WorldWideScience

Sample records for relative field shape

  1. American-Soviet Track and Field Exchanges as a Tool of Shaping Bilateral Political Relations

    Directory of Open Access Journals (Sweden)

    Michał Marcin Kobierecki

    2017-04-01

    Full Text Available The aim of the research is to investigate the track and field exchanges between the United States and the Soviet Union in the Cold War era, in search of their role in shaping bilateral relations between the two states. Particular attention has been paid to the motivation of respective subjects. The research allowed to test the hypothesis stating that the track and field exchanges were an attempt to bring the two countries closer and to achieve propaganda benefits simultaneously.

  2. Bow-shaped toroidal field coils

    International Nuclear Information System (INIS)

    Bonanos, P.

    1981-05-01

    Design features of Bow-Shaped Toroidal Field Coils are described and compared with circular and D shaped coils. The results indicate that bow coils can produce higher field strengths, store more energy and be made demountable. The design offers the potential for the production of ultrahigh toroidal fields. Included are representative coil shapes and their engineering properties, a suggested structural design and an analysis of a specific case

  3. AC Electric Field Activated Shape Memory Polymer Composite

    Science.gov (United States)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  4. Macroscopic electrical field distribution and field-induced surface stresses of needle-shaped field emitters

    Energy Technology Data Exchange (ETDEWEB)

    Moy, Charles K.S., E-mail: charles.moy@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, The University of Sydney, Sydney, NSW 2006 (Australia); School of Civil Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Ranzi, Gianluca [ARC Centre of Excellence for Design in Light Metals, The University of Sydney, Sydney, NSW 2006 (Australia); School of Civil Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Petersen, Timothy C. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); Ringer, Simon P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, The University of Sydney, Sydney, NSW 2006 (Australia)

    2011-05-15

    One major concern since the development of the field ion microscope is the mechanical strength of the specimens. The macroscopic shape of the imaging tip greatly influences field-induced stresses and there is merit in further study of this phenomenon from a classical perspective. Understanding the geometrical, as opposed to localized electronic, factors that affect the stress might improve the quality and success rate of atom probe experiments. This study uses macroscopic electrostatic principles and finite element modelling to investigate field-induced stresses in relation to the shape of the tip. Three two-dimensional idealized models are considered, namely hyperbolic, parabolic and sphere-on-orthogonal-cone; the shapes of which are compared to experimental tips prepared by electro-polishing. Three dimensional morphologies of both a nano-porous and single-crystal aluminium tip are measured using electron tomography to quantitatively test the assumption of cylindrical symmetry for electro-polished tips. The porous tip was prepared and studied to demonstrate a fragile specimen for which such finite element studies could determine potential mechanical failure, prior to any exhaustive atom probe investigation. -- Research highlights: {yields} We use electrostatic principles and finite element to model field-induced stresses. {yields} We study two-dimensional idealized needle-shaped field emitters. {yields} Stress distribution of hyperbolic, parabolic and sphere-on-orthogonal-cone tips mapped. {yields} Electron tomography to obtain the morphology of three-dimensional aluminium tips. {yields} Studies of the morphology of the porous tip demonstrate a fragile specimen.

  5. Shape resonances in molecular fields

    International Nuclear Information System (INIS)

    Dehmer, J.L.

    1984-01-01

    A shape resonance is a quasibound state in which a particle is temporarily trapped by a potential barrier (i.e., the shape of the potential), through which it may eventually tunnel and escape. This simple mechanism plays a prominent role in a variety of excitation processes in molecules, ranging from vibrational excitation by slow electrons to ionization of deep core levels by x-rays. Moreover, their localized nature makes shape resonances a unifying link between otherwise dissimilar circumstances. One example is the close connection between shape resonances in electron-molecule scattering and in molecular photoionization. Another is the frequent persistence of free-molecule shape resonant behavior upon adsorption on a surface or condensation into a molecular solid. The main focus of this article is a discussion of the basic properties of shape resonances in molecular fields, illustrated by the more transparent examples studied over the last ten years. Other aspects to be discussed are vibrational effects of shape resonances, connections between shape resonances in different physical settings, and examples of shape resonant behavior in more complex cases, which form current challenges in this field

  6. SVBRDF-Invariant Shape and Reflectance Estimation from a Light-Field Camera.

    Science.gov (United States)

    Wang, Ting-Chun; Chandraker, Manmohan; Efros, Alexei A; Ramamoorthi, Ravi

    2018-03-01

    Light-field cameras have recently emerged as a powerful tool for one-shot passive 3D shape capture. However, obtaining the shape of glossy objects like metals or plastics remains challenging, since standard Lambertian cues like photo-consistency cannot be easily applied. In this paper, we derive a spatially-varying (SV)BRDF-invariant theory for recovering 3D shape and reflectance from light-field cameras. Our key theoretical insight is a novel analysis of diffuse plus single-lobe SVBRDFs under a light-field setup. We show that, although direct shape recovery is not possible, an equation relating depths and normals can still be derived. Using this equation, we then propose using a polynomial (quadratic) shape prior to resolve the shape ambiguity. Once shape is estimated, we also recover the reflectance. We present extensive synthetic data on the entire MERL BRDF dataset, as well as a number of real examples to validate the theory, where we simultaneously recover shape and BRDFs from a single image taken with a Lytro Illum camera.

  7. MINERAL HORIZONS, ELECTROMAGNETIC FIELDS AND CIRCULAR SHAPES IN THE GRASS

    Directory of Open Access Journals (Sweden)

    Valentino Straser

    2009-12-01

    Full Text Available The occasional appearance of circular shapes in meadows and farmland located on slopes usually affected by gravitational phenomena, offered an occasion for verifying the possible relation between the position of the circles in the grass, the gravitational movement of the slope affecting its mineral horizons and the variations of electric and static magnetic fields close to the circular shapes and in the surrounding area. The stress caused by the “creeping” movement in the uderlying ground turned out to be in direct relation with the variation in the electric and magnetic fields caused by piezoelectric and piezomagnetic minerals such as quartz. The onset of the electromagnetic process involves the conversion of electric energy on the surface into an area of spherical shape which is linked with a different growth of herbaceous species compared to the surrounding vegetation.

  8. Clinical dosimetry of large shaped 60Co irradiation fields

    International Nuclear Information System (INIS)

    Novotny, J.

    1979-01-01

    The determination is described of absorbed doses in the Alderson-Rando phantom by thermoluminescent dosemeters in patients irradiated with irregularly shaped large-surface fields of Co 60 . In a range of 3 to 5% the measured values correspond to the values calculated with the aid of relations presented by Bukowitz. Non-homogeneity of irradiation when two supradiaphragmatic fields are used and its improvement are discussed. (author)

  9. Dosimetry of small electron fields shaped by lead

    International Nuclear Information System (INIS)

    Perez, M.; Hill, R.; Whitaker, M.; Greig, L.; West, M.; Jones, L.

    2000-01-01

    Full text: Electron fields can be used to treat superficial cancers. Field shaping can be achieved by placing lead on the patient surface to minimise the dose to surrounding areas and may improve beam penumbra compared to using standard applicators. However, significant dosimetry changes under high density material edges for electron fields have been reported (W Pohlit and KH Manegold, cited in The Physics of Radiation Therapy, P.M. Khan, 1994). This project evaluated the dosimetry of small dimension electron fields shaped with lead placed on the surface. Comparisons were made between circular lead cutouts (3 and 5cm diameters) and an open electron applicator (5cm diameter). For each of these fields depth doses and profiles were measured using a diode detector in a water phantom, and isodoses were measured using X-Omat film sandwiched within a Solid water phantom. Output factors were measured in the Solid water using a Markus parallel plate ionisation chamber. The effect of the lead thickness on the profiles and output was quantified and the thickness used for the final measurements selected so as to give less than 5% transmission of the primary dose. Penumbral widths for 6MeV and 8MeV using the lead cutouts showed distinct differences compared with the open applicator. At depths of the 90% relative dose the profiles for lead shaped fields showed tighter penumbra widths by an average of 2 mm. This became more pronounced nearer the surface where, at 2mm depth, the difference in penumbral widths was an average of 4mm. The 3cm lead cutouts showed surface dose increases of 6% and 9% for 6MeV and 8 MeV respectively. Depth dose parameters (D max and R 90 ) varied by no more than 2mm between the lead cutouts and the open applicator measurements. Lead can be used to shape electron fields for radiotherapy treatments. Depth dose characteristics do not vary significantly with a 5 cm circular applicator. The penumbral width indicates less isodose spread for the lead cutout

  10. Dosimetry of irregular shaped fields of β rays

    International Nuclear Information System (INIS)

    Supe, S.J.; Datta, S.

    1976-01-01

    The feasibility of using various shapes and sizes of field limiting devices and collimators with β-ray eye applicators has necessitated the study of dosimetry for these fields. A method of calculating surface and depth doses for any shaped field from the data for circular fields is presented. The depth dose evaluation is based on a measured dose function which is defined as the dose rate at a particular depth for a particular circular field. The evaluated values for the surface and depth dose were compared with experimentally obtained values for three non-circular fields. The good agreement in these data indicates the practicability of the method suggested. (author)

  11. Shaped superconductor cylinder retains intense magnetic field

    Science.gov (United States)

    Hildebrandt, A. F.; Wahlquist, H.

    1964-01-01

    The curve of the inner walls of a superconducting cylinder is plotted from the flux lines of the magnetic field to be contained. This shaping reduces maximum flux densities and permits a stronger and more uniform magnetic field.

  12. A strategy for field shape evaluation in digital portal imaging

    International Nuclear Information System (INIS)

    Vos, P.H.; Quist, M.; Weistra, J.; Vossepoel, A.M.

    1995-01-01

    Digital portal imagers allow accurate measurement of the field shape in radiotherapy. A strategy is introduced to determine origin and magnitude of discrepancies between the prescribed and measured field outline. After measurement of the actual detector position relative to the beam a conversion is made from pixels in the image matrix to mm in the plane of the isocenter, without using information from the imaged field. Using a distance transform a quick check is performed: the outline is accepted if all outline points deviate less then a predefined minimum (usually 5 mm). Subsequent evaluation starts if somewhere in the outline this minimum is exceeded. The collimator defined parts in the field outline are discriminated from the shielding blocks using an enclosing rectangle of the portal outline. This rectangle is found by minimization of the area as a function of rotation. If more than one solution is available, minimization of the entropy of the field outline projections determines which rectangle corresponds best to the field outline. A check for the validity of the determined collimator parts is performed with a separate linear fit through these parts. An outline part is accepted as a collimator outline part if it is longer than a predefined length. Using this procedure the position for each of the collimator jaws can be individually measured and compared with its prescription, thus allowing discrimination between symmetric and asymmetric collimator set-ups. Using the distance transform again, for each of the detected (secondary) shielding blocks the largest discrepancy or the area giving underdosage or overdosage can be computed to evaluate their shape and position. Parameter(s) and criteria that should be used to evaluate the field set-up are specified in clinical protocols. For standard shielding blocks usually only a maximum tolerated difference is specified, whereas for mantle fields also maximum allowed over- and underdose areas are specified. The

  13. Visual field shape and foraging ecology in diurnal raptors.

    Science.gov (United States)

    Potier, Simon; Duriez, Olivier; Cunningham, Gregory B; Bonhomme, Vincent; O'Rourke, Colleen; Fernández-Juricic, Esteban; Bonadonna, Francesco

    2018-05-18

    Birds, particularly raptors, are believed to forage primarily using visual cues. However, raptor foraging tactics are highly diverse - from chasing mobile prey to scavenging - which may reflect adaptations of their visual systems. To investigate this, we studied the visual field configuration of 15 species of diurnal Accipitriformes that differ in such tactics, first focusing on the binocular field and blind area by using a single traits approach, and then exploring the shape of the binocular field with morphometric approaches. While the maximum binocular field width did not differ in species of different foraging tactics, the overall shape of their binocular fields did. In particular, raptors chasing terrestrial prey (ground predators) had a more protruding binocular field and a wider blind area above the head than did raptors chasing aerial or aquatic prey and obligate scavengers. Ground predators that forage on mammals from above have a wide but short bill - which increases ingestion rate - and large suborbital ridge to avoid sun glare. This may explain the protruding binocular field and the wide blind area above the head. By contrast, species from the two other groups have long but narrow bills used to pluck, flake or tear food and may need large visual coverage (and reduced suborbital ridges) to increase their foraging efficiency ( e.g. using large visual coverage to follow the escaping prey in three dimensions or detect conspecifics). We propose that binocular field shape is associated with bill and suborbital ridge shape and, ultimately, foraging strategies. © 2018. Published by The Company of Biologists Ltd.

  14. Non-potential Field Formation in the X-shaped Quadrupole Magnetic Field Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, Y.; Shimizu, T. [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Inoue, S., E-mail: kawabata.yusuke@ac.jaxa.jp [Max-Planck-Institute for Solar System Research, Justus-von-Liebig-Weg 3 D-37077 Göttingen (Germany)

    2017-06-20

    Some types of solar flares are observed in X-shaped quadrupolar field configuration. To understand the magnetic energy storage in such a region, we studied non-potential field formation in an X-shaped quadrupolar field region formed in the active region NOAA 11967, which produced three X-shaped M-class flares on 2014 February 2. Nonlinear force-free field modeling was applied to a time series of vector magnetic field maps from the Solar Optical Telescope on board Hinode and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory . Our analysis of the temporal three-dimensional magnetic field evolution shows that the sufficient free energy had already been stored more than 10 hr before the occurrence of the first M-class flare and that the storage was observed in a localized region. In this localized region, quasi-separatrix layers (QSLs) started to develop gradually from 9 hr before the first M-class flare. One of the flare ribbons that appeared in the first M-class flare was co-spatial with the location of the QSLs, suggesting that the formation of the QSLs is important in the process of energy release. These QSLs do not appear in the potential field calculation, indicating that they were created by the non-potential field. The formation of the QSLs was associated with the transverse photospheric motion of the pre-emerged flux and the emergence of a new flux. This observation indicates that the occurrence of the flares requires the formation of QSLs in the non-potential field in which free magnetic energy is stored in advance.

  15. Spheroidal and conical shapes of ferrofluid-filled capsules in magnetic fields

    Science.gov (United States)

    Wischnewski, Christian; Kierfeld, Jan

    2018-04-01

    We investigate the deformation of soft spherical elastic capsules filled with a ferrofluid in external uniform magnetic fields at fixed volume by a combination of numerical and analytical approaches. We develop a numerical iterative solution strategy based on nonlinear elastic shape equations to calculate the stretched capsule shape numerically and a coupled finite element and boundary element method to solve the corresponding magnetostatic problem and employ analytical linear response theory, approximative energy minimization, and slender-body theory. The observed deformation behavior is qualitatively similar to the deformation of ferrofluid droplets in uniform magnetic fields. Homogeneous magnetic fields elongate the capsule and a discontinuous shape transition from a spheroidal shape to a conical shape takes place at a critical field strength. We investigate how capsule elasticity modifies this hysteretic shape transition. We show that conical capsule shapes are possible but involve diverging stretch factors at the tips, which gives rise to rupture for real capsule materials. In a slender-body approximation we find that the critical susceptibility above which conical shapes occur for ferrofluid capsules is the same as for droplets. At small fields capsules remain spheroidal and we characterize the deformation of spheroidal capsules both analytically and numerically. Finally, we determine whether wrinkling of a spheroidal capsule occurs during elongation in a magnetic field and how it modifies the stretching behavior. We find the nontrivial dependence between the extent of the wrinkled region and capsule elongation. Our results can be helpful in quantitatively determining capsule or ferrofluid material properties from magnetic deformation experiments. All results also apply to elastic capsules filled with a dielectric liquid in an external uniform electric field.

  16. Consistency relation for the Lorentz invariant single-field inflation

    International Nuclear Information System (INIS)

    Huang, Qing-Guo

    2010-01-01

    In this paper we compute the sizes of equilateral and orthogonal shape bispectrum for the general Lorentz invariant single-field inflation. The stability of field theory implies a non-negative square of sound speed which leads to a consistency relation between the sizes of orthogonal and equilateral shape bispectrum, namely f NL orth. ≤ −0.054f NL equil. . In particular, for the single-field Dirac-Born-Infeld (DBI) inflation, the consistency relation becomes f NL orth. = 0.070f NL equil. ≤ 0. These consistency relations are also valid in the mixed scenario where the quantum fluctuations of some other light scalar fields contribute to a part of total curvature perturbation on the super-horizon scale and may generate a local form bispectrum. A distinguishing prediction of the mixed scenario is τ NL loc. > ((6/5)f NL loc. ) 2 . Comparing these consistency relations to WMAP 7yr data, there is still a big room for the Lorentz invariant inflation, but DBI inflation has been disfavored at more than 68% CL

  17. Shapes and dynamics from the time-dependent mean field

    International Nuclear Information System (INIS)

    Stevenson, P.D.; Goddard, P.M.; Rios, A.

    2015-01-01

    Explaining observed properties in terms of underlying shape degrees of freedom is a well-established prism with which to understand atomic nuclei. Self-consistent mean-field models provide one tool to understand nuclear shapes, and their link to other nuclear properties and observables. We present examples of how the time-dependent extension of the mean-field approach can be used in particular to shed light on nuclear shape properties, particularly looking at the giant resonances built on deformed nuclear ground states, and at dynamics in highly-deformed fission isomers. Example calculations are shown of 28 Si in the first case, and 240 Pu in the latter case

  18. Effects of the shape anisotropy and biasing field on the magnetization reversal process of the diamond-shaped NiFe nano films

    Science.gov (United States)

    Xu, Sichen; Yin, Jianfeng; Tang, Rujun; Zhang, Wenxu; Peng, Bin; Zhang, Wanli

    2017-11-01

    The effects of the planar shape anisotropy and biasing field on the magnetization reversal process (MRP) of the diamond-shaped NiFe nano films have been investigated by micromagnetic simulations. Results show that when the length to width ratio (LWR) of the diamond-shaped film is small, the MRP of the diamond-shaped films are sensitive to LWR. But when LWR is larger than 2, a stable domain switching mode is observed which nucleates from the center of the diamond and then expands to the edges. At a fixed LWR, the magnitude of the switching fields decrease with the increase of the biasing field, but the domain switching mode is not affected by the biasing field. Further analysis shows that demagnetization energy dominates over the MRP of the diamond-shaped films. The above LWR dependence of MRP can be well explained by a variation of the shape anisotropic factor with LWR.

  19. Magnetic field from arbitrarily shaped flat coils with filamentary, ribbon, and rectangular cross sections

    International Nuclear Information System (INIS)

    Weissenburger, D.W.; Christensen, U.R.

    1975-01-01

    This report describes the derivation of three groups of equations: (1) Field components from an arbitrarily shaped filament lying in a plane. (2) Field components from an arbitrarily shaped ribbon of infinitesimal thickness with center line lying in a plane. (3) Field components from an arbitrarily shaped bar of rectangular cross section with its center line lying in a plane. In all three cases analytical expressions for the field components were found for an infinitesimal element of the cross section. These expressions are then integrated numerically along the arbitrarily shaped center line of the coil to obtain the three field components. As a check for accuracy the calculated field values of an elliptically shaped coil were compared to an existing analytic expression for a filamentary elliptical coil

  20. A six-bank multi-leaf system for high precision shaping of large fields

    International Nuclear Information System (INIS)

    Topolnjak, R; Heide, U A van der; Raaymakers, B W; Kotte, A N T J; Welleweerd, J; Lagendijk, J J W

    2004-01-01

    In this study, we present the design for an alternative MLC system that allows high precision shaping of large fields. The MLC system consists of three layers of two opposing leaf banks. The layers are rotated 60 deg. relative to each other. The leaves in each bank have a standard width of 1 cm projected at the isocentre. Because of the symmetry of the collimator set-up it is expected that collimator rotation will not be required, thus simplifying the construction considerably. A 3D ray tracing computer program was developed in order to simulate the fluence profile for a given collimator and used to optimize the design and investigate its performance. The simulations show that a six-bank collimator will afford field shaping of fields of about 40 cm diameter with a precision comparable to that of existing mini MLCs with a leaf width of 4 mm

  1. Mitigation of Power frequency Magnetic Fields. Using Scale Invariant and Shape Optimization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Salinas, Ener; Yueqiang Liu; Daalder, Jaap; Cruz, Pedro; Antunez de Souza, Paulo Roberto Jr; Atalaya, Juan Carlos; Paula Marciano, Fabianna de; Eskinasy, Alexandre

    2006-10-15

    The present report describes the development and application of two novel methods for implementing mitigation techniques of magnetic fields at power frequencies. The first method makes use of scaling rules for electromagnetic quantities, while the second one applies a 2D shape optimization algorithm based on gradient methods. Before this project, the first method had already been successfully applied (by some of the authors of this report) to electromagnetic designs involving pure conductive Material (e.g. copper, aluminium) which implied a linear formulation. Here we went beyond this approach and tried to develop a formulation involving ferromagnetic (i.e. non-linear) Materials. Surprisingly, we obtained good equivalent replacement for test-transformers by varying the input current. In spite of the validity of this equivalence constrained to regions not too close to the source, the results can still be considered useful, as most field mitigation techniques are precisely developed for reducing the magnetic field in regions relatively far from the sources. The shape optimization method was applied in this project to calculate the optimal geometry of a pure conductive plate to mitigate the magnetic field originated from underground cables. The objective function was a weighted combination of magnetic energy at the region of interest and dissipated heat at the shielding Material. To our surprise, shapes of complex structure, difficult to interpret (and probably even harder to anticipate) were the results of the applied process. However, the practical implementation (using some approximation of these shapes) gave excellent experimental mitigation factors.

  2. Halo shapes, initial shear field, and cosmic web

    International Nuclear Information System (INIS)

    Rossi, G

    2014-01-01

    The ellipsoidal collapse model, combined with the excursion set theory, allows one to estimate the shapes of dark matter halos as seen in high-resolution numerical simulations. The same theoretical framework predicts a quasi-universal behaviour for the conditional axis ratio distributions at later times, set by initial conditions and unaltered by non-linear evolution. The formalism for halo shapes is also useful in making the connection with the initial shear field of the cosmic web, which plays a crucial role in the formation of large-scale structures. The author has briefly discussed the basic aspects of the modelling, as well as the implications of a new formula for the constrained eigenvalues of the initial shear field, given the fact that positions are peaks or dips in the corresponding density field – and not random locations. This formula leads to a new generalized excursion set algorithm for peaks in Gaussian random fields. The results highlighted, here, are relevant for a number of applications, especially for weak lensing studies and for devising algorithms to find and classify structures in the cosmic web

  3. On the Shape of Force-Free Field Lines in the Solar Corona

    KAUST Repository

    Prior, C.

    2012-02-02

    This paper studies the shape parameters of looped field lines in a linear force-free magnetic field. Loop structures with a sufficient amount of kinking are generally seen to form S or inverse S (Z) shapes in the corona (as viewed in projection). For a single field line, we can ask how much the field line is kinked (as measured by the writhe), and how much neighbouring flux twists about the line (as measured by the twist number). The magnetic helicity of a flux element surrounding the field line can be decomposed into these two quantities. We find that the twist helicity contribution dominates the writhe helicity contribution, for field lines of significant aspect ratio, even when their structure is highly kinked. These calculations shed light on some popular assumptions of the field. First, we show that the writhe of field lines of significant aspect ratio (the apex height divided by the footpoint width) can sometimes be of opposite sign to the helicity. Secondly, we demonstrate the possibility of field line structures which could be interpreted as Z-shaped, but which have a helicity value sign expected of an S-shaped structure. These results suggest that caution should be exercised in using two-dimensional images to draw conclusions on the helicity value of field lines and flux tubes. © 2012 Springer Science+Business Media B.V.

  4. Statistical Shape Modelling and Markov Random Field Restoration (invited tutorial and exercise)

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen

    This tutorial focuses on statistical shape analysis using point distribution models (PDM) which is widely used in modelling biological shape variability over a set of annotated training data. Furthermore, Active Shape Models (ASM) and Active Appearance Models (AAM) are based on PDMs and have proven...... deformation field between shapes. The tutorial demonstrates both generative active shape and appearance models, and MRF restoration on 3D polygonized surfaces. ''Exercise: Spectral-Spatial classification of multivariate images'' From annotated training data this exercise applies spatial image restoration...... using Markov random field relaxation of a spectral classifier. Keywords: the Ising model, the Potts model, stochastic sampling, discriminant analysis, expectation maximization....

  5. Filament shape versus coronal potential magnetic field structure

    Science.gov (United States)

    Filippov, B.

    2016-01-01

    Solar filament shape in projection on disc depends on the structure of the coronal magnetic field. We calculate the position of polarity inversion lines (PILs) of coronal potential magnetic field at different heights above the photosphere, which compose the magnetic neutral surface, and compare with them the distribution of the filament material in Hα chromospheric images. We found that the most of the filament material is enclosed between two PILs, one at a lower height close to the chromosphere and one at a higher level, which can be considered as a height of the filament spine. Observations of the same filament on the limb by the Solar Terrestrial Relations Observatory spacecraft confirm that the height of the spine is really very close to the value obtained from the PIL and filament border matching. Such matching can be used for filament height estimations in on-disc observations. Filament barbs are housed within protruding sections of the low-level PIL. On the base of simple model, we show that the similarity of the neutral surfaces in potential and non-potential fields with the same sub-photospheric sources is the reason for the found tendency for the filament material to gather near the potential-field neutral surface.

  6. A tripolar current-steering stimulator ASIC for field shaping in deep brain stimulation.

    Science.gov (United States)

    Valente, Virgilio; Demosthenous, Andreas; Bayford, Richard

    2012-06-01

    A significant problem with clinical deep brain stimulation (DBS) is the high variability of its efficacy and the frequency of side effects, related to the spreading of current beyond the anatomical target area. This is the result of the lack of control that current DBS systems offer on the shaping of the electric potential distribution around the electrode. This paper presents a stimulator ASIC with a tripolar current-steering output stage, aiming at achieving more selectivity and field shaping than current DBS systems. The ASIC was fabricated in a 0.35-μ m CMOS technology occupying a core area of 0.71 mm(2). It consists of three current sourcing/sinking channels. It is capable of generating square and exponential-decay biphasic current pulses with five different time constants up to 28 ms and delivering up to 1.85 mA of cathodic current, in steps of 4 μA, from a 12 V power supply. Field shaping was validated by mapping the potential distribution when injecting current pulses through a multicontact DBS electrode in saline.

  7. Shape from focus for large image fields

    Czech Academy of Sciences Publication Activity Database

    Pavlíček, Pavel; Hamarová, Ivana

    2015-01-01

    Roč. 54, č. 33 (2015), s. 9747-9751 ISSN 1559-128X R&D Projects: GA ČR GA13-12301S Institutional support: RVO:68378271 Keywords : shape from focus * large image fields * optically rough surface Subject RIV: BH - Optics , Masers, Lasers Impact factor: 1.598, year: 2015

  8. Planning of ''Mantle'' fields and shaping of other irregular fields of cobalt teletherapy

    International Nuclear Information System (INIS)

    Peter, Austen; Singh, Kuldip

    1980-01-01

    Blocking radiation to the lungs which do not require any treatment is a major problem in shaping the mantle field employed in treatment of Hodgkin's disease. A simple method which gives a satisfactory accuracy in shaping is described. A perspex sheet impregnated with lead shots is used in the method. Six reference points are marked on the plate by using larger lead shots in such a manner that the top reference point falls on the middle of the sternal notch. The lead shots at the reference points are imaged along with the lungs on an X-ray film. The fields to be shielded are drawn on the X-ray film. The fields to be shielded are then traced on to the master perspex sheet which is used to support lead blocks during the treatment. The reference points are also tatooed on the patient's skin. (M.G.B.)

  9. Uniform dose compensation using field within a field technique in T-shaped irradiation for esophageal cancer

    International Nuclear Information System (INIS)

    Murakami, Ryuji; Sugahara, Takeshi; Baba, Yuji; Yamashita, Yasuyuki

    2003-01-01

    We devised a uniform compensation method to improve dose distribution using the field within a field technique in T-shaped irradiation for esophageal cancer. Isodose curves and dose volume histograms (DVH) of the esophagus in the treatment volume were examined in ten patients treated for esophageal cancers. For the DVH analysis, the prescription dose was 40 Gy to the center of the treatment volume, and the volume ratio of the esophagus receiving within ±5% of the prescription dose (38-42 Gy) was regarded as an index of dose homogeneity (V±5%). The peak dose in the conventional antero-posterior opposed fields irradiation existed at the clavicular level, and the 90% isodose curve crossing the esophagus almost corresponded to the top level of the aortic arch. When 40 Gy is irradiated, the maximum dose of the esophagus and V±5% were 45.55±0.55 Gy and 59.7±13.2% respectively. The dose distribution of the esophagus became relatively homogeneous when a 10% dose was added using the field within a field technique to the area under the bottom level of the aortic arch, and the maximum dose and V±5% were 42.53±0.94 Gy and 91.7±7.1% respectively. A 10% and more overdose area existed at the clavicular level in the conventional antero-posterior opposed fields irradiation. A relatively homogeneous dose distribution could be obtained using the field within a field technique. (author)

  10. Sex-related differences in foot shape.

    Science.gov (United States)

    Krauss, I; Grau, S; Mauch, M; Maiwald, C; Horstmann, T

    2008-11-01

    The purpose of the study was to investigate sex-related differences in foot morphology. In total, 847 subjects were scanned using a 3-D-footscanner. Three different analysis methods were used: (1) comparisons were made for absolute foot measures within 250-270 mm foot length (FL); (2) and for averaged measures (% FL) across all sizes; (3) the feet were then classified using a cluster analysis. Within 250-270 mm FL, male feet were wider and higher (mean differences (MD) 1.3-5.9 mm). No relevant sex-related differences could be found in the comparison of averaged measures (MD 0.3-0.6% FL). Foot types were categorised into voluminous, flat-pointed and slender. Shorter feet were more often voluminous, longer feet were more likely to be narrow and flat. However, the definition of 'short' and 'long' was sex-related; thus, allometry of foot measures was different. For shoe design, measures should be derived for each size and sex separately. Different foot types should be considered to account for the variety in foot shape. Improper footwear can cause foot pain and deformity. Therefore, knowledge of sex-related differences in foot measures is important to assist proper shoe fit in both men and women. The present study supplements the field of knowledge within this context with recommendations for the manufacturing of shoes.

  11. Three-dimensional analytical field calculation of pyramidal-frustum shaped permanent magnets

    NARCIS (Netherlands)

    Janssen, J.L.G.; Paulides, J.J.H.; Lomonova, E.

    2009-01-01

    This paper presents a novel method to obtain fully analytical expressions of the magnetic field created by a pyramidal-frustum shaped permanent magnet. Conventional analytical tools only provide expressions for cuboidal permanent magnets and this paper extends these tools to more complex shapes. A

  12. Shape Modelling Using Markov Random Field Restoration of Point Correspondences

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Hilger, Klaus Baggesen

    2003-01-01

    A method for building statistical point distribution models is proposed. The novelty in this paper is the adaption of Markov random field regularization of the correspondence field over the set of shapes. The new approach leads to a generative model that produces highly homogeneous polygonized sh...

  13. A Fixpoint-Based Calculus for Graph-Shaped Computational Fields

    DEFF Research Database (Denmark)

    Lluch Lafuente, Alberto; Loreti, Michele; Montanari, Ugo

    2015-01-01

    topology is represented by a graph-shaped field, namely a network with attributes on both nodes and arcs, where arcs represent interaction capabilities between nodes. We propose a calculus where computation is strictly synchronous and corresponds to sequential computations of fixpoints in the graph......-shaped field. Under some conditions, those fixpoints can be computed by synchronised iterations, where in each iteration the attributes of a node is updated based on the attributes of the neighbours in the previous iteration. Basic constructs are reminiscent of the semiring μ-calculus, a semiring......-valued generalisation of the modal μ-calculus, which provides a flexible mechanism to specify the neighbourhood range (according to path formulae) and the way attributes should be combined (through semiring operators). Additional control-How constructs allow one to conveniently structure the fixpoint computations. We...

  14. Finger-Shaped GelForce: Sensor for Measuring Surface Traction Fields for Robotic Hand.

    Science.gov (United States)

    Sato, K; Kamiyama, K; Kawakami, N; Tachi, S

    2010-01-01

    It is believed that the use of haptic sensors to measure the magnitude, direction, and distribution of a force will enable a robotic hand to perform dexterous operations. Therefore, we develop a new type of finger-shaped haptic sensor using GelForce technology. GelForce is a vision-based sensor that can be used to measure the distribution of force vectors, or surface traction fields. The simple structure of the GelForce enables us to develop a compact finger-shaped GelForce for the robotic hand. GelForce that is developed on the basis of an elastic theory can be used to calculate surface traction fields using a conversion equation. However, this conversion equation cannot be analytically solved when the elastic body of the sensor has a complicated shape such as the shape of a finger. Therefore, we propose an observational method and construct a prototype of the finger-shaped GelForce. By using this prototype, we evaluate the basic performance of the finger-shaped GelForce. Then, we conduct a field test by performing grasping operations using a robotic hand. The results of this test show that using the observational method, the finger-shaped GelForce can be successfully used in a robotic hand.

  15. Effect of sample shape on nonlinear magnetization dynamics under an external magnetic field

    International Nuclear Information System (INIS)

    Vagin, Dmitry V.; Polyakov, Oleg P.

    2008-01-01

    Effect of sample shape on the nonlinear collective dynamics of magnetic moments in the presence of oscillating and constant external magnetic fields is studied using the Landau-Lifshitz-Gilbert (LLG) approach. The uniformly magnetized sample is considered to be an ellipsoidal axially symmetric particle described by demagnetization factors and uniaxial crystallographic anisotropy formed some angle with an applied field direction. It is investigated as to how the change in particle shape affects its nonlinear magnetization dynamics. To produce a regular study, all results are presented in the form of bifurcation diagrams for all sufficient dynamics regimes of the considered system. In this paper, we show that the sample's (particle's) shape and its orientation with respect to the external field (system configuration) determine the character of magnetization dynamics: deterministic behavior and appearance of chaotic states. A simple change in the system's configuration or in the shapes of its parts can transfer it from chaotic to periodic or even static regime and back. Moreover, the effect of magnetization precession stall and magnetic moments alignment parallel or antiparallel to the external oscillating field is revealed and the way of control of such 'polarized' states is found. Our results suggest that varying the particle's shape and fields' geometry may provide a useful way of magnetization dynamics control in complex magnetic systems

  16. Modification of transmission dose algorithm for irregularly shaped radiation field and tissue deficit

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyong Geon; Shin, Kyo Chul [Dankook Univ., College of Medicine, Seoul (Korea, Republic of); Huh, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan [Seoul National Univ., College of Medicine, Seoul (Korea, Republic of); Lee, Hyoung Koo [The Catholic Univ., College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    Algorithm for estimation of transmission dose was modified for use in partially blocked radiation fields and in cases with tissue deficit. The beam data was measured with flat solid phantom in various conditions of beam block. And an algorithm for correction of transmission dose in cases of partially blocked radiation field was developed from the measured data. The algorithm was tested in some clinical settings with irregular shaped field. Also, another algorithm for correction of transmission dose for tissue deficit was developed by physical reasoning. This algorithm was tested in experimental settings with irregular contours mimicking breast cancer patients by using multiple sheets of solid phantoms. The algorithm for correction of beam block could accurately reflect the effect of beam block, with error within {+-}1.0%, both with square fields and irregularly shaped fields. The correction algorithm for tissue deficit could accurately reflect the effect of tissue deficit with errors within {+-}1.0% in most situations and within {+-}3.0% in experimental settings with irregular contours mimicking breast cancer treatment set-up. Developed algorithms could accurately estimate the transmission dose in most radiation treatment settings including irregularly shaped field and irregularly shaped body contour with tissue deficit in transmission dosimetry.

  17. Modification of transmission dose algorithm for irregularly shaped radiation field and tissue deficit

    International Nuclear Information System (INIS)

    Yun, Hyong Geon; Shin, Kyo Chul; Huh, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan; Lee, Hyoung Koo

    2002-01-01

    Algorithm for estimation of transmission dose was modified for use in partially blocked radiation fields and in cases with tissue deficit. The beam data was measured with flat solid phantom in various conditions of beam block. And an algorithm for correction of transmission dose in cases of partially blocked radiation field was developed from the measured data. The algorithm was tested in some clinical settings with irregular shaped field. Also, another algorithm for correction of transmission dose for tissue deficit was developed by physical reasoning. This algorithm was tested in experimental settings with irregular contours mimicking breast cancer patients by using multiple sheets of solid phantoms. The algorithm for correction of beam block could accurately reflect the effect of beam block, with error within ±1.0%, both with square fields and irregularly shaped fields. The correction algorithm for tissue deficit could accurately reflect the effect of tissue deficit with errors within ±1.0% in most situations and within ±3.0% in experimental settings with irregular contours mimicking breast cancer treatment set-up. Developed algorithms could accurately estimate the transmission dose in most radiation treatment settings including irregularly shaped field and irregularly shaped body contour with tissue deficit in transmission dosimetry

  18. Field emission properties of ring-shaped Si ridges with DLC coating

    Science.gov (United States)

    Prommesberger, Christian; Ławrowski, Robert; Langer, Christoph; Mecani, Mirgen; Huang, Yifeng; She, Juncong; Schreiner, Rupert

    2017-05-01

    We report on the fabrication and the emission characterization of single ring-shaped Si ridges with a coating of diamond-like carbon (DLC). The reactive ion etching and the subsequent inductively coupled plasma step were adjusted to realize ring-shaped Si ridges with a height of 7.5 μm respectively 15 μm and an apex radius of 20 - 25 nm. The samples were coated with a DLC layer (thickness ≈ 2 - 5 nm) by a filtered cathodic vacuum arc deposition system in order to lower the work function of the emitter and to improve the field emission characteristics. The field emission characterizations were done in diode configuration with cathode and anode separated by a 50 μm thick mica spacer. A higher emission current was carried out for the ring-shaped Si ridge in comparison to the point-shaped Si tips due to the increased emission area. The highest emission current of 0.22 μA at 1000 V was measured on a DLC-coated sample with the highest aspect ratio. No degradation of the emission current was observed in the plateau regime during a measurement period of 6 h. Finally, no decreasing performance of the field emission properties was found due to changes in the geometry or destructions.

  19. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.

    Science.gov (United States)

    Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M

    2001-01-25

    Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars.

  20. Shape Dependence of Holographic Rényi Entropy in Conformal Field Theories

    Science.gov (United States)

    Dong, Xi

    2016-06-01

    We develop a framework for studying the well-known universal term in the Rényi entropy for an arbitrary entangling region in four-dimensional conformal field theories that are holographically dual to gravitational theories. The shape dependence of the Rényi entropy Sn is described by two coefficients: fb(n ) for traceless extrinsic curvature deformations and fc(n ) for Weyl tensor deformations. We provide the first calculation of the coefficient fb(n ) in interacting theories by relating it to the stress tensor one-point function in a deformed hyperboloid background. The latter is then determined by a straightforward holographic calculation. Our results show that a previous conjecture fb(n )=fc(n ), motivated by surprising evidence from a variety of free field theories and studies of conical defects, fails holographically.

  1. On the Shape of Force-Free Field Lines in the Solar Corona

    KAUST Repository

    Prior, C.; Berger, M. A.

    2012-01-01

    of field line structures which could be interpreted as Z-shaped, but which have a helicity value sign expected of an S-shaped structure. These results suggest that caution should be exercised in using two-dimensional images to draw conclusions

  2. Shape from specular reflection in calibrated environments and the integration of spatial normal fields

    KAUST Repository

    Balzer, Jonathan

    2011-09-01

    Reflections of a scene in a mirror surface contain information on its shape. This information is accessible by measurement through an optical metrology technique called deflectometry. The result is a field of normal vectors to the unknown surface having the remarkable property that it equally changes in all spatial directions, unlike normal maps occurring, e.g., in Shape from Shading. Its integration into a zero-order reconstruction of the surface thus deserves special attention. We develop a novel algorithm for this purpose which is relatively straightforward to implement yet outperforms existing ones in terms of efficiency and robustness. Experimental results on synthetic and real data complement the theoretical discussion. © 2011 IEEE.

  3. Evaluation of simplified two source model for relative electron output factor of irregular block shape

    International Nuclear Information System (INIS)

    Lo, Y. E.; Yi, B. Y.; Ahn, S. D.; Kim, J. H.; Lee, S. W.; Choi, E. K.

    2002-01-01

    A practical calculation algorithm which calculates the relative output factor (ROF) for electron irregular shaped-field has been developed and evaluated the accuracy and the effectiveness of the algorithm by comparing the measurements and the calculation results for irregular fields used in clinic. The algorithm assumes that the electron dose can be express as sum of the primary source component and the scattered component from the shielding block. The primary source is assumed to have Gaussian distribution, while the scattered component follows the inverse square law. Depth and angular dependency of the primary and the scattered are ignored for maximizing the practicability by reducing the number of parameters for the algorithm. Electron dose can be calculated with three parameters such as, the effective source distance, the variance of primary source, and the scattering power of the block. The coefficients are obtained from the square shaped-block measurements and these are confirmed from the rectangular or irregular shaped-fields. The results showed less than 1.5% difference between the calculation and measurements. The algorithm is proved to be practical, since one can acquire the full parameters with minimum measurements and generates accurate results within the clinically acceptable range

  4. Eddy current heating of irregularly shaped plates by slow ramped fields

    International Nuclear Information System (INIS)

    Dresner, L.

    1979-01-01

    Theorems are presented for estimating eddy current heating of irregularly shaped plates by a perpendicular ramped field. The theorems, which are derived from two complementary variational principles, give upper and lower bounds to the eddy current heating. Illustrative results are given for rectangles, isosceles triangles, sectors of circular annuli, rhombuses, and L-shaped plates. A comparison is made with earlier work

  5. Shaping markets : A neoinstitutional analysis of the emerging organizational field of renewable energy in China

    Energy Technology Data Exchange (ETDEWEB)

    Hoeyrup Christensen, N.

    2013-02-01

    Today, China is the world leading investor in renewable energy. At the heart of this effort lies China's ability to shape markets through industrial policies. Through a neoinstitutional theoretical perspective this dissertation views China's efforts within renewable energy as the emergence of a new organizational field. Despite the importance of organizational fields as a key concept in the neoinstitutional literature, there is a lack of studies on exactly how they emerge. Throughout four articles this dissertation scrutinizes therefore the emergence of the field of renewable energy in China and the mechanisms driving this emergence. Firstly, the relation between state and market is examined, and it is argued that Chinese state interventions in markets, for instance through subsidies, are based in deeply rooted historic grounds. Thus, the article explains the general context in which the Party-state handles subsidized markets, like renewable energy. Secondly, the specific development of the idea of sustainable development, and how it evolves into an institutional logic of its own, is analysed. It is around this institutional logic that renewable energy emerges as a field. The key mechanism in play is the idea work of the Party state by which sustainable development is positioned in the Partystate discourse. Thirdly, subsidization of renewable energy in China is examined as an important feature of the increasing institutionalization of the organizational field. It is shown how negotiation between companies and Party-state is the vital mechanism by which subsidies are determined. Fourthly, it is analysed how the institutional entrepreneurship of one single company resulted in an official recognition of biomass power production as a source of renewable energy, and thereby an expansion of the organizational field. Again, the main mechanism was the company's idea work, through which a crucial link between biomass and sustainable development was

  6. Marginal Shape Deep Learning: Applications to Pediatric Lung Field Segmentation.

    Science.gov (United States)

    Mansoor, Awais; Cerrolaza, Juan J; Perez, Geovanny; Biggs, Elijah; Nino, Gustavo; Linguraru, Marius George

    2017-02-11

    Representation learning through deep learning (DL) architecture has shown tremendous potential for identification, localization, and texture classification in various medical imaging modalities. However, DL applications to segmentation of objects especially to deformable objects are rather limited and mostly restricted to pixel classification. In this work, we propose marginal shape deep learning (MaShDL), a framework that extends the application of DL to deformable shape segmentation by using deep classifiers to estimate the shape parameters. MaShDL combines the strength of statistical shape models with the automated feature learning architecture of DL. Unlike the iterative shape parameters estimation approach of classical shape models that often leads to a local minima, the proposed framework is robust to local minima optimization and illumination changes. Furthermore, since the direct application of DL framework to a multi-parameter estimation problem results in a very high complexity, our framework provides an excellent run-time performance solution by independently learning shape parameter classifiers in marginal eigenspaces in the decreasing order of variation. We evaluated MaShDL for segmenting the lung field from 314 normal and abnormal pediatric chest radiographs and obtained a mean Dice similarity coefficient of 0.927 using only the four highest modes of variation (compared to 0.888 with classical ASM 1 (p-value=0.01) using same configuration). To the best of our knowledge this is the first demonstration of using DL framework for parametrized shape learning for the delineation of deformable objects.

  7. Method of shaping fields of controlled extension in a resonator with a large electrical length

    International Nuclear Information System (INIS)

    Bomko, V.A.; Rudiak, B.I.

    A method is discussed for controlling the energy of particles accelerated in a linear accelerator consisting of a volume resonator with drift tubes. Results are described for experimental studies of problems with field shaping of controlled extension of fields in an accelerating structure having drift tubes and a large electrical length. The possibility of shaping the field in a resonator using a stabilizing system of the ''antipode'' type is considered

  8. Validation of Varian TrueBeam electron phase–spaces for Monte Carlo simulation of MLC-shaped fields

    International Nuclear Information System (INIS)

    Lloyd, Samantha A. M.; Gagne, Isabelle M.; Zavgorodni, Sergei; Bazalova-Carter, Magdalena

    2016-01-01

    Purpose: This work evaluates Varian’s electron phase–space sources for Monte Carlo simulation of the TrueBeam for modulated electron radiation therapy (MERT) and combined, modulated photon and electron radiation therapy (MPERT) where fields are shaped by the photon multileaf collimator (MLC) and delivered at 70 cm SSD. Methods: Monte Carlo simulations performed with EGSnrc-based BEAMnrc/DOSXYZnrc and PENELOPE-based PRIMO are compared against diode measurements for 5 × 5, 10 × 10, and 20 × 20 cm 2 MLC-shaped fields delivered with 6, 12, and 20 MeV electrons at 70 cm SSD (jaws set to 40 × 40 cm 2 ). Depth dose curves and profiles are examined. In addition, EGSnrc-based simulations of relative output as a function of MLC-field size and jaw-position are compared against ion chamber measurements for MLC-shaped fields between 3 × 3 and 25 × 25 cm 2 and jaw positions that range from the MLC-field size to 40 × 40 cm 2 . Results: Percent depth dose curves generated by BEAMnrc/DOSXYZnrc and PRIMO agree with measurement within 2%, 2 mm except for PRIMO’s 12 MeV, 20 × 20 cm 2 field where 90% of dose points agree within 2%, 2 mm. Without the distance to agreement, differences between measurement and simulation are as large as 7.3%. Characterization of simulated dose parameters such as FWHM, penumbra width and depths of 90%, 80%, 50%, and 20% dose agree within 2 mm of measurement for all fields except for the FWHM of the 6 MeV, 20 × 20 cm 2 field which falls within 2 mm distance to agreement. Differences between simulation and measurement exist in the profile shoulders and penumbra tails, in particular for 10 × 10 and 20 × 20 cm 2 fields of 20 MeV electrons, where both sets of simulated data fall short of measurement by as much as 3.5%. BEAMnrc/DOSXYZnrc simulated outputs agree with measurement within 2.3% except for 6 MeV MLC-shaped fields. Discrepancies here are as great as 5.5%. Conclusions: TrueBeam electron phase–spaces available from Varian have been

  9. Computer codes for shaping the magnetic field of the JINR phasotron

    International Nuclear Information System (INIS)

    Zaplatin, N.L.; Morozov, N.A.

    1983-01-01

    The computer codes providing for the shaping the magnetic field of the JINR high current phasotron are presented. Using these codes the control for the magnetic field mapping was realized in on- or off-line regimes. Then these field parameters were calculated and ferromagnetic correcting elements and trim coils setting were chosen. Some computer codes were realised for the magnetic field horizontal component measurements. The data are presented on some codes possibilities. The codes were used on the EC-1010 and the CDC-6500 computers

  10. Shaping magnetic fields to direct therapy to ears and eyes.

    Science.gov (United States)

    Shapiro, B; Kulkarni, S; Nacev, A; Sarwar, A; Preciado, D; Depireux, D A

    2014-07-11

    Magnetic fields have the potential to noninvasively direct and focus therapy to disease targets. External magnets can apply forces on drug-coated magnetic nanoparticles, or on living cells that contain particles, and can be used to manipulate them in vivo. Significant progress has been made in developing and testing safe and therapeutic magnetic constructs that can be manipulated by magnetic fields. However, we do not yet have the magnet systems that can then direct those constructs to the right places, in vivo, over human patient distances. We do not yet know where to put the external magnets, how to shape them, or when to turn them on and off to direct particles or magnetized cells-in blood, through tissue, and across barriers-to disease locations. In this article, we consider ear and eye disease targets. Ear and eye targets are too deep and complex to be targeted by a single external magnet, but they are shallow enough that a combination of magnets may be able to direct therapy to them. We focus on how magnetic fields should be shaped (in space and time) to direct magnetic constructs to ear and eye targets.

  11. Electromagnetic response of non-trivially shaped superconductors in external magnetic fields and with applied currents

    International Nuclear Information System (INIS)

    Cabral, Leonardo Ribeiro Eulalio; Aguiar, Jose Albino Oliveira de

    2002-01-01

    Full text: The study of the electromagnetic response of high-T c superconductors is essential for future technological applications. Such materials are hard type II superconductors, where the mixed state (a state characterized by quantized normal flux tubes - also called vortices - immersed in a superconductor phase) occupies most of the phase diagram. Therefore, the electromagnetic properties are dictated by the vortex dynamics in these materials. One has also to consider the presence of structural defects and thermal effects, which turn the vortex dynamics very complex. These difficulties may be overcome throughout a macroscopic description, also known as continuum approximation, of the electromagnetic fields in superconductors, obtained from critical state models and constitutive relations E = E(j) and H = H(B) (where E is the electric field generated by moving vortices, j the current density, B the induction - related to the local density of vortices - and H the reversible magnetic field that is in equilibrium with B). In superconductors with negligible demagnetization factors, such as long cylinders and bars with applied magnetic fields and/or currents along their longer dimensions, the Meissner state and the flux penetration is quite well understood. However, the actual specimen shape plays an important role on the electromagnetic behavior of superconductors. Numerical methods are often employed, since such cases are hard to treat analytically. In this work we studied the electromagnetic response of superconductors with various shapes. The Meissner state is obtained for thin curved strips and long cylinders with arbitrary cross-section, in perpendicular field and with applied currents. The flux penetration is numerically calculated for thin curved strips for the Bean (j c =const.) and the Kim (j c (B) = j c0 /(1 + βB)) models. (author)

  12. Colour and shape analysis techniques for weed detection in cereal fields

    DEFF Research Database (Denmark)

    Pérez, A.J; López, F; Benlloch, J.V.

    2000-01-01

    . The proposed methods use colour information to discriminate between vegetation and background, whilst shape analysis techniques are applied to distinguish between crop and weeds. The determination of crop row position helps to reduce the number of objects to which shape analysis techniques are applied....... The performance of algorithms was assessed by comparing the results with a human classification, providing an acceptable success rate. The study has shown that despite the difficulties in accurately determining the number of seedlings (as in visual surveys), it is feasible to use image processing techniques......Information on weed distribution within the field is necessary to implement spatially variable herbicide application. This paper deals with the development of near-ground image capture and processing techniques in order to detect broad-leaved weeds in cereal crops under actual field conditions...

  13. Validation of Varian TrueBeam electron phase–spaces for Monte Carlo simulation of MLC-shaped fields

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, Samantha A. M. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 3P6 5C2 (Canada); Gagne, Isabelle M., E-mail: imgagne@bccancer.bc.ca; Zavgorodni, Sergei [Department of Medical Physics, BC Cancer Agency–Vancouver Island Centre, Victoria, British Columbia V8R 6V5, Canada and Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 5C2 (Canada); Bazalova-Carter, Magdalena [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 5C2 (Canada)

    2016-06-15

    Purpose: This work evaluates Varian’s electron phase–space sources for Monte Carlo simulation of the TrueBeam for modulated electron radiation therapy (MERT) and combined, modulated photon and electron radiation therapy (MPERT) where fields are shaped by the photon multileaf collimator (MLC) and delivered at 70 cm SSD. Methods: Monte Carlo simulations performed with EGSnrc-based BEAMnrc/DOSXYZnrc and PENELOPE-based PRIMO are compared against diode measurements for 5 × 5, 10 × 10, and 20 × 20 cm{sup 2} MLC-shaped fields delivered with 6, 12, and 20 MeV electrons at 70 cm SSD (jaws set to 40 × 40 cm{sup 2}). Depth dose curves and profiles are examined. In addition, EGSnrc-based simulations of relative output as a function of MLC-field size and jaw-position are compared against ion chamber measurements for MLC-shaped fields between 3 × 3 and 25 × 25 cm{sup 2} and jaw positions that range from the MLC-field size to 40 × 40 cm{sup 2}. Results: Percent depth dose curves generated by BEAMnrc/DOSXYZnrc and PRIMO agree with measurement within 2%, 2 mm except for PRIMO’s 12 MeV, 20 × 20 cm{sup 2} field where 90% of dose points agree within 2%, 2 mm. Without the distance to agreement, differences between measurement and simulation are as large as 7.3%. Characterization of simulated dose parameters such as FWHM, penumbra width and depths of 90%, 80%, 50%, and 20% dose agree within 2 mm of measurement for all fields except for the FWHM of the 6 MeV, 20 × 20 cm{sup 2} field which falls within 2 mm distance to agreement. Differences between simulation and measurement exist in the profile shoulders and penumbra tails, in particular for 10 × 10 and 20 × 20 cm{sup 2} fields of 20 MeV electrons, where both sets of simulated data fall short of measurement by as much as 3.5%. BEAMnrc/DOSXYZnrc simulated outputs agree with measurement within 2.3% except for 6 MeV MLC-shaped fields. Discrepancies here are as great as 5.5%. Conclusions: TrueBeam electron phase

  14. Does shaping bring an advantage for reversed field pinch plasmas?

    International Nuclear Information System (INIS)

    Guo, S.C.; Xu, X.Y.; Wang, Z.R.; Liu, Y.Q.

    2013-01-01

    The MHD–kinetic hybrid toroidal stability code MARS-K (Liu et al 2008 Phys. Plasmas 15 112503) is applied to study the shaping effects on magnetohydrodynamic (MHD) stabilities in reversed field pinch (RFP) plasmas, where both elongation and triangularity are taken into account. The ideal wall β (the ratio of the gaso-kinetic to magnetic pressures) limit set by the ideal kink mode/resistive wall mode in shaped RFP is investigated first, followed by a study of the kinetic damping on the resistive wall mode. Physics understanding of the results is provided by a systematic numerical analysis. Furthermore, the stability boundary of the linear resistive tearing mode in shaped RFP plasmas is computed and compared with that of the circular case. Finally, bootstrap currents are calculated for both circular and shaped RFP plasmas. Overall, the results of these studies indicate that the current circular cross-section is an appropriate choice for RFP devices, in the sense that the plasma shaping does not bring an appreciable advantage to the RFP performance in terms of macroscopic stabilities. In order to reach a steady-state operation, future RFP fusion reactors will probably need a substantial fraction of external current drives, due to the unfavourable scaling for the plasma-generated bootstrap current in the RFP configuration. (paper)

  15. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Svendsen, Niels Bruun

    1992-01-01

    A method for simulation of pulsed pressure fields from arbitrarily shaped, apodized and excited ultrasound transducers is suggested. It relies on the Tupholme-Stepanishen method for calculating pulsed pressure fields, and can also handle the continuous wave and pulse-echo case. The field...... is calculated by dividing the surface into small rectangles and then Summing their response. A fast calculation is obtained by using the far-field approximation. Examples of the accuracy of the approach and actual calculation times are given...

  16. Evanescent field characterisation for a d-shaped optical fibre using scanning near-field optical microscopy

    International Nuclear Information System (INIS)

    Huntington, S.T.; Nugent, K.A.; Roberts, A.; Mulvaney, P.; Lo, K.M.

    1997-01-01

    Scanning near field optical microscopy is used to measure the evanescent filed and mode profile of a Ge-doped D-shaped optical fibre. The structure of the fibre is determined by differential etching followed by an investigation of the resultant topography with an atomic force microscope. This information is then used to theoretically model the expected behaviour of the fibre and it is shown that the theoretically model the expected behaviour of the fibre and it is shown that the theoretical results are in excellent agreement with the experimentally observed fields

  17. Dependence of the ferroelectric domain shape on the electric field of the microscope tip

    International Nuclear Information System (INIS)

    Starkov, Alexander S.; Starkov, Ivan A.

    2015-01-01

    A theory of an equilibrium shape of the domain formed in an electric field of a scanning force microscope (SFM) tip is proposed. We do not assume a priori that the domain has a fixed form. The shape of the domain is defined by the minimum of the free energy of the ferroelectric. This energy includes the energy of the depolarization field, the energy of the domain wall, and the energy of the interaction between the domain and the electric field of the SFM tip. The contributions of the apex and conical part of the tip are examined. Moreover, in the proposed approach, any narrow tip can be considered. The surface energy is determined on the basis of the Ginzburg-Landau-Devonshire theory and takes into account the curvature of the domain wall. The variation of the free energy with respect to the domain shape leads to an integro-differential equation, which must be solved numerically. Model results are illustrated for lithium tantalate ceramics

  18. High-resolution field shaping utilizing a masked multileaf collimator.

    Science.gov (United States)

    Williams, P C; Cooper, P

    2000-08-01

    Multileaf collimators (MLCs) have become an important tool in the modern radiotherapy department. However, the current limit of resolution (1 cm at isocentre) can be too coarse for acceptable shielding of all fields. A number of mini- and micro-MLCs have been developed, with thinner leaves to achieve approved resolution. Currently however, such devices are limited to modest field sizes and stereotactic applications. This paper proposes a new method of high-resolution beam collimation by use of a tertiary grid collimator situated below the conventional MLC. The width of each slit in the grid is a submultiple of the MLC width. A composite shaped field is thus built up from a series of subfields, with the main MLC defining the length of each strip within each subfield. Presented here are initial findings using a prototype device. The beam uniformity achievable with such a device was examined by measuring transmission profiles through the grid using a diode. Profiles thus measured were then copied and superposed to generate composite beams, from which the uniformity achievable could be assessed. With the average dose across the profile normalized to 100%, hot spots up to 5.0% and troughs of 3% were identified for a composite beam of 2 x 5.0 mm grids, as measured at Dmax for a 6 MV beam. For a beam composed from 4 x 2.5 mm grids, the maximum across the profile was 3.0% above the average, and the minimum 2.5% below. Actual composite profiles were also formed using the integrating properties of film, with the subfield indexing performed using an engineering positioning stage. The beam uniformity for these fields compared well with that achieved in theory using the diode measurements. Finally sine wave patterns were generated to demonstrate the potential improvements in field shaping and conformity using this device as opposed to the conventional MLC alone. The scalloping effect on the field edge commonly seen on MLC fields was appreciably reduced by use of 2 x 5.0 mm

  19. Effect of Contour Shape of Nervous System Electromagnetic Stimulation Coils on the Induced Electrical Field Distribution

    Directory of Open Access Journals (Sweden)

    Daskalov Ivan K

    2002-05-01

    Full Text Available Abstract Background Electromagnetic stimulation of the nervous system has the advantage of reduced discomfort in activating nerves. For brain structures stimulation, it has become a clinically accepted modality. Coil designs usually consider factors such as optimization of induced power, focussing, field shape etc. In this study we are attempting to find the effect of the coil contour shape on the electrical field distribution for magnetic stimulation. Method and results We use the maximum of the induced electric field stimulation in the region of interest as the optimization criterion. This choice required the application of the calculus of variation, with the contour perimeter taken as a pre-set condition. Four types of coils are studied and compared: circular, square, triangular and an 'optimally' shaped contour. The latter yields higher values of the induced electrical field in depths up to about 30 mm, but for depths around 100 mm, the circular shape has a slight advantage. The validity of the model results was checked by experimental measurements in a tank with saline solution, where differences of about 12% were found. In view the accuracy limitations of the computational and measurement methods used, such differences are considered acceptable. Conclusion We applied an optimization approach, using the calculus of variation, which allows to obtain a coil contour shape corresponding to a selected criterion. In this case, the optimal contour showed higher intensities for a longer line along the depth-axis. The method allows modifying the induced field structure and focussing the field to a selected zone or line.

  20. Shaping Microwave Fields Using Nonlinear Unsolicited Feedback: Application to Enhance Energy Harvesting

    Science.gov (United States)

    del Hougne, Philipp; Fink, Mathias; Lerosey, Geoffroy

    2017-12-01

    Wave-front shaping has emerged over the past decade as a powerful tool to control wave propagation through complex media, initially in optics and more recently also in the microwave domain with important applications in telecommunication, imaging, and energy transfer. The crux of implementing wave-front shaping concepts in real life is often its need for (direct) feedback, requiring access to the target to focus on. Here, we present the shaping of a microwave field based on indirect, unsolicited, and blind feedback which may be the pivotal step towards practical implementations. With the example of a radio-frequency harvester in a metallic cavity, we demonstrate tenfold enhancement of the harvested power by wave-front shaping based on nonlinear signals detected at an arbitrary position away from the harvesting device.

