WorldWideScience

Sample records for relative emission intensities

  1. Modeling of energy consumption and related GHG (greenhouse gas) intensity and emissions in Europe using general regression neural networks

    International Nuclear Information System (INIS)

    Antanasijević, Davor; Pocajt, Viktor; Ristić, Mirjana; Perić-Grujić, Aleksandra

    2015-01-01

    This paper presents a new approach for the estimation of energy-related GHG (greenhouse gas) emissions at the national level that combines the simplicity of the concept of GHG intensity and the generalization capabilities of ANNs (artificial neural networks). The main objectives of this work includes the determination of the accuracy of a GRNN (general regression neural network) model applied for the prediction of EC (energy consumption) and GHG intensity of energy consumption, utilizing general country statistics as inputs, as well as analysis of the accuracy of energy-related GHG emissions obtained by multiplying the two aforementioned outputs. The models were developed using historical data from the period 2004–2012, for a set of 26 European countries (EU Members). The obtained results demonstrate that the GRNN GHG intensity model provides a more accurate prediction, with the MAPE (mean absolute percentage error) of 4.5%, than tested MLR (multiple linear regression) and second-order and third-order non-linear MPR (multiple polynomial regression) models. Also, the GRNN EC model has high accuracy (MAPE = 3.6%), and therefore both GRNN models and the proposed approach can be considered as suitable for the calculation of GHG emissions. The energy-related predicted GHG emissions were very similar to the actual GHG emissions of EU Members (MAPE = 6.4%). - Highlights: • ANN modeling of GHG intensity of energy consumption is presented. • ANN modeling of energy consumption at the national level is presented. • GHG intensity concept was used for the estimation of energy-related GHG emissions. • The ANN models provide better results in comparison with conventional models. • Forecast of GHG emissions for 26 countries was made successfully with MAPE of 6.4%

  2. Does uncertainty justify intensity emission caps?

    International Nuclear Information System (INIS)

    Quirion, Philippe

    2005-01-01

    Environmental policies often set 'relative' or 'intensity' emission caps, i.e. emission limits proportional to the polluting firm's output. One of the arguments put forth in favour of relative caps is based on the uncertainty on business-as-usual output: if the firm's production level is higher than expected, so will be business-as-usual emissions, hence reaching a given level of emissions will be more costly than expected. As a consequence, it is argued, a higher emission level should be allowed if the production level is more important than expected. We assess this argument with a stochastic analytical model featuring two random variables: the business-as-usual emission level, proportional to output, and the slope of the marginal abatement cost curve. We compare the relative cap to an absolute cap and to a price instrument, in terms of welfare impact. It turns out that in most plausible cases, either a price instrument or an absolute cap yields a higher expected welfare than a relative cap. Quantitatively, the difference in expected welfare is typically very small between the absolute and the relative cap but may be significant between the relative cap and the price instrument. (author)

  3. Relative emissions intensity of dairy production systems: employing different functional units in life-cycle assessment.

    Science.gov (United States)

    Ross, S A; Topp, C F E; Ennos, R A; Chagunda, M G G

    2017-08-01

    This study aimed to assess the merit and suitability of individual functional units (FU) in expressing greenhouse gas emissions intensity in different dairy production systems. An FU provides a clearly defined and measurable reference to which input and output data are normalised. This enables the results from life-cycle assessment (LCA) of different systems to be treated as functionally equivalent. Although the methodological framework of LCA has been standardised, selection of an appropriate FU remains ultimately at the discretion of the individual study. The aim of the present analysis was to examine the effect of different FU on the emissions intensities of different dairy production systems. Analysis was based on 7 years of data (2004 to 2010) from four Holstein-Friesian dairy systems at Scotland's Rural College's long-term genetic and management systems project, the Langhill herd. Implementation of LCA accounted for the environmental impacts of the whole-farm systems and their production of milk from 'cradle to farm gate'. Emissions intensity was determined as kilograms of carbon dioxide equivalents referenced to six FU: UK livestock units, energy-corrected milk yield, total combined milk solids yield, on-farm land used for production, total combined on- and off-farm land used for production, and the proposed new FU-energy-corrected milk yield per hectare of total land used. Energy-corrected milk was the FU most effective for reflecting differences between the systems. Functional unit that incorporated a land-related aspect did not find difference between systems which were managed under the same forage regime, despite their comprising different genetic lines. Employing on-farm land as the FU favoured grazing systems. The proposed dual FU combining both productivity and land use did not differentiate between emissions intensity of systems as effectively as the productivity-based units. However, this dual unit displayed potential to quantify in a simple way

  4. Decomposition of intensity of energy-related CO_2 emission in Chinese provinces using the LMDI method

    International Nuclear Information System (INIS)

    Zhang, Wei; Li, Ke; Zhou, Dequn; Zhang, Wenrui; Gao, Hui

    2016-01-01

    Uncovering the driving factors of CO_2 emission intensity declining is important for China. This paper improves the logarithmic mean Divisia index technique, which includes energy density and energy consumption intensity, to explore the driving factors of carbon emission intensity (CI) in 29 Chinese provinces from 1995–2012. The main results are: (1) energy consumption intensity plays a more important role than carbon emission density (CD) for a rapid decrease in CI during the research period, so a much room is left for a significant CD reduction through carbon emission reduction technology, energy structural reduction, and energy consumption proportional reduction. (2) The decrease in energy consumption technology and energy structure in secondary industries contributes the most reduction in energy consumption intensity. (3)The energy consumption proportions of secondary and tertiary industries are the two most important drivers to decrease CD. (4) During the research period, the energy consumption proportions of secondary industries result in the most decrease in CD, whereas the energy consumption proportions of tertiary industries cause the most increase in CD. - Highlights: •Carbon emission intensity decreased rapidly from 1995 to 2012. •Energy intensity is the more significant driver for decrease of carbon intensity. •The most contribution of EI's decrease came from secondary industries. •The most contribution of CD's decrease came from secondary and tertiary industries. •Several policies of reducing carbon emission intensity in China have been raised.

  5. Relationship Study on Land Use Spatial Distribution Structure and Energy-Related Carbon Emission Intensity in Different Land Use Types of Guangdong, China, 1996–2008

    Directory of Open Access Journals (Sweden)

    Yi Huang

    2013-01-01

    Full Text Available This study attempts to discuss the relationship between land use spatial distribution structure and energy-related carbon emission intensity in Guangdong during 1996–2008. We quantized the spatial distribution structure of five land use types including agricultural land, industrial land, residential and commercial land, traffic land, and other land through applying spatial Lorenz curve and Gini coefficient. Then the corresponding energy-related carbon emissions in each type of land were calculated in the study period. Through building the reasonable regression models, we found that the concentration degree of industrial land is negatively correlated with carbon emission intensity in the long term, whereas the concentration degree is positively correlated with carbon emission intensity in agricultural land, residential and commercial land, traffic land, and other land. The results also indicate that land use spatial distribution structure affects carbon emission intensity more intensively than energy efficiency and production efficiency do. These conclusions provide valuable reference to develop comprehensive policies for energy conservation and carbon emission reduction in a new perspective.

  6. Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China

    International Nuclear Information System (INIS)

    Ou, Xunmin; Yan, Xiaoyu; Zhang, Xiliang; Liu, Zhen

    2012-01-01

    Highlights: ► We analyzed the life cycle energy intensity and GHG emissions of about 40 pathways of alternative vehicle fuels in China. ► Coal-based liquid fuel has higher life cycle energy intensities and first generation technology bio-fuel has relatively lower intensity. ► By 2020 electricity will have significantly lower GHG intensity and second generation technology bio-fuel will have near zero intensities. -- Abstract: Fossil energy consumption (FEC) and greenhouse gas (GHG) emission intensities of major alternative vehicle fuels (AVFs) in China are calculated and compared with conventional fuels by means of full life-cycle analysis. Currently most of the AVFs have not relatively obvious GHG emission reduction when compared to the gasoline pathway: (1) coal-based AVF has higher intensities in terms of both the FEC and GHG emissions; (2) electricity from the average Chinese grid has the GHG emission intensity similar to that of gasoline pathway although relatively lower FEC intensity; and (3) first generation technology bio-fuel has relatively lower GHG emission intensity and substantially lower FEC intensity. It is forecasted that by 2020 when still comparing to the gasoline pathway: (1) coal-based AVF will still have FEC and GHG emission intensities that are 1.5–1.8 and 1.8–2.5 time those of gasoline pathway, and the application of carbon capture and storage technology can reduce the GHG emission intensity of coal-based AVF; (2) electricity will have significantly lower GHG intensity; and (3) second generation technology bio-fuel will have near zero FEC and GHG intensities.

  7. Technology for Intensive Poultry Production as a Source of Odour Emissions with Time-Varying Intensity

    Directory of Open Access Journals (Sweden)

    Kuneš Radim

    2017-12-01

    Full Text Available The technology for intensive broiler breeding using deep litter method provides convenient conditions for production of odour substances inside the barn. As a consequence, there are relatively high odour emissions in the breeding area and its surrounding, which has significant impacts on the life quality of both people and animals. The amount of produced emissions increases in time because it is closely related to the amount of poultry droppings accumulated in litter inside the barn. This paper deals with changes in odour intensity depending on time measured since the beginning of broiler fattening. Odour intensity was measured by methods of dynamic olfactometry. The estimated values gradually increased from 45 ouE·m-3 to the highest value of 259 ouE·m-3, which was determined in the final fattening phase (broilers’ age 33 days. The calculated odour substances emission values were in range from 0.02 ouE·s-1·bird-1 at the beginning of fattening up to 0.10 ouE·s-1·bird-1 in the final fattening phase. Odour emissions increased five times during the fattening period.

  8. Changes in CO2 emission intensities in the Mexican industry

    International Nuclear Information System (INIS)

    González, Domingo; Martínez, Manuel

    2012-01-01

    A CO 2 emission intensity analysis in the Mexican industry from 1965 to 2010 is carried out by taking into consideration four stages: 1965–1982, 1982–1994, 1994–2003, and 2004–2010. Based on the LMDI decomposition methodology, three influencing factors are analyzed: energy intensity, CO 2 coefficient, and structure in terms of their contributions of each individual attributes to the overall percent change of them as it was proposed in Choi and Ang (2011). The energy intensity effect was the driving factor behind the main decreases of CO 2 intensity, the CO 2 coefficient effect contributed to less extent to mitigate it, and the structure effect tended to increased it. It is observed that CO 2 intensity declined by 26.2% from 1965 to 2003, but it increased by 10.1% from 2004 to 2010. In addition, the move of Mexico from an economic model based on import-substitution to an export-oriented economy brought more importance to the Mexican industry intended to export, thus maintaining high levels of activity of industries such as cement, iron and steel, chemical, and petrochemical, while industries such as automotive, and ‘other’ industries grown significantly not only as far their energy consumptions and related CO 2 emissions but they also increased their contributions to the national economy. - Highlights: ► Industrial CO 2 emission intensity was reduced by 26.2% from 1965 to 2003. ► Industrial CO 2 emission intensity was increased by 10.1% from 2003 to 2010. ► 1965–2003: Intensity effect took down CO 2 emission intensity. ► 2003–2010: Export-oriented industries raised CO 2 emission intensity.

  9. Picosecond buildup and relaxation of intense stimulated emission in GaAs

    International Nuclear Information System (INIS)

    Ageeva, N. N.; Bronevoi, I. L.; Zabegaev, D. N.; Krivonosov, A. N.

    2013-01-01

    In support of the idea developed previously based on circumstantial evidence, we have found that stimulated emission emerges in GaAs and its intensity increases with a picosecond delay relative to the front of powerful picosecond optical pumping that produced a dense electron-hole plasma. The emission intensity relaxes with decreasing pumping with a characteristic time of ∼10 ps. We have derived the dependences of the delay time, the relaxation time, and the duration of the picosecond emission pulse on its photon energy. The estimates based on the fact that the relaxation of emission is determined by electron-hole plasma cooling correspond to the measured relaxation time.

  10. Emission intensity in New Zealand manufacturing and the short-run impacts of emissions pricing

    International Nuclear Information System (INIS)

    Bartleet, Matthew; Iyer, Kris; Numan-Parsons, Elisabeth

    2010-01-01

    This paper reports the greenhouse gas (GHG) emission intensity of the New Zealand (NZ) manufacturing sector at a combination of industry group and class levels (sub-sectors). The short-run impacts of a price on emissions are investigated with a focus on exporting activities. Sub-sectors that could be materially impacted by an expected range of emissions prices accounted for slightly over 9% of national gross domestic product. It is found that there is much variability of emission intensity within manufacturing and even within sub-sectors. An assessment of trade intensities further indicates that several emissions-intensive activities are also export-intensive. These activities are at most risk of losing competitiveness in the short-run if they are subjected to a price on GHG emissions that their competitors in other countries are not. Emissions reduction policies must take account of trade competitiveness imperatives if NZ is to meet its international GHG emissions target while maintaining manufacturing sector competitiveness. - Research Highlights: →Estimates initial short-term competitiveness impacts of ETS on NZ manufacturing. →Materiality of impacts determined based on firm level emissions and export intensity. →Results suggest that food processing sub-sectors are likely to be most impacted. →Iron and steel processing, and paper and pulp manufacture are impacted as well. →Cumulative GDP share of materially affected sub-sectors slightly over 9%.

  11. Emissions intensity targeting: From China's 12th Five Year Plan to its Copenhagen commitment

    International Nuclear Information System (INIS)

    Lu, Yingying; Stegman, Alison; Cai, Yiyong

    2013-01-01

    China is currently the world's largest single source of fossil fuel related CO 2 emissions. In response to pressure from the international community, and in recognition of its role in global climate change mitigation, the Chinese government has announced a series of climate policy commitments, in both the Copenhagen Accord and its domestic 12th 5 Year Plan, to gradually reduce emissions intensity by 2020. Emissions intensity reduction commitments differ significantly from emission level reduction commitments that are commonly adopted by developed economies. In this paper, we investigate the economic implications of China's recent commitments to reduce emissions intensity, and highlight the complexities involved in modelling intensity targets under uncertainty. Using G-Cubed, an intertemporal, computable general equilibrium model of the world economy, we show that China's emissions intensity targets could be achieved with a range of low and high growth emissions level trajectories corresponding to low and high growth GDP scenarios, which lead to different welfare consequences. - Highlights: • We investigate the economic implication of China's recent climate commitments. • We address the complexity of modelling reduction in emissions intensity. • The 2015 target gives China more flexibility towards its 2020 target. • The policy restriction is eased in high growth periods. • In low growth periods an intensity target places a further restriction on the economy

  12. Incorporation of electricity GHG emissions intensity variability into building environmental assessment

    International Nuclear Information System (INIS)

    Cubi, Eduard; Doluweera, Ganesh; Bergerson, Joule

    2015-01-01

    Highlights: • Current building assessment does not account for variability in the electric grid. • A new method incorporates hourly grid variability into building assessment. • The method is complementary with peak-shaving policies. • The assessment method can affect building design decisions. - Abstract: Current building energy and GHG emissions assessments do not account for the variable performance of the electric grid. Incorporating hourly grid variability into building assessment methods can help to better prioritize energy efficiency measures that result in the largest environmental benefits. This article proposes a method to incorporate GHG emissions intensity changes due to grid variability into building environmental assessment. The proposed method encourages building systems that reduce electricity use during peak periods while accounting for differences in grid GHG emissions intensity (i.e., peak shaving is more strongly encouraged in grids that have GHG intense peak generation). A set of energy saving building technologies are evaluated in a set of building variants (office, residential) and grid types (hydro/nuclear dominated, coal/gas dominated) to demonstrate the proposed method. Differences between total GHG emissions calculated with the new method compared with the standard (which assumes a constant GHG emissions intensity throughout the year) are in the 5–15% range when the contribution of electricity to total GHG emissions is more significant. The influence of the method on the assessment of the relative performance of some energy efficiency measures is much higher. For example, the estimated GHG emissions savings with heat pumps and photovoltaics can change by −40% and +20%, respectively, using the new assessment method instead of the standard. These differences in GHG emissions estimates can influence building design decisions. The new method could be implemented easily, and would lead to better decision making and more accurate

  13. Emission line relative intensity variations in the symbiotic stars: CI Cygni, BF Cygni, AX Persei and V1016 Cygni

    International Nuclear Information System (INIS)

    Oliversen, N.A.

    1982-01-01

    Low resolution spectra (lambda 3800 to lambda 5900) are presented of the symbiotic stars CI Cygni, BF Cygni, AX Persei and V1016 Cygni, which were obtained with the Washburn Observatory Boller and Chivens cassegrain spectrograph and intensified Reticon. The spectra were obtained as part of a monitoring program covering 36 months since November 1978. The nebular electron temperature and density are derived from the [O III] lambda 5007 and lambda 4363 emission lines and the uv intercombination lines of lambda 1661 and lambda 1667. Relative emission line intensity variations were observed in all four stars. The relative emission line changes correlated with photometric minima for CI Cyg, AX Per and possibly BF Cyg. These changes are interpreted as due to a red giant eclipsing a nebula surrounding the exciting source. Based on the [O III] line ratio change, the nebular density of V1016 Cyg has continued to decline since 1978. The thesis also contains a discussion of the use of the emision lines of [Ne III] lambda 3869, [O III] lambda 5007, lambda 4363 and He lambda 5876 to derive nebular electron temperature and density. A decline in the intensity ratios of I(lambda 3869)/(lambda 5007) and I(lambda 5876)/I(lambda 5007) were observed during the 1980 minimum of CI Cyg. The observed I(lambda 3869)/I(lambda 5007) decline was too large to be explained by temperature or density changes. The [Ne III] and He II regions in CI Cyg are therefore closer to the hot source than the more extended (o III] emission region. Contained within the appendix is a discussion of a graphical method of solution ot the nebular temperature and density, which is based on the emission lines of [Ne III], [O III] and He I

  14. Essays on the Determinants of Energy Related CO2 Emissions =

    Science.gov (United States)

    Moutinho, Victor Manuel Ferreira

    emissions intensity is negative. The percentage of fossil fuels used reacts positively to the economic structure and to carbon intensity, i. e., the more the economic importance of the sector, the more it uses fossil fuels, and when it raises its carbon intensity, in the future the use of fossil fuel may rise. On the other hand, positive shocks on energy intensity tend to reduce the percentage of fossil fuels used. In fourth essay, we conducted an analysis to identify the effects that contribute to the intensity of GHG emissions (EI) in agriculture as well as their development. With that aim, we used the 'complete decomposition' technique in the 1995-2008 periods, for a set of European countries. It is shown that the use of Nitrogen per cultivated area is an important factor of emissions and in those countries where labour productivity increases (the inverse of average labour productivity in agriculture decreases), emissions intensity tends to decrease. These results imply that the way to reduce emissions in agriculture would be to provide better training of agricultural workers to increase their productivity, which would lead to a less need for energy and use of Nitrogen. The purpose of the last essay is to examine the long and short-run causality of the share of renewable sources on the environmental relation CO2 per KWh electricity generation- real GDP for 20 European countries over the 2001-2010 periods. It is important to analyze how the percentage of renewable energy used for electricity production affects the relationship between economic growth and emissions from this sector. The study of these relationships is important from the point of view of environmental and energy policy as it gives us information on the costs in terms of economic growth, on the application of restrictive levels of emissions and also on the effects of the policies concerning the use of renewable energy in the electricity sector (see for instance European Commission Directive 2001/77/EC, [4

  15. Variations in embodied energy and carbon emission intensities of construction materials

    Energy Technology Data Exchange (ETDEWEB)

    Wan Omar, Wan-Mohd-Sabki [Griffith School of Engineering, Griffith University, Gold Coast Campus, Queensland 4222 (Australia); School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis (Malaysia); Doh, Jeung-Hwan, E-mail: j.doh@griffith.edu.au [Griffith School of Engineering, Griffith University, Gold Coast Campus, Queensland 4222 (Australia); Panuwatwanich, Kriengsak [Griffith School of Engineering, Griffith University, Gold Coast Campus, Queensland 4222 (Australia)

    2014-11-15

    Identification of parameter variation allows us to conduct more detailed life cycle assessment (LCA) of energy and carbon emission material over their lifecycle. Previous research studies have demonstrated that hybrid LCA (HLCA) can generally overcome the problems of incompleteness and accuracy of embodied energy (EE) and carbon (EC) emission assessment. Unfortunately, the current interpretation and quantification procedure has not been extensively and empirically studied in a qualitative manner, especially in hybridising between the process LCA and I-O LCA. To determine this weakness, this study empirically demonstrates the changes in EE and EC intensities caused by variations to key parameters in material production. Using Australia and Malaysia as a case study, the results are compared with previous hybrid models to identify key parameters and issues. The parameters considered in this study are technological changes, energy tariffs, primary energy factors, disaggregation constant, emission factors, and material price fluctuation. It was found that changes in technological efficiency, energy tariffs and material prices caused significant variations in the model. Finally, the comparison of hybrid models revealed that non-energy intensive materials greatly influence the variations due to high indirect energy and carbon emission in upstream boundary of material production, and as such, any decision related to these materials should be considered carefully. - Highlights: • We investigate the EE and EC intensity variation in Australia and Malaysia. • The influences of parameter variations on hybrid LCA model were evaluated. • Key significant contribution to the EE and EC intensity variation were identified. • High indirect EE and EC content caused significant variation in hybrid LCA models. • Non-energy intensive material caused variation between hybrid LCA models.

  16. Variations in embodied energy and carbon emission intensities of construction materials

    International Nuclear Information System (INIS)

    Wan Omar, Wan-Mohd-Sabki; Doh, Jeung-Hwan; Panuwatwanich, Kriengsak

    2014-01-01

    Identification of parameter variation allows us to conduct more detailed life cycle assessment (LCA) of energy and carbon emission material over their lifecycle. Previous research studies have demonstrated that hybrid LCA (HLCA) can generally overcome the problems of incompleteness and accuracy of embodied energy (EE) and carbon (EC) emission assessment. Unfortunately, the current interpretation and quantification procedure has not been extensively and empirically studied in a qualitative manner, especially in hybridising between the process LCA and I-O LCA. To determine this weakness, this study empirically demonstrates the changes in EE and EC intensities caused by variations to key parameters in material production. Using Australia and Malaysia as a case study, the results are compared with previous hybrid models to identify key parameters and issues. The parameters considered in this study are technological changes, energy tariffs, primary energy factors, disaggregation constant, emission factors, and material price fluctuation. It was found that changes in technological efficiency, energy tariffs and material prices caused significant variations in the model. Finally, the comparison of hybrid models revealed that non-energy intensive materials greatly influence the variations due to high indirect energy and carbon emission in upstream boundary of material production, and as such, any decision related to these materials should be considered carefully. - Highlights: • We investigate the EE and EC intensity variation in Australia and Malaysia. • The influences of parameter variations on hybrid LCA model were evaluated. • Key significant contribution to the EE and EC intensity variation were identified. • High indirect EE and EC content caused significant variation in hybrid LCA models. • Non-energy intensive material caused variation between hybrid LCA models

  17. Driving forces behind the stagnancy of China's energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change

    International Nuclear Information System (INIS)

    Libo Wu; Kaneko, S.; Matsuoka, S.

    2005-01-01

    It is noteworthy that income elasticity of energy consumption in China shifted from positive to negative after 1996, accompanied by an unprecedented decline in energy-related CO 2 emissions. This paper therefore investigate the evolution of energy-related CO 2 emissions in China from 1985 to 1999 and the underlying driving forces, using the newly proposed three-level 'perfect decomposition' method and provincially aggregated data. The province-based estimates and analyses reveal a 'sudden stagnancy' of energy consumption, supply and energy-related CO 2 emissions in China from 1996 to 1999. The speed of a decrease in energy intensity and a slowdown in the growth of average labor productivity of industrial enterprises may have been the dominant contributors to this 'stagnancy'. The findings of this paper point to the highest rate of deterioration of state-owned enterprises in early 1996, the industrial restructuring caused by changes in ownership, the shutdown of small-scale power plants, and the introduction of policies to improve energy efficiency as probable factors. Taking into account the characteristics of those key driving forces, we characterize China's decline of energy-related CO 2 emissions as a short-term fluctuation and incline to the likelihood that China will resume an increasing trend from a lower starting point in the near future. (author)

  18. A time-series analysis of energy-related carbon emissions in Korea

    International Nuclear Information System (INIS)

    Ki-Hong Choi; Ang, B.W.

    2001-01-01

    Energy-related carbon emissions and their relationships with energy consumption and GNP in Korea are studied from 1961 to 1998. The ratio of carbon emissions to GNP is expressed as the product of the aggregate carbon factor and the energy intensity. Changes in the aggregate carbon factor are decomposed into the impacts associated with the fuel carbon factor and the fuel mix, using the Divisia index approach. The analysis is carried out using two sets of data, with and without wood consumption as an energy source, and very different results are obtained. This shows that carbon emission studies for developing countries based on commercial energy consumption only may have to be interpreted with caution. Our analysis also reveals that the impact of the energy intensity on carbon emissions is greater than that of the aggregate carbon factor. This finding supports the assertion made in earlier studies that the energy intensity is a more meaningful indicator than the aggregate carbon factor in the study of climate change resulting from energy-related emissions. (author)

  19. EU energy-intensive industries and emissions trading: losers becoming winners?

    Energy Technology Data Exchange (ETDEWEB)

    Wettestad, Joergen

    2008-11-15

    The EU Emissions Trading System (ETS) initially treated power producers and energy-intensive industries similarly, despite clear structural differences between these industries regarding pass through of costs and vulnerability to global competition. Hence, the energy-intensive industries could be seen as losing out in the internal distribution. In the January 2008 proposal for a reformed ETS post-2012, a differentiated system was proposed where the energy-intensive industries come out relatively much better. What is the explanation for the change taking place? Although power producers still have a dominant position in the system, the increasing consensus about windfall profits has weakened their standing. Conversely, the energy-intensive industries have become better organised and more active. This balance shift is first and foremost noticeable in several important EU-level stake holder consultation processes. Energy-intensive industries have, however, also successfully utilised the national pathway to exert influence on Brussels policy-making. Finally, growing fear of lax global climate policies and related carbon leakage has strengthened the case of these industries further. The latter dimension indicates that although energy-intensive industries have managed to reduce internal distribution anomalies, external challenges remain. (author). 9 refs

  20. Sky-distribution of intensity of synchrotron radio emission of relativistic electrons trapped in Earth’s magnetic field

    Directory of Open Access Journals (Sweden)

    Klimenko V.V.

    2017-12-01

    Full Text Available This paper presents the calculations of synchrotron radio emission intensity from Van Allen belts with Gaussian space distribution of electron density across L-shells of a dipole magnetic field, and with Maxwell’s relativistic electron energy distribution. The results of these calculations come to a good agreement with measurements of the synchrotron emission intensity of the artificial radiation belt’s electrons during the Starfish nuclear test. We have obtained two-dimensional distributions of radio brightness in azimuth — zenith angle coordinates for an observer on Earth’s surface. The westside and eastside intensity maxima exceed several times the maximum level of emission in the meridian plane. We have also constructed two-dimensional distributions of the radio emission intensity in decibels related to the background galactic radio noise level. Isotropic fluxes of relativistic electrons (Е~1 MeV should be more than 107 cm–2s–1 for the synchrotron emission intensity in the meridian plane to exceed the cosmic noise level by 0.1 dB (riometer sensitivity threshold.

  1. Cigar burning under different smoking intensities and effects on emissions.

    Science.gov (United States)

    Dethloff, Ole; Mueller, Christian; Cahours, Xavier; Colard, Stéphane

    2017-12-01

    The effect of smoking intensity on cigar smoke emissions was assessed under a range of puff frequencies and puff volumes. In order to potentially reduce emissions variability and to identify patterns as accurately as possible, cigar weights and diameters were measured, and outliers were excluded prior to smoking. Portions corresponding to 25%, 50%, 75% and 100% of the cigar, measured down to the butt length, were smoked under several smoking conditions, to assess nicotine, CO and water yields. The remaining cigar butts were analysed for total alkaloids, nicotine, and moisture. Results showed accumulation effects during the burning process having a significant impact on smoke emission levels. Condensation and evaporation occur and lead to smoke emissions dependent on smoking intensity. Differences were observed for CO on one side as a gas phase compound and nicotine on the other side as a particulate phase compound. For a given intensity, while CO emission increases linearly as the cigar burns, nicotine and water emissions exhibited an exponential increase. Our investigations showed that a complex phenomena occurs during the course of cigar smoking which makes emission data: difficult to interpret, is potentially misleading to the consumer, and inappropriate for exposure assessment. The results indicate that, tobacco content and physical parameters may well be the most robust basis for product characterisation and comparison rather than smoke emission. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. CO2 emissions and economic activity: Short- and long-run economic determinants of scale, energy intensity and carbon intensity

    International Nuclear Information System (INIS)

    Andersson, Fredrik N.G.; Karpestam, Peter

    2013-01-01

    We analyze the short-term and the long-term determinants of energy intensity, carbon intensity and scale effects for eight developed economies and two emerging economies from 1973 to 2007. Our results show that there is a difference between the short-term and the long-term results and that climate policy are more likely to affect emission over the long-term than over the short-term. Climate policies should therefore be aimed at a time horizon of at least 8 years and year-on-year changes in emissions contains little information about the trend path of emissions. In the long-run capital accumulation is the main driver of emissions. Productivity growth reduces the energy intensity while the real oil price reduces both the energy intensity and the carbon intensity. The real oil price effect suggests that a global carbon tax is an important policy tool to reduce emissions, but our results also suggest that a carbon tax is likely to be insufficient decouple emission from economic growth. Such a decoupling is likely to require a structural transformation of the economy. The key policy challenge is thus to build new economic structures where investments in green technologies are more profitable. - Highlights: • We model determinants of scale, energy intensity and carbon intensity. • Using band spectrum regressions, we separate between short and long run effects. • Different economic variables affect emission in the short and long run. • CO 2 reducing policies should have a long run horizon of (at least 8 years). • A low carbon society requires a structural transformation of the economy

  3. Positron emission intensities in the decay of 64Cu, 76Br and 124I

    International Nuclear Information System (INIS)

    Qaim, S.M.; Bisinger, T.; Hilgers, K.; Nayak, D.; Coenen, H.H.

    2007-01-01

    The relatively long-lived positron emitters 64 Cu (t 1/2 = 12.7 h), 76 Br (t 1/2 = 16.2 h) and 124 I (t 1/2 = 4.18 d) are finding increasing applications in positron emission tomography (PET). For precise determination of their positron emission intensities, each radionuclide was prepared via a charged particle induced reaction in a ''no-carrier-added'' form and with high radionuclidic purity. It was then subjected to γ-ray and X-ray spectroscopy as well as to anticoincidence beta and γγ-coincidence counting. The positron emission intensities measured were: 64 Cu (17.8 ± 0.4)%, 76 Br (58.2 ± 1.9)% and 124 I (22.0 ± 0.5)%. The intensity of the weak 1346 keV γ-ray emitted in the decay of 64 Cu was determined as (0.54 ± 0.03)%. Some implications of the precisely determined nuclear data are discussed. (orig.)

  4. A novel approach to obtain highly intense self-activated photoluminescence emissions in hydroxyapatite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Thales R. [CDMF-UFSCar, Universidade Federal de São Carlos, P.O. Box 676, 13565-905 São Carlos, São Paulo (Brazil); QIO-UJI, Universitat Jaume I, 12071 Castellón (Spain); Sczancoski, Júlio C. [CDMF-UFSCar, Universidade Federal de São Carlos, P.O. Box 676, 13565-905 São Carlos, São Paulo (Brazil); Beltrán-Mir, Héctor [QIO-UJI, Universitat Jaume I, 12071 Castellón (Spain); Nogueira, Içamira C. [PPGEM-IFMA, Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, 65030-005 São Luís, MA (Brazil); Li, Máximo S. [IFSC-USP, Universidade de São Paulo, P.O. Box 369, 13560-970 São Carlos, SP (Brazil); Andrés, Juan [QFA-UJI, Universitat Jaume I, 12071 Castellón (Spain); Cordoncillo, Eloisa [QIO-UJI, Universitat Jaume I, 12071 Castellón (Spain); Longo, Elson, E-mail: elson.liec@gmail.com [CDMF-UFSCar, Universidade Federal de São Carlos, P.O. Box 676, 13565-905 São Carlos, São Paulo (Brazil)

    2017-05-15

    Defect-related photoluminescence (PL) in materials have attracted interest for applications including near ultraviolet (NUV) excitable light-emitting diodes and in biomedical field. In this paper, hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}] nanorods with intense PL bands (bluish- and yellowish-white emissions) were obtained when excited under NUV radiation at room temperature. These nanoparticles were synthesized via chemical precipitation at 90 °C followed by distinct heat treatments temperatures (200–800 °C). Intense and broad emission profiles were achieved at 350 °C (380–750 nm) and 400 °C (380–800 nm). UV–Vis spectroscopy revealed band gap energies (5.58–5.78 eV) higher than the excitation energies (~3.54 and ~2.98 eV at 350 and 415 nm, respectively), confirming the contribution of defect energy levels within the forbidden zone for PL emissions. The structural features were characterized by X-ray diffraction, Rietveld refinement, thermogravimetric analysis, and Fourier transform infrared spectroscopy. By means of these techniques, the relation between structural order-disorder induced by defects, chemical reactions at both lattice and surface of the materials as well as the PL, without activator centers, was discussed in details. - Graphical abstract: The self-activated photoluminescence emissions of chemically precipitated hydroxyapatite nanorods were improved by different heat treatment temperatures. - Highlights: • HA nanorods were synthesized with improved self-activated PL at room temperature. • PL profile and intensity dependents on the temperature of posterior heat treatments. • Bluish- and yellowish-white emissions under NUV excitation (350 and 415 nm). • Broad and intense profiles achieved at 350 °C (380–750 nm) and 400 °C (380–800 nm). • PL from the e′–h{sup •} recombination between defect energy levels within the band gap.

  5. K and L X-ray emission intensities of some radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Verma, H R; Pal, D [Punjabi Univ., Patiala (India). Dept. of Physics

    1985-01-01

    The K and L x-ray emission intensities per 100 disintegrations have been calculated for some radionuclides using the latest adopted data for gamma-ray intensities, electron capture and internal conversion coefficients for the parent nuclides, fluorescence yield values, Coster-Kronig transition probabilities, average total number of primary L shell vacancies produced in the decay of K shell vacancies and emission rates for various shells and subshells for the daughter nuclei. The results are in good agreement with theoretical and experimental values for the K x-ray intensities. There are no experimental results available to compare with the present calculations for the L x-ray intensities; however, there is a marked discrepancy in the L..cap alpha.. and L..beta.. intensities available on the basis of theoretical estimates.

  6. Distributions of emissions intensity for individual beef cattle reared on pasture-based production systems.

    Science.gov (United States)

    McAuliffe, G A; Takahashi, T; Orr, R J; Harris, P; Lee, M R F

    2018-01-10

    Life Cycle Assessment (LCA) of livestock production systems is often based on inventory data for farms typical of a study region. As information on individual animals is often unavailable, livestock data may already be aggregated at the time of inventory analysis, both across individual animals and across seasons. Even though various computational tools exist to consider the effect of genetic and seasonal variabilities in livestock-originated emissions intensity, the degree to which these methods can address the bias suffered by representative animal approaches is not well-understood. Using detailed on-farm data collected on the North Wyke Farm Platform (NWFP) in Devon, UK, this paper proposes a novel approach of life cycle impact assessment that complements the existing LCA methodology. Field data, such as forage quality and animal performance, were measured at high spatial and temporal resolutions and directly transferred into LCA processes. This approach has enabled derivation of emissions intensity for each individual animal and, by extension, its intra-farm distribution, providing a step towards reducing uncertainty related to agricultural production inherent in LCA studies for food. Depending on pasture management strategies, the total emissions intensity estimated by the proposed method was higher than the equivalent value recalculated using a representative animal approach by 0.9-1.7 kg CO 2 -eq/kg liveweight gain, or up to 10% of system-wide emissions. This finding suggests that emissions intensity values derived by the latter technique may be underestimated due to insufficient consideration given to poorly performing animals, whose emissions becomes exponentially greater as average daily gain decreases. Strategies to mitigate life-cycle environmental impacts of pasture-based beef productions systems are also discussed.

  7. Decomposition analysis of CO2 emission intensity between oil-producing and non-oil-producing sub-Saharan African countries

    International Nuclear Information System (INIS)

    Ebohon, Obas John; Ikeme, Anthony Jekwu

    2006-01-01

    intensity in non-oil-producing sub-Saharan African countries, while the structural effect explained most of the increase in CO 2 emission intensity among the oil-producing countries. Finally, for the period 1991-1998, structural effect accounted for much of the decrease in intensity among non-oil-producers, while CO 2 emission coefficient of energy use was the major force driving the decrease among oil-producing countries. The dynamic changes in the CO 2 emission intensity and energy intensity effects for the two groups of countries suggest that fuel switching had been predominantly towards more carbon-intensive production in oil-producing countries and less carbon-intensive production in non-oil-producing SSA countries. In addition to the decomposition analysis, the article discusses policy implications of the results. We hope that the information and analyses provided here would help inform national energy and climate policy makers in SSA of the relative weaknesses and possible areas of strategic emphasis in their planning processes for mitigating the effects of climate change

  8. The dynamic intensity of CO 2 emissions: empirical evidence for the 20 th century

    Directory of Open Access Journals (Sweden)

    DIEGO CARNEIRO

    Full Text Available ABSTRACT The debate around the economic growth and environmental degradation is the hot topic among academics. However, up to a point, all of them embrace the uncontroversial view that tells us that anthropic factors have leverage on global climate. It happens that the so-called greenhouse effect is closely related to the accumulation of certain gases in the atmosphere, e.g., carbon dioxide, whose original source comes from productive sectors. Thus, our purpose in this article is to estimate the rate of emission intensity - here we mean the ratio between CO2 emissions and GDP - which has increased since the early part of the 20th century. To support that idea, this study reports on data from 24 different countries. In terms of C02 emission, the results undoubtedly show that United Kingdom and the United States highlight a negative picture, particularly when both are compared to India. It should be noted the presence of structural changes, which coincide with three major historical events: the World War I (1914-1918, the Great Depression in the 1930s, and finally the Oil-price shocks in the 1970s. As the result of the analysis demonstrates, the amount of emission produced by developing countries is surprisingly low. That the technology reveals its relative merit for reducing the overall emission intensity is transparently obvious.

  9. Factor Decomposition Analysis of Energy-Related CO2 Emissions in Tianjin, China

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2015-07-01

    Full Text Available Tianjin is the largest coastal city in northern China with rapid economic development and urbanization. Energy-related CO2 emissions from Tianjin’s production and household sectors during 1995–2012 were calculated according to the default carbon-emission coefficients provided by the Intergovernmental Panel on Climate Change. We decomposed the changes in CO2 emissions resulting from 12 causal factors based on the method of Logarithmic Mean Divisia Index. The examined factors were divided into four types of effects: energy intensity effect, structure effect, activity intensity effect, scale effect and the various influencing factors imposed differential impacts on CO2 emissions. The decomposition outcomes indicate that per capita GDP and population scale are the dominant positive driving factors behind the growth in CO2 emissions for all sectors, while the energy intensity of the production sector is the main contributor to dampen the CO2 emissions increment, and the contributions from industry structure and energy structure need further enhancement. The analysis results reveal the reasons for CO2 emission changes in Tianjin and provide a solid basis upon which policy makers may propose emission reduction measures and approaches for the implementation of sustainable development strategies.

  10. Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets

    Science.gov (United States)

    Vyskočil, Jiří; Klimo, Ondřej; Weber, Stefan

    2018-05-01

    Bremsstrahlung emission from interactions of short ultra-intense laser pulses with solid foils is studied using particle-in-cell (PIC) simulations. A module for simulating bremsstrahlung has been implemented in the PIC loop to self-consistently account for the dynamics of the laser–plasma interaction, plasma expansion, and the emission of gamma ray photons. This module made it possible to study emission from thin targets, where refluxing of hot electrons plays an important role. It is shown that the angular distribution of the emitted photons exhibits a four-directional structure with the angle of emission decreasing with the increase of the width of the target. Additionally, a collimated forward flash consisting of high energy photons has been identified in thin targets. The conversion efficiency of the energy of the laser pulse to the energy of the gamma rays rises with both the driving pulse intensity, and the thickness of the target. The amount of gamma rays also increases with the atomic number of the target material, despite a lower absorption of the driving laser pulse. The angular spectrum of the emitted gamma rays is directly related to the increase of hot electron divergence during their refluxing and its measurement can be used in experiments to study this process.

  11. Milk metabolome relates enteric methane emission to milk synthesis and energy metabolism pathways.

    Science.gov (United States)

    Antunes-Fernandes, E C; van Gastelen, S; Dijkstra, J; Hettinga, K A; Vervoort, J

    2016-08-01

    Methane (CH4) emission of dairy cows contributes significantly to the carbon footprint of the dairy chain; therefore, a better understanding of CH4 formation is urgently needed. The present study explored the milk metabolome by gas chromatography-mass spectrometry (milk volatile metabolites) and nuclear magnetic resonance (milk nonvolatile metabolites) to better understand the biological pathways involved in CH4 emission in dairy cattle. Data were used from a randomized block design experiment with 32 multiparous Holstein-Friesian cows and 4 diets. All diets had a roughage:concentrate ratio of 80:20 (dry matter basis) and the roughage was grass silage (GS), corn silage (CS), or a mixture of both (67% GS, 33% CS; 33% GS, 67% CS). Methane emission was measured in climate respiration chambers and expressed as CH4 yield (per unit of dry matter intake) and CH4 intensity (per unit of fat- and protein-corrected milk; FPCM). No volatile or nonvolatile metabolite was positively related to CH4 yield, and acetone (measured as a volatile and as a nonvolatile metabolite) was negatively related to CH4 yield. The volatile metabolites 1-heptanol-decanol, 3-nonanone, ethanol, and tetrahydrofuran were positively related to CH4 intensity. None of the volatile metabolites was negatively related to CH4 intensity. The nonvolatile metabolites acetoacetate, creatinine, ethanol, formate, methylmalonate, and N-acetylsugar A were positively related to CH4 intensity, and uridine diphosphate (UDP)-hexose B and citrate were negatively related to CH4 intensity. Several volatile and nonvolatile metabolites that were correlated with CH4 intensity also were correlated with FPCM and not significantly related to CH4 intensity anymore when FPCM was included as covariate. This suggests that changes in these milk metabolites may be related to changes in milk yield or metabolic processes involved in milk synthesis. The UDP-hexose B was correlated with FPCM, whereas citrate was not. Both metabolites were

  12. Theory of atomic spectral emission intensity

    International Nuclear Information System (INIS)

    Yngstroem, S.

    1989-02-01

    The theoretical derivation of a new spectral line intensity formula for atomic radiative emission is presented. The theory is based on first principles of quantum physics and statistical physics. It is argued that the formulation of the theory provides a very good example of the manner in which quantum logic transforms into common sense logic. The theory is strongly supported by experimental evidence. (author) (16 refs.)

  13. Asymmetries in angular distributions of nucleon emission intensity in high energy hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1982-01-01

    Asymmetry in nucleon emission intensity angular distributions relatively to the hadron deflection plane and to two planes normal to it and related to it uniquely is analyzed, using appropriate experimental data on pion-xenon nucleus collisions at 3.5 GeV/c momentum. Quantative characteristics of the asymmetries found are presented in tables and on figures

  14. The odd couple: The relationship between state economic performance and carbon emissions economic intensity

    International Nuclear Information System (INIS)

    Davidsdottir, B.; Fisher, M.

    2011-01-01

    Historical time trends indicate that both carbon and energy intensity have declined in the United States over the last several decades, while economic performance, as measured by per capita GSP, has improved. This observation indicates that it may be possible to reduce carbon intensity without a reduction in economic performance. This paper assesses using panel analysis, the empirical relationship between carbon emissions intensity and economic performance, and examines the direction of causality between the two variables. Data for the analysis covered 48 states, excluding Hawaii, Alaska, and Washington DC, from 1980 to 2000. The results indicate significant bi-directional relationship between carbon emissions intensity and state economic performance, both using an aggregate indicator for carbon emissions intensity, decomposed using Laspeyres indexes and disaggregated by sector. This implies that it should be possible to implement statewide and sector-specific policies to reduce energy and carbon intensity and at the same time improve economic performance. - Highlights: → The empirical relationship between carbon emissions intensity and economic performance is assessed → The direction of causality between the two variables is examined. → Results indicate significant relationship between carbon emissions intensity and state economic performance. → Relationship is bi-directional, and holds for both aggregate analysis and by sector. → It is possible to implement policies to reduce carbon intensity and improve economic performance.

  15. Upcoversion performance improvement of NaYF4:Yb, Er by Sn codoping: Enhanced emission intensity and reduced decay time

    International Nuclear Information System (INIS)

    Yu, Han; Cao, Wenbing; Huang, Qingming; Ma, En; Zhang, Xinqi; Yu, Jianchang

    2013-01-01

    In this manuscript we report a phenomenon that upconversion emission intensity of Er 3+ was enhanced while decay time constant was decreased obviously by Sn codoping with Yb/Er into hexagonal NaYF 4 synchronously. X-ray powder diffiraction, field emission scanning electron microscope, transmission electron microscopy, X-ray photoelectron spectroscopy, electron spin-resonance spectroscopy and upconversion emission spectra were employed to explore the relation of crystal structure and properties. From these characterizations we found that symmetry of the rare earth ion local crystal field could be tuned by different Sn codoping concentration. For the variable valence property of Sn the local crystal field asymmetry and emission intensity of NaYF 4 :Yb, Er arrived to the maximum when 3 mol% Sn was codoped, while decay time was reduced. The study of this changing tends of upconversion emission intensity and decay time constant may be helpful for design and fabrication of high performance upconversion materials. - Graphical abstract: Variable-valenced Sn is introduced with Yb/Er into NaFY 4 to tune structure and local crystal field. Upconversion emission intensity of Er 3+ was enhanced while decay time constant was decreased. Display Omitted - Highlights: • NaYF 4 : Yb, Er was codoped with different concentration Sn. • Upconversion emission intensity was enhanced while decay time constant was decreased. • Introduction of variable-valenced Sn is effective to tune structure and crystal field of NaFY 4

  16. Manufacturing sector carbon dioxide emissions in nine OECD countries 1973--87: A Divisia index decomposition to changes in fuel mix, emission coefficients, industry structure, energy intensities, and international structure

    International Nuclear Information System (INIS)

    Torvanger, A.

    1990-11-01

    In this paper the reduction in energy-related manufacturing carbon dioxide emissions for nine OECD countries in the period 1973 to 1987 is analyzed. Carbon dioxide emissions are estimated from energy use data. The emphasis is on carbon dioxide intensities, defined as emissions divided by value added. The overall manufacturing carbon dioxide intensity for the nine OECD countries was reduced by 42% in the period 1973--1987. Five fuels are specified together with six subsectors of manufacturing. Carbon dioxide emissions are estimated from fossil fuel consumption, employing emissions coefficients for gas, oil and solids. In addition, electricity consumption is specified. For electricity use an emission coefficient index is calculated from the shares of fossil fuels, nuclear power and hydro power used to generate electricity, and the efficiency in electricity generation from these energy sources. A Divisia index approach is used to sort out the contribution to reduced carbon dioxide intensity from different components. The major finding is that the main contribution to reduced carbon dioxide intensity is from the general reduction in manufacturing energy intensity, most likely driven by economic growth and increased energy prices, giving incentives to invest in new technology and new industrial processes. There is also a significant contribution from reduced production in the most carbon dioxide intensive subsectors, and a contribution from higher efficiency in electricity generation together with a larger nuclear power share at the expense of oil. 19 refs., 5 figs., 11 tabs

  17. Theory of atomic spectral emission intensity

    Science.gov (United States)

    Yngström, Sten

    1994-07-01

    The theoretical derivation of a new spectral line intensity formula for atomic radiative emission is presented. The theory is based on first principles of quantum physics, electrodynamics, and statistical physics. Quantum rules lead to revision of the conventional principle of local thermal equilibrium of matter and radiation. Study of electrodynamics suggests absence of spectral emission from fractions of the numbers of atoms and ions in a plasma due to radiative inhibition caused by electromagnetic force fields. Statistical probability methods are extended by the statement: A macroscopic physical system develops in the most probable of all conceivable ways consistent with the constraining conditions for the system. The crucial role of statistical physics in transforming quantum logic into common sense logic is stressed. The theory is strongly supported by experimental evidence.

  18. Impact of subclinical mastitis on greenhouse gas emissions intensity and profitability of dairy cows in Norway.

    Science.gov (United States)

    Özkan Gülzari, Şeyda; Vosough Ahmadi, Bouda; Stott, Alistair W

    2018-02-01

    Impaired animal health causes both productivity and profitability losses on dairy farms, resulting in inefficient use of inputs and increase in greenhouse gas (GHG) emissions produced per unit of product (i.e. emissions intensity). Here, we used subclinical mastitis as an exemplar to benchmark alternative scenarios against an economic optimum and adjusted herd structure to estimate the GHG emissions intensity associated with varying levels of disease. Five levels of somatic cell count (SCC) classes were considered namely 50,000 (i.e. SCC50), 200,000, 400,000, 600,000 and 800,000cells/mL (milliliter) of milk. The effects of varying levels of SCC on milk yield reduction and consequential milk price penalties were used in a dynamic programming (DP) model that maximizes the profit per cow, represented as expected net present value, by choosing optimal animal replacement rates. The GHG emissions intensities associated with different levels of SCC were then computed using a farm-scale model (HolosNor). The total culling rates of both primiparous (PP) and multiparous (MP) cows for the five levels of SCC scenarios estimated by the model varied from a minimum of 30.9% to a maximum of 43.7%. The expected profit was the highest for cows with SCC200 due to declining margin over feed, which influenced the DP model to cull and replace more animals and generate higher profit under this scenario compared to SCC50. The GHG emission intensities for the PP and MP cows with SCC50 were 1.01kg (kilogram) and 0.95kg carbon dioxide equivalents (CO 2 e) per kg fat and protein corrected milk (FPCM), respectively, with the lowest emissions being achieved in SCC50. Our results show that there is a potential to reduce the farm GHG emissions intensity by 3.7% if the milk production was improved through reducing the level of SCC to 50,000cells/mL in relation to SCC level 800,000cells/mL. It was concluded that preventing and/or controlling subclinical mastitis consequently reduces the GHG

  19. Upcoversion performance improvement of NaYF{sub 4}:Yb, Er by Sn codoping: Enhanced emission intensity and reduced decay time

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Han, E-mail: fjfzyh@fzu.edu.cn [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China); Cao, Wenbing [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China); Huang, Qingming [Instrumentation Analysis and Research Center, Fuzhou University, Fuzhou, Fujian 350002 (China); Ma, En [Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Zhang, Xinqi [Instrumentation Analysis and Research Center, Fuzhou University, Fuzhou, Fujian 350002 (China); Yu, Jianchang [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China)

    2013-11-15

    In this manuscript we report a phenomenon that upconversion emission intensity of Er{sup 3+} was enhanced while decay time constant was decreased obviously by Sn codoping with Yb/Er into hexagonal NaYF{sub 4} synchronously. X-ray powder diffiraction, field emission scanning electron microscope, transmission electron microscopy, X-ray photoelectron spectroscopy, electron spin-resonance spectroscopy and upconversion emission spectra were employed to explore the relation of crystal structure and properties. From these characterizations we found that symmetry of the rare earth ion local crystal field could be tuned by different Sn codoping concentration. For the variable valence property of Sn the local crystal field asymmetry and emission intensity of NaYF{sub 4}:Yb, Er arrived to the maximum when 3 mol% Sn was codoped, while decay time was reduced. The study of this changing tends of upconversion emission intensity and decay time constant may be helpful for design and fabrication of high performance upconversion materials. - Graphical abstract: Variable-valenced Sn is introduced with Yb/Er into NaFY{sub 4} to tune structure and local crystal field. Upconversion emission intensity of Er{sup 3+} was enhanced while decay time constant was decreased. Display Omitted - Highlights: • NaYF{sub 4}: Yb, Er was codoped with different concentration Sn. • Upconversion emission intensity was enhanced while decay time constant was decreased. • Introduction of variable-valenced Sn is effective to tune structure and crystal field of NaFY{sub 4}.

  20. Carbon emission intensity in electricity production: A global analysis

    International Nuclear Information System (INIS)

    Ang, B.W.; Su, Bin

    2016-01-01

    We study changes in the aggregate carbon intensity (ACI) for electricity at the global and country levels. The ACI is defined as the energy-related CO_2 emissions in electricity production divided by the electricity produced. It is a performance indicator since a decrease in its value is a desirable outcome from the environmental and climate change viewpoints. From 1990 to 2013, the ACI computed at the global level decreased only marginally. However, fairly substantial decreases were observed in many countries. This apparent anomaly arises from a geographical shift in global electricity production with countries having a high ACI increasingly taking up a larger electricity production share. It is found that globally and in most major electricity producing countries, reduction in their ACI was due mainly to improvements in the thermal efficiency of electricity generation rather than to fuel switching. Estimates of the above-mentioned effects are made using LMDI decomposition analysis. Our study reveals several challenges in reducing global CO_2 emissions from the electricity production sector although technically the reduction potential for the sector is known to be great. - Highlights: •Variations of aggregate carbon intensity (ACI) for electricity of world countries are analysed. •Main drivers of changes in ACI of major electricity producing countries are studied using index decomposition analysis. •Geographical shift in electricity production had a significant impact on global ACI. •Improvements in the thermal efficiency of generation were the main driver of reduction in ACI.

  1. Air Treatment Techniques for Abatement of Emissions from Intensive Livestock Production

    NARCIS (Netherlands)

    Melse, R.W.; Ogink, N.W.M.; Rulkens, W.H.

    2009-01-01

    Intensive livestock production is connected with a number of environmental effects, including emissions of ammonia (NH3), greenhouse gases (CH4 and N2O), odour, and particulate matter (PM10 and PM2.5). Possible strategies for emission reduction include feed management, adaptation of housing design,

  2. Intensities of the Venusian N2 electron-impact excited dayglow emissions

    Science.gov (United States)

    Fox, Jane L.; F. Hać, Nicholas E.

    2013-12-01

    Dayglow emissions are signatures of both the energy deposition into an atmosphere and the abundances of the species from which they arise. The first N2 dayglow emissions from Mars, the (0,5) and (0,6) bands of the N2 Vegard-Kaplan band system, were detected by the Spectroscopy for Investigations of the Characteristics of the Atmosphere of Mars (SPICAM) UV spectrometer on board the Mars Express spacecraft. The Vegard-Kaplan band system arises from the transition from the lowest N2 triplet state (A3Σu+;v') to the electronic ground state (X1Σg+;v″). It is populated by direct electron-impact excitation and by cascading from higher triplet states. The Venus UV dayglow is currently being probed by an instrument similar to SPICAM, the Spectroscopy for the Investigations of the Characteristics of the Atmosphere of Venus (SPICAV) UV spectrometer on Venus Express, but no N2 emissions have been detected. Because the N2 mixing ratios in the Venus thermosphere are larger than those in the thermosphere of Mars and the solar flux is greater at the orbit of Venus than that at Mars, we expect the Venus N2 emissions to be significantly more intense than those of Mars. A prediction of the intensities of various N2 emissions from Venus could be used to guide observations by the SPICAV and other instruments that are used to measure the Venus dayglow. Employing updated data, we here construct models of the low and high solar activity thermospheres of Venus, and we compute the integrated overhead intensities of 17 N2 band systems and limb profiles of the Vegard-Kaplan bands. The ratios of the predicted intensities of the various N2 bands at Venus to those at Mars are in the range 5.5-9.5.

  3. The influencing factors of CO2 emission intensity of Chinese agriculture from 1997 to 2014.

    Science.gov (United States)

    Long, Xingle; Luo, Yusen; Wu, Chao; Zhang, Jijian

    2018-05-01

    In China, agriculture produces the greatest chemical oxygen demand (COD) emissions in wastewater and the most methane (CH 4 ) emissions. It is imperative that agricultural pollution in China be reduced. This study investigated the influencing factors of the CO 2 emission intensity of Chinese agriculture from 1997 to 2014. We analyzed the influencing factors of the CO 2 emission intensity through the first-stage least-square regression. We also analyzed determinants of innovation through the second-stage least-square regression. We found that innovation negatively affected the CO 2 emission intensity in the model of the nation. FDI positively affected innovation in China. It is important to enhance indigenous innovation for green agriculture through labor training and collaboration between agriculture and academia.

  4. Grey relation performance correlations among economics, energy use and carbon dioxide emission in Taiwan

    International Nuclear Information System (INIS)

    Lin, Sue J.; Lu, I.J.; Lewis, Charles

    2007-01-01

    This study explores the inter-relationships among economy, energy and CO 2 emissions of 37 industrial sectors in Taiwan in order to provide insight regarding sustainable development policy making. Grey relation analysis was used to analyse the productivity, aggregate energy consumption, and the use of fuel mix (electricity, coal, oil and gas) in relation to CO 2 emission changes. An innovative evaluative index system was devised to explore grey relation grades among economics, energy and environmental quality. Results indicate that a rapid increase in electricity generation during the past 10 years is the main reason for CO 2 emission increase in Taiwan. The largest CO 2 emitting sectors include iron and steel, transportation, petrochemical materials, commerce and other services. Therefore, it is important to reduce the energy intensity of these sectors by energy conservation, efficiency improvement and adjustment of industrial structure towards high value-added products and services. Economic growth for all industries has a more significant influence, than does total energy consumption, on CO 2 emission increase in Taiwan. It is also important to decouple the energy consumption and production to reduce the impacts of CO 2 on economic growth. Furthermore, most of the sectors examined had increased CO 2 emissions, except for machinery and road transportation. For high energy intensive and CO 2 intensive industries, governmental policies for CO 2 mitigation should be directed towards low carbon fuels as well as towards enhancement of the demand side management mechanism, without loss of the nation's competitiveness

  5. A methodology framework for weighting genetic traits that impact greenhouse gas emission intensities in selection indexes.

    Science.gov (United States)

    Amer, P R; Hely, F S; Quinton, C D; Cromie, A R

    2018-01-01

    A methodological framework was presented for deriving weightings to be applied in selection indexes to account for the impact genetic change in traits will have on greenhouse gas emissions intensities (EIs). Although the emission component of the breeding goal was defined as the ratio of total emissions relative to a weighted combination of farm outputs, the resulting trait-weighting factors can be applied as linear weightings in a way that augments any existing breeding objective before consideration of EI. Calculus was used to define the parameters and assumptions required to link each trait change to the expected changes in EI for an animal production system. Four key components were identified. The potential impact of the trait on relative numbers of emitting animals per breeding female first has a direct effect on emission output but, second, also has a dilution effect from the extra output associated with the extra animals. Third, each genetic trait can potentially change the amount of emissions generated per animal and, finally, the potential impact of the trait on product output is accounted for. Emission intensity weightings derived from this equation require further modifications to integrate them into an existing breeding objective. These include accounting for different timing and frequency of trait expressions as well as a weighting factor to determine the degree of selection emphasis that is diverted away from improving farm profitability in order to achieve gains in EI. The methodology was demonstrated using a simple application to dairy cattle breeding in Ireland to quantify gains in EI reduction from existing genetic trends in milk production as well as in fertility and survival traits. Most gains were identified as coming through the dilution effect of genetic increases in milk protein per cow, although gains from genetic improvements in survival by reducing emissions from herd replacements were also significant. Emission intensities in the Irish

  6. Thermal runaway of metal nano-tips during intense electron emission

    Science.gov (United States)

    Kyritsakis, A.; Veske, M.; Eimre, K.; Zadin, V.; Djurabekova, F.

    2018-06-01

    When an electron emitting tip is subjected to very high electric fields, plasma forms even under ultra high vacuum conditions. This phenomenon, known as vacuum arc, causes catastrophic surface modifications and constitutes a major limiting factor not only for modern electron sources, but also for many large-scale applications such as particle accelerators, fusion reactors etc. Although vacuum arcs have been studied thoroughly, the physical mechanisms that lead from intense electron emission to plasma ignition are still unclear. In this article, we give insights to the atomic scale processes taking place in metal nanotips under intense field emission conditions. We use multi-scale atomistic simulations that concurrently include field-induced forces, electron emission with finite-size and space-charge effects, Nottingham and Joule heating. We find that when a sufficiently high electric field is applied to the tip, the emission-generated heat partially melts it and the field-induced force elongates and sharpens it. This initiates a positive feedback thermal runaway process, which eventually causes evaporation of large fractions of the tip. The reported mechanism can explain the origin of neutral atoms necessary to initiate plasma, a missing key process required to explain the ignition of a vacuum arc. Our simulations provide a quantitative description of in the conditions leading to runaway, which shall be valuable for both field emission applications and vacuum arc studies.

  7. CO2 emission related to energy combustion in the world in 2006

    International Nuclear Information System (INIS)

    2009-02-01

    After a brief comment of the evolution of CO 2 emissions due to transports, housing and office buildings, industry and agriculture, electrical plants, and other energetic activities in France in 2007 in comparison with previous years, this article comments the global increase of CO 2 emissions related to energy in the world (figures and graphs are given for some countries of all continents, notably for China, the United States, France, the European Union, the United Kingdom and Germany). These emissions are then assessed in terms of ratio between emission intensity and GDPs or population. Emissions per inhabitant display a 1 to 20 ratio between the USA and Africa

  8. Air Treatment Techniques for Abatement of Emissions from Intensive Livestock Production

    OpenAIRE

    Melse, R.W.; Ogink, N.W.M.; Rulkens, W.H.

    2009-01-01

    Intensive livestock production is connected with a number of environmental effects, including emissions of ammonia (NH3), greenhouse gases (CH4 and N2O), odour, and particulate matter (PM10 and PM2.5). Possible strategies for emission reduction include feed management, adaptation of housing design, and, in case of mechanically ventilated animal houses, the application of end-of-pipe air treatment, viz acid scrubbers and bioscrubbers. Air treatment techniques can achieve very high emission red...

  9. Research on impacts of population-related factors on carbon emissions in Beijing from 1984 to 2012

    International Nuclear Information System (INIS)

    Yang, Yayun; Zhao, Tao; Wang, Yanan; Shi, Zhaohui

    2015-01-01

    Carbon emissions related to population factors have aroused great attention around the world. A multitude of literature mainly focused on single demographic impacts on environmental issues at the national level, and comprehensive studies concerning population-related factors at a city level are rare. This paper employed STIRPAT (Stochastic Impacts by Regression on Population, Affluence and Technology) model incorporating PLS (Partial least squares) regression method to examine the influence of population-related factors on carbon emissions in Beijing from 1984 to 2012. Empirically results manifest that urbanization is the paramount driver. Changes in population age structure have significantly positive impacts on carbon emissions, and shrinking young population, continuous expansion of working age population and aging population will keep on increasing environmental pressures. Meanwhile, shrinking household size and expanding floating population boost the discharge of carbon emissions. Besides, per capita consumption is an important contributor of carbon emissions, while industry energy intensity is the main inhibitory factor. Based upon these findings and the specific circumstances of Beijing, policies such as promoting clean and renewable energy, improving population quality and advocating low carbon lifestyles should be enhanced to achieve targeted emissions reductions. - Highlights: • We employed the STIRPAT model to identify population-related factors of carbon emissions in Beijing. • Urbanization is the paramount driver of carbon emissions. • Changes in population age structure exert significantly positive impacts on carbon emissions. • Shrinking household size, expanding floating population and improving consumption level increase carbon emissions. • Industry energy intensity decreases carbon emissions

  10. Research on impacts of population-related factors on carbon emissions in Beijing from 1984 to 2012

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yayun; Zhao, Tao; Wang, Yanan, E-mail: wyn3615@126.com; Shi, Zhaohui

    2015-11-15

    Carbon emissions related to population factors have aroused great attention around the world. A multitude of literature mainly focused on single demographic impacts on environmental issues at the national level, and comprehensive studies concerning population-related factors at a city level are rare. This paper employed STIRPAT (Stochastic Impacts by Regression on Population, Affluence and Technology) model incorporating PLS (Partial least squares) regression method to examine the influence of population-related factors on carbon emissions in Beijing from 1984 to 2012. Empirically results manifest that urbanization is the paramount driver. Changes in population age structure have significantly positive impacts on carbon emissions, and shrinking young population, continuous expansion of working age population and aging population will keep on increasing environmental pressures. Meanwhile, shrinking household size and expanding floating population boost the discharge of carbon emissions. Besides, per capita consumption is an important contributor of carbon emissions, while industry energy intensity is the main inhibitory factor. Based upon these findings and the specific circumstances of Beijing, policies such as promoting clean and renewable energy, improving population quality and advocating low carbon lifestyles should be enhanced to achieve targeted emissions reductions. - Highlights: • We employed the STIRPAT model to identify population-related factors of carbon emissions in Beijing. • Urbanization is the paramount driver of carbon emissions. • Changes in population age structure exert significantly positive impacts on carbon emissions. • Shrinking household size, expanding floating population and improving consumption level increase carbon emissions. • Industry energy intensity decreases carbon emissions.

  11. CO_2 emissions and energy intensity reduction allocation over provincial industrial sectors in China

    International Nuclear Information System (INIS)

    Wu, Jie; Zhu, Qingyuan; Liang, Liang

    2016-01-01

    Highlights: • DEA is used to evaluate the energy and environmental efficiency of 30 provincial industrial sector in China. • A new DEA-based model is proposed to allocate the CO_2 emissions and energy intensity reduction targets. • The context-dependent DEA is used to characterize the production plans. - Abstract: High energy consumption by the industry of developing countries has led to the problems of increasing emission of greenhouse gases (GHG) (primarily CO_2) and worsening energy shortages. To address these problems, many mitigation measures have been utilized. One major measure is to mandate fixed reductions of GHG emission and energy consumption. Therefore, it is important for each developing country to disaggregate their national reduction targets into targets for various geographical parts of the country. In this paper, we propose a DEA-based approach to allocate China’s national CO_2 emissions and energy intensity reduction targets over Chinese provincial industrial sectors. We firstly evaluate the energy and environmental efficiency of Chinese industry considering energy consumption and GHG emissions. Then, considering the necessity of mitigating GHG emission and energy consumption, we develop a context-dependent DEA technique which can better characterize the changeable production with reductions of CO_2 emission and energy intensity, to help allocate the national reduction targets over provincial industrial sectors. Our empirical study of 30 Chinese regions for the period 2005–2010 shows that the industry of China had poor energy and environmental efficiency. Considering three major geographical areas, eastern China’s industrial sector had the highest efficiency scores while in this aspect central and western China were similar to each other at a lower level. Our study shows that the most effective allocation of the national reduction target requires most of the 30 regional industrial to reduce CO_2 emission and energy intensity, while a

  12. Air treatment techniques for abatement of emissions from intensive livestock production

    OpenAIRE

    Melse, R.W.

    2009-01-01

    Keywords: Air treatment; Scrubber; Bioscrubber; Biofilter; Biotrickling filter; Ammonia; NH3; Odour; Livestock production; Animal husbandry; Pig; Poultry. Intensive livestock production is connected with a number of environmental effects, including emissions of ammonia (NH3), greenhouse gases (CH4 and N2O), odour, and particulate matter (PM10 and PM2.5). Possible strategies for emission reduction from animal houses include feed management, adaptation of housing design, and the application o...

  13. Hydroxyl (6−2 airglow emission intensity ratios for rotational temperature determination

    Directory of Open Access Journals (Sweden)

    R. P. Lowe

    Full Text Available OH(6–2 Q1/P1 and R1/P1 airglow emission intensity ratios, for rotational states up to j' = 4.5, are measured to be lower than implied by transition probabilities published by various authors including Mies, Langhoff et al. and Turnbull and Lowe. Experimentally determined relative values of j' transitions yield OH(6–2 rotational temperatures 2 K lower than Langhoff et al., 7 K lower than Mies and 13 K lower than Turnbull and Lowe.Key words: Atmospheric composition and structure (airglow and aurora; pressure, density and temperature

  14. A hybrid method for provincial scale energy-related carbon emission allocation in China.

    Science.gov (United States)

    Bai, Hongtao; Zhang, Yingxuan; Wang, Huizhi; Huang, Yanying; Xu, He

    2014-01-01

    Achievement of carbon emission reduction targets proposed by national governments relies on provincial/state allocations. In this study, a hybrid method for provincial energy-related carbon emissions allocation in China was developed to provide a good balance between production- and consumption-based approaches. In this method, provincial energy-related carbon emissions are decomposed into direct emissions of local activities other than thermal power generation and indirect emissions as a result of electricity consumption. Based on the carbon reduction efficiency principle, the responsibility for embodied emissions of provincial product transactions is assigned entirely to the production area. The responsibility for carbon generation during the production of thermal power is borne by the electricity consumption area, which ensures that different regions with resource endowments have rational development space. Empirical studies were conducted to examine the hybrid method and three indices, per capita GDP, resource endowment index and the proportion of energy-intensive industries, were screened to preliminarily interpret the differences among China's regional carbon emissions. Uncertainty analysis and a discussion of this method are also provided herein.

  15. Atmospheric stabilization of CO2 emissions: Near-term reductions and absolute versus intensity-based targets

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.

    2008-01-01

    This study analyzes CO 2 emissions reduction targets for various countries and geopolitical regions by the year 2030 to stabilize atmospheric concentrations of CO 2 at 450 ppm (550 ppm including non-CO 2 greenhouse gases) level. It also determines CO 2 intensity cuts that would be required in those countries and regions if the emission reductions were to be achieved through intensity-based targets without curtailing their expected economic growth. Considering that the stabilization of CO 2 concentrations at 450 ppm requires the global trend of CO 2 emissions to be reversed before 2030, this study develops two scenarios: reversing the global CO 2 trend in (i) 2020 and (ii) 2025. The study shows that global CO 2 emissions would be limited at 42 percent above 1990 level in 2030 if the increasing trend of global CO 2 emissions were to be reversed by 2020. If reversing the trend is delayed by 5 years, global CO 2 emissions in 2030 would be 52 percent higher than the 1990 level. The study also finds that to achieve these targets while maintaining expected economic growth, the global average CO 2 intensity would require a 68 percent drop from the 1990 level or a 60 percent drop from the 2004 level by 2030

  16. Long-term Modulation of Cosmic Ray Intensity in relation to Sunspot ...

    Indian Academy of Sciences (India)

    it should be more closely connected with cosmic ray modulation than with other solar characteristics (sunspot numbers or coronal emission intensity). The intensity of galactic cosmic rays varies inversely with sunspot numbers, having their maximum intensity at the minimum of the 11-year sunspot cycle (Forbush 1954, 1958) ...

  17. Impacts of EU carbon emission trade directive on energy-intensive industries. Indicative micro-economic analyses

    International Nuclear Information System (INIS)

    Lund, Peter

    2007-01-01

    The cost impacts from the European emission trading system (ETS) on energy-intensive manufacturing industries have been investigated. The effects consist of direct costs associated to the CO 2 reduction requirements stated in the EU Directive, and of indirect costs of comparable magnitude that originate from a higher electricity price triggered by the ETS in the power sector. The total cost impacts remain below 2% of the production value for most industries within the ETS in the Kyoto period. In the post-Kyoto phase assuming a 30% CO 2 reduction, the total cost impact may raise up to 8% of production value in the heaviest industry sectors. In steel and cement industries the cost impacts are 3-4 fold compared to the least affected pulp and paper and oil refining. Electricity-intensive industries outside the ETS will also be affected, for example in aluminum and chlorine production the indirect cost impacts from ETS could come up to 10% of production value already in the Kyoto period. As industry sectors are affected differently by the ETS some correcting mechanisms may be worthwhile to consider in securing the operation of the most electricity-intensive sectors, e.g. balancing taxation schemes that may include as income source a levy on the wind-fall profits of the power sector due to ETS. A future improvement in ETS for industries within the scheme could be scaling of the emission reduction requirement so that the relative total emission reduction costs are at about the same level. (author)

  18. Air treatment techniques for abatement of emissions from intensive livestock production

    NARCIS (Netherlands)

    Melse, R.W.

    2009-01-01

    Keywords: Air treatment; Scrubber; Bioscrubber; Biofilter; Biotrickling filter; Ammonia; NH3; Odour; Livestock production; Animal husbandry; Pig; Poultry.

    Intensive livestock production is connected with a number of environmental effects, including emissions of ammonia (NH3), greenhouse

  19. Comparison of neighborhood-scale residential wood smoke emissions inventories using limited and intensive survey data

    International Nuclear Information System (INIS)

    Baxter, T.E.

    1998-01-01

    Emission inventory based estimations of pollutants resulting from residential combustion of wood are typically determined by collecting survey data that represent a single but relatively large area. While the pollutants in wood smoke emissions may represent a relatively low fraction (<10%) of an area's total annual emissions mass inventory, they can concentrate within the specific neighborhood areas where emitted. Thus, while the representativeness of a large-area survey approach is valid and useful, its application for estimating wood smoke pollutant levels within any particular neighborhood may be limited. The ability to obtain a better estimation of pollutant levels for evaluating potential health-related impacts within neighborhoods where wood smoke pollutants can concentrate requires survey data more representative of the particular area. This study compares residential wood combustion survey data collected from six residential neighborhoods in the metropolitan area of Flagstaff, Arizona. The primary purpose of this study is to determine the ability of data collected from a limited neighborhood-scale survey effort to represent that neighborhood's wood fuel consumption characteristics and wood smoke emissions. In addition, the variation that occurs between different neighborhoods regarding residential consumption of wood is also evaluated. Residential wood combustion survey data were collected compare wood burning device distribution, wood types and quantities burned, and emission rates. One neighborhood was surveyed once at approximately a 10% distribution rate and again at a 100% distribution rate providing data for evaluating the ability of a limited-effort survey to represent a more intensive survey. Survey methodology, results and recommendations are presented

  20. Dispersion relation and relative intensity for double-plasmon satellites

    International Nuclear Information System (INIS)

    Srivastava, K.S.; Shiv Singh; Harsh, O.K.

    1981-01-01

    An expression for the dispersion relation and the relative intensity of double-plasmon oscillations and satellites has been derived by extending the dispersion relation and the extended Bohm and Pines Hamiltonian to second order. The calculated value of the relative intensity of the double-plasmon satellite for Be agrees fairly well with the value observed experimentally by other workers. (orig.)

  1. Top-down Estimates of Greenhouse Gas Intensities and Emissions for Individual Oil Sands Facilities in Alberta Canada

    Science.gov (United States)

    Liggio, J.; Li, S. M.; Staebler, R. M.; Hayden, K. L.; Mittermeier, R. L.; McLaren, R.; Baray, S.; Darlington, A.; Worthy, D.; O'Brien, J.

    2017-12-01

    The oil sands (OS) region of Alberta contributes approximately 10% to Canada's overall anthropogenic greenhouse gas (GHG) emissions. Such emissions have traditionally been estimated through "bottom-up" methods which seek to account for all individual sources of GHGs within a given facility. However, it is recognized that bottom-up approaches for complex industrial facilities can be subject to uncertainties associated with incomplete or inaccurate emission factor and/or activity data. In order to quantify air pollutant emissions from oil sands activities an aircraft-based measurement campaign was performed in the summer of 2013. The aircraft measurements could also be used to quantify GHG emissions for comparison to the bottom up emissions estimates. Utilizing specific flight patterns, together with an emissions estimation algorithm and measurements of CO2 and methane, a "top-down" estimate of GHG intensities for several large surface mining operations was obtained. The results demonstrate that there is a wide variation in emissions intensities (≈80 - 220 kg CO2/barrel oil) across OS facilities, which in some cases agree with calculated intensities, and in other cases are larger than that estimated using industry reported GHG emission and oil production data. When translated to annual GHG emissions, the "top-down" approach results in a CO2 emission of approximately 41 Mega Tonnes (MT) CO2/year for the 4 OS facilities investigated, in contrast to the ≈26 MT CO2/year reported by industry. The results presented here highlight the importance of using "top-down" approaches as a complimentary method in evaluating GHG emissions from large industrial sources.

  2. Relative strength of second harmonic and 3/2 omega emissions from long-scale-length laser produced plasmas

    International Nuclear Information System (INIS)

    Sinha, B.K.; Kumbhare, S.R.

    1988-01-01

    Experiments were conducted on the planar slab targets of carbon, aluminum, and copper, using a 1.0641 μm laser, at laser intensities varying from 2 x 10/sup 12/ to 1 x 10/sup 14/ W/cm/sup 2/. The laser had a fluorescent linewidth of 4.5 A. Spectral profiles of parametrically modulated second harmonic as well as 3/2/ω/sub 0/ emissions have been measured for the long-scale-length plasmas so generated. Relative strengths of three emissions with respect to peak signal intensity and spectral energy content as a function of laser intensity are graphically reported. Results are discussed on the basis of two plasmon and parametric decay instabilities

  3. Linkage between N2O emission and functional gene abundance in an intensively managed calcareous fluvo-aquic soil

    Science.gov (United States)

    Yang, Liuqing; Zhang, Xiaojun; Ju, Xiaotang

    2017-02-01

    The linkage between N2O emissions and the abundance of nitrifier and denitrifier genes is unclear in the intensively managed calcareous fluvo-aquic soils of the North China Plain. We investigated the abundance of bacterial amoA for nitrification and narG, nirS, nirK, and nosZ for denitrification by in situ soil sampling to determine how the abundance of these genes changes instantly during N fertilization events and is related to high N2O emission peaks. We also investigated how long-term incorporated straw and/or manure affect(s) the abundance of these genes based on a seven-year field experiment. The overall results demonstrate that the long-term application of urea-based fertilizer and/or manure significantly enhanced the number of bacterial amoA gene copies leading to high N2O emission peaks after N fertilizer applications. These peaks contributed greatly to the annual N2O emissions in the crop rotation. A significant correlation between annual N2O emissions and narG, nirS, and nirK gene numbers indicates that the abundance of these genes is related to N2O emission under conditions for denitrification, thus partly contributing to the annual N2O emissions. These findings will help to draw up appropriate measures for mitigation of N2O emissions in this ‘hotspot’ region.

  4. A new method of organizing spectral line intensity ratio fluctuations of nightglow emissions

    International Nuclear Information System (INIS)

    Thelin, B.

    1986-02-01

    In this paper a new kind of linearization effect between the atmospheric night airglow emissions is presented. The same kind of linearization effect has previously been studied with spectrochemical light sources together with a spectrometer. A linear graph was obtained for atomic spectral lines and vibrational bandspectra when the spectral line intensity ratio fluctuations were plotted versus the photon energies of these emissions. To study this effect data from a number of different photometer investigations of night airglow emissions at different times and places have been used. (author)

  5. Aqueous based synthesis of N-acetyl-L-cysteine capped ZnSe nanocrystals with intense blue emission

    Science.gov (United States)

    Soheyli, Ehsan; Sahraei, Reza; Nabiyouni, Gholamreza

    2016-10-01

    In this work a very simple reflux route for preparation of ZnSe nanocrystals with minor modification and faster preparation over conventional ones is introduced. X-ray diffraction analysis indicated that the ZnSe nanocrystals have a cubic structure. The complete disappearance of the S-H band in FT-IR spectrum of N-acetyl-L-cysteine capped ZnSe nanocrystals was an indication over formation of Zn-thiol covalent bonds at the surface of the nanocrystals which results in passivation of small nanocrystals. The strong size-quantization regime was responsible of significant blue shift in absorption/emission spectra. Using the well-known calculations, band gap and Urbach energy of the ZnSe nanocrystals were measured and their average size was estimated optically to be around 4.6 nm along with the TEM image. A dark blue emission with higher relative intensity of excitonic to trap emissions (compared to conventional method), very narrow excitonic emission peak of about 16 nm and remarkable stability was obtained from the ZnSe nanocrystals.

  6. Full-profile fitting of emission spectrum to determine transition intensity parameters of Yb3+:GdTaO4

    International Nuclear Information System (INIS)

    Zhang Qingli; Sun Guihua; Ning Kaijie; Liu Wenpeng; Sun Dunlu; Yin Shaotang; Shi Chaoshu

    2016-01-01

    The Judd–Ofelt theoretic transition intensity parameters of luminescence of rare-earth ions in solids are important for the quantitative analysis of luminescence. It is very difficult to determine them with emission or absorption spectra for a long time. A “full profile fitting” method to obtain in solids with its emission spectrum is proposed, in which the contribution of a radiative transition to the emission spectrum is expressed as the product of transition probability, line profile function, instrument measurement constant and transition center frequency or wavelength, and the whole experimental emission spectrum is the sum of all transitions. In this way, the emission spectrum is expressed as a function with the independent variables intensity parameters , full width at half maximum (FWHM) of profile functions, instrument measurement constant, wavelength, and the Huang–Rhys factor S if the lattice vibronic peaks in the emission spectrum should be considered. The ratios of the experimental to the calculated energy lifetimes are incorporated into the fitting function to remove the arbitrariness during fitting and other parameters. Employing this method obviates measurement of the absolute emission spectrum intensity. It also eliminates dependence upon the number of emission transition peaks. Every experiment point in emission spectra, which usually have at least hundreds of data points, is the function with variables and other parameters, so it is usually viable to determine and other parameters using a large number of experimental values. We applied this method to determine twenty-five of Yb 3+ in GdTaO 4 . The calculated and experiment energy lifetimes, experimental and calculated emission spectrum are very consistent, indicating that it is viable to obtain the transition intensity parameters of rare-earth ions in solids by a full profile fitting to the ions’ emission spectrum. The calculated emission cross sections of Yb 3+ :GdTaO 4 also indicate

  7. Intense Non-Linear Soft X-Ray Emission from a Hydride Target during Pulsed D Bombardment

    Science.gov (United States)

    Miley, George H.; Yang, Yang; Lipson, Andrei; Haque, Munima; Percel, Ian; Romer, Michael

    Radiation emission from low-energy nuclear radiation (LENR) electrodes (both charged-particle and X-rays) represents an important feature of LENR in general. Here, calibration, measurement techniques, and soft X-ray emission results from deuterium bombardment of a Pd target (cathode) placed in a pulsed deuterium glow discharge (PGD) are described. An X-ray intensity of 13.4 mW/cm2 and a dose of 3.3 μJ/cm2 were calculated over a 0.5 ms pulse time from AXUV photodiode radiation detector measurements. A most striking feature is that X-ray energies >600 V are observed with a discharge voltage only about half of that value. To further investigate this phenomenon, emission during room temperature D-desorption from electrolytically loaded Pd:Dx cathodes was also studied. The X-ray emission energy observed was quite similar to the PGD case. However, the intensity in this case was almost 13 orders of magnitude lower due to the much lower deuterium fluxes involved.

  8. Intense non-linear soft X-ray emission from a hydride target during pulsed D bombardment

    International Nuclear Information System (INIS)

    Miley, George H.; Yang, Yang; Lipson, Andrei; Haque, Munima; Percel, Ian; Romer, Michael

    2006-01-01

    Radiation emission from low-energy nuclear radiation (LENR) electrodes (both charged-particle and X-rays) represents an important feature of LENR in general. Here, calibration, measurement techniques, and soft X-ray emission results from deuterium bombardment of a Pd target (cathode) placed in a pulsed deuterium glow discharge (PGD) are described. An X-ray intensity of 13.4 mW/cm 2 and a dose of 3.3 μJ/cm 2 were calculated over a 0.5 ms pulse time from AXUV photodiode radiation detector measurements. A most striking feature is that X-ray energies >600 V are observed with a discharge voltage only about half of that value. To further investigate this phenomenon, emission during room temperature D-desorption from electrolytically loaded Pd:Dx cathodes was also studied. The X-ray emission energy observed was quite similar to the PGD case. However, the intensity in this case was almost 13 orders of magnitude lower due to the much lower deuterium fluxes involved. (author)

  9. Energy intensity, CO{sub 2} emissions and the environmental Kuznets curve. The Spanish case

    Energy Technology Data Exchange (ETDEWEB)

    Roca, J. [Universitat de Barcelona (Spain). Dpt. Teoria Economica; Alcantara, V. [Universitat Autonoma de Barcelona (Spain). Dpt. Economia Aplicada

    2001-06-01

    This article analyses the role of energy intensity and the relationship between CO{sub 2} emissions and primary energy in order to explain the evolution of CO{sub 2} emissions by unit of real GDP. It also distinguishes two different meanings of CO{sub 2} emissions Kuznets curve hypothesis: the weak and the strong sense. It considers the case of Spain in the period 1972-1997 as an example in which there is not any evidence supporting this hypothesis in either sense. (author)

  10. Greenhouse Gas Emission Intensities for the Livestock Sector in Indonesia, Based on the National Specific Data

    Directory of Open Access Journals (Sweden)

    Eska Nugrahaeningtyas

    2018-06-01

    Full Text Available The aims of this study were to calculate greenhouse gas (GHG emissions and to identify the trends of GHG emission intensity, based on meat production from the livestock sector in Indonesia, which had not been done before. The total emissions from the livestock sector from 2000 to 2015 in Indonesia were calculated using the 2006 Intergovernmental Panel on Climate Change Guideline (2006 IPCC GL using Tier 1 and Tier 2, with its default values and some of the country specific data that were found in the grey literature. During 2000 to 2015, the change from the Tier 1 to Tier 2 methods resulted in an approximately 7.39% emission decrease from enteric fermentation and a 4.24% increase from manure management, which resulted in a 4.98% decrease in the total emissions. The shared emission from manure management increased by about 9% and 6% using Tier 1 and Tier 2, respectively. In contrast with the total emissions, the overall emission intensity in Indonesia decreased (up to 60.77% for swine, showing that the livestock productivity in Indonesia has become more efficient. In order to meet the meat demand with less GHG emissions, chicken farming is one option to be developed. The increased emission and share from manure management indicated that manure management system needs to be of concern, especially for beef cattle and swine.

  11. Acoustic emission intensity analysis of corrosion in prestressed concrete piles

    Science.gov (United States)

    Vélez, William; Matta, Fabio; Ziehl, Paul

    2014-02-01

    Corrosion of steel strands in prestressed concrete (PC) bridges may lead to substantial damage or collapse well before the end of the design life. Acoustic Emission (AE) is a suitable nondestructive technique to detect and locate corrosion in reinforced and prestressed concrete, which is key to prioritize inspection and maintenance. An effective tool to analyze damage-related AE data is intensity analysis (IA), which is based on two data trends, namely Severity (average signal strength of high amplitude hits) and Historic Index (ratio of the average signal strength of the most recent hits to the average of all hits). IA criteria for corrosion assessment in PC were recently proposed based on empirical evidence from accelerated corrosion tests. In this paper, AE data from prestressed and non-prestressed concrete pile specimens exposed to salt water wet-dry cycling for over 600 days are used to analyze the relation between Severity and Historic Index and actual corrosion. Evidence of corrosion is gained from the inspection of decommissioned specimens. The selection of suitable J and K parameters for IA is discussed, and an IA chart with updated corrosion criteria for PC piles is presented.

  12. Plasma-related matrix effects in inductively coupled plasma--atomic emission spectrometry by group I and group II matrix-elements

    International Nuclear Information System (INIS)

    Chan, George C.-Y.; Chan, W.-T.

    2003-01-01

    The effects of Na, K, Ca and Ba matrices on the plasma excitation conditions in inductively coupled plasma-atomic emission spectrometry (ICP-AES) were studied. Normalized relative intensity was used to indicate the extent of the plasma-related matrix effects. The group I matrices have no effects on the plasma excitation conditions. In contrast, the group II matrices depress the normalized relative intensities of some spectral lines. Specifically, the Group II matrices have no effects on the normalized relative intensity of atomic lines of low upper energy level (soft lines), but reduce the normalized relative intensity of some ionic lines and atomic lines of high energy level (hard lines). The Group II matrices seem to shift the Saha balance of the analytes only; no shift in the Boltzmann balance was observed experimentally. Moreover, for some ionic lines with sum of ionization and excitation potentials close to the ionization potential of argon (15.75 eV), the matrix effect is smaller than other ionic lines of the same element. The reduced matrix effects may be attributed qualitatively to charge transfer excitation mechanism of these ionic lines. Charge transfer reaction renders ionic emission lines from the quasi-resonant levels similar in characteristics of atomic lines. The contribution of charge transfer relative to excitation by other non-specific excitation mechanisms (via Saha balance and Boltzmann balance) determines the degree of atomic behavior of a quasi-resonant level. A significant conclusion of this study is that plasma-related matrix effect depends strongly on the excitation mechanism of a spectral line. Since, in general, more than one excitation mechanism may contribute to the overall excitation of an emission line, the observed matrix effects reflect the sum of the effects due to individual excitation mechanisms. Excitation mechanisms, in addition to the often-used total excitation energy, should be considered in matrix effect studies

  13. Intense green emission from Tb3+- doped Teo2-Wo3-Geo2 glasses

    Science.gov (United States)

    Subrahmanyam, Tallam; Gopal, Kotalo Rama; Suvarna, Reniguntla Padma; Jamalaiah, Bungala Chinna

    2018-04-01

    Tb3+ -doped oxyfluoro tellurite (TWGTb) glasses were prepared by conventional melt quenching technique. The Judd-Ofelt theory has been applied to evaluate the Ωλ (λ=2,4,6) intensity parameters. The TWGTb glasses exhibit 5D3 → 7F5-3 and 5D4 → 7F6-0 transitions when excited at 316 nm wavelength. The variation of intensity of 5D4 → 7F5 (Green) and 5D3 → 7F4 (Blue) transitions and the green to blue (IG/IB) intensity ratios were studied as a function of Tb3+ ions concentration. The laser characteristic parameters such as effective bandwidth (Δλeff), stimulated emission cross-section (σe), gain bandwidth (σe×Δλeff) and optical gain (σe×τR) were determined using the emission spectra and radiative parameters. The luminescence decay profiles exhibit single-exponential nature for all the samples. Based on the experimental results we suggest that the 1.0 mol% of Tb3+-doped TWGTb glass could be the suitable laser host materials to emit intense green luminescence at 545 nm.

  14. Inventories and reduction scenarios of urban waste-related greenhouse gas emissions for management potential.

    Science.gov (United States)

    Yang, Dewei; Xu, Lingxing; Gao, Xueli; Guo, Qinghai; Huang, Ning

    2018-06-01

    Waste-related greenhouse gas (GHG) emissions have been recognized as one of the prominent contributors to global warming. Current urban waste regulations, however, face increasing challenges from stakeholders' trade-offs and hierarchic management. A combined method, i.e., life cycle inventories and scenario analysis, was employed to investigate waste-related GHG emissions during 1995-2015 and to project future scenarios of waste-driven carbon emissions by 2050 in a pilot low carbon city, Xiamen, China. The process-based carbon analysis of waste generation (prevention and separation), transportation (collection and transfer) and disposal (treatment and recycling) shows that the main contributors of carbon emissions are associated with waste disposal processes, solid waste, the municipal sector and Xiamen Mainland. Significant spatial differences of waste-related CO 2e emissions were observed between Xiamen Island and Xiamen Mainland using the carbon intensity and density indexes. An uptrend of waste-related CO 2e emissions from 2015 to 2050 is identified in the business as usual, waste disposal optimization, waste reduction and the integrated scenario, with mean annual growth rates of 8.86%, 8.42%, 6.90% and 6.61%, respectively. The scenario and sensitivity analysis imply that effective waste-related carbon reduction requires trade-offs among alternative strategies, actions and stakeholders in a feasible plan, and emphasize a priority of waste prevention and collection in Xiamen. Our results could benefit to the future modeling of urban multiple wastes and life-cycle carbon control in similar cities within and beyond China. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Quenching and blue shift of UV emission intensity of hydrothermally grown ZnO:Mn nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Vinod, R. [Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India); Junaid Bushiri, M., E-mail: junaidbushiri@gmail.com [Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India); Achary, Sreekumar Rajappan; Muñoz-Sanjosé, Vicente [Departamento de FisicaAplicada y Electromagnetismo, Universitat de Valencia, c/Dr. Moliner 50, Burjassot, Valencia 46100 (Spain)

    2015-01-15

    Highlights: • Single crystalline ZnO:Mn nanorods. • Reduced optical active defects. • Quenching and blue shift of UV emission. - Abstract: ZnO:Mn alloyed nanorods (Mn nominal concentration – 3–5 wt%) were synthesized by using hydrothermal process at an optimized growth temperature of 200 °C and a growth time of 3 h. The XRD, SEM and Raman, FTIR investigations reveal that ZnO:Mn (Mn – 3–5 wt%) retained hexagonal wurtzite crystal structure with nanorod morphology. The HRTEM and SAED analysis confirm the single crystalline nature of hydrothermally grown ZnO and ZnO:Mn (5 wt%) nanorods. The ZnO:Mn nanorods (Mn – 0–5 wt%) displayed optical band gap in the range 3.23–3.28 eV. The blue shift of UV emission peak (PL) from 393 (ZnO) to 386 nm and quenching of photoluminescence emission in ZnO:Mn is due to the Mn incorporation in ZnO lattice. Relative increase in intensity of Raman band at 660 cm{sup −1} with nominal doping of Mn 3–5 wt% in ZnO indicate that defects are introduced in ZnO:Mn system as a result of doping that leads to the quenching of photoluminescence emission at 393 nm.

  16. Simultaneous reconstruction, segmentation, and edge enhancement of relatively piecewise continuous images with intensity-level information

    International Nuclear Information System (INIS)

    Liang, Z.; Jaszczak, R.; Coleman, R.; Johnson, V.

    1991-01-01

    A multinomial image model is proposed which uses intensity-level information for reconstruction of contiguous image regions. The intensity-level information assumes that image intensities are relatively constant within contiguous regions over the image-pixel array and that intensity levels of these regions are determined either empirically or theoretically by information criteria. These conditions may be valid, for example, for cardiac blood-pool imaging, where the intensity levels (or radionuclide activities) of myocardium, blood-pool, and background regions are distinct and the activities within each region of muscle, blood, or background are relatively uniform. To test the model, a mathematical phantom over a 64x64 array was constructed. The phantom had three contiguous regions. Each region had a different intensity level. Measurements from the phantom were simulated using an emission-tomography geometry. Fifty projections were generated over 180 degree, with 64 equally spaced parallel rays per projection. Projection data were randomized to contain Poisson noise. Image reconstructions were performed using an iterative maximum a posteriori probability procedure. The contiguous regions corresponding to the three intensity levels were automatically segmented. Simultaneously, the edges of the regions were sharpened. Noise in the reconstructed images was significantly suppressed. Convergence of the iterative procedure to the phantom was observed. Compared with maximum likelihood and filtered-backprojection approaches, the results obtained using the maximum a posteriori probability with the intensity-level information demonstrated qualitative and quantitative improvement in localizing the regions of varying intensities

  17. Theoretical study of amplified spontaneous emission intensity and bandwidth reduction in polymer

    International Nuclear Information System (INIS)

    Hariri, A.; Sarikhani, S.

    2015-01-01

    Amplified spontaneous emission (ASE), including intensity and bandwidth, in a typical example of BuEH-PPV is calculated. For this purpose, the intensity rate equation is used to explain the reported experimental measurements of a BuEH-PPV sample pumped at different pump intensities from I p = 0.61 MW/cm 2 to 5.2 MW/cm 2 . Both homogeneously and inhomogeneously broadened transition lines along with a model based on the geometrically dependent gain coefficient (GDGC) are examined and it is confirmed that for the reported measurements the homogeneously broadened line is responsible for the light–matter interaction. The calculation explains the frequency spectrum of the ASE output intensity extracted from the sample at different pump intensities, unsaturated and saturated gain coefficients, and ASE bandwidth reduction along the propagation direction. Both analytical and numerical calculations for verifying the GDGC model are presented in this paper. Although the introduced model has shown its potential for explaining the ASE behavior in a specific sample it can be universally used for the ASE study in different active media. (paper)

  18. Cosmology on ultralarge scales with intensity mapping of the neutral hydrogen 21 cm emission: limits on primordial non-Gaussianity.

    Science.gov (United States)

    Camera, Stefano; Santos, Mário G; Ferreira, Pedro G; Ferramacho, Luís

    2013-10-25

    The large-scale structure of the Universe supplies crucial information about the physical processes at play at early times. Unresolved maps of the intensity of 21 cm emission from neutral hydrogen HI at redshifts z=/~1-5 are the best hope of accessing the ultralarge-scale information, directly related to the early Universe. A purpose-built HI intensity experiment may be used to detect the large scale effects of primordial non-Gaussianity, placing stringent bounds on different models of inflation. We argue that it may be possible to place tight constraints on the non-Gaussianity parameter f(NL), with an error close to σ(f(NL))~1.

  19. Modelling the impacts of a carbon emission-differentiated vehicle tax system on CO2 emissions intensity from new vehicle purchases in Ireland

    International Nuclear Information System (INIS)

    Giblin, S.; McNabola, A.

    2009-01-01

    The increasing awareness of the effects of climate change on the environment and the economic pressure on oil supply has focused international attention on reducing CO 2 emissions and energy usage across all sectors. In order to meet their Kyoto protocol commitments and in line with European Union policy, the Irish government has introduced a carbon-based tax system for new vehicles purchased from the 1st of July 2008. This new legislation aims to reduce carbon emissions in the transport sector, a sector which is responsible for a significant proportion of both. This paper presents the results of the development, calibration, and application of a car choice model which predicts the changes in CO 2 emissions intensity from new vehicle purchases as a result of the changes in vehicle tax policy and fuel price in Ireland. The model also predicts the impact of such changes on tax revenue for the Irish government and the changes in the split between the number of diesel and petrol vehicles purchased. The investigation found that the introduction of these new carbon-based taxes in Ireland will result in a reduction of 3.6-3.8% in CO 2 emissions intensity and a reduction in annual tax revenue of EUR191 M. (author)

  20. On the interpretation of the intense emission of tungsten ions at about 5

    International Nuclear Information System (INIS)

    Jonauskas, V; Kucas, S; Karazija, R

    2007-01-01

    The origin of the intense emission band at about 5 nm, dominating the emission spectra of tungsten ions in the ASDEX Upgrade tokamak and EBIT, is discussed. It is shown that the emission spectra of various ions calculated taking into account only the excitations from the ground level agree fairly well with the results obtained in the collisional-radiative model; thus, the contribution of the excitations from the other levels is small. Though the excitation spectrum for all sequence of ions W 29+ -W 37+ corresponds to the same transitions 4p 6 4d N → 4p 5 4d N+1 + 4p 6 4d N-1 4f, its energetic width essentially changes going on from the charge of ion q = 34 to q = 35. It is caused by the appearance of the excitations 4p 1/2 -4d 3/2 to the open 4d N 3/2 subshell, which are not quenched by configuration mixing. The satellite line at about 4.5 nm is explained by the transitions of the same type, although between configurations with one spectator 5s electron. The existence of one more group of intense lines in the region of 2 nm, corresponding to 5s-4p transitions, is predicted

  1. The Influence of Climate, Soil and Pasture Type on Productivity and Greenhouse Gas Emissions Intensity of Modeled Beef Cow-Calf Grazing Systems in Southern Australia

    Directory of Open Access Journals (Sweden)

    Richard J. Eckard

    2012-10-01

    Full Text Available A biophysical whole farm system model was used to simulate the interaction between the historical climate, soil and pasture type at sites in southern Australia and assess the balance between productivity and greenhouse gas emissions (expressed in carbon dioxide equivalents, CO2-eq. intensity of beef cow-calf grazing systems. Four sites were chosen to represent a range of climatic zones, soil and pasture types. Poorer feed quality and supply limited the annual carrying capacity of the kikuyu pasture compared to phalaris pastures, with an average long-term carrying capacity across sites estimated to be 0.6 to 0.9 cows/ha. A relative reduction in level of feed intake to productivity of calf live weight/ha at weaning by feeding supplementary feed reduced the average CO2-eq. emissions/kg calf live weight at weaning of cows on the kikuyu pasture (18.4 and 18.9 kg/kg with and without supplementation, respectively, whereas at the other sites studied an increase in intake level to productivity and emission intensity was seen (between 10.4 to 12.5 kg/kg without and with supplementary feed, respectively. Enteric fermentation and nitrous oxide emissions from denitrification were the main sources of annual variability in emissions intensity, particularly at the lower rainfall sites. Emissions per unit product of low input systems can be minimized by efficient utilization of pasture to maximize the annual turnoff of weaned calves and diluting resource input per unit product.

  2. The impact of fiscal and other measures on new passenger car sales and CO2 emissions intensity. Evidence from Europe

    International Nuclear Information System (INIS)

    Ryan, Lisa; Convery, Frank; Ferreira, Susana

    2009-01-01

    This paper examines the impact of national fiscal measures in the EU (EU15) on passenger car sales and the CO 2 emissions intensity of the new car fleet over the period 1995-2004. CO 2 emissions and energy consumption from road transport have been increasing in the EU and as a result since 1999 the EU has attempted to implement a high profile policy strategy to address this problem at European level. Less prominent is the fact that Member States apply vehicle and fuel taxes, which may also be having an impact on the quantity of passenger cars sold and their CO 2 emissions intensity. Diesel vehicle sales have increased appreciably in many countries over the same period and this study makes a first attempt to examine whether Member State fiscal measures have influenced this phenomenon. This work uses a panel dataset to investigate the relationship between national vehicle and fuel taxes on new passenger car sales and the fleet CO 2 emissions intensity in EU15 over a 10-year period. Our results show that national vehicle and fuel taxes have had an impact on passenger car sales and fleet CO 2 emissions intensity and that different taxes have disparate effects. (author)

  3. Effects of temperature on nitrous oxide (N2O) emission from intensive aquaculture system.

    Science.gov (United States)

    Paudel, Shukra Raj; Choi, Ohkyung; Khanal, Samir Kumar; Chandran, Kartik; Kim, Sungpyo; Lee, Jae Woo

    2015-06-15

    This study examines the effects of temperature on nitrous oxide (N2O) emissions in a bench-scale intensive aquaculture system rearing Koi fish. The water temperature varied from 15 to 24 °C at interval of 3 °C. Both volumetric and specific rate for nitrification and denitrification declined as the temperature decreased. The concentrations of ammonia and nitrite, however, were lower than the inhibitory level for Koi fish regardless of temperature. The effects of temperature on N2O emissions were significant, with the emission rate and emission factor increasing from 1.11 to 1.82 mg N2O-N/d and 0.49 to 0.94 mg N2O-N/kg fish as the temperature decreased from 24 to 15 °C. A global map of N2O emission from aquaculture was established by using the N2O emission factor depending on temperature. This study demonstrates that N2O emission from aquaculture is strongly dependent on regional water temperatures as well as on fish production. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A partial life cycle assessment approach to evaluate the energy intensity and related greenhouse gas emission in dairy farms

    Directory of Open Access Journals (Sweden)

    Lelia Murgia

    2013-09-01

    Full Text Available Dairy farming is constantly evolving towards more intensive levels of mechanization and automation which demand more energy consumption and result in higher economic and environmental costs. The usage of fossil energy in agricultural processes contributes to climate change both with on-farm emissions from the combustion of fuels, and by off-farm emissions due to the use of grid power. As a consequence, a more efficient use of fossil resources together with an increased use of renewable energies can play a key role for the development of more sustainable production systems. The aims of this study were to evaluate the energy requirements (fuels and electricity in dairy farms, define the distribution of the energy demands among the different farm operations, identify the critical point of the process and estimate the amount of CO2 associated with the energy consumption. The inventory of the energy uses has been outlined by a partial Life Cycle Assessment (LCA approach, setting the system boundaries at the farm level, from cradle to farm gate. All the flows of materials and energy associated to milk production process, including crops cultivation for fodder production, were investigated in 20 dairy commercial farms over a period of one year. Self-produced energy from renewable sources was also accounted as it influence the overall balance of emissions. Data analysis was focused on the calculation of energy and environmental sustainability indicators (EUI, CO2-eq referred to the functional units. The production of 1 kg of Fat and Protein Corrected Milk (FPCM required on average 0.044 kWhel and 0.251 kWhth, corresponding to a total emission of 0.085 kg CO2-eq. The farm activities that contribute most to the electricity requirements were milk cooling, milking and slurry management, while feeding management and crop cultivation were the greatest diesel fuel consuming operation and the largest in terms of environmental impact of milk production (73% of

  5. Substantial enhancement of red emission intensity by embedding Eu-doped GaN into a microcavity

    Directory of Open Access Journals (Sweden)

    Tomohiro Inaba

    2016-04-01

    Full Text Available We investigate resonantly excited photoluminescence from a Eu,O-codoped GaN layer embedded into a microcavity, consisting of an AlGaN/GaN distributed Bragg reflector and a Ag reflecting mirror. The microcavity is responsible for a 18.6-fold increase of the Eu emission intensity at ∼10K, and a 21-fold increase at room temperature. We systematically investigate the origin of this enhancement, and we conclude that it is due to the combination of several effects including, the lifetime shortening of the Eu emission, the strain-induced piezoelectric effect, and the increased extraction and excitation field efficiencies. This study paves the way for an alternative method to enhance the photoluminescence intensity in rare-earth doped semiconductor structures.

  6. Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method

    Directory of Open Access Journals (Sweden)

    Shichun Xu

    2017-09-01

    Full Text Available We decompose factors affecting China’s energy-related air pollutant (NOx, PM2.5, and SO2 emission changes into different effects using structural decomposition analysis (SDA. We find that, from 2005 to 2012, investment increased NOx, PM2.5, and SO2 emissions by 14.04, 7.82 and 15.59 Mt respectively, and consumption increased these emissions by 11.09, 7.98, and 12.09 Mt respectively. Export and import slightly increased the emissions on the whole, but the rate of the increase has slowed down, possibly reflecting the shift in China’s foreign trade structure. Energy intensity largely reduced NOx, PM2.5, and SO2 emissions by 12.49, 14.33 and 23.06 Mt respectively, followed by emission efficiency that reduces these emissions by 4.57, 9.08, and 17.25 Mt respectively. Input-output efficiency slightly reduces the emissions. At sectoral and sub-sectoral levels, consumption is a great driving factor in agriculture and commerce, whereas investment is a great driving factor in transport, construction, and some industrial subsectors such as iron and steel, nonferrous metals, building materials, coking, and power and heating supply. Energy intensity increases emissions in transport, chemical products and manufacturing, but decreases emissions in all other sectors and subsectors. Some policies arising from our study results are discussed.

  7. Management accounting approach to analyse energy related CO2 emission: A variance analysis study of top 10 emitters of the world

    International Nuclear Information System (INIS)

    Pani, Ratnakar; Mukhopadhyay, Ujjaini

    2013-01-01

    The paper undertakes a decomposition study of carbon dioxide emission of the top ten emitting countries over the period 1980–2007 using variance analysis method, with the objectives of examining the relative importance of the major determining factors, the role of energy structure and impact of liberalisation on emission and exploring the possibilities of arresting emission with simultaneous rise in population and income. The major findings indicate that although rising income and population are the main driving forces, they are neither necessary nor sufficient for increasing emission, rather energy structure and emission intensities are the crucial determinants, pointing towards the fact that a country with higher income and population with proper energy policy may be a low emitter and vice-versa. Since modern energy-intensive production limits the scope of reduction in total energy use, it is necessary to decouple the quantum of energy use from emission through technological upgradation. The results indicate that liberalisation resulted in higher emission. The paper attempts to illustrate the required adjustments in energy structure and suggests necessary policy prescriptions.

  8. Imported emissions. The world trade stowaway

    International Nuclear Information System (INIS)

    Fink, Meike; Gautier, Celia

    2013-05-01

    This study first gives an overview of existing tools and methodological challenges to account emissions included in consumed products fabricated elsewhere. It notably discusses the passage from a methodology based on a production principle to a methodology based on a consumption principle, outlines the different methodologies associated with the different analysis levels, and the importance of uncertainty sources. The second part proposes a view on emission flows included in exports and imports. It addresses the following issues: the international level, increasing importance of emissions transferred via world trade, emissions related to consumption per capita and per social class, carbon and energy intensity of products at the origin of emissions, composition of imported and exported products and intensity of their emissions, impact of a methodological change on greenhouse gas emissions by France, extent of emissions imported in France, and Germany as the first trade partner and emission importer of France. The third part discusses the political implications of an accounting of emissions related to consumption and to world trade

  9. Sectoral analysis of energy consumption and energy related CO2 emissions in Finland 1990-1999

    International Nuclear Information System (INIS)

    Kirjavainen, M.; Tamminen, E.

    2002-03-01

    This study describes the development of energy consumption and energy related CO 2 emissions in Finland between 1990-1999. For better understanding of the factors behind the development in main sectors, special indicators are calculated to evaluate how the overall development of the sector is affected by the general activity of the sector, changes in sectoral structure and changes in end-use intensities within the sector. The specific energy consumption of space heating reduced especially during the first half of the decade. Also the total CO 2 emissions caused by space heating reduced, in spite of the increase in the building stock. The main reason for this has been the reduction in specific CO 2 emissions in production of district heat. Regardless of the increased traffic and slightly increased use of passenger cars over public transport, the total energy consumption as well as total CO 2 emissions in passenger transport reduced during the decade. The main reason for this is that the specific fuel consumption of passenger cars has reduced significantly. Volumes in freight traffic increased rapidly after the recession, and as no significant changes have occurred in either specific consumptions or in shares of different transport modes, the total energy use as well as total CO 2 emissions of freight transport have increased. The major factors affecting the energy use and CO 2 emissions of the manufacturing sector have been changes in production volumes. After the recession, growth has been rapid and that has resulted in increased total energy use and CO 2 emissions. Anyway, the especially rapid growth of the less energy intensive electronics industry has resulted in downward overall energy intensity within manufacturing sector. Major factors affecting the specific CO 2 emissions in energy production have been changes in the primary energy supply mix. In electricity production, the major factors have been the increase in nuclear capacity and the variation in net

  10. Anomalous optical emission in hot dense oxygen

    Science.gov (United States)

    Santoro, Mario; Gregoryanz, Eugene; Mao, Ho-kwang; Hemley, Russell J.

    2007-11-01

    We report the observation of unusually strong, broad-band optical emission peaked between 590 and 650 nm when solid and fluid oxygen are heated by a near infrared laser at pressures from 3 to 46 GPa. In situ Raman spectra of oxygen were collected and corresponding temperatures were measured from the Stokes/anti-Stokes intensity ratios of vibrational transitions. The intense optical emission overwhelmed the Raman spectrum at temperatures exceeding 750 K. The spectrum was found to be much narrower than Planck-type thermal emission, and the intensity increase with input power was much steeper than expected for the thermal emission. The result places an important general caveat on calculating temperatures based on optical emission spectra in high-pressure laser-heating experiments. The intense emission in oxygen is photo-induced rather than being purely thermal, through multiphoton or multi-step single photon absorption processes related to the interaction with infrared radiation. The results suggest that short lived ionic species are induced by this laser-matter interaction.

  11. Intensity of emission lines of the quiescent solar corona: comparison between calculated and observed values

    Science.gov (United States)

    Krissinel, Boris

    2018-03-01

    The paper reports the results of calculations of the center-to-limb intensity of optically thin line emission in EUV and FUV wavelength ranges. The calculations employ a multicomponent model for the quiescent solar corona. The model includes a collection of loops of various sizes, spicules, and free (inter-loop) matter. Theoretical intensity values are found from probabilities of encountering parts of loops in the line of sight with respect to the probability of absence of other coronal components. The model uses 12 loops with sizes from 3200 to 210000 km with different values of rarefaction index and pressure at the loop base and apex. The temperature at loop apices is 1 400 000 K. The calculations utilize the CHIANTI database. The comparison between theoretical and observed emission intensity values for coronal and transition region lines obtained by the SUMER, CDS, and EIS telescopes shows quite satisfactory agreement between them, particularly for the solar disk center. For the data acquired above the limb, the enhanced discrepancies after the analysis refer to errors in EIS measurements.

  12. Ca²⁺ signal contributing to the synthesis and emission of monoterpenes regulated by light intensity in Lilium 'siberia'.

    Science.gov (United States)

    Hu, Zenghui; Li, Tianjiao; Zheng, Jian; Yang, Kai; He, Xiangfeng; Leng, Pingsheng

    2015-06-01

    The floral scent is an important part of plant volatile compounds, and is influenced by environmental factors. The emission of monoterpenes of Lilium 'siberia' is regulated by light intensity, but the mechanism is large unknown. In this study, the expression of Li-mTPS, a monoterpene synthase gene in the tepals of Lilium 'siberia', and net Ca(2+) flux were investigated after exposure to different levels of light intensity (0, 100, 300, 600, 1000, and 1500 μmol m(-2) s(-1)). Moreover the effect of LaCl3 and ethylene glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) on the Li-mTPS expression, monoterpene emission, and net Ca(2+) flux were examined at 600 μmol m(-2) s(-1). The results showed that along with the enhancement of light intensity, the expression level of Li-mTPS increased gradually, and the net Ca(2+) influx was also enhanced showing a similar pattern. It was found that LaCl3 and EGTA effectively inhibited the increase in expression of Li-mTPS and the net Ca(2+) influx induced by light treatment. Moreover, the release amounts of monoterpenes decreased significantly after treatment with LaCl3 and EGTA. So it can be concluded that Ca(2+) signal contributed to the biosynthesis and emission of monoterpenes regulated by light intensity in Lilium 'siberia' tepals. The increased light intensity firstly triggered the Ca(2+) influx to cytoplasm, and then the gene expression of monoterpene synthases downstream was activated to regulate the biosynthesis and emission of monoterpenes. But in the signaling pathway other mechanisms were thought to be involved in the emission of monoterpenes regulated by light intensity, which need to be investigated in future research. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Climate constraints on the carbon intensity of economic growth

    International Nuclear Information System (INIS)

    Rozenberg, Julie; Narloch, Ulf; Hallegatte, Stephane; Davis, Steven J

    2015-01-01

    Development and climate goals together constrain the carbon intensity of production. Using a simple and transparent model that represents committed CO 2 emissions (future emissions expected to come from existing capital), we explore the carbon intensity of production related to new capital required for different temperature targets across several thousand scenarios. Future pathways consistent with the 2 °C target which allow for continued gross domestic product growth require early action to reduce carbon intensity of new production, and either (i) a short lifetime of energy and industry capital (e.g. early retrofit of coal power plants), or (ii) large negative emissions after 2050 (i.e. rapid development and dissemination of carbon capture and sequestration). To achieve the 2 °C target, half of the scenarios indicate a carbon intensity of new production between 33 and 73 g CO 2 /$—much lower than the global average today, at 360 g CO 2 /$. The average lifespan of energy capital (especially power plants), and industry capital, are critical because they commit emissions far into the future and reduce the budget for new capital emissions. Each year of lifetime added to existing, carbon intensive capital, decreases the carbon intensity of new production required to meet a 2 °C carbon budget by 1.0–1.5 g CO 2 /$, and each year of delaying the start of mitigation decreases the required CO 2 intensity of new production by 20–50 g CO 2 /$. Constraints on the carbon intensity of new production under a 3 °C target are considerably relaxed relative to the 2 °C target, but remain daunting in comparison to the carbon intensity of the global economy today. (letter)

  14. The decrease of CO2 emission intensity is decarbonization at national and global levels

    International Nuclear Information System (INIS)

    Sun, J.W.

    2005-01-01

    This viewpoint proposes the definition: 'Decarbonization refers to a decrease of CO 2 emission intensity in a trend'. This viewpoint then argues that an analysis of decarbonization at national and global levels based on that definition would lead to the correct calculation of decarbonization

  15. Energy-related CO_2 emission in European Union agriculture: Driving forces and possibilities for reduction

    International Nuclear Information System (INIS)

    Li, Tianxiang; Baležentis, Tomas; Makutėnienė, Daiva; Streimikiene, Dalia; Kriščiukaitienė, Irena

    2016-01-01

    Highlights: • The research focuses on agricultural sectors of the eighteen European countries. • The main drivers of energy-related CO_2 emission are quantified by means of IDA. • The slack-based DEA model is applied to gauge the environmental efficiency. • Shadow prices of carbon emission are analysed. • Energy efficiency remains the primary means for increasing environmental efficiency. - Abstract: Climate change mitigation is a key issue in formulating global environmental policies. Energy production and consumption are the main sources of greenhouse gas (GHG) emissions in Europe. Energy consumption and energy-related GHG emissions from agriculture are an important concern for policymakers, as the agricultural activities should meet food security goals along with proper economic, environmental, and social impacts. Carbon dioxide (CO_2) emission is the most significant among energy-related GHG emissions. This paper analyses the main drivers behind energy-related CO_2 emission across agricultural sectors of European countries. The analysis is based on aggregate data from the World Input-Output Database. The research explores two main directions. Firstly, Index Decomposition Analysis (IDA), facilitated by the Shapley index, is used to identify the main drivers of CO_2 emission. Secondly, the Slack-based Model (SBM) is applied to gauge the environmental efficiency of European agricultural sectors. By applying frontier techniques, we also derive the measures of environmental efficiency and shadow prices, thereby contributing to a discussion on CO_2 emission mitigation in agriculture. Therefore, the paper devises an integrated approach towards analysis of CO_2 emission based upon advanced decomposition and efficiency analysis models. The research covers eighteen European countries and the applied methodology decomposes contributions to CO_2 emission across of regions and factors. Results of IDA suggest that decreasing energy intensity is the main factor

  16. Intensities of the Martian N2 electron-impact excited dayglow emissions

    Science.gov (United States)

    Fox, Jane L.; Hać, Nicholas E. F.

    2013-06-01

    The first N2 emissions in the Martian dayglow were detected by the SPICAM UV spectrograph on board the Mars Express spacecraft. Intensities of the (0,5) and (0,6) Vegard-Kaplan bands were found to be about one third of those predicted more than 35 years ago. The Vegard-Kaplan band system arises from the transition from the lowest N2 triplet state (A3Σu+;v') to the electronic ground state (X1Σg+;v″). It is excited in the Martian dayglow by direct electron-impact excitation of the ground N2(X) state to the A state and by excitation to higher triplet states that populate the A state by cascading. Using revised data, we compute here updated intensities of several of the bands in the N2 triplet systems and those involving the a1Πg state, the upper state of the Lyman-Birge-Hopfield bands. We find that the predicted limb intensities for the (0,5) and (0,6) Vegard-Kaplan bands are consistent with the measured values.

  17. Experimental and numerical analysis for high intensity swirl based ultra-low emission flameless combustor operating with liquid fuels

    KAUST Repository

    Vanteru, Mahendra Reddy; Katoch, Amit; Roberts, William L.; Kumar, Sudarshan

    2014-01-01

    Flameless combustion offers many advantages over conventional combustion, particularly uniform temperature distribution and lower emissions. In this paper, a new strategy is proposed and adopted to scale up a burner operating in flameless combustion mode from a heat release density of 5.4-21 MW/m(3) (thermal input 21.5-84.7 kW) with kerosene fuel. A swirl flow based configuration was adopted for air injection and pressure swirl type nozzle with an SMD 35-37 lm was used to inject the fuel. Initially, flameless combustion was stabilized for a thermal input of 21.5 kW ((Q) over dot '''= 5.37 MW/m(3)). Attempts were made to scale this combustor to higher intensities i.e. 10.2, 16.3 and 21.1 MW/m(3). However, an increase in fuel flow rate led to incomplete combustion and accumulation of unburned fuel in the combustor. Two major difficulties were identified as possible reasons for unsustainable flameless combustion at the higher intensities. (i) A constant spray cone angle and SMD increases the droplet number density. (ii) Reactants dilution ratio (R-dil) decreased with increased thermal input. To solve these issues, a modified combustor configuration, aided by numerical computations was adopted, providing a chamfer near the outlet to increase the R-dil. Detailed experimental investigations showed that flameless combustion mode was achieved at high intensities with an evenly distributed reaction zone and temperature in the combustor at all heat intensities. The emissions of CO, NOx and HC for all heat intensities (Phi = 1-0.6) varied between 11-41, 6-19 and 0-9 ppm, respectively. These emissions are well within the range of emissions from other flameless combustion systems reported in the literature. The acoustic emission levels were also observed to be reduced by 8-9 dB at all conditions. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  18. Experimental and numerical analysis for high intensity swirl based ultra-low emission flameless combustor operating with liquid fuels

    KAUST Repository

    Vanteru, Mahendra Reddy

    2014-06-21

    Flameless combustion offers many advantages over conventional combustion, particularly uniform temperature distribution and lower emissions. In this paper, a new strategy is proposed and adopted to scale up a burner operating in flameless combustion mode from a heat release density of 5.4-21 MW/m(3) (thermal input 21.5-84.7 kW) with kerosene fuel. A swirl flow based configuration was adopted for air injection and pressure swirl type nozzle with an SMD 35-37 lm was used to inject the fuel. Initially, flameless combustion was stabilized for a thermal input of 21.5 kW ((Q) over dot \\'\\'\\'= 5.37 MW/m(3)). Attempts were made to scale this combustor to higher intensities i.e. 10.2, 16.3 and 21.1 MW/m(3). However, an increase in fuel flow rate led to incomplete combustion and accumulation of unburned fuel in the combustor. Two major difficulties were identified as possible reasons for unsustainable flameless combustion at the higher intensities. (i) A constant spray cone angle and SMD increases the droplet number density. (ii) Reactants dilution ratio (R-dil) decreased with increased thermal input. To solve these issues, a modified combustor configuration, aided by numerical computations was adopted, providing a chamfer near the outlet to increase the R-dil. Detailed experimental investigations showed that flameless combustion mode was achieved at high intensities with an evenly distributed reaction zone and temperature in the combustor at all heat intensities. The emissions of CO, NOx and HC for all heat intensities (Phi = 1-0.6) varied between 11-41, 6-19 and 0-9 ppm, respectively. These emissions are well within the range of emissions from other flameless combustion systems reported in the literature. The acoustic emission levels were also observed to be reduced by 8-9 dB at all conditions. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  19. Tomographic intensity mapping versus galaxy surveys: observing the Universe in H α emission with new generation instruments

    Science.gov (United States)

    Silva, B. Marta; Zaroubi, Saleem; Kooistra, Robin; Cooray, Asantha

    2018-04-01

    The H α line emission is an important probe for a number of fundamental quantities in galaxies, including their number density, star formation rate (SFR), and overall gas content. A new generation of low-resolution intensity mapping (IM) probes, e.g. SPHEREx and CDIM, will observe galaxies in H α emission over a large fraction of the sky from the local Universe till a redshift of z ˜ 6 - 10, respectively. This will also be the target line for observations by the high-resolution Euclid and WFIRST instruments in the z ˜ 0.7-2 redshift range. In this paper, we estimate the intensity and power spectra of the H α line in the z ˜ 0-5 redshift range using observed line luminosity functions (LFs), when possible, and simulations, otherwise. We estimate the significance of our predictions by accounting for the modelling uncertainties (e.g. SFR, extinction, etc.) and observational contamination. We find that IM surveys can make a statistical detection of the full H α emission between z ˜ 0.8 and 5. Moreover, we find that the high-frequency resolution and the sensitivity of the planned CDIM surveys allow for the separation of H α emission from several interloping lines. We explore ways to use the combination of these line intensities to probe galaxy properties. As expected, our study indicates that galaxy surveys will only detect bright galaxies that contribute up to a few per cent of the overall H α intensity. However, these surveys will provide important constraints on the high end of the H α LF and put strong constraints on the active galactic nucleus LF.

  20. Investigation of intrinsic and extrinsic defects effective role on producing intense red emission in ZnO:Eu nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Mehrdad, E-mail: najafi@shahroodut.ac.ir; Haratizadeh, Hamid

    2015-05-15

    Highlights: • Effective role of defects on producing red emission at indirect excitation. • V{sub Zn} and V{sub O} defects have important role on energy transfer. • Mg related defects and Zn{sub i} defects were responsible for blue emission. • Extrinsic and intrinsic defects mediated energy transfer to sensitize Eu{sup 3+} ions. • Decrease of red emission because of diminishing in oxygen vacancy. - Abstract: Europium doped ZnO nanorads and nanosheets were synthesized by hydrothermal method. Effects of Mg doping, morphology and annealing in oxygen ambient on structural and optical properties of ZnO nanostructures were investigated using X-ray diffraction (XRD), particle size analysis (PSA), thermo gravimetric analysis (TGA), differential thermal analysis (DTA), differential thermo gravimetry (DTG), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL). This study recommends that both of intrinsic and extrinsic defects facilitate energy transfer (ET) from the ZnO host to Eu{sup 3+} ions and consequently have efficient role on producing intense red emission at indirect excitation. The results also showed that annealing process improved the crystal structure of ZnO nanosheets due to decrease of surface defects; however decreased ET and red emission because of diminishing in oxygen vacancy. In addition in ZnO nanorods sample with more surface area in comparison with ZnO nanosheets sample deep level emissions are enhanced.

  1. Double pulse laser induced breakdown spectroscopy: Experimental study of lead emission intensity dependence on the wavelengths and sample matrix

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli S, V; Martinez L, M A; Fernandez C, A J [Laboratorio de Espectroscopia Laser, Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, DC 1020 (Venezuela, Bolivarian Republic of); Gonzalez, J J; Mao, X L [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Russo, R.E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: RERusso@lbl.gov

    2009-02-15

    Lead (Pb) emission intensity (atomic line 405.78 nm) dependence on the sample matrix (metal alloy) was studied by means of collinear double pulse (DP)-laser induced breakdown spectroscopy (LIBS). The measurement of the emission intensity produced by three different wavelength combinations (i.e. I:532 nm-II:1064 nm, I:532 nm-II:532 nm, and I:532 nm-II:355 nm) from three series of standard reference materials showed that the lead atomic line 405.78 nm emission intensity was dependent on the sample matrix for all the combination of wavelengths, however reduced dependency was found for the wavelength combination I:532 nm-II:355 nm. Two series of standard reference materials from the National Institute of Standards and Technology (NIST) and one series from the British Chemical Standards (BCS) were used for these experiments. Calibration curves for lead ablated from NIST 626-630 ('Zn{sub 95}Al{sub 4}Cu{sub 1}') provided higher sensitivity (slope) than those calibration curves produced from NIST 1737-1741 ('Zn{sub 99.5}Al{sub 0.5}') and with the series BCS 551-556 ('Cu{sub 87}Sn{sub 11}'). Similar trends between lead emission intensity (calibration curve sensitivities) and reported variations in plasma temperatures caused by the differing ionization potentials of the major and minor elements in these samples were established.

  2. Potential for reducing GHG emissions and energy consumption from implementing the aluminum intensive vehicle fleet in China

    International Nuclear Information System (INIS)

    Du, J.D.; Han, W.J.; Peng, Y.H.; Gu, C.C.

    2010-01-01

    The automobile industry in China has rapidly developed in recent years which resulted in an increase in gasoline usage and greenhouse gas (GHG) emissions. Focus on climate change has also accelerated to grow pressure on reducing vehicle weight and improving fuel efficiency. Aluminum (Al) as a light metal has demonstrated a great potential for weight savings in applications such as engine blocks, cylinder heads, wheels, hoods, tailgates etc. However, primary Al production requires intensive energy and the cost of Al is more than traditional steel, which may affect the total benefits realized from using Al in automobiles. Therefore, it is very essential to conduct a study to quantify the life cycle GHG emissions and energy consumption if the plan is to achieve fleet-wide Al intensive vehicles. This paper describes a life cycle assessment (LCA) methodology and the general modeling assumptions used to evaluate the impact of Al intensive vehicle on GHG emissions and energy consumption. The results indicated that the reductions in life cycle GHG emissions and energy consumption were not significant when the maximum Al content in an automobile is 145 kg, which is the average level of Al usage in automobiles in North America. A neural network methodology was used to forecast the vehicle stock in China from 2010 to 2020 and a vehicle fleet model was established to track GHG emissions and energy consumption of the vehicle fleet. A material availability factor was also introduced into the LCA methodology to further assist decision makers in providing rational proposals for a widespread implementation of Al in automobiles. A sensitivity analysis was also conducted to study the impact of the Al content in a vehicle on the final outcomes. The GHG emissions and energy consumption could be further reduced when the Al content in an automobile increases.

  3. A modified GHG intensity indicator: Toward a sustainable global economy based on a carbon border tax and emissions trading

    International Nuclear Information System (INIS)

    Farrahi Moghaddam, Reza; Farrahi Moghaddam, Fereydoun; Cheriet, Mohamed

    2013-01-01

    It will be difficult to gain the agreement of all the actors on any proposal for climate change management, if universality and fairness are not considered. In this work, a universal measure of emissions to be applied at the international level is proposed, based on a modification of the Greenhouse Gas Intensity (GHG-INT) measure. It is hoped that the generality and low administrative cost of this measure, which we call the Modified Greenhouse Gas Intensity measure (MGHG-INT), will eliminate any need to classify nations. The core of the MGHG-INT is what we call the IHDI-adjusted Gross Domestic Product (IDHIGDP), based on the Inequality-adjusted Human Development Index (IHDI). The IDHIGDP makes it possible to propose universal measures, such as MGHG-INT. We also propose a carbon border tax applicable at national borders, based on MGHG-INT and IDHIGDP. This carbon tax is supported by a proposed global Emissions Trading System (ETS). The proposed carbon tax is analyzed in a short-term scenario, where it is shown that it can result in a significant reduction in global emissions while keeping the economy growing at a positive rate. In addition to annual GHG emissions, cumulative GHG emissions over two decades are considered with almost the same results. - Highlights: ► An IHDI-adjusted GDP (IHDIGDP) is introduced to universally account the activities of nations. ► A modified GHG emission intensity (MGHG-INT) is introduced based on the IHDIGDP. ► Based on green and red scenarios, admissible emissions and RED percentage are introduced. ► The RED percentage is used to define a border carbon tax (BCT) and emission trading system. ► The MGHG-INT can provide a universal control on emissions while allowing high economical growth

  4. In-situ determination of cross-over point for overcoming plasma-related matrix effects in inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Chan, George C.-Y.; Hieftje, Gary M.

    2008-01-01

    A novel method is described for overcoming plasma-related matrix effects in inductively coupled plasma-atomic emission spectrometry (ICP-AES). The method is based on measurement of the vertically resolved atomic emission of analyte within the plasma and therefore requires the addition of no reagents to the sample solution or to the plasma. Plasma-related matrix effects enhance analyte emission intensity low in the plasma but depress the same emission signal at higher positions. Such bipolar behavior is true for all emission lines and matrices that induce plasma-related interferences. The transition where the enhancement is balanced by the depression (the so-called cross-over point) results in a spatial region with no apparent matrix effects. Although it would be desirable always to perform determinations at this cross-over point, its location varies between analytes and from matrix to matrix, so it would have to be found separately for every analyte and for every sample. Here, a novel approach is developed for the in-situ determination of the location of this cross-over point. It was found that the location of the cross-over point is practically invariant for a particular analyte emission line when the concentration of the matrix was varied. As a result, it is possible to determine in-situ the location of the cross-over point for all analyte emission lines in a sample by means of a simple one-step sample dilution. When the original sample is diluted by a factor of 2 and the diluted sample is analyzed again, the extent of the matrix effect is identical (zero) between the original sample and the diluted sample at one and only one location - the cross-over point. This novel method was verified with several single-element matrices (0.05 M Na, Ca, Ba and La) and some mixed-element matrices (mixtures of Na-Ca, Ca-Ba, and a plant-sample digest). The inaccuracy in emission intensity due to the matrix effect could be as large as - 30% for conventional measurements in the

  5. Negative secondary ion emission from oxidized surfaces

    International Nuclear Information System (INIS)

    Gnaser, H.; Kernforschungsanlage Juelich G.m.b.H.

    1984-01-01

    The emission of negative secondary ions from 23 elements was studied for 10 keV O 2 + and 10 keV In + impact at an angle of incidence of 45 0 . Partial oxidation of the sample surfaces was achieved by oxygen bombardment and/or by working at a high oxygen partial pressure. It was found that the emission of oxide ions shows an element-characteristic pattern. For the majority of the elements investigated these features are largely invariant against changes of the surface concentration of oxygen. For the others admission of oxygen strongly changes the relative intensities of oxide ions: a strong increase of MO 3 - signals (M stands for the respective element) is accompanied by a decrease of MO - and M - intensities. Different primary species frequently induce changes of both the relative and the absolute negative ion intensities. Carbon - in contrast to all other elements - does not show any detectable oxide ion emission but rather intense cluster ions Csub(n) - (detected up to n=12) whose intensities oscillate in dependence on n. (orig./RK)

  6. An intensity map of hydrogen 21-cm emission at redshift z approximately 0.8.

    Science.gov (United States)

    Chang, Tzu-Ching; Pen, Ue-Li; Bandura, Kevin; Peterson, Jeffrey B

    2010-07-22

    Observations of 21-cm radio emission by neutral hydrogen at redshifts z approximately 0.5 to approximately 2.5 are expected to provide a sensitive probe of cosmic dark energy. This is particularly true around the onset of acceleration at z approximately 1, where traditional optical cosmology becomes very difficult because of the infrared opacity of the atmosphere. Hitherto, 21-cm emission has been detected only to z = 0.24. More distant galaxies generally are too faint for individual detections but it is possible to measure the aggregate emission from many unresolved galaxies in the 'cosmic web'. Here we report a three-dimensional 21-cm intensity field at z = 0.53 to 1.12. We then co-add neutral-hydrogen (H i) emission from the volumes surrounding about 10,000 galaxies (from the DEEP2 optical galaxy redshift survey). We detect the aggregate 21-cm glow at a significance of approximately 4sigma.

  7. An expression for the atomic fluorescence and thermal-emission intensity under conditions of near saturation and arbitrary self-absorption

    NARCIS (Netherlands)

    Omenetto, N.; Winefordner, J.D.; Alkemade, C.T.J.

    An expression for the effect of self-absorption on the fluorescence and thermal emission intensities is derived by taking into account stimulated emission. A simple, idealized case is considered, consisting of a two level atomic system, in a flame, homogeneous with respect to temperature and

  8. The implications of the historical decline in US energy intensity for long-run CO2 emission projections

    International Nuclear Information System (INIS)

    Sue Wing, Ian; Eckaus, Richard S.

    2007-01-01

    This paper analyzes the influence of the long-run decline in US energy intensity on projections of energy use and carbon emissions to the year 2050. We build on our own recent work which decomposes changes in the aggregate US energy-GDP ratio into shifts in sectoral composition (structural change) and adjustments in the energy demand of individual industries (intensity change), and identifies the impact on the latter of price-induced substitution of variable inputs, shifts in the composition of capital and embodied and disembodied technical progress. We employ a recursive-dynamic computable general equilibrium (CGE) model of the US economy to analyze the implications of these findings for future energy use and carbon emissions. Comparison of the simulation results against projections of historical trends in GDP, energy use and emissions reveals that the range of values for the rate of autonomous energy efficiency improvement (AEEI) conventionally used in CGE models is consistent with the effects of structural changes at the sub-sector level, rather than disembodied technological change. Even so, our results suggest that US emissions may well grow faster in the future than in the recent past

  9. Empirical research on decoupling relationship between energy-related carbon emission and economic growth in Guangdong province based on extended Kaya identity.

    Science.gov (United States)

    Wang, Wenxiu; Kuang, Yaoqiu; Huang, Ningsheng; Zhao, Daiqing

    2014-01-01

    The decoupling elasticity decomposition quantitative model of energy-related carbon emission in Guangdong is established based on the extended Kaya identity and Tapio decoupling model for the first time, to explore the decoupling relationship and its internal mechanism between energy-related carbon emission and economic growth in Guangdong. Main results are as follows. (1) Total production energy-related carbon emissions in Guangdong increase from 4128 × 10⁴ tC in 1995 to 14396 × 10⁴ tC in 2011. Decoupling elasticity values of energy-related carbon emission and economic growth increase from 0.53 in 1996 to 0.85 in 2011, and its decoupling state turns from weak decoupling in 1996-2004 to expansive coupling in 2005-2011. (2) Land economic output and energy intensity are the first inhibiting factor and the first promoting factor to energy-related carbon emission decoupling from economic growth, respectively. The development speeds of land urbanization and population urbanization, especially land urbanization, play decisive roles in the change of total decoupling elasticity values. (3) Guangdong can realize decoupling of energy-related carbon emission from economic growth effectively by adjusting the energy mix and industrial structure, coordinating the development speed of land urbanization and population urbanization effectively, and strengthening the construction of carbon sink.

  10. Plasma ion emission from high intensity picosecond laser pulse interactions with solid targets

    International Nuclear Information System (INIS)

    Fews, A.P.; Norreys, P.A.; Beg, F.N.; Bell, A.R.; Dangor, A.E.; Danson, C.N.; Lee, P.; Rose, S.J.

    1994-01-01

    The fast ion emission from high intensity, picosecond laser plasmas has been measured to give the characteristic ion energy and the amount of laser energy transferred to ions with energies ≥100 keV/nucleon as a function of incident intensity. The characteristic ion energy varies from 0.2 to 1.3 MeV over the range 2.0x10 17 --2.0x10 18 W cm -2 . Ten percent of the laser energy is transferred into MeV ions at 2.0x10 18 W cm -2 . Calculations of stopping power in high density materials are presented that show that fast ions cannot be ignored in modeling fast ignitor schemes

  11. Energy intensity and greenhouse gas emission of a purchase in the retail park service sector: An integrative approach

    International Nuclear Information System (INIS)

    Farreny, Ramon; Gabarrell, Xavier; Rieradevall, Joan

    2008-01-01

    The aim of this paper is to describe the energetic metabolism of a retail park service system under an integrative approach. Energy flow accounting was applied to a case study retail park in Spain, representative of the sector across Europe, after redefining the functional unit to account for both direct energy use (buildings, gardens and outdoor lighting) and indirect energy use (employee and customer transportation). A life cycle assessment (LCA) was then undertaken to determine energy global warming potential (GWP) and some energy intensity and greenhouse gases (GHG) emission indicators were defined and applied. The results emphasise the importance of service systems in global warming policies, as a potential emission of 9.26 kg CO 2 /purchase was obtained for the case study, relating to a consumption of 1.64 KOE of energy, of which 21.9% was spent on buildings and 57.9% on customer transportation. Some strategies to reduce these emissions were considered: increased supply, energy efficiency, changes in distribution of modes of transport, changes in location and changes in the mix of land uses. A combination of all of these elements in a new retail park could reduce GHG emissions by more than 50%, as it is planning strategies, which seem to be the most effective. (author)

  12. IMF control of cusp proton emission intensity and dayside convection: implications for component and anti-parallel reconnection

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2003-04-01

    Full Text Available We study a brightening of the Lyman-a emission in the cusp which occurred in response to a short-lived south-ward turning of the interplanetary magnetic field (IMF during a period of strongly enhanced solar wind plasma concentration. The cusp proton emission is detected using the SI-12 channel of the FUV imager on the IMAGE spacecraft. Analysis of the IMF observations recorded by the ACE and Wind spacecraft reveals that the assumption of a constant propagation lag from the upstream spacecraft to the Earth is not adequate for these high time-resolution studies. The variations of the southward IMF component observed by ACE and Wind allow for the calculation of the ACE-to-Earth lag as a function of time. Application of the derived propagation delays reveals that the intensity of the cusp emission varied systematically with the IMF clock angle, the relationship being particularly striking when the intensity is normalised to allow for the variation in the upstream solar wind proton concentration. The latitude of the cusp migrated equatorward while the lagged IMF pointed southward, confirming the lag calculation and indicating ongoing magnetopause reconnection. Dayside convection, as monitored by the SuperDARN network of radars, responded rapidly to the IMF changes but lagged behind the cusp proton emission response: this is shown to be as predicted by the model of flow excitation by Cowley and Lockwood (1992. We use the numerical cusp ion precipitation model of Lockwood and Davis (1996, along with modelled Lyman-a emission efficiency and the SI-12 instrument response, to investigate the effect of the sheath field clock angle on the acceleration of ions on crossing the dayside magnetopause. This modelling reveals that the emission commences on each reconnected field line 2–2.5 min after it is opened and peaks 3–5 min after it is opened. We discuss how comparison of the Lyman-a intensities with oxygen emissions observed simultaneously by the SI-13

  13. Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective

    International Nuclear Information System (INIS)

    Xu, Xianshuo; Zhao, Tao; Liu, Nan; Kang, Jidong

    2014-01-01

    Highlights: • We analyzed the factors impacting China’s emissions from a sectoral perspective. • Sector-specific policies and measures for emissions mitigation were evaluated. • Economic growth dominantly increased the emissions in the economic sectors. • Energy intensity decrease primarily reduced the emissions in the economic sectors. • Residential emissions growth was mainly driven by increase in per-capita energy use. - Abstract: In order to better understand sectoral greenhouse gas (GHG) emissions in China, this study utilized a logarithmic mean Divisia index (LMDI) decomposition analysis to study emission changes from a sectoral perspective. Based on the decomposition results, recently implemented policies and measures for emissions mitigation in China were evaluated. The results show that for the economic sectors, economic growth was the dominant factor in increasing emissions from 1996 to 2011, whereas the decline in energy intensity was primarily responsible for the emission decrease. As a result of the expansion of industrial development, economic structure change also contributed to growth in emissions. For the residential sector, increased emissions were primarily driven by an increase in per-capita energy use, which is partially confirmed by population migration. For all sectors, the shift in energy mix and variation in emission coefficient only contributed marginally to the emissions changes. The decomposition results imply that energy efficiency policy in China has been successful during the past decade, i.e., Top 1000 Priorities, Ten-Key Projects programs, the establishment of fuel consumption limits and vehicle emission standards, and encouragement of efficient appliances. Moreover, the results also indicate that readjusting economic structure and promoting clean and renewable energy is urgently required in order to further mitigate emissions in China

  14. Uncovering China’s transport CO2 emission patterns at the regional level

    International Nuclear Information System (INIS)

    Guo, Bin; Geng, Yong; Franke, Bernd; Hao, Han; Liu, Yaxuan; Chiu, Anthony

    2014-01-01

    With China’s rapid economic development, its transport sector has experienced a dramatic growth, leading to a large amount of related CO 2 emission. This paper aims to uncover China’s transport CO 2 emission patterns at the regional and provincial level. We first present the CO 2 emission features from transport sector in 30 Chinese provinces, including per capita emissions, emission intensities, and historical evolution of annual CO 2 emission. We then quantify the related driving forces by adopting both period-wise and time-series LMDI analysis. Results indicate that significant regional CO 2 emission disparities exist in China’s transport sector. The eastern region had higher total CO 2 emissions and per capita CO 2 emissions, but lower CO 2 emission intensities in its transport sector. The western region had higher CO 2 emission intensities and experienced a rapid CO 2 emission increase. The CO 2 emission increments in the eastern provinces were mainly contributed by both economic activity effect and population effect, while energy intensity partially offset the emission growth and energy structure had a marginal effect. However, in the central and western provinces, both economic activity effect and energy intensity effect induced the CO 2 emission increases, while the effects from population and energy structure change were limited. - Highlights: • The CO 2 emission features from transport sector in 30 Chinese provinces were presented. • The driving forces of CO 2 emissions from transport sector were quantified. • Regional disparities on China’s transport sector CO 2 emission exist. • Region-specific mitigation policies on transport sector CO 2 emission are needed

  15. CO2 emissions abatement in the Nordic carbon-intensive industry – An end-game in sight?

    International Nuclear Information System (INIS)

    Rootzén, Johan; Johnsson, Filip

    2015-01-01

    Analysing different future trajectories of technological developments we assess the prospects for Nordic carbon-intensive industries to significantly reduce direct CO 2 emissions in the period 2010–2050. This analysis covers petroleum refining, integrated iron and steel production, and cement manufacturing in the four largest Nordic countries of Denmark, Finland, Norway, and Sweden. Our results show that the implementation of currently available abatement measures will not be enough to meet the ambitious emissions reduction targets envisaged for the Year 2050. We show how an extensive deployment of CCS (carbon capture and storage) could result in emissions reductions that are in line with such targets. However, large-scale introduction of CCS would come at a significant price in terms of energy use and the associated flows of captured CO 2 would place high requirements on timely planning of infrastructure for the transportation and storage of CO 2 . Further the assessment highlights the importance of, especially in the absence of successful deployment of CO 2 capture, encouraging increased use of biomass in the cement and integrated iron and steel industries, and of promoting the utilisation of alternative raw materials in cement manufacturing to complement efforts to improve energy efficiency. - Highlights: • Scenarios exploring the potential for reducing CO 2 emissions in Nordic industry. • Current measures not sufficient to comply with stringent emission reduction targets. • CCS enables carbon-intensive industries to comply with stringent reduction targets. • CCS would come at a high price in terms of energy use. • Without CO 2 capture increased use of biomass and alternative raw materials vital

  16. National emissions from tourism: An overlooked policy challenge?

    International Nuclear Information System (INIS)

    Gössling, Stefan

    2013-01-01

    Tourism has been recognized as a significant greenhouse gas (GHG) emissions sector on a global scale. Yet, only few studies assess tourism's share in national emissions. This paper compares and analyses existing inventories of national emissions from tourism. Studies are difficult to compare, because they use different system boundaries and allocation principles, omitting or including lifecycle emissions and GHG other than CO 2 . By outlining and analysing these differences, the paper estimates the contribution made by tourism to national emissions, and its greenhouse gas intensity in comparison to other economic sectors. Results indicate that while emissions from tourism are significant in all countries studied, they may, in some countries, exceed ‘official' emissions as calculated on the basis of guidelines for national emission inventories under the Kyoto Protocol. This is a result of the fact that bunker fuels are not considered in national GHG inventories, leading to underestimates of the energy- and GHG intensity of tourism economies. While further growth in tourism emissions can be expected in all countries studied, energy-related vulnerabilities are already considerable in many of these. Climate policy for tourism, on the other hand, is largely non-existent, calling for immediate action to consider this sector in national legislation. - Highlights: • Emissions from tourism are equivalent to 5–150% of ’official’ national emissions. • Inconsistent methods are used to calculate national tourism emissions. • Tourism is an energy-intense economic sector compared to other sectors. • Emissions from tourism are growing rapidly. • National policy is not concerned with tourism-related emissions

  17. Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization

    DEFF Research Database (Denmark)

    Cardoso, J. F.; Delabrouille, J.; Ganga, K.

    2015-01-01

    )% from 353 to 70 GHz. We discuss this result within the context of existing dust models. The decrease in p could indicate differences in polarization efficiency among components of interstellar dust (e.g., carbon versus silicate grains). Our observational results provide inputs to quantify and optimize......Planck has mapped the intensity and polarization of the sky at microwave frequencies with unprecedented sensitivity. We use these data to characterize the frequency dependence of dust emission. We make use of the Planck 353 GHz I, Q, and U Stokes maps as dust templates, and cross-correlate them...... of the cosmic microwave background. We use a mask that focuses our analysis on the diffuse interstellar medium at intermediate Galactic latitudes. We determine the spectral indices of dust emission in intensity and polarization between 100 and 353 GHz, for each sky patch. Both indices are found to be remarkably...

  18. Emission spectra from super-critical rippled plasma density profiles illuminated by intense laser pulses

    International Nuclear Information System (INIS)

    Ondarza R, R.; Boyd, T.J.M.

    2000-01-01

    High-order harmonic emission from the interaction of intense femtosecond laser pulses with super-critical plasmas characterized by a rippled density profile at the vacuum-plasma interface has been observed from particle-in-cell (PIC) simulations. A plasma simulation box several laser wavelengths in extent was prepared with a rippled density of a fraction of a laser wavelength. Emission spectra at the very initial stage of the interaction were recorded with spectral characteristics dissimilar to those previously reported in the literature. The reflected light spectra were characterized by a strong emission at the plasma line and by a series of harmonics at multiples of the ripple frequency. Harmonic spectra were obtained for different values of the plasma ripple frequency. In all cases the harmonics were emitted at the precise multiple harmonic number of the ripple frequency. Another important feature apparent from the simulations was that the emission peaks appeared to havea complex structure as compared with those for unrippled plasmas. For the cases when the plasma was rippled the peaks that corresponded to the multiples of the rippled density typically showed a double peak for the first few harmonics. The reflected emission plots for the main laser pulse showed strong emission at the plasma frequency and at multiples of that frequency as reported by the authors in the literature. (Author)

  19. Greenhouse gas emissions related to Dutch food consumption

    NARCIS (Netherlands)

    Kramer, KJ; Moll, HC; Nonhebel, S; Wilting, HC

    The consumption of food products involves emissions of greenhouse gases. Emissions occur in the various stages of the life cycle of food products. In this paper we discuss the greenhouse gas emissions, CO2, CH4, and N2O, related to Dutch household food consumption. Combinations of greenhouse gas

  20. Analysis of influence mechanism of energy-related carbon emissions in Guangdong: evidence from regional China based on the input-output and structural decomposition analysis.

    Science.gov (United States)

    Wang, Changjian; Wang, Fei; Zhang, Xinlin; Deng, Haijun

    2017-11-01

    It is important to analyze the influence mechanism of energy-related carbon emissions from a regional perspective to effectively achieve reductions in energy consumption and carbon emissions in China. Based on the "energy-economy-carbon emissions" hybrid input-output analysis framework, this study conducted structural decomposition analysis (SDA) on carbon emissions influencing factors in Guangdong Province. Systems-based examination of direct and indirect drivers for regional emission is presented. (1) Direct effects analysis of influencing factors indicated that the main driving factors of increasing carbon emissions were economic and population growth. Carbon emission intensity was the main contributing factor restraining carbon emissions growth. (2) Indirect effects analysis of influencing factors showed that international and interprovincial trades significantly affected the total carbon emissions. (3) Analysis of the effects of different final demands on the carbon emissions of industrial sector indicated that the increase in carbon emission arising from international and interprovincial trades is mainly concentrated in energy- and carbon-intensive industries. (4) Guangdong had to compromise a certain amount of carbon emissions during the development of its export-oriented economy because of industry transfer arising from the economic globalization, thereby pointing to the existence of the "carbon leakage" problem. At the same time, interprovincial export and import resulted in Guangdong transferring a part of its carbon emissions to other provinces, thereby leading to the occurrence of "carbon transfer."

  1. Theoretical calculations of L alpha one x-ray emission intensity ratios for uranium in various matrices: a comparison with experimental values

    International Nuclear Information System (INIS)

    Anderson, L.D.

    1976-01-01

    The U L/sub α1/ x-ray emission intensity ratios (I/sub lambda/sub L//I sub lambda/sub L/, sub 100 percent/sub UO 2 /) in various matrices were calculated using the fundamental parameters formula of Criss and Birks and mass absorption coefficients calculated from a formula developed by Dewey. The use of the intensity ratio made it unnecessary to know the fluorescence yield for the U L/sub III/ level, the probability of emission of the U L/sub α1/ line, and the jump ratios for the three absorption edges of uranium. Also, since an intensity ratio was used, the results are independent of the x-ray tube current and the spectral distribution of the x-ray tube. A method is presented to calculate the intensity ratios for x-ray tube voltages other than the value (45 kV) used in the calculations. The theoretical results are calculated and compared with the experimental results obtained for 141 matrices. Difficulties due to oxidation of some of the metal powders used in the sample preparation, to small concentrations of uranium, and to an excessively large number of elements present in some of the samples resulted in the invalidation of the experimental results for 91 of the matrices. For the remaining 50 matrices, the theoretical and experimental values agreed to within +-5 percent relative error for 36 matrices; to within +-5 percent to +- 10 percent for 7 matrices; to within +-10 percent to +-20 percent for 6 matrices; and was greater than +-20 percent for 1 matrix

  2. Sputtering and emission intensity of cast irons with different metallurgical structures in a Grimm glow lamp

    International Nuclear Information System (INIS)

    Fujita, M.; Kashima, J.; Naganuma, K.

    1981-01-01

    The cathodic sputtering and emission intensities for the white, gray and malleable cast irons in the Grimm glow lamp are discussed. The intensities of the Fe 247.98-nm line for the samples of the three types depend linearly on the electrical power but the slopes of the plots differ. The intensity of the carbon line at 247.86 nm for malleable cast iron is weaker than those for the others. Sputtering is influenced by the form of the graphite, which can lead to distortion of the electrical field. Graphite on malleable cast iron is sputtered not only as atomic carbon but also as moieties containing several carbon atoms. The higher the supplied voltage, the shorter the time for the intensities of the Fe I and C I lines to reach constant values. (Auth.)

  3. SU-E-J-149: Secondary Emission Detection for Improved Proton Relative Stopping Power Identification

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, J; Musall, B; Erickson, A [Georgia Institute of Technology, Atlanta, GA (Georgia)

    2015-06-15

    Purpose: This research investigates application of secondary prompt gamma (PG) emission spectra, resulting from nuclear reactions induced by protons, to characterize tissue composition along the particle path. The objective of utilizing the intensity of discrete high-energy peaks of PG is to improve the accuracy of relative stopping power (RSP) values available for proton therapy treatment planning on a patient specific basis and to reduce uncertainty in dose depth calculations. Methods: In this research, MCNP6 was used to simulate PG emission spectra generated from proton induced nuclear reactions in medium of varying composition of carbon, oxygen, calcium and nitrogen, the predominant elements found in human tissue. The relative peak intensities at discrete energies predicted by MCNP6 were compared to the corresponding atomic composition of the medium. Results: The results have shown a good general agreement with experimentally measured values reported by other investigators. Unexpected divergence from experimental spectra was noted in the peak intensities for some cases depending on the source of the cross-section data when using compiled proton table libraries vs. physics models built into MCNP6. While the use of proton cross-section libraries is generally recommended when available, these libraries lack data for several less abundant isotopes. This limits the range of their applicability and forces the simulations to rely on physics models for reactions with natural atomic compositions. Conclusion: Current end-of-range proton imaging provides an average RSP for the total estimated track length. The accurate identification of tissue composition along the incident particle path using PG detection and characterization allows for improved determination of the tissue RSP on the local level. While this would allow for more accurate depth calculations resulting in tighter treatment margins, precise understanding of proton beam behavior in tissue of various

  4. Substantial enhancement of red emission intensity by embedding Eu-doped GaN into a microcavity

    NARCIS (Netherlands)

    Inaba, T.; Lee, D.-G.; Wakamatsu, R.; Kojima, T.; Mitchell, B.; Capretti, A.; Gregorkiewicz, T.; Koizumi, A.; Fujiwara, Y.

    2016-01-01

    We investigate resonantly excited photoluminescence from a Eu,O-codoped GaN layer embedded into a microcavity, consisting of an AlGaN/GaN distributed Bragg reflector and a Ag reflecting mirror. The microcavity is responsible for a 18.6-fold increase of the Eu emission intensity at ∼10K, and a

  5. IMF control of cusp proton emission intensity and dayside convection: implications for component and anti-parallel reconnection

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    Full Text Available We study a brightening of the Lyman-a emission in the cusp which occurred in response to a short-lived south-ward turning of the interplanetary magnetic field (IMF during a period of strongly enhanced solar wind plasma concentration. The cusp proton emission is detected using the SI-12 channel of the FUV imager on the IMAGE spacecraft. Analysis of the IMF observations recorded by the ACE and Wind spacecraft reveals that the assumption of a constant propagation lag from the upstream spacecraft to the Earth is not adequate for these high time-resolution studies. The variations of the southward IMF component observed by ACE and Wind allow for the calculation of the ACE-to-Earth lag as a function of time. Application of the derived propagation delays reveals that the intensity of the cusp emission varied systematically with the IMF clock angle, the relationship being particularly striking when the intensity is normalised to allow for the variation in the upstream solar wind proton concentration. The latitude of the cusp migrated equatorward while the lagged IMF pointed southward, confirming the lag calculation and indicating ongoing magnetopause reconnection. Dayside convection, as monitored by the SuperDARN network of radars, responded rapidly to the IMF changes but lagged behind the cusp proton emission response: this is shown to be as predicted by the model of flow excitation by Cowley and Lockwood (1992. We use the numerical cusp ion precipitation model of Lockwood and Davis (1996, along with modelled Lyman-a emission efficiency and the SI-12 instrument response, to investigate the effect of the sheath field clock angle on the acceleration of ions on crossing the dayside magnetopause. This modelling reveals that the emission commences on each reconnected field line 2–2.5 min after it is opened and peaks 3–5 min after it is opened. We discuss how comparison of the Lyman-

  6. Price-related sensitivities of greenhouse gas intensity targets

    International Nuclear Information System (INIS)

    Muller, Benito; Muller-Furstenberger, Georg

    2003-12-01

    Greenhouse gas intensities are an appealing tool to foster abatement without imposing constraints on economic growth. This paper shows, however, that the computation of intensities is subject to some significant statistical and conceptual problems which relate to the inflation proofing of GDP growth. It is shown that the choice of price-index, the updating of quantity weights and the choice of base year prices can have a significant impact upon the commitment of intensity targets

  7. Modification of (BaSr)O emission properties by highly intensive ionizing irradiation

    International Nuclear Information System (INIS)

    Ivanov, V.I.; Mozhaev, P.B.

    1989-01-01

    Investigation of irradiation effects on emission shows the increase in oxide cathode emission current immediately after its treatment with accelerated electrons. A model permittivity to explain the phenomenon on the basis of the known relation between the degree of oxide nonstoichiometry and concentration of lattice defects is suggested. The growth of nonstoichiometry degree results in the increase of metal concentration in near the surface layer and growth of emission current. Experimental results are adequately explained by the model suggested

  8. Greenhouse gas emissions from high demand, natural gas-intensive energy scenarios

    International Nuclear Information System (INIS)

    Victor, D.G.

    1990-01-01

    Since coal and oil emit 70% and 30% more CO 2 per unit of energy than natural gas (methane), fuel switching to natural gas is an obvious pathway to lower CO 2 emissions and reduced theorized greenhouse warming. However, methane is, itself, a strong greenhouse gas so the CO 2 advantages of natural gas may be offset by leaks in the natural gas recovery and supply system. Simple models of atmospheric CO 2 and methane are used to test this hypothesis for several natural gas-intensive energy scenarios, including the work of Ausubel et al (1988). It is found that the methane leaks are significant and may increase the total 'greenhouse effect' from natural gas-intensive energy scenarios by 10%. Furthermore, because methane is short-lived in the atmosphere, leaking methane from natural gas-intensive, high energy growth scenarios effectively recharges the concentration of atmospheric methane continuously. For such scenarios, the problem of methane leaks is even more serious. A second objective is to explore some high demand scenarios that describe the role of methane leaks in the greenhouse tradeoff between gas and coal as energy sources. It is found that the uncertainty in the methane leaks from the natural gas system are large enough to consume the CO 2 advantages from using natural gas instead of coal for 20% of the market share. (author)

  9. Fatigue in Intensive Care Nurses and Related Factors.

    Science.gov (United States)

    Çelik, Sevim; Taşdemir, Nurten; Kurt, Aylin; İlgezdi, Ebru; Kubalas, Özge

    2017-10-01

    Fatigue negatively affects the performance of intensive care nurses. Factors contributing to the fatigue experienced by nurses include lifestyle, psychological status, work organization and sleep problems. To determine the level of fatigue among nurses working in intensive care units and the related factors. This descriptive study was conducted with 102 nurses working in intensive care units in the West Black Sea Region of Turkey. Data were collected between February and May 2014 using a personal information form, the Visual Analogue Scale for Fatigue (VAS-F), the Hospital Anxiety and Depression Scale and the Pittsburg Sleep Quality Index. The intensive care nurses in the study were found to be experiencing fatigue. Significant correlations were observed between scores on the VAS-F Fatigue and anxiety (p=0.01), depression (p=0.002), and sleep quality (pnurses' levels of fatigue. These results can be of benefit in taking measures which may be used to reduce fatigue in nurses, especially the fatigue related to work organization and social life.

  10. Data to calculate emissions intensity for individual beef cattle reared on pasture-based production systems

    Directory of Open Access Journals (Sweden)

    G.A. McAuliffe

    2018-04-01

    Full Text Available With increasing concern about environmental burdens originating from livestock production, the importance of farming system evaluation has never been greater. In order to form a basis for trade-off analysis of pasture-based cattle production systems, liveweight data from 90 Charolais × Hereford-Friesian calves were collected at a high temporal resolution at the North Wyke Farm Platform (NWFP in Devon, UK. These data were then applied to the Intergovernmental Panel on Climate Change (IPCC modelling framework to estimate on-farm methane emissions under three different pasture management strategies, completing a foreground dataset required to calculate emissions intensity of individual beef cattle.

  11. Intense, stable and excitation wavelength-independent photoluminescence emission in the blue-violet region from phosphorene quantum dots

    Science.gov (United States)

    Ge, Shuaipeng; Zhang, Lisheng; Wang, Peijie; Fang, Yan

    2016-01-01

    Nanoscale phosphorene quantum dots (PQDs) with few-layer structures were fabricated by pulsed laser ablation of a bulk black phosphorus target in diethyl ether. An intense and stable photoluminescence (PL) emission of the PQDs in the blue-violet wavelength region is clearly observed for the first time, which is attributed to electronic transitions from the lowest unoccupied molecular orbital (LUMO) to the highest occupied molecular orbital (HOMO) and occupied molecular orbitals below the HOMO (H-1, H-2), respectively. Surprisingly, the PL emission peak positions of the PQDs are not red-shifted with progressively longer excitation wavelengths, which is in contrast to the cases of graphene and molybdenum disulphide quantum dots. This excitation wavelength-independence is derived from the saturated passivation on the periphery and surfaces of the PQDs by large numbers of electron-donating functional groups which cause the electron density on the PQDs to be dramatically increased and the band gap to be insensitive to the quantum size effect in the PQDs. This work suggests that PQDs with intense, stable and excitation wavelength-independent PL emission in the blue-violet region have a potential application as semiconductor-based blue-violet light irradiation sources. PMID:27265198

  12. Development of a high energy resolution magnetic bolometer for the determination of photon emission intensities by gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Rodrigues, M.

    2007-12-01

    In this research thesis, a first chapter describes the metrological difficulties for the determination of radionuclide photon emission intensities. Then, it discusses the understanding and the required tools for the computing of a magnetic bolometer signal with respect to the different operation parameters and to the sensor geometry. The author describes the implementation of the experimental device and its validation with a first sensor. The new sensor is then optimised for the measurement of photon emission intensities with a good efficiency and a theoretical energy resolution less than 100 eV up to 200 keV. The sensor's detection efficiency and operation have been characterized with a 133 Ba source. The author finally presents the obtained results

  13. Mitigating the greenhouse gas emissions embodied in food through realistic consumer choices

    International Nuclear Information System (INIS)

    Hoolohan, C.; Berners-Lee, M.; McKinstry-West, J.; Hewitt, C.N.

    2013-01-01

    The greenhouse gas (GHG) emissions embodied in 66 different food categories together with self-reported dietary information are used to show how consumer choices surrounding food might lead to reductions in food-related GHG emissions. The current UK-average diet is found to embody 8.8 kg CO 2 e person −1 day −1 . This figure includes both food eaten and food wasted (post-purchase). By far the largest potential reduction in GHG emissions is achieved by eliminating meat from the diet (35% reduction), followed by changing from carbon-intensive lamb and beef to less carbon-intensive pork and chicken (18% reduction). Cutting out all avoidable waste delivers an emissions saving of 12%. Not eating foods grown in hot-houses or air-freighted to the UK offers a 5% reduction in emissions. We show how combinations of consumer actions can easily lead to reductions of 25% in food related GHG emissions. If such changes were adopted by the entire UK population this would be equivalent to a 71% reduction in the exhaust pipe emissions of CO 2 from the entire UK passenger car fleet (which totalled 71 Mt CO 2 e year −1 in 2009). - Highlights: • UK-average diet embodies 8.8 kg CO 2 e person −1 day −1 (including avoidable waste). • Eliminating meat from the diet reduces food-related GHG emissions by 35%. • Changing from GHG-intensive meats to less intensive meats reduces emissions by 18%. • Cutting out all avoidable food waste reduces emissions by 12%. • Avoiding hot-housed food or food air-freighted to the UK reduces emissions by 5%

  14. Unpaid ecological costs related to emissions in the air

    International Nuclear Information System (INIS)

    Moreau, Sylvain; Bottin, Anne; Nauroy, Frederic; Boitard, Corinne; Bird, Geoffrey; David, Michel; Greffet, Pierre; Mordant, Guillaume; Moreau, Sylvain; Nirascou, Francoise; Le Moullec, Aurelie; Berthier, Jean-Pierre; Hassan, Marie-Elizabeth; Curri-Lemaitre, Elen; Lagarenne, Christine; Devaux, Jeremy; Nicklaus, Doris; Puydarrieux, Philippe; Vanoli, Andre; Schucht, Simone

    2014-05-01

    This study proposes an analysis of unpaid ecological terms based on the use of new economic indicators related to sustainable development (going beyond the GDP, adjusted accounting aggregates, accounting unpaid ecological costs), an analysis of unpaid ecological costs related to climate change (context, used results and data, definitions of trajectories associated with greenhouse gas emissions, cost to be applied to emissions to get rid of, assessment of unpaid ecological costs), and an analysis of unpaid ecological costs related to air pollution (objectives, standard to be adopted, towards more ambitious emission reduction and re-assessed costs, unpaid ecological costs in 2010)

  15. Modulating emission intensity of GaN-based green light emitting diodes on c-plane sapphire

    International Nuclear Information System (INIS)

    Du, Chunhua; Ma, Ziguang; Zhou, Junming; Lu, Taiping; Jiang, Yang; Jia, Haiqiang; Liu, Wuming; Chen, Hong

    2014-01-01

    The asymmetric dual-wavelength (green/blue) coupled InGaN/GaN multiple quantum wells were proposed to modulate the green emission intensity. Electroluminescent measurements demonstrate the conspicuous increment of the green light intensity by decreasing the coupled barrier thickness. This was partly attributed to capture of more carriers when holes tunnel across the thinner barrier from the blue quantum wells, as a hole reservoir, to the green quantum wells. While lower effective barrier height of the blue quantum wells benefits improved hole transportation from p-GaN to the active region. Efficiency droop of the green quantum wells was partially alleviated due to the enhanced injection efficiency of holes

  16. Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks

    International Nuclear Information System (INIS)

    Lee, Mengshan; Keller, Arturo A.; Chiang, Pen-Chi; Den, Walter; Wang, Hongtao; Hou, Chia-Hung; Wu, Jiang; Wang, Xin; Yan, Jinyue

    2017-01-01

    Highlights: •This study quantifies the nexus as energy intensity and greenhouse gas potential. •Baseline water stress and return flow ratio are identified as water risks. •Source water accessibility significantly contributes to variations in the nexus. •Water risks have little impact on the nexus of wastewater systems. •Study on the nexus is suggested to be conducted at regional levels. -- Abstract: The importance of the interdependence between water and energy, also known as the water-energy nexus, is well recognized. The water-energy nexus is typically characterized in resource use efficiency terms such as energy intensity. This study aims to explore the quantitative results of the nexus in terms of energy intensity and environmental impacts (mainly greenhouse gas emissions) on existing water systems within urban water cycles. We also characterized the influence of water risks on the water-energy nexus, including baseline water stress (a water quantity indicator) and return flow ratio (a water quality indicator). For the 20 regions and 4 countries surveyed (including regions with low to extremely high water risks that are geographically located in Africa, Australia, Asia, Europe, and North America), their energy intensities were positively related to the water risks. Regions with higher water risks were observed to have relatively higher energy and GHG intensities associated with their water supply systems. This mainly reflected the major influence of source water accessibility on the nexus, particularly for regions requiring energy-intensive imported or groundwater supplies, or desalination. Regions that use tertiary treatment (for water reclamation or environmental protection) for their wastewater treatment systems also had relatively higher energy and GHG emission intensities, but the intensities seemed to be independent from the water risks. On-site energy recovery (e.g., biogas or waste heat) in the wastewater treatment systems offered a great

  17. Nitrification inhibitors mitigated reactive gaseous nitrogen intensity in intensive vegetable soils from China.

    Science.gov (United States)

    Fan, Changhua; Li, Bo; Xiong, Zhengqin

    2018-01-15

    Nitrification inhibitors, a promising tool for reducing nitrous oxide (N 2 O) losses and promoting nitrogen use efficiency by slowing nitrification, have gained extensive attention worldwide. However, there have been few attempts to explore the broad responses of multiple reactive gaseous nitrogen emissions of N 2 O, nitric oxide (NO) and ammonia (NH 3 ) and vegetable yield to nitrification inhibitor applications across intensive vegetable soils in China. A greenhouse pot experiment with five consecutive vegetable crops was performed to assess the efficacies of two nitrification inhibitors, namely, nitrapyrin and dicyandiamide on reactive gaseous nitrogen emissions, vegetable yield and reactive gaseous nitrogen intensity in four typical vegetable soils representing the intensive vegetable cropping systems across mainland China: an Acrisol from Hunan Province, an Anthrosol from Shanxi Province, a Cambisol from Shandong Province and a Phaeozem from Heilongjiang Province. The results showed soil type had significant influences on reactive gaseous nitrogen intensity, with reactive gaseous nitrogen emissions and yield mainly driven by soil factors: pH, nitrate, C:N ratio, cation exchange capacity and microbial biomass carbon. The highest reactive gaseous nitrogen emissions and reactive gaseous nitrogen intensity were in Acrisol while the highest vegetable yield occurred in Phaeozem. Nitrification inhibitor applications decreased N 2 O and NO emissions by 1.8-61.0% and 0.8-79.5%, respectively, but promoted NH 3 volatilization by 3.2-44.6% across all soils. Furthermore, significant positive correlations were observed between inhibited N 2 O+NO and stimulated NH 3 emissions with nitrification inhibitor additions across all soils, indicating that reduced nitrification posed the threat of NH 3 losses. Additionally, reactive gaseous nitrogen intensity was significantly reduced in the Anthrosol and Cambisol due to the reduced reactive gaseous nitrogen emissions and increased

  18. A comparative analysis of the greenhouse gas emissions intensity of wheat and beef in the United States

    International Nuclear Information System (INIS)

    Sanders, Kelly Twomey; Webber, Michael E

    2014-01-01

    The US food system utilizes large quantities of liquid fuels, electricity, and chemicals yielding significant greenhouse gas (GHG) emissions that are not considered in current retail prices, especially when the contribution of biogenic emissions is considered. However, because GHG emissions might be assigned a price in prospective climate policy frameworks, it would be useful to know the extent to which those policies would increase the incremental production costs to food within the US food system. This analysis uses lifecycle assessment (LCA) to (1) estimate the magnitude of carbon dioxide equivalent (CO 2 e) emissions from typical US food production practices, using wheat and beef as examples, and (2) quantify the cost of those emissions in the context of a GHG-pricing regime over a range of policy constructs. Wheat and beef were chosen as benchmark staples to provide a representative range of less intensive and more intensive agricultural goods, respectively. Results suggest that 1.1 ± 0.13 and 31 ± 8.1 kg of lifecycle CO 2 e emissions are embedded in 1 kg of wheat and beef production, respectively. Consequently, the cost of lifecycle CO 2 e emissions for wheat (i.e. cultivation, processing, transportation, storage, and end-use preparation) over an emissions price range of $10 and $85 per tonne CO 2 e is estimated to be between $0.01 and $0.09 per kg of wheat, respectively, which would increase total wheat production costs by approximately 0.3–2% per kg. By comparison, the estimated lifecycle CO 2 e price of beef over the same range of CO 2 e prices is between $0.31 and $2.60 per kg of beef, representing a total production cost increase of approximately 5–40% per kg based on average 2010 food prices. This range indicates that the incremental cost to total US food production might be anywhere between $0.63–5.4 Billion per year for grain and $3.70 and $32 Billion per year for beef based on CO 2 e emissions assuming that total production

  19. Overview of European and Netherlands' regulations on airborne emissions from intensive livestock production with a focus on the application of air scrubbers

    NARCIS (Netherlands)

    Melse, R.W.; Ogink, N.W.M.; Rulkens, W.H.

    2009-01-01

    Intensive livestock production is of major importance to the economies of many countries but is also connected with a number of environmental effects, including airborne emissions. Currently emission standards are becoming increasingly stringent in European countries and the livestock industry is

  20. Dependence of upconversion emission intensity on Yb3+ concentration in Er3+/Yb3+ co-doped flake shaped Y2(MoO4)3 phosphors

    International Nuclear Information System (INIS)

    Lu Weili; Cheng Lihong; Zhong Haiyang; Sun Jiashi; Wan Jing; Tian Yue; Chen Baojiu

    2010-01-01

    Yttrium molybdate phosphors with fixed Er 3+ and various Yb 3+ concentrations were synthesized via a co-precipitation method. The crystal structure and the morphology of the phosphor were characterized by means of x-ray diffraction and field-emission scanning electron microscopy. Under 980 nm excitation, red and green upconversion emissions centred at 660, 553 and 530 nm were observed. Quantitative analyses on the dependence of upconversion emission intensity on the working current of a laser diode (LD) indicated that two-photon processes are responsible for both red and green upconversion emissions in both cases of low and high Yb 3+ concentrations. The relationship between the emission intensity ratio of 2 H 11/2 → 4 I 15/2 to 4 S 3/2 → 4 I 15/2 and the working current of the LD was studied for the samples doped with low and high Yb 3+ concentrations. Finally, a set of rate equations was established based on the possible upconversion mechanism, and an empirical formula was proposed to describe the Yb 3+ concentration dependence of upconversion emission intensity; the empirical formula fits well with the experimental data.

  1. Analysis of iron-base alloys by low-wattage glow discharge emission spectrometry

    International Nuclear Information System (INIS)

    Wagatsuma, K.; Hirokawa, K.

    1984-01-01

    Several iron-base alloys were investigated by low-wattage glow discharge emission spectrometry. The emission intensity principally depended on the sputtering parameters of constituent elements in the alloy. However, in the case of chromium, stable and firm oxides formed on the surface influencing the yield of ejected atoms. This paper discusses the relation between the sputtering parameters in Fe-Ni, Fe-Cr, and Fe-Co alloys and their relative emission intensities. Additionally, quantitative analysis was performed for some ternary iron-base alloys and commercial stainless steels with the calibration factors of binary alloy systems

  2. Influence of carbohydrate addition on nitrogen transformations and greenhouse gas emissions of intensive aquaculture system.

    Science.gov (United States)

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Sharma, Keshab; Khanal, Samir Kumar

    2014-02-01

    Aquaculture is one of the fastest-growing segments of the food economy in modern times. It is also being considered as an important source of greenhouse gas (GHG) emissions. To date, limited studies have been conducted on GHG emissions from aquaculture system. In this study, daily addition of fish feed and soluble starch at a carbon-to-nitrogen (C/N) ratio of 16:1 (w/w) was used to examine the effects of carbohydrate addition on nitrogen transformations and GHG emissions in a zero-water exchange intensive aquaculture system. The addition of soluble starch stimulated heterotrophic bacterial growth and denitrification, which led to lower total ammonia nitrogen, nitrite and nitrate concentrations in aqueous phase. About 76.2% of the nitrogen output was emitted in the form of gaseous nitrogen (i.e., N2 and N2O) in the treatment tank (i.e., aquaculture tank with soluble starch addition), while gaseous nitrogen accounted for 33.3% of the nitrogen output in the control tank (i.e., aquaculture tank without soluble starch addition). Although soluble starch addition reduced daily N2O emissions by 83.4%, it resulted in an increase of daily carbon dioxide (CO2) emissions by 91.1%. Overall, starch addition did not contribute to controlling the GHG emissions from the aquaculture system. © 2013.

  3. An approach to computing marginal land use change carbon intensities for bioenergy in policy applications

    International Nuclear Information System (INIS)

    Wise, Marshall; Hodson, Elke L.; Mignone, Bryan K.; Clarke, Leon; Waldhoff, Stephanie; Luckow, Patrick

    2015-01-01

    Accurately characterizing the emissions implications of bioenergy is increasingly important to the design of regional and global greenhouse gas mitigation policies. Market-based policies, in particular, often use information about carbon intensity to adjust relative deployment incentives for different energy sources. However, the carbon intensity of bioenergy is difficult to quantify because carbon emissions can occur when land use changes to expand production of bioenergy crops rather than simply when the fuel is consumed as for fossil fuels. Using a long-term, integrated assessment model, this paper develops an approach for computing the carbon intensity of bioenergy production that isolates the marginal impact of increasing production of a specific bioenergy crop in a specific region, taking into account economic competition among land uses. We explore several factors that affect emissions intensity and explain these results in the context of previous studies that use different approaches. Among the factors explored, our results suggest that the carbon intensity of bioenergy production from land use change (LUC) differs by a factor of two depending on the region in which the bioenergy crop is grown in the United States. Assumptions about international land use policies (such as those related to forest protection) and crop yields also significantly impact carbon intensity. Finally, we develop and demonstrate a generalized method for considering the varying time profile of LUC emissions from bioenergy production, taking into account the time path of future carbon prices, the discount rate and the time horizon. When evaluated in the context of power sector applications, we found electricity from bioenergy crops to be less carbon-intensive than conventional coal-fired electricity generation and often less carbon-intensive than natural-gas fired generation. - Highlights: • Modeling methodology for assessing land use change emissions from bioenergy • Use GCAM

  4. Energy intensity, life-cycle greenhouse gas emissions, and economic assessment of liquid biofuel pipelines.

    Science.gov (United States)

    Strogen, Bret; Horvath, Arpad; Zilberman, David

    2013-12-01

    Petroleum fuels are predominantly transported domestically by pipelines, whereas biofuels are almost exclusively transported by rail, barge, and truck. As biofuel production increases, new pipelines may become economically attractive. Location-specific variables impacting pipeline viability include construction costs, availability and costs of alternative transportation modes, electricity prices and emissions (if priced), throughput, and subsurface temperature. When transporting alcohol or diesel-like fuels, pipelines have a lower direct energy intensity than rail, barge, and trucks if fluid velocity is under 1 m/s for 4-inch diameter pipelines and 2 m/s for 8-inch or larger pipelines. Across multiple hypothetical state-specific scenarios, profit-maximizing design velocities range from 1.2 to 1.9 m/s. In costs and GHG emissions, optimized pipelines outperform trucks in each state and rail and barge in most states, if projected throughput exceeds four billion liters/year. If emissions are priced, optimum design diameters typically increase to reduce pumping energy demands, increasing the cost-effectiveness of pipeline projects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Revealing discriminating power of the elements in edible sea salts: Line-intensity correlation analysis from laser-induced plasma emission spectra

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yonghoon, E-mail: yhlee@mokpo.ac.kr [Department of Chemistry, Mokpo National University, Jeonnam 534-729 (Korea, Republic of); Ham, Kyung-Sik [Department of Food Engineering, Mokpo National University, Jeonnam 534-729 (Korea, Republic of); Han, Song-Hee [Division of Maritime Transportation System, Mokpo National Maritime University, Jeonnam 530-729 (Korea, Republic of); Yoo, Jonghyun, E-mail: jyoo@appliedspectra.com [Applied Spectra, Inc., 46665 Fremont Boulevard, Fremont, CA 94538 (United States); Jeong, Sungho [School of Mechatronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-11-01

    We have investigated the discriminating power of the elements in edible sea salts using Laser-Induced Breakdown Spectroscopy (LIBS). For the ten different sea salts from South Korea, China, Japan, France, Mexico and New Zealand, LIBS spectra were recorded in the spectral range between 190 and 1040 nm, identifying the presence of Na, Cl, K, Ca, Mg, Li, Sr, Al, Si, Ti, Fe, C, O, N, and H. Intensity correlation analysis of the observed emission lines provided a valuable insight into the discriminating power of the different elements in the sea salts. The correlation analysis suggests that the elements with independent discrimination power can be categorized into three groups; those that represent dissolved ions in seawater (K, Li, and Mg), those that are associated with calcified particles (Ca and Sr), and those that are present in soils contained in the sea salts (Al, Si, Ti, and Fe). Classification models using a few emission lines selected based on the results from intensity correlation analysis and full broadband LIBS spectra were developed based on Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) and their performances were compared. Our results indicate that effective combination of a few emission lines can provide a dependable model for discriminating the edible sea salts and the performance is not much degraded from that based on the full broadband spectra. This can be rationalized by the intensity correlation results. - Highlights: • Broadband LIBS spectra of various edible sea salts were obtained. • Intensity correlation of emission lines of the elements in edible sea salts was analyzed. • The elements were categorized into three groups with independent discriminating power. • The effective combination of a few lines can provide dependable classification models.

  6. Does climate policy lead to relocation with adverse effects for GHG emissions or not? A first assessment of the spillovers of climate policy for energy intensive industry

    International Nuclear Information System (INIS)

    Oikonomou, V.; Patel, M.; Worrell, E.

    2004-12-01

    Energy-intensive industries play a special role in climate policy. World-wide, industry is responsible for about 50% of greenhouse gas emissions. The emission intensity makes these industries an important target for climate policy. At the same time these industries are particularly vulnerable if climate policy would lead to higher energy costs, and if they would be unable to offset these increased costs. The side effects of climate policy on GHG emissions in foreign countries are typically referred to as 'spillovers'. Negative spillovers reduce the effectiveness of a climate policy, while positive spillovers increase its effectiveness. This paper provides a review of the literature on the spillover effects of climate policy for carbon intensive industries. Reviews of past trends in production location of energy-intensive industries show an increased share of non-Annex 1 countries. However, this trend is primarily driven by demand growth, and there is no empirical evidence for a role of environmental policy in these development patterns. In contrast, climate models do show a strong carbon leakage of emissions from these industries. Even though that climate policy may have a more profound impact than previous environmental policies, the results of the modelling are ambiguous. The energy and carbon intensity of energy-intensive industries is rapidly declining in most developing countries, and reducing the 'gap' between industrialized and developing countries. Still, considerable potential for emission reduction exists, both in developing and industrialized countries. Technology development is likely to deliver further reductions in energy use and CO2 emissions. Despite the potential for positive spillovers in the energy-intensive industries, none of the models used in the analysis of spillovers of climate policies has an endogenous representation of technological change for the energy-intensive industries. This underlines the need for a better understanding of

  7. Greenhouse gas emissions in Norway: do carbon taxes work?

    International Nuclear Information System (INIS)

    Bruvoll, Annegrete; Larsen, B.M.

    2004-01-01

    During the last decade, Norway has carried out an ambitious climate policy. The main policy tool is a relatively high carbon tax, which was implemented already in 1991. Data for the development in CO 2 emissions since then provide a unique opportunity to evaluate carbon taxes as a policy tool. To reveal the driving forces behind the changes in the three most important climate gases, CO 2 , methane and N 2 O in the period 1990-1999, we decompose the actually observed emissions changes, and use an applied general equilibrium simulation to look into the specific effect of carbon taxes. Although total emissions have increased, we find a significant reduction in emissions per unit of GDP over the period due to reduced energy intensity, changes in the energy mix and reduced process emissions. Despite considerable taxes and price increases for some fuel-types, the carbon tax effect has been modest. While the partial effect from lower energy intensity and energy mix changes was a reduction in CO 2 emissions of 14 percent, the carbon taxes contributed to only 2 percent reduction. This relatively small effect relates to extensive tax exemptions and relatively inelastic demand in the sectors in which the tax is actually implemented

  8. Spectroscopic investigations of hard x-ray emission from 120 ps laser-produced plasmas at intensities near 1017 W cm-2

    International Nuclear Information System (INIS)

    Dunn, J.; Young, B.K.F.; Osterheld, A.L.; Foord, M.E.; Walling, R.S.; Stewart, R.E.; Faenov, A.Y.

    1995-11-01

    Spectroscopic investigations of the x-ray emission of plasmas heated by 120 ps, frequency doubled pulses from the JANUS Nd: glass laser are presented. High Z K-shell spectra emitted from slab targets heated to near 10 17 W cm -2 intensity are investigated. High resolution (γ/Δγ>5000) x-ray spectra of multicharged ions of H-like Ti, Co, Ni, Cu, and also H-like Sc in the spectral range 1.5--3.0 angstrom are obtained in single laser shots using a spherically bent Mica crystal spectrograph with a 186 mm radius of curvature. The spectra- have one dimensional spatial resolution of about 25μm and indicate that the size of the emission zone of the resonance, transitions is 2 keV and density∼10 22 cm -3 . These experiments demonstrate that with modest laser energy, plasmas heated by high-intensity 120 ps lasers provide a very bright source of hard ∼8 keV x-ray emission

  9. Age-related patterns of vigorous-intensity physical activity in youth

    DEFF Research Database (Denmark)

    Corder, Kirsten; Sharp, Stephen J; Atkin, Andrew J

    2016-01-01

    the relative reduction was 6.0% (5.6%, 6.4%). The age-related decrease in vigorous-intensity activity remained after adjustment for moderate activity. A larger age-related decrease in vigorous activity was observed for girls (- 10.7%) versus boys (- 2.9%), non-white (- 12.9% to - 9.4%) versus white individuals......Physical activity declines during youth but most evidence reports on combined moderate and vigorous-intensity physical activity. We investigated how vigorous-intensity activity varies with age. Cross-sectional data from 24,025 participants (5.0-18.0 y; from 20 studies in 10 countries obtained 2008...... (- 6.1%), lowest maternal education (high school (- 2.0%)) versus college/university (ns) and for overweight/obese (- 6.1%) versus healthy-weight participants (- 8.1%). In addition to larger annual decreases in vigorous-intensity activity, overweight/obese individuals, girls and North Americans had...

  10. [Decomposition model of energy-related carbon emissions in tertiary industry for China].

    Science.gov (United States)

    Lu, Yuan-Qing; Shi, Jun

    2012-07-01

    Tertiary industry has been developed in recent years. And it is very important to find the factors influenced the energy-related carbon emissions in tertiary industry. A decomposition model of energy-related carbon emissions for China is set up by adopting logarithmic mean weight Divisia method based on the identity of carbon emissions. The model is adopted to analyze the influence of energy structure, energy efficiency, tertiary industry structure and economic output to energy-related carbon emissions in China from 2000 to 2009. Results show that the contribution rate of economic output and energy structure to energy-related carbon emissions increases year by year. Either is the contribution rate of energy efficiency or the tertiary industry restraining to energy-related carbon emissions. However, the restrain effect is weakening.

  11. Carbon intensity of electricity in ASEAN: Drivers, performance and outlook

    International Nuclear Information System (INIS)

    Ang, B.W.; Goh, Tian

    2016-01-01

    The Association of Southeast Asian Nations (ASEAN), with its ten member countries, has a total population exceeding 600 million. Its energy-related CO 2 emissions have been growing and in 2013 amounted to 3.6% of total global emissions. About 40% of ASEAN's energy-related CO 2 emissions are currently attributable to electricity production. In view of this high share, we study the CO 2 emissions of ASEAN's electricity production sector with a focus on the aggregate emission intensity (ACI) given by the level of CO 2 emissions for each unit of electricity produced. Drivers of ACI are analysed for individual countries and spatial analysis is conducted by comparing factors contributing to differences between the ACIs of individual countries and that of the ASEAN average. Arising from these analyses and in light of the current developments, it is concluded that drastic actions need to be taken both at the national and regional levels in order to reduce growth in the region's electricity-related CO 2 emissions. Two key policy issues, namely overcoming national circumstances to improve electricity generation mix and improving power generation efficiency, are further discussed. - Highlights: • Aggregate carbon intensities (ACIs) of ASEAN countries analysed temporally and spatially using index decomposition analysis. • Bleak future for emissions and ACI of ASEAN countries with increasing inclination towards coal for electricity production. • National circumstances impact ability of countries to improve electricity generation mix. • Significant unexploited potential for improvements in thermal efficiency of generation.

  12. Spectral intensities for stoichiometric elpasolites. I. Absorption and emission of Tm+3 in systems of the Cs2NaTmZ6 type

    International Nuclear Information System (INIS)

    Acevedo, R; Poblete, V; Pozo, J; Elgueta, R; Tanner, P.A

    2000-01-01

    Based upon new experimental data for systems such as, Cs 2 NaTmZ 6 , where Z - =Cl - , F - [1-4], we have carried out a thorough study of the mechanistic factors related with the spectral intensities for both the absorptions and the emissions of the Cs 2 NaTmZ 6 system. For the above purposes, we have generalized our previous calculation models, and in this article we show novel results for the emissions 3 H 4 (Γ i )→ 3 F 4 (Γ j ) and for the absorptions 3 H 6 (A 1 )→ 3 F 4 (Γ i ), 1 G 4 (Γ i ), 3 H 5 (Γ i ), with Γ-k(k=i,j)=A 1 ,E,T 1 ,T 2 and Γ 1 =T a 1 , T b 1 , E, T 2 . The effects due to dispersion (essentially, electrostatic in character), details of the short range vibrational force field and Jahn-Teller distortion are discussed in the text. The agreement among experiment and theory is satisfactory and a generalized model with a few number of adjustable parameters is introduced to account for the observed spectral intensities

  13. Carbon Intensities of Economies from the Perspective of Learning Curves

    Directory of Open Access Journals (Sweden)

    Henrique Pacini

    2014-03-01

    Full Text Available While some countries have achieved considerable development, many others still lack accessto the goods and services considered standard in the modern society. As CO2 emissions and development are often correlated, this paper employs the theoretical background of the Environmental Kuznets Curve (EKC and the learning curves toolkit to analyze how carbon intensities have changed as countries move towards higher development (and cumulative wealth levels. The EKC concept is then tested with the methodology of learning curves for the period between 1971 and 2010, so as to capture a dynamic picture of emissions trends and development. Results of both analyses reveal that empirical data fails to provide direct evidence of an EKC for emissions and development. The data does show, however, an interesting pattern in the dispersion of emissions levels for countries within the same HDI categories. While data does not show that countries grow more polluting during intermediary development stages, it does provide evidence that countries become more heterogeneous in their emission intensities as they develop, later re-converging to lower emission intensities at higher HDI levels. Learning rates also indicate heterogeneity among developing countries and relative convergence among developed countries. Given the heterogeneity of development paths among countries, the experiences of those which are managing to develop at low carbon intensities can prove valuable examples for ongoing efforts in climate change mitigation, especially in the developing world.

  14. LMDI Decomposition of Energy-Related CO2 Emissions Based on Energy and CO2 Allocation Sankey Diagrams: The Method and an Application to China

    Directory of Open Access Journals (Sweden)

    Linwei Ma

    2018-01-01

    Full Text Available This manuscript develops a logarithmic mean Divisia index I (LMDI decomposition method based on energy and CO2 allocation Sankey diagrams to analyze the contributions of various influencing factors to the growth of energy-related CO2 emissions on a national level. Compared with previous methods, we can further consider the influences of energy supply efficiency. Two key parameters, the primary energy quantity converted factor (KPEQ and the primary carbon dioxide emission factor (KC, were introduced to calculate the equilibrium data for the whole process of energy unitization and related CO2 emissions. The data were used to map energy and CO2 allocation Sankey diagrams. Based on these parameters, we built an LMDI method with a higher technical resolution and applied it to decompose the growth of energy-related CO2 emissions in China from 2004 to 2014. The results indicate that GDP growth per capita is the main factor driving the growth of CO2 emissions while the reduction of energy intensity, the improvement of energy supply efficiency, and the introduction of non-fossil fuels in heat and electricity generation slowed the growth of CO2 emissions.

  15. Modification of emission properties of (BaSr)O by high intensity ionizing irradiation

    International Nuclear Information System (INIS)

    Ivanov, V.I.; Mozhaev, P.B.

    1991-01-01

    Investigation of irradiation effects on emission shows the increase in oxide cathode emission current immediately after its treatment with accelerated electrons. A model permittivity to explain the phenomenon on the basis of the known relation between the degree of oxide nonstoichiometry and concentration of lattice defects is suggested. The growth of nonstoichiometry degree results in the increase of metal concentration in near the surface layer and growth of emission current. Experimental results are adequately explained by the model suggested. (author)

  16. Economic growth, energy consumption and CO2 emissions in Sweden 1800-2000

    International Nuclear Information System (INIS)

    Kander, Astrid

    2002-01-01

    Large transformations of technologies have occurred in the Swedish economy during the last two centuries, resulting in higher income, better quality of products and changing composition of GDP. An agrarian society has given way to an industrial society and lately to a post-industrial phase. The energy supply systems have changed, from traditional energy carriers, such as firewood and muscle energy to modern carriers like coal, oil and electricity, with effects on CO 2 emissions. Not only the energy supply has gone through fundamental changes, but also forest management, which affects the net emissions of CO 2 . The interrelations of growth, energy and CO 2 are analyzed in this thesis, which uses standard calculations, relative price analyses and energy quality factors, to determine the relative effects of structural and technical changes, including changes in energy carrier composition to explain the long term delinking of energy consumption, CO 2 emissions and economic growth that takes place. Technical change is the main reason of energy intensity decline. Total factor productivity gains, including improvements in technical energy efficiency, saves energy in relation to output. The most spectacular energy savings took place in the sectors transportation, communications and industry. Structural changes at the sector level tended to increase energy intensity between 1870 and 1970. No correlation was found between increasing energy quality and decreasing energy intensity, but energy quality may have had an impact on economic growth rates. The consumers' surplus was exceptionally high during the interwar period and the three decades after the Second World War, and the total energy quality was outstanding during the latter period. The most rapid relative decline in energy intensity took place between 1970 and 2000. In this period structural changes at the sector level no longer worked to increase energy intensity and the new growth direction of the third industrial

  17. On-line depth measurement for laser-drilled holes based on the intensity of plasma emission

    Science.gov (United States)

    Ho, Chao-Ching; Chiu, Chih-Mu; Chang, Yuan-Jen; Hsu, Jin-Chen; Kuo, Chia-Lung

    2014-09-01

    The direct time-resolved depth measurement of blind holes is extremely difficult due to the short time interval and the limited space inside the hole. This work presents a method that involves on-line plasma emission acquisition and analysis to obtain correlations between the machining processes and the optical signal output. Given that the depths of laser-machined holes can be estimated on-line using a coaxial photodiode, this was employed in our inspection system. Our experiments were conducted in air under normal atmospheric conditions without gas assist. The intensity of radiation emitted from the vaporized material was found to correlate with the depth of the hole. The results indicate that the estimated depths of the laser-drilled holes were inversely proportional to the maximum plasma light emission measured for a given laser pulse number.

  18. Model for bremsstrahlung emission accompanying interactions between protons and nuclei from low energies up to intermediate energies: Role of magnetic emission

    Science.gov (United States)

    Maydanyuk, Sergei P.

    2012-07-01

    A model of the bremsstrahlung emission which accompanies proton decay and collisions of protons off nuclei in the low- to intermediate-energy region has been developed. This model includes spin formalism, a potential approach for describing the interaction between protons and nuclei, and an emission that includes a component of the magnetic emission (defined on the basis of the Pauli equation). For the problem of bremsstrahlung during proton decay the role of magnetic emission is studied by using such a model. For the 146Tm nucleus the following has been studied: (1) How much does the magnetic emission change the full bremsstrahlung spectrum? (2) At which angle is the magnetic emission the most intensive relative to the electric emission? (3) Is there some spatial region where the magnetic emission increases strongly relative to the electric emission? (4) How intensive is the magnetic emission in the tunneling region? (5) Which is the maximal probability? Which value does it equal to at the zero-energy limit of the emitted photons? It is demonstrated that the model is able to describe well enough experimental data of bremsstrahlung emission which accompanies collisions of protons off 9C, 64Cu, and 107Ag nuclei at an incident energy of Tlab=72 MeV (at a photon energy up to 60 MeV) and off 9Be, 12C, and 208Pb nuclei at an incident energy of Tlab=140 MeV (at a photon energy up to 120 MeV).

  19. Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems.

    Science.gov (United States)

    Kanawade, Rajesh; Mahari, Fanuel; Klämpfl, Florian; Rohde, Maximilian; Knipfer, Christian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Stelzle, Florian

    2015-01-01

    The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using 'Laser Induced Breakdown Spectroscopy' (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex-vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery. © 2015 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag.

  20. Emissions reductions from expanding state-level renewable portfolio standards.

    Science.gov (United States)

    Johnson, Jeremiah X; Novacheck, Joshua

    2015-05-05

    In the United States, state-level Renewable Portfolio Standards (RPS) have served as key drivers for the development of new renewable energy. This research presents a method to evaluate emissions reductions and costs attributable to new or expanded RPS programs by integrating a comprehensive economic dispatch model and a renewable project selection model. The latter model minimizes incremental RPS costs, accounting for renewable power purchase agreements (PPAs), displaced generation and capacity costs, and net changes to a state's imports and exports. We test this method on potential expansions to Michigan's RPS, evaluating target renewable penetrations of 10% (business as usual or BAU), 20%, 25%, and 40%, with varying times to completion. Relative to the BAU case, these expanded RPS policies reduce the CO2 intensity of generation by 13%, 18%, and 33% by 2035, respectively. SO2 emissions intensity decreased by 13%, 20%, and 34% for each of the three scenarios, while NOx reductions totaled 12%, 17%, and 31%, relative to the BAU case. For CO2 and NOx, absolute reductions in emissions intensity were not as large due to an increasing trend in emissions intensity in the BAU case driven by load growth. Over the study period (2015 to 2035), the absolute CO2 emissions intensity increased by 1% in the 20% RPS case and decreased by 6% and 22% for the 25% and 40% cases, respectively. Between 26% and 31% of the CO2, SO2, and NOx emissions reductions attributable to the expanded RPS occur in neighboring states, underscoring the challenges quantifying local emissions reductions from state-level energy policies with an interconnected grid. Without federal subsidies, the cost of CO2 mitigation using an RPS in Michigan is between $28 and $34/t CO2 when RPS targets are met. The optimal renewable build plan is sensitive to the capacity credit for solar but insensitive to the value for wind power.

  1. Positron Emission Tomography/Computed Tomography-Guided Intensity-Modulated Radiotherapy for Limited-Stage Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Shirvani, Shervin M.; Komaki, Ritsuko; Heymach, John V.; Fossella, Frank V.; Chang, Joe Y.

    2012-01-01

    Purpose: Omitting elective nodal irradiation from planning target volumes does not compromise outcomes in patients with non–small-cell lung cancer, but whether the same is true for those with limited-stage small-cell lung cancer (LS-SCLC) is unknown. Therefore, in the present study, we sought to determine the clinical outcomes and the frequency of elective nodal failure in patients with LS-SCLC staged using positron emission tomography/computed tomography and treated with involved-field intensity-modulated radiotherapy. Methods and Materials: Between 2005 and 2008, 60 patients with LS-SCLC at our institution underwent disease staging using positron emission tomography/computed tomography before treatment using an intensity-modulated radiotherapy plan in which elective nodal irradiation was intentionally omitted from the planning target volume (mode and median dose, 45 Gy in 30 fractions; range, 40.5 Gy in 27 fractions to 63.8 Gy in 35 fractions). In most cases, concurrent platinum-based chemotherapy was administered. We retrospectively reviewed the clinical outcomes to determine the overall survival, relapse-free survival, and failure patterns. Elective nodal failure was defined as recurrence in initially uninvolved hilar, mediastinal, or supraclavicular nodes. Survival was assessed using the Kaplan-Meier method. Results: The median age of the study patients at diagnosis was 63 years (range, 39–86). The median follow-up duration was 21 months (range, 4–58) in all patients and 26 months (range, 4–58) in the survivors. The 2-year actuarial overall survival and relapse-free survival rate were 58% and 43%, respectively. Of the 30 patients with recurrence, 23 had metastatic disease and 7 had locoregional failure. We observed only one isolated elective nodal failure. Conclusions: To our knowledge, this is the first study to examine the outcomes in patients with LS-SCLC staged with positron emission tomography/computed tomography and treated with definitive

  2. Positron Emission Tomography/Computed Tomography-Guided Intensity-Modulated Radiotherapy for Limited-Stage Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shirvani, Shervin M.; Komaki, Ritsuko [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Heymach, John V.; Fossella, Frank V. [Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Chang, Joe Y., E-mail: jychang@mdanderson.org [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States)

    2012-01-01

    Purpose: Omitting elective nodal irradiation from planning target volumes does not compromise outcomes in patients with non-small-cell lung cancer, but whether the same is true for those with limited-stage small-cell lung cancer (LS-SCLC) is unknown. Therefore, in the present study, we sought to determine the clinical outcomes and the frequency of elective nodal failure in patients with LS-SCLC staged using positron emission tomography/computed tomography and treated with involved-field intensity-modulated radiotherapy. Methods and Materials: Between 2005 and 2008, 60 patients with LS-SCLC at our institution underwent disease staging using positron emission tomography/computed tomography before treatment using an intensity-modulated radiotherapy plan in which elective nodal irradiation was intentionally omitted from the planning target volume (mode and median dose, 45 Gy in 30 fractions; range, 40.5 Gy in 27 fractions to 63.8 Gy in 35 fractions). In most cases, concurrent platinum-based chemotherapy was administered. We retrospectively reviewed the clinical outcomes to determine the overall survival, relapse-free survival, and failure patterns. Elective nodal failure was defined as recurrence in initially uninvolved hilar, mediastinal, or supraclavicular nodes. Survival was assessed using the Kaplan-Meier method. Results: The median age of the study patients at diagnosis was 63 years (range, 39-86). The median follow-up duration was 21 months (range, 4-58) in all patients and 26 months (range, 4-58) in the survivors. The 2-year actuarial overall survival and relapse-free survival rate were 58% and 43%, respectively. Of the 30 patients with recurrence, 23 had metastatic disease and 7 had locoregional failure. We observed only one isolated elective nodal failure. Conclusions: To our knowledge, this is the first study to examine the outcomes in patients with LS-SCLC staged with positron emission tomography/computed tomography and treated with definitive intensity

  3. 40 CFR 86.160-00 - Exhaust emission test procedure for SC03 emissions.

    Science.gov (United States)

    2010-07-01

    ... percent relative humidity), a solar heat load intensity of 850 W/m2, and vehicle cooling air flow....161-00. (ii) Turn on the solar heating system. (iii) All vehicle test phases of preconditioning, soak...) Exhaust Emission Measurement Activities. The following activities are performed, when applicable, in order...

  4. Can biofuels be a solution to climate change? The implications of land use change-related emissions for policy

    Science.gov (United States)

    Khanna, Madhu; Crago, Christine L.; Black, Mairi

    2011-01-01

    Biofuels have gained increasing attention as an alternative to fossil fuels for several reasons, one of which is their potential to reduce the greenhouse gas (GHG) emissions from the transportation sector. Recent studies have questioned the validity of claims about the potential of biofuels to reduce GHG emissions relative to the liquid fossil fuels they are replacing when emissions owing to direct (DLUC) and indirect land use changes (ILUC) that accompany biofuels are included in the life cycle GHG intensity of biofuels. Studies estimate that the GHG emissions released from ILUC could more than offset the direct GHG savings by producing biofuels and replacing liquid fossil fuels and create a ‘carbon debt’ with a long payback period. The estimates of this payback period, however, vary widely across biofuels from different feedstocks and even for a single biofuel across different modelling assumptions. In the case of corn ethanol, this payback period is found to range from 15 to 200 years. We discuss the challenges in estimating the ILUC effect of a biofuel and differences across biofuels, and its sensitivity to the assumptions and policy scenarios considered by different economic models. We also discuss the implications of ILUC for designing policies that promote biofuels and seek to reduce GHG emissions. In a first-best setting, a global carbon tax is needed to set both DLUC and ILUC emissions to their optimal levels. However, it is unclear whether unilateral GHG mitigation policies, even if they penalize the ILUC-related emissions, would increase social welfare and lead to optimal emission levels. In the absence of a global carbon tax, incentivizing sustainable land use practices through certification standards, government regulations and market-based pressures may be a viable option for reducing ILUC. PMID:22482030

  5. Total greenhouse gas emissions related to the Dutch crop production system

    NARCIS (Netherlands)

    Kramer, K.J.; Moll, H.C.; Nonhebel, S.

    1999-01-01

    This article discusses the greenhouse gas emissions (CO2, CH4, N2O) related to Dutch agricultural crop production. Emissions occur during agricultural processes (direct emissions) as well as in the life cycle of the required inputs (indirect emissions). An integrated approach assesses the total

  6. Changes in carbon intensity in China. Empirical findings from 1980-2003

    International Nuclear Information System (INIS)

    Fan, Ying; Wei, Yi-Ming; Liu, Lan-Cui; Wu, Gang; Tsai, Hsien-Tang

    2007-01-01

    China experienced sustainable, rapid economic growth over the period 1980-2003 but, at the same time, energy-related carbon intensity showed a downward trend. It begs the question, therefore, what factors were driving this decline in carbon intensity and will this decline be maintained in future? Moreover, what measures can be adopted to ensure a continual decline in carbon intensity? These questions led to increased research in the factors governing CO 2 emission in China. This paper quantifies the driving force behind China's primary energy-related carbon intensity and measures the material production sectors' final energy-related carbon intensity. Our results show that the overwhelming contributor to the decline of energy-related carbon intensity was the reduction in real energy intensity. However, policies that focus only on the decline in energy intensity are insufficient to further decrease carbon intensity. The change of primary energy mix can improve the decline of carbon intensity. This should focus on the material production sectors' development strategies and final energy use. Greater emphasis should be given to secondary industry, which needs national and regional governments' policy support. (author)

  7. 40 CFR 51.125 - Emissions reporting requirements for SIP revisions relating to budgets for SO2 and NOX emissions.

    Science.gov (United States)

    2010-07-01

    ... SIP revisions relating to budgets for SO2 and NOX emissions. 51.125 Section 51.125 Protection of... SIP revisions relating to budgets for SO2 and NOX emissions. (a) For its transport SIP revision under § 51.123 and/or 51.124, each State must submit to EPA SO2 and/or NOX emissions data as described in...

  8. European emissions trading and the international competitiveness of energy-intensive industries: a legal and political evaluation of possible supporting measures

    International Nuclear Information System (INIS)

    Asselt, H. van; Biermann, F.

    2007-01-01

    The EU Emissions Trading Directive is expected by European energy-intensive industries to harm their competitiveness vis-a-vis non-European competitors. Many additional measures have thus been proposed to 'level the playing field' and to protect the competitiveness of European energy-intensive industries within the larger effort of reducing Europe's greenhouse gas emissions and of meeting its obligations under the 1997 Kyoto Protocol. This article evaluates a range of proposed measures based on a set of political and legal criteria, including environmental effectiveness; the need to consider differentiated commitments, responsibilities and capabilities; conformity with world trade law and European Union law; and Europe's overall political interests. We discuss measures that could be adopted by the European Union and its member states, such as direct support for energy-intensive industries, restrictions of energy-intensive imports into the European Union through border cost adjustments, quotas or technical regulations, and cost reimbursement for affected developing countries. We also analyse measures available to multilateral institutions such as the United Nations Framework Convention on Climate Change and its Kyoto Protocol and the World Trade Organisation. We conclude with a classification of the discussed measures with red (unfeasible), yellow (potentially feasible) or green (feasible) labels. (author)

  9. European emissions trading and the international competitiveness of energy-intensive industries: a legal and political evaluation of possible supporting measures

    International Nuclear Information System (INIS)

    Asselt, Harro van; Biermann, Frank

    2007-01-01

    The EU Emissions Trading Directive is expected by European energy-intensive industries to harm their competitiveness vis-a-vis non-European competitors. Many additional measures have thus been proposed to 'level the playing field' and to protect the competitiveness of European energy-intensive industries within the larger effort of reducing Europe's greenhouse gas emissions and of meeting its obligations under the 1997 Kyoto Protocol. This article evaluates a range of proposed measures based on a set of political and legal criteria, including environmental effectiveness; the need to consider differentiated commitments, responsibilities and capabilities; conformity with world trade law and European Union law; and Europe's overall political interests. We discuss measures that could be adopted by the European Union and its member states, such as direct support for energy-intensive industries, restrictions of energy-intensive imports into the European Union through border cost adjustments, quotas or technical regulations, and cost reimbursement for affected developing countries. We also analyse measures available to multilateral institutions such as the United Nations Framework Convention on Climate Change and its Kyoto Protocol and the World Trade Organisation. We conclude with a classification of the discussed measures with red (unfeasible), yellow (potentially feasible) or green (feasible) labels

  10. Economic growth, energy consumption and CO{sub 2} emissions in Sweden 1800-2000

    Energy Technology Data Exchange (ETDEWEB)

    Kander, Astrid

    2002-05-01

    Large transformations of technologies have occurred in the Swedish economy during the last two centuries, resulting in higher income, better quality of products and changing composition of GDP. An agrarian society has given way to an industrial society and lately to a post-industrial phase. The energy supply systems have changed, from traditional energy carriers, such as firewood and muscle energy to modern carriers like coal, oil and electricity, with effects on CO{sub 2} emissions. Not only the energy supply has gone through fundamental changes, but also forest management, which affects the net emissions of CO{sub 2}. The interrelations of growth, energy and CO{sub 2} are analyzed in this thesis, which uses standard calculations, relative price analyses and energy quality factors, to determine the relative effects of structural and technical changes, including changes in energy carrier composition to explain the long term delinking of energy consumption, CO{sub 2} emissions and economic growth that takes place. Technical change is the main reason of energy intensity decline. Total factor productivity gains, including improvements in technical energy efficiency, saves energy in relation to output. The most spectacular energy savings took place in the sectors transportation, communications and industry. Structural changes at the sector level tended to increase energy intensity between 1870 and 1970. No correlation was found between increasing energy quality and decreasing energy intensity, but energy quality may have had an impact on economic growth rates. The consumers' surplus was exceptionally high during the interwar period and the three decades after the Second World War, and the total energy quality was outstanding during the latter period. The most rapid relative decline in energy intensity took place between 1970 and 2000. In this period structural changes at the sector level no longer worked to increase energy intensity and the new growth direction of

  11. The international research progress of Ammonia(NH3) emissions and emissions reduction technology in farmland ecosystem

    Science.gov (United States)

    Yang, W. Z.; Jiao, Y.

    2017-03-01

    NH3 is the important factor leading to the grey haze, and one of the main causes of environmental problems of serious ecological imbalance, such as acid rain and air quality deterioration. The fertilizer excessive application of the current farmland results NH3 emissions intensity greatly. In order to clear the farmland NH3 emissions research status and achievements, the literature of farmland NH3 emission related were retrievaled by the SCI journals and Chinese science citation database. Some factors of NH3 emission were analyzed such as soil factors, climate factors and farmland management measures. The research progress was inductived on farmland NH3 emission reduction technology. The results will help to clarify farmland NH3 emissions research progress. The theoretical guidance was provided on the future of farmland NH3 emissions research.

  12. Multi-pulsed intense electron beam emission from velvet, carbon fibers, carbon nano-tubes and dispenser cathodes

    International Nuclear Information System (INIS)

    Xia Liansheng; Yang Anmin; Chen Yi; Zhang Huang; Liu Xingguang; Li Jin; Jiang Xiaoguo; Zhang Kaizhi; Shi Jinshui; Deng Jianjun; Zhang Linwen

    2010-01-01

    The experimental results of studies of four kinds of cathode emitting intense electron beams are demonstrated under multi-pulsed mode based on an experimental setup including two multi-pulse high voltage sources. The tested cathodes include velvet, carbon fibers, carbon nano-tubes (CNTs) and dispenser cathodes. The results indicate that all four are able to emit multi-pulsed beams. For velvet, carbon fiber and CNTs, the electron induced cathode plasma emission may be the main process and this means that there are differences in beam parameters from pulse to pulse. For dispenser cathodes tested in the experiment, although there is a little difference from pulse to pulse for some reason, thermal-electric field emission may be the main process. (authors)

  13. Allowance Allocation and CO2 intensity of the EU15 and Norwegian refineries

    International Nuclear Information System (INIS)

    Nilsson, Kristina; Zetterberg, Lars; Aahman, Markus

    2005-02-01

    On 1 January 2005, the European Union Emission Trading Scheme (EU ETS) was launched. The launch has been preceded by an allocation process in each of the Member States. The main objective of this study was to analyse the allocation in relation to CO 2 efficiency for the mineral oil refining sector. A CO 2 intensity index for mineral oil refineries has been defined and calculated for the refineries within the EU15 and Norway. The IVL CO 2 intensity index is based both on the Solomon Energy Intensity Index (EII), an assumed fuel mix, and process-specific emissions. Due to uncertainties in input data, the determined values for the individual refineries are quite uncertain. However, the regional values can be used to identify trends. It was concluded that there are substantial differences in the CO 2 intensity between refineries within different regions/countries in the EU and these differences have not been considered in the allocation process. Only a few countries have mentioned energy efficiency or reduction potential due to CO 2 intensity of fuels used. Only one country (Denmark) has explicitly given a benchmark that will be used for allocation to new mineral oil refineries. The allocation has generally been based on historic emissions, which will result in refineries with historically higher emissions being allocated larger amounts than refineries with historically lower emissions. This might be favourable for refineries that recently have performed emission-reducing measures but might be less favourable for refineries that during a long time period have implemented emission-reducing measures

  14. Can China benefit from adopting a binding emissions target?

    International Nuclear Information System (INIS)

    Schmidt, Robert C.; Marschinski, Robert

    2010-01-01

    In the run-up to the Copenhagen climate summit, the USA announced an emissions reduction target of 17% by 2020 (relative to 2005), and the EU of 20-30% (relative to 1990). For the same time horizon, China offered to reduce the CO 2 -intensity of its economy by 40-45% (relative to 2005), but rejects a legally binding commitment. We use the targets announced by the EU and the USA to analyze the potential gain for China if it were to adopt a binding emissions target and join an international emissions trading scheme. We show that China would likely benefit from choosing a binding target well below its projected baseline emissions for 2020.

  15. Emissions trading and competitiveness: pros and cons of relative and absolute schemes

    International Nuclear Information System (INIS)

    Kuik, Onno; Mulder, Machiel

    2004-01-01

    Emissions trading is a hot issue. At national as well as supranational levels, proposals for introduction of emissions trading schemes have been made. This paper assesses alternative emissions trading schemes at domestic level: (1) schemes where the total level of emissions is fixed (absolute cap-and-trade), (2) schemes where the allowable level of emissions per firm is related to some firm-specific indicator (relative cap-and-trade), and (3) mixed schemes which combine elements of the above alternatives. We present a quantitative assessment of these alternatives for climate change policy in the Netherlands. It is concluded that while relative cap-and-trade would avoid negative effects on competitiveness, it would not reduce emissions at the lowest costs. Besides, the addition of a trade system to existing relative standards does not result in additional emission reduction; it should be combined with other policy measures, such as energy taxes, in order to realise further reduction. Absolute cap-and-trade leads to efficient emissions reduction, but, implemented at the national level, its overall macroeconomic costs may be significant. The mixed scheme has as drawback that it treats firms unequal, which leads to high administrative costs. We conclude that none of the trading schemes is an advisable instrument for domestic climate policy

  16. [Methodical approaches to evaluation of air pollution by emissions of motor vehicles in population areas].

    Science.gov (United States)

    Lyapkalo, A A; Dement'ev, A A; Tsurgan, A M

    2014-01-01

    There are results of comparative analysis of air pollution by emissions of motor vehicles in the residential districts of Ryazan via different methodical approaches. Emissions were calculated regarding analysis of the traffic intensity on the elements of the city traffic network. Relative emissions, equivalent relative emissions and relative coefficient of emission hazard were calculated for each district. Rating of the comparing districts was done according to the pollution level using the above-mentioned indices. Gorodskaya Roscha was detected as the most polluted district. The most informative approach was comparison of the residential districts according to the equivalent relative emissions and relative coefficient of emission hazard.

  17. Evaluation of Traffic Density Parameters as an Indicator of Vehicle Emission-Related Near-Road Air Pollution: A Case Study with NEXUS Measurement Data on Black Carbon

    Science.gov (United States)

    An important factor in evaluating health risk of near-road air pollution is to accurately estimate the traffic-related vehicle emission of air pollutants. Inclusion of traffic parameters such as road length/area, distance to roads, and traffic volume/intensity into models such as...

  18. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Weld County Colorado using δ13CH4 analysis

    Science.gov (United States)

    Rella, C.; Jacobson, G. A.; Crosson, E.; Sweeney, C.; Karion, A.; Petron, G.

    2012-12-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Given that the global warming potential of methane is many times greater than that of carbon dioxide (Forster et al. 2007), the importance of quantifying methane emissions becomes clear. Companion presentations at this meeting describe efforts to quantify the overall methane emissions in two separate gas producing areas in Colorado and Utah during intensive field campaigns undertaken in 2012. A key step in the process of assessing the emissions arising from natural gas production activities is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One method for assessing the contribution of these different sources is stable isotope analysis. In particular, the δ13CH4 signature of natural gas (-37 permil) is significantly different that the signature of other significant sources of methane, such as landfills or ruminants (-50 to -70 permil). In this paper we present measurements of δ13CH4 in Colorado in Weld County, a region of intense natural gas production, using a mobile δ13CH4¬ analyzer capable of high-precision measurements of the stable isotope ratio of methane at ambient levels. This analyzer was used to make stable isotope measurements at a fixed location near the center of the gas producing region, from which an overall isotope ratio for the regional emissions is determined. In addition, mobile measurements in the nocturnal boundary layer have been made, over a total distance of 150 km throughout Weld County, allowing spatially resolved measurements of this isotope signature. Finally, this analyzer was used to quantify the isotopic signature of those individual sources (natural gas fugitive emissions, concentrated animal feeding operations, and landfills) that constitute the majority of methane emissions in this region, by making

  19. Combining rate-based and cap-and-trade emissions policies

    International Nuclear Information System (INIS)

    Fischer, Carolyn

    2003-12-01

    Rate-based emissions policies (like tradable performance standards, TPS) fix average emissions intensity, while cap-and-trade (CAT) policies fix total emissions. This paper shows that unfettered trade between rate-based and cap-and-trade programs always raises combined emissions, except when product markets are related in particular ways. Gains from trade are fully passed on to consumers in the rate-based sector, resulting in more output and greater emissions allocations. We consider several policy options to offset the expansion, including a tax, an 'exchange rate' to adjust for relative permit values, output-based allocation (OBA) for the rate-based sector, and tightening the cap. A range of combinations of tighter allocations could improve situations in both sectors with trade while holding emissions constant

  20. Analyzing the driving forces behind CO2 emissions and reduction strategies for energy-intensive sectors in Taiwan, 1996–2006

    International Nuclear Information System (INIS)

    Huang, Yun-Hsun; Wu, Jung-Hua

    2013-01-01

    Between 1996 and 2006, CO 2 emissions in Taiwan increased by approximately 60%, with the industrial sector accounting for 50% of that increase. Among all industrial sectors, iron and steel, petrochemicals, electronics, textiles, pulp and paper and cement accounted for approximately three-quarters of the total industrial CO 2 emissions. Identifying the driving forces behind increased CO 2 emissions in these six sectors could be valuable for the development of effective environmental policy. This study used two-tier KLEM input–output structural decomposition analysis (I-O SDA) to analyze the factors that lead to changes in CO 2 emissions. Empirical results obtained in Taiwan reveal that increased exports level and elevated domestic autonomous final demand level were the main reasons for increases in CO 2 emissions. Technological changes in materials and labor tended to decrease CO 2 emissions, while the power generation mix contributed significantly to the increase. Relevant strategies for reducing CO 2 emissions from energy-intensive sectors are also highlighted. - Highlights: • Identifying the driving forces behind increased CO 2 emissions is important. • This study uses two-tier KLEM I-O SDA to analyze the changes in CO 2 emissions. • Three issues are identified to achieve future CO 2 emissions reduction in Taiwan

  1. Impact of the intensity of milk production on ammonia and greenhouse gas emissions in Portuguese cattle farms

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, J.; Trindade, H.

    2015-07-01

    The aim of this study was evaluate the relationship between the intensity of milk production for a wide range of Portuguese commercial cattle farms and NH3 and greenhouse gas (GHG) emissions from manure management and enteric fermentation. A survey was carried out at 1471 commercial dairy cattle farms (Holstein-Friesian) and the NH3, N2O and CH4 emissions at each stage of manure management were estimated as well as CH4 losses from enteric fermentation. Gaseous emissions were estimated by a mass flow approach and following the recommendations of IPCC guidelines. The manure management and enteric fermentation in a typical Portuguese cattle farm contributes with 7.5±0.15 g N/L milk produced as NH3 and 1.2±0.22 kg CO2 equivalent per litre of milk as GHG. Increasing milk production will significantly reduce NH3 and GHG emissions per litre of milk produced. It can be concluded that a win-win strategy for reducing NH3 and GHG emissions from dairy cattle farms will be the increase of milk production on these farms. This goal can be achieved by implementing animal breeding programs and improving feed efficiency in order to increase productivity. (Author)

  2. Methane emissions from a dairy feedlot during the fall and winter seasons in Northern China

    Energy Technology Data Exchange (ETDEWEB)

    Gao Zhiling, E-mail: zhilinggao@hebau.edu.cn [College of Resources and Environmental Sciences, Agricultural University of Hebei, Baoding 071000 (China); Yuan Huijun; Ma Wenqi [College of Resources and Environmental Sciences, Agricultural University of Hebei, Baoding 071000 (China); Liu Xuejun [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Desjardins, R.L. [Agriculture and Agri-Food Canada, Research Branch, Ottawa, K1A 0C6 (Canada)

    2011-05-15

    Accurately determining methane emission factors of dairy herd in China is imperative because of China's large population of dairy cattle. An inverse dispersion technique in conjunction with open-path lasers was used to quantify methane emissions from a dairy feedlot during the fall and winter seasons in 2009-2010. The methane emissions had a significant diurnal pattern during both periods with three emission peaks corresponding to the feeding schedule. A 10% greater emission rate in the fall season was obtained most likely by the higher methane emission from manure during that period. An annual methane emission rate of 109 {+-} 6.7 kg CH{sub 4} yr{sup -1} characterized with a methane emission intensity of 32.3 {+-} 1.59 L CH{sub 4} L{sup -1} of milk and a methane conversion factor (Y{sub m}) of 7.3 {+-} 0.38% for mature cattle was obtained, indicating the high methane emission intensity and low milk productivity in Northern China. - Highlights: > CH{sub 4} emission from the feedlot in China was associated with clear diurnal pattern. > Methane conversion factor for mature cows in this feedlot was about 7.3%. > This feedlot was characterized with relatively high methane emission intensity. - High methane emission intensity and low milk productivity of Chinese dairy production are indicated.

  3. Stressors in the relatives of patients admitted to an intensive care unit.

    Science.gov (United States)

    Barth, Angélica Adam; Weigel, Bruna Dorfey; Dummer, Claus Dieter; Machado, Kelly Campara; Tisott, Taís Montagner

    2016-09-01

    To identify and stratify the main stressors for the relatives of patients admitted to the adult intensive care unit of a teaching hospital. Cross-sectional descriptive study conducted with relatives of patients admitted to an intensive care unit from April to October 2014. The following materials were used: a questionnaire containing identification information and demographic data of the relatives, clinical data of the patients, and 25 stressors adapted from the Intensive Care Unit Environmental Stressor Scale. The degree of stress caused by each factor was determined on a scale of values from 1 to 4. The stressors were ranked based on the average score obtained. The main cause of admission to the intensive care unit was clinical in 36 (52.2%) cases. The main stressors were the patient being in a state of coma (3.15 ± 1.23), the patient being unable to speak (3.15 ± 1.20), and the reason for admission (3.00 ± 1.27). After removing the 27 (39.1%) coma patients from the analysis, the main stressors for the relatives were the reason for admission (2.75 ± 1.354), seeing the patient in the intensive care unit (2.51 ± 1.227), and the patient being unable to speak (2.50 ± 1.269). Difficulties in communication and in the relationship with the patient admitted to the intensive care unit were identified as the main stressors by their relatives, with the state of coma being predominant. By contrast, the environment, work routines, and relationship between the relatives and intensive care unit team had the least impact as stressors.

  4. Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications

    International Nuclear Information System (INIS)

    Freitas, Luciano Charlita de; Kaneko, Shinji

    2011-01-01

    This study evaluates the changes in CO 2 emissions from energy consumption in Brazil for the period 1970-2009. Emissions are decomposed into production and consumption activities allowing computing the full set of energy sources consumed in the country. This study aims to develop a comprehensive and updated picture of the underlying determinants of emissions change from energy consumption in Brazil along the last four decades, including for the first time the recently released data for 2009. Results demonstrate that economic activity and demographic pressure are the leading forces explaining emission increase. On the other hand, carbon intensity reductions and diversification of energy mix towards cleaner sources are the main factors contributing to emission mitigation, which are also the driving factors responsible for the observed decoupling between CO 2 emissions and economic growth after 2004. The cyclical patterns of energy intensity and economy structure are associated to both increments and mitigation on total emission change depending on the interval. The evidences demonstrate that Brazilian efforts to reduce emissions are concentrated on energy mix diversification and carbon intensity control while technology intensive alternatives like energy intensity has not demonstrated relevant progress. Residential sector displays a marginal weight in the total emission change. - Research highlights: → Article provides an updated evaluation on the changes in CO 2 emissions from energy consumption in Brazil, including the recently released data for 2009. → Results demonstrate that progress in energy mix diversification and associated factors are the most important factors contributing to emission mitigation in Brazil. → Negligence in technology intensive factors, as energy intensity, has offset most efforts on emission mitigation related to energy consumption. → Paper announces a first episode of absolute decoupling between GDP growth and CO 2 emission

  5. Decoupling of industrial energy consumption and CO2-emissions in energy-intensive industries in Scandinavia

    International Nuclear Information System (INIS)

    Enevoldsen, Martin K.; Ryelund, Anders V.; Andersen, Mikael Skou

    2007-01-01

    As methodology the ex-post analysis deserves more attention as a device to calibrate energy sector models. This paper studies the impact of energy prices and taxes on energy efficiency and carbon emissions of ten industrial sectors in the three Scandinavian countries. A database with sector-specific energy prices and taxes has been established, which allows the analysis to take various price reductions and tax exemptions better into account. A translog factor demand system estimation for a cross industry pooled model is explored and fixed effects across industries and time is estimated. The findings here confirm recent analyses which indicate higher long-term elasticities for industries than normally assumed in Scandinavian energy-sector models. With the observations on differences in energy-intensities among sectors and countries the findings allow for some optimism as to the opportunities for further decoupling between trends in gross value added, carbon emissions and energy consumption

  6. European CO2 emission trends: A decomposition analysis for water and aviation transport sectors

    International Nuclear Information System (INIS)

    Andreoni, V.; Galmarini, S.

    2012-01-01

    A decomposition analysis is used to investigate the main factors influencing the CO 2 emissions of European transport activities for the period 2001–2008. The decomposition method developed by Sun has been used to investigate the carbon dioxide emissions intensity, the energy intensity, the structural changes and the economy activity growth effects for the water and the aviation transport sectors. The analysis is based on Eurostat data and results are presented for 14 Member States, Norway and EU27. Results indicate that economic growth has been the main factor behind the carbon dioxide emissions increase in EU27 both for water and aviation transport activities. -- Highlights: ► Decomposition analysis is used to investigate factors that influenced the energy-related CO 2 emissions of European transport. ► Economic growth has been the main factor affecting the energy-related CO 2 emissions increases. ► Investigating the CO 2 emissions drivers is the first step to define energy efficiency policies and emission reduction strategies.

  7. How to reduce emissions related to consumption: which public policies?

    International Nuclear Information System (INIS)

    Fink, Meike; Gautier, Celia

    2014-05-01

    This report proposes an assessment of greenhouse gas emissions related to consumption in the world. It examines which are currently the world emission flows which come with trade exchanges (intermediate and final goods) between countries. The first part tries to highlight hidden emissions present in our imports and exports. It presents the different methods of greenhouse gas accounting, discusses the emission flows at the planet level, and the challenge of the limitation of 'carbon leaks', and discusses what makes a country a net emission importer or exporter. The second part discusses how France can reduce its consumption-based emissions, how to reach a factor 4 of reduction on these emissions, how to act against leaks and inflows of emissions through measures at the world level (international agreement, reduction of emissions by sea and air transport, reduction of industry emissions) or at the national level (relocation of polluting industries in France or Europe, promotion of short circuits, eco-design, changes in consumption modes, measures on groups of products which import emissions)

  8. Allowance Allocation and CO{sub 2} intensity of the EU15 and Norwegian refineries

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Kristina; Zetterberg, Lars; Aahman, Markus

    2005-02-01

    On 1 January 2005, the European Union Emission Trading Scheme (EU ETS) was launched. The launch has been preceded by an allocation process in each of the Member States. The main objective of this study was to analyse the allocation in relation to CO{sub 2} efficiency for the mineral oil refining sector. A CO{sub 2} intensity index for mineral oil refineries has been defined and calculated for the refineries within the EU15 and Norway. The IVL CO{sub 2} intensity index is based both on the Solomon Energy Intensity Index (EII), an assumed fuel mix, and process-specific emissions. Due to uncertainties in input data, the determined values for the individual refineries are quite uncertain. However, the regional values can be used to identify trends. It was concluded that there are substantial differences in the CO{sub 2} intensity between refineries within different regions/countries in the EU and these differences have not been considered in the allocation process. Only a few countries have mentioned energy efficiency or reduction potential due to CO{sub 2} intensity of fuels used. Only one country (Denmark) has explicitly given a benchmark that will be used for allocation to new mineral oil refineries. The allocation has generally been based on historic emissions, which will result in refineries with historically higher emissions being allocated larger amounts than refineries with historically lower emissions. This might be favourable for refineries that recently have performed emission-reducing measures but might be less favourable for refineries that during a long time period have implemented emission-reducing measures.

  9. Changes in carbon intensity in China's industrial sector: Decomposition and attribution analysis

    International Nuclear Information System (INIS)

    Liu, Nan; Ma, Zujun; Kang, Jidong

    2015-01-01

    The industrial sector accounts for 70% of the total energy-related CO_2 emissions in China. To gain a better understanding of the changes in carbon intensity in China's industrial sector, this study first utilized logarithmic mean Divisia index (LMDI) decomposition analysis to disentangle the carbon intensity into three influencing factors, including the emission coefficient effect, the energy intensity effect, and the structure effect. Then, the analysis was furthered to explore the contributions of individual industrial sub-sectors to each factor by using an extension of the decomposition method proposed in Choi and Ang (2012). The results indicate that from 1996 to 2012, the energy intensity effect was the dominant factor in reducing carbon intensity, of which chemicals, iron and steel, metal and machinery, and cement and ceramics were the most representative sub-sectors. The structure effect did not show a strong impact on carbon intensity. The emission coefficient effect gradually increased the carbon intensity, mainly due to the expansion of electricity consumption, particularly in the metal and machinery and chemicals sub-sectors. The findings suggest that differentiated policies and measures should be considered for various industrial sub-sectors to maximize the energy efficiency potential. Moreover, readjusting the industrial structure and promoting clean and renewable energy is also urgently required to further reduce carbon intensity in China's industrial sector. - Highlights: • The study analyzed the changes in carbon intensity in China's industrial sector. • An extension of the Divisia index decomposition methodology was utilized. • Energy efficiency improvement was the dominant factor reducing carbon intensity. • The sub-sector contributions to the energy efficiency improvement varied markedly. • Emission coefficient growth can be mainly due to the expansion of electricity.

  10. Free allocations in EU ETS Phase 3: The impact of emissions performance benchmarking for carbon-intensive industry - Working Paper No. 2013-14

    International Nuclear Information System (INIS)

    Lecourt, S.; Palliere, C.; Sartor, O.

    2013-02-01

    From Phase 3 (2013-20) of the European Union Emissions Trading Scheme, carbon-intensive industrial emitters will receive free allocations based on harmonised, EU-wide benchmarks. This paper analyses the impacts of these new rules on allocations to key energy-intensive sectors across Europe. It explores an original dataset that combines recent data from the National Implementing Measures of 20 EU Member States with the Community Independent Transaction Log and other EU documents. The analysis reveals that free allocations to benchmarked sectors will be reduced significantly compared to Phase 2 (2008-12). This reduction should both increase public revenues from carbon auctions and has the potential to enhance the economic efficiency of the carbon market. The analysis also shows that changes in allocation vary mostly across installations within countries, raising the possibility that the carbon-cost competitiveness impacts may be more intense within rather than across countries. Lastly, the analysis finds evidence that the new benchmarking rules will, as intended, reward installations with better emissions performance and will improve harmonisation of free allocations in the EU ETS by reducing differences in allocation levels across countries with similar carbon intensities of production. (authors)

  11. Aspects related to 'emission trading'

    International Nuclear Information System (INIS)

    Tutuianu, Ovidiu

    1999-01-01

    The paper presents the aspects of international GHG (greenhouse gases) emission trading, such as: quality of GHG emission data, possible partners, monitoring activity, market mechanisms and difficulties. The following conclusions are drown: - debates on international trade with GHG emissions are currently in a very early stage; - actions are possible and feasible, particularly after Kyoto Conference, as versatile mechanism (besides the Joint Implementation Projects) which have in view the lowering of the global emission costs in different zones of the planet; - difficulties concerning monitoring, reporting and verification, practically preclude implementing a system of emission trading covering all the GHG, all the sources and reservoirs; - an international viable system of emission trading could initiate with a limited number of participants and consideration of only emission categories easy to be confined and surveyed; - existence of a national market and corresponding institutions for monitoring which could booster an international system development

  12. Accounting for adaptation and intensity in projecting heat wave-related mortality.

    Science.gov (United States)

    Wang, Yan; Nordio, Francesco; Nairn, John; Zanobetti, Antonella; Schwartz, Joel D

    2018-02-01

    How adaptation and intensity of heat waves affect heat wave-related mortality is unclear, making health projections difficult. We estimated the effect of heat waves, the effect of the intensity of heat waves, and adaptation on mortality in 209 U.S. cities with 168 million people during 1962-2006. We improved the standard time-series models by incorporating the intensity of heat waves using excess heat factor (EHF) and estimating adaptation empirically using interactions with yearly mean summer temperature (MST). We combined the epidemiological estimates for heat wave, intensity, and adaptation with the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model dataset to project heat wave-related mortality by 2050. The effect of heat waves increased with its intensity. Adaptation to heat waves occurred, which was shown by the decreasing effect of heat waves with MST. However, adaptation was lessened as MST increased. Ignoring adaptation in projections would result in a substantial overestimate of the projected heat wave-related mortality (by 277-747% in 2050). Incorporating the empirically estimated adaptation into projections would result in little change in the projected heat wave-related mortality between 2006 and 2050. This differs regionally, however, with increasing mortality over time for cities in the southern and western U.S. but decreasing mortality over time for the north. Accounting for adaptation is important to reduce bias in the projections of heat wave-related mortality. The finding that the southern and western U.S. are the areas that face increasing heat-related deaths is novel, and indicates that more regional adaptation strategies are needed. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Cigarette Design Features: Effects on Emission Levels, User Perception, and Behavior.

    Science.gov (United States)

    Talhout, Reinskje; Richter, Patricia A; Stepanov, Irina; Watson, Christina V; Watson, Clifford H

    2018-01-01

    This paper describes the effects of non-tobacco, physical cigarette design features on smoke emissions, product appeal, and smoking behaviors - 3 factors that determine smoker's exposure and related health risks. We reviewed available evidence for the impact of filter ventilation, new filter types, and cigarettes dimensions on toxic emissions, smoker's perceptions, and behavior. For evidence sources we used scientific literature and websites providing product characteristics and marketing information. Whereas filter ventilation results in lower machine-generated emissions, it also leads to perceptions of lighter taste and relative safety in smokers who can unwittingly employ more intense smoking behavior to obtain the desired amount of nicotine and sensory appeal. Filter additives that modify smoke emissions can also modify sensory cues, resulting in changes in smoking behavior. Flavor capsules increase the cigarette's appeal and novelty, and lead to misperceptions of reduced harm. Slim cigarettes have lower yields of some smoke emissions, but smoking behavior can be more intense than with standard cigarettes. Physical design features significantly impact machine-measured emission yields in cigarette smoke, product appeal, smoking behaviors, and exposures in smokers. The influence of current and emerging design features is important in understanding the effectiveness of regulatory actions to reduce smoking-related harm.

  14. 2001-2002 carbon dioxide emissions in OECD

    International Nuclear Information System (INIS)

    2004-11-01

    This document provides carbon dioxide emissions data, from energy uses and production, from 2001 to 2002 in the OECD. It concerns the climate corrected CO 2 emissions in France, the non corrected CO 2 emissions (M tons), the emissions intensity / the Gross Domestic Product and the emissions intensity / the population (tons per inhabitant). (A.L.B.)

  15. Decomposition of CO{sub 2} emissions change from energy consumption in Brazil: Challenges and policy implications

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Luciano Charlita de, E-mail: lucianofreitas@hiroshima-u.ac.j [Graduate School for International Development and Cooperation, Development Policy, Hiroshima University 1-5-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8529 (Japan); Kaneko, Shinji [Graduate School for International Development and Cooperation, Development Policy, Hiroshima University 1-5-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8529 (Japan)

    2011-03-15

    This study evaluates the changes in CO{sub 2} emissions from energy consumption in Brazil for the period 1970-2009. Emissions are decomposed into production and consumption activities allowing computing the full set of energy sources consumed in the country. This study aims to develop a comprehensive and updated picture of the underlying determinants of emissions change from energy consumption in Brazil along the last four decades, including for the first time the recently released data for 2009. Results demonstrate that economic activity and demographic pressure are the leading forces explaining emission increase. On the other hand, carbon intensity reductions and diversification of energy mix towards cleaner sources are the main factors contributing to emission mitigation, which are also the driving factors responsible for the observed decoupling between CO{sub 2} emissions and economic growth after 2004. The cyclical patterns of energy intensity and economy structure are associated to both increments and mitigation on total emission change depending on the interval. The evidences demonstrate that Brazilian efforts to reduce emissions are concentrated on energy mix diversification and carbon intensity control while technology intensive alternatives like energy intensity has not demonstrated relevant progress. Residential sector displays a marginal weight in the total emission change. - Research highlights: {yields} Article provides an updated evaluation on the changes in CO{sub 2} emissions from energy consumption in Brazil, including the recently released data for 2009. {yields} Results demonstrate that progress in energy mix diversification and associated factors are the most important factors contributing to emission mitigation in Brazil. {yields} Negligence in technology intensive factors, as energy intensity, has offset most efforts on emission mitigation related to energy consumption. {yields} Paper announces a first episode of absolute decoupling between

  16. The intermediate polar GK Persei: An unstable relation of the X-ray and the optical intensities in a series of outbursts

    Science.gov (United States)

    Šimon, V.

    2015-03-01

    Context. GK Per is an intermediate polar that has been displaying dwarf nova outbursts since the middle of the twentieth century. Aims: I analyzed a series of such outbursts in the optical and X-ray bands. I pay attention to the relation of intensities of the optical and X-ray emissions, and its reproducibility in a series of these consecutive outbursts. Methods: This analysis uses the data from the BAT/Swift, ASM/RXTE, AAVSO, and AFOEV databases. It investigates the relation of the time evolution of the profiles of outbursts in the individual bands (hard X-ray, medium/hard X-ray, and optical). Results: This analysis shows that the X-ray intensity steeply rises only in the start of the optical outburst and steeply declines only when the optical outburst comes to its end. However, the 1.5-50 keV band intensity saturates and balances on a plateau during the outburst. (The longer the outburst, the longer its plateau.) The peak X-ray intensities of this series display a significantly narrower range than the optical ones (a factor of about two versus a factor of about eight). This implies a discrepancy between the mass flow through the disk and the production of the X-ray emission via bremsstrahlung at the polar caps of the white dwarf. This discrepancy is the largest in the time of the peak optical intensity when the whole disk (or at least its inner part) is in the hot state and the flow of matter through the disk is the greatest. This study shows that a series of outbursts constitutes more general properties of this discrepancy. I argue that the saturation of the X-ray luminosity in outburst cannot be caused by a dominant increase in X-ray absorption. In the interpretation, large structural changes of the accreting regions at the magnetic poles of the white dwarf occur during the outburst. A buried shock proposed by some authors for polars is also promising for explaining the X-ray light curves of outbursts of GK Per. This research made use of the BAT/Swift, ASM

  17. Effect of turbulence intensity on PM emission of heavy duty diesel trucks - Wind tunnel studies

    Science.gov (United States)

    Littera, D.; Cozzolini, A.; Besch, M.; Carder, D.; Gautam, M.

    2017-08-01

    increases with increase in distance away from tailpipe. Also indicating the cooling and dilution of the exhaust begins at close vicinity to the tailpipe. The rate of cooling and dilution are greatest in early stages of the dilution process for the areas with high turbulence intensity (TI), where strong mixing phenomena occurs, leading to the formation of a predominant nucleation mode. On the other hand, the core of the plume observes a slower cooling and dilution rate. This difference is reflected in the PM formation and evolution of these two distinct regions, as shown by the particle size distributions and number concentrations. Continuous mixing will tend to mellow those differences, but its ;final; result is related to the dilution history.

  18. Externalities from lignite mining-related dust emissions

    International Nuclear Information System (INIS)

    Papagiannis, A.; Roussos, D.; Menegaki, M.; Damigos, D.

    2014-01-01

    During the last three decades, several studies have been conducted in order to assess the external costs of electricity production from fossil fuels, especially coal and lignite. Nevertheless, these studies usually ignore the impacts generated by the upstream mining works. This paper contributes to existing literature and attempts to fill this gap by exploring the externalities of lignite mining owing to the emission of suspended particulate matter. To this end, a ‘bottom-up’ approach is implemented, using as case study the largest operational lignite surface mine at the Lignite Center of Western Macedonia (Greece). The results indicate that annual air pollution externalities of lignite mining are of the order of 3€/ton of lignite, which corresponds to around 5.0 €/MW h. The estimated costs are significantly lower, i.e. up to 80%, when dust deposition is considered in air dispersion models. In any case, these findings should be seen as a starting point for discussion owing to the lack of specific emission rates for Greek lignite mines. - Highlights: • Externalities from lignite mining-related dust emissions are 3 €/t of lignite. • Externalities of mining correspond to around 5.0 €/MW h. • Externalities are significantly lower, up to 80%, if dust deposition is considered. • There is lack of specific dust emission rates for lignite mining. • There are high discrepancies in existing dust emission rates for lignite mining

  19. Modelling lifestyle effects on energy demand and related emissions

    International Nuclear Information System (INIS)

    Weber, C.

    2000-01-01

    An approach to analyse and quantify the impact of lifestyle factors on current and future energy demand is developed. Thereby not only directly environmentally relevant consumer activities such as car use or heating have been analysed, but also expenditure patterns which induce environmental damage through the production of the consumed goods. The use of household survey data from the national statistical offices offers the possibility to cover this wide range of activities. For the available social-economic household characteristics a variety of different behavioural patterns have been observed. For evaluating the energy and emission consequences of the consumed goods enhanced input-output models are used. The additions implemented - a mixed monetary-energetic approach for inter-industry flows and a separate treatment of transport -related emissions - improve the reliability of the obtained results. The developed approach has been used for analysing current emissions profiles and distributions in West Germany, France and the Netherlands as well as scenarios for future energy demand and related emissions. It therefore provides a comprehensive methodology to analyse environmental effects in a consumer and citizen perspective and thus contributes to an increase transparency of complex economic and ecological interconnections. (author)

  20. Impacts of GDP, Fossil Fuel Energy Consumption, Energy Consumption Intensity, and Economic Structure on SO2 Emissions: A Multi-Variate Panel Data Model Analysis on Selected Chinese Provinces

    Directory of Open Access Journals (Sweden)

    Haoran Zhao

    2018-03-01

    Full Text Available Atmospheric pollution gradually become a focus of concern all over the world owing to its detrimental influence on human health as well as long range impact on global ecosystem. This paper investigated the relationship among SO2 emissions, GDP, fossil fuel energy consumption, energy consumption intensity, and economic structure of five provinces in China with the highest SO2 emissions spanning from 2002–2015 based on panel data model. Through comparatively analyzing the coefficients in the established panel data model for Hebei, Henan, Inner Mongolia, Shandong, and Shanxi, we can obtain that: (1 fossil fuel energy consumption made the most devotion to SO2 discharge compared with GDP, energy consumption intensity, and economic structure. And the more the fossil fuel energy consumption, the more the devotion made by it to SO2 discharge. (2 GDP devoted less to SO2 emissions than fossil fuel energy consumption, and the larger the scale of the economy, the greater the contribution made by it to SO2 emissions. (3 The higher the proportion of the secondary industry added value accounted in GDP, the more the devotion made by the economic structure and energy consumption intensity to SO2 emissions. Through analyzing the Granger causality examination results, it can be concluded that: (1 there existed a bi-directional causal relationship between fossil fuel energy consumption and SO2 emissions among five selected provinces. (2 There existed uni-directional causal nexus running from GDP to SO2 emissions, from energy consumption intensity to SO2 emissions, and from economic structure to SO2 emissions among five chosen provinces. Based on the empirical analysis, several policy implications were proposed to provide references for policy makers, which were (1 Giving full play to the guiding role of price signals, and improving the price policy for desulfurization. (2 Formulating a new comprehensive evaluation system to measure the regional development level

  1. Economics of reducing CO2 emissions from China

    International Nuclear Information System (INIS)

    Wu Zhongxin

    1991-01-01

    Relative to the nations of the industrialized world, developing countries emit far lower levels of CO 2 per capita. In coming years, however, as the developing world experiences more rapid rates of economic and population growth, their carbon emissions per capita inevitably will rise. Therefore, developing countries should be encouraged both to adopt more advanced energy technologies in order to improve the efficiency of energy exploration, transportation, generation and end-use and to replace carbon-intensive fuels sources with less carbon-intensive sources (non-fossil fuels and renewable energy). By incorporating methods aimed at curtailing carbon emissions into their energy development strategies, developing nations can reduce the risks posed by higher CO 2 emissions. However, adopting more advanced energy technologies generally entails high costs. These higher prices serve as a particularly large obstacle for developing nations. In order to serve the common interest of protecting the global environment, international funds should be devoted to cover the high costs of reducing developing world CO 2 emissions

  2. X-ray emission from hot plasma

    International Nuclear Information System (INIS)

    Hayakawa, Satio; Kato, Takako.

    1979-01-01

    X-ray emission from hot plasmas is discussed with a critical review of different theories. The results given in the present paper are complementary to those given by Kato in the sense that the present paper is introductory to the paper by Kato. The contents of the present paper are; 1. Introduction 2. Ionization and Recombination Rate Coefficients 3. Relative Abundances of Ions 4. Intensity and Spectra of Radiation 5. Comparison with Earlier Results 6. Emission and Absorption Lines (author)

  3. Investigation on the spatial evolution of the emission spectra in laser-induced Ni plasmas

    International Nuclear Information System (INIS)

    Du Chuanmei; Xu Ying; Zhang Mingxu

    2012-01-01

    In this paper, the spatial resolved emission spectrum of Ni atom in laser induced Ni plasma is measured in the wavelength region from 350 nm to 600 nm. The spatial evolution of the relative intensities and the Stark broadening of the 385.83 nm emission spectrum lines are also obtained. It is shown that Stark broadening and intensity of the spectrum lines increases firstly to its maximum and then de- creases along the direction of laser beam when the distance from the target surface is in the range from 0 to 2.5 mm. The maximum value of Stark broadening and relative intensity of the spectrum lines appear at 1.5 mm from the target surface. (authors)

  4. Pressure dependence of emission intensity of rare-gas excimer light produced by silent discharge; Teikiatsu ryoiki ni okeru musei hoden reiki ki gas excimer hikari shutsuryoku no atsuryoku izonsei

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Y.; Tanaka, M.; Yukimura, K. [Doshisha University, Kyoto (Japan)

    1996-09-20

    To establish the pressure dependence of silent discharge excited rare gas excimer light emission, a vacua ultraviolet light was subjected to spectroscopic analysis at a pressure lower than 20kPa. Researches are under way to apply the discharge excited rare gas excimer lamp as a vacuum ultraviolet light source for the development of new materials and for the conservation of environments. When the pressure is as low as 1.8kPa or 4.4kPa, the emission has peaks at wavelengths centering on 147nm and 149nm, both of which are the resonance lines of the xenon atom. Excimer generation becomes prominent as the pressure increases, with the second continuum of light growing dominant at 35kPa to weaken relatively the resonance lines and the first continuum of light. In the first continuum, emission increases only at a suppressed rate, as compared with emission in the second continuum, due for instance to a collision caused relaxation process in which excimers are lost. In the case of xenon in the vicinity of 10-11kPa, the first continuum of light and the second continuum of light are approximately equal in emission intensity, producing a vacuum ultraviolet light source with a bandwidth relatively large for a single gas spectrum. 14 refs., 11 figs.

  5. Greenhouse gas emission accounting for EU member states from 1991 to 2012

    International Nuclear Information System (INIS)

    Su, Meirong; Pauleit, Stephan; Yin, Xuemei; Zheng, Ying; Chen, Shaoqing; Xu, Chao

    2016-01-01

    Highlights: • GHG emissions for the EU28 during 1991–2012 are accounted. • The EU28 are classified into four groups based on GHG emission structure. • It can facilitate classified management of GHG emissions. • The EU case shows the common but differentiated principle in emission reduction. - Abstract: Collectively, the EU is among the world’s largest greenhouse gas (GHG) emitters, though remarkable decreases in GHG emissions have been observed in recent years. In this work the GHG emissions for the 28 EU member states between 1991 and 2012 are accounted for and compared according to the inventory method of the Intergovernmental Panel on Climate Change (IPCC). The structure of GHG emissions at a national level, their distribution between countries, and trends across the period are then analyzed. National emission sources and sinks are decomposed for each country to elucidate the contribution of each sector (energy, industrial processes, solvents and other product use, agriculture, land use/land-use change and forestry, and waste) to the national totals. Germany was the largest emitter, with net emissions totaling 939 Tg CO_2 equivalent in 2012, 60% more than the UK and 89% more than France, the second and third biggest emitters, respectively. The energy sector and agriculture were found to be the largest sources of emissions in most countries. Four quadrants were established to compare countries’ performance in emission intensity, carbon removal rate, and net reduction rate of GHG emissions. Slovenia, Portugal, Sweden, and Finland were located in Quadrant II as they displayed relatively low emission intensities and high carbon removal rates. Conversely, Hungary, Greece, Cyprus, the Czech Republic, and Poland were located in Quadrant IV because of their relatively high emission intensities and low carbon removal rates. Some suggestions for integrating the annual results and the trends both within and among countries into national and regional emissions

  6. Leveling the playing field of transportation fuels: Accounting for indirect emissions of natural gas

    International Nuclear Information System (INIS)

    Sexton, Steven; Eyer, Jonathan

    2016-01-01

    Natural gas transportation fuels are credited in prior studies with greenhouse gas emissions savings relative to petroleum-based fuels and relative to the total emissions of biofuels. These analyses, however, overlook a source of potentially large indirect emissions from natural gas transportation fuels, namely the emissions from incremental coal-fired generation caused by price-induced substitutions away from natural-gas-fired electricity generation. Because coal-fired generation emits substantially more greenhouse gases and criteria air pollutants than natural-gas-fired generation, this indirect coal-use change effect diminishes potential emissions savings from natural gas transportation fuels. Estimates from a parameterized multi-market model suggest the indirect coal-use change effect rivals in magnitude the indirect land-use change effect of biofuels and renders natural gas fuels as carbon intensive as petroleum fuels. - Highlights: •Natural gas used in transport causes indirect emissions in the electricity sector. •These emissions result from increased coal use in electricity generation. •They rival in magnitude indirect land use change (ILUC) emissions of biofuels. •Natural gas fuels are estimated to be as carbon intensive as the petroleum fuels. •Policy ignores indirect emissions from natural gas.

  7. AN XMM-NEWTON SURVEY OF THE SOFT X-RAY BACKGROUND. II. AN ALL-SKY CATALOG OF DIFFUSE O VII AND O VIII EMISSION INTENSITIES

    International Nuclear Information System (INIS)

    Henley, David B.; Shelton, Robin L.

    2012-01-01

    We present an all-sky catalog of diffuse O VII and O VIII line intensities, extracted from archival XMM-Newton observations. This catalog supersedes our previous catalog, which covered the sky between l = 120° and l = 240°. We attempted to reduce the contamination from near-Earth solar wind charge exchange (SWCX) emission by excluding times of high solar wind proton flux from the data. Without this filtering, we were able to extract measurements from 1868 observations. With this filtering, nearly half of the observations became unusable, and only 1003 observations yielded measurements. The O VII and O VIII intensities are typically ∼2-11 and ∼ –2 s –1 sr –1 (line unit, L.U.), respectively, although much brighter intensities were also recorded. Our data set includes 217 directions that have been observed multiple times by XMM-Newton. The time variation of the intensities from such directions may be used to constrain SWCX models. The O VII and O VIII intensities typically vary by ∼ 10 L.U. were observed. We compared our measurements with models of the heliospheric and geocoronal SWCX. The heliospheric SWCX intensity is expected to vary with ecliptic latitude and solar cycle. We found that the observed oxygen intensities generally decrease from solar maximum to solar minimum, both at high ecliptic latitudes (which is as expected) and at low ecliptic latitudes (which is not as expected). The geocoronal SWCX intensity is expected to depend on the solar wind proton flux incident on the Earth and on the sightline's path through the magnetosheath. The intensity variations seen in directions that have been observed multiple times are in poor agreement with the predictions of a geocoronal SWCX model. We found that the oxygen lines account for ∼40%-50% of the 3/4 keV X-ray background that is not due to unresolved active galactic nuclei, in good agreement with a previous measurement. However, we found that this fraction is not easily explainable by a

  8. The intensity-pitch relation revisited: monopolar versus bipolar cochlear stimulation.

    Science.gov (United States)

    Arnoldner, Christoph; Riss, Dominik; Kaider, Alexandra; Mair, Alois; Wagenblast, Jens; Baumgartner, Wolf-Dieter; Gstöttner, Wolfgang; Hamzavi, Jafar-Sasan

    2008-09-01

    The very high speech perception scores now being achieved with cochlear implants have led to demands for similar levels of achievement in music perception and perception in noisy environments. One of the crucial factors in these fields is pitch perception. The aim of the present study was to investigate the extent to which pitch perception is influenced by the intensity of the stimulus, through the use of different stimulation modes (monopolar, bipolar) and different electrodes (lateral and perimodiolar). Sixteen postlingually deafened patients with an average implant use of 3.1 years were included in this study. All patients were using a Cochlear (CI24M, CI24R, CI24RE) cochlear implant. Subjects were asked to compare the pitch of an intensity-constant reference tone with the pitch of a test tone of varying intensity. The test was repeated for apical, mediocochlear, and basal channel locations, and also for monopolar and bipolar stimulation. It was found that in monopolar stimulation 87.5% and in bipolar stimulation 85.7% of the patients perceived a clear pitch change with changing intensity of the stimulus (Spearman correlation coefficients r 0.3, respectively). A total of 73.1% of these patients perceived lower pitches with increasing intensity, 26.9% reported the opposite effect. No statistically significant difference in the intensity-pitch correlation could be found between mono- and bipolar stimulation. Neither the mean dynamic range nor the type of electrode used was found to be related to the correlation coefficient. Although the majority of today's cochlear implant recipients perform well and the intensity-pitch relation in cochlear implant recipients is still poorly understood, rising demands on speech-coding strategies may soon make a compensation of the pitch shifts desirable. Although the results of our study tend to argue against a peripheral mechanism, the exact origin of this phenomenon remains unclear.

  9. The regulatory role of endogenous iron on greenhouse gas emissions under intensive nitrogen fertilization in subtropical soils of China.

    Science.gov (United States)

    Han, Jiangpei; Shi, Liangsheng; Wang, Yakun; Chen, Zhuowei; Wu, Laosheng

    2018-05-01

    Anaerobic batch experiments were conducted to study the regulatory role of endogenous iron in greenhouse gas emissions under intensive nitrogen fertilization in subtropical soils of China. Fe 2+ , Fe 3+ , and NO 3 - -N dynamics and N 2 O, CH 4 , and CO 2 emissions, as well as the relationships between N fertilizer, endogenous iron, and greenhouse gas emissions were investigated. The emissions of N 2 O increased to different extents from all the test soils by N1 (260 mg N kg -1 ) application compared with N0. After 24 days of anaerobic incubation, the cumulative emissions of N 2 O from red soils in De'an (DR) were significantly higher than that from paddy soils in De'an (DP) and Qujialing (QP) under N1. However, N application enhanced CH 4 and CO 2 emissions from the red soils slightly but inhibited the emissions from paddy soils. The maximal CH 4 and CO 2 emission fluxes occurred in DP soil without N input. Pearson's correlation analysis showed that there were significant correlations (P greenhouse gas emissions mainly through the involvement in denitrification. The proportion of the electrons donated by Fe 2+ used for N 2 O production in denitrification in DP soil was approximately 37.53%. Moreover, positive correlations between Fe 2+ and CH 4 , CO 2 were found in both DR and QP soils, suggesting that endogenous iron might regulate the anaerobic decomposition of organic carbon to CH 4 and CO 2 in the two soils. Soil pH was also an important factor controlling greenhouse gas emissions by affecting endogenous iron availability and C and N transformation processes.

  10. Spontaneous and light-induced photon emission from intact brains of chick embryos

    Institute of Scientific and Technical Information of China (English)

    张锦珠; 于文斗; 孙彤

    1997-01-01

    Photon emission (PE) and light-induced photon emission(LPE) of intact brains isolated from chick embryos have been measured by using the single photon counting device. Experimental results showed that the intensi-ty level of photon emission was detected to be higher from intact brain than from the medium in which the brain was immerged during measuring, and the emission intensity was related to the developmental stages, the healthy situation of the measured embryos, and the freshness of isolated brains as well. After white light illumination, a short-life de-layed emission from intact brains was observed, and its relaxation behavior followed a hyperbolic rather than an expo-nential law. According to the hypothesis of biophoton emission originating from a delocalized coherent electromagnetic field and Frohlich’s idea of coherent long-range interactions in biological systems, discussions were made on the signifi-cance of photon emission in studying cell communication, biological regulation, living system’

  11. Radar and photometric measurements of an intense type A red aurora

    Science.gov (United States)

    Robinson, R. M.; Mende, S. B.; Vondrak, R. R.; Kozyra, J. U.; Nagy, A. F.

    1985-01-01

    On the evening of March 5, 1981, an intense, type A red aurora appeared over southern Alaska. Radar and photometric measurements were made of the aurora from the Chatanika radar site. The line of sight intensity of the 630.0-nm emissions exceeded 150 kR and was accompanied by enhanced emissions at 486.1 and 427.8 nm. The Chatanika radar measured electron densities of 10 to the 6th per cu cm and electron temperatures of 6000 K at an altitude of 400 km and an invariant latitude of 59 deg in association with the aurora. Comparison of optical and radar measurements indicated that the 630.0-nm emissions were produced to a large degree by thermal excitation of O(1D) in the region of high electron temperatures and densities. Model calculations indicate that the observed density and temperature enhancements and the related optical emissions were the results of a relatively short duration (5-10 min) pulse of precipitating, low-energy (about 30 eV) electrons. Whereas conventional stable auroral red arcs are associated with a gradual decrease in ring current energy density during the recovery phase of a magnetic storm, the type A red aurora may be produced by impulsive ring current energy loss during the main phase.

  12. Electron emission of cathode holder of vacuum diode of an intense electron-beam accelerator and its effect on the output voltage

    OpenAIRE

    Xin-Bing Cheng; Jin-Liang Liu; Hong-Bo Zhang; Zhi-Qiang Hong; Bao-Liang Qian

    2011-01-01

    The vacuum diode which is used to generate relativistic electron beams is one of the most important parts of a pulsed-power modulator. In this paper, the electron emission of cathode holder of a vacuum diode and its effect on the output voltage is investigated by experiments on an intense electron-beam accelerator with 180 ns full width at half maximum and 200–500 kV output voltage. First, the field emission is analyzed and the electric field of the vacuum chamber is calculated. Then, the fla...

  13. Air Pollution Inequality and Its Sources in SO2 and NOX Emissions among Chinese Provinces from 2006 to 2015

    Directory of Open Access Journals (Sweden)

    Mohaddeseh Azimi

    2018-01-01

    Full Text Available This paper investigates inequality in SO2 and NOX emissions, by observing their extraordinary levels and uneven distribution in China during the period of the 11th and 12th Five-Year Plans (FYPs, 2006–2015. This provincial and regional analysis utilizing the Theil index and Kaya factors help us to find the trajectory of inequality and its primary sources. Based on our analysis, we conclude the driving factors behind emissions inequalities are as follows. There are four economic factors of per capita SO2 emission: SO2 emission intensity of coal consumption, coal intensity of power generation, power intensity of GDP, and per capita GDP. Additionally, there are four urban development factors of per capita NOX emission: NOX emission intensity of gasoline consumption, proportion of gasoline vehicles, vehicle use in urban population, and urbanization rate. The SO2 emission results represent an increase of 6% in overall inequality where the inequality of power intensity of GDP is the main contributor. In terms of NOX emission, the 3% growth in total inequality is related to the high effect of NOX emission intensity of gasoline consumption. We also examine the effect of other factors affecting the trajectory of inequalities. To apply these results in practice, we compare the 11th and 12th FYPs and give some policy suggestions.

  14. Intensity related changes of running economy in recreational level distance runners.

    Science.gov (United States)

    Engeroff, Tobias; Bernardi, Andreas; Niederer, Daniel; Wilke, Jan; Vogt, Lutz; Banzer, Winfried

    2017-09-01

    Running economy (RE) is often described as a key demand of running performance. The variety of currently used assessment methods with different running intensities and outcomes restricts interindividual comparability of RE in recreational level runners. The purpose of this study was to compare the influence of RE, assessed as oxygen cost (OC) and caloric unit cost (CUC), on running speed at individual physiological thresholds. Eighteen recreational runners performed: 1) a graded exercise test to estimate first ventilatory threshold (VT1), respiratory compensation point (RCP) and maximal oxygen uptake (VO2max); 2) discontinuous RE assessment to determine relative OC in milliliters per kilogram per kilometer (mL/kg/km) and CUC in kilocalories per kilogram per kilometer (kcal/kg/km) at three different running intensities: VT1, RCP and at a third standardized reference point (TP) in between. OC (mL/kg/km; at VT1: 235.4±26.2; at TP: 227.8±23.4; at RCP: 224.9±21.9) and CUC (kcal/kg/km at VT1: 1.18±0.13; at TP: 1.14±0.12; at RCP: 1.13±0.11) decreased with increasing intensities (P≤0.01). Controlling for the influence of sex OC and CUC linearly correlated with running speed at RCP and VO2max (P≤0.01). RE, even assessed at low intensity, is strongly related to running performance in recreational athletes. Both calculation methods used (OC and CUC) are sensitive for monitoring intensity related changes of substrate utilization. RE values decreased with higher running intensity indicating an increase of anaerobic and subsequent decrease of aerobic substrate utilization.

  15. Funding intensive care - approaches in systems using diagnosis-related groups.

    OpenAIRE

    Ettelt, S; Nolte, E

    2010-01-01

    This report reviews approaches to funding intensive care in health systems that use activitybased payment mechanisms based on diagnosis-related groups (DRGs) to reimburse hospital care. The report aims to inform the current debate about options for funding intensive care services for adults, children and newborns in England. Funding mechanisms reviewed here include those in Australia (Victoria), Denmark, France, Germany, Italy, Spain, Sweden and the United States (Medicare). Approaches to org...

  16. UV and visible photoluminescence emission intensity of undoped and In-doped ZnO thin film and photoresponsivity of ZnO:In/Si hetero-junction

    International Nuclear Information System (INIS)

    Zebbar, N.; Chabane, L.; Gabouze, N.; Kechouane, M.; Trari, M.; Aida, M.S.; Belhousse, S.; Hadj Larbi, F.

    2016-01-01

    Undoped zinc oxide (ZnO) and indium-doped (ZnO:In) thin films were grown at different temperatures (250–400 °C) on alkali-free borosilicate glass and n-Si (100) substrates by Ultrasonic Spray Pyrolysis method. The structural, compositional, optical and electrical properties of ZnO films were investigated by X-ray diffraction, Scanning Electron Microscopy, Rutherford Back Scattering Spectroscopy, Fourier Transform Infrared spectroscopy, photoluminescence (PL) and the four-point probe technique. The predominance of ultraviolet (UV) and blue emission intensities was found to be closely dependent on the resistivity of the film. The visible emission band (peaking at 432 nm) prevails for low film resistivity, ranging from 10 −2 to 1 Ω·cm. By contrast, for higher resistivity (> 1 Ω·cm), there is a predominance of the UV band (382 nm). The PL and photoresponsivity results of fabricated ZnO:In/n-Si(100) heterojunctions prepared at different temperatures are discussed. The maximum spectral response of the ZnO:8%In/Si heterojunction diode fabricated at 250 °C was about 80 mA/W at zero bias. The highlighted results are attractive for the optoelectronic applications. - Highlights: • Properties of ZnO thin films grown by Ultrasonic Spray Pyrolysis at 350 °C. • Photoluminescence emission intensity in undoped ZnO film: effect of the resistivity • Photoluminescence emission intensity of In-doped ZnO film is resistivity dependent. • The spectral response of ZnO:In/Si hetero-junction deposited in the range (250–400 °C)

  17. UV and visible photoluminescence emission intensity of undoped and In-doped ZnO thin film and photoresponsivity of ZnO:In/Si hetero-junction

    Energy Technology Data Exchange (ETDEWEB)

    Zebbar, N., E-mail: nacbar2003@yahoo.fr [LCMS, Faculty of Physics, University of Sciences and Technology (USTHB), BP 32, El-Alia, Algiers (Algeria); Chabane, L. [LCMS, Faculty of Physics, University of Sciences and Technology (USTHB), BP 32, El-Alia, Algiers (Algeria); Gabouze, N. [CRTSE, 02 Bd. Frantz Fanon, BP 140, Algiers (Algeria); Kechouane, M. [LCMS, Faculty of Physics, University of Sciences and Technology (USTHB), BP 32, El-Alia, Algiers (Algeria); Trari, M. [Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry (USTHB), BP 32, El-Alia, Algiers (Algeria); Aida, M.S. [LCM et Interface, Faculty of Sciences, University of Constantine, 25000 (Algeria); Belhousse, S. [CRTSE, 02 Bd. Frantz Fanon, BP 140, Algiers (Algeria); Hadj Larbi, F. [MEMS & Sensors, Division Microélectronique et Nanotechnologie, Centre de Développement des Technologies Avancées (CDTA), BP 17, Baba Hassen, Algiers (Algeria)

    2016-04-30

    Undoped zinc oxide (ZnO) and indium-doped (ZnO:In) thin films were grown at different temperatures (250–400 °C) on alkali-free borosilicate glass and n-Si (100) substrates by Ultrasonic Spray Pyrolysis method. The structural, compositional, optical and electrical properties of ZnO films were investigated by X-ray diffraction, Scanning Electron Microscopy, Rutherford Back Scattering Spectroscopy, Fourier Transform Infrared spectroscopy, photoluminescence (PL) and the four-point probe technique. The predominance of ultraviolet (UV) and blue emission intensities was found to be closely dependent on the resistivity of the film. The visible emission band (peaking at 432 nm) prevails for low film resistivity, ranging from 10{sup −2} to 1 Ω·cm. By contrast, for higher resistivity (> 1 Ω·cm), there is a predominance of the UV band (382 nm). The PL and photoresponsivity results of fabricated ZnO:In/n-Si(100) heterojunctions prepared at different temperatures are discussed. The maximum spectral response of the ZnO:8%In/Si heterojunction diode fabricated at 250 °C was about 80 mA/W at zero bias. The highlighted results are attractive for the optoelectronic applications. - Highlights: • Properties of ZnO thin films grown by Ultrasonic Spray Pyrolysis at 350 °C. • Photoluminescence emission intensity in undoped ZnO film: effect of the resistivity • Photoluminescence emission intensity of In-doped ZnO film is resistivity dependent. • The spectral response of ZnO:In/Si hetero-junction deposited in the range (250–400 °C)

  18. Angle-dependent light emission from aligned multiwalled carbon nanotubes under CO2 laser irradiation

    International Nuclear Information System (INIS)

    Zhang, Y; Gong, T; Liu, W J; Wei, J Q; Zhang, X F; Wang, K L; Zhong, M L; Wu, D H

    2007-01-01

    This paper reports the light emission from aligned multiwalled carbon nanotubes (MWNTs) under continuous wave CO 2 laser (λ = 10.6 μm) irradiation. Results indicate that the light emission is dependent on the angle θ between the laser incident direction and the nanotube axis. The relative intensity of the light emission at certain wavelengths shows a Lorentzian feature when θ varies from 0 0 to 90 0 . The Lorentzian fitting curve displays a distinct tendency between shorter (λ 700 nm). A minimum intensity was observed at θ m close to 67 0 under shorter wavelength, whereas a maximum intensity was shown at θ m of about 60 0 at longer wavelength. These results show the anisotropic property of aligned MWNTs

  19. The relative magnitude of the impacts and effects of GHG-related emission reductions

    International Nuclear Information System (INIS)

    Chiotti, Q.; Urquizo, N.

    2000-01-01

    A preliminary assessment of the current knowledge related to the co-benefits associated with climate change mitigation was provided in this document. One of the benefits of the reduction of greenhouse gas emissions is the reduction of other pollutants like sulphur dioxide, nitrogen oxides, carbon monoxide, volatile organic compounds, particulate matter, ground-level ozone, heavy metals and other toxic pollutants. Since these pollutants have an effect on acid deposition, ozone depletion and air quality, the environment, social welfare and human health, this paper provided an initial outline of the complex processes, interactions and uncertainties associated with this issue. Fossil fuels represent the major source of greenhouse gas (GHG) emissions in Canada. The reduction of emissions of GHG could have an impact on the Long Range Transport of air toxic substances, would help increase oxygen concentrations in the Northern Hemisphere, and lead to less carbon monoxide being released in the atmosphere, among others effects. Reductions of GHG emissions would also have an impact on ecosystems by reducing ground-level ozone concentrations. There would be less acid deposition and more dissolved organic carbon, allowing less ultraviolet-B penetration in aquatic ecosystems. In the case of human health, improved air quality impacts on the avoidance of premature mortality and reduced morbidity. Numerous other co-benefits were listed and discussed in this document. The first section stated the purpose and objectives. In section 2, that authors described the science and policy context and discussed building an analytical framework in section 3. The impact of GHG emission reductions on atmospheric pollution and ecosystems was dealt with in section 4 and section 5 was devoted to providing an assessment of the relative magnitude of effects. In section 6, the significance of scope was reviewed, and the authors concluded with section 7 in which they discussed the next steps: phase II

  20. Earthworm assemblages in different intensity of agricultural uses and their relation to edaphic variables

    Directory of Open Access Journals (Sweden)

    LB Falco

    2015-05-01

    Full Text Available The objective of this study was to relate earthworm assemblage structure with three different soil use intensities, and to indentify the physical, chemical, and microbiological soil variables that are associated to the observed differences. Three soil uses were evaluated: 1-Fifty year old naturalized grasslands, low use intensity; 2-Recent agricultural fields, intermediate use intensity, and 3-Fifty year old intensive agricultural fields, high use intensity. Three different sites for each soil use were evaluated from winter 2008 through summer 2011. Nine earthworm species were identified across all sampling sites. The sites shared five species: the native Microscolex dubius, and the introduced Aporrectodea caliginosa, A. rosea, Octalasion cyaneum, and O. lacteum, but they differed in relative abundance by soil use. The results show that the earthworm community structure is linked to and modulated by soil properties. Both species abundance and diversity showed significant differences depending on soil use intensity. A principal component analysis showed that species composition is closely related to the environmental variability. The ratio of native to exotic species was significantly lower in the intensive agricultural system when compared to the other two, lower disturbance systems. Microscolex dubius abundance was related to naturalized grasslands along with soil Ca, pH, mechanical resistance, and microbial respiration. Aporrectodea caliginosa abundance was related to high K levels, low enzymatic activity, slightly low pH, low Ca, and appeared related to the highly disturbed environment. Eukerria stagnalis and Aporrectodea rosea, commonly found in the recent agricultural system, were related to high soil moisture condition, low pH, low Ca and low enzymatic activity. These results show that earthworm assemblages can be good indicators of soil use intensities. In particular, Microscolex dubius, Aporrectodea caliginosa, and Aporrectodea rosea

  1. Using LMDI method to analyze the change of China's industrial CO2 emissions from final fuel use: An empirical analysis

    International Nuclear Information System (INIS)

    Liu Lancui; Fan Ying; Wu Gang; Wei Yiming

    2007-01-01

    Based on time series decomposition of the Log-Mean Divisia Index (LMDI), this paper analyzes the change of industrial carbon emissions from 36 industrial sectors in China over the period 1998-2005. The changes of industrial CO 2 emission are decomposed into carbon emissions coefficients of heat and electricity, energy intensity, industrial structural shift, industrial activity and final fuel shift. Our results clearly show that raw chemical materials and chemical products, nonmetal mineral products and smelting and pressing of ferrous metals account for 59.31% of total increased industrial CO 2 emissions. The overwhelming contributors to the change of China's industrial sectors' carbon emissions in the period 1998-2005 were the industrial activity and energy intensity; the impact of emission coefficients of heat and electricity, fuel shift and structural shift was relatively small. Over the year 1998-2002, the energy intensity change in some energy-intensive sectors decreased industrial emissions, but increased emissions over the period 2002-2005. The impact of structural shift on emissions have varied considerably over the years without showing any clear trend, and the final fuel shift increased industrial emissions because of the increase of electricity share and higher emissions coefficient. Therefore, raw chemical materials and chemical products, nonmetal mineral products and smelting and pressing of ferrous metals should be among the top priorities for enhancing energy efficiency and driving their energy intensity close to the international advanced level. To some degree, we should reduce the products waste of these sectors, mitigate the growth of demand for their products through avoiding the excessive investment highly related to these sectors, increasing imports or decreasing the export in order to avoid expanding their share in total industrial value added. However, all these should integrate economic growth to harmonize industrial development and CO 2

  2. Urban energy consumption and related carbon emission estimation: a study at the sector scale

    Science.gov (United States)

    Lu, Weiwei; Chen, Chen; Su, Meirong; Chen, Bin; Cai, Yanpeng; Xing, Tao

    2013-12-01

    With rapid economic development and energy consumption growth, China has become the largest energy consumer in the world. Impelled by extensive international concern, there is an urgent need to analyze the characteristics of energy consumption and related carbon emission, with the objective of saving energy, reducing carbon emission, and lessening environmental impact. Focusing on urban ecosystems, the biggest energy consumer, a method for estimating energy consumption and related carbon emission was established at the urban sector scale in this paper. Based on data for 1996-2010, the proposed method was applied to Beijing in a case study to analyze the consumption of different energy resources (i.e., coal, oil, gas, and electricity) and related carbon emission in different sectors (i.e., agriculture, industry, construction, transportation, household, and service sectors). The results showed that coal and oil contributed most to energy consumption and carbon emission among different energy resources during the study period, while the industrial sector consumed the most energy and emitted the most carbon among different sectors. Suggestions were put forward for energy conservation and emission reduction in Beijing. The analysis of energy consumption and related carbon emission at the sector scale is helpful for practical energy saving and emission reduction in urban ecosystems.

  3. Tennis Play Intensity Distribution and Relation with Aerobic Fitness in Competitive Players.

    Directory of Open Access Journals (Sweden)

    Ernest Baiget

    Full Text Available The aims of this study were (i to describe the relative intensity of simulated tennis play based on the cumulative time spent in three metabolic intensity zones, and (ii to determine the relationships between this play intensity distribution and the aerobic fitness of a group of competitive players. 20 male players of advanced to elite level (ITN performed an incremental on-court specific endurance tennis test to exhaustion to determine maximal oxygen uptake (VO2max and the first and second ventilatory thresholds (VT1, VT2. Ventilatory and gas exchange parameters were monitored using a telemetric portable gas analyser (K4 b2, Cosmed, Rome, Italy. Two weeks later the participants played a simulated tennis set against an opponent of similar level. Intensity zones (1: low, 2: moderate, and 3: high were delimited by the individual VO2 values corresponding to VT1 and VT2, and expressed as percentage of maximum VO2 and heart rate. When expressed relative to VO2max, percentage of playing time in zone 1 (77 ± 25% was significantly higher (p < 0.001 than in zone 2 (20 ± 21% and zone 3 (3 ± 5%. Moderate to high positive correlations were found between VT1, VT2 and VO2max, and the percentage of playing time spent in zone 1 (r = 0.68-0.75, as well as low to high inverse correlations between the metabolic variables and the percentage of time spent in zone 2 and 3 (r = -0.49-0.75. Players with better aerobic fitness play at relatively lower intensities. We conclude that players spent more than 75% of the time in their low-intensity zone, with less than 25% of the time spent at moderate to high intensities. Aerobic fitness appears to determine the metabolic intensity that players can sustain throughout the game.

  4. The infrared emission bands. III. Southern IRAS sources.

    Science.gov (United States)

    Cohen, M; Tielens, A G; Bregman, J; Witteborn, F C; Rank, D M; Allamandola, L J; Wooden, D H; de Muizon, M

    1989-06-01

    We present airborne 5-8 micrometers spectra of southern IRAS sources which reveal strong polycyclic aromatic hydrocarbon (PAH) emission features. The good correlation between the bands, in particular the dominant 6.2 and "7.7" micrometers features, strongly imply a common carrier, reinforcing the PAH hypothesis. However, small but detectable spectral variations exist. Planetaries have a distinctly different ratio of I(6.2)/I(7.7) than other nebulae, accompanied by a redward shift in the actual wavelength of the "7.7" micrometers peak. Further, we have detected a new feature, previously predicted from laboratory spectra of PAH molecules, at 5.2 micrometers in many of these sources. Spectra of two rare [WC 10] planetary nebular nuclei indicate a very prominent plateau of emission, linking the 6.2 and 7.7 micrometers bands. Several of our sources show definite evidence for emission structure between 14 and 23 micrometers in their IRAS Low-Resolution Spectral Atlas spectra: we attribute this structure to PAH bands. too. We have defined the "generic" spectrum of emission bands relating the mean intensities of each band to that of the strongest, near 7.7 micrometers. We have added three more planetary or protoplanetary nebulae to our correlation between 7.7 micrometers band intensity and nebular gas phase C/O ratio, namely NGC 6302, HR 4049, and the highly carbon-rich [WC 10] nucleus, CPD--56 degrees 8032. For the latter we have determined a ratio for C/O of approximately 4.8 from IUE observations. The good correlation between the intensity ratio of the "7.7" micrometers feature relative to the far-infrared dust continuum and nebular C/O also supports a carbonaceous carrier for these emission features.

  5. Reconstructing the long-term cosmic ray intensity: linear relations do not work

    Directory of Open Access Journals (Sweden)

    K. Mursula

    2003-04-01

    Full Text Available It was recently suggested (Lockwood, 2001 that the cosmic ray intensity in the neutron monitor energy range is linearly related to the coronal source flux, and can be reconstructed for the last 130 years using the long-term coronal flux estimated earlier. Moreover, Lockwood (2001 reconstructed the coronal flux for the last 500 years using a similar linear relation between the flux and the concentration of cosmogenic 10 Be isotopes in polar ice. Here we show that the applied linear relations are oversimplified and lead to unphysical results on long time scales. In particular, the cosmic ray intensity reconstructed by Lockwood (2001 for the last 130 years has a steep trend which is considerably larger than the trend estimated from observations during the last 65 years. Accordingly, the reconstructed cosmic ray intensity reaches or even exceeds the local interstellar cosmic ray flux around 1900. We argue that these unphysical results obtained when using linear relations are due to the oversimplified approach which does not take into account the complex and essentially nonlinear nature of long-term cosmic ray modulation in the heliosphere. We also compare the long-term cosmic ray intensity based on a linear treatment with the reconstruction based on a recent physical model which predicts a considerably lower cosmic ray intensity around 1900.Key words. Interplanetary physics (cosmic rays; heliopause and solar wind termination – Geomagnetism and paleomagnetism (time variations, secular and long-term

  6. How to restrain electroplex emission and enhance red emission intensity of Eu 3+ complex?

    Science.gov (United States)

    Zhang, Fujun; Zhao, Suling; Xu, Zheng; Huang, Jinzhao; Yuan, Guancai; Li, Yuan; Wang, Yong; Xu, Xurong

    2007-11-01

    The electroluminescence (EL) of lanthanide complex profits from the intramolecular energy transfer from the triplet state of ligand to Ln (III) ions, but electroplex emission between ligand and host material may occur when the energy transfer is inefficient. The electroplex emission is completely restrained when 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7,-tetramethyljulolidy-9-enyl)-4Hpyran (DCJTB) and Eu(o-BBA)3(phen) are co-doped in poly (N-vinycarbzaole) (PVK). There are great spectra overlapping between electroplex emission and the excitation of DCJTB. The chromaticity coordinates of EL of co-doped device is kept constant (x = 0.55, y = 0.37) under different driving voltage.

  7. Effect of Ag doping on the properties of ZnO thin films for UV stimulated emission

    Science.gov (United States)

    Razeen, Ahmed S.; Gadallah, A.-S.; El-Nahass, M. M.

    2018-06-01

    Ag doped ZnO thin films have been prepared using sol-gel spin coating method, with different doping concentrations. Structural and morphological properties of the films have been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Thin films have been optically pumped and stimulated emission has been observed with strong peaks in the UV region. The UV stimulated emission is found to be due to exciton-exciton scattering, and Ag doping promoted this process by increasing the excitons concentrations in the ZnO lattice. Output-input intensity relation and peak emission, FWHM, and quantum efficiency relations with pump intensity have been reported. The threshold for which stimulated emission started has been evaluated to be about 18 MW/cm2 with quantum efficiency of about 58.7%. Mechanisms explaining the role of Ag in enhancement of stimulated emission from ZnO thin films have been proposed.

  8. Intensity of noise in the classroom and analysis of acoustic emissions in schoolchildren

    Directory of Open Access Journals (Sweden)

    Almeida Filho, Nelson de

    2012-01-01

    Full Text Available Introduction: Noise-induced hearing loss is a sensorineural hearing loss, usually bilateral, irreversible and progressive with time of exposure. As the noise made by children in school may be considered detrimental, the study looks of their occurrence in Taubaté's schools. Objective: To determine if students are exposed to noise intensity affecting the cochlea, define the profile of these schoolchildren, demonstrating the occurrence of changes in cochlear activity following exposure to noise in a day of class. Method: Study's way prospective transversal cross sectional cut with 28 elementary school students in the first half of 2009. Questionnaires for assessing preexisting cochlear damage . Evaluation of cochlear function by analysis of acoustic emissions evoked distortion product, made before the students come into class and immediately after the end of these. Measurement of noise inside the classrooms and recreation areas during the interval. Results: 57.1% accused some hearing loss in the examinations before class. By day's end, 04 girls and 03 boys had worsened in relation of the first examination. The noise reached levels higher than recommended at the three class rooms. The largest number of students with worsening, belong to the class room with higher noise level. The noise during the intervals is also excessive. Conclusions: The noise in this school is above the limit. 42.85% of students who had experienced worsening had school performance inadequate. 25% had worse after noise exposure in a school day.

  9. LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector

    International Nuclear Information System (INIS)

    Jeong, Kyonghwa; Kim, Suyi

    2013-01-01

    In this article, we decomposed Korean industrial manufacturing greenhouse gas (GHG) emissions using the log mean Divisia index (LMDI) method, both multiplicatively and additively. Changes in industrial CO 2 emissions from 1991 to 2009 may be studied by quantifying the contributions from changes in five different factors: overall industrial activity (activity effect), industrial activity mix (structure effect), sectoral energy intensity (intensity effect), sectoral energy mix (energy-mix effect) and CO 2 emission factors (emission-factor effect). The results indicate that the structure effect and intensity effect played roles in reducing GHG emissions, and the structure effect played a bigger role than the intensity effect. The energy-mix effect increased GHG emissions, and the emission-factor effect decreased GHG emissions. The time series analysis indicates that the GHG emission pattern was changed before and after the International Monetary Fund (IMF) regime in Korea. The structure effect and the intensity effect had contributed more in emission reductions after rather than before the IMF regime in Korea. The structure effect and intensity effect have been stimulated since the high oil price period after 2001. - Highlights: • We decomposed greenhouse gas emissions of Korea's manufacturing industry using LMDI. • The structure effect and intensity effect play a role in reducing GHG emissions. • The role of structure effect was bigger than intensity effect. • The energy-mix effect increased and the emission-factor effect decreased GHG emissions. • The GHG emission pattern has been changed before and after IMF regime in Korea

  10. Enhanced radiative Auger emission from lithiumlike 20Ca17+

    International Nuclear Information System (INIS)

    Bernstein, E.M.; Clark, M.W.; Tanis, J.A.; Graham, W.G.; Morgan, T.J.; Stoeckli, M.P.; Berkner, K.H.; Schlachter, A.S.; Stearns, J.W.

    1991-01-01

    Radiative Auger emission (RAE) from lithiumlike 20 Ca 17+ projectiles excited in collisions with He has been measured. The intensity of RAE photons relative to K α X-ray emission is enhanced by a factor of 10-17 compared with theoretical calculations for ions with few electron vacancies. The enhancement of RAE for Ca 17+ is consistent with the results reported previously for lithiumlike 16 S 13+ and 23 V 20+ and indicates a systematic dependence on Z. Both the enhancement and the relative RAE transition rate increase with Z. (orig.)

  11. The spatial intensity distribution of selected emission lines for Herbig-Haro 1 - Comparison between theory and observations

    International Nuclear Information System (INIS)

    Noriega-Crespo, A.; Bohm, K.H.; Raga, A.C.

    1989-01-01

    In this paper, it is shown that most of the spatial intensity distribution of 11 selected emission lines for Herbig-Haro 1 (including the forbidden S II emission lines at 6731 A and 4069 A, the forbidden O III line at 5007 A, and the forbidden O II line at 3727 A) can be explained by a bow shock with a shock velocity of about 150-200 km/sec at the stagnation point, and under the assumption that the gas entering the shock is fully preionized. The results are based on three spectrograms (with a total exposure time of 180 min) obtained consecutively. Specifically, the ratios of each of the forbidden lines to H-alpha were studied, which permitted a critical test of the model. The agreement between the theoretical predictions and the observations was found to be remarkable, considering the complex geometry that a bow shock could have. 38 refs

  12. Benchmarking energy use and greenhouse gas emissions in Singapore's hotel industry

    International Nuclear Information System (INIS)

    Wu Xuchao; Priyadarsini, Rajagopalan; Eang, Lee Siew

    2010-01-01

    Hotel buildings are reported in many countries as one of the most energy intensive building sectors. Besides the pressure posed on energy supply, they also have adverse impact on the environment through greenhouse gas emissions, wastewater discharge and so on. This study was intended to shed some light on the energy and environment related issues in hotel industry. Energy consumption data and relevant information collected from hotels were subjected to rigorous statistical analysis. A regression-based benchmarking model was established, which takes into account, the difference in functional and operational features when hotels are compared with regard to their energy performance. In addition, CO 2 emissions from the surveyed hotels were estimated based on a standard procedure for corporate GHG emission accounting. It was found that a hotel's carbon intensity ranking is rather sensitive to the normalizing denominator chosen. Therefore, carbon intensity estimated for the hotels must not be interpreted arbitrarily, and industry specific normalizing denominator should be sought in future studies.

  13. Social Relation between Businessman and Community in Management of Intensive Shrimp Pond

    Science.gov (United States)

    Gumay Febryano, Indra; Sinurat, James; Lovinia Salampessy, Messalina

    2017-02-01

    Expansion of aquaculture, especially shrimp culture, is the primary cause of deforestation of mangrove along coastal zone. This phenomenon is pretty much related to social relation between businessman of intensive shrimp pond and community around coastal zone. The objective of this research is to explain social relation between businessman and community in managing intensive shrimp pond. This research is a kind of qualitative research and the method used is a case study. The result of this research shows that the behaviour of the majority of businessman of intensive shrimp pond is not accordingly with environmental concerns as they compelled conversion of mangrove and they disposed waste of shrimp pond into the sea. Such kind of behaviour caused degradation of water ecosystem and marginalizing local community. Corporate Social Responsibility (CSR) which was implemented by businessman of intensive shrimp pond in the area of social, religion, and education can downgrade the coming up of social turbulence. Otherwise, CSR in enabling economic community and environmental management was not conducted yet. CSR in environmental management can be conducted by businessman of intensive shrimp pond by considering the existence of mangrove and pond management and waste in a better way, so that environment around ponds is not polluted and the sustainability of shrimp pond business as well as income of community can be guaranteed. Accordingly with the result of this research, CSR is not only involving businessman of intensive shrimp pond and community, but also involving local government in terms of right and responsibility of citizen as well as management and development of community.

  14. Carbon dioxide emissions from passenger transport in China since 1949: Implications for developing sustainable transport

    International Nuclear Information System (INIS)

    Loo, Becky P.Y.; Li, Linna

    2012-01-01

    This paper traces the historical evolution and spatial disparity of CO 2 emissions from passenger transport in China. The general trends of CO 2 emissions from four passenger transport modes are estimated by both the distance-based and fuel-based methods. The results suggest that CO 2 emissions from road transport represented the leading source of passenger transport CO 2 emissions in China. Moreover, they have continued to grow rapidly. Air transport was the second largest contributor since 1998. Emissions from rail and water transport have remained relatively stable with lower emission intensity. At the provincial level, great regional disparity was noticeable, especially in road transport. Moreover, the decomposition analysis shows that income growth was the principal factor leading to the growth of passenger transport CO 2 emissions in China for both the 1949–1979 and 1980–2009 periods. The second most important factor was increased transport intensity and modal shifts for the former and the latter period, respectively. The main factor contributed to emission reduction was the lower emission intensity supported by policies, although the effect was weak. In the future, more policies to encourage modal shifts toward sustainable transport modes and travel reduction should be encouraged. - Highlights: ► CO 2 emissions from passenger transport in China were estimated. ► Road transport was the largest contributor to CO 2 emission. Air transport followed. ► Factors influencing CO 2 emissions growth are analyzed by decomposition analysis. ► Income growth, higher travel intensity and modal shift were driving CO 2 emissions up. ► Policies to promote modal shifts and travel demand reduction should be encouraged.

  15. Simulations of emission from microcavity tandem organic light-emitting diodes

    International Nuclear Information System (INIS)

    Biswas, Rana; Xu, Chun; Zhao, Weijun; Liu, Rui; Shinar, Ruth; Shinar, Joseph

    2011-01-01

    Microcavity tandem organic light-emitting diodes (OLEDs) are simulated and compared to experimental results. The simulations are based on two complementary techniques: rigorous finite element solutions of Maxwell's equations and Fourier space scattering matrix solutions. A narrowing and blue shift of the emission spectrum relative to the noncavity single unit OLED is obtained both theoretically and experimentally. In the simulations, a distribution of emitting sources is placed near the interface of the electron transport layer tris(8-hydroxyquinoline) Al (Alq 3 ) and the hole transport layer (N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine) (α-NPB). Far-field electric field intensities are simulated. The simulated widths of the emission peaks also agree with the experimental results. The simulations of the 2-unit tandem OLEDs shifted the emission to shorter wavelength, in agreement with experimental measurements. The emission spectra's dependence on individual layer thicknesses also agreed well with measurements. Approaches to simulate and improve the light emission intensity from these OLEDs, in particular for white OLEDs, are discussed.

  16. 40 CFR 600.510-12 - Calculation of average fuel economy and average carbon-related exhaust emissions.

    Science.gov (United States)

    2010-07-01

    ... and average carbon-related exhaust emissions. 600.510-12 Section 600.510-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF... Transportation. (iv) [Reserved] (2) Average carbon-related exhaust emissions will be calculated to the nearest...

  17. Efficiency of Cathodoluminescence Emission by Nitrogen-Vacancy Color Centers in Nanodiamonds.

    Science.gov (United States)

    Zhang, Huiliang; Glenn, David R; Schalek, Richard; Lichtman, Jeff W; Walsworth, Ronald L

    2017-06-01

    Correlated electron microscopy and cathodoluminescence (CL) imaging using functionalized nanoparticles is a promising nanoscale probe of biological structure and function. Nanodiamonds (NDs) that contain CL-emitting color centers are particularly well suited for such applications. The intensity of CL emission from NDs is determined by a combination of factors, including particle size, density of color centers, efficiency of energy deposition by electrons passing through the particle, and conversion efficiency from deposited energy to CL emission. This paper reports experiments and numerical simulations that investigate the relative importance of each of these factors in determining CL emission intensity from NDs containing nitrogen-vacancy (NV) color centers. In particular, it is found that CL can be detected from NV-doped NDs with dimensions as small as ≈40 nm, although CL emission decreases significantly for smaller NDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. 2001-2002 carbon dioxide emissions in OECD; Emissions de CO{sub 2} dues a l'energie dans l'OCDE en 2001-2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-11-01

    This document provides carbon dioxide emissions data, from energy uses and production, from 2001 to 2002 in the OECD. It concerns the climate corrected CO{sub 2} emissions in France, the non corrected CO{sub 2} emissions (M tons), the emissions intensity / the Gross Domestic Product and the emissions intensity / the population (tons per inhabitant). (A.L.B.)

  19. Decomposition for emission baseline setting in China's electricity sector

    International Nuclear Information System (INIS)

    Steenhof, Paul A.

    2007-01-01

    Decomposition analysis is used to generate carbon dioxide emission baselines in China's electricity sector to the year 2020. This is undertaken from the vantage point of the final consumer of electricity, and therefore considers factors influencing electricity demand, efficiency of generation, sources of energy used for generation purposes, and the effectiveness of transmission and distribution. It is found that since 1980, gains in efficiency of generation have been the most important factor affecting change in the emission intensity of electricity generated. Based upon known energy and economic policy, efficiency gains will continue to contribute to reductions in the emission intensity of electricity generated, however, fuel shifts to natural gas and increases in nuclear generation will further these trends into the future. The analysis confirms other sources in the literature that decomposition is an appropriate technique available for baseline construction, thereby suitable for the emerging carbon market and its related mechanisms

  20. Assessing and evaluating urban VOC emissions in mid-latitude megacities from intensive observations in Paris and Los Angeles

    Science.gov (United States)

    Borbon, A.; Gilman, J. B.; Kuster, W. C.; McKeen, S. A.; Holloway, J. S.; Gros, V.; Gaimoz, C.; Beekmann, M.; De Gouw, J. A.

    2011-12-01

    Volatile Organic Compounds (VOC) affect urban air quality and regional climate change by contributing to ozone formation and the build-up of Secondary Organic Aerosols (SOA). Quantification of VOC emissions is a first critical step to predict VOC environmental impacts and to design effective abatement strategies. Indeed, the quality of ozone and SOA forecasts strongly depends on an accurate knowledge of the primary VOC emissions. However, commonly used bottom-up approaches are highly uncertain due to source multiplicity (combustion processes, storage and distribution of fossil fuels, solvent use, etc.) because of numerous controlling factors (driving conditions, fuel type, temperature, radiation, etc.), and their great variability in time and space. Field observations of VOC and other trace gases can provide valuable top-down constraints to evaluate VOC emission inventories at urban scales. In addition, the implementation of emission reduction measures raises the question of the increasing importance of VOC sources other than traffic. Here, we will evaluate VOC emissions of two mid-latitude megacities in the Northern Hemisphere: the Greater Paris area (Europe) and Los Angeles (USA). In 2009 and 2010, three intensive field campaigns took place in Paris and Los Angeles in the framework of the MEGAPOLI (EU FP7) and CalNex-2010 projects, respectively. Very detailed measurements of aerosol composition and properties, and their gaseous VOC precursors were carried out at ground-based sites (urban center and suburban) and on various mobile platforms. This contribution uses a comprehensive suite of VOC measurements collected by GC-MS/FID techniques at ground-based sites in both cities by a source-receptor methodology. First, emission ratios were estimated from the observations (uncertainty of ± 20%) and compared regarding regional characteristics and European vs. Californian control policies. Then, determined emission ratios were used to assess the accuracy of up

  1. Search for C II Emission on Cosmological Scales at Redshift Z ˜ 2.6

    Science.gov (United States)

    Pullen, Anthony R.; Serra, Paolo; Chang, Tzu-Ching; Doré, Olivier; Ho, Shirley

    2018-05-01

    We present a search for Cii emission over cosmological scales at high-redshifts. The Cii line is a prime candidate to be a tracer of star formation over large-scale structure since it is one of the brightest emission lines from galaxies. Redshifted Cii emission appears in the submillimeter regime, meaning it could potentially be present in the higher frequency intensity data from the Planck satellite used to measure the cosmic infrared background (CIB). We search for Cii emission over redshifts z = 2 - 3.2 in the Planck 545 GHz intensity map by cross-correlating the 3 highest frequency Planck maps with spectroscopic quasars and CMASS galaxies from the Sloan Digital Sky Survey III (SDSS-III), which we then use to jointly fit for Cii intensity, CIB parameters, and thermal Sunyaev-Zeldovich (SZ) emission. We report a measurement of an anomalous emission I_ν =6.6^{+5.0}_{-4.8}× 10^4Jy/sr at 95% confidence, which could be explained by Cii emission, favoring collisional excitation models of Cii emission that tend to be more optimistic than models based on Cii luminosity scaling relations from local measurements; however, a comparison of Bayesian information criteria reveal that this model and the CIB & SZ only model are equally plausible. Thus, more sensitive measurements will be needed to confirm the existence of large-scale Cii emission at high redshifts. Finally, we forecast that intensity maps from Planck cross-correlated with quasars from the Dark Energy Spectroscopic Instrument (DESI) would increase our sensitivity to Cii emission by a factor of 5, while the proposed Primordial Inflation Explorer (PIXIE) could increase the sensitivity further.

  2. Electron emission of cathode holder of vacuum diode of an intense electron-beam accelerator and its effect on the output voltage

    Directory of Open Access Journals (Sweden)

    Xin-Bing Cheng

    2011-04-01

    Full Text Available The vacuum diode which is used to generate relativistic electron beams is one of the most important parts of a pulsed-power modulator. In this paper, the electron emission of cathode holder of a vacuum diode and its effect on the output voltage is investigated by experiments on an intense electron-beam accelerator with 180 ns full width at half maximum and 200–500 kV output voltage. First, the field emission is analyzed and the electric field of the vacuum chamber is calculated. Then, the flatness of the output voltage is discussed before and after adding an insulation plate when a water load is used. It is found that the electron emission at the edges of the cathode holder is the main reason to cause the change of the flatness. Last, a piece of polyester film is used as a target to further show the electron emission of the cathode holder. This analysis shows that decreasing the electron emission of the cathode holder in such a pulse power modulator could be a good way to improve the quality of the output voltage.

  3. Simulating secondary organic aerosol from missing diesel-related intermediate-volatility organic compound emissions during the Clean Air for London (ClearfLo campaign

    Directory of Open Access Journals (Sweden)

    R. Ots

    2016-05-01

    Full Text Available We present high-resolution (5 km  ×  5 km atmospheric chemical transport model (ACTM simulations of the impact of newly estimated traffic-related emissions on secondary organic aerosol (SOA formation over the UK for 2012. Our simulations include additional diesel-related intermediate-volatility organic compound (IVOC emissions derived directly from comprehensive field measurements at an urban background site in London during the 2012 Clean Air for London (ClearfLo campaign. Our IVOC emissions are added proportionally to VOC emissions, as opposed to proportionally to primary organic aerosol (POA as has been done by previous ACTM studies seeking to simulate the effects of these missing emissions. Modelled concentrations are evaluated against hourly and daily measurements of organic aerosol (OA components derived from aerosol mass spectrometer (AMS measurements also made during the ClearfLo campaign at three sites in the London area. According to the model simulations, diesel-related IVOCs can explain on average  ∼  30 % of the annual SOA in and around London. Furthermore, the 90th percentile of modelled daily SOA concentrations for the whole year is 3.8 µg m−3, constituting a notable addition to total particulate matter. More measurements of these precursors (currently not included in official emissions inventories is recommended. During the period of concurrent measurements, SOA concentrations at the Detling rural background location east of London were greater than at the central London location. The model shows that this was caused by an intense pollution plume with a strong gradient of imported SOA passing over the rural location. This demonstrates the value of modelling for supporting the interpretation of measurements taken at different sites or for short durations.

  4. Peaking China’s CO2 Emissions: Trends to 2030 and Mitigation Potential

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2017-02-01

    Full Text Available China has submitted its nationally determined contribution to peak its energy-related emissions around 2030. To understand how China might develop its economy while controlling CO2 emissions, this study surveys a number of recent modeling scenarios that project the country’s economic growth, energy mix, and associated emissions until 2050. Our analysis suggests that China’s CO2 emissions will continue to grow until 2040 or 2050 and will approximately double their 2010 level without additional policy intervention. The alternative scenario, however, suggests that peaking CO2 emissions around 2030 requires the emission growth rate to be reduced by 2% below the reference level. This step would result in a plateau in China’s emissions from 2020 to 2030. This paper also proposed a deep de-carbonization pathway for China that is consistent with China’s goal of peaking emissions by around 2030, which can best be achieved through a combination of improvements in energy and carbon intensities. Our analysis also indicated that the potential for energy intensity decline will be limited over time. Thus, the peaking will be largely dependent on the share of non-fossil fuel energy in primary energy consumption.

  5. A comparative study of x-ray emission from laser spots in laser-heated hohlraums relative to spots on simple disk targets

    International Nuclear Information System (INIS)

    Ze, F.; Langer, S.H.; Kauffman, R.L.; Kilkenny, J.D.; Landen, O.; Ress, D.; Rosen, M.D.; Suter, L.J.; Wallace, R.J.; Wiedwald, J.D.

    1997-01-01

    In this paper we report the results of experiments that compare the x-ray emission from a laser spot in a radiation-filled hohlraum to that from a similar laser spot on a simple disk target. The studies were done using the Nova laser facility [J. D. Lindl, Phys. Plasmas 2, 3933 (1995)] in its 0.35 μm wavelength, 1 ns square pulse configuration. Focal spot intensities were 2 endash 3.5x10 15 W/cm 2 . X-ray images measured x-ray conversion in a hohlraum and from an isolated disk simultaneously. A laser spot inside a hohlraum emitted more x rays, after subtracting the background emission from the hohlraum walls, than a spot on a disk. Numerical models suggest the enhanced spot emission inside the hohlraum is due to an increase in lateral transport relative to the disk. Filamentation in the hohlraum will also increase the spot size. The models agree fairly well with the results on spot spreading but do not explain the overall increase in conversion efficiency. copyright 1997 American Institute of Physics

  6. Barriers to reducing carbon emissions in Eastern Europe and the Soviet Union

    International Nuclear Information System (INIS)

    Chandler, W.W.

    1991-01-01

    The Soviet Union and Eastern Europe accounted for 27% of global carbon emissions in 1986. Although the recent opening of the former planned economies offers numerous opportunities to improve energy use efficiency in these regions and reduce their energy-related carbon emissions, various barriers hinder changes in Eastern European energy use. These barriers include the following: lack of incentives; insufficient infrastructure; scarce human resources; and heavy reliance on low quality fuels. Energy intensity in these countries far surpasses the estimated energy intensity in the United States and Western Europe. However, substantial potential exists for improving the efficiency of energy use in these regions

  7. Electroplex emission of the blend film of PVK and DPVBi

    Science.gov (United States)

    Li, Junming; Xu, Zheng; Zhang, Fujun; Zhao, Suling; Song, Dandan; Zhu, Haina; Song, Jinglu; Wang, Yongsheng; Xu, Xurong

    2010-04-01

    Influences of electric fields on the emission from organic light-emitting diodes (OLEDs) based on poly(N-vinylcarbazole) (PVK) and 4‧-bis(2-2diphenylvinyl)-1,1‧-biphenyl (DPVBi) as the active emission layer are studied. Electroluminescence (EL) spectra of PVK:DPVBi (1:1 w/w) films show one new emission peak locating at 640 nm compared with its photoluminescence (PL) spectra. There may be exists an electroplex emission between the PVK and DPVBi under high electric field strength. The emission intensity of peaking at 640 nm strongly depends on the driving voltage, and the ratio of electroplex emission intensity to exciton emission intensity (Ielectroplex/Iexciton) increases with the increase of driving voltage.

  8. Coronal mass ejections, interplanetary shocks in relation with forbush decreases associated with intense geomagnetic storms

    International Nuclear Information System (INIS)

    Verma, P L; Patel, Nand Kumar; Prajapati, Mateswari

    2014-01-01

    Coronal mass ejections (CMEs} are the most energetic solar events in which large amount of solar plasma materials are ejected from the sun into heliosphere, causing major disturbances in solar wind plasma, Interplanetary shocks, Forbush decrease(Fds) in cosmic ray intensity and geomagnetic storms. We have studied Forbush decreases associated with intense geomagnetic storms observed at Oulu super neutron monitor, during the period of May 1998-Dec 2006 with coronal mass ejections (CMEs), X-ray solar flares and interplanetary shocks. We have found that all the (100%) Forbush decreases associated with intense geomagnetic storms are associated with halo and partial halo coronal mass ejections (CMEs). The association rate between halo and partial halo coronal mass ejections are found 96.00%and 04.00% respectively. Most of the Forbush decreases associated with intense geomagnetic storms (96.29%) are associated with X-ray solar flares of different categories . The association rates for X-Class, M-Class, and C- Class X -ray solar flares are found 34.62%, 50.00% and 15.38% respectively .Further we have concluded that majority of the Forbush decrease associated with intense geomagnetic storms are related to interplanetary shocks (92.30 %) and the related shocks are forward shocks. We have found positive co-relation with co-relation co-efficient .7025 between magnitudes of Forbush decreases associated with intense geomagnetic storms and speed of associated coronal mass ejections. Positive co-relation with co-relation co-efficient 0.48 has also been found between magnitudes of intense geomagnetic storms and speed of associated coronal mass ejections.

  9. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets

    Science.gov (United States)

    Anenberg, Susan C.; Miller, Joshua; Minjares, Ray; Du, Li; Henze, Daven K.; Lacey, Forrest; Malley, Christopher S.; Emberson, Lisa; Franco, Vicente; Klimont, Zbigniew; Heyes, Chris

    2017-05-01

    Vehicle emissions contribute to fine particulate matter (PM2.5) and tropospheric ozone air pollution, affecting human health, crop yields and climate worldwide. On-road diesel vehicles produce approximately 20 per cent of global anthropogenic emissions of nitrogen oxides (NOx), which are key PM2.5 and ozone precursors. Regulated NOx emission limits in leading markets have been progressively tightened, but current diesel vehicles emit far more NOx under real-world operating conditions than during laboratory certification testing. Here we show that across 11 markets, representing approximately 80 per cent of global diesel vehicle sales, nearly one-third of on-road heavy-duty diesel vehicle emissions and over half of on-road light-duty diesel vehicle emissions are in excess of certification limits. These excess emissions (totalling 4.6 million tons) are associated with about 38,000 PM2.5- and ozone-related premature deaths globally in 2015, including about 10 per cent of all ozone-related premature deaths in the 28 European Union member states. Heavy-duty vehicles are the dominant contributor to excess diesel NOx emissions and associated health impacts in almost all regions. Adopting and enforcing next-generation standards (more stringent than Euro 6/VI) could nearly eliminate real-world diesel-related NOx emissions in these markets, avoiding approximately 174,000 global PM2.5- and ozone-related premature deaths in 2040. Most of these benefits can be achieved by implementing Euro VI standards where they have not yet been adopted for heavy-duty vehicles.

  10. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets.

    Science.gov (United States)

    Anenberg, Susan C; Miller, Joshua; Minjares, Ray; Du, Li; Henze, Daven K; Lacey, Forrest; Malley, Christopher S; Emberson, Lisa; Franco, Vicente; Klimont, Zbigniew; Heyes, Chris

    2017-05-25

    Vehicle emissions contribute to fine particulate matter (PM 2.5 ) and tropospheric ozone air pollution, affecting human health, crop yields and climate worldwide. On-road diesel vehicles produce approximately 20 per cent of global anthropogenic emissions of nitrogen oxides (NO x ), which are key PM 2.5 and ozone precursors. Regulated NO x emission limits in leading markets have been progressively tightened, but current diesel vehicles emit far more NO x under real-world operating conditions than during laboratory certification testing. Here we show that across 11 markets, representing approximately 80 per cent of global diesel vehicle sales, nearly one-third of on-road heavy-duty diesel vehicle emissions and over half of on-road light-duty diesel vehicle emissions are in excess of certification limits. These excess emissions (totalling 4.6 million tons) are associated with about 38,000 PM 2.5 - and ozone-related premature deaths globally in 2015, including about 10 per cent of all ozone-related premature deaths in the 28 European Union member states. Heavy-duty vehicles are the dominant contributor to excess diesel NO x emissions and associated health impacts in almost all regions. Adopting and enforcing next-generation standards (more stringent than Euro 6/VI) could nearly eliminate real-world diesel-related NO x emissions in these markets, avoiding approximately 174,000 global PM 2.5 - and ozone-related premature deaths in 2040. Most of these benefits can be achieved by implementing Euro VI standards where they have not yet been adopted for heavy-duty vehicles.

  11. Consistency checks in beam emission modeling for neutral beam injectors

    International Nuclear Information System (INIS)

    Punyapu, Bharathi; Vattipalle, Prahlad; Sharma, Sanjeev Kumar; Baruah, Ujjwal Kumar; Crowley, Brendan

    2015-01-01

    In positive neutral beam systems, the beam parameters such as ion species fractions, power fractions and beam divergence are routinely measured using Doppler shifted beam emission spectrum. The accuracy with which these parameters are estimated depend on the accuracy of the atomic modeling involved in these estimations. In this work, an effective procedure to check the consistency of the beam emission modeling in neutral beam injectors is proposed. As a first consistency check, at a constant beam voltage and current, the intensity of the beam emission spectrum is measured by varying the pressure in the neutralizer. Then, the scaling of measured intensity of un-shifted (target) and Doppler shifted intensities (projectile) of the beam emission spectrum at these pressure values are studied. If the un-shifted component scales with pressure, then the intensity of this component will be used as a second consistency check on the beam emission modeling. As a further check, the modeled beam fractions and emission cross sections of projectile and target are used to predict the intensity of the un-shifted component and then compared with the value of measured target intensity. An agreement between the predicted and measured target intensities provide the degree of discrepancy in the beam emission modeling. In order to test this methodology, a systematic analysis of Doppler shift spectroscopy data obtained on the JET neutral beam test stand data was carried out

  12. Examining drivers of the emissions embodied in trade.

    Directory of Open Access Journals (Sweden)

    Leying Wu

    Full Text Available Emissions embodied in provincial trade (EEPT have important effects on provinces' responsibilities for carbon emission reductions. Based on a multi-regional input-output model, we calculated EEPT for China's 30 provinces in 2002, 2007 and 2010, and we attempted to determine the drivers of EEPT. The results showed that, during this period, the ratio of EEPT to production-based emissions increased over time, reaching 40.24% in 2010. In consideration of its important role in carbon emissions, we analyzed the factors attributable to EEPT through structure decomposition analysis. The decomposition results showed that final demand and carbon emission intensity were two major factors in EEPT, while the final demand in other provinces and the carbon emission intensity in the local province were major factors for Emissions embodied in provincial exports and the final demand in the local province and the carbon emission intensity in other provinces were major factors for Emissions embodied in provincial imports. Regarding the differences among the EEPT of different provinces, changes in the structure of trade were the primary reason.

  13. A comparative analysis of vehicle-related greenhouse gas emissions between organic and conventional dairy production.

    Science.gov (United States)

    Aggestam, Vivianne; Buick, Jon

    2017-08-01

    Agricultural industrialisation and globalisation have steadily increased the transportation of food across the world. In efforts to promote sustainability and self-sufficiency, organic milk producers in Sweden are required to produce a higher level of cattle feed on-farm in the hope that increased self-sufficiency will reduce reliance on external inputs and reduce transport-related greenhouse gas emissions. Using data collected from 20 conventional and 20 organic milk producers in Sweden this paper aims to assess the global warming impact of farmyard vehicles and the transportation of feed produced 'off-farm' in order to compare the impact of vehicle-related emissions from the different production methods. The findings show organic and conventional production methods have different vehicle-related emission outputs that vary according to a reliance on either road transportation or increased farmyard machinery use. Mechanical weeding is more fuel demanding than conventional agrichemical sprayers. However, artificial fertilising is one of the highest farmyard vehicle-related emitters. The general findings show organic milk production emits higher levels of farm vehicle-related emissions that fail to be offset by reduced emissions occurring from international transport emissions. This paper does not propose to cover a comprehensive supply chain carbon footprint for milk production or attempt to determine which method of production has the largest climatic impact. However, it does demonstrate that Sweden's legal requirements for organic producers to produce more feed on-farm to reduce transport emissions have brought emissions back within Sweden's greenhouse gas inventory and raises questions around the effectiveness of policies to reduce vehicle-related emissions. Further research is needed into the effectiveness of climate change mitigation on food production policies, in particular looking at various trade-offs that affects the entire food supply chain.

  14. The Physical Relation between Disc and Coronal Emission in Quasars

    Directory of Open Access Journals (Sweden)

    Elisabeta Lusso

    2018-01-01

    Full Text Available We propose a modified version of the observed non-linear relation between the X-ray (2 keV and the ultraviolet (2,500 Å emission in quasars (i.e., LX∝LUVγ which involves the full width at half-maximum, FWHM, of the broad emission line, i.e., LX∝LUVγ^ FWHMβ^. By analyzing a sample of 550 optically selected non-jetted quasars in the redshift range of 0.36–2.23 from the Sloan Digital Sky Survey cross matched with the XMM-Newton catalog 3XMM-DR6, we found that the additional dependence of the observed LX − LUV correlation on the FWHM of the Mgii broad emission line is statistically significant. Our statistical analysis leads to a much tighter relation with respect to the one neglecting FWHM, and it does not evolve with redshift. We interpret this new relation within an accretion disc corona scenario where reconnection and magnetic loops above the accretion disc can account for the production of the primary X-ray radiation. For a broad line region size depending on the disc luminosity as Rblr∝Ldisc0.5, we find that LX∝LUV4/7 FWHM4/7, which is in very good agreement with the observed correlation.

  15. Nonadiabatic dynamics in intense continuous wave laser fields and real-time observation of the associated wavepacket bifurcation in terms of spectrogram of induced photon emission.

    Science.gov (United States)

    Mizuno, Yuta; Arasaki, Yasuki; Takatsuka, Kazuo

    2016-11-14

    We propose a theoretical principle to directly monitor the bifurcation of quantum wavepackets passing through nonadiabatic regions of a molecule that is placed in intense continuous wave (CW) laser fields. This idea makes use of the phenomenon of laser-driven photon emission from molecules that can undergo nonadiabatic transitions between ionic and covalent potential energy surfaces like Li + F - and LiF. The resultant photon emission spectra are of anomalous yet characteristic frequency and intensity, if pumped to an energy level in which the nonadiabatic region is accessible and placed in a CW laser field. The proposed method is designed to take the time-frequency spectrogram with an appropriate time-window from this photon emission to detect the time evolution of the frequency and intensity, which depends on the dynamics and location of the relevant nuclear wavepackets. This method is specifically designed for the study of dynamics in intense CW laser fields and is rather limited in scope than other techniques for femtosecond chemical dynamics in vacuum. The following characteristic features of dynamics can be mapped onto the spectrogram: (1) the period of driven vibrational motion (temporally confined vibrational states in otherwise dissociative channels, the period and other states of which dramatically vary depending on the CW driving lasers applied), (2) the existence of multiple nuclear wavepackets running individually on the field-dressed potential energy surfaces, (3) the time scale of coherent interaction between the nuclear wavepackets running on ionic and covalent electronic states after their branching (the so-called coherence time in the terminology of the theory of nonadiabatic interaction), and so on.

  16. Outsourcing CO2 Emissions

    Science.gov (United States)

    Davis, S. J.; Caldeira, K. G.

    2009-12-01

    CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with consumption of goods and services in each country. This consumption-based emissions inventory differs from the production-based inventory because of imports and exports of goods and services that, either directly or indirectly, involved CO2 emissions. Using the latest available data and reasonable assumptions regarding trans-shipment of embodied carbon through third-party countries, we developed a global consumption-based CO2 emissions inventory and have calculated associated consumption-based energy and carbon intensities. We find that, in 2004, 24% of CO2 emissions are effectively outsourced to other countries, with much of the developed world outsourcing CO2 emissions to emerging markets, principally China. Some wealthy countries, including Switzerland and Sweden, outsource over half of their consumption-based emissions, with many northern Europeans outsourcing more than three tons of emissions per person per year. The United States is both a big importer and exporter of emissions embodied in trade, outsourcing >2.6 tons of CO2 per person and at the same time as >2.0 tons of CO2 per person are outsourced to the United States. These large flows indicate that CO2 emissions embodied in trade must be taken into consideration when considering responsibility for increasing atmospheric greenhouse gas concentrations.

  17. The Of emission lines near 4650 A

    International Nuclear Information System (INIS)

    Underhill, A.B.; Gilroy, K.K.; Hill, G.M.

    1989-01-01

    Rectified, normalized, high S/N intensity tracings of nine Of stars were obtained from Reticon spectra in the 4550-4800-A region. The well-known relatively sharp Of emission lines are seen to stand on pedestals of broad weak emission somewhat like the broad emission lines from WR stars. It is suggested that cascades following dielectronic recombination may be an important process driving some lines of N III, C III, and C IV into the emission of Of stars, and that the sharp Of lines come from plasma that is stationary with respect to the star. The broad emission features show an extensive low-density wind from each star. The results imply that the detection of two, more or less equal, broad jumps in the rest spectra of galaxies at about 4640 and 4686 A is more indicative of Of stars than of WR stars. 32 refs

  18. Age-related patterns of vigorous-intensity physical activity in youth: The International Children's Accelerometry Database

    Directory of Open Access Journals (Sweden)

    Kirsten Corder

    2016-12-01

    Age-related declines in vigorous-intensity activity during youth appear relatively greater than those of moderate activity. However, due to a higher baseline, absolute moderate-intensity activity decreases more than vigorous. Overweight/obese individuals, girls, and North Americans appear especially in need of vigorous-intensity activity promotion due to low levels at 5.0–5.9 y and larger negative annual differences.

  19. Does extreme precipitation intensity depend on the emissions scenario?

    Science.gov (United States)

    Pendergrass, Angeline; Lehner, Flavio; Sanderson, Benjamin; Xu, Yangyang

    2016-04-01

    The rate of increase of global-mean precipitation per degree surface temperature increase differs for greenhouse gas and aerosol forcings, and therefore depends on the change in composition of the emissions scenario used to drive climate model simulations for the remainder of the century. We investigate whether or not this is also the case for extreme precipitation simulated by a multi-model ensemble driven by four realistic emissions scenarios. In most models, the rate of increase of maximum annual daily rainfall per degree global warming in the multi-model ensemble is statistically indistinguishable across the four scenarios, whether this extreme precipitation is calculated globally, over all land, or over extra-tropical land. These results indicate that, in most models, extreme precipitation depends on the total amount of warming and does not depend on emissions scenario, in contrast to mean precipitation.

  20. Driving forces in energy-related CO2 emissions in south and east coastal China: commonality and variations

    Science.gov (United States)

    Gao, C.; Liu, Y.; Jin, J.; Wei, T.

    2015-12-01

    East and south coastal China contributes to respectively about 30% and 8% of CO2 emissions in China and the world, and therefore play a critical role in achieving the national goal of emission reduction to mitigate the global warming. It also serves as a benchmark for the less developed regions of China, in terms of achieving the developed world's human development standard under lower per capita emissions. We analyze the driving forces of emissions in this region and their provincial characteristics by applying the Logarithmic Mean Divisia Index method. Our findings show that emissions have been doubled during the period from 2000 to 2012, along with three and two folds increase in economy and energy consumption, respectively. This suggests a persistent lock between economic growth and emissions, even in this socioeconomically advanced region in China. Provincial difference in annual emission growth reveals three distinguished low-carbon developmental stages, owning mainly to the effectiveness of energy efficiency in reducing emission growth. This may explain why previous climate policies have aimed to reduce carbon intensity. These results indicate that targeted measures on enhancing energy efficiency in the short term and de-carbonization of both the economic and energy structure in the long term can lower the emission growth more effectively and efficiently. They also suggest that factor-driven emission reduction strategies and policies are needed in the geographically and socioeconomically similar regions.

  1. Driving forces of rapid CO2 emissions growth: A case of Korea

    International Nuclear Information System (INIS)

    Kim, Yong-Gun; Yoo, Jonghyun; Oh, Wankeun

    2015-01-01

    This study aims to investigate Korea's final demand structure and its impacts on CO 2 emissions in order to reduce CO 2 emissions and develop environmental policy directions. Based on the environmentally extended input–output model, this study adopts a two-step approach: (1) to estimate the embodied emissions and their intensities for 393 sectors induced by final demand; and (2) to calculate the driving factors of emission growth between 2003 and 2011 and then evaluate the result by using Structural Decomposition Analysis (SDA). The findings of this study demonstrate that the impact of composition change in export with less embodied emission intensities tends to offset the increase in CO 2 emission by the export scale growth. The relatively low residential electricity price has resulted in the rapid growth of household electricity consumption and significantly contributed to emissions growth. The result of SDA indicates that Korea's final demand behavior yielded high carbonization over the same period. The findings suggest that Korean government should promote exports in industries with less embedded CO 2 in order to protect environments. In addition, emission information of each product and service should be provided for consumers to change their purchase patterns towards contributing to low carbon emissions as active players. -- Highlights: •We investigate Korea's final demand structure and its contribution to CO 2 emissions. •Using SDA, we evaluate the driving factors of emission growth from 2003 to 2011. •Exports play a critical role in Korea's CO 2 emissions growth. •The relatively low residential electricity price has contributed to emission growth. •Korea's final demand behavior yielded high carbonization over the same period

  2. Managing GHG emissions : performance to the end of 2003 and forecast to 2008

    International Nuclear Information System (INIS)

    2004-10-01

    This paper presents statistics of greenhouse gas (GHG) emissions for Shell Canada Ltd., one of the largest integrated oil and gas companies in Canada. Strategies for future emissions reductions were also presented. Since 1995, Shell has both set and met targets to reduce emissions in base businesses. They have increased their target reductions to a further 6 per cent by 2008. Strategies included reductions in energy consumption and improvements in energy efficiency. Challenges presented by new governmental regulations were discussed. Alternate energy sources are being considered as a means of expanding the Shell energy business portfolio. Principles and management plans guiding the emissions reduction strategy were presented, as well as details of the Shell management structure and climate change advisory panel. Figures and statistics of emissions reductions were provided in relation to changes in business activity; energy efficiency; formation gas; energy in declining fields; and fuel mix. An emissions forecast to 2010 was presented with newly adjusted goals. In 2003, overall refinery energy efficiency improved by over 4 per cent. Statistics of refinery energy intensity were presented. Exploration and production businesses achieved a reduction of 6 per cent, with energy intensity per unit of production presented. Oil sands projects achieved a GHG emissions intensity of 69 kilograms per barrel of bitumen. In addition, the voluntary GHG management plan introduced a number of offsets including tree planting programs and the purchase of voluntary GHG credits. The methodology used to calculate GHG emissions was also provided. tabs., figs

  3. Carbon emissions reduction in China's food industry

    International Nuclear Information System (INIS)

    Lin, Boqiang; Lei, Xiaojing

    2015-01-01

    In this paper, we evaluate the changes in carbon dioxide emissions from energy consumption in China's food industry from 1986 to 2010 based on the Logarithmic Mean Divisia Index (LMDI) method. The results show that energy intensity (EI) and industrial activity (IA) are the main determinants of the changes in carbon dioxide. Energy intensity (EI) contributes to decrease in emissions within 25 years while industrial activity (IA) acts in a positive way to increase the emissions level. Industry scale (IS) mostly contributes to increase in emissions except for the time interval 1996–2000. However, for both carbon intensity (CI) and energy structure (ES), they have a volatile but not significant influence on emissions in the different time intervals. To further understand the effects, we analyze the cumulative emission during the whole period 1986–2010. The results further testify that energy intensity and industrial activity are the most important factors affecting reduction and growth of carbon emissions. The results indicate that efforts to reduce emission in China's food industry should focus on the enhancement of energy efficiency, the optimization of industrial scale and the restructuring energy use. Finally, recommendations are provided for the reduction of carbon dioxide in China's food industry. - Highlights: • We analyze the energy consumption and CO 2 emissions in China's food industry. • LMDI decomposition analysis is conducted for finding out the driving forces. • Industrial activity is the main driving force of CO 2 emissions in this industry. • Energy intensity is the main factor mitigating carbon emissions in this industry. • Main advice: improving energy efficiency, optimizing industrial scale.

  4. Photoexcited emission efficiencies of zinc oxide

    Science.gov (United States)

    Foreman, John Vincent

    Optoelectronic properties of the II-VI semiconductor zinc oxide (ZnO) have been studied scientifically for almost 60 years; however, many fundamental questions remain unanswered about its two primary emission bands--the exciton-related luminescence in the ultraviolet and the defect-related emission band centered in the green portion of the visible spectrum. The work in this dissertation was motivated by the surprising optical properties of a ZnO nanowire sample grown by the group of Prof. Jie Liu, Department of Chemistry, Duke University. We found that this nanowire sample exhibited defect-related green/white emission of unprecedented intensity relative to near-band-edge luminescence. The experimental work comprising this dissertation was designed to explain the optical properties of this ZnO nanowire sample. Understanding the physics underlying such exceptional intensity of green emission addresses many of the open questions of ZnO research and assesses the possibility of using ZnO nanostructures as an ultraviolet-excited, broadband visible phosphor. The goal of this dissertation is to provide insight into what factors influence the radiative and nonradiative recombination efficiencies of ZnO by characterizing simultaneously the optical properties of the near-band-edge ultraviolet and the defect-related green emission bands. Specifically, we seek to understand the mechanisms of ultraviolet and green emission, the mechanism of energy transfer between them, and the evolution of their emission efficiencies with parameters such as excitation density and sample temperature. These fundamental but unanswered questions of ZnO emission are addressed here by using a novel combination of ultrafast spectroscopic techniques in conjunction with a systematic set of ZnO samples. Through this systematic investigation, ZnO may be realistically assessed as a potential green/white light phosphor. Photoluminescence techniques are used to characterize the thermal quenching behavior of

  5. Avoided emissions of a fuel-efficient biomass cookstove dwarf embodied emissions

    Directory of Open Access Journals (Sweden)

    D.L. Wilson

    2016-06-01

    Full Text Available Three billion people cook their food on biomass-fueled fires. This practice contributes to the anthropogenic radiative forcing. Fuel-efficient biomass cookstoves have the potential to reduce CO2-equivalent emissions from cooking, however, cookstoves made from modern materials and distributed through energy-intensive supply chains have higher embodied CO2-equivalent than traditional cookstoves. No studies exist examining whether lifetime emissions savings from fuel-efficient biomass cookstoves offset embodied emissions, and if so, by what margin. This paper is a complete life cycle inventory of “The Berkeley–Darfur Stove,” disseminated in Sudan by the non-profit Potential Energy. We estimate the embodied CO2-equivalent in the cookstove associated with materials, manufacturing, transportation, and end-of-life is 17 kg of CO2-equivalent. Assuming a mix of 55% non-renewable biomass and 45% renewable biomass, five years of service, and a conservative 35% reduction in fuel use relative to a three-stone fire, the cookstove will offset 7.5 tonnes of CO2-equivalent. A one-to-one replacement of a three-stone fire with the cookstove will save roughly 440 times more CO2-equivalent than it “costs” to create and distribute. Over its five-year life, we estimate the total use-phase emissions of the cookstove to be 13.5 tonnes CO2-equivalent, and the use-phase accounts for 99.9% of cookstove life cycle emissions. The dominance of use-phase emissions illuminate two important insights: (1 without a rigorous program to monitor use-phase emissions, an accurate estimate of life cycle emissions from biomass cookstoves is not possible, and (2 improving a cookstove's avoided emissions relies almost exclusively on reducing use-phase emissions even if use-phase reductions come at the cost of substantially increased non-use-phase emissions.

  6. Eddy covariance measurements and parameterisation of traffic related particle emissions in an urban environment

    Directory of Open Access Journals (Sweden)

    E. M. Mårtensson

    2006-01-01

    Full Text Available Urban aerosol sources are important due to the health effects of particles and their potential impact on climate. Our aim has been to quantify and parameterise the urban aerosol source number flux F (particles m−2 s−1, in order to help improve how this source is represented in air quality and climate models. We applied an aerosol eddy covariance flux system 118.0 m above the city of Stockholm. This allowed us to measure the aerosol number flux for particles with diameters >11 nm. Upward source fluxes dominated completely over deposition fluxes in the collected dataset. Therefore, the measured fluxes were regarded as a good approximation of the aerosol surface sources. Upward fluxes were parameterised using a traffic activity (TA database, which is based on traffic intensity measurements. The footprint (area on the surface from which sources and sinks affect flux measurements, located at one point in space of the eddy system covered road and building construction areas, forests and residential areas, as well as roads with high traffic density and smaller streets. We found pronounced diurnal cycles in the particle flux data, which were well correlated with the diurnal cycles in traffic activities, strongly supporting the conclusion that the major part of the aerosol fluxes was due to traffic emissions. The emission factor for the fleet mix in the measurement area EFfm=1.4±0.1×1014 veh−1 km−1 was deduced. This agrees fairly well with other studies, although this study has an advantage of representing the actual effective emission from a mixed vehicle fleet. Emission from other sources, not traffic related, account for a F0=15±18×106 m−2 s−1. The urban aerosol source flux can then be written as F=EFfmTA+F0. In a second attempt to find a parameterisation, the friction velocity U* normalised with the average friction velocity has been included, F=EF . This parameterisation results in a somewhat reduced emission factor, 1.3×1014 veh

  7. Pulsar Emission: Is It All Relative?

    Science.gov (United States)

    Harding, Alice K.

    2004-01-01

    Thirty-five years after the discovery of pulsars, we still do not understand the fundamentals of their pulsed emission at any wavelength. The fact that even detailed pulse profiles cannot identlfy the origin of the emission in a magnetosphere that extends fiom the neutron star surface to plasma moving at relativistic speeds near the light cylinder compounds the problem. I will discuss the role of special and general relativistic effects on pulsar emission, fiom inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics.

  8. Energy efficiency and the influence of gas burners to the energy related carbon dioxide emissions of electric arc furnaces in steel industry

    International Nuclear Information System (INIS)

    Kirschen, Marcus; Risonarta, Victor; Pfeifer, Herbert

    2009-01-01

    Determining the complete energy balance of an electric arc furnace (EAF) provides an appropriate method to examine energy efficiency and identify energy saving potentials. However, the EAF energy balance is complex due to the combined input of electrical energy and chemical energy resulting from natural gas (NG) combustion and oxidation reactions in the steel melt. In addition, furnace off-gas measurements and slag analysis are necessary to reliably determine energy sinks. In this paper 70 energy balances and energy efficiencies from multiple EAFs are presented, including data calculated from plant measurements and compiled from the literature. Potential errors that can be incorporated in these calculations are also highlighted. The total energy requirement of these modern EAFs analysed ranged from 510 to 880 kWh/t, with energy efficiency values (η = ΔH Steel /E Total ) of between 40% and 75%. Furthermore, the focus was placed on the total energy related CO 2 emissions of EAF processes comprising NG combustion and electrical energy input. By assessing multiple EAF energy balances, a significant correlation between the total energy requirement and energy related specific CO 2 emissions was not evident. Whilst the specific consumption of NG in the EAF only had a minor impact on the EAF energy efficiency, it decreased the specific electrical energy requirement and increased EAF productivity where transformer power was restricted. The analysis also demonstrated that complementing and substituting electrical energy with NG was beneficial in reducing the total energy related CO 2 emissions when a certain level of substitution efficiency was achieved. Therefore, the appropriate use of NG burners in modern EAFs can result in an increased EAF energy intensity, whilst the total energy related CO 2 emissions remain constant or are even decreased.

  9. Anisotropic emission of the X-ray K-emission band of nitrogen in hexagonal boron nitride

    International Nuclear Information System (INIS)

    Tegeler, E.; Kosuch, N.; Wiech, G.; Faessler, A.

    1977-05-01

    The intensity distribution of the N K-emission band of hexagonal boron nitride samples with partially orientated crystallites was found to be strongly dependent upon the take-off angle of the emitted radiation. The observed emission bands can be separated unambiguously into a sigma- and a π-subband. On the basis of the directional characteristic of radiating dipoles within the layers (sigma-bondings) and perpendicular to the layers (π-bonding) the angular dependence of the intensity of the subbands is quantitatively explained. In addition the degree of orientation of the crystallites on the sample can be determined. The intensity distributions of the emission bands to be expected for single crystals and for samples without any texture are determined; in the latter case the results are found to be in good agreement with experimental results. (orig.) [de

  10. Reduction of emission level in approach signals of greater mouse-eared bats (Myotis myotis): No evidence for a closed loop control system for intensity compensation.

    Science.gov (United States)

    Budenz, Tobias; Denzinger, Annette; Schnitzler, Hans-Ulrich

    2018-01-01

    Bats lower the emission SPL when approaching a target. The SPL reduction has been explained by intensity compensation which implies that bats adjust the emission SPL to perceive the retuning echoes at the same level. For a better understanding of this control mechanism we recorded the echolocation signals of four Myotis myotis with an onboard microphone when foraging in the passive mode for rustling mealworms offered in two feeding dishes with different target strength, and determined the reduction rate for the emission SPL and the increase rate for the SPL of the returning echoes. When approaching the dish with higher target strength bats started the reduction of the emission SPL at a larger reaction distance (1.05 ± 0.21 m) and approached it with a lower reduction rate of 7.2 dB/halving of distance (hd), thus producing a change of echo rate at the ears of + 4 dB/hd. At the weaker target reaction distance was shorter (0.71 ± 0.24 m) and the reduction rate (9.1 dB/hd) was higher, producing a change of echo rate of-1.2 dB/hd. Independent of dish type, bats lowered the emission SPL by about 26 dB on average. In one bat where the echo SPL from both targets could be measured, the reduction of emission SPL was triggered when the echo SPL surpassed a similar threshold value around 41-42 dB. Echo SPL was not adjusted at a constant value indicating that Myotis myotis and most likely all other bats do not use a closed loop system for intensity compensation when approaching a target of interest. We propose that bats lower the emission SPL to adjust the SPL of the perceived pulse-echo-pairs to the optimal auditory range for the processing of range information and hypothesize that bats use flow field information not only to control the reduction of the approach speed to the target but also to control the reduction of emission SPL.

  11. Commentary Relative to the Emission Spectrum of the Solar Atmosphere: Further Evidence for a Distinct Solar Surface

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The chromosphere and corona of the Sun represent tenuous regions which are characterized by numerous optically thin emission lines in the ultraviolet and X-ray bands. When observed from the center of the solar disk outward, these emission lines experience modest brightening as the limb is approached. The intensity of many ultraviolet and X-ray emission lines nearly doubles when observation is extended just beyond the edge of the disk. These findings indicate that the solar body is opaque in this frequency range and that an approximately two fold greater region of the solar atmosphere is being sampled outside the limb. These observations provide strong support for the presence of a distinct solar surface. Therefore, the behavior of the emission lines in this frequency range constitutes the twenty fifth line of evidence that the Sun is comprised of condensed matter

  12. Potential energy savings and CO2 emissions reduction of China's cement industry

    International Nuclear Information System (INIS)

    Ke, Jing; Zheng, Nina; Fridley, David; Price, Lynn; Zhou, Nan

    2012-01-01

    This study analyzes current energy and carbon dioxide (CO 2 ) emission trends in China's cement industry as the basis for modeling different levels of cement production and rates of efficiency improvement and carbon reduction in 2011–2030. Three cement output projections are developed based on analyses of historical production and physical and macroeconomic drivers. For each of these three production projections, energy savings and CO 2 emission reduction potentials are estimated in a best practice scenario and two continuous improvement scenarios relative to a frozen scenario. The results reveal the potential for cumulative final energy savings of 27.1 to 37.5 exajoules and energy-related direct emission reductions of 3.2 to 4.4 gigatonnes in 2011–2030 under the best practice scenarios. The continuous improvement scenarios produce cumulative final energy savings of 6.0 to 18.9 exajoules and reduce CO 2 emissions by 1.0 to 2.4 gigatonnes. This analysis highlights that increasing energy efficiency is the most important policy measure for reducing the cement industry's energy and emissions intensity, given the current state of the industry and the unlikelihood of significant carbon capture and storage before 2030. In addition, policies to reduce total cement production offer the most direct way of reducing total energy consumption and CO 2 emissions. - Highlights: ► This study models output and efficiency improvements in Chinese cement industry from 2011–2030. ► Energy savings and CO 2 emission reductions estimated for 3 scenarios relative to frozen scenario. ► Results reveal cumulative final energy savings potential of 27.1–37.5 EJ and 3.2–4.4 Gt CO 2 reductions. ► Increasing efficiency is the most important policy for reducing cement energy and emissions intensity.

  13. Kinetics exoelectron emission phenomena confirmed mechanism of vacancy diffusion through dislocation

    International Nuclear Information System (INIS)

    Dus-Sitek, M.; Szymura, S.; Pisarek, J.

    1998-01-01

    On the basis on the data obtained during experiments regarding the kinetics of exoelectron emission phenomenon in deformed metal, a hypothesis concerning the dislocation mechanism of vacancies transport was confirmed. The nature and character of the exoelectron emission phenomenon accompanying a plastic deformation of thermally or mechanically prepared metals showed distinct relations between the exoelectron emission phenomenon and the defects of a crystalline structure produced during processing. On the basic of the result obtained for the Ni and stainless steels has been concluded that exoelectron emission intensity accompanying an uniaxial deformation appears at the yield strain ε 0 on the stress-strain curve, and that the sharp 'destruction' emission peak is associated with the sample failure strain ε f

  14. Exploring driving factors of energy-related CO2 emissions in Chinese provinces: A case of Liaoning

    International Nuclear Information System (INIS)

    Geng, Yong; Zhao, Hongyan; Liu, Zhu; Xue, Bing; Fujita, Tsuyoshi; Xi, Fengming

    2013-01-01

    In order to uncover driving forces for provincial CO 2 emission in China, a case study was undertaken to shed light on the CO 2 emission growth in such a region. Liaoning province was selected due to its typical features as one industrial province. The environmental input–output analysis and structure decomposing analysis have been conducted in order to provide a holistic picture on Liaoning's CO 2 emissions during 1997–2007. Research outcomes indicate that rapid increase of per capita consumption activities is the main driver for Liaoning to have a significant CO 2 emission growth, followed by consumption structure, production structure and population size. Energy intensity and energy structure partly offset the CO 2 emission increase. Electricity power and heat supply and construction sectors caused the most CO 2 emission, indicating that more specific mitigation policies for these two sectors should be prepared. From final demand point of view, it is clear that trade plays a leading role in regional CO 2 emission, followed by fixed capital investment and urban household consumption which become increasingly important over time. Consequently, in order to realize low carbon development, local governments should consider all these factors so that appropriate mitigation policies can be raised by considering the local realities. - Highlights: • Driving forces for Liaoning's CO 2 emission have been uncovered through the use of IO-SDA model. • Construction and electricity power/heat supply sectors have the highest embodied emissions. • Trade plays a key role on regional CO 2 emission in Chinese old industrial base. • Fixed capital investment and urban households generated more CO 2 emissions

  15. 'J-KAREN' - high intensity, high contrast laser

    International Nuclear Information System (INIS)

    Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Okada, Hajime; Sasao, Hajime; Sagisaka, Akito; Ochi, Yoshihiro; Tanaka, Momoko; Kondo, Kiminori; Tateno, Ryo; Sugiyama, Akira; Daido, Hiroyuki; Koike, Masato; Kawanishi, Syunichi; Shimomura, Takuya; Tanoue, Manabu; Wakai, Daisuke; Kondo, Shuji; Kanazawa, Shuhei

    2010-01-01

    We report on the high intensity, high contrast double chirped-pulse amplification (CPA) Ti:sapphire laser system (named J-KAREN). By use of an optical parametric chirped-pulse amplification (OPCPA) preamplifier that is seeded by a cleaned high-energy pulse, a background amplified spontaneous emission (ASE) level of 10 -10 relative to the peak main femtosecond pulse on the picosecond timescales demonstrated with an output energy of 1.7 J and a pulse duration of 30 fs, corresponding to a peak power of 60TW at a 10 Hz repetition rate. This system which uses a cryogenically-cooled Ti:sapphire final amplifier generates focused peak intensity in excess of 10 20 W/cm 2 at a 10 Hz repetition rate. (author)

  16. The relative-intensity method of X-ray fluorescence analysis and its application to soils and rocks

    International Nuclear Information System (INIS)

    Childs, C.W.; Furkert, R.J.

    1974-01-01

    The relative-intensity X-ray fluorescence method of analysis of rock and soil samples has been investigated and compared with the net-intensity method. Strong, coherently scattered radiation originating from the X-ray tube is shown to be preferable to background radiation as an internal standard, and scattered radiation measured at one wavelength can usefully be applied in the determination of several elements. When the concentrations of an element in two soil samples of different composition (for example concretions and the soil adjacent to them) are compared, the ratio of the relative intensities may be different from the ratio of net intensities by a factor of about two. The concentrations of manganese in thirteen standard rock samples determined by the relative-intensity method are within or very close to the ranges of values reported previously

  17. Size dependent emission stimulation in ZnO nanosheets

    International Nuclear Information System (INIS)

    Torchynska, T.V.; El Filali, B.

    2014-01-01

    Photoluminescence (PL), X ray diffraction (XRD) and Raman scattering have been studied in crystalline ZnO nanosheets (NSs) of different sizes, estimated by scanning electronic microscopy (SEM). ZnO NSs with the size from the range of 60–600 nm were created by the electrochemical (anodization) method and followed thermal annealing at 400 °C for 2 h in ambient air. XRD study confirms the wurtzite structure of ZnO NSs and has revealed that the lattice parameters increase monotonically with decreasing NS sizes. Simultaneously the intensity of a set of Raman peaks increases and Raman peaks shift into the low energy range. The surface phonon has been detected in smallest size ZnO NSs. Two types of PL bands deal with a set of phonon replicas of free excitons and the defect related emission have been detected in ZnO NSs. The intensity enhancement of exciton- and defect-related PL bands with decreasing ZnO NS sizes has been detected. The intensity stimulation of exciton-related PL bands is attributed to the realization of the week confinement and the exciton-light coupling with the formation of polariton in small size ZnO NSs of 67–170 nm. The intensity rising of defect-related PL bands is attributed to the concentration enlargement of surface defects when the surface to volume ration increases at decreasing ZnO NS sizes. Numerical simulations of radiative lifetimes and exciton radiative recombination rates in ZnO NSs for different emission wavelengths have been done using the exciton-light coupling model. Then the experimental and numerically simulated PL results have been compared and discussed. - Highlights: • Optical and structural investigations of the ZnO nanosheets with the sizes 60–600 nm. • The enlargement of interplanar distances in the wurtzite ZnO crystal lattice is detected. • The change of optic phonon energy and surface phonon appearing are reveled. • ZnO emission stimulation at the week confinement and electron-light coupling with the

  18. Variability of CO2 emissions during the rearing cycle of a semi-intensive shrimp farm in a mangrove coastal zone (New Caledonia).

    Science.gov (United States)

    Aimé, Joanne; Allenbach, Michel; Bourgeois, Carine; Léopold, Audrey; Jacotot, Adrien; Vinh, Truong Van; Nho, Nguyen Thanh; Patrona, Luc Della; Marchand, Cyril

    2018-04-01

    In New Caledonia, shrimp ponds are built not on cleared mangroves but on salt flats behind the mangroves. The objectives of this study were to determine the variability of CO 2 fluxes from a semi-intensive shrimp pond during active and non-active periods of the farm and to determine the carbon dynamics from the upstream tidal creek to the downstream creek, which receives the farm's effluents. CO 2 emissions from the active pond were estimated at 11.1 ± 5.26 mmol CO 2  m -2  d -1 . By modifying the hydrodynamics of the creeks, farm practices also influenced CO 2 emissions from both the upstream and downstream creeks. After tillage, all the organic carbon deposited at the pond bottom during the active period was mineralized, resulting in CO 2 emissions to the atmosphere estimated at 7.9 TCO 2  ha -1 . Therefore, shrimp farming is an anthropogenic source of CO 2 to the atmosphere, but suitable and optimized rearing practices limit these emissions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. White emission via electroplex emission from two blue materials.

    Science.gov (United States)

    Li, Junming; Song, Dandan; Zhao, Suling; Zhang, Fujun; Xu, Zheng; Song, Jinglu; Lu, Lifang; Liu, Xiaodong; Wang, Yongsheng

    2010-03-01

    Influences of electric fields on the emission from organic light-emitting diodes (OLEDs) based on poly (N-vinylcarbazole) (PVK); 2, 9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline (BCP); and tris (8-hydroxyquinoline) aluminum (Alq3) were studied. There are three emission peaks at 420 nm, 520 nm, and 620 nm of the device ITO/PEDOT: PSS/PVK/BCP/LiF/Al under different driving voltages. The emissions at 420 nm and 520 nm should be from the exciton emission of PVK and Alq3, respectively. The last emission at 620 nm could be attributed to electroplex emission at the interface between the PVK and BCP layers. A high intensity white emission via electroplex formation was obtained with Commission International d'Eclairage (CIE) coordinates (0.33, 0.34) at 15 V, which is very close to the equienergy white point (0.33, 0.33).

  20. Line emissions from sonoluminescence in aqueous solutions of halide salts without noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jinfu, E-mail: liang.shi2007@163.com [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China); School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001 (China); Chen, Weizhong, E-mail: wzchen@nju.edu.cn [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China); Zhou, Chao; Cui, Weicheng; Chen, Zhan [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China)

    2015-02-20

    Line emissions of trivalent terbium (Tb{sup 3+}) ion were observed from single-bubble sonoluminescence (SL) in an aqueous solution of terbium chloride (TbCl{sub 3}) that contained no noble gas. In addition, sodium (Na) lines were observed in multi-bubble SL in aqueous solutions of various halide salts that contained no noble gas. These observations show that the halide ions, such as Cl{sup −}, Br{sup −}, and I{sup −}, help for line emissions as the noble gases. The intensity of a line emission depends on both the chemical species produced by cavitation bubbles and the temperature of SL bubble that responds to the driving ultrasound pressure. With the increase of driving pressure, some line emissions attached to the continuous spectrum may become increasingly clear, while other line emissions gradually become indistinct. - Highlights: • Line emissions of Tb(III) ions were observed without the presence of noble gases. • The halide ions help to generate a line emission during sonoluminescence. • The intensity of a line emission mainly depends on the bubble's temperature. • The definition of a line emission is related to the temperature of caviation bubble and the kind of host liquid.

  1. Carbon tariffs on Chinese exports: Emissions reduction, threat, or farce?

    International Nuclear Information System (INIS)

    Hübler, Michael

    2012-01-01

    (1) We estimate CO 2 implicitly exported via commodities relative to a region's total emissions: We find −15% for the industrialized, 12% for the developing region, and 24% for China. (2) We analyze a Contraction and Convergence climate regime in a CGE model including international capital mobility and technology diffusion: When China does not participate in the regime and instead a carbon tariff is imposed on its exports, it will likely be worse off than when participating. This result does not hold for the developing region in general. Meanwhile, the effect on emissions appears small. - Highlights: ► Carbon intensities and contents of trade by commodity and region using GTAP 7. ► Net carbon exports: industrialized region −15%, developing region 12%, China 24%. ► CGE analysis of carbon tariffs based on our carbon intensities. ► The tariffs make China worse off than climate policy and are ambiguous for the developing region. ► They have a small impact on reducing global emissions.

  2. Understanding industrial energy use: Physical energy intensity changes in Indian manufacturing sector

    International Nuclear Information System (INIS)

    Sudhakara Reddy, B.; Kumar Ray, Binay

    2011-01-01

    This study develops and examines physical energy intensity indicators in five industrial sub-sectors-iron and steel, aluminum, textiles, paper, and cement-and investigates mitigation options for energy related CO 2 emissions (during 1991-2005). Decomposition analysis has been employed to separate the structural effect (share of different products in the sector) from pure intensity effect (efficiency increase through technical improvement) for each industry. The results show that the combined effect (considering both structural and intensity effects together) on both iron and steel and paper and pulp industries is negative while it is positive for aluminum and textiles. The intensity effect for all the industries, barring textiles, is negative showing improvement in energy efficiency; iron and steel in particular, has seen a decrease of 134 PJ in energy consumption owing to improvements in efficiency. However, energy intensity in textiles has risen by 47 PJ due to increased mechanization. Structural effect is positive in aluminum and iron and steel industries indicating a movement towards higher energy-intensive products. In the case of aluminum, positive structural effect dominates over negative intensive effect whereas negative intensive effect dominates iron and steel industry. The paper helps in designing policies for improving productivity and reduce energy consumption in India's manufacturing sector. - Highlights: → The study develops physical energy intensity indicators in industrial sub-sectors of India. → It identifies technological and other options for reduction in energy consumption. → The study quantifies savings in energy as well as CO 2 emissions. → The indicators are useful in examining structural changes.

  3. Two years monitoring of soil N_{2}O emissions on durum wheat in a Mediterranean area: the effect of tillage intensity and N-fertilizer rate.

    Science.gov (United States)

    Volpi, Iride; Bosco, Simona; Triana, Federico; Di Nasso, Nicoletta Nassi o.; Laville, Patricia; Virgili, Giorgio; Bonari, Enrico

    2016-04-01

    Evaluating the magnitude and the key factors affecting N2O emissions from agriculture has a scientific and practical relevance, in fact emissions from agricultural and natural soils account for 56-70% of all global N2O sources (Syakila and Kroeze, 2011). Moreover, the necessity to increase the food production rate minimizing greenhouse gas emissions require a deeper understanding of the effect of the agricultural practices on direct soil emissions. Therefore, the aim of this work is to assess the effect of tillage intensity and nitrogen rate on soil N2O emissions on durum wheat. A two years monitoring campaign was carried out using a high-sensibility transportable instrument developed within the LIFE+ "Improved flux Prototypes for N2O emission from Agriculture" IPNOA project (Bosco et al., 2015; Laville et al., 2015). The project aims at improving the measurement technique of N2O flux directly in field using the flow-through non-steady state chamber technique. The monitoring campaign on durum wheat lasted for two growing seasons and two fallow periods (2013-14 and 2014-15). Treatment on the main plot was tillage intensity with two levels, ploughing and minimum tillage, and three different nitrogen rates were distributed to the subplots (N0: 0 kg ha-1, N1: 110 kg ha-1, N2: 170 kg ha-1). Ancillary measurements concerned meteorological data, soil temperature and moisture, NO3-, NH4+ soil concentration. Main results of the two years highlighted N rate as the main driver for both N2O daily flux and cumulative emissions during the growing season, while in the fallow period treatments did not affect the emission magnitude. Tillage intensity was not a key factor for N2O emissions. N2O emissions were significantly different in the two years. In particular, cumulative emissions of 2013-14 were about five times higher than in 2014-15, respectively on average 2885±260 g N-N2O ha-1 and 534±53 g N-N2O ha-1 for a similar monitoring period of about 300 days. Differences could be

  4. Identification of emission sources of umbral flashes using phase congruency

    International Nuclear Information System (INIS)

    Feng Song; Yang Yun-Fei; Ji Kai-Fan; Yu Lan

    2014-01-01

    The emission sources of umbral flashes (UFs) are believed to be closely related to running umbral and penumbral waves, and are concluded to be associated with umbral dots in the solar photosphere. Accurate identification of emission sources of UFs is crucial for investigating these physical phenomena and their inherent relationships. A relatively novel model of shape perception, namely phase congruency (PC), uses phase information in the Fourier domain to identify the geometrical shape of the region of interest in different intensity levels, rather than intensity or gradient. Previous studies indicate that the model is suitable for identifying features with low contrast and low luminance. In the present paper, we applied the PC model to identify the emission sources of UFs and to locate their positions. For illustrating the high performance of our proposed method, two time sequences of Ca II H images derived from the Hinode/SOT on 2010 August 10 and 2013 August 20 were used. Furthermore, we also compared these results with the analysis results that are identified by the traditional/classical identification methods, including the gray-scale adjusted technique and the running difference technique. The result of our analysis demonstrates that our proposed method is more accurate and effective than the traditional identification methods when applied to identifying the emission sources of UFs and to locating their positions. (research papers)

  5. Electron cyclotron emission measurements at the stellarator TJ-K

    Energy Technology Data Exchange (ETDEWEB)

    Sichardt, Gabriel; Ramisch, Mirko [Institut fuer Grenzflaechenverfahrenstechnik und Plasmatechnologie, Universitaet Stuttgart (Germany); Koehn, Alf [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    2016-07-01

    Electron temperature (T{sub e}) measurements in the magnetised plasmas of the stellarator TJ-K are currently performed by means of Langmuir probes. The use of these probes is restricted to relatively low temperatures and the measurement of temperature profiles requires the acquisition of the local current-voltage characteristics which limits strongly the sampling rate. As an alternative, T{sub e} can be measured using the electron cyclotron emission (ECE) that is generated by the gyration of electrons in magnetised plasmas. Magnetic field gradients in the plasma lead to a spatial distribution of emission frequencies and thus the measured intensity at a given frequency can be related to its point of origin. The T{sub e} dependence of the intensity then leads to a temperature profile along the line of sight for Maxwellian velocity distributions. A diagnostic system for T{sub e} measurements using ECE is currently being set up at TJ-K. When non-thermal electrons are present the emission spectrum changes dramatically. Therefore, the ECE can also be used to investigate the contribution of fast electrons to previously observed toroidal net currents in TJ-K. Simulations are used to examine the role of electron drift orbits in generating these currents.

  6. Energy consumption and related CO2 emissions in five Latin American countries: Changes from 1990 to 2006 and perspectives

    International Nuclear Information System (INIS)

    Sheinbaum, Claudia; Ruiz, Belizza J.; Ozawa, Leticia

    2011-01-01

    This study examines the primary energy consumption and energy-related CO 2 emissions in Argentina, Brazil, Colombia, Mexico and Venezuela during the period 1990-2006. It also reviews important reforms in the energy sector of these countries as well as the promotion of energy efficiency (EE) and renewable energy sources (RES). Using a decomposition analysis, results indicate that even though significant reductions in energy intensity have been achieved in Colombia, Mexico and in a lesser extent in Brazil and Argentina, the reduction of CO 2 emissions in these countries has not been significant due to an increased dependence on fossil fuels in their energy mix. Although the Latin American region has an important experience in the promotion of EE programs and renewable sources, the energy agenda of the examined countries focused mostly on the energy reforms during the analyzed period. The policy review suggests that further governmental support and strong public policies towards a more sustainable energy path are required to encourage a low carbon future in the region.

  7. Using LMDI to Analyze the Decoupling of Carbon Dioxide Emissions from China’s Heavy Industry

    Directory of Open Access Journals (Sweden)

    Lin Boqiang

    2017-07-01

    Full Text Available China is facing huge pressure on CO2 emissions reduction. The heavy industry accounts for over 60% of China’s total energy consumption, and thus leads to a large number of energy-related carbon emissions. This paper adopts the Log Mean Divisia Index (LMDI method based on the extended Kaya identity to explore the influencing factors of CO2 emissions from China’s heavy industry; we calculate the trend of decoupling by presenting a theoretical framework for decoupling. The results show that labor productivity, energy intensity, and industry scale are the main factors affecting CO2 emissions in the heavy industry. The improvement of labor productivity is the main cause of the increase in CO2 emissions, while the decline in energy intensity leads to CO2 emissions reduction, and the industry scale has different effects in different periods. Results from the decoupling analysis show that efforts made on carbon emission reduction, to a certain extent, achieved the desired outcome but still need to be strengthened.

  8. Decoupling of CO2-emissions from Energy Intensive Industries

    DEFF Research Database (Denmark)

    Andersen, M. S.; Enevoldsen, M. K.; Ryelund, A. V.

    and taxes on the trends in CO2 emissions on the basis of a novel method that relies on sector-specific energy prices. Whereas previous research has been unable to account for the implications of complex tax exemptions and price discounts, the present report bridges the gap and provides innovative estimates....... This finding suggests that price increases, whether induced by taxes or market fluctuations, can be effective in curbing CO2 emissions when they accurately reflect the CO2 burden. It also suggests that CO2-specific taxes on fuels are more effective than end-user electricity taxes which do not reflect actual...

  9. Accessing the public MIMIC-II intensive care relational database for clinical research.

    Science.gov (United States)

    Scott, Daniel J; Lee, Joon; Silva, Ikaro; Park, Shinhyuk; Moody, George B; Celi, Leo A; Mark, Roger G

    2013-01-10

    The Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II) database is a free, public resource for intensive care research. The database was officially released in 2006, and has attracted a growing number of researchers in academia and industry. We present the two major software tools that facilitate accessing the relational database: the web-based QueryBuilder and a downloadable virtual machine (VM) image. QueryBuilder and the MIMIC-II VM have been developed successfully and are freely available to MIMIC-II users. Simple example SQL queries and the resulting data are presented. Clinical studies pertaining to acute kidney injury and prediction of fluid requirements in the intensive care unit are shown as typical examples of research performed with MIMIC-II. In addition, MIMIC-II has also provided data for annual PhysioNet/Computing in Cardiology Challenges, including the 2012 Challenge "Predicting mortality of ICU Patients". QueryBuilder is a web-based tool that provides easy access to MIMIC-II. For more computationally intensive queries, one can locally install a complete copy of MIMIC-II in a VM. Both publicly available tools provide the MIMIC-II research community with convenient querying interfaces and complement the value of the MIMIC-II relational database.

  10. Transfer standard for the spectral density of relative intensity noise of optical fiber sources near 1550 nm

    International Nuclear Information System (INIS)

    Obarski, Gregory E.; Splett, Jolene D.

    2001-01-01

    We have developed a transfer standard for the spectral density of relative intensity noise (RIN) of optical fiber sources near 1550 nm. Amplified spontaneous emission (ASE) from an erbium-doped fiber amplifier (EDFA), when it is optically filtered over a narrow band (<5 nm), yields a stable RIN spectrum that is practically constant to several tens of gigahertz. The RIN is calculated from the power spectral density as measured with a calibrated optical spectrum analyzer. For a typical device it is -110 dB/Hz, with uncertainty ≤0.12 dB/Hz. The invariance of the RIN under attenuation yields a considerable dynamic range with respect to rf noise levels. Results are compared with those from a second method that uses a distributed-feedback laser (DFB) that has a Poisson-limited RIN. Application of each method to the same RIN measurement system yields frequency-dependent calibration functions that, when they are averaged, differ by ≤0.2 dB. [copyright] 2001 Optical Society of America

  11. Effects of alcohols on fluorescence intensity and color of a discharged-obelin-based biomarker.

    Science.gov (United States)

    Alieva, Roza R; Belogurova, Nadezhda V; Petrova, Alena S; Kudryasheva, Nadezhda S

    2014-05-01

    Photoproteins are responsible for bioluminescence of marine coelenterates; bioluminescent and fluorescent biomarkers based on photoproteins are useful for monitoring of calcium-dependent processes in medical investigations. Here, we present the analysis of intensity and color of light-induced fluorescence of Ca(2+)-discharged photoprotein obelin in the presence of alcohols (ethanol and glycerol). Complex obelin spectra obtained at different concentrations of the alcohols at 350- and 280-nm excitation (corresponding to polypeptide-bound coelenteramide and tryptophan absorption regions) were deconvoluted into Gaussian components; fluorescent intensity and contributions of the components to experimental spectra were analyzed. Five Gaussian components were found in different spectral regions-ultraviolet (tryptophan emission), blue-green (coelenteramide emission), and red (hypothetical indole-coelenteramide exciplex emission). Inhibition coefficients and contributions of the components to experimental fluorescent spectra showed that presence of alcohols increased contributions of ultraviolet, violet, and red components, but decreased contributions of components in the blue-green region. The effects were related to (1) changes of proton transfer efficiency in fluorescent S*1 state of coelenteramide in the obelin active center and (2) formation of indole-coelenteramide exciplex at 280-nm photoexcitation. The data show that variation of fluorescence color and intensity in the presence of alcohols and dependence of emission spectra on excitation wavelength should be considered while applying the discharged obelin as a fluorescence biomarker.

  12. Structural origins of broadband emission from layered Pb-Br hybrid perovskites.

    Science.gov (United States)

    Smith, Matthew D; Jaffe, Adam; Dohner, Emma R; Lindenberg, Aaron M; Karunadasa, Hemamala I

    2017-06-01

    Through structural and optical studies of a series of two-dimensional hybrid perovskites, we show that broadband emission upon near-ultraviolet excitation is common to (001) lead-bromide perovskites. Importantly, we find that the relative intensity of the broad emission correlates with increasing out-of-plane distortion of the Pb-(μ-Br)-Pb angle in the inorganic sheets. Temperature- and power-dependent photoluminescence data obtained on a representative (001) perovskite support an intrinsic origin to the broad emission from the bulk material, where photogenerated carriers cause excited-state lattice distortions mediated through electron-lattice coupling. In contrast, most inorganic phosphors contain extrinsic emissive dopants or emissive surface sites. The design rules established here could allow us to systematically optimize white-light emission from layered hybrid perovskites by fine-tuning the bulk crystal structure.

  13. Product-related emissions of Mercury to Air in the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Kindbom, Karin; Munthe, John

    2007-06-15

    Mercury emissions to air from the use of mercury in products have been estimated for the EU for the year 2005. The consumption of mercury in the EU in 2005 was amounted to 125 tonnes in technical products. Estimates of emissions of mercury from dental amalgam were derived from information on cremations in European countries and average contents of amalgam fillings. Annual emissions of mercury to air from product use in EU27 have been estimated to be in the range 10-18 tonnes (best estimate 14 tonnes) from technical products and to 2-5 tonnes from cremation, in total 12-23 tonnes. Of the mercury consumed in technical products, 11% was calculated to be emitted to air, 31% to end up in safe storage while 58% would still be accumulated in society or disposed of in landfills. From the share still accumulated in society, as well as from the already land filled amounts, further emissions of mercury to air may occur in the longer term. Emissions from technical products are calculated based on the consumption of mercury in 2005. Emissions occurring in the same year but caused by consumption in the previous 10 years were derived using the consumption in 2005 and assuming the same patterns of distribution and emissions. The latest available estimates of total anthropogenic emissions of mercury in EU27 refer to the year 2000 and are in the order of 140-190 tonnes, probably to have declined to 2005. Based on these figures the contribution to anthropogenic mercury emissions to air in EU from product use and cremation in 2005 is at least 6-16%. In a previous report product related air emissions of 72 tonnes were estimated for Europe in the mid 1990s, corresponding to 18% of the total air emissions. A significant decrease of emissions has thus occurred which is in line with a decreasing use of mercury in technical products, more efficient collection of remaining products and better emission control. However, the calculations show that the use of mercury in products still

  14. Transport sector CO2 emissions growth in Asia: Underlying factors and policy options

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Shrestha, Ashish

    2009-01-01

    This study analyze the potential factors influencing the growth of transport sector carbon dioxide (CO 2 ) emissions in selected Asian countries during the 1980-2005 period by decomposing annual emissions growth into components representing changes in fuel mix, modal shift, per capita gross domestic product (GDP) and population, as well as changes in emission coefficients and transportation energy intensity. We find that changes in per capita GDP, population growth and transportation energy intensity are the main factors driving transport sector CO 2 emission growth in the countries considered. While growth in per capita income and population are responsible for the increasing trend of transport sector CO 2 emissions in China, India, Indonesia, Republic of Korea, Malaysia, Pakistan, Sri Lanka and Thailand; the decline of transportation energy intensity is driving CO 2 emissions down in Mongolia. Per capita GDP, population and transportation energy intensity effects are all found responsible for transport sector CO 2 emissions growth in Bangladesh, the Philippines and Vietnam. The study also reviews existing government policies to limit CO 2 emissions growth, such as fiscal instruments, fuel economy standards and policies to encourage switching to less emission intensive fuels and transportation modes.

  15. Catheter Related Blood Stream Infections In Patients Of The Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Ana Carolina Coimbra de Castro

    2017-07-01

    Full Text Available Objective: To identify the prevalence of bloodstream infection associated with the Catheter related Blood stream infections in patients of the Intensive Care Unit, and the characteristics of its use and handling. Methods: Descriptive and transversal study with a sample of 88 participants. Data were collected through the observational method and the records in the medical records. The absolute and relative frequencies were used for data analysis. Results: 73.86% of the patients had central venous access in the subclavian vein, 100% used double lumen Catheter related Blood stream infections, 0.5% chlorhexidine solution for skin antisepsis, dressing coverage is performed mostly with Sterile gauze and tape, with a daily exchange. The rate of infection related to the use of the Catheter related Blood stream infections was (6.81%. The most infused pharmacological drugs were antimicrobials (69.32%. Conclusion: The study showed that care with central venous accesses is performed according to recommendations for prevention of bloodstream infection related to the use of these devices. The infection rate is close to the standards found in the literature. Key words: Central Venous Catheterization. Hospital Infection. Intensive care unit. Risk factors. Catheter-Related Infection..

  16. Emission certificates. Legal, tax-related and practical aspects; Emissionszertifikate. Rechtliche, steuerliche und praktische Aspekte

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Christoph; Bartholl, Carsten; Hartmann, Astrid (eds.)

    2011-07-01

    The book discusses the issue of emission certificates from the view of public law, civil law and tax law, in consideration of practical experience with emission reduction projects. The subjects discussed range from emission trading from the view of public law to the civil law and regulatory law aspects of emission trading and taxation law. The legal situation in Germany is covered from the view of public and private law. The state of legislation on emission reduction in the USA is gone into, and practical experience relating to the Clean Development Mechanism is presented. (orig./RHM)

  17. Environmental emissions by Chinese industry: Exergy-based unifying assessment

    International Nuclear Information System (INIS)

    Bo Zhang; Chen, G.Q.; Xia, X.H.; Li, S.C.; Chen, Z.M.; Xi Ji

    2012-01-01

    Based on chemical exergy as an objective measure for the chemical deviation between the emission and the environment, a unifying assessment is carried out for major environmental emissions covering COD, ammonia nitrogen, SO 2 , soot, dust, NO x and solid waste by Chinese industry over 1997–2006, with emphasis on the sectoral and regional levels in 2006. Of the total emission in exergy up to 274.1 PJ in 2006, 67.7% is estimated from waste gases, 29.9% from waste water and 2.4% from solid waste. Five of 40 sectors and 12 of 30 regions are responsible for 72.7% and 65.5% of the total emission, respectively. SO 2 is the leading emission type in 9 sectors and 25 regions, and COD in another 28 sectors and 5 regions. Some pollution-intensive sectors such as Production and Distribution of Electric Power and Heat Power and Manufacture of Paper and Paper Products, and western and inland regions such as Guangxi and Ningxia with high emission intensities are identified. By clustering and disjoint principal component analysis with intensities of emissions and fuel coal use as variables, three principal components are extracted, and four statistically significant clusters are pinpointed in the sectoral and regional analysis. Corresponding policy-making implications are addressed. - Highlights: ► A chemical exergy-based unifying assessment for industrial emissions is performed. ► The emissions at the sectoral/regional levels in 2006 are systematically revealed. ► The main principal components and clusters for emission intensities are pinpointed.

  18. The impact of lifestyle on energy use and CO2 emission: An empirical analysis of China's residents

    International Nuclear Information System (INIS)

    Wei, Y.-M.; Liu, L.-C.; Fan Ying; Wu Gang

    2007-01-01

    Based on the application of a Consumer Lifestyle Approach (CLA), this paper quantifies the direct and indirect impact of lifestyle of urban and rural residents on China's energy use and the related CO 2 emissions during the period 1999-2002. The results show that approximately 26 per cent of total energy consumption and 30 per cent of CO 2 emission every year are a consequence of residents' lifestyles, and the economic activities to support these demands. For urban residents the indirect impact on energy consumption is 2.44 times greater than the direct impact. Residence; home energy use; food; and education, cultural and recreation services are the most energy-intensive and carbon-emission-intensive activities. For rural residents, the direct impact on energy consumption is 1.86 times that of the indirect, and home energy use; food; education, and cultural recreation services; and personal travel are the most energy-intensive and carbon-emission-intensive activities. This paper provides quantitative evidence for energy conservation and environmental protection focused policies. China's security for energy supply is singled out as a serious issue for government policy-makers, and we suggest that government should harmonize the relationships between stakeholders to determine rational strategies

  19. Quantifying the linear and nonlinear relations between the urban form fragmentation and the carbon emission distribution

    Science.gov (United States)

    Zuo, S.; Dai, S.; Ren, Y.; Yu, Z.

    2017-12-01

    Scientifically revealing the spatial heterogeneity and the relationship between the fragmentation of urban landscape and the direct carbon emissions are of great significance to land management and urban planning. In fact, the linear and nonlinear effects among the various factors resulted in the carbon emission spatial map. However, there is lack of the studies on the direct and indirect relations between the carbon emission and the city functional spatial form changes, which could not be reflected by the land use change. The linear strength and direction of the single factor could be calculated through the correlation and Geographically Weighted Regression (GWR) analysis, the nonlinear power of one factor and the interaction power of each two factors could be quantified by the Geodetector analysis. Therefore, we compared the landscape fragmentation metrics of the urban land cover and functional district patches to characterize the landscape form and then revealed the relations between the landscape fragmentation level and the direct the carbon emissions based on the three methods. The results showed that fragmentation decreased and the fragmented patches clustered at the coarser resolution. The direct CO2 emission density and the population density increased when the fragmentation level aggregated. The correlation analysis indicated the weak linear relation between them. The spatial variation of GWR output indicated the fragmentation indicator (MESH) had the positive influence on the carbon emission located in the relatively high emission region, and the negative effects regions accounted for the small part of the area. The Geodetector which explores the nonlinear relation identified the DIVISION and MESH as the most powerful direct factor for the land cover patches, NP and PD for the functional district patches, and the interactions between fragmentation indicator (MESH) and urban sprawl metrics (PUA and DIS) had the greatly increased explanation powers on the

  20. 'Intensity' targets. Pathway or roadblock to preventing climate change while enhancing economic growth?

    International Nuclear Information System (INIS)

    Dudek, D.; Golub, A.

    2003-12-01

    After establishing the operative definitions of greenhouse gas emissions 'intensity' targets and 'absolute' targets for greenhouse gas emissions limits, we identify examples of these approaches in current laws and policies. We focus in particular on the US experience with the sulfur dioxide emissions 'cap and trade' program as an example of the use of an 'absolute' target approach. We compare and contrast this example with 'performance standard' programs under the US Clean Air Act and the Corporate Average Fuel Economy standards for motor vehicles, which embody the emissions rate or 'intensity' concept. These case studies give us insights into the pros and cons of the intensity versus absolute approaches. Moving from retrospective to prospective, we consider the possible application of alternative absolute and intensity targets (IT) to global, national and firm-level emissions. We then identify criteria for evaluating the use of 'intensity' targets as a tool for achieving both environmental and economic goals. These include success in limiting climate change, achieving cost certainty and manageability, providing flexibility for public and private sector decision-makers in responding to new information, stimulating technological progress and sustaining a global climate regime

  1. Energy-dominated local carbon emissions in Beijing 2007: inventory and input-output analysis.

    Science.gov (United States)

    Guo, Shan; Liu, J B; Shao, Ling; Li, J S; An, Y R

    2012-01-01

    For greenhouse gas (GHG) emissions by Beijing economy 2007, a concrete emission inventory covering carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) is presented and associated with an input-output analysis to reveal the local GHG embodiment in final demand and trade without regard to imported emissions. The total direct GHG emissions amount to 1.06E + 08 t CO(2)-eq, of which energy-related CO(2) emissions comprise 90.49%, non-energy-related CO(2) emissions 6.35%, CH(4) emissions 2.33%, and N(2)O emissions 0.83%, respectively. In terms of energy-related CO(2) emissions, the largest source is coal with a percentage of 53.08%, followed by coke with 10.75% and kerosene with 8.44%. Sector 26 (Construction Industry) holds the top local emissions embodied in final demand of 1.86E + 07 t CO(2)-eq due to its considerable capital, followed by energy-intensive Sectors 27 (Transport and Storage) and 14 (Smelting and Pressing of Ferrous and Nonferrous Metals). The GHG emissions embodied in Beijing's exports are 4.90E + 07 t CO(2)-eq, accounting for 46.01% of the total emissions embodied in final demand. The sound scientific database totally based on local emissions is an important basis to make effective environment and energy policies for local decision makers.

  2. Including dynamic CO2 intensity with demand response

    International Nuclear Information System (INIS)

    Stoll, Pia; Brandt, Nils; Nordström, Lars

    2014-01-01

    Hourly demand response tariffs with the intention of reducing or shifting loads during peak demand hours are being intensively discussed among policy-makers, researchers and executives of future electricity systems. Demand response rates have still low customer acceptance, apparently because the consumption habits requires stronger incentive to change than any proposed financial incentive. An hourly CO 2 intensity signal could give customers an extra environmental motivation to shift or reduce loads during peak hours, as it would enable co-optimisation of electricity consumption costs and carbon emissions reductions. In this study, we calculated the hourly dynamic CO 2 signal and applied the calculation to hourly electricity market data in Great Britain, Ontario and Sweden. This provided a novel understanding of the relationships between hourly electricity generation mix composition, electricity price and electricity mix CO 2 intensity. Load shifts from high-price hours resulted in carbon emission reductions for electricity generation mixes where price and CO 2 intensity were positively correlated. The reduction can be further improved if the shift is optimised using both price and CO 2 intensity. The analysis also indicated that an hourly CO 2 intensity signal can help avoid carbon emissions increases for mixes with a negative correlation between electricity price and CO 2 intensity. - Highlights: • We present a formula for calculating hybrid dynamic CO 2 intensity of electricity generation mixes. • We apply the dynamic CO 2 Intensity on hourly electricity market prices and generation units for Great Britain, Ontario and Sweden. • We calculate the spearman correlation between hourly electricity market price and dynamic CO 2 intensity for Great Britain, Ontario and Sweden. • We calculate carbon footprint of shifting 1 kWh load daily from on-peak hours to off-peak hours using the dynamic CO 2 intensity. • We conclude that using dynamic CO 2 intensity for

  3. Relative intensity of bilateral trade flows, regional integration, and trade performance: the case of Brazil, 1984-1998

    Directory of Open Access Journals (Sweden)

    Silva Valquiria da

    2003-01-01

    Full Text Available The objective of this research is to identify the component of trade that results specifically from bilateral relations and evaluate how the creation of trading blocs affects trade relations between countries. The trirapport coefficient of the relative intensity of bilateral agricultural sector trade flows between Brazil and other countries from 1984 and 1998 is used in the evaluation. In general, the results show that relative trade intensity between Brazil and its non-MERCOSUL trade partners fell after their entry into regional trade agreements (extra-bloc effect. The intra-bloc effect (trade expansion is reflected by changes in trade intensity between Brazil and the other MERCOSUL members and changes in trade intensity between NAFTA members Mexico, Canada, and the United States.

  4. Frameworks for comparing emissions associated with production, consumption, and international trade.

    Science.gov (United States)

    Kanemoto, Keiichiro; Lenzen, Manfred; Peters, Glen P; Moran, Daniel D; Geschke, Arne

    2012-01-03

    While the problem of climate change is being perceived as increasingly urgent, decision-makers struggle to agree on the distribution of responsibility across countries. In particular, representatives from countries hosting emissions-intensive exporting industries have argued that the importers of emissions-intensive goods should bear the responsibility, and ensuing penalties. Indeed, international trade and carbon leakage appear to play an increasingly important role in the carbon emissions debate. However, definitions of quantities describing the embodiment of carbon emissions in internationally traded products, and their measurement, have to be sufficiently robust before being able to underpin global policy. In this paper we critically examine a number of emissions accounting concepts, examine whether the ensuing carbon balances are compatible with monetary trade balances, discuss their different interpretations, and highlight implications for policy. In particular, we compare the emissions embodied in bilateral trade (EEBT) method which considers total trade flows with domestic emission intensities, with the multi-regional input-output (MRIO) method which considers trade only into final consumption with global emission intensities. If consumption-based emissions of different countries were to be compared, we would suggest an MRIO approach because of the global emissions coverage inherent in this method. If trade-adjusted emission inventories were to be compared, we would suggest an EEBT approach due to the consistency with a monetary trade balance.

  5. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles.

    Science.gov (United States)

    Zhan, Qiuqiang; Liu, Haichun; Wang, Baoju; Wu, Qiusheng; Pu, Rui; Zhou, Chao; Huang, Bingru; Peng, Xingyun; Ågren, Hans; He, Sailing

    2017-10-20

    Stimulated emission depletion microscopy provides a powerful sub-diffraction imaging modality for life science studies. Conventionally, stimulated emission depletion requires a relatively high light intensity to obtain an adequate depletion efficiency through only light-matter interaction. Here we show efficient emission depletion for a class of lanthanide-doped upconversion nanoparticles with the assistance of interionic cross relaxation, which significantly lowers the laser intensity requirements of optical depletion. We demonstrate two-color super-resolution imaging using upconversion nanoparticles (resolution ~ 66 nm) with a single pair of excitation/depletion beams. In addition, we show super-resolution imaging of immunostained cytoskeleton structures of fixed cells (resolution ~ 82 nm) using upconversion nanoparticles. These achievements provide a new perspective for the development of photoswitchable luminescent probes and will broaden the applications of lanthanide-doped nanoparticles for sub-diffraction microscopic imaging.

  6. Fuel carbon intensity standards may not mitigate climate change

    International Nuclear Information System (INIS)

    Plevin, Richard J.; Delucchi, Mark A.; O’Hare, Michael

    2017-01-01

    To mitigate the climate change effects of transportation, the US states of California and Oregon, the Canadian province of British Columbia, and the European Union have implemented regulations to reduce the life cycle greenhouse gas (GHG) emissions intensity of transport fuel, commonly referred to as 'carbon intensity', or CI. In this article, we unpack the theory and practice of fuel CI standards, examining claims regarding climate-change mitigation. We show that these standards do not reliably mitigate climate change because estimates of GHG reductions rely primarily on models that are not designed to estimate changes in emissions and climate impacts. Some regulations incorporate models that estimate a subset of changes in emissions, but the models must project changes in global markets over decades, and there is little agreement about the best model structure or parameter values. Since multiple models and projections may be equally plausible, fuel CI is inevitably subjective and unverifiable. We conclude that regulating or taxing observable emissions would more reliably achieve emission reduction. - Highlights: • Use of fuel carbon intensity (CI) standards has been expanding recently. • Fuel CI ratings are subjective, scenario- and model-dependent. • Uncertainty in fuel CI ratings creates uncertainty in policy outcomes. • There is no reliable test of whether fuel CI standards mitigate climate change. • Regulating or taxing observable emissions would be a more reliable approach.

  7. Numerical modelling of the pump-to-signal relative intensity noise ...

    Indian Academy of Sciences (India)

    An accurate numerical model to investigate the pump-to-signal relative intensity noise (RIN) transfer in two-pump fibre optical parametric amplifiers (2-P FOPAs) for low modulation frequencies is presented. Compared to other models in the field, this model takes into account the fibre loss, pump depletion as well as the gain ...

  8. Causal relations between knowledge-intensive business services and regional employment growth

    NARCIS (Netherlands)

    Brenner, T.; Capasso, M.; Duschl, M.; Frenken, K.; Treibich, T.G.

    2015-01-01

    This paper studies the causal relations between regional employment growth in Knowledge-Intensive Business Services (KIBS) and overall regional employment growth using German labour-market data for the period 1999-2012. Adopting a recently developed technique, we are able to estimate a structural

  9. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Colorado, Utah, and Texas using mobile δ13CH4 analysis

    Science.gov (United States)

    Rella, C.; Crosson, E.; Petron, G.; Sweeney, C.; Karion, A.

    2013-12-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of CO2 emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation, provided that the fugitive emissions of methane are kept under control. A key step in assessing these emissions in a given region is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis, using the δ13CH4 signature to distinguish between natural gas and landfills or ruminants. We present measurements of mobile field δ13CH4 using a spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in three intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, the Uintah basin in Utah, and the Barnett Shale in Texas. Mobile isotope measurements of individual sources and in the nocturnal boundary layer have been combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities. The fraction of total methane emissions in the Denver-Julesburg basin attributed to natural gas emissions is 78 +/- 13%. In the Uinta basin, which has no other significant sources of methane, the fraction is 96% +/- 15%. In addition, results from the Barnett shale are presented, which includes a major urban center (Dallas / Ft. Worth). Methane emissions in this region are spatially highly heterogeneous. Spatially-resolved isotope and concentration measurements are interpreted using a simple emissions model to arrive at an overall isotope ratio for the region. (left panel) Distribution of oil and gas well pads (yellow) and landfills (blue) in the Dallas / Ft. Worth area. Mobile nocturnal measurements

  10. Human Influence on Tropical Cyclone Intensity

    Science.gov (United States)

    Sobel, Adam H.; Camargo, Suzana J.; Hall, Timothy M.; Lee, Chia-Ying; Tippett, Michael K.; Wing, Allison A.

    2016-01-01

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity.We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  11. Observations of the 12.3 micron Mg I emission line during a major solar flare

    Science.gov (United States)

    Deming, Drake; Jennings, Donald E.; Osherovich, Vladimir; Wiedemann, Gunter; Hewagama, Tilak

    1990-01-01

    The extremely Zeeman-sensitive 12.32 micron Mg I solar emission line was observed during a 3B/X5.7 solar flare on October 24, 1989. When compared to postflare values, Mg I emission-line intensity in the penumbral flare ribbon was 20 percent greater at the peak of the flare in soft X-rays, and the 12 micron continuum intensity was 7 percent greater. The flare also excited the emission line in the umbra where it is normally absent. The umbral flare emission exhibits a Zeeman splitting 200 G less than the adjacent penumbra, suggesting that it is excited at higher altitude. The absolute penumbral magnetic field strength did not change by more than 100 G between the flare peak and postflare period. However, a change in the inclination of the field lines, probably related to the formation and development of the flare loop system, was seen.

  12. Clinical Competence and Its Related Factors of Nurses in Neonatal Intensive Care Units

    Directory of Open Access Journals (Sweden)

    Jila Mirlashari

    2016-12-01

    Full Text Available Introduction: Clinical competence of nurses working in the neonatal intensive care units together with advancements in medical science and technology increased the survival rate of newborns that need specialized care. To ensure the quality of care and provide the safety of patients, evaluating the clinical competence of nurses seems necessary. This study aimed to evaluate the clinical competence of nurses in the neonatal intensive care units. Methods: In this cross-sectional study, 117 nurses working in the neonatal intensive care units of the hospitals affiliated to Tehran University of Medical Sciences were selected by census method. The research tool was Development of Competency Inventory for Registered Nurses questionnaire which completed by self-assessment. The mean clinical competence scores of participants categorized into 3 levels: weak: 273. Data were analyzed by SPSS version 13 using the Pearson correlation coefficient, t-test and Chi-square test. Results: The highest levels of competence were related to critical thinking and research attitude and interpersonal relationships, and the lowest level was related to training and mentoring. There was a direct statistically significant relationship between marital status, employment status, level of interest in working in the neonatal intensive-care units and the clinical competence of nurses. Conclusion: Since the clinical competence of nurses in the Neonatal Intensive Care Units is vital, some variables such as interest in the nursing profession, employment status, the neonatal intensive theoretical and practical training courses and the amount of overtime working hours should be taken into consideration.

  13. Expectations and drivers of future greenhouse gas emissions from Canada's oil sands: An expert elicitation

    International Nuclear Information System (INIS)

    McKellar, Jennifer M.; Sleep, Sylvia; Bergerson, Joule A.; MacLean, Heather L.

    2017-01-01

    The greenhouse gas (GHG) emissions intensity of oil sands operations has declined over time but has not offset absolute emissions growth due to rapidly increasing production. Policy making, decisions about research and development, and stakeholder discourse should be informed by an assessment of future emissions intensity trends, however informed projections are not easily generated. This study investigates expected trends in oil sands GHG emissions using expert elicitation. Thirteen experts participated in a survey, providing quantitative estimates of expected GHG emissions intensity changes and qualitative identifications of drivers. Experts generally agree that emissions intensity reductions are expected at commercially operating projects by 2033, with the greatest reductions expected through the use of technology in the in situ area of oil sands activity (40% mean reduction at multiple projects, averaged across experts). Incremental process changes are expected to contribute less to reducing GHG emissions intensity, however their potentially lower risk and cost may result in larger cumulative reductions. Both technology availability and more stringent GHG mitigation policies are required to realize these emissions intensity reductions. This paper demonstrates a method to increase rigour in emissions forecasting activities and the results can inform policy making, research and development and modelling and forecasting studies. - Highlights: • Expert elicitation used to investigate expected trends in oil sands GHG emissions. • Overall, emissions intensity reductions are expected at commercial projects by 2033. • Reductions are expected due to both technology changes and process improvements. • Technology availability and more stringent GHG policies are needed for reductions. • Method used increases rigour in emissions forecasting, and results inform policy.

  14. Continental anthropogenic primary particle number emissions

    Science.gov (United States)

    Paasonen, Pauli; Kupiainen, Kaarle; Klimont, Zbigniew; Visschedijk, Antoon; Denier van der Gon, Hugo A. C.; Amann, Markus

    2016-06-01

    Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas-Air Pollution Interactions and Synergies) model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa), coke production (Russia and China), and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation) scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol-cloud interactions as well as particle number related adverse health effects, e.g. in response to tightening

  15. Continental anthropogenic primary particle number emissions

    Directory of Open Access Journals (Sweden)

    P. Paasonen

    2016-06-01

    Full Text Available Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas–Air Pollution Interactions and Synergies model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa, coke production (Russia and China, and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol–cloud interactions as well as particle number related adverse health effects, e.g. in response

  16. Real world vehicle fleet emission factors: Seasonal and diurnal variations in traffic related air pollutants

    Science.gov (United States)

    Wang, Jonathan M.; Jeong, Cheol-Heon; Zimmerman, Naomi; Healy, Robert M.; Evans, Greg J.

    2018-07-01

    Temporal variations of vehicle emissions are affected by various compounding factors in the real world. The focus of this study is to determine the effects of ambient conditions and post-tailpipe changes on traffic emissions measured in the near-road region. Emission factors allowed for the isolation of the traffic signal and accounted for effects of local meteorology and dilution. Five month-long measurement campaigns were conducted at an urban near-road site that exhibited a broad range of ambient conditions with temperatures ranging between -18 and +30 °C. Particle number emission factors were 2.0× higher in the winter relative to the summer, which was attributed to changes in particles post-tailpipe. Conversely, toluene emissions were 2.5× higher in the summer relative to the winter, attributed to changes in fuel composition. Diurnal trends of emission factors showed substantial increases in emissions during the morning rush hour for black carbon (1.9×), particle number (2.4×), and particle-bound polycyclic aromatic hydrocarbons (3.0×), affected by fleet make-up. In contrast, particle number emission factors were highest midday with mean values 3.7× higher than at night. This midday increase was attributed to particle formation or growth from local traffic emissions and showed different wind direction dependence than regional events.

  17. Emission of Polychlorinated Naphthalenes during Thermal Related Processes

    Science.gov (United States)

    Liu, Guorui; Zheng, Minghui; Du, Bing; Liu, Wenbin; Zhang, Bing; Xiao, Ke

    2010-05-01

    Due to the structural similarity of polychlorinated naphthalenes (PCNs) to those of dioxins, PCNs exhibit toxicological properties similar to dioxins (Olivero-Verbel et al., 2004). Based on their high toxicity, persistence, bioaccumulation, and long-distance transmission, PCNs were also selected as a candidate POP for the UN-ECE (United Nations Economic Commission for Europe) POP protocol (Lerche et al., 2002). In addition, some studies suggested that PCNs contributed a greater proportion of the dioxin-like activity than polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) contributed in some locations (Kannan et al., 1998). However, the identification and quantitation for PCN sources are very scarce compared with PCDD/Fs. Understanding the emission levels and developing the emission inventory of PCNs is important for regulatory and source reduction purposes. In this study, several potential sources were preliminarily investigated for PCN release. Coking process (CP), iron ore sintering (IOS), and electric arc furnace steel making units (AF) were selected due to their huge activity level of industrial production in China. Municipal solid waste incineration (MSWI) and medical waste incineration (MWI) were also investigated because of the possible high concentration of PCNs in stack gas. Two plants were investigated for each thermal related process, except for MWI with one incinerator was investigated. The stack gas samples were collected by automatic isokinetic sampling system (Isostack Basic, TCR TECORA, Milan Italy). Isotope dilution high resolution gas chromatography coupled with high resolution mass spectrometry (HRGC/HRMS) technique was used for the identification and quantitation of PCN congeners. The concentrations of PCNs from the selected thermal processes were determined in this study. The average concentrations of total PCNs were 26 ng Nm-3 for CP, 65 ng Nm-3 for IOS, 720 ng Nm-3 for AF, 443 ng Nm-3 for MSWI, and

  18. Revisiting the case for intensity targets: Better incentives and less uncertainty for developing countries

    International Nuclear Information System (INIS)

    Marschinski, Robert; Edenhofer, Ottmar

    2010-01-01

    In the debate on post-Kyoto global climate policy, intensity targets, which set a maximum amount of emissions per GDP, figure as prominent alternative to Kyoto-style absolute emission targets, especially for developing countries. This paper re-examines the case for intensity targets by critically assessing several of its properties, namely (i) reduction of cost-uncertainty, (ii) reduction of 'hot air', (iii) compatibility with international emissions trading, (iv) incentive to decouple carbon emissions and economic output (decarbonization), and, (v) use as a substitute for banking/borrowing. Relying on simple analytical models, it is shown that the effect on cost-uncertainty is ambiguous and depends on parameter values, and that the same holds for the risk of 'hot air'; that the intensity target distorts international emissions trading; that despite potential asymmetries in the choice of abatement technology between absolute and intensity target, the incentive for a lasting transformation of the energy system is not necessarily stronger under the latter; and, finally, that only a well-working intensity target could substitute banking/borrowing to some extent-but also vice versa. Overall, the results suggest that due to the increased complexity and the potentially only modest benefits of an intensity target, absolute targets remain a robust choice for a cautious policy maker.

  19. SIZE DISTRIBUTION OF SEA-SALT EMISSIONS AS A FUNCTION OF RELATIVE HUMIDITY

    Science.gov (United States)

    This note presents a straightforward method to correct sea-salt-emission particle-size distributions according to local relative humidity. The proposed method covers a wide range of relative humidity (0.45 to 0.99) and its derivation incorporates recent laboratory results on sea-...

  20. The relation between carbon monoxide emission and visual extinction in cloud L134

    International Nuclear Information System (INIS)

    Tucker, K.D.; Dickman, R.L.; Encrenaz, P.J.; Kutner, M.L.

    1976-01-01

    Emission from the J=1→0 transition of carbon monoxide has been mapped over an area of 40' x 55' in cloud L134, and visual extinctions over the entire cloud have been obtained by means of star counts. Line intensities of > or =2 K are observable down to an extinction level of about one magnitude. From observations of the J=1→0 transition of the 13 CO isotopic species at 18 locations in the cloud, we have found a linear correlation between the local thermodynamic equilibrium (LTE) column densities of 13 CO and magnitudes of visual extinction

  1. Measurements of the Spectral Light Emission from Decaying High Pressure Helium Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stevefelt, J; Johansson, J

    1971-04-15

    The rate of electron density decay has been determined in a helium pulsed discharge plasma at pressures ranging from 100 to 600 Torr, primarily during the early afterglow where the electron density is from 1019 to 2 x 1017/m3. Measurements of the electrical conductivity and the absolute intensity of the light emission were made. The effective recombination rate coefficient was found to increase faster than linearly with gas pressure. The total photon emission rate was significantly lower than the effective recombination rate. Below 400 Torr pressure the afterglow was dominated by He-bands, which were related to the recombination of He{sub 2+} and He{sub 3+} ions. At higher pressures the appearance of intense lines originating from the atomic n = 3 and 23 P states is proposed to result from the He{sub 4+} recombination. Absorption measurements of the atomic metastable concentration gave evidence for recombination directly into the 23 S state. The concentration of molecular metastables was surprisingly low. The light emission had a Techi dependence, with 0 < chi < 0.35 for the intense atomic lines and 0.78 < chi < 1.10 for the molecular bands

  2. Measurements of the Spectral Light Emission from Decaying High Pressure Helium Plasmas

    International Nuclear Information System (INIS)

    Stevefelt, J.; Johansson, J.

    1971-04-01

    The rate of electron density decay has been determined in a helium pulsed discharge plasma at pressures ranging from 100 to 600 Torr, primarily during the early afterglow where the electron density is from 10 19 to 2 x 10 17 /m 3 . Measurements of the electrical conductivity and the absolute intensity of the light emission were made. The effective recombination rate coefficient was found to increase faster than linearly with gas pressure. The total photon emission rate was significantly lower than the effective recombination rate. Below 400 Torr pressure the afterglow was dominated by He-bands, which were related to the recombination of He 2 + and He 3 + ions. At higher pressures the appearance of intense lines originating from the atomic n = 3 and 2 3 P states is proposed to result from the He 4 + recombination. Absorption measurements of the atomic metastable concentration gave evidence for recombination directly into the 2 3 S state. The concentration of molecular metastables was surprisingly low. The light emission had a T e χ dependence, with 0 < χ < 0.35 for the intense atomic lines and 0.78 < χ < 1.10 for the molecular bands

  3. Decomposing the impact of alternative technology sets on future carbon emissions growth

    International Nuclear Information System (INIS)

    Fisher-Vanden, Karen; Schu, Kathryn; Sue Wing, Ian; Calvin, Katherine

    2012-01-01

    What are the drivers of future global carbon dioxide (CO 2 ) emissions growth and how would the availability of key energy supply technologies change their relative importance? In this paper, we apply a novel index number decomposition technique to the results of a multi-region, multi-sector computable general equilibrium model to quantify the influence of five factors on the growth of future carbon emissions: (1) growth in global economic activity; (2) shifts in the regional composition of gross world product; (3) shifts in the sectoral composition of regions' GDP; (4) changes in sectors' energy–output ratios; and (5) changes in the CO 2 intensity of energy sources. We elucidate how the relative importance of these factors changes in response to the imposition of a global carbon tax and alternative assumptions about the future availability of key energy supply technologies. Rising global economic activity and shifts in regional composition put upward pressure on emissions while changes in energy and emission intensity and the sectoral output mix have attenuating effects. A global emission tax that increases over time slows economic expansion and shifts the fuel mix, with the most pronounced impacts on China, India, and Russia. Limited availability of carbon capture and storage, nuclear, and hydroelectric generation all lead to upward shifts in the long-run marginal abatement cost curve, causing some countries to choose to pay the tax rather than abate. - Highlights: ► Index number decomposition is used to quantify the influence of five factors. ► The relative importance of these factors in response to alternative assumptions is measured. ► A global emission tax that increases over time slows economic expansion and shifts the fuel mix. ► Limited technology availability mean some countries to choose to pay the tax rather than abate.

  4. Forecasting Energy-Related CO2 Emissions Employing a Novel SSA-LSSVM Model: Considering Structural Factors in China

    Directory of Open Access Journals (Sweden)

    Huiru Zhao

    2018-03-01

    Full Text Available Carbon dioxide (CO2 emissions forecasting is becoming more important due to increasing climatic problems, which contributes to developing scientific climate policies and making reasonable energy plans. Considering that the influential factors of CO2 emissions are multiplex and the relationships between factors and CO2 emissions are complex and non-linear, a novel CO2 forecasting model called SSA-LSSVM, which utilizes the Salp Swarm Algorithm (SSA to optimize the two parameters of the least squares support sector machine (LSSVM model, is proposed in this paper. The influential factors of CO2 emissions, including the gross domestic product (GDP, population, energy consumption, economic structure, energy structure, urbanization rate, and energy intensity, are regarded as the input variables of the SSA-LSSVM model. The proposed model is verified to show a better forecasting performance compared with the selected models, including the single LSSVM model, the LSSVM model optimized by the particle swarm optimization algorithm (PSO-LSSVM, and the back propagation (BP neural network model, on CO2 emissions in China from 2014 to 2016. The comparative analysis indicates the SSA-LSSVM model is greatly superior and has the potential to improve the accuracy and reliability of CO2 emissions forecasting. CO2 emissions in China from 2017 to 2020 are forecast combined with the 13th Five-Year Plan for social, economic and energy development. The comparison of CO2 emissions of China in 2020 shows that structural factors significantly affect CO2 emission forecasting results. The average annual growth of CO2 emissions slows down significantly due to a series of policies and actions taken by the Chinese government, which means China can keep the promise that greenhouse gas emissions will start to drop after 2030.

  5. 15 years of VLT/UVES OH intensities and temperatures in comparison with TIMED/SABER data

    Science.gov (United States)

    Noll, Stefan; Kimeswenger, Stefan; Proxauf, Bastian; Unterguggenberger, Stefanie; Kausch, Wolfgang; Jones, Amy M.

    2017-10-01

    The high-resolution echelle spectrograph UVES of the Very Large Telescope at Cerro Paranal in Chile has been regularly operated since April 2000. Thus, UVES archival data originally taken for astronomical projects but also including sky emission can be used to study airglow variations on a time scale longer than a solar cycle. Focusing on OH emission and observations until March 2015, we considered about 3000 high-quality spectra from two instrumental set-ups centred on 760 and 860 nm, which cover about 380 nm each. These data allowed us to measure line intensities for several OH bands in order to derive band intensities and rotational temperatures for different upper vibrational levels as a function of solar activity and observing date. The results were compared with those derived from emission and temperature profile data of the radiometer SABER on the TIMED satellite taken in the Cerro Paranal area between 2002 and 2015. In agreement with the SABER data, the long-term variations in OH intensity and temperature derived from the UVES data are dominated by the solar cycle, whereas secular trends appear to be negligible. Combining the UVES and SABER results, the solar cycle effects for the OH intensity and temperature are about 12-17% and 4-5 K per 100 sfu and do not significantly depend on the selected OH band. The data also reveal that variations of the effective OH emission layer height and air density can cause significant changes in the OH rotational temperatures due to a varying ratio of OH thermalising collisions by air molecules and OH radiation, deactivation, and destruction processes which impede the rotational relaxation. However, this effect appears to be of minor importance for the explanation of the rotational temperature variations related to the solar activity cycle, which causes only small changes in the OH emission profile.

  6. Relative Match Intensities at High Altitude in Highly-Trained Young Soccer Players (ISA3600).

    Science.gov (United States)

    Buchheit, Martin; Hammond, Kristal; Bourdon, Pitre C; Simpson, Ben M; Garvican-Lewis, Laura A; Schmidt, Walter F; Gore, Christopher J; Aughey, Robert J

    2015-03-01

    To compare relative match intensities of sea-level versus high-altitude native soccer players during a 2-week camp at 3600 m, data from 7 sea-level (Australian U17 National team, AUS) and 6 high-altitude (a Bolivian U18 team, BOL) native soccer players were analysed. Two matches were played at sea-level and three at 3600 m on Days 1, 6 and 13. The Yo-Yo Intermittent recovery test (vYo-YoIR1) was performed at sea-level, and on Days 3 and 10. Match activity profiles were measured via 10-Hz GPS. Distance covered >14.4 km.h(-1) (D>14.4 km·h(-1)) and >80% of vYo-YoIR1 (D>80%vYo-YoIR1) were examined. Upon arrival at altitude, there was a greater decrement in vYo-YoIR1 (Cohen's d +1.0, 90%CL ± 0.8) and D>14.4 km·h(-1) (+0.5 ± 0.8) in AUS. D>14.4 km.h(-1) was similarly reduced relative to vYo-YoIR1 in both groups, so that D>80%vYo-YoIR1 remained similarly unchanged (-0.1 ± 0.8). Throughout the altitude sojourn, vYo-YoIR1 and D>14.4 km·h(-1) increased in parallel in AUS, so that D>80%vYo-YoIR1 remained stable in AUS (+6.0%/match, 90%CL ± 6.7); conversely D>80%vYo-YoIR1 decreased largely in BOL (-12.2%/match ± 6.2). In sea-level natives competing at high-altitude, changes in match running performance likely follow those in high-intensity running performance. Bolivian data confirm that increases in 'fitness' do not necessarily translate into greater match running performance, but rather in reduced relative exercise intensity. Key pointsWhen playing at high-altitude, players may alter their activities during matches in relation to their transient maximal physical capacities, possibly to maintain a 'tolerable' relative exercise intensity.While there is no doubt that running performance per se in not the main determinant of match outcomes (Carling, 2013), fitness levels influence relative match intensity (Buchheit et al., 2012, Mendez-Villanueva et al., 2013), which in-turn may impact on decision making and skill performance (Rampinini et al., 2008).In the context of

  7. Factors affecting CO_2 emissions in China’s agriculture sector: Evidence from geographically weighted regression model

    International Nuclear Information System (INIS)

    Xu, Bin; Lin, Boqiang

    2017-01-01

    China is currently the world's largest emitter of carbon dioxide. Considered as a large agricultural country, carbon emission in China’s agriculture sector keeps on growing rapidly. It is, therefore, of great importance to investigate the driving forces of carbon dioxide emissions in this sector. The traditional regression estimation can only get “average” and “global” parameter estimates; it excludes the “local” parameter estimates which vary across space in some spatial systems. Geographically weighted regression embeds the latitude and longitude of the sample data into the regression parameters, and uses the local weighted least squares method to estimate the parameters point–by–point. To reveal the nonstationary spatial effects of driving forces, geographically weighted regression model is employed in this paper. The results show that economic growth is positively correlated with emissions, with the impact in the western region being less than that in the central and eastern regions. Urbanization is positively related to emissions but produces opposite effects pattern. Energy intensity is also correlated with emissions, with a decreasing trend from the eastern region to the central and western regions. Therefore, policymakers should take full account of the spatial nonstationarity of driving forces in designing emission reduction policies. - Highlights: • We explore the driving forces of CO_2 emissions in the agriculture sector. • Urbanization is positively related to emissions but produces opposite effect pattern. • The effect of energy intensity declines from the eastern region to western region.

  8. Analyses of CO2 emissions embodied in Japan-China trade

    International Nuclear Information System (INIS)

    Liu Xianbing; Ishikawa, Masanobu; Wang Can; Dong Yanli; Liu Wenling

    2010-01-01

    This paper examines CO 2 emissions embodied in Japan-China trade. Besides directly quantifying the flow of CO 2 emissions between the two countries by using a traditional input-output (IO) model, this study also estimates the effect of bilateral trade to CO 2 emissions by scenario analysis. The time series of quantifications indicate that CO 2 emissions embodied in exported goods from Japan to China increased overall from 1990 to 2000. The exported CO 2 emissions from China to Japan greatly increased in the first half of the 1990s. However, by 2000, the amount of emissions had reduced from 1995 levels. Regardless, there was a net export of CO 2 emissions from China to Japan during 1990-2000. The scenario comparison shows that the bilateral trade has helped the reduction of CO 2 emissions. On average, the Chinese economy was confirmed to be much more carbon-intensive than Japan. The regression analysis shows a significant but not perfect correlation between the carbon intensities at the sector level of the two countries. In terms of CO 2 emission reduction opportunities, most sectors of Chinese industry could benefit from learning Japanese technologies that produce lower carbon intensities.

  9. Time-resolved emission from laser-ablated uranium

    International Nuclear Information System (INIS)

    Stoffels, E.; Mullen, J. van der; Weijer, P. van de

    1991-01-01

    Time-resolved emission spectra from the plasma, induced by laser ablation of uranium samples have been studied. The dependence of the emission intensity on time is strongly affected by the nature and pressure of the buffer gas. Air and argon have been used in the pressure range 0.002 to 5 mbar. The emission intensity as a function of time displays three maxima, indicating that three different processes within the expanding plasma plume are involved. On basis of the time-resolved spectra we propose a model that explains qualitatively the phenomena that are responsible for this time behaviour. (author)

  10. Investigation of room temperature UV emission of ZnO films with different defect densities induced by laser irradiation.

    Science.gov (United States)

    Zhao, Yan; Jiang, Yijian

    2010-08-01

    We studied the room temperature UV emission of ZnO films with different defect densities which is fabricated by KrF laser irradiation process. It is shown room temperature UV photoluminescence of ZnO film is composed of contribution from free-exciton (FX) recombination and its longitudinal-optical phonon replica (FX-LO) (1LO, 2LO). With increase of the defect density, the FX emission decreased and FX-LO emission increased dramatically; and the relative strengths of FX to FX-LO emission intensities determine the peak position and intensity of UV emission. What is more, laser irradiation with moderate energy density could induce the crystalline ZnO film with very flat and smooth surface. This investigation indicates that KrF laser irradiation could effectively modulate the exciton emission and surface morphology, which is important for the application of high performance of UV emitting optoelectronic devices. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Mitigating greenhouse gas emissions from China's cities: Case study of Suzhou

    International Nuclear Information System (INIS)

    Wang, Hongsheng; Wang, Yunxia; Wang, Haikun; Liu, Miaomiao; Zhang, Yanxia; Zhang, Rongrong; Yang, Jie; Bi, Jun

    2014-01-01

    Knowledge of the factors driving greenhouse gas (GHG) emissions from cities is crucial to mitigating China's anthropogenic emissions. In this paper, the main drivers increasing GHG emissions from the Chinese city of Suzhou between 2005 and 2010 were identified and quantitatively analyzed using the Kaya identity and the log-mean Divisia index method. We found that economy and population were the major drivers of GHG emissions in Suzhou, having contributed 162.20% and 109.04%, respectively, to the increase in emissions. A decline in carbon intensity, which was caused by the declining energy intensity and an adjustment to the mixture of power and industrial structures, was the major determinant and accounted for a reduction of 171.24% in GHG emissions. Slowing and maintaining healthy growth rates of economy and population could be the primary and most effective means if Suzhou tries to curb the total emissions over the short term. It may be more realistic for Suzhou to control emissions by optimizing the economic structure for low-carbon industrial development because of the city's relative high energy requirements and low potential to mitigate GHGs by adjusting the energy mixture. - Highlights: • Per capita carbon emissions in Suzhou kept stable at 15 tons/year during period 2005–2010. • Slowing down growth rates of GDP and population could effectively control Suzhou's emissions. • Low carbon development policies were also recommended for other Chinese cities

  12. Effect of feed-related farm characteristics on relative values of genetic traits in dairy cows to reduce greenhouse gas emissions along the chain.

    Science.gov (United States)

    Van Middelaar, C E; Berentsen, P B M; Dijkstra, J; Van Arendonk, J A M; De Boer, I J M

    2015-07-01

    Breeding has the potential to reduce greenhouse gas (GHG) emissions from dairy farming. Evaluating the effect of a 1-unit change (i.e., 1 genetic standard deviation improvement) in genetic traits on GHG emissions along the chain provides insight into the relative importance of genetic traits to reduce GHG emissions. Relative GHG values of genetic traits, however, might depend on feed-related farm characteristics. The objective of this study was to evaluate the effect of feed-related farm characteristics on GHG values by comparing the values of milk yield and longevity for an efficient farm and a less efficient farm. The less efficient farm did not apply precision feeding and had lower feed production per hectare than the efficient farm. Greenhouse gas values of milk yield and longevity were calculated by using a whole-farm model and 2 different optimization methods. Method 1 optimized farm management before and after a change in genetic trait by maximizing labor income; the effect on GHG emissions (i.e., from production of farm inputs up to the farm gate) was considered a side effect. Method 2 optimized farm management after a change in genetic trait by minimizing GHG emissions per kilogram of milk while maintaining labor income and milk production at least at the level before the change in trait; the effect on labor income was considered a side effect. Based on maximizing labor income (method 1), GHG values of milk yield and longevity were, respectively, 279 and 143kg of CO2 equivalents (CO2e)/unit change per cow per year on the less efficient farm, and 247 and 210kg of CO2e/unit change per cow per year on the efficient farm. Based on minimizing GHG emissions (method 2), GHG values of milk yield and longevity were, respectively, 538 and 563kg of CO2e/unit change per cow per year on the less efficient farm, and 453 and 441kg of CO2e/unit change per cow per year on the efficient farm. Sensitivity analysis showed that, for both methods, the absolute effect of a

  13. Change in CO2 emission and its transmissions between Korea and Japan using international input-output analysis

    International Nuclear Information System (INIS)

    Rhee, Hae-Chun; Chung, Hyun-Sik

    2006-01-01

    This paper is intended to analyze CO 2 transmission between Japan and South Korea through international trade based on 1990 and 1995 international input-output data. It applied a residual-free structural decomposition method proposed by Chung and Rhee [Chung, H.S., Rhee, H.C., 2001. A residual-free decomposition of the sources of carbon dioxide emissions: a case of the Korean industries. Energy 26 (1), 15-30] to emission-related international input-output analysis for the first time in the decomposition studies. This paper is a case study regarding the manner and the extent to which CO 2 emissions are influenced by international trade between Japan (an Annex I country) and South Korea (a non-Annex I country), which is of particular interest for the carbon leakage issue. In this paper, we attempted to show which factors contributed to the changes in emission of the major greenhouse gas in South Korea and Japan. The changes in emission are analyzed in terms of emission intensity, input techniques, demand composition, and trade structures. According to our analysis, South Korea, a non-Annex I country, has more energy-intensive production structures than Japan, an Annex I country. South Korea's trade pattern with Japan reflects these production features, resulting in the Korea's comparative advantage in emission intensive products, though the degree has somewhat mitigated in 1995 compared to 1990. (author)

  14. Electroplex emission from bi-layer blue emitting organic materials

    Science.gov (United States)

    Zhang, Fujun; Zhao, Suling; Zhao, Dewei; Jiang, Weiwei; Li, Yuan; Yuan, Guangcai; Zhu, Haina; Xu, Zheng

    2007-04-01

    Electroluminescence (EL) and photoluminescence (PL) spectra of an electron donor, an (poly(N-vinylcarbazole) (PVK))/electron acceptor, and a (2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD)) bi-layer solid film are analysed. The EL emission peak has an apparent red-shift with the increase of driving voltage. There maybe exist an electroplex emission between the PVK and PBD interface under high electric field strength. According to their energy level, the electroplex emission peak should locate at 460 nm. There are great spectra overlapping between PVK emission and electroplex emission, and the ratio of electroplex emission intensity to exciton emission intensity (Ielectroplex/Iexciton) increases from 0.38 at 10 to 0.81 at 16 V. Therefore the measured emission peaks continuously shift from 410 nm at 10 V to 445 nm at 16 V.

  15. Electroplex emission from bi-layer blue emitting organic materials

    International Nuclear Information System (INIS)

    Zhang Fujun; Zhao Suling; Zhao Dewei; Jiang Weiwei; Li Yuan; Yuan Guangcai; Zhu Haina; Xu Zheng

    2007-01-01

    Electroluminescence (EL) and photoluminescence (PL) spectra of an electron donor, an (poly(N-vinylcarbazole) (PVK))/electron acceptor, and a (2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD)) bi-layer solid film are analysed. The EL emission peak has an apparent red-shift with the increase of driving voltage. There maybe exist an electroplex emission between the PVK and PBD interface under high electric field strength. According to their energy level, the electroplex emission peak should locate at 460 nm. There are great spectra overlapping between PVK emission and electroplex emission, and the ratio of electroplex emission intensity to exciton emission intensity (I electroplex /I exciton ) increases from 0.38 at 10 to 0.81 at 16 V. Therefore the measured emission peaks continuously shift from 410 nm at 10 V to 445 nm at 16 V

  16. Electroplex emission from bi-layer blue emitting organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fujun; Zhao Suling; Zhao Dewei; Jiang Weiwei; Li Yuan; Yuan Guangcai; Zhu Haina; Xu Zheng [Key Laboratory for Information Storage, Display and Materials, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2007-04-15

    Electroluminescence (EL) and photoluminescence (PL) spectra of an electron donor, an (poly(N-vinylcarbazole) (PVK))/electron acceptor, and a (2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD)) bi-layer solid film are analysed. The EL emission peak has an apparent red-shift with the increase of driving voltage. There maybe exist an electroplex emission between the PVK and PBD interface under high electric field strength. According to their energy level, the electroplex emission peak should locate at 460 nm. There are great spectra overlapping between PVK emission and electroplex emission, and the ratio of electroplex emission intensity to exciton emission intensity (I{sub electroplex}/I{sub exciton}) increases from 0.38 at 10 to 0.81 at 16 V. Therefore the measured emission peaks continuously shift from 410 nm at 10 V to 445 nm at 16 V.

  17. X-ray emission from stainless steel foils irradiated by femtosecond petawatt laser pulses

    Science.gov (United States)

    Alkhimova, M. A.; Faenov, A. Ya; Pikuz, T. A.; Skobelev, I. Yu; Pikuz, S. A.; Nishiuchi, M.; Sakaki, H.; Pirozhkov, A. S.; Sagisaka, S.; Dover, N. P.; Kondo, Ko; Ogura, K.; Fukuda, Y.; Kiriyama, H.; Esirkepov, T.; Bulanov, S. V.; Andreev, A.; Kando, M.; Zhidkov, A.; Nishitani, K.; Miyahara, T.; Watanabe, Y.; Kodama, R.; Kondo, K.

    2018-01-01

    We report about nonlinear growth of x-ray emission intensity emitted from plasma generated by femtosecond petawatt laser pulses irradiating stainless steel foils. X-ray emission intensity increases as ˜ I 4.5 with laser intensity I on a target. High spectrally resolved x-ray emission from front and rear surfaces of 5 μm thickness stainless steel targets were obtained at the wavelength range 1.7-2.1 Å, for the first time in experiments at femtosecond petawatt laser facility J-KAREN-P. Total intensity of front x-ray spectra three times dominates to rear side spectra for maximum laser intensity I ≈ 3.2×1021 W/cm2. Growth of x-ray emission is mostly determined by contribution of bremsstrahlung radiation that allowed estimating bulk electron plasma temperature for various magnitude of laser intensity on target.

  18. Per capita emissions of greenhouse gases and international trade

    International Nuclear Information System (INIS)

    Karman, D.; Baptiste, S.

    1994-01-01

    The role played by international trade in Canada's emissions of greenhouse gases is investigated. Data used in the study include Environment Canada greenhouse gas emission estimates for 1990, a Statistics Canada input-output model linking greenhouse gas emissions to economic activity in different sectors, and monetary statistics on imports and exports. Subject to some simplifying assumptions, it is estimated that nearly 20% of Canada's greenhouse gas emissions can be attributed to the production of commodities destined for export to other countries. If the same greenhouse gas emission intensities are assumed for Canada's imports, the greenhouse gas emissions due to Canada's net trade is nearly 7% of the 660 megatonnes of CO 2 equivalent emissions for 1990. Commodities from natural resource exploitation head the list of greenhouse gas emissions attributed to international trade, as expected from their large export volumes and large greenhouse gas emission intensities. 4 refs., 1 fig

  19. Developing an indicator for the chronic health impact of traffic-related pollutant emissions

    International Nuclear Information System (INIS)

    Lépicier, Véronique; Chiron, Mireille; Joumard, Robert

    2013-01-01

    The goal of this study is to develop an emission based indicator for the health impact of the air pollution caused by traffic. This indicator must make it possible to compare different situations, for example different Urban Travel Plans, or technical innovations. Our work is based on a literature survey of methods for evaluating health impacts and, more particularly, those which relate to the atmospheric pollution caused by transport. We then define a health impact indicator based on the traffic emissions, named IISCEP for Chronic health impact indicator of pollutant emission. Here health is understood in a restricted meaning, excluding well-being. Only primary pollutants can be considered, as the inputs are emission data and an indicator must be simple. The indicator is calculated as the sum of each pollutant emission multiplied by a dispersion and exposition factor and a substance specific toxicity factor taking account of the severity. Last, two examples are shown using the IISCEP: comparison between petrol and diesel vehicles, and Nantes urban district in 2008 vs 2002. Even if it could still be improved, IISCEP is a straightforward indicator which can be used to gauge the chronic effects of inhaling primary pollutants. It can only be used in comparisons, between different scenarios or different technologies. The quality of the emissions data and the choice of the pollutants that are considered are the two essential factors that determine its validity and reliability. - Highlights: ► The goal of the study is to develop an emission based indicator for the health impact of the air pollution caused by traffic. ► It is based on a literature survey of methods for evaluating health impacts related to the atmospheric pollution. ► We define a composite indicator based on the traffic emissions and on local data as dispersion conditions and population. ► The indicator is a combination of pollutant emission, dispersion, exposition factor, and substance specific

  20. Methods for measurements of energy and emissions related to motor vehicles: Identification of needs for improvements

    Energy Technology Data Exchange (ETDEWEB)

    Karl-Erik Egebaeck, K.E. [Luleaa Univ. of Technology, Luleaa (Sweden). Dept. of Environmental Technology; Karlsson, Hua L. [MTC AB, Haninge (Sweden); Westerholm, R. [Stockholm Univ. (Sweden). Dept. of Analytical Chemistry

    2002-01-01

    The official methods in use today for emission testing of vehicles and engines were primarily developed for the characterisation of exhaust emissions from motor vehicles fuelled with petrol or diesel oil. The setting of new lower emission standards will make it difficult to obtain sufficient accuracy, using the present systems, for the quantification of exhaust emissions in the future. Development of new emission control technology and improved fuels has made it possible to meet these more stringent standards. Consequently new emission standards will lead to a need for new and improved methodologies and new instrumentation for the characterisation of the emissions from vehicles/engines/fuels. The present report comprises a discussion and comments on questions related to improved methods for emission measurements. The report is based on a study of the literature, site visits to laboratories and research institutes etc in the US and a meeting with representatives of the EU Commission, carried out during the spring of 2001. The conclusions and recommendations in the pre-study report are summarised in sub titles: General, regulated emissions, unregulated emissions, greenhouse gases and fuel consumption. Since the questions and problems discussed have an international connection they should be discussed in an international forum. However, before such discussions can be organised the problems related to measurement of emissions and fuel consumption must be more extensively studied than in this pre-study.

  1. Enhanced radiative Auger emission from lithiumlike 16S13+

    International Nuclear Information System (INIS)

    Bernstein, E.M.; Clark, M.W.; Oglesby, C.S.; Tanis, J.A.; Graham, W.G.; McFarland, R.H.; Morgan, T.J.; Johnson, B.M.; Jones, K.W.

    1990-01-01

    The radiative Auger emission (RAE) from 0.94--6.25-MeV/u 16 S 13+ (lithiumlike) projectiles excited in collisions with He target atoms has been measured. For these highly stripped ions the intensity of RAE photons relative to Kα x-ray emission is enhanced by about a factor of five compared with theoretical calculations and an earlier experimental measurement for S ions with few electron vacancies. The enhancement of RAE for S 13+ is qualitatively similar to results reported previously for lithiumlike 23 V 20+ ; however, some differences between S and V are evident

  2. An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China

    International Nuclear Information System (INIS)

    Wang, Zhaohua; Yin, Fangchao; Zhang, Yixiang; Zhang, Xian

    2012-01-01

    Highlights: ► We adapt STIRPAT model to regional context and conduct PLS regress analysis. ► Energy technology related patent is innovatively used to measure technical factors. ► Urbanization level has the greatest interpretative ability for CO 2 emissions. ► We do not find evidence of Environmental Kuznets Curve in Beijing. ► Beijing should focus more on tertiary industry and residential energy consumption. -- Abstract: In order to further study the realization of carbon intensity target, find the key influencing factors of CO 2 emissions, and explore the path of developing low-carbon economy, this paper empirically studied the influences of urbanization level, economic level, industry proportion, tertiary industry proportion, energy intensity and R and D output on CO 2 emissions in Beijing using improved STIRPAT (stochastic impacts by regression on population, affluence and technology) model. The model is examined using partial least square regression. Results show that urbanization level, economic level and industry proportion positively influence the CO 2 emissions, while tertiary industry proportion, energy intensity and R and D output negatively do. Urbanization level is the main driving factor of CO 2 emissions, and tertiary industry proportion is the main inhibiting factor. In addition, along with the growth of per capita GDP, the increase of CO 2 emissions does not follow the Environmental Kuznets Curve model. Based on these empirical findings and the specific circumstances of Beijing, we provide some policy recommendations on how to reduce carbon intensity. Beijing should pay more attention to tertiary industry and residential energy consumption for carbon emission reduction. It is necessary to establish a comprehensive evaluation index of social development. Investing more capital on carbon emission reduction science and technology, and promoting R and D output is also an efficient way to reduce CO 2 emissions.

  3. Selective excitation of singly-ionized silver emission lines by Grimm glow discharge plasmas using several different plasma gases

    International Nuclear Information System (INIS)

    Wagatsuma, K.

    1996-01-01

    The relative intensities of silver emission lines from Grimm glow discharge plasmas were investigated in the wavelength range from 160 to 600 nm when using different plasma gases. It was characteristic of the plasma excitation that the spectral patterns were strongly dependent on the nature of the plasma gas employed. Intense emission lines of silver ion were observed when argon-helium mixed gases were employed as the plasma gas. Selective excitation of the ionic lines could be principally attributed to the charge transfer collisions between silver atoms and helium ions. (orig.)

  4. Obstetric patients' health-related quality of life before and after intensive care.

    Science.gov (United States)

    Pia, Seppänen; Reijo, Sund; Tero, Ala-Kokko; Mervi, Roos; Jukka, Uotila; Mika, Helminen; Tarja, Suominen

    2018-03-23

    Intensive care admissions during pregnancy, childbirth, and postpartum period are relatively well investigated. However, very little is known about these obstetric patients' health-related quality of life (HRQoL) before and after critical care. The objective of this study was to assess obstetric patients' HRQoL before intensive care admission (baseline) and at 6 months after discharge (follow-up) DESIGN: This was a retrospective database study. In a 5-year period, the data of all women admitted to the intensive care unit (ICU) during pregnancy, delivery, or up to 42 days postpartum were analysed. Four multidisciplinary ICUs of Finnish University hospitals participated. The HRQoL was assessed using the EuroQol-5D (EQ-5D) instrument with utility score (EQsum) and visual analogue scale (EQ-VAS). A total of 283 obstetric patients were identified from the clinical information system. Of these, 99 (35%) completed the EQ-5D questionnaires both at baseline and follow-up, and 65 of them (23%) completed EQ-VAS. The comparison of patients' EQsum scores before intensive care admission and after discharge showed that patients' HRQoL remained good (0.970 vs 0.972) (max 1.0) or increased (0.788 vs 0.982) in 80.8% of the patients. Patients reported improved overall health on the EQ-VAS at 6 months follow-up (EQ-VAS mean, 71.86 vs 88.20; p ≤ 0.001) (max 100). However, 19.2% of the patients had lower HRQoL (EQsum mean 0.987 vs 0.798) at follow-up. Following intensive care, 15% of the patients had more pain/discomfort, and 11% expressed more depression/anxiety. Multiparous patients were more likely to suffer from worsened depression/anxiety (p = 0.024). In the majority of the obstetric patients, HRQoL at 6 months follow-up remained good or had increased from baseline. However, nearly one-fifth of the patients had impaired HRQoL after discharge. Thus, intensive care management should take in to consideration follow-up program after intensive care of ICU-admitted obstetric

  5. International aviation emissions to 2025: Can emissions be stabilised without restricting demand?

    International Nuclear Information System (INIS)

    Macintosh, Andrew; Wallace, Lailey

    2009-01-01

    International aviation is growing rapidly, resulting in rising aviation greenhouse gas emissions. Concerns about the growth trajectory of the industry and emissions have led to calls for market measures such as emissions trading and carbon levies to be introduced to restrict demand and prompt innovation. This paper provides an overview of the science on aviation's contribution to climate change, analyses key trends in the industry since 1990, projects international civil aviation emissions to 2025 and analyses the emission intensity improvements that are necessary to offset rising international demand. The findings suggest international aviation carbon dioxide (CO 2 ) emissions will increase by more than 110 per cent between 2005 and 2025 (from 416 Mt to between 876 and 1013 Mt) and that it is unlikely emissions could be stabilised at levels consistent with risk averse climate targets without restricting demand

  6. Forecasting of Energy-Related CO2 Emissions in China Based on GM(1,1 and Least Squares Support Vector Machine Optimized by Modified Shuffled Frog Leaping Algorithm for Sustainability

    Directory of Open Access Journals (Sweden)

    Shuyu Dai

    2018-03-01

    Full Text Available Presently, China is the largest CO2 emitting country in the world, which accounts for 28% of the CO2 emissions globally. China’s CO2 emission reduction has a direct impact on global trends. Therefore, accurate forecasting of CO2 emissions is crucial to China’s emission reduction policy formulating and global action on climate change. In order to forecast the CO2 emissions in China accurately, considering population, the CO2 emission forecasting model using GM(1,1 (Grey Model and least squares support vector machine (LSSVM optimized by the modified shuffled frog leaping algorithm (MSFLA (MSFLA-LSSVM is put forward in this paper. First of all, considering population, per capita GDP, urbanization rate, industrial structure, energy consumption structure, energy intensity, total coal consumption, carbon emission intensity, total imports and exports and other influencing factors of CO2 emissions, the main driving factors are screened according to the sorting of grey correlation degrees to realize feature dimension reduction. Then, the GM(1,1 model is used to forecast the main influencing factors of CO2 emissions. Finally, taking the forecasting value of the CO2 emissions influencing factors as the model input, the MSFLA-LSSVM model is adopted to forecast the CO2 emissions in China from 2018 to 2025.

  7. Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models

    DEFF Research Database (Denmark)

    Van Driel, A.F.; Nikolaev, I.S.; Vergeer, P.

    2007-01-01

    We present a statistical analysis of time-resolved spontaneous emission decay curves from ensembles of emitters, such as semiconductor quantum dots, with the aim of interpreting ubiquitous non-single-exponential decay. Contrary to what is widely assumed, the density of excited emitters...... and the intensity in an emission decay curve are not proportional, but the density is a time integral of the intensity. The integral relation is crucial to correctly interpret non-single-exponential decay. We derive the proper normalization for both a discrete and a continuous distribution of rates, where every...... decay component is multiplied by its radiative decay rate. A central result of our paper is the derivation of the emission decay curve when both radiative and nonradiative decays are independently distributed. In this case, the well-known emission quantum efficiency can no longer be expressed...

  8. Energy-Dominated Local Carbon Emissions in Beijing 2007: Inventory and Input-Output Analysis

    Directory of Open Access Journals (Sweden)

    Shan Guo

    2012-01-01

    Full Text Available For greenhouse gas (GHG emissions by Beijing economy 2007, a concrete emission inventory covering carbon dioxide (CO2, methane (CH4, and nitrous oxide (N2O is presented and associated with an input-output analysis to reveal the local GHG embodiment in final demand and trade without regard to imported emissions. The total direct GHG emissions amount to 1.06E + 08 t CO2-eq, of which energy-related CO2 emissions comprise 90.49%, non-energy-related CO2 emissions 6.35%, CH4 emissions 2.33%, and N2O emissions 0.83%, respectively. In terms of energy-related CO2 emissions, the largest source is coal with a percentage of 53.08%, followed by coke with 10.75% and kerosene with 8.44%. Sector 26 (Construction Industry holds the top local emissions embodied in final demand of 1.86E + 07 t CO2-eq due to its considerable capital, followed by energy-intensive Sectors 27 (Transport and Storage and 14 (Smelting and Pressing of Ferrous and Nonferrous Metals. The GHG emissions embodied in Beijing's exports are 4.90E + 07 t CO2-eq, accounting for 46.01% of the total emissions embodied in final demand. The sound scientific database totally based on local emissions is an important basis to make effective environment and energy policies for local decision makers.

  9. Characteristic emission in glutaraldehyde polymerized hemoglobin

    International Nuclear Information System (INIS)

    Ma Li; Wang Xiaojun

    2011-01-01

    Hemoglobin with different modifications has been investigated using spectroscopic techniques. A new emission at around 371 nm has been observed under excitation of 305 nm from glutaraldehyde polymerized human hemoglobin. Intensity and peak position of the emission are dependent on both oxidation state and ligand environment and the emission has been identified from the hemoglobin oligomer.

  10. Net global warming potential and greenhouse gas intensity

    Science.gov (United States)

    Various methods exist to calculate global warming potential (GWP) and greenhouse gas intensity (GHG) as measures of net greenhouse gas (GHG) emissions from agroecosystems. Little is, however, known about net GWP and GHGI that account for all sources and sinks of GHG emissions. Sources of GHG include...

  11. High energy bremsstrahlung in an intense laser field

    International Nuclear Information System (INIS)

    Schlessinger, L.; Wright, J.A.

    1980-02-01

    The cross section for bremsstrahlung emission and absorption by electrons in an intense laser field has been calculated in the Born approximation for the electron-ion potential. Typical numerical results are presented as a function of the ratio of the electron guiver energy to its energy and the ratio of the bremsstrahlung energy to the electron energy. The intense field correction factor for the rate of bremsstrahlung emission and absorption for electrons with a Boltzmann distribution of energies has been calculated. Numerical results for the correction factor are presented for the Boltzmann case as a function of the ratio of the electron quiver energy to its thermal energy and the ratio of the bremsstrahlung energy to the thermal energy. For typical laser fusion parameters, this correction factor which is the ratio of the thermal bremsstrahlung emission rate in the intense laser field to the rate at zero field can be quite significant. For a laser of wavelength 1.06 μm at an intensity of 3 x 10 15 w/cm 2 and an electron temperature of 1 keV, the correction factor varies from 0.98 at a bremsstrahlung energy of 100 V to greater than 5 at a bremsstrahlung energy of 10 keV

  12. Process control with optical emission spectroscopy in triode ion plating

    International Nuclear Information System (INIS)

    Salmenoja, K.; Korhonen, A.S.; Sulonen, M.S.

    1985-01-01

    Physical vapor deposition (PVD) techniques used to prepare, e.g., hard TiN, HfN, or ZrN coatings include a great variety of processes ranging from reactive evaporation to sputtering and ion plating. In ion plating one effective way to enhance ionization is to use a negatively biased hot filament. The use of an electron emitting filament brings an extra variable to be taken into account in developing the process control. In addition, proper control of the evaporation source is critical in ensuring reproducible results. With optical emission spectroscopy (OES) it should be possible to control the coating process more accurately. The stoichiometry and the composition of the growing coating may then be ensured effectively in subsequent runs. In this work the application of optical emission spectroscopy for process control in triode ion plating is discussed. The composition of the growing coating is determined experimentally using the relative intensities of specific emission lines. Changes in the evaporation rate and the gas flow can be seen directly from emission line intensities. Even the so-called poisoning of the evaporation source with reactive gas can be detected. Several experimental runs were carried out and afterwards the concentration profiles of the deposited coatings were checked with the nuclear resonance broadening (NRB) method. The results show the usefulness of emission spectroscopy in discharge control

  13. The PAH Emission Characteristics of the Reflection Nebula NGC 2023

    International Nuclear Information System (INIS)

    Peeters, Els; Bauschlicher, Charles W. Jr.; Allamandola, Louis J.; Tielens, Alexander G. G. M.; Ricca, Alessandra; Wolfire, Mark G.

    2017-01-01

    We present 5–20 μ m spectral maps of the reflection nebula NGC 2023 obtained with the Infrared Spectrograph SL and SH modes on board the Spitzer Space Telescope, which reveal emission from polycyclic aromatic hydrocarbons (PAHs), C 60 , and H 2 superposed on a dust continuum. We show that several PAH emission bands correlate with each other and exhibit distinct spatial distributions that reveal a spatial sequence with distance from the illuminating star. We explore the distinct morphology of the 6.2, 7.7, and 8.6 μ m PAH bands and find that at least two spatially distinct components contribute to the 7–9 μ m PAH emission in NGC 2023. We report that the PAH features behave independently of the underlying plateaus. We present spectra of compact, oval PAHs ranging in size from C 66 to C 210 , determined computationally using density functional theory, and we investigate trends in the band positions and relative intensities as a function of PAH size, charge, and geometry. Based on the NASA Ames PAH database, we discuss the 7–9 μ m components in terms of band assignments and relative intensities. We assign the plateau emission to very small grains with possible contributions from PAH clusters and identify components in the 7–9 μ m emission that likely originate in these structures. Based on the assignments and the observed spatial sequence, we discuss the photochemical evolution of the interstellar PAH family as the PAHs are more and more exposed to the radiation field of the central star in the evaporative flows associated with the Photo-Dissociation Regions in NGC 2023.

  14. The PAH Emission Characteristics of the Reflection Nebula NGC 2023

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, Els [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Bauschlicher, Charles W. Jr. [Entry Systems and Technology Division, Mail Stop 230-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Allamandola, Louis J. [NASA Ames Research Center, Space Science Division, Mail Stop 245-6, Moffett Field, CA 94035 (United States); Tielens, Alexander G. G. M. [Leiden Observatory, P.O. Box 9513, 2300 RA Leiden (Netherlands); Ricca, Alessandra [Carl Sagan Center, SETI Institute, 189 N. Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Wolfire, Mark G., E-mail: epeeters@uwo.ca [Astronomy Department, University of Maryland, College Park, MD 20742 (United States)

    2017-02-20

    We present 5–20 μ m spectral maps of the reflection nebula NGC 2023 obtained with the Infrared Spectrograph SL and SH modes on board the Spitzer Space Telescope, which reveal emission from polycyclic aromatic hydrocarbons (PAHs), C{sub 60}, and H{sub 2} superposed on a dust continuum. We show that several PAH emission bands correlate with each other and exhibit distinct spatial distributions that reveal a spatial sequence with distance from the illuminating star. We explore the distinct morphology of the 6.2, 7.7, and 8.6 μ m PAH bands and find that at least two spatially distinct components contribute to the 7–9 μ m PAH emission in NGC 2023. We report that the PAH features behave independently of the underlying plateaus. We present spectra of compact, oval PAHs ranging in size from C{sub 66} to C{sub 210}, determined computationally using density functional theory, and we investigate trends in the band positions and relative intensities as a function of PAH size, charge, and geometry. Based on the NASA Ames PAH database, we discuss the 7–9 μ m components in terms of band assignments and relative intensities. We assign the plateau emission to very small grains with possible contributions from PAH clusters and identify components in the 7–9 μ m emission that likely originate in these structures. Based on the assignments and the observed spatial sequence, we discuss the photochemical evolution of the interstellar PAH family as the PAHs are more and more exposed to the radiation field of the central star in the evaporative flows associated with the Photo-Dissociation Regions in NGC 2023.

  15. Emissions inventory for the Mexico City Metropolitan Area

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, V.H.P.; Renteria, J.S. [Secretaria de Medio Ambiente, Col. Tiacopac San Angel (Mexico); Hernandez, C.G. [Departamento del Distrito Federal, Col. Centro (Mexico)] [and others

    1996-12-31

    The emissions inventory bears a broad relationship to the energy balance, reflecting the dependence of the emissions with reference to the use of energy. Actually the consumption of gasoline and diesel fuel in the transport sector represents collectively, the greatest comparative expense of energy and the major contributor of the ozone precursor pollutants HC, NO{sub x} and CO, relative to the total volume of emissions in the Mexico City Metropolitan Area (MCMA). Also, the industrial sector introduces significant emissions of SO{sub 2} and NO{sub x} due to its energy consumption of fuel oils and natural gas. In contrast, the great majority of suspended particulate in the MCMA emanate from degradation processes of surface soil along the periphery of the urban zone. To the federal and local authorities charged with the design of strategies for prevention and control of atmospheric pollution, the emissions inventory is a strategic tool that reflects the relative intensity of the various emitters to the load capacity of the atmosphere. A comprehensive inventory was compiled for 1995, categorizing the emissions generated by four sectors: industry, services, transport and surface soils and vegetation, considering the following pollutants: TSP, SO{sub 2}, NO{sub x}, HC and CO. The combined pollutant emissions are 4,009,628 tons/year of which 3% are generated by the industry, 10% by the services sector, 75% by the transport sector, and 12% by surface soils and vegetation.

  16. How can China reach its CO2 intensity reduction targets by 2020? A regional allocation based on equity and development

    International Nuclear Information System (INIS)

    Yi Wenjing; Zou Lele; Guo Jie; Wang Kai; Wei Yiming

    2011-01-01

    In late 2009, the Chinese government committed to cut its carbon dioxide emissions per unit of gross domestic product (GDP) by 40% to 45% of 2005 levels by 2020. This has raised the issue of how to allocate the CO 2 reduction target regionally to meet the national reduction target. To meet this objective, the following aspects may be taken into consideration: equity principles, 'common but differentiated responsibilities'; intensity reduction target fulfillment; and economic difference and reduction potential among provinces. This paper selects per capita GDP, accumulated fossil fuel related CO 2 emissions and energy consumption per unit of industrial added value as indicators for emission reduction capacity, responsibility and potential, respectively. Based on these three indicators, a comprehensive index is developed and an intensity allocation model constructed. As decision makers may have different preferences when allocating the reduction burden, we allocate different weights to the indicators, analyzing the results using cluster analysis. The following aspects may also be considered together with the national regional development strategy to determine how to share the burden: the reduction potential of various regions; implementation potential of the plans; and promotion of a highly efficient low carbon economic development model. - Research highlights: → We compiled a comprehensive index using per capita GDP, accumulated fossil fuel related CO 2 emissions and energy consumption per unit of industrial added value as indicators for emission reduction capacity, responsibility and potential, respectively. → National CO 2 intensity reduction target is allocated according to different index values of provinces. → Equity principles were taken into account when allocating the target.

  17. Changes in agricultural carbon emissions and factors that influence agricultural carbon emissions based on different stages in Xinjiang, China.

    Science.gov (United States)

    Xiong, Chuanhe; Yang, Degang; Xia, Fuqiang; Huo, Jinwei

    2016-11-10

    Xinjiang's agricultural carbon emissions showed three stages of change, i.e., continued to rise, declined and continued to rise, during 1991-2014. The agriculture belonged to the "low emissions and high efficiency" agriculture category, with a lower agricultural carbon emission intensity. By using the logarithmic mean divisia index decomposition method, agricultural carbon emissions were decomposed into an efficiency factor, a structure factor, an economy factor, and a labour factor. We divided the study period into five stages based on the changes in efficiency factor and economy factor. Xinjiang showed different agricultural carbon emission characteristics at different stages. The degree of impact on agricultural carbon emissions at these stages depended on the combined effect of planting-animal husbandry carbon intensity and agricultural labour productivity. The economy factor was the critical factor to promote the increase in agricultural carbon emissions, while the main inhibiting factor for agricultural carbon emissions was the efficiency factor. The labour factor became more and more obvious in increasing agricultural carbon emissions. Finally, we discuss policy recommendations in terms of the main factors, including the development of agricultural science and technology (S&T), the establishment of three major mechanisms and transfer of rural labour in ethnic areas.

  18. Air quality and greenhouse gas emissions (Chapter 3)

    CSIR Research Space (South Africa)

    Winkler, H

    2016-01-01

    Full Text Available Shale gas development (SGD) presents opportunities and risks with regards to air pollution and greenhouse gas (GHG) emissions. There is a potential opportunity to reduce emissions, if shale gas replaces ‘dirtier’ (more emissions-intensive) fuels...

  19. New spectrometric measurement of atmospheric 60 micron emission

    International Nuclear Information System (INIS)

    Grossmann, K.U.; Barthol, P.; Frings, W.; Hennig, R.; Offermann, D.

    1982-01-01

    Absolute zenith intensities of the atomic oxygen fine structure emission at 63 microns measured above Kiruna, Sweden, on December 9, 1981, in the altitude range of 85 km to 237 km are discussed. The data obtained are compared with theoretical predictions for this emission. For the model intensity calculations, both local thermodynamic equilibrium (LTE) and non-LTE conditions are assumed. The significance of the 63-micron emission as a cooling mechanism of the thermosphere is briefly discussed. It is noted that the geomagnetic field before and during the flight was very quiet

  20. Implications of emission inventory choice for modeling fire-related pollution in the U.S.

    Science.gov (United States)

    Koplitz, S. N.; Nolte, C. G.; Pouliot, G.

    2017-12-01

    Wildland fires are a major source of fine particulate matter (PM2.5), one of the most harmful ambient pollutants for human health globally. Within the U.S., wildland fires can account for more than 30% of total annual PM2.5 emissions. In order to represent the influence of fire emissions on atmospheric composition, regional and global chemical transport models (CTMs) rely on fire emission inventories developed from estimates of burned area (i.e. fire size and location). Burned area can be estimated using a range of top-down and bottom-up approaches, including satellite-derived remote sensing and on-the-ground incident reports. While burned area estimates agree with each other reasonably well in the western U.S. (within 20-30% for most years during 2002-2014), estimates for the southern U.S. vary by more than a factor of 3. Differences in burned area estimation methods lead to significant variability in the spatial and temporal allocation of emissions across fire emission inventory platforms. In this work, we implement fire emission estimates for 2011 from three different products - the USEPA National Emission Inventory (NEI), the Fire INventory of NCAR (FINN), and the Global Fire Emission Database (GFED4s) - into the Community Multiscale Air Quality (CMAQ) model to quantify and characterize differences in simulated fire-related PM2.5 and ozone concentrations across the contiguous U.S. due solely to the emission inventory used. Preliminary results indicate that the estimated contribution to national annual average PM2.5 from wildland fire in 2011 is highest using GFED4s emissions (1.0 µg m-3) followed by NEI (0.7 µg m-3) and FINN (0.3 µg m-3), with comparisons varying significantly by region and season. Understanding the sensitivity of modeling fire-related PM2.5 and ozone in the U.S. to fire emission inventory choice will inform future efforts to assess the implications of present and future fire activity for air quality and human health at national and global

  1. Measurement of relative L X-ray intensity ratio following radioactive decay and photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Yalcin, P. [Department of Science Education, Faculty of Education, Erzincan University, 24030 Erzincan (Turkey)], E-mail: pasayalcin@hotmail.com; Porikli, S.; Kurucu, Y.; Sahin, Y. [Department of Physics, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey)

    2008-05-22

    The measurements of the L X-ray intensity ratio I(L{alpha})/I(L{beta}), I(L{alpha})/I(L{gamma}), I(L{alpha})/I(L{iota}), I(L{beta})/I(L{gamma}) and I(L{iota})/I(L{gamma}) for elements Dy, Ho, Yb, W, Hg, Tl and Pb were experimentally determined both by photon excitation, in which 59.5 keV {gamma}-rays from a filtered radioisotope {sup 241}Am was used, and by the radioactive decay of {sup 160}Tb, {sup 160}Er, {sup 173}Lu, {sup 182}Re, {sup 201}Tl, {sup 203}Pb and {sup 207}Bi. L X-rays emitted by samples were counted by a Si(Li) detector with resolution 160 eV at 5.9 keV. Obtained values were compared with the calculated theoretical values. Theoretical values of the I(L{alpha}/L{beta}), I(L{alpha}/L{gamma}), I(L{alpha}/L{iota}), I(L{beta}/L{gamma}) and I(L{iota}/L{gamma}) intensity ratios were calculated using theoretically tabulated values of subshell photoionization cross-section, fluorescence yield, fractional X-ray emission rates, Coster-Kronig transition probabilities. It was observed that present values agree with previous theoretical and other available experimental results.

  2. Relation between gamma-ray emission, radio bursts, and proton fluxes from solar flares

    International Nuclear Information System (INIS)

    Fomichev, V.V.; Chertok, I.M.

    1985-01-01

    Data on solar gamma-ray flares, including 24 flares with gamma-ray lines, recorded up to June 1982, are analyzed. It is shown that from the point of view of radio emission the differences between flares with and without gamma-ray lines has a purely quantitative character: the former are accompanied by the most intense microwave bursts. Meter type II bursts are not a distinctive feature of flares with gamma-ray lines. Pulsed flares, regardless of the presence or absence of gamma-ray lines, are not accompanied by significant proton fluxes at the earth. On the whole, contrary to the popular opinion in the literature, flares with gamma-ray lines do not display a deficit of proton flux in interplanetary space in comparison with similar flares without gamma-ray lines. The results of quantitative diagnostics of proton flares based on radio bursts are not at variance with the presence of flares without detectable gamma-ray emission in lines but with a pronounced increase in the proton flux at the earth. 23 references

  3. Economic structure and pollution intensity within the environmental input-output framework

    Energy Technology Data Exchange (ETDEWEB)

    Llop, Maria [Departament d' Economia, Universitat Rovira i Virgili, Avgda. Universitat no. 1, 43204 Reus (Spain)]. E-mail: maria.llop@urv.cat

    2007-06-15

    The environmental input-output approach reveals the channels through which the environmental burdens of production activities are transmitted throughout the economy. This paper uses the input-output framework and analyses the changes in Spanish emission multipliers during the period 1995-2000. By decomposing the total changes in multipliers into different components, it is possible to evaluate separately the effects of economic structure and pollution intensity captured by the environmental input-output model. Specifically, in this study, we distinguish between the effects on multipliers caused by changes in emission coefficients (the pollution intensity effects) and the effects on multipliers caused by changes in technical coefficients (the economic structure effects). Our results show a significant reduction in the pollution intensity of production activities, which contributed negatively to changes in emission multipliers. They also show that the economic structure contributed positively to changes in emission multipliers. Together, these two effects lead to a small reduction in multipliers during the period of analysis. My results also show significant differences in the individual behaviour of different sectors in terms of their contribution to multiplier changes. Since there are considerable differences in the way individual sectors affect the changes in emission levels, and in the intensity of these effects, this means that the final effects will basically depend on the activity considered.

  4. Economic structure and pollution intensity within the environmental input-output framework

    International Nuclear Information System (INIS)

    Llop, Maria

    2007-01-01

    The environmental input-output approach reveals the channels through which the environmental burdens of production activities are transmitted throughout the economy. This paper uses the input-output framework and analyses the changes in Spanish emission multipliers during the period 1995-2000. By decomposing the total changes in multipliers into different components, it is possible to evaluate separately the effects of economic structure and pollution intensity captured by the environmental input-output model. Specifically, in this study, we distinguish between the effects on multipliers caused by changes in emission coefficients (the pollution intensity effects) and the effects on multipliers caused by changes in technical coefficients (the economic structure effects). Our results show a significant reduction in the pollution intensity of production activities, which contributed negatively to changes in emission multipliers. They also show that the economic structure contributed positively to changes in emission multipliers. Together, these two effects lead to a small reduction in multipliers during the period of analysis. My results also show significant differences in the individual behaviour of different sectors in terms of their contribution to multiplier changes. Since there are considerable differences in the way individual sectors affect the changes in emission levels, and in the intensity of these effects, this means that the final effects will basically depend on the activity considered

  5. Transport sector CO{sub 2} emissions growth in Asia: Underlying factors and policy options

    Energy Technology Data Exchange (ETDEWEB)

    Timilsina, Govinda R., E-mail: gtimilsina@worldbank.or [Development Research Group, World Bank, 1818H Street, NW, Washington, DC 20433 (United States); Shrestha, Ashish [Development Research Group, World Bank, 1818H Street, NW, Washington, DC 20433 (United States)

    2009-11-15

    This study analyze the potential factors influencing the growth of transport sector carbon dioxide (CO{sub 2}) emissions in selected Asian countries during the 1980-2005 period by decomposing annual emissions growth into components representing changes in fuel mix, modal shift, per capita gross domestic product (GDP) and population, as well as changes in emission coefficients and transportation energy intensity. We find that changes in per capita GDP, population growth and transportation energy intensity are the main factors driving transport sector CO{sub 2} emission growth in the countries considered. While growth in per capita income and population are responsible for the increasing trend of transport sector CO{sub 2} emissions in China, India, Indonesia, Republic of Korea, Malaysia, Pakistan, Sri Lanka and Thailand; the decline of transportation energy intensity is driving CO{sub 2} emissions down in Mongolia. Per capita GDP, population and transportation energy intensity effects are all found responsible for transport sector CO{sub 2} emissions growth in Bangladesh, the Philippines and Vietnam. The study also reviews existing government policies to limit CO{sub 2} emissions growth, such as fiscal instruments, fuel economy standards and policies to encourage switching to less emission intensive fuels and transportation modes.

  6. Transport sector CO{sub 2} emissions growth in Asia. Underlying factors and policy options

    Energy Technology Data Exchange (ETDEWEB)

    Timilsina, Govinda R.; Shrestha, Ashish [Development Research Group, The World Bank, 1818H Street, NW, Washington, DC 20433 (United States)

    2009-11-15

    This study analyze the potential factors influencing the growth of transport sector carbon dioxide (CO{sub 2}) emissions in selected Asian countries during the 1980-2005 period by decomposing annual emissions growth into components representing changes in fuel mix, modal shift, per capita gross domestic product (GDP) and population, as well as changes in emission coefficients and transportation energy intensity. We find that changes in per capita GDP, population growth and transportation energy intensity are the main factors driving transport sector CO{sub 2} emission growth in the countries considered. While growth in per capita income and population are responsible for the increasing trend of transport sector CO{sub 2} emissions in China, India, Indonesia, Republic of Korea, Malaysia, Pakistan, Sri Lanka and Thailand; the decline of transportation energy intensity is driving CO{sub 2} emissions down in Mongolia. Per capita GDP, population and transportation energy intensity effects are all found responsible for transport sector CO{sub 2} emissions growth in Bangladesh, the Philippines and Vietnam. The study also reviews existing government policies to limit CO{sub 2} emissions growth, such as fiscal instruments, fuel economy standards and policies to encourage switching to less emission intensive fuels and transportation modes. (author)

  7. Bulk energy storage increases United States electricity system emissions.

    Science.gov (United States)

    Hittinger, Eric S; Azevedo, Inês M L

    2015-03-03

    Bulk energy storage is generally considered an important contributor for the transition toward a more flexible and sustainable electricity system. Although economically valuable, storage is not fundamentally a "green" technology, leading to reductions in emissions. We model the economic and emissions effects of bulk energy storage providing an energy arbitrage service. We calculate the profits under two scenarios (perfect and imperfect information about future electricity prices), and estimate the effect of bulk storage on net emissions of CO2, SO2, and NOx for 20 eGRID subregions in the United States. We find that net system CO2 emissions resulting from storage operation are nontrivial when compared to the emissions from electricity generation, ranging from 104 to 407 kg/MWh of delivered energy depending on location, storage operation mode, and assumptions regarding carbon intensity. Net NOx emissions range from -0.16 (i.e., producing net savings) to 0.49 kg/MWh, and are generally small when compared to average generation-related emissions. Net SO2 emissions from storage operation range from -0.01 to 1.7 kg/MWh, depending on location and storage operation mode.

  8. The improvement of CO2 emission reduction policies based on system dynamics method in traditional industrial region with large CO2 emission

    International Nuclear Information System (INIS)

    Li, Fujia; Dong, Suocheng; Li, Zehong; Li, Yu; Li, Shantong; Wan, Yongkun

    2012-01-01

    Some traditional industrial regions are characterized by high industrial proportion and large CO 2 emission. They are facing dual pressures of maintaining economic growth and largely reducing CO 2 emission. From the perspective of study of typological region, taking the typical traditional industrial region—Liaoning Province of China as a case, this study establishes a system dynamics model named EECP and dynamically simulates CO 2 emission trends under different conditions. Simulation results indicate, compared to the condition without CO 2 emission reduction policies, CO 2 emission intensity under the condition of implementing CO 2 emission reduction policies of “Twelfth Five-Year Plan” is decreased by 11% from 2009 to 2030, but the economic cost is high, making the policies implementation faces resistance. Then some improved policies are offered and proved by EECP model that they can reduce CO 2 emission intensity after 2021 and decrease the negative influence to GDP, realizing the improvement objects of reducing CO 2 emission and simultaneously keeping a higher economy growth speed. The improved policies can provide reference for making and improving CO 2 emission reduction policies in other traditional industrial regions with large CO 2 emission. Simultaneously, EECP model can provide decision-makers with reference and help for similar study of energy policy. - Highlights: ► We build EECP model for CO 2 emission reduction study in traditional industry region. ► By the model, we simulate CO 2 emission trend and improve emission reduction policy. ► By improvement, both CO 2 emission intensity and economic cost can be largely reduced. ► Besides CO 2 emission is reduced effectively, higher GDP increment speed is kept. ► EECP model can be widely used for making and improving regional energy policies.

  9. Transfer standard for the spectral density of relative intensity noise of optical fiber sources near 1550 nm

    Energy Technology Data Exchange (ETDEWEB)

    Obarski, Gregory E.; Splett, Jolene D.

    2001-06-01

    We have developed a transfer standard for the spectral density of relative intensity noise (RIN) of optical fiber sources near 1550 nm. Amplified spontaneous emission (ASE) from an erbium-doped fiber amplifier (EDFA), when it is optically filtered over a narrow band ({lt}5 nm), yields a stable RIN spectrum that is practically constant to several tens of gigahertz. The RIN is calculated from the power spectral density as measured with a calibrated optical spectrum analyzer. For a typical device it is {minus}110 dB/Hz, with uncertainty {le}0.12 dB/Hz. The invariance of the RIN under attenuation yields a considerable dynamic range with respect to rf noise levels. Results are compared with those from a second method that uses a distributed-feedback laser (DFB) that has a Poisson-limited RIN. Application of each method to the same RIN measurement system yields frequency-dependent calibration functions that, when they are averaged, differ by {le}0.2 dB. {copyright} 2001 Optical Society of America

  10. [Study on plasma temperature of a large area surface discharge by optical emission spectrum].

    Science.gov (United States)

    Dong, Li-Fang; Tong, Guo-Liang; Zhang, Yu; Zhou, Bin

    2014-04-01

    A large area surface discharge was realized in air/argon gas mixture by designing a discharge device with water electrodes. By using optical emission spectrum, the variations of the molecular vibrational temperature, the mean energy of electron, and the electronic excitation temperature as a function of the gas pressure were studied. The nitrogen molecular vibrational temperature was calculated according to the emission line of the second positive band system of the nitrogen molecule (C3 pi(u) --> B 3 pi(g)). The electronic excitation temperature was obtained by using the intensity ratio of Ar I 763.51 nm (2P(6) --> 1S(5)) to Ar I 772.42 nm (2P(2) --> 1S(3)). The changes in the mean energy of electron were studied by the relative intensity ratio of the nitrogen molecular ion 391.4 nm to nitrogen 337.1 nm. It was found that the intensity of emission spectral line increases with the increase in the gas pressure, meanwhile, the outline and the ratios of different spectral lines intensity also change. The molecular vibrational temperature, the mean energy of electron, and the electronic excitation temperature decrease as the gas pressure increases from 0.75 x 10(5) Pa to 1 x 10(5) Pa.

  11. Studies of optical emission in the high intensity pumping regime of top-down ZnO nanostructures and thin films grown on c-sapphire substrates by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Divay, L.; Kostcheev, S.; McMurtry, S.; Lerondel, G. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, ICD CNRS (FRE2848), Universite de Technologie de Troyes, Troyes (France); Rogers, D.J.; Teherani, F.H. [Nanovation SARL, Versailles, 91400 Orsay (France); Lusson, A. [GEMaC, CNRS - Universite de Versailles Saint-Quentin en Yvelines,Meudon (France)

    2008-07-01

    We report on the emission of Zinc Oxide (ZnO) thin films obtained by Pulsed Laser Deposition (PLD) under high intensity excitation. In order to clarify the origin of the emission bands, we compared results for high quality thin films (75 nm) before and after 'top-down' nanopatterning. A nanopattering technique was developed for this purpose. The technique combined Electron Beam Lithography (EBL) and lift-off techniques and Inductively Coupled Plasma Reactive Ion Etching (ICP RIE). The emission spectra of the two types of samples were found to have a difference in their fine structure that was attributed, in part, to the existence of guided emission in the thin films and exciton weak confinement effects in the nanostructures. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Rational design of biophysical imaging protocols to measure the level of intensity of massive delocalized infections under severe HIV-induced immunodeficiency: configuration of novel radioimmunoscintigraphy modalities with single-photon emission tomography (SPECT) and positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Nazarea, A.D.

    1996-01-01

    Severe immunosupression brought about by critical depletion of CD4 + -lymphocytes in individuals suffering from HIV infection leads inevitably to the onset of multiple-agent opportunistic infections (ARC: the AIDS-related complex). Such opportunistic infections eventually become heterogeneously delocalized (disseminated) and an idea f their variety and number can be gleaned from the listing under clinical category C of the 1993 CDC Revised Classification System for HIV infections. This causes widespread oxygen free radical (principally superoxide and hydroxyl free radical) burst due to the up-switching of the hexose monophosphate (HMP) shunt as a result of the generalized activation, by the massive infection load, of NADPH oxidase, a constitutive enzyme that is present in the cell membranes of all granulocytes and mononuclear phagocytic cells. However the very short (reactive) lifetimes of superoxide and hydroxyl free radicals in the cellular milieu preclude their use as a convenient in vivo biomarkers if the level of phagocytosis (or HMP up-switching) were to be utilized as a correlative measure of the level of intensity of delocalized infections in ARC in any non-invasive whole-body imaging protocol. In the present contribution, we report a rational schema for a molecularly specific an self-consistent correlative measure of the intensity of multiple-agent, delocalized infections arising from severe HIV-induced immunodeficiency. The schema is based on the quantitative parametrization of the level of on-going degranulation activity of neutrophils in the granulocyte population. The rationally designed modalities rest on specificity inherent in radioimmunoscintigraphy, in particular on the ligand of radionuclide-tagged antibodies to the neutrophil proteinases HLE (human leukocytic elastase: EC.3.4.21.37) and cat G (cathepsin G: EC.3.4.21.20). In this work, these molecular probes are specifically configured to lend themselves as convenient in vivo biomarkers both in

  13. Carbon dioxide emissions from the electricity sector in major countries: a decomposition analysis.

    Science.gov (United States)

    Li, Xiangzheng; Liao, Hua; Du, Yun-Fei; Wang, Ce; Wang, Jin-Wei; Liu, Yanan

    2018-03-01

    The electric power sector is one of the primary sources of CO 2 emissions. Analyzing the influential factors that result in CO 2 emissions from the power sector would provide valuable information to reduce the world's CO 2 emissions. Herein, we applied the Divisia decomposition method to analyze the influential factors for CO 2 emissions from the power sector from 11 countries, which account for 67% of the world's emissions from 1990 to 2013. We decompose the influential factors for CO 2 emissions into seven areas: the emission coefficient, energy intensity, the share of electricity generation, the share of thermal power generation, electricity intensity, economic activity, and population. The decomposition analysis results show that economic activity, population, and the emission coefficient have positive roles in increasing CO 2 emissions, and their contribution rates are 119, 23.9, and 0.5%, respectively. Energy intensity, electricity intensity, the share of electricity generation, and the share of thermal power generation curb CO 2 emissions and their contribution rates are 17.2, 15.7, 7.7, and 2.8%, respectively. Through decomposition analysis for each country, economic activity and population are the major factors responsible for increasing CO 2 emissions from the power sector. However, the other factors from developed countries can offset the growth in CO 2 emissions due to economic activities.

  14. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Colorado, Utah, and Texas using mobile isotopic methane analysis based on Cavity Ringdown Spectroscopy

    Science.gov (United States)

    Rella, Chris; Winkler, Renato; Sweeney, Colm; Karion, Anna; Petron, Gabrielle; Crosson, Eric

    2014-05-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of carbon dioxide emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation, provided that the fugitive emissions of methane are kept under control. A key step in assessing these emissions in a given region is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis, using the isotopic carbon signature to distinguish between natural gas and landfills or ruminants. We present measurements of methane using a mobile spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in three intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, the Uintah basin in Utah, and the Barnett Shale in Texas. Performance of the CRDS isotope analyzer is presented, including precision, calibration, stability, and the potential for measurement bias due to other atmospheric constituents. Mobile isotope measurements of individual sources and in the nocturnal boundary layer have been combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities. The fraction of total methane emissions in the Denver-Julesburg basin attributed to natural gas emissions is 78 +/- 13%. In the Uinta basin, which has no other significant sources of methane, the fraction is 96% +/- 15%. In addition, results from the Barnett shale are presented, which includes a major urban center (Dallas / Ft. Worth). Methane emissions in this region are spatially highly heterogeneous. Spatially-resolved isotope and concentration measurements are interpreted using a simple emissions model to

  15. The impact of financial development on carbon emissions: An empirical analysis in China

    International Nuclear Information System (INIS)

    Zhang Yuejun

    2011-01-01

    Given the complexity between China's financial development and carbon emissions, this paper uses some econometric techniques, including cointegration theory, Granger causality test, variance decomposition, etc., to explore the influence of financial development on carbon emissions. Results indicate that, first, China's financial development acts as an important driver for carbon emissions increase, which should be taken into account when carbon emissions demand is projected. Second, the influence of financial intermediation scale on carbon emissions outweighs that of other financial development indicators but its efficiency's influence appears by far weaker although it may cause the change of carbon emissions statistically. Third, China's stock market scale has relatively larger influence on carbon emissions but the influence of its efficiency is very limited. This to some extent reflects the relatively lower liquidity in China's stock markets. Finally, among financial development indicators, China's FDI exerts the least influence on the change of carbon emissions, due to its relatively smaller volume compared with GDP; but it is mainly utilized in carbon intensive sectors now, therefore, with the increase of China's FDI in the future, many efforts should be made to adapt its utilizing directions and play its positive role in promoting low-carbon development. - Research Highlights: → This paper explores the influence of financial development on carbon emissions. → China's financial development appears to be an important driver for carbon emissions increase. → The influence of financial intermediation scale on carbon emissions outweighs that of other indicators. → China's stock market scale has relatively larger influence on carbon emissions but the influence of its efficiency is very limited. → China's FDI exerts the least influence on carbon emissions change, due to its relatively smaller volume compared with China's GDP.

  16. The impact of financial development on carbon emissions: An empirical analysis in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuejun, E-mail: zyjmis@126.co [School of Management and Economics, Beijing Institute of Technology, Beijing 100081 (China) and Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100081 (China)

    2011-04-15

    Given the complexity between China's financial development and carbon emissions, this paper uses some econometric techniques, including cointegration theory, Granger causality test, variance decomposition, etc., to explore the influence of financial development on carbon emissions. Results indicate that, first, China's financial development acts as an important driver for carbon emissions increase, which should be taken into account when carbon emissions demand is projected. Second, the influence of financial intermediation scale on carbon emissions outweighs that of other financial development indicators but its efficiency's influence appears by far weaker although it may cause the change of carbon emissions statistically. Third, China's stock market scale has relatively larger influence on carbon emissions but the influence of its efficiency is very limited. This to some extent reflects the relatively lower liquidity in China's stock markets. Finally, among financial development indicators, China's FDI exerts the least influence on the change of carbon emissions, due to its relatively smaller volume compared with GDP; but it is mainly utilized in carbon intensive sectors now, therefore, with the increase of China's FDI in the future, many efforts should be made to adapt its utilizing directions and play its positive role in promoting low-carbon development. - Research Highlights: {yields} This paper explores the influence of financial development on carbon emissions. {yields} China's financial development appears to be an important driver for carbon emissions increase. {yields} The influence of financial intermediation scale on carbon emissions outweighs that of other indicators. {yields} China's stock market scale has relatively larger influence on carbon emissions but the influence of its efficiency is very limited. {yields} China's FDI exerts the least influence on carbon emissions change, due to its relatively

  17. Spatial and temporal disaggregation of transport-related carbon dioxide emissions in Bogota - Colombia

    Science.gov (United States)

    Hernandez-Gonzalez, L. A.; Jimenez Pizarro, R.; Néstor Y. Rojas, N. Y.

    2011-12-01

    As a result of rapid urbanization during the last 60 years, 75% of the Colombian population now lives in cities. Urban areas are net sources of greenhouse gases (GHG) and contribute significantly to national GHG emission inventories. The development of scientifically-sound GHG mitigation strategies require accurate GHG source and sink estimations. Disaggregated inventories are effective mitigation decision-making tools. The disaggregation process renders detailed information on the distribution of emissions by transport mode, and the resulting a priori emissions map allows for optimal definition of sites for GHG flux monitoring, either by eddy covariance or inverse modeling techniques. Fossil fuel use in transportation is a major source of carbon dioxide (CO2) in Bogota. We present estimates of CO2 emissions from road traffic in Bogota using the Intergovernmental Panel on Climate Change (IPCC) reference method, and a spatial and temporal disaggregation method. Aggregated CO2 emissions from mobile sources were estimated from monthly and annual fossil fuel (gasoline, diesel and compressed natural gas - CNG) consumption statistics, and estimations of bio-ethanol and bio-diesel use. Although bio-fuel CO2 emissions are considered balanced over annual (or multi-annual) agricultural cycles, we included them since CO2 generated by their combustion would be measurable by a net flux monitoring system. For the disaggregation methodology, we used information on Bogota's road network classification, mean travel speed and trip length for each vehicle category and road type. The CO2 emission factors were taken from recent in-road measurements for gasoline- and CNG-powered vehicles and also estimated from COPERT IV. We estimated emission factors for diesel from surveys on average trip length and fuel consumption. Using IPCC's reference method, we estimate Bogota's total transport-related CO2 emissions for 2008 (reference year) at 4.8 Tg CO2. The disaggregation method estimation is

  18. Intensity autocorrelation measurements of frequency combs in the terahertz range

    Science.gov (United States)

    Benea-Chelmus, Ileana-Cristina; Rösch, Markus; Scalari, Giacomo; Beck, Mattias; Faist, Jérôme

    2017-09-01

    We report on direct measurements of the emission character of quantum cascade laser based frequency combs, using intensity autocorrelation. Our implementation is based on fast electro-optic sampling, with a detection spectral bandwidth matching the emission bandwidth of the comb laser, around 2.5 THz. We find the output of these frequency combs to be continuous even in the locked regime, but accompanied by a strong intensity modulation. Moreover, with our record temporal resolution of only few hundreds of femtoseconds, we can resolve correlated intensity modulation occurring on time scales as short as the gain recovery time, about 4 ps. By direct comparison with pulsed terahertz light originating from a photoconductive emitter, we demonstrate the peculiar emission pattern of these lasers. The measurement technique is self-referenced and ultrafast, and requires no reconstruction. It will be of significant importance in future measurements of ultrashort pulses from quantum cascade lasers.

  19. Parametric investigations on the saturation intensity of Coumarin 102 for stimulated emission depletion application.

    Science.gov (United States)

    Qin, H-Y; Zhao, W-X; Zhao, W; Zhang, C; Feng, X-Q; Liu, S-P; Wang, K-G

    2018-04-23

    Stimulated emission depletion (STED) microscopy performed using continuous-wave (CW) lasers has been investigated and developed by Willig et al. (Nature Methods, 2007, 4(11):915) for nearly a decade. Kuang et al. (Review of Scientific Instruments, 2010, 81:053709) developed the CW STED microscopy technique with 405 nm excitation and 532 nm depletion beams. In their research, Coumarin 102 dye was adopted and was found to be depletable. In this study, a parametric investigation of the depletion of Coumarin 102 dye is carried out experimentally. The influence of the excitation and depletion beam intensities and dye concentrations on the depletion efficiency are studied in detail. The results indicate the following: (1) The highest depletion occurs for the 100 μM Coumarin 102 solution, with a 1.4 μW excitation beam and a 115.3 mW depletion beam. (2) The minimum saturation intensity (Is) of STED, that is 13 MW cm -2 , is observed when the Coumarin 102 solution concentration is 10 μM. (3) Is values calculated directly from the depletion power derived with the cross-sectional area due to the full-width-at-half-maximum (FWHM) of the depletion beam show poor accuracy, where Is may be overestimated. Thus, a correction factor for the cross-sectional area is proposed. We also find that Is is not exactly constant for a fixed excitation beam power and dye concentration. This trend indicates that the conventional suppression function η(x)=e- ln (2)ISTED(x)/Is derived from picosecond STED may cause errors in evaluating the depletion process in CW STED microscopy. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  20. Effect of solvent-controlled aggregation on the intrinsic emission properties of PAMAM dendrimers

    International Nuclear Information System (INIS)

    Jasmine, Maria J.; Kavitha, Manniledam; Prasad, Edamana

    2009-01-01

    Solvent-induced aggregation and its effect on the intrinsic emission properties of amine, hydroxy and carboxylate terminated, poly(amidoamine) (PAMAM) dendrimers have been investigated in glycerol, ethylene glycol, methanol, ethylene diamine and water. Altering the solvent medium induces remarkable changes in the intrinsic emission properties of the PAMAM dendrimers at identical concentration. Upon excitation at 370 nm, amine terminated PAMAM dendrimer exhibits an intense emission at 470 nm in glycerol, ethylene glycol as well as glycerol-water mixtures. Conversely, weak luminescence is observed for hydroxy and carboxylate terminated PAMAM dendrimers in the same solvent systems. When the solvent is changed to ethylene diamine, hydroxy terminated PAMAM exhibits intense blue emission at 425 nm. While the emission intensity is varied when the solvent milieu is changed, excited state lifetime values of PAMAM dendrimers remain independent of the solvent used. UV-visible absorption and dynamic light scattering (DLS) experiments confirm the formation of solvent-controlled dendrimer aggregates in the systems. Comparison of the fluorescence and DLS data reveals that the size distribution of the dendrimer aggregates in each solvent system is distinct, which control the intrinsic emission intensity from PAMAM dendrimers. The experimental results suggest that intrinsic emission intensity from PAMAM dendrimers can be regulated by proper selection of solvents at neutral conditions and room temperature

  1. Estimating future energy use and CO2 emissions of the world's cities

    International Nuclear Information System (INIS)

    Singh, Shweta; Kennedy, Chris

    2015-01-01

    This paper develops a tool for estimating energy-related CO 2 emissions from the world's cities based on regression models. The models are developed considering climatic (heating-degree-days) and urban design (land area per person) independent variables. The tool is applied on 3646 urban areas for estimating impacts on urban emissions of a) global transitioning to Electric Vehicles, b) urban density change and c) IPCC climate change scenarios. Results show that urban density decline can lead to significant increase in energy emissions (upto 346% in electricity & 428% in transportation at 2% density decline by 2050). Among the IPCC climate scenarios tested, A1B is the most effective in reducing growth of emissions (upto 12% in electricity & 35% in heating). The tool can further be improved by including more data in the regression models along with inclusion of other relevant emissions and climatic variables. - Highlights: • A tool for estimation of energy related emissions for urban areas is developed. • Heating degree days and urbanized area per capita are driving variables for urban energy consumption. • Global transition to EVs can only mitigate transportation emissions if GHG intensity of electricity grid is reduced. • Density decline of urban areas can lead to exponential increase of energy related emissions. • Climate change scenarios can slightly reduce the growth of energy related emissions increase by 2050. - A tool for estimation of global impact of urban systems on energy related emissions was developed that can simulate the impact of future scenarios (climate change, urban design etc)

  2. Photophysics of fullerenes: Thermionic emission

    International Nuclear Information System (INIS)

    Compton, R.N.; Tuinman, A.A.; Huang, J.

    1996-01-01

    Multiphoton ionization of fullerenes using long-pulse length lasers occurs mainly through vibrational autoionization. In many cases the laser ionization can be described as thermionic in analogy to the boiling off of electrons from a filament. Thermionic emission manifests itself as a delayed emission of electrons following pulsed laser excitation. Klots has employed quasiequilibrium theory to calculate rate constants for thermionic emission from fullerenes which seem to quantitatively account for the observed delayed emission times and the measured electron energy distributions. The theory of Klots also accounts for the thermionic emission of C 60 excited by a low power CW Argon Ion laser. Recently Klots and Compton have reviewed the evidence for thermionic emission from small aggregates where mention was also made of experiments designed to determine the effects of externally applied electric fields on thermionic emission rates. The authors have measured the fullerene ion intensity as a function of the applied electric field and normalized this signal to that produced by single photon ionization of an atom in order to correct for all collection efficiency artifacts. The increase in fullerene ion signal relative to that of Cs + is attributed to field enhanced thermionic emission. From the slope of the Schottky plot they obtain a temperature of approximately 1,000 K. This temperature is comparable to but smaller than that estimated from measurements of the electron kinetic energies. This result for field enhanced thermionic emission is discussed further by Klots and Compton. Thermionic emission from neutral clusters has long been known for autodetachment from highly excited negative ions. Similarly, electron attachment to C 60 in the energy range from 8 to 12 eV results in C 60 anions with lifetimes in the range of microseconds. Quasiequilibrium theory (QET) calculations are in reasonable accord with these measurements

  3. Photophysics of fullerenes: Thermionic emission

    Energy Technology Data Exchange (ETDEWEB)

    Compton, R.N. [Univ. of Tennessee, Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States); Tuinman, A.A. [Univ. of Tennessee, Knoxville, TN (United States); Huang, J. [Ames Lab., IA (United States)

    1996-09-01

    Multiphoton ionization of fullerenes using long-pulse length lasers occurs mainly through vibrational autoionization. In many cases the laser ionization can be described as thermionic in analogy to the boiling off of electrons from a filament. Thermionic emission manifests itself as a delayed emission of electrons following pulsed laser excitation. Klots has employed quasiequilibrium theory to calculate rate constants for thermionic emission from fullerenes which seem to quantitatively account for the observed delayed emission times and the measured electron energy distributions. The theory of Klots also accounts for the thermionic emission of C{sub 60} excited by a low power CW Argon Ion laser. Recently Klots and Compton have reviewed the evidence for thermionic emission from small aggregates where mention was also made of experiments designed to determine the effects of externally applied electric fields on thermionic emission rates. The authors have measured the fullerene ion intensity as a function of the applied electric field and normalized this signal to that produced by single photon ionization of an atom in order to correct for all collection efficiency artifacts. The increase in fullerene ion signal relative to that of Cs{sup +} is attributed to field enhanced thermionic emission. From the slope of the Schottky plot they obtain a temperature of approximately 1,000 K. This temperature is comparable to but smaller than that estimated from measurements of the electron kinetic energies. This result for field enhanced thermionic emission is discussed further by Klots and Compton. Thermionic emission from neutral clusters has long been known for autodetachment from highly excited negative ions. Similarly, electron attachment to C{sub 60} in the energy range from 8 to 12 eV results in C{sub 60} anions with lifetimes in the range of microseconds. Quasiequilibrium theory (QET) calculations are in reasonable accord with these measurements.

  4. Developing the model of laser ablation by considering the interplay between emission and expansion of aluminum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, F.; Tavassoli, S. H. [Laser and Plasma Research Institute, ShahidBeheshti University, 19396 4716, G. C., Evin, Tehran (Iran, Islamic Republic of)

    2013-01-15

    In the present study, the ablation behavior of aluminum target and its plasma radiation in noble ambient gases by a laser pulse with wavelength of 266 nm and pulse duration of 10 ns are numerically studied. A thermal model of laser ablation considering heat conduction, Euler equations, Saha-Eggert equations, Knudsen layer, mass and energy balance relations and optical shielding effects are used for calculation of plasma parameters. Effects of excitation energy on plasma expansion and its emissivity are investigated. Time and spatial-resolved plasma emission including bremsstrahlung, recombination and spectral emission at early delay times after laser irradiation is obtained. Effects of two ambient gases (He and Ar) as well as different gas pressures of 100, 300, 500, and 760 Torr on plasma expansion and its spectrum are studied. Results illustrate that at initial delay times, especially at high noble gas pressures, ionic lines have the maximum intensities, while at later times neutral lines dominate. When the pressure of ambient gas increases, a confinement of the plasma plume is predicted and the intensity of neutral lines decreases. Continuous emission increases with wavelength in both ambient gases. Spatially resolved analysis shows that an intense continuous emission is predicted next to the sample surface decreasing with distance from the latter.

  5. Examining air pollution in China using production- and consumption-based emissions accounting approaches.

    Science.gov (United States)

    Huo, Hong; Zhang, Qiang; Guan, Dabo; Su, Xin; Zhao, Hongyan; He, Kebin

    2014-12-16

    Two important reasons for China's air pollution are the high emission factors (emission per unit of product) of pollution sources and the high emission intensity (emissions per unit of GDP) of the industrial structure. Therefore, a wide variety of policy measures, including both emission abatement technologies and economic adjustment, must be implemented. To support such measures, this study used the production- and consumption-based emissions accounting approaches to simulate the SO2, NOx, PM2.5, and VOC emissions flows among producers and consumers. This study analyzed the emissions and GDP performance of 36 production sectors. The results showed that the equipment, machinery, and devices manufacturing and construction sectors contributed more than 50% of air pollutant emissions, and most of their products were used for capital formation and export. The service sector had the lowest emission intensities, and its output was mainly consumed by households and the government. In China, the emission intensities of production activities triggered by capital formation and export were approximately twice that of the service sector triggered by final consumption expenditure. This study suggests that China should control air pollution using the following strategies: applying end-of-pipe abatement technologies and using cleaner fuels to further decrease the emission factors associated with rural cooking, electricity generation, and the transportation sector; continuing to limit highly emission-intensive but low value-added exports; developing a plan to reduce construction activities; and increasing the proportion of service GDP in the national economy.

  6. Optical emission studies of atomic and ionic species in the ionized sputter-deposition process of magnesium oxide thin films

    International Nuclear Information System (INIS)

    Matsuda, Y.; Koyama, Y.; Iwaya, M.; Shinohara, M.; Fujiyama, H.

    2005-01-01

    Planar magnetron (PM) power and ICP-RF power dependences of the optical emission intensities of excited atomic and ionic species in the reactive ionized sputter-deposition of magnesium oxide (MgO) thin films were investigated. With the increase in PM power at constant ICP-RF power, Mg I emission intensity increased and Ar I emission intensity gradually decreased. With the increase in ICP-RF power at constant PM power, the Mg I emission intensity increased at lower ICP-RF power and then gradually decreased at higher ICP-RF power; on the contrary, Ar I emission intensity monotonically increased. Emission intensity of atomic oxygen was negligibly small compared with those of Mg I and Ar I under the metallic sputtering mode condition

  7. Effects of grassland management on the emission of methane from grassland on peat soils

    Energy Technology Data Exchange (ETDEWEB)

    Oenema, O. [Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, Wageningen (Netherlands)

    1995-12-31

    The aim of the project on the title subject is to provide insight into the major controlling factors that contribute to the net exchange rates of methane (CH4) between grassland and atmosphere, and to provide quantitative net CH4 emission rates. Net CH4 emissions have been monitored with vented closed flux chambers on both intensively managed grasslands and grasslands in a nature preserve on peat soil in the Netherlands. Net CH4 emissions from intensively managed grasslands (Zegveld, Netherlands) were low in the period January-December 1994, in general in the range of -0.2 to 0.2 mg CH4 m{sup -2} d{sup -1}. Only in the relatively warm summer of 1994, consumption of atmospheric CH4 of about 0.4 mg m{sup -2} d{sup -1} was measured. Effects of ground water level in the range of 30-60 cm below surface were very small. There were also no clear effects of nitrogen fertilization and grazing versus mowing on CH4 emission from the soil. Net CH4 emissions from three extensively managed grasslands in a nature preserve (Nieuwkoopse Plassen area in the Netherlands) ranged from 0-215 mg CH4 m{sup -2} d{sup -1} in the period January 1994-June 1995. Differences between the three sites were quite large, as were the spatial variations at each of the sites. The results presented here indicate that a shift of intensively managed peat grasslands into more natural ecosystems will significantly increase the contribution of Dutch peat soils to the total CH4 emission. refs.

  8. Does EU emissions trading bite? An event study

    International Nuclear Information System (INIS)

    Jong, Thijs; Couwenberg, Oscar; Woerdman, Edwin

    2014-01-01

    The aim of this paper is to examine whether shareholders consider the EU Emissions Trading Scheme (EU ETS) as value-relevant for the participating firms. An analysis is conducted of the share prices changes as caused by the first publication of compliance data in April, 2006, which disclosed an over-allocation of emission allowances. Through an event study, it is shown that share prices actually increased as a result of the allowance price drop when firms have a lower carbon-intensity of production and larger allowance holdings. There was no significant value impact from firms' allowance trade activity or from the pass-through of carbon-related production costs (carbon leakage). The conclusion is that the EU ETS does ‘bite’. The main impact on the share prices of firms arises from their carbon-intensity of production. The EU ETS is thus valued as a restriction on pollution. - Highlights: • Firms are more positively valued with lower carbon-intensities of production. • Firms are more negatively valued with smaller holdings of allowances. • The stock market does not value the firms' allowance trade activity. • The stock market does not seem to value the pass-through of carbon costs in product prices

  9. Energy consumption and CO2 emissions in Iran, 2025

    International Nuclear Information System (INIS)

    Mirzaei, Maryam; Bekri, Mahmoud

    2017-01-01

    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO 2 emissions. A system dynamic model was developed in this study to model the energy consumption and CO 2 emission trends for Iran over 2000–2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO 2 emissions in 2025 will reach 985 million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO 2 emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO 2 emission outlines. - Highlights: • Creation of an energy consumption model using system dynamics. • The effect of different policies on energy consumption and emission reductions. • An ascending trend for the environmental costs caused by CO 2 emissions is observed. • An urgent need for energy saving and emission reductions in Iran.

  10. In Situ Measurement of Alkali Metals in an MSW Incinerator Using a Spontaneous Emission Spectrum

    Directory of Open Access Journals (Sweden)

    Weijie Yan

    2017-03-01

    Full Text Available This paper presents experimental investigations of the in situ diagnosis of the alkali metals in the municipal solid waste (MSW flame of an industrial grade incinerator using flame emission spectroscopy. The spectral radiation intensities of the MSW flame were obtained using a spectrometer. A linear polynomial fitting method is proposed to uncouple the continuous spectrum and the characteristic line. Based on spectra processing and a non-gray emissivity model, the flame temperature, emissivity, and intensities of the emission of alkali metals were calculated by means of measuring the spectral radiation intensities of the MSW flame. Experimental results indicate that the MSW flame contains alkali metals, including Na, K, and even Rb, and it demonstrates non-gray characteristics in a wavelength range from 500 nm to 900 nm. Peak intensities of the emission of the alkali metals were found to increase when the primary air was high, and the measured temperature varied in the same way as the primary air. The temperature and peak intensities of the lines of emission of the alkali metals may be used to adjust the primary airflow and to manage the feeding of the MSW to control the alkali metals in the MSW flame. It was found that the peak intensity of the K emission line had a linear relationship with the peak intensity of the Na emission line; this correlation may be attributed to their similar physicochemical characteristics in the MSW. The variation trend of the emissivity of the MSW flame and the oxygen content in the flue gas were almost opposite because the increased oxygen content suppressed soot formation and decreased soot emissivity. These results prove that the flame emission spectroscopy technique is feasible for monitoring combustion in the MSW incinerator in situ.

  11. Dual-emissive quantum dots for multispectral intraoperative fluorescence imaging.

    Science.gov (United States)

    Chin, Patrick T K; Buckle, Tessa; Aguirre de Miguel, Arantxa; Meskers, Stefan C J; Janssen, René A J; van Leeuwen, Fijs W B

    2010-09-01

    Fluorescence molecular imaging is rapidly increasing its popularity in image guided surgery applications. To help develop its full surgical potential it remains a challenge to generate dual-emissive imaging agents that allow for combined visible assessment and sensitive camera based imaging. To this end, we now describe multispectral InP/ZnS quantum dots (QDs) that exhibit a bright visible green/yellow exciton emission combined with a long-lived far red defect emission. The intensity of the latter emission was enhanced by X-ray irradiation and allows for: 1) inverted QD density dependent defect emission intensity, showing improved efficacies at lower QD densities, and 2) detection without direct illumination and interference from autofluorescence. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. PREDICTION OF FORBIDDEN ULTRAVIOLET AND VISIBLE EMISSIONS IN COMET 67P/CHURYUMOV–GERASIMENKO

    International Nuclear Information System (INIS)

    Raghuram, Susarla; Galand, Marina; Bhardwaj, Anil

    2016-01-01

    Remote observation of spectroscopic emissions is a potential tool for the identification and quantification of various species in comets. The CO Cameron band (to trace CO 2 ) and atomic oxygen emissions (to trace H 2 O and/or CO 2 , CO) have been used to probe neutral composition in the cometary coma. Using a coupled-chemistry-emission model, various excitation processes controlling the CO Cameron band and different atomic oxygen and atomic carbon emissions have been modeled in comet 67P/Churyumov–Gerasimenko at 1.29 AU (perihelion) and at 3 AU heliocentric distances, which is being explored by ESA's Rosetta mission. The intensities of the CO Cameron band, atomic oxygen, and atomic carbon emission lines as a function of projected distance are calculated for different CO and CO 2 volume mixing ratios relative to water. Contributions of different excitation processes controlling these emissions are quantified. We assess how CO 2 and/or CO volume mixing ratios with respect to H 2 O can be derived based on the observed intensities of the CO Cameron band, atomic oxygen, and atomic carbon emission lines. The results presented in this work serve as baseline calculations to understand the behavior of low out-gassing cometary coma and compare them with the higher gas production rate cases (e.g., comet Halley). Quantitative analysis of different excitation processes governing the spectroscopic emissions is essential to study the chemistry of inner coma and to derive neutral gas composition

  13. Control of Several Emissions during Olive Pomace Thermal Degradation

    Directory of Open Access Journals (Sweden)

    Teresa Miranda

    2014-10-01

    Full Text Available Biomass plays an important role as an energy source, being an interesting alternative to fossil fuels due to its environment-friendly and sustainable characteristics. However, due to the exposure of customers to emissions during biomass heating, evolved pollutants should be taken into account and controlled. Changing raw materials or mixing them with another less pollutant biomass could be a suitable step to reduce pollution. This work studied the thermal behaviour of olive pomace, pyrenean oak and their blends under combustion using thermogravimetric analysis. It was possible to monitor the emissions released during the process by coupling mass spectrometry analysis. The experiments were carried out under non-isothermal conditions at the temperature range 25–750 °C and a heating rate of 20 °C·min−1. The following species were analysed: aromatic compounds (benzene and toluene, sulphur emissions (sulphur dioxide, 1,4-dioxin, hydrochloric acid, carbon dioxide and nitrogen oxides. The results indicated that pollutants were mainly evolved in two different stages, which are related to the thermal degradation steps. Thus, depending on the pollutant and raw material composition, different emission profiles were observed. Furthermore, intensity of the emission profiles was related, in some cases, to the composition of the precursor.

  14. Energy consumption and CO2 emissions in Iran, 2025.

    Science.gov (United States)

    Mirzaei, Maryam; Bekri, Mahmoud

    2017-04-01

    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO 2 emissions. A system dynamic model was developed in this study to model the energy consumption and CO 2 emission trends for Iran over 2000-2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO 2 emissions in 2025 will reach 985million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO 2 emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO 2 emission outlines. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Climate and competitiveness: An economic impact assessment of EU leadership in emission control policies

    Energy Technology Data Exchange (ETDEWEB)

    Alexeeva-Talebi, V.; Boehringer, C.; Moslener, U. [Centre for European Economic Research, Mannheim (Germany)

    2007-07-01

    The European Council has recently claimed to consider ambitious emission reduction targets (15 to 30 percent by 2020 as compared to 1990 levels) to limit global climate change. In light of the coexistent EU priorities under the Lisbon process, the authors analyze alternative unilateral EU emission control policies against their effects on EU (sectoral and economy-wide) competitiveness using a multi-sector, multi-region computable general equilibrium (CGE) model framework. For a given emission reduction target, the simulations show that alternative implementation rules (uniform versus sectorally differentiated carbon taxes) induce ambiguous impacts on sectoral competitiveness: For a uniform tax, relatively carbon-intensive EU industries face competitiveness losses, while carbon-extensive sectors improve their ability to compete internationally. Losses and gains are reinforced by the stringency of unilateral emission reduction targets. Thus, the implementation of an (economically efficient) uniform carbon tax induces structural change which inevitably goes at the expense of carbon-intensive industries. Vice versa, the authors find that more pronounced tax differentiation in favor of carbon-intensive industries can largely neutralize the negative impacts of emission constraints on their competitiveness, but goes at the expense of overall efficiency. In this case, adjustment costs of emission abatement will to a large extent be born by energy-extensive sectors in terms of a deteriorated ability to compete. As a middle course, moderate tax differentiation allows to sectorally balance competitiveness effects of emission control policies and at the same time limit overall efficiency losses. The authors find also that the level of tax differentiation to balance sectoral competitiveness effects and to limit overall efficiency losses is independent of the emission reduction target. Furthermore, the results indicate that the magnitude of sectoral competitiveness effects is

  16. Changes in agricultural carbon emissions and factors that influence agricultural carbon emissions based on different stages in Xinjiang, China

    Science.gov (United States)

    Xiong, Chuanhe; Yang, Degang; Xia, Fuqiang; Huo, Jinwei

    2016-01-01

    Xinjiang’s agricultural carbon emissions showed three stages of change, i.e., continued to rise, declined and continued to rise, during 1991–2014. The agriculture belonged to the “low emissions and high efficiency” agriculture category, with a lower agricultural carbon emission intensity. By using the logarithmic mean divisia index decomposition method, agricultural carbon emissions were decomposed into an efficiency factor, a structure factor, an economy factor, and a labour factor. We divided the study period into five stages based on the changes in efficiency factor and economy factor. Xinjiang showed different agricultural carbon emission characteristics at different stages. The degree of impact on agricultural carbon emissions at these stages depended on the combined effect of planting-animal husbandry carbon intensity and agricultural labour productivity. The economy factor was the critical factor to promote the increase in agricultural carbon emissions, while the main inhibiting factor for agricultural carbon emissions was the efficiency factor. The labour factor became more and more obvious in increasing agricultural carbon emissions. Finally, we discuss policy recommendations in terms of the main factors, including the development of agricultural science and technology (S&T), the establishment of three major mechanisms and transfer of rural labour in ethnic areas. PMID:27830739

  17. A prospective window into medical device-related pressure ulcers in intensive care.

    Science.gov (United States)

    Coyer, Fiona M; Stotts, Nancy A; Blackman, Virginia Schmied

    2014-12-01

    The aim of this study was to determine the prevalence, severity, location, aetiology, treatment and healing of medical device-related pressure ulcers (PUs) in intensive care patients for up to 7 days. A prospective repeated measures study design was used. Patients in six intensive care units of two major medical centres, one each in Australia and the USA, were screened 1 day per month for 6 months. Those with device-related ulcers were followed daily for up to 7 days. The outcome measures were device-related ulcer prevalence, pain, infection, treatment and healing. Fifteen of 483 patients had device-related ulcers and 9 of 15 with 11 ulcers were followed beyond screening. Their mean age was 60·5 years, and most were men, overweight and at increased risk of PU. Endotracheal (ET) and nasogastric (NG) tubes were the cause of most device-related ulcers. Repositioning was the most frequent treatment. Four of 11 ulcers healed within the 7-day observation period. In conclusion, device-related ulcer prevalence was 3·1%, similar to that reported in the limited literature available, indicating an ongoing problem. Systematic assessment and repositioning of devices are the mainstays of care. We recommend continued prevalence determination and that nurses remain vigilant to prevent device-related ulcers, especially in patients with NG and ET tubes. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  18. Study of Thermal-Field Emission Properties and Investigation of Temperature dependent Noise in the Emission Current form vertical Carbon nanotube emitters

    KAUST Repository

    Kolekar, Sadhu

    2017-05-05

    We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well defined cathode surface is given by Millikan and Lauritsen [1] for the combination of temperature and electric field effect. The same expression has been used to explain the electron emission characteristics from vertical CNT emitters. Furthermore, this has been applied to explain the electron emission for different temperatures ranging from room temperature to 1500 K. The real-time field electron emission images at room temperature and 1500 K are recorded by using Charge Coupled Device (CCD), in order to understand the effect of temperature on electron emission spots in image morphology (as indicated by ring like structures) and electron emission spot intensity of the emitters. Moreover, the field electron emission images can be used to calculate the total number of emitters per cm2 for electron emission. The calculated number of emitters per cm2 is 4.5x107 and, the actual number emitters per cm2 present for electron emission calculated from Atomic Force Microscopy (AFM) data is 1.2x1012. The measured Current-Voltage (I-V) characteristics obey the Folwer-Nordheim (F-N) type behavior. The fluctuations in the emission current are recorded at different temperatures and, temperature dependence of power spectral density obeys power law relation s(f)=I2/f2 with that of emission current and frequency.

  19. Mitigation of emissions from wildfires in Australia: potential for use of managed prescribed fire in eucalypt dominated vegetation, present and future. (Invited)

    Science.gov (United States)

    Bradstock, R.; Price, O.; Williams, D.; Hutley, L.

    2010-12-01

    Species of Eucalyptus and other closely related genera dominate woodlands and forests in the moist regions of tropical and temperate Australia. Respectively, these savanna woodlands and open forests are highly fire prone, though fire regimes are fundamentally different due to inherent influences of weather, fuels, ignitions and terrain. Fuel reduction via prescribed burning is commonly used in both savanna woodlands and temperate, open forests with the intention of reducing the incidence, extent and intensity of wildfires and subsequent risk to human and environmental assets. The prospect of mitigation of greenhouse gas emissions from wildfires provides further impetus for extensive use of prescribed fire. This potential is dependent on a number of key factors, namely the efficacy of this fuel reduction technique and the relative difference in the intensity of prescribed fires and wildfires. We present a conceptual model of the potential for prescribed fire to mitigate emissions based on these key factors. Prescribed burning requires an outlay of emissions in return for a saving through a reduction in area burned and intensity of subsequent wildfires. If the reduction in area burned by wildfires, achieved through prescribed burning, is relatively small then the reduction in intensity of wildfires must be relatively large in order to achieve a net reduction in emissions. This is not the case if prescribed burning has a strong effect in reducing the size of wildfires. Contemporary data indicate that the effect of prescribed burning in reducing area burned by wildfires is high in savanna woodlands but relatively low in forests. Corresponding potential for mitigation of emissions is therefore high and low respectively. We tested this prediction for forests by estimating fire intensity and fuel consumption using a range of fuel accumulation models for south eastern Australian forests. The results indicate that at the level of effectiveness of prescribed fire achieved

  20. A comparison of Latin American energy-related CO2 emissions from 1970 to 2001

    International Nuclear Information System (INIS)

    Kuntsi-Reunanen, E.

    2007-01-01

    This study analyses CO 2 emission flows and energy use in the Latin American countries of Argentina, Brazil, Colombia, Mexico and Venezuela from the years 1971-2001. Results for the selected Latin American countries reveal that the changes in CO 2 intensities were quite similar in these countries. However, the energy use varied slightly, indicating differences in the energy utilization in the analysed countries. Examining the changes on energy use suggests that there were no significant changes in any of these countries' energy utilization during that period, but the energy markets are growing quite rapidly in all of these Latin American countries

  1. Comparing climate policies to reduce carbon emissions in China

    International Nuclear Information System (INIS)

    Li, Aijun; Lin, Boqiang

    2013-01-01

    Currently, China is the largest carbon emitter mainly due to growing consumption of fossil fuels. In 2009, the Chinese government committed itself to reducing domestic carbon emissions per unit of GDP by 40–45% by 2020 compared to 2005 levels. Therefore, it is a top priority for the Chinese government to adopt efficient policy instruments to reduce its carbon intensity. Against this background, this paper develops a general equilibrium model and seeks to provide empirical contributions by comparing the potential impacts of several different policy options to reduce China's carbon emissions. The main findings are as follows. Firstly, these climate policies would affect the structure of economy and contribute to carbon emissions reduction and carbon intensity reduction. Secondly, there would be significant differences in the economic and environmental effects among different climate policies and hence, the government would trade-off among different economic objectives to overcome any potential resistances. Thirdly, there would be considerable differences in the emissions effects of absolute and intensity-based carbon emissions controls, implying that the government might adopt different climate policies for absolute or intensity-based carbon emissions controls. Looking ahead, the government should trade-off among different objectives when designing climate reforms. - Highlights: • We develop a static general equilibrium model to simulate the impacts of climate policies. • We compare the potential impacts of various climate policies in China. • We discuss how to design these policies to make them more effective

  2. Carbon Dioxide Emissions: 17 Years and Still Talking

    International Nuclear Information System (INIS)

    Meyer, Ch.

    2010-01-01

    This paper, written in French and in English, examines how the figures have changed from Kyoto base year 1990 up to 2007, before looking at certain countries' proposals for the future of their carbon dioxide emissions. Statistics are given concerning the emissions changes in various countries (or groups of countries) but also their developments in regards to the economy and energy use. Changes in CO 2 emissions, changes in the gross domestic product of a country, its CO 2 emissions per capita, its energy intensity (the ratio of energy use to the monetary value of GDP) and its carbon intensity of energy use as well as population change, are presented. The main countries considered are: United States, European Union, China, Japan, India, Brazil, South Africa and Russia

  3. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values...

    Science.gov (United States)

    2010-07-01

    ...-based fuel economy and carbon-related exhaust emission values for a model type. 600.208-12 Section 600... ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later...-based and HFET-based fuel economy and carbon-related exhaust emission values for a model type. (a) Fuel...

  4. Increasing land-use intensity reverses the relative occupancy of two quadrupedal scavengers.

    Directory of Open Access Journals (Sweden)

    Joshua P Twining

    Full Text Available Human land use is continuously altering the natural environment, yet the greater ecological implications of this change for many groups that are key to healthy ecosystem functioning remains uncharacterised in the tropics. Terrestrial scavenging vertebrates are one such group, providing integral ecosystem services through the removal of carrion which is a crucial component of both nutrient cycling and disease dynamics. To explore how anthropogenic processes may affect forest scavengers, we investigated the changes in the relative occupancy of two important terrestrial scavengers along a gradient of land use intensity, ranging from protected forest to oil palm plantation in Borneo. We found the Malay civet (Viverra tangalunga had highest, albeit variable, occupancy in areas of low land use intensity and the Southeast Asian water monitor (Varanus salvator macromaculatus had highest occupancy in areas of high land use intensity. Land use had no effect on the combined occupancy of the two species. In high land use intensity sites, individual water monitors were larger and had better body condition, but at population level had a highly biased sex ratio with more males than females and increased signs of intraspecific conflict. We did not assess scavenging rate or efficiency as a process, but the high occupancy rates and apparent health of the scavengers in high land use intensity landscapes suggests this ecological process is robust to land use change.

  5. Creation and characterization of He-related color centers in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Forneris, J., E-mail: forneris@to.infn.it [Istituto Nazionale di Fisica Nucleare (INFN), Sez. Torino, via P. Giuria 1, 10125 Torino (Italy); Physics Department and “NIS” Inter-departmental Centre - University of Torino, 10125 Torino (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Sez. Torino, Torino (Italy); Tengattini, A.; Tchernij, S. Ditalia [Physics Department and “NIS” Inter-departmental Centre - University of Torino, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sez. Torino, via P. Giuria 1, 10125 Torino (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Sez. Torino, Torino (Italy); Picollo, F. [Istituto Nazionale di Fisica Nucleare (INFN), Sez. Torino, via P. Giuria 1, 10125 Torino (Italy); Physics Department and “NIS” Inter-departmental Centre - University of Torino, 10125 Torino (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Sez. Torino, Torino (Italy); Battiato, A. [Physics Department and “NIS” Inter-departmental Centre - University of Torino, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sez. Torino, via P. Giuria 1, 10125 Torino (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Sez. Torino, Torino (Italy); Traina, P.; Degiovanni, I.P.; Moreva, E.; Brida, G. [Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, 10135 Torino (Italy); Grilj, V.; Skukan, N.; Jakšić, M. [Ruđer Bošković Institute, Bijenicka 54, P.O. Box 180, 10002 Zagreb (Croatia); and others

    2016-11-15

    Diamond is a promising material for the development of emerging applications in quantum optics, quantum information and quantum sensing. The fabrication and characterization of novel luminescent defects with suitable opto-physical properties is therefore of primary importance for further advances in these research fields. In this work we report on the investigation in the formation of photoluminescent (PL) defects upon MeV He implantation in diamond. Such color centers, previously reported only in electroluminescence and cathodoluminescence regime, exhibited two sharp emission lines at 536.5 nm and 560.5 nm, without significant phonon sidebands. A strong correlation between the PL intensities of the above-mentioned emission lines and the He implantation fluence was found in the 10{sup 15}–10{sup 17} cm{sup −2} fluence range. The PL emission features were not detected in control samples, i.e. samples that were either unirradiated or irradiated with different ion species (H, C). Therefore, the PL features are attributed to optically active defects in the diamond matrix associated with He impurities. The intensity of the 536.5 nm and 560.5 nm emission lines was investigated as a function of the annealing temperature of the diamond substrate. The emission was observed upon annealing at temperatures higher than 500 °C, at the expenses of the concurrently decreasing neutral-vacancy-related GR1 emission intensity. Therefore, our findings indicate that the luminescence originates from the formation of a stable lattice defect. Finally, photoluminescence from He-related defects was observed under different laser excitations wavelengths (i.e. 532 nm and 405 nm), thus providing promising evidence of a broad spectral range for optical stimulation. - Highlights: • Creation of luminescent defects in single-crystal diamond upon He implantation. • First observation of photoluminescent emission from two sharp emission lines at 536.5 and 560.5 nm. • Attribution of the

  6. Creation and characterization of He-related color centers in diamond

    International Nuclear Information System (INIS)

    Forneris, J.; Tengattini, A.; Tchernij, S. Ditalia; Picollo, F.; Battiato, A.; Traina, P.; Degiovanni, I.P.; Moreva, E.; Brida, G.; Grilj, V.; Skukan, N.; Jakšić, M.

    2016-01-01

    Diamond is a promising material for the development of emerging applications in quantum optics, quantum information and quantum sensing. The fabrication and characterization of novel luminescent defects with suitable opto-physical properties is therefore of primary importance for further advances in these research fields. In this work we report on the investigation in the formation of photoluminescent (PL) defects upon MeV He implantation in diamond. Such color centers, previously reported only in electroluminescence and cathodoluminescence regime, exhibited two sharp emission lines at 536.5 nm and 560.5 nm, without significant phonon sidebands. A strong correlation between the PL intensities of the above-mentioned emission lines and the He implantation fluence was found in the 10 15 –10 17 cm −2 fluence range. The PL emission features were not detected in control samples, i.e. samples that were either unirradiated or irradiated with different ion species (H, C). Therefore, the PL features are attributed to optically active defects in the diamond matrix associated with He impurities. The intensity of the 536.5 nm and 560.5 nm emission lines was investigated as a function of the annealing temperature of the diamond substrate. The emission was observed upon annealing at temperatures higher than 500 °C, at the expenses of the concurrently decreasing neutral-vacancy-related GR1 emission intensity. Therefore, our findings indicate that the luminescence originates from the formation of a stable lattice defect. Finally, photoluminescence from He-related defects was observed under different laser excitations wavelengths (i.e. 532 nm and 405 nm), thus providing promising evidence of a broad spectral range for optical stimulation. - Highlights: • Creation of luminescent defects in single-crystal diamond upon He implantation. • First observation of photoluminescent emission from two sharp emission lines at 536.5 and 560.5 nm. • Attribution of the emission lines to

  7. Optimisation of efficiency and emissions in pellet burners

    International Nuclear Information System (INIS)

    Eskilsson, David; Roennbaeck, Marie; Samuelsson, Jessica; Tullin, Claes

    2004-01-01

    There is a trade-off between the emissions of nitrogen oxides (NO x ) and of unburnt hydrocarbons and carbon monoxide (OGC and CO). Decreasing the excess air results in lower NO x emission but also increased emission of unburnt. The efficiency increases, as the excess air is decreased until the losses due to incomplete combustion become too high. The often-high NO x emission in today's pellet burners can be significantly reduced using well-known techniques such as air staging. The development of different chemical sensors is very intensive and recently sensors for CO and OGC have been introduced on the market. These sensors may, together with a Lambda sensor, provide efficient control for optimal performance with respect to emissions and efficiency. In this paper, results from an experimental parameter study in a modified commercial burner, followed by Chemkin simulations with relevant input data and experiments in a laboratory reactor and in a prototype burner, are summarised. Critical parameters for minimisation of NO x emission from pellet burners are investigated in some detail. Also, results from tests of a new sensor for unburnt are reported. In conclusion, relatively simple design modifications can significantly decrease NO x emission from today's pellet burners

  8. US long-term energy intensity: Backcast and projection

    International Nuclear Information System (INIS)

    Dowlatabadi, Hadi; Oravetz, Matthew A.

    2006-01-01

    Energy intensity of the economy is often modeled as being determined by the combined effect of a fixed price elasticity of demand, and an exogenously specified, fixed technical change parameter denoted as the autonomous energy efficiency improvement (AEEI). Typically, the AEEI rate is set to 0.5-1.5% improvement per annum. Here, we study historic aggregate energy intensity trends for the US from 1954 to 1994. We show that the historic trends are inconsistent with an autonomous model of improved energy efficiency-especially when the model is used to inform policies that impact energy prices. As an alternative we propose a model of price-induced efficiency, π, in which aggregate energy intensity trends respond to changes in energy prices beyond price elasticity of demand ε. Our exercise reveals that the aggregate price elasticity of energy demand of the US economy has declined by roughly 15% over the past four decades. But beyond this decline, bringing our simulations and historical data into close correspondence requires π to change sign before and after 1974. Before 1974, after accounting for price elasticity of demand, the economy was growing less energy efficient. After 1974, after accounting for the price elasticity of demand, the economy was growing more energy efficient. Furthermore, since 1984, the rate of energy efficiency gain has been declining. When projections of long-term energy use are compared, those with a price-induced energy efficiency formulation generate significantly more price sensitive energy use and emissions trajectories. When in the business as usual scenario energy prices are expected to be rising, climate policies involve lower shadow carbon prices with π than with AEEI formulations. In scenarios where energy prices are relatively flat, energy intensity rises leading to CO 2 emissions far higher than standard business as usual projections utilizing AEEI assumptions

  9. US long-term energy intensity: backcast and projection

    International Nuclear Information System (INIS)

    Dowlatabadi, H.; Oravetz, M.A.

    2006-01-01

    Energy intensity of the economy is often modeled as being determined by the combined effect of a fixed price elasticity of demand, and an exogenously specified, fixed technical change parameter denoted as the autonomous energy efficiency improvement (AEEI). Typically, the AEEI rate is set to 0.5-1.5% improvement per annum. Here, we study historic aggregate energy intensity trends for the US from 1954 to 1994. We show that the historic trends are inconsistent with an autonomous model of improved energy efficiency - especially when the model is used to inform policies that impact energy prices. As an alternative we propose a model of price-induced efficiency, π, in which aggregate energy intensity trends respond to changes in energy prices beyond price elasticity of demandε. Our exercise reveals that the aggregate price elasticity of energy demand of the US economy has declined by roughly 15% over the past four decades. But beyond this decline, bringing our simulations and historical data into close correspondence requires π to change sign before and after 1974. Before 1974, after accounting for price elasticity of demand, the economy was growing less energy efficient. After 1974, after accounting for the price elasticity of demand, the economy was growing more energy efficient. Furthermore, since 1984, the rate of energy efficiency gain has been declining. When projections of long-term energy use are compared, those with a price-induced energy efficiency formulation generate significantly more price sensitive energy use and emissions trajectories. When in the business as usual scenario energy prices are expected to be rising, climate policies involve lower shadow carbon prices with π than with AEEI formulations. In scenarios where energy prices are relatively flat, energy intensity rises leading to CO 2 emissions far higher than standard business as usual projections utilizing AEEI assumptions. (Author)

  10. US long-term energy intensity: backcast and projection

    Energy Technology Data Exchange (ETDEWEB)

    Dowlatabadi, H. [University of British Columbia, Vancouver (Canada); Oravetz, M.A. [International Energy Agency, Paris (France)

    2006-11-15

    Energy intensity of the economy is often modeled as being determined by the combined effect of a fixed price elasticity of demand, and an exogenously specified, fixed technical change parameter denoted as the autonomous energy efficiency improvement (AEEI). Typically, the AEEI rate is set to 0.5-1.5% improvement per annum. Here, we study historic aggregate energy intensity trends for the US from 1954 to 1994. We show that the historic trends are inconsistent with an autonomous model of improved energy efficiency - especially when the model is used to inform policies that impact energy prices. As an alternative we propose a model of price-induced efficiency, {pi}, in which aggregate energy intensity trends respond to changes in energy prices beyond price elasticity of demand{epsilon}. Our exercise reveals that the aggregate price elasticity of energy demand of the US economy has declined by roughly 15% over the past four decades. But beyond this decline, bringing our simulations and historical data into close correspondence requires {pi} to change sign before and after 1974. Before 1974, after accounting for price elasticity of demand, the economy was growing less energy efficient. After 1974, after accounting for the price elasticity of demand, the economy was growing more energy efficient. Furthermore, since 1984, the rate of energy efficiency gain has been declining. When projections of long-term energy use are compared, those with a price-induced energy efficiency formulation generate significantly more price sensitive energy use and emissions trajectories. When in the business as usual scenario energy prices are expected to be rising, climate policies involve lower shadow carbon prices with {pi} than with AEEI formulations. In scenarios where energy prices are relatively flat, energy intensity rises leading to CO{sub 2} emissions far higher than standard business as usual projections utilizing AEEI assumptions. (Author)

  11. Intensity, but not duration, of physical activities is related to cognitive function

    NARCIS (Netherlands)

    Angevaren, Maaike; Vanhees, Luc; Wendel-Vos, Wanda; Verhaar, Harald J. J.; Aufdernkarnpe, Geert; Aleman, Andrie; Verschuren, W. M. Monique

    2007-01-01

    Background Physical activity is thought to facilitate cognitive performance and to slow down the rate of age-related cognitive decline. This study aimed to investigate the association between the time spent on physical activity as well as the average intensity of these activities and cognitive

  12. Intensity, but not duration of physical activities is related to cognitive function.

    NARCIS (Netherlands)

    A. Aleman; Geert Aufdemkampe; H.J. Verhaar; W. Wendel-Vos; Drs. Maaike Angevaren; Prof. Dr. Luc L.E.M.J. Vanhees; W.M. Verschuren

    2007-01-01

    Background: Physical activity is thought to facilitate cognitive performance and to slow down the rate of age-related cognitive decline. This study aimed to investigate the association between the time spent on physical activity as well as the average intensity of these activities and cognitive

  13. Beta decay of the fission product 125Sb and a new complete evaluation of absolute gamma ray transition intensities

    Science.gov (United States)

    Rajput, M. U.; Ali, N.; Hussain, S.; Mujahid, S. A.; MacMahon, D.

    2012-04-01

    The radionuclide 125Sb is a long-lived fission product, which decays to 125Te by negative beta emission with a half-life of 1008 day. The beta decay is followed by the emission of several gamma radiations, ranging from low to medium energy, that can suitably be used for high-resolution detector calibrations, decay heat calculations and in many other applications. In this work, the beta decay of 125Sb has been studied in detail. The complete published experimental data of relative gamma ray intensities in the beta decay of the radionuclide 125Sb has been compiled. The consistency analysis was performed and discrepancies found at several gamma ray energies. Evaluation of the discrepant data was carried out using Normalized Residual and RAJEVAL methods. The decay scheme balance was carried out using beta branching ratios, internal conversion coefficients, populating and depopulating gamma transitions to 125Te levels. The work has resulted in the consistent conversion factor equal to 29.59(13) %, and determined a new evaluated set of the absolute gamma ray emission probabilities. The work has also shown 22.99% of the delayed intensity fraction as outgoing from the 58 d isomeric 144 keV energy level and 77.01% of the prompt intensity fraction reaching to the ground state from the other excited states. The results are discussed and compared with previous evaluations. The present work includes additional experimental data sets which were not included in the previous evaluations. A new set of recommended relative and absolute gamma ray emission probabilities is presented.

  14. Beta decay of the fission product 125Sb and a new complete evaluation of absolute gamma ray transition intensities

    International Nuclear Information System (INIS)

    Rajput, M.U.; Ali, N.; Hussain, S.; Mujahid, S.A.; MacMahon, D.

    2012-01-01

    The radionuclide 125 Sb is a long-lived fission product, which decays to 125 Te by negative beta emission with a half-life of 1008 day. The beta decay is followed by the emission of several gamma radiations, ranging from low to medium energy, that can suitably be used for high-resolution detector calibrations, decay heat calculations and in many other applications. In this work, the beta decay of 125 Sb has been studied in detail. The complete published experimental data of relative gamma ray intensities in the beta decay of the radionuclide 125 Sb has been compiled. The consistency analysis was performed and discrepancies found at several gamma ray energies. Evaluation of the discrepant data was carried out using Normalized Residual and RAJEVAL methods. The decay scheme balance was carried out using beta branching ratios, internal conversion coefficients, populating and depopulating gamma transitions to 125 Te levels. The work has resulted in the consistent conversion factor equal to 29.59(13) %, and determined a new evaluated set of the absolute gamma ray emission probabilities. The work has also shown 22.99% of the delayed intensity fraction as outgoing from the 58 d isomeric 144 keV energy level and 77.01% of the prompt intensity fraction reaching to the ground state from the other excited states. The results are discussed and compared with previous evaluations. The present work includes additional experimental data sets which were not included in the previous evaluations. A new set of recommended relative and absolute gamma ray emission probabilities is presented.

  15. Consistency of neutron and proton capture intensity standards new relative intensities for 56Co, 66Ga decay and 35Cl(n,γ) reaction gamma rays

    International Nuclear Information System (INIS)

    Molnar, G.L.; Revay, Z.; Belgya, T.

    2000-01-01

    The equivalence of efficiency determination procedures based on neutron and proton capture lines has been verified and the deviation of high-energy efficiency from linearity confirmed. The new, accurate relative intensities for 56 Co and 66 Ga extend the range of secondary radioactive standards up to 4.8 MeV. Extreme care has to be taken with any high-energy intensity value obtained in the past with the help of 56 Co and 66 Ga calibration sources, and corrections have to be made using the present data of high accuracy. Relative intensities have also been improved for the 35 Cl(n,γ) reaction, a useful secondary standard in a wide energy range, between 0.3-8.5 MeV. The new data are supported by other most recent measurements of a slightly lower precision

  16. Interregional carbon emission spillover–feedback effects in China

    International Nuclear Information System (INIS)

    Zhang, Youguo

    2017-01-01

    A three-region input–output model was applied in this study to analyze the emission spillover–feedback effects across the eastern, middle, and western regions of China. Results revealed that the interregional trade has important spillover effects (SEs) on the emissions of each region, particularly in the middle and western regions, but the feedback effects are few. Although the eastern regional final demands have a smaller economic SE per unit than those of the middle and western regions in 2002–2010, its emission SE gradually exceeded that of the two other regions. The interregional trade policy has to be enforced in the future, but the emission SEs should be controlled efficiently. Therefore, the central government should continue to implement the policies on the reduction of energy and carbon intensities from the past decade, limit coal consumption, and encourage renewable fuel development. At the same time, the central government and the eastern region can help the middle and western regions control their carbon intensity by providing fiscal, technological, and training assistance. The middle and western regions should set strict admittance standards for energy-intensive plants that transferred from the eastern region. - Highlights: • We study spillover-feedback effects (SFEs) with a three-region input-output model. • We calculate the emission SFEs among the east, middle and west China. • We compare changes of the interregional emission and economic SFEs in 2002–2010. • Regional sector emission SFEs are also presented. • The policy implication of emission SFEs are discussed.

  17. [Research on the method of copper converting process determination based on emission spectrum analysis].

    Science.gov (United States)

    Li, Xian-xin; Liu, Wen-qing; Zhang, Yu-jun; Si, Fu-qi; Dou, Ke; Wang, Feng-ping; Huang, Shu-hua; Fang, Wu; Wang, Wei-qiang; Huang, Yong-feng

    2012-05-01

    A method of copper converting process determination based on PbO/PbS emission spectrum analysis was described. According to the known emission spectrum of gas molecules, the existence of PbO and PbS was confirmed in the measured spectrum. Through the field experiment it was determined that the main emission spectrum of the slag stage was from PbS, and the main emission spectrum of the copper stage was from PbO. The relative changes in PbO/PbS emission spectrum provide the method of copper converting process determination. Through using the relative intensity in PbO/PbS emission spectrum the copper smelting process can be divided into two different stages, i.e., the slag stage (S phase) and the copper stage (B phase). In a complete copper smelting cycle, a receiving telescope of appropriate view angle aiming at the converter flame, after noise filtering on the PbO/PbS emission spectrum, the process determination agrees with the actual production. Both the theory and experiment prove that the method of copper converting process determination based on emission spectrum analysis is feasible.

  18. Impacts of sugarcane agriculture expansion over low-intensity cattle ranch pasture in Brazil on greenhouse gases.

    Science.gov (United States)

    Bento, Camila Bolfarini; Filoso, Solange; Pitombo, Leonardo Machado; Cantarella, Heitor; Rossetto, Raffaella; Martinelli, Luiz Antonio; do Carmo, Janaina Braga

    2018-01-15

    Sugarcane is a widespread bioenergy crop in tropical regions, and the growing global demand for renewable energy in recent years has led to a dramatic expansion and intensification of sugarcane agriculture in Brazil. Currently, extensive areas of low-intensity pasture are being converted to sugarcane, while management in the remaining pasture is becoming more intensive, i.e., includes tilling and fertilizer use. In this study, we assessed how such changes in land use and management practices alter emissions of greenhouse gases (GHG) such as CO 2 , N 2 O and CH 4 by measuring in situ fluxes for one year after conversion from low-intensity pasture to conventional sugarcane agriculture and management-intensive pasture. Results show that CO 2 and N 2 O fluxes increased significantly in pasture and sugarcane with tillage, fertilizer use, or both combined. Emissions were highly variable for all GHGs, yet, cumulatively, it was clear that annual emissions in CO 2 -equivalent (CO 2 -eq) were higher in management-intense pasture and sugarcane than in unmanaged pasture. Surprisingly, tilled pasture with fertilizer (management-intensive pasture) resulted in higher CO 2 -eq emissions than conventional sugarcane. We concluded that intensification of pasture management and the conversion of pasture to sugarcane can increase the emission factor (EF) estimated for sugarcane produced in Brazil. The role of management practices and environmental conditions and the potential for reducing emissions are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Influence of pure dephasing on emission spectra from single photon sources

    DEFF Research Database (Denmark)

    Næsby Rasmussen, Andreas; Skovgård, Troels Suhr; Kristensen, Philip Trøst

    2008-01-01

    We investigate the light-matter interaction of a quantum dot with the electromagnetic field in a lossy microcavity and calculate emission spectra for nonzero detuning and dephasing. It is found that dephasing shifts the intensity of the emission peaks for nonzero detuning. We investigate the char......We investigate the light-matter interaction of a quantum dot with the electromagnetic field in a lossy microcavity and calculate emission spectra for nonzero detuning and dephasing. It is found that dephasing shifts the intensity of the emission peaks for nonzero detuning. We investigate...

  20. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Compartir For more help with what counts as aerobic activity, watch this video: Windows Media Player, 4: ... ways to understand and measure the intensity of aerobic activity: relative intensity and absolute intensity. Relative Intensity ...

  1. The instantaneous light-intensity function of a fluorescent lamp

    Energy Technology Data Exchange (ETDEWEB)

    Gluskin, Emanuel [Holon Institute of Technology, 52 Golomb St., Holon 58102 (Israel): Electrical Engineering Department, Ben-Gurion University, Beer-Sheva 84105 (Israel)]. E-mail: gluskin@ee.bgu.ac.il; Topalis, Frangiskos V. [Technical University of Athens, School of Electrical and Computer Engineering, 9 Iroon Politechniou St., 15780 Athens (Greece); Kateri, Ifigenia [Technical University of Athens, School of Electrical and Computer Engineering, 9 Iroon Politechniou St., 15780 Athens (Greece); Bisketzis, Nikolas [Technical University of Athens, School of Electrical and Computer Engineering, 9 Iroon Politechniou St., 15780 Athens (Greece)

    2006-05-08

    Using some simple physics and 'system' considerations, the instantaneous light intensity function {psi}(t) of a fluorescent lamp fed via a regular ballast from the 50-60 Hz line is argued to be {psi}(t)={psi}{sub min}+bp(t), where p(t) is the instantaneous power function of the lamp, and b is a constant, and experiment confirms this formula well. The main frequency of {psi}(t), the very significant singularity of its waveform, and the relative intensity of the ripple, i.e., the depth of the modulation, are the focus. The results are important for research into the vision problem that some humans (autistic, but others, too) experience regarding fluorescent light. The inertia of the processes in the lamp which are responsible for the light emission, provides some nonzero emission at the instants when p(t) has zeros. The smaller the volume of the tube and the mass of the gas are, the more weakly the inertia of the processes is expressed, and the relatively smaller is {psi}{sub min}. However, it should be very difficult to theoretically obtain {psi}(t), in particular {psi}{sub min}, from the very complicated physics of the low-pressure discharge in the tube. We conclude that {psi}{sub min} has to be connected with the (also easily measured) lamp's inductance. The work should attract more attention of the physicists to the properties of the common fluorescent lamps. escent lamps.

  2. Issues of work intensity, pace, and sustainability in relation to work context and nutritional status.

    Science.gov (United States)

    Panter-Brick, Catherine

    2003-01-01

    This article raises issues about work intensity, pace, and sustainability during physical activity, focusing attention on the nature of work in labor-intensive societies, the management of exertion in habitual tasks, and the health and broad socioeconomic correlates of alternative ways to regulate work patterns. At the heart of this review are concerns to document human adaptability (in terms of the physical and behavioral management of heavy work) and to renew debate regarding the conceptualization and measurement of work intensity (variously evaluated in absolute or relative terms, as indexed by oxygen consumption, energy expenditure, percentage maximal work capacity, heart rate elevation, time and motion indicators, or physiological cost). Three questions are examined: Is heavy work primarily a matter of time or energy intensity? How is heavy work habitually sustained? What is the bigger picture relating work performance to work context and to nutritional or health status? It is argued that many arduous activities, such as carrying loads, demand endurance over time rather than intensive effort per unit time, and that work pace management lies in regulating both the rate of work and the time in rest during physical activity. Furthermore, strategies that maximize long-term endurance (adopted by "tortoises") and those that maximize short-term productivity (adopted by "hares") are appropriate to different work contexts (e.g., a subsistence or wage-labor economy) and suit individuals with different health status and ability. Thus, work intensity is an important aspect of the links between physical activity, health, productivity, and society, as noted in literature reviewing objectives for sustainable development and public health messages for disease risk management. These areas of scholarship are underresearched, partly because consensus has been slow in agreeing on which are the best measures of work pace and work intensity for use in field situations, and which

  3. Experimental and theoretical study on emission spectra of a nitrogen photoionized plasma induced by intense EUV pulses

    Science.gov (United States)

    Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemyslaw; Jarocki, Roman; Fiedorowicz, Henryk; Limpouch, Jiri

    2018-01-01

    Spectral lines of low-temperature nitrogen photoionized plasma were investigated. The photoionized plasma was created in the result of irradiation N2 gas using laser plasma EUV radiation pulses. The source was based on a 10J/10ns Nd:YAG (λ = 1064 nm) laser system and a gas puff target. The EUV radiation pulses were collected and focused using a grazing incidence multifoil EUV collector. The emission spectra were measured in the ultraviolet and visible (UV/Vis) range. It was found that the plasma emission lines in the lower region of the UV range are relativley weak. Nonetheless, a part of the spectra contains strong molecular band in the 300 - 430 nm originated from second positive and first negative systems band transitions of nitrogen. These molecular band transitions were identified using a code for study the diatomic molecules, LIFBASE. The vibrational band of Δv = 0 and ±1 transitions were significantly populated than of that with Δv = ±2 and 3 transitions. A comparison of the calculated and measured spectrum is presented. With an assumption of a local thermodynamic equilibrium (LTE), the vibrational temperature was determined from the integrated band intensities with the help of the Boltzmann plot method and compared to the temperature predicted by SPECAIR and LIFBASE simulations. A summary of the results and the variations in the vibrational temperatures was discussed.

  4. Experimental and theoretical study on emission spectra of a nitrogen photoionized plasma induced by intense EUV pulses

    Directory of Open Access Journals (Sweden)

    Saber Ismail

    2018-01-01

    Full Text Available Spectral lines of low-temperature nitrogen photoionized plasma were investigated. The photoionized plasma was created in the result of irradiation N2 gas using laser plasma EUV radiation pulses. The source was based on a 10J/10ns Nd:YAG (λ = 1064 nm laser system and a gas puff target. The EUV radiation pulses were collected and focused using a grazing incidence multifoil EUV collector. The emission spectra were measured in the ultraviolet and visible (UV/Vis range. It was found that the plasma emission lines in the lower region of the UV range are relativley weak. Nonetheless, a part of the spectra contains strong molecular band in the 300 - 430 nm originated from second positive and first negative systems band transitions of nitrogen. These molecular band transitions were identified using a code for study the diatomic molecules, LIFBASE. The vibrational band of Δv = 0 and ±1 transitions were significantly populated than of that with Δv = ±2 and 3 transitions. A comparison of the calculated and measured spectrum is presented. With an assumption of a local thermodynamic equilibrium (LTE, the vibrational temperature was determined from the integrated band intensities with the help of the Boltzmann plot method and compared to the temperature predicted by SPECAIR and LIFBASE simulations. A summary of the results and the variations in the vibrational temperatures was discussed.

  5. Boreal forests can have a remarkable role in reducing greenhouse gas emissions locally: Land use-related and anthropogenic greenhouse gas emissions and sinks at the municipal level

    Energy Technology Data Exchange (ETDEWEB)

    Vanhala, Pekka, E-mail: pekka.vanhala@ymparisto.fi [Finnish Environment Institute, Natural Environment Centre, P.O. Box 140, Mechelininkatu 34 a, FI-00251 Helsinki (Finland); Bergström, Irina [Finnish Environment Institute, Natural Environment Centre, P.O. Box 140, Mechelininkatu 34 a, FI-00251 Helsinki (Finland); Haaspuro, Tiina [University of Helsinki, Department of Environmental Sciences, P.O. Box 65, Viikinkaari 1, 00014 Helsinki (Finland); Kortelainen, Pirkko; Holmberg, Maria; Forsius, Martin [Finnish Environment Institute, Natural Environment Centre, P.O. Box 140, Mechelininkatu 34 a, FI-00251 Helsinki (Finland)

    2016-07-01

    Ecosystem services have become an important concept in policy-making. Carbon (C) sequestration into ecosystems is a significant ecosystem service, whereas C losses can be considered as an ecosystem disservice. Municipalities are in a position to make decisions that affect local emissions and therefore are important when considering greenhouse gas (GHG) mitigation. Integrated estimations of fluxes at a regional level help local authorities to develop land use policies for minimising GHG emissions and maximising C sinks. In this study, the Finnish national GHG accounting system is modified and applied at the municipal level by combining emissions and sinks from agricultural land, forest areas, water bodies and mires (land use-related GHG emissions) with emissions from activities such as energy production and traffic (anthropogenic GHG emissions) into the LUONNIKAS calculation tool. The study area consists of 14 municipalities within the Vanajavesi catchment area located in Southern Finland. In these municipalities, croplands, peat extraction sites, water bodies and undrained mires are emission sources, whereas forests are large carbon sinks that turn the land use-related GHG budget negative, resulting in C sequestration into the ecosystem. The annual land use-related sink in the study area was 78 t CO{sub 2} eq km{sup −2} and 2.8 t CO{sub 2} eq per capita. Annual anthropogenic GHG emissions from the area amounted to 250 t CO{sub 2} eq km{sup −2} and 9.2 t CO{sub 2} eq per capita. Since forests are a significant carbon sink and the efficiency of this sink is heavily affected by forest management practices, forest management policy is a key contributing factor for mitigating municipal GHG emissions. - Highlights: • The significance of natural landscapes in the regional C budgets is shown. • Boreal forests can be remarkable C sinks enabling net C sequestration in ecosystems. • The large area of forest may compensate for all C emissions in the municipality.

  6. Laboratory measurements of the x-ray line emission from neon-like Fe XVII

    International Nuclear Information System (INIS)

    Brown, G V; Beiersdorfer, P; Chen, H; Scofield, J; Boyce, K R; Kelley, R L; Kilbourne, C A; Porter, F S; Gu, M F; Kahn, S M; Szymkowiak, A E

    2006-01-01

    The authors have conducted a systematic study of the dominant x-ray line emission from Fe XVII. These studies include relative line intensities in the optically thin limit, intensities in the presence of radiation from satellite lines from lower charge states of iron, and the absolute excitation cross sections of some of the strongest lines. These measurements were conducted at the Lawrence Livermore National Laboratory electron beam ion trap facility using crystal spectrometers and a NASA-Goddard Space Flight Center microcalorimeter array

  7. Usefulness of creep work-time relation for determining stress intensity limit of high-temperature components

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Ryu, Woo Seog; Lee, Kyung Yong

    2003-01-01

    In order to determine creep stress intensity limit of high-temperature components, the usefulness of the creep work and time equation, defined as W c t p = B (where W c = σ ε is the total creep work done during creep, and p and B are constants), was investigated using the experimental data. For this purpose, the creep tests for generating 1.0% strain for commercial type 316 stainless steel were conducted with different stresses; 160 MPa, 150 MPa, 145 MPa, 140 MPa and 135 MPa at 593 .deg. C. The plots of log W c - log t showed a good linear relation up to 10 5 hr, and the results of the creep work-time relation for p, B and stress intensity values showed good agreement to those of Isochronous Stress-Strain Curves (ISSC) presented in ASME BPV NH. The relation can be simply obtained with only several short-term 1% strain data without ISSC which can be obtained by long-term creep data. Particularly, this relation is useful in estimating stress intensity limit for new and emerging class of high-temperature creeping materials

  8. Modeling of karst deformation and analysis of acoustic emission during sinkhole formation

    Science.gov (United States)

    Bakeev, R. A.; Stefanov, Yu. P.; Duchkov, A. A.; Myasnikov, A. V.

    2017-12-01

    In this paper, the fracture pattern and formation of a sinkhole are estimated depending on the rock properties. The possibility of using geophysical methods for recording and analyzing acoustic emission to monitor and predict the state of the medium is considered. The problem of deformation of the sedimentary cover over the growing karst cavity is solved on the basis of the elastoplastic Drucker-Prager-Nikolaevsky model and the equation of damage accumulation. The specified kinetics of accumulation of damages allows us to describe slow processes of degradation of the strength of the medium under stresses that are low for the development of inelastic deformations. The results are obtained for different values of the strength of karst rock; we show the influence of the kinetic parameters of damage accumulation on the shape of collapse depressions. We also model acoustic emission caused by the material fracture. One can follow different stages of the karst development by looking at patterns of cells which fail at a given time. Our observations show the relation between the intensity of material fracture and the intensity of seismic emission.

  9. Exploring the relation between urbanization and residential CO2 emissions in China: a PTR approach

    OpenAIRE

    Hu, Zongyi; Tang, Liwei

    2013-01-01

    Recent empirical work suggests that urbanization and residential CO2 emissions are related. This paper investigates the nonlinear impact of urbanization on residential CO2 emissions over the period 1997–2011 in China by applying the Candelon et al. (2012) methodology. The results show that the relationship between urbanization and residential CO2 emissions is negative over the sample which is inconsistent with the previous studies. In addition, we find the absolute difference of the estimated...

  10. Near stabilisation of CO2 emissions in the world in 2014

    International Nuclear Information System (INIS)

    Ecoiffier, Mathieu

    2016-03-01

    This publication proposes discussions and comments of tables and graphs of statistics regarding evolutions of CO 2 emissions during the last decades. It is noticed that CO 2 emissions only had a 0.5 per cent increase in 2014, i.e. nearly stagnation. These variations and data are analysed with respect to countries and geographical regions. Thus, it is outlined that CO 2 emissions per inhabitant in China are higher than in Europe, that the intensity of CO 2 emission with respect to GDP is strongly decreasing (-4.4 per cent), that the decrease of energy intensity slowed down the growth of world emission since 1990

  11. Spontaneous emission and gain in a waveguide free-electron laser

    International Nuclear Information System (INIS)

    Golightly, W.J.; Ride, S.K.

    1991-01-01

    A free-electron laser enclosed in a waveguide of narrowly spaced parallel plates has been proposed as a compact, coherent source of far-infrared radiation. In this paper, the spontaneous emission and small-signal gain of such a device are analyzed. Maxwell's equations are solved for the fields of a relativistic electron beam passing through a linearly polarized undulator in the presence of a parallel-plane waveguide. The radiation intensity is resolved into its component waveguide modes for the fundamental frequency and for all harmonics. The intensity profile in a given harmonic mode is altered significantly when a parameter involving the undulator period, beam energy, and transverse dimension of the guide is such that the radiation group velocity is close to the electrons' axial velocity. The small-signal gain in the waveguide free-electron laser is calculated and related to the spontaneous emission. Near zero slip, the gain curve is significantly different from that of a free-space free-electron laser with the same parameters

  12. The energy and emissions footprint of water supply for Southern California

    International Nuclear Information System (INIS)

    Fang, A J; Newell, Joshua P; Cousins, Joshua J

    2015-01-01

    Due to climate change and ongoing drought, California and much of the American West face critical water supply challenges. California’s water supply infrastructure sprawls for thousands of miles, from the Colorado River to the Sacramento Delta. Bringing water to growing urban centers in Southern California is especially energy intensive, pushing local utilities to balance water security with factors such as the cost and carbon footprint of the various supply sources. To enhance water security, cities are expanding efforts to increase local water supply. But do these local sources have a smaller carbon footprint than imported sources? To answer this question and others related to the urban water–energy nexus, this study uses spatially explicit life cycle assessment to estimate the energy and emissions intensity of water supply for two utilities in Southern California: Los Angeles Department of Water and Power, which serves Los Angeles, and the Inland Empire Utility Agency, which serves the San Bernardino region. This study differs from previous research in two significant ways: (1) emissions factors are based not on regional averages but on the specific electric utility and generation sources supplying energy throughout transport, treatment, and distribution phases of the water supply chain; (2) upstream (non-combustion) emissions associated with the energy sources are included. This approach reveals that in case of water supply to Los Angeles, local recycled water has a higher carbon footprint than water imported from the Colorado River. In addition, by excluding upstream emissions, the carbon footprint of water supply is potentially underestimated by up to 30%. These results have wide-ranging implications for how carbon footprints are traditionally calculated at local and regional levels. Reducing the emissions intensity of local water supply hinges on transitioning the energy used to treat and distribute water away from fossil fuel, sources such as coal

  13. The energy and emissions footprint of water supply for Southern California

    Science.gov (United States)

    Fang, A. J.; Newell, Joshua P.; Cousins, Joshua J.

    2015-11-01

    Due to climate change and ongoing drought, California and much of the American West face critical water supply challenges. California’s water supply infrastructure sprawls for thousands of miles, from the Colorado River to the Sacramento Delta. Bringing water to growing urban centers in Southern California is especially energy intensive, pushing local utilities to balance water security with factors such as the cost and carbon footprint of the various supply sources. To enhance water security, cities are expanding efforts to increase local water supply. But do these local sources have a smaller carbon footprint than imported sources? To answer this question and others related to the urban water-energy nexus, this study uses spatially explicit life cycle assessment to estimate the energy and emissions intensity of water supply for two utilities in Southern California: Los Angeles Department of Water and Power, which serves Los Angeles, and the Inland Empire Utility Agency, which serves the San Bernardino region. This study differs from previous research in two significant ways: (1) emissions factors are based not on regional averages but on the specific electric utility and generation sources supplying energy throughout transport, treatment, and distribution phases of the water supply chain; (2) upstream (non-combustion) emissions associated with the energy sources are included. This approach reveals that in case of water supply to Los Angeles, local recycled water has a higher carbon footprint than water imported from the Colorado River. In addition, by excluding upstream emissions, the carbon footprint of water supply is potentially underestimated by up to 30%. These results have wide-ranging implications for how carbon footprints are traditionally calculated at local and regional levels. Reducing the emissions intensity of local water supply hinges on transitioning the energy used to treat and distribute water away from fossil fuel, sources such as coal.

  14. Analyais of solar X-ray emission line profiles

    International Nuclear Information System (INIS)

    Burek, A.J.; Marrus, D.M.; Blake, R.L.; Fenimore, E.E.

    1981-01-01

    We report results of the analysis of the X-ray emission line profiles for the Ne X La and Fe XVII 4d 1 P 1 lines produced in an active region that was undergoing a radio and X-ray gradual rise and fall (GRF) in intensity. The spectra were obtained with collimated Bragg spectrometers launched on a rocket from White Sands Missile Range on 1976 March 26. Using a crystal of ammonium acid phthalate, we have fully resolved the Ne X La and Fe XVII 4d 1 P 1 lines, permitting an accurate determinination of the Ne X La intensity and allowing Doppler broadened profiles for lines formed from ions having greatly different atomic mass and charge to be measured. An isothermal model derived from the Ne IX/Ne X resonance line intensity ratio gives an electron temperature of 3.4 x 10 6 K. An isothermal model, however, fails to account for the intensities of all lines and continuum observed. All multitemperature models that do reproduce the observed relative line intensities require the presence of a hot plasma component with an electron temperature in excess of 5 x 10 6 K. The presence of a high temperature component is also suggested by the measured line to continuum ratio of 3.6 in the 12--15 A wavelength interval. Interpretation of the line profiles in terms of a multitemperature model requires an rms turbulence velocity of 48 +- 15 km s -1 for Fe XVII 1 P 1 and 74 +- 54 km s - 2exclamation for Ne X La at the 95% confidence level. Collimated scans across the active region show the presence of a compact source of intense X-ray emission close to the magnetic neutral line, which is very probably the GRF plasma

  15. Toward a Better Understanding of the GRB Phenomenon: a New Model for GRB Prompt Emission and its Effects on the New LiNT- Epeak,irest,NT Relation

    Science.gov (United States)

    Guiriec, S.; Kouveliotou, C.; Daigne, F.; Zhang, B.; Hascoët, R.; Nemmen, R. S.; Thompson, D. J.; Bhat, P. N.; Gehrels, N.; Gonzalez, M. M.; Kaneko, Y.; McEnery, J.; Mochkovitch, R.; Racusin, J. L.; Ryde, F.; Sacahui, J. R.; Ünsal, A. M.

    2015-07-01

    Gamma-ray burst (GRB) prompt emission spectra in the keV-MeV energy range are usually considered to be adequately fitted with the empirical Band function. Recent observations with the Fermi Gamma-ray Space Telescope (Fermi) revealed deviations from the Band function, sometimes in the form of an additional blackbody (BB) component, while on other occasions in the form of an additional power law (PL) component extending to high energies. In this article we investigate the possibility that the three components may be present simultaneously in the prompt emission spectra of two very bright GRBs (080916C and 090926A) observed with Fermi, and how the three components may affect the overall shape of the spectra. While the two GRBs are very different when fitted to a single Band function, they look like “twins” in the three-component scenario. Through fine-time spectroscopy down to the 100 ms timescale, we follow the evolution of the various components. We succeed in reducing the number of free parameters in the three-component model, which results in a new semi-empirical model—but with physical motivations—to be competitive with the Band function in terms of number of degrees of freedom. From this analysis using multiple components, the Band function is globally the most intense component, although the additional PL can overpower the others in sharp time structures. The Band function and the BB component are the most intense at early times and globally fade across the burst duration. The additional PL is the most intense component at late time and may be correlated with the extended high-energy emission observed thousands of seconds after the burst with Fermi/Large Area Telescope. Unexpectedly, this analysis also shows that the additional PL may be present from the very beginning of the burst, where it may even overpower the other components at low energy. We investigate the effect of the three components on the new time-resolved luminosity-hardness relation in

  16. Measurement and communication of greenhouse gas emissions from U.S. food consumption via carbon calculators

    International Nuclear Information System (INIS)

    Kim, Brent; Neff, Roni

    2009-01-01

    Food consumption may account for upwards of 15% of U.S. per capita greenhouse gas emissions. Online carbon calculators can help consumers prioritize among dietary behaviors to minimize personal 'carbon footprints', leveraging against emissions-intensive industry practices. We reviewed the fitness of selected carbon calculators for measuring and communicating indirect GHG emissions from food consumption. Calculators were evaluated based on the scope of user behaviors accounted for, data sources, transparency of methods, consistency with prior data and effectiveness of communication. We found food consumption was under-represented (25%) among general environmental impact calculators (n = 83). We identified eight carbon calculators that accounted for food consumption and included U.S. users among the target audience. Among these, meat and dairy consumption was appropriately highlighted as the primary diet-related contributor to emissions. Opportunities exist to improve upon these tools, including: expanding the scope of behaviors included under calculations; improving communication, in part by emphasizing the ecological and public health co-benefits of less emissions-intensive diets; and adopting more robust, transparent methodologies, particularly where calculators produce questionable emissions estimates. Further, all calculators could benefit from more comprehensive data on the U.S. food system. These advancements may better equip these tools for effectively guiding audiences toward ecologically responsible dietary choices. (author)

  17. Emission Facilities - Air Emission Plants

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Represents the Primary Facility type Air Emission Plant (AEP) point features. Air Emissions Plant is a DEP primary facility type related to the Air Quality Program....

  18. Multi-parameter spectroscopy of fission fragments and related emission products

    International Nuclear Information System (INIS)

    Ruben, A.; Jahnke, U.

    1993-01-01

    An exclusive measurement of the 252 C f(sf) fragment distribution in mass and energy in coincidence with the related emission products by combining a twin ionization chamber with a 4π-neutron tank, a n-γ-detector, and a solid-state detector telescope is presented. The experimental set-up, data handling and acquisition is described followed by a discussion of the raw data evaluation. (orig.)

  19. High-energy gamma-ray emission from solar flares: Constraining the accelerated proton spectrum

    Science.gov (United States)

    Alexander, David; Dunphy, Philip P.; Mackinnon, Alexander L.

    1994-01-01

    Using a multi-component model to describe the gamma-ray emission, we investigate the flares of December 16, 1988 and March 6, 1989 which exhibited unambiguous evidence of neutral pion decay. The observations are then combined with theoretical calculations of pion production to constrain the accelerated proton spectra. The detection of pi(sup 0) emission alone can indicate much about the energy distribution and spectral variation of the protons accelerated to pion producing energies. Here both the intensity and detailed spectral shape of the Doppler-broadened pi(sup 0) decay feature are used to determine the spectral form of the accelerated proton energy distribution. The Doppler width of this gamma-ray emission provides a unique diagnostic of the spectral shape at high energies, independent of any normalisation. To our knowledge, this is the first time that this diagnostic has been used to constrain the proton spectra. The form of the energetic proton distribution is found to be severely limited by the observed intensity and Doppler width of the pi(sup 0) decay emission, demonstrating effectively the diagnostic capabilities of the pi(sup 0) decay gamma-rays. The spectral index derived from the gamma-ray intensity is found to be much harder than that derived from the Doppler width. To reconcile this apparent discrepancy we investigate the effects of introducing a high-energy cut-off in the accelerated proton distribution. With cut-off energies of around 0.5-0.8 GeV and relatively hard spectra, the observed intensities and broadening can be reproduced with a single energetic proton distribution above the pion production threshold.

  20. Radioluminescence of synthetic quartz related to alkali ions

    Energy Technology Data Exchange (ETDEWEB)

    Martini, M., E-mail: m.martini@unimib.it [Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Via Cozzi 53, I-20125 Milano (Italy); INFN-Sezione di Milano Bicocca, Via Cozzi 53, I-20125 Milano (Italy); Fasoli, M. [Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Via Cozzi 53, I-20125 Milano (Italy); Galli, A. [Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Via Cozzi 53, I-20125 Milano (Italy); Istituto di Fotonica e Nanostrutture, IFN-CNR (Italy); Villa, I. [Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Via Cozzi 53, I-20125 Milano (Italy); Guibert, P. [IRAMAT-CRP2A (Institut de recherche sur les Archeomateriaux), UMR no. 5060, CNRS-Universite Bordeaux III, F-33607 Pessac (France)

    2012-04-15

    The radioluminescence (RL) of synthetic quartzes (GEMMA Quartz and Crystal Company) has been measured at room temperature. Some samples were treated by electrodiffusion ('sweeping') in order to change the concentrations of alkali ions, mainly Li{sup +} and Na{sup +}, which in quartz are known to be linked to Al ions, substitutional for Si ions. The RL emission spectra show evidence of a role of alkali ions in affecting some specific emissions. All the spectra could be analysed as composed of four bands in the blue and UV region. Specifically, the well known blue emission at around 470 nm was seen to be composed by two bands at 430 nm (2.86 eV) and at 485 nm (2.53 eV). Effects of irradiation, during the RL measurements, were clearly seen only in the 'Li swept in' sample, namely an increase in the 485 nm band intensity and a decrease in the 430 nm band one. The previously reported UV emission was detected at 355 nm (3.44 eV) in all the samples, being the most intense band in the 'swept out' sample. A further UV emission was detected at 315 nm (3.94 eV), more intense in untreated samples. Possible assignments of the detected emission bands are discussed in relation to the defects of quartz, specifically focusing on the Al centres that are most affected by sweeping procedures. - Highlights: Black-Right-Pointing-Pointer Contribution to the understanding of relationships between defects in quartz and luminescence emissions. Black-Right-Pointing-Pointer Role of charge compensators at substitutional Al sites in the optical properties of quartz. Black-Right-Pointing-Pointer Evidence of the double nature of the 'blue emission' (around 470 nm).

  1. Energy consumption and CO2 emissions of the European glass industry

    International Nuclear Information System (INIS)

    Schmitz, Andreas; Kaminski, Jacek; Maria Scalet, Bianca; Soria, Antonio

    2011-01-01

    An in-depth analysis of the energy consumption and CO 2 emissions of the European glass industry is presented. The analysis is based on data of the EU ETS for the period 2005-2007 (Phase I). The scope of this study comprises the European glass industry as a whole and its seven subsectors. The analysis is based on an assignment of the glass installations (ca. 450) within the EU ETS to the corresponding subsectors and an adequate matching of the respective production volumes. A result is the assessment of the overall final energy consumption (fuel, electricity) as well as the overall CO 2 emissions (process, combustion and indirect emissions) of the glass industry and its subsectors in the EU25/27. Moreover, figures on fuel mix as well as fuel intensity and CO 2 emissions intensity (i.e. carbon intensity) are presented for each of the subsectors on aggregated levels and for selected EU Member States separately. The average intensity of fuel consumption and direct CO 2 emissions of the EU25 glass industry decreased from 2005 to 2007 by about 4% and amounted in 2007 to 7.8 GJ and 0.57 t CO 2 per tonne of saleable product, respectively. The economic energy intensity was evaluated with 0.46 toe/1000 Euro (EU27).

  2. Energy consumption and CO{sub 2} emissions in Iran, 2025

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaei, Maryam [Department of Banking and Finance, Multimedia University (Malaysia); Bekri, Mahmoud [Economic and Statistic Institute, Karlsruhe Institute of Technology (Germany)

    2017-04-15

    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO{sub 2} emissions. A system dynamic model was developed in this study to model the energy consumption and CO{sub 2} emission trends for Iran over 2000–2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO{sub 2} emissions in 2025 will reach 985 million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO{sub 2} emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO{sub 2} emission outlines. - Highlights: • Creation of an energy consumption model using system dynamics. • The effect of different policies on energy consumption and emission reductions. • An ascending trend for the environmental costs caused by CO{sub 2} emissions is observed. • An urgent need for energy saving and emission reductions in Iran.

  3. Role of soil biology and soil functions in relation to land use intensity.

    Science.gov (United States)

    Bondi, Giulia; Wall, David; Bacher, Matthias; Emmet-Booth, Jeremy; Graça, Jessica; Marongiu, Irene; Creamer, Rachel

    2017-04-01

    The delivery of the ecosystem's functions is predominantly controlled by soil biology. The biology found in a gram of soil contains more than ten thousand individual species of bacteria and fungi (Torsvik et al., 1990). Understanding the role and the requirements of these organisms is essential for the protection and the sustainable use of soils. Soil biology represents the engine of all the processes occurring in the soil and it supports the ecosystem services such as: 1) nutrient mineralisation 2) plant production 3) water purification and regulation and 4) carbon cycling and storage. During the last years land management type and intensity have been identified as major drivers for microbial performance in soil. For this reason land management needs to be appropriately studied to understand the role of soil biology within this complex interplay of functions. We aimed to study whether and how land management drives soil biological processes and related functions. To reach this objective we built a land use intensity index (LUI) able to quantify the impact of the common farming practices carried out in Irish grassland soils. The LUI is derived from a detailed farmer questionnaire on grassland management practices at 38 farms distributed in the five major agro-climatic regions of Ireland defined by Holden and Brereton (2004). Soils were classified based on their drainage status according to the Irish Soil Information System by Creamer et al. (2014). This detailed questionnaire is then summarised into 3 management intensity components: (i) intensity of Fertilisation (Fi), (ii) frequency of Mowing (Mi) and (iii) intensity of Livestock Grazing (Gi). Sites were sampled to assess the impact of land management intensity on microbial community structure and enzyme behaviour in relation to nitrogen, phosphorus and carbon cycling. Preliminary results for enzymes linked to C and N cycles showed higher activity in relation to low grazing pressure (low Gi). Enzymes linked to P

  4. Designing an emissions trading scheme for China: An up-to-date climate policy assessment

    OpenAIRE

    Hübler, Michael; Löschel, Andreas; Voigt, Sebastian

    2014-01-01

    We assess recent Chinese climate policy proposals in a multi‐region, multi‐sector computable general equilibrium model with a Chinese carbon emissions trading scheme (ETS). When the emissions intensity per GDP in 2020 is required to be 45% lower than in 2005, the model simulations indicate that the climate policy‐ induced welfare loss in 2020, measured as the level of GDP and welfare in 2020 under climate policy relative to their level under business‐as‐usual (BAU) in the same yea...

  5. Vehicle emissions of short-lived and long-lived climate forcers: trends and tradeoffs.

    Science.gov (United States)

    Edwards, Morgan R; Klemun, Magdalena M; Kim, Hyung Chul; Wallington, Timothy J; Winkler, Sandra L; Tamor, Michael A; Trancik, Jessika E

    2017-08-24

    Evaluating technology options to mitigate the climate impacts of road transportation can be challenging, particularly when they involve a tradeoff between long-lived emissions (e.g., carbon dioxide) and short-lived emissions (e.g., methane or black carbon). Here we present trends in short- and long-lived emissions for light- and heavy-duty transport globally and in the U.S., EU, and China over the period 2000-2030, and we discuss past and future changes to vehicle technologies to reduce these emissions. We model the tradeoffs between short- and long-lived emission reductions across a range of technology options, life cycle emission intensities, and equivalency metrics. While short-lived vehicle emissions have decreased globally over the past two decades, significant reductions in CO 2 will be required by mid-century to meet climate change mitigation targets. This is true regardless of the time horizon used to compare long- and short-lived emissions. The short-lived emission intensities of some low-CO 2 technologies are higher than others, and thus their suitability for meeting climate targets depends sensitively on the evaluation time horizon. Other technologies offer low intensities of both short-lived emissions and CO 2 .

  6. PREDICTION OF FORBIDDEN ULTRAVIOLET AND VISIBLE EMISSIONS IN COMET 67P/CHURYUMOV–GERASIMENKO

    Energy Technology Data Exchange (ETDEWEB)

    Raghuram, Susarla; Galand, Marina [Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Bhardwaj, Anil, E-mail: raghuramsusarla@gmail.com [Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum, 695022 (India)

    2016-02-20

    Remote observation of spectroscopic emissions is a potential tool for the identification and quantification of various species in comets. The CO Cameron band (to trace CO{sub 2}) and atomic oxygen emissions (to trace H{sub 2}O and/or CO{sub 2}, CO) have been used to probe neutral composition in the cometary coma. Using a coupled-chemistry-emission model, various excitation processes controlling the CO Cameron band and different atomic oxygen and atomic carbon emissions have been modeled in comet 67P/Churyumov–Gerasimenko at 1.29 AU (perihelion) and at 3 AU heliocentric distances, which is being explored by ESA's Rosetta mission. The intensities of the CO Cameron band, atomic oxygen, and atomic carbon emission lines as a function of projected distance are calculated for different CO and CO{sub 2} volume mixing ratios relative to water. Contributions of different excitation processes controlling these emissions are quantified. We assess how CO{sub 2} and/or CO volume mixing ratios with respect to H{sub 2}O can be derived based on the observed intensities of the CO Cameron band, atomic oxygen, and atomic carbon emission lines. The results presented in this work serve as baseline calculations to understand the behavior of low out-gassing cometary coma and compare them with the higher gas production rate cases (e.g., comet Halley). Quantitative analysis of different excitation processes governing the spectroscopic emissions is essential to study the chemistry of inner coma and to derive neutral gas composition.

  7. Lucid Dreaming: Intensity, But Not Frequency, Is Inversely Related to Psychopathology

    Directory of Open Access Journals (Sweden)

    Liat Aviram

    2018-03-01

    Full Text Available Lucid dreaming (LD is awareness that one is dreaming, during the dream state. However, some define and assess LD relying also on controlling dream events, although control is present only in a subset of lucid dreams. LD has been claimed to represent well-being, and has even been used as a therapeutic agent. Conversely, LD is associated with mixed sleep-wake states, which are related to bizarre cognitions, stress, and psychopathology, and have been construed as arousal permeating and disrupting sleep. We propose that previous conflicting findings regarding relations between LD and both psychopathology and well-being, stem from the non-differentiated assessment of frequency and control. The present study aimed to develop an expansive measure of several LD characteristics (the Frequency and Intensity Lucid Dream questionnaire; FILD, and explore their relations with symptomatology. Undergraduate students (N = 187 self-reported trait LD, psychopathology (depression, anxiety, obsessive-compulsive symptoms, dissociation, and schizotypy, stress, and sleep problems; 2 months later, a subsample (n = 78 reported psychopathology again, and also completed a dream diary each morning for 14 days. Preliminary evidence supports the reliability and validity of the FILD. Items converged into four domains: frequency, intensity (e.g., control, activity, certainty of dreaming, emotional valence, and the use of induction techniques. We report an optimal frequency cutoff score to identify those likely to experience LD within a 2-week period. Whereas LD frequency was unrelated to psychopathology, LD intensity, and positive LD emotions, were inversely associated with several psychopathological symptoms. Use of deliberate induction techniques was positively associated with psychopathology and sleep problems. Additionally, we demonstrated directionality by employing a prospective-longitudinal design, showing that deliberate LD induction predicted an increase in

  8. Lucid Dreaming: Intensity, But Not Frequency, Is Inversely Related to Psychopathology

    Science.gov (United States)

    Aviram, Liat; Soffer-Dudek, Nirit

    2018-01-01

    Lucid dreaming (LD) is awareness that one is dreaming, during the dream state. However, some define and assess LD relying also on controlling dream events, although control is present only in a subset of lucid dreams. LD has been claimed to represent well-being, and has even been used as a therapeutic agent. Conversely, LD is associated with mixed sleep-wake states, which are related to bizarre cognitions, stress, and psychopathology, and have been construed as arousal permeating and disrupting sleep. We propose that previous conflicting findings regarding relations between LD and both psychopathology and well-being, stem from the non-differentiated assessment of frequency and control. The present study aimed to develop an expansive measure of several LD characteristics (the Frequency and Intensity Lucid Dream questionnaire; FILD), and explore their relations with symptomatology. Undergraduate students (N = 187) self-reported trait LD, psychopathology (depression, anxiety, obsessive-compulsive symptoms, dissociation, and schizotypy), stress, and sleep problems; 2 months later, a subsample (n = 78) reported psychopathology again, and also completed a dream diary each morning for 14 days. Preliminary evidence supports the reliability and validity of the FILD. Items converged into four domains: frequency, intensity (e.g., control, activity, certainty of dreaming), emotional valence, and the use of induction techniques. We report an optimal frequency cutoff score to identify those likely to experience LD within a 2-week period. Whereas LD frequency was unrelated to psychopathology, LD intensity, and positive LD emotions, were inversely associated with several psychopathological symptoms. Use of deliberate induction techniques was positively associated with psychopathology and sleep problems. Additionally, we demonstrated directionality by employing a prospective-longitudinal design, showing that deliberate LD induction predicted an increase in dissociation and

  9. ULF-ELF Electromagnetic Emissions Over the Fault in Kangra Valley of India and their Relation With Radon Emanation (Intercosmos 24 Satellite Data)

    International Nuclear Information System (INIS)

    Mikhailov, Yu.M.; Mikhailova, G.A.; Kapustina, O.V.

    1999-01-01

    Experimental investigations of space and spectral characteristics of the electric component of the electromagnetic waves in the outer ionosphere in the ULF (f < 30 Hz) and ELF (f < 1 kHz) ranges were carried out over north fault of the India - Australian plate. Records of the 10 narrow band filters in the frequency range from 8 to 970 Hz with NVK-receiver mounting on Intercosmos 24 satellite were used. In the day-time at sensitivity level near 2 μV/m emissions couldn't observe. In the night-time emissions, localized exactly in space above the fault, was observed in mentioned full frequency range. In spectral distribution of emission maximum in frequency range from 150 to 623 Hz allocated. In those days, when anomalous bursts of radon concentration in underground waters in Kangra Valley was observed the simultaneous amplification of electric component of field at frequency 8 Hz more on the factor more than ten and in frequency range from 150 to 623 Hz, where usually was maximum, on the factor two or three also was observed. This fact ensures statement, that the noises are generated by the lightning discharges, but amplification of their intensity on satellite heights was related with decreasing of ELF waves attenuation in the time of their penetration through lower ionosphere, modified by electric field in preparing phase of the earthquakes. (author)

  10. Green emission from ZnO–MgO nanocomposite due to Mg diffusion at the interface

    International Nuclear Information System (INIS)

    Sowri Babu, K.; Ramachandra Reddy, A.; Venugopal Reddy, K.

    2015-01-01

    The origin and electronic transitions responsible for green emission observed from ZnO–MgO nanocomposite are investigated. The photoluminescence (PL) spectrum of ZnO–MgO nanocomposite annealed at 600 °C showed only a sharp and intense UV emission peak centered at 396 nm. As the annealing temperature increased from 600 °C to 1000 °C, the green emission positioned at 503 nm is emerged and its intensity enhanced gradually and reached maximum value at 900 °C and then decreased at 1000 °C. It is observed that both UV and green emission intensities are enhanced with variation of atomic ratio (Zn/Mg=1.52, 0.50, 0.30, 0.21, 0.15). Our experiments confirmed that the enhancement of green emission intensity is due to the formation of oxygen vacancies (V o ) due to Mg doping at the interface of ZnO and MgO. This experimental observation is in good agreement with the recent theoretical predictions which states that Mg doping in ZnO lowers the formation energies of oxygen vacancies (V o ) and zinc interstitials (Zn i ) significantly. PL excitation and emission spectra analysis reveals that excited state for both UV and green emissions is same and lies 0.24 eV below the conduction band of ZnO. Hence, the green emission is attributed to the transition of an electron form the shallow donor (defect level of Zn i ) to the deep acceptor (defect level of V o ). - Highlights: • It is found that the UV emission intensity from ZnO–MgO nanocomposite enhanced with increase of Mg concentration. • The intensity of the green emission is enhanced gradually as the temperature increased from 600 °C to 900 °C and then decreased at 1000 °C. • The effect of Mg concentration, MgO, strain at the interface on green emission is investigated. • These experiments confirmed that green emission is due to the oxygen vacancies created in ZnO due to the Mg doping at the interface and it is in good agreement with the theoretical predictions. • The decrease of green emission intensity is

  11. Stimulated emission from ZnO nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Hauschild, R.; Lange, H.; Priller, H.; Klingshirn, C.; Kalt, H. [Institut fuer Angewandte Physik, Universitaet Karlsruhe (TH), 76128 Karlsruhe (Germany); Kling, R. [Abteilung Halbleiterphysik, Universitaet Ulm, Albert-Einstein Allee 45, 89081 Ulm (Germany); Waag, A. [Institut fuer Halbleitertechnik, TU-Braunschweig, H.-Sommer-Str. 66, 38106 Braunschweig (Germany); Fan, H.J.; Zacharias, M. [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2006-08-15

    We discuss the time-resolved photoluminescence (PL) spectra of single ZnO nanorods taken at excitation fluences above and below the laser threshold. In the latter case, P-band emission related to polariton-polariton scattering is observed for certain rod geometries while stimulated emission occurs within the electron-hole plasma band. We calculate the intensity distribution of low-order waveguide modes as well as their energy dependence for given nanorod geometries to discuss their relevance with respect to nanorod lasing and polariton propagation. Additional finite-element analysis confirms that a gold layer formed at the nanorod-substrate interface under certain growth conditions leads to an enhancement of confinement within the resonator. (2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  12. Grazing the Commons. Global Carbon Emissions Forever?

    Energy Technology Data Exchange (ETDEWEB)

    Melenberg, B. [CentER and Department of Econometrics and Operations Research, Tilburg University, Tilburg (Netherlands); Vollebergh, H.R.J. [Netherlands Environmental Assessment Agency PBL, Bilthoven (Netherlands); Dijkgraaf, E. [SEOR-ECRi and Tinbergen Institute, Erasmus University Rotterdam, Rotterdam (Netherlands)

    2011-02-15

    This paper presents the results from our investigation of the per-capita, long-term relation between carbon dioxide emissions and gross domestic product (GDP) for the world, obtained with the use of a new, flexible estimator. Consistent with simple economic growth models, we find that regional, population-weighted per-capita emissions systematically increase with income (scale effect) and usually decline over time (composition and technology effect). Both our in-sample results and out-of-sample scenarios indicate that this negative time effect is unlikely to compensate for the upward-income effect at a global level, in the near future. In particular, even if China's specialization in carbon-intensive industrial sectors would come to a halt, recent trends outside China make a reversal of the overall global trend very unlikely.

  13. Competition of the self-activated and Mn-related luminescence in ZnS single crystals

    Science.gov (United States)

    Bacherikov, Yu. Yu.; Vorona, I. P.; Markevich, I. V.; Korsunska, N. O.; Kurichka, R. V.

    2018-06-01

    The photoluminescence (PL) and photoluminescence excitation (PLE) spectra of ZnS single crystals thermally doped from ZnS/MnS mixture were studied at 300 and 77 K. PL spectra exhibit bands caused by Mn-related centers and centers of self-activated (SA) emission. Besides intrinsic maximum, a number of narrow peaks corresponded to Mn-related absorption are found in the PLE spectra of both SA and Mn-related emission. A redistribution of SA and Mn-related emission intensities is observed with temperature change. The mechanism of this phenomenon involving free hole trapping by MnZn and the possible position of a ground energy level of substitutional Mn are discussed.

  14. Low-intensity red and infrared lasers on XPA and XPC gene expression

    International Nuclear Information System (INIS)

    Fonseca, A S; Magalhães, L A G; Mencalha, A L; Ferreira-Machado, S C; Geller, M; Paoli, F

    2014-01-01

    Laser devices emit monochromatic, coherent, and highly collimated intense beams of light that are useful for a number of biomedical applications. However, for low-intensity lasers, possible adverse effects of laser light on DNA are still controversial. In this work, the expression of XPA and XPC genes in skin and muscle tissue exposed to low-intensity red and infrared lasers was evaluated. Skin and muscle tissue of Wistar rats were exposed to low-intensity red and infrared lasers at different fluences in continuous mode emission. Skin and muscle tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of actin gene expression by quantitative polymerase chain reaction. Data obtained show that laser radiation alters the expression of XPA and XPC mRNA differently in skin and muscle tissue of Wistar rats, depending on physical (fluence and wavelength) and biological (tissue) parameters. Laser light could modify expression of genes related to the nucleotide excision repair pathway at fluences and wavelengths used in clinical protocols. (letter)

  15. Intense 2.7 µm emission and structural origin in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass.

    Science.gov (United States)

    Guo, Yanyan; Li, Ming; Hu, Lili; Zhang, Junjie

    2012-01-15

    The 2.7 μm emission properties in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass were investigated in the present Letter. An intense 2.7 μm emission in Er3+-doped bismuthate glass was observed. It is found that Er3+-doped bismuthate glass possesses high spontaneous transition probability A (65.26 s(-1)) and large 2.7 μm emission cross section σ(em) (9.53×10(-21) cm2) corresponding to the stimulated emission of Er3+:4I11/2→4I13/2 transition. The emission characteristic and energy transfer process upon excitation of a conventional 980 nm laser diode in bismuthate glass were analyzed. Additionally, the structure of bismuthate glass was analyzed by the Raman spectrum. The advantageous spectroscopic characteristics of Er3+ single-doped bismuthate glass together with the prominent thermal property indicate that bismuthate glass might become an attractive host for developing solid-state lasers around 2.7 μm.

  16. Sputtering and emission intensity of copper alloys in a Grimm glow lamp

    International Nuclear Information System (INIS)

    Yamada, T.; Kashima, J.; Naganuma, K.

    1981-01-01

    The effects of the metallurgical structure and the aluminium content of copper-aluminium alloy (1-12% Al) on the sputtering and intensities of spectral lines in the Grimm glow lamp are reported. The electrical current and sputtering yield decreased linearly with increasing aluminium content; the intensities of the Al I lines depended linearly on the amount of aluminium in the sputtering yield at a fixed voltage and argon pressure. The structure affected the intensities of the Al I and Cu I lines but not the intensity ratio (Al I/Cu I) for about 100 s after burn-off. Working curves for aluminium for samples of different structure were very similar. (Auth.)

  17. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    Science.gov (United States)

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles.

  18. Fuel-related Emissions from the Croatian Municipal Solid Waste Collection System in 2013: Mixed Municipal Waste

    Directory of Open Access Journals (Sweden)

    Anamarija Grbeš

    2018-01-01

    Full Text Available Waste removal (collection and landfilling in the Republic of Croatia is the responsibility of the municipalities and local governments in 21 administrative units (counties. They entrust the respective economic activity to 208 private and public companies specialized in waste collection and treatment. Organised waste collection affects 99 % of the population. The mixed waste from households and enterprises is at various frequencies collected at the door (kerbside collection and transported by truck to a landfill, or processing plant. This article aims to estimate fuel consumption and fuel-related airborne emissions from the collection of mixed municipal waste in Croatia in 2013. The input data and emission results are shown for Croatia and each Croatian county, in total, and relative to the number of inhabitants and mass of collected waste. Annual consumption of diesel for the collection of mixed waste is estimated at 10.6 million litres. At the county level, fuel consumption ranges from 87 thousand litres to 2.2 million litres, on average 504 thousand litres per county. Total emission of CO2 is estimated at 28 000 t, which at county level ranges from 231 to 5711 t. Relative emission ranges from 3.3 to 13 kg CO2 per capita (average 6.6 kg per capita, or 8.6–28.1 kg t−1 of municipal waste (average 17 kg CO2 per ton of municipal waste. The average values of CO2 emission from MSW collection that should also be the target values are 7–9 kg for mixed waste, and 8–15 kg CO2 for separate waste streams. Apart from CO2 emission, this research estimates emission of other, diesel combustion related compounds, such as NOx, CO, lubricant related CO2, NMVOC, PM, f-BC, N2O, SO2, NH3, Pb, ID[1,2,3-cd]P, B[k]F, B[b]F, B[a]P, as well as total distance of transport.

  19. Carbon accounting and economic model uncertainty of emissions from biofuels-induced land use change.

    Science.gov (United States)

    Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'Hare, Michael

    2015-03-03

    Few of the numerous published studies of the emissions from biofuels-induced "indirect" land use change (ILUC) attempt to propagate and quantify uncertainty, and those that have done so have restricted their analysis to a portion of the modeling systems used. In this study, we pair a global, computable general equilibrium model with a model of greenhouse gas emissions from land-use change to quantify the parametric uncertainty in the paired modeling system's estimates of greenhouse gas emissions from ILUC induced by expanded production of three biofuels. We find that for the three fuel systems examined--US corn ethanol, Brazilian sugar cane ethanol, and US soybean biodiesel--95% of the results occurred within ±20 g CO2e MJ(-1) of the mean (coefficient of variation of 20-45%), with economic model parameters related to crop yield and the productivity of newly converted cropland (from forestry and pasture) contributing most of the variance in estimated ILUC emissions intensity. Although the experiments performed here allow us to characterize parametric uncertainty, changes to the model structure have the potential to shift the mean by tens of grams of CO2e per megajoule and further broaden distributions for ILUC emission intensities.

  20. Analysis of zirconium alloys using inductively-coupled plasma emission spectrometry

    International Nuclear Information System (INIS)

    White, G.F.; Pickford, C.J.

    1982-06-01

    As part of an interlaboratory collaborative exercise, certain trace and minor elements have been determined in a proposed zircaloy reference material using inductively-coupled plasma emission spectrometry. A dissolution procedure involving hydrochloric and hydrofluoric acids was used for determination of Hf, Cr, Fe and Sn. Data have also been obtained for Ni, Cu and Mn. Use of a high resolution monochromator in a scanning mode was found necessary for measurement of the emission intensities in order to resolve the spectral lines of interest from the intense and complex emission from the zirconium matrix. (author)

  1. Urinary catheter related nosocomial infections in paediatric intensive care unit.

    Directory of Open Access Journals (Sweden)

    Tullu M

    1998-04-01

    Full Text Available The present prospective study was carried out in the Paediatric Intensive Care Unit (PICU of a tertiary care teaching hospital in Mumbai. The objective was to determine the incidence, risk factors, mortality and organisms responsible for urinary catheter related infections (UCRI. Colonization and/or bacteriuria was labelled as urinary catheter related infection (UCRI. Forty-four patients with 51 urinary catheters were studied. Incidence of UCRI was 47.06%. Age, female sex and immunocompromised status did not increase the risk of UCRI. Duration of catheter in-situ and duration of stay in the PICU were associated with higher risk of UCRI. The mortality was not increased by UCRI. Commonest organism isolated in UCRI was E. coli, which had maximum susceptibility to nitrofurantoin and amikacin.

  2. Bayesian modelling of the emission spectrum of the Joint European Torus Lithium Beam Emission Spectroscopy system.

    Science.gov (United States)

    Kwak, Sehyun; Svensson, J; Brix, M; Ghim, Y-C

    2016-02-01

    A Bayesian model of the emission spectrum of the JET lithium beam has been developed to infer the intensity of the Li I (2p-2s) line radiation and associated uncertainties. The detected spectrum for each channel of the lithium beam emission spectroscopy system is here modelled by a single Li line modified by an instrumental function, Bremsstrahlung background, instrumental offset, and interference filter curve. Both the instrumental function and the interference filter curve are modelled with non-parametric Gaussian processes. All free parameters of the model, the intensities of the Li line, Bremsstrahlung background, and instrumental offset, are inferred using Bayesian probability theory with a Gaussian likelihood for photon statistics and electronic background noise. The prior distributions of the free parameters are chosen as Gaussians. Given these assumptions, the intensity of the Li line and corresponding uncertainties are analytically available using a Bayesian linear inversion technique. The proposed approach makes it possible to extract the intensity of Li line without doing a separate background subtraction through modulation of the Li beam.

  3. Helium emission in the middle chromosphere

    International Nuclear Information System (INIS)

    Livshits, M.A.

    1976-01-01

    Slitless spectrograms obtained during the eclipse of 10 June 1972 have been analyzed to determine the height distribution of the D 3 He line intensity. For undisturbed regions the maximum of D 3 line intensity is confirmed to exist at about 1700 km above the limb. Besides the above mentioned maximum, in plages a considerable intensity may be observed at low heights (h 1000 km has been carried out within the low temperature mechanism of triplet helium emission taking into account the helium ionization by XUV radiation. The density dependence of the 2 3 S level population at different XUV flux values has been calculated. The observations give Nsub(e) approximately 2x10 10 cm -3 in the chromosphere at h = 2000 km. The probable coincidence of the H and He emission small filaments in the middle chromosphere is discussed. (Auth.)

  4. Infrastructure Shapes Differences in the Carbon Intensities of Chinese Cities.

    Science.gov (United States)

    Zheng, Bo; Zhang, Qiang; Davis, Steven J; Ciais, Philippe; Hong, Chaopeng; Li, Meng; Liu, Fei; Tong, Dan; Li, Haiyan; He, Kebin

    2018-05-15

    The carbon intensity of economic activity, or CO 2 emissions per unit GDP, is a key indicator of the climate impacts of a given activity, business, or region. Although it is well-known that the carbon intensity of countries varies widely according to their level of economic development and dominant industries, few studies have assessed disparities in carbon intensity at the level of cities due to limited availability of data. Here, we present a detailed new inventory of emissions for 337 Chinese cities (every city in mainland China including 333 prefecture-level divisions and 4 province-level cities, Beijing, Tianjin, Shanghai, and Chongqing) in 2013, which we use to evaluate differences of carbon intensity between cities and the causes of those differences. We find that cities' average carbon intensity is 0.84 kg of CO 2 per dollar of gross domestic product (kgCO 2 per $GDP), but individual cities span a large range: from 0.09 to 7.86 kgCO 2 per $GDP (coefficient of variation of 25%). Further analysis of economic and technological drivers of variations in cities' carbon intensity reveals that the differences are largely due to disparities in cities' economic structure that can in turn be traced to past investment-led growth. These patterns suggest that "carbon lock-in" via socio-economic and infrastructural inertia may slow China's efforts to reduce emissions from activities in urban areas. Policy instruments targeted to accelerate the transition of urban economies from investment-led to consumption-led growth may thus be crucial to China meeting both its economic and climate targets.

  5. Modelling nitrous oxide emissions from grazed grassland systems

    International Nuclear Information System (INIS)

    Wang Junye; Cardenas, Laura M.; Misselbrook, Tom H.; Cuttle, Steve; Thorman, Rachel E.; Li Changsheng

    2012-01-01

    Grazed grassland systems are an important component of the global carbon cycle and also influence global climate change through their emissions of nitrous oxide and methane. However, there are huge uncertainties and challenges in the development and parameterisation of process-based models for grazed grassland systems because of the wide diversity of vegetation and impacts of grazing animals. A process-based biogeochemistry model, DeNitrification-DeComposition (DNDC), has been modified to describe N 2 O emissions for the UK from regional conditions. This paper reports a new development of UK-DNDC in which the animal grazing practices were modified to track their contributions to the soil nitrogen (N) biogeochemistry. The new version of UK-DNDC was tested against datasets of N 2 O fluxes measured at three contrasting field sites. The results showed that the responses of the model to changes in grazing parameters were generally in agreement with observations, showing that N 2 O emissions increased as the grazing intensity increased. - Highlights: ► Parameterisation of grazing system using grazing intensity. ► Modification of UK D NDC for the UK soil and weather conditions. ► Validation of the UK D NDC against measured data of N 2 O emissions in three UK sites. ► Estimating influence of animal grazing practises on N 2 O emissions. - Grazing system was parameterised using grazing intensity and UK-DNDC model was modified and validated against measured data of N 2 O emissions in three UK sites.

  6. Tourism-Related CO2 Emission and Its Decoupling Effects in China: A Spatiotemporal Perspective

    Directory of Open Access Journals (Sweden)

    Zi Tang

    2018-01-01

    Full Text Available The rapid development of the tourism industry has been accompanied by an increase in CO2 emissions and has a certain degree of impact on climate change. This study adopted the bottom-up approach to estimate the spatiotemporal change of CO2 emissions of the tourism industry in China and its 31 provinces over the period 2000–2015. In addition, the decoupling index was applied to analyze the decoupling effects between tourism-related CO2 emissions and tourism economy from 2000 to 2015. The results showed that the total CO2 emissions of the tourism industry rose from 37.95 Mt in 2000 to 100.98 Mt in 2015 with an average annual growth rate of 7.1%. The highest CO2 emissions from the tourism industry occurred in eastern coastal China, whereas the least CO2 emissions were in the west of China. Additionally, the decoupling of CO2 emissions from economic growth in China’s tourism industry had mainly gone through the alternations of negative decoupling and weak decoupling. The decoupling states in most of the Chinese provinces were desirable during the study period. This study may serve as a scientific reference regarding decision-making in the sustainable development of the tourism industry in China.

  7. Cocaine-related admissions to an intensive care unit: a five-year study of incidence and outcomes.

    LENUS (Irish Health Repository)

    Galvin, S

    2010-02-01

    Cocaine misuse is increasing and it is evidently considered a relatively safe drug of abuse in Ireland. To address this perception, we reviewed the database of an 18-bed Dublin intensive care unit, covering all admissions from 2003 to 2007. We identified cocaine-related cases, measuring hospital mortality and long-term survival in early 2009. Cocaine-related admissions increased from around one annually in 2003-05 to 10 in 2007. Their median (IQR [range]) age was 25 (21-35 [17-47]) years and 78% were male. The median (IQR [range]) APACHE II score was 16 (11-27 [5-36]) and length of intensive care stay was 5 (3-9 [1-16]) days. Ten patients died during their hospital stay. A further five had died by the time of follow-up, a median of 24 months later. One was untraceable. Cocaine toxicity necessitating intensive care is increasingly common in Dublin. Hospital mortality in this series was 52%. These findings may help to inform public attitudes to cocaine.

  8. Scenario analysis on the goal of carbon emission peaking around 2030 of China proposed in the China-U.S. joint statement on climate change

    Science.gov (United States)

    Zheng, T.

    2015-12-01

    A goal of carbon (C) emission peaking around 2030 of China was declared in the China-U.S. joint statement on climate change, and emphasized in China's intended nationally determined contributions (INDC). Here, we predicted the carbon emission of China during the period 2011~2050 under seven scenarios, and analyzed the scientific and social implications of realizing the goal. Our results showed that: (1) C emissions of China will reach their peaks at 2022~2045 (with peak values 3.15~5.10 Pg C), and the predicted decay rates of C intensity were 2.1~4.2% in 2011~2050; (2) the precondition that the national C emission reaches the peak before 2030 is that the annual decay rates of C intensity must exceed 3.3% , as decay rates under different scenarios were predicted higher than that except for Past G8 scenario; (3) the national C emission would reach the peak before 2030, if the government of China should realize the C emissions reduction goals of China's 12th five-year plan, climate commitments of Copenhagen and INDC; (4) Chinese government could realize the goal of C emission peaking around 2030 from just controlling C emission intensity , but associated with relatively higher government's burden. In summary, China's C emission may well peak before 2030, meanwhile the combination of emissions reduction and economic macro-control would be demanded to avoid heavier social pressure of C emissions reduction occurred.

  9. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China

    International Nuclear Information System (INIS)

    He Feifei; Jiang Rongfeng; Chen Qing; Zhang Fusuo; Su Fang

    2009-01-01

    Nitrous oxide (N 2 O) emissions from a typical greenhouse vegetable system in Northern China were measured from February 2004 to January 2006 using a close chamber method. Four nitrogen management levels (NN, MN, CN, and SN) were used. N 2 O emissions occurred intermittently in the growing season, strongly correlating with N fertilization and irrigation. No peak emissions were observed after fertilization in the late Autumn season due to low soil temperature. 57-94% of the seasonal N 2 O emissions came from the initial growth stage, corresponding to the rewetting process in the soil. The annual N 2 O emissions ranged from 2.6 to 8.8 kg N ha -1 yr -1 , accounting for 0.27-0.30% of the annual nitrogen input. Compared with conventional N management, site-specific N management reduced N fertilization rate by 69% in 2004 and by 76% in 2005, and consequently reduced N 2 O emissions by 51% in 2004 and 27% in 2005, respectively. - High N 2 O emissions coming from the initial growth stage can be attributed to the rewetting process in the greenhouse soil.

  10. Waste wood as bioenergy feedstock. Climate change impacts and related emission uncertainties from waste wood based energy systems in the UK.

    Science.gov (United States)

    Röder, Mirjam; Thornley, Patricia

    2018-04-01

    Considering the urgent need to shift to low carbon energy carriers, waste wood resources could provide an alternative energy feedstock and at the same time reduce emissions from landfill. This research examines the climate change impacts and related emission uncertainties of waste wood based energy. For this, different grades of waste wood and energy application have been investigated using lifecycle assessment. Sensitivity analysis has then been applied for supply chain processes and feedstock properties for the main emission contributing categories: transport, processing, pelletizing, urea resin fraction and related N 2 O formation. The results show, depending on the waste wood grade, the conversion option, scale and the related reference case, that emission reductions of up to 91% are possible for non-treated wood waste. Compared to this, energy from treated wood waste with low contamination can achieve up to 83% emission savings, similar to untreated waste wood pellets, but in some cases emissions from waste wood based energy can exceed the ones of the fossil fuel reference - in the worst case by 126%. Emission reductions from highly contaminated feedstocks are largest when replacing electricity from large-scale coal and landfill. The highest emission uncertainties are related to the wood's resin fraction and N 2 O formation during combustion and, pelletizing. Comparing wood processing with diesel and electricity powered equipment also generated high variations in the results, while emission variations related to transport are relatively small. Using treated waste wood as a bioenergy feedstock can be a valid option to reduce emissions from energy production but this is only realisable if coal and landfill gas are replaced. To achieve meaningful emission reduction in line with national and international climate change targets, pre-treatment of waste wood would be required to reduce components that form N 2 O during the energy conversion. Copyright © 2017

  11. Public budgets for energy RD&D and the effects on energy intensity and pollution levels.

    Science.gov (United States)

    Balsalobre, Daniel; Álvarez, Agustín; Cantos, José María

    2015-04-01

    This study, based on the N-shaped cubic model of the environmental Kuznets curve, analyzes the evolution of per capita greenhouse gas emissions (GHGpc) using not just economic growth but also public budgets dedicated to energy-oriented research development and demonstration (RD&D) and energy intensity. The empirical evidence, obtained from an econometric model of fixed effects for 28 OECD countries during 1994-2010, suggests that energy innovations help reduce GHGpc levels and mitigate the negative impact of energy intensity on environmental quality. When countries develop active energy RD&D policies, they can reduce both the rates of energy intensity and the level of GHGpc emissions. This paper incorporates a moderating variable to the econometric model that emphasizes the effect that GDP has on energy intensity. It also adds a variable that reflects the difference between countries that have made a greater economic effort in energy RD&D, which in turn corrects the GHG emissions resulting from the energy intensity of each country.

  12. Thermal dependence of free exciton emission in ultraviolet cathodoluminescence of colloidal ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Bui, Hong Van; Pham, Van Ben [Faculty of Physics, VNU-Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Le, Si Dang [Institut Néel, CNRS, 25 rue des Martyrs, BP 166, F-38042 Grenoble Cedex 9 (France); Hoang, Nam Nhat, E-mail: namnhat@gmail.com [Faculty of Engineering Physics and Nanotechnology, VNU-University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi (Viet Nam)

    2016-10-15

    Cathodoluminescence properties of the colloidal ZnS nanopowders synthesized by using hydrothermal process, a large scale production method, are reported. The cathodoluminescence spectra were obtained for temperature from 5 to 300 K, where an intensive free exciton originated 326 nm emission was observed. This band did not split under the increase of excitation beam current density and prevailed even at room temperature. The weaker emissions appeared at 331, 333, 337 and 343 nm which were related to excitons bound to neutral acceptor (A{sup o}, X), transition from conduction band to acceptor levels (e, A) and their corresponding (e, A)−1LO, (e, A)−2LO phonon replicas. With increasing temperature the free exciton band shifted towards lower energy and its intensity decreased at 36.5 meV thermal quenching threshold. The dependence of band gap on temperature was also determined.

  13. A model for the relation between stimulus frequency and spontaneous otoacoustic emissions in lizard papillae.

    Science.gov (United States)

    Wit, Hero P; van Dijk, Pim; Manley, Geoffrey A

    2012-11-01

    Spontaneous otoacoustic emissions (SOAEs) and stimulus frequency otoacoustic emissions (SFOAEs) have been described from lizard ears. Although there are several models for these systems, none has modeled the characteristics of both of these types of otoacoustic emissions based upon their being derived from hair cells as active oscillators. Data from the ears of two lizard species, one lacking a tectorial membrane and one with a chain of tectorial sallets, as described by Bergevin et al. ["Coupled, active oscillators and lizard otoacoustic emissions," AIP Conf. Proc. 1403, 453 (2008)], are modeled as an array of coupled self-sustained oscillators. The model, originally developed by Vilfan and Duke ["Frequency clustering in spontaneous otoacoustic emissions from a lizard's ear," Biophys. J. 95, 4622-4630 (2008)], well describes both the amplitude and phase characteristics of SFOAEs and the relation between SFOAEs and SOAEs.

  14. The design of the run Clever randomized trial: running volume, -intensity and running-related injuries.

    Science.gov (United States)

    Ramskov, Daniel; Nielsen, Rasmus Oestergaard; Sørensen, Henrik; Parner, Erik; Lind, Martin; Rasmussen, Sten

    2016-04-23

    Injury incidence and prevalence in running populations have been investigated and documented in several studies. However, knowledge about injury etiology and prevention is needed. Training errors in running are modifiable risk factors and people engaged in recreational running need evidence-based running schedules to minimize the risk of injury. The existing literature on running volume and running intensity and the development of injuries show conflicting results. This may be related to previously applied study designs, methods used to quantify the performed running and the statistical analysis of the collected data. The aim of the Run Clever trial is to investigate if a focus on running intensity compared with a focus on running volume in a running schedule influences the overall injury risk differently. The Run Clever trial is a randomized trial with a 24-week follow-up. Healthy recreational runners between 18 and 65 years and with an average of 1-3 running sessions per week the past 6 months are included. Participants are randomized into two intervention groups: Running schedule-I and Schedule-V. Schedule-I emphasizes a progression in running intensity by increasing the weekly volume of running at a hard pace, while Schedule-V emphasizes a progression in running volume, by increasing the weekly overall volume. Data on the running performed is collected by GPS. Participants who sustain running-related injuries are diagnosed by a diagnostic team of physiotherapists using standardized diagnostic criteria. The members of the diagnostic team are blinded. The study design, procedures and informed consent were approved by the Ethics Committee Northern Denmark Region (N-20140069). The Run Clever trial will provide insight into possible differences in injury risk between running schedules emphasizing either running intensity or running volume. The risk of sustaining volume- and intensity-related injuries will be compared in the two intervention groups using a competing

  15. Dynamics of energy-related CO2 emissions in China during 1980-2002: the relative importance of energy supply-side and demand-side effects

    International Nuclear Information System (INIS)

    Libo Wu; Kaneko, Shinji; Matsuoka, Shunji

    2006-01-01

    Based on a newly developed model that integrates energy production, transformation and consumption processes, this paper compares the relative importance of some traditionally recognized factors operating on the energy demand side with a body of newly defined factors on the supply side, in terms of their contribution to trends in China's CO 2 emissions related to the total primary energy supply (C-TPES). Before 1996, changes in China's C-TPES were mainly driven by changes on the energy demand side. Factors operating on the energy supply side played trivial roles. During the period 1996-2000, however, increasing demand-side effects declined dramatically and at the same time decreasing effects from supply side expanded significantly. Such changes resulted directly in a decline in the C-TPES. The decreasing effects from international trade as well as statistical imbalances between supply and demand reinforced the declining trend. The shrinkage of demand side effects mainly arose from the slowdown of economic growth and speed of decrease in energy intensity. The expansion of supply-side effects was principally attributed to the speed of decrease in gross unit consumption in transformation sectors, especially in electricity sector. Therefore, the acceleration of efficiency improvements in end-use and transformation sectors accounted for the decline in the C-TPES over the period 1996-2000. (author)

  16. Study of luminous emissions associated to electron emissions in radiofrequency cavities; Etude des emissions lumineuses associees aux emissions electroniques dans les cavites hyperfrequences

    Energy Technology Data Exchange (ETDEWEB)

    Maissa, S

    1996-11-26

    This study investigates luminous emissions simultaneously to electron emissions and examines their features in order to better understand the field electron emission phenomenon. A RF cavity, operating at room temperature and in pulsed mode, joined to a sophisticated experimental apparatus has been especially developed. The electron and luminous emissions are investigated on cleaned or with metallic, graphitic and dielectric particles contaminated RF surfaces in order to study their influence on these phenomena. During the surface processing, unstable luminous spots glowing during one RF pulse are detected. Their apparition is promoted in the vicinity of the metallic particles or scratches. Two hypotheses could explain their origin: the presence of micro-plasmas associated to electronic explosive emission during processing or the thermal radiation of the melted metal during this emission. Stable luminous spots glowing during several RF pulses are also detected and appear to increase on RF surfaces contaminated with dielectric particles, leading to strong and explosive luminous emissions. Two interpretations are considered: the initiation of surface breakdowns on the dielectric particles or the heating by the RF field at temperatures sufficiently intense to provoke their thermal radiation then their explosion. Finally a superconducting cavity has been adapted to observe luminous spots, which differ from the former ones bu their star shape and could be associated to micro-plasmas, revealed by the starbursts observed on superconducting cavity walls. (author) 102 refs.

  17. Cooling atoms with extraresonant stimulated emission below the Doppler limit

    International Nuclear Information System (INIS)

    Shevy, Y.

    1989-01-01

    The process of cooling atoms with radiation pressure is well understood in terms of absorption and spontaneous emission of fluorescence photons. This process imposes a lower limit on the minimum equilibrium temperature of laser cooled two level atoms of K b T = ℎΓ 21 /2 (the Doppler limit), where Γ 21 is the excited state decay rate to the ground state. At high laser intensity, it has been demonstrated that the stimulated emission process changes the sign of the force to a heating force at the red side of the atomic resonance and to a cooling force at blue detunings. Although this stimulated force is more efficient than the radiation pressure force, it has been generally accepted that this force cannot lead to lower equilibrium temperatures due to the large heating caused by diffusion of momentum at high intensity. These conclusions are valid only when the sole damping mechanism is the excited state decay to the ground state by spontaneous emission. However, when the atomic system is opened, i.e., is allowed to decay to other levels, or the dipole decay rate is altered by dephasing events, the stimulated force is dramatically modified. Under this conditions the stimulated force can occur at lower laser intensity and can even reverse sign to provide damping at the red side of resonance. These phenomena originate from extraresonances in the stimulated emission process between the two counterpropagating waves. These resonances appear as a dispersive feature in pump probe spectra (Two Wave Mixing) and are closely related to the extraresonances in four wave mixing studied originally by Bloembergen and co-workers. This paper establishes this connection and the potential of these phenomena for laser cooling. The implications of these results to the recently observed ultra-cold Na and Cs atoms are also discussed

  18. Uncertainty in estimating and mitigating industrial related GHG emissions

    International Nuclear Information System (INIS)

    El-Fadel, M.; Zeinati, M.; Ghaddar, N.; Mezher, T.

    2001-01-01

    Global climate change has been one of the challenging environmental concerns facing policy makers in the past decade. The characterization of the wide range of greenhouse gas emissions sources and sinks as well as their behavior in the atmosphere remains an on-going activity in many countries. Lebanon, being a signatory to the Framework Convention on Climate Change, is required to submit and regularly update a national inventory of greenhouse gas emissions sources and removals. Accordingly, an inventory of greenhouse gases from various sectors was conducted following the guidelines set by the United Nations Intergovernmental Panel on Climate Change (IPCC). The inventory indicated that the industrial sector contributes about 29% to the total greenhouse gas emissions divided between industrial processes and energy requirements at 12 and 17%, respectively. This paper describes major mitigation scenarios to reduce emissions from this sector based on associated technical, economic, environmental, and social characteristics. Economic ranking of these scenarios was conducted and uncertainty in emission factors used in the estimation process was emphasized. For this purpose, theoretical and experimental emission factors were used as alternatives to default factors recommended by the IPCC and the significance of resulting deviations in emission estimation is presented. (author)

  19. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... 45 David, Age 65 Harold, Age 67 Data & Statistics Facts About Physical Activity Data, Trends and Maps ... relative intensity and absolute intensity. Relative Intensity The level of effort required by a person to do ...

  20. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Colorado and Utah using mobile stable isotope (13CH4) analysis

    Science.gov (United States)

    Rella, Chris; Jacobson, Gloria; Crosson, Eric; Karion, Anna; Petron, Gabrielle; Sweeney, Colm

    2013-04-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of CO2 emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation. However, given that the global warming potential of methane is many times greater than that of carbon dioxide (Solomon et al. 2007), the importance of quantifying the fugitive emissions of methane throughout the natural gas production and distribution process becomes clear (Howarth et al. 2011). A key step in the process of assessing the emissions arising from natural gas production activities is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis. In particular, the 13CH4 signature of natural gas (-35 to -40 permil) is significantly different that the signature of other significant sources of methane, such as landfills or ruminants (-45 to -70 permil). In this paper we present measurements of mobile field 13CH4 using a spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in two intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, and the Uintah basin in Utah. Mobile isotope measurements in the nocturnal boundary layer have been made, over a total path of 100s of km throughout the regions, allowing spatially resolved measurements of the regional isotope signature. Secondly, this analyzer was used to quantify the isotopic signature of those individual sources (natural gas fugitive emissions, concentrated animal feeding operations, and landfills) that constitute the majority of methane emissions in these regions, by making measurements of the isotope ratio directly in the downwind plume from each source. These

  1. Industrial CO2 emissions from energy use in Korea: A structural decomposition analysis

    International Nuclear Information System (INIS)

    Lim, Hea-Jin; Yoo, Seung-Hoon; Kwak, Seung-Jun

    2009-01-01

    This paper attempts to quantify energy consumption and CO 2 emissions in the industrial sectors of Korea. The sources of the changes in CO 2 emissions for the years 1990-2003 are investigated, in terms of a total of eight factors, through input-output structural decomposition analysis: changes in emission coefficient (caused by shifts in energy intensity and carbon intensity); changes in economic growth; and structural changes (in terms of shifts in domestic final demand, exports, imports of final and intermediate goods, and production technology). The results show that the rate of growth of industrial CO 2 emissions has drastically decreased since the 1998 financial crisis in Korea. The effect on emission reductions due to changes in energy intensity and domestic final demand surged in the second period (1995-2000), while the impact of exports steeply rose in the third period (2000-2003). Of all the individual factors, economic growth accounted for the largest increase in CO 2 emissions. The results of this analysis can be used to infer the potential for emission-reduction in Korea

  2. An empirical model to predict road dust emissions based on pavement and traffic characteristics.

    Science.gov (United States)

    Padoan, Elio; Ajmone-Marsan, Franco; Querol, Xavier; Amato, Fulvio

    2018-06-01

    The relative impact of non-exhaust sources (i.e. road dust, tire wear, road wear and brake wear particles) on urban air quality is increasing. Among them, road dust resuspension has generally the highest impact on PM concentrations but its spatio-temporal variability has been rarely studied and modeled. Some recent studies attempted to observe and describe the time-variability but, as it is driven by traffic and meteorology, uncertainty remains on the seasonality of emissions. The knowledge gap on spatial variability is much wider, as several factors have been pointed out as responsible for road dust build-up: pavement characteristics, traffic intensity and speed, fleet composition, proximity to traffic lights, but also the presence of external sources. However, no parameterization is available as a function of these variables. We investigated mobile road dust smaller than 10 μm (MF10) in two cities with different climatic and traffic conditions (Barcelona and Turin), to explore MF10 seasonal variability and the relationship between MF10 and site characteristics (pavement macrotexture, traffic intensity and proximity to braking zone). Moreover, we provide the first estimates of emission factors in the Po Valley both in summer and winter conditions. Our results showed a good inverse relationship between MF10 and macro-texture, traffic intensity and distance from the nearest braking zone. We also found a clear seasonal effect of road dust emissions, with higher emission in summer, likely due to the lower pavement moisture. These results allowed building a simple empirical mode, predicting maximal dust loadings and, consequently, emission potential, based on the aforementioned data. This model will need to be scaled for meteorological effect, using methods accounting for weather and pavement moisture. This can significantly improve bottom-up emission inventory for spatial allocation of emissions and air quality management, to select those roads with higher emissions

  3. Emission properties of Mn doped ZnO nanoparticles prepared by mechanochemical processing

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, Nurul Syahidah; Yahya, Ahmad Kamal [Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450 (Malaysia); Talari, Mahesh Kumar, E-mail: talari@gmail.com [Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450 (Malaysia)

    2012-07-15

    Mechanochemical processing was reported to introduce lot of crystal defects which can significantly influence emission properties. Nevertheless, to the best of our knowledge, there are no reports on effect of mechanochemical processing on emission properties of transition metal ion doped ZnO. In this study, Zn{sub 1-x}Mn{sub x}O nanoparticles with different Mn content (x=0, 0.02, 0.04, 0.06, 0.08, and 0.1) were prepared by mechanochemical processing to study the effect of Mn doping and processing on emission properties. Confirmation of nanoparticles size and nanocrystalline nature of hexagonal wurtzite ZnO structure is carried out using transmission electron microscopy (TEM) and selected area electron diffraction (SAED), respectively. The samples were also characterized using Fluorescence Spectroscope before and after heat-treatment. The emission studies revealed that blue emission intensity is stronger compared to UV and green emission in contrast to the earlier reports, where other synthesis routes were employed for the ZnO nanoparticles' preparation. The blue emission originates from the zinc interstitial (Zn{sub i}) and oxygen interstitial (O{sub i}) defects, which indicate that the mechanochemical route resulted in more interstitial defects compared to oxygen substitution (O{sub Zn}) and oxygen vacancy (V{sub o}) defects which otherwise would give green emission. Mn doping resulted in shifting of near-band-edge (NBE) emission and the reduction in the intensities of NBE, blue and green emissions. The initial red shift at lower Mn content could be due to s-d and p-d exchange interactions as well as band tailing effect where as the blue shift at higher Mn content can be attributed to the Burstein-Moss shift. The reduction in emission intensity could be due to non-radiative recombination processes promoted by Mn ions with increasing Mn content. - Highlights: Black-Right-Pointing-Pointer Zn{sub 1-x}Mn{sub x}O nanoparticles were prepared by mechanochemical

  4. Biophoton emission induced by heat shock.

    Directory of Open Access Journals (Sweden)

    Katsuhiro Kobayashi

    Full Text Available Ultraweak biophoton emission originates from the generation of reactive oxygen species (ROS that are produced in mitochondria as by-products of cellular respiration. In healthy cells, the concentration of ROS is minimized by a system of biological antioxidants. However, heat shock changes the equilibrium between oxidative stress and antioxidant activity, that is, a rapid rise in temperature induces biophoton emission from ROS. Although the rate and intensity of biophoton emission was observed to increase in response to elevated temperatures, pretreatment at lower high temperatures inhibited photon emission at higher temperatures. Biophoton measurements are useful for observing and evaluating heat shock.

  5. Energy markets in the 1990's and beyond: A comparison of energy intensity in the United States and Japan

    Science.gov (United States)

    McDonald, S. C.

    1989-10-01

    A comparative analysis is provided of energy intensity in the U.S. and Japan. According to aggregate International Energy Agency (IEA) data, the U.S. has one of the most energy-intensive economies while Japan has one of the least. Energy-intensity measures are constructed and examined which that are more detailed than aggregate measures used by the IEA to see if they can better explain these differences. The year chosen for this analysis is 1985. The issue of energy intensity may become particularly critical if scientific findings on global climate change and greenhouse emissions lead to negotiations on restricting carbon emissions. The burning of fossil fuels is the most important anthropogenic source of carbon emissions. As shown by this analysis, developing a consistent and fair set of goals for each country for carbon emissions, which are interlocked with energy intensity, may be a difficult task.

  6. China’s provincial CO2 emissions embodied in international and interprovincial trade

    International Nuclear Information System (INIS)

    Guo Ju’e; Zhang Zengkai; Meng Lei

    2012-01-01

    Trades create a mechanism of embodied CO 2 emissions transfer among regions, causing distortion on the total emissions. As the world’s second largest economy, China has a large scale of trade, which results in the serious problem of embodied CO 2 emissions transfer. This paper analyzes the characteristics of China’s CO 2 emissions embodied in international and interprovincial trade from the provincial perspective. The multi-regional Input–Output Model is used to clarify provincial CO 2 emissions from geographical and sectoral dimensions, including 30 provinces and 28 sectors. Two calculating principles (production accounting principle and consumption accounting principle, ) are applied. The results show that for international trade, the eastern area accounts for a large proportion in China’s embodied CO 2 emissions. The sectors as net exporters and importers of embodied CO 2 emissions belong to labor-intensive and energy-intensive industries, respectively. For interprovincial trade, the net transfer of embodied CO 2 emissions is from the eastern area to the central area, and energy-intensive industries are the main contributors. With the largest amount of direct CO 2 emissions, the eastern area plays an important role in CO 2 emissions reduction. The central and western areas need supportive policies to avoid the transfer of industries with high emissions. - Highlights: ► China’s embodied CO 2 emissions are analyzed from the provincial perspective. ► Eastern provinces have larger CO 2 emissions embodied in international trade. ► Embodied CO 2 emissions are mainly transferred from eastern area to central area. ► Coastal provinces play important roles in CO 2 emissions reduction. ► Inland provinces need supportive policies on emissions reduction.

  7. A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles

    International Nuclear Information System (INIS)

    Ma Hongrui; Balthasar, Felix; Tait, Nigel; Riera-Palou, Xavier; Harrison, Andrew

    2012-01-01

    Electric vehicles have recently been gaining increasing worldwide interest as a promising potential long-term solution to sustainable personal mobility; in particular, battery electric vehicles (BEVs) offer zero tailpipe emissions. However, their true ability to contribute to greenhouse gas (GHG) emissions reductions can only be properly assessed by comparing a life cycle assessment of their GHG emissions with a similar assessment for conventional internal combustion vehicles (ICVs). This paper presents an analysis for vehicles typically expected to be introduced in 2015 in two example markets (the UK and California), taking into account the impact of three important factors: •Like-for-like vehicle comparison and effect of real-world driving conditions. •Accounting for the GHG emissions associated with meeting the additional electricity demand for charging the batteries. •GHG emissions associated with vehicle manufacture, disposal, etc. This work demonstrates that all of these factors are important and emphasises that it is therefore crucial to clearly define the context when presenting conclusions about the relative GHG performance of BEVs and ICVs – such relative performance depends on a wide range of factors, including the marginal regional grid GHG intensity, vehicle size, driving pattern, loading, etc. - Highlights: ► Develops new insights into the life cycle GHG emissions of electric vehicles. ► Addresses like-for-like vehicle comparison and effect of real-world driving. ► Accounts for marginal GHG intensity of the electricity used to charge EVs. ► Accounts for the GHG emissions associated with vehicle manufacture and disposal.

  8. Enhanced native acceptor-related blue emission of ZnO thin films annealed in an oxygen ambient

    International Nuclear Information System (INIS)

    Shim, Eunhee; Lee, Choeun; Jung, Eiwhan; Lee, Jinyong; Kim, Doosoo; Lee, Youngmin; Kim, Deukyoung; Lee, Sejoon

    2012-01-01

    The thermodynamic behaviors of charged point defects in unintentionally-doped ZnO thin films were investigated. The as-grown sample displayed two different types of blue-emission bands: one at ∼2.95 eV from native-donor zinc interstitial (Zn i ) and the other at ∼3.17 eV from native acceptor zinc vacancies (V Zn ). In the samples annealed at oxygen ambience, V Zn -related emission was dramatically enhanced, and Zn i -related emission was drastically reduced. The behavior was observed to become more apparent when the annealing temperature was increased. The results can be explained by both the increased generation probability and the lowered formation enthalpy of V Zn in an oxygen-rich environment, particularly at higher temperatures.

  9. Enhanced native acceptor-related blue emission of ZnO thin films annealed in an oxygen ambient

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Eunhee; Lee, Choeun; Jung, Eiwhan; Lee, Jinyong; Kim, Doosoo; Lee, Youngmin; Kim, Deukyoung; Lee, Sejoon [Dongguk University, Seoul (Korea, Republic of)

    2012-06-15

    The thermodynamic behaviors of charged point defects in unintentionally-doped ZnO thin films were investigated. The as-grown sample displayed two different types of blue-emission bands: one at ∼2.95 eV from native-donor zinc interstitial (Zn{sub i}) and the other at ∼3.17 eV from native acceptor zinc vacancies (V{sub Zn}). In the samples annealed at oxygen ambience, V{sub Zn}-related emission was dramatically enhanced, and Zn{sub i}-related emission was drastically reduced. The behavior was observed to become more apparent when the annealing temperature was increased. The results can be explained by both the increased generation probability and the lowered formation enthalpy of V{sub Zn} in an oxygen-rich environment, particularly at higher temperatures.

  10. Enteric methane emissions and their response to agro-ecological and livestock production systems dynamics in Zimbabwe.

    Science.gov (United States)

    Svinurai, Walter; Mapanda, Farai; Sithole, Dingane; Moyo, Elisha N; Ndidzano, Kudzai; Tsiga, Alois; Zhakata, Washington

    2018-03-01

    Without disregarding its role as one of the key sources of sustainable livelihoods in Zimbabwe and other developing countries, livestock production contributes significantly to greenhouse gas (GHG) emissions through enteric fermentation. For the livestock sector to complement global efforts to mitigate climate change, accurate estimations of GHG emissions are required. Methane emissions from enteric fermentation in Zimbabwe were quantified over 35years under four production systems and five agro-ecological regions. The Intergovernmental Panel on Climate Change emission factor methodology was used to derive CH 4 emissions from seven livestock categories at national level. Emission intensities based on human population, domestic export of livestock meat and climate variables were used to assess emission drivers and predict future emission trends. Over the past 35years, enteric fermentation CH 4 emissions from all livestock categories ranged between 158.3 and 204.3Ggyear -1 . Communal lands, typified by indigenous livestock breeds, had the highest contribution of between 58% and 75% of the total annual emissions followed by livestock from large scale commercial (LSC) farms. The decreasing livestock population on LSC farms and consequent decline in production could explain the lack of a positive response of CH 4 emissions to human population growth, and decreasing emissions per capita over time at -0.3kg CH 4 capita -1 year -1 . The emissions trend showed that even if Zimbabwe's national livestock population doubles in 2030 relative to the 2014 estimates, the country would still remain with similar magnitude of CH 4 emission intensity as that of 1980. No significant correlations (P>0.05) were found between emissions and domestic export of beef and pork. Further research on enhanced characterisation of livestock species, population and production systems, as well as direct measurements and modelling of emissions from indigenous and exotic livestock breeds were

  11. Defect studies in quartz: Composite nature of the blue and UV emissions

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Marco, E-mail: m.martini@unimib.it [Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, via R. Cozzi 55, I-20125 Milano (Italy); INFN, Sezione di Milano Bicocca, Piazza della Scienza 1, I-20126 Milano (Italy); Fasoli, Mauro; Villa, Irene [Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, via R. Cozzi 55, I-20125 Milano (Italy)

    2014-05-01

    Quartz is an extremely diffused natural luminescence dosimeter. Thanks to the presence of traps and luminescence centres, its TSL and OSL (Thermally and Optically Stimulated Luminescence) properties have been extensively exploited. Quartz is then used for archaeological and geological dating and is one of the most useful materials for accident dosimetry. Many luminescence emissions are known to be present in the OSL and TSL of quartz. Three main emission bands are always reported, as the red, blue and UV bands, centred at around 650, 470, and 360–380 nm, respectively. Although the assignment of the luminescence emissions to specific defect centres in quartz is still undefined, a thorough analysis of the radioluminescence emissions and their response to irradiation and thermal treatments turned out to be very useful in understanding many features. Specifically, the presence of the same emission bands in natural and synthetic quartz and their dependence on the presence of extrinsic impurities is a common characteristic. The main impurities involve Al ions substituting Si ones and charge compensated by nearby either alkali ions, H{sup +}, or a hole. The emission spectra dynamics evidenced in our experiment confirm the role of Al-related centres in the luminescence properties of quartz. From the measurements presented in this paper the composite nature of the “blue” emission is confirmed. Two bands labelled as A at 2.5 eV and B at 2.8 eV contribute to the emission in this region, their behaviour being different as a function of irradiation. More complex is the picture in the UV region, where, besides the already detected C and D bands at 3.4 eV and 3.9 eV, respectively, two further emissions have been detected at 3.1 eV and 3.7 eV. Despite both the 3.4 eV and the 3.7 eV bands are shown to be affected by thermal treatments, the annealing temperature dependence of their intensity is markedly different. In fact, whereas the C band intensity, at 3.4 eV, increases

  12. Defect studies in quartz: Composite nature of the blue and UV emissions

    International Nuclear Information System (INIS)

    Martini, Marco; Fasoli, Mauro; Villa, Irene

    2014-01-01

    Quartz is an extremely diffused natural luminescence dosimeter. Thanks to the presence of traps and luminescence centres, its TSL and OSL (Thermally and Optically Stimulated Luminescence) properties have been extensively exploited. Quartz is then used for archaeological and geological dating and is one of the most useful materials for accident dosimetry. Many luminescence emissions are known to be present in the OSL and TSL of quartz. Three main emission bands are always reported, as the red, blue and UV bands, centred at around 650, 470, and 360–380 nm, respectively. Although the assignment of the luminescence emissions to specific defect centres in quartz is still undefined, a thorough analysis of the radioluminescence emissions and their response to irradiation and thermal treatments turned out to be very useful in understanding many features. Specifically, the presence of the same emission bands in natural and synthetic quartz and their dependence on the presence of extrinsic impurities is a common characteristic. The main impurities involve Al ions substituting Si ones and charge compensated by nearby either alkali ions, H + , or a hole. The emission spectra dynamics evidenced in our experiment confirm the role of Al-related centres in the luminescence properties of quartz. From the measurements presented in this paper the composite nature of the “blue” emission is confirmed. Two bands labelled as A at 2.5 eV and B at 2.8 eV contribute to the emission in this region, their behaviour being different as a function of irradiation. More complex is the picture in the UV region, where, besides the already detected C and D bands at 3.4 eV and 3.9 eV, respectively, two further emissions have been detected at 3.1 eV and 3.7 eV. Despite both the 3.4 eV and the 3.7 eV bands are shown to be affected by thermal treatments, the annealing temperature dependence of their intensity is markedly different. In fact, whereas the C band intensity, at 3.4 eV, increases after

  13. Regional allocation of CO2 emissions allowance over provinces in China by 2020

    International Nuclear Information System (INIS)

    Wang, Ke; Zhang, Xian; Wei, Yi-Ming; Yu, Shiwei

    2013-01-01

    The mitigation efforts of China are increasingly important for meeting global climate target since the rapid economic growth of China has led to an increasing share in the world's total CO 2 emissions. This paper sets out to explore the approach for realizing China's national mitigation targets submitted to the UNFCCC as part of the Copenhagen Accord; that is, to reduce the intensity of CO 2 emissions per unit of GDP by 40–45% by 2020, as well as reducing the energy intensity and increasing the share of non-fossil fuel consumption, through regional allocation of emission allowance over China's provinces. Since the realization of China's mitigation target essentially represents a total amount emission allowance allocation problem, an improved zero sum gains data envelopment analysis optimization model, which could deal with the constant total amount resources allocation, is proposed in this study. By utilizing this model and based on several scenarios of China's economic growth, CO 2 emissions, and energy consumption, a new efficient emission allowance allocation scheme on provincial level for China by 2020 is proposed. The allocation results indicate that different provinces have to shoulder different mitigation burdens in terms of emission intensity reduction, energy intensity reduction, and share of non-fossil fuels increase. - Highlights: ► We explore the approach to realize national CO 2 emissions reduction target of China by 2020. ► The CO 2 emissions allowance is allocated over China's 30 administrative regions. ► Several scenarios of China's regional economy, emission, energy consumption are given. ► The zero sum gains data envelopment analysis model is applied in emission allowance allocation. ► An efficient emission allowance allocation scheme on provincial level is proposed

  14. Activities of four bus terminals of Semarang City gateway and the related GHG emission

    Science.gov (United States)

    Huboyo, H. S.; Wardhana, I. W.; Sutrisno, E.; Wangi, L. S.; Lina, R. A.

    2018-01-01

    The activities of the bus terminal, including loading-unloading passengers, bus idling, and bus movements at the terminal, will emit GHG’s emission. This research analyzes GHG emission from four terminals, i.e., Mangkang, Terboyo, Penggaron, and Sukun in Semarang City. The emission was estimated by observing detail activities of public transport means, especially for moving and idling time. The emission was calculated by Tier 2 method based on the vehicle type as well as fuel consumption. The highest CO2e during vehicle movements at Sukun area was contributed by large bus about 2.08 tons/year, while at Terboyo terminal was contributed by medium bus about 347.97 tons/year. At Mangkang terminals, the highest emission for vehicle movements was attributed by medium bus as well of about 53.18 tons/year. At last, Penggaron terminal’s highest GHG emission was attributed by BRT about 26.47 tons/year. During idling time, the highest contributor to CO2e was the large bus at the three terminals, i.e., Sukun of 43.53 tons/year, Terboyo of 196.56 tons/year, and Mangkang of 84.26 tons/year, while at Penggaron, BRT dominated with CO2e of 26.47 tons/year. The management of public transport in terminals is crucial to mitigate the emission related to bus terminals activities.

  15. Impacts of the EU emissions trading scheme on the industrial competitiveness in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Graichen, Verena; Schumacher, Katja; Matthes, Felix C.; Mohr, Lennart [Oeko Institut e.V., Berlin (Germany); Duscha, Vicky; Schleich, Joachim [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany); Diekmann, Jochen [DIW, Berlin (Germany)

    2008-09-15

    The authors of the contribution under consideration present a discussion of methods, and provide empirical results for the analysis of effects of the EU Emissions Trading Scheme on product costs and subsequent impacts on international competitiveness. The discussion shows that the combination of intensity of trade indicators and value at stake indicators reveals meaningful results that allow assessing the potential for distortion in competitiveness by the EU Emissions Trading Schemes. The analysis of trade intensities and value at stake showed that a small number of sectors may in fact be exposed to distortions in competitiveness due to both high trade intensity and high value at stake. For Germany, these include 'basic iron and steel', 'fertilizers and nitrogen compounds', 'paper and paperboard', 'aluminium and aluminium products' and 'other basic inorganic chemicals'. A number of other sectors reveal a high intensity of trade but low value at stake which implies that the increase in product costs due to the EU Emissions Trading Scheme is relatively small and negative effects on competitiveness may not be likely. For the sectors that reveal high values at stake and high trade intensities, market positions are likely to change under the EU Emissions Trading system due to increased production costs and high exposure to international competition. When deciding on which sectors are highly exposed to possible distortions in competitiveness and which measures should be implemented to address competitiveness and leakage it should be kept in mind that CO{sub 2} costs are only one of multiple factors affecting companies' production and investment decisions. Other factors that may deserve detailed investigation include product differentiation and market segmentation within a sector (including specialty products), close cooperation with domestic/European partners and intrafirm trade, differences across countries in the

  16. Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China

    International Nuclear Information System (INIS)

    Ou, Xunmin; Xiaoyu, Yan; Zhang, Xiliang

    2011-01-01

    The Well-to-Meter (WTM) analysis module in the Tsinghua-CA3EM model has been used to examine the primary fossil energy consumption (PFEC) and greenhouse gas (GHG) emissions for electricity generation and supply in China. The results show that (1) the WTM PFEC and GHG emission intensities for the 2007 Chinese electricity mix are 3.247 MJ/MJ and 297.688 g carbon dioxide of equivalent (gCO 2,e )/MJ, respectively; (2) power generation is the main contributing sub-stage; (3) the coal-power pathway is the only major contributor of PFEC (96.23%) and GHG emissions (97.08%) in the 2007 mix; and (4) GHG emissions intensity in 2020 will be reduced to 220.470 gCO 2,e /MJ with the development of nuclear and renewable energy and to 169.014 gCO 2,e /MJ if carbon dioxide capture and storage (CCS) technology is employed. It is concluded that (1) the current high levels of PFEC and GHG emission for electricity in China are largely due to the dominant role of coal in the power-generation sector and the relatively low efficiencies during all the sub-stages from resource extraction to final energy consumption and (2) the development of nuclear and renewable energy as well as low carbon technologies such as CCS can significantly reduce GHG emissions from electricity. (author)

  17. Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Xunmin [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Beijing 100084 (China); School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); Xiaoyu, Yan [Smith School of Enterprise and the Environment, University of Oxford, Oxford OX1 2BQ (United Kingdom); Zhang, Xiliang [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Beijing 100084 (China)

    2011-01-15

    The Well-to-Meter (WTM) analysis module in the Tsinghua-CA3EM model has been used to examine the primary fossil energy consumption (PFEC) and greenhouse gas (GHG) emissions for electricity generation and supply in China. The results show that (1) the WTM PFEC and GHG emission intensities for the 2007 Chinese electricity mix are 3.247 MJ/MJ and 297.688 g carbon dioxide of equivalent (gCO{sub 2,e})/MJ, respectively; (2) power generation is the main contributing sub-stage; (3) the coal-power pathway is the only major contributor of PFEC (96.23%) and GHG emissions (97.08%) in the 2007 mix; and (4) GHG emissions intensity in 2020 will be reduced to 220.470 gCO{sub 2,e}/MJ with the development of nuclear and renewable energy and to 169.014 gCO{sub 2,e}/MJ if carbon dioxide capture and storage (CCS) technology is employed. It is concluded that (1) the current high levels of PFEC and GHG emission for electricity in China are largely due to the dominant role of coal in the power-generation sector and the relatively low efficiencies during all the sub-stages from resource extraction to final energy consumption and (2) the development of nuclear and renewable energy as well as low carbon technologies such as CCS can significantly reduce GHG emissions from electricity. (author)

  18. Defect controlled tuning of the ratio of ultraviolet to visible light emission in TiO2 thin films

    International Nuclear Information System (INIS)

    Mondal, S.; Basak, D.

    2016-01-01

    The photoluminescence (PL) of sol–gel TiO 2 thin film has been found to be largely dependent on the post-deposition processing such as annealing at 500 °C in air, vacuum and ultraviolet (UV) light curing at room temperature. A detailed analysis of room temperature PL spectra shows that the UV/VIS PL peak intensity ratio is maximum for the film which has been annealed at 500 °C in air. X-ray photoelectron spectroscopy confirms the presence of Ti 3+ type of point defects. The visible emission is deconvoluted to green and orange emissions. Analyses of the present experimental results indicate that V O and/or Ti 3+ causes the green emission and OH and/or excess O 2 adsorption on TiO 2 surface probably causes the orange emission. The time correlated single photon counting spectroscopy data of the UV PL indicates higher number defects in vacuum annealed and UV cured films as compared to the air annealed film. Correlation of the results altogether allows us to conclude that the surface defects those causing the visible emission are smaller in number in the air annealed film. The present results may be useful for tuning the relative PL intensities of UV, green and orange emissions. - Highlights: • Sol–gel TiO 2 films were treated both in air, vacuum at 500 °C and under UV light (room temperature). • UV/VIS PL intensity ratio is maximum for air annealed and minimum for UV cured films. • Both green and orange emission predominantly controls the visible emission of TiO 2 . • The visible emission exhibit a clear correlation with Ti 3+  defects on the surface.

  19. A new method of organizing spectral line intensity ratio fluctuations of auroral emissions

    International Nuclear Information System (INIS)

    Thelin, B.

    1986-02-01

    In this paper a new kind of linearization effect between the atmospheric auroral emissions is presented. The same kind of linearization effect has previously been found in nightglow emissions from photometer measurements and in the spectrochemical field from studies of optical light sources. Linear graphs have been obtained for atomic spectral lines and vibrational bandspectra when the spectral line ratio fluctuations were plotted versus the photon energies of these emissions. This new effect has been studied with a spectrophotometer in auroral emissions, where linear graphs have been obtained on different auroral occasions. By doing such studies of auroral light it is possible to see the importance of the inelastic scattering cross section between electrons - atoms and electrons - molecules. In this way it has shown to be possible to determine the mean energy of the interacting thermal electrons that are active in the different auroral phases. (author)

  20. Electron emission during multicharged ion-surface interactions

    International Nuclear Information System (INIS)

    Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Meyer, F.W.; Zehner, D.M.

    1990-01-01

    Recent measurements of electron spectra for slow multicharged N ion-surface collisions are presented. The emphasis is on potential emission, i.e. the electron emission related to the neutralization of the ions. When using N ions that carry a K shell vacancy into the collision, characteristic K Auger electron emission from the projectiles is observed, as well as, for specific surfaces, target atom Auger transitions (resulting from vacancy transfer). Measurements of the intensity of these Auger transitions as a function of the time the ions spend above the surface can serve as a useful probe of the timescales characterizing the relevant neutralization processes. This technique is elucidated with the help of some computer simulations. It is shown that neutralization timescales required in the atomic ladder picture, in which neutralization takes place by resonant capture followed by purely intra-atomic Auger transitions, are too long to explain our experimental results. The introduction of additional neutralization/de-excitation mechanisms in the simulations leads to much better agreement with the experiments