM samplers were operated at flow rates of 2.0 and 10.6 L/min. Results showed that the IOM samplers mounted in the front of the mannequin had a higher sampling efficiency than those mounted at the side and back, regardless of the wind speed and flow rate. For the wind speed of 0.56 m/s, the direction-averaged (the average value of all orientations facing the wind direction) sampling efficiency of the samplers operated at 2.0 L/min was slightly higher than that of 10.6 L/min. For the wind speed of 2.22 m/s, the sampling efficiencies at both flow rates were similar for particles < 60 microm. The results also show that the IOM's sampling efficiency at these two different flow rates follows the inhalable mass curve for particles in the size range of 2 to 20 microm. The test results indicate that the IOM sampler can be used at higher flow rates.

  8. A mechanistic determination of horizontal flow regime bound using void wave celerity

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.W. [Ajou Univ., Suwon (Korea, Republic of)

    1995-09-01

    The two-phase flow regime boundaries in a horizontal channel has been investigated by using the behavior of the second order void wave celerities. The average two-fluid model has been constituted with closure relations for horizontally stratified and bubbly flows. A vapor phase turbulent stress model for a smooth interface geometry has been included. It is found that the second order waves (i.e., eigenvalues) propagate in opposite direction with almost the same speed when the liquid phase is stationary. Using the well-posedness limit of the two-phase system, the dispersed-stratified flow regime boundary has been modeled. Two-phase Froude number has been theoretically found to be a convenient parameter in quantifying the flow regime boundary as a function of the void fraction. It is found that interaction between void wave celerities become stronger as the two-phase Froude number is reduced. This result should be interpreted as that gravity and the relative velocity are key parameters in determining flow regime boundaries in a horizontal flow. The influence of the vapor phase turbulent stress found to stabilize the flow stratification. This study clearly shows that the average two-fluid model is very effective for a mechanistic determination of horizontal flow regimes if appropriate closure relations are developed.

  9. A mechanistic determination of horizontal flow regime bound using void wave celerity

    International Nuclear Information System (INIS)

    Park, J.W.

    1995-01-01

    The two-phase flow regime boundaries in a horizontal channel has been investigated by using the behavior of the second order void wave celerities. The average two-fluid model has been constituted with closure relations for horizontally stratified and bubbly flows. A vapor phase turbulent stress model for a smooth interface geometry has been included. It is found that the second order waves (i.e., eigenvalues) propagate in opposite direction with almost the same speed when the liquid phase is stationary. Using the well-posedness limit of the two-phase system, the dispersed-stratified flow regime boundary has been modeled. Two-phase Froude number has been theoretically found to be a convenient parameter in quantifying the flow regime boundary as a function of the void fraction. It is found that interaction between void wave celerities become stronger as the two-phase Froude number is reduced. This result should be interpreted as that gravity and the relative velocity are key parameters in determining flow regime boundaries in a horizontal flow. The influence of the vapor phase turbulent stress found to stabilize the flow stratification. This study clearly shows that the average two-fluid model is very effective for a mechanistic determination of horizontal flow regimes if appropriate closure relations are developed

  10. Tearing-mode stability in a cylindrical plasma with equilibrium flows

    International Nuclear Information System (INIS)

    Wessen, K.P.; Persson, M.; Australian National Univ., Canberra

    1991-01-01

    The effect of a sheared equilibrium mass flow on the resistive tearing mode is studied numerically by calculating Δ. Both stabilizing and destabilizing effects are found, depending on the velocity and magnetic field profiles. Specifically, when q o ''varies as'' 1, the flow is strongly stabilizing for centrally peaked current profiles, whereas the flow has a strongly destabilizing effect for flatter current profiles. While the extreme effects are more pronounced for larger flows, a smaller flow may have more influence on marginal stability. The case where the flow speed becomes comparable to the Alfven speed is also examined. It is found that this may lead to the equations being singular at points other than a rational surface, drastically changing the behaviour of the mode. (author)

  11. High speed motion neutron radiography of dynamic events

    International Nuclear Information System (INIS)

    Robinson, A.H.; Barton, J.P.

    1983-01-01

    The development of a technique that permits neutron radiographic analysis of dynamic processes over a period lasting from one to ten milliseconds is described. The key to the technique is the use of a neutron pulse broad enough to span the duration of a brief event and intense enough to allow recording of the results on a high-speed movie film at frame rates of 10,000 frames/sec. Some typical application results in ballistic studies and two-phase flow are shown and discussed. The use of scintillator screens in the high-speed motion neutron radiography system is summarized and the statistical limitations of the technique are discussed

  12. Comparison of Speed-Up Over Hills Derived from Wind-Tunnel Experiments, Wind-Loading Standards, and Numerical Modelling

    Science.gov (United States)

    Safaei Pirooz, Amir A.; Flay, Richard G. J.

    2018-03-01

    We evaluate the accuracy of the speed-up provided in several wind-loading standards by comparison with wind-tunnel measurements and numerical predictions, which are carried out at a nominal scale of 1:500 and full-scale, respectively. Airflow over two- and three-dimensional bell-shaped hills is numerically modelled using the Reynolds-averaged Navier-Stokes method with a pressure-driven atmospheric boundary layer and three different turbulence models. Investigated in detail are the effects of grid size on the speed-up and flow separation, as well as the resulting uncertainties in the numerical simulations. Good agreement is obtained between the numerical prediction of speed-up, as well as the wake region size and location, with that according to large-eddy simulations and the wind-tunnel results. The numerical results demonstrate the ability to predict the airflow over a hill with good accuracy with considerably less computational time than for large-eddy simulation. Numerical simulations for a three-dimensional hill show that the speed-up and the wake region decrease significantly when compared with the flow over two-dimensional hills due to the secondary flow around three-dimensional hills. Different hill slopes and shapes are simulated numerically to investigate the effect of hill profile on the speed-up. In comparison with more peaked hill crests, flat-topped hills have a lower speed-up at the crest up to heights of about half the hill height, for which none of the standards gives entirely satisfactory values of speed-up. Overall, the latest versions of the National Building Code of Canada and the Australian and New Zealand Standard give the best predictions of wind speed over isolated hills.

  13. Tomographic multiphase flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Saetre, C., E-mail: camilla@ift.uib.no [Department of Physics and Technology, University of Bergen (Norway); Michelsen Centre for Industrial Measurement Science and Technology (Norway); Johansen, G.A. [Department of Physics and Technology, University of Bergen (Norway); Michelsen Centre for Industrial Measurement Science and Technology (Norway); Tjugum, S.A. [Michelsen Centre for Industrial Measurement Science and Technology (Norway); Roxar Flow Measurement, Bergen (Norway)

    2012-07-15

    Measurement of multiphase flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain (). These are related to reducing measurement uncertainties arising from variations in the flow regime, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. This work focuses on the first two issues using multi gamma beam (MGB) measurements for identification of the type of flow regime. Further gamma ray tomographic measurements are used for reference of the gas/liquid distribution. For the MGB method one Am-241 source with principal emission at 59.5 keV is used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as compact detectors. One detector is placed diametrically opposite the source whereas the second is positioned to the side so that this beam is close to the pipe wall. The principle is then straight forward to compare the measured intensities of these detectors and through that identify the flow pattern, i.e. the instantaneous cross-sectional gas-liquid distribution. The measurement setup also includes Compton scattering measurements, which can provide information about the changes in the water salinity for flow segments with high water liquid ratio and low gas fractions. By measuring the transmitted intensity in short time slots (<100ms), rapid regime variations are revealed. From this we can select the time sections suitable for salinity measurements. Since the salinity variations change at the time scale of hours, a running average can be performed to increase the accuracy of the measurements. Recent results of this work will be presented here. - Highlights: Black-Right-Pointing-Pointer Multiphase flow gas-fraction and flow regime measurements by multi gamma ray beams. Black-Right-Pointing-Pointer High-speed gamma ray tomograph as reference for the flow

  14. Tomographic multiphase flow measurement

    International Nuclear Information System (INIS)

    Sætre, C.; Johansen, G.A.; Tjugum, S.A.

    2012-01-01

    Measurement of multiphase flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain (). These are related to reducing measurement uncertainties arising from variations in the flow regime, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. This work focuses on the first two issues using multi gamma beam (MGB) measurements for identification of the type of flow regime. Further gamma ray tomographic measurements are used for reference of the gas/liquid distribution. For the MGB method one Am-241 source with principal emission at 59.5 keV is used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as compact detectors. One detector is placed diametrically opposite the source whereas the second is positioned to the side so that this beam is close to the pipe wall. The principle is then straight forward to compare the measured intensities of these detectors and through that identify the flow pattern, i.e. the instantaneous cross-sectional gas-liquid distribution. The measurement setup also includes Compton scattering measurements, which can provide information about the changes in the water salinity for flow segments with high water liquid ratio and low gas fractions. By measuring the transmitted intensity in short time slots (<100ms), rapid regime variations are revealed. From this we can select the time sections suitable for salinity measurements. Since the salinity variations change at the time scale of hours, a running average can be performed to increase the accuracy of the measurements. Recent results of this work will be presented here. - Highlights: ► Multiphase flow gas-fraction and flow regime measurements by multi gamma ray beams. ► High-speed gamma ray tomograph as reference for the flow pattern and gas fraction. ► Dual modality

  15. A comparative pressure analysis of air flow between horizontal and V-Tail of UAV MALE of NACA0012H with speed variation

    Directory of Open Access Journals (Sweden)

    Riza Rahmat

    2018-01-01

    Full Text Available NACA0012H is an airfoil type that could be used for Unmanned Aerial Vehicle Medium Altitude Long Endurance. This experiment was used to analyze stress in the surface of Tail of UAV MALE that was caused by air flow. The experiment was conducted using Computational Fluid Dynamics Software. Two designs of tail, horizontal and V-tail, were considered to simulate pressure occurred on the surface of leading edge, chamber and trailing edge. The simulation was developed varying the speed of the UAV MALE. The results showed that pressure occurred on the surface of horizontal tail higher than pressure on the V-tail.

  16. Surface topography and roughness of high-speed milled AlMn1Cu

    Science.gov (United States)

    Wang, Zhenhua; Yuan, Juntang; Yin, Zengbin; Hu, Xiaoqiu

    2016-10-01

    The aluminum alloy AlMn1Cu has been broadly applied for functional parts production because of its good properties. But few researches about the machining mechanism and the surface roughness were reported. The high-speed milling experiments are carried out in order to improve the machining quality and reveal the machining mechanism. The typical topography features of machined surface are observed by scan electron microscope(SEM). The results show that the milled surface topography is mainly characterized by the plastic shearing deformation surface and material piling zone. The material flows plastically along the end cutting edge of the flat-end milling tool and meanwhile is extruded by the end cutting edge, resulting in that materials partly adhere to the machined surface and form the material piling zone. As the depth of cut and the feed per tooth increase, the plastic flow of materials is strengthened and the machined surface becomes rougher. However, as the cutting speed increases, the plastic flow of materials is weakened and the milled surface becomes smoother. The cutting parameters (e.g. cutting speed, feed per tooth and depth of cut) influencing the surface roughness are analyzed. It can be concluded that the roughness of the machined surface formed by the end cutting edge is less than that by the cylindrical cutting edge when a cylindrical flat-end mill tool is used for milling. The proposed research provides the typical topography features of machined surface of the anti-rust aluminum alloy AlMn1Cu in high speed milling.

  17. The effect of inlet distorted flow on steady and unsteady performance of a centrifugal compressor

    International Nuclear Information System (INIS)

    Park, Jae Hyoung; Kang, Shin Hyoung

    2005-01-01

    Effects of inlet distorted flow on performance, stall and surge are experimentally investigated for a high-speed centrifugal compressor. Tested results for the distorted inlet flow cases are compared with the result of the undistorted one. The performance of compressor is slightly deteriorated due to the inlet distortion. The inlet distortion does not affect the number of stall cell and the propagation velocity. It also does not change stall inception flow rate. However, as the distortion increases, stall starts at the higher flow rate for low speed at the lower flow rate for high speed. For 50,000 rpm stall occurs as the flow rate decreases, however disappears for the smaller flow rate. This is due to the interaction of surge and stall. After the stall and surge interact, the number of stall cell decreases

  18. Evolution of Gamete Motility Differences I. Relation Between Swimming Speed and Pheromonal Attraction

    NARCIS (Netherlands)

    Hoekstra, Rolf F.; Janz, Robert F.; Schilstra, A.J.

    1984-01-01

    An analysis is made using population genetic models of the evolution of gamete motility differences as a consequence of a pheromonal gametic approach mechanism. A stable swimming speed dimorphism may arise via disruptive selection on swimming speed, resulting from selection favouring a high

  19. Safe Speeds and Credible Speed Limits (SaCredSpeed): New Vision for Decision Making on Speed Management.

    NARCIS (Netherlands)

    Aarts, L. Nes, N. van Wegman, F.C.M. Schagen, I.N.L.G. van & Louwerse, R.

    2009-01-01

    Speed is an inherent characteristic of mobility and a hazard to safety. Several approaches exist of how to manage speed. In the Netherlands, the emphasis has mainly been on harm minimisation during the last decades, due to the implementation of the Sustainable Safety vision. Speed management remains

  20. Relation between plasma plume density and gas flow velocity in atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Yambe, Kiyoyuki; Taka, Shogo; Ogura, Kazuo

    2014-01-01

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and copper foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. To study the properties of the plasma plume, the plasma plume current is estimated from the difference in currents on the circuit, and the drift velocity is measured using a photodetector. The relation of the plasma plume density n plu , which is estimated from the current and the drift velocity, and the gas flow velocity v gas is examined. It is found that the dependence of the density on the gas flow velocity has relations of n plu ∝ log(v gas ). However, the plasma plume density in the laminar flow is higher than that in the turbulent flow. Consequently, in the laminar flow, the density increases with increasing the gas flow velocity

  1. On the Maximum Speed of Matter

    Science.gov (United States)

    Raftopoulos, Dionysios G.

    2013-09-01

    In this paper we examine the analytical production of the Lorentz Transformation regarding its fundamental conclusion i.e. that the speed of Light in vacuum is the uppermost limit for the speed of matter, hence superluminal speeds are unattainable. This examination covers the four most prominent relevant sources of bibliography: Albert Einstein's historic paper (1905) titled: "On the Electrodynamics of moving Bodies" on which his Special Relativity Theory is founded. His famous textbook titled: "Relativity, The Special and General Theory", A. P. French's textbook titled "Special Relativity", Wolfgang Rindler's textbook titled: "Essential Relativity". Special emphasis is placed on the critical analysis of Einstein's gedanken experiment as it is presented in his original paper, where he considers a moving, straight, rigid rod at the ends of which there are two clocks, whose synchronization is checked according to his own definition as given in part 1 of his paper. By applying the second fundamental hypothesis (principle) of SRT, we arrive at the conclusion that this noetic experiment can be concluded only if the rod's speed V with regards the stationary system and measured from it, is less than the speed of light C also with regards the stationary system and measured from it. In the opposite case, said noetic experiment would be meaningless as it could never be concluded for the Observer of the stationary system, at least in the Euclidean Space. Finally, we show that in all four cases under examination the relationship v definite and rigid law of Physics forbidding matter to travel with superluminal velocity in vacuum.

  2. Drag reduction of a rapid vehicle in supercavitating flow

    Directory of Open Access Journals (Sweden)

    D. Yang

    2017-01-01

    Full Text Available Supercavitation is one of the most attractive technologies to achieve high speed for underwater vehicles. However, the multiphase flow with high-speed around the supercavitating vehicle (SCV is difficult to simulate accurately. In this paper, we use modified the turbulent viscosity formula in the Standard K-Epsilon (SKE turbulent model to simulate the supercavitating flow. The numerical results of flow over several typical cavitators are in agreement with the experimental data and theoretical prediction. In the last part, a flying SCV was studied by unsteady numerical simulation. The selected computation setup corresponds to an outdoor supercavitating experiment. Only very limited experimental data was recorded due to the difficulties under the circumstance of high-speed underwater condition. However, the numerical simulation recovers the whole scenario, the results are qualitatively reasonable by comparing to the experimental observations. The drag reduction capacity of supercavitation is evaluated by comparing with a moving vehicle launching at the same speed but without supercavitation. The results show that the supercavitation reduces the drag of the vehicle dramatically.

  3. Evaluating the impacts of grades on vehicular speeds on interstate highways.

    Directory of Open Access Journals (Sweden)

    Xinqiang Chen

    Full Text Available Grade variation on interstate highways affects the roadway geometric design, vehicle performance and driver behavior, thus possibly exerting an unexpected effect on vehicular speed. Hence, determining the internal relationship between grade and speed is important and useful for drivers, traffic regulators and other traffic participants. However, the problem with performing this research is the lack of large-scale gradient and speed data. Google Earth (GE provides an application programming interface for extracting elevation data worldwide. The elevation dataset from GE can be easily converted to grade data. In addition, our team has collected and stored speed series data for different freeways over several years. Based on the above obtainable grade and speed datasets, we conducted research on the effect of grades on free flow speeds from two perspectives. First, the influence of grades on speed was analyzed from both quantitative and qualitative aspects. The analysis of the distributions of four typical types of speeds demonstrated a decreasing tendency as the speed increased. Steeper grades generated a more intense speed fluctuation in terms of the four types of speeds. Second, a model based on the Student's t-test was developed to evaluate the level of significant difference among speed series under neighboring grades. The Student's t-test demonstrated that adjacent grades do not significantly influence the speeds. In summary, speeds under different grades showed obviously different tendencies. The findings of this study can help transport authorities set more reasonable speed limits and improve the geometric design of interstates with grade variation constraints.

  4. Andreas Acrivos Dissertation Award: Onset of Dynamic Wetting Failure - The Mechanics of High-Speed Fluid Displacement

    Science.gov (United States)

    Vandre, Eric

    2014-11-01

    water/glycerol solutions. In addition, liquid pressurization (relative to ambient air) further postpones air entrainment when the meniscus is located near a sharp corner along the plate. Recorded critical speeds compare well to predictions from the model, supporting the hydrodynamic mechanism for the onset of wetting failure. Lastly, the industrial practice of curtain coating is investigated using the hydrodynamic model. Due to the complexity of this system, a new computational approach is developed combining a finite element method and lubrication theory in order to improve the efficiency of the numerical analysis. Results show that the onset of wetting failure varies strongly with the operating conditions of this system. In addition, stresses from the air flow dramatically affect the steady wetting behavior of curtain coating. Ultimately, these findings emphasize the important role of two-fluid displacement mechanics in high-speed wetting systems.

  5. Experimental study on flow pattern transitions for inclined two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Nam Yee; Lee, Jae Young [Handong Univ., Pohang (Korea, Republic of); Kim, Man Woong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2007-07-01

    In this paper, experimental data on flow pattern transition of inclination angles from 0-90 are presented. A test section is constructed 2 mm long and I.D 1inch using transparent material. The test section is supported by aluminum frame that can be placed with any arbitrary inclined angles. The air-water two-phase flow is observed at room temperature and atmospheric condition using both high speed camera and void impedance meter. The signal is sampled with sampling rate 1kHz and is analyzed under fully-developed condition. Based on experimental data, flow pattern maps are made for various inclination angles. As increasing the inclination angels from 0 to 90, the flow pattern transitions on the plane jg-jf are changed, such as stratified flow to plug flow or slug flow or plug flow to bubbly flow. The transition lines between pattern regimes are moved or sometimes disappeared due to its inclined angle.

  6. Variable-Speed Power-Turbine Research at Glenn Research Center

    Science.gov (United States)

    Welch, Gerard E.; McVetta, Ashlie B.; Stevens, Mark A.; Howard, Samuel A.; Giel, Paul W.; Ameri, Ali, A.; To, Waiming; Skoch, Gary J.; Thurman, Douglas R.

    2012-01-01

    The main rotors of the NASA Large Civil Tilt-Rotor (LCTR) notional vehicle operate over a wide speed-range, from 100 percent at takeoff to 54 percent at cruise. The variable-speed power turbine (VSPT) offers one approach by which to effect this speed variation. VSPT aerodynamics challenges include high work factors at cruise, wide (40 to 60 ) incidence-angle variations in blade and vane rows over the speed range, and operation at low Reynolds numbers. Rotordynamics challenges include potential responsiveness to shaft modes within the 50 percent VSPT speed-range. A research effort underway at NASA Glenn Research Center, intended to address these key aerodynamic and rotordynamic challenges, is described. Conceptual design and 3-D multistage RANS and URANS analyses, conducted internally and under contract, provide expected VSPT sizing, stage-count, performance and operability information, and maps for system studies. Initial steps toward experimental testing of incidence-tolerant blading in a transonic linear cascade are described, and progress toward development/improvement of a simulation capability for multistage turbines with low Reynolds number transitional flow is summarized. Preliminary rotordynamics analyses indicate that viable concept engines with 50 percent VSPT shaft-speed range. Assessments of potential paths toward VSPT component-level testing are summarized.

  7. Forced sustained swimming exercise at optimal speed enhances growth of juvenile yellowtail kingfish (Seriola lalandi).

    Science.gov (United States)

    Palstra, Arjan P; Mes, Daan; Kusters, Kasper; Roques, Jonathan A C; Flik, Gert; Kloet, Kees; Blonk, Robbert J W

    2014-01-01

    Swimming exercise at optimal speed may optimize growth performance of yellowtail kingfish in a recirculating aquaculture system. Therefore, optimal swimming speeds (U opt in m s(-1) or body lengths s(-1), BL s(-1)) were assessed and then applied to determine the effects of long-term forced and sustained swimming at U opt on growth performance of juvenile yellowtail kingfish. U opt was quantified in Blazka-type swim-tunnels for 145, 206, and 311 mm juveniles resulting in values of: (1) 0.70 m s(-1) or 4.83 BL s(-1), (2) 0.82 m s(-1) or 3.25 BL s(-1), and (3) 0.85 m s(-1) or 2.73 BL s(-1). Combined with literature data from larger fish, a relation of U opt (BL s(-1)) = 234.07(BL)(-0.779) (R (2) = 0.9909) was established for this species. Yellowtail kingfish, either forced to perform sustained swimming exercise at an optimal speed of 2.46 BL s(-1) ("swimmers") or allowed to perform spontaneous activity at low water flow ("resters") in a newly designed 3600 L oval flume (with flow created by an impeller driven by an electric motor), were then compared. At the start of the experiment, ten fish were sampled representing the initial condition. After 18 days, swimmers (n = 23) showed a 92% greater increase in BL and 46% greater increase in BW as compared to resters (n = 23). As both groups were fed equal rations, feed conversion ratio (FCR) for swimmers was 1.21 vs. 1.74 for resters. Doppler ultrasound imaging showed a statistically significant higher blood flow (31%) in the ventral aorta of swimmers vs. resters (44 ± 3 vs. 34 ± 3 mL min(-1), respectively, under anesthesia). Thus, growth performance can be rapidly improved by optimal swimming, without larger feed investments.

  8. A comparative study on the flow experience in web-based and text-based interaction environments.

    Science.gov (United States)

    Huang, Li-Ting; Chiu, Chen-An; Sung, Kai; Farn, Cheng-Kiang

    2011-01-01

    The purpose of this study was to explore a substantial phenomenon related to flow experiences (immersion) in text-based interaction systems. Most previous research emphasizes the effects of challenge/skill, focused attention, telepresence, web characteristics, and systems' interface design on users' flow experiences in online environments. However, text-based interaction systems without telepresence features and web characteristics still seem to create opportunities for flow experience. To explore this phenomenon, this study incorporates subject involvement and interpersonal interaction as critical antecedents into the model of flow experience, as well as considers the existence of telepresence. Results reveal that subject involvement, interpersonal interaction, and interactivity speed are critical to focused attention, which enhances users' immersion. With regard to the effect of telepresence, the perceived attractiveness of the interface is a significant facilitator determining users' immersion in web-based, rather than in text-based, interaction environments. Interactivity speed is unrelated to immersion in both web-based and text-based interaction environments. The influence of interpersonal involvement is diminished in web-based interaction environments. The implications and limitations of this study are discussed.

  9. Phase-measuring laser holographic interferometer for use in high speed flows

    Science.gov (United States)

    Yanta, William J.; Spring, W. Charles, III; Gross, Kimberly Uhrich; McArthur, J. Craig

    Phase-measurement techniques have been applied to a dual-plate laser holographic interferometer (LHI). This interferometer has been used to determine the flowfield densities in a variety of two-dimensional and axisymmetric flows. In particular, LHI has been applied in three different experiments: flowfield measurements inside a two-dimensional scramjet inlet, flow over a blunt cone, and flow over an indented nose shape. Comparisons of experimentally determined densities with computational results indicate that, when phase-measurement techniques are used in conjunction with state-of-the-art image-processing instrumentation, holographic interferometry can be a diagnostic tool with high resolution, high accuracy, and rapid data retrieval.

  10. The effect of additives on the speed of the crystallization front of xylitol with various degrees of supercooling

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, Ari; Merilaeinen, Arttu [Helsinki University of Technology, Department of Energy Technology, Applied Thermodynamics, P.O. Box 4400, 02015 TKK (Finland); Wikstroem, Lisa; Kauranen, Pertti [VTT Technical Research Centre of Finland, Advanced Materials, P.O. Box 1300, 33101 Tampere (Finland)

    2010-07-15

    Some liquids can be kept in a supercooled or supersaturated metastable state for substantially long periods. Such liquids can be applied as long-term heat storage where the latent heat can be released when needed. As xylitol possesses a relatively high value of latent heat and as it can be easily supercooled, it has promising properties for this application. However, the speed of the crystallization of xylitol is low, leading to a low release rate of latent heat. Several additives have been experimentally tested for the purpose of accelerating the crystallization speed. The effect of the additives on the latent heat, on the melting temperatures, and on the long-term durability of the supercooled state was also measured. The highest speeds of the crystallization front, at a temperature of 22 C, were achieved with methanol as an additive leading to speeds 33 times higher in vertical experiments and in 170 times higher in horizontal ones than with pure xylitol. The improved speed of the crystallization front is mostly caused by the methanol flow currents generated as a result of the separation of methanol during crystallization, and to a lesser extent, as a result of the increase in the speed of the growth of the crystals. (author)

  11. Simulations of ductile flow in brittle material processing

    Energy Technology Data Exchange (ETDEWEB)

    Luh, M.H.; Strenkowski, J.S.

    1988-12-01

    Research is continuing on the effects of thermal properties of the cutting tool and workpiece on the overall temperature distribution. Using an Eulerian finite element model, diamond and steel tools cutting aluminum have been simulated at various, speeds, and depths of cut. The relative magnitude of the thermal conductivity of the tool and the workpiece is believed to be a primary factor in the resulting temperature distribution in the workpiece. This effect is demonstrated in the change of maximum surface temperatures for diamond on aluminum vs. steel on aluminum. As a preliminary step toward the study of ductile flow in brittle materials, the relative thermal conductivities of diamond on polycarbonate is simulated. In this case, the maximum temperature shifts from the rake face of the tool to the surface of the machined workpiece, thus promoting ductile flow in the workpiece surface.

  12. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation

    OpenAIRE

    Piacentini, Niccolò; Mernier, Guillaume; Tornay, Raphaël; Renaud, Philippe

    2011-01-01

    We present a microfluidic device capable of separating platelets from other blood cells in continuous flow using dielectrophoresis field-flow-fractionation. The use of hydrodynamic focusing in combination with the application of a dielectrophoretic force allows the separation of platelets from red blood cells due to their size difference. The theoretical cell trajectory has been calculated by numerical simulations of the electrical field and flow speed, and is in agreement with the experiment...

  13. Compressible turbulent flows: aspects of prediction and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, R. [TU Muenchen, Garching (Germany). Fachgebiet Stroemungsmechanik

    2007-03-15

    Compressible turbulent flows are an important element of high-speed flight. Boundary layers developing along fuselage and wings of an aircraft and along engine compressor and turbine blades are compressible and mostly turbulent. The high-speed flow around rockets and through rocket nozzles involves compressible turbulence and flow separation. Turbulent mixing and combustion in scramjet engines is another example where compressibility dominates the flow physics. Although compressible turbulent flows have attracted researchers since the fifties of the last century, they are not completely understood. Especially interactions between compressible turbulence and combustion lead to challenging, yet unsolved problems. Direct numerical simulation (DNS) and large-eddy simulation (LES) represent modern powerful research tools which allow to mimic such flows in great detail and to analyze underlying physical mechanisms, even those which cannot be accessed by the experiment. The present lecture provides a short description of these tools and some of their numerical characteristics. It then describes DNS and LES results of fully-developed channel and pipe flow and highlights effects of compressibility on the turbulence structure. The analysis of pressure fluctuations in such flows with isothermal cooled walls leads to the conclusion that the pressure-strain correlation tensor decreases in the wall layer and that the turbulence anisotropy increases, since the mean density falls off relative to the incompressible flow case. Similar increases in turbulence anisotropy due to compressibility are observed in inert and reacting temporal mixing layers. The nature of the pressure fluctuations is however two-facetted. While inert compressible mixing layers reveal wave-propagation effects in the pressure and density fluctuations, compressible reacting mixing layers seem to generate pressure fluctuations that are controlled by the time-rate of change of heat release and mean density

  14. A visualization study of flow-induced acoustic resonance in a branched pipe

    International Nuclear Information System (INIS)

    Li, Yanrong; Someya, Satoshi; Okamoto, Koji

    2008-01-01

    Systems with closed side-branches are liable to an excitation of sound, as called cavity tones. It may occur in pipe branches leading to safety valves or to boiler relief valves. The outbreak mechanism of the cavity tone has been known by phase-averaged measurement in previous researches, while the relation between sound propagation and flow field is still unclear due to the difficulty of detecting instantaneous pressure field. High time-resolved PIV has a possibility to analyze the pressure field and the relation mentioned above. In this report, flow-induced acoustic resonances of piping system containing closed side-branches were investigated experimentally. A High-Time-Resolved PIV technique was applied to measure a gas-flow in a cavity-tone. Air flow containing an oil mist as tracer particles was measured using a high frequency pulse laser and a high-speed camera. The present investigation on the coaxial closed side-branches is the first rudimentary study to measure the flow field two-dimensionally and simultaneously with the pressure measurement at multi-points and to visualize the fluid flow in the cross-section by using PIV. The fluid flows at different points in the cavity interact with some phase differences and the relation should be clarified. (author)

  15. An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV

    Science.gov (United States)

    Wernet, Mark P.; Bright, Michelle M.; Skoch, Gary J.

    2002-01-01

    Compressor stall is a catastrophic breakdown of the flow in a compressor, which can lead to a loss of engine power, large pressure transients in the inlet/nacelle and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to successfully control these events. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to simultaneously capture transient velocity and pressure measurements in the non-stationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique which is ideally suited for studying transient flow phenomena in high speed turbomachinery and has been used previously to successfully map the stable operating point flow field in the diffuser of a high speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.

  16. Study on the characterization of the neutron radiography facility in HANARO for two-phase flow research

    International Nuclear Information System (INIS)

    Lim, I. C.; Seo, C. G.; Jeong, J. H.; Lee, B. H.; Choi, Y. S.

    2001-01-01

    For the application of dynamic neutron radiography to the two-phase flow research using HANARO, several experimental items to which the radiography technique is beneficial were identified through the review of the outputs from the related researches and the discussions with experts. Also, the investigation of the equipments including the beam port, camera and converter was made and a hardware and a software for image processing were equipped. It was confirmed that the calibration curve for the attenuation of neutron beam in fluid which is required for the two-phase flow experiment could be obtained by the computer code calculation. Based on the investigation results on the equipment and the results from the measurement of BNCT beam characteristics, a high speed camera and an image intensifier will be purchased. Then, the high speed dynamic neutron radiography facility for two-phase flow experiments will be fully equipped

  17. Study on the characterization of the neutron radiography facility in HANARO for two-phase flow research

    Energy Technology Data Exchange (ETDEWEB)

    Lim, I. C.; Seo, C. G.; Jeong, J. H.; Lee, B. H.; Choi, Y. S

    2001-01-01

    For the application of dynamic neutron radiography to the two-phase flow research using HANARO, several experimental items to which the radiography technique is beneficial were identified through the review of the outputs from the related researches and the discussions with experts. Also, the investigation of the equipments including the beam port, camera and converter was made and a hardware and a software for image processing were equipped. It was confirmed that the calibration curve for the attenuation of neutron beam in fluid which is required for the two-phase flow experiment could be obtained by the computer code calculation. Based on the investigation results on the equipment and the results from the measurement of BNCT beam characteristics, a high speed camera and an image intensifier will be purchased. Then, the high speed dynamic neutron radiography facility for two-phase flow experiments will be fully equipped.

  18. High Speed Gear Sized and Configured to Reduce Windage Loss

    Science.gov (United States)

    Kunz, Robert F. (Inventor); Medvitz, Richard B. (Inventor); Hill, Matthew John (Inventor)

    2013-01-01

    A gear and drive system utilizing the gear include teeth. Each of the teeth has a first side and a second side opposite the first side that extends from a body of the gear. For each tooth of the gear, a first extended portion is attached to the first side of the tooth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates. The gear may be utilized in drive systems that may have high rotational speeds, such as speeds where the tip velocities are greater than or equal to about 68 m/s. Some embodiments of the gear may also utilize teeth that also have second extended portions attached to the second sides of the teeth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates.

  19. Improving speed behaviour : the potential of in-car speed assistance and speed limit credibility.

    NARCIS (Netherlands)

    Nes, C.N. van Houtenbos, M. & Schagen, I.N.L.G. van

    2009-01-01

    Speeding is still a common practice on many roads and it contributes to a significant number of crashes. Two new approaches to solve speeding issues are focused on: intelligent speed assistance systems (ISA) and speed limit credibility. Research has indicated that ISA is promising with respect to

  20. A coupled implicit method for chemical non-equilibrium flows at all speeds

    Science.gov (United States)

    Shuen, Jian-Shun; Chen, Kuo-Huey; Choi, Yunho

    1993-01-01

    The present time-accurate coupled-solution procedure addresses the chemical nonequilibrium Navier-Stokes equations over a wide Mach-number range uses, in conjunction with the strong conservation form of the governing equations, five unknown primitive variables. The numerical tests undertaken address steady convergent-divergent nozzle flows with air dissociation/recombination, dump combustor flows with n-pentane/air chemistry, and unsteady nonreacting cavity flows.

  1. Theoretical treatment of fluid flow for accelerating bodies

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2016-02-01

    Full Text Available speed or the local flow velocities, in, for example, stellar cores or galactic formation. The inviscid equations are derived using a transformation into a non-inertial rotating frame with scaling factors in time, space, and density for this purpose... was initiated with the derivation of the properties of general linear transforms between arbitrarily moving frames, with relative motion defined by functions of continuous differentiability of class C 2 , in Rn+1 spaces with n spatial dimensions...

  2. Capacitated Vehicle Routing with Nonuniform Speeds

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Molinaro, Marco; Nagarajan, Viswanath

    2016-01-01

    is the distance traveled divided by its speed.Our algorithm relies on a new approximate minimum spanning tree construction called Level-Prim, which is related to but different from Light Approximate Shortest-path Trees. We also extend the widely used tour-splitting technique to nonuniform speeds, using ideas from...

  3. Measurement of bubble velocity in an air/water flow through a narrow gap by using high-speed cinematography; Ermittlung der Blasengeschwindigkeit einer Luft/Wasser-Spaltstroemung mit Hilfe der Hochgeschwindigkeitskinematographie

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, S.; Friedel, L. [Technische Univ. Hamburg-Harburg, Hamburg (Germany)

    1997-12-01

    To predict the mass flow of a two phase mixture at a given pressure difference through narrow gaps, apart from the change in state of the gas phase during pressure reduction, the knowledge of the fluid dynamics on balance which occurs in the form of a relative velocity between the phases is important. These two influences were examined with the aid of high speed cinematography for a water/air bubble flow. Apart from the quick reduction in pressure due to the sudden reduction in crossection at the entry to the gap, there are no significant differences between the experimentally determined volume change in bubbles of different sizes and that calculated assuming an isothermal change in state. The mean velocity of the bubbles does not differ appreciably from that calculated assuming an homogeneous flow. [Deutsch] Zur Vorhersage des sich bei gegebener Druckdifferenz einstellenden Massenstroms eines Zweiphasengemischs durch enge Spalte ist neben der Zustandsaenderung der Gasphase waehrend der Druckabsenkung u.a. auch die Kenntnis des sich dabei einstellenden fluiddynamischen Ungleichgewichts in Form einer Relativgeschwindigkeit zwischen den Phasen von Bedeutung. Diese beiden Einfluesse wurden mit Hilfe der Hochgeschwindigkeitskinematographie fuer eine Wasser/Luft-Blasenstroemung untersucht. Abgesehen von der raschen Druckabsenkung aufgrund der ploetzlichen Querschnittsverengung im Spalteintritt treten keine nennenswerten Unterschiede zwischen den experimentell ermittelten und den unter der Annahme einer isothermen Zustandsaenderungen berechneten Volumenaenderung verschiedengrosser Blasen auf. Die mittlere Geschwindigkeit der Blasen unterscheidet sich dabei nicht wesentlich von der unter der Annahme einer homogenen Stroemung berechneten. (orig.)

  4. Flow visualization study of two-phase flow in a single bend outlet feeder pipe of a CANDU reactor

    International Nuclear Information System (INIS)

    Savalaxs, S.-A.; Lister, D.H.; Steward, F.R.

    2005-01-01

    In CANDU reactors, the feeder piping that is used to direct the high-temperature water coolant between the fuel channels and the steam generators is made of carbon steel. Since 1996, several CANDU stations have reported excessive corrosion of their outlet feeders. The first metre is particularity vulnerable because the piping there consists of single or double bends, which have relatively thin walls produced by the bending process. Early studies related the attack to the hydrodynamics of the coolant and verified that it was a type of flow-accelerated corrosion. In order to understand the hydrodynamics of the coolant in the outlet feeders by flow visualization, a full-scale transparent test section simulating the geometry and orientation of an outlet feeder bend with its upstream components was fabricated. The feeder consisted of a 54 mm diameter acrylic pipe with a 73 degree bend. This was connected to the upstream component with an acrylic simulation of a Grayloc flanged fitting. A test loop supplied room temperature water to the test section at flow rates up to 0.019 m3/s. Air could be injected into the water to give a mean volume fraction of up to 0.56. In this preliminary investigation, the size and velocity of air bubbles at different flow conditions and their distribution within the pipe bend were studied. Particular attention was paid to the flow pattern at the inside of the bend, where a CFD (computational fluid dynamics) code - Fluent 6.1-had failed to predict a liquid film in an earlier study. A high-speed digital video camera was used to determine the relation between bubble size and velocity. Such a relation should help to explain the discrepancy in the CFD modelling and provide the basis for accurate predictions of phase distribution in complex geometries at high flow rates. (authors)

  5. Volcanic flows versus water- and ice-related outburst deposits in eastern Hellas: A comparison

    Science.gov (United States)

    Voelker, M.; Hauber, E.; Stephan, K.; Jaumann, R.

    2018-06-01

    Hellas Planitia is one of the major topographic sinks on Mars for the deposition of any kind of sediments. We report on our observations of sheet deposits in the eastern part of the basin that are apparently related to the Dao Vallis outflow channel. The deposits have lobate flow fronts and a thickness of a few decameters. Despite their generally smooth surface, some distinctive textures and patterns can be identified, such as longitudinal lineations, distributive channels, and polygons. We compared these deposits to other sheet deposits on Mars and tested three hypotheses of their origin: volcanic flows as well as water- and ice-related mass wastings. Despite some similarities to volcanic sheet flows on Mars, we found several morphological characteristics that are not known for sheet lava flows; for example conically arranged lineations and channel systems very similar to fluvial incisions. We also reject an ice-related formation similar to terrestrial rock-ice avalanches, as there is no sufficient relief energy to explain their extent and location. A water-related origin appears most consistent with our observations, and we favor an emplacement by fluvially-driven mass wasting processes, e.g., debris flows. Assuming a water-related origin, we calculated the amount of water that would be required to deposit such large sedimentary bodies for different flow types. Our calculations show a large range of possible water volumes, from 64 to 2,042 km³, depending on the specific flow mechanism. The close link to Dao Vallis makes these deposits a unique place to study the deposition of outflow channel sediments, as the deposits of other outflow channels on Mars, such as those around Chryse Planitia, are mostly buried by younger sediments and volcanic flows.

  6. Numerical analysis of high-speed Lithium jet flow under vacuum conditions

    International Nuclear Information System (INIS)

    Gordeev, Sergej; Groeschel, Friedrich; Stieglitz, Robert

    2016-01-01

    The EVEDA Li test loop (ELTL) [1] is aimed at validating the hydraulic stability of the Lithium (Li) target at a velocity up to 20 m/s at vacuum (≈10 −3 Pa). The ELTL has been designed to demonstrate the feasibility of the major components providing a neutron production liquid Li target for IFMIF. The rectangular shaped Li jet (cross-section 25 mm × 100 mm) necessitates for heat removal flow velocities of 15–20 m/s along a concave shaped back wall (curvature radius 250 mm) towards the outlet pipe, where the Li jet is subjected to vacuum before it finally enters the collecting quench tank. During the validation experiments within the ELTL acoustic waves within the target outlet pipe have been recorded, indicating potential cavitation processes in the jet impinging region, which may cause premature failures. In order to identify potential cavitation phenomena in correlation with the free jet flow in the outlet pipe a numerical study has been performed. The comparison measured and simulated acoustic emissions exhibits that experimentally deduced cavitation area coincides with the location of the jet wall impingement. The simulations further reveal that a part of the fluid after striking the wall even flows opposite to the gravity vector. This reversed flow is inherently unstable and characterized by waves at first growing and then bursting into droplets. The intense generation of small droplets increases significantly the Li free surface area and lead to a production of Li vapour, which is captured by the jet flow and reintroduced in the main flow. As the static pressure is recovered downstream due to jet impact, the vapour bubbles collapse and hence cavitation likely occurs.

  7. Numerical analysis of high-speed Lithium jet flow under vacuum conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, Sergej, E-mail: sergej.gordeev@kit.edu; Groeschel, Friedrich; Stieglitz, Robert

    2016-11-01

    The EVEDA Li test loop (ELTL) [1] is aimed at validating the hydraulic stability of the Lithium (Li) target at a velocity up to 20 m/s at vacuum (≈10{sup −3} Pa). The ELTL has been designed to demonstrate the feasibility of the major components providing a neutron production liquid Li target for IFMIF. The rectangular shaped Li jet (cross-section 25 mm × 100 mm) necessitates for heat removal flow velocities of 15–20 m/s along a concave shaped back wall (curvature radius 250 mm) towards the outlet pipe, where the Li jet is subjected to vacuum before it finally enters the collecting quench tank. During the validation experiments within the ELTL acoustic waves within the target outlet pipe have been recorded, indicating potential cavitation processes in the jet impinging region, which may cause premature failures. In order to identify potential cavitation phenomena in correlation with the free jet flow in the outlet pipe a numerical study has been performed. The comparison measured and simulated acoustic emissions exhibits that experimentally deduced cavitation area coincides with the location of the jet wall impingement. The simulations further reveal that a part of the fluid after striking the wall even flows opposite to the gravity vector. This reversed flow is inherently unstable and characterized by waves at first growing and then bursting into droplets. The intense generation of small droplets increases significantly the Li free surface area and lead to a production of Li vapour, which is captured by the jet flow and reintroduced in the main flow. As the static pressure is recovered downstream due to jet impact, the vapour bubbles collapse and hence cavitation likely occurs.

  8. Excitation of nonlinear wave patterns in flowing complex plasmas

    Science.gov (United States)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2018-01-01

    We describe experimental observations of nonlinear wave structures excited by a supersonic mass flow of dust particles over an electrostatic potential hill in a dusty plasma medium. The experiments have been carried out in a Π- shaped experimental (DPEx) device in which micron sized Kaolin particles are embedded in a DC glow discharge Argon plasma. An equilibrium dust cloud is formed by maintaining the pumping speed and gas flow rate and the dust flow is induced either by suddenly reducing the height of a potential hill or by suddenly reducing the gas flow rate. For a supersonic flow of the dust fluid precursor solitons are seen to propagate in the upstream direction while wake structures propagate in the downstream direction. For flow speeds with a Mach number greater than 2 the dust particles flowing over the potential hill give rise to dispersive dust acoustic shock waves. The experimental results compare favorably with model theories based on forced K-dV and K-dV Burger's equations.

  9. Aerodynamical errors on tower mounted wind speed measurements due to the presence of the tower

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, H. [Uppsala Univ. (Sweden). Dept. of Meteorology; Dahlberg, J.Aa. [Aeronautical Research Inst. of Sweden, Bromma (Sweden)

    1996-12-01

    Field measurements of wind speed from two lattice towers showed large differences for wind directions where the anemometers of both towers should be unaffected by any upstream obstacle. The wind speed was measured by cup anemometers mounted on booms along the side of the tower. A simple wind tunnel test indicates that the boom, for the studied conditions, could cause minor flow disturbances. A theoretical study, by means of simple 2D flow modelling of the flow around the mast, demonstrates that the tower itself could cause large wind flow disturbances. A theoretical study, based on simple treatment of the physics of motion of a cup anemometer, demonstrates that a cup anemometer is sensitive to velocity gradients across the cups and responds clearly to velocity gradients in the vicinity of the tower. Comparison of the results from the theoretical study and field tests show promising agreement. 2 refs, 8 figs

  10. Mathematical modeling of fluid flow in aluminum ladles for degasification with impeller - injector

    Science.gov (United States)

    Ramos-Gómez, E.; González-Rivera, C.; Ramírez-Argáez, M. A.

    2012-09-01

    In this work a fundamental Eulerian mathematical model was developed to simulate fluid flow in a water physical model of an aluminum ladle equipped with impeller for degassing treatment. The effect of critical process parameters such as rotor speed, gas flow rate on the fluid flow and vortex formation was analyzed with this model. Commercial CFD code PHOENICS 3.4 was used to solve all conservation equations governing the process for this twophase fluid flow system. The mathematical model was successfully validated against experimentally measured liquid velocity and turbulent profiles in a physical model. From the results it was concluded that the angular speed of the impeller is the most important parameter promoting better stirred baths. Pumping effect of the impeller is increased as impeller rotation speed increases. Gas flow rate is detrimental on bath stirring and diminishes pumping effect of impeller.

  11. Application of Chimera Grid Scheme to Combustor Flowfields at all Speeds

    Science.gov (United States)

    Yungster, Shaye; Chen, Kuo-Huey

    1997-01-01

    A CFD method for solving combustor flowfields at all speeds on complex configurations is presented. The approach is based on the ALLSPD-3D code which uses the compressible formulation of the flow equations including real gas effects, nonequilibrium chemistry and spray combustion. To facilitate the analysis of complex geometries, the chimera grid method is utilized. To the best of our knowledge, this is the first application of the chimera scheme to reacting flows. In order to evaluate the effectiveness of this numerical approach, several benchmark calculations of subsonic flows are presented. These include steady and unsteady flows, and bluff-body stabilized spray and premixed combustion flames.

  12. White Matter Fractional Anisotropy Correlates With Speed of Processing and Motor Speed in Young Childhood Cancer Survivors

    International Nuclear Information System (INIS)

    Aukema, Eline J.; Caan, Matthan W.A.; Oudhuis, Nienke; Majoie, Charles; Vos, Frans M.; Reneman, Liesbeth; Last, Bob F.; Grootenhuis, Martha A.; Schouten-van Meeteren, Antoinette Y.N.

    2009-01-01

    Purpose: To determine whether childhood medulloblastoma and acute lymphoblastic leukemia (ALL) survivors have decreased white matter fractional anisotropy (WMFA) and whether WMFA is related to the speed of processing and motor speed. Methods and Materials: For this study, 17 patients (6 medulloblastoma, 5 ALL treated with high-dose methotrexate (MTX) (4 x 5 g/m 2 ) and 6 with low-dose MTX (3 x 2 g/m 2 )) and 17 age-matched controls participated. On a 3.0-T magnetic resonance imaging (MRI) scanner, diffusion tensor imaging (DTI) was performed, and WMFA values were calculated, including specific regions of interest (ROIs), and correlated with the speed of processing and motor speed. Results: Mean WMFA in the patient group, mean age 14 years (range 8.9 - 16.9), was decreased compared with the control group (p = 0.01), as well as WMFA in the right inferior fronto-occipital fasciliculus (IFO) (p = 0.03) and in the genu of the corpus callosum (gCC) (p = 0.01). Based on neurocognitive results, significant positive correlations were present between processing speed and WMFA in the splenium (sCC) (r = 0.53, p = 0.03) and the body of the corpus callosum (bCC) (r = 0.52, p = 0.03), whereas the right IFO WMFA was related to motor speed (r = 0.49, p < 0.05). Conclusions: White matter tracts, using a 3.0-T MRI scanner, show impairment in childhood cancer survivors, medulloblastoma survivors, and also those treated with high doses of MTX. In particular, white matter tracts in the sCC, bCC and right IFO are positively correlated with speed of processing and motor speed.

  13. High-speed technique based on a parallel projection correlation procedure for digital image correlation

    Science.gov (United States)

    Zaripov, D. I.; Renfu, Li

    2018-05-01

    The implementation of high-efficiency digital image correlation methods based on a zero-normalized cross-correlation (ZNCC) procedure for high-speed, time-resolved measurements using a high-resolution digital camera is associated with big data processing and is often time consuming. In order to speed-up ZNCC computation, a high-speed technique based on a parallel projection correlation procedure is proposed. The proposed technique involves the use of interrogation window projections instead of its two-dimensional field of luminous intensity. This simplification allows acceleration of ZNCC computation up to 28.8 times compared to ZNCC calculated directly, depending on the size of interrogation window and region of interest. The results of three synthetic test cases, such as a one-dimensional uniform flow, a linear shear flow and a turbulent boundary-layer flow, are discussed in terms of accuracy. In the latter case, the proposed technique is implemented together with an iterative window-deformation technique. On the basis of the results of the present work, the proposed technique is recommended to be used for initial velocity field calculation, with further correction using more accurate techniques.

  14. Analysis of high-speed rotating flow inside gas centrifuge casing

    Science.gov (United States)

    Pradhan, Sahadev

    2017-11-01

    The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ωi while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.

  15. Optimal stride frequencies in running at different speeds.

    Directory of Open Access Journals (Sweden)

    Ben T van Oeveren

    Full Text Available During running at a constant speed, the optimal stride frequency (SF can be derived from the u-shaped relationship between SF and heart rate (HR. Changing SF towards the optimum of this relationship is beneficial for energy expenditure and may positively change biomechanics of running. In the current study, the effects of speed on the optimal SF and the nature of the u-shaped relation were empirically tested using Generalized Estimating Equations. To this end, HR was recorded from twelve healthy (4 males, 8 females inexperienced runners, who completed runs at three speeds. The three speeds were 90%, 100% and 110% of self-selected speed. A self-selected SF (SFself was determined for each of the speeds prior to the speed series. The speed series started with a free-chosen SF condition, followed by five imposed SF conditions (SFself, 70, 80, 90, 100 strides·min-1 assigned in random order. The conditions lasted 3 minutes with 2.5 minutes of walking in between. SFself increased significantly (p<0.05 with speed with averages of 77, 79, 80 strides·min-1 at 2.4, 2.6, 2.9 m·s-1, respectively. As expected, the relation between SF and HR could be described by a parabolic curve for all speeds. Speed did not significantly affect the curvature, nor did it affect optimal SF. We conclude that over the speed range tested, inexperienced runners may not need to adapt their SF to running speed. However, since SFself were lower than the SFopt of 83 strides·min-1, the runners could reduce HR by increasing their SFself.

  16. Instrument for measuring flow velocities

    International Nuclear Information System (INIS)

    Griffo, J.

    1977-01-01

    The design described here means to produce a 'more satisfying instrument with less cost' than comparable instruments known up to now. Instead of one single turbine rotor, two similar ones but with opposite blade inclination and sense of rotation are to be used. A cylindrical measuring body is carrying in its axis two bearing blocks whose shape is offering little flow resistance. On the shaft, supported by them, the two rotors run in opposite direction a relatively small axial distance apart. The speed of each rotor is picked up as pulse recurrence frequency by a transmitter and fed to an electronic measuring unit. Measuring errors as they are caused for single rotors by turbulent flow, profile distortion of the velocity, or viscous flow are to be eliminated by means of the contrarotating turbines and the subsequently added electronic unit, because in these cases the adulterating increase of the angular velocity of one rotor is compensated by a corresponding deceleration of the other rotor. The mean value then indicated by the electronic unit has high accurancy of measurement. (RW) [de

  17. Speed

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Speed. The rate of information transferred per second is the speed of the information. Measured in bits per second. Need for speed on the net: You-Tube phenomenon; IPTV; 3D Video telephony. Online gaming; HDTV.

  18. PeerFlow: Secure Load Balancing in Tor

    Directory of Open Access Journals (Sweden)

    Johnson Aaron

    2017-04-01

    Full Text Available We present PeerFlow, a system to securely load balance client traffic in Tor. Security in Tor requires that no adversary handle too much traffic. However, Tor relays are run by volunteers who cannot be trusted to report the relay bandwidths, which Tor clients use for load balancing. We show that existing methods to determine the bandwidths of Tor relays allow an adversary with little bandwidth to attack large amounts of client traffic. These methods include Tor’s current bandwidth-scanning system, TorFlow, and the peer-measurement system EigenSpeed. We present an improved design called PeerFlow that uses a peer-measurement process both to limit an adversary’s ability to increase his measured bandwidth and to improve accuracy. We show our system to be secure, fast, and efficient. We implement PeerFlow in Tor and demonstrate its speed and accuracy in large-scale network simulations.

  19. Speed control at low wind speeds for a variable speed fixed pitch wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rosmin, N.; Watson, S.J.; Tompson, M. [Loughborough Univ., Loughborough, Leicestershire (United Kingdom)

    2010-03-09

    The maximum power regulation below rated wind speed is regulated by changing the rotor/generator speed at large frequency range in a fixed pitch, variable speed, stall-regulated wind turbine. In order to capture the power at a maximum value the power coefficient is kept at maximum peak point by maintaining the tip speed ratio at its optimum value. The wind industry is moving from stall regulated fixed speed wind turbines to newer improved innovative versions with better reliability. While a stall regulated fixed pitch wind turbine is among the most cost-effective wind turbine on the market, its problems include noise, severe vibrations, high thrust loads and low power efficiency. Therefore, in order to improve such drawbacks, the rotation of the generator speed is made flexible where the rotation can be controlled in variable speed. This paper discussed the development of a simulation model which represented the behaviour of a stall regulated variable speed wind turbine at low wind speed control region by using the closed loop scalar control with adjustable speed drive. The paper provided a description of each sub-model in the wind turbine system and described the scalar control of the induction machine. It was concluded that by using a constant voltage/frequency ratio of the generator's stator side control, the generator speed could be regulated and the generator torque could be controlled to ensure the power coefficient could be maintained close to its maximum value. 38 refs., 1 tab., 10 figs.

  20. Numerical analysis of flow fields generated by accelerating flames

    Energy Technology Data Exchange (ETDEWEB)

    Kurylo, J.

    1977-12-01

    Presented here is a numerical technique for the analysis of non-steady flow fields generated by accelerating flames in gaseous media. Of particular interest in the study is the evaluation of the non-steady effects on the flow field and the possible transition of the combustion process to detonation caused by an abrupt change in the burning speed of an initially steady flame propagating in an unconfined combustible gas mixture. Optically recorded observations of accelerating flames established that the flow field can be considered to consist of non-steady flow fields associated with an assembly of interacting shock waves, contact discontinuities, deflagration and detonation fronts. In the analysis, these flow fields are treated as spatially one-dimensional, the influence of transport phenomena is considered to be negligible, and unburned and burned substances are assumed to behave as perfect gases with constant, but different, specific heats. The basis of the numerical technique is an explicit, two step, second order accurate, finite difference scheme employed to integrate the flow field equations expressed in divergence form. The burning speed, governing the motion of the deflagration, is expressed in the form of a power law dependence on pressure and temperature immediately ahead of its front. The steady wave solution is obtained by the vector polar interaction technique, that is, by determining the point of intersection between the loci of end states in the plane of the two interaction invariants, pressure and particle velocity. The technique is illustrated by a numerical example in which a steady flame experiences an abrupt change in its burning speed. Solutions correspond either to the eventual reestablishment of a steady state flow field commensurate with the burning speed or to the transition to detonation. The results are in satisfactory agreement with experimental observations.