  1. The calculation of relative output factor and depth dose for irregular electron fields in water

    International Nuclear Information System (INIS)

    Dunscombe, Peter; McGhee, Peter; Chu, Terence

    1996-01-01

    Purpose: A technique, based on sector integration and interpolation, has been developed for the computation of both relative output factor and depth dose of irregular electron fields in water. The purpose of this study was to determine the minimum experimental data set required for the technique to yield results within accepted dosimetric tolerances. Materials and Methods: PC based software has been written to perform the calculations necessary to dosimetrically characterize irregular shaped electron fields. The field outline is entered via digitiser and the SSD and energy via the keyboard. The irregular field is segmented into sectors of specified angle (2 deg. was used for this study) and the radius of each sector computed. The central ray depth dose is reconstructed by summing the contributions from each sector deduced from calibration depth doses measured for circular fields. Relative output factors and depth doses at SSDs at which calibrations were not performed are found by interpolation. Calibration data were measured for circular fields from 2 to 9 cm diameter at 100, 105, 110, and 115 cm SSD. A clinical cut out can be characterized in less than 2 minutes including entry of the outline using this software. The performance of the technique was evaluated by comparing calculated relative output factors, surface dose and the locations of d 80 , d 50 and d 20 with experimental measurements on a variety of cut out shapes at 9 and 18 MeV. The calibration data set (derived from circular cut outs) was systematically reduced to identify the minimum required to yield an accuracy consistent with current recommendations. Results: The figure illustrates the ability of the technique to calculate the depth dose for an irregular field (shown in the insert). It was found that to achieve an accuracy of 2% in relative output factor and 2% or 2 mm (our criterion) in percentage depth dose, calibration data from five circular fields at the four SSDs spanning the range 100-115 cm

  2. Shape and fission instabilities of ferrofluids in non-uniform magnetic fields

    Science.gov (United States)

    Vieu, Thibault; Walter, Clément

    2018-04-01

    We study static distributions of ferrofluid submitted to non-uniform magnetic fields. We show how the normal-field instability is modified in the presence of a weak magnetic field gradient. Then we consider a ferrofluid droplet and show how the gradient affects its shape. A rich phase transitions phenomenology is found. We also investigate the creation of droplets by successive splits when a magnet is vertically approached from below and derive theoretical expressions which are solved numerically to obtain the number of droplets and their aspect ratio as function of the field configuration. A quantitative comparison is performed with previous experimental results, as well as with our own experiments, and yields good agreement with the theoretical modeling.

  3. Shape Effect on the Temperature Field during Microwave Heating Process

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2018-01-01

    Full Text Available Aiming at improving the food quality during microwave process, this article mainly focused on the numerical simulation of shape effect, which was evaluated by microwave power absorption capability and temperature distribution uniformity in a single sample heated in a domestic microwave oven. This article only took the electromagnetic field and heat conduction in solid into consideration. The Maxwell equations were used to calculate the distribution of microwave electromagnetic field distribution in the microwave cavity and samples; then the electromagnetic energy was coupled as the heat source in the heat conduction process in samples. Quantitatively, the power absorption capability and temperature distribution uniformity were, respectively, described by power absorption efficiency (PAE and the statistical variation of coefficient (COV. In addition, we defined the comprehensive evaluation coefficient (CEC to describe the usability of a specific sample. In accordance with volume or the wave numbers and penetration numbers in the radial and axial directions of samples, they can be classified into different groups. And according to the PAE, COV, and CEC value and the specific need of microwave process, an optimal sample shape and orientation could be decided.

  4. Shape functions for separable solutions to cross-field diffusion problems

    International Nuclear Information System (INIS)

    Luning, C.D.; Perry, W.L.

    1984-01-01

    The shape function S(x), which arises in the study of nonlinear diffusion for cross-field diffusion in plasmas, satisfies the equation S''(x)+lambdaa(x)S/sup α/(x) = 0, 0 0. In the cases of physical interest a(x) possesses an integrable singularity at some point in (0,1) but is otherwise continuous. Existence of a positive solution to this problem is established

  5. False consensus effect for attitudes related to body shape in normal weight women concerned with body shape.

    Science.gov (United States)

    Muller, S L; Williamson, D A; Martin, C K

    2002-06-01

    This study investigated the presence of the False Consensus Effect (FCE) with body and shape-related attitudes in 30 normal weight women who scored high or low on a measure of concern with body shape. The participants were asked to rate depressive, positive, neutral, and body shape self-statements for relevance to self and to others. They also estimated the percentage of individuals that would agree with each attitudinal statement. Women with high body shape concerns rated themselves and others as significantly more likely to agree with the statements expressing such concerns than those with low concerns. They also believed that a significantly higher percentage of others would favor those attitudes. This pattern of findings is supportive of the presence of a FCE in normal weight women preoccupied with body shape and size.

  6. Cylindrical-shaped nanotube field effect transistor

    KAUST Repository

    Hussain, Muhammad Mustafa; Fahad, Hossain M.; Smith, Casey E.; Rojas, Jhonathan Prieto

    2015-01-01

    A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.

  7. Cylindrical-shaped nanotube field effect transistor

    KAUST Repository

    Hussain, Muhammad Mustafa

    2015-12-29

    A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.

  8. RELATIVE DISTANCE: THE KEY TO THE SHAPE OF HEPATIC BUILDING BLOCKS

    Directory of Open Access Journals (Sweden)

    Jan M Ruijter

    2011-05-01

    Full Text Available The delineation and the shape of the smallest structural units of the liver is still the subject of debate. However,the blood flow from an upstream terminal branch of the portal vein to a downstream central vein is thought to induce a functional zonation in hepatocyte gene expression. This property was used to determine boundary conditions for the shape of the hepatic building blocks. Histochemical techniques that specifically label periportally or pericentrally expressed enzymes can be used to distinguish periportal and pericentral areas in a liver section. Pairs of images from aligned serial sections, one stained for a portal and the next for a central enzyme, are used. Segmentation and skeletonisation of these images results in the skeletons of the portal and central areas. Distance transformation with respect to these skeletons gives for each point in the image pair the distance to the nearest terminal branches of the portal vein and the central vein. For each point the relative position on the porto-central radius can then be calculated as its distance to a portal vein divided by the sum of its portal and its central distance. In the resulting relative radius image, the area occupied by 'zones' of equivalent relative radius can be measured. According to the principle of Delesse the relative area of a zone in the image is equal to the relative volume of that zone in the tissue. For structural units of plate-like, cylindrical or spherical shape, the relative volume of a zone is equal to the relative radius of that zone to the power 1, 2 or 3, respectively. Thus, the exponent in the relative area - relative radius relation gives information on the shape of the structural unit. Measurement of the areas of each relative radius zone and determination of the area - radius relation in images of random sections of adult mouse liver results in an exponent of 1.1. This suggests that the smallest structural unit of the mouse liver has the shape of a

  9. Nonlinear microscopy of localized field enhancements in fractal shaped periodic metal nanostructures

    DEFF Research Database (Denmark)

    Beermann, I.; Evlyukhin, A.; Boltasseva, Alexandra

    2008-01-01

    Fractal shaped periodic nanostructures formed with a 100 nm period square lattice of gold nanoparticles placed on a gold film are characterized using far-field nonlinear scanning optical microscopy, in which two-photon photoluminescence (TPL) excited with a strongly focused femtosecond laser beam...

  10. Fin field effect transistor directionality impacts printing of implantation shapes

    Science.gov (United States)

    Wang, Xiren; Granik, Yuri

    2018-01-01

    In modern integrated circuit (IC) fabrication processes, the photoresist receives considerable illumination energy that is reflected by underlying topography during optical lithography of implantation layers. Bottom antireflective coating (BARC) is helpful to mitigate the reflection. Often, however, BARC is not used, because its removal is technically challenging, in addition to its relatively high economic cost. Furthermore, the advanced technology nodes, such as 14/10-nm nodes, have introduced fin field effect transistor (FinFET), which makes reflection from nonuniform silicon substrates exceptionally complicated. Therefore, modeling reflection from topography becomes obligatory to accurately predict printing of implantation shapes. Typically, FinFET is always fixed in one direction in realistic designs. However, the same implantation rectangle may be oriented in either horizontal or vertical direction. Then, there are two types of relations between the critical dimension (CD) and FinFET, namely a parallel-to and a perpendicular-to relation. We examine the fin directionality impact on CD. We found that this impact may be considerable in some cases. We use our in-house rigorous optical topography simulator to reveal underlining physical reasons. One of the major causes of the CD differences is that in the parallel orientation, the solid sidewalls of the fins conduct considerable light reflections unlike for the perpendicular orientation. This finding can aid the compact modeling in optical proximity correction of implantation masks.

  11. Enhancement of intermediate-field two-photon absorption by rationally shaped femtosecond pulses

    International Nuclear Information System (INIS)

    Chuntonov, Lev; Rybak, Leonid; Gandman, Andrey; Amitay, Zohar

    2008-01-01

    We extend the powerful frequency-domain analysis of femtosecond two-photon absorption to the intermediate-field regime of considerable absorption yields, where additionally to the weak-field nonresonant two-photon transitions also four-photon transitions play a role. Consequently, we rationally find that the absorption is enhanced over the transform-limited pulse by any shaped pulse having a spectral phase that is antisymmetric around one-half of the transition frequency and a spectrum that is asymmetric around it (red or blue detuned according to the system). The enhancement increases as the field strength increases. The theoretical results for Na are verified experimentally

  12. SU-F-T-577: Comparison of Small Field Dosimetry Measurements in Fields Shaped with Conical Applicators On Two Different Accelerating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Muir, B; McEwen, M [National Research Council, Ottawa, ON (Canada); Belec, J; Vandervoort, E [Ottawa Hospital General Campus, Ottawa, ON (Canada); Christiansen, E [Carleton University, Ottawa, ON (Canada)

    2016-06-15

    Purpose: To investigate small field dosimetry measurements and associated uncertainties when conical applicators are used to shape treatment fields from two different accelerating systems. Methods: Output factor measurements are made in water in beams from the CyberKnife radiosurgery system, which uses conical applicators to shape fields from a (flattening filter-free) 6 MV beam, and in a 6 MV beam from the Elekta Precise linear accelerator (with flattening filter) with BrainLab external conical applicators fitted to shape the field. The measurements use various detectors: (i) an Exradin A16 ion chamber, (ii) two Exradin W1 plastic scintillation detectors, (iii) a Sun Nuclear Edge diode, and (iv) two PTW microDiamond synthetic diamond detectors. Profiles are used for accurate detector positioning and to specify field size (FWHM). Output factor measurements are corrected with detector specific correction factors taken from the literature where available and/or from Monte Carlo simulations using the EGSnrc code system. Results: Differences in measurements of up to 1.7% are observed with a given detector type in the same beam (i.e., intra-detector variability). Corrected results from different detectors in the same beam (inter-detector differences) show deviations up to 3 %. Combining data for all detectors and comparing results from the two accelerators results in a 5.9% maximum difference for the smallest field sizes (FWHM=5.2–5.6 mm), well outside the combined uncertainties (∼1% for the smallest beams) and/or differences among detectors. This suggests that the FWHM of a measured profile is not a good specifier to compare results from different small fields with the same nominal energy. Conclusion: Large differences in results for both intra-detector variability and inter-detector differences suggest potentially high uncertainties in detector-specific correction factors. Differences between the results measured in circular fields from different accelerating

  13. Altered aortic shape in bicuspid aortic valve relatives influences blood flow patterns.

    Science.gov (United States)

    Schnell, Susanne; Smith, Danielle A; Barker, Alex J; Entezari, Pegah; Honarmand, Amir R; Carr, Maria L; Malaisrie, S Chris; McCarthy, Patrick M; Collins, Jeremy; Carr, James C; Markl, Michael

    2016-11-01

    Bicuspid aortic valve (BAV) is known to exhibit familial inheritance and is associated with aortopathy and altered aortic haemodynamics. However, it remains unclear whether BAV-related aortopathy can be inherited independently of valve morphology. Four-dimensional flow magnetic resonance imaging for the in vivo assessment of thoracic aortic 3D blood flow was performed in 24 BAV relatives with trileaflet aortic valves (age = 40 ± 14 years) and 15 healthy controls (age = 37 ± 10 years). Data analysis included aortic dimensions, shape (round/gothic/cubic), and 3D blood flow characteristics (semi-quantitative vortex/helix grading and peak velocities). Cubic and gothic aortic shapes were markedly more prevalent in BAV relatives compared with controls (38 vs. 7%). Ascending aorta (AAo) vortex flow in BAV relatives was significantly increased compared with controls (grading = 1.5 ± 1.0 vs. 0.6 ± 0.9, P = 0.015). Aortic haemodynamics were influenced by aortic shape: peak velocities were reduced for gothic aortas vs. round aortas (P = 0.003); vortex flow was increased for cubic aortas in the AAo (P gothic aortas in the AAo and descending aorta (P = 0.003, P = 0.029). Logistic regression demonstrated significant associations of shape with severity of vortex flow in AAo (P < 0.001) and aortic arch (P = 0.016) in BAV relatives. BAV relatives expressed altered aortic shape and increased vortex flow despite the absence of valvular disease or aortic dilatation. These data suggest a heritable component of BAV-related aortopathy affecting aortic shape and aberrant blood flow, independent of valve morphology. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  14. Determination of strain fields in porous shape memory alloys using micro-computed tomography

    Science.gov (United States)

    Bormann, Therese; Friess, Sebastian; de Wild, Michael; Schumacher, Ralf; Schulz, Georg; Müller, Bert

    2010-09-01

    Shape memory alloys (SMAs) belong to 'intelligent' materials since the metal alloy can change its macroscopic shape as the result of the temperature-induced, reversible martensite-austenite phase transition. SMAs are often applied for medical applications such as stents, hinge-less instruments, artificial muscles, and dental braces. Rapid prototyping techniques, including selective laser melting (SLM), allow fabricating complex porous SMA microstructures. In the present study, the macroscopic shape changes of the SMA test structures fabricated by SLM have been investigated by means of micro computed tomography (μCT). For this purpose, the SMA structures are placed into the heating stage of the μCT system SkyScan 1172™ (SkyScan, Kontich, Belgium) to acquire three-dimensional datasets above and below the transition temperature, i.e. at room temperature and at about 80°C, respectively. The two datasets were registered on the basis of an affine registration algorithm with nine independent parameters - three for the translation, three for the rotation and three for the scaling in orthogonal directions. Essentially, the scaling parameters characterize the macroscopic deformation of the SMA structure of interest. Furthermore, applying the non-rigid registration algorithm, the three-dimensional strain field of the SMA structure on the micrometer scale comes to light. The strain fields obtained will serve for the optimization of the SLM-process and, more important, of the design of the complex shaped SMA structures for tissue engineering and medical implants.

  15. Stress- and Magnetic Field-Induced Martensitic Transformation at Cryogenic Temperatures in Fe-Mn-Al-Ni Shape Memory Alloys

    Science.gov (United States)

    Xia, Ji; Xu, Xiao; Miyake, Atsushi; Kimura, Yuta; Omori, Toshihiro; Tokunaga, Masashi; Kainuma, Ryosuke

    2017-12-01

    Stress-induced and magnetic-field-induced martensitic transformation behaviors at low temperatures were investigated for Fe-Mn-Al-Ni alloys. The magnetic-field-induced reverse martensitic transformation was directly observed by in situ optical microscopy. Magnetization measurements under pulsed magnetic fields up to 50 T were carried out at temperatures between 4.2 and 125 K on a single-crystal sample; full magnetic-field-induced reverse martensitic transformation was confirmed at all tested temperatures. Compression tests from 10 to 100 K were conducted on a single-crystal sample; full shape recovery was obtained at all tested temperatures. It was found that the temperature dependence of both the critical stress and critical magnetic field is small and that the transformation hysteresis is less sensitive to temperature even at cryogenic temperatures. The temperature dependence of entropy change during martensitic transformation up to 100 K was then derived using the Clausius-Clapeyron relation with critical stresses and magnetic fields.

  16. On the computation of the demagnetization tensor field for an arbitrary particle shape using a Fourier space approach

    International Nuclear Information System (INIS)

    Beleggia, M.; Graef, M. de

    2003-01-01

    A method is presented to compute the demagnetization tensor field for uniformly magnetized particles of arbitrary shape. By means of a Fourier space approach it is possible to compute analytically the Fourier representation of the demagnetization tensor field for a given shape. Then, specifying the direction of the uniform magnetization, the demagnetizing field and the magnetostatic energy associated with the particle can be evaluated. In some particular cases, the real space representation is computable analytically. In general, a numerical inverse fast Fourier transform is required to perform the inversion. As an example, the demagnetization tensor field for the tetrahedron will be given

  17. Coil extensions improve line shapes by removing field distortions

    Science.gov (United States)

    Conradi, Mark S.; Altobelli, Stephen A.; McDowell, Andrew F.

    2018-06-01

    The static magnetic susceptibility of the rf coil can substantially distort the field B0 and be a dominant source of line broadening. A scaling argument shows that this may be a particular problem in microcoil NMR. We propose coil extensions to reduce the distortion. The actual rf coil is extended to a much longer overall length by abutted coil segments that do not carry rf current. The result is a long and nearly uniform sheath of copper wire, in terms of the static susceptibility. The line shape improvement is demonstrated at 43.9 MHz and in simulation calculations.

  18. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    Science.gov (United States)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  19. Event-related potentials during word mapping to object shape predict toddlers’ vocabulary size

    Directory of Open Access Journals (Sweden)

    Kristina eBorgström

    2015-02-01

    Full Text Available What role does attention to different object properties play in early vocabulary development? This longitudinal study using event-related potentials in combination with behavioral measures investigated 20- and 24-month-olds’ (n = 38; n = 34; overlapping n = 24 ability to use object shape and object part information in word-object mapping. The N400 component was used to measure semantic priming by images containing shape or detail information. At 20 months, the N400 to words primed by object shape varied in topography and amplitude depending on vocabulary size, and these differences predicted productive vocabulary size at 24 months. At 24 months, when most of the children had vocabularies of several hundred words, the relation between vocabulary size and the N400 effect in a shape context was weaker. Detached object parts did not function as word primes regardless of age or vocabulary size, although the part-objects were identified behaviorally. The behavioral measure, however, also showed relatively poor recognition of the part-objects compared to the shape-objects. These three findings provide new support for the link between shape recognition and early vocabulary development.

  20. Apparatuses and methods for generating electric fields

    Science.gov (United States)

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  1. The Influence of Vesicle Shape and Medium Conductivity on Possible Electrofusion under a Pulsed Electric Field.

    Science.gov (United States)

    Liu, Linying; Mao, Zheng; Zhang, Jianhua; Liu, Na; Liu, Qing Huo

    2016-01-01

    The effects of electric field on lipid membrane and cells have been extensively studied in the last decades. The phenomena of electroporation and electrofusion are of particular interest due to their wide use in cell biology and biotechnology. However, numerical studies on the electrofusion of cells (or vesicles) with different deformed shapes are still rare. Vesicle, being of cell size, can be treated as a simple model of cell to investigate the behaviors of cell in electric field. Based on the finite element method, we investigate the effect of vesicle shape on electrofusion of contact vesicles in various medium conditions. The transmembrane voltage (TMV) and pore density induced by a pulsed field are examined to analyze the possibility of vesicle fusion. In two different medium conditions, the prolate shape is observed to have selective electroporation at the contact area of vesicles when the exterior conductivity is smaller than the interior one; selective electroporation is more inclined to be found at the poles of the oblate vesicles when the exterior conductivity is larger than the interior one. Furthermore, we find that when the exterior conductivity is lower than the internal conductivity, the pulse can induce a selective electroporation at the contact area between two vesicles regardless of the vesicle shape. Both of these two findings have important practical applications in guiding electrofusion experiments.

  2. Electron acceleration by laser produced wake field: Pulse shape effect

    Science.gov (United States)

    Malik, Hitendra K.; Kumar, Sandeep; Nishida, Yasushi

    2007-12-01

    Analytical expressions are obtained for the longitudinal field (wake field: Ex), density perturbations ( ne') and the potential ( ϕ) behind a laser pulse propagating in a plasma with the pulse duration of the electron plasma period. A feasibility study on the wake field is carried out with Gaussian-like (GL) pulse, rectangular-triangular (RT) pulse and rectangular-Gaussian (RG) pulse considering one-dimensional weakly nonlinear theory ( ne'/n0≪1), and the maximum energy gain acquired by an electron is calculated for all these three types of the laser pulse shapes. A comparative study infers that the RT pulse yields the best results: In its case maximum electron energy gain is 33.5 MeV for a 30 fs pulse duration whereas in case of GL (RG) pulse of the same duration the gain is 28.6 (28.8)MeV at the laser frequency of 1.6 PHz and the intensity of 3.0 × 10 18 W/m 2. The field of the wake and hence the energy gain get enhanced for the higher laser frequency, larger pulse duration and higher laser intensity for all types of the pulses.

  3. Phase-only shaped laser pulses in optimal control theory: Application to indirect photofragmentation dynamics in the weak-field limit

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Henriksen, Niels E.

    2012-01-01

    We implement phase-only shaped laser pulses within quantum optimal control theory for laser-molecule interaction. This approach is applied to the indirect photofragmentation dynamics of NaI in the weak-field limit. It is shown that optimized phase-modulated pulses with a fixed frequency distribut...... distribution can substantially modify transient dissociation probabilities as well as the momentum distribution associated with the relative motion of Na and I. © 2012 American Institute of Physics....

  4. Estimating Small-Body Gravity Field from Shape Model and Navigation Data

    Science.gov (United States)

    Park, Ryan S.; Werner, Robert A.; Bhaskaran, Shyam

    2008-01-01

    This paper presents a method to model the external gravity field and to estimate the internal density variation of a small-body. We first discuss the modeling problem, where we assume the polyhedral shape and internal density distribution are given, and model the body interior using finite elements definitions, such as cubes and spheres. The gravitational attractions computed from these approaches are compared with the true uniform-density polyhedral attraction and the level of accuracies are presented. We then discuss the inverse problem where we assume the body shape, radiometric measurements, and a priori density constraints are given, and estimate the internal density variation by estimating the density of each finite element. The result shows that the accuracy of the estimated density variation can be significantly improved depending on the orbit altitude, finite-element resolution, and measurement accuracy.

  5. Bubble shape and electromagnetic field in the nonlinear regime for laser wakefield acceleration

    International Nuclear Information System (INIS)

    Li, X. F.; Yu, Q.; Huang, S.; Kong, Q.; Gu, Y. J.; Kawata, S.

    2015-01-01

    The electromagnetic field in the electron “bubble” regime for ultra-intense laser wakefield acceleration was solved using the d'Alembert equations. Ignoring the residual electrons, we assume an ellipsoidal bubble forms under ideal conditions, with bubble velocity equal to the speed of light in vacuum. The general solution for bubble shape and electromagnetic field were obtained. The results were confirmed in 2.5D PIC (particle-in-cell) simulations. Moreover, slopes for the longitudinal electric field of larger than 0.5 were found in these simulations. With spherical bubbles, this slope is always smaller than or equal to 0.5. This behavior validates the ellipsoid assumption

  6. The effect of magnetic field on the shape of etch pits of paracetamol crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ivashchenko, V.E. [Kemerovo State University, Novosibirsk (Russian Federation); Research and Educational Center, Novosibirsk State University (Russian Federation); Boldyrev, V.V.; Shakhtshneider, T.P. [Institute of Solid State Chemistry and Mechanochemistry, RAS, Novosibirsk (Russian Federation); Zakharov, Yu.A.; Krasheninin, V.I. [Kemerovo State University, Novosibirsk (Russian Federation); Ermakov, A.E. [Institute of Physics of Metals, Ural Branch of RAS, Ekaterinburg (Russian Federation)

    2002-04-01

    In the present study we investigate the effect of magnetic field on the shape of etch pits of the crystals of p-hydroxyacetanilide (paracetamol), which is widely used in pharmacy as antipyretic, antiphlogistic medicine. It was discovered that the magnetic field (H=0.5 T, {tau}=15 min) changes the morphology of etch pits and shifts dislocations in paracetamol crystal. Activation energy of the changes induced by the action of the magnetic field was determined to be 63 kJ/mol, which is comparable with the energy of hydrogen bonds in crystal lattice. (orig.)

  7. Purcell filter of unusual shape in fair superferric sextupole magnet for improving the field quality

    International Nuclear Information System (INIS)

    Sarma, P.R.; Dutta Gupta, A.; Nandi, C.; Saha, S.; Chattopadhyay, S.; Pal, G.

    2013-01-01

    In the Energy Buncher Section of the Super-FRS of the FAIR project, magnets of very high quality and wide aperture are needed. Wide aperture of these magnets generates large end-effects which can be reduced by end shaping and using Purcell filters which are voids in the pole for modifying the field. In the present work we have investigated various shapes of Purcell filters in magnets, especially in superferric sextupole magnets. Conventional Purcell filters are through and through rectangular voids in the pole region, a little away from the pole face. We have seen that the length of the Purcell filter is an important parameter which can be optimized. Thus one can use partially penetrating filters. We have further shown that Purcell filters of unusual geometry which start right from the pole face can be effectively used in reducing the weight of the iron, while keeping the field quality intact or improve the field quality, keeping the weight constant. (author)

  8. Shape memory alloys

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Shape memory alloys (SMA), when deformed, have the ability of returning, in certain circumstances, to their initial shape. Deformations related to this phenomenon are for polycrystals 1-8% and up to 15% for monocrystals. The deformation energy is in the range of 10 6 - 10 7 J/m 3 . The deformation is caused by martensitic transformation in the material. Shape memory alloys exhibit one directional or two directional shape memory effect as well as pseudoelastic effect. Shape change is activated by temperature change, which limits working frequency of SMA to 10 2 Hz. Other group of alloys exhibit magnetic shape memory effect. In these alloys martensitic transformation is triggered by magnetic field, thus their working frequency can be higher. Composites containing shape memory alloys can also be used as shape memory materials (applied in vibration damping devices). Another group of composite materials is called heterostructures, in which SMA alloys are incorporated in a form of thin layers The heterostructures can be used as microactuators in microelectromechanical systems (MEMS). Basic SMA comprise: Ni-Ti, Cu (Cu-Zn,Cu-Al, Cu-Sn) and Fe (Fe-Mn, Fe-Cr-Ni) alloys. Shape memory alloys find applications in such areas: automatics, safety and medical devices and many domestic appliances. Currently the most important appears to be research on magnetic shape memory materials and high temperature SMA. Vital from application point of view are composite materials especially those containing several intelligent materials. (author)

  9. Shape matters: Near-field fluid mechanics dominate the collective motions of ellipsoidal squirmers.

    Science.gov (United States)

    Kyoya, K; Matsunaga, D; Imai, Y; Omori, T; Ishikawa, T

    2015-12-01

    Microswimmers show a variety of collective motions. Despite extensive study, questions remain regarding the role of near-field fluid mechanics in collective motion. In this paper, we describe precisely the Stokes flow around hydrodynamically interacting ellipsoidal squirmers in a monolayer suspension. The results showed that various collective motions, such as ordering, aggregation, and whirls, are dominated by the swimming mode and the aspect ratio. The collective motions are mainly induced by near-field fluid mechanics, despite Stokes flow propagation over a long range. These results emphasize the importance of particle shape in collective motion.

  10. Perspectives in shape analysis

    CERN Document Server

    Bruckstein, Alfred; Maragos, Petros; Wuhrer, Stefanie

    2016-01-01

    This book presents recent advances in the field of shape analysis. Written by experts in the fields of continuous-scale shape analysis, discrete shape analysis and sparsity, and numerical computing who hail from different communities, it provides a unique view of the topic from a broad range of perspectives. Over the last decade, it has become increasingly affordable to digitize shape information at high resolution. Yet analyzing and processing this data remains challenging because of the large amount of data involved, and because modern applications such as human-computer interaction require real-time processing. Meeting these challenges requires interdisciplinary approaches that combine concepts from a variety of research areas, including numerical computing, differential geometry, deformable shape modeling, sparse data representation, and machine learning. On the algorithmic side, many shape analysis tasks are modeled using partial differential equations, which can be solved using tools from the field of n...

  11. Shape Biased Low Power Spin Dependent Tunneling Magnetic Field Sensors

    Science.gov (United States)

    Tondra, Mark; Qian, Zhenghong; Wang, Dexin; Nordman, Cathy; Anderson, John

    2001-10-01

    Spin Dependent Tunneling (SDT) devices are leading candidates for inclusion in a number of Unattended Ground Sensor applications. Continued progress at NVE has pushed their performance to 1OOs of pT I rt. Hz 1 Hz. However, these sensors were designed to use an applied field from an on-chip coil to create an appropriate magnetic sensing configuration. The power required to generate this field (^100mW) is significantly greater than the power budget (^lmW) for a magnetic sensor in an Unattended Ground Sensor (UGS) application. Consequently, a new approach to creating an ideal sensing environment is required. One approach being used at NVE is "shape biasing." This means that the physical layout of the SDT sensing elements is such that the magnetization of the sensing film is correct even when no biasing field is applied. Sensors have been fabricated using this technique and show reasonable promise for UGS applications. Some performance trade-offs exist. The power is easily tinder 1 MW, but the sensitivity is typically lower by a factor of 10. This talk will discuss some of the design details of these sensors as well as their expected ultimate performance.

  12. Shape sensing methods: Review and experimental comparison on a wing-shaped plate

    Science.gov (United States)

    Gherlone, Marco; Cerracchio, Priscilla; Mattone, Massimiliano

    2018-05-01

    Shape sensing, i.e., the reconstruction of the displacement field of a structure from some discrete surface strain measurements, is a fundamental capability for the structural health management of critical components. In this paper, a review of the shape sensing methodologies available in the open literature and of the different applications is provided. Then, for the first time, an experimental comparative study is presented among the main approaches in order to highlight their relative merits in presence of uncertainties affecting real applications. These approaches are, namely, the inverse Finite Element Method, the Modal Method and Ko's Displacement Theory. A brief description of these methods is followed by the presentation of the experimental test results. A cantilevered, wing-shaped aluminum plate is let deform under its own weight, leading to bending and twisting. Using the experimental strain measurements as input data, the deflection field of the plate is reconstructed using the three aforementioned approaches and compared with the actual measured deflection. The inverse Finite Element Method is proven to be slightly more accurate and particularly attractive because it is versatile with respect to the boundary conditions and it does not require any information about material properties and loading conditions.

  13. Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices.

    Science.gov (United States)

    Ahn, Wonmi; Boriskina, Svetlana V; Hong, Yan; Reinhard, Björn M

    2012-01-11

    We introduce a new design approach for surface-enhanced Raman spectroscopy (SERS) substrates that is based on molding the optical powerflow through a sequence of coupled nanoscale optical vortices "pinned" to rationally designed plasmonic nanostructures, referred to as Vortex Nanogear Transmissions (VNTs). We fabricated VNTs composed of Au nanodiscs by electron beam lithography on quartz substrates and characterized their near- and far-field responses through combination of computational electromagnetism, and elastic and inelastic scattering spectroscopy. Pronounced dips in the far-field scattering spectra of VNTs provide experimental evidence for an efficient light trapping and circulation within the nanostructures. Furthermore, we demonstrate that VNT integration into periodic arrays of Au nanoparticles facilitates the generation of high E-field enhancements in the VNTs at multiple defined wavelengths. We show that spectrum shaping in nested VNT structures is achieved through an electromagnetic feed-mechanism driven by the coherent multiple scattering in the plasmonic arrays and that this process can be rationally controlled by tuning the array period. The ability to generate high E-field enhancements at predefined locations and frequencies makes nested VNTs interesting substrates for challenging SERS applications. © 2011 American Chemical Society

  14. Dosimetric evaluation of the conformation of the multileaf collimator to irregularly shaped fields

    International Nuclear Information System (INIS)

    Frazier, Arthur; Du, Maria; Wong, John; Vicini, Frank; Taylor, Roy; Yu, Cedric; Matter, Richard; Martinez, Alvaro; Yan Di

    1995-01-01

    Purpose: The goal of this study was to evaluate the dosimetric characteristics of geometric MLC prescription strategies and compare them to those of conventional shielding block. Methods and Materials: Circular fields, square fields, and 12 irregular fields for patients with cancer of the head and neck, lung, and pelvis were included in this study. All fields were shaped using the MLC and conventional blocks. A geometric criterion was defined as the amount of area discrepancy between the MLC and the prescription outline. The 'least area discrepancy' (LAD) of the MLC conformation was searched by selecting the collimator angle, meanwhile keeping a preselected position along the width of the leaf into the prescribed field. Five LAD conventions were studied. These included the LAD-0, LAD-(1(3)), LAD-(1(2)), and LAD-(2(3)) that inserted the leaves at the 0, (1(3)), (1(2)), and (2(3)) of the leaf end into the prescription field, respectively. In addition, the LAD optimization was applied to the transecting (TRN) approach for leaf conformation that prescribed an equal area of overblocking and underblocking under each leaf. Film dosimetry was performed in a 20 cm polystyrene phantom at 10 cm depth 100 cm from source to axis distance (SAD) for both 6 and 18 MV photons with each of the above MLC conformations and conventional blocks. The field penumbra width, defined as the mean of the separation between the 20% and 80% isodose lines along the normal of the prescription field edge, was calculated using both the MLC and conventional block film dosimetry and compared. In a similar way, the d20 is defined as the mean separation between the 20% isodose line and the prescription field edge, and the d80 is defined as the mean separation between the 80% isodose line and the prescription field edge. Results: The field penumbra width for all MLC conventions was approximately 2 mm larger than that of the conventional block. However, there was a larger variation of the separation

  15. Study on Effects of The Shape of Cavitator on Supercavitation Flow Field Characteristics

    Science.gov (United States)

    Wang, Rui; Dang, Jianjun; Yao, Zhong

    2018-03-01

    The cavitator is the key part of the nose of the vehicle to induce the formation of supercavity, which has an important influence in the cavity formation rate, cavity shape and cavity stability. To study the influence of the shape on the supercavitation flew field characteristics, the cavity characteristics and the resistance characteristics of different shapes of cavitator under different working conditions are obtained by combining technical methods of numerical simulation and experimental research in water tunnel. The simulation results are contrast and analyzed with the test results. The analysis results show that : in terms of the cavity size, the inverted-conic cavitator can form the biggest cavity size, followed by the disk cavitator, and the truncated-conic cavitator is the least; in terms of the cavity formation speed, the inverted-conic cavitator has the fastest cavity formation speed, then is the truncated-conic cavitator, and the disk cavitator is the least; in terms of the drag characteristic, the truncated-conic cavitator has the maximum coefficient, disk cavitator is the next, the inverted-conic cavitator is the minimal. The research conclusion can provide reference and basis for the head shape design of supercavitating underwater ordnance and the design of hydrodynamic layout.

  16. Analysis of the modulation mechanisms of the electric field and breakdown performance in AlGaN/GaN HEMT with a T-shaped field-plate

    International Nuclear Information System (INIS)

    Mao Wei; Fan Ju-Sheng; Du Ming; Zhang Jin-Feng; Zheng Xue-Feng; Wang Chong; Ma Xiao-Hua; Zhang Jin-Cheng; Hao Yue

    2016-01-01

    A novel AlGaN/GaN high electron mobility transistor (HEMT) with a source-connected T-shaped field-plate (ST-FP HEMT) is proposed for the first time in this paper. The source-connected T-shaped field-plate (ST-FP) is composed of a source-connected field-plate (S-FP) and a trench metal. The physical intrinsic mechanisms of the ST-FP to improve the breakdown voltage and the FP efficiency and to modulate the distributions of channel electric field and potential are studied in detail by means of two-dimensional numerical simulations with Silvaco-ATLAS. A comparison to the HEMT and the HEMT with an S-FP (S-FP HEMT) shows that the ST-FP HEMT could achieve a broader and more uniform channel electric field distribution with the help of a trench metal, which could increase the breakdown voltage and the FP efficiency remarkably. In addition, the relationship between the structure of the ST-FP, the channel electric field, the breakdown voltage as well as the FP efficiency in ST-FP HEMT is analyzed. These results could open up a new effective method to fabricate high voltage power devices for the power electronic applications. (paper)

  17. Influence of nonuniform external magnetic fields and anode--cathode shaping on magnetic insulation in coaxial transmission lines

    International Nuclear Information System (INIS)

    Mostrom, M.A.

    1979-01-01

    Coaxial transmission lines, used to transfer the high voltage pulse into the diode region of a relativistic electron beam generator, have been studied using the two-dimensional time-dependent fully relativistic and electromagnetic particle simulation code CCUBE. A simple theory of magnetic insulation that agrees well with simulation results for a straight cylindrical coax in a uniform external magnetic field is used to interpret the effects of anode--cathode shaping and nonuniform external magnetic fields. Loss of magnetic insulation appears to be minimized by satisfying two conditions: (1) the cathode surface should follow a flux surface of the external magnetic field; (2) the anode should then be shaped to insure that the magnetic insulation impedance, including transients, is always greater than the effective load impedance wherever there is an electron flow in the anode--cathode gap

  18. Accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes and pure theoretical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jinhua; Fu, Qingshan; Xue, Yongqiang, E-mail: xyqlw@126.com; Cui, Zixiang

    2017-05-01

    Based on the surface pre-melting model, accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes (tetrahedron, cube, octahedron, dodecahedron, icosahedron, nanowire) were derived. The theoretically calculated melting temperatures are in relative good agreements with experimental, molecular dynamic simulation and other theoretical results for nanometer Au, Ag, Al, In and Pb. It is found that the particle size and shape have notable effects on the melting temperature of nanocrystals, and the smaller the particle size, the greater the effect of shape. Furthermore, at the same equivalent radius, the more the shape deviates from sphere, the lower the melting temperature is. The value of melting temperature depression of cylindrical nanowire is just half of that of spherical nanoparticle with an identical radius. The theoretical relations enable one to quantitatively describe the influence regularities of size and shape on the melting temperature and to provide an effective way to predict and interpret the melting temperature of nanocrystals with different sizes and shapes. - Highlights: • Accurate relations of T{sub m} of nanocrystals with various shapes are derived. • Calculated T{sub m} agree with literature results for nano Au, Ag, Al, In and Pb. • ΔT{sub m} (nanowire) = 0.5ΔT{sub m} (spherical nanocrystal). • The relations apply to predict and interpret the melting behaviors of nanocrystals.

  19. Flaw shape reconstruction – an experimental approach

    Directory of Open Access Journals (Sweden)

    Marilena STANCULESCU

    2009-05-01

    Full Text Available Flaws can be classified as acceptable and unacceptable flaws. As a result of nondestructive testing, one takes de decision Admit/Reject regarding the tested product related to some acceptability criteria. In order to take the right decision, one should know the shape and the dimension of the flaw. On the other hand, the flaws considered to be acceptable, develop in time, such that they can become unacceptable. In this case, the knowledge of the shape and dimension of the flaw allows determining the product time life. For interior flaw shape reconstruction the best procedure is the use of difference static magnetic field. We have a stationary magnetic field problem, but we face the problem given by the nonlinear media. This paper presents the results of the experimental work for control specimen with and without flaw.

  20. A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities

    Science.gov (United States)

    Bohling, Geoffrey C.; Butler, James J.; Zhan, Xiaoyong; Knoll, Michael D.

    2007-01-01

    Hydraulic tomography is a promising approach for obtaining information on variations in hydraulic conductivity on the scale of relevance for contaminant transport investigations. This approach involves performing a series of pumping tests in a format similar to tomography. We present a field‐scale assessment of hydraulic tomography in a porous aquifer, with an emphasis on the steady shape analysis methodology. The hydraulic conductivity (K) estimates from steady shape and transient analyses of the tomographic data compare well with those from a tracer test and direct‐push permeameter tests, providing a field validation of the method. Zonations based on equal‐thickness layers and cross‐hole radar surveys are used to regularize the inverse problem. The results indicate that the radar surveys provide some useful information regarding the geometry of the K field. The steady shape analysis provides results similar to the transient analysis at a fraction of the computational burden. This study clearly demonstrates the advantages of hydraulic tomography over conventional pumping tests, which provide only large‐scale averages, and small‐scale hydraulic tests (e.g., slug tests), which cannot assess strata connectivity and may fail to sample the most important pathways or barriers to flow.

  1. Size, shape and age-related changes of the mandibular condyle during childhood

    Energy Technology Data Exchange (ETDEWEB)

    Karlo, Christoph A. [University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Stolzmann, Paul [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Habernig, Sandra; Kellenberger, Christian J. [University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); Mueller, Lukas [University of Zurich, Clinics for Orthodontics and Paediatric Dentistry, Zurich (Switzerland); Saurenmann, Traudel [University Children' s Hospital Zurich, Department of Rheumatology, Zurich (Switzerland)

    2010-10-15

    To determine age-related differences in the size and shape of the mandibular condyle in children to establish anatomical reference values. A total of 420 mandibular condyles in 210 children (mean age, 7 years) were retrospectively analysed by using computed tomography (CT) imaging. The greatest left-right (LRD) and anterior-posterior (APD) diameters and the anteversion angles (AA) were measured by two readers. An APD/LRD ratio was calculated. The shape of the condyles was graded into three types on sagittal images. Correlations of parameters with the children's age were assessed by using Pearson's correlation analyses. The LRD (mean, 14.1 {+-} 2.4 mm), APD (mean, 7.3 {+-} 1.0 mm) and LRD/APD ratio (mean, 1.9 {+-} 0.3) increased (r{sub LRD} = 0.70, p < 0.01; r{sub APD} = 0.56, p < 0.01; r{sub rat} = 0.28, p < 0.01) while the AA (mean, 27 {+-} 7 ) decreased significantly (r{sub antang} = -0.26, p < 0.001) with age. The condylar shape as determined on sagittal images correlated significantly with age (r = 0.69, p < 0.05). Boys had significantly higher anteversion angles (p < 0.01), greater LRDs (p < 0.05) and greater mean ratios (p < 0.05). The mandibular condyle is subject to significant age-related changes in size and shape during childhood. As the size of the condyles increases with age, the anteversion angles decrease and the shape of the condyle turns from round to oval. (orig.)

  2. Confinement of plasma along shaped open magnetic fields from the centrifugal force of supersonic plasma rotation.

    Science.gov (United States)

    Teodorescu, C; Young, W C; Swan, G W S; Ellis, R F; Hassam, A B; Romero-Talamas, C A

    2010-08-20

    Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic E × B rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.

  3. Characterization of the acoustic field generated by a horn shaped ultrasonic transducer

    Science.gov (United States)

    Hu, B.; Lerch, J. E.; Chavan, A. H.; Weber, J. K. R.; Tamalonis, A.; Suthar, K. J.; DiChiara, A. D.

    2017-09-01

    A horn shaped Langevin ultrasonic transducer used in a single axis levitator was characterized to better understand the role of the acoustic profile in establishing stable traps. The method of characterization included acoustic beam profiling performed by raster scanning an ultrasonic microphone as well as finite element analysis of the horn and its interface with the surrounding air volume. The results of the model are in good agreement with measurements and demonstrate the validity of the approach for both near and far field analyses. Our results show that this style of transducer produces a strong acoustic beam with a total divergence angle of 10°, a near-field point close to the transducer surface and a virtual sound source. These are desirable characteristics for a sound source used for acoustic trapping experiments.

  4. Characterization of the acoustic field generated by a horn shaped ultrasonic transducer

    Energy Technology Data Exchange (ETDEWEB)

    Hu, B.; Lerch, J. E.; Chavan, A. H.; Weber, J. K. R.; Tamalonis, A.; Suthar, K. J.; DiChiara, A. D.

    2017-09-04

    A horn shaped Langevin ultrasonic transducer used in a single axis levitator was characterized to better understand the role of the acoustic profile in establishing stable traps. The method of characterization included acoustic beam profiling performed by raster scanning an ultrasonic microphone as well as finite element analysis of the horn and its interface with the surrounding air volume. The results of the model are in good agreement with measurements and demonstrate the validity of the approach for both near and far field analyses. Our results show that this style of transducer produces a strong acoustic beam with a total divergence angle of 10 degree, a near-field point close to the transducer surface and a virtual sound source. These are desirable characteristics for a sound source used for acoustic trapping experiments

  5. Calculated shape dependence of electromagnetic field in tip-enhanced Raman scattering by using a monopole antenna model

    Science.gov (United States)

    Kitahama, Yasutaka; Itoh, Tamitake; Suzuki, Toshiaki

    2018-05-01

    To evaluate the shape of an Ag tip with regard to tip-enhanced Raman scattering (TERS) signal, the enhanced electromagnetic (EM) field and scattering spectrum, arising from surface plasmon resonance at the apex of the tip, were calculated using a finite-difference time domain (FDTD) method. In the calculated forward scattering spectra from the smooth Ag tip, the band appeared within the visible region, similar to the experimental results and calculation for a corrugated Ag cone. In the FDTD calculation of TERS, the Ag tip acting as a monopole antenna was adopted by insertion of a perfect electric conductor between the root of the tip and a top boundary surface of the calculation space. As a result, the EM field was only enhanced at the apex. The shape dependence i.e. the EM field calculated at the apex with various curvatures on the different tapered tips, obtained using the monopole antenna model, was different from that simulated using a conventional dipole antenna model.

  6. T-shaped competency profile for water professionals of the future

    Directory of Open Access Journals (Sweden)

    S. Uhlenbrook

    2012-10-01

    Full Text Available Global environmental changes introduce new challenges and expose future university graduates in hydrology and related fields to problems of unprecedented complexity and magnitude. The T-shape model is proposed as a generic competency profile guiding the design of university curricula. This model differentiates between cognitive competencies in a certain field (i.e. hydrology; vertical leg of the T, and other cognitive/knowledge competencies in neighboring fields (e.g. hydraulics, aquatic ecology, land use management etc. and functional, personal and values competencies and meta-competencies (all summarized in the horizontal bar of the T. It is based on the holistic model of professional competencies by Cheetham and Chivers (1996 and related studies (Oskam, 2009. The T-shape profile should apply to all levels of higher education (1st degree till doctorate level in hydrology and related fields. For the effectiveness of hydrologists as professionals, a variable mix of competencies is required and further discussed. Key aspects are an open attitude for learning, continuous professional development (lifelong learning, and integrative and team working skills. Furthermore, a stimulating learning environment that promotes active learning is essential. As examples that substantiate the proposed T-shape model, the post-graduate education programmes of UNESCO-IHE and the main outcomes from a university curriculum workshop to promote education for sustainable development are introduced.

  7. An event-related brain potential study of visual selective attention to conjunctions of color and shape

    NARCIS (Netherlands)

    Smid, HGOM; Jakob, A; Heinze, HJ

    What cognitive processes underlie event-related brain potential (ERP) effects related to visual multidimensional selective attention and how are these processes organized? We recorded ERPs when participants attended to one conjunction of color, global shape and local shape and ignored other

  8. Model for field-induced reorientation strain in magnetic shape memory alloy with tensile and compressive loads

    International Nuclear Information System (INIS)

    Zhu Yuping; Dui Guansuo

    2008-01-01

    A model based on the micromechanical and the thermodynamic theory is presented for field-induced martensite reorientation in magnetic shape memory alloy (MSMA) single crystals. The influence of variants morphology and the material property to constitutive behavior is considered. The nonlinear and hysteretic strain and magnetization response of MSMA are investigated for two main loading cases, namely the magnetic field-induced reorientation of variants under constant compressive stress and tensile stress. The predicted results have shown that increasing tensile loading reduces the required field for actuation, while increasing compressive loads result in the required magnetic field growing considerably. It is helpful to design the intelligent composite with MSMA fibers

  9. The effect of electron collimator leaf shape on the build-up dose in narrow electron MLC fields

    International Nuclear Information System (INIS)

    Vatanen, T; Vaeaenaenen, A; Lahtinen, T; Traneus, E

    2009-01-01

    Previously, we have found that the build-up dose from abutting narrow electron beams formed with unfocussed electron multi-leaf collimator (eMLC) steal leaves was higher than with the respective open field. To investigate more closely the effect of leaf material and shape on dose in the build-up region, straight, round (radius 1.5 cm) and leaf ends with a different front face angle of α (leaf front face pointing towards the beam axis at an angle of 90 - α) made of steel, brass and tungsten were modelled using the BEAMnrc code. Based on a treatment head simulation of a Varian 2100 C/D linac, depth-dose curves and profiles in water were calculated for narrow 6, 12 and 20 MeV eMLC beams (width 1.0 cm, length 10 cm) at source-to-surface distances (SSD) of 102 and 105 cm. The effects of leaf material and front face angle were evaluated based on electron fluence, angle and energy spectra. With a leaf front face angle of 15 deg., the dose in the build-up region of the 6 MeV field varied between 91 and 100%, while for straight and round leaf shapes the dose varied between 89 and 100%. The variation was between 94 and 100% for 12 and 20 MeV. For abutting narrow 6 MeV fields with total field size 5 x 10 cm 2 , the build-up doses at 5 mm depth for the face angle 15 deg. and straight and round leaf shapes were 96% and 86% (SSD 102 cm) and 89% and 85% (SSD 105 cm). With higher energies, the effect of eMLC leaf shape on dose at 5 mm was slight (3-4% units with 12 MeV) and marginal with 20 MeV. The fluence, energy and angle spectra for total and leaf scattered electrons were practically the same for different leaf materials with 6 MeV. With high energies, the spectra for tungsten were more peaked due to lower leaf transmission. Compared with straight leaf ends, the face angle of 15 deg. and round leaf ends led to a 1 mm (for 6 MeV) and between 1 and 5 mm (12 and 20 MeV at a SSD of 105 cm) decrease of therapeutic range and increase of the field size, respectively. However

  10. Line shapes and time dynamics of the Förster resonances between two Rydberg atoms in a time-varying electric field

    KAUST Repository

    Yakshina, E. A.

    2016-10-21

    The observation of the Stark-tuned Förster resonances between Rydberg atoms excited by narrowband cw laser radiation requires usage of a Stark-switching technique in order to excite the atoms first in a fixed electric field and then to induce the interactions in a varied electric field, which is scanned across the Förster resonance. In our experiments with a few cold Rb Rydberg atoms, we have found that the transients at the edges of the electric pulses strongly affect the line shapes of the Förster resonances, since the population transfer at the resonances occurs on a time scale of ∼100 ns, which is comparable with the duration of the transients. For example, a short-term ringing at a certain frequency causes additional radio-frequency-assisted Förster resonances, while nonsharp edges lead to asymmetry. The intentional application of the radio-frequency field induces transitions between collective states, whose line shape depends on the interaction strengths and time. Spatial averaging over the atom positions in a single interaction volume yields a cusped line shape of the Förster resonance. We present a detailed experimental and theoretical analysis of the line shape and time dynamics of the Stark-tuned Förster resonances Rb(nP3/2)+Rb(nP3/2)→Rb(nS1/2)+Rb([n+1]S1/2) for two Rb Rydberg atoms interacting in a time-varying electric field.

  11. Line shapes and time dynamics of the Förster resonances between two Rydberg atoms in a time-varying electric field

    KAUST Repository

    Yakshina, E. A.; Tretyakov, D. B.; Beterov, I. I.; Entin, V. M.; Andreeva, C.; Cinins, A.; Markovski, A.; Iftikhar, Z.; Ekers, Aigars; Ryabtsev, I. I.

    2016-01-01

    The observation of the Stark-tuned Förster resonances between Rydberg atoms excited by narrowband cw laser radiation requires usage of a Stark-switching technique in order to excite the atoms first in a fixed electric field and then to induce the interactions in a varied electric field, which is scanned across the Förster resonance. In our experiments with a few cold Rb Rydberg atoms, we have found that the transients at the edges of the electric pulses strongly affect the line shapes of the Förster resonances, since the population transfer at the resonances occurs on a time scale of ∼100 ns, which is comparable with the duration of the transients. For example, a short-term ringing at a certain frequency causes additional radio-frequency-assisted Förster resonances, while nonsharp edges lead to asymmetry. The intentional application of the radio-frequency field induces transitions between collective states, whose line shape depends on the interaction strengths and time. Spatial averaging over the atom positions in a single interaction volume yields a cusped line shape of the Förster resonance. We present a detailed experimental and theoretical analysis of the line shape and time dynamics of the Stark-tuned Förster resonances Rb(nP3/2)+Rb(nP3/2)→Rb(nS1/2)+Rb([n+1]S1/2) for two Rb Rydberg atoms interacting in a time-varying electric field.

  12. Analysis of the modulation mechanisms of the electric field and breakdown performance in AlGaN/GaN HEMT with a T-shaped field-plate

    Science.gov (United States)

    Mao, Wei; Fan, Ju-Sheng; Du, Ming; Zhang, Jin-Feng; Zheng, Xue-Feng; Wang, Chong; Ma, Xiao-Hua; Zhang, Jin-Cheng; Hao, Yue

    2016-12-01

    A novel AlGaN/GaN high electron mobility transistor (HEMT) with a source-connected T-shaped field-plate (ST-FP HEMT) is proposed for the first time in this paper. The source-connected T-shaped field-plate (ST-FP) is composed of a source-connected field-plate (S-FP) and a trench metal. The physical intrinsic mechanisms of the ST-FP to improve the breakdown voltage and the FP efficiency and to modulate the distributions of channel electric field and potential are studied in detail by means of two-dimensional numerical simulations with Silvaco-ATLAS. A comparison to the HEMT and the HEMT with an S-FP (S-FP HEMT) shows that the ST-FP HEMT could achieve a broader and more uniform channel electric field distribution with the help of a trench metal, which could increase the breakdown voltage and the FP efficiency remarkably. In addition, the relationship between the structure of the ST-FP, the channel electric field, the breakdown voltage as well as the FP efficiency in ST-FP HEMT is analyzed. These results could open up a new effective method to fabricate high voltage power devices for the power electronic applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574112, 61334002, 61306017, 61474091, and 61574110) and the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 605119425012).

  13. Harmonic generations in a lens-shaped GaAs quantum dot: Dresselhaus and Rashba spin-orbit couplings under electric and magnetic fields

    Science.gov (United States)

    Zamani, A.; Azargoshasb, T.; Niknam, E.; Mohammadhosseini, E.

    2017-06-01

    In this work, effects of external electric and magnetic fields in the presence of both Rashba and Dresselhaus spin-orbit couplings on the second and third harmonic generations (SHG and THG) of a lens-shaped GaAs quantum dot are studied. Energy eigenvalues and eigenvectors are calculated numerically and optical properties are obtained using the compact density matrix approach. Our results reveal that, an increase in the magnetic field, leads to both red and blue shifts in resonant peaks of both SHG and THG. On the other hand, augmentation of electric field leads to blue shift in all resonant peaks except the first peak related to lowest transition. Also the dipole moment matrix elements increase by enhancing both electric and magnetic fields. Finally the effect of dot size is studied and results illustrate that increment in size reduces the transition energies except the lowest one and thus leads to red shift in resonant peaks while the first peak remains constant.

  14. The relative contributions of facial shape and surface information to perceptions of attractiveness and dominance.

    Directory of Open Access Journals (Sweden)

    Jaimie S Torrance

    Full Text Available Although many studies have investigated the facial characteristics that influence perceptions of others' attractiveness and dominance, the majority of these studies have focused on either the effects of shape information or surface information alone. Consequently, the relative contributions of facial shape and surface characteristics to attractiveness and dominance perceptions are unclear. To address this issue, we investigated the relationships between ratings of original versions of faces and ratings of versions in which either surface information had been standardized (i.e., shape-only versions or shape information had been standardized (i.e., surface-only versions. For attractiveness and dominance judgments of both male and female faces, ratings of shape-only and surface-only versions independently predicted ratings of the original versions of faces. The correlations between ratings of original and shape-only versions and between ratings of original and surface-only versions differed only in two instances. For male attractiveness, ratings of original versions were more strongly related to ratings of surface-only than shape-only versions, suggesting that surface information is particularly important for men's facial attractiveness. The opposite was true for female physical dominance, suggesting that shape information is particularly important for women's facial physical dominance. In summary, our results indicate that both facial shape and surface information contribute to judgments of others' attractiveness and dominance, suggesting that it may be important to consider both sources of information in research on these topics.

  15. The relative contributions of facial shape and surface information to perceptions of attractiveness and dominance.

    Science.gov (United States)

    Torrance, Jaimie S; Wincenciak, Joanna; Hahn, Amanda C; DeBruine, Lisa M; Jones, Benedict C

    2014-01-01

    Although many studies have investigated the facial characteristics that influence perceptions of others' attractiveness and dominance, the majority of these studies have focused on either the effects of shape information or surface information alone. Consequently, the relative contributions of facial shape and surface characteristics to attractiveness and dominance perceptions are unclear. To address this issue, we investigated the relationships between ratings of original versions of faces and ratings of versions in which either surface information had been standardized (i.e., shape-only versions) or shape information had been standardized (i.e., surface-only versions). For attractiveness and dominance judgments of both male and female faces, ratings of shape-only and surface-only versions independently predicted ratings of the original versions of faces. The correlations between ratings of original and shape-only versions and between ratings of original and surface-only versions differed only in two instances. For male attractiveness, ratings of original versions were more strongly related to ratings of surface-only than shape-only versions, suggesting that surface information is particularly important for men's facial attractiveness. The opposite was true for female physical dominance, suggesting that shape information is particularly important for women's facial physical dominance. In summary, our results indicate that both facial shape and surface information contribute to judgments of others' attractiveness and dominance, suggesting that it may be important to consider both sources of information in research on these topics.

  16. A sphericon-shaped magnetic millirobot rolling on a surface actuated by an external wobbling magnetic field

    Directory of Open Access Journals (Sweden)

    Seungmun Jeon

    2017-05-01

    Full Text Available This paper proposes a novel sphericon-shaped magnetic millirobot (SSMM that can roll on a variety of surfaces. The SSMM comprises four identical half cones with a cylindrical magnet inserted into the geometric center. It can roll forward or backward on a surface with repeated rolling cone motions (wobbling motions. Since a rolling SSMM develops its entire surface by means of line contact, a relatively large maximum static friction force can make the SSMM move on a surface steadily and effectively. In this work, a new type of external wobbling magnetic field (EWMF was also derived to manipulate the SSMM’s rolling motions precisely. Then, the controlled rolling motions of prototype SSMMs under various surface conditions were demonstrated to examine the rolling ability of the proposed SSMM.

  17. Particle field in bimetric general relativity

    International Nuclear Information System (INIS)

    Falik, D.; Rosen, N.

    1980-01-01

    The field equations of the bimetric general relativity theory proposed recently by one of the authors (N. Rosen) are put into a static form. The equations are solved near the Schwarzschild sphere, and it is found that the field differs from that of the Einstein general relativity theory: instead of a black hole, one has an impenetrable sphere. For larger distances the field is found to agree with that of ordinary general relativity, so that solar system observations cannot distinguish between the two theories. For very large distances one gets a cosmic contribution to the field which may affect the dynamics of clusters of galaxies

  18. The parietal cortices participate in encoding, short-term memory, and decision-making related to tactile shape.

    Science.gov (United States)

    Rojas-Hortelano, Eduardo; Concha, Luis; de Lafuente, Victor

    2014-10-15

    We routinely identify objects with our hands, and the physical attributes of touched objects are often held in short-term memory to aid future decisions. However, the brain structures that selectively process tactile information to encode object shape are not fully identified. In this article we describe the areas within the human cerebral cortex that specialize in encoding, short-term memory, and decision-making related to the shape of objects explored with the hand. We performed event-related functional magnetic resonance imaging in subjects performing a shape discrimination task in which two sequentially presented objects had to be explored to determine whether they had the same shape or not. To control for low-level and nonspecific brain activations, subjects performed a temperature discrimination task in which they compared the temperature of two spheres. Our results show that although a large network of brain structures is engaged in somatosensory processing, it is the areas lining the intraparietal sulcus that selectively participate in encoding, maintaining, and deciding on tactile information related to the shape of objects. Copyright © 2014 the American Physiological Society.

  19. Shape isomers: Mean-field description and beyond

    International Nuclear Information System (INIS)

    Bonche, P.; Krieger, S.J.; Weiss, M.S.; Dobaczewski, J.; Meyer, J.

    1990-01-01

    Nuclear Hartree-Fock (HF) + BCS calculations have led to predictions of shape isomerism in isotopes of Pt, Hg and Os nuclei. These have been confirmed through the observation of superdeformed rotational bands in 190,hor-ellipsis,194 Hg. Encouraged by these measurements and similar observations in 194 Pb, we have extended these calculations to a wide range of contiguous nuclei. These HF results, for 192,194 Pt, 190,hor-ellipsis,198 Hg and 194 Pb, have been employed in a Generator Coordinate Method (GCM) calculation utilizing the quadrupole deformation as the generating variable. The resulting spectra confirm the conclusions drawn from the HF results and agree with those experiments which have been performed. Adding a phenomenological assumption for the moments of inertia of our GCM states, we can construct the radiative transitions within and out of the superdeformed band. The results are in good agreement with the observed de-population of the superdeformed band built upon the shape isomer both in minimum angular momentum and in rapidity of de-population. Inferences for the existence of shape isomers will be drawn. 19 refs., 4 figs

  20. Effect of interdiffusion and external magnetic field on electronic states and light absorption in Gaussian-shaped double quantum ring

    Science.gov (United States)

    Aziz-Aghchegala, V. L.; Mughnetsyan, V. N.; Kirakosyan, A. A.

    2018-02-01

    The effect of interdiffusion and magnetic field on confined states of electron and heavy hole as well as on interband absorption spectrum in a Ga1-xAlxAs/GaAs Gaussian-shaped double quantum ring are investigated. It is shown that both interdiffusion and magnetic field lead to the change of the charge carriers' quantum states arrangement by their energies. The oscillating behavior of the electron ground state energy as a function of magnetic field induction gradually disappears with the increase of diffusion parameter due to the enhanced tunneling of electron to the central region of the ring. For the heavy hole the ground state energy oscillations are not observable in the region of the values of magnetic field induction B = 0 - 10 T . For considered transitions both the magnetic field and the interdiffusion lead to a blue-shift of the absorption spectrum and to decreasing of the absorption intensity. The obtained results indicate on the opportunity of purposeful manipulation of energy states and absorption spectrum of a Gaussian-shaped double quantum ring by means of the post growth annealing and the external magnetic field.

  1. Influence of high frequency ex-electric field on etching process and shape of pores for nuclear track film

    International Nuclear Information System (INIS)

    Chen Hui; Wang Yulan; Xu Shiping; Wang Jianchen

    2011-01-01

    To assess the details of the chemical etching process of polyethylene terephthalate (PET), the current signals during the whole etching process were recorded with the etching apparatus. The background-current was studied, which illustrated that it was mainly determined by the electric capacity of the etching system and was influenced by the thickness of the membrane but not by the temperature. According to the record of the current change during the etching process, it was found that the process can be divided into three phases. The influences of the existence and intensity of the ex-electric field on the breakthrough time and shape of pores were also studied. The existence of ex-electric field could shorten the breakthrough time and shape the pores more close to column. And these two phenomenons could be strengthened as the intensity of the electric field rose, and yet would reach a plateau when the intensity gets near 10 V/cm. (authors)

  2. Shape memory polymer nanocomposites for application of multiple-field active disassembly: experiment and simulation.

    Science.gov (United States)

    Carrell, John; Zhang, Hong-Chao; Wang, Shiren; Tate, Derrick

    2013-11-19

    Active disassembly (AD) uses innovative materials that can perform a designed disassembly action by the application of an external field. AD provides improvements over current disassembly processes by limiting machine or manual labor and enabling batch processing for end-of-life products. With improved disassembly operations, more reuse of components and purer recycling streams may be seen. One problem with AD, however, has been with the single-field actuation because of the probability of accidental disassembly. This presentation will discuss the application of shape memory polymer (SMP) nanocomposites in a new AD process. This novel AD process requires multiple-field actuation of the SMP nanocomposite fastener. In the analysis of this AD process, thermal and magnetic field tests were performed on the SMP nanocomposite. From these tests, finite-element analysis was performed to model and simulate the multiple-field AD process. The results of the simulations provide performance variables for the AD process and show a better performance time for the SMP nanocomposite fastener than for a comparable SMP fastener.

  3. Technical Note: Harmonic analysis applied to MR image distortion fields specific to arbitrarily shaped volumes.

    Science.gov (United States)

    Stanescu, T; Jaffray, D

    2018-05-25

    Magnetic resonance imaging is expected to play a more important role in radiation therapy given the recent developments in MR-guided technologies. MR images need to consistently show high spatial accuracy to facilitate RT specific tasks such as treatment planning and in-room guidance. The present study investigates a new harmonic analysis method for the characterization of complex 3D fields derived from MR images affected by system-related distortions. An interior Dirichlet problem based on solving the Laplace equation with boundary conditions (BCs) was formulated for the case of a 3D distortion field. The second-order boundary value problem (BVP) was solved using a finite elements method (FEM) for several quadratic geometries - i.e., sphere, cylinder, cuboid, D-shaped, and ellipsoid. To stress-test the method and generalize it, the BVP was also solved for more complex surfaces such as a Reuleaux 9-gon and the MR imaging volume of a scanner featuring a high degree of surface irregularities. The BCs were formatted from reference experimental data collected with a linearity phantom featuring a volumetric grid structure. The method was validated by comparing the harmonic analysis results with the corresponding experimental reference fields. The harmonic fields were found to be in good agreement with the baseline experimental data for all geometries investigated. In the case of quadratic domains, the percentage of sampling points with residual values larger than 1 mm were 0.5% and 0.2% for the axial components and vector magnitude, respectively. For the general case of a domain defined by the available MR imaging field of view, the reference data showed a peak distortion of about 12 mm and 79% of the sampling points carried a distortion magnitude larger than 1 mm (tolerance intrinsic to the experimental data). The upper limits of the residual values after comparison with the harmonic fields showed max and mean of 1.4 mm and 0.25 mm, respectively, with only 1.5% of

  4. Synthesis of shape memory alloys using electrodeposition

    Science.gov (United States)

    Hymer, Timothy Roy

    Shape memory alloys are used in a variety of applications. The area of micro-electro-mechanical systems (MEMS) is a developing field for thin film shape memory alloys for making actuators, valves and pumps. Until recently thin film shape memory alloys could only be made by rapid solidification or sputtering techniques which have the disadvantage of being "line of sight". At the University of Missouri-Rolla, electrolytic techniques have been developed that allow the production of shape memory alloys in thin film form. The advantages of this techniques are in-situ, non "line of sight" and the ability to make differing properties of the shape memory alloys from one bath. This research focused on the electrodeposition of In-Cd shape memory alloys. The primary objective was to characterize the electrodeposited shape memory effect for an electrodeposited shape memory alloy. The effect of various operating parameters such as peak current density, temperature, pulsing, substrate and agitation were investigated and discussed. The electrodeposited alloys were characterized by relative shape memory effect, phase transformation, morphology and phases present. Further tests were performed to optimize the shape memory by the use of a statistically designed experiment. An optimized shape memory effect for an In-Cd alloy is reported for the conditions of the experiments.

  5. Effect of initial void shape on ductile failure in a shear field

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2015-01-01

    For voids in a shear field unit cell model analyses have been used to show that ductile failure is predicted even though the stress triaxiality is low or perhaps negative, so that the void volume fraction does not grow during deformation. Here, the effect of the void shape is studied by analyzing...... with circular cross-section, i.e. the voids in shear flatten out to micro-cracks, which rotate and elongate until interaction with neighboring micro-cracks gives coalescence. Even though the mechanism of ductile failure is the same, the load carrying capacity predicted, for the same initial void volume fraction...

  6. 3D Shape Modeling Using High Level Descriptors

    DEFF Research Database (Denmark)

    Andersen, Vedrana

    features like thorns, bark and scales. Presented here is a simple method for easy modeling, transferring and editing that kind of texture. The method is an extension of the height-field texture, but incorporates an additional tilt of the height field. Related to modeling non-heightfield textures, a part...... of my work involved developing feature-aware resizing of models with complex surfaces consisting of underlying shape and a distinctive texture detail. The aim was to deform an object while preserving the shape and size of the features.......The goal of this Ph.D. project is to investigate and improve the methods for describing the surface of 3D objects, with focus on modeling geometric texture on surfaces. Surface modeling being a large field of research, the work done during this project concentrated around a few smaller areas...

  7. A model considering mechanical anisotropy of magnetic-field-induced superelastic strain in magnetic shape memory alloys

    International Nuclear Information System (INIS)

    Zhu, Yuping; Yu, Kai

    2013-01-01

    Highlights: ► The model analyzes mechanical anisotropy of magnetic shape memory alloy. ► The numerical evaluation of Eshelby tensor of shape memory alloy is obtained. ► Interaction energy of magnetic shape memory alloy is analyzed. - Abstract: Under applied mechanical load and magnetic field, a micromechanics-based thermodynamic model taking account of mechanical anisotropy of magnetic shape memory alloys (MSMAs) is developed in this work. Considering the crystallographic and magnetic microstructure, the internal state variables are chosen and the model can capture the magnetic shape memory effect caused by the martensitic variant reorientation process. It is assumed that the Gibbs free energy is consisted of the mechanical potential energy of anisotropic matrix, the Zeeman energy and the magnetocrystalline anisotropy energy in the model. In terms of the balance between the thermodynamic driving force derived from the reduction of Gibbs free energy and the resistive force for the variant reorientation, the kinetic equation is established and the Eshelby tensor of anisotropic MSMAs is then obtained by using numerical evaluation. At last, the effects of the anisotropy on interaction energy and macroscopic strain are discussed. The assumption of isotropy tends to underestimate interaction energy and macroscopic strain. The results considering mechanical anisotropy are in good agreement with the experimental data.

  8. Air-borne shape measurement of parabolic trough collector fields

    Science.gov (United States)

    Prahl, Christoph; Röger, Marc; Hilgert, Christoph

    2017-06-01

    The optical and thermal efficiency of parabolic trough collector solar fields is dependent on the performance and assembly accuracy of its components such as the concentrator and absorber. For the purpose of optical inspection/approval, yield analysis, localization of low performing areas, and optimization of the solar field, it is essential to create a complete view of the optical properties of the field. Existing optical measurement tools are based on ground based cameras, facing restriction concerning speed, volume and automation. QFly is an airborne qualification system which provides holistic and accurate information on geometrical, optical, and thermal properties of the entire solar field. It consists of an unmanned aerial vehicle, cameras and related software for flight path planning, data acquisition and evaluation. This article presents recent advances of the QFly measurement system and proposes a methodology on holistic qualification of the complete solar field with minimum impact on plant operation.

  9. Principal shapes and squeezed limits in the effective field theory of large scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Daniele; Solon, Mikhail P., E-mail: dbertolini@lbl.gov, E-mail: mpsolon@lbl.gov [Berkeley Center for Theoretical Physics, University of California, South Hall Road, Berkeley, CA, 94720 (United States)

    2016-11-01

    We apply an orthogonalization procedure on the effective field theory of large scale structure (EFT of LSS) shapes, relevant for the angle-averaged bispectrum and non-Gaussian covariance of the matter power spectrum at one loop. Assuming natural-sized EFT parameters, this identifies a linear combination of EFT shapes—referred to as the principal shape—that gives the dominant contribution for the whole kinematic plane, with subdominant combinations suppressed by a few orders of magnitude. For the covariance, our orthogonal transformation is in excellent agreement with a principal component analysis applied to available data. Additionally we find that, for both observables, the coefficients of the principal shapes are well approximated by the EFT coefficients appearing in the squeezed limit, and are thus measurable from power spectrum response functions. Employing data from N-body simulations for the growth-only response, we measure the single EFT coefficient describing the angle-averaged bispectrum with Ο (10%) precision. These methods of shape orthogonalization and measurement of coefficients from response functions are valuable tools for developing the EFT of LSS framework, and can be applied to more general observables.

  10. How we categorize objects is related to how we remember them: The shape bias as a memory bias.

    Science.gov (United States)

    Vlach, Haley A

    2016-12-01

    The "shape bias" describes the phenomenon that, after a certain point in development, children and adults generalize object categories based on shape to a greater degree than other perceptual features. The focus of research on the shape bias has been to examine the types of information that learners attend to in one moment in time. The current work takes a different approach by examining whether learners' categorical biases are related to their retention of information across time. In three experiments, children's (N=72) and adults' (N=240) memory performance for features of objects was examined in relation to their categorical biases. The results of these experiments demonstrated that the number of shape matches chosen during the shape bias task significantly predicted shape memory. Moreover, children and adults with a shape bias were more likely to remember the shape of objects than the color and size of objects. Taken together, this work suggests that the development of a shape bias may engender better memory for shape information. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. How we categorize objects is related to how we remember them: The shape bias as a memory bias

    Science.gov (United States)

    Vlach, Haley A.

    2016-01-01

    The “shape bias” describes the phenomenon that, after a certain point in development, children and adults generalize object categories based upon shape to a greater degree than other perceptual features. The focus of research on the shape bias has been to examine the types of information that learners attend to in one moment in time. The current work takes a different approach by examining whether learners' categorical biases are related to their retention of information across time. In three experiments, children's (N = 72) and adults' (N = 240) memory performance for features of objects was examined in relation to their categorical biases. The results of these experiments demonstrated that the number of shape matches chosen during the shape bias task significantly predicted shape memory. Moreover, children and adults with a shape bias were more likely to remember the shape of objects than they were the color and size of objects. Taken together, this work suggests the development of a shape bias may engender better memory for shape information. PMID:27454236

  12. Computation of Electromagnetic Fields Scattered From Dielectric Objects of Uncertain Shapes Using MLMC

    KAUST Repository

    Litvinenko, Alexander

    2016-01-06

    Simulators capable of computing scattered fields from objects of uncertain shapes are highly useful in electromagnetics and photonics, where device designs are typically subject to fabrication tolerances. Knowledge of statistical variations in scattered fields is useful in ensuring error-free functioning of devices. Oftentimes such simulators use a Monte Carlo (MC) scheme to sample the random domain, where the variables parameterize the uncertainties in the geometry. At each sample, which corresponds to a realization of the geometry, a deterministic electromagnetic solver is executed to compute the scattered fields. However, to obtain accurate statistics of the scattered fields, the number of MC samples has to be large. This significantly increases the total execution time. In this work, to address this challenge, the Multilevel MC (MLMC [1]) scheme is used together with a (deterministic) surface integral equation solver. The MLMC achieves a higher efficiency by balancing the statistical errors due to sampling of the random domain and the numerical errors due to discretization of the geometry at each of these samples. Error balancing results in a smaller number of samples requiring coarser discretizations. Consequently, total execution time is significantly shortened.

  13. Computation of Electromagnetic Fields Scattered From Dielectric Objects of Uncertain Shapes Using MLMC

    KAUST Repository

    Litvinenko, Alexander

    2015-01-07

    Simulators capable of computing scattered fields from objects of uncertain shapes are highly useful in electromagnetics and photonics, where device designs are typically subject to fabrication tolerances. Knowledge of statistical variations in scattered fields is useful in ensuring error-free functioning of devices. Oftentimes such simulators use a Monte Carlo (MC) scheme to sample the random domain, where the variables parameterize the uncertainties in the geometry. At each sample, which corresponds to a realization of the geometry, a deterministic electromagnetic solver is executed to compute the scattered fields. However, to obtain accurate statistics of the scattered fields, the number of MC samples has to be large. This significantly increases the total execution time. In this work, to address this challenge, the Multilevel MC (MLMC [1]) scheme is used together with a (deterministic) surface integral equation solver. The MLMC achieves a higher efficiency by “balancing” the statistical errors due to sampling of the random domain and the numerical errors due to discretization of the geometry at each of these samples. Error balancing results in a smaller number of samples requiring coarser discretizations. Consequently, total execution time is significantly shortened.

  14. Alpha Shapes and Proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Sterner, Henrik; Sterner, Peter

    2009-01-01

    We provide a unified description of (weighted) alpha shapes, beta shapes and the corresponding simplicialcomplexes. We discuss their applicability to various protein-related problems. We also discuss filtrations of alpha shapes and touch upon related persistence issues.We claim that the full...... potential of alpha-shapes and related geometrical constructs in protein-related problems yet remains to be realized and verified. We suggest parallel algorithms for (weighted) alpha shapes, and we argue that future use of filtrations and kinetic variants for larger proteins will need such implementation....

  15. Intercostal high intensity focused ultrasound for liver ablation: The influence of beam shaping on sonication efficacy and near-field risks

    Energy Technology Data Exchange (ETDEWEB)

    Greef, M. de, E-mail: m.degreef@umcutrecht.nl; Wijlemans, J. W.; Bartels, L. W.; Moonen, C. T. W.; Ries, M. [Imaging Division, University Medical Center Utrecht, Utrecht 3508GA (Netherlands); Schubert, G.; Koskela, J. [Philips Healthcare, Vantaa FI-01511 (Finland)

    2015-08-15

    Purpose: One of the major issues in high intensity focused ultrasound ablation of abdominal lesions is obstruction of the ultrasound beam by the thoracic cage. Beam shaping strategies have been shown by several authors to increase focal point intensity while limiting rib exposure. However, as rib obstruction leaves only part of the aperture available for energy transmission, conserving total emitted acoustic power, the intensity in the near-field tissues inherently increases after beam shaping. Despite of effective rib sparing, those tissues are therefore subjected to increased risk of thermal damage. In this study, for a number of clinically representative intercostal sonication geometries, modeling clinically available hardware, the effect of beam shaping on both the exposure of the ribs and near-field to acoustic energy was evaluated and the implications for the volumetric ablation rate were addressed. Methods: A relationship between rib temperature rise and acoustic energy density was established by means of in vivo MR thermometry and simulations of the incident acoustic energy for the corresponding anatomies. This relationship was used for interpretation of rib exposure in subsequent numerical simulations in which rib spacing, focal point placement, and the focal point trajectory were varied. The time required to heat a targeted region to 65 °C was determined without and with the application of beam shaping. The required sonication time was used to calculate the acoustic energy density at the fat–muscle interface and at the surface of the ribs. At the fat–muscle interface, exposure was compared to available literature data and rib exposure was interpreted based on the earlier obtained relation between measured temperature rise and simulated acoustic energy density. To estimate the volumetric ablation rate, the cool-down time between periods of energy exposure was estimated using a time-averaged power limit of 100 kJ/h. Results: At the level of the ribs

  16. Formaldehyde sensor based on Ni-doped tetrapod-shaped ZnO nanopowder induced by external magnetic field

    Science.gov (United States)

    Bai, Zikui; Xie, Changsheng; Hu, Mulin; Zhang, Shunping

    2008-12-01

    The sensors based on Ni-doped ZnO nanopowder with tetrapod-shape (T-ZnO) were fabricated by screen-printing technique with external magnetic field in different direction. The morphologies and crystal structures of the thick film were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. Gas-sensing property of sensors responded to 100 ppm formaldehyde was also detected. The results show that the direction of magnetic field has crucial effect on the sensor sensitivity. The sensors based on 5 wt% Ni-doped T-ZnO induced by magnetic field in parallel direction to the thick film surface, has the optimization sensitivity, the shortest response and recovery time, which are 10.6, 16 and 15 s, respectively. The magnetic-field induction model and the gas-sensing mechanism of the Ni-doped T-ZnO are proposed.

  17. A shape dynamical approach to holographic renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Henrique [University of California at Davis, Davis, CA (United States); Gryb, Sean [Utrecht University, Institute for Theoretical Physics, Utrecht (Netherlands); Radboud University Nijmegen, Institute for Mathematics, Astrophysics and Particle Physics, Nijmegen (Netherlands); Koslowski, Tim [University of New Brunswick, Fredericton, NB (Canada); Mercati, Flavio; Smolin, Lee [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)

    2015-01-01

    We provide a bottom-up argument to derive some known results from holographic renormalization using the classical bulk-bulk equivalence of General Relativity and Shape Dynamics, a theory with spatial conformal (Weyl) invariance. The purpose of this paper is twofold: (1) to advertise the simple classical mechanism, trading off gauge symmetries, that underlies the bulk-bulk equivalence of General Relativity and Shape Dynamics to readers interested in dualities of the type of AdS/conformal field theory (CFT); and (2) to highlight that this mechanism can be used to explain certain results of holographic renormalization, providing an alternative to the AdS/CFT conjecture for these cases. To make contact with the usual semiclassical AdS/CFT correspondence, we provide, in addition, a heuristic argument that makes it plausible that the classical equivalence between General Relativity and Shape Dynamics turns into a duality between radial evolution in gravity and the renormalization group flow of a CFT. We believe that Shape Dynamics provides a new perspective on gravity by giving conformal structure a primary role within the theory. It is hoped that this work provides the first steps toward understanding what this new perspective may be able to teach us about holographic dualities. (orig.)

  18. On the importance of electrode parameters for shaping electric field patterns generated by tDCS

    DEFF Research Database (Denmark)

    B. Saturnino, Guilherme; Antunes, André; Thielscher, Axel

    2015-01-01

    Transcranial direct current stimulation (tDCS) uses electrode pads placed on the head to deliver weak direct current to the brain and modulate neuronal excitability. The effects depend on the intensity and spatial distribution of the electric field. This in turn depends on the geometry and electric...... electrode modeling influences the calculated electric field in the brain. We take into account electrode shape, size, connector position and conductivities of different electrode materials (including saline solutions and electrode gels). These factors are systematically characterized to demonstrate...... their impact on the field distribution in the brain. The goals are to assess the effect of simplified electrode models; and to develop practical rules-of-thumb to achieve a stronger stimulation of the targeted brain regions underneath the electrode pads. We show that for standard rectangular electrode pads...

  19. Shaping of pulses in optical grating-based laser systems for optimal control of electrons in laser plasma wake-field accelerator

    International Nuclear Information System (INIS)

    Toth, Cs.; Faure, J.; Geddes, C.G.R.; Tilborg, J. van; Leemans, W.P.

    2003-01-01

    In typical chirped pulse amplification (CPA) laser systems, scanning the grating separation in the optical compressor causes the well know generation of linear chirp of frequency vs. time in a laser pulse, as well as a modification of all the higher order phase terms. By setting the compressor angle slightly different from the optimum value to generate the shortest pulse, a typical scan around this value will produce significant changes to the pulse shape. Such pulse shape changes can lead to significant differences in the interaction with plasmas such as used in laser wake-field accelerators. Strong electron yield dependence on laser pulse shape in laser plasma wake-field electron acceleration experiments have been observed in the L'OASIS Lab of LBNL [1]. These experiments show the importance of pulse skewness parameter, S, defined here on the basis of the ratio of the ''head-width-half-max'' (HWHM) and the ''tail-width-halfmax'' (TWHM), respectively

  20. Genomic architecture of habitat-related divergence and signature of directional selection in the body shapes of Gnathopogon fishes.

    Science.gov (United States)

    Kakioka, Ryo; Kokita, Tomoyuki; Kumada, Hiroki; Watanabe, Katsutoshi; Okuda, Noboru

    2015-08-01

    Evolution of ecomorphologically relevant traits such as body shapes is important to colonize and persist in a novel environment. Habitat-related adaptive divergence of these traits is therefore common among animals. We studied the genomic architecture of habitat-related divergence in the body shape of Gnathopogon fishes, a novel example of lake-stream ecomorphological divergence, and tested for the action of directional selection on body shape differentiation. Compared to stream-dwelling Gnathopogon elongatus, the sister species Gnathopogon caerulescens, exclusively inhabiting a large ancient lake, had an elongated body, increased proportion of the caudal region and small head, which would be advantageous in the limnetic environment. Using an F2 interspecific cross between the two Gnathopogon species (195 individuals), quantitative trait locus (QTL) analysis with geometric morphometric quantification of body shape and restriction-site associated DNA sequencing-derived markers (1622 loci) identified 26 significant QTLs associated with the interspecific differences of body shape-related traits. These QTLs had small to moderate effects, supporting polygenic inheritance of the body shape-related traits. Each QTL was mostly located on different genomic regions, while colocalized QTLs were detected for some ecomorphologically relevant traits that are proxy of body and caudal peduncle depths, suggesting different degree of modularity among traits. The directions of the body shape QTLs were mostly consistent with the interspecific difference, and QTL sign test suggested a genetic signature of directional selection in the body shape divergence. Thus, we successfully elucidated the genomic architecture underlying the adaptive changes of the quantitative and complex morphological trait in a novel system. © 2015 John Wiley & Sons Ltd.

  1. A Gauss-Newton method for the integration of spatial normal fields in shape Space

    KAUST Repository

    Balzer, Jonathan

    2011-08-09

    We address the task of adjusting a surface to a vector field of desired surface normals in space. The described method is entirely geometric in the sense, that it does not depend on a particular parametrization of the surface in question. It amounts to solving a nonlinear least-squares problem in shape space. Previously, the corresponding minimization has been performed by gradient descent, which suffers from slow convergence and susceptibility to local minima. Newton-type methods, although significantly more robust and efficient, have not been attempted as they require second-order Hadamard differentials. These are difficult to compute for the problem of interest and in general fail to be positive-definite symmetric. We propose a novel approximation of the shape Hessian, which is not only rigorously justified but also leads to excellent numerical performance of the actual optimization. Moreover, a remarkable connection to Sobolev flows is exposed. Three other established algorithms from image and geometry processing turn out to be special cases of ours. Our numerical implementation founds on a fast finite-elements formulation on the minimizing sequence of triangulated shapes. A series of examples from a wide range of different applications is discussed to underline flexibility and efficiency of the approach. © 2011 Springer Science+Business Media, LLC.

  2. Masking Period Patterns & Forward Masking for Speech-Shaped Noise: Age-related effects

    Science.gov (United States)

    Grose, John H.; Menezes, Denise C.; Porter, Heather L.; Griz, Silvana

    2015-01-01

    Objective The purpose of this study was to assess age-related changes in temporal resolution in listeners with relatively normal audiograms. The hypothesis was that increased susceptibility to non-simultaneous masking contributes to the hearing difficulties experienced by older listeners in complex fluctuating backgrounds. Design Participants included younger (n = 11), middle-aged (n = 12), and older (n = 11) listeners with relatively normal audiograms. The first phase of the study measured masking period patterns for speech-shaped noise maskers and signals. From these data, temporal window shapes were derived. The second phase measured forward-masking functions, and assessed how well the temporal window fits accounted for these data. Results The masking period patterns demonstrated increased susceptibility to backward masking in the older listeners, compatible with a more symmetric temporal window in this group. The forward-masking functions exhibited an age-related decline in recovery to baseline thresholds, and there was also an increase in the variability of the temporal window fits to these data. Conclusions This study demonstrated an age-related increase in susceptibility to non-simultaneous masking, supporting the hypothesis that exacerbated non-simultaneous masking contributes to age-related difficulties understanding speech in fluctuating noise. Further support for this hypothesis comes from limited speech-in-noise data suggesting an association between susceptibility to forward masking and speech understanding in modulated noise. PMID:26230495

  3. Stress analysis of the conceptual design configurations of constant tension D-shaped superconducting toroidal field coils for TNS

    International Nuclear Information System (INIS)

    Fernades, R.; Smith, R.A.

    1977-01-01

    Conceptual design configurations of D-shaped toroidal field coils applicable to the TNS program are studied under the action of the toroidal field loading condition and the vertical field loading condition, but not the fault condition. Although the analysis is specific to an 8 Tesla design using a niobium titanium superconductor, the results can be extended to a coil with a different conductor material and subjected to a field of different magnitude provided the condition of linear elasticity is not violated. The analysis technique used is the finite element method, with three dimensional finite elements defined in the ANSYS computer code, and supplemented by closed form analytical solutions

  4. Magnet pole shape design for reduction of thrust ripple of slotless permanent magnet linear synchronous motor with arc-shaped magnets considering end-effect based on analytical method

    Directory of Open Access Journals (Sweden)

    Kyung-Hun Shin

    2017-05-01

    Full Text Available The shape of the magnet is essential to the performance of a slotless permanent magnet linear synchronous machine (PMLSM because it is directly related to desirable machine performance. This paper presents a reduction in the thrust ripple of a PMLSM through the use of arc-shaped magnets based on electromagnetic field theory. The magnetic field solutions were obtained by considering end effect using a magnetic vector potential and two-dimensional Cartesian coordinate system. The analytical solution of each subdomain (PM, air-gap, coil, and end region is derived, and the field solution is obtained by applying the boundary and interface conditions between the subdomains. In particular, an analytical method was derived for the instantaneous thrust and thrust ripple reduction of a PMLSM with arc-shaped magnets. In order to demonstrate the validity of the analytical results, the back electromotive force results of a finite element analysis and experiment on the manufactured prototype model were compared. The optimal point for thrust ripple minimization is suggested.

  5. Shape of Field-Induced Nanostructures Formed by STM

    Directory of Open Access Journals (Sweden)

    Subhashis Gangopadhyay

    2007-01-01

    Full Text Available Creation of controlled and reproducible nanostructures on material surfaces using scanning tunneling microscope is a novel technique, which can be used for a variety of applications. We have examined the shape of the nanostructures so formed on the gold film using tungsten tip and examined the formation parameters, which govern their shape and size. During our investigations it is found that the reproducibility of mound formation can reach up to 90% under optimum operating conditions, whereas the pit formation can be made with almost 100% reproducibility. Formation mechanism of such nanostructures is also discussed.

  6. Nonlocal vibration of Y-shaped CNT conveying nano-magnetic viscous fluid under magnetic field

    Directory of Open Access Journals (Sweden)

    A. Ghorbanpour Arani

    2015-06-01

    Full Text Available This study deals with the vibration and stability analysis of a Y-shaped single-walled carbon nanotube (SWCNT embedded in visco-Pasternak foundation and conveying nano-magnetic viscous fluid (NMF based on nonlocal elasticity theory and Euler–Bernoulli beam model. The fluid is two-phases due to the existence of magnetic nanoparticles which its volume fraction is much little in comparison with the base fluid where the influence of 2D magnetic field is taken into account. Also, Knudsen number is used to correct the velocity profile of fluid. The Galerkin method is applied to solve the equation of motion which is obtained by employing Hamilton’s principle. The detail parametric study is conducted, focusing on the combined effects of carbon nanotube and Y-shaped junction fitted at the downstream end, fluid velocity, Knudsen number and elastic medium. The results indicate that increasing the angle between centerline of the CNT and the downstream elbows decreases stability of system.

  7. Shallow donor impurities in different shaped double quantum wells under the hydrostatic pressure and applied electric field

    International Nuclear Information System (INIS)

    Kasapoglu, E.; Sari, H.; Sokmen, I.

    2005-01-01

    The combined electric field and hydrostatic pressure effects on the binding energy of the donor impurity in double triangle quantum well (DTQW), double graded (DGQW) and double square (DSQW) GaAs-(Ga,Al)As quantum wells are calculated by using a variational technique within the effective-mass approximation. The results have been obtained in the presence of an electric field applied along the growth direction as a function of hydrostatic pressure, the impurity position, barrier width and the geometric shape of the double quantum wells

  8. Square bananas, blue horses: The relative weight of shape and color in concept recognition and representation

    Directory of Open Access Journals (Sweden)

    Claudia eScorolli

    2015-10-01

    Full Text Available The present study investigates the role that shape and color play in the representation of animate (i.e. animals and inanimate manipulable entities (i.e. fruits, and how the importance of these features is modulated by different tasks. Across three experiments participants were shown either images of entities (e.g., a sheep or a pineapple or images of the same entities modified in color (e.g. a blue pineapple or in shape (e.g. an elongated pineapple. In Experiment 1 we asked participants to categorize the entities as fruit or animal. Results showed that with animals color does not matter, while shape modifications determined a deterioration of the performance - stronger for fruit than for animals. To better understand the findings, in Experiment 2 participants were asked to judge if entities were graspable (manipulation evaluation task. Participants were faster with manipulable entities (fruit than with animals; moreover alterations in shape affected the response latencies more for animals than for fruit. In Experiment 3 (motion evaluation task, we replicated the disadvantage for shape-altered animals, while with fruits shape and color modifications produced no effect. By contrasting shape- and color- alterations the present findings provide information on shape/color relative weight, suggesting that the action based property of shape is more crucial than color for fruit categorization, while with animals it is critical for both manipulation and motion tasks. This contextual dependency is further revealed by explicit judgments on similarity - between the altered entities and the prototypical ones - provided after the different tasks. These results extend current literature on affordances and biofunctionally embodied understanding, revealing the relative robustness of biofunctional activity compared to intellectual one.

  9. Shape memory materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Compared with piezoelectric ceramics and magnetostrictive materials, the shape memory materials possess larger recoverable strain and recovery stress but slower response to external field. It is expected that the magneto-shape memory materials may develop considerable strain as well as rapid and precise shape control. Pseudoelasticity and shape memory effect (SME) resulted from martensitic transformation and its reverse transformation in shape memory materials were generally described. The requirements of appearing the shape memory effect in materials and the criteria for thermoelastic martensitic transformation were given. Some aspects concerning characteristics of martensitic transformation, and factors affecting SME in Ni-Ti, Cu-Zn-Al and Fe-Mn-Si based alloys as well as ZrO2 containing ceramics were briefly reviewed. Thermodynamic calculation of Ms temperature as function of grain size and parent ordering in Cu-Zn-Al was presented. The works on prediction of Ms in Fe-Mn-Si based alloys and in ZrO2-CeO2 were mentioned. Magnetic shape memory materials were briefly introduced.

  10. Comparison between 3D conventional techniques, field-in-field and electronic tissue compensation for mantle fields planning

    International Nuclear Information System (INIS)

    Martins, Lais P.; Silva, Leonardo P.; Trindade, Cassia; Garcia, Paulo L.; Santos, Maira R.; Batista, Delano V.S.

    2012-01-01

    External radiotherapy treatment for Hodgkin's lymphoma over diaphragm region requires large radiation fields with protections applied to larynx, humerus head and lungs. The size and shape of the field, which covers different depths, make it difficult to distribute a homogeneous dose. Techniques such as field-in-field and electronic tissue compensation may be used to make dose homogeneous and compensate the obliquity from the tissue. Three types of planning were performed for diagnose of nodular sclerosis Hodgkin's lymphoma: one plan with two fields, AP-PA (AP plan), another with four fields field-in- field (FF plan), and a third one with two fields and electronic tissue compensation (ETC plan). Results showed better gradient, cover of PTV and dose distribution for the ETC plan, besides the advantage from this technique of does not require protection blocks. In the meanwhile, AP and FF plans require simpler dosimetry and fewer MU. Related to the uniformity of dose distribution, AP plan showed hot areas in the neck region, FF plan showed hot areas in the shoulder region and ETC plan showed most uniform distribution without hot areas. The electronic tissue compensation is a useful tool for large and shaped fields as the mantle field, however higher MU and complex dosimetry should be taken in account. (author)

  11. Reciprocal longitudinal relations between weight/shape concern and comorbid pathology among women at very high risk for eating disorder onset.

    Science.gov (United States)

    Fitzsimmons-Craft, Ellen E; Eichen, Dawn M; Kass, Andrea E; Trockel, Mickey; Crosby, Ross D; Taylor, C Barr; Wilfley, Denise E

    2017-12-28

    Understanding how known eating disorder (ED) risk factors change in relating to one another over time may inform efficient intervention targets. We examined short-term (i.e., 1 month) reciprocal longitudinal relations between weight/shape concern and comorbid symptoms (i.e., depressed mood, anxiety) and behaviors (i.e., binge drinking) over the course of 24 months using cross-lagged panel models. Participants were 185 women aged 18-25 years at very high risk for ED onset, randomized to an online ED preventive intervention or waitlist control. We also tested whether relations differed based on intervention receipt. Weight/shape concern in 1 month significantly predicted depressed mood the following month; depressed mood in 1 month also predicted weight/shape concern the following month, but the effect size was smaller. Likewise, weight/shape concern in 1 month significantly predicted anxiety the following month, but the reverse was not true. Results showed no temporal relations between weight/shape concern and binge drinking in either direction. Relations between weight/shape concern, and comorbid symptoms and behaviors did not differ based on intervention receipt. Results support focusing intervention on reducing weight/shape concern over reducing comorbid constructs for efficient short-term change. Level I, evidence obtained from a properly designed randomized controlled trial.

  12. Pulsed high field magnets. An efficient way of shaping laser accelerated proton beams for application

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Florian; Schramm, Ulrich [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany); Technische Universitaet Dresden, 01062 Dresden (Germany); Bagnoud, Vincent; Blazevic, Abel; Busold, Simon [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Helmholtz Institut Jena, 07734 Jena (Germany); Brabetz, Christian; Schumacher, Dennis [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Deppert, Oliver; Jahn, Diana; Roth, Markus [Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Karsch, Leonhard; Masood, Umar [OncoRay-National Center for Radiation Research in Oncology, TU Dresden, 01307 Dresden (Germany); Kraft, Stephan [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany)

    2015-07-01

    Compact laser-driven proton accelerators are a potential alternative to complex, expensive conventional accelerators, enabling unique beam properties, like ultra-high pulse dose. Nevertheless, they still require substantial development in reliable beam generation and transport. We present experimental studies on capture, shape and transport of laser and conventionally accelerated protons via pulsed high-field magnets. These magnets, common research tools in the fields of solid state physics, have been adapted to meet the demands of laser acceleration experiments.Our work distinctively shows that pulsed magnet technology makes laser acceleration more suitable for application and can facilitate compact and efficient accelerators, e.g. for material research as well as medical and biological purposes.

  13. Shape, size, velocity and field-aligned currents of dayside plasma injections: a multi-altitude study

    Directory of Open Access Journals (Sweden)

    A. Marchaudon

    2009-03-01

    Full Text Available On 20 February 2005, Cluster in the outer magnetosphere and Double Star-2 (TC-2 at mid-altitude are situated in the vicinity of the northern cusp/mantle, with Cluster moving sunward and TC-2 anti-sunward. Their magnetic footprints come very close together at about 15:28 UT, over the common field-of-view of SuperDARN radars. Thanks to this conjunction, we determine the velocity, the transverse sizes, perpendicular and parallel to this velocity, and the shape of three magnetic flux tubes of magnetosheath plasma injection. The velocity of the structures determined from the Cluster four-spacecraft timing analysis is almost purely antisunward, in contrast with the antisunward and duskward convection velocity inside the flux tubes. The transverse sizes are defined from the Cluster-TC-2 separation perpendicular to the magnetic field, and from the time spent by a Cluster spacecraft in one structure; they are comprised between 0.6 and 2 RE in agreement with previous studies. Finally, using a comparison between the eigenvectors deduced from a variance analysis of the magnetic perturbation at the four Cluster and at TC-2, we show that the upstream side of the injection flux tubes is magnetically well defined, with even a concave front for the third one giving a bean-like shape, whereas the downstream side is far more turbulent. We also realise the first quantitative comparison between field-aligned currents at Cluster calculated with the curlometer technique and with the single-spacecraft method, assuming infinite parallel current sheets and taking into account the velocity of the injection flux tubes. The results agree nicely, confirming the validity of both methods. Finally, we compare the field-aligned current distribution of the three injection flux tubes at the altitudes of Cluster and TC-2. Both profiles are fairly similar, with mainly a pair of opposite field-aligned currents, upward at low-latitude and downward at high-latitude. In terms of

  14. Reflections on the Field of Educational Management Studies.

    Science.gov (United States)

    Fitz, John

    1999-01-01

    Explores educational management studies as an intellectual field. Draws on Bernstein and Bourieu's theorization of "field" to identify its specialized discourse, field positions and their objective relations, and the location of field occupants (the academic, the practitioner, and the entrepreneur). This configuration shapes educational…

  15. Shape-Related Toxicity of Titanium Dioxide Nanofibres

    Science.gov (United States)

    Allegri, Manfredi; Bianchi, Massimiliano G.; Chiu, Martina; Varet, Julia; Costa, Anna L.; Ortelli, Simona; Blosi, Magda; Bussolati, Ovidio; Poland, Craig A.; Bergamaschi, Enrico

    2016-01-01

    Titanium dioxide (TiO2) nanofibres are a novel fibrous nanomaterial with increasing applications in a variety of fields. While the biological effects of TiO2 nanoparticles have been extensively studied, the toxicological characterization of TiO2 nanofibres is far from being complete. In this study, we evaluated the toxicity of commercially available anatase TiO2 nanofibres using TiO2 nanoparticles (NP) and crocidolite asbestos as non-fibrous or fibrous benchmark materials. The evaluated endpoints were cell viability, haemolysis, macrophage activation, trans-epithelial electrical resistance (an indicator of the epithelial barrier competence), ROS production and oxidative stress as well as the morphology of exposed cells. The results showed that TiO2 nanofibres caused a cell-specific, dose-dependent decrease of cell viability, with larger effects on alveolar epithelial cells than on macrophages. The observed effects were comparable to those of crocidolite, while TiO2 NP did not decrease cell viability. TiO2 nanofibres were also found endowed with a marked haemolytic activity, at levels significantly higher than those observed with TiO2 nanoparticles or crocidolite. Moreover, TiO2 nanofibres and crocidolite, but not TiO2 nanoparticles, caused a significant decrease of the trans-epithelial electrical resistance of airway cell monolayers. SEM images demonstrated that the interaction with nanofibres and crocidolite caused cell shape perturbation with the longest fibres incompletely or not phagocytosed. The expression of several pro-inflammatory markers, such as NO production and the induction of Nos2 and Ptgs2, was significantly increased by TiO2 nanofibres, as well as by TiO2 nanoparticles and crocidolite. This study indicates that TiO2 nanofibres had significant toxic effects and, for most endpoints with the exception of pro-inflammatory changes, are more bio-active than TiO2 nanoparticles, showing the relevance of shape in determining the toxicity of nanomaterials

  16. Irradiation of malignant lymphonuos with irregularly shaped fields (Yesterday gammatron-3, today theratron 780C cobalt unit)

    International Nuclear Information System (INIS)

    Szabo, A.; Rasonyi, J.; Pecsenye, B.

    1995-01-01

    The authors compare the technique of shaping irregular (Mantle) field irradiation using Gammatron-3 and Theratron 780C Co-60 units. Patients can be treated from both directions on the treating coach without changing their position as the collimator of Theratron 780C unit makes it possible. Earlier patients could be treated with large field irradiation in prone and supine position on the ground with the old Gammatron-3 unit. The authors prefer using individually casted shielding blocks to manufactured ones. These blocks make personal treatment possible. (author). 5 refs., 2 figs

  17. Masking Period Patterns and Forward Masking for Speech-Shaped Noise: Age-Related Effects.

    Science.gov (United States)

    Grose, John H; Menezes, Denise C; Porter, Heather L; Griz, Silvana

    2016-01-01

    The purpose of this study was to assess age-related changes in temporal resolution in listeners with relatively normal audiograms. The hypothesis was that increased susceptibility to nonsimultaneous masking contributes to the hearing difficulties experienced by older listeners in complex fluctuating backgrounds. Participants included younger (n = 11), middle-age (n = 12), and older (n = 11) listeners with relatively normal audiograms. The first phase of the study measured masking period patterns for speech-shaped noise maskers and signals. From these data, temporal window shapes were derived. The second phase measured forward-masking functions and assessed how well the temporal window fits accounted for these data. The masking period patterns demonstrated increased susceptibility to backward masking in the older listeners, compatible with a more symmetric temporal window in this group. The forward-masking functions exhibited an age-related decline in recovery to baseline thresholds, and there was also an increase in the variability of the temporal window fits to these data. This study demonstrated an age-related increase in susceptibility to nonsimultaneous masking, supporting the hypothesis that exacerbated nonsimultaneous masking contributes to age-related difficulties understanding speech in fluctuating noise. Further support for this hypothesis comes from limited speech-in-noise data, suggesting an association between susceptibility to forward masking and speech understanding in modulated noise.

  18. Neutron-gamma discrimination in mixed field by pulse shape discriminator

    International Nuclear Information System (INIS)

    Sharghi Ido, A.; Shahriari, M.; Etaati, G. R.

    2009-01-01

    In this study, a pulse shape discriminator, incorporating zero-crossing method has been developed. The separate measurements with 241 Am-Be and 252 Cf sources undertaken by BC501A liquid have shown that the purposed and the common-used pulse shape discriminator's are in good agreement. The improved characteristics of the presented pulse shape discriminator are FOM=1.36 at a threshold of 60 ke Vee and 1.5μsec dead time which allows the count rates up to 50 k Hz

  19. Equilibrium Shape of Ferrofluid in the Uniform External Field

    Science.gov (United States)

    2017-07-14

    mentioned as free-surface instabilities. That makes their computational modeling rather challenging. For the sake of validation and verification , there...4 4. Toward Verification of the Ellipsoidal Shape 5 5. Conclusion 6 6. References 7 Distribution List 8 Approved for public release...authors claimed that this fact can be established on the basis of a rigorous theory, like it was done for the equilibrium shape of rotating self

  20. Automatic generation of co-embeddings from relational data with adaptive shaping.

    Science.gov (United States)

    Mu, Tingting; Goulermas, John Yannis

    2013-10-01

    In this paper, we study the co-embedding problem of how to map different types of patterns into one common low-dimensional space, given only the associations (relation values) between samples. We conduct a generic analysis to discover the commonalities between existing co-embedding algorithms and indirectly related approaches and investigate possible factors controlling the shapes and distributions of the co-embeddings. The primary contribution of this work is a novel method for computing co-embeddings, termed the automatic co-embedding with adaptive shaping (ACAS) algorithm, based on an efficient transformation of the co-embedding problem. Its advantages include flexible model adaptation to the given data, an economical set of model variables leading to a parametric co-embedding formulation, and a robust model fitting criterion for model optimization based on a quantization procedure. The secondary contribution of this work is the introduction of a set of generic schemes for the qualitative analysis and quantitative assessment of the output of co-embedding algorithms, using existing labeled benchmark datasets. Experiments with synthetic and real-world datasets show that the proposed algorithm is very competitive compared to existing ones.

  1. Electronic Detection of DNA Hybridization by Coupling Organic Field-Effect Transistor-Based Sensors and Hairpin-Shaped Probes

    Directory of Open Access Journals (Sweden)

    Corrado Napoli

    2018-03-01

    Full Text Available In this paper, the electronic transduction of DNA hybridization is presented by coupling organic charge-modulated field-effect transistors (OCMFETs and hairpin-shaped probes. These probes have shown interesting properties in terms of sensitivity and selectivity in other kinds of assays, in the form of molecular beacons (MBs. Their integration with organic-transistor based sensors, never explored before, paves the way to a new class of low-cost, easy-to-use, and portable genetic sensors with enhanced performances. Thanks to the peculiar characteristics of the employed sensor, measurements can be performed at relatively high ionic strengths, thus optimizing the probes’ functionality without affecting the detection ability of the device. A complete electrical characterization of the sensor is reported, including calibration with different target concentrations in the measurement environment and selectivity evaluation. In particular, DNA hybridization detection for target concentration as low as 100 pM is demonstrated.

  2. Microscopic mean-field boson approach to the shape transition in Sm isotopes

    International Nuclear Information System (INIS)

    Kuchta, R.

    1988-01-01

    The phase transition from spherical to deformed shape in Sm 146-156 nuclei is analyzed within the mean-field approximation applied to the Dyson image of the shell-model Hamiltonian. No quasiparticle transformation is involved in the present approach and the Pauli principle in the physical boson subspace is properly taken into account. The low-lying spectra, B(E2; O 1 + →2 + ) probabilities and the corresponding densities of electromagnetic transitions are calculated. The results provide a reasonable explanation of the phase transition in the Sm isotopes. The role of bosons with different multipolarity is investigated and it is found that g-bosons (J=4) cannot be neglected in the transition region. Comparison of the present results with those of other approaches is given as well

  3. Nudging children towards whole wheat bread: a field experiment on the influence of fun bread roll shape on breakfast consumption.

    Science.gov (United States)

    van Kleef, Ellen; Vrijhof, Milou; Polet, Ilse A; Vingerhoeds, Monique H; de Wijk, René A

    2014-09-02

    Many children do not eat enough whole grains, which may have negative health consequences. Intervention research is increasingly focusing on nudging as a way to influence food choices by affecting unconscious behavioural processes. The aim of this field study was to examine whether the shape of bread rolls is able to shift children's bread choices from white to whole wheat during breakfast to increase whole grain intake. In a between-subjects experiment conducted at twelve primary schools in the Netherlands, with school as the unit of condition assignment, children were exposed to an assortment of white and whole wheat bread rolls, both varying in shape (regular versus fun). Children were free to choose the type and number of bread rolls and toppings to eat during breakfast. Consumption of bread rolls was measured at class level via the number of bread rolls before and after breakfast. In addition, children (N = 1113) responded to a survey including questions about the breakfast. Results of the field experiment showed that about 76% of bread consumption consisted of white bread rolls. Consumption of white bread rolls did not differ according to shape (all P-values > 0.18). However, presenting fun-shaped whole wheat bread rolls almost doubled consumption of whole wheat bread (P = 0.001), particularly when the simultaneously presented white bread rolls had a regular shape (interaction P = 0.02). Survey results suggest that slight increases in perceived pleasure and taste are associated with these effects. Overall, presenting whole wheat bread in fun shapes may be helpful in increasing consumption of whole wheat bread in children. Future research could examine how improving the visual appeal of healthy foods may lead to sustained behaviour changes.

  4. Optical fiber designs for beam shaping

    Science.gov (United States)

    Farley, Kevin; Conroy, Michael; Wang, Chih-Hao; Abramczyk, Jaroslaw; Campbell, Stuart; Oulundsen, George; Tankala, Kanishka

    2014-03-01

    A large number of power delivery applications for optical fibers require beams with very specific output intensity profiles; in particular applications that require a focused high intensity beam typically image the near field (NF) intensity distribution at the exit surface of an optical fiber. In this work we discuss optical fiber designs that shape the output beam profile to more closely correspond to what is required in many real world industrial applications. Specifically we present results demonstrating the ability to transform Gaussian beams to shapes required for industrial applications and how that relates to system parameters such as beam product parameter (BPP) values. We report on the how different waveguide structures perform in the NF and show results on how to achieve flat-top with circular outputs.

  5. Prolate non-collective shape- a rare shape phase around Z = 50

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2009-01-01

    The search for rare shape-phase transition in hot and rotating nuclei is one of the very active field in nuclear physics research. According to universally known features of the evolution of equilibrium shapes with temperature and spin, heating a deformed nonrotating nucleus leads to a shape transition from deformed to spherical at a certain temperature. At high temperatures T≅ 2 MeV, the shell effects melt and the nucleus resembles a classical liquid drop. Rotation of the hot nucleus generates an oblate shape rotating noncollectively. But it has been shown by A. Goodman that nuclei with two critical temperatures can rotate with a rare non-collective prolate shape phase which has been caused directly by rotation at angular momentum values around (5-30h) which creates a residual quantum shell effect as shown by A. L. Goodman. Search for such exotic shape-phase around Z = 50 region is the aim of present work. We consider N = 60 isotones 108 Cd, 109 In, 110 Sn

  6. Strain characterization of fin-shaped field effect transistors with SiGe stressors using nanobeam electron diffraction

    International Nuclear Information System (INIS)

    Kim, Sun-Wook; Byeon, Dae-Seop; Jang, Hyunchul; Koo, Sang-Mo; Ko, Dae-Hong; Lee, Hoo-Jeong

    2014-01-01

    This study undertook strain analysis on fin-shaped field effect transistor structures with epitaxial Si 1−x Ge x stressors, using nano-beam electron diffraction and finite elements method. Combining the two methods disclosed dynamic strain distribution in the source/drain and channel region of the fin structure, and the effects of dimensional factors such as the stressor thickness and fin width, offering valuable information for device design.

  7. Strain characterization of fin-shaped field effect transistors with SiGe stressors using nanobeam electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun-Wook; Byeon, Dae-Seop; Jang, Hyunchul; Koo, Sang-Mo; Ko, Dae-Hong, E-mail: dhko@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Hoo-Jeong, E-mail: hlee@skku.edu [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-08-25

    This study undertook strain analysis on fin-shaped field effect transistor structures with epitaxial Si{sub 1−x}Ge{sub x} stressors, using nano-beam electron diffraction and finite elements method. Combining the two methods disclosed dynamic strain distribution in the source/drain and channel region of the fin structure, and the effects of dimensional factors such as the stressor thickness and fin width, offering valuable information for device design.

  8. Accuracy limits of the equivalent field method for irregular photon fields

    International Nuclear Information System (INIS)

    Sanz, Dario Esteban

    2002-01-01

    A mathematical approach is developed to evaluate the accuracy of the equivalent field method using basic clinical photon beam data. This paper presents an analytical calculation of dose errors arising when field equivalencies, calculated at a certain reference depth, are translated to other depths. The phantom scatter summation is expressed as a Riemann-Stieltjes integral and two categories of irregular fields are introduced: uniform and multiform. It is shown that multiform fields produce errors whose magnitudes are nearly twice those corresponding to uniform fields in extreme situations. For uniform field shapes, the maximum, local, relative dose errors, when the equivalencies are calculated at 10 cm depth on the central axis and translated to a depth of 30 cm, are 3.8% and 8.8% for 6 MV and cobalt-60 photon beams, respectively. In terms of maximum dose those errors are within 1-2%. This supports the conclusion that the equivalencies between rectangular fields, which are examples of uniform fields, are applicable to dose ratio functions irrespective of beam energy. However, the magnitude of such errors could be of importance when assessing the exit dose for in vivo monitoring. This work provides a better understanding of the influence of the irregular field shapes on the accuracy of the equivalent field method. (author)

  9. Polymorphic Ring-Shaped Molecular Clusters Made of Shape-Variable Building Blocks

    Directory of Open Access Journals (Sweden)

    Keitel Cervantes-Salguero

    2015-02-01

    Full Text Available Self-assembling molecular building blocks able to dynamically change their shapes, is a concept that would offer a route to reconfigurable systems. Although simulation studies predict novel properties useful for applications in diverse fields, such kinds of building blocks, have not been implemented thus far with molecules. Here, we report shape-variable building blocks fabricated by DNA self-assembly. Blocks are movable enough to undergo shape transitions along geometrical ranges. Blocks connect to each other and assemble into polymorphic ring-shaped clusters via the stacking of DNA blunt-ends. Reconfiguration of the polymorphic clusters is achieved by the surface diffusion on mica substrate in response to a monovalent salt concentration. This work could inspire novel reconfigurable self-assembling systems for applications in molecular robotics.

  10. Shape analysis in medical image analysis

    CERN Document Server

    Tavares, João

    2014-01-01

    This book contains thirteen contributions from invited experts of international recognition addressing important issues in shape analysis in medical image analysis, including techniques for image segmentation, registration, modelling and classification, and applications in biology, as well as in cardiac, brain, spine, chest, lung and clinical practice. This volume treats topics such as, anatomic and functional shape representation and matching; shape-based medical image segmentation; shape registration; statistical shape analysis; shape deformation; shape-based abnormity detection; shape tracking and longitudinal shape analysis; machine learning for shape modeling and analysis; shape-based computer-aided-diagnosis; shape-based medical navigation; benchmark and validation of shape representation, analysis and modeling algorithms. This work will be of interest to researchers, students, and manufacturers in the fields of artificial intelligence, bioengineering, biomechanics, computational mechanics, computationa...

  11. Comparison between 3D conventional techniques, field-in-field and electronic tissue compensation for mantle fields planning; Comparacao entre tecnica 3D convencional, field-in-field e compensacao eletronica para planejamento de manto

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Lais P.; Silva, Leonardo P.; Trindade, Cassia; Garcia, Paulo L.; Santos, Maira R.; Batista, Delano V.S., E-mail: pm.lais@gmail.com [Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ (Brazil)

    2012-12-15

    External radiotherapy treatment for Hodgkin's lymphoma over diaphragm region requires large radiation fields with protections applied to larynx, humerus head and lungs. The size and shape of the field, which covers different depths, make it difficult to distribute a homogeneous dose. Techniques such as field-in-field and electronic tissue compensation may be used to make dose homogeneous and compensate the obliquity from the tissue. Three types of planning were performed for diagnose of nodular sclerosis Hodgkin's lymphoma: one plan with two fields, AP-PA (AP plan), another with four fields field-in- field (FF plan), and a third one with two fields and electronic tissue compensation (ETC plan). Results showed better gradient, cover of PTV and dose distribution for the ETC plan, besides the advantage from this technique of does not require protection blocks. In the meanwhile, AP and FF plans require simpler dosimetry and fewer MU. Related to the uniformity of dose distribution, AP plan showed hot areas in the neck region, FF plan showed hot areas in the shoulder region and ETC plan showed most uniform distribution without hot areas. The electronic tissue compensation is a useful tool for large and shaped fields as the mantle field, however higher MU and complex dosimetry should be taken in account. (author)

  12. Genetic control of organ shape and tissue polarity.

    Directory of Open Access Journals (Sweden)

    Amelia A Green

    2010-11-01

    Full Text Available The mechanisms by which genes control organ shape are poorly understood. In principle, genes may control shape by modifying local rates and/or orientations of deformation. Distinguishing between these possibilities has been difficult because of interactions between patterns, orientations, and mechanical constraints during growth. Here we show how a combination of growth analysis, molecular genetics, and modelling can be used to dissect the factors contributing to shape. Using the Snapdragon (Antirrhinum flower as an example, we show how shape development reflects local rates and orientations of tissue growth that vary spatially and temporally to form a dynamic growth field. This growth field is under the control of several dorsoventral genes that influence flower shape. The action of these genes can be modelled by assuming they modulate specified growth rates parallel or perpendicular to local orientations, established by a few key organisers of tissue polarity. Models in which dorsoventral genes only influence specified growth rates do not fully account for the observed growth fields and shapes. However, the data can be readily explained by a model in which dorsoventral genes also modify organisers of tissue polarity. In particular, genetic control of tissue polarity organisers at ventral petal junctions and distal boundaries allows both the shape and growth field of the flower to be accounted for in wild type and mutants. The results suggest that genetic control of tissue polarity organisers has played a key role in the development and evolution of shape.

  13. Field size and dose distribution of electron beam

    International Nuclear Information System (INIS)

    Kang, Wee Saing

    1980-01-01

    The author concerns some relations between the field size and dose distribution of electron beams. The doses of electron beams are measured by either an ion chamber with an electrometer or by film for dosimetry. We analyzes qualitatively some relations; the energy of incident electron beams and depths of maximum dose, field sizes of electron beams and depth of maximum dose, field size and scatter factor, electron energy and scatter factor, collimator shape and scatter factor, electron energy and surface dose, field size and surface dose, field size and central axis depth dose, and field size and practical range. He meets with some results. They are that the field size of electron beam has influence on the depth of maximum dose, scatter factor, surface dose and central axis depth dose, scatter factor depends on the field size and energy of electron beam, and the shape of the collimator, and the depth of maximum dose and the surface dose depend on the energy of electron beam, but the practical range of electron beam is independent of field size

  14. Weak field approximation of new general relativity

    International Nuclear Information System (INIS)

    Fukui, Masayasu; Masukawa, Junnichi

    1985-01-01

    In the weak field approximation, gravitational field equations of new general relativity with arbitrary parameters are examined. Assuming a conservation law delta sup(μ)T sub(μν) = 0 of the energy-momentum tensor T sub(μν) for matter fields in addition to the usual one delta sup(ν)T sub(μν) = 0, we show that the linearized gravitational field equations are decomposed into equations for a Lorentz scalar field and symmetric and antisymmetric Lorentz tensor fields. (author)

  15. Derivation, evidence and physical validity of a weighted beam-zone method for dose determination in blocked photon fields of arbitrary shape

    International Nuclear Information System (INIS)

    Glaeser, L.; Quast, U.

    1981-01-01

    A simple, practical procedure for dose determination at any point of an arbitrarily shaped field has been derived: Square-field photon beams are sectioned into a set of pyramid-shell-like parts (beam zones), nested into each other around the smallest realizable square field, of different sizes but with equal dose contributions (thus weighted) with respect to a central dose reference point. The dose at any reference point in an irregular field can be determined simply by counting the number of non-shielded dose-contributing zones (or zone fractions), leading to the associated order of square-field size (with the same number of zones), the equivalent field with known dose. For experimental evidence of the validity of the weighted beam-zone method, measurements were carried out with different high-energy photon beams with one or more beam zones shielded by absorbing blocks. Measurements were made at points in unshielded and shielded parts of the field, on and off the beam axis and at different depths in a phantom. Calculations and measurements were compared. While relative depth doses were shown to be equal to within +-2% over a range of 5 cm ahead of and behind the dose reference point, the absolute dose deviations were within +-4%. The sources of error were analysed. They were mainly determined by scattered radiation from the beam limiting device and the partial shielding deriving from the shielding blocks. The same errors also occur in most of the known methods of dose calculation in irregular fields. (author)

  16. Near-field characteristics of highly non-paraxial subwavelength optical fields with hybrid states of polarization

    International Nuclear Information System (INIS)

    Chen Rui-Pin; Gao Teng-Yue; Chew Khian-Hooi; Dai Chao-Qing; Zhou Guo-Quan; He Sai-Ling

    2017-01-01

    The vectorial structure of an optical field with hybrid states of polarization (SoP) in the near-field is studied by using the angular spectrum method of an electromagnetic beam. Physical images of the longitudinal components of evanescent waves are illustrated and compared with those of the transverse components from the vectorial structure. Our results indicate that the relative weight integrated over the transverse plane of the evanescent wave depends strongly on the number of the polarization topological charges. The shapes of the intensity profiles of the longitudinal components are different from those of the transverse components, and it can be manipulated by changing the initial SoP of the field cross-section. The longitudinal component of evanescent wave dominates the near-field region. In addition, it also leads to three-dimensional shape variations of the optical field and the optical spin angular momentum flux density distributions. (paper)

  17. Quantification of lacrimal function after D-shaped field irradiation for retinoblastoma

    International Nuclear Information System (INIS)

    Imhof, S.M.; Tan, K.E.W.P.; Hofman, P.

    1993-01-01

    To study the quantitative effects of mega-voltage external beam irradiation in a D-shaped field in patients with retinoblastoma, biomicroscopy was performed in 61 patients and tear function tests (Schirmer-lactoferrin and lysozyme tests) on 45 eyes in 34 irradiated patients. The results were compared with those obtained in 25 non-irradiated control eyes. The Schirmer test was significantly diminished in irradiated eyes, as were the lactoferrin and lysozyme values. A mild to severe keratitis was found in 17 of the 61 patients (28%). A significant correlation (p<0.005) was found between the severe keratitis and the mean Schirmer values; the mean lactoferrin and lysozyme values were diminished in all patients but did not correlate significantly with the corneal abnormalities. These quantitative data, obtained in patients treated for retinoblastoma, affirm the qualitative data found in patients irradiated for other reasons such as orbital or sinus tumours. Irradiation for retinoblastoma is not a harmless treatment and serious late side effects have to be considered. (Author)

  18. An event-related brain potential study of visual selective attention to conjunctions of color and shape.

    Science.gov (United States)

    Smid, H G; Jakob, A; Heinze, H J

    1999-03-01

    What cognitive processes underlie event-related brain potential (ERP) effects related to visual multidimensional selective attention and how are these processes organized? We recorded ERPs when participants attended to one conjunction of color, global shape and local shape and ignored other conjunctions of these attributes in three discriminability conditions. Attending to color and shape produced three ERP effects: frontal selection positivity (FSP), central negativity (N2b), and posterior selection negativity (SN). The results suggested that the processes underlying SN and N2b perform independent within-dimension selections, whereas the process underlying the FSP performs hierarchical between-dimension selections. At posterior electrodes, manipulation of discriminability changed the ERPs to the relevant but not to the irrelevant stimuli, suggesting that the SN does not concern the selection process itself but rather a cognitive process initiated after selection is finished. Other findings suggested that selection of multiple visual attributes occurs in parallel.

  19. PERIODIC ORBIT FAMILIES IN THE GRAVITATIONAL FIELD OF IRREGULAR-SHAPED BODIES

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yu [State Key Laboratory of Astronautic Dynamics, Xi’an Satellite Control Center, Xi’an 710043 (China); Baoyin, Hexi, E-mail: jiangyu_xian_china@163.com [School of Aerospace Engineering, Tsinghua University, Beijing 100084 (China)

    2016-11-01

    The discovery of binary and triple asteroids in addition to the execution of space missions to minor celestial bodies in the past several years have focused increasing attention on periodic orbits around irregular-shaped celestial bodies. In the present work, we adopt a polyhedron shape model for providing an accurate representation of irregular-shaped bodies and employ the model to calculate their corresponding gravitational and effective potentials. We also investigate the characteristics of periodic orbit families and the continuation of periodic orbits. We prove a fact, which provides a conserved quantity that permits restricting the number of periodic orbits in a fixed energy curved surface about an irregular-shaped body. The collisions of Floquet multipliers are maintained during the continuation of periodic orbits around the comet 1P/Halley. Multiple bifurcations in the periodic orbit families about irregular-shaped bodies are also discussed. Three bifurcations in the periodic orbit family have been found around the asteroid 216 Kleopatra, which include two real saddle bifurcations and one period-doubling bifurcation.

  20. PERIODIC ORBIT FAMILIES IN THE GRAVITATIONAL FIELD OF IRREGULAR-SHAPED BODIES

    International Nuclear Information System (INIS)

    Jiang, Yu; Baoyin, Hexi

    2016-01-01

    The discovery of binary and triple asteroids in addition to the execution of space missions to minor celestial bodies in the past several years have focused increasing attention on periodic orbits around irregular-shaped celestial bodies. In the present work, we adopt a polyhedron shape model for providing an accurate representation of irregular-shaped bodies and employ the model to calculate their corresponding gravitational and effective potentials. We also investigate the characteristics of periodic orbit families and the continuation of periodic orbits. We prove a fact, which provides a conserved quantity that permits restricting the number of periodic orbits in a fixed energy curved surface about an irregular-shaped body. The collisions of Floquet multipliers are maintained during the continuation of periodic orbits around the comet 1P/Halley. Multiple bifurcations in the periodic orbit families about irregular-shaped bodies are also discussed. Three bifurcations in the periodic orbit family have been found around the asteroid 216 Kleopatra, which include two real saddle bifurcations and one period-doubling bifurcation.

  1. Energy of Force-Free Magnetic Fields in Relation to Coronal Mass Ejections

    International Nuclear Information System (INIS)

    Choe, G.S.; Cheng, C.Z.

    2002-01-01

    In typical observations of coronal mass ejections (CMEs), a magnetic structure of a helmet-shaped closed configuration bulges out and eventually opens up. However, a spontaneous transition between these field configurations has been regarded to be energetically impossible in force-free fields according to the Aly-Sturrock theorem. The theorem states that the maximum energy state of force-free fields with a given boundary normal field distribution is the open field. The theorem implicitly assumes the existence of the maximum energy state, which may not be taken for granted. In this study, we have constructed force-free fields containing tangential discontinuities in multiple flux systems. These force-free fields can be generated from a potential field by footpoint motions that do not conserve the boundary normal field distribution. Some of these force-free fields are found to have more magnetic energy than the corresponding open fields. The constructed force-free configurations are compared with observational features of CME-bearing active regions. Possible mechanisms of CMEs are also discussed

  2. Thermoviscoelastic shape memory behavior for epoxy-shape memory polymer

    International Nuclear Information System (INIS)

    Chen, Jianguo; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2014-01-01

    There are various applications for shape memory polymer (SMP) in the smart materials and structures field due to its large recoverable strain and controllable driving method. The mechanical shape memory deformation mechanism is so obscure that many samples and test schemes have to be tried in order to verify a final design proposal for a smart structure system. This paper proposes a simple and very useful method to unambiguously analyze the thermoviscoelastic shape memory behavior of SMP smart structures. First, experiments under different temperature and loading conditions are performed to characterize the large deformation and thermoviscoelastic behavior of epoxy-SMP. Then, a rheological constitutive model, which is composed of a revised standard linear solid (SLS) element and a thermal expansion element, is proposed for epoxy-SMP. The thermomechanical coupling effect and nonlinear viscous flowing rules are considered in the model. Then, the model is used to predict the measured rubbery and time-dependent response of the material, and different thermomechanical loading histories are adopted to verify the shape memory behavior of the model. The results of the calculation agree with experiments satisfactorily. The proposed shape memory model is practical for the design of SMP smart structures. (paper)

  3. Consistency relation for cosmic magnetic fields

    DEFF Research Database (Denmark)

    Jain, R. K.; Sloth, M. S.

    2012-01-01

    If cosmic magnetic fields are indeed produced during inflation, they are likely to be correlated with the scalar metric perturbations that are responsible for the cosmic microwave background anisotropies and large scale structure. Within an archetypical model of inflationary magnetogenesis, we show...... that there exists a new simple consistency relation for the non-Gaussian cross correlation function of the scalar metric perturbation with two powers of the magnetic field in the squeezed limit where the momentum of the metric perturbation vanishes. We emphasize that such a consistency relation turns out...... to be extremely useful to test some recent calculations in the literature. Apart from primordial non-Gaussianity induced by the curvature perturbations, such a cross correlation might provide a new observational probe of inflation and can in principle reveal the primordial nature of cosmic magnetic fields. DOI...

  4. Requirements for Vertically Installed Runoff Control Boards for the “Paddy Field Dam” and Appropriate Orifice Shapes

    Science.gov (United States)

    Natsuki, Yoshikawa; Hideyuki, Koide; Shin-Ichi, Misawa

    While the “Paddy Field Dam” project has been recognized as an effective flood control measure, there are some cases in which the runoff control boards are vertically installed on the opening of the drainage boxes without careful consideration of the orifice shape and size. The important criteria for the runoff control boards to be satisfied are: 1. to maintain a sufficient peak runoff control function, 2. to avoid excessive ponding causing overflow, 3. to minimize the influence to the ordinary water management, and 4. to reserve sufficient orifice area to avoid blockage of the orifice with floating litters. The purpose of this study is to examine proper shapes and sizes of the orifice to satisfy the criteria for the vertically installed runoff control boards through experiments and simulations. Given the condition that the orifice has sufficient area to avoid overflow with 10 and 20 year return period rainfall event (criteria 2), the simulation results show that the orifice with horizontally wider shapes has advantages over the square or circular shapes in terms of the criteria 1 and 3. The disadvantage of the horizontally wider shapes is the blockage of the orifice with floating litters (criteria 4). In conclusion, we proposed to secure sufficient vertical distance to avoid this problem by setting a lower limit on the vertical distance and then determine the widest horizontal distance to optimize all the criteria. In addition, we have constructed the “Orifice Design Assist Tool” on the basis of the examinations in this study.

  5. Conference on Fractals and Related Fields III

    CERN Document Server

    Seuret, Stéphane

    2017-01-01

    This contributed volume provides readers with an overview of the most recent developments in the mathematical fields related to fractals, including both original research contributions, as well as surveys from many of the leading experts on modern fractal theory and applications. It is an outgrowth of the Conference of Fractals and Related Fields III, that was held on September 19-25, 2015 in île de Porquerolles, France. Chapters cover fields related to fractals such as harmonic analysis, multifractal analysis, geometric measure theory, ergodic theory and dynamical systems, probability theory, number theory, wavelets, potential theory, partial differential equations, fractal tilings, combinatorics, and signal and image processing. The book is aimed at pure and applied mathematicians in these areas, as well as other researchers interested in discovering the fractal domain.

  6. Photochemical Synthesis of Silver Nanodecahedrons and Related Nanostructures for Plasmonic Field Enhancement Applications

    Science.gov (United States)

    Lu, Haifei

    Noble-metal nanocrystals have received considerable attention in recent years for their size and shape dependent localized surface Plasmon resonances (LSPR). Various applications based on colloidal nanoparticles, such as surface enhanced Raman scattering (SERS), surface enhanced fluorescence (SEF), plasmonic sensing, photothermal therapy etc., have been broadly explored in the field of biomedicine, because of their extremely large optical scattering and absorption cross sections, as well as giant electric field enhancement on their surface. However, despite its high chemical stability, gold exhibits quite large losses and electric field enhancement is comparatively weaker than silver. Silver nanoparticles synthesized by the traditional technique only cover an LSPR ranged from 420~500 nm. On the other hand, the range of 500~660 nm, which is covered by several easily available commercial laser lines, very limited colloidal silver nanostructures with controllable size and shape have been reported, and realization of tuning the resonance to longer wavelengths is very important for the practical applications. In this thesis, a systematic study on photochemical synthesis of silver nanodecahedrons (NDs) and related nanostructures, and their plasmonic field enhancements are presented. First, the roles of chemicals and the light source during the formation of silver nanoparticles have been studied. We have also developed a preparation route for the production size-controlled silver nanodecahedrons (LSPR range 420 ~ 660 nm) in high purity. Indeed our experiments indicate that both the chemicals and the light sources can affect the shape and purity of final products. Adjusting the molar ratio between sodium citrate and silver nitrate can help to control the crystal structure following rapid reduction from sodium borohydride. Light from a blue LED (465 nm) can efficiently transform the polyvinylpyrrolidone stabilized small silver nanoparticles into silver NDs through photo

  7. Discussion of discrete D shape toroidal coil

    International Nuclear Information System (INIS)

    Kaiho, Katsuyuki; Ohara, Takeshi; Agatsuma, Ko; Onishi, Toshitada

    1988-01-01

    A novel design for a toroidal coil, called the D shape coil, was reported by J. File. The coil conductors are in pure tension and then subject to no bending moment. This leads to a smaller number of emf supports in a simpler configuration than that with the conventional toroidal coil of circular cross-section. The contours of the D shape are given as solutions of a differential equation. This equation includes the function of the magnetic field distribution in the conductor region which is inversely proportional to the winding radius. It is therefore important to use the exact magnetic field distribution. However the magnetic field distribution becomes complicated when the D shape toroidal coil is comprised of discrete coils and also depends on the D shape configuration. A theory and a computer program for designing the practical pure-tension toroidal coil are developed. Using this computer code, D shape conductors are calculated for various numbers of discrete coils and the results are compared. Electromagnetic forces in the coils are also calculated. It is shown that the hoop stress in the conductors depends only on the total ampere-turns of the coil when the contours of the D shape are similar. (author)

  8. Self-erecting shapes

    Science.gov (United States)

    Reading, Matthew W.

    2017-07-04

    Technologies for making self-erecting structures are described herein. An exemplary self-erecting structure comprises a plurality of shape-memory members that connect two or more hub components. When forces are applied to the self-erecting structure, the shape-memory members can deform, and when the forces are removed the shape-memory members can return to their original pre-deformation shape, allowing the self-erecting structure to return to its own original shape under its own power. A shape of the self-erecting structure depends on a spatial orientation of the hub components, and a relative orientation of the shape-memory members, which in turn depends on an orientation of joining of the shape-memory members with the hub components.

  9. Women in Shape Modeling Workshop

    CERN Document Server

    Tari, Sibel

    2015-01-01

    Presenting the latest research from the growing field of mathematical shape analysis, this volume is comprised of the collaborations of participants of the Women in Shape Modeling (WiSh) workshop, held at UCLA's Institute for Pure and Applied Mathematics in July 2013. Topics include: Simultaneous spectral and spatial analysis of shape Dimensionality reduction and visualization of data in tree-spaces, such as classes of anatomical trees like airways and blood vessels Geometric shape segmentation, exploring shape segmentation from a Gestalt perspective, using information from the Blum medial axis of edge fragments in an image Representing and editing self-similar details on 3D shapes, studying shape deformation and editing techniques Several chapters in the book directly address the problem of continuous measures of context-dependent nearness and right shape models. Medical and biological applications have been a major source of motivation in shape research, and key topics are examined here in detail. All...

  10. Reinforced Airfoil Shaped Body

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to an airfoil shaped body with a leading edge and a trailing edge extending along the longitudinal extension of the body and defining a profile chord, the airfoil shaped body comprising an airfoil shaped facing that forms the outer surface of the airfoil shaped body...

  11. Improved Frequency Fluctuation Model for Spectral Line Shape Calculations in Fusion Plasmas

    International Nuclear Information System (INIS)

    Ferri, S.; Calisti, A.; Mosse, C.; Talin, B.; Lisitsa, V.

    2010-01-01

    A very fast method to calculate spectral line shapes emitted by plasmas accounting for charge particle dynamics and effects of an external magnetic field is proposed. This method relies on a new formulation of the Frequency Fluctuation Model (FFM), which yields to an expression of the dynamic line profile as a functional of the static distribution function of frequencies. This highly efficient formalism, not limited to hydrogen-like systems, allows to calculate pure Stark and Stark-Zeeman line shapes for a wide range of density, temperature and magnetic field values, which is of importance in plasma physics and astrophysics. Various applications of this method are presented for conditions related to fusion plasmas.

  12. Cellular basis of morphological variation and temperature-related plasticity in Drosophila melanogaster strains with divergent wing shapes.

    Science.gov (United States)

    Torquato, Libéria Souza; Mattos, Daniel; Matta, Bruna Palma; Bitner-Mathé, Blanche Christine

    2014-12-01

    Organ shape evolves through cross-generational changes in developmental patterns at cellular and/or tissue levels that ultimately alter tissue dimensions and final adult proportions. Here, we investigated the cellular basis of an artificially selected divergence in the outline shape of Drosophila melanogaster wings, by comparing flies with elongated or rounded wing shapes but with remarkably similar wing sizes. We also tested whether cellular plasticity in response to developmental temperature was altered by such selection. Results show that variation in cellular traits is associated with wing shape differences, and that cell number may play an important role in wing shape response to selection. Regarding the effects of developmental temperature, a size-related plastic response was observed, in that flies reared at 16 °C developed larger wings with larger and more numerous cells across all intervein regions relative to flies reared at 25 °C. Nevertheless, no conclusive indication of altered phenotypic plasticity was found between selection strains for any wing or cellular trait. We also described how cell area is distributed across different intervein regions. It follows that cell area tends to decrease along the anterior wing compartment and increase along the posterior one. Remarkably, such pattern was observed not only in the selected strains but also in the natural baseline population, suggesting that it might be canalized during development and was not altered by the intense program of artificial selection for divergent wing shapes.

  13. Investigation of Corner Effect and Identification of Tunneling Regimes in L-Shaped Tunnel Field-Effect-Transistor.

    Science.gov (United States)

    Najam, Faraz; Yu, Yun Seop

    2018-09-01

    Corner-effect existing in L-shaped tunnel field-effect-transistor (LTFET) was investigated using numerical simulations and band diagram analysis. It was found that the corner-effect is caused by the convergence of electric field in the sharp source corner present in an LTFET, thereby increasing the electric field in the sharp source corner region. It was found that in the corner-effect region tunneling starts early, as a function of applied bias, as compared to the rest of the channel not affected by corner-effect. Further, different tunneling regimes as a function of applied bias were identified in the LTFET including source to channel and channel to channel tunneling regimes. Presence of different tunneling regimes in LTFET was analytically justified with a set of equations developed to model source to channel, and channel to channel tunneling currents. Drain-current-gate-voltage (Ids-Vgs) characteristics obtained from the equations is in reasonable qualitative agreement with numerical simulation.

  14. Optical pulse shaping approaches to coherent control

    International Nuclear Information System (INIS)

    Goswami, Debabrata

    2003-01-01

    The last part of the twentieth century has experienced a huge resurge of activity in the field of coherent light-matter interaction, more so in attempting to exert control over such interactions. Birth of coherent control was originally spurred by the theoretical understanding of the quantum interferences that lead to energy randomization and experimental developments in ultrafast laser spectroscopy. The theoretical predictions on control of reaction channels or energy randomization processes are still more dramatic than the experimental demonstrations, though this gap between the two is consistently reducing over the recent years with realistic theoretical models and technological developments. Experimental demonstrations of arbitrary optical pulse shaping have made some of the previously impracticable theoretical predictions possible to implement. Starting with the simple laser modulation schemes to provide proof-of-the-principle demonstrations, feedback loop pulse shaping systems have been developed that can actively manipulate some atomic and molecular processes. This tremendous experimental boost of optical pulse shaping developments has prospects and implications into many more new directions, such as quantum computing and terabit/sec data communications. This review captures certain aspects and impacts of optical pulse shaping into the fast developing areas of coherent control and other related fields. Currently available reviews focus on one or the other detailed aspects of coherent control, and the reader will be referred to such details as and when necessary for issues that are dealt in brief here. We will focus on the current issues including control of intramolecular dynamics and make connections to the future concepts, such as, quantum computation, biomedical applications, etc

  15. Simulation of field effects on the mechanical hysteresis of Terfenol rods and magnetic shape memory materials using vector Preisach-type models

    International Nuclear Information System (INIS)

    Adly, A.A.; Davino, D.; Visone, C.

    2006-01-01

    Materials exhibiting gigantic magnetostriction and magnetic shape memory are currently being widely used in various applications. Recently, an approach based on simulating 1-D magnetostriction using 2-D anisotropic Preisach-type models has been introduced. The purpose of this paper is to present a detailed formulation and quantitative assessment for the simulation of field effects on the mechanical hysteresis of Terfenol rods and magnetic shape memory materials using this recently proposed model. Details of the model formulation, identification procedure and experimental testing are given in the paper

  16. Magnetic fields for transporting charged beams

    International Nuclear Information System (INIS)

    Parzen, G.

    1976-01-01

    The transport of charged particle beams requires magnetic fields that must be shaped correctly and very accurately. During the last 20 years or so, many studies have been made, both analytically and through the use of computer programs, of various magnetic shapes that have proved to be useful. Many of the results for magnetic field shapes can be applied equally well to electric field shapes. A report is given which gathers together the results that have more general significance and would be useful in designing a configuration to produce a desired magnetic field shape. The field shapes studied include the fields in dipoles, quadrupoles, sextupoles, octupoles, septum magnets, combined-function magnets, and electrostatic septums. Where possible, empirical formulas are proposed, based on computer and analytical studies and on magnetic field measurements. These empirical formulas are often easier to use than analytical formulas and often include effects that are difficult to compute analytically. In addition, results given in the form of tables and graphs serve as illustrative examples. The field shapes studied include uniform fields produced by window-frame magnets, C-magnets, H-magnets, and cosine magnets; linear fields produced by various types of quadrupoles; quadratic and cubic fields produced by sextupoles and octupoles; combinations of uniform and linear fields; and septum fields with sharp boundaries

  17. Prostate malignancy grading using gland-related shape descriptors

    Science.gov (United States)

    Braumann, Ulf-Dietrich; Scheibe, Patrick; Loeffler, Markus; Kristiansen, Glen; Wernert, Nicolas

    2014-03-01

    A proof-of-principle study was accomplished assessing the descriptive potential of two simple geometric measures (shape descriptors) applied to sets of segmented glands within images of 125 prostate cancer tissue sections. Respective measures addressing glandular shapes were (i) inverse solidity and (ii) inverse compactness. Using a classifier based on logistic regression, Gleason grades 3 and 4/5 could be differentiated with an accuracy of approx. 95%. Results suggest not only good discriminatory properties, but also robustness against gland segmentation variations. False classifications in part were caused by inadvertent Gleason grade assignments, as a-posteriori re-inspections had turned out.

  18. Relation between field energy and RMS emittance in intense particle beams

    International Nuclear Information System (INIS)

    Wangler, T.P.; Crandall, K.R.; Mills, R.S.; Reiser, M.

    1985-01-01

    An equation is presented for continuous beams with azimuthal symmetry and continuous linear focusing, which expresses a relationship between the rate of change for squared rms emittance and the rate of change for a quantity we call the nonlinear field energy. The nonlinear field energy depends on the shape of the charge distribution and corresponds to the residual field energy possessed by beams with nonuniform charge distributions. The equation can be integrated for the case of an rms matched beam to yield a formula for space-charge-induced emittance growth that we have tested numerically for a variety of initial distributions. The results provide a framework for discussing the scaling of rms emittance growth and an explanation for the well-established lower limit on output emittance. 15 refs., 4 figs

  19. Identification of Y-shaped and O-shaped diffusion regions during magnetic reconnection in a laboratory plasma

    International Nuclear Information System (INIS)

    Yamada, Masaaki; Ji, H.; Hsu, S.; Carter, T.; Kulsrud, R.; Ono, Yasushi; Perkins, F.

    1997-01-01

    Two strikingly different shapes of diffusion regions are identified during magnetic reconnection in a magnetohydrodynamic laboratory plasma. The shapes depend on the third vector component of the reconnecting magnetic fields. Without the third component (anti-parallel or null-helicity reconnection), a thin double-Y shaped diffusion region is identified. In this case, the neutral sheet current profile is accurately measured to be as narrow as the order of the ion gyro-radius. In the presence of an appreciable third component (co-helicity reconnection), an O-shaped diffusion region appears and grows into a spheromak configuration

  20. Neural activations are related to body-shape, anxiety, and outcomes in adolescent anorexia nervosa.

    Science.gov (United States)

    Xu, Jie; Harper, Jessica A; Van Enkevort, Erin A; Latimer, Kelsey; Kelley, Urszula; McAdams, Carrie J

    2017-04-01

    Anorexia nervosa (AN) is an illness that frequently begins during adolescence and involves weight loss. Two groups of adolescent girls (AN-A, weight-recovered following AN) and (HC-A, healthy comparison) completed a functional magnetic resonance imaging task involving social evaluations, allowing comparison of neural activations during self-evaluations, friend-evaluations, and perspective-taking self-evaluations. Although the two groups were not different in their whole-brain activations, anxiety and body shape concerns were correlated with neural activity in a priori regions of interest. A cluster in medial prefrontal cortex and the dorsal anterior cingulate correlated with the body shape questionnaire; subjects with more body shape concerns used this area less during self than friend evaluations. A cluster in medial prefrontal cortex and the cingulate also correlated with anxiety such that more anxiety was associated with engagement when disagreeing rather than agreeing with social terms during self-evaluations. This data suggests that differences in the utilization of frontal brain regions during social evaluations may contribute to both anxiety and body shape concerns in adolescents with AN. Clinical follow-up was obtained, allowing exploration of whether brain function early in course of disease relates to illness trajectory. The adolescents successful in recovery used the posterior cingulate and precuneus more for friend than self evaluations than the adolescents that remained ill, suggesting that neural differences related to social evaluations may provide clinical predictive value. Utilization of both MPFC and the precuneus during social and self evaluations may be a key biological component for achieving sustained weight-recovery in adolescents with AN. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Mean-field approximation minimizes relative entropy

    International Nuclear Information System (INIS)

    Bilbro, G.L.; Snyder, W.E.; Mann, R.C.

    1991-01-01

    The authors derive the mean-field approximation from the information-theoretic principle of minimum relative entropy instead of by minimizing Peierls's inequality for the Weiss free energy of statistical physics theory. They show that information theory leads to the statistical mechanics procedure. As an example, they consider a problem in binary image restoration. They find that mean-field annealing compares favorably with the stochastic approach

  2. Investigation of novel shape-controlled linearly and circularly polarized attosecond pulse sources

    International Nuclear Information System (INIS)

    Tóth, György; Tibai, Zoltán; Nagy-Csiha, Zsuzsanna; Márton, Zsuzsanna; Almási, Gábor; Hebling, János

    2016-01-01

    In this article, we investigate the temporal shape of one- or few-cycle, 20–180 nm central wavelength attosecond pulses that are produced in a scheme based on coherent undulator radiation. It is demonstrated, that the carrier–envelope phase (CEP) of the radiated electric field can be chosen arbitrarily by shaping the magnetic field of the radiator undulator appropriately. It is shown that the temporal shape and the spectrum of the generated electric field are influenced by the spatial shape and amplitude of the magnetic field of the radiator undulator for different central wavelength pulses, while both are practically independent of the energy of the initial electron bunch. Shape distortions at high K undulator parameters are also discussed.

  3. Investigation of novel shape-controlled linearly and circularly polarized attosecond pulse sources

    Energy Technology Data Exchange (ETDEWEB)

    Tóth, György [MTA-PTE High-Field Terahertz Research Group, 7624 Pécs (Hungary); Tibai, Zoltán; Nagy-Csiha, Zsuzsanna [Institute of Physics, University of Pécs, 7624 Pécs (Hungary); Márton, Zsuzsanna [MTA-PTE High-Field Terahertz Research Group, 7624 Pécs (Hungary); Institute of Physics, University of Pécs, 7624 Pécs (Hungary); Almási, Gábor; Hebling, János [MTA-PTE High-Field Terahertz Research Group, 7624 Pécs (Hungary); Institute of Physics, University of Pécs, 7624 Pécs (Hungary); Szentágothai Research Centre, 7624 Pécs (Hungary)

    2016-02-15

    In this article, we investigate the temporal shape of one- or few-cycle, 20–180 nm central wavelength attosecond pulses that are produced in a scheme based on coherent undulator radiation. It is demonstrated, that the carrier–envelope phase (CEP) of the radiated electric field can be chosen arbitrarily by shaping the magnetic field of the radiator undulator appropriately. It is shown that the temporal shape and the spectrum of the generated electric field are influenced by the spatial shape and amplitude of the magnetic field of the radiator undulator for different central wavelength pulses, while both are practically independent of the energy of the initial electron bunch. Shape distortions at high K undulator parameters are also discussed.

  4. Shape coexistence in N = 40 isotones

    International Nuclear Information System (INIS)

    Saxena, G.; Kumawat, M.; Kaushik, M.; Jain, S.K.; Aggarwal, Mamta

    2017-01-01

    Recently, shape coexistence in 72 Ge is investigated using projectile multistep Coulomb excitation with GRETINA and CHICO-2 and shape coexistence in the Ge and Se isotopes are studied within the interacting boson model (IBM) with the microscopic input from the self-consistent meanfield calculation based on the Gogny-D1M energy density functional. We investigated the phenomenon of shape coexistence in N = 40 isotones using Relativistic Mean-Field (RMF) plus BCS approach with TMA parameter and Nilson Strutinsky (NS) method that includes triaxial shapes also

  5. Spectroscopy of heavy nuclei by configuration mixing of symmetry restored mean-field states: shape coexistence in neutron-deficient Pb isotopes

    International Nuclear Information System (INIS)

    Bender, M.; Heenen, P.H.; Bonche, P.; Duguet, T.

    2003-01-01

    We study shape coexistence and low-energy excitation spectra in neutron-deficient Pb isotopes using configuration mixing of angular-momentum and particle-number projected self-consistent mean-field states. The same Skyrme interaction SLy6 is used everywhere in connection with a density-dependent zero-range pairing force. (orig.)

  6. Shape of Te isotopes in mean-field formalism

    Indian Academy of Sciences (India)

    Spherical vibrator, rotational ellipsoid, and other deformed shapes are intimately linked to the various modes of collective motion [1–3]. Depending on .... In this method, a two-body Hamiltonian of a system of fermions is given by. H = ∑ .... The formula based on rigid rotor cannot always represent a parameter of deformation.

  7. Computation of Electromagnetic Fields Scattered From Dielectric Objects of Uncertain Shapes Using MLMC Center for Uncertainty

    KAUST Repository

    Litvinenko, Alexander

    2015-01-05

    Simulators capable of computing scattered fields from objects of uncertain shapes are highly useful in electromagnetics and photonics, where device designs are typically subject to fabrication tolerances. Knowledge of statistical variations in scattered fields is useful in ensuring error-free functioning of devices. Oftentimes such simulators use a Monte Carlo (MC) scheme to sample the random domain, where the variables parameterize the uncertainties in the geometry. At each sample, which corresponds to a realization of the geometry, a deterministic electromagnetic solver is executed to compute the scattered fields. However, to obtain accurate statistics of the scattered fields, the number of MC samples has to be large. This significantly increases the total execution time. In this work, to address this challenge, the Multilevel MC (MLMC) scheme is used together with a (deterministic) surface integral equation solver. The MLMC achieves a higher efficiency by “balancing” the statistical errors due to sampling of the random domain and the numerical errors due to discretization of the geometry at each of these samples. Error balancing results in a smaller number of samples requiring coarser discretizations. Consequently, total execution time is significantly shortened.

  8. Relation of a unified quantum field theory of spinors to the structure of general relativity

    International Nuclear Information System (INIS)

    Kober, Martin

    2009-01-01

    Based on a unified quantum field theory of spinors assumed to describe all matter fields and their interactions we construct the space-time structure of general relativity according to a general connection within the corresponding spinor space. The tetrad field and the corresponding metric field are composed from a space-time dependent basis of spinors within the internal space of the fundamental matter field. Similar to twistor theory the Minkowski signature of the space-time metric is related to this spinor nature of elementary matter, if we assume the spinor space to be endowed with a symplectic structure. The equivalence principle and the property of background independence arise from the fact that all elementary fields are composed from the fundamental spinor field. This means that the structure of space-time according to general relativity seems to be a consequence of a fundamental theory of matter fields and not a presupposition as in the usual setting of relativistic quantum field theories.

  9. A neutron spin echo spectrometer with two optimal field shape coils for neutron spin precession

    International Nuclear Information System (INIS)

    Takeda, T.; Ebisawa, T.; Tasaki, S.; Ito, Y.; Takahashi, S.; Yoshizawa, H.

    1995-01-01

    We have designed and have been constructing at the C 2-2 cold neutron guide port of JRR-3M, JAERI, a neutron spin echo spectrometer (NSE) which is equipped with two optimal field shape (OFS) coils for neutron spin precession with the maximum field integral of 0.22 T m, an assembly of position sensitive detectors (PSD), a converging polarizer and a wide area analyzer. The dynamic range of scattering vector Q covers from 0.005 A -1 to 0.2 A -1 and that of energy hω from 10 neV to 30 μeV. Performance tests of the OFS coils show that the inhomogeneity of the magnetic field integral in the OFS coils with the spiral coils is so small that the NSE signal amplitude decreases little even for the neutron cross section of 30 mm diameter as the Fourier time t increases up to 25 ns, though the precession coils are close to iron covers of the neighboring neutron guide. This verifies that the OFS precession coils are appropriate for this NSE spectrometer. Another test experiment shows that the homogeneity condition of the precession magnet is loosened by use of PSD. (orig.)

  10. Energy of Force-Free Magnetic Fields in Relation to Coronal Mass Ejections; TOPICAL

    International Nuclear Information System (INIS)

    G.S. Choe; C.Z. Cheng

    2002-01-01

    In typical observations of coronal mass ejections (CMEs), a magnetic structure of a helmet-shaped closed configuration bulges out and eventually opens up. However, a spontaneous transition between these field configurations has been regarded to be energetically impossible in force-free fields according to the Aly-Sturrock theorem. The theorem states that the maximum energy state of force-free fields with a given boundary normal field distribution is the open field. The theorem implicitly assumes the existence of the maximum energy state, which may not be taken for granted. In this study, we have constructed force-free fields containing tangential discontinuities in multiple flux systems. These force-free fields can be generated from a potential field by footpoint motions that do not conserve the boundary normal field distribution. Some of these force-free fields are found to have more magnetic energy than the corresponding open fields. The constructed force-free configurations are compared with observational features of CME-bearing active regions. Possible mechanisms of CMEs are also discussed

  11. Numerical Investigation of the Effect of Magnetic Field on Natural Convection in a Curved-Shape Enclosure

    Directory of Open Access Journals (Sweden)

    M. Sheikholeslami

    2013-01-01

    Full Text Available This investigation reports the magnetic field effect on natural convection heat transfer in a curved-shape enclosure. The numerical investigation is carried out using the control volume-based-finite element method (CVFEM. The numerical investigations are performed for various values of Hartmann number and Rayleigh number. The obtained results are depicted in terms of streamlines and isotherms which show the significant effects of Hartmann number on the fluid flow and temperature distribution inside the enclosure. Also, it was found that the Nusselt number decreases with an increase in the Hartmann number.

  12. Markov Random Field Restoration of Point Correspondences for Active Shape Modelling

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen; Paulsen, Rasmus Reinhold; Larsen, Rasmus

    2004-01-01

    In this paper it is described how to build a statistical shape model using a training set with a sparse of landmarks. A well defined model mesh is selected and fitted to all shapes in the training set using thin plate spline warping. This is followed by a projection of the points of the warped...

  13. Inverse Diffusion Curves Using Shape Optimization.

    Science.gov (United States)

    Zhao, Shuang; Durand, Fredo; Zheng, Changxi

    2018-07-01

    The inverse diffusion curve problem focuses on automatic creation of diffusion curve images that resemble user provided color fields. This problem is challenging since the 1D curves have a nonlinear and global impact on resulting color fields via a partial differential equation (PDE). We introduce a new approach complementary to previous methods by optimizing curve geometry. In particular, we propose a novel iterative algorithm based on the theory of shape derivatives. The resulting diffusion curves are clean and well-shaped, and the final image closely approximates the input. Our method provides a user-controlled parameter to regularize curve complexity, and generalizes to handle input color fields represented in a variety of formats.

  14. Effects of diffusion and surface interactions on the line shape of electron paramagnetic resonances in the presence of a magnetic field gradient

    International Nuclear Information System (INIS)

    Schaden, M.; Zhao, K. F.; Wu, Z.

    2007-01-01

    In an evanescent wave magnetometer the Zeeman polarization is probed at micrometer to submicrometer distances from the cell surface. The electron paramagnetic resonance lines of an evanescent wave magnetometer in the presence of a magnetic field gradient exhibit edge enhancement seen previously in nuclear magnetic resonance lines. We present a theoretical model that describes quantitatively the shape of the magnetic resonance lines of an evanescent wave magnetometer under a wide range of experimental conditions. It accounts for diffusion broadening in the presence of a magnetic field gradient as well as interactions of spin polarized Rb atoms with the coated Pyrex glass surfaces. Depending on the field gradient, cell thickness, and buffer gas pressure, the resonance line may have the form of a single asymmetric peak or two peaks localized near the front and back surfaces in frequency space. The double-peaked response depends on average characteristics of the surface interactions. Its shape is sensitive to the dwell time, relaxation probability, and average phase shift of adsorbed spin polarized Rb atoms

  15. A TQFT of Tuarev-Viro type on shaped triangulations

    Energy Technology Data Exchange (ETDEWEB)

    Kashaev, Rinat [Geneva Univ. (Switzerland); Luo, Feng [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Vartanov, Grigory [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-10-15

    A shaped triangulation is a finite triangulation of an oriented pseudo three manifold where each tetrahedron carries dihedral angles of an ideal hyberbolic tetrahedron. To each shaped triangulation, we associate a quantum partition function in the form of an absolutely convergent state integral which is invariant under shaped 3-2 Pachner moves and invariant with respect to shape gauge transformations generated by total dihedral angles around internal edges through the Neumann-Zagier Poisson bracket. Similarly to Turaev-Viro theory, the state variables live on edges of the triangulation but take their values on the whole real axis. The tetrahedral weight functions are composed of three hyperbolic gamma functions in a way that they enjoy a manifest tetrahedral symmetry. We conjecture that for shaped triangulations of closed 3-manifolds, our partition function is twice the absolute value squared of the partition function of Techmueller TQFT defined by Andersen and Kashaev. This is similar to the known relationship between the Turaev-Viro and the Witten-Reshetikhin-Turaev invariants of three manifolds. We also discuss interpretations of our construction in terms of three-dimensional supersymmetric field theories related to triangulated three-dimensional manifolds.

  16. A TQFT of Tuarev-Viro type on shaped triangulations

    International Nuclear Information System (INIS)

    Kashaev, Rinat; Luo, Feng

    2012-10-01

    A shaped triangulation is a finite triangulation of an oriented pseudo three manifold where each tetrahedron carries dihedral angles of an ideal hyberbolic tetrahedron. To each shaped triangulation, we associate a quantum partition function in the form of an absolutely convergent state integral which is invariant under shaped 3-2 Pachner moves and invariant with respect to shape gauge transformations generated by total dihedral angles around internal edges through the Neumann-Zagier Poisson bracket. Similarly to Turaev-Viro theory, the state variables live on edges of the triangulation but take their values on the whole real axis. The tetrahedral weight functions are composed of three hyperbolic gamma functions in a way that they enjoy a manifest tetrahedral symmetry. We conjecture that for shaped triangulations of closed 3-manifolds, our partition function is twice the absolute value squared of the partition function of Techmueller TQFT defined by Andersen and Kashaev. This is similar to the known relationship between the Turaev-Viro and the Witten-Reshetikhin-Turaev invariants of three manifolds. We also discuss interpretations of our construction in terms of three-dimensional supersymmetric field theories related to triangulated three-dimensional manifolds.

  17. Properties and medical applications of shape memory alloys.

    Science.gov (United States)

    Tarniţă, Daniela; Tarniţă, D N; Bîzdoacă, N; Mîndrilă, I; Vasilescu, Mirela

    2009-01-01

    One of the most known intelligent material is nitinol, which offers many functional advantages over conventional implantable alloys. Applications of SMA to the biomedical field have been successful because of their functional qualities, enhancing both the possibility and the execution of less invasive surgeries. The biocompatibility of these alloys is one of their most important features. Different applications exploit the shape memory effect (one-way or two-way) and the super elasticity, so that they can be employed in orthopedic and cardiovascular applications, as well as in the manufacture of new surgical tools. Therefore, one can say that smart materials, especially SMA, are becoming noticeable in the biomedical field. Super elastic NiTi has become a material of strategic importance as it allows to overcome a wide range of technical and design issues relating to the miniaturization of medical devices and the increasing trend for less invasive and therefore less traumatic procedures. This paper will consider just why the main properties of shape memory alloys hold so many opportunities for medical devices and will review a selection of current applications.

  18. Integrability of a family of quantum field theories related to sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Ridout, David [Australian National Univ., Canberra, ACT (Australia). Dept. of Theoretical Physics; DESY, Hamburg (Germany). Theory Group; Teschner, Joerg [DESY, Hamburg (Germany). Theory Group

    2011-03-15

    A method is introduced for constructing lattice discretizations of large classes of integrable quantum field theories. The method proceeds in two steps: The quantum algebraic structure underlying the integrability of the model is determined from the algebra of the interaction terms in the light-cone representation. The representation theory of the relevant quantum algebra is then used to construct the basic ingredients of the quantum inverse scattering method, the lattice Lax matrices and R-matrices. This method is illustrated with four examples: The Sinh-Gordon model, the affine sl(3) Toda model, a model called the fermionic sl(2 vertical stroke 1) Toda theory, and the N=2 supersymmetric Sine-Gordon model. These models are all related to sigma models in various ways. The N=2 supersymmetric Sine-Gordon model, in particular, describes the Pohlmeyer reduction of string theory on AdS{sub 2} x S{sup 2}, and is dual to a supersymmetric non-linear sigma model with a sausage-shaped target space. (orig.)

  19. A linear-field plasma jet for generating a brush-shaped laminar plume at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuechen; Jia, Pengying, E-mail: plasmalab@126.com [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Key Laboratory of Photo-Electronics Information Materials of Hebei Province, Baoding 071002 (China); Li, Jiyuan; Chu, Jingdi; Zhang, Panpan [College of Physics Science and Technology, Hebei University, Baoding 071002 (China)

    2016-06-15

    A linear-field plasma jet composed of line-to-plate electrodes is used to generate a large-scale brush-shaped plasma plume with flowing argon used as working gas. Through electrical measurement and fast photography, it is found that the plasma plume bridges the two electrodes for the discharge in the positive voltage half-cycle, which behaves like fast moving plasma bullets directed from the anode to the cathode. Compared with the positive discharge, the negative discharge only develops inside the nozzle and propagates much slower. Results also indicate that the gas temperature of the plume is close to room temperature, which is promising for biomedical application.

  20. Static critical phenomena in Co-Ni-Ga ferromagnetic shape memory alloy

    International Nuclear Information System (INIS)

    Sethi, Brahmananda; Sarma, S.; Srinivasan, A.; Santra, S. B.

    2014-01-01

    Ferromagnetic shape memory alloys are smart materials because they exhibit temperature driven shape memory effect and magnetic field induced strain. Thus two types of energy, i.e. thermal and magnetic, are used to control their shape memory behaviour. Study of critical phenomenon in such materials has received increased experimental and theoretical attention for better understanding of the magnetic phase transition behavior as well as further development of ferromagnetic shape memory materials. In the present study we report the preparation and characterization of bulk Co 45 Ni 25 Ga 30 alloy, prepared by a sequence of arc melting technique followed by homogenization at 1150 °C for 24 hours and ice-water quenching. Structural and magnetic properties of the alloys were studied by means of X-ray diffraction and vibrating sample magnetometer in an applied field range of ±18 kOe equipped with a high temperature oven. We have determined the critical temperature T C (∼375.5 K) and the critical exponents viz; β=0.40, γ=1.68 and δ=5.2. Asymptotic critical exponents β, γ, and δ obey Widom scaling relation, γ+β=βδ, and the magnetization data satisfy the scaling equation of state for second-order phase transition in the asymptotic critical region

  1. Simple recursion relations for general field theories

    International Nuclear Information System (INIS)

    Cheung, Clifford; Shen, Chia-Hsien; Trnka, Jaroslav

    2015-01-01

    On-shell methods offer an alternative definition of quantum field theory at tree-level, replacing Feynman diagrams with recursion relations and interaction vertices with a handful of seed scattering amplitudes. In this paper we determine the simplest recursion relations needed to construct a general four-dimensional quantum field theory of massless particles. For this purpose we define a covering space of recursion relations which naturally generalizes all existing constructions, including those of BCFW and Risager. The validity of each recursion relation hinges on the large momentum behavior of an n-point scattering amplitude under an m-line momentum shift, which we determine solely from dimensional analysis, Lorentz invariance, and locality. We show that all amplitudes in a renormalizable theory are 5-line constructible. Amplitudes are 3-line constructible if an external particle carries spin or if the scalars in the theory carry equal charge under a global or gauge symmetry. Remarkably, this implies the 3-line constructibility of all gauge theories with fermions and complex scalars in arbitrary representations, all supersymmetric theories, and the standard model. Moreover, all amplitudes in non-renormalizable theories without derivative interactions are constructible; with derivative interactions, a subset of amplitudes is constructible. We illustrate our results with examples from both renormalizable and non-renormalizable theories. Our study demonstrates both the power and limitations of recursion relations as a self-contained formulation of quantum field theory.

  2. Magnetic shape memory behaviour

    International Nuclear Information System (INIS)

    Brown, P.J.; Gandy, A.P.; Ishida, K.; Kainuma, R.; Kanomata, T.; Matsumoto, M.; Morito, H.; Neumann, K.-U.; Oikawa, K.; Ouladdiaf, B.; Ziebeck, K.R.A.

    2007-01-01

    Materials that can be transformed at one temperature T F , then cooled to a lower temperature T M and plastically deformed and on heating to T F regain their original shape are currently receiving considerable attention. In recovering their shape the alloys can produce a displacement or a force, or a combination of the two. Such behaviour is known as the shape memory effect and usually takes place by change of temperature or applied stress. For many applications the transformation is not sufficiently rapid or a change in temperature/pressure not appropriate. As a result, considerable effort is being made to find a ferromagnetic system in which the effect can be controlled by an applied magnetic field. The results of recent experiments on ferromagnetic shape memory compounds aimed at understanding the underlying mechanism will be reviewed

  3. Dynamic shape transitions in the sdg boson model

    Science.gov (United States)

    Kuyucak, S.

    The dynamic evolution of shapes in the sdg interacting boson model is investigated using the angular momentum projected mean field theory. Deformed nuclei are found to be quite stable against shape changes but transitional nuclei could exhibit dynamic shape transitions in the region L = 10-20. Conditions of existence and experimental signatures for dynamic shape transitions are discussed together with a likely candidate, 192Os.

  4. Dynamic shape transitions in the sdg boson model

    Energy Technology Data Exchange (ETDEWEB)

    Kuyucak, S. (Melbourne Univ., Parkville (Australia). School of Physics)

    1992-01-01

    The dynamic evolution of shapes in the sdg interacting bosun model is investigated using the angular momentum projected mean field theory. Deformed nuclei are found to be quite stable against shape changes but transitional nuclei could exhibit dynamic shape transitions in the region L = 10-20. Conditions of existence and experimental signatures for dynamic shape transitions are discussed together with a likely candidate, {sup 192}Os. (author).

  5. Relative humidity sensor based on surface plasmon resonance of D-shaped fiber with polyvinyl alcohol embedding Au grating

    Science.gov (United States)

    Yan, Haitao; Han, Daofu; Li, Ming; Lin, Bo

    2017-01-01

    This paper presents the design, fabrication, and characterization of a D-shaped fiber coated with polyvinyl alcohol (PVA) embedding an Au grating-based relative humidity (RH) sensor. The Au grating is fabricated on a D-shaped fiber to match the wave-vector and excite the surface plasmon, and the PVA is embedded in the Au grating as a sensitive cladding film. The refractive index of PVA changes with the ambient humidity. Measurements in a controlled environment show that the RH sensor can achieve a sensitivity of 5.4 nm per relative humidity unit in the RH range from 0% to 70% RH. Moreover, the surface plasmon resonance can be realized and used for RH sensing at the C band of optical fiber communication instead of the visible light band due to the metallic grating microstructure on the D-shaped fiber.

  6. The role of shape complexity in the detection of closed contours.

    Science.gov (United States)

    Wilder, John; Feldman, Jacob; Singh, Manish

    2016-09-01

    The detection of contours in noise has been extensively studied, but the detection of closed contours, such as the boundaries of whole objects, has received relatively little attention. Closed contours pose substantial challenges not present in the simple (open) case, because they form the outlines of whole shapes and thus take on a range of potentially important configural properties. In this paper we consider the detection of closed contours in noise as a probabilistic decision problem. Previous work on open contours suggests that contour complexity, quantified as the negative log probability (Description Length, DL) of the contour under a suitably chosen statistical model, impairs contour detectability; more complex (statistically surprising) contours are harder to detect. In this study we extended this result to closed contours, developing a suitable probabilistic model of whole shapes that gives rise to several distinct though interrelated measures of shape complexity. We asked subjects to detect either natural shapes (Exp. 1) or experimentally manipulated shapes (Exp. 2) embedded in noise fields. We found systematic effects of global shape complexity on detection performance, demonstrating how aspects of global shape and form influence the basic process of object detection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Shape coexistence in N = 28 isotones

    International Nuclear Information System (INIS)

    Saxena, G.; Kaushik, M.; Kumawat, M.; Jain, S.K.

    2016-01-01

    Shape coexistence is one of the important nuclear phenomenon which appears throughout the periodic chart from light mass nuclei to superheavy nuclei. The evolution of ground-state shapes in an isotopic or isotonic chain is governed by changes of the shell structure of single-nucleon orbitals. In recent past, evolution of shell structure guiding shape coexistence, has been observed in the N = 20 and N = 28 isotones around proton drip line. In this paper we have investigated shape coexistence phenomenon for N = 28 isotones in the vicinity of proton drip line using Relativistic Mean Field plus BCS approach

  8. The shape dependence of chameleon screening

    Science.gov (United States)

    Burrage, Clare; Copeland, Edmund J.; Moss, Adam; Stevenson, James A.

    2018-01-01

    Chameleon scalar fields can screen their associated fifth forces from detection by changing their mass with the local density. These models are an archetypal example of a screening mechanism, and have become an important target for both cosmological surveys and terrestrial experiments. In particular there has been much recent interest in searching for chameleon fifth forces in the laboratory. It is known that the chameleon force is less screened around non-spherical sources, but only the field profiles around a few simple shapes are known analytically. In this work we introduce a numerical code that solves for the chameleon field around arbitrary shapes with azimuthal symmetry placed in a spherical vacuum chamber. We find that deviations from spherical symmetry can increase the chameleon acceleration experienced by a test particle, and that the least screened objects are those which minimize some internal dimension. For the shapes considered in this work, keeping the mass, density and background environment fixed, the accelerations due to the source varied by a factor of ~ 3.

  9. Active Subspaces of Airfoil Shape Parameterizations

    Science.gov (United States)

    Grey, Zachary J.; Constantine, Paul G.

    2018-05-01

    Design and optimization benefit from understanding the dependence of a quantity of interest (e.g., a design objective or constraint function) on the design variables. A low-dimensional active subspace, when present, identifies important directions in the space of design variables; perturbing a design along the active subspace associated with a particular quantity of interest changes that quantity more, on average, than perturbing the design orthogonally to the active subspace. This low-dimensional structure provides insights that characterize the dependence of quantities of interest on design variables. Airfoil design in a transonic flow field with a parameterized geometry is a popular test problem for design methodologies. We examine two particular airfoil shape parameterizations, PARSEC and CST, and study the active subspaces present in two common design quantities of interest, transonic lift and drag coefficients, under each shape parameterization. We mathematically relate the two parameterizations with a common polynomial series. The active subspaces enable low-dimensional approximations of lift and drag that relate to physical airfoil properties. In particular, we obtain and interpret a two-dimensional approximation of both transonic lift and drag, and we show how these approximation inform a multi-objective design problem.

  10. Study of shape evaluation for mask and silicon using large field of view

    Science.gov (United States)

    Matsuoka, Ryoichi; Mito, Hiroaki; Shinoda, Shinichi; Toyoda, Yasutaka

    2010-09-01

    We have developed a highly integrated method of mask and silicon metrology. The aim of this integration is evaluating the performance of the silicon corresponding to Hotspot on a mask. It can use the mask shape of a large field, besides. The method adopts a metrology management system based on DBM (Design Based Metrology). This is the high accurate contouring created by an edge detection algorithm used in mask CD-SEM and silicon CD-SEM. Currently, as semiconductor manufacture moves towards even smaller feature size, this necessitates more aggressive optical proximity correction (OPC) to drive the super-resolution technology (RET). In other words, there is a trade-off between highly precise RET and mask manufacture, and this has a big impact on the semiconductor market that centers on the mask business. As an optimal solution to these issues, we provide a DFM solution that extracts 2-dimensional data for a more realistic and error-free simulation by reproducing accurately the contour of the actual mask, in addition to the simulation results from the mask data. On the other hand, there is roughness in the silicon form made from a mass-production line. Moreover, there is variation in the silicon form. For this reason, quantification of silicon form is important, in order to estimate the performance of a pattern. In order to quantify, the same form is equalized in two dimensions. And the method of evaluating based on the form is popular. In this study, we conducted experiments for averaging method of the pattern (Measurement Based Contouring) as two-dimensional mask and silicon evaluation technique. That is, observation of the identical position of a mask and a silicon was considered. The result proved its detection accuracy and reliability of variability on two-dimensional pattern (mask and silicon) and is adaptable to following fields of mask quality management. •Discrimination of nuisance defects for fine pattern. •Determination of two-dimensional variability of

  11. Experimental investigation of cathode spots and plasma jets behavior subjected to two kinds of axial magnetic field electrodes

    International Nuclear Information System (INIS)

    Wang, Lijun; Deng, Jie; Zhou, Xin; Jia, Shenli; Qian, Zhonghao; Shi, Zongqian

    2016-01-01

    In this paper, cathode spot plasma jet (CSPJ) rotation and cathode spots behavior subjected to two kinds of large diameter axial magnetic field (AMF) electrode (cup-shaped and coil-shaped) are studied and analyzed based on experiments. The influence of gap distances on the CSPJ rotational behavior is analyzed. Experimental results show that CSPJ rotational phenomena extensively exist in the vacuum interrupters, and CSPJ rotational direction is along the direction of composite magnetic field (mainly the combination of the axial and azimuthal components). For coil-shaped and cup-shaped AMF electrodes, the rotational or inclination phenomena before the current peak value are much more significant than that after current peak value (for the same arc current), which is related to the larger ratio of azimuthal magnetic field B_t and AMF B_z (B_t/B_z). With the increase of the gap distance, the AMF strength decreases, when the arc current is kept as constant, the azimuthal magnetic field is kept invariable, the ratio between azimuthal magnetic field and AMF is increased, which results in the increase of rotational effect. For cathode spots motion, compared with cup-shaped electrode, coil-shaped electrode has the inverse AMF direction. The Robson drift direction of cathode spots of coil-shaped electrode is opposite to that of cup-shaped electrode. With the increase of gap distance, the Robson angle is decreased, which is associated with the reduced AMF strength. Erosion imprints of anode and cathode are also related to the CSPJ rotational phenomena and cathode spots behavior. The noise of arc voltage in the initial arcing stage is related to the weaker AMF.

  12. Experimental investigation of cathode spots and plasma jets behavior subjected to two kinds of axial magnetic field electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijun; Deng, Jie; Zhou, Xin; Jia, Shenli; Qian, Zhonghao; Shi, Zongqian [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-04-15

    In this paper, cathode spot plasma jet (CSPJ) rotation and cathode spots behavior subjected to two kinds of large diameter axial magnetic field (AMF) electrode (cup-shaped and coil-shaped) are studied and analyzed based on experiments. The influence of gap distances on the CSPJ rotational behavior is analyzed. Experimental results show that CSPJ rotational phenomena extensively exist in the vacuum interrupters, and CSPJ rotational direction is along the direction of composite magnetic field (mainly the combination of the axial and azimuthal components). For coil-shaped and cup-shaped AMF electrodes, the rotational or inclination phenomena before the current peak value are much more significant than that after current peak value (for the same arc current), which is related to the larger ratio of azimuthal magnetic field B{sub t} and AMF B{sub z} (B{sub t}/B{sub z}). With the increase of the gap distance, the AMF strength decreases, when the arc current is kept as constant, the azimuthal magnetic field is kept invariable, the ratio between azimuthal magnetic field and AMF is increased, which results in the increase of rotational effect. For cathode spots motion, compared with cup-shaped electrode, coil-shaped electrode has the inverse AMF direction. The Robson drift direction of cathode spots of coil-shaped electrode is opposite to that of cup-shaped electrode. With the increase of gap distance, the Robson angle is decreased, which is associated with the reduced AMF strength. Erosion imprints of anode and cathode are also related to the CSPJ rotational phenomena and cathode spots behavior. The noise of arc voltage in the initial arcing stage is related to the weaker AMF.

  13. Experimental evidence of stress-field-induced selection of variants in Ni-Mn-Ga ferromagnetic shape-memory alloys

    International Nuclear Information System (INIS)

    Wang, Y. D.; Brown, D. W.; Choo, H.; Liaw, P. K.; Benson, M. L.; Cong, D. Y.; Zuo, L.

    2007-01-01

    The in situ time-of-flight neutron-diffraction measurements captured well the martensitic transformation behavior of the Ni-Mn-Ga ferromagnetic shape-memory alloys under uniaxial stress fields. We found that a small uniaxial stress applied during phase transformation dramatically disturbed the distribution of variants in the product phase. The observed changes in the distributions of variants may be explained by considering the role of the minimum distortion energy of the Bain transformation in the effective partition among the variants belonging to the same orientation of parent phase. It was also found that transformation kinetics under various stress fields follows the scale law. The present investigations provide the fundamental approach for scaling the evolution of microstructures in martensitic transitions, which is of general interest to the condensed matter community

  14. The Hue of Shapes

    Science.gov (United States)

    Albertazzi, Liliana; Da Pos, Osvaldo; Canal, Luisa; Micciolo, Rocco; Malfatti, Michela; Vescovi, Massimo

    2013-01-01

    This article presents an experimental study on the naturally biased association between shape and color. For each basic geometric shape studied, participants were asked to indicate the color perceived as most closely related to it, choosing from the Natural Color System Hue Circle. Results show that the choices of color for each shape were not…

  15. Mean Field Games for Stochastic Growth with Relative Utility

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Minyi, E-mail: mhuang@math.carleton.ca [Carleton University, School of Mathematics and Statistics (Canada); Nguyen, Son Luu, E-mail: sonluu.nguyen@upr.edu [University of Puerto Rico, Department of Mathematics (United States)

    2016-12-15

    This paper considers continuous time stochastic growth-consumption optimization in a mean field game setting. The individual capital stock evolution is determined by a Cobb–Douglas production function, consumption and stochastic depreciation. The individual utility functional combines an own utility and a relative utility with respect to the population. The use of the relative utility reflects human psychology, leading to a natural pattern of mean field interaction. The fixed point equation of the mean field game is derived with the aid of some ordinary differential equations. Due to the relative utility interaction, our performance analysis depends on some ratio based approximation error estimate.

  16. Mean Field Games for Stochastic Growth with Relative Utility

    International Nuclear Information System (INIS)

    Huang, Minyi; Nguyen, Son Luu

    2016-01-01

    This paper considers continuous time stochastic growth-consumption optimization in a mean field game setting. The individual capital stock evolution is determined by a Cobb–Douglas production function, consumption and stochastic depreciation. The individual utility functional combines an own utility and a relative utility with respect to the population. The use of the relative utility reflects human psychology, leading to a natural pattern of mean field interaction. The fixed point equation of the mean field game is derived with the aid of some ordinary differential equations. Due to the relative utility interaction, our performance analysis depends on some ratio based approximation error estimate.

  17. Dynamic shape transitions in the sdg boson model

    International Nuclear Information System (INIS)

    Kuyucak, S.

    1992-01-01

    The dynamic evolution of shapes in the sdg interacting boson model is investigated using the angular momentum projected mean field theory. Deformed nuclei are found to be quite stable against shape changes but transitional nuclei could exhibit dynamic shape transitions in the region L = 10-20. Conditions of existence and experimental signatures for dynamic shape transitions are discussed together with a likely candidate, 192 Os. 13 refs., 3 figs

  18. First Principles Modelling of Shape Memory Alloys Molecular Dynamics Simulations

    CERN Document Server

    Kastner, Oliver

    2012-01-01

    Materials sciences relate the macroscopic properties of materials to their microscopic structure and postulate the need for holistic multiscale research. The investigation of shape memory alloys is a prime example in this regard. This particular class of materials exhibits strong coupling of temperature, strain and stress, determined by solid state phase transformations of their metallic lattices. The present book presents a collection of simulation studies of this behaviour. Employing conceptually simple but comprehensive models, the fundamental material properties of shape memory alloys are qualitatively explained from first principles. Using contemporary methods of molecular dynamics simulation experiments, it is shown how microscale dynamics may produce characteristic macroscopic material properties. The work is rooted in the materials sciences of shape memory alloys and  covers  thermodynamical, micro-mechanical  and crystallographical aspects. It addresses scientists in these research fields and thei...

  19. Shapes of interacting RNA complexes

    DEFF Research Database (Denmark)

    Fu, Benjamin Mingming; Reidys, Christian

    2014-01-01

    Shapes of interacting RNA complexes are studied using a filtration via their topological genus. A shape of an RNA complex is obtained by (iteratively) collapsing stacks and eliminating hairpin loops.This shape-projection preserves the topological core of the RNA complex and for fixed topological...... genus there are only finitely many such shapes. Our main result is a new bijection that relates the shapes of RNA complexes with shapes of RNA structures. This allows to compute the shape polynomial of RNA complexes via the shape polynomial of RNA structures. We furthermore present a linear time uniform...... sampling algorithm for shapes of RNA complexes of fixed topological genus....

  20. Swiftly moving focus points and forming shapes through the scattering media

    Science.gov (United States)

    Tran, Vinh; Sahoo, Sujit Kumar; Tang, Dongliang; Dang, Cuong

    2018-02-01

    Propagation of light through scattering media such as ground glass or biological tissue limits the quality and intensity of focusing point. Wave front shaping technique which uses spatial light modulator (SLM) devices to reshape the field profile of incoming light, is considered as one of the most effective and convenient methods. Advanced biomedical or manufacturing applications require drawing various contours or shapes quickly and precisely. However, creating each shape behind the scattering medium needs different phase profiles, which are time consuming to optimize or measure. Here, we demonstrate a technique to draw various shapes or contours behind the scattering medium by swiftly moving the focus point without any mechanical movements. Our technique relies on the existence of speckle correlation property in scattering media, also known as optical memory effect. In our procedure, we first modulate the phase-only SLM to create the focus point on the other side of scattering medium. Then, we digitally shift the preoptimized phase profile on the SLM and ramp it to tilt the beam accordingly. Now, the incoming beam with identical phase profile shines on the same scattering region at a tilted angle to regenerate the focus point at the desired position due to memory effect. Moreover, with linear combination of different field patterns, we can generate a single phase profile on SLM to produce two, three or more focus points simultaneously on the other side of a turbid medium. Our method could provide a useful tool for prominent applications such as opto-genetic excitation, minimally invasive laser surgery and other related fields.

  1. Electromagnetically induced transparency line shapes for large probe fields and optically thick media

    International Nuclear Information System (INIS)

    Pack, M. V.; Camacho, R. M.; Howell, J. C.

    2007-01-01

    We calculate the line shape and linewidths for electromagnetically induced transparency (EIT) in optically thick, Doppler broadened media (buffer gasses are also considered). In generalizing the definition of the EIT linewidth to optically thick media, we find two different linewidth definitions apply depending on whether the experiment is pulsed or continuous wave (cw). Using the cw definition for the EIT line shape we derive analytic expressions describing the linewidth as a function of optical depth. We also review the EIT line shapes in optically thin media and provide physical arguments for how the line shapes change as a function of various parameters

  2. Shell model calculations at superdeformed shapes

    International Nuclear Information System (INIS)

    Nazarewicz, W.; Dobaczewski, J.; Van Isacker, P.

    1991-01-01

    Spectroscopy of superdeformed nuclear states opens up an exciting possibility to probe new properties of the nuclear mean field. In particular, the unusually deformed atomic nucleus can serve as a microscopic laboratory of quantum-mechanical symmetries of a three dimensional harmonic oscillator. The classifications and coupling schemes characteristic of weakly deformed systems are expected to be modified in the superdeformed world. The ''superdeformed'' symmetries lead to new quantum numbers and new effective interactions that can be employed in microscopic calculations. New classification schemes can be directly related to certain geometrical properties of the nuclear shape. 63 refs., 7 figs

  3. Shape dependence of holographic Rényi entropy in general dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Lorenzo [Institut für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Chapman, Shira [Perimeter Institute for Theoretical Physics,31 Caroline Street North, ON N2L 2Y5 (Canada); Dong, Xi [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, New Jersey 08540 (United States); Galante, Damián A. [Perimeter Institute for Theoretical Physics,31 Caroline Street North, ON N2L 2Y5 (Canada); Department of Applied Mathematics, University of Western Ontario,London, Ontario N6A 5B7 (Canada); Meineri, Marco [Perimeter Institute for Theoretical Physics,31 Caroline Street North, ON N2L 2Y5 (Canada); Scuola Normale Superiore,Piazza dei Cavalieri 7 I-56126 Pisa (Italy); INFN - Sezione di Pisa,Piazza dei Cavalieri 7 I-56126 Pisa (Italy); Myers, Robert C. [Perimeter Institute for Theoretical Physics,31 Caroline Street North, ON N2L 2Y5 (Canada)

    2016-11-29

    We present a holographic method for computing the response of Rényi entropies in conformal field theories to small shape deformations around a flat (or spherical) entangling surface. Our strategy employs the stress tensor one-point function in a deformed hyperboloid background and relates it to the coefficient in the two-point function of the displacement operator. We obtain explicit numerical results for d=3,⋯,6 spacetime dimensions, and also evaluate analytically the limits where the Rényi index approaches 1 and 0 in general dimensions. We use our results to extend the work of 1602.08493 and disprove a set of conjectures in the literature regarding the relation between the Rényi shape dependence and the conformal weight of the twist operator. We also extend our analysis beyond leading order in derivatives in the bulk theory by studying Gauss-Bonnet gravity.

  4. Three-Dimensional Shape Measurements of Specular Objects Using Phase-Measuring Deflectometry

    Directory of Open Access Journals (Sweden)

    Zonghua Zhang

    2017-12-01

    Full Text Available The fast development in the fields of integrated circuits, photovoltaics, the automobile industry, advanced manufacturing, and astronomy have led to the importance and necessity of quickly and accurately obtaining three-dimensional (3D shape data of specular surfaces for quality control and function evaluation. Owing to the advantages of a large dynamic range, non-contact operation, full-field and fast acquisition, high accuracy, and automatic data processing, phase-measuring deflectometry (PMD, also called fringe reflection profilometry has been widely studied and applied in many fields. Phase information coded in the reflected fringe patterns relates to the local slope and height of the measured specular objects. The 3D shape is obtained by integrating the local gradient data or directly calculating the depth data from the phase information. We present a review of the relevant techniques regarding classical PMD. The improved PMD technique is then used to measure specular objects having discontinuous and/or isolated surfaces. Some influential factors on the measured results are presented. The challenges and future research directions are discussed to further advance PMD techniques. Finally, the application fields of PMD are briefly introduced.

  5. Three-Dimensional Shape Measurements of Specular Objects Using Phase-Measuring Deflectometry.

    Science.gov (United States)

    Zhang, Zonghua; Wang, Yuemin; Huang, Shujun; Liu, Yue; Chang, Caixia; Gao, Feng; Jiang, Xiangqian

    2017-12-07

    The fast development in the fields of integrated circuits, photovoltaics, the automobile industry, advanced manufacturing, and astronomy have led to the importance and necessity of quickly and accurately obtaining three-dimensional (3D) shape data of specular surfaces for quality control and function evaluation. Owing to the advantages of a large dynamic range, non-contact operation, full-field and fast acquisition, high accuracy, and automatic data processing, phase-measuring deflectometry (PMD, also called fringe reflection profilometry) has been widely studied and applied in many fields. Phase information coded in the reflected fringe patterns relates to the local slope and height of the measured specular objects. The 3D shape is obtained by integrating the local gradient data or directly calculating the depth data from the phase information. We present a review of the relevant techniques regarding classical PMD. The improved PMD technique is then used to measure specular objects having discontinuous and/or isolated surfaces. Some influential factors on the measured results are presented. The challenges and future research directions are discussed to further advance PMD techniques. Finally, the application fields of PMD are briefly introduced.

  6. A computational procedure to improve airfoil performance considering shape and flow interactions

    International Nuclear Information System (INIS)

    Darbandi, M.; Taghvaey, M.J.; Schneider, G.E.

    2004-01-01

    Despite remarkable progress in shape design issue, there is still room to work on this topic considering different flow field conditions and specific aerodynamic applications. Today, the optimization techniques are known as a major tool to reach the best possible aerodynamic shape for some specific conditions. In general direct optimization techniques, the optimization process is started from choosing a suitable primitive shape and the shape is improved by suitable considerations of the design objectives and constraints. In a similar attempt, we develop a new optimization strategy to improve the airfoil shape for specified applications. The strategy involves several stages. It includes to determine the flow conditions and design parameters, to establish the objective function, to select a suitable primitive shape, to generate a mechanism for inserting gradual shape changes, to generate grids around each defined shape, to solve the flow field for each separate shape, to collect the solution data, to change the discrete data to the continuous distribution functions, to construct the objective function, and to minimize the objective function using the steepest descent approach. No constraint function is incorporated into the constructed objective function. The cruise flight of an aircraft at an specified altitude is supposed to be the flow field conditions around the proposed airfoil. Nevertheless, the flow field is assumed to be viscous and compressible as well as turbulent. The procedure is tested starting from two generic airfoil shapes with and without camber. The developed algorithm works well for both cases; however, it may not converge to identical shapes if the primitive shapes are not identical. (author)

  7. A computational procedure to improve airfoil performance considering shape and flow interactions

    Energy Technology Data Exchange (ETDEWEB)

    Darbandi, M.; Taghvaey, M.J. [Sharif Univ. of Technology, Dept. of Aerospace Engineering, Tehran (Iran, Islamic Republic of)]. E-mail: darbandi@sharif.edu; Schneider, G.E. [Univ. of Waterloo, Dept. of Mechanical Engineering, Waterloo, Ontario (Canada)

    2004-07-01

    Despite remarkable progress in shape design issue, there is still room to work on this topic considering different flow field conditions and specific aerodynamic applications. Today, the optimization techniques are known as a major tool to reach the best possible aerodynamic shape for some specific conditions. In general direct optimization techniques, the optimization process is started from choosing a suitable primitive shape and the shape is improved by suitable considerations of the design objectives and constraints. In a similar attempt, we develop a new optimization strategy to improve the airfoil shape for specified applications. The strategy involves several stages. It includes to determine the flow conditions and design parameters, to establish the objective function, to select a suitable primitive shape, to generate a mechanism for inserting gradual shape changes, to generate grids around each defined shape, to solve the flow field for each separate shape, to collect the solution data, to change the discrete data to the continuous distribution functions, to construct the objective function, and to minimize the objective function using the steepest descent approach. No constraint function is incorporated into the constructed objective function. The cruise flight of an aircraft at an specified altitude is supposed to be the flow field conditions around the proposed airfoil. Nevertheless, the flow field is assumed to be viscous and compressible as well as turbulent. The procedure is tested starting from two generic airfoil shapes with and without camber. The developed algorithm works well for both cases; however, it may not converge to identical shapes if the primitive shapes are not identical. (author)

  8. Nuclear shapes: from earliest ideas to multiple shape coexisting structures

    International Nuclear Information System (INIS)

    Heyde, K; Wood, J L

    2016-01-01

    The concept of the atomic nucleus being characterized by an intrinsic property such as shape came as a result of high precision hyperfine studies in the field of atomic physics, which indicated a non-spherical nuclear charge distribution. Herein, we describe the various steps taken through ingenious experimentation and bold theoretical suggestions that mapped the way for later work in the early 50s by Aage Bohr, Ben Mottelson and James Rainwater. We lay out a long and winding road that marked, in the period of 50s to 70s, the way shell-model and collective-model concepts were reconciled. A rapid increase in both accelerator and detection methods (70s towards the early 2000s) opened new vistas into nuclear shapes, and their coexistence, in various regions of the nuclear mass table. Next, we outline a possible unified view of nuclear shapes: emphasizing decisive steps taken as well as questions remaining, next to the theoretical efforts that could result in an emerging understanding of nuclear shapes, building on the nucleus considered as a strongly interacting system of nucleons as the microscopic starting point. (invited comment)

  9. Relation between agenesis and shape anomaly of maxillary lateral incisors and canine impaction

    Directory of Open Access Journals (Sweden)

    Anísio Bueno de Carvalho

    2012-12-01

    Full Text Available OBJECTIVE: The purpose was to obtain information about the relation between agenesis and shape anomaly of maxillary lateral incisors and canine impaction. METHODS: Seventy-three patients with canine impaction and 73 control patients, without canine impaction, were evaluated. The mesiodistal distances of the maxillary lateral incisors adjacent to the impacted canines and the correspondent mandibular lateral incisors were measured. The adjacent lateral incisors were classified in: 1 - absent, 2 - small, 3 - peg-shaped, 4 - standard. RESULTS: The results showed that among the patients with impacted canines, there were 21 anomalous teeth (small and peg-shaped and among the control patients there were only three small and peg-shaped teeth, with a statistically significant difference (p = 0.001. No patients were found with impacted canines and absent lateral incisors. CONCLUSION: It was concluded that in patients with anomalous lateral incisors (small and peg-shaped there is a probability to present impacted canines and this must be considered.OBJETIVO: o objetivo foi obter informação sobre a relação existente entre a agenesia e/ou anomalia de forma de incisivos laterais superiores e impacção de caninos. MÉTODOS: foram avaliados 73 pacientes com impacção de caninos e 73 pacientes controle, sem impacção de caninos. Foram medidas as distâncias mesiodistais dos incisivos laterais superiores adjacentes aos caninos impactados e os incisivos laterais correspondentes inferiores. Os incisivos laterais adjacentes foram classificados em: 1 - ausentes; 2 - pequenos; 3 - conoides; 4 - normais. RESULTADOS: os resultados mostraram que no grupo de pacientes com caninos impactados foram encontrados 22 dentes anômalos (pequenos e conoides, e no grupo controle apenas três dentes pequenos e conoides, sendo uma diferença estatisticamente significativa (p=0,001. Não foram encontrados pacientes com canino impactado e incisivo lateral ausente. CONCLUS

  10. The Shaping of the Scandinavian Socio-technical IS Research Tradition

    DEFF Research Database (Denmark)

    Bjørn-Andersen, Niels; Clemmensen, Torkil

    2017-01-01

    voice of the autoethnographer and the questioning voice of a younger researcher, the second author, who wants to bridge S/T into the future. The main contributions of this paper are to provide: 1) insights into career development in IS in general and in one of the Scandinavian IS pioneers in particular......This paper relates stories instrumental in shaping the career of an individual and which have also contributed to shaping of the IS field in general and the ‘Scandinavian Socio-Technical (S/T) Information Systems Research Tradition’ in particular. The method in this paper is an autoethnography......; 2) a historic account of some of the key events in the early days of S/T IS in Scandinavia; 3) an account of the experiences and the challenges in creating a new research field such as IS; and 4) a summary of Niels’s key learnings hopefully relevant to young and mid-career IS researchers....

  11. Using active shape modeling based on MRI to study morphologic and pitch-related functional changes affecting vocal structures and the airway.

    Science.gov (United States)

    Miller, Nicola A; Gregory, Jennifer S; Aspden, Richard M; Stollery, Peter J; Gilbert, Fiona J

    2014-09-01

    The shape of the vocal tract and associated structures (eg, tongue and velum) is complicated and varies according to development and function. This variability challenges interpretation of voice experiments. Quantifying differences between shapes and understanding how vocal structures move in relation to each other is difficult using traditional linear and angle measurements. With statistical shape models, shape can be characterized in terms of independent modes of variation. Here, we build an active shape model (ASM) to assess morphologic and pitch-related functional changes affecting vocal structures and the airway. Using a cross-sectional study design, we obtained six midsagittal magnetic resonance images from 10 healthy adults (five men and five women) at rest, while breathing out, and while listening to, and humming low and high notes. Eighty landmark points were chosen to define the shape of interest and an ASM was built using these (60) images. Principal component analysis was used to identify independent modes of variation, and statistical analysis was performed using one-way repeated-measures analysis of variance. Twenty modes of variation were identified with modes 1 and 2 accounting for half the total variance. Modes 1 and 9 were significantly associated with humming low and high notes (P structures, and airway. Mode 2 highlighted wide structural variations between subjects. This study highlights the potential of active shape modeling to advance understanding of factors underlying morphologic and pitch-related functional variations affecting vocal structures and the airway in health and disease. Copyright © 2014 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  12. Investigation of Vacuum Arc Voltage Characteristics Under Different Axial Magnetic Field Profiles

    International Nuclear Information System (INIS)

    Jia Shenli; Song Xiaochuan; Huo Xintao; Shi Zongqian; Wang Lijun

    2010-01-01

    Characteristics of the arc voltage under different profiles of axial magnetic field were investigated experimentally in a detachable vacuum chamber with five pairs of specially designed electrodes generating both bell-shaped and saddle-shaped magnetic field profile. The arc column and cathode spot images were photographed by a high speed digital camera. The dependence of the arc voltage on arcing evolution is analyzed. It is indicated that the axial magnetic field profile could affect the arc behaviors significantly, and the arc voltage is closely related to the arc light intensity.

  13. Ferromagnetic shape memory materials

    Science.gov (United States)

    Tickle, Robert Jay

    Ferromagnetic shape memory materials are a new class of active materials which combine the properties of ferromagnetism with those of a diffusionless, reversible martensitic transformation. These materials have been the subject of recent study due to the unusually large magnetostriction exhibited in the martensitic phase. In this thesis we report the results of experiments which characterize the magnetic and magnetomechanical properties of both austenitic and martensitic phases of ferromagnetic shape memory material Ni2MnGa. In the high temperature cubic phase, anisotropy and magnetostriction constants are determined for a range of temperatures from 50°C down to the transformation temperature, with room temperature values of K1 = 2.7 +/- 104 ergs/cm3 and lambda100 = -145 muepsilon. In the low temperature tetragonal phase, the phenomenon of field-induced variant rearrangement is shown to produce anomalous results when traditional techniques for determining anisotropy and magnetostriction properties are employed. The requirement of single variant specimen microstructure is explained, and experiments performed on such a specimen confirm a uniaxial anisotropy within each martensitic variant with anisotropy constant Ku = 2.45 x 106 ergs/cm3 and a magnetostriction constant of lambdasv = -288 +/- 73 muepsilon. A series of magnetomechanical experiments investigate the effects of microstructure bias, repeated field cycling, varying field ramp rate, applied load, and specimen geometry on the variant rearrangement phenomenon in the martensitic phase. In general, the field-induced strain is found to be a function of the variant microstructure. Experiments in which the initial microstructure is biased towards a single variant state with an applied load generate one-time strains of 4.3%, while those performed with a constant bias stress of 5 MPa generate reversible strains of 0.5% over a period of 50 cycles. An increase in the applied field ramp rate is shown to reduce the

  14. Effective thermo-mechanical properties and shape memory effect of CNT/SMP composites

    Science.gov (United States)

    Yang, Qingsheng; Liu, Xia; Leng, Fangfang

    2009-07-01

    Shape memory polymer (SMP) has been applied in many fields as intelligent sensors and actuators. In order to improve the mechanical properties and recovery force of SMP, the addition of minor amounts of carbon nanotubes (CNT) into SMP has attracted wide attention. A micromechanical model and thermo-mechanical properties of CNT/SMP composites were studied in this paper. The thermo-mechanical constitutive relation of intellectual composites with isotropic and transversely isotropic CNT was obtained. Moreover, the shape memory effect of CNT/SMP composites and the effect of temperature and the volume fraction of CNT were discussed. The work shows that CNT/SMP composites exhibit excellent macroscopic thermo-mechanical properties and shape memory effect, while both of them can be affected remarkably by temperature and the microstructure parameters.

  15. Computation of fields in an arbitrarily shaped heterogeneous dielectric or biological body by an iterative conjugate gradient method

    International Nuclear Information System (INIS)

    Wang, J.J.H.; Dubberley, J.R.

    1989-01-01

    Electromagnetic (EM) fields in a three-dimensional, arbitrarily shaped heterogeneous dielectric or biological body illuminated by a plane wave are computed by an iterative conjugate gradient method. The method is a generalized method of moments applied to the volume integral equation. Because no matrix is explicitly involved or stored, the present iterative method is capable of computing EM fields in objects an order of magnitude larger than those that can be handled by the conventional method of moments. Excellent numerical convergence is achieved. Perfect convergence to the result of the conventional moment method using the same basis and weighted with delta functions is consistently achieved in all the cases computed, indicating that these two algorithms (direct and interactive) are equivalent

  16. Mechanical properties and related substructure of TiNi shape memory alloys

    International Nuclear Information System (INIS)

    Filip, P.; Kneissl, A.C.

    1995-01-01

    The mechanical properties of binary near equiatomic TiNi shape memory alloys were investigated after different types of mechanical and heat treatments. The changes of deformation behaviour are explained on the basis of substructure differences after work hardening. The ''elastic moduli'' of both the high-temperature phase B2 and the martensite B19' as well as the ''easy stage of deformation'' are dependent on the work hardening intensity and these changes are related to the mobility of B2/B19' interfaces. The martensite changes its morphology after work hardening. In contrast to a twinned martensite, typical for annealed alloys, the internally slipped martensite was detected after work hardening. (orig.)

  17. REM - the Shape of Potentials for f(R) Theories in Cosmology and Tachyons

    CERN Document Server

    Vulcanov, Dumitru N; Sporea, Ciprian A

    2014-01-01

    We investigated the reverse engineering method (REM) for constructing the potential of the scalar field in cosmological theories based on metric f(R) gravity and Friedman Robertson Walker (FRW) metric. Then transposing the new field and Friedman equations in an algebraic computing special library (in Maple + GrTennsorII platform) we graphically investigate the shape of the potentials in terms of the scalar field in at least two type of cosmology with exponential and linear scale factor expansion. Some perspectives and conclusions relating these results with tachyonic cosmology theories are noticed.

  18. Functional statistics and related fields

    CERN Document Server

    Bongiorno, Enea; Cao, Ricardo; Vieu, Philippe

    2017-01-01

    This volume collects latest methodological and applied contributions on functional, high-dimensional and other complex data, related statistical models and tools as well as on operator-based statistics. It contains selected and refereed contributions presented at the Fourth International Workshop on Functional and Operatorial Statistics (IWFOS 2017) held in A Coruña, Spain, from 15 to 17 June 2017. The series of IWFOS workshops was initiated by the Working Group on Functional and Operatorial Statistics at the University of Toulouse in 2008. Since then, many of the major advances in functional statistics and related fields have been periodically presented and discussed at the IWFOS workshops. .

  19. Special relativity and classical field theory

    CERN Document Server

    Susskind, Leonard

    2017-01-01

    Physicist Leonard Susskind and data engineer Art Friedman are back. This time, they introduce readers to Einstein's special relativity and Maxwell's classical field theory. Using their typical brand of real math, enlightening drawings, and humor, Susskind and Friedman walk us through the complexities of waves, forces, and particles by exploring special relativity and electromagnetism. It's a must-read for both devotees of the series and any armchair physicist who wants to improve their knowledge of physics' deepest truths.

  20. Stabilization of the Vertical Mode in Tokamaks by Localized Nonaxisymmetric Fields

    International Nuclear Information System (INIS)

    Reiman, A.

    2007-01-01

    Vertical instability of a tokamak plasma can be controlled by nonaxisymmetric magnetic fields localized near the plasma edge at the bottom and top of the torus. The required magnetic fields can be produced by a relatively simple set of parallelogram-shaped coils.

  1. Consistency relations in effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Munshi, Dipak; Regan, Donough, E-mail: D.Munshi@sussex.ac.uk, E-mail: D.Regan@sussex.ac.uk [Astronomy Centre, School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH (United Kingdom)

    2017-06-01

    The consistency relations in large scale structure relate the lower-order correlation functions with their higher-order counterparts. They are direct outcome of the underlying symmetries of a dynamical system and can be tested using data from future surveys such as Euclid. Using techniques from standard perturbation theory (SPT), previous studies of consistency relation have concentrated on continuity-momentum (Euler)-Poisson system of an ideal fluid. We investigate the consistency relations in effective field theory (EFT) which adjusts the SPT predictions to account for the departure from the ideal fluid description on small scales. We provide detailed results for the 3D density contrast δ as well as the scaled divergence of velocity θ-bar . Assuming a ΛCDM background cosmology, we find the correction to SPT results becomes important at k ∼> 0.05 h/Mpc and that the suppression from EFT to SPT results that scales as square of the wave number k , can reach 40% of the total at k ≈ 0.25 h/Mpc at z = 0. We have also investigated whether effective field theory corrections to models of primordial non-Gaussianity can alter the squeezed limit behaviour, finding the results to be rather insensitive to these counterterms. In addition, we present the EFT corrections to the squeezed limit of the bispectrum in redshift space which may be of interest for tests of theories of modified gravity.

  2. The shape of eParticipation

    DEFF Research Database (Denmark)

    Sæbø, Øystein; Rose, Jeremy; Flak, Leif Skiftenes

    2008-01-01

    The phenomenon of eParticipation is receiving increasing attention, demonstrated by recent technology implementations, experiments, government reports and research programs. Understanding such an emerging field is a complex endeavour because there is no generally agreed upon definition of the field...... point for a grounded analysis leading to the development of an overview model: the field of eParticipation seen from a researcher's perspective. The model provides structure for understanding the emerging shape of the field as well as an initial indication of its content. It also provides the basis...

  3. Stress analysis studies in optimised 'D' shaped TOKAMAK magnet designs

    International Nuclear Information System (INIS)

    Diserens, N.J.

    1975-07-01

    A suite of computer programs TOK was developed which enabled simple data input to be used for computation of magnetic fields and forces in a toroidal system of coils with either D-shaped or circular cross section. An additional requirement was that input data to the Swansea stress analysis program FINESSE could be output from the TOK fields and forces program, and that graphical output from either program should be available. A further program was required to optimise the coil shape. This used the field calculating routines from the TOK program. The starting point for these studies was the proposed 40 coil Princeton design. The stresses resulting from three different shapes of D-coil were compared. (author)

  4. Functional and shape data analysis

    CERN Document Server

    Srivastava, Anuj

    2016-01-01

    This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. It is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. The interdisciplinary nature of the broad range of ideas covered—from introductory theory to algorithmic implementations and some statistical case studies—is meant to familiarize graduate students with an array of tools that are relevant in developing computational solutions for shape and related analyses. These tools, gleaned from geometry, algebra, statistics, and computational science, are traditionally scattered across different courses, departments, and disciplines; Functional and Shape Data Analysis offers a unified, comprehensive solution by integrating the registration problem into shape analysis, better preparing graduate students for handling fu...

  5. Indefinite-metric quantum field theory of general relativity, 2

    International Nuclear Information System (INIS)

    Nakanishi, Noboru

    1978-01-01

    The canonical commutation relations are analyzed in detail in the manifestly covariant quantum field theory of general relativity proposed previously. It is explicitly proved that the BRS charge is indeed the generator of the BRS transformation both in the Landau gauge and in the non-Landau one. The equivalence between the field equations and the Heisenberg equations is confirmed. (author)

  6. Sex-related differences in foot shape of adult Caucasians--a follow-up study focusing on long and short feet.

    Science.gov (United States)

    Krauss, I; Langbein, C; Horstmann, T; Grau, S

    2011-03-01

    The study's purpose was to substantiate findings on sex-related differences in foot morphology focusing on fringe sizes. Altogether, 287 Caucasian adults with long or short feet were scanned. Data were analysed together with data from 847 subjects from a previous study with comparable inclusion criteria and anthropometric data by: (1)comparing absolute measures within 237-277 mm foot length (FL); (2) comparing averaged measures across sizes in % of foot length for 203-323 mm FL; (3) reclassifying the additional subjects into a previously defined foot type classification. Male feet were wider and higher for the same FL. Averaged across sizes, no relevant differences between sexes were found for widths and heights. Slender or flat-pointed foot types were more common in longer feet, shorter feet tended to be bigger. Definitions for 'long' and 'short' are sex-related with an offset of three shoe sizes (EU). Results of this follow-up study on long and short feet can substantiate previous findings mainly described for the most common sizes. STATEMENT OF RELEVANCE: Improper footwear can cause pain and injury and proper fit is a major criterion for shoe buyers. Knowledge about sex-related differences in foot shape is important for shoe design. This study supplements the field of knowledge for very small and large feet.

  7. The Influence of Shaping Air Pressure of Pneumatic Spray Gun

    Science.gov (United States)

    Chen, Wenzhuo; Chen, Yan; Pan, Haiwei; Zhang, Weiming; Li, Bo

    2018-02-01

    The shaping air pressure is a very important parameter in the application of pneumatic spray gun, and studying its influence on spray flow field and film thickness distribution has practical values. In this paper, Euler-Lagrangian method is adopted to describe the two-phase spray flow of pneumatic painting process, and the air flow fields, spray patterns and dynamic film thickness distributions were obtained with the help of the computational fluid dynamics code—ANSYS Fluent. Results show that with the increase of the shaping air pressure, the air phase flow field spreads in the plane perpendicular to the shaping air hole plane, the spray pattern becomes narrower and flatter, and the width of the dynamic film increases with the reduced maximum value of the film thickness. But the film thickness distribution seems to change little with the shaping air pressure decreasing from 0.6bar to 0.9bar.

  8. Adverse impact of multileaf collimator field shaping on lens dose in children with acute leukemia receiving cranial irradiation

    International Nuclear Information System (INIS)

    Kalapurakal, John A.; Sathiaseelan, Vythialingam; Bista, Tomasz C.; Marymont, Maryanne H.

    2000-01-01

    Purpose: This study was designed to investigate the impact of multileaf collimator (MLC) on lens dose in children with leukemia undergoing cranial irradiation. Methods and Materials: This is a prospective study utilizing three common cranial irradiation techniques. Technique A uses a half-beam, nondivergent radiation field. Technique B has the anterior divergent field edge at the lateral bony canthus. Technique C is similar to B, but with a field collimator angle. Thermoluminescent dosimeter (TLD) lens dose measurements were obtained in children and phantom with all three techniques. Results: Seventeen children were studied. Lens dose measurements were obtained in 14 children with technique A using MLC and blocks. In 7 of 14 children, dose measurements were obtained with MLC only. One child was treated with technique B and 2 children were treated with C, with MLC ± blocks. In all 3 techniques, with MLC alone, the lens dose increased by 64%, 119%, and 72%, respectively. Similar results were obtained in phantom. Conclusion: This study demonstrates that independent of irradiation technique, additional custom blocking is required to maximally protect the lens with MLC shaped fields. This is due to the lack of conformity between MLC and the desired field edge at the lateral bony canthus

  9. Active shape-morphing elastomeric colloids in short-pitch cholesteric liquid crystals.

    Science.gov (United States)

    Evans, Julian S; Sun, Yaoran; Senyuk, Bohdan; Keller, Patrick; Pergamenshchik, Victor M; Lee, Taewoo; Smalyukh, Ivan I

    2013-05-03

    Active elastomeric liquid crystal particles with initial cylindrical shapes are obtained by means of soft lithography and polymerization in a strong magnetic field. Gold nanocrystals infiltrated into these particles mediate energy transfer from laser light to heat, so that the inherent coupling between the temperature-dependent order and shape allows for dynamic morphing of these particles and well-controlled stable shapes. Continuous changes of particle shapes are followed by their spontaneous realignment and transformations of director structures in the surrounding cholesteric host, as well as locomotion in the case of a nonreciprocal shape morphing. These findings bridge the fields of liquid crystal solids and active colloids, may enable shape-controlled self-assembly of adaptive composites and light-driven micromachines, and can be understood by employing simple symmetry considerations along with electrostatic analogies.

  10. P-phase precipitation and its effect on martensitic transformation in (Ni,Pt)Ti shape memory alloys

    International Nuclear Information System (INIS)

    Gao, Y.; Zhou, N.; Yang, F.; Cui, Y.; Kovarik, L.; Hatcher, N.; Noebe, R.; Mills, M.J.; Wang, Y.

    2012-01-01

    A new precipitate phase named P-phase has recently been identified in (Ni,Pt)Ti high temperature shape memory alloys. In order to understand the roles played by the fine coherent P-phase precipitates in determining the martensitic transformation temperature (M s ), strength of the B2 matrix phase, dimensional stability and shape memory effect of the alloys, a phase field model of P-phase precipitation is developed. Model inputs, including lattice parameters, precipitate–matrix orientation relationship, elastic constants and free energy data, are obtained from experimental characterization, ab initio calculations and thermodynamic databases. Through computer simulations, the shape and spatial distribution of the P-phase precipitates, as well as the compositional and stress fields around them, are quantitatively determined. On this basis, the elastic interaction energy between the P-phase precipitates and a martenstic nucleus is calculated. It is found that both the chemical non-uniformity and stress field associated with the P-phase precipitates are in favor of the martensitic transformation. Their relative contributions to the increase in M s temperature are quantified as a function of aging time and the result seems to agree with the experimental measurements. The shape and spatial distribution of the P-phase precipitates predicted by the simulations also agree well with experimental observations.

  11. The response of filamentary and spherical clouds to the turbulence and magnetic field

    Science.gov (United States)

    Gholipour, Mahmoud

    2018-05-01

    Recent observations have revealed that there is a power-law relation between magnetic field and density in molecular clouds. Furthermore, turbulence has been observed in some regions of molecular clouds and the velocity dispersion resulting from the turbulence is found to correlate with to the cloud density. Relating to these observations, in this study, we model filamentary and spherical clouds in magnetohydrostatic equilibrium in two quiescent and turbulent regions. The proposed equations are expected to represent the impact of magnetic field and turbulence on the cloud structure and the relation of cloud mass with shape. The Virial theorem is applied to consider the cloud evolution leading to important conditions for equilibrium of the cloud over its lifetime. The obtained results indicate that under the same conditions of the magnetic field and turbulence, each shape presents different responses. The possible ways for the formation of massive cores or coreless clouds in some regions as well as the formation of massive stars or low-mass stars can be discussed based on the results of this study. It should be mentioned that the shape of the clouds plays an important role in the formation of the protostellar clouds as well as their structure and evolution. This role is due to the effects of magnetic fields and turbulence.

  12. Screening vector field modifications of general relativity

    International Nuclear Information System (INIS)

    Beltrán Jiménez, Jose; Delvas Fróes, André Luís; Mota, David F.

    2013-01-01

    A screening mechanism for conformal vector–tensor modifications of general relativity is proposed. The conformal factor depends on the norm of the vector field and makes the field to vanish in high dense regions, whereas drives it to a non-null value in low density environments. Such process occurs due to a spontaneous symmetry breaking mechanism and gives rise to both the screening of fifth forces as well as Lorentz violations. The cosmology and local constraints are also computed

  13. The relation between the column density structures and the magnetic field orientation in the Vela C molecular complex

    Science.gov (United States)

    Soler, J. D.; Ade, P. A. R.; Angilè, F. E.; Ashton, P.; Benton, S. J.; Devlin, M. J.; Dober, B.; Fissel, L. M.; Fukui, Y.; Galitzki, N.; Gandilo, N. N.; Hennebelle, P.; Klein, J.; Li, Z.-Y.; Korotkov, A. L.; Martin, P. G.; Matthews, T. G.; Moncelsi, L.; Netterfield, C. B.; Novak, G.; Pascale, E.; Poidevin, F.; Santos, F. P.; Savini, G.; Scott, D.; Shariff, J. A.; Thomas, N. E.; Tucker, C. E.; Tucker, G. S.; Ward-Thompson, D.

    2017-07-01

    We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.´0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondencebetween (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or "ridges", where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or "nests", where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density

  14. Analysis of Stress and Strain Fields in and around Inclusions of Various Shapes in a Cylindrical Specimen Loaded in Tension

    Directory of Open Access Journals (Sweden)

    Neimitz A.

    2016-06-01

    Full Text Available A numerical analysis is performed of the stress field in and around inclusions of various shapes. Inclusions both stiffer and more compliant than the metal matrix are analysed. The critical stresses required for inclusion fracture are estimated after observation of cavities and inclusions by scanning electron microscopy. Real inclusions were observed after performing uniaxial loading to different amounts of overall strain. The material tested was Hardox-400 steel.

  15. Dynamical implications of sample shape for avalanches in 2-dimensional random-field Ising model with saw-tooth domain wall

    Science.gov (United States)

    Tadić, Bosiljka

    2018-03-01

    We study dynamics of a built-in domain wall (DW) in 2-dimensional disordered ferromagnets with different sample shapes using random-field Ising model on a square lattice rotated by 45 degrees. The saw-tooth DW of the length Lx is created along one side and swept through the sample by slow ramping of the external field until the complete magnetisation reversal and the wall annihilation at the open top boundary at a distance Ly. By fixing the number of spins N =Lx ×Ly = 106 and the random-field distribution at a value above the critical disorder, we vary the ratio of the DW length to the annihilation distance in the range Lx /Ly ∈ [ 1 / 16 , 16 ] . The periodic boundary conditions are applied in the y-direction so that these ratios comprise different samples, i.e., surfaces of cylinders with the changing perimeter Lx and height Ly. We analyse the avalanches of the DW slips between following field updates, and the multifractal structure of the magnetisation fluctuation time series. Our main findings are that the domain-wall lengths materialised in different sample shapes have an impact on the dynamics at all scales. Moreover, the domain-wall motion at the beginning of the hysteresis loop (HLB) probes the disorder effects resulting in the fluctuations that are significantly different from the large avalanches in the central part of the loop (HLC), where the strong fields dominate. Specifically, the fluctuations in HLB exhibit a wide multi-fractal spectrum, which shifts towards higher values of the exponents when the DW length is reduced. The distributions of the avalanches in this segments of the loops obey power-law decay and the exponential cutoffs with the exponents firmly in the mean-field universality class for long DW. In contrast, the avalanches in the HLC obey Tsallis density distribution with the power-law tails which indicate the new categories of the scale invariant behaviour for different ratios Lx /Ly. The large fluctuations in the HLC, on the other

  16. Factorization and shape-function effects in inclusive B-meson decays

    International Nuclear Information System (INIS)

    Bosch, S.W.; Lange, B.O.; Neubert, M.; Paz, G.

    2004-01-01

    Using methods of effective field theory, factorized expressions for arbitrary B-bar ->Xul-ν-bar decay distributions in the shape-function region of large hadronic energy and moderate hadronic invariant mass are derived. Large logarithms are resummed at next-to-leading order in renormalization-group improved perturbation theory. The operator product expansion is employed to relate moments of the renormalized shape function with HQET parameters such as mb, Λ-bar and λ1 defined in a new physical subtraction scheme. An analytic expression for the asymptotic behavior of the shape function is obtained, which reveals that it is not positive definite. Explicit expressions are presented for the charged-lepton energy spectrum, the hadronic invariant mass distribution, and the spectrum in the hadronic light-cone momentum P+=EH-|P->H|. A new method for a precision measurement of |Vub| is proposed, which combines good theoretical control with high efficiency and a powerful discrimination against charm background

  17. Relative entanglement entropies in 1+1-dimensional conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, Paola; Calabrese, Pasquale [International School for Advanced Studies (SISSA) and INFN,Via Bonomea 265, 34136, Trieste (Italy)

    2017-02-08

    We study the relative entanglement entropies of one interval between excited states of a 1+1 dimensional conformal field theory (CFT). To compute the relative entropy S(ρ{sub 1}∥ρ{sub 0}) between two given reduced density matrices ρ{sub 1} and ρ{sub 0} of a quantum field theory, we employ the replica trick which relies on the path integral representation of Tr(ρ{sub 1}ρ{sub 0}{sup n−1}) and define a set of Rényi relative entropies S{sub n}(ρ{sub 1}∥ρ{sub 0}). We compute these quantities for integer values of the parameter n and derive via the replica limit the relative entropy between excited states generated by primary fields of a free massless bosonic field. In particular, we provide the relative entanglement entropy of the state described by the primary operator i∂ϕ, both with respect to the ground state and to the state generated by chiral vertex operators. These predictions are tested against exact numerical calculations in the XX spin-chain finding perfect agreement.

  18. Measurability of quantum fields and the energy-time uncertainty relation

    International Nuclear Information System (INIS)

    Mensky, Mikhail B

    2011-01-01

    Quantum restrictions on the measurability of an electromagnetic field strength and their relevance to the energy-time uncertainty relation are considered. The minimum errors in measuring electromagnetic field strengths, as they were estimated by the author (1988) in the framework of the phenomenological method of restricted path integral (RPI), are compared with the analogous estimates found by Landau and Peierls (1931) and by Bohr and Rosenfeld (1933) with the help of certain measurement setups. RPI-based restrictions, including those of Landau and Peierls as a special case, hold for any measuring schemes meeting the strict definition of measurement. Their fundamental nature is confirmed by the fact that their associated field detectability condition has the form of the energy-time uncertainty relation. The weaker restrictions suggested by Bohr and Rosenfeld rely on an extended definition of measurement. The energy-time uncertainty relation, which is the condition for the electromagnetic field to be detectable, is applied to the analysis of how the near-field scanning microscope works. (methodological notes)

  19. Magnetic fluid bridge in a non-uniform magnetic field

    International Nuclear Information System (INIS)

    Pelevina, D.A.; Naletova, V.A.; Turkov, V.A.

    2017-01-01

    The shape of a magnetic fluid bridge between a horizontal ferrite rod of circular cross-section and a horizontal plate above the rod in a vertical applied uniform magnetic field is studied. Various static shapes of the bridges are obtained theoretically and experimentally for the same magnetic field value. Abrupt changes and the hysteresis of the bridge shape in alternating magnetic fields are observed experimentally. - Highlights: • Magnetic fluid bridge between rod and horizontal plate in magnetic field is studied. • Magnetic field is created by a ferrite rod in a uniform vertical magnetic field. • Various static bridge shapes for fixed field are obtained in theory and experiment. • A good agreement of experimental and theoretical results is obtained. • Hysteresis of the bridge shape in alternating field is observed experimentally.

  20. Magnetic fluid bridge in a non-uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Pelevina, D.A., E-mail: pelevina.daria@gmail.com; Naletova, V.A.; Turkov, V.A.

    2017-06-01

    The shape of a magnetic fluid bridge between a horizontal ferrite rod of circular cross-section and a horizontal plate above the rod in a vertical applied uniform magnetic field is studied. Various static shapes of the bridges are obtained theoretically and experimentally for the same magnetic field value. Abrupt changes and the hysteresis of the bridge shape in alternating magnetic fields are observed experimentally. - Highlights: • Magnetic fluid bridge between rod and horizontal plate in magnetic field is studied. • Magnetic field is created by a ferrite rod in a uniform vertical magnetic field. • Various static bridge shapes for fixed field are obtained in theory and experiment. • A good agreement of experimental and theoretical results is obtained. • Hysteresis of the bridge shape in alternating field is observed experimentally.

  1. Mast Wake Reduction by Shaping

    National Research Council Canada - National Science Library

    Beauchamp, Charles H

    2005-01-01

    The present invention relates to various mast shapes, in which the mast shapes minimize the production of visible, electro-optic, infrared and radar cross section wake signatures produced by water surface piercing masts...

  2. Experimental Section: On the magnetic field distribution generated by a dipolar current source situated in a realistically shaped compartment model of the head

    NARCIS (Netherlands)

    Meijs, J.W.H.; Bosch, F.G.C.; Peters, M.J.; Lopes da silva, F.H.

    1987-01-01

    The magnetic field distribution around the head is simulated using a realistically shaped compartment model of the head. The model is based on magnetic resonance images. The 3 compartments describe the brain, the skull and the scalp. The source is represented by a current dipole situated in the

  3. Investigation on the corner effect of L-shaped tunneling field-effect transistors and their fabrication method.

    Science.gov (United States)

    Kim, Sang Wan; Choi, Woo Young; Sun, Min-Chul; Park, Byung-Gook

    2013-09-01

    In this work, electrical characteristics of L-shaped tunneling field-effect transistors (TFETs) have been studied and optimized by a commercial device simulator: Synopsys Sentaurus. Unlike our previous study performed by using Silvaco Atlas, there exists a kink phenomenon in a transfer curve which degrades the subthreshold swing (SS) and on-current (lon) of TFETs. According to simulation results, the kink results from abrupt source doping. Rounding the source junction edge with gradual doping profile is helpful to alleviate it. Based on those results, a novel fabrication flow has been proposed to suppress the kink effect induced by source corners. It is predicted that the performance of L-shaped TFETs is improved in terms of SS and Ion under the optimized process condition. Furthremore, the effect of high-k gate dielectric and narrow band gap material on device performance has been examined. Using 2-nm-thick HfO2 for gate dielectric and Si0.7Ge0.3 for intrinsic tunneling region, gate controllability to the channel and tunneling probability have been enhanced. As a result, its threshold voltage (Vth), SS and Ion have been improved by 0.13 V, 16 mV/dec, and 3.62 microA/microm, respectively.

  4. The Earth's Shape and Movements: Teachers' Perception of the Relations Between Daily Observation and Scientific Models

    Science.gov (United States)

    Ferreira, Flávia Polati; Leite, Cristina

    2015-07-01

    The Earth’s shape and movements are some of the most common issues in official documents and research studies of astronomy education. Many didactic proposals suggest these issues within observational astronomy. Therefore, we present in this paper some of the main results of a research study of the teachers’ perception of the relations between the knowledge from daily observation and scientific models currently accepted about the “earth’s shape and movements”. Data were obtained in application of the didactic proposal during a teacher training course for teachers from São Paulo, have been constructed with the dynamics “Three Pedagogical Moments” and guided by some of the central ideas of the educator Paulo Freire. The results indicate that a small proportion of teachers seem to understand some of the relations of “apparent contradictions” and “limitations” with the concepts of spatiality, and many of them argued based only on vague phrases or "buzzwords", unconnected to the problem explored. The difficulties of teachers to relate elements of daily observation with scientific models seem to indicate a necessity to approach some these aspects with the astronomical knowledge in the teacher training courses.

  5. SU-E-T-225: Correction Matrix for PinPoint Ionization Chamber for Dosimetric Measurements in the Newly Released Incise™ Multileaf Collimator Shaped Small Field for CyberKnife M6™ Machine

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y; Li, T; Heron, D; Huq, M [University of Pittsburgh Cancer Institute and UPMC CancerCenter, Pittsburgh, PA (United States)

    2015-06-15

    Purpose: For small field dosimetry, such as measurements of output factors for cones or MLC-shaped irregular small fields, ion chambers often Result in an underestimation of the dose, due to both the volume averaging effect and the lack of lateral charged particle equilibrium. This work presents a mathematical model for correction matrix for a PTW PinPoint ionization chamber for dosimetric measurements made in the newly released Incise™ Multileaf collimator fields of the CyberKnife M6™ machine. Methods: A correction matrix for a PTW 0.015cc PinPoint ionization chamber was developed by modeling its 3D dose response in twelve cone-shaped circular fields created using the 5mm, 7.5mm, 10mm, 12.5mm, 15mm, 20mm, 25mm, 30mm, 35mm, 40mm, 50mm, 60mm cones in a CyberKnife M6™ machine. For each field size, hundreds of readings were recorded for every 2mm chamber shift in the horizontal plane. The contribution of each dose pixel to a measurement point depended on the radial distance and the angle to the chamber axis. These readings were then compared with the theoretical dose as obtained with Monte Carlo calculation. A penalized least-square optimization algorithm was developed to generate the correction matrix. After the parameter fitting, the mathematical model was validated for MLC-shaped irregular fields. Results: The optimization algorithm used for parameter fitting was stable and the resulted response factors were smooth in spatial domain. After correction with the mathematical model, the chamber reading matched with the calculation for all the tested fields to within 2%. Conclusion: A novel mathematical model has been developed for PinPoint chamber for dosimetric measurements in small MLC-shaped irregular fields. The correction matrix is dependent on detector, treatment unit and the geometry of setup. The model can be applied to non-standard composite fields and provides an access to IMRT point dose validation.

  6. SU-E-T-225: Correction Matrix for PinPoint Ionization Chamber for Dosimetric Measurements in the Newly Released Incise™ Multileaf Collimator Shaped Small Field for CyberKnife M6™ Machine

    International Nuclear Information System (INIS)

    Zhang, Y; Li, T; Heron, D; Huq, M

    2015-01-01

    Purpose: For small field dosimetry, such as measurements of output factors for cones or MLC-shaped irregular small fields, ion chambers often Result in an underestimation of the dose, due to both the volume averaging effect and the lack of lateral charged particle equilibrium. This work presents a mathematical model for correction matrix for a PTW PinPoint ionization chamber for dosimetric measurements made in the newly released Incise™ Multileaf collimator fields of the CyberKnife M6™ machine. Methods: A correction matrix for a PTW 0.015cc PinPoint ionization chamber was developed by modeling its 3D dose response in twelve cone-shaped circular fields created using the 5mm, 7.5mm, 10mm, 12.5mm, 15mm, 20mm, 25mm, 30mm, 35mm, 40mm, 50mm, 60mm cones in a CyberKnife M6™ machine. For each field size, hundreds of readings were recorded for every 2mm chamber shift in the horizontal plane. The contribution of each dose pixel to a measurement point depended on the radial distance and the angle to the chamber axis. These readings were then compared with the theoretical dose as obtained with Monte Carlo calculation. A penalized least-square optimization algorithm was developed to generate the correction matrix. After the parameter fitting, the mathematical model was validated for MLC-shaped irregular fields. Results: The optimization algorithm used for parameter fitting was stable and the resulted response factors were smooth in spatial domain. After correction with the mathematical model, the chamber reading matched with the calculation for all the tested fields to within 2%. Conclusion: A novel mathematical model has been developed for PinPoint chamber for dosimetric measurements in small MLC-shaped irregular fields. The correction matrix is dependent on detector, treatment unit and the geometry of setup. The model can be applied to non-standard composite fields and provides an access to IMRT point dose validation

  7. Shape of the feline cerebellum and occipital bone related to breed on MRI of 200 cats.

    Science.gov (United States)

    Huizing, Xander; Sparkes, Andy; Dennis, Ruth

    2017-10-01

    Objectives The MRI features of the feline cerebellum and occipital bone have not previously been described in the literature. The aims of this study were three-fold. Firstly, to document variations in cerebellar shape on MRI in neurologically normal cats to support our hypothesis that crowding of the contents of the caudal fossa or herniation of the cerebellar vermis through the foramen magnum occurs frequently as an anatomical variant. Secondly, to document variations in the morphology of the occipital bone. Thirdly, to see whether these variations in shape of the feline cerebellum and occipital bone could be associated with head conformation, such as brachycephaly. Methods The imaging records of the small animal clinic at the Animal Health Trust between 2000 and 2013 were searched retrospectively to identify adult cats that had undergone high-field (1.5 T) MRI investigation which included the brain. Exclusion criteria included evidence of intracranial disease or the presence of cervical syringomyelia. Midline sagittal T2-weighted and transverse images were used to assess the occipital bone morphology and cerebellar shape, and to measure the width to length ratio of the cranial cavity. Results Fourteen different breeds were represented. A cerebellar shape consistent with crowding of the contents of the caudal fossa, or herniation through the foramen magnum was present in 40% of the entire population. Persians (recognised as a brachycephalic breed) had a higher proportion of cerebellar crowding or herniation than all other breeds. There was no significant difference in the distribution of occipital bone morphology between these breed groups. Conclusions and relevance It is important to recognise morphological variations of the feline cerebellum and occipital bone in order to avoid false-positive diagnoses of raised intracranial pressure and pathological herniation on MRI.

  8. Bimolecular recombination in ambipolar organic field effect transistors

    NARCIS (Netherlands)

    Charrier, D. S. H.; de Vries, T.; Mathijssen, S. G. J.; Geluk, E. -J.; Smits, E. C. P.; Kemerink, M.; Janssen, R. A. J.

    In ambipolar organic field effect transistors (OFET) the shape of the channel potential is intimately related to the recombination zone width W, and hence to the electron-hole recombination strength. Experimentally, the recombination profile can be assessed by scanning Kelvin probe microscopy

  9. Bimolecular recombination in ambipolar organic field effect transistors

    NARCIS (Netherlands)

    Charrier, D.S.H.; Vries, T. de; Mathijssen, S.G.J.; Geluk, E.-J.; Smits, E.C.P.; Kemerink, M.; Janssen, R.A.J.

    2009-01-01

    In ambipolar organic field effect transistors (OFET) the shape of the channel potential is intimately related to the recombination zone width W, and hence to the electron–hole recombination strength. Experimentally, the recombination profile can be assessed by scanning Kelvin probe microscopy

  10. On open and closed field line regions in Tsyganenko's field model and their possible associations with horse collar auroras

    International Nuclear Information System (INIS)

    Birn, J.; Hones, E.W. Jr.; Craven, J.D.; Frank, L.A.; Elphinstone, R.D.; Stern, D.P.

    1991-01-01

    Using the empirical Tsyganenko (1987) long model as a prime example of a megnetospheric field model, the authors have attempted to identify the boundary between open and closed field lines. They define as closed all field lines that are connested with the Earth at both ends and cross the equatorial plane earthward of x = -70 R E , the tailward validity limit of the Tsyganenko model. They find that the form of the open/closed boundary at the Earth's surface, identified with the polar cap boundary, can exhibit the arrowhead shape, pointed toward the Sun, observed in horse collar auroras (Hones et al., 1989). The polar cap size in the Tsyganenko model increases with increasing K p values, and it becomes rounder and less pointed. The superposition of a net B y field, which is the expected consequence of an IMF B y , rotates the polar cap pattern and, for larger values, degrades the arrowhead shape, resulting in polar cap configurations consistent with known asymmetries in the aurora. The pointedness of the polar cap shape also diminishes or even completely disappears if the low-latitude magnetopause is assumed open and located considerably inside of the outermost magnetic flux surface in the Tsyganenko model. The arrowhead shape of the polar cap is found to be associated with a strong increase of B z from midnight toward the tail flanks, which is observed independently, and is possibly related to the NBZ field-aligned current system, observed during quiet times and strongly northward IMF B z . The larger B z values near the flanks of the tail cause more magnetic flux to close through these regions than through the midnight equatorial region

  11. Comparison of numerical results between related shapes using a non-rigid mapping with statistical quantication of uncertainty

    CSIR Research Space (South Africa)

    Jansen van Rensburg, Gerhardus J

    2011-10-01

    Full Text Available In the present study, numerical results obtained on different but related shapes are compared by using a non-rigid mapping. Non-rigid registration is employed to obtain mesh representations of different human skull geometries with the same mesh...

  12. Shaping of planetary nebulae

    International Nuclear Information System (INIS)

    Balick, B.

    1987-01-01

    The phases of stellar evolution and the development of planetary nebulae are examined. The relation between planetary nebulae and red giants is studied. Spherical and nonspherical cases of shaping planetaries with stellar winds are described. CCD images of nebulae are analyzed, and it is determined that the shape of planetary nebulae depends on ionization levels. Consideration is given to calculating the distances of planetaries using radio images, and molecular hydrogen envelopes which support the wind-shaping model of planetary nebulae

  13. Spectral Line Shapes. Proceedings

    International Nuclear Information System (INIS)

    Zoppi, M.; Ulivi, L.

    1997-01-01

    These proceedings represent papers presented at the 13th International Conference on Spectral Line Shapes which was held in Firenze,Italy from June 16-21, 1996. The topics covered a wide range of subjects emphasizing the physical processes associated with the formation of line profiles: high and low density plasma; atoms and molecules in strong laser fields, Dopple-free and ultra-fine spectroscopy; the line shapes generated by the interaction of neutrals, atoms and molecules, where the relavant quantities are single particle properties, and the interaction-induced spectroscopy. There were 131 papers presented at the conference, out of these, 6 have been abstracted for the Energy Science and Technology database

  14. Shape matters in sampling plant diversity: evidence from the field

    Czech Academy of Sciences Publication Activity Database

    Bacaro, G.; Rocchini, D.; Diekmann, M.; Gasparini, P.; Gioria, Margherita; Maccherini, S.; Marcantonio, M.; Tordoni, E.; Amici, V.; Landi, S.; Torri, D.; Castello, M.; Altobelli, A.; Chiarucci, A.

    2015-01-01

    Roč. 24, Dec 2015 (2015), s. 37-45 ISSN 1476-945X R&D Projects: GA ČR GA15-13491S Institutional support: RVO:67985939 Keywords : biodiversity monitoring * shape * species richness Subject RIV: EH - Ecology, Behaviour Impact factor: 1.797, year: 2015

  15. The time course of activation of object shape and shape+colour representations during memory retrieval.

    Directory of Open Access Journals (Sweden)

    Toby J Lloyd-Jones

    Full Text Available Little is known about the timing of activating memory for objects and their associated perceptual properties, such as colour, and yet this is important for theories of human cognition. We investigated the time course associated with early cognitive processes related to the activation of object shape and object shape+colour representations respectively, during memory retrieval as assessed by repetition priming in an event-related potential (ERP study. The main findings were as follows: (1 we identified a unique early modulation of mean ERP amplitude during the N1 that was associated with the activation of object shape independently of colour; (2 we also found a subsequent early P2 modulation of mean amplitude over the same electrode clusters associated with the activation of object shape+colour representations; (3 these findings were apparent across both familiar (i.e., correctly coloured - yellow banana and novel (i.e., incorrectly coloured - blue strawberry objects; and (4 neither of the modulations of mean ERP amplitude were evident during the P3. Together the findings delineate the timing of object shape and colour memory systems and support the notion that perceptual representations of object shape mediate the retrieval of temporary shape+colour representations for familiar and novel objects.

  16. The time course of activation of object shape and shape+colour representations during memory retrieval.

    Science.gov (United States)

    Lloyd-Jones, Toby J; Roberts, Mark V; Leek, E Charles; Fouquet, Nathalie C; Truchanowicz, Ewa G

    2012-01-01

    Little is known about the timing of activating memory for objects and their associated perceptual properties, such as colour, and yet this is important for theories of human cognition. We investigated the time course associated with early cognitive processes related to the activation of object shape and object shape+colour representations respectively, during memory retrieval as assessed by repetition priming in an event-related potential (ERP) study. The main findings were as follows: (1) we identified a unique early modulation of mean ERP amplitude during the N1 that was associated with the activation of object shape independently of colour; (2) we also found a subsequent early P2 modulation of mean amplitude over the same electrode clusters associated with the activation of object shape+colour representations; (3) these findings were apparent across both familiar (i.e., correctly coloured - yellow banana) and novel (i.e., incorrectly coloured - blue strawberry) objects; and (4) neither of the modulations of mean ERP amplitude were evident during the P3. Together the findings delineate the timing of object shape and colour memory systems and support the notion that perceptual representations of object shape mediate the retrieval of temporary shape+colour representations for familiar and novel objects.

  17. Conformal consistency relations for single-field inflation

    International Nuclear Information System (INIS)

    Creminelli, Paolo; Noreña, Jorge; Simonović, Marko

    2012-01-01

    We generalize the single-field consistency relations to capture not only the leading term in the squeezed limit — going as 1/q 3 , where q is the small wavevector — but also the subleading one, going as 1/q 2 . This term, for an (n+1)-point function, is fixed in terms of the variation of the n-point function under a special conformal transformation; this parallels the fact that the 1/q 3 term is related with the scale dependence of the n-point function. For the squeezed limit of the 3-point function, this conformal consistency relation implies that there are no terms going as 1/q 2 . We verify that the squeezed limit of the 4-point function is related to the conformal variation of the 3-point function both in the case of canonical slow-roll inflation and in models with reduced speed of sound. In the second case the conformal consistency conditions capture, at the level of observables, the relation among operators induced by the non-linear realization of Lorentz invariance in the Lagrangian. These results mean that, in any single-field model, primordial correlation functions of ζ are endowed with an SO(4,1) symmetry, with dilations and special conformal transformations non-linearly realized by ζ. We also verify the conformal consistency relations for any n-point function in models with a modulation of the inflaton potential, where the scale dependence is not negligible. Finally, we generalize (some of) the consistency relations involving tensors and soft internal momenta

  18. Challenges for precision shape measurements

    International Nuclear Information System (INIS)

    Jarvis, M

    2014-01-01

    We discuss a number of physical effects about deeply depleted CCDs that have a significant impact on shape estimation. In particular, the focus is on issues related to measuring accurate shear values of galaxies for weak lensing science. There are three types of effects we discuss: effects related to the world coordinate system (WCS), the so-called brighter-fatter relation, and variable pixel size. In each case, we describe the effect, explain the impact on shape measurements, and propose possible solutions

  19. Effect of external magnetic field and variable dust electrical charge on the shape and propagation of solitons in the two nonthermal ions dusty plasma

    International Nuclear Information System (INIS)

    Ghalambor Dezfuly, S.; Dorranian, D.

    2012-01-01

    In this manuscript, the effect of dust electrical charge, nonthermal ions, and external magnetic field on the shape and propagation of solitons in dusty plasma with two nonthermal ions is studied theoretically. Using the reductive perturbation theory, the Zakharov-Kuznetsov equation for propagation of dust acoustic waves is extracted. Results show that external magnetic field does not affect the amplitude of solitary wave but width of solitons are effectively depend on the magnitude of external magnetic field. With increasing the charge of dust particles the amplitude of solution will increase while their width will decrease. Increasing the nonthermal ions lead to opposite effect.

  20. Demagnetizing fields in active magnetic regenerators

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Smith, Anders

    2014-01-01

    A magnetic material in an externally applied magnetic field will in general experience a spatially varying internal magnetic field due to demagnetizing effects. When the performance of active magnetic regenerators (AMRs) is evaluated using numerical models the internal field is often assumed...... is in general both a function of the overall shape of the regenerator and its morphology (packed particles, parallel plates etc.) as well as the magnetization of the material. Due to the pronounced temperature dependence of the magnetization near the Curie temperature, the demagnetization field is also...... temperature dependent. We propose a relatively straightforward method to correct sufficiently for the demagnetizing field in AMR models. We discuss how the demagnetizing field behaves in regenerators made of packed spheres under realistic operation conditions....

  1. A practical method to calculate head scatter factors in wedged rectangular and irregular MLC shaped beams for external and internal wedges

    International Nuclear Information System (INIS)

    Georg, Dietmar; Olofsson, Joergen; Kuenzler, Thomas; Aiginger, Hannes; Karlsson, Mikael

    2004-01-01

    Factor based methods for absorbed dose or monitor unit calculations are often based on separate data sets for open and wedged beams. The determination of basic beam parameters can be rather time consuming, unless equivalent square methods are applied. When considering irregular wedged beams shaped with a multileaf collimator, parametrization methods for dosimetric quantities, e.g. output ratios or wedge factors as a function of field size and shape, become even more important. A practical method is presented to derive wedged output ratios in air (S c,w ) for any rectangular field and for any irregular MLC shaped beam. This method was based on open field output ratios in air (S c ) for a field with the same collimator setting, and a relation f w between S c,w and S c . The relation f w can be determined from measured output ratios in air for a few open and wedged fields including the maximum wedged field size. The function f w and its parametrization were dependent on wedge angle and treatment head design, i.e. they were different for internal and external wedges. The proposed method was tested for rectangular wedged fields on three accelerators with internal wedges (GE, Elekta, BBC) and two accelerators with external wedges (Varian). For symmetric regular beams the average deviation between calculated and measured S c,w /S c ratios was 0.3% for external wedges and about 0.6% for internal wedges. Maximum deviations of 1.8% were obtained for elongated rectangular fields on the GE and ELEKTA linacs with an internal wedge. The same accuracy was achieved for irregular MLC shaped wedged beams on the accelerators with MLC and internal wedges (GE and Elekta), with an average deviation <1% for the fields tested. The proposed method to determine output ratios in air for wedged beams from output ratios of open beams, combined with equivalent square approaches, can be easily integrated in empirical or semi-empirical methods for monitor unit calculations

  2. Magnetic fields, special relativity and potential theory elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    1972-01-01

    Magnetic Fields, Special Relativity and Potential Theory is an introduction to electromagnetism, special relativity, and potential theory, with emphasis on the magnetic field of steady currents (magnetostatics). Topics covered range from the origin of the magnetic field and the magnetostatic scalar potential to magnetization, electromagnetic induction and magnetic energy, and the displacement current and Maxwell's equations. This volume is comprised of five chapters and begins with an overview of magnetostatics, followed by a chapter on the methods of solving potential problems drawn from elec

  3. Convection and field-aligned currents, related to polar cap arcs, during strongly northward IMF (11 January 1983)

    International Nuclear Information System (INIS)

    Israelevich, P.L.; Podgorny, I.M.; Kuzmin, A.K.; Nikolaeva, N.S.; Dubinin, E.M.

    1988-01-01

    Electric and magnetic fields and auroral emissions have been measured by the Intercosmos-Bulgaria-1300 satellite on 10-11 January 1983. The measured distributions of the plasma drift velocity show that viscous convection is diminished in the evening sector under IMF B y y > 0. A number of sun-aligned polar cap arcs were observed at the beginning of the period of strongly northward IMF and after a few hours a θ-aurora appeared. The intensity of ionized oxygen emission increased significantly reaching up to several kilo-Rayleighs in the polar cap arc. A complicated pattern of convection and field-aligned currents existed in the nightside polar cap which differed from the four-cell model of convection and NBZ field-aligned current system. This pattern was observed during 12 h and could be interpreted as six large scale field-aligned current sheets and three convective vortices inside the polar cap. Sun-aligned polar cap arcs may be located in regions both of sunward and anti-sunward convection. Structures of smaller spatial scale-correspond to the boundaries of hot plasma regions related to polar cap arcs. Obviously these structures are due to S-shaped distributions of electric potential. Parallel electric fields in these S-structures provide electron acceleration up to 1 keV at the boundaries of polar cap arcs. The pairs of field-aligned currents correspond to those S-structures: a downward current at the external side of the boundary and an upward current at the internal side of it. (author)

  4. Slope shape effect on runoff and soil erosion under natural rainfall conditions

    OpenAIRE

    Sensoy H; Kara

    2014-01-01

    Slope is often non-uniform along the hillslope, with variations describing concave and convex shapes associated with natural hillslopes. This is because runoff generations vary significantly over short distances, with changes in surface alteration during or between flow events on different slope shapes. The aim of this research is to determine the effects of slope shapes on runoff and soil erosion. A field experiment was conducted from September 2007 to September 2009 on hillside field plots ...

  5. Phase separation and shape deformation of two-phase membranes

    International Nuclear Information System (INIS)

    Jiang, Y.; Lookman, T.; Saxena, A.

    2000-01-01

    Within a coupled-field Ginzburg-Landau model we study analytically phase separation and accompanying shape deformation on a two-phase elastic membrane in simple geometries such as cylinders, spheres, and tori. Using an exact periodic domain wall solution we solve for the shape and phase separating field, and estimate the degree of deformation of the membrane. The results are pertinent to preferential phase separation in regions of differing curvature on a variety of vesicles. (c) 2000 The American Physical Society

  6. Manifolds with integrable affine shape operator

    Directory of Open Access Journals (Sweden)

    Daniel A. Joaquín

    2005-05-01

    Full Text Available This work establishes the conditions for the existence of vector fields with the property that theirs covariant derivative, with respect to the affine normal connection, be the affine shape operatorS in hypersurfaces. Some results are obtained from this property and, in particular, for some kind of affine decomposable hypersurfaces we explicitely get the actual vector fields.

  7. Nanoscale magnetic ratchets based on shape anisotropy

    Science.gov (United States)

    Cui, Jizhai; Keller, Scott M.; Liang, Cheng-Yen; Carman, Gregory P.; Lynch, Christopher S.

    2017-02-01

    Controlling magnetization using piezoelectric strain through the magnetoelectric effect offers several orders of magnitude reduction in energy consumption for spintronic applications. However strain is a uniaxial effect and, unlike directional magnetic field or spin-polarized current, cannot induce a full 180° reorientation of the magnetization vector when acting alone. We have engineered novel ‘peanut’ and ‘cat-eye’ shaped nanomagnets on piezoelectric substrates that undergo repeated deterministic 180° magnetization rotations in response to individual electric-field-induced strain pulses by breaking the uniaxial symmetry using shape anisotropy. This behavior can be likened to a magnetic ratchet, advancing magnetization clockwise with each piezostrain trigger. The results were validated using micromagnetics implemented in a multiphysics finite elements code to simulate the engineered spatial and temporal magnetic behavior. The engineering principles start from a target device function and proceed to the identification of shapes that produce the desired function. This approach opens a broad design space for next generation magnetoelectric spintronic devices.

  8. Trends in maar crater size and shape using the global Maar Volcano Location and Shape (MaarVLS) database

    Science.gov (United States)

    Graettinger, A. H.

    2018-05-01

    A maar crater is the top of a much larger subsurface diatreme structure produced by phreatomagmatic explosions and the size and shape of the crater reflects the growth history of that structure during an eruption. Recent experimental and geophysical research has shown that crater complexity can reflect subsurface complexity. Morphometry provides a means of characterizing a global population of maar craters in order to establish the typical size and shape of features. A global database of Quaternary maar crater planform morphometry indicates that maar craters are typically not circular and frequently have compound shapes resembling overlapping circles. Maar craters occur in volcanic fields that contain both small volume and complex volcanoes. The global perspective provided by the database shows that maars are common in many volcanic and tectonic settings producing a similar diversity of size and shape within and between volcanic fields. A few exceptional populations of maars were revealed by the database, highlighting directions of future research to improve our understanding on the geometry and spacing of subsurface explosions that produce maars. These outlying populations, such as anomalously large craters (>3000 m), chains of maars, and volcanic fields composed of mostly maar craters each represent a small portion of the database, but provide opportunities to reinvestigate fundamental questions on maar formation. Maar crater morphometry can be integrated with structural, hydrological studies to investigate lateral migration of phreatomagmatic explosion location in the subsurface. A comprehensive database of intact maar morphometry is also beneficial for the hunt for maar-diatremes on other planets.

  9. New trends in shape optimization

    CERN Document Server

    Leugering, Günter

    2015-01-01

    This volume reflects “New Trends in Shape Optimization” and is based on a workshop of the same name organized at the Friedrich-Alexander University Erlangen-Nürnberg in September 2013. During the workshop senior mathematicians and young scientists alike presented their latest findings. The format of the meeting allowed fruitful discussions on challenging open problems, and triggered a number of new and spontaneous collaborations. As such, the idea was born to produce this book, each chapter of which was written by a workshop participant, often with a collaborator. The content of the individual chapters ranges from survey papers to original articles; some focus on the topics discussed at the Workshop, while others involve arguments outside its scope but which are no less relevant for the field today. As such, the book offers readers a balanced introduction to the emerging field of shape optimization.

  10. Nudging children towards whole wheat bread: a field experiment on the influence of fun bread roll shape on breakfast consumption

    OpenAIRE

    van Kleef, Ellen; Vrijhof, Milou; Polet, Ilse A; Vingerhoeds, Monique H; de Wijk, René A

    2014-01-01

    Background: Many children do not eat enough whole grains, which may have negative health consequences. Intervention research is increasingly focusing on nudging as a way to influence food choices by affecting unconscious behavioural processes. The aim of this field study was to examine whether the shape of bread rolls is able to shift children’s bread choices from white to whole wheat during breakfast to increase whole grain intake. Methods: In a between-subjects experiment conducted at twelv...

  11. Unified description of the neutron-/sup 208/Pb mean field between -20 and +165 MeV from the dispersion relation constraint

    International Nuclear Information System (INIS)

    Johnson, C.H.; Horen, D.J.; Mahaux, C.

    1987-01-01

    The real part of the central neutron-/sup 208/Pb mean field is the sum of a Hartree-Fock component plus a dispersive component. In keeping with theoretical expectations, the Hartree-Fock field is assumed to have a Woods-Saxon shape whose depth decreases exponentially with increasing energy and whose radius and diffuseness are independent of energy. The dispersive component is determined from the imaginary part of the optical-model potential by making use of the dispersion relation which connects these two quantities. The imaginary part is written as the sum of a volume and a surface-peaked contribution. The dispersion relation then implies that the real dispersive contribution is also the sum of volume and surface-peaked components. The parameters of the complex mean field are determined by fitting the available differential and polarization cross sections in the energy domain [4, 40 MeV] and the total cross sections in the domain [1,120 MeV]; these data are contained in previous published or unpublished reports, but new measurements of the total cross sections are presented from 1 to 25 MeV. Good fits to these cross sections, and also to unpublished total cross sections for energies up to 165 MeV, are obtained despite the fact that the number of adjusted parameters is quite small because of our use of the constraint implied by the dispersion relation

  12. Real-time digital control of plasma position and shape on the TEXTOR tokamak

    International Nuclear Information System (INIS)

    Mitri, Mikhael

    2009-01-01

    Beside the objective of contributing to the controlled thermonuclear fusion research and ultimately the development of a fusion based power plant, the main objectives of the thesis are a substantial improvement of plasma vertical position control and plasma shape control as well as a better understanding of formerly unexplained effects, e.g. disturbance fields. As for the vertical position control, a deep analysis has to be undertaken to identify the problem sources. Accurate control of the plasma position is very difficult to achieve. This is mainly due to the complexity of the tokamak and the difficulty in measuring or modelling all relevant discharge variables. Any models would be highly nonlinear and time varying. Thus, for simulation and controller design, a simplified, but nevertheless accurate model has to be developed, based on physics and measured data of the process. Furthermore, the quality of the measured position has to be improved by using new inductive sensors, integrators, and hardware. The integration drift problem has to be analysed and resolved by developing a drift-free integration method. Concerning the shape control, a better understanding of the relation between the stray fields and the iron core saturation is required. Furthermore, the influence on the plasma elongation has to be determined. Upon this, a shape compensation algorithm has to be developed accordingly. The accuracy of the shape control has to be better than 1%. (orig.)

  13. Do endothelial cells dream of eclectic shape?

    Science.gov (United States)

    Bentley, Katie; Philippides, Andrew; Ravasz Regan, Erzsébet

    2014-04-28

    Endothelial cells (ECs) exhibit dramatic plasticity of form at the single- and collective-cell level during new vessel growth, adult vascular homeostasis, and pathology. Understanding how, when, and why individual ECs coordinate decisions to change shape, in relation to the myriad of dynamic environmental signals, is key to understanding normal and pathological blood vessel behavior. However, this is a complex spatial and temporal problem. In this review we show that the multidisciplinary field of Adaptive Systems offers a refreshing perspective, common biological language, and straightforward toolkit that cell biologists can use to untangle the complexity of dynamic, morphogenetic systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Evaluation of the dosimetric consequences of adding a single asymmetric or MLC shaped field to a tangential breast radiotherapy technique

    International Nuclear Information System (INIS)

    Richmond, Neil D.; Turner, Robert N.; Dawes, Peter J.D.K.; Lambert, Geoff D.; Lawrence, Gill P.

    2003-01-01

    Fifteen consecutive patients had standard treatment plans generated using our departmental protocol and two further plans produced using either an asymmetric, or MLC shaped additional field, from each tangential direction. The mean percentage of the PTV receiving over 107% of the isocentre dose was 19.8% for the standard planned patients (95% confidence interval 12.3-27.4%). This was reduced to 6.0% for the asymmetric field technique (95% confidence interval 4.1-8.0%) and 5.3% for the MLC technique (95% confidence interval 2.8-7.7%). These high dose volume reductions were therefore significant at the 95% confidence level. It was also concluded that both alternative planning techniques offer the greatest potential when the standard plan indicated that more than 20% of the PTV would receive greater than 107% of the prescribed dose. Under these circumstances the segmented field techniques led to a reduction of at least 15 percentage points in this figure. It is this group of patients who stand to benefit most from application of these simple additional field techniques

  15. The guidance of visual search by shape features and shape configurations.

    Science.gov (United States)

    McCants, Cody W; Berggren, Nick; Eimer, Martin

    2018-03-01

    Representations of target features (attentional templates) guide attentional object selection during visual search. In many search tasks, targets objects are defined not by a single feature but by the spatial configuration of their component shapes. We used electrophysiological markers of attentional selection processes to determine whether the guidance of shape configuration search is entirely part-based or sensitive to the spatial relationship between shape features. Participants searched for targets defined by the spatial arrangement of two shape components (e.g., hourglass above circle). N2pc components were triggered not only by targets but also by partially matching distractors with one target shape (e.g., hourglass above hexagon) and by distractors that contained both target shapes in the reverse arrangement (e.g., circle above hourglass), in line with part-based attentional control. Target N2pc components were delayed when a reverse distractor was present on the opposite side of the same display, suggesting that early shape-specific attentional guidance processes could not distinguish between targets and reverse distractors. The control of attention then became sensitive to spatial configuration, which resulted in a stronger attentional bias for target objects relative to reverse and partially matching distractors. Results demonstrate that search for target objects defined by the spatial arrangement of their component shapes is initially controlled in a feature-based fashion but can later be guided by templates for spatial configurations. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. EU DIRECTIVES IN THE FIELD OF COPYRIGHT AND RELATED RIGHTS

    Directory of Open Access Journals (Sweden)

    Ana-Maria MARINESCU

    2015-07-01

    Full Text Available The aim of this article is to underline the evolution and the importance of the European Directives in the field of copyright and related rights, their contribution to the development of the law and the national implementation, namely their transposition into Romanian Law no. 8/1996 on copyright and related rights. For this purpose, the article will analyze the historical evolution of the European Directives in the field of copyright and related rights and their most important dispositions. Given the wide range of subject matter with which it is concerned, the European Directives in the field of copyright and related rights address to enforcement, protection of databases, protection of computer programs, resale right, satellite and cable, term of protection, rental and lending rights, copyright and related rights in the information society, orphan works and management of copyright and related rights. Taking into account the wild range of subjects that European Directives in the field of copyright and related rights address, it is important to observe the permanent interest of the European legislator on the harmonization of the law on copyright and related rights. In this way, the result was the adoption of 7 directives in a 10-year interval between 1991 and 2001, and of 4 directives, including the one for the modification of the Directive on the term of protection, also in a 10-year interval between 2004 and 2014. Despite the extensive process of harmonization, copyright law in the Member States of the European Union is still largely linked to geographical boundaries of sovereign states.

  17. Toward a theory of statistical tree-shape analysis

    DEFF Research Database (Denmark)

    Feragen, Aasa; Lo, Pechin Chien Pau; de Bruijne, Marleen

    2013-01-01

    In order to develop statistical methods for shapes with a tree-structure, we construct a shape space framework for tree-shapes and study metrics on the shape space. This shape space has singularities, which correspond to topological transitions in the represented trees. We study two closely relat...

  18. A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity

    International Nuclear Information System (INIS)

    Yu Xiongjun; Zhou Shaobing; Zheng Xiaotong; Guo Tao; Xiao Yu; Song Botao

    2009-01-01

    This paper reports a kind of biodegradable nanocomposite which can show an excellent shape-memory property in hot water or in an alternating magnetic field with f = 20 kH and H = 6.8 kA m -1 . The nanocomposite is composed of crosslinked poly(ε-caprolactone) (c-PCL) and Fe 3 O 4 nanoparticles. The crosslinking reaction in PCL with linear molecular structure was realized using benzoyl peroxide (BPO) as an initiator. The biocompatible Fe 3 O 4 magnetite nanoparticles with an average size of 10 nm were synthesized according to a chemical coprecipitation method. The initial results from c-PCL showed crosslinking modification had brought about a large enhancement in shape-memory effect for PCL. Then a series of composites made of Fe 3 O 4 nanoparticles and c-PCL were prepared and their morphological properties, mechanical properties, thermodynamic properties and shape-memory effect were investigated in succession. Significantly, the photos of the shape-memory process confirmed the anticipatory magnetically responsive shape-recovery effect of the nanocomposites because inductive heat from Fe 3 O 4 can be utilized to actuate the c-PCL vivification from their frozen temporary shape. All the results imply a very feasible method to fabricate shape-memory PCL-based nanocomposites since just a simple modification is required. Additionally, this modification would endow an excellent shape-memory effect to all other kinds of polymers so that they could broadly serve in various fields, especially in medicine.

  19. Simulation of auroral current sheet equilibria and associated V-shaped potential structures

    International Nuclear Information System (INIS)

    Singh, N.; Thiemann, H.; Schunk, R.W.

    1983-01-01

    Results from numerical simulations of auroral current sheet equilibrium and associated V-shaped potential structures are presented. It is shown that with allowance for both hot magnetospheric ion and cold ionospheric ion populations, the perpendicular potential drop, assiciated with a non-neutral auroral current sheet is critically controlled by the temperature of the 'heated' ionospheric ions. The heating is caused by the wave turbulence excited by the auroral current sheet. In the presence of heated ionospheric ions, a relatively large variation in the temperature of the hot magnetospheric ion population causes a very small variation in the potential drop thetam. The perpendicular potential drop acts to produce a V-shaped double layer with multiple potential steps parallel to the magnetic field when a zero potential boundary condition is imposed at the ionospheric boundary. Outside the V-shaped potential structure, ionospheric return currents develop self-consistently

  20. Relations between correlation functions in gauge field theory

    International Nuclear Information System (INIS)

    Simonov, Yu. A.; Shevchenko, V. I.

    1997-01-01

    Exact relations between vacuum correlations of non-Abelian field strengths are obtained. With the aid of exterior differentiation, the invariant parts of a given correlation function are expressed in terms of higher order correlation functions. The corollaries of these relations for the behavior of nonperturbative correlation functions at small and large distances are deduced

  1. Starch assisted growth of dumbbell-shaped ZnO microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Baranwal, V., E-mail: vikasphy@gmail.com [Nanotechnology Application Centre, University of Allahabad, Allahabad 21002 (India); Zahra, Abeer [Department of Physics, Integral University, Lucknow 226026 (India); Singh, Prashant K.; Pandey, Avinash C. [Nanotechnology Application Centre, University of Allahabad, Allahabad 21002 (India)

    2015-10-15

    We present an experimental study on evolution of dumbbell-shaped ZnO microstructures. Structure, shape, size and optical properties were monitored by means of scanning electron microscopy, x-ray diffraction, and photoluminescence spectroscopy, respectively. Our results show that a crystalline phase of ZnO is formed. A uniform distribution of randomly oriented dumbbell-shaped ZnO microstructures is observed. Near band edge as well as deep level visible emissions confirmed that there are intrinsic defects present in the system. Emissions extending from UV region to visible region show that these microstructures are good quality optical material which can be used in photocatalytic field. - Highlights: • Dumbbell-shaped ZnO micro-rods were synthesized by starch assisted hydrothermal process. • Micro-rods were of crystalline nature, confirmed by x-ray diffraction. • UV-emission as well as deep level visible emissions were observed. • Broad absorption band is observed which can be utilized in photocatalytic field.

  2. An Elliptic PDE Approach for Shape Characterization

    Science.gov (United States)

    Haidar, Haissam; Bouix, Sylvain; Levitt, James; McCarley, Robert W.; Shenton, Martha E.; Soul, Janet S.

    2009-01-01

    This paper presents a novel approach to analyze the shape of anatomical structures. Our methodology is rooted in classical physics and in particular Poisson's equation, a fundamental partial differential equation [1]. The solution to this equation and more specifically its equipotential surfaces display properties that are useful for shape analysis. We present a numerical algorithm to calculate the length of streamlines formed by the gradient field of the solution to this equation for 2D and 3D objects. The length of the streamlines along the equipotential surfaces was used to build a new function which can characterize the shape of objects. We illustrate our method on 2D synthetic and natural shapes as well as 3D medical data. PMID:17271986

  3. Shape theory categorical methods of approximation

    CERN Document Server

    Cordier, J M

    2008-01-01

    This in-depth treatment uses shape theory as a ""case study"" to illustrate situations common to many areas of mathematics, including the use of archetypal models as a basis for systems of approximations. It offers students a unified and consolidated presentation of extensive research from category theory, shape theory, and the study of topological algebras.A short introduction to geometric shape explains specifics of the construction of the shape category and relates it to an abstract definition of shape theory. Upon returning to the geometric base, the text considers simplical complexes and

  4. Comparison of Two Methods Used to Model Shape Parameters of Pareto Distributions

    Science.gov (United States)

    Liu, C.; Charpentier, R.R.; Su, J.

    2011-01-01

    Two methods are compared for estimating the shape parameters of Pareto field-size (or pool-size) distributions for petroleum resource assessment. Both methods assume mature exploration in which most of the larger fields have been discovered. Both methods use the sizes of larger discovered fields to estimate the numbers and sizes of smaller fields: (1) the tail-truncated method uses a plot of field size versus size rank, and (2) the log-geometric method uses data binned in field-size classes and the ratios of adjacent bin counts. Simulation experiments were conducted using discovered oil and gas pool-size distributions from four petroleum systems in Alberta, Canada and using Pareto distributions generated by Monte Carlo simulation. The estimates of the shape parameters of the Pareto distributions, calculated by both the tail-truncated and log-geometric methods, generally stabilize where discovered pool numbers are greater than 100. However, with fewer than 100 discoveries, these estimates can vary greatly with each new discovery. The estimated shape parameters of the tail-truncated method are more stable and larger than those of the log-geometric method where the number of discovered pools is more than 100. Both methods, however, tend to underestimate the shape parameter. Monte Carlo simulation was also used to create sequences of discovered pool sizes by sampling from a Pareto distribution with a discovery process model using a defined exploration efficiency (in order to show how biased the sampling was in favor of larger fields being discovered first). A higher (more biased) exploration efficiency gives better estimates of the Pareto shape parameters. ?? 2011 International Association for Mathematical Geosciences.

  5. Social Shaping in Danish Technology Assessment

    DEFF Research Database (Denmark)

    Hansen, Anne Grethe; Clausen, Christian

    2003-01-01

    The term ‘social shaping of technology’ has been used broadly as a response to techno-economic deterministic understandings of the relations between technology and society. Social shaping has brought together analysts from different backgrounds who share a common interest in the role of social an...... in these projects contributed to new insights into the processes of technological change and thus to policy formulation. The social shaping perspective and technology assessment experiences are suggested as important guides to future technology strategies....... and political action for technology change. The authors of this article suggest that the social shaping perspective draws on lessons from technology assessments of earlier decades, lessons about the role of technology debate, participation and democratic control. We suggest that these are important......The term ‘social shaping of technology’ has been used broadly as a response to techno-economic deterministic understandings of the relations between technology and society. Social shaping has brought together analysts from different backgrounds who share a common interest in the role of social...

  6. The mapping of the visual field onto the dorso-lateral tectum of the pigeon (Columba livia) and its relations with retinal specializations.

    Science.gov (United States)

    Letelier, Juan-Carlos; Marin, Gonzalo; Sentis, Elisa; Tenreiro, Andrea; Fredes, Felipe; Mpodozis, Jorge

    2004-01-30

    Most of the physiological studies of the pigeon retino-tectal visual pathway have investigated the accessible tectum, a small dorso-lateral tectal section that can be easily accessed by a simple craniotomy. However, at present we lack a detailed study of the topographical arrangement between the visual field, the retina and the accessible tectum. In particular, it is not known which section of the visual field is mapped onto the accessible tectum, and which of the specialized retinal areas mediates this projection. Here we determined, using local field potential (LFP) recordings and reverse retinoscopy, the shape, size and position in the visual space of the portion of the visual field mapped onto the accessible tectum (called here the accessible visual field, or AVF). Using this data and the mapping of Nalbach et al. [Vis. Res. 30 (4) (1990) 529], the retinal area corresponding to the AVF was determined. Such retinal area was also directly delimited by means of retrograde transport of DiI. The results indicate that the AVF is a triangular perifoveal zone encompassing only 15% of total visual field. The retinal region corresponding to the AVF has the shape of an elongated triangle that runs parallel to the visual equator and contains the fovea, the tip of the pecten, a perifoveal region of the yellow field and a small crescent of the red field. In agreement with this anatomical heterogeneity, visual evoked potentials measured in different parts of the accessible tectum present steep variations in shape and size. These results are helpful to better design and interpret anatomical and physiological experiments involving the pigeon's visual system.

  7. Recoverable Wire-Shaped Supercapacitors with Ultrahigh Volumetric Energy Density for Multifunctional Portable and Wearable Electronics.

    Science.gov (United States)

    Shi, Minjie; Yang, Cheng; Song, Xuefeng; Liu, Jing; Zhao, Liping; Zhang, Peng; Gao, Lian

    2017-05-24

    Wire-shaped supercapacitors (SCs) based on shape memory materials are of considerable interest for next-generation portable and wearable electronics. However, the bottleneck in this field is how to develop the devices with excellent electrochemical performance while well-maintaining recoverability and flexibility. Herein, a unique asymmetric electrode concept is put forward to fabricate smart wire-shaped SCs with ultrahigh energy density, which is realized by using porous carbon dodecahedra coated on NiTi alloy wire and flexible graphene fiber as yarn electrodes. Notably, the wire-shaped SCs not only exhibit high flexibility that can be readily woven into real clothing but also represent the available recoverable ability. When irreversible plastic deformations happen, the deformed shape of the devices can automatically resume the initial predesigned shape in a warm environment (about 35 °C). More importantly, the wire-shaped SCs act as efficient energy storage devices, which display high volumetric energy density (8.9 mWh/cm 3 ), volumetric power density (1080 mW/cm 3 ), strong durability in multiple mechanical states, and steady electrochemical behavior after repeated shape recovery processes. Considering their relative facile fabrication technology and excellent electrochemical performance, this asymmetric electrode strategy produced smart wire-shaped supercapacitors desirable for multifunctional portable and wearable electronics.

  8. Optimization of L-shaped tunneling field-effect transistor for ambipolar current suppression and Analog/RF performance enhancement

    Science.gov (United States)

    Li, Cong; Zhao, Xiaolong; Zhuang, Yiqi; Yan, Zhirui; Guo, Jiaming; Han, Ru

    2018-03-01

    L-shaped tunneling field-effect transistor (LTFET) has larger tunnel area than planar TFET, which leads to enhanced on-current ION . However, LTFET suffers from severe ambipolar behavior, which needs to be further optimized for low power and high-frequency applications. In this paper, both hetero-gate-dielectric (HGD) and lightly doped drain (LDD) structures are introduced into LTFET for suppression of ambipolarity and improvement of analog/RF performance of LTFET. Current-voltage characteristics, the variation of energy band diagrams, distribution of band-to-band tunneling (BTBT) generation and distribution of electric field are analyzed for our proposed HGD-LDD-LTFET. In addition, the effect of LDD on the ambipolar behavior of LTFET is investigated, the length and doping concentration of LDD is also optimized for better suppression of ambipolar current. Finally, analog/RF performance of HGD-LDD-LTFET are studied in terms of gate-source capacitance, gate-drain capacitance, cut-off frequency, and gain bandwidth production. TCAD simulation results show that HGD-LDD-LTFET not only drastically suppresses ambipolar current but also improves analog/RF performance compared with conventional LTFET.

  9. Coordinate transformations make perfect invisibility cloaks with arbitrary shape

    International Nuclear Information System (INIS)

    Yan Wei; Yan Min; Ruan Zhichao; Qiu Min

    2008-01-01

    By investigating wave properties at cloak boundaries, invisibility cloaks with arbitrary shape constructed by general coordinate transformations are confirmed to be perfectly invisible to the external incident wave. The differences between line transformed cloaks and point transformed cloaks are discussed. The fields in the cloak medium are found analytically to be related to the fields in the original space via coordinate transformation functions. At the exterior boundary of the cloak, it is shown that no reflection is excited even though the permittivity and permeability do not always have a perfectly matched layer form, whereas at the inner boundary, no reflection is excited either, and in particular no field can penetrate into the cloaked region. However, for the inner boundary of any line transformed cloak, the permittivity and permeability in a specific tangential direction are always required to be infinitely large. Furthermore, the field discontinuity at the inner boundary always exists; the surface current is induced to make this discontinuity self-consistent. A point transformed cloak does not experience such problems. The tangential fields at the inner boundary are all zero, implying that no field discontinuity exists

  10. The ferromagnetic shape-memory effect in Ni-Mn-Ga

    International Nuclear Information System (INIS)

    Marioni, M.A.; O'Handley, R.C.; Allen, S.M.; Hall, S.R.; Paul, D.I.; Richard, M.L.; Feuchtwanger, J.; Peterson, B.W.; Chambers, J.M.; Techapiesancharoenkij, R.

    2005-01-01

    Active materials have long been used in the construction of sensors and devices. Examples are piezo-electric ceramics and shape memory alloys. The more recently developed ferromagnetic shape-memory alloys (FSMAs) have received considerable attention due to their large magnetic field-induced, reversible strains (up to 10%). In this article, we review the basic physical characteristics of the FSMA Ni-Mn-Ga (crystallography, thermal, mechanical and magnetic behavior). Also, we present some of the works currently under way in the areas of pulse-field and acoustic-assisted actuation, and vibration energy absorption

  11. The quintuple-shape memory effect in electrospun nanofiber membranes

    Science.gov (United States)

    Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Lu, Haibao; Leng, Jinsong

    2013-08-01

    Shape memory fibrous membranes (SMFMs) are an emerging class of active polymers, which are capable of switching from a temporary shape to their permanent shape upon appropriate stimulation. Quintuple-shape memory membranes based on the thermoplastic polymer Nafion, with a stable fibrous structure, are achieved via electrospinning technology, and possess a broad transition temperature. The recovery of multiple temporary shapes of electrospun membranes can be triggered by heat in a single triple-, quadruple-, quintuple-shape memory cycle, respectively. The fiber morphology and nanometer size provide unprecedented design flexibility for the adjustable morphing effect. SMFMs enable complex deformations at need, having a wide potential application field including smart textiles, artificial intelligence robots, bio-medical engineering, aerospace technologies, etc in the future.

  12. The quintuple-shape memory effect in electrospun nanofiber membranes

    International Nuclear Information System (INIS)

    Zhang, Fenghua; Zhang, Zhichun; Lu, Haibao; Leng, Jinsong; Liu, Yanju

    2013-01-01

    Shape memory fibrous membranes (SMFMs) are an emerging class of active polymers, which are capable of switching from a temporary shape to their permanent shape upon appropriate stimulation. Quintuple-shape memory membranes based on the thermoplastic polymer Nafion, with a stable fibrous structure, are achieved via electrospinning technology, and possess a broad transition temperature. The recovery of multiple temporary shapes of electrospun membranes can be triggered by heat in a single triple-, quadruple-, quintuple-shape memory cycle, respectively. The fiber morphology and nanometer size provide unprecedented design flexibility for the adjustable morphing effect. SMFMs enable complex deformations at need, having a wide potential application field including smart textiles, artificial intelligence robots, bio-medical engineering, aerospace technologies, etc in the future. (paper)

  13. Feeling form: the neural basis of haptic shape perception.

    Science.gov (United States)

    Yau, Jeffrey M; Kim, Sung Soo; Thakur, Pramodsingh H; Bensmaia, Sliman J

    2016-02-01

    The tactile perception of the shape of objects critically guides our ability to interact with them. In this review, we describe how shape information is processed as it ascends the somatosensory neuraxis of primates. At the somatosensory periphery, spatial form is represented in the spatial patterns of activation evoked across populations of mechanoreceptive afferents. In the cerebral cortex, neurons respond selectively to particular spatial features, like orientation and curvature. While feature selectivity of neurons in the earlier processing stages can be understood in terms of linear receptive field models, higher order somatosensory neurons exhibit nonlinear response properties that result in tuning for more complex geometrical features. In fact, tactile shape processing bears remarkable analogies to its visual counterpart and the two may rely on shared neural circuitry. Furthermore, one of the unique aspects of primate somatosensation is that it contains a deformable sensory sheet. Because the relative positions of cutaneous mechanoreceptors depend on the conformation of the hand, the haptic perception of three-dimensional objects requires the integration of cutaneous and proprioceptive signals, an integration that is observed throughout somatosensory cortex. Copyright © 2016 the American Physiological Society.

  14. Dome-shaped PDC cutters drill harder rock effectively

    International Nuclear Information System (INIS)

    Moran, D.P.

    1992-01-01

    This paper reports that rock mechanics and sonic travel time log data indicate that bits with convex-shaped polycrystalline diamond compact (PDC) cutters can drill harder rock formations than comparable bits with flat PDC cutters. The Dome-shaped cutters have drilled carbonate formations with sonic travel times as small as 50 μsec/ft, compared to the standard cutoff of 75 μsec/ft for flat PCD cutters. Recent field data from slim hole wells drilled in the Permian basin have shown successful applications of the 3/8-in. Dome cutter in the Grayburg dolomite with its sonic travel times as low as 50-55 μsec/ft and compressive strengths significantly greater than the standard operating range for PDC bit applications. These field data indicate that the Dome cutters can successfully drill hard rock. The convex cutter shape as good impact resistance, cuttings removal, heat dissipation, and wear resistance

  15. Dependence of CIT [Compact Ignition Tokamak] PF [poloidal field] coil currents on profile and shape parameters using the Control Matrix

    International Nuclear Information System (INIS)

    Strickler, D.J.; Peng, Y-K.M.; Jardin, S.C.; Pomphrey, N.

    1990-01-01

    The plasma shaping flexibility of the Compact Ignition Tokamak (CIT) poloidal field (PF) coil set is demonstrated through MHD equilibrium calculations of optimal PF coil current distributions and their variation with poloidal beta, internal inductance, plasma 95% elongation, and 95% triangularity. Calculations of the magnetic stored energy are used to compare solutions associated with various plasma parameters. The Control Matrix (CM) equilibrium code, together with the nonlinear equation and numerical optimization software packages HYBRD, and VMCON, respectively, are used to find equilibrium coil current distributions for fixed divertor geometry, volt-seconds, and plasma profiles in order to isolate the dependence on individual parameters. A reference equilibrium and coil current distribution are chosen, and correction currents dI are determined using the CM equilibrium method to obtain other specified plasma shapes. The reference equilibrium is the κ = 2 divertor at beginning of flattop (BOFT) with a minimum stored energy solution for the coil current distribution. The pressure profile function is fixed

  16. Numerical Investigation of the Effect of Bottom Shape on the Flow Field and Particle Suspension in a DTB Crystallizer

    Directory of Open Access Journals (Sweden)

    Hao Pan

    2016-01-01

    Full Text Available The influence of the bottom shape on the flow field distribution and particle suspension in a DTB crystallizer was investigated by Computational Fluid Dynamics (CFD coupled with Two-Fluid Model (Eulerian model. Volume fractions of three sections were monitored on time, and effect on particle suspension could be obtained by analyzing the variation tendency of volume fraction. The results showed that the protruding part of a W type bottom could make the eddies smaller, leading to the increase of velocity in the vortex. Modulating the detailed structure of the W type bottom to make the bottom surface conform to the streamlines can reduce the loss of the kinetic energy of the flow fluid and obtain a larger flow velocity, which made it possible for the particles in the bottom to reach a better suspension state. Suitable shape parameters were also obtained; the concave and protruding surface diameter are 0.32 and 0.373 times of the cylindrical shell diameter, respectively. It is helpful to provide a theoretical guidance for optimization of DTB crystallizer.

  17. Pulse shape simulation for drift chambers with long drift paths

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, H J

    1987-09-15

    A detailed Monte Carlo program for the simulation of drift chamber pulse shapes is described. It has been applied to the case of a jet chamber with drift paths up to 24 cm. Results on pulse shapes and corresponding spatial and double hit resolution are discussed and compared to recent measurements of the OPAL central detector jet chamber full size prototype and to measurements of a small 20-wire prototype, which was designed to study the pulse shapes generated by tracks in a magnetic field. Simulated pulse shapes and spatial resolutions agree well with the experimental data. Clustering, saturation and wire crosstalk are shown to be necessary ingredients in the simulation. A deterioration in resolution due to the influence of crosstalk signals is correctly reproduced, as well as the cancellation of this effect by a hardwired first and second neighbour crosstalk compensation. The simulation correctly describes the asymmetry in spatial resolution observed for tracks with positive or negative inclination against the wire plane when a magnetic field is present. The effect of saturation on double hit resolution is found to be small. The magnetic field is predicted to improve the double hit resolution.

  18. Pulse shape simulation for drift chambers with long drift paths

    International Nuclear Information System (INIS)

    Mayer, H.J.

    1987-01-01

    A detailed Monte Carlo program for the simulation of drift chamber pulse shapes is described. It has been applied to the case of a jet chamber with drift paths up to 24 cm. Results on pulse shapes and corresponding spatial and double hit resolution are discussed and compared to recent measurements of the OPAL central detector jet chamber full size prototype and to measurements of a small 20-wire prototype, which was designed to study the pulse shapes generated by tracks in a magnetic field. Simulated pulse shapes and spatial resolutions agree well with the experimental data. Clustering, saturation and wire crosstalk are shown to be necessary ingredients in the simulation. A deterioration in resolution due to the influence of crosstalk signals is correctly reproduced, as well as the cancellation of this effect by a hardwired first and second neighbour crosstalk compensation. The simulation correctly describes the asymmetry in spatial resolution observed for tracks with positive or negative inclination against the wire plane when a magnetic field is present. The effect of saturation on double hit resolution is found to be small. The magnetic field is predicted to improve the double hit resolution. (orig.)

  19. Isogeometric Analysis and Shape Optimization in Fluid Mechanics

    DEFF Research Database (Denmark)

    Nielsen, Peter Nørtoft

    This thesis brings together the fields of fluid mechanics, as the study of fluids and flows, isogeometric analysis, as a numerical method to solve engineering problems using computers, and shape optimization, as the art of finding "best" shapes of objects based on some notion of goodness. The flow...... approximations, and for shape optimization purposes also due to its tight connection between the analysis and geometry models. The thesis is initiated by short introductions to fluid mechanics, and to the building blocks of isogeometric analysis. As the first contribution of the thesis, a detailed description...... isogeometric analysis may serve as a natural framework for shape optimization within fluid mechanics. We construct an efficient regularization measure for avoiding inappropriate parametrizations during optimization, and various numerical examples of shape optimization for fluids are considered, serving...

  20. Indefinite-metric quantum field theory of general relativity

    International Nuclear Information System (INIS)

    Nakanishi, Noboru

    1978-01-01

    Quantum field theory of Einstein's general relativity is formulated in the indefinitemetric Hilbert space in such a way that asymptotic fields are manifestly Lorentz covariant and the physical S-matrix is unitary. The general coordinate transformation is transcribed into a q-number transformation, called the BRS transformation. Its abstract definition is presented on the basis of the BRS transformation for the Yang-Mills theory. The BRS transformation for general relativity is then explicitly constructed. The gauge-fixing Lagrangian density and the Faddeev-Popov one are introduced in such a way that their sum behaves like a scalar density under the BRS transformation. One can then proceed in the same way as in the Kugo-Ojima formalism of the Yang-Mills theory to establish the unitarity of the physical S-matrix. (author)

  1. Lower bounds on Q of some dipole shapes

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2016-01-01

    The lower bound on the radiation Q of an arbitrary electrically small antenna shape can be determined by finding the optimal electric current density on the exterior surface of the shape, such that the Q of this current radiating in free space is minimized, and then augmenting it with a magnetic...... current density cancelling the fields inside the shape's surface. The Q of these coupled electric and magnetic currents radiating in free space is the lower bound on Q for the given shape. The approach is exemplified and its general applicability is substantiated by computing the lower bounds...... of spherically capped dipoles and comparing the results to the known bounds of a sphere and a thin cylinder....

  2. Internal stresses in steel plate generated by shape memory alloy inserts

    International Nuclear Information System (INIS)

    Malard, B.; Pilch, J.; Sittner, P.; Davydov, V.; Sedlák, P.; Konstantinidis, K.; Hughes, D.J.

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► Thermoresponsive internal stresses introduced into steel by embedding SMA inclusions. ► Neutron strain scanning on steel plate coupons with NiTi inserts at 21 °C and 130 °C. ► Internal stress field in steel evaluated directly from strains and by FE simulation. ► Internal stress generation by SMA insert resistant to thermal and mechanical fatigue. - Abstract: Neutron strain scanning was employed to investigate the internal stress fields in steel plate coupons with embedded prestrained superelastic NiTi shape memory alloy inserts. Strain fields in steel were evaluated at T = 21 °C and 130 °C on virgin coupons as well as on mechanically and thermally fatigued coupons. Internal stress fields were evaluated by direct calculation of principal stress components from the experimentally measured lattice strains as well as by employing an inverse finite element modeling approach. It is shown that if the NiTi inserts are embedded into the elastic steel matrix following a carefully designed technological procedure, the internal stress fields vary with temperature in a reproducible and predictable way. It is estimated that this mechanism of internal stress generation can be safely applied in the temperature range from −20 °C to 150 °C and is relatively resistant to thermal and mechanical fatigue. The predictability and fatigue endurance of the mechanism are of essential importance for the development of future smart metal matrix composites or smart structures with embedded shape memory alloy components.

  3. Shapes of non-rotating nuclei

    International Nuclear Information System (INIS)

    Bengtsson, R.; Krumlinde, J.; Moeller, P.; Nix, J.R.; Zhang, J.

    1983-01-01

    We study nuclear potential-energy surfaces, ground-state masses and shapes calculated by use of a Yukawa-plus-exponential macroscopic model and a folded-Yukawa single-particle potential for 4023 nuclei ranging from 16 O to 279 112. We discuss extensively the transition from spherical to deformed shapes and study the relation between shape changes and the mass corresponding to the ground-state minimum. The calculated values for the ground-state mass and shape show good agreement with experimental data throughout the periodic system, but some discrepancies remain that deserve further study. We also discuss the effect of deformation on Gamow-Teller #betta#-strength functions

  4. Geometric morphometrics of male facial shape in relation to physical strength and perceived attractiveness, dominance, and masculinity.

    Science.gov (United States)

    Windhager, Sonja; Schaefer, Katrin; Fink, Bernhard

    2011-01-01

    Evolutionary psychologists claim that women have adaptive preferences for specific male physical traits. Physical strength may be one of those traits, because recent research suggests that women rate faces of physically strong men as more masculine, dominant, and attractive. Yet, previous research has been limited in its ability to statistically map specific male facial shapes and features to corresponding physical measures (e.g., strength) and ratings (e.g., attractiveness). The association of handgrip strength (together with measures of shoulder width, body height, and body fat) and women's ratings of male faces (concerning dominance, masculinity, and attractiveness) were studied in a sample of 26 Caucasian men (aged 18-32 years). Geometric morphometrics was used to statistically assess the covariation of male facial shape with these measures. Statistical results were visualized with thin-plate spline deformation grids along with image unwarping and image averaging. Handgrip strength together with shoulder width, body fat, dominance, and masculinity loaded positively on the first dimension of covariation with facial shape (explaining 72.6%, P attractive and taller men had longer, narrower jaws and wider/fuller lips. Male physical strength was more strongly associated with changes in face shape that relate to perceived masculinity and dominance than to attractiveness. Our study adds to the growing evidence that attractiveness and dominance/masculinity may reflect different aspects of male mate quality. Copyright © 2011 Wiley-Liss, Inc.

  5. Indefinite-metric quantum field theory of general relativity, 6

    International Nuclear Information System (INIS)

    Nakanishi, Noboru

    1979-01-01

    The canonical commutation relations are analyzed in detail in the indefinite-metric quantum field theory of gravity based on the vierbein formalism. It is explicitly verified that the BRS charge, the local-Lorentz-BRS charge and the Poincare generators satisfy the expected commutation relations. (author)

  6. Idea Generation in Highly Institutionalized Fields

    DEFF Research Database (Denmark)

    Agoguè, Marine; Boxenbaum, Eva

    innovation. An important question facing innovation research is thus how actors can generate ideas that break with the field frame in highly institutionalized fields? To answer this question, we draw on insights into dual process modeling from cognitive sciences. Dual process modeling emphasizes...... the different nature of the conscious (deliberate) and subconscious (implicit) systems involved in ideation. We further elaborate on how these two systems relate to four streams of research that management scholars evoke to model microprocesses of generating new ideas, namely metaphors, conceptual blending......The early phase of innovation processes in highly institutionalized fields relies on the capabilities of actors to generate new ideas that break with the field frame. Informed by a dominant logic, a field frame shapes collective cognition and can thus prevent the generation of new ideas and block...

  7. Testing for Gender Related Size and Shape Differences of the Human Ear canal using Statistical methods

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Larsen, Rasmus; Ersbøll, Bjarne Kjær

    2002-01-01

    surface models are built by using the anatomical landmarks to warp a template mesh onto all shapes in the training set. Testing the gender related differences is done by initially reducing the dimensionality using principal component analysis of the vertices of the warped meshes. The number of components...... to retain is chosen using Horn's parallel analysis. Finally a multivariate analysis of variance is performed on these components....

  8. Topological Derivatives in Shape Optimization

    CERN Document Server

    Novotny, Antonio André

    2013-01-01

    The topological derivative is defined as the first term (correction) of the asymptotic expansion of a given shape functional with respect to a small parameter that measures the size of singular domain perturbations, such as holes, inclusions, defects, source-terms and cracks. Over the last decade, topological asymptotic analysis has become a broad, rich and fascinating research area from both theoretical and numerical standpoints. It has applications in many different fields such as shape and topology optimization, inverse problems, imaging processing and mechanical modeling including synthesis and/or optimal design of microstructures, sensitivity analysis in fracture mechanics and damage evolution modeling. Since there is no monograph on the subject at present, the authors provide here the first account of the theory which combines classical sensitivity analysis in shape optimization with asymptotic analysis by means of compound asymptotic expansions for elliptic boundary value problems. This book is intende...

  9. Reduction of a Ship's Magnetic Field Signatures

    CERN Document Server

    Holmes, John

    2008-01-01

    Decreasing the magnetic field signature of a naval vessel will reduce its susceptibility to detonating naval influence mines and the probability of a submarine being detected by underwater barriers and maritime patrol aircraft. Both passive and active techniques for reducing the magnetic signatures produced by a vessel's ferromagnetism, roll-induced eddy currents, corrosion-related sources, and stray fields are presented. Mathematical models of simple hull shapes are used to predict the levels of signature reduction that might be achieved through the use of alternate construction materials. Al

  10. Systematic Development Strategy for Smart Devices Based on Shape-Memory Polymers

    Directory of Open Access Journals (Sweden)

    Andrés Díaz Lantada

    2017-10-01

    Full Text Available Shape-memory polymers are outstanding “smart” materials, which can perform important geometrical changes, when activated by several types of external stimuli, and which can be applied to several emerging engineering fields, from aerospace applications, to the development of biomedical devices. The fact that several shape-memory polymers can be structured in an additive way is an especially noteworthy advantage, as the development of advanced actuators with complex geometries for improved performance can be achieved, if adequate design and manufacturing considerations are taken into consideration. Present study presents a review of challenges and good practices, leading to a straightforward methodology (or integration of strategies, for the development of “smart” actuators based on shape-memory polymers. The combination of computer-aided design, computer-aided engineering and additive manufacturing technologies is analyzed and applied to the complete development of interesting shape-memory polymer-based actuators. Aspects such as geometrical design and optimization, development of the activation system, selection of the adequate materials and related manufacturing technologies, training of the shape-memory effect, final integration and testing are considered, as key processes of the methodology. Current trends, including the use of low-cost 3D and 4D printing, and main challenges, including process eco-efficiency and biocompatibility, are also discussed and their impact on the proposed methodology is considered.

  11. Mismatch-Shaped Pseudo-Passive Two-Capacitor DAC

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper; Moon, Un-Ku; Temes, Gabor C.

    1999-01-01

    A simple mismatch-shaping scheme is proposed for a two-capacitor DAC. Unlike in other mismatch-shaping systems, the shaped error is generated by direct filtering of a well-defined bounded signal, which can be generated as white noise. The operation is closely related to a specific digital...

  12. Indefinite-metric quantum field theory of general relativity, 5

    International Nuclear Information System (INIS)

    Nakanishi, Noboru

    1979-01-01

    The indefinite-metric quantum field theory of general relativity is extended to the coupled system of the gravitational field and a Dirac field on the basis of the vierbein formalism. The six extra degrees of freedom involved in vierbein are made unobservable by introducing an extra subsidiary condition Q sub(s) + phys> = 0, where Q sub(s) denotes a new BRS charge corresponding to the local Lorentz invariance. It is shown that a manifestly covariant, unitary, canonical theory can be constructed consistently on the basis of the vierbein formalism. (author)

  13. Design of intermediate die shape of multistage profile drawing for linear motion guide

    International Nuclear Information System (INIS)

    Lee, Sang Kon; Lee, Jae Eun; Kim, Sung Min; Kim, Byung Min

    2010-01-01

    The design of an intermediate die shape is very important in multistage profile drawing. In this study, two design methods for the intermediate die shape of a multistage profile drawing for producing a linear motion guide (LM) guide is proposed. One is the electric field analysis method using the equipotential lines generated by electric field analysis, and the other is the virtual die method using a virtual drawing die constructed from the initial material and the final product shape. In order to design the intermediate die shapes of a multistage profile drawing for producing LM guide, the proposed design methods are applied, and then FE analysis and profile drawing experiment are performed. As a result, based on the measurement of dimensional accuracy, it can be known that the intermediate die shape can be designed effectively

  14. Measuring object shape by using in-plane electronic speckle pattern interferometry with divergent illumination

    International Nuclear Information System (INIS)

    Parra-Michel, Jorge; Martínez, Amalia; Rayas, J A; Anguiano-Morales, Marcelino

    2010-01-01

    Electronic speckle pattern interferometry is a useful technique for displacement, deformation and contouring measurements. Traditionally, for contouring measurements, collimated illumination with a constant sensitivity vector is used, and the surface area analysis is limited to the illuminated area. In some industrial applications, large surfaces require to be analyzed in restricted space conditions. Considering this situation, an optical system with divergent illumination for whole-field measurements can be used. It is known that displacement fields and the optical phase are related by the sensitivity vector. Therefore, to compute the sensitivity vector, illumination position and superficial shape need to be considered, a condition that becomes an impediment for surface contouring if the superficial shape is unknown. In this work, a simple iterative algorithm based on the Gauss–Seidel technique is presented to compute contouring measurements. Contouring measurements from both ESPI and a coordinate-measuring machine (CMM) are compared. In addition, a measurement comparison considering supposed collimated and divergent illumination is presented

  15. Post polymerization cure shape memory polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Thomas S.; Hearon, II, Michael Keith; Bearinger, Jane P.

    2017-01-10

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  16. Post polymerization cure shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  17. Planar half-cell shaped precursor body

    DEFF Research Database (Denmark)

    2015-01-01

    The invention relates to a half-cell shaped precursor body of either anode type or cathode type, the half-cell shaped precursor body being prepared to be free sintered to form a sintered or pre-sintered half-cell being adapted to be stacked in a solid oxide fuel cell stack. The obtained half......-cell has an improved planar shape, which remains planar also after a sintering process and during temperature fluctuations....

  18. Cold field emission dominated photoconductivity in ordered three-dimensional assemblies of octapod-shaped CdSe/CdS nanocrystals

    KAUST Repository

    Zhang, Yang

    2013-01-01

    Semiconductor nanocrystals, especially their ordered assemblies, are promising materials for various applications. In this paper, we investigate the photoconductive behavior of sub-micron size, ordered three-dimensional (3D) assemblies of octapod-shaped CdSe/CdS nanocrystals that are contacted by overlay electron-beam lithography. The regular structure of the assemblies leads to photocurrent-voltage curves that can be described by the cold field electron emission model. Mapping of the photoconductivity versus excitation wavelength and bias voltage allows the extraction of the band gap and identification of the photoactive region in the voltage and spectral domain. These results have important implications for the understanding of photoconductive transport in similar systems. © 2013 The Royal Society of Chemistry.

  19. The earth's shape and gravity

    CERN Document Server

    Garland, G D; Wilson, J T

    2013-01-01

    The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp

  20. Optimization and analysis of shape of coaxial electrode for microwave plasma in water

    International Nuclear Information System (INIS)

    Hattori, Yoshiaki; Mukasa, Shinobu; Nomura, Shinfuku; Toyota, Hiromichi

    2010-01-01

    The effect of the shape of the electrode to generate 2.45 GHz microwave plasma in pure water is examined. Three variations of a common coaxial electrode are proposed, and compared according to the power required for plasma ignition and the position of plasma ignition in pure water at 6 kPa using a high-speed camera. These coaxial electrodes are calculated using three-dimensional finite-difference time-domain method calculations. The superior shape of coaxial electrode is found to be one with a flat plane on the tip of the inner electrode and dielectric substance located below the tip of the outer electrode. The position of the plasma ignition is related to the shape of the coaxial electrode. By solving the heat-conduction equation of water around the coaxial electrode taking into account the absorption of the microwave energy, the position of the plasma ignition is found to be not where electric field is the largest, but rather where temperature is maximized.

  1. Remarks on the relation between different (open) string field theories

    International Nuclear Information System (INIS)

    De Alwis, S.P.

    1987-01-01

    It is shown that the different three-string vertices, related by conformal transformations, are in the same BRST cohomology class. We use this result to discuss the relation between different (open) string field theories. (orig.)

  2. Report of workshop on vibration related to fluid in atomic energy field. 4

    International Nuclear Information System (INIS)

    1993-01-01

    This is the fourth workshop on the vibration related to fluid in atomic energy field of Yayoi research group. This time, two topics were taken up. One is edgetone phenomena and the liquid surface vibration phenomena due to flow. Another is the introduction of the experience in light water reactors. The workshop was held on August 30 and 31, 1993 at Nuclear Engineering Research Laboratory, University of Tokyo. At the workshop, lectures were given on the mechanism of occurrence of edgetone, the theoretical analysis of edgetone and edgenoise, the self-excited vibration of free liquid surface due to vertical plane jet and vertical cylindrical jet, the research on flow instability phenomena in parallel loop system, the irregular vibration behavior of U-shaped tubes excited by flow, the research on the vibration of cyclindrical weir due to fluid discharge, the examples of the vibration related to fluid in LWRs, the estimation of fatigue phenomena in bearing rings, the vibration of rotary vanes and verifying test, the analysis of flow in isolated phase bus plate vane and the measurement of velocity distribution, flow in piping and the behavior of valve vibration, the condition for the occurrence of flow vibration in the main steam separation valve of BWR, the vibration of piping due to orifice, the analysis of flow in two-dimensional vibrating cascade, and the subjects of fluid vibration assessment in atomic energy. (K.I.)

  3. Mapping the X-shaped Milky Way Bulge

    Science.gov (United States)

    Saito, R. K.; Zoccali, M.; McWilliam, A.; Minniti, D.; Gonzalez, O. A.; Hill, V.

    2011-09-01

    We analyzed the distribution of the red clump (RC) stars throughout the Galactic bulge using Two Micron All Sky Survey data. We mapped the position of the RC in 1 deg2 fields within the area |l| RC seen in the central area splits into two components at high Galactic longitudes in both hemispheres, produced by two structures at different distances along the same line of sight. The X-shape is clearly visible in the Z-X plane for longitudes close to the l = 0° axis. Crude measurements of the space densities of RC stars in the bright and faint RC populations are consistent with the adopted RC distances, providing further supporting evidence that the X-structure is real, and that there is approximate front-back symmetry in our bulge fields. We conclude that the Milky Way bulge has an X-shaped structure within |l| <~ 2°, seen almost edge-on with respect to the line of sight. Additional deep near-infrared photometry extending into the innermost bulge regions combined with spectroscopic data is needed in order to discriminate among the different possibilities that can cause the observed X-shaped structure.

  4. Ultrathin Shape Change Smart Materials.

    Science.gov (United States)

    Xu, Weinan; Kwok, Kam Sang; Gracias, David H

    2018-02-20

    With the discovery of graphene, significant research has focused on the synthesis, characterization, and applications of ultrathin materials. Graphene has also brought into focus other ultrathin materials composed of organics, polymers, inorganics, and their hybrids. Together, these ultrathin materials have unique properties of broad significance. For example, ultrathin materials have a large surface area and high flexibility which can enhance conformal contact in wearables and sensors leading to improved sensitivity. When porous, the short transverse diffusion length in these materials allows rapid mass transport. Alternatively, when impermeable, these materials behave as an ultrathin barrier. Such controlled permeability is critical in the design of encapsulation and drug delivery systems. Finally, ultrathin materials often feature defect-free and single-crystal-like two-dimensional atomic structures resulting in superior mechanical, optical, and electrical properties. A unique property of ultrathin materials is their low bending rigidity, which suggests that they could easily be bent, curved, or folded into 3D shapes. In this Account, we review the emerging field of 2D to 3D shape transformations of ultrathin materials. We broadly define ultrathin to include materials with a thickness below 100 nm and composed of a range of organic, inorganic, and hybrid compositions. This topic is important for both fundamental and applied reasons. Fundamentally, bending and curving of ultrathin films can cause atomistic and molecular strain which can alter their physical and chemical properties and lead to new 3D forms of matter which behave very differently from their planar precursors. Shape change can also lead to new 3D architectures with significantly smaller form factors. For example, 3D ultrathin materials would occupy a smaller space in on-chip devices or could permeate through tortuous media which is important for miniaturized robots and smart dust applications. Our

  5. Efficiency enhancement of slow-wave electron-cyclotron maser by a second-order shaping of the magnetic field in the low-gain limit

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Si-Jia; Zhang, Yu-Fei; Wang, Kang [School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Li, Yong-Ming [Information Science and Engineering College, XinJiang University, Urumqi XinJiang 830046 (China); Jing, Jian, E-mail: jingjian@mail.buct.edu.cn [School of Science, Beijing University of Chemical Technology, Beijing 100029 (China)

    2017-03-15

    Based on the anomalous Doppler effect, we put forward a proposal to enhance the conversion efficiency of the slow-wave electron cyclotron masers (ECM) under the resonance condition. Compared with previous studies, we add a second-order shaping term in the guild magnetic field. Theoretical analyses and numerical calculations show that it can enhance the conversion efficiency in the low-gain limit. The case of the initial velocity spread of electrons satisfying the Gaussian distribution is also analysed numerically.

  6. Effect of heat source shape on the thermal field in the pebble bed core of High Temperature Gas-cooled Reactor (HTGR)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Leisheng; Lee, Jaeyoung [Handong Global University, Pohang (Korea, Republic of)

    2015-10-15

    In this study, in order to minimize the error brought by non-uniform heat flux, the spherical heaters are employed as heat source; subsequently, thermal field and heat transfer characteristics of the pebbles are investigated. The thermal field of the pebble surface in PBR is measured with heat source in different shapes. The HTGR design concept exhibits excellent safety features due to the low power density and the large amount of graphite present in the core which gives a large thermal inertia in an accident such as loss of coolant. However, the possible appearance of hot spots in the pebble bed cores of HTGR may affect the integrity of the pebbles, which has drawn the attention of many scientists to investigate the thermal field and to predict the maximum temperature locations in the pebbles using CFD method, Lee et.al has also done some experimental work on measuring the surface temperature of the pebbles as well as visualizing flow patterns of the coolant gas, and it was found that the temperature near the contacting points between pebbles was not higher than the flow stagnation points due to the higher thermal conductivity of the pebble. Certain error of temperature measurement might occur because of not very uniform heat flux in the pebbles since heater in cylindrical shape was utilized as heat source in previous experiment. More uniform heat flux and more complicated thermal profile are found in the result obtained using spherical heaters. The result shows that the temperature in contact point is higher than that in the top point, which is different from the previous results. The complex thermal phenomena observed in the lower-half side-sphere can be explained by the flow pattern near the surface.

  7. Rashba and Dresselhaus spin-orbit couplings effects on electromagnetically induced transparency of a lens-shaped quantum dot: External electric and magnetic fields

    Science.gov (United States)

    Zamani, A.; Setareh, F.; Azargoshasb, T.; Niknam, E.; Mohammadhosseini, E.

    2017-06-01

    In this article the spin of electron as well as simultaneous effects of Rashba and Dresselhaus spin-orbit interactions are considered for a lens-shaped GaAs quantum dot and the influences of applied electric field and Zeeman effect on the electromagnetically induced transparency (EIT) of this system are investigated. To do so, the absorption, refractive index as well as the group velocity of the probe light pulse are presented and discussed. Study of the absorption and refractive index reveals that, at a particular frequency of probe field, absorption diminishes, refractive index becomes unity and so the EIT occurs. Furthermore, the investigation of group velocity show that, around such frequency the probe propagation is sub-luminal, which shifts to super-luminal for higher and lower frequencies. Our results illustrate that the EIT frequency, transparency window and sub(super)-luminal frequency intervals are strongly sensitive to applied fields in the presence of spin-orbit couplings. It is found that, in comparison with the investigations with negligence of spin, the EIT behavior under the effects of applied fields are quite different.

  8. Theoretical and technical fundamentals of pressing porous powder articles of the complex shape

    International Nuclear Information System (INIS)

    Reut, O.; Piatsiushyk, Y.; Makarchuk, D.; Yakubouski, A.

    2001-01-01

    Intensification of technological processes, limited by the square of the surface of an active element porous powder field, is possible at the expense of magnification of the square of the surface of the latter by its addition. Thus the overall dimensions of such skew field are preserved. The analytical dependence of the factor of magnification of the surface K on geometrical parameters of a powder article of the complex shape is obtained. The optimization of these parameters in view of technological limitations for the maximization of K is carried out. The technique of calculating of the intense - deformed state of the powder skew field of the complex geometrical shape in the isostatic pressing is developed. The basic correlation permitting to calculate strain and deformation fields when pressing are gained. The technique of dry isostatic pressing of the article of the complex shape and the corresponding deforming instrument are developed. (author)

  9. Eating and weight/shape criticism as a specific life-event related to bulimia nervosa: a case control study.

    Science.gov (United States)

    Gonçalves, Sonia Ferreira; Machado, Bárbara César; Martins, Carla

    2014-01-01

    The present study aims to evaluate the occurrence of life events preceding the onset of eating problems in bulimia nervosa patients. A case-control design was used involving the comparison of 60 female subjects who meet DSM-IV criteria for bulimia nervosa with 60 healthy control subjects and 60 subjects with other psychiatric disorders. The RFI (Fairburn et al., 1998) subset of factors that represent exposure to life events in the 12 months immediately before the development of eating problems was used. Women with bulimia nervosa reported higher rates of major stress, criticism about eating, weight and shape and also a great number of antecedent life events during the year preceding the development of eating problems than the healthy control group. However, when compared with the general psychiatric control group only the exposure to critical comments about weight, shape, or eating emerged as a specific trigger for bulimia nervosa. Our findings support the fact that eating and shape/weight criticism in the year preceding the development of eating disturbance seems to be specifically related to bulimia nervosa.

  10. Linear and nonlinear intersubband optical absorption in a disk-shaped quantum dot with a parabolic potential plus an inverse squared potential in a static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Liu Guanghui [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Guo Kangxian, E-mail: axguo@sohu.com [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Wang Chao [Institute of Public Administration, Guangzhou University, Guangzhou 510006 (China)

    2012-06-15

    The linear and nonlinear optical absorption in a disk-shaped quantum dot (DSQD) with parabolic potential plus an inverse squared potential in the presence of a static magnetic field are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy levels and the wave functions of an electron in the DSQD are obtained by using the effective mass approximation. Numerical calculations are presented for typical GaAs/AlAs DSQD. It is found that the optical absorption coefficients are strongly affected not only by a static magnetic field, but also by the strength of external field, the confinement frequency and the incident optical intensity.

  11. Linear and nonlinear intersubband optical absorption in a disk-shaped quantum dot with a parabolic potential plus an inverse squared potential in a static magnetic field

    International Nuclear Information System (INIS)

    Liu Guanghui; Guo Kangxian; Wang Chao

    2012-01-01

    The linear and nonlinear optical absorption in a disk-shaped quantum dot (DSQD) with parabolic potential plus an inverse squared potential in the presence of a static magnetic field are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy levels and the wave functions of an electron in the DSQD are obtained by using the effective mass approximation. Numerical calculations are presented for typical GaAs/AlAs DSQD. It is found that the optical absorption coefficients are strongly affected not only by a static magnetic field, but also by the strength of external field, the confinement frequency and the incident optical intensity.

  12. SHAPE selection (SHAPES) enrich for RNA structure signal in SHAPE sequencing-based probing data

    DEFF Research Database (Denmark)

    Poulsen, Line Dahl; Kielpinski, Lukasz Jan; Salama, Sofie R

    2015-01-01

    transcriptase. Here, we introduce a SHAPE Selection (SHAPES) reagent, N-propanone isatoic anhydride (NPIA), which retains the ability of SHAPE reagents to accurately probe RNA structure, but also allows covalent coupling between the SHAPES reagent and a biotin molecule. We demonstrate that SHAPES...

  13. Issues related to field testing in tuff

    International Nuclear Information System (INIS)

    Zimmerman, R.M.

    1982-01-01

    This paper has brought out the unique properties of tuffs and related them to needs associated with their use as a host rock for a high level nuclear waste repository. Major issues of temperature, pore water, joints, and depositional patterns have been identified and related responses and impacts outlined in Table 1. Planned experiments have been outlined and their relationships to the rock mechanics issues summarized in Table 2. The conclusions from this paper are: (1) tuff is a complex rock and basic phenomenological understanding is incomplete; and (2) available field test facilities will be used for a series of experiments designed to improve phenomenological understanding and support repository design efforts

  14. Advances in structural damage assessment using strain measurements and invariant shape descriptors

    Science.gov (United States)

    Patki, Amol Suhas

    to the area surrounding the damage, while damage in orthotropic materials tends to have more global repercussions. This calls for analysis of full-field strain distributions adding to the complexity of post-damage life estimation. This study explores shape descriptors used in the field of medical imagery, military targeting and biometric recognition for obtaining a qualitative and quantitative comparison between full-field strain data recorded from damaged composite panels using sophisticated experimental techniques. These descriptors are capable of decomposing images with 103 to 106 pixels into a feature vector with only a few hundred elements. This ability of shape descriptors to achieve enormous reduction in strain data, while providing unique representation, makes them a practical choice for the purpose of structural damage assessment. Consequently, it is relatively easy to statistically compare the shape descriptors of the full-field strain maps using similarity measures rather than the strain maps themselves. However, the wide range of geometric and design features in engineering components pose difficulties in the application of traditional shape description techniques. Thus a new shape descriptor is developed which is applicable to a wide range of specimen geometries. This work also illustrates how shape description techniques can be applied to full-field finite element model validations and updating.

  15. Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species.

    Science.gov (United States)

    Wang, Jing; Street, Nathaniel R; Scofield, Douglas G; Ingvarsson, Pär K

    2016-03-01

    A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species. Copyright © 2016 by the Genetics Society of America.

  16. The industrial applications of shape memory alloys in North America

    International Nuclear Information System (INIS)

    Mc Schetky D, L.

    2000-01-01

    Literature in the recent past on shape memory effect alloys dwelt principally on the physical metallurgy, crystallography and kinetics of the shape memory phenomenon. By contrast, we now have books and conference proceedings devoted to the engineering aspects of SMAs, their technology and application. The dominant role SMAs now play in the field of medical and orthodontic devices is well documented and will be reviewed by others in this conference. In this paper we will discuss the commercial applications for shape memory alloy devices in the North American market; applications which are in many cases also produced in European countries and Japan. The early success of shape memory alloy couplings for joining tubing and pipe in the late 1960's was not followed by other large volume applications until the advent of shape memory eyeglass frames, brassiere underwires and cellular phone antennas. Many other applications have now evolved into mature markets and these will be reviewed. In addition to the many commercial applications cited, there are a number of other fields in which shape memory alloys are destined to play a major role; these include smart materials and adaptive structures, MEMS devices, infrastructure systems and electrical power generation and distribution. These applications are being developed with private and government funding and will also be briefly discussed. (orig.)

  17. The industrial applications of shape memory alloys in North America

    Energy Technology Data Exchange (ETDEWEB)

    Mc Schetky D, L. [Memry Corp., Brookfield, CT (United States)

    2000-07-01

    Literature in the recent past on shape memory effect alloys dwelt principally on the physical metallurgy, crystallography and kinetics of the shape memory phenomenon. By contrast, we now have books and conference proceedings devoted to the engineering aspects of SMAs, their technology and application. The dominant role SMAs now play in the field of medical and orthodontic devices is well documented and will be reviewed by others in this conference. In this paper we will discuss the commercial applications for shape memory alloy devices in the North American market; applications which are in many cases also produced in European countries and Japan. The early success of shape memory alloy couplings for joining tubing and pipe in the late 1960's was not followed by other large volume applications until the advent of shape memory eyeglass frames, brassiere underwires and cellular phone antennas. Many other applications have now evolved into mature markets and these will be reviewed. In addition to the many commercial applications cited, there are a number of other fields in which shape memory alloys are destined to play a major role; these include smart materials and adaptive structures, MEMS devices, infrastructure systems and electrical power generation and distribution. These applications are being developed with private and government funding and will also be briefly discussed. (orig.)

  18. Indefinite-metric quantum field theory of general relativity, 15

    International Nuclear Information System (INIS)

    Nakanishi, Noboru

    1982-01-01

    In the manifestly covariant canonical formalism of quantum gravity, it is known that the equal-time commutator between a tensor field and the B field b sub(rho) is consistent with the rules of tensor analysis. Another tensorlike commutation relation is shown to exist for the equal-time commutator between a tensor and b sub(rho), but at the same time its limitation is clarified. The quantum-gravity extension of the invariant D function is defined and provied to be affine-invariant. The four-dimensional commutation relation between a tensor and b sub(rho) is investigated, and it is shown that the commutator consists of a completely tensorlike, manifestly affine-covariant part and a remainder, which is clearly distinguishable from the former. (author)

  19. The exchangeability of shape

    Directory of Open Access Journals (Sweden)

    Kaba Dramane

    2010-10-01

    Full Text Available Abstract Background Landmark based geometric morphometrics (GM allows the quantitative comparison of organismal shapes. When applied to systematics, it is able to score shape changes which often are undetectable by traditional morphological studies and even by classical morphometric approaches. It has thus become a fast and low cost candidate to identify cryptic species. Due to inherent mathematical properties, shape variables derived from one set of coordinates cannot be compared with shape variables derived from another set. Raw coordinates which produce these shape variables could be used for data exchange, however they contain measurement error. The latter may represent a significant obstacle when the objective is to distinguish very similar species. Results We show here that a single user derived dataset produces much less classification error than a multiple one. The question then becomes how to circumvent the lack of exchangeability of shape variables while preserving a single user dataset. A solution to this question could lead to the creation of a relatively fast and inexpensive systematic tool adapted for the recognition of cryptic species. Conclusions To preserve both exchangeability of shape and a single user derived dataset, our suggestion is to create a free access bank of reference images from which one can produce raw coordinates and use them for comparison with external specimens. Thus, we propose an alternative geometric descriptive system that separates 2-D data gathering and analyzes.

  20. Methodology to estimate the relative pressure field from noisy experimental velocity data

    International Nuclear Information System (INIS)

    Bolin, C D; Raguin, L G

    2008-01-01

    The determination of intravascular pressure fields is important to the characterization of cardiovascular pathology. We present a two-stage method that solves the inverse problem of estimating the relative pressure field from noisy velocity fields measured by phase contrast magnetic resonance imaging (PC-MRI) on an irregular domain with limited spatial resolution, and includes a filter for the experimental noise. For the pressure calculation, the Poisson pressure equation is solved by embedding the irregular flow domain into a regular domain. To lessen the propagation of the noise inherent to the velocity measurements, three filters - a median filter and two physics-based filters - are evaluated using a 2-D Couette flow. The two physics-based filters outperform the median filter for the estimation of the relative pressure field for realistic signal-to-noise ratios (SNR = 5 to 30). The most accurate pressure field results from a filter that applies in a least-squares sense three constraints simultaneously: consistency between measured and filtered velocity fields, divergence-free and additional smoothness conditions. This filter leads to a 5-fold gain in accuracy for the estimated relative pressure field compared to without noise filtering, in conditions consistent with PC-MRI of the carotid artery: SNR = 5, 20 x 20 discretized flow domain (25 X 25 computational domain).

  1. A variable-field permanent-magnet dipole for accelerators

    International Nuclear Information System (INIS)

    Kraus, R.H. Jr.; Barlow, D.B.; Meyer, R.

    1992-01-01

    A new concept for a variable-field permanent-magnet dipole has been developed and fabricated at Los Alamos. The application requires an extremely uniform dipole field in the magnet aperture and precision variability over a large operating range. An iron-core permanent- magnet design using a shunt that was specially shaped to vary the field in a precise and reproducible fashion with shunt position. The key to this design is in the shape of the shunt. The field as a function of shunt position is very linear from 90% of the maximum field to 20% of the minimum field. The shaped shunt also results in a small maximum magnetic force attracting the shunt to the yoke allowing a simple mechanical design. Calculated and measured results agree well for the magnet

  2. Movement-related neuromagnetic fields in preschool age children.

    Science.gov (United States)

    Cheyne, Douglas; Jobst, Cecilia; Tesan, Graciela; Crain, Stephen; Johnson, Blake

    2014-09-01

    We examined sensorimotor brain activity associated with voluntary movements in preschool children using a customized pediatric magnetoencephalographic system. A videogame-like task was used to generate self-initiated right or left index finger movements in 17 healthy right-handed subjects (8 females, ages 3.2-4.8 years). We successfully identified spatiotemporal patterns of movement-related brain activity in 15/17 children using beamformer source analysis and surrogate MRI spatial normalization. Readiness fields in the contralateral sensorimotor cortex began ∼0.5 s prior to movement onset (motor field, MF), followed by transient movement-evoked fields (MEFs), similar to that observed during self-paced movements in adults, but slightly delayed and with inverted source polarities. We also observed modulation of mu (8-12 Hz) and beta (15-30 Hz) oscillations in sensorimotor cortex with movement, but with different timing and a stronger frequency band coupling compared to that observed in adults. Adult-like high-frequency (70-80 Hz) gamma bursts were detected at movement onset. All children showed activation of the right superior temporal gyrus that was independent of the side of movement, a response that has not been reported in adults. These results provide new insights into the development of movement-related brain function, for an age group in which no previous data exist. The results show that children under 5 years of age have markedly different patterns of movement-related brain activity in comparison to older children and adults, and indicate that significant maturational changes occur in the sensorimotor system between the preschool years and later childhood. Copyright © 2014 Wiley Periodicals, Inc.

  3. A probabilistic model for component-based shape synthesis

    KAUST Repository

    Kalogerakis, Evangelos

    2012-07-01

    We present an approach to synthesizing shapes from complex domains, by identifying new plausible combinations of components from existing shapes. Our primary contribution is a new generative model of component-based shape structure. The model represents probabilistic relationships between properties of shape components, and relates them to learned underlying causes of structural variability within the domain. These causes are treated as latent variables, leading to a compact representation that can be effectively learned without supervision from a set of compatibly segmented shapes. We evaluate the model on a number of shape datasets with complex structural variability and demonstrate its application to amplification of shape databases and to interactive shape synthesis. © 2012 ACM 0730-0301/2012/08-ART55.

  4. On Optimal Shapes in Materials and Structures

    DEFF Research Database (Denmark)

    Pedersen, Pauli

    2000-01-01

    In the micromechanics design of materials, as well as in the design of structural connections, the boundary shape plays an important role. The objective may be the stiffest design, the strongest design or just a design of uniform energy density along the shape. In an energy formulation it is proven...... that these three objectives have the same solution, at least within the limits of geometrical constraints, including the parametrization. Without involving stress/strain fields, the proof holds for 3D-problems, for power-law nonlinear elasticity and for anisotropic elasticity. To clarify the importance...

  5. Applications of shape memory alloys in Japan

    International Nuclear Information System (INIS)

    Asai, M.; Suzuki, Y.

    2000-01-01

    In Japan, a first application of shape memory TiNi alloy was a moving flap in an air-conditioner which was developed as sensing function of shape memory alloy at Matsushista Electric Industrial Co. Then, shape memory utilized in a coffee maker, an electric rice-cooker, a thermal mixing valve and etc. were commercialized in Japan. And brassiere wires, a guide wire for medical treatment, an antenna for portable telephone and others were commercialized utilizing superelasticity. At the same time with these commercial products, there was not only progress in fabrication technology to effect accurate transformation temperature, but also the discovery of small hysteresis alloy such as R-phase or TiNiCu alloy and low transformation temperature alloy such as TiNiFe, TiNiV and TiNiCo alloys. Therefore the shape memory alloy market has expanded widely to electric appliances, automobile, residence, medical care and other field today. (orig.)

  6. Facile and sustainable synthesis of shaped iron oxide nanoparticles: effect of iron precursor salts on the shapes of iron oxides.

    Science.gov (United States)

    Sayed, Farheen N; Polshettiwar, Vivek

    2015-05-05

    A facile and sustainable protocol for synthesis of six different shaped iron oxides is developed. Notably, all the six shapes of iron oxides can be synthesised using exactly same synthetic protocol, by simply changing the precursor iron salts. Several of the synthesised shapes are not reported before. This novel protocol is relatively easy to implement and could contribute to overcome the challenge of obtaining various shaped iron oxides in economical and sustainable manner.

  7. A generalized non-Gaussian consistency relation for single field inflation

    Science.gov (United States)

    Bravo, Rafael; Mooij, Sander; Palma, Gonzalo A.; Pradenas, Bastián

    2018-05-01

    We show that a perturbed inflationary spacetime, driven by a canonical single scalar field, is invariant under a special class of coordinate transformations together with a field reparametrization of the curvature perturbation in co-moving gauge. This transformation may be used to derive the squeezed limit of the 3-point correlation function of the co-moving curvature perturbations valid in the case that these do not freeze after horizon crossing. This leads to a generalized version of Maldacena's non-Gaussian consistency relation in the sense that the bispectrum squeezed limit is completely determined by spacetime diffeomorphisms. Just as in the case of the standard consistency relation, this result may be understood as the consequence of how long-wavelength modes modulate those of shorter wavelengths. This relation allows one to derive the well known violation to the consistency relation encountered in ultra slow-roll, where curvature perturbations grow exponentially after horizon crossing.

  8. TU-C-17A-06: Evaluating IMRT Plan Deliverability Via PTV Shape and MLC Motion

    International Nuclear Information System (INIS)

    McGurk, R; Smith, VA; Price, M

    2014-01-01

    Purpose: For step-and-shoot intensity-modulated radiation therapy (IMRT) plans, the dosimetry and deliverability can be affected by the number and shape of the segments used. Thus, plan deliverability is likely related to target volume and shape. We investigated whether the sphericity of target volumes and the previously proposed Modulation Complexity Score (MCS) could be used together to improve the detection of IMRT fields that failed quality assurance (QA). Methods: 526 and 353 IMRT fields from 32 prostate and 28 head-and-neck (H'N) patients, respectively, were analyzed. MCS was used to quantify the complexity of multi-leaf collimator shapes and motion patterns for each field. Sphericity was calculated using the surface area and volume of each patient’s planning target volume (PTV). Logistic regression models with MCS-alone or MCS and sphericity terms were fit to PlanUNC IMRT pass/fail results (5% dose difference, 4mm distance-to-agreement criteria) using SAS 9.3 (Cary, NC). Model concordance, discordance and area under the curve (AUC) were used to quantify model accuracy. Results: Mean (±1 standard deviation) MCS for prostate and H'N were 0.58(±0.15) and 0.40 (±0.14), respectively. Mean sphericity scores were 0.75(±0.05) for prostate and 0.63 (±0.12) for H'N. Both metrics were significantly different between treatment locations (p<0.01, Wilcoxon Rank Sum Test) indicating greater complexity in shape and variations for H'N PTVs. For prostate, concordance, discordance and AUC using MCS alone were 80.8%, 18.7% and 0.811. Including sphericity in the model improved these to 81.7%, 17.7% and 0.820. For H'N, the original concordance, discordance and AUC were of 72.9%, 26.9% and 0.729. Including sphericity into the model improved these metrics to 76.5%, 23.2% and 0.729. Conclusion: Sphericity provides a quantitative measure of PTV shape. While improvement in IMRT QA failure detection was modest for both prostate and H'N plans

  9. Covering folded shapes

    Directory of Open Access Journals (Sweden)

    Oswin Aichholzer

    2014-05-01

    Full Text Available Can folding a piece of paper flat make it larger? We explore whether a shape S must be scaled to cover a flat-folded copy of itself. We consider both single folds and arbitrary folds (continuous piecewise isometries \\(S\\to\\mathbb{R}^2\\. The underlying problem is motivated by computational origami, and is related to other covering and fixturing problems, such as Lebesgue's universal cover problem and force closure grasps. In addition to considering special shapes (squares, equilateral triangles, polygons and disks, we give upper and lower bounds on scale factors for single folds of convex objects and arbitrary folds of simply connected objects.

  10. Shape-based grey-level image interpolation

    International Nuclear Information System (INIS)

    Keh-Shih Chuang; Chun-Yuan Chen; Ching-Kai Yeh

    1999-01-01

    The three-dimensional (3D) object data obtained from a CT scanner usually have unequal sampling frequencies in the x-, y- and z-directions. Generally, the 3D data are first interpolated between slices to obtain isotropic resolution, reconstructed, then operated on using object extraction and display algorithms. The traditional grey-level interpolation introduces a layer of intermediate substance and is not suitable for objects that are very different from the opposite background. The shape-based interpolation method transfers a pixel location to a parameter related to the object shape and the interpolation is performed on that parameter. This process is able to achieve a better interpolation but its application is limited to binary images only. In this paper, we present an improved shape-based interpolation method for grey-level images. The new method uses a polygon to approximate the object shape and performs the interpolation using polygon vertices as references. The binary images representing the shape of the object were first generated via image segmentation on the source images. The target object binary image was then created using regular shape-based interpolation. The polygon enclosing the object for each slice can be generated from the shape of that slice. We determined the relative location in the source slices of each pixel inside the target polygon using the vertices of a polygon as the reference. The target slice grey-level was interpolated from the corresponding source image pixels. The image quality of this interpolation method is better and the mean squared difference is smaller than with traditional grey-level interpolation. (author)

  11. On the nonlinear shaping mechanism for gravity wave spectrum in the atmosphere

    Directory of Open Access Journals (Sweden)

    I. P. Chunchuzov

    2009-11-01

    Full Text Available The nonlinear mechanism of shaping of a high vertical wave number spectral tail in the field of a few discrete internal gravity waves in the atmosphere is studied in this paper. The effects of advection of fluid parcels by interacting gravity waves are taken strictly into account by calculating wave field in Lagrangian variables, and performing a variable transformation from Lagrangian to Eulerian frame. The vertical profiles and vertical wave number spectra of the Eulerian displacement field are obtained for both the case of resonant and non-resonant wave-wave interactions. The evolution of these spectra with growing parameter of nonlinearity of the internal wave field is studied and compared to that of a broad band spectrum of gravity waves with randomly independent amplitudes and phases. The calculated vertical wave number spectra of the vertical displacements or relative temperature fluctuations are found to be consistent with the observed spectra in the middle atmosphere.

  12. Field quality issues in iron-dominated dipoles at low fields

    International Nuclear Information System (INIS)

    Brown, B.C.

    1996-10-01

    In order to help assess the usable dynamic range of iron-dominated dipoles, field shape data at low field on several Fermi-lab accelerator dipole designs are presented. Emphasis is placed on the systematic and random values of the low field sextupole since it is the first ''allowed'' field error. The Main Injector dipoles provide four times smaller sextupole and more than 20 times less sextupole hysteresis than earlier designs for the Main Ring

  13. Measurement of shape and deformation of insect wing

    Science.gov (United States)

    Yin, Duo; Wei, Zhen; Wang, Zeyu; Zhou, Changqiu

    2018-01-01

    To measure the shape and deformation of an insect wing, a scanning setup adopting laser triangulation and image matching was developed. Only one industry camera with two light sources was employed to scan the transparent insect wings. 3D shape and point to point full field deformation of the wings could be obtained even when the wingspan is less than 3 mm. The venation and corrugation could be significantly identified from the results. The deformation of the wing under pin loading could be seen clearly from the results as well. Calibration shows that the shape and deformation measurement accuracies are no lower than 0.01 mm. Laser triangulation and image matching were combined dexterously to adapt wings' complex shape, size, and transparency. It is suitable for insect flight research or flapping wing micro-air vehicle development.

  14. Dependence of the relative stability between austenite and martensite phases on the atomic order in a Ni–Mn–In Metamagnetic Shape Memory Alloy

    International Nuclear Information System (INIS)

    Recarte, V.; Pérez-Landazábal, J.I.; Sánchez-Alarcos, V.

    2012-01-01

    Highlights: ► We analyze the influence of the atomic order on the transformations in Ni-Mn-In MSMA. ► Ordering decreases the martensitic transformation and increases the Curie temperature. ► The transformation entropy change depends on the atomic order. ► The shift of the transformation with the magnetic field depends on the atomic order. - Abstract: The influence of the atomic order on the magnetic properties and the relative stability between phases in a Ni–Mn–In Metamagnetic Shape Memory Alloy has been studied through the analysis of the effect of the different quenching treatments on the magnetic and structural transformation temperatures. As a consequence of the variation on the degree of long-range atomic order, the martensitic transformation temperature highly increases with the increasing quenching temperature whereas the Curie temperature slightly decreases. The modification of the atomic order brought by the quenching process also promotes a reduction of the entropy change linked to the martensitic transformation. In turn, no evolution of the magnetization change at the martensitic transformation is detected. According to the Claussius–Clapeyron equation, the achievable shift of the martensitic transformation temperature with the applied magnetic field also depends on the degree of atomic order.

  15. THE NONLINEAR OHM'S LAW: PLASMA HEATING BY STRONG ELECTRIC FIELDS AND ITS EFFECTS ON THE IONIZATION BALANCE IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Okuzumi, Satoshi [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Inutsuka, Shu-ichiro, E-mail: okuzumi@geo.titech.ac.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

    2015-02-10

    The ionization state of the gas plays a key role in the magnetohydrodynamics (MHD) of protoplanetary disks. However, the ionization state can depend on the gas dynamics, because electric fields induced by MHD turbulence can heat up plasmas and thereby affect the ionization balance. To study this nonlinear feedback, we construct an ionization model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as charging of dust grains. We show that when plasma sticking onto grains is the dominant recombination process, the electron abundance in the gas decreases with increasing electric field strength. This is a natural consequence of electron-grain collisions whose frequency increases with the electron's random velocity. The decreasing electron abundance may lead to a self-regulation of MHD turbulence. In some cases, not only the electron abundance but also the electric current decreases with increasing field strength in a certain field range. The resulting N-shaped current-field relation violates the fundamental assumption of the non-relativistic MHD that the electric field is uniquely determined by the current density. At even higher field strengths, impact ionization causes an abrupt increase of the electric current as expected by previous studies. We find that this discharge current is multi-valued (i.e., the current-field relation is S-shaped) under some circumstances, and that the intermediate branch is unstable. The N/S-shaped current-field relations may yield hysteresis in the evolution of MHD turbulence in some parts of protoplanetary disks.

  16. Review of new shapes for higher gradients

    International Nuclear Information System (INIS)

    Geng, R.L.

    2006-01-01

    High-gradient superconducting RF (SRF) cavities are needed for energy frontier superconducting accelerators. Progress has been made over the past decades and the accelerating gradient E acc has been increased from a few MV/m to ∼42 MV/m in SRF niobium cavities. The corresponding peak RF magnetic field H pk on the niobium cavity surface is approaching the intrinsic RF critical magnetic field H crit,RF , a hard physical limit at which superconductivity breaks down. Pushing the gradient envelope further by adopting new cavity shapes with a lower ratio of H pk /E acc has been recently proposed. For a reduced H pk /E acc , a higher ultimate E acc is sustained when H pk finally strikes H crit,RF . The new cavity geometry include the re-entrant shape conceived at Cornell University and the so-called 'Low-loss' shape proposed by a DESY/JLAB/KEK collaboration. Experimental work is being pursued at Cornell, KEK and JLAB. Results of single-cell cavities are encouraging. A record gradient of 47 MV/m was first demonstrated in a 1.3 GHz re-entrant niobium cavity at Cornell University. At the time of writing, a new record of 52 MV/m has been realized with another 1.3 GHz re-entrant cavity, designed and built at Cornell and processed and tested at KEK. Single-cell low-loss cavities have reached equally high gradients in the range of 45-51 MV/m at KEK and JLAB. Owing to their higher gradient potential and the encouraging single-cell cavity results, the new cavity shapes are becoming attractive for their possible use in the international linear collider (ILC). Experimental work on multi-cell niobium cavities of new shapes is currently under active exploration

  17. Review of new shapes for higher gradients

    Science.gov (United States)

    Geng, R. L.

    2006-07-01

    High-gradient superconducting RF (SRF) cavities are needed for energy frontier superconducting accelerators. Progress has been made over the past decades and the accelerating gradient Eacc has been increased from a few MV/m to ∼42 MV/m in SRF niobium cavities. The corresponding peak RF magnetic field Hpk on the niobium cavity surface is approaching the intrinsic RF critical magnetic field Hcrit,RF, a hard physical limit at which superconductivity breaks down. Pushing the gradient envelope further by adopting new cavity shapes with a lower ratio of Hpk/ Eacc has been recently proposed. For a reduced Hpk/ Eacc, a higher ultimate Eacc is sustained when Hpk finally strikes Hcrit,RF. The new cavity geometry include the re-entrant shape conceived at Cornell University and the so-called “Low-loss” shape proposed by a DESY/JLAB/KEK collaboration. Experimental work is being pursued at Cornell, KEK and JLAB. Results of single-cell cavities are encouraging. A record gradient of 47 MV/m was first demonstrated in a 1.3 GHz re-entrant niobium cavity at Cornell University. At the time of writing, a new record of 52 MV/m has been realized with another 1.3 GHz re-entrant cavity, designed and built at Cornell and processed and tested at KEK. Single-cell low-loss cavities have reached equally high gradients in the range of 45-51 MV/m at KEK and JLAB. Owing to their higher gradient potential and the encouraging single-cell cavity results, the new cavity shapes are becoming attractive for their possible use in the international linear collider (ILC). Experimental work on multi-cell niobium cavities of new shapes is currently under active exploration.

  18. TiAu based shape memory alloys for high temperature applications

    International Nuclear Information System (INIS)

    Wadood, Abdul; Yamabe-Mitarai, Yoko; Hosoda, Hideki

    2014-01-01

    TiAu (equiatomic) exhibits phase transformaion from B2 (ordered bcc) to thermo-elastic orthorhombic B19 martensite at about 875K and thus TiAu is categorized as high temperature shape memory alloy. In this study, recent research and developments related to TiAu based high temperature shape memory alloys will be discussed in the Introduction part. Then some results of our research group related to strengthening of TiAu based high temperature shape memory alloys will be presented. Potential of TiAu based shape memory alloys for high temperature shape memory materials applications will also be discussed

  19. Analytical relation between effective mode field area and waveguide dispersion in microstructure fibers.

    Science.gov (United States)

    Moenster, Mathias; Steinmeyer, Günter; Iliew, Rumen; Lederer, Falk; Petermann, Klaus

    2006-11-15

    For optical fibers exhibiting a radially symmetric refractive index profile, there exists an analytical relation that connects waveguide dispersion and the Petermann-II mode field radius. We extend the usefulness of this relation to the nonradially symmetric case of microstructure fibers in the anomalous dispersion regime, yielding a simple relation between dispersion and effective mode field area. Assuming a Gaussian mode distribution, we derive a fundamental upper limit for the effective mode field area that is required to obtain a certain amount of anomalous waveguide dispersion. This relation is demonstrated to show excellent agreement for fiber designs suited for supercontinuum generation and soliton lasers in the near infrared.

  20. Consistency relation and inflaton field redefinition in the δN formalism

    Energy Technology Data Exchange (ETDEWEB)

    Domènech, Guillem [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Gong, Jinn-Ouk, E-mail: jinn-ouk.gong@apctp.org [Asia Pacific Center for Theoretical Physics, Pohang 37673 (Korea, Republic of); Department of Physics, Postech, Pohang 37673 (Korea, Republic of); Sasaki, Misao [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2017-06-10

    We compute for general single-field inflation the intrinsic non-Gaussianity due to the self-interactions of the inflaton field in the squeezed limit. We recover the consistency relation in the context of the δN formalism, and argue that there is a particular field redefinition that makes the intrinsic non-Gaussianity vanishing, thus improving the estimate of the local non-Gaussianity using the δN formalism.

  1. Research on external flow field of a car based on reverse engineering

    Science.gov (United States)

    Hu, Shushan; Liu, Ronge

    2018-05-01

    In this paper, the point cloud data of FAW-VOLKSWAGEN car body shape is obtained by three coordinate measuring instrument and laser scanning method. The accurate three dimensional model of the car is obtained using CATIA software reverse modelling technology. The car body is gridded, the calculation field and boundary condition type of the car flow field are determined, and the numerical simulation is carried out in Hyper Mesh software. The pressure cloud diagram, velocity vector diagram, air resistance coefficient and lift coefficient of the car are obtained. The calculation results reflect the aerodynamic characteristics of the car's external flow field. The motion of the separation flow on the surface of the vehicle body is well simulated, and the area where the vortex motion is relatively intense has been determined. The results provide a theoretical basis for improving and optimizing the body shape.

  2. Investigations on the electronic, structural, magnetic properties related to shape-memory behavior in Ti2CoX (X=Al, Ga, In)

    International Nuclear Information System (INIS)

    Wei, Xiao-Ping; Chu, Yan-Dong; Sun, Xiao-Wei; E, Yan; Deng, Jian-Bo; Xing, Yong-Zhong

    2015-01-01

    Highlights: • The analysis of phase stability trend is studied for Ti 2 CoX(X = Al, Ga, In). • Ti 2 CoGa is more suitable as shape memory alloy. • Total magnetic moments disappear with a increase of c/a ratio for all systems. • Density of states at the Fermi level are also shown. - Abstract: Using the full-potential local orbital minimum-basis method, we have performed a systematic investigations on the electronic, structural, and magnetic properties related to shape memory applications for Ti 2 CoX (X=Al, Ga, In) alloys. Our results confirm that these alloys are half-metallic ferromagnets with total magnetic moment of 2μ B per formula unit in austenite phase, and undergo a martensitic transformation at low temperatures. The relative stabilities of the martensitic phases differ considerably between Ti 2 CoX (X=Al, Ga, In). Details of the electronic structures suggest that the differences in hybridizations between the magnetic components are responsible for trends of phase. Quantitative estimates for the energetics and the magnetizations indicate that Ti 2 CoGa is a promising candidate for shape memory applications

  3. Jet shapes in hadron and electron colliders

    International Nuclear Information System (INIS)

    Wainer, N.

    1993-05-01

    High energy jets are observed both in hadronic machines like the Tevatron and electron machines like LEP. These jets have an extended structure in phase space which can be measured. This distribution is usually called the jet shape. There is an intrinsic relation between jet variables, like energy and direction, the jet algorithm used, and the jet shape. Jet shape differences can be used to separate quark and gluon jets

  4. Memory for shape reactivates the lateral occipital complex.

    Science.gov (United States)

    Karanian, Jessica M; Slotnick, Scott D

    2015-04-07

    Memory is thought to be a constructive process in which the cortical regions associated with processing event features are reactivated during retrieval. Although there is evidence for non-detailed cortical reactivation during retrieval (e.g., memory for visual or auditory information reactivates the visual or auditory processing regions, respectively), there is limited evidence that memory can reactivate cortical regions associated with processing detailed, feature-specific information. Such evidence is critical to our understanding of the mechanisms of episodic retrieval. The present functional magnetic resonance imaging (fMRI) study assessed whether the lateral occipital complex (LOC), a region that preferentially processes shape, is associated with retrieval of shape information. During encoding, participants were presented with colored abstract shapes that were either intact or scrambled. During retrieval, colored disks were presented and participants indicated whether the corresponding shape was previously "intact" or "scrambled". To assess whether conscious retrieval of intact shapes reactivated LOC, we conducted a conjunction of shape perception/encoding and accurate versus inaccurate retrieval of intact shapes, which produced many activations in LOC. To determine whether activity in LOC was specific to intact shapes, we conducted a conjunction of shape perception/encoding and intact versus scrambled shapes, which also produced many activations in LOC. Furthermore, memory for intact shapes in each hemifield produced contralateral activity in LOC (e.g., memory for left visual field intact shapes activated right LOC), which reflects the specific reinstatement of perception/encoding activity. The present results extend previous feature-specific memory reactivation evidence and support the view that memory is a constructive process. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Refillable and magnetically actuated drug delivery system using pear-shaped viscoelastic membrane

    KAUST Repository

    So, Hongyun

    2014-07-01

    We report a refillable and valveless drug delivery device actuated by an external magnetic field for on-demand drug release to treat localized diseases. The device features a pear-shaped viscoelastic magnetic membrane inducing asymmetrical deflection and consecutive touchdown motion to the bottom of the dome-shaped drug reservoir in response to a magnetic field, thus achieving controlled discharge of the drug. Maximum drug release with 18 ± 1.5 μg per actuation was achieved under a 500 mT magnetic flux density, and various controlled drug doses were investigated with the combination of the number of accumulated actuations and the strength of the magnetic field.

  6. Bifurcations and Crises in a Shape Memory Oscillator

    Directory of Open Access Journals (Sweden)

    Luciano G. Machado

    2004-01-01

    Full Text Available The remarkable properties of shape memory alloys have been motivating the interest in applications in different areas varying from biomedical to aerospace hardware. The dynamical response of systems composed by shape memory actuators presents nonlinear characteristics and a very rich behavior, showing periodic, quasi-periodic and chaotic responses. This contribution analyses some aspects related to bifurcation phenomenon in a shape memory oscillator where the restitution force is described by a polynomial constitutive model. The term bifurcation is used to describe qualitative changes that occur in the orbit structure of a system, as a consequence of parameter changes, being related to chaos. Numerical simulations show that the response of the shape memory oscillator presents period doubling cascades, direct and reverse, and crises.

  7. Resummed coefficient function for the shape function

    OpenAIRE

    Aglietti, U.

    2001-01-01

    We present a leading evaluation of the resummed coefficient function for the shape function. It is also shown that the coefficient function is short-distance-dominated. Our results allow relating the shape function computed on the lattice to the physical QCD distributions.

  8. Digital pulse shape discrimination

    International Nuclear Information System (INIS)

    Miller, L. F.; Preston, J.; Pozzi, S.; Flaska, M.; Neal, J.

    2007-01-01

    Pulse-shape discrimination (PSD) has been utilised for about 40 years as a method to obtain estimates for dose in mixed neutron and photon fields. Digitizers that operate close to GHz are currently available at a reasonable cost, and they can be used to directly sample signals from photomultiplier tubes. This permits one to perform digital PSD rather than the traditional, and well-established, analogous techniques. One issue that complicates PSD for neutrons in mixed fields is that the light output characteristics of typical scintillators available for PSD, such as BC501A, vary as a function of energy deposited in the detector. This behaviour is more easily accommodated with digital processing of signals than with analogous signal processing. Results illustrate the effectiveness of digital PSD. (authors)

  9. Exploring the design space of shape-changing objects

    DEFF Research Database (Denmark)

    Nørgaard, Mie; Merritt, Timothy Robert; Rasmussen, Majken

    2013-01-01

    In this paper we describe the outcomes from a design exercise in which eight groups of designers designed and built hardware sketches in the form of playful shape-changing prototypes, generatively working with Rasmussen et al's [31] eight unique types of shape change. Seeing that shape-changing i......In this paper we describe the outcomes from a design exercise in which eight groups of designers designed and built hardware sketches in the form of playful shape-changing prototypes, generatively working with Rasmussen et al's [31] eight unique types of shape change. Seeing that shape...... for the further expansion of the design space of shape changing interfaces relating to the perception and understanding of behaviour, causality and the mechanics involved in shape change events, which we call "Imagined Physics." This concept is described along with additional insights into the qualities of shape...

  10. Shape analysis of isoseismals based on empirical and synthetic data

    International Nuclear Information System (INIS)

    Molchan, G.; Panza, G.F.

    2000-11-01

    We present an attempt to compare modeled ground motion acceleration fields with macroseismic observations. Two techniques for the representation of the observed intensities by isoseismals, a smoothing technique and one which visualizes the local uncertainty of an isoseismal, are tested with synthetic and observed data. We show how noise in the data and irregularities in the distribution of observation sites affect the resolution of the isoseismal's shape. In addition to ''standard'' elongated shapes, we identify cross-like patterns in the macroseismic observations for two Italian earthquakes of strike-slip type; similar patterns are displayed by the theoretical peak acceleration fields calculated assuming the point source models given in the literature. (author)

  11. Atom probe field ion microscopy and related topics: A bibliography 1989

    International Nuclear Information System (INIS)

    Miller, M.K.; Hawkins, A.R.; Russell, K.F.

    1990-12-01

    This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion spectroscopy (FIM), field emission microscopy (FEM), liquid metal ion sources (LMIS), scanning tunneling microscopy (STM), and theory. Technique-orientated studies and applications are included. This bibliography covers the period 1989. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications

  12. Relation of high harmonic spectra to electronic structure in N2

    International Nuclear Information System (INIS)

    Farrell, J.P.; McFarland, B.K.; Guehr, M.; Bucksbaum, P.H.

    2009-01-01

    High harmonics of N 2 exhibit a number of features that are related to the electronic structure and sub-femtosecond dynamics of the molecule. Through measurements and simulations, we show how the harmonic spectral shape, spectral phase, alignment angle dependence, and intensity dependence can be related to the strong-field ionization and recombination dynamics of the HOMO and HOMO-1 electron orbitals. A field-free static model of the molecule is insufficient to explain the observations.

  13. On Discrete Killing Vector Fields and Patterns on Surfaces

    KAUST Repository

    Ben-Chen, Mirela

    2010-09-21

    Symmetry is one of the most important properties of a shape, unifying form and function. It encodes semantic information on one hand, and affects the shape\\'s aesthetic value on the other. Symmetry comes in many flavors, amongst the most interesting being intrinsic symmetry, which is defined only in terms of the intrinsic geometry of the shape. Continuous intrinsic symmetries can be represented using infinitesimal rigid transformations, which are given as tangent vector fields on the surface - known as Killing Vector Fields. As exact symmetries are quite rare, especially when considering noisy sampled surfaces, we propose a method for relaxing the exact symmetry constraint to allow for approximate symmetries and approximate Killing Vector Fields, and show how to discretize these concepts for generating such vector fields on a triangulated mesh. We discuss the properties of approximate Killing Vector Fields, and propose an application to utilize them for texture and geometry synthesis. Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.

  14. Magnetic Field Effects on the Plume of a Diverging Cusped-Field Thruster

    KAUST Repository

    Matlock, Taylor

    2010-07-25

    The Diverging Cusped-Field Thruster (DCFT) uses three permanent ring magnets of alternating polarity to create a unique magnetic topology intended to reduce plasma losses to the discharge chamber surfaces. The magnetic field strength within the DCFT discharge chamber (up to 4 kG on axis) is much higher than in thrusters of similar geometry, which is believed to be a driving factor in the high measured anode efficiencies. The field strength in the near plume region is large as well, which may bear on the high beam divergences measured, with peaks in ion current found at angles of around 30-35 from the thruster axis. Characterization of the DCFT has heretofore involved only one magnetic topology. It is then the purpose of this study to investigate changes to the near-field plume caused by altering the shape and strength of the magnetic field. A thick magnetic collar, encircling the thruster body, is used to lower the field strength outside of the discharge chamber and thus lessen any effects caused by the external field. Changes in the thruster plume with field topology are monitored by the use of normal Langmuir and emissive probes interrogating the near-field plasma. Results are related to other observations that suggest a unified conceptual framework for the important near-exit region of the thruster.

  15. On the relation between fields and potentials in non abelian Gauge Theories

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.

    1979-01-01

    Some examples have been given in the literature of ambiguous gauge fields, i.e. those not having a unique potential (up to a gauge transformation). An example given by Deser and Wilczek is examined and found the condition (for any gauge group) that the group element generating the potentials must satisfy in order for the potentials not to be related by any gauge transformation. In three dimensions (for Su 2 ) there are other families of ambiguous fields characterized by arbitrary unit vector fields n vector (n vector) (n 2 vector =1). The example given by Wu and Yang belongs to a particular family with n vector = n vector. r vector / r vector. The sources of these fields and some interesting relations between them are also found [pt

  16. Enhancement of plasma generation in catalyst pores with different shapes

    Science.gov (United States)

    Zhang, Yu-Ru; Neyts, Erik C.; Bogaerts, Annemie

    2018-05-01

    Plasma generation inside catalyst pores is of utmost importance for plasma catalysis, as the existence of plasma species inside the pores affects the active surface area of the catalyst available to the plasma species for catalytic reactions. In this paper, the electric field enhancement, and thus the plasma production inside catalyst pores with different pore shapes is studied with a two-dimensional fluid model. The results indicate that the electric field will be significantly enhanced near tip-like structures. In a conical pore with small opening, the strongest electric field appears at the opening and bottom corners of the pore, giving rise to a prominent ionization rate throughout the pore. For a cylindrical pore, the electric field is only enhanced at the bottom corners of the pore, with lower absolute value, and thus the ionization rate inside the pore is only slightly enhanced. Finally, in a conical pore with large opening, the electric field is characterized by a maximum at the bottom of the pore, yielding a similar behavior for the ionization rate. These results demonstrate that the shape of the pore has a significantly influence on the electric field enhancement, and thus modifies the plasma properties.

  17. On the computation of the demagnetization tensor for uniformly magnetized particles of arbitrary shape. Part I: Analytical approach

    International Nuclear Information System (INIS)

    Tandon, S.; Beleggia, M.; Zhu, Y.; De Graef, M.

    2004-01-01

    A Fourier space formalism based on the shape amplitude of a particle is used to compute the demagnetization tensor field for uniformly magnetized particles of arbitrary shape. We provide a list of explicit shape amplitudes for important particle shapes, among others: the sphere, the cylindrical tube, an arbitrary polyhedral shape, a truncated paraboloid, and a cone truncated by a spherical cap. In Part I of this two-part paper, an analytical representation of the demagnetization tensor field for particles with cylindrical symmetry is provided, as well as expressions for the magnetostatic energy and the volumetric demagnetization factors

  18. Recent Advances in the Study of Bipolar/Rod-Shaped Microglia and their Roles in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Ngan Pan Bennett Au

    2017-05-01

    Full Text Available Microglia are the resident immune cells of the central nervous system (CNS and they contribute to primary inflammatory responses following CNS injuries. The morphology of microglia is closely associated with their functional activities. Most previous research efforts have attempted to delineate the role of ramified and amoeboid microglia in the pathogenesis of neurodegenerative diseases. In addition to ramified and amoeboid microglia, bipolar/rod-shaped microglia were first described by Franz Nissl in 1899 and their presence in the brain was closely associated with the pathology of infectious diseases and sleeping disorders. However, studies relating to bipolar/rod-shaped microglia are very limited, largely due to the lack of appropriate in vitro and in vivo experimental models. Recent studies have reported the formation of bipolar/rod-shaped microglia trains in in vivo models of CNS injury, including diffuse brain injury, focal transient ischemia, optic nerve transection and laser-induced ocular hypertension (OHT. These bipolar/rod-shaped microglia formed end-to-end alignments in close proximity to the adjacent injured axons, but they showed no interactions with blood vessels or other types of glial cell. Recent studies have also reported on a highly reproducible in vitro culture model system to enrich bipolar/rod-shaped microglia that acts as a powerful tool with which to characterize this form of microglia. The molecular aspects of bipolar/rod-shaped microglia are of great interest in the field of CNS repair. This review article focuses on studies relating to the morphology and transformation of microglia into the bipolar/rod-shaped form, along with the differential gene expression and spatial distribution of bipolar/rod-shaped microglia in normal and pathological CNSs. The spatial arrangement of bipolar/rod-shaped microglia is crucial in the reorganization and remodeling of neuronal and synaptic circuitry following CNS injuries. Finally, we

  19. Spectral Line Shapes in Plasmas and Gases

    International Nuclear Information System (INIS)

    Oks, E.; Dalimier, D.; Stamm, R.; Stehle, CH.; Gonzalez, M.A.

    2011-01-01

    The subject of spectral line shapes (SLS), a.k.a. spectral line broadening, which embraces both shapes and shifts of spectral lines, is of both fundamental and practical importance. On the fundamental side, the study of the spectral line profiles reveals the underlying atomic and molecular interactions. On the practical side, the spectral line profiles are employed as powerful diagnostic tools for various media, such as neutral gases, technological gas discharges, magnetically confined plasmas for fusion, laser- and Z-pinch-produced plasmas (for fusion and other purposes), astrophysical plasmas (most importantly, solar plasmas), and planetary atmospheres. The research area covered by this special issue includes both the SLS dominated by various electric fields (including electron and ion micro fields in strongly ionized plasmas) and the SLS controlled by neutral particles. In the physical slang, the former is called plasma broadening while the latter is called neutral broadening (of course, the results of neutral broadening apply also to the spectral line broadening in neutral gases)

  20. Lower hybrid current drive in shaped tokamaks

    International Nuclear Information System (INIS)

    Kesner, J.

    1993-01-01

    A time dependent lower hybrid current drive tokamak simulation code has been developed. This code combines the BALDUR tokamak simulation code and the Bonoli/Englade lower hybrid current drive code and permits the study of the interaction of lower hybrid current drive with neutral beam heating in shaped cross-section plasmas. The code is time dependent and includes the beam driven and bootstrap currents in addition to the current driven by the lower hybrid system. Examples of simulations are shown for the PBX-M experiment which include the effect of cross section shaping on current drive, ballooning mode stabilization by current profile control and sawtooth stabilization. A critical question in current drive calculations is the radial transport of the energetic electrons. The authors have developed a response function technique to calculate radial transport in the presence of an electric field. The consequences of the combined influences of radial diffusion and electric field acceleration are discussed

  1. Numerical shaping of the ultrasonic wavelet

    International Nuclear Information System (INIS)

    Bonis, M.

    1991-01-01

    Improving the performance and the quality of ultrasonic testing requires the numerical control of the shape of the driving signal applied to the piezoelectric transducer. This allows precise shaping of the ultrasonic field wavelet and corrections for the physical defects of the transducer, which are mainly due to the damper or the lens. It also does away with the need for an accurate electric matching. It then becomes feasible to characterize, a priori, the ultrasonic wavelet by means of temporal and/or spectral specifications and to use, subsequently, an adaptative algorithm to calculate the corresponding driving wavelet. Moreover, the versatility resulting from the numerical control of this wavelet allows it to be changed in real time during a test

  2. A survey of visual preprocessing and shape representation techniques

    Science.gov (United States)

    Olshausen, Bruno A.

    1988-01-01

    Many recent theories and methods proposed for visual preprocessing and shape representation are summarized. The survey brings together research from the fields of biology, psychology, computer science, electrical engineering, and most recently, neural networks. It was motivated by the need to preprocess images for a sparse distributed memory (SDM), but the techniques presented may also prove useful for applying other associative memories to visual pattern recognition. The material of this survey is divided into three sections: an overview of biological visual processing; methods of preprocessing (extracting parts of shape, texture, motion, and depth); and shape representation and recognition (form invariance, primitives and structural descriptions, and theories of attention).

  3. Proxemic Transitions: Designing Shape-Changing Furniture for Informal Meetings

    DEFF Research Database (Denmark)

    Grønbæk, Jens Emil; Korsgaard, Henrik; Petersen, Marianne Graves

    2017-01-01

    Shape-changing interfaces is an emerging field in HCI that explores the qualities of physically dynamic artifacts. At furniture-scale such dynamic artifacts have the potential of changing the ways we collaborate and engage with spaces. In- formed by theories of proxemics, empirical studies...... of informal meetings and design work with shape-changing furniture, we develop the notion of proxemic transitions. We present three design aspects of proxemic transitions: transition speed, step- wise reconfiguration, and situational flexibility. The design aspects focus on how to balance between physical...... between a table and a board surface. These contributions outline important aspects to consider when designing shape-changing furniture....

  4. Improved field abutment-wedge design for 6-MV x-rays

    International Nuclear Information System (INIS)

    Nyerick, C.E.; Steadham, R.E.

    1989-01-01

    This paper presents an improved abutment wedge for matching large photon fields. The wedge is used with a 6-MV Linac accelerator and generates a 5-cm pseudopenumbra at the 50% relative dose juncture. The features allow treatment of fields up to 40 cm long in any fractional step of increment, simultaneous generation of two wide penumbrae or one wide and one sharp penumbra, and attachment of the device downstream of standard beam-shaping accessories in any 90 degrees angular orientation

  5. Exploring the Design Space of Shape-Changing Objects

    DEFF Research Database (Denmark)

    Merritt, Timothy; Petersen, Marianne Graves; Nørgaard, Mie

    2015-01-01

    In this paper we describe the outcomes from a design exercise in which eight groups of designers designed and built hardware sketches in the form of playful shape- changing prototypes, generatively working with Rasmussen et al’s [31] eight unique types of shape change. Seeing that shape-changing ......In this paper we describe the outcomes from a design exercise in which eight groups of designers designed and built hardware sketches in the form of playful shape- changing prototypes, generatively working with Rasmussen et al’s [31] eight unique types of shape change. Seeing that shape...... for the further expansion of the design space of shape changing interfaces relating to the perception and understanding of behaviour, causality and the mechanics involved in shape change events, which we call “Imagined Physics.” This concept is described along with additional insights into the qualities of shape...

  6. Shape memory-based tunable resistivity of polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hongsheng, E-mail: hongshengluo@163.com [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Zhou, Xingdong; Ma, Yuanyuan [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Yi, Guobin, E-mail: ygb116@163.com [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Cheng, Xiaoling [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Zhu, Yong [Shanghai Hiend Polyurethane Inc., No. 389, Jinshan District, Shanghai (China); Zu, Xihong; Zhang, Nanjun; Huang, Binghao; Yu, Lifang [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China)

    2016-02-15

    Graphical abstract: Hybrid nanofillers of the CNTs and AgNPs were embedded into a shape memory polyurethane. The composites exhibited tunable conduction, which could be facially tailored by the compositions and the thermal–mechanical programming. - Highlights: • Electrically conductive polymer composites in bi-layer structure were fabricated. • The CNTs/AgNPs layer had influence on the mechanics and thermal transitions. • The conductivity could be facially tailored via a thermo-mechanical programming. • The AgNPs contents enlarged the gauge factor of the resistivity–strain curves. • Tunneling theory was suitable for simulating the strain-dependent behaviors. - Abstract: A conductive composite in bi-layer structure was fabricated by embedding hybrid nanofillers, namely carbon nanotubes (CNTs) and silver nanoparticles (AgNPs), into a shape memory polyurethane (SMPU). The CNT/AgNP-SMPU composites exhibited a novel tunable conductivity which could be facially tailored in wide range via the compositions or a specifically designed thermo-mechanical shape memory programming. The morphologies of the conductive fillers and the composites were investigated by scanning electron microscope (SEM). The mechanical and thermal measurements were performed by tensile tests and differential scanning calorimetry (DSC). By virtue of a specifically explored shape memory programming, the composites were stretched and fixed into different temporary states. The electrical resistivity (R{sub s}) varied accordingly, which was able to be stabilized along with the shape fixing. Theoretical prediction based upon the tunneling model was performed. The R{sub s}–strain curves of the composites with different compositions were well fitted. Furthermore, the relative resistivity and the Gauge factor along with the elongation were calculated. The influence of the compositions on the strain-dependent R{sub s} was disclosed. The findings provided a new avenue to tailor the conductivity

  7. Diffusive Phenomena and the Austenite/Martensite Relative Stability in Cu-Based Shape-Memory Alloys

    Science.gov (United States)

    Pelegrina, J. L.; Yawny, A.; Sade, M.

    2018-02-01

    The main characteristic of martensitic phase transitions is the coordinate movement of the atoms which takes place athermally, without the contribution of diffusion during its occurrence. However, the impacts of diffusive phenomena on the relative stability between the phases involved and, consequently, on the associated transformation temperatures and functional properties can be significant. This is particularly evident in the case of Cu-based shape-memory alloys where atomic diffusion in both austenite and martensite metastable phases might occur even at room-temperature levels, giving rise to a variety of intensively studied phenomena. In the present study, the progresses made in the understanding of three selected diffusion-related effects of importance in Cu-Zn-Al and Cu-Al-Be alloys are reviewed. They are the after-quench retained disorder in the austenitic structure and its subsequent reordering, the stabilization of the martensite, and the effect of applied stress on the austenitic order. It is shown how the experimental results obtained from tests performed on single crystal material can be rationalized under the shed of a model developed to evaluate the variation of the relative stability between the phases in terms of atom pairs interchanges.

  8. Relative entropy of excited states in two dimensional conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Sárosi, Gábor [Department of Theoretical Physics, Institute of Physics, Budapest University of Technology,Budapest, H-1521 (Hungary); Ugajin, Tomonori [Kavli Institute for Theoretical Physics, University of California,Santa Barbara,CA 93106 (United States)

    2016-07-21

    We study the relative entropy and the trace square distance, both of which measure the distance between reduced density matrices of two excited states in two dimensional conformal field theories. We find a general formula for the relative entropy between two primary states with the same conformal dimension in the limit of a single small interval and find that in this case the relative entropy is proportional to the trace square distance. We check our general formulae by calculating the relative entropy between two generalized free fields and the trace square distance between the spin and disorder operators of the critical Ising model. We also give the leading term of the relative entropy in the small interval expansion when the two operators have different conformal dimensions. This turns out to be universal when the CFT has no primaires lighter than the stress tensor. The result reproduces the previously known special cases.

  9. Patterns of Body Image Concerns and Disordered Weight- and Shape-Related Behaviors in Heterosexual and Sexual Minority Adolescent Males

    Science.gov (United States)

    Calzo, Jerel P.; Masyn, Katherine E.; Corliss, Heather L.; Scherer, Emily A.; Field, Alison E.; Austin, S. Bryn

    2015-01-01

    This study investigates body image concerns and disordered weight- and shape-related behaviors across adolescence and young adulthood in males and how patterns vary by sexual orientation. Participants were 5,388 males from the U.S. national Growing Up Today Study. In 2001, 2003, and 2005 (spanning ages 15-20 years), participants reported sexual…

  10. Assembly Modulated by Particle Position and Shape: A New Concept in Self-Assembly

    DEFF Research Database (Denmark)

    Tavacoli, Joe W; Heuvingh, Julien; Du Roure, Olivia

    2017-01-01

    In this communication we outline how the bespoke arrangements and design of micron-sized superparamagnetic shapes provide levers to modulate their assembly under homogeneous magnetic fields. We label this new approach, 'assembly modulated by particle position and shape' (APPS). Specifically, using...... rectangular lattices of superparamagnetic micron-sized cuboids, we construct distinct microstructures by adjusting lattice pitch and angle of array with respect to a magnetic field. Broadly, we find two modes of assembly: (1) immediate 2D jamming of the cuboids as they rotate to align with the applied field...... (rotation-induced jamming) and (2) aggregation via translation after their full alignment (dipole-dipole assembly). The boundary between these two assembly pathways is independent on field strength being solely a function of the cuboid's dimensions, lattice pitch, and array angle with respect to field...

  11. Addendum. Relation for the Light Absorption in the Presence of Gravitation Field

    OpenAIRE

    R.Vlokh; M.Kostyrko

    2005-01-01

    We argue for the validity of relation for electromagnetic wave electric field derived by us earlier. It includes an imaginary part responsible for the absorption induced by gravitation field of spherically symmetric mass.

  12. Shaping the Educational Policy Field: "Cross-Field Effects" in the Chinese Context

    Science.gov (United States)

    Yu, Hui

    2018-01-01

    This paper theorises how politics, economy and migrant population policies influence educational policy, utilising Bourdieusian theoretical resources to analyse the Chinese context. It develops the work of Lingard and Rawolle on cross-field effects and produces an updated three-step analytical framework. Taking the policy issue of the schooling of…

  13. Study on Dissipation of Landslide Generated Waves in Different Shape of Reservoirs

    Science.gov (United States)

    An, Y.; Liu, Q.

    2017-12-01

    The landslide generated waves are major risks for many reservoirs located in mountainous areas. As the initial wave is often very huge (e.g. 30m of the height in Xiaowan event, 2009, China), the dissipation of the wave, which is closely connected with the shape of the reservoir (e.g. channel type vs. lake type), is a crucial factor in risk estimation and prevention. While even for channel type reservoir, the wave damping also varies a lot due to details of the shape such as branches and turnings. Focusing on the influence of this shape details on the wave damping in channel type reservoir, we numerically studied two landslide generated wave events with both a triangle shape of the cross section but different longitudinal shape configurations (Xiaowan event in 2009 and an assuming event in real topography). The two-dimensional Saint-Venant equation and dry-wet boundary treatment method are used to simulate the wave generation and propagation processes. The simulation is based on an open source code called `Basilisk' and the adaptive mesh refinement technique is used to achieve enough precision with affordable computational resources. The sensitivity of the parameters representing bed drag and the vortex viscosity is discussed. We found that the damping is relatively not sensitive to the bed drag coefficient, which is natural as the water depth is large compared with wave height. While the vortex viscosity needs to be chosen carefully as it is related to cross sectional velocity distribution. It is also found that the longitudinal shape, i.e. the number of turning points and branches, is the key factor influencing the wave damping. The wave height at the far field could be only one seventh comparing with the initial wave in the case with complex longitudinal shape, while the damping is much weaker in the straight channel case. We guess that this phenomenon is due to the increasing sloshing at these abruptly changed positions. This work could provide a deeper

  14. Measuring the X-shaped structures in edge-on galaxies

    Science.gov (United States)

    Savchenko, S. S.; Sotnikova, N. Ya.; Mosenkov, A. V.; Reshetnikov, V. P.; Bizyaev, D. V.

    2017-11-01

    We present a detailed photometric study of a sample of 22 edge-on galaxies with clearly visible X-shaped structures. We propose a novel method to derive geometrical parameters of these features, along with the parameters of their host galaxies based on the multi-component photometric decomposition of galactic images. To include the X-shaped structure into our photometric model, we use the imfit package, in which we implement a new component describing the X-shaped structure. This method is applied for a sample of galaxies with available Sloan Digital Sky Survey and Spitzer IRAC 3.6 μm observations. In order to explain our results, we perform realistic N-body simulations of a Milky Way-type galaxy and compare the observed and the model X-shaped structures. Our main conclusions are as follows: (1) galaxies with strong X-shaped structures reside in approximately the same local environments as field galaxies; (2) the characteristic size of the X-shaped structures is about 2/3 of the bar size; (3) there is a correlation between the X-shaped structure size and its observed flatness: the larger structures are more flattened; (4) our N-body simulations qualitatively confirm the observational results and support the bar-driven scenario for the X-shaped structure formation.

  15. Branch length similarity entropy-based descriptors for shape representation

    Science.gov (United States)

    Kwon, Ohsung; Lee, Sang-Hee

    2017-11-01

    In previous studies, we showed that the branch length similarity (BLS) entropy profile could be successfully used for the shape recognition such as battle tanks, facial expressions, and butterflies. In the present study, we proposed new descriptors, roundness, symmetry, and surface roughness, for the recognition, which are more accurate and fast in the computation than the previous descriptors. The roundness represents how closely a shape resembles to a circle, the symmetry characterizes how much one shape is similar with another when the shape is moved in flip, and the surface roughness quantifies the degree of vertical deviations of a shape boundary. To evaluate the performance of the descriptors, we used the database of leaf images with 12 species. Each species consisted of 10 - 20 leaf images and the total number of images were 160. The evaluation showed that the new descriptors successfully discriminated the leaf species. We believe that the descriptors can be a useful tool in the field of pattern recognition.

  16. How river rocks round: resolving the shape-size paradox.

    Directory of Open Access Journals (Sweden)

    Gabor Domokos

    Full Text Available River-bed sediments display two universal downstream trends: fining, in which particle size decreases; and rounding, where pebble shapes evolve toward ellipsoids. Rounding is known to result from transport-induced abrasion; however many researchers argue that the contribution of abrasion to downstream fining is negligible. This presents a paradox: downstream shape change indicates substantial abrasion, while size change apparently rules it out. Here we use laboratory experiments and numerical modeling to show quantitatively that pebble abrasion is a curvature-driven flow problem. As a consequence, abrasion occurs in two well-separated phases: first, pebble edges rapidly round without any change in axis dimensions until the shape becomes entirely convex; and second, axis dimensions are then slowly reduced while the particle remains convex. Explicit study of pebble shape evolution helps resolve the shape-size paradox by reconciling discrepancies between laboratory and field studies, and enhances our ability to decipher the transport history of a river rock.

  17. Eye shape and the nocturnal bottleneck of mammals.

    Science.gov (United States)

    Hall, Margaret I; Kamilar, Jason M; Kirk, E Christopher

    2012-12-22

    Most vertebrate groups exhibit eye shapes that vary predictably with activity pattern. Nocturnal vertebrates typically have large corneas relative to eye size as an adaptation for increased visual sensitivity. Conversely, diurnal vertebrates generally demonstrate smaller corneas relative to eye size as an adaptation for increased visual acuity. By contrast, several studies have concluded that many mammals exhibit typical nocturnal eye shapes, regardless of activity pattern. However, a recent study has argued that new statistical methods allow eye shape to accurately predict activity patterns of mammals, including cathemeral species (animals that are equally likely to be awake and active at any time of day or night). Here, we conduct a detailed analysis of eye shape and activity pattern in mammals, using a broad comparative sample of 266 species. We find that the eye shapes of cathemeral mammals completely overlap with nocturnal and diurnal species. Additionally, most diurnal and cathemeral mammals have eye shapes that are most similar to those of nocturnal birds and lizards. The only mammalian clade that diverges from this pattern is anthropoids, which have convergently evolved eye shapes similar to those of diurnal birds and lizards. Our results provide additional evidence for a nocturnal 'bottleneck' in the early evolution of crown mammals.

  18. Finite element analysis of Al 2024/Cu-Al-Ni shape memory alloy composites with defects/cracks

    Science.gov (United States)

    Kotresh, M.; Benal, M. M., Dr; Siddalinga Swamy, N. H., Dr

    2018-02-01

    In this work, a numerical approach to predict the stress field behaviour of defect/crack in shape memory alloy (SMA) particles reinforced composite known as the adaptive composite is presented. Simulation is based on the finite element method. The critical stress field approach was used to determine the stresses around defect/crack. Thereby stress amplification issue is being resolved. In this paper, the effect volume % of shape memory alloy and shape memory effect of reinforcement for as-cast and SME trained composites are examined and discussed. Shape memory effect known as training is achieved by pre-straining of reinforcement particles by equivalent changes in their expansion coefficients.

  19. Comments on comet shapes and aggregation processes

    International Nuclear Information System (INIS)

    Hartmann, W.K.

    1989-01-01

    An important question for a comet mission is whether comet nuclei preserve information clarifying aggregation processes of planetary matter. New observational evidence shows that Trojan asteroids, as a group, display a higher fraction of highly-elongated objects than the belt. More recently evidence has accumulated that comet nuclei, as a group, also display highly-elongated shapes at macro-scale. This evidence comes from the several comets whose nuclear lightcurves or shapes have been well studied. Trojans and comet nuclei share other properties. Both groups have extremely low albedos and reddish-to neutral-black colors typical of asteroids of spectral class D, P, and C. Both groups may have had relatively low collision frequencies. An important problem to resolve with spacecraft imaging is whether these elongated shapes are primordial, or due to evolution of the objects. Two hypotheses that might be tested by a combination of global-scale and close-up imaging from various directions are: (1) The irregular shapes are primordial and related to the fact that these bodies have had lower collision frequencies than belt asteroids; or (2) The irregular shapes may be due to volatile loss

  20. GaInN quantum well design and measurement conditions affecting the emission energy S-shape

    Energy Technology Data Exchange (ETDEWEB)

    Netzel, Carsten; Hatami, Soheil; Hoffmann, Veit; Knauer, Arne; Weyers, Markus [Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Wernicke, Tim; Kneissl, Michael [Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Institut fuer Festkoerperphysik, Technische Universitaet Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)

    2011-07-15

    Polarization fields and charge carrier localization are the dominant factors defining the radiative recombination processes in the quantum wells of most AlGaInN-based optoelectronic devices. Both factors determine emission energy, emission line width, recombination times, and internal quantum efficiency. For a deeper understanding of the charge carrier recombination processes, we have performed temperature and excitation power dependent photoluminescence experiments on epitaxially grown GaInN structures to study the S-shape of the temperature dependent emission energy. The S-shape behaviour in GaInN quantum wells (QWs) is dominated by the temperature dependence of the charge carrier localization. However, in polar QWs it is strongly affected by the charge carrier density which screens the piezoelectric field. External applied fields change the observable S-shape characteristic significantly. Semi- and nonpolar GaInN QWs feature an S-shape behaviour which points to much stronger charge carrier localization compared to polar QWs. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Electric field imaging of single atoms

    Science.gov (United States)

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-01-01

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629

  2. Eyes in the sky. Interactions between asymptotic giant branch star winds and the interstellar magnetic field

    Science.gov (United States)

    van Marle, A. J.; Cox, N. L. J.; Decin, L.

    2014-10-01

    Context. The extended circumstellar envelopes (CSEs) of evolved low-mass stars display a large variety of morphologies. Understanding the various mechanisms that give rise to these extended structures is important to trace their mass-loss history. Aims: Here, we aim to examine the role of the interstellar magnetic field in shaping the extended morphologies of slow dusty winds of asymptotic giant branch (AGB) stars in an effort to pin-point the origin of so-called eye shaped CSEs of three carbon-rich AGB stars. In addition, we seek to understand if this pre-planetary nebula (PN) shaping can be responsible for asymmetries observed in PNe. Methods: Hydrodynamical simulations are used to study the effect of typical interstellar magnetic fields on the free-expanding spherical stellar winds as they sweep up the local interstellar medium (ISM). Results: The simulations show that typical Galactic interstellar magnetic fields of 5 to 10 μG are sufficient to alter the spherical expanding shells of AGB stars to appear as the characteristic eye shape revealed by far-infrared observations. The typical sizes of the simulated eyes are in accordance with the observed physical sizes. However, the eye shapes are transient in nature. Depending on the stellar and interstellar conditions, they develop after 20 000 to 200 000 yrs and last for about 50 000 to 500 000 yrs, assuming that the star is at rest relative to the local interstellar medium. Once formed, the eye shape develops lateral outflows parallel to the magnetic field. The explosion of a PN in the centre of the eye-shaped dust shell gives rise to an asymmetrical nebula with prominent inward pointing Rayleigh-Taylor instabilities. Conclusions: Interstellar magnetic fields can clearly affect the shaping of wind-ISM interaction shells. The occurrence of the eyes is most strongly influenced by stellar space motion and ISM density. Observability of this transient phase is favoured for lines-of-sight perpendicular to the

  3. Covariant description of shape evolution and shape coexistence in neutron-rich nuclei at N≈60

    International Nuclear Information System (INIS)

    Xiang, J.; Li, Z.P.; Li, Z.X.; Yao, J.M.; Meng, J.

    2012-01-01

    The shape evolution and shape coexistence phenomena in neutron-rich nuclei at N≈60, including Kr, Sr, Zr, and Mo isotopes, are studied in the covariant density functional theory (DFT) with the new parameter set PC-PK1. Pairing correlations are treated using the BCS approximation with a separable pairing force. Sharp rising in the charge radii of Sr and Zr isotopes at N=60 is observed and shown to be related to the rapid changing in nuclear shapes. The shape evolution is moderate in neighboring Kr and Mo isotopes. Similar as the results of previous Hartree–Fock–Bogoliubov (HFB) calculations with the Gogny force, triaxiality is observed in Mo isotopes and shown to be essential to reproduce quantitatively the corresponding charge radii. In addition, the coexistence of prolate and oblate shapes is found in both 98 Sr and 100 Zr. The observed oblate and prolate minima are related to the low single-particle energy level density around the Fermi surfaces of neutron and proton respectively. Furthermore, the 5-dimensional (5D) collective Hamiltonian determined by the calculations of the PC-PK1 energy functional is solved for 98 Sr and 100 Zr. The resultant excitation energy of 0 2 + state and E0 transition strength ρ 2 (E0;0 2 + →0 1 + ) are in rather good agreement with the data. It is found that the lower barrier height separating the two competing minima along the γ deformation in 100 Zr gives rise to the larger ρ 2 (E0;0 2 + →0 1 + ) than that in 98 Sr.

  4. NCSX Toroidal Field Coil Design

    International Nuclear Information System (INIS)

    Kalish M; Rushinski J; Myatt L; Brooks A; Dahlgren F; Chrzanowski J; Reiersen W; Freudenberg K.

    2005-01-01

    The National Compact Stellarator Experiment (NCSX) is an experimental device whose design and construction is underway at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The primary coil systems for the NCSX device consist of the twisted plasma-shaping Modular Coils, the Poloidal Field Coils, and the Toroidal Field (TF) Coils. The TF Coils are D-shaped coils wound from hollow copper conductor, and vacuum impregnated with a glass-epoxy resin system. There are 18 identical, equally spaced TF coils providing 1/R field at the plasma. They operate within a cryostat, and are cooled by LN2, nominally, to 80K. Wedge shaped castings are assembled to the inboard face of these coils, so that inward radial loads are reacted via the nesting of each of the coils against their adjacent partners. This paper outlines the TF Coil design methodology, reviews the analysis results, and summarizes how the design and analysis support the design requirements

  5. New formulae for magnetic relative helicity and field line helicity

    Science.gov (United States)

    Aly, Jean-Jacques

    2018-01-01

    We consider a magnetic field {B} occupying the simply connected domain D and having all its field lines tied to the boundary S of D. We assume here that {B} has a simple topology, i.e., the mapping {M} from positive to negative polarity areas of S associating to each other the two footpoints of any magnetic line, is continuous. We first present new formulae for the helicity H of {B} relative to a reference field {{B}}r having the same normal component {B}n on S, and for its field line helicity h relative to a reference vector potential {{C}}r of {{B}}r. These formulae make immediately apparent the well known invariance of these quantities under all the ideal MHD deformations that preserve the positions of the footpoints on S. They express indeed h and H either in terms of {M} and {B}n, or in terms of the values on S of a pair of Euler potentials of {B}. We next show that, for a specific choice of {{C}}r, the field line helicity h of {B} fully characterizes the magnetic mapping {M} and then the topology of the lines. Finally, we give a formula that describes the rate of change of h in a situation where the plasma moves on the perfectly conducting boundary S without changing {B}n and/or non-ideal processes, described by an unspecified term {N} in Ohm’s law, are at work in some parts of D.

  6. Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture

    Science.gov (United States)

    Lindquist, Nathan C.; Johnson, Timothy W.; Nagpal, Prashant; Norris, David J.; Oh, Sang-Hyun

    2013-05-01

    We demonstrate the design, fabrication and characterization of a near-field plasmonic nanofocusing probe with a hybrid tip-plus-aperture design. By combining template stripping with focused ion beam lithography, a variety of aperture-based near-field probes can be fabricated with high optical performance. In particular, the combination of large transmission through a C-shaped aperture aligned to the sharp apex (<10 nm radius) of a template-stripped metallic pyramid allows the efficient delivery of light--via the C-shaped aperture--while providing a nanometric hotspot determined by the sharpness of the tip itself.

  7. Magnetoelastic coupling as a source of shape dependence of AFMR spectra

    International Nuclear Information System (INIS)

    Gomonay, H.V.; Loktev, V.M.; Kornienko, E.G.

    2005-01-01

    We study the possible influence of the crystal shape on AFMR spectra in the framework of a phenomenological theory with regard for the destressing energy. It is shown that, for the crystals with strong magnetoelastic coupling, the crystal shape may be a source of artificial anisotropy of the magnetoelastic nature. The shape induced anisotropy may be greater than the bare magnetic anisotropy of a crystal. If this is the case, he gap in AFMR spectra must be sensitive to the orientation of an external magnetic field

  8. Non-Axisymmetric Shaping of Tokamaks Preserving Quasi-Axisymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Long-Poe Ku and Allen H. Boozer

    2009-06-05

    If quasi-axisymmetry is preserved, non-axisymmetric shaping can be used to design tokamaks that do not require current drive, are resilient to disruptions, and have robust plasma stability without feedback. Suggestions for addressing the critical issues of tokamaks can only be validated when presented with sufficient specificity that validating experiments can be designed. The purpose of this paper is provide that specificity for non-axisymmetric shaping. To our knowledge, no other suggestions for the solution of a number of tokamak issues, such as disruptions, have reached this level of specificity. Sequences of three-field-period quasi-axisymmetric plasmas are studied. These sequences address the questions: (1) What can be achieved at various levels of non-axisymmetric shaping? (2) What simplifications to the coils can be achieved by going to a larger aspect ratio? (3) What range of shaping can be achieved in a single experimental facility? The sequences of plasmas found in this study provide a set of interesting and potentially important configurations.

  9. Dose distributions of x-ray fields as shaped with multileaf collimators

    International Nuclear Information System (INIS)

    Zhu, Y.; Boyer, A.L.; Desobry, G.E.

    1992-01-01

    Multileaf collimators (MLC) with various blade widths were simulated using standard cerrobend blocks, and three-dimensional dose computations were carried out to study the resultant radiation field edges. The study suggests that multileaf collimation to the outside of the desired field edge will lead to overdose outside the field, whereas multileaf collimation to the inside of the desired field edge will lead to underdose inside the field. When the direction of travel of the leaves with respect to the field edge is near 45 o , the 50% isodose of a multileaf-collimated beam will fall close to the desired edge with no underdose when the leaf corners are allowed to insert into the desired field edge by 1.2 mm for 6 MV x-rays and 1.4 mm for 18 MV x-rays using a 1 cm wide leaf. These blade offsets account for the scattering of photons and electrons in the medium within the penumbral region. (author)

  10. Relating the archetypes of logarithmic conformal field theory

    International Nuclear Information System (INIS)

    Creutzig, Thomas; Ridout, David

    2013-01-01

    Logarithmic conformal field theory is a rich and vibrant area of modern mathematical physics with well-known applications to both condensed matter theory and string theory. Our limited understanding of these theories is based upon detailed studies of various examples that one may regard as archetypal. These include the c=−2 triplet model, the Wess–Zumino–Witten model on SL(2;R) at level k=−1/2 , and its supergroup analogue on GL(1|1). Here, the latter model is studied algebraically through representation theory, fusion and modular invariance, facilitating a subsequent investigation of its cosets and extended algebras. The results show that the archetypes of logarithmic conformal field theory are in fact all very closely related, as are many other examples including, in particular, the SL(2|1) models at levels 1 and −1/2 . The conclusion is then that the archetypal examples of logarithmic conformal field theory are practically all the same, so we should not expect that their features are in any way generic. Further archetypal examples must be sought

  11. Relating the archetypes of logarithmic conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Creutzig, Thomas, E-mail: tcreutzig@mathematik.tu-darmstadt.de [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB 3255, Chapel Hill, NC 27599-3255 (United States); Fachbereich Mathematik, Technische Universität Darmstadt, Schloßgartenstraße 7, 64289 Darmstadt (Germany); Ridout, David, E-mail: david.ridout@anu.edu.au [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200 (Australia)

    2013-07-21

    Logarithmic conformal field theory is a rich and vibrant area of modern mathematical physics with well-known applications to both condensed matter theory and string theory. Our limited understanding of these theories is based upon detailed studies of various examples that one may regard as archetypal. These include the c=−2 triplet model, the Wess–Zumino–Witten model on SL(2;R) at level k=−1/2 , and its supergroup analogue on GL(1|1). Here, the latter model is studied algebraically through representation theory, fusion and modular invariance, facilitating a subsequent investigation of its cosets and extended algebras. The results show that the archetypes of logarithmic conformal field theory are in fact all very closely related, as are many other examples including, in particular, the SL(2|1) models at levels 1 and −1/2 . The conclusion is then that the archetypal examples of logarithmic conformal field theory are practically all the same, so we should not expect that their features are in any way generic. Further archetypal examples must be sought.

  12. An examination of flame shape related to convection heat transfer in deep-fuel beds

    Science.gov (United States)

    Kara M. Yedinak; Jack D. Cohen; Jason M. Forthofer; Mark A. Finney

    2010-01-01

    Fire spread through a fuel bed produces an observable curved combustion interface. This shape has been schematically represented largely without consideration for fire spread processes. The shape and dynamics of the flame profile within the fuel bed likely reflect the mechanisms of heat transfer necessary for the pre-heating and ignition of the fuel during fire spread....

  13. Study of the Vertical Magnetic Field in Face-on Galaxies Using Faraday Tomography

    Science.gov (United States)

    Ideguchi, Shinsuke; Tashiro, Yuichi; Akahori, Takuya; Takahashi, Keitaro; Ryu, Dongsu

    2017-07-01

    Faraday tomography allows astronomers to probe the distribution of the magnetic field along the line of sight (LOS), but that can be achieved only after the Faraday spectrum is interpreted. However, the interpretation is not straightforward, mainly because the Faraday spectrum is complicated due to a turbulent magnetic field; it ruins the one-to-one relation between the Faraday depth and the physical depth, and appears as many small-scale features in the Faraday spectrum. In this paper, by employing “simple toy models” for the magnetic field, we describe numerically as well as analytically the characteristic properties of the Faraday spectrum. We show that the Faraday spectrum along “multiple LOSs” can be used to extract the global properties of the magnetic field. Specifically, considering face-on spiral galaxies and modeling turbulent magnetic field as a random field with a single coherence length, we numerically calculate the Faraday spectrum along a number of LOSs and its shape-characterizing parameters, that is, the moments. When multiple LOSs cover a region of ≳(10 coherence length)2, the shape of the Faraday spectrum becomes smooth and the shape-characterizing parameters are well specified. With the Faraday spectrum constructed as a sum of Gaussian functions with different means and variances, we analytically show that the parameters are expressed in terms of the regular and turbulent components of the LOS magnetic field and the coherence length. We also consider the turbulent magnetic field modeled with a power-law spectrum, and study how the magnetic field is revealed in the Faraday spectrum. Our work suggests a way to obtain information on the magnetic field from a Faraday tomography study.

  14. Study of the Vertical Magnetic Field in Face-on Galaxies Using Faraday Tomography

    International Nuclear Information System (INIS)

    Ideguchi, Shinsuke; Ryu, Dongsu; Tashiro, Yuichi; Takahashi, Keitaro; Akahori, Takuya

    2017-01-01

    Faraday tomography allows astronomers to probe the distribution of the magnetic field along the line of sight (LOS), but that can be achieved only after the Faraday spectrum is interpreted. However, the interpretation is not straightforward, mainly because the Faraday spectrum is complicated due to a turbulent magnetic field; it ruins the one-to-one relation between the Faraday depth and the physical depth, and appears as many small-scale features in the Faraday spectrum. In this paper, by employing “simple toy models” for the magnetic field, we describe numerically as well as analytically the characteristic properties of the Faraday spectrum. We show that the Faraday spectrum along “multiple LOSs” can be used to extract the global properties of the magnetic field. Specifically, considering face-on spiral galaxies and modeling turbulent magnetic field as a random field with a single coherence length, we numerically calculate the Faraday spectrum along a number of LOSs and its shape-characterizing parameters, that is, the moments. When multiple LOSs cover a region of ≳(10 coherence length) 2 , the shape of the Faraday spectrum becomes smooth and the shape-characterizing parameters are well specified. With the Faraday spectrum constructed as a sum of Gaussian functions with different means and variances, we analytically show that the parameters are expressed in terms of the regular and turbulent components of the LOS magnetic field and the coherence length. We also consider the turbulent magnetic field modeled with a power-law spectrum, and study how the magnetic field is revealed in the Faraday spectrum. Our work suggests a way to obtain information on the magnetic field from a Faraday tomography study.

  15. Electric-field enhanced performance in catalysis and solid-state devices involving gases

    Science.gov (United States)

    Blackburn, Bryan M.; Wachsman, Eric D.; Van Assche, IV, Frederick Martin

    2015-05-19

    Electrode configurations for electric-field enhanced performance in catalysis and solid-state devices involving gases are provided. According to an embodiment, electric-field electrodes can be incorporated in devices such as gas sensors and fuel cells to shape an electric field provided with respect to sensing electrodes for the gas sensors and surfaces of the fuel cells. The shaped electric fields can alter surface dynamics, system thermodynamics, reaction kinetics, and adsorption/desorption processes. In one embodiment, ring-shaped electric-field electrodes can be provided around sensing electrodes of a planar gas sensor.

  16. Shape-morphing composites with designed micro-architectures.

    Science.gov (United States)

    Rodriguez, Jennifer N; Zhu, Cheng; Duoss, Eric B; Wilson, Thomas S; Spadaccini, Christopher M; Lewicki, James P

    2016-06-15

    Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designed for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. The ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices.

  17. Power and momentum relations in rotating magnetic field current drive

    Energy Technology Data Exchange (ETDEWEB)

    Hugrass, W N [Flinders Univ. of South Australia, Bedford Park. School of Physical Sciences

    1984-01-01

    The use of rotating magnetic fields (RMF) to drive steady currents in plasmas involves a transfer of energy and angular momentum from the radio frequency source feeding the rotating field coils to the plasma. The power-torque relationships in RMF systems are discussed and the analogy between RMF current drive and the polyphase induction motor is explained. The general relationship between the energy and angular momentum transfer is utilized to calculate the efficiency of the RMF plasma current drive. It is found that relatively high efficiencies can be achieved in RMF current drive because of the low phase velocity and small slip between the rotating field and the electron fluid.

  18. Body size and allometric variation in facial shape in children.

    Science.gov (United States)

    Larson, Jacinda R; Manyama, Mange F; Cole, Joanne B; Gonzalez, Paula N; Percival, Christopher J; Liberton, Denise K; Ferrara, Tracey M; Riccardi, Sheri L; Kimwaga, Emmanuel A; Mathayo, Joshua; Spitzmacher, Jared A; Rolian, Campbell; Jamniczky, Heather A; Weinberg, Seth M; Roseman, Charles C; Klein, Ophir; Lukowiak, Ken; Spritz, Richard A; Hallgrimsson, Benedikt

    2018-02-01

    Morphological integration, or the tendency for covariation, is commonly seen in complex traits such as the human face. The effects of growth on shape, or allometry, represent a ubiquitous but poorly understood axis of integration. We address the question of to what extent age and measures of size converge on a single pattern of allometry for human facial shape. Our study is based on two large cross-sectional cohorts of children, one from Tanzania and the other from the United States (N = 7,173). We employ 3D facial imaging and geometric morphometrics to relate facial shape to age and anthropometric measures. The two populations differ significantly in facial shape, but the magnitude of this difference is small relative to the variation within each group. Allometric variation for facial shape is similar in both populations, representing a small but significant proportion of total variation in facial shape. Different measures of size are associated with overlapping but statistically distinct aspects of shape variation. Only half of the size-related variation in facial shape can be explained by the first principal component of four size measures and age while the remainder associates distinctly with individual measures. Allometric variation in the human face is complex and should not be regarded as a singular effect. This finding has important implications for how size is treated in studies of human facial shape and for the developmental basis for allometric variation more generally. © 2017 Wiley Periodicals, Inc.

  19. Direct-write fabrication of 4D active shape-changing behavior based on a shape memory polymer and its nanocomposite (Conference Presentation)

    Science.gov (United States)

    Wei, Hongqiu; Zhang, Qiwei; Yao, Yongtao; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Shape memory polymers (SMPs), a typical class of smart materials, have been witnessed significant advances in the past decades. Based on the unique performance to recover the initial shape after going through a shape deformation, the applications of SMPs have aroused growing interests. However, most of the researches are hindered by traditional processing technologies which limit the design space of SMPs-based structures. Three-dimension (3D) printing as an emerging technology endows design freedom to manufacture materials with complex structures. In present article, we show that by employing direct-write printing method; one can realize the printing of SMPs to achieve 4D active shape-changing structures. We first fabricated a kind of 3D printable polylactide (PLA)-based SMPs and characterized the overall properties of such materials. Results demonstrated the prepared PLA-based SMPs presenting excellent shape memory effect. In what follows, the rheological properties of such PLA-based SMP ink during printing process were discussed in detail. Finally, we designed and printed several 3D configurations for investigation. By combining 3D printing with shape memory behavior, these printed structures achieve 4D active shape-changing performance under heat stimuli. This research presents a high flexible method to realize the fabrication of SMP-based 4D active shape-changing structures, which opens the way for further developments and improvements of high-tech fields like 4D printing, soft robotics, micro-systems and biomedical devices.

  20. Shape descriptors for mode-shape recognition and model updating

    International Nuclear Information System (INIS)

    Wang, W; Mottershead, J E; Mares, C

    2009-01-01

    The most widely used method for comparing mode shapes from finite elements and experimental measurements is the Modal Assurance Criterion (MAC), which returns a single numerical value and carries no explicit information on shape features. New techniques, based on image processing (IP) and pattern recognition (PR) are described in this paper. The Zernike moment descriptor (ZMD), Fourier descriptor (FD), and wavelet descriptor (WD), presented in this article, are the most popular shape descriptors having properties that include efficiency of expression, robustness to noise, invariance to geometric transformation and rotation, separation of local and global shape features and computational efficiency. The comparison of mode shapes is readily achieved by assembling the shape features of each mode shape into multi-dimensional shape feature vectors (SFVs) and determining the distances separating them.

  1. Scalar fields and cosmic censorship hypothesis in general relativity

    International Nuclear Information System (INIS)

    Parnovs'kij, S.L.; Gajdamaka, O.Z.

    2004-01-01

    We discuss an influence of the presence of some nonstandard scalar fields in the vicinity of naked time-like singularity on the type and properties of this singularity. The main goal is to study the validity of the Penrose's Cosmic Censorship hypothesis in the General Relativity

  2. A New Solution for Einstein Field Equation in General Relativity

    Science.gov (United States)

    Mousavi, Sadegh

    2006-05-01

    There are different solutions for Einstein field equation in general relativity that they have been proposed by different people the most important solutions are Schwarzchild, Reissner Nordstrom, Kerr and Kerr Newmam. However, each one of these solutions limited to special case. I've found a new solution for Einstein field equation which is more complete than all previous ones and this solution contains the previous solutions as its special forms. In this talk I will present my new metric for Einstein field equation and the Christofel symbols and Richi and Rieman tensor components for the new metric that I have calculated them by GR TENSOR software. As a result I will determine the actual movement of black holes which is different From Kerr black hole's movement. Finally this new solution predicts, existence of a new and constant field in the nature (that nobody can found it up to now), so in this talk I will introduce this new field and even I will calculate the amount of this field. SADEGH MOUSAVI, Amirkabir University of Technology.

  3. A Simple Model of Fields Including the Strong or Nuclear Force and a Cosmological Speculation

    Directory of Open Access Journals (Sweden)

    David L. Spencer

    2016-10-01

    Full Text Available Reexamining the assumptions underlying the General Theory of Relativity and calling an object's gravitational field its inertia, and acceleration simply resistance to that inertia, yields a simple field model where the potential (kinetic energy of a particle at rest is its capacity to move itself when its inertial field becomes imbalanced. The model then attributes electromagnetic and strong forces to the effects of changes in basic particle shape. Following up on the model's assumption that the relative intensity of a particle's gravitational field is always inversely related to its perceived volume and assuming that all black holes spin, may create the possibility of a cosmic rebound where a final spinning black hole ends with a new Big Bang.

  4. An Application of Artificial Intelligence for the Joint Estimation of Amplitude and Two-Dimensional Direction of Arrival of Far Field Sources Using 2-L-Shape Array

    Directory of Open Access Journals (Sweden)

    Fawad Zaman

    2013-01-01

    Full Text Available An easy and efficient approach, based on artificial intelligence technique, is proposed to jointly estimate the amplitude, elevation, and azimuth angles of far field sources impinging on 2-L-shape array. In these proposed artificial intelligence techniques, the metaheuristics based on genetic algorithm and simulated annealing are used as global optimizers assisted with rapid local version of pattern search for optimization of the adaptive parameters. The performance metric is employed on a fitness evaluation function depending on mean square error which is optimum and requires single snapshot to converge. The proposed approaches are easy to understand, and simple to implement; the genetic algorithm specifically hybridized with pattern search generates fairly good results. The comparison of the given schemes is carried out with 1-L-shape array, as well as, with parallel-shape array and is found to be in good agreement in terms of accuracy, convergence rate, computational complexity, and mean square error. The effectiveness and efficiency of the given schemes are examined through Monte Carlo simulations and their inclusive statistical analysis.

  5. Theoretical and experimental investigation of magnetic field related helium leak in helium vessel of a large superconducting magnet

    Science.gov (United States)

    Bhattachryya, Pranab; Gupta, Anjan Dutta; Dhar, S.; Sarma, P. R.; Mukherjee, Paramita

    2017-06-01

    The helium vessel of the superconducting cyclotron (SCC) at the Variable Energy Cyclotron centre (VECC), Kolkata shows a gradual loss of insulation vacuum from 10-7 mbar to 10-4 mbar with increasing coil current in the magnet. The insulation vacuum restores back to its initial value with the withdrawal of current. The origin of such behavior has been thought to be related to the electromagnetic stress in the magnet. The electromagnetic stress distribution in the median plane of the helium vessel was studied to figure out the possible location of the helium leak. The stress field from the possible location was transferred to a simplified 2D model with different leak geometries to study the changes in conductance with coil current. The leak rate calculated from the changes in the leak geometry was compared with the leak rate calculated from the experimental insulation vacuum degradation behavior to estimate the initial leak shape and size.

  6. Beam shaping to provide round and square-shaped beams in optical systems of high-power lasers

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim

    2016-05-01

    Optical systems of modern high-power lasers require control of irradiance distribution: round or square-shaped flat-top or super-Gaussian irradiance profiles are optimum for amplification in MOPA lasers and for thermal load management while pumping of crystals of solid-state ultra-short pulse lasers to control heat and minimize its impact on the laser power and beam quality while maximizing overall laser efficiency, variable profiles are also important in irradiating of photocathode of Free Electron lasers (FEL). It is suggested to solve the task of irradiance re-distribution using field mapping refractive beam shapers like piShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flat-top one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with ultra-short pulse lasers having broad spectrum. Using the same piShaper device it is possible to realize beams with flat-top, inverse Gauss or super Gauss irradiance distribution by simple variation of input beam diameter, and the beam shape can be round or square with soft edges. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying in optical systems of high-power lasers. Examples of real implementations and experimental results will be presented as well.

  7. Robust estimation of seismic coda shape

    Science.gov (United States)

    Nikkilä, Mikko; Polishchuk, Valentin; Krasnoshchekov, Dmitry

    2014-04-01

    We present a new method for estimation of seismic coda shape. It falls into the same class of methods as non-parametric shape reconstruction with the use of neural network techniques where data are split into a training and validation data sets. We particularly pursue the well-known problem of image reconstruction formulated in this case as shape isolation in the presence of a broadly defined noise. This combined approach is enabled by the intrinsic feature of seismogram which can be divided objectively into a pre-signal seismic noise with lack of the target shape, and the remainder that contains scattered waveforms compounding the coda shape. In short, we separately apply shape restoration procedure to pre-signal seismic noise and the event record, which provides successful delineation of the coda shape in the form of a smooth almost non-oscillating function of time. The new algorithm uses a recently developed generalization of classical computational-geometry tool of α-shape. The generalization essentially yields robust shape estimation by ignoring locally a number of points treated as extreme values, noise or non-relevant data. Our algorithm is conceptually simple and enables the desired or pre-determined level of shape detail, constrainable by an arbitrary data fit criteria. The proposed tool for coda shape delineation provides an alternative to moving averaging and/or other smoothing techniques frequently used for this purpose. The new algorithm is illustrated with an application to the problem of estimating the coda duration after a local event. The obtained relation coefficient between coda duration and epicentral distance is consistent with the earlier findings in the region of interest.

  8. Exploiting Affine Invariant Regions and Leaf Edge Shapes for Weed Detection

    DEFF Research Database (Denmark)

    Kazmi, Wajahat; Ruiz, Francisco Garcia; Nielsen, Jon

    2015-01-01

    . Then a comparison with the field data retrieval highlighted the trade-off due to the field challenges. Adopting a comprehensive approach, edge shape detectors and homogeneous surface detecting affine invariant regions were fused. In order to integrate vegetation indices as local features, a new local vegetation...

  9. Ring-shaped functions and Wigner 6j-symbols

    International Nuclear Information System (INIS)

    Mardoyan, L.G.; Erevanskij Gosudarstvennyj Univ., Erevan

    2006-01-01

    The explicit expression for the ring-shaped matrix connecting the ring-shaped functions relating to different values of the axial parameter is obtained. The connection of this matrix with Wigner 6j-symbols is found out. The motion of quantum particle in the ring-shaped model with the zero priming potential is investigated. The bases of this model, which are factored in spherical cylindrical coordinates, are obtained. The formula generalizing the Rayleigh expansion of a plane wave with respect to spherical waves in the ring-shaped model is deduced [ru

  10. High Accelerating Field Superconducting Radio Frequency Cavities

    Science.gov (United States)

    Orr, R. S.; Saito, K.; Furuta, F.; Saeki, T.; Inoue, H.; Morozumi, Y.; Higo, T.; Higashi, Y.; Matsumoto, H.; Kazakov, S.; Yamaoka, H.; Ueno, K.; Sato, M.

    2008-06-01

    We have conducted a study of a series of single cell superconducting RF cavities at KEK. These tests were designed to investigate the effect of surface treatment on the maximum accelerating field attainable. All of these cavities are of the ICHIRO shape, based on the Low Loss shape. Our results indicate that accelerating fields as high as the theoretical maximum of 50MV/m are attainable.

  11. A Bidirectional Subsurface Remote Sensing Reflectance Model Explicitly Accounting for Particle Backscattering Shapes

    Science.gov (United States)

    He, Shuangyan; Zhang, Xiaodong; Xiong, Yuanheng; Gray, Deric

    2017-11-01

    The subsurface remote sensing reflectance (rrs, sr-1), particularly its bidirectional reflectance distribution function (BRDF), depends fundamentally on the angular shape of the volume scattering functions (VSFs, m-1 sr-1). Recent technological advancement has greatly expanded the collection, and the knowledge of natural variability, of the VSFs of oceanic particles. This allows us to test the Zaneveld's theoretical rrs model that explicitly accounts for particle VSF shapes. We parameterized the rrs model based on HydroLight simulations using 114 VSFs measured in three coastal waters around the United States and in oceanic waters of North Atlantic Ocean. With the absorption coefficient (a), backscattering coefficient (bb), and VSF shape as inputs, the parameterized model is able to predict rrs with a root mean square relative error of ˜4% for solar zenith angles from 0 to 75°, viewing zenith angles from 0 to 60°, and viewing azimuth angles from 0 to 180°. A test with the field data indicates the performance of our model, when using only a and bb as inputs and selecting the VSF shape using bb, is comparable to or slightly better than the currently used models by Morel et al. and Lee et al. Explicitly expressing VSF shapes in rrs modeling has great potential to further constrain the uncertainty in the ocean color studies as our knowledge on the VSFs of natural particles continues to improve. Our study represents a first effort in this direction.

  12. Eye gaze tracking based on the shape of pupil image

    Science.gov (United States)

    Wang, Rui; Qiu, Jian; Luo, Kaiqing; Peng, Li; Han, Peng

    2018-01-01

    Eye tracker is an important instrument for research in psychology, widely used in attention, visual perception, reading and other fields of research. Because of its potential function in human-computer interaction, the eye gaze tracking has already been a topic of research in many fields over the last decades. Nowadays, with the development of technology, non-intrusive methods are more and more welcomed. In this paper, we will present a method based on the shape of pupil image to estimate the gaze point of human eyes without any other intrusive devices such as a hat, a pair of glasses and so on. After using the ellipse fitting algorithm to deal with the pupil image we get, we can determine the direction of the fixation by the shape of the pupil.The innovative aspect of this method is to utilize the new idea of the shape of the pupil so that we can avoid much complicated algorithm. The performance proposed is very helpful for the study of eye gaze tracking, which just needs one camera without infrared light to know the changes in the shape of the pupil to determine the direction of the eye gazing, no additional condition is required.

  13. Acceleration of auroral particles by magnetic-field aligned electric fields

    International Nuclear Information System (INIS)

    Block, L.P.

    1988-01-01

    Measurements on the S3-3 and Viking satellites appear to show that at least a large fraction of magnetic field-aligned potential drops are made up of multiple double layers. Solitons and double layers in U-shaped potential structures give rise to spiky electric fields also perpendicular to the magnetic field in agreement with satellite measurements. The large scale potential structures associated with inverted V-events are built up of many similar short-lived structures on a small scale. Viking measurements indicate that electric fields parallel to the magnetic field are almost always directed upward

  14. A novel polyethylene microfiltration membrane with highly permeable ordered ‘wine bottle’ shaped through-pore structure fabricated via imprint and thermal field induction

    International Nuclear Information System (INIS)

    Fan, Fan; Wang, Lanlan; Jiang, Weitao; Chen, Bangdao; Liu, Hongzhong

    2016-01-01

    A novel microfiltration membrane with ordered ‘wine bottle’ shaped through-pores from inexpensive thermoplastic linear low-density polyethylene (LLDPE) was fabricated via imprint and thermal field induction. At 110 °C, a softened bilayer with a top LLDPE film on a bottom polymer buffer layer was imprinted by a silicon micropillar array template. Under an optimized imprint pressure of 1.4 MPa, the micropillars penetrated through the LLDPE film and into the buffer layer, forming cylindrical through-pores (pore diameter: 2 μm) in the LLDPE film without damaging the template. The establishment of this bilayer can effectively avoid the problem of residual layer which usually exists in conventional single-layer imprints and hinders the formation of perforation. After the imprint, the LLDPE membrane laid flat on a smooth glass substrate was heated in a homogeneous thermal field of 140 °C and melted. The melt can spread over the substrate, inducing the shrinkage of pores. With the increase of heating time, the shrinkage of the membrane top versus bottom surface and the change of membrane thickness and porosity were studied. At 90 s, a thin membrane with ordered ‘wine bottle’ shaped through-pores (pore size: 1 μm on the top surface and 450 nm on the bottom surface) can be achieved. The experimental results of pure-water permeation and the separation of bacteria–water and oil–water have demonstrated the excellent performance of the membrane. (paper)

  15. Strategies for the plasma position and shape control in IGNITOR

    International Nuclear Information System (INIS)

    Villone, F.; Albanese, R.; Ambrosino, G.; Pironti, A.; Rubinacci, G.; Ramogida, G.; Alladio, F.; Bombarda, F.; Coletti, A.; Cucchiaro, A.; Maddaluno, G.; Pizzicaroli, G.; Pizzuto, A.; Roccella, M.; Santinelli, M.; Coppi, B.

    2007-01-01

    The capability of the poloidal field coil system, as presently designed, to provide an effective vertical stabilization of the plasma in the IGNITOR machine has been investigated using the CREATE L response model. An optimization of the vertical position control strategy has been carried out and the most effective coil combination has been selected to stabilize the plasma while fulfilling engineering constraints on the coils and minimizing the required power and voltage. The growth rate of the vertical instability and the power required by the active stabilization system has been estimated with this model. The possible failure of the relevant electromagnetic diagnostics has been taken into account, evaluating the robustness of the plasma position reconstruction strategy. A realistic description of the power supply system has permitted to carry out the optimization of the proportional-integrative-derivative (PID) controller, both with a voltage and a current loop control scheme. An assessment of the requirements for the plasma cross section shape control has been carried out considering perturbations of the plasma global parameters independent of each other and showing that the undesired shape modification rejection is possible with the present PFC and power supply system. The PF coils have been rated relative to their capability to restore shape modifications due to different plasma disturbances. The most effective coil combination, that minimizes recovery time and voltage required, has been identified

  16. ACCURACY RESEARCH OF THE DIAMETRICAL SIZES FORMING AT GEAR SHAPING BY STEPPED CUTTER

    Directory of Open Access Journals (Sweden)

    N. M. Rasulov

    2015-09-01

    Full Text Available The paper presents research results of forming accuracy for diametrical sizes at gear shaping with stepped cutter and the traditional method. Analysis of static technological dimensional pitch size chain of wheels being cut is performed. It was revealed that the most of transmission errors of the wheels, formed by the traditional gear-shaped cutter are caused by manufacturing and installation error of the cutter and result from the formation of each tooth of the wheel with a certain tool. This is not the case with gear shaping by step cutter since at that, the profiles of all gear teeth are formed by means of tooth profile mostly remote from the tool rotation axis. Analysis of occurrence of setting-up errors typical for the above gear shaping methods has been performed. At gear shaping with stepped cutter there are no setting-up error components. It was revealed that this fact causes the absence of errors in the tool position before its each double motion. The accuracy of diametrical sizes increases. Formation mechanism of tool installation errors and workpiece are also given and their analysis is presented. Findings in the field of gear shaping with stepped cutter comply with results of research carried out by the other authors in the field of traditional gear shaping.

  17. Visualizing special relativity: the field of an electric dipole moving at relativistic speed

    International Nuclear Information System (INIS)

    Smith, Glenn S

    2011-01-01

    The electromagnetic field is determined for a time-varying electric dipole moving with a constant velocity that is parallel to its moment. Graphics are used to visualize this field in the rest frame of the dipole and in the laboratory frame when the dipole is moving at relativistic speed. Various phenomena from special relativity are clearly illustrated by these graphics and explained with simple calculations; these include the constancy of the speed of light in inertial frames, the Doppler effect, the headlight effect, and the concentration of field lines. In addition, the energy and linear momentum of the radiated field are determined and shown to satisfy the transformation and invariance required by special relativity.

  18. Principles of shape from specular reflection

    KAUST Repository

    Balzer, Jonathan

    2010-12-01

    The reconstruction of (partially) specular object by means of deflectometric methods is a challenging task. It has a long and fairly branched history within the metrology and machine vision communities. We are not aware of any scientific publication surveying the state of the art in a unifying manner and thus stimulating further research. This contribution is intended to close this gap, bringing together prominent ideas from both fields. In avoidance of unnecessary technicality, we lay out the basic theory, including all known forward models of the reflection process. The corresponding inverse problem is ill-posed, so that special emphasis is put on the question of regularization. We embed some novel results on the uniqueness problem and the effectiveness of regularization approaches. Also an overview of numerical methods related to Shape from Specular Reflection is given. For the sake of completeness, we share some thoughts on the construction of an actual measurement system and discuss a practical example. © 2010 Elsevier Ltd. All rights reserved.

  19. Non-Abelian gauge field theory in scale relativity

    International Nuclear Information System (INIS)

    Nottale, Laurent; Celerier, Marie-Noeelle; Lehner, Thierry

    2006-01-01

    Gauge field theory is developed in the framework of scale relativity. In this theory, space-time is described as a nondifferentiable continuum, which implies it is fractal, i.e., explicitly dependent on internal scale variables. Owing to the principle of relativity that has been extended to scales, these scale variables can themselves become functions of the space-time coordinates. Therefore, a coupling is expected between displacements in the fractal space-time and the transformations of these scale variables. In previous works, an Abelian gauge theory (electromagnetism) has been derived as a consequence of this coupling for global dilations and/or contractions. We consider here more general transformations of the scale variables by taking into account separate dilations for each of them, which yield non-Abelian gauge theories. We identify these transformations with the usual gauge transformations. The gauge fields naturally appear as a new geometric contribution to the total variation of the action involving these scale variables, while the gauge charges emerge as the generators of the scale transformation group. A generalized action is identified with the scale-relativistic invariant. The gauge charges are the conservative quantities, conjugates of the scale variables through the action, which find their origin in the symmetries of the ''scale-space.'' We thus found in a geometric way and recover the expression for the covariant derivative of gauge theory. Adding the requirement that under the scale transformations the fermion multiplets and the boson fields transform such that the derived Lagrangian remains invariant, we obtain gauge theories as a consequence of scale symmetries issued from a geometric space-time description

  20. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: Microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Baufeld, Bernd; Biest, Omer Van der; Gault, Rosemary

    2010-01-01

    Shaped metal deposition (SMD) is a relatively new technology of additive manufacturing, which creates near-net shaped components by additive manufacture utilizing tungsten inert gas welding. Especially for Ti alloys, which are difficult to shape by traditional methods and for which the loss of material during machining is also very costly, SMD has great advantages. In the case of Ti-6Al-4V the dense SMD components exhibit large, columnar prior β grains, with a Widmanstaetten α/β microstructure. These prior β grains are slightly tilted in a direction following the temperature field resulting from the moving welding torch. The ultimate tensile strength is between 929 and 1014 MPa, depending on orientation and location of the tensile specimens. Tensile testing vertically to the deposition layers exhibits a strain at failure of 16 ± 3%, while testing parallel to the layers gives a lower value of about 9%.

  1. A jumping shape memory alloy under heat.

    Science.gov (United States)

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-02-16

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L2(1) parent before deformation, the 2H martensite stress-induced from L2(1) parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.

  2. Characterization of plasma parameters in shaped PBX-M discharges

    Science.gov (United States)

    England, A. C.; Bell, R. E.; Hirshman, S. P.; Kaita, R.; Kugel, H. W.; LeBlanc, B. L.; Lee, D. K.; Okabayashi, M.; Sun, Y.-C.; Takahashi, H.

    1997-09-01

    The Princeton Beta Experiment-Modification (PBX-M) was run both with elliptical and with bean-shaped plasmas during the 1992 and 1993 operating periods. Two deuterium-fed neutral beams were used for auxiliary heating, and during 1992 the average power was 0741-3335/39/9/008/img13. This will be referred to as the lower neutral-beam power (LNBP) period. As many as four deuterium-fed neutral beams were used during 1993, and the average power was 0741-3335/39/9/008/img14. This will be referred to as the medium neutral-beam power (MNBP) period. The neutron source strength, Sn, showed a scaling with injected power 0741-3335/39/9/008/img15, 0741-3335/39/9/008/img16 for both the LMBP and MNBP periods. A much wider range of shaping parameters was studied during the MNBP as compared with the LNBP period. A weak positive dependence on bean shaping was observed for the LNBP, and a stronger positive dependence on shaping was observed for MNBP, viz 0741-3335/39/9/008/img17. High values of Sn were obtained in bean-shaped plasmas for the highest values of 0741-3335/39/9/008/img18 at 0741-3335/39/9/008/img19 for the LNBP. For the MNBP the highest values of Sn and stored energy were obtained at 0741-3335/39/9/008/img19, and the highest values of 0741-3335/39/9/008/img18 were obtained at 0741-3335/39/9/008/img22. The achievement of high Sn is aided by high neutral-beam power, high toroidal field, strong shaping, high electron temperature, and broad profiles. The achievement of high 0741-3335/39/9/008/img18 is aided by low toroidal field, high density, less shaping, broad profiles, and access to the H-mode, viz 0741-3335/39/9/008/img24. The achievement of high 0741-3335/39/9/008/img25 is aided by strong shaping, high density, broad profiles, and access to the H-mode, viz 0741-3335/39/9/008/img26. Some comparisons with the previous higher neutral-beam (HNBP) period in 1989 are also made.

  3. Nanomagnets with high shape anisotropy and strong crystalline anisotropy: perspectives on magnetic force microscopy

    International Nuclear Information System (INIS)

    Campanella, H; Llobet, J; Esteve, J; Plaza, J A; Jaafar, M; Vázquez, M; Asenjo, A; Del Real, R P

    2011-01-01

    We report on a new approach for magnetic imaging, highly sensitive even in the presence of external, strong magnetic fields. Based on FIB-assisted fabricated high-aspect-ratio rare-earth nanomagnets, we produce groundbreaking magnetic force tips with hard magnetic character where we combine a high aspect ratio (shape anisotropy) together with strong crystalline anisotropy (rare-earth-based alloys). Rare-earth hard nanomagnets are then FIB-integrated to silicon microcantilevers as highly sharpened tips for high-field magnetic imaging applications. Force resolution and domain reversing and recovery capabilities are at least one order of magnitude better than for conventional magnetic tips. This work opens new, pioneering research fields on the surface magnetization process of nanostructures based either on relatively hard magnetic materials—used in magnetic storage media—or on materials like superparamagnetic particles, ferro/antiferromagnetic structures or paramagnetic materials.

  4. Water-Blown Polyurethane Foams Showing a Reversible Shape-Memory Effect

    Directory of Open Access Journals (Sweden)

    Elena Zharinova

    2016-11-01

    Full Text Available Water-blown polyurethane (PU foams are of enormous technological interest as they are widely applied in various fields, i.e., consumer goods, medicine, automotive or aerospace industries. The discovery of the one-way shape-memory effect in PU foams provided a fresh impetus for extensive investigations on porous polymeric actuators over the past decades. High expansion ratios during the shape-recovery are of special interest when big volume changes are required, for example to fill an aneurysm during micro-invasive surgery or save space during transportation. However, the need to program the foams before each operation cycle could be a drawback impeding the entry of shape-memory polymeric (SMP foams to our daily life. Here, we showed that a reversible shape-memory effect (rSME is achievable for polyurethane water-blown semicrystalline foams. We selected commercially available crystallizable poly(ε-caprolactone-diols of different molecular weight for foams synthesis, followed by investigations of morphology, thermal, thermomechanical and shape-memory properties of obtained compositions. Densities of synthesized foams varied from 110 to 180 kg∙m−3, while peak melting temperatures were composition-dependent and changed from 36 to 47 °C, while the melting temperature interval was around 15 K. All semicrystalline foams exhibited excellent one-way SME with shape-fixity ratios slightly above 100% and shape-recovery ratios from the second cycle of 99%. The composition with broad distribution of molecular weights of poly(ε-caprolactone-diols exhibited an rSME of about 12% upon cyclic heating and cooling from Tlow = 10 °C and Thigh = 47 °C. We anticipate that our experimental study opens a field of systematic investigation of rSMEs in porous polymeric materials on macro and micro scale and extend the application of water-blown polyurethane foams to, e.g., protective covers with zero thermal expansion or even cushions adjustable to a certain body

  5. Linear shaped charge

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David; Stofleth, Jerome H.; Saul, Venner W.

    2017-07-11

    Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.

  6. Shape, size, and distribution of magnetic particles in Bjurbole chondrules

    Science.gov (United States)

    Nava, David F.

    1994-01-01

    Chondrules from the Bjurbole chondritic meteorite (L4) exhibit saturation remanence magnetization (SIRM) values which vary over three orders of magnitude. REM values (Natural Remanence Magnetization/SIRM) for Allende (C3V) and Chainpur (LL3) are less than 0.01 but in Bjurbole some chondrules were found to have REM values greater than 0.1 with several greater than 0.2. REM values greater than 0.1 are abnormal and cannot be acquired during weak field cooling. If exposure to a strong field (whatever the source) during the chondrules' history is responsible for the high REM values, was such history associated with a different processing which might have resulted in different shape, size, and distribution of metal particles compared to chondrules having REM values of less than 0.01? Furthermore, magnetic hysteresis results show a broad range of magnetic hardness and other intrinsic magnetic properties. These features must be related to (1) size and amount of metal; and (2) properties of, and amount of, tetrataenite in the chondrules (all chondrules thus far subjected to thermomagnetic analysis show the presence of tetrataenite). A scanning electron microscopy (SEM) study is underway to determine the relationship between the shape, size, and distribution of metal particles within individual chondrules and the magnetic properties of these chondrules. Results from the SEM study in conjunction with magnetic property data may also help to discern effects from possible lightning strikes in the nebula prior to incorporation of the chondrules into the parent body.

  7. Bayesian reconstruction of seafloor shape from side-scan sonar measurements using a Markov Random Field

    OpenAIRE

    Woock, P.; Pak, Alexey

    2014-01-01

    To explore the seafloor, a side-scan sonar emits a directed acoustic signal and then records the returning (reflected) signal intensity as a function of time. The inversion of that process is not unique: multiple shapes may lead to identical measured responses. In this work, we suggest a Bayesian approach to reconstructing the 3D shape of the seafloor from multiple sonar measurements, inspired by the state-of-the-art methods of inverse raytracing that originated in computer vision. The space ...

  8. Interactive lesion segmentation with shape priors from offline and online learning.

    Science.gov (United States)

    Shepherd, Tony; Prince, Simon J D; Alexander, Daniel C

    2012-09-01

    In medical image segmentation, tumors and other lesions demand the highest levels of accuracy but still call for the highest levels of manual delineation. One factor holding back automatic segmentation is the exemption of pathological regions from shape modelling techniques that rely on high-level shape information not offered by lesions. This paper introduces two new statistical shape models (SSMs) that combine radial shape parameterization with machine learning techniques from the field of nonlinear time series analysis. We then develop two dynamic contour models (DCMs) using the new SSMs as shape priors for tumor and lesion segmentation. From training data, the SSMs learn the lower level shape information of boundary fluctuations, which we prove to be nevertheless highly discriminant. One of the new DCMs also uses online learning to refine the shape prior for the lesion of interest based on user interactions. Classification experiments reveal superior sensitivity and specificity of the new shape priors over those previously used to constrain DCMs. User trials with the new interactive algorithms show that the shape priors are directly responsible for improvements in accuracy and reductions in user demand.

  9. A universal nonlinear relation among boundary states in closed string field theory

    International Nuclear Information System (INIS)

    Kishimoto, Isao; Matsuo, Yutaka; Watanabe, Eitoku

    2004-01-01

    We show that the boundary states satisfy a nonlinear relation (the idempotency equation) with respect to the star product of closed string field theory. This relation is universal in the sense that various D-branes, including the infinitesimally deformed ones, satisfy the same equation, including the coefficient. This paper generalizes our analysis [hep-th/0306189] in the following senses. (1) We present a background-independent formulation based on conformal field theory. It illuminates the geometric nature of the relation and allows us to more systematically analyze the variations around the D-brane background. (2) We show that the Witten-type star product satisfies a similar relation but with a more divergent coefficient. (3) We determine the coefficient of the relation analytically. The result shows that the α parameter can be formally factored out, and the relation becomes universal. We present a conjecture on vacuum theory based on this computation. (author)

  10. Universal FFM Hydrogen Spectral Line Shapes Applied to Ions and Electrons

    Science.gov (United States)

    Mossé, C.; Calisti, A.; Ferri, S.; Talin, B.; Bureyeva, L. A.; Lisitsa, V. S.

    2008-10-01

    We present a method for the calculation of hydrogen spectral line shapes based on two combined approaches: Universal Model and FFM procedure. We start with the analytical functions for the intensities of the Stark components of radiative transitions between highly excited atomic states with large values of principal quantum numbers n,n'γ1, with Δn = n-n'≪n for the specific cases of Hn-α line (Δn = 1) and Hn-β line (Δn = 2). The FFM line shape is obtained by averaging on the electric field of the Hooper's field distribution for ion and electron perturber dynamics and by mixing the Stark components with a jumping frequency rate ve (vi) where v = N1/3u (N is electron density and u is the ion or electron thermal velocity). Finally, the total line shape is given by convolution of ion and electron line shapes. Hydrogen line shape calculations for Balmer Hα and Hβ lines are compared to experimental results in low density plasma (Ne˜1016-1017cm-3) and low electron temperature in order of 10 000K. This method relying on analytic expressions permits fast calculation of Hn-α and Hn-β lines of hydrogen and could be used in the study of the Stark broadening of radio recombination lines for high principal quantum number.

  11. Atom probe field ion microscopy and related topics: A bibliography 1993

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, R.D.; Miller, M.K.; Russell, K.F.

    1994-10-01

    This bibliography, covering the period 1993, includes references related to the following topics: atom probe field ion microscopy (APFIM), field emission (FE), and field ion microscopy (FIM). Technique-oriented studies and applications are included. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references are listed alphabetically by authors, an Addendum of references missed in previous bibliographies is included.

  12. Atom probe field ion microscopy and related topics: A bibliography 1993

    International Nuclear Information System (INIS)

    Godfrey, R.D.; Miller, M.K.; Russell, K.F.

    1994-10-01

    This bibliography, covering the period 1993, includes references related to the following topics: atom probe field ion microscopy (APFIM), field emission (FE), and field ion microscopy (FIM). Technique-oriented studies and applications are included. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references are listed alphabetically by authors, an Addendum of references missed in previous bibliographies is included

  13. Open H-shaped permanent magnet structure for NMR imaging

    International Nuclear Information System (INIS)

    Nguyen, V.; Delamare, J.; Yonnet, J.P.

    1996-01-01

    Since NMR imaging at low field is now technically possible, permanent magnets can replace resistive coils or superconducting magnets. This paper reviews most of NMR structures that provide an uniform field using only permanent magnets. We propose a new open H-shaped structure that is simple to manufacture. This structure has been calculated thanks to an optimization program and a calculation method we presente here. It enables to determine with a good accuracy the field created by passive systems composed by permanent magnets and ferromagnetic materials. (author)

  14. readShape

    International Nuclear Information System (INIS)

    Zitniak, J.; Pargac, M.

    2005-01-01

    In the Slovak Environmental Agency during relative short time originated the first version of software product using of GPS technology for monitoring of negative phenomena in nature. It was denominated as readShape and its primary goal is to minister for conservator of environment geographically strictly to observe endangered territories as are, for example, fire, fish kill, impact of motor vehicle accident or dangerous objects as are illegal stock-piles, wastes and other. Process of monitoring is described

  15. Statistical shape analysis with applications in R

    CERN Document Server

    Dryden, Ian L

    2016-01-01

    A thoroughly revised and updated edition of this introduction to modern statistical methods for shape analysis Shape analysis is an important tool in the many disciplines where objects are compared using geometrical features. Examples include comparing brain shape in schizophrenia; investigating protein molecules in bioinformatics; and describing growth of organisms in biology. This book is a significant update of the highly-regarded `Statistical Shape Analysis’ by the same authors. The new edition lays the foundations of landmark shape analysis, including geometrical concepts and statistical techniques, and extends to include analysis of curves, surfaces, images and other types of object data. Key definitions and concepts are discussed throughout, and the relative merits of different approaches are presented. The authors have included substantial new material on recent statistical developments and offer numerous examples throughout the text. Concepts are introduced in an accessible manner, while reta...

  16. Atomic-structure effects in strong-field multiphoton detachment and ionization

    International Nuclear Information System (INIS)

    AAberg, T.; Mu, X.; Ruscheinski, J.; Crasemann, B.

    1994-01-01

    Above-threshold photoelectron detachment and ionization spectra are investigated theoretically in the tunneling and over-barrier regime as a function of wavelength (≥ 1.064 μm) and polarization of the electromagnetic field. It is found that the zeros in the initial-state wave function can drastically affect the shape of the high-energy photoelectron distribution. The phenomenon is not predicted by tunneling and related models and hence can test their validity and reveal whether Keldysh-type theories are in general applicable to strong-field multiphoton dynamics. (orig.)

  17. Monte Carlo study of dynamic phase transition in Ising metamagnet driven by oscillating magnetic field

    International Nuclear Information System (INIS)

    Acharyya, Muktish

    2011-01-01

    The dynamical responses of Ising metamagnet (layered antiferromagnet) in the presence of a sinusoidally oscillating magnetic field are studied by Monte Carlo simulation. The time average staggered magnetisation plays the role of dynamic order parameter. A dynamical phase transition was observed and a phase diagram was plotted in the plane formed by field amplitude and temperature. The dynamical phase boundary is observed to shrink inward as the relative antiferromagnetic strength decreases. The results are compared with that obtained from pure ferromagnetic system. The shape of dynamic phase boundary observed to be qualitatively similar to that obtained from previous meanfield calculations. - Highlights: → The time average staggered magnetisation plays the role of dynamic order parameter. → A dynamical phase transition was observed and a phase diagram was plotted in the plane formed by field amplitude and temperature. → The dynamical phase boundary is observed to shrink inward as the relative antiferromagnetic strength decreases. → The results are compared with that obtained from pure ferromagnetic system. → The shape of dynamic phase boundary observed to be qualitatively similar to that obtained from previous meanfield calculation.

  18. Aging changes in body shape

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003998.htm Aging changes in body shape To use the sharing ... and both sexes. Height loss is related to aging changes in the bones, muscles, and joints. People ...

  19. Optimization on the end-shaping of a quadrupole magnet

    International Nuclear Information System (INIS)

    Kumada, M.; Sasaki, H.; Someya, H.; Sakai, I.

    1983-01-01

    In order to achieve the widest possible aperture of accelerator magnets, end-shaping is a well known method. To do this one has to deal with the three-dimensional fringe field inherent to each geometry. This may be done experimentally by a cut-and-try method or theoretically by a three-dimensional computer code. In any case, considerable time has to be consumed if one wants to get a conclusion which is as general as possible and which is useful in designing magnets. Fringe field optimization on the end-shaping of the conventional quadrupole magnet was done by a cut-and-try method, where a very simple geometry of the end pole was chosen to get a general conclusion. The 'cut-out ratio diagram' given as a conclusion is useful to designers of the conventional quadrupole magnet. (orig.)

  20. Margins of freedom: a field-theoretic approach to class-based health dispositions and practices.

    Science.gov (United States)

    Burnett, Patrick John; Veenstra, Gerry

    2017-09-01

    Pierre Bourdieu's theory of practice situates social practices in the relational interplay between experiential mental phenomena (habitus), resources (capitals) and objective social structures (fields). When applied to class-based practices in particular, the overarching field of power within which social classes are potentially made manifest is the primary field of interest. Applying relational statistical techniques to original survey data from Toronto and Vancouver, Canada, we investigated whether smoking, engaging in physical activity and consuming fruit and vegetables are dispersed in a three-dimensional field of power shaped by economic and cultural capitals and cultural dispositions and practices. We find that aesthetic dispositions and flexibility of developing and established dispositions are associated with positioning in the Canadian field of power and embedded in the logics of the health practices dispersed in the field. From this field-theoretic perspective, behavioural change requires the disruption of existing relations of harmony between the habitus of agents, the fields within which the practices are enacted and the capitals that inform and enforce the mores and regularities of the fields. The three-dimensional model can be explored at: http://relational-health.ca/margins-freedom. © 2017 Foundation for the Sociology of Health & Illness